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ABSTRACT

The objective of this thesis research is to develop a Back-Propagation Neural Network

(BNN) to control certain classes of unknown nonlinear systems and explore the network's

capabilities. The structure of the Direct Model Reference Adaptive Controller (DMRAC)

for Linear Time Invarian (LITI) systems with unknown parameters is first analyzed and then

is extended to nonlinear systems by using BNN. Nonminimum phase systems, both linear

and nonlinear, have also been considered.

The analysis of the experiments shows that the BNN DMRAC gives satisfactory

results for the representative nonlinear systems considered, while the conventional least-

squares estimator DMRAC fails. Based on the analysis and experimental findings, some

general conditions are shown to be required to ensure that this technique is satisfactory.

These conditions are presented and discussed. It has been found that further research needs

to be done for the nonminimum phase case in order to guarantee stability and tracking.

Also, to establish this as a more general and significant control technique, further

research is required to develop more specific rules and guidelines for the BNN design and

training.
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I. INTRODUCTION

In the past three decades, major advances have been made in adaptive identification

and control for identifying and controlling Linear Tune Invariant LTI systems with unknown

parameters. The choice of the identifier and controller structures is based on well established

results in systems theory. The adaptive control theory is then improved and applied to

nonlinear dynamic plants employing neural networks with the right choice of the identifier

and controller structures.

The objective of this thesis research is to develop a Back-Propagation Neural Network

(BNN) to control certain classes of unknown nonlinear dynamical systems. Initial analysis

is directed towards a Direct Model Reference Adaptive Controller (DMRAC) for an

unknown LTi system. Results of the simulation are displayed for this system. The same

analysis is then performed for an unknown nonminimum phase system. The adaptive control

theory is then applied to nonlinear unknown systems by employing neural networks.

Basically, four nonlinear models have been analyzed and simulated. Lastly, the adaptive

control algorithm is tried with nonlinear unknown nonminimum phase systems again by

employing neural networks.

In what follows, Chapter II presents the analysis of a DMRAC for an unknown LTI

system and for an unknown nonminimum phase LTI system. Chapter III concerns neural

networks in general and adaptive control of nonlinear plants employing neural networks.



Chapter IV is composed of the simulations that have been carried out. The results,

conclusions and discussions are given in Chapter V.
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11. ADAPTIVE CONTROL OF UNKNOWN LTI SYSTEMS

A. ADAPTIVE CONTROL IN GENERAL

The search for design techniques to control systems with unknown parameters has

drawn much attention in recent years. Adaptive control is currently one of the most

commonly used methods in the control of systems with uncertain dynamics. Several

applications of adaptive control such as ship steering, aircraft control, robot manipulation,

chemical process control and bio-medical engineering have been performed in the past years

[Ref. 1]. The general structure of an adaptive control system is shown in Figure 1.

During the development of adaptive control, two major classes have emerged: learning

systems, which lead to the introduction of learning automatons in the control literature, and;

adaptive systems using a model reference, known as model reference adaptive control

systems (DMRAC). The design of the adaptation algorithm in DMRAC is based on stability

theory since the stability of the closed loop system is a fundamental requirement in the

design of control systems.

In adaptive control of an unknown linear time invariant (LTI) system, unknown

parameters are estimated by an on-line estimator. Based on the estimated parameters, an

adequate design can be achieved to implement the chosen control law. This process is

commonly referred to as indirect adaptive control. Figure 2 shows the structure of an

indirect adaptive control system.
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On the other hand, it is possible to parametrize the unknown system in terms of the

control parameters (e.g. the state-feedback gains) to implement the chosen control law. In

this case, the estimation and the control processes are carried on together. This alternative

approach is called direct adaptive control. Figure 3 shows the structure of a direct adaptive

control system.

INPUTS 4 UNKNOWN OUTPUTS

SYSTEM

I PARAMETZR
RI ESTIMATOR

-t
CHOSEN CONTROL LAW

Figure 1. General Adaptive Control Structure

The main idea in all models is the parameter estimation. When estimating the

parameters, the uncertainties must be expressed linearly in terms of a set of unknown

parameters.

In linear systems, the regression can be adequately used to obtain the state

measurements or observations from the systems, with the unknown parameters as

coefficients. However, in nonlinear systems, nonlinear functions of the measurements or

4



observations are generally required. With unknown nonlinear systems, these nonlinear

functions cannot be specified most of the time. So, the use of neural networks as generic

parametric models is highly recommended in such cases.

E(t) UNKNOWNv~) ICONTROLLER SYSTEM - J

ff COPZNSTORESTIMATOR

t
CHOSEN CONTROL LAW

Figure 2. Indirect Adaptive Control Algorithm

V(9 -- ESTIATOR UNKNOWN 5COSETONTOL LER

Figure 3. Direct Adaptive Control Algorithm

5



Before developing a neural network based direct model reference adaptive controller

for unknown nonlinear systems, the design of a DMRAC for unknown LTI systems will be

presented.

B. ANALYSIS OF A DMRAC FOR UNKNOWN LTI SYSTEMS

Consider an LTI system

A(q)y(t) = B(q)&(t), (2-1)

with A(q) and B(q) being polynom'al operators' with unknown coefficients. For

DMRAC design, it is assumed that:

1. A(q) is monic and degree[A(q)]=n is known.

2. The transfer function B(q)/A(q) is strictly proper and the relative degree is known.

The goal of the controller is to move the closed loop system's dynamics such that

D(q) yWt)= v(t), (2-2)

where D(q) is the arbitrary monic stable characteristic polynomial operator of the desired

system, and v(t) is an external input. The general structure of DMRAC is shown in

Figure 4.

By employing a steady-state Kalman filter, observer-state-feedback system yields the

following structure for the feedback controller,

The arg -ient q of the polynomial operators is the forward time-shift operator in discrete

time modelling.
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- + -3 + V), (2-3)
6(q) &(q)

where a(q) is the monic characteristic polynomial operator of the observer. It can be

chosen arbitrarily, provided that the roots are in the stable region. The polynomial

operators h(q) and k(q) are the feedback polynomial operators of the unknown system.

V~) CONTROLLER amYTE UNNO N"w +GO

Figure 4. General Structure of the DMRAC

By using partial state representation, equation (2-1) can be reconstructed as

A(q) z(t) = s(t),

y(t) = B(q) (t). (2-4)
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Combining equations (2-3) and (2-4) yields the following:

[((q)A(q) - Ihq)AMq) - hKq)% q)t) = u(q)vt), (2-5)

y(t) = t2)

To obtain the desired closed loop behavior, the Diophantine equation

a (q)A(q) - h(q)A(q) - k(q)B(q) - s (q)D(q)B(q), (2-6)b,

should be satisfied so that the closed loop system poles coincide either with those of the

reference model or with the system's zeros. The factor /b, is needed to ensure that the

right side of the equation is monic and the roots of B(q) are assumed to be inside the unit

circle (i.e. minimum phase) [Ref.2].

In equation (2-6), the polynomial operators A(q) and B(q) are assumed to be relatively

co-prime (i.e. there is no pole-zero cancellation) which guarantees a unique solution for h(q)

and k(q).

Since A(q) and B(q) are unknown polynomial operators, an estimator is required to

estimate the system parameters on-line, based on the generic recursive regression analysis.

The regression equation,

a(q)g() = h(q)u(t) + k(q)y(t) +-s(q)Dq)(t), (2-7)
b,

8



is obtained by using partial state transformation.

Using q as the forward time-shift operator, the filtered input and output signals can be

defined as

q g(q)y F() =y(t)
(2-8)qa5 (q) uF(t) = ugt).

Equation (2-7) can be expressed in a more convenient form as follows:

q -'u(t) - q '"r)h(q) u F(t) + q n '*'(q) y F(t) * - D(q) y(t) (2-9)
b,

where n is the order of the unknown system and r is the number of .ae closed loop

system poles which must be placed to match those of the reference model. Equation (2-9)

can be represented in a matrix formation as

q'u(t) =O(t)0,

h,

where UF(t-r-1)

UF(t-r-2)

v~tr~n~)  kl(2-10)

*0 =

O(t) yF(-r-1 ) k2

y (t-r-2)

• .. :(n-i)
yF(t r -n 1) 1

D(q )y(t) b,

9



By using the linear regressor 0(t) and recursive estimation of 0. as

0(041) = 0(t) + P(t).(t) (u(t-r) - r(t) (t) (2-11)
1 + Orat)) (t)

and,

P(t+l) = t NO +P(t) *(1) * T(O)Prt) (-
I+ * o F(t)* ((t)

the unknown parameters of the system are estimated. Hence, the control equation (2-3)

can be rewritten as

I) -q" h(q)uF(t) + q" k(q)y(t) +- (t). (2-13)

Equation (2-13) can be represented as

(t -I)

u F(t-2)

(2-14)
U F(t-n+l)

*(t) y F(t- )

y F(t-2)

y F(t-n+I)

10



It can be noticed that all the equations in both estimation and control phases are the

same except for the last element in the vector 0 (t) and * t). Hence, this identical structure

of the estimator and the controller prevents the unnecessary intermediate control design

calculations and speeds up the control process.

Figure 5 illustrates the estimation and the control algorithm of the DMRAC where

6(t) is a linear associative memory with recursive estimation to minimize the mean square

errors between u(t) and Lt) = oo .

Is() = ( UNKNOWN
~LTI SYSTEM

a u w mTIM DLAY

g8TIMATOR
CONTROLLER

Figurze 5. Estimation and Control Algorithm of the DMRAC

As an illustration, Appendix A contains a numerical example of the design of a

DMRAC for an unknown minimum phase LTI system.
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C. ANALYSIS OF A DMRAC FOR UNKNOWN NONMINIMUM PHASE LTI

SYSTEM

Consider the LTI system in section B, with polynomial operators A(q) and B(q) which

cause the system to be nonminimum phase (i.e. at least one zero outside the unit circle in z-

domain).

Defining the polynomial operators A(q) and B(q)

A(q) = q" + ag ..... + a , (2-15)

B(q) = q' + blq"'"] . ..... . b.,

and using the same structure for the feedback controller in equation (1-3), the following

Diophantine equation

h(q)A(q) + k(q)B(q) = u(q)[A(q) - P'(q)J, (2-16)

is obtained. a(q) is the monic characteristic polynomial operator of the observer. It is

also arbitrary and stable. P*(q) is the stable arbitrary characteristic polynomial of the

desired closed loop system.

In nonminimum phase systems, for estimating h(q) and k(q), the filtered partial state

z0) must be replaced by an estimate in terms of the available signals z1(t) and ./(t). This

can be done using the Bezout identity as follows:

b(q)B(q) + c(q)A(q) = 1, (2-17)

12



which holds provided A(q) and 3(q) are mutually co-prime polynomials. Hence, defining

b(q) and c(q) as

b(q) = blq a +b~q(a1 1) ...... tba,
(2-18)

c(u) = q + c q (-). ... C

Equation (2-10) can be rewritten as

,

y Fq...,. I) k(a(2-1)

Y F(g.._ 2 ) k

(t) Y (F-r-I1) 0 (,I

^i (-r-2) b

v' (-r-n+l) b

9'(t-r-1) C,

jF(t-r-2) C

jF(j-r-niI) C,

13



where

(t) -- P°(q)d(q)u f(t),

So, the algorithm in order to obtain a DMRAC for unknown LI! system is developed

by using an adaptive pole placement algorithm for unknown nonminimum phase LTI

systems.

Using equation (2-17), the state t(t) can be estimated as

20) = C(q) 1()0 KO( , (2-20)

which implies that b(q) and c(q) are the parameters of the observer.

Appendix B contains a numerical example of the design of a DMRAC for an unknown

nonminimum phase LTI system.

14



III. NEURAL NETWORKS IN ADAPTIVE CONTROL OF

UNKNOWN NONLINEAR SYSTEMS

A. NEURAL NETWORKS IN CENERAL

Neural networks are composed of many simple elements operating in parallel. These

elements are inspired by biological nervous systems. The network function is determined

largely by the connections between the elements [Ref.31.

Neural networks have been trained to perform complex functions in various fields of

applications including pattern recognition, identification, classification, speech, vision and

control systems. Neural networks have been studied for many years in the hope of achieving

human-like performance in the fields of speech and image recognition [Ref.4].Today neural

networks can be trained to solve problems that are unsuitable to conventional computers

[Ref.31.

A neural network is usually a layered network consisting of an input layer, an output

layer and at least one layer of nonlinear processing elements. The nonlinear processing

elements, which sum incoming signals and generate output signals according to some

predefined function are called neurons. The neurons are connected by terms with variable

weights. The output of one neuron multiplied by a weight becomes the input of an adjacent

neuron of the next layer.

15



A single neuron with n inputs is shown in Figure 6. The individual input x(j),

weighted by the element w(Ij) of the matrix w, are summed to form the weighted inputs to

the transfer function r The neuron has a bias b and an output y given by

y = r [ w(I,j) x(j)+ b]. (3-1)
j. 1

As in equation (3-1), the transfer function net input is the sum of the weighted inputs

and the bias b. This sum is the argument of the transfer function. The weight vector w, and

the input vector x can be represented as

4'Z)
4t2)

w= [ w(Il) ,2) ..... w(ln)], x - (3-2)

X(2) . ' w(l.2)r

b

Fig'ure 6. A Single Neuron Model

16



Two or more of these neurons may be combined in a layer and a particular network

might contain one or more such layers. First consider a single layer of neurons where each

element of the input vector x is connected to each neuron input through a weight matrix w.

In this case, there are m neurons and each of them has a summer and the summer outputs

form an m element vector z. The transfer function net input is the sum of its appropriately

weighted inputs and bias b. At the end, all neuron outputs form an m element output vector

y. A one layer neural network with n inputs and m neurons is shown in Figure 7. So,

equation (3-1) can be represented for this case as

y = r it' w(ii) aj+ ti) 1. (3-3)
i.1 i-1

All weights can be represented in matrix format as

W 2j) %f2,2) ..... )(34)...,1 ..,2 ..... ...~n

:%(nq ) xfm,2) ..... fm,n)

where each row represents the weights of one layer.

A network can have several layers where each layer has a weight matrix w, a bias

vector b, a weighted input z to the transfer function, and an output vector y. Layers whose

outputs are the network's outputs are called output layers. All other layers are called hidden

layers. Commonly an input vector is presented to a network, the outputs are calculated and

17



an algorithm is applied to determine the weight element changes. However, one may want

to apply more than one input vector simultaneously and get the network's response to each

one of them. This operation is called batching and this will not be part of this thesis.

r(()
z~b) 1

x(2) i

whore,

(a) - inputs

Figure 7. A one Layer Neural Network

Initialization of the weights and bias elements to small positive and negative values

provides enough variation in the weights and biases so that neurons in the network start out

with a range of behaviors that can be taken advantage of by the learning rule.

There are several learning rules such as Hebbian, Instar, Kohonen, Outstar learning

rules [Ref.3]. Among the most common learning rules is backpropagation which adjusts the

18



weights and biases of the network in order to minimize the mean squared error criterion.

This is a gradient algorithm and it is done by continually adjusting the values of the weights

and biases in the direction of the gradient of an appropriate cost function.

The most distinctive and appealing feature of many neural networks is that they learn

by examples.

Currently, the most popular and commonly used neural networks for control system

design is the Back-Propagation Neural Networks (BNN) which is discussed in the following

section.

B. ANALYSIS OF BACK-PROPAGATION NEURAL NETWORKS

A Back-Propagation Neural Network is a multilayer, feed-forward network which has

an input layer, an output layer and at least one hidden layer. Neurons are found in the output

and hidden layer(s), while the input layer has only input connections feeding the neurons in

the first hidden layer. There exists no feedback or even interconnection between neurons in

the same layer. There is generally a bias input for each neuron with an associated non-zero

weight. A three layer network is shown in Figure 8. It has one output layer and two hidden

layers.

In Figure 8, wi, k) is defined as the connection weight for the path from thet neuron

in the (i-)t layer to the A neuron in the tlayer. It is assumed that the weight vector wij, k)

is a constant so that a partial derivative can be rigorously defined [Ref.51. Then the BNN in

Figure 8 can be represented mathematically as

19



y3 = rI(w3*r2(w2*r3(wI*x + bl). b2)+ b3), (3-5)

where x(j) is the input vector to the BNN.

In the learning process, the BNN adjusts weights wi for all i, to minimize a suitable

function of the error between the output y and a desired output y4 where y(t) is the signal to

be approximated given the input x(t), t - ..... ,N.

1l)

W ) bl(1) w2 b2(1) w 1 b3(1)

Fi:gur'e 8. A Multilayer Neural Network

The most common error function used is

r 1.tl) r 2r

"/= - 'ytS-ytI2 (3-6)

20



where yl(t) is the signal to be approximated given the input x(t), t = 1,....,N and YtIO) the

output of the neural network with parameter 9. A general picture of this mechanism is

given in Figure 9.

The BNN implements a modification of the gradient descent algorithm to update each

weight at time +1 as follows:

I f 1 e(t), l

2 8 a 0)

where u > 0 is the learning rate and 0 is the weight vector and e(t) - y(tgg) - y/t).

INPUT OUTPUT

X(t) NONLINEAR SYSTEM
yd(t)

~~y(t) f

Figure 9. Obtaining the Error in BNN

A general flow diagram for a BNN is given in Figure 10. The algorithm that is used

to simulate the BNN is presented below. The MATLAB codes to accomplish this task are

in Appendix C. For simulation purposes, a two layer neural network is chosen which is quite

21



effective compared with three or more layered networks. A sigmid is used as the nonlinear

transfer function.

Fiue 0 Gnl FlwDara2o N

defne as

-NJwI F 1% w2=

La12J 'C2, c.2 j

b2I (3-8)

Nbl=[" b2 b 212 U=[U] Y=[y].
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The input to the first layer is given as

v/ -- wl*u+b]

amn [bJ tua, + b-2 [-4

Hence, the output of the first layer, v can be represented as

v- sigOid 01 )  (3-10)

Likewise, the input to the second layer is given as

z/= w2.v+b2

cc 2  2 +' C1 2 ,V 2 + b27 . (3-11)
c, c22 vJ [b22 t= c2

' 2 v + b]r

And the output of the second layer can be given as

(3-12)
z = sismi (z - •

So, the output of the network can be written as

y= w3 * z = [l 4f, 2 ]  =,*ZI +fl2*Z2 (3-13)

23



The error can be calculated as

e=y-yd=d3. (3-14)

Back-Propagating the error through the network, the followings are obtained:

d2 = diag (w3'.d3)*,dsg (z)

(3-15)

d] = diag (w2'*42)*dsig (v').

Partial differentiations of an appropriate cost function with respect to all weight vectors

multiplied by a proper learning rate are subtracted from the weight vectors of the

previous iteration to obtain the new weight vectors as follows:

w3=w3-ju * -=w3_-p (d3*z')
Ow3

w2=w2-ju * A w2-,(d2*v'Y (3-16)
8w2

wl = wl -pu * -= wl -p (d * u').
awl

In a similar way, we can show that for the bias terms,

24



b2 a UP U b-#*d2,
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IV. APPLICATIONS AND SIMULATIONS

A. EXPERIMENTING WITH THE BNN DMRAC FOR UNKNOWN MINIMUM

PHASE SYSTEMS

In this chapter, the results of the experiments using the BNN DMRAC on various

nonlinear SISO systems, are presented. Four experiments are conducted using software

simulations for the four classes of unknown nonlinear systems considered in Chapter II1.

The main purpose of these experiments is to see under what conditions the proposed BNN

DMRAC works. The software simulation programs used in these experiments are listed in

Appendix C.

Lastly, an experiment for an unknown nonlinear nonminimum phase system is

conducted based on the system Model 2.

As stated in [Ref. I], four important classes of unknown nonlinear SISO systems are

considered for direct adaptive control using the BNN. They are modeled in discrete-time for

analysis and simulation. These are the system models used in [Ref.6] for which BNN

indirect adaptive control has been successfully demonstrated. The four models are the

following with I", a continuous smooth function:

(1) Modlel I :
n-I

y(t+ ) E a, yo - k) + r [(urt),mt-I)+...,u(t-m 1)] (4-1)
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Large mechanical systems, hard nonlinearities such as input saturation, dead zones or

backlash are readily described by this model [Ref. 1].

ku*

The action of viscous drag on an underwater vehicle can be modelled by this model [Ref. 1.

(3) Model3:

y(t + i) = r [o(o-,vt-),-t I)J .1' [t) t-i),.,i(t-m- 1)] (4-3)

Underwater vehicles subjected to input saturation and viscous drag can be formulated by

this model [Ref. I].

(4) Mdel4:

yt 1) = r [v(t)O'(t- ),..,- - +),..,gt- m.I)] (4-4)

Bilinear systems are part of this model [Ref. 1].

1. Experiment 1: System Model 1

In the first experiment, a nonlinear system described by Model I was controlled

by a BNN DMRAC. The chosen nonlinear system is given in equation (4-1) as

y(t+)=0y)+0.6t- ) + af + 0.3 t - 0.4t). (4-5)
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According to the suggested training procedures, the BNN was first trained off-line.

The training set made of a randomly generated training input u(t) and the resulting output

y(t) of the neural network and also the external input w(t) and the desired response of the

system, y,(t) are shown in Figure I. The Training set consists of 10 000 data points each

for the input and the output measurements. The external input to the system, Yvt) is a sum

of sinusoids with different magnitudes and frequencies. The BNN was next placed on-line

to control the system. During the on-line control phase, the BNN recursively learns to adapt

to the required control structure. The output of the controlled system compared to that of the

reference model is displayed in Figure 12. The reference model used in the experiment is

chosen as

y,(t) = 0.8 y.( - 1) + v(t - 1), (4-6)

where v(t) is the external input to the system.

2. Experiment 2: System Model 2

In the second experiment, a nonlinear system described by Model 2 was used.

It is governed by

yOt + 1) -- y(t) A -1) [y (t) 2.S] + u~).(4-7)
I •y(tf y(t- If

The input to the BNN estimator will be the regressor vector Wt) of equation (2-10).

,(I) in equation (2-14) is the input vector during the control phase. The same reference

model and the same procedures for off-line training and on-line control-plus-learning
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were employed. The BNN estimator was first trained off-line with a 10 000 point training

set. The training input u(9) and the resulting output y(t) of the neural network and also the

external input, vQ) and the desired response, yj(t) of the system are shown in Figure 13.
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004

Figure .3. The Training Input, the Resulting Output, the External Input and the Desired
Response for the System Model 1
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Figure 1.2. The Output of the Controlled System Compared To That of the Reference
Model for System Model 1
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Figure 13. The Training Input, the Resulting Output, the External Input and the Desired
Response for the System Model 2
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Finally, the BNN was placed on-line to control, and learn the control structure and

estimate the parameters simultaneously. As shown in Figure 14, the system with the BNN

DMRAC successfully tracks the model reference system closely. To optimize the

performance of the control system, many different learning parameters and training data

were tried. However, once a trained BNN works, it tracks the reference model reasonably

well for the inputs with similar characteristics.

3. Experiment 3: System Model 3

In this experiment, a nonlinear system described by Model 3 is chosen as

y(t+.) = y(t) + u(ty• (4-8)
1 +y(tf

The same procedures, used for the previous experiments were conducted. The training

input u(t) and the resulting output y(t) of the neural network, and also the actual input

v(t) and the desired response y=(t) of the system are shown in Figure 15. The comparison

between the actual system output and the reference model output are displayed in Figure

16.

4. Experiment 4: System Model 4

In the final experiment, the nonlinear system is governed by:

y(t) yOt- 1) y(t- 2) aft- 1) y(t- 2) + 1] + u(t) (4-9)
1 y(t l)e y(t 29
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Other than the order of the system, there is not much change in the input vectors. Once

again, the same procedures were applied to this nonlinear model. The training input ( (t) and

0

H

Figure 14. The Output of the Controlled System Compared To That of the Reference
Model for System Model 2
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the resulting output y(t) of the neural network, and also the actual input v(t) and the desired

response y(9) are displayed in Figure 17. The output of the controlled system compared to

that of the reference model is displayed in Figure 18.
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Fi.gureo JS. The Training Input, the Resulting Output, the External Input and the
Desired Response for the System Model 3
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Figure 16. The Output of the Controlled System Compared To That of the Reference
Model for System Model 3
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Figure 17. The Training Input, dhe Resulting Output, the External Input and the Desired
Response for the System Model 4
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Figure 18. The Output of the Controlled System Compared To That of the Reference
Model for System Model 4
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B. EXPERIMENTING WITH THE BNN DMRAC FOR UNKNOWN

NONMINIMUM PHASE SYSTEMS

In this section, the BNN DMRAC is extended to nonminimum phase systems. For

experiment purposes, Model 2 is considered.

The pole placement algorithm [Ref.71 which was used for LTI nonminimum phase

systems was tested on nonlinear nonminimum phase systems. But the experiment showed

that nonlinearities affect the results and cause the system to go unstable especially in the

nonminimum phase case.

So, it was decided not to consider the pole placement approach for this case and the

BNN DMRAC is directly applied to a nonlinear nonminimum phase system. The simulations

yield fairly reasonable results which are displayed in Figure 19 and in Figure 20.

The unknown nonlinear nonminimum phase system used is chosen as

yt + = y(t) y(t- 1) yQt) + 25] + u(t) + 2 u(t- 1). (4-6)

1 + y(tf + y(t- 1) 2

From the following plots we see that in some cases the output of the system is able to

track the desired reference signal. However, in several runs, the nonminimum phase system

does not perform as desired and it might become unstable. The extension of a neural network

controller to this class of systems is still an open problem in the control system literature.
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Figure 19. The Training Input, the Resulting Output, the External Input and the
Desired Response for the Nonlinear Nonminimum Phase Unknown System
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Fgur-e 2 0. The Output of the Controlled System Compared To That of the Reference

Model for the Nonlinear Nonminimum Phase System
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C. IMPLEMENTATION OF THE BNN SOFTWARE SIMULATOR

For this thesis research, a software BNN simulator was developed. Until neural

network hardware systems or neurocomputers become commonly (and economically)

available, most researchers will work with software simulators for neural networks. The

software approach offers the full flexibity for development, allowing the user to exercise and

experiment freely with the various features of the neural network [Ref. 11. The main

drawback of this approach is the slow learning process of the simulator.

By using the appropriate MATLAB 2 codes, the following functions have been

developed and used in simulations:

* INITIAL 2 : This function initializes the BNN. It takes as input variables the
parameters describing the number of inputs and number of outputs, number of neurons in
the hidden layer(s). It yields as outputs the initial conditions of the weights and biases of the
network.

* NET 2: This function sets up the data structure for a 2 layer BNN. It takes as input
variables a parameter describing the number of inputs and neurons in the hidden and output
layer. It also takes as another input variable a parameter specifying the spreading range of
the biased inputs.

* BP 2: This function backpropagates the output errors to the input layer. It takes as
input variables the parameter describing the weights and biases, and the random input,
learning rate and the actual input. It yields updated weights and biases.

" SIGMOID: This function introduces the nonlinearity to the neural network.

* DSIG : This function takes the derivative of the sigmoid function.

-MATLAB is a registered trademark of the Math Works, Inc.
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These functions can be all implemented recursively, and imbedded in any iterative

loop. The source codes of these functions used in this thesis research are provided in

Appendix C.
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V. OBSERVATIONS, DISCUSSIONS AND CONCLUSIONS

A. SUMMARY

A Direct Model Reference Adaptive Controller (DMRAC) for LTI systems was

developed and applied to both minimum phase and nonminimun phase LTI systems for pole

placement. The DMRAC for LTI systems was then extended to nonlinear systems by

training a BNN to emulate a suitable nonlinear regression form that describes the system

under consideration.

Later, the control of four general classes of unknown nonlinear systems, modelled in

discrete-time, using the BNN DMRAC was considered. Lastly, an experiment for unknown

nonlinear nonminimum phase systems was conducted.

B. OBSERVATIONS, DISCUSSIONS AND CONCLUSIONS

A DMRAC designed with a least-squares estimator, assuming the system is LTI, failed

to work for most nonlinear systems. Hence, the BNN DMRAC is an effective technique in

controlling nonlinear systems where the conventional technique fails.

Some experiments conducted showed that the BNN DMRAC performs its control

function reasonably well for various types of inputs. However, for inputs with high

frequency components (with respect to the sampling rate), the controlled system became

quite oscillatory, so that it would not be able to track the reference model properly. In

addition, the controller would sometimes saturate during training and therefore it failed to
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control the system [Ref. I]. It is suggested that the solution to this problem is to increase the

sampling rate with or without increasing the number of neurons and hidden layers used in

the BNN. Off-line training with more appropriate data (i.e. training signals containing

similar frequency characteristics as the actual signals experienced by the controlled system),

and adjusting the learning parameters also helps to improve the tracking performance and

avoid saturation [Ref. 1]. Unfortunately, there is still no general rule to help select the most

appropriate learning parameters. Hence, a great deal of experimentation is usually required.

The BNN DMRAC designed for unknown nonminimum phase systems is not

promising compared with their minimum phase counterpart. A nonminimum phase system

is usually hard to stabilize adaptively by a direct approach.

C. FURTHER RESEARCH AND DEVELOPMENT

In this thesis research, the emphasis was to develop a structure for direct adaptive

control of certain classes of unknown nonlinear systems using the BNN. The results of the

experiments clearly showed that the BNN DMRAC is very effective in controlling unknown

nonlinear systems. On the other hand, nonminimum phase systems at the moment do not

yield satisfactory results and need more research efforts.

Once more, in the design of the BNN, the selection of the number of layers, neurons,

the type of nonlinear transformation, etc., is still at the discretion of the designer. This area

definitely needs further research.
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APPENDIX A

DMRAC DESIGN FOR UNKNOWN MINIMUM PHASE LTI

SYSTEMS

In this Appendix we address the problem of designing an adaptive controller for a LTI

system based on the algebraic approach. The unknown LI system to be controlled is

described by the following polynomial operators:

A(q) q2 _ 0.2q + 0.9, (A-I)

B(q) = 3q.

In order to track the reference model

y,(t) - 0.8y.(t-I) = v(t-1), (A-2)

the desired closed loop polynomial, P'(q) and the characteristic polynomial of the

observer, a(q) are chosen arbitrarily and with roots in the stable region as

P'(q) - -3q(q - 0.8) & q(q- 0.8),
3 (A-3)

.(q) = q2 - q+0.25.

Using the algorithm in Chapter 1 Section B, the Diophantine equation can be formed

as follows:
(h,q + h2)(q 2 - 0.2q + 0.9) + (k,q + k2)3q = (q 2 - q + 0.25) [q - 0.2q + 0.9- q(q - 0.8)

(A-4)
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or

(kq + k2)(q 2 - 0.2q + 0.9) * (klq + k)3q = 0.6q 3 + 0.3q 2 - 0.75q + 0225 (A-5)

The MATLAB simulation for the above system yields the following steady-state gains:

h, = 0.61234,
h2 = 0.24935,
k, = 0.05678,

k2 = -0.42982.

These results can be checked by using the Sylvester matrix formulations for this

system which in this case is given by

1 0 0 0 , 0.6

-0.2 1 3 0 k = 0.3 (A-6)

0.9 -0.2 0 3 k, -0.75

0 0.9 0 0 k2  0.225

By solving equation (A-6) we obtain the following values:

h, = 0.6,
0.25,

k, = 0.0567,
k = -0.4133.

Hence, the estimated gains needed to control the system are found to be very close to

the steady-state gains obtained from the Sylvester matrix equations.
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The simulation results of the experiment for the system above are displayed in Figures

(A- I) thru (A-3).
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Figure A-1.. Reference Input and Estimated Control Parameters for LTI Minimum
Phase Unknown System
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Figure A-2. The Signal To Be Followed and the Actual Output For LTI Minimum
Phase Unknown System
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-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7A A DMRAC DESIGN FOR UNKNOWN MINIMUM PHASE LTI SYSTEMS

17 Designing a controller using recursive least squares estimates
/. of the compensator parameters.
%4rh%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

! del *.met
clear,clg,clc

'17 Generating the reference input signal
t=0: 100;
v=square(t/(0.5*pi));
kmax=length(v)+ 1;
for i=1 :kmax- 1

if v(i)<=)
v(i)=0;

end
end

/ Initialization of the parameters
u=zeros(l,kmax);
ubar=zeros( 1 ,kmax);
y=zeros( l,kmax);
ybar=zeros( l,kmax);
ym=zeros( 1 ,kmax);
th=zeros(5,kmax);
th(5,4)--O. 1;
P= 10000*eye(5);

% Generating the reference model
for j=2:kmax- 1

ym(j)=0.8*ym(j- 1 )+v(j- 1);
end

',X Designing the controller
for k=4:kmax- 1

h I =th(l,k);
h2=th(2,k);
k I =th(3,k);
k2=th(4,k);
ib =th(5,k);
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u(k)=(h I + I )*u(k- 1 )+(h2-0.25)*u(k-2)+k I *y(k. 1 )+k2*y(k-2)+...
(V(k)-v(k- I )+0.25*v(k-2))*ib 1;

ubar(k)=u(k- I )u(k-2)+0.25*u(k-3);
y(k)=_0.2*y(k- 1 )-0.9*y(k-2)+3*u(k- 1);
ybar(k)=y(k)- 1 .8*y(k- I )+1 .05*y(k-2)-0.2*y(k-3);
phit(k,:)=[u(k-2) u(k-3) y(k-2) y(k-3) ybar(k)];
K( :,k)=(P*phit(k,:)')/( 1+phit(k,:)*P*phit(k,:)');
P=P..(P*phit(k,: )'*p l'1 t(k,: )*P)/( 1+phit(k,: )*P*phit(k,:)');
th( :,k+lI)=th(:,k)+K(:,k)*(ubar(k)-phit(k,:)*th( :,k));

end

17( Plotting the results
subplot(21 1)
axis([() 100 -0. 11.2]);
plot(v( 1,1:100));
title('REFERENCE INPUT v(t)Y);
xlabel('TIME (Sec.)');
ylabel1CMAGNITUDE');
grid,pause
axis
clear t

t= 1: 100;
subplot(2 12)

plot(t,th( 1, 1: 1 O0),t,th(2, 1: 1 O0),t,th(3, 1: 1 00),tth(4, 1: 100)....
t,th(5, 1:100));

title('ESTIMATED CONTROL PARAMETERS');
xlabel('TIME (Sec.)');
ylabel( 'MAGNITUDE');
,-rd
gtext('hlV);
gtext(' 1/b 1');
gtext('h2');
gtext('k I');
gtext( 'k2');
pause
meta I
cig
subplot(21 1)
plot(yn( 1,1:100));
title(THE SIGNAL TO BE FOLLOWED');
xlabel(TIME (Sec.)');
ylabel('MAGNITUDE');
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grid,pause
subplot(2 12)
plot(y( 1,1:100));
title(THE OUTPUT OF OUR PLANT);
xlabel(TIME (Sec.)');
ylabel('MAGNITUDE');
grid,pause
meta 2
cig
axis([() 100 -2 41)
plot(ym(l 1: 100));
hold on
plot(y(l 1 10,*)
plot(y(l 11: 100));
ticle(DESIRED OUTPUT ym(t) (-)vs ACTUAL OUTPUT y(t)4
xlabel(TIME (Sec.)');
y~abelCMAGNITUDE);
grid
hold off
meta 3
axis('normal');
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APPENDIX B

DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE

LTI SYSTEMS

In this Appendix we address the problem of designing an adaptive controller for a

nonminimum phase LTI system based on the algebraic approach. The unknown LTI system

to be controlled is described by the following polynomials:

A(q) = q 2 + q + I,
(B-I)

B(q) = q + 2,

where A(q) is stable and monic, and B(q) is monic and causes the system to be

nonminimum phase. In order to track the reference model

y10f) - 0O8y.(04) = v0t-1), (B-2)

the desired closed loop polynomial, P*(q) and the characteristic polynomial of the

observer, a(q) are chosen arbitrarily as

P O(q) = (q- 0.8Y, (B-3)

a(q) = q2 _ q+ 025.

Using the algorithm in Chapter 1 Section C, the Diophantine equation can be formed

as follows: (B-4)
(hq + h 2Xq 2 + q. I) + (klq + k2)(q . 2) (q2 - q +O.25)[q 2 + q + I - (q2 _ 1.6q + 0.64),
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or,

(hq +k2Xq2 2 q + 1) (kq + kXq + 2) = Iq -0. q 2 - 0.39q 0.2L (B-5)

Also, P*(q)a(q)is obtained as

(q2 _ q + 0.25)(q 2 - 0.8q + 0.16) = q4 - l.8q3 + 1.21q2 - 0.36q + 0.04 (B-6)

The MATLAB simulation for the above system yields the following gains,

h,= 1.7927
k = -2.121
k,= -0.6184

k = 1.1666
b, = 0.0000
b2 = -0.642
c= 0.6642
c. = 0.3358.

where b,, b2, c, and c, are the coefficients of the polynomials b(q) and c(q) respectively.

These results can be checked with Sylvester matrix solution for this system which can

be written as

1000 h, 1.8
I1 I 2 -0.96

1 1 2 1 k -0.39

0102 k 0.21
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By solving equation (B-7) we obtain the following values:

1u,= 1.8,

-2.15,
k, -0.61,
k2 = 1.18.

Hence, the estimated gains needed to control the system are found to be very close

to the gains obtained from Sylvester matrix equations. In fact, only h,, h., k, and k. are

needed in the control phase while b,, b2, c, and c2 are needed only in the estimation phase

of the entire design process.

The simulation results of the experiment for the system above are displayed in Figures

(B- 1) thru (B-3).

The experiment then, is conducted for an unknown nonminimum phase and unstable

LTI system. It is observed that the algorithm first stabilizes the system with the adaptive pole

placement process and then provides the necessary input to track the desired reference

signal. The results of this experiment for the nonminimum phase and unstable system are

displayed in Figures (B-4) thru (B-6). For the experiment A(q) is chosen to be as follows:

A(q) = q 2 + q + 2. (B-8)
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Figure 3ol . Reference Input and Estimated Control Parameters for LTI
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Figure B-3 Desired Output vs Actual Output For LTI Nonminimum Phase Unknown

Stable System
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Figure 3-4. Reference Input and Estimated Control Parameters for LTI Nonmininmum
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% A DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE LTI SYSTEMS

%k Designing a controller using recursive least squares estimates
(4 of the compensator parameters.

% Experimenting with a stable system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%04

'7c

! del *.met
clear,clg,clc

. Generating the reference input signal

w= 10000;
t=0:w;
v=square(t/(40*pi));

%4 Initialization of the parameters

kmax=length(v)+ 1;
u=zertos( l,kmax);
ubar=zeros( l,kmax);
uF=zeros( 1 ,kmax);
uFmin 1 =zeros( 1 ,kmax);
y=zeros( l,kmax);
yF=zeros( 1 ,kmax);
yFmin 1 =zeros( l ,kmax);
ym=zeros( 1 ,kmax);
th=zeros(8,kmax);
P=w*eye(8);

0X Generating the reference model

for j=2:kmax- 1
ym(j)=0.8*ym(j- 1 )+v(j- 1);

end
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% Designing the controller

for k=6:kmax- I
h I=th(l,k),
h2=th(2,k);,
k I =th(3,k);
k2=th(4,k);
b I1=th(5,k);
b2=th(6,k);
c I =th(7,k);
c2=th(8,k);
u(k)=(h I + 1) *u(k- 1 )..(h2-.25)*u(k-2)+k 1 *y(k.. 1 )+k2*y(k-2)+v(k)-v(k- 1 )+O.25*v(k-2);
ubar(k)=u(k-2)-u(k-3)+O.25*u(k-4);
uF(k)=u(k)- 1 .8*u(k- 1 )+ 1.21 *u(k..2).36*u(k..3).04*u(k..4);
uFmin 1 (k)=u(k- I)-I .8*u(k-2)+ 1.21I *u(k-3).36*u(k.4).04*u(k.5);
y(k)=-y(k- 1 )-y(k-2)+u(k- I )+2*u(k-2);
yF(k)=y(k)- I .8*y(k- 1 )+ 1.21 *y(k..2)...36*y(k..3)+O.04*y(k..4);
yFmin I (k)=y(k- 1)-i .8*y(k-2)+1 .21I *y(k..3).O.36*y(k..4)+O.04*y(k..5);
phit(k,:)=[u(k-3) u(k-4) y(k-3) y(k-4) uF(k) uFmin I(k) yF(k) yFminlI(k)]I;
K(:,k)=(P*phit(k,:)Y)/( 1 +phit(k,: )*P*phit(k,:)');
P=P..(P*phjt(k,: )'*phit(k,: ) *)/( 1+phit(k,: )*P*phit(k,:)');

end

IX. Plotting the results
subplot(21 1)
axis([O w -1.5 1.5]);
plot(v(1,1 I:w));
title('REFERENCE INPUT v(t)');
xlabel('TIME (Sec.)');
ylabel('MAGNITUDE');
grid,pause
axis
clear t
subplot(2 12)
t=lI:w;

po,th(, I :w),t,th(, I :w),t,h(, I :w),t,th(, I :w);.

title('ESTIMATED CONTROL PARAMETERS');
xlabel(TFIME (Sec.)'),
ylabel(MAGNITUDE');
grid;
gtext('h F');
gtext('k2');
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gtext('c IT)
gtext('c2');
gtext('b I')
gtext'k 1');
gtext('b2');
gtext('h2');
pause
meta lb

CIO
subplot(21 1)
axis([() w -10 10]);
plo)t(ym( 1,7:w));
title( THE SIGNAL TO BE FOLLOWED')
xlabel('TIME (Sec.)');
ylabel( 'MAGNITUDE');
grid,pause
subplot(2 12)
plot(y(1,1 I:w));
title(THE OUTPUT OF OUR PLANT');
xlabel(TTME (Sec.)');
ylabel( 'MAGNITUDE');
grid,pause
meta 2b

CIO
axis([() w -6 6]);
Plofl(yn( 1,1:w));
hold onl

plot(0.625*y(1,1 I:w),'+')*;
plot(0.625*y(1,1 I:w));
title('DESIRED OUTPUT ymMt)(-- I vs ACTUAL OUTPUT yW{+I)
xlabel(TIME (Sec.)');
Ylabel('MAGN1TUDE')
grid
hold off
meta 3b
axis
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%%(X(A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 04

%4 A DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE LTI SYSTEMS

IX Designing a controller using recursive least squares estimates
tl, of the compensator parameters.
rlA

IX Experimenting with a unstable system
CA

del *.met
clear,clg,clc

%~ Generating the reference input signal
w= 10000;
t=0O:w;
V=square(tI(40*pi));
Ik Initialization of the parameters
kmax=length(v)+1;
u=zeros(l1,kmax);
ubar=zeros(l1,kmax);
uF=zeros(l1,kmax);
uFmin I =zeros(l1,kmax);
y=zeros(lI,kmax);
yF=zeros( I,krnax);
yFmin I =zeros(l1,kmax);
ym =zeros( l,kmax);
th=zeros(h,kmax);
P~w*eye(8);
1-k Generating the reference model
for j=2:kxnax- I

ym0j)=0.8*ym0j- 1 )+voj- 1);
end

c/,; Designing the controller
for k=6:kmax- 1

h 1 =th( I,k);h2=th(2,k);k 1 =th(3,k); k2=th(4,k), b 1 =th(5,k);b2=th(6,k);
c I =th(7.k);c2=th(8,k);
u(k)=(h I + I )*u(k- 1 )+(h2-O. 25)*u(k-2)+k I *y(k- 1 )+k2*y(k-2)+v(k)-v(k- 1 )+0-.25 *v(k-2),
ubar(k)=u(k-2)-u(k-3)+O.25 *u(kA);
uF(k)=u(k)- 1 .8*u(k- 1 )+ 1.21 *u(k.2).36*u(k-3)+O.O4*u(k-4);
uFmin I (k)=u(k- 1)-I1 8*u(k-2)+ 1.21 *u(k-3) 0.36*u(k-4)+O.04*u(k-5);
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y(k)=-y(k- 1)-2 *y(k-2)+u(k- I )+2*u(-),

yF(k)=y(k)- 1. 8*y(k- 1 )+ 1.2 1 *y(k-2)-0. 36*y(k-3)+O.04*y(k-4),
yFmin I(k)=y(k- 1)-i. 8y(k-2)+ 1.21 *y(k-3)-O. 36*y(k-4)+O.4y(k-5);
phit(k,:)-fu(k-3) u(k-4) y(k-3) y(k-4) uF(k) uFminlI(k) yF(k) yFminlI(k)],
K(:,k)=(P*pbit(k,:)')/( 1 +phit(k, :)*P*phit(k:)');
P=P.(P*p.i.t(k :)'*phit(k,:)*P)/(I +phit(k, -)*P*phit(k,:)');

t(,k-- Ith( :,k)+K(:,k)*(ubaT(k)-phit(k. )*th(:k)

end

% Plotting the results
subplot(21 11)
axis([O w -1. 5 1.51)
plot(v(l, I :w));
title('REFERENCE INPUT v(t)');
xlabel('TIIME (Sec.)'),
ylabel('MAGNITUDE');
grid, pause
axis
clear t
subplot(2 12)

t,tb(5, 1 w),t,th(6, I :w),t,th(7, 1 :w),t,tb(8, 1 w)),
title('ESTIMATED CONTROL PARAMETERS');
xdabel('TIMfE (Sec.)'),
ylabel('MAGNITUJDE'),
grid;
gtext('h I ');gtext('h2');gtext('c I ');gtext('c2');
gtext('b 1 ');gtext('b2');gtext('k2');gtext('k V ),
pause
meta lb
cig
subplot(21 1)
axi s([O w-10 10]);
plot(ym( l,7:w)),
title('TI{E SIGNAL TO BE FOLLOWED'),
xlabel('TINM (Sec.)'),
ylabel('MAGNITUDE'),
grid,pause
subplot(2 12)
plot(y(1,1 ;w));
title('THE OUTPUT OF OUR PLANT');
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xdabeI(TME (Sec.)'),
ylabel(MAGNITUDE');
grid,pause
meta 2b
cig
axis([O w -6 6]),
plot(yi( 1,1 :w));
hold on
plot(O. 625 *y(1,1 I:w),'+);
plot(O.625*y(1,1 Iw));
title('DESIRED OUTPUT ymn(t)(--) vs ACTUAL OUTPUT y(t)'(-H-j);
xlabel('TIME (Sec.)'),
ylabel('MAGNITUDE);
grid
hold off
meta 3b
axis
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APPENDIX C

BNN SOFTWARE SIMULATOR

% SOFTWARE SIMULATOR FOR BNN

!del *.met
clear~clg.clc
rand('normal');,

% Random input to train the system.
num= 15000-,
u 1 =rand(1 ,numn),
k=-O:num;

% Actual input to the system.
v=0.04*sin(k/(9*pi))-O.O3*cos(k/(5*pi));
kmax=length(v):

% Calculating the reference output.
ym=zeros( 1,kmax- 1);
y=zeros( I,kmax- 1);
utmn 1 =zeros( 1 knax- 1);
mu=O.04:.
for i=2:kmax- I

ym(i)=0.8*ym(i-lI)+v(i- 1);
end
for j=2:kmax- I

%modell
yj+ l )--.5*y0j)+O.4*y0j- 1 )+u I (j)A3+fJ 3*u 1 ()A2-O.l1*ul1();
%model2 y j.il)=(yoj)*yoj. )*(yoj)+2.5)/( 1+yoj)A2+y(,jI )A2))+u 10();
%model3 y0j+l )=y0j)/(l -v0y)A2)+u I ()A3.

%7cmodel4 yoji- 1)(yoj)*yQ-. I )*yoj-2)*u 10(- I )*(yoj.2)+ 1 )+U I 0j))/(l ly-y~ I)A2+yoj.2)A2);
end
% Initialization of the neural network.
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[w3,w2,b2,w I ,b 1 J=initial2( 1,18,18,3);

% Training the neural network.
for t=4:kmax- I

U=[u I (t-2) u 1 (t0) y(t-2) y(t-3) (y(t)-O.8*y(t- )'
utm 1 (t- 1 )=net2(w3,w2,b2,w 1 ,bl1,u);
[w3,w2,b2,w 1 ,b 1 ]=bp2(w3,w2,b2,w I ,bl ,u,ul (t- 1 ),mu);

end

% Plots of the desired signals.
subplot(22 1)
axis((0 200 -4 41);
plot(u 1 (1:200));
title('RANDOM INPUT');
grid

subplot(222)
axis(II0 200 -4 41);
plot(utm 1(1:200));
title(COUTPUT OF THE NEURAL NETWORK');
grid

subplot(223)
axis([0 1000 -0. 10. 11);
plot(v(1: 1000));
title('INPUT'):,
grid

subplot(224)
axis([0 1000 -0.4 0.4]);
plot(ym(1 :1000));,
title('DESIRED RESPONSE');
grid,pause
meta h

% Controlling the plant with a neural identifier-controller.
clg
clear u; clear y;clear t;
u=zeros(1 ,10000);

y=zeros(1. 10000);
i I =zeros(5, 10000);
i2=zeros(5, 10000);
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for t=4:9999;,

u(t)=net2(w3,w2b2,w l,bl ,i I(:,t));
y(t)=(y(t- 1 )*y(t_2)/(l +y(t-l I)i2+y(t-2)A2))+U(t- I);
i2(:,t)=(u(t-2) u(t-3) y(t-2) y(t-3) (y(t)-0.8*y(t-lI))J';
[w3.w2,b2,w I ,bl I]=bp2(w3,w2,b2,w 1,.b 1 .i2(:,t),u(t- 1 ),mu);

end

% Ploting the results.

subplot(I 11)
n=1 :999;,
axis(Ii0 1000 -0.6 0.6]);
piot(n,ym( 1:999),n,y(l 1:999),'.');
title('DESIRED OUTPUT (--) vs ACTUAL OUTPUT 4.1)
grid,pause
meta hh

% BNN DMRAC WITH UNKNOWN NONLINEAR NONMINIMUM
% PHASE SYSTEM

del *.met

clear~clg~clc
rand('normal');
% Random input to train the system.
num=l000;
u I --rand( 1,500000);
k=0:num;
% Actual input to the system.
v=0.03*square(k/( l0*pi));
7cv=0.04*sin(k/(9*pi))-0.03*cos(k/(5*pi));
Icmax=length(v);
% Calculating the reference output.
ym=zeros( I,kniax- 1);
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y=zeros(1 ,kjnax- 1);
utm I=zeros(1,kmax- 1);
mu=0.099;
for i=2:kmax-lI

ym(i)=a0.8*ym(i- 1 )+v(i- 1);
end
for j=2:kmax- I
%model2
yj+l 1)=(y0j)*y0?j I )*(yoj)+2.5)/(l +yoj)A2+yoj- I)A2))+u 1 ()+2*u 10(- 1);
%model3 yj+ 1 )=yoj)/(l +yojY2)+ul j)A3;
%model4 yj+l 1)=(yQj)*yoj 1 )*yoj.2)*u 10(-I )*(yQj-2)+I )+u 1 0j))/(l +yj-l I)A2+y0j2)A2);
% model 1 y(o+1 )=O.5*yoj)+0.4*yoj- 1)+u 1 ()A3+O.3*ul1 (j2-0. 1*ul 1();
end

% Initialization of the neural network.

[w3,w2,b2,w 1 ,b 1 ]=initial2( 1,20,20,5);

% Training the neural network.

for t--4: kmax-1I
u=[u 1 (t-2) u I (t-3) y(t-2) y(t-3) (y(t)-0.8*y(t- 1 ))]';
utm I (t- 1 )=net2(w3,w2,b2,w 1 ,bl ,u);
I w3,w2,b2,w 1 ,b I ]=bp2(w3,w2,b2,w I ,bl ,u,u 1 (t- I ),mu);

end

% Plots of the desired signals.

subplot(22 1)
axis([0 200 -4 4]);
plot(u 1 (1:200));
titleC'RANDOM INPUT');
grid

subplot(222)
axis([0 200 -4 41);
plot(utml1(1:200));
title('OUTPUT OF THE NEURAL NETWORK');
grid

subplot(223)
axis([0 1000 -0. 10. 1]);
plot(v( 1:1000));
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titdeCINPUT);
grid

subplot(224 )
axis([0 1000 -0.4 0.4]);
plot(ym(l 1000));
titlef DESIRED RESPONSE');
grid,pause
meta h

% Controlling the plant with a neural identifier-controller.

cig
clear u
clear y
clear t
u=zeros(l1,num);
y=zeros(l1,num);
i I =zeros(5,num);
i2=zeros(5,num);

for t=4:999;

u(t)=net2(w3,w2,b2,wl ,bl,ilI(:,t));
y(t)=(y(t- 1 )*y(t..2)/( 1 +y(t- 1 )A2+y(t-2)A2))+u(t- 1);

1w3,w2,b2,w I ,b 1 1=bp2(w3,w2,b2,w I ,b I ,i2(:,t),u(t- 1 ),mu);

end

% Ploting the results.

subplot(1 11)
n=1 :999;
axis([0 1000 -0.6 0.6]);
plot(n,ym(l 1:999),n,y(l 1:999),'.');
title('DESIRED OUTPUT I--) vs ACTUAL OUTPUT(. ;
grid,pause
meta hh
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [W3,W2,b2,W l,bI]=initia2(ny,M2,Ml,nu)

% initializes the neural network

% ny=number of outputs, nu=number of inputs,
% M2,M I =number of neurons in hidden layers

rand('normal')
W3=rand(ny,M2);
W2=rand(M2,M1); b2--rand(M2, 1);
W I =ones(M I,nu); bl--rand(Ml,l);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y=net2(W3,W2,b2,W 1,b I,u)

% sets up the data structure for 2 layer neural network
% u=input, y=output
% W=weights, b=biases

v=sigmoid(Wl*u+bl);
z=sigmoid(W2*v+b2);
y=W3*z;
end

%%%o%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [W3,W2,b2,W l,bl ]=bp2(W3,W2,b2,W l,b 1 ,u,yd,mu)

% updates the weights and the biases of a 2 layer neural network with backpropagation
C4

% u is the input to the network,
% yd is the desired reference model to track
% mu is the learning rate

vb=W 1*u+bl; v=sigmoid(vb);
zb=W2*v+b2; z=sigmoid(zb);
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y=W3*z;
e=y-yd;

d3=e;
d2=diag(W3'*d3)*dsig(zb);
d I =diag(W2'*d2)*dsig(vb);

W3=W3-mu*d3*z';
W2=W2-mu*d2*v'; b2=b2-mu*d2;
WI=Wl-mu*dl*u'; bl=bl-mu*dl;

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%q%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y=sigmoid(x)

% introduces the nonlinearity to neural network

x=min(x, 100): x=max(x,- 100);
y= (1 -exp(-x))./(1 +exp(-x));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function d=dsig(x)

% takes the derivative of sigmoid

% x isavector

x=min(x,100); x--max(x,-l00);
temp=exp(-x);
d=temp ./ (1+2*temp + temp .* temp);
end

%%7%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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