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ABSTRACT

The objective of this thesis research is to develop a Back-Propagation Neural Network
(BNN) to control certain classes of unknown nonlinear systems and explore the network's
capabilities. The structure of the Direct Model Reference Adaptive Controller (DMRAC)
for Linear Time Invariani (LTT) systems with unknown parameters is first analyzed and then
is extended to nonlinear systems by using BNN. Nonminimum phase systems, both linear
and nonlinear, have also been considered.

The analysis of the experiments shows that the BNN DMRAC gives satisfactory
results for the representative nonlinear systems considered, while the conventional least-
squares estimator DMRAC fails. Based on the analysis and experimental findings, some
general conditions are shown to be required to ensure that this technique is satisfactory.
These conditions are presented and discussed. It has been found that further research needs
to be done for the nonminimum phase case in order to guarantee stability and wacking.

Also, to establish this as a more general and significant control technique, further
research is required to develop more specific rules and guidelines for the BNN design and

training.
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I. INTRODUCTION

In the past three decades, major advances have been made in adaptive identification
and control for identifying and controlling Linear Time Invariant LTI systems with unknown
parameters. The choice of the identifier and controller structures is based on well established
results in systems theory. The adaptive control theory is then improved and applied to
nonlinear dynamic plants employing neural networks with the right choice of the identifier
and controller structures.

The objective of this thesis research is to develop a Back-Propagation Neural Network
(BNN) to control certain classes of unknown nonlinear dynamical systems. Initial analysis
is directed towards a Direct Model Reference Adaptive Controller (DMRAC) for an
unknown LTI system. Results of the simulation are displayed for this system. The same
analysis is then performed for an unknown nonminimum phase system. The adaptive control
theory is then applied to nonlinear unknown systems by employing neural networks.
Basically, four nonlinear models have been analyzed and simulated. Lastly, the adaptive
control algorithm is tried with nonlinear unknown nonminimum phase systems again by
employing neural networks.

In what follows, Chapter II presents the analysis of a DMRAC for an unknown LTI
system and for an unknown nonminimum phase LTI system. Chapter III concerns neural

networks in general and adaptive control of nonlinear plants employing neural networks.




Chapter IV is composed of the simulations that have been carried out. The results,

conclusions and discussions are given in Chapter V.




I1. ADAPTIVE CONTROL OF UNKNOWN LTI SYSTEMS

A. ADAPTIVE CONTROL IN GENERAL

The search for design techniques to control systems with unknown parameters has
drawn much attention in recent years. Adaptive control is currently one of the most
commonly used methods in the control of systems with uncertain dynamics. Several
applications of adaptive control such as ship steering, aircraft control, robot manipulation,
chemical process control and bio-medical engineering have been performed in the past years
[Ref.1]. The general structure of an adaptive control system is shown in Figure 1.

During the development of adaptive control, two major classes have emerged: learning
systems, which lead to the introduction of learning automatons in the control literature, and;
adaptive systems using a model reference, known as model reference adaptive control
systems (DMRAC). The design of the adaptation algorithm in DMRAC is based on stability
theory since the stability of the closed loop system is a fundamental requirement in the
design of control systems.

In adaptive control of an unknown linear time invariant (LTI) system, unknown
parameters are estimated by an on-line estimator. Based on the estimated parameters, an
adequate design can be achieved to implement the chosen control law. This process is
commonly referred to as indirect adaptive control. Figure 2 shows the structure of an

indirect adaptive control system.




On the other hand, it is possible to parametrize the unknown system in terms of the
control parameters (e.g. the state-feedback gains) to implement the chosen control law. In
this case, the estimation and the control processes are carried on together. This alternative
approach is called direct adaptive control. Figure 3 shows the structure of a direct adaptive

control system.

INPUTS UNKNOWN OUTPUT:
SYSTEM

PARAMETIR
— ——
ESTIMATOR

COMPENSATOR P
CONTROLLER DESIGN

T

CHOSEN CONTROL LAW
Figure 1.General Adaptive Control Structure

The main idea in all models is the parameter estimation. When estimating the
parameters, the uncertainties must be expressed linearly in terms of a set of unknown
parameters.

In linear systems, the regression can be adequately used to obtain the state
measurements or observations from the systems, with the unknown parameters as

coefficients. However, in nonlinear systems, nonlinear functions of the measurements or




observations are generally required. With unknown nonlinear systems, these nonlinear

functions cannot be specified most of the time. So, the use of neural networks as generic

parametric models is highly recommended in such cases.
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Figure 2.Indirect Adaptive Control Algorithm
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Before developing a neural network based direct model reference adaptive controller
for unknown nonlinear systems, the design of a DMRAC for unknown LTI systems will be

presented.

B. ANALYSIS OF A DMRAC FOR UNKNOWN LTI SYSTEMS
Consider an LTI system
A(Qy1) = Blgu), (2-1
with A(q) and B(q) being polynom’al operators' with unknown coefficients. For
DMRAC design, it is assumed that:
1. A(q) is monic and degree[A(g)}=n is known.
2. The transfer function B(g)/A(q) is strictly proper and the relative degree is known.

The goal of the controller is to move the closed loop system's dynamics such that

D(g) W9)=vv), (2-2)

where D(q) is the arbitrary monic stable characteristic polynomial operator of the desired
system, and w(¢#) is an external input. The general structure of DMRAC is shown in
Figure 4.

By employing a steady-state Kalman filter, observer-state-feedback system yields the

following structure for the feedback controller,

“The arg: ent q of the polynomial operators is the forward time-shift operator in discrete
time modelling.




ut) = Moy s X o ), @3)
«(9 a(q)

where a(q) is the monic characteristic polynomial operator of the observer. It can be

chosen arbitrarily, provided that the roots are in the stable region. The polynomial

operators k(q) and k(q) are the feedback polynomial operators of the unknown system.

REFERENCE ym(t)
1 MODEL

ESTIMATOR |(€—

v() w(t)| _ [uNkNOWN )
-——»1 CONTROLLER SYSTEM (;-((—:;)l e

/1

Pigure 4 .General Stucture of the DMRAC

By using partial state representation, equation (2-1) can be reconstructed as

AlQay = u),

X0 = B@)b. 2-4)




Combining equations (2-3) and (2-4) yields the following:

(«(@Alg - KQA(g) - K@ BglxY) = «(gwy), (2-5)
X9 = Bgay

To obtain the desired closed loop behavior, the Diophantine equation

« (A - KA - Ko)B@) = —-+@D@BQ, 2:6)

1
should be satisfied so that the closed loop system poles coincide either with those of the
reference model or with the system's zeros. The factor 1/b, is needed to ensure that the
right side of the equation is monic and the roots of B(g) are assumed to be inside the unit
circle (i.e. minimum phase) [Ref.2].

In equation (2-6), the polynomial operators A(q) and B(q) are assumed to be relatively
co-prime (i.e. there is no pole-zero cancellation) which guarantees a unique solution for h(q)
and k(q).

Since A(q) and B(q) are unknown polynomial operators, an estimator is required to

estimate the system parameters on-line, based on the generic recursive regression analysis.

The regression equation,

a(Qut) = Wg)u(t) + KOO + bi- (@ D@y, @7

1




is obtained by using partial state transformation.
Using g as the forward time-shift operator, the filtered input and output signals can be

defined as

g "s@y" ) = y1),

(2-8)
g "s(@uf()) = wy.
Equation (2-7) can be expressed in a more convenient form as follows:
q7u®) = ¢"""hQuF®) +g" "M@y (®+ biq"D(q)m) ; 2-9)

1

where n is the order of the unknown system and r is the number of .ae closed loop
system poles which must be placed to match those of the reference model. Equation (2-9)

can be represented in a matrix formation as

g~ u(® = d'(e,

[ k, '
where [ uf(t-r-1 . h,
uf(t-r-2)
Bin-1)
uf(t-r-n+1) o, - k, (2-10)
o = | yF(e-r-1) k,
yF(t-r-2)
Kin-1)
yFt-r-n+1) 1
| 4" Digyy) | | 5 |




By using the linear regressor @(# and recursive estimation of ©, as

—rl - &7
o(t+]) = 80+ )& [ut-r)- ® (t)O(t)l, @-11)
1+@T()P()® (1)
and,
T
Ptel) = PO+ PO () ®T()P() , 21
1+0TPe ()

the unknown parameters of the system are estimated. Hence, the control equation (2-3)

can be rewritten as

u) = g MO () + 7 Ky "D + 0. 2-13)

2

Equation (2-13) can be represented as
w) = o7 (e,

[ wFe-1) |
uf@-2)
(2-14)
uf(t-n+1)
®m=| yfe-1)
yF(-2)
yFt-n+1)

LI

10




It can be noticed that all the equations in both estimation and control phases are the
same except for the last element in the vector ®(#)and @ (1). Hence, this identical structure
of the estimator and the controller prevents the unnecessary intermediate control design
calculations and speeds up the control process.

Figure § illustrates the estimation and the control algorithm of the DMRAC where
©(1) is a linear associative memory with recursive estimation to minimize the mean square

errors between u(f) and W(?) = 0’(!)6(:).

Y u® = (089 UNKN
—>1 8(9 ¥ > Ln sY:'::!:c
?I -r TIME DELAY

a(t-r) +y u(-r) = Q,'(t)e.

ESTIMATOR
CONTROLLER

@ OBSERVER |«

Figure 5 .Estimation and Control Algorithm of the DMRAC

As an illustration, Appendix A contains a numerical example of the design of a

DMRAC for an unknown minimum phase LTI system.
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C. ANALYSIS OF A DMRAC FOR UNKNOWN NONMINIMUM PHASE LTI

SYSTEM

Consider the LTI system in section B, with polynomial operators A(q) and B(q) which
cause the system to be nonminimum phase (i.e. at least one zero outside the unit circle in z-
domain).

Defining the polynomial operators A(q) and B(g)

Alg =q"+aq™"+...+a, 215

Blg =q"+bg™P+...+b,
and using the same structure for the feedback controller in equation (1-3), the following
Diophantine equation
Ka)A(g) + K@)B(g) = «(9)[Al9) - P*(9)], (2-16)
is obtained. afq) is the monic characteristic polynomial operator of the observer. It is
also arbitrary and stable. P*(q) is the stable arbitrary characteristic polynomial of the
desired closed loop system.
In nonminimum phase systems, for estimating k(q) and k(g), the filtered partial state
Z(t) must be replaced by an estimate in terms of the available signals #"(#) and y"(#). This

can be done using the Bezout identity as follows:

K@) B(q) + (@Alg = 1, 2-17)

12




which holds provided A(g) and B(q) are mutually co-prime polynomials. Hence, defining

b(g) and c(q) as
bg = b,q"+bq™"+...+b,
(2-18)
aQ) = q"+¢,q" "+ ... vc,,
Equation (2-10) can be rewritten as
s(Qut) = ®'(e,,
i
- ]
uf(@-r-1 W !
uf(t-r-2) k,
uf(t-r-n+1) Mﬁ"'"
yF@-r-1) b (2-19)
yF-r-2) k
Fo | 2
o - y " (t-r-n+1) o, - (n=1)
a(t-r-1) b,
@ (t-r-2) b,
@ (t-r-n+l) b,
y(t-r-1) ¢,
y(t-r-2) c
¥ (t-r-n+1) c,

13




where

() = P(gu(gu’(),
¥ = P(gu(@y’(®.

So, the algorithm in order to obtain a DMRAC for unknown LTI system is developed
by using an adaptive pole placement algorithm for unknown nonminimum phase LTI
systems.

Using equation (2-17), the state 2(2) can be estimated as

A0) = g ut) + XY ¥V , (2-20)

which implies that &(g) and c(g) are the parameters of the observer.

Appendix B contains a numerical example of the design of a DMRAC for an unknown

nonminimum phase LTI system.
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III. NEURAL NETWORKS IN ADAPTIVE CONTROL OF

UNKNOWN NONLINEAR SYSTEMS

A. NEURAL NETWORKS IN CENERAL

Neural networks are composed of many simple elements operating in parallel. These
elements are inspired by biological nervous systems. The network function is determined
largely by the connections between the elements [Ref.3].

Neural networks have been trained to perform complex functions in various fields of
applications including pattern recognition, identification, classification, speech, vision and
control systems. Neural networks have been studied for many years in the hope of achieving
human-like performance in the fields of speech and image recognition [Ref.4). Today neural
networks can be trained to solve problems that are unsuitable to conventional computers
[Ref.3].

A neural network is usually a layered network consisting of an input layer, an output
layer and at least one layer of nonlinear processing elements. The nonlinear processing
elements, which sum incoming signals and generate output signals according to some
predefined function are called neurons. The neurons are connected by terms with variable
weights. The output of one neuron multiplied by a weight becomes the input of an adjacent

neuron of the next layer.

15




A single neuron with n inputs is shown in Figure 6. The individual input x(j),

weighted by the element w(1) of the matrix w, are summed to form the weighted inputs to

the transfer function I The neuron has a bias b and an output y given by

y =T [} wl,j) x(G)+b] .

Je1

(3-1

As in equation (3-1), the transfer function net input is the sum of the weighted inputs

and the bias d. This sum is the argument of the transfer function. The weight vector w, and

the input vector x can be represented as

.
x2)
w=[wLl)wmI2) ... (lm ], x-= .
x(n)
D e @)
x(2) o0 ) > r |—I>»

x(n) o~ w(1,m)

o>

Figure 6. A Single Neuron Model

1le

(3-2)




Two or more of these neurons may be combined in a layer and a particular network
might contain one or more such layers. First consider a single layer of neurons where each
element of the input vector x is connected to each neuron input through a weight matrix w.
In this case, there are m neurons and each of them has a summer and the summer outputs
form an m element vector z. The transfer function net input is the sum of its appropriately
weighted inputs and bias d. At the end, all neuron outputs form an m element output vector
y. A one layer neural network with »# inputs and m neurons is shown in Figure 7. So,

equation (3-1) can be represented for this case as

y=" (LY wij) xG)+ i) 1. (3-3)

Y

All weights can be represented in matrix format as

(WL W12) ... wIn)]
21D w22 .. 2
Yo |MRD W22 e w2 )
WD) Wm2) ... wmn)|

where each row represents the weights of one layer.

A network can have several layers where each layer has a weight matrix w, a bias
vector b, a weighted input z to the transfer function, and an output vector y. Layers whose
outputs are the network's outputs are called output layers. All other layers are called hidden

layers. Commonly an input vector is presented to a network, the outputs are calculated and

17




an algorithm is applied to determine the weight element changes. However, one may want
to apply more than one input vector simultaneously and get the network's response to each

one of them. This operation is called batching and this will not be part of this thesis.

x(1)
x(2) —QL——, r -mL

Tb(z) whers,
x(a) 1 a=# faputs

m) o p (¥

Figure 7. A one Layer Neural Network

Initialization of the weights and bias elements to small positive and negative values
provides enough variation in the weights and biases so that neurons in the network start out
with a range of behaviors that can be taken advantage of by the leamning rule.

There are several learning rules such as Hebbian, Instar, Kohonen, Outstar learning

rules [Ref.3]. Among the most common learning rules is backpropagation which adjusts the

18




weights and biases of the network in order to minimize the mean squared error criterion.
This is a gradient algorithm and it is done by continually adjusting the values of the weights
and biases in the direction of the gradient of an appropriate cost function.

The most distinctive and appealing feature of many neural networks is that they learn
by examples.

Currently, the most popular and commonly used neural networks for control system
design is the Back-Propagation Neural Networks (BNN) which is discussed in the following

section.

B. ANALYSIS OF BACK-PROPAGATION NEURAL NETWORKS

A Back-Propagation Neural Network is a multilayer, feed-forward network which has
an input layer, an output layer and at least one hidden layer. Neurons are found in the output
and hidden layer(s), while the input layer has only input connections feeding the neurons in
the first hidden layer. There exists no feedback or even interconnection between neurons in
the same layer. There is generally a bias input for each neuron with an associated non-zero
weight. A three layer network is shown in Figure 8. It has one output layer and two hidden
layers.

In Figure 8, wi(j,k) is defined as the connection weight for the path from the /* neuron
in the (i-1)*layer to the k* neuron in the #layer. It is assumed that the weight vector wi(j,k)
is a constant so that a partial derivative can be rigorously defined [Ref.5]. Then the BNN in

Figure 8 can be represented mathematically as

19




¥3 = D I(w3sD2(w2+D'3(wlsx + bI)+ b2)+ b3), 3-5)

where x(j) is the input vector to the BNN.

In the learning process, the BNN adjusts weights wi for all i, to minimize a suitable

function of the error between the output y and a desired output y, where y(?) is the signal to

be approximated given the input x(¢), t = 1,....,N.

Figure 8. A Multilayer Neural Network

The most common error function used is

IX118) - y (0N %, (3-6)

NlN
iM=

20




where y(¢) is the signal to be approximated given the input x(8), ¢ = I,....,N and Wt{@) the
output of the neural network with parameter ® . A general picture of this mechanism is
given in Figure 9.

The BNN implements a modification of the gradient descent algorithm to update each

weight at time #+1 as follows:

191€t)?
o+ 1)=0()-u=20 | .

where u > 0 is the learning rate and @ is the weight vector and e(f) = W(¢|®) - y (0).

INPUT OUTPUT
2ty ——T—>| NONLINEAR SYSTEM —
yd(®)
+
t
————>»{ BNN A o(*)

Figure 9. Obtaining the Error in BNN

A general flow diagram for a BNN is given in Figure 10. The algorithm that is used
to simulate the BNN is presented below. The MATLAB codes to accomplish this task are

in Appendix C. For simulation purposes, a two layer neural network is chosen which is quite

21




effective compared with three or more layered networks. A sigmoid is used as the nonlinear

transfer function.
bl b2
—> r r P>
‘I ' —)I_‘.L ‘ ekl
f Y X
r' r'
k | 2
aJ )
a3 5 ) v 2
g o, } ¥ %

Figure 10. A General Flow Diagram for BNN

In order to derive the back-propagation algorithm, the weights, biases, input and output are

defined as

€2

a ¢ €
w1=["] w2=[ " "] wi=lf,, f,],

(3-8)

b b
bl=["] b2=| 2| wu=Mul y=lyl.

22




The input to the first layer is given as

v/ = wleu + bl
3-9)
a, ua, 1+ by v
= u+ .
4 ‘“’u + bn
Hence, the output of the first layer, v can be represented as

\4
v=sigmoid (v') = [v'] . (3-10)
2

Likewise, the input to the second layer is given as

2/ = w2sv+ b2
n ‘n €V * € Ys +by,
"21 273 ‘zz"l +C, 4 by,
And the output of the second layer can be given as

: (3-12)
z=sigmoid (z')=| |.

So, the output of the network can be written as

! (3-11)
- |-

K]

z

y=w3 s z=f, f,,lL'

2

]=f"¢z, +f12*% (3-13)

23




The error can be calculated as

e=y-y,=d3. (3-14)

Back-Propagating the error through the network, the followings are obtained:

d2 = diag (w3’ d3)sdsig (2)
(3-15)
dl = diag (w2'+d2)sdsig (v').

Partial differentiations of an appropriate cost function with respect to all weight vectors
multiplied by a proper learning rate are subtracted from the weight vectors of the

previous iteration to obtain the new weight vectors as follows:

w3=w3-u » -a—"—=w3-p(d3tz’)
ow3

w2=w2-p s L - p(d@2sv)) (3-16)
ow2

wi=wl-gp s« 2L o wi-pqdisu').
owl

In a similar way, we can show that for the bias terms,

24




b2= bz-”g_a_‘!—z b2 -
ab2 nedd,
3-17)

bl = bl - ue 2L = b1 -
abl ped -
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IV. APPLICATIONS AND SIMULATIONS

A. EXPERIMENTING WITH THE BNN DMRAC FOR UNKNOWN MINIMUM

PHASE SYSTEMS

In this chapter, the results of the experiments using the BNN DMRAC on various
nonlinear SISO systems, are presented. Four experiments are conducted using software
simulations for the four classes of unknown nonlinear systems considered in Chapter II1.
The main purpose of these experiments is to see under what conditions the proposed BNN
DMRAC works. The software simulation programs used in these experiments are listed in
Appendix C.

Lastly, an experiment for an unknown nonlinear nonminimum phase system is
conducted based on the system Model 2.

As stated in [Ref.1], four important classes of unknown nonlinear SISO systems are
considered for direct adaptive control using the BNN. They are modeled in discrete-time for
analysis and simulation. These are the system models used in [Ref.6] for which BNN
indirect adaptive control has been successfully demonstrated. The four models are the
following with I", a continuous smooth function:

(1) Model | :

A+ )= 'Zf a, y(t- k) + T [(u(t)ut- 1),....at-m+ 1)) (4-1)

26




Large mechanical systems, hard nonlinearities such as input saturation, dead zones or

backlash are readily described by this model [Ref.1].

(2).Model 2 :

We+D) =T [WONt=1),...)(t-n+1)] + Z b, u(t- k) (4-2)

The action of viscous drag on an underwater vehicle can be modelled by this model [Ref.1].

(3) Mode] 3 -

W+ D) =T (HON-Dpiy(t-R+D]+ T (MO0t D)ptit-ms D} (4-3)
Underwater vehicles subjected to input saturation and viscous drag can be formulated by
this model [Ref.1].

(4) Model 4

W+ 1) =T WONt= 1),...(t- 8+ 1))t = 1),....6(t - m+ 1)) (4-4)
Bilinear systems are part of this model [Ref.1].

1. Experiment 1: System Model 1
In the first experiment, a nonlinear system described by Model 1 was controlled

by a BNN DMRAC. The chosen nonlinear system is given in equation (4-1) as

Wt+D=03y1) + 06t-1)+ w(t)’ + 0.3 u(ty - 0.4 u(t) . (4-5)
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According to the suggested training procedures, the BNN was first trained off-line.
The training set made of a randomly generated training input #(¢) and the resulting output
¥0) of the neural network and also the external input W) and the desired response of the
system, y,(¢) are shown in Figure 11. The Training set consists of 10 000 data points each
for the input and the output measurements. The external input to the system, wW?) is a sum
of sinusoids with different magnitudes and frequencies. The BNN was next placed on-line
to control the system. During the on-line control phase, the BNN recursively leamns to adapt
to the required control structure. The output of the controlled system compared to that of the
reference model is displayed in Figure 12. The reference model used in the experiment is

chosen as

Y. ()=08y (t-1)+v(t-1), (4-6)
where W) is the external input to the system.
2.  Experiment 2: System Model 2

In the second experiment, a nonlinear system described by Model 2 was used.

It is governed by

weal) s XOXDD®+25] (4-7)
1+yf + yt-17

The input to the BNN estimator will be the regressor vector &) of equation (2-10).
& (1) in equation (2-14) is the input vector during the control phase. The same reference

model and the same procedures for off-line training and on-line control-plus-learning
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were employed. The BNN estimator was first trained off-line with a 10 000 point training
set. The training input u(¢) and the resulting output y(¢) of the neural network and also the

external input, v(¢) and the desired response, y(#) of the system are shown in Figure 13.
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Pigure 11. The Training Input, the Resulting Output, the External Input and the Desired
Response for the System Model 1
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Pigure 12. The Output of the Controlled System Compared To That of the Reference
Model for System Model 1
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Finally, the BNN was placed on-line to control, and learn the control structure and
estimate the parameters simuitaneously. As shown in Figure 14, the system with the BNN
DMRAC successfully tracks the model reference system closely. To optimize the
performance of the control system, many different learning parameters and training data
were tried. However, once a trained BNN works, it tracks the reference model reasonably

well for the inputs with similar characteristics.

3. Experiment 3: System Model 3

In this experiment, a nonlinear system described by Model 3 is chosen as

wee= 29y (4-8)

1+y@y
The same procedures, used for the previous experiments were conducted. The training
input u(?) and the resulting output y(¢) of the neural network, and also the actual input
w(t) and the desired response y(¢) of the system are shown in Figure 15. The comparison
between the actual system output and the reference model output are displayed in Figure

16.

4. Experiment 4: System Model 4

In the final experiment, the nonlinear system is governed by:

YOYt-1D)Wt-2) u(t-1) [Wt-2) + 1] + u(t)
1 y¢ 1 ya 27

W+ l) = 4-9)
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Other than the order of the system, there is not much change in the input vectors. Once

again, the same procedures were applied to this nonlinear model. The training input ¢« /¢) and
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Figure 14. The Output of the Controlled System Compared To That of the Reference
Model for System Model 2
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the resulting output y(¢) of the neural network, and also the actual input »(#) and the desired
response y(#) are displayed in Figure 17. The output of the controlled system compared to

that of the reference model is displayed in Figure 18.
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B. EXPERIMENTING WITH THE BNN DMRAC FOR UNKNOWN

NONMINIMUM PHASE SYSTEMS

In this section, the BNN DMRAC is extended to nonminimum phase systems. For
experiment purposes, Model 2 is considered.

The pole placement algorithm [Ref.7] which was used for LTI nonminimum phase
systems was tested on nonlinear nonminimum phase systems. But the experiment showed
that nonlinearities affect the results and cause the system to go unstable especially in the
nonminimum phase case.

So, it was decided not to consider the pole placement approach for this case and the
BNN DMRAC is directly applied to a nonlinear nonminimum phase system. The simulations
yield fairly reasonable results which are displayed in Figure 19 and in Figure 20.

The unknown nonlinear nonminimum phase system used is chosen as

t+l)= Yo yt-D) ) + 251 +u(t)+2u(t-1) . (4-6)
I+ytf + y(t- 1y
From the following plots we see that in some cases the output of the system is able to
track the desired reference signal. However, in several runs, the nonminimum phase system
does not perform as desired and it might become unstable. The extension of a neural network

controller to this class of systems is still an open problem in the control system literature.
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C. IMPLEMENTATION OF THE BNN SOFTWARE SIMULATOR

For this thesis research, a software BNN simulator was developed. Until neural
network hardware systems or neurocomputers become commonly (and economically)
available, most researchers will work with software simulators for neural networks. The
software approach offers the full flexibity for development, allowing the user to exercise and
experiment freely with the various features of the neural network [Ref.1]. The main
drawback of this approach is the slow learning process of the simulator.

By using the appropriate MATLAB? codes, the following functions have been
developed and used in simulations:

= INITIAL 2 : This function initializes the BNN. It takes as input variables the
parameters describing the number of inputs and number of outputs, number of neurons in
the hidden layer(s). It yields as outputs the initial conditions of the weights and biases of the
network.

= NET 2: This function sets up the data structure for a 2 layer BNN. It takes as input
variables a parameter describing the number of inputs and neurons in the hidden and output
layer. It also takes as another input variable a parameter specifying the spreading range of
the biased inputs.

» BP 2: This function backpropagates the output errors to the input layer. It takes as
input variables the parameter describing the weights and biases, and the random input,
learning rate and the actual input. It yields updated weights and biases.

= SIGMOID : This function introduces the nonlinearity to the neural network.

» DSIG : This function takes the derivative of the sigmoid function.

"MATLARB is a registered trademark of the Math Works, Inc.
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These functions can be all implemented recursively, and imbedded in any iterative
loop. The source codes of these functions used in this thesis research are provided in

Appendix C.
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V. OBSERVATIONS, DISCUSSIONS AND CONCLUSIONS

A. SUMMARY

A Direct Model Reference Adaptive Controller (DMRAC) for LTI systems was
developed and applied to both minimum phase and nonminimum phase LTI systems for pole
placement. The DMRAC for LTI systems was then extended to nonlinear systems by
training a BNN to emulate a suitable nonlinear regression form that describes the system
under consideration.

Later, the control of four general classes of unknown nonlinear systems, modelled in
discrete-time, using the BNN DMRAC was considered. Lastly, an experiment for unknown

nonlinear nonminimum phase systems was conducted.

B. OBSERVATIONS, DISCUSSIONS AND CONCLUSIONS

A DMRAC designed with a least-squares estimator, assuming the system is LTI, failed
to work for most nonlinear systems. Hence, the BNN DMRAC is an effective technique in
controlling nonlinear systems where the conventional technique fails.

Some experiments conducted showed that the BNN DMRAC performs its control
function reasonably well for various types of inputs. However, for inputs with high
frequency components (with respect to the sampling rate), the controlled system became
quite oscillatory, so that it would not be able to track the reference model properly. In

addition, the controller would sometimes saturate during training and therefore it failed to
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control the system [Ref.1]. It is suggested that the solution to this problem is to increase the
sampling rate with or without increasing the number of neurons and hidden layers used in
the BNN. Off-line training with more appropriate data (i.c. training signals containing
similar frequency characteristics as the actual signals experienced by the controlled system),
and adjusting the learning parameters also helps to improve the tracking performance and
avoid saturation [Ref.1]. Unfortunately, there is still no general rule to help select the most
appropriate learning parameters. Hence, a great deal of experimentation is usually required.

The BNN DMRAC designed for unknown nonminimum phase systems is not
promising compared with their minimum phase counterpart. A nonminimum phase system

is usually hard to stabilize adaptively by a direct approach.

C. FURTHER RESEARCH AND DEVELOPMENT

In this thesis research, the emphasis was to develop a structure for direct adaptive
control of certain classes of unknown nonlinear systems using the BNN. The results of the
experiments clearly showed that the BNN DMRAC is very effective in controlling unknown
nonlinear systems. On the other hand, nonminimum phase systems at the moment do not
yield satisfactory results and need more research e&om.

Once more, in the design of the BNN, the selection of the number of layers, neurons,
the type of nonlinear transformation, etc., is still at the discretion of the designer. This area

definitely needs further research.
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APPENDIX A

DMRAC DESIGN FOR UNKNOWN MINIMUM PHASE LTI

SYSTEMS

In this Appendix we address the problem of designing an adaptive controller for a LTI
system based on the algebraic approach. The unknown LTI system to be controlled is

described by the following polynomial operators:

AlQ q°-0.2q+09,

(A-1)
B(g) = 3q.
In order to track the reference model
Yult) - 08y, (t-1) = wt-1), (A-2)

the desired closed loop polynomial, P’(q) and the characteristic polynomial of the
observer, afq) are chosen arbitrarily and with roots in the stable region as

P @ = L30q-08) = ¢q-08),
3 (A-3)

a(g) = ¢> - q+025
Using the algorithm in Chapter 1 Section B, the Diophantine equation can be formed
as follows:

(hyq+h)q®-02q+09)+(k,q+k)3q = (qg°-q+025)[qg-029+09-q(q-08)
(A-4)
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or

(h,q+h)(q* - 0.29+09) + (kg + k;)3q = 0.69° + 0.3¢> - 0.75¢+ 0225  (A-5)

The MATLAB simulation for the above system yields the following steady-state gains:

h, = 0.61234,
k, = 0.24935,
k, = 0.05678,
k, = -0.42982.

These results can be checked by using the Sylvester matrix formulations for this

system which in this case is given by

1 o o o M [ os
-02 1 3 0|kl | 03 (A-6)
09 -02 o 3| k| |-075
[0 09 0 o x| [ 0225]

By solving equation (A-6) we obtain the following values:

h, = 0.6,
h, = 0.25,

k, = 0.0567,
k, = -0.4133,

Hence, the estimated gains needed to control the system are found to be very close to

the steady-state gains obtained from the Sylvester matrix equations.
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The simulation results of the experiment for the system above are displayed in Figures

(A-1) thru (A-3).
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% %% %% %% %% %o %o % %% % %% % %% %% %% %% % %% % %% % %% %% %% %R %%
(%,

(z.
% A DMRAC DESIGN FOR UNKNOWN MINIMUM PHASE LTI SYSTEMS

l%?

% Designing a controller using recursive least squares estimates

% of the compensator parameters.

TG Te T %o To To T Fo Fe %o %o To Fo Fo Fo Fo To To Fo Fo %o %o Fo Fo %o %o %o T Fo %o %o %o % %o %o % T % %o %o % % Fo
(%‘

! del *.met

clear,clg,clc

% Generating the reference input signal
t=0:100;
v=square(t/(0.5*pi));
kmax=length(v)+1;
for i=1:kmax-1

if v(i)<=()

v(i)=0;

end

end

% Initialization of the parameters
u=zeros(1,kmax);

ubar=zeros( 1,kmax);

y=zeros( | ,kmax);
ybar=zeros(1,kmax);
ym=zeros(1,kmax);
th=zeros(5,kmax);

th(5,4)=0.1;

P=10000*eye(5);

% Generating the reference model
for j=2:kmax- |

ym(j)=0.8*ym(j- 1)+v(j-1);
end

% Designing the controller
for k=4:kmax-1
hi=th(1,k);
h2=th(2,k);
k1=th(3,k);
k2=th(4.k);
ib1=th(5.k);
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u(k)=(hi+1)*u(k-1)+(h2-0.25)*u(k-2)+k 1 *y(k-1)+k2*y(k-2)+...
(v(k)-v(k-1)+0.25*v(k-2))*ibl;

ubar(k)=u(k- I )-u(k-2)+0.25*u(k-3);
y(k)=0.2*y(k-1)-0.9*y(k-2)+3*u(k-1);
ybar(k)=y(k)-1.8*y(k-1)+1.05*y(k-2)-0.2*y(k-3);
phit(k,:)={u(k-2) u(k-3) y(k-2) y(k-3) ybar(k)];
K(:,k)=(P*phit(k,:)")/(1+phit(k,:)*P*phit(k,:)");
P=P-(P*phit(k,:)"*phit(k,:)*P)/(1+phit(k,:)*P*phit(k,:)");
th(:,k+1)=th(:,k)+K(: k)*(ubar(k)-phit(k,:) *th(: k));

end

% Plotting the results
subplot(211)

axis([0 100 -0.1 1.2]);
plot(v(1,1:100));
title('REFERENCE INPUT v(t)');
xlabel('TIME (Sec.));
ylabel('MAGNITUDE');
grid,pause

axis

cleart

t=1:100;
subplot(212)

plot(t,th(1,1:100),1,th(2,1:100),t,th(3,1:100),t,th(4,1:100),...
t,th(5,1:100));

title(ESTIMATED CONTROL PARAMETERS');

xlabel('TIME (Sec.));

ylabel(MAGNITUDE');

erid

gtext('h1’);

gtext('1/bl’);

gtext('h2");

gext('’k1l');

gtext('k2");

pause

meta |

clg

subplot(211)

plotym(1,1:100));

title('THE SIGNAL TO BE FOLLOWED');

xlabel('TIME (Sec.)");

ylabel(MAGNITUDE");
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grid,pause

subplot(212)

plot(y(1,1:100));

tile(THE OUTPUT OF OUR PLANT");
xlabel('TIME (Sec.)');
ylabel(MAGNITUDE");

grid,pause

meta 2

clg

axis([0 100 -2 4])

plot(ym(1,1:100));

hold on

plot(y(1,1:100),"*");

plot(y(1,1:100));

title('DESIRED OUTPUT ym(t) {--} vs ACTUAL OUTPUT y(t) {**}');
xlabel('TIME (Sec.)");
ylabel(MAGNITUDE');

grid

hold oft

meta 3

axis(‘normal’);

% % % T o %o I Yo %o %o %o To % Fo o Fo Fo Fo Fo Fo Fe Fo F %o T Fo Fo Fo %o Fo Fo % %o Fo % %o %o % o % Fo %o o G
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APPENDIX B
DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE

LTI SYSTEMS

In this Appendix we address the problem of designing an adaptive controller for a
nonminimum phase LTI system based on the algebraic approach. The unknown LTI system

to be controlled is described by the following polynomials:

Alg =q*+q+1,
B(g) = q+2,

(B-1)

where A(g) is stable and monic, and B(g) is monic and causes the system to be
nonminimum phase. In order to track the reference model

Yul0 - 08y, (t-1) = Wt-1), (B-2)
the desired closed loop polynomial, P°(g) and the characteristic polynomial of the

observer, a(q) are chosen arbitrarily as

P*(q) = (g- 08),

«(g) = ¢>-q+025

(B-3)

Using the algorithm in Chapter 1 Section C, the Diophantine equation can be formed

as follows: (B-4)
(hg+h)g’+q+D)+(kg+k)g+2) (q°-q+0.25)[qg°+q+1-(q°- 1.6+ 0.64)),
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or,

(Rg+h)qg’+q+1)+ (k,q+k)q+2) = 1.8¢° - 0.96¢° - 0.39q + 021. (B-S)

Also, P*(g)a(g)is obtained as

(¢° - q+025)q* - 0.8 +0.16) = q* - 1.89° + 1.21¢ - 0.36q + 0.04, (B-6)

The MATLAB simulation for the above system yields the following gains,

h, = 1.7927
h, = -2.121
k, = -0.6184
k, = 11666
b, = 0.0000
b, = -0.6642
¢, = 0.6642
¢, = 0.3358.

where b,. b,, ¢, and ¢, are the coefficients of the polynomials b(g) and ¢(g) respectively.
These results can be checked with Sylvester matrix solution for this system which can

be written as

100 oM [1s)
11 -0.96
1 0|k _ . (B
112 1|k [-039
0102 0.21
| Ik 1021
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By solving equation (B-7) we obtain the following values:

B = 18,
k= -2.I5,
k = -0.61,
‘ = I1.18.

Hence, the estimated gains needed to control the system are found to be very close
to the gains obtained from Sylvester matrix equations. In fact, only h,, h,, k; and k, are
needed in the control phase while b,, b, ¢, and ¢, are needed only in the estimation phase
of the entire design process.

The simulation results of the experiment for the system above are displayed in Figures
(B-1) thru (B-3).

The experiment then, is conducte-1 for an unknown nonminimum phase and unstable
LTI system. It is observed that the algorithm first stabilizes the systemn with the adaptive pole
placement process and then provides the necessary input to track the desired reference
signal. The results of this experiment for the nonminimum phase and unstable system are

displayed in Figures (B-4) thru (B-6). For the experiment A(q) is chosen to be as follows:

Alg) = ¢*+q+2 (B-8)
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A DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE LTI SYSTEMS

Designing a controller using recursive least squares estimates

of the compensator parameters.

Experimenting with a stable system

! del *.met
clear,clg,clc

% Generating the reference input signal

w=10000;
t=0:w;
v=square(t/(40*pi));

% Initialization of the parameters

kmax=length(v)+1;
u=zeros(l,kmax);
ubar=zeros(!.kmax);
uF=zeros(1,kmax);
uFminl=zeros(l,kmax);
y=zeros( 1, kmax);
yF=zeros(1,kmax);
yFminl=zeros(1,kmax);
ym=zeros(1,kmax);
th=zeros(8,kmax);
P=w*eye(8);

% Generating the reference model

for j=2:kmax-1
ym(j)=0.8*ym(j-1)+v(j-1);
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% Designing the controller

for k=6:kmax-1
hi=th(l.k);
h2=th(2.k);
k1=th(3,k);
k2=th(4,k);
bi=th(5,k);
b2=th(6.k);
cl=th(7.k);
¢2=th(8,k);
u(k)=(hl+1)*u(k-1)+(h2-0.25)*u(k-2)+k 1 *y(k- 1) +k2*y(k-2)+v(k)-v(k-1)+0.25*v(k-2);
ubar(k)=u(k-2)-u(k-3)+0.25*u(k-4);
uF(k)=u(k)-1.8*u(k-1)+1.21*u(k-2)-0.36*u(k-3)+0.04*u(k-4);
uFmin1(k)=u(k-1)-1.8*u(k-2)+1.21*u(k-3)-0.36*u(k-4)+0.04*u(k-5);
y(k)=-y(k-1)-y(k-2)+u(k-1)+2*u(k-2);
yE(k)=y(k)-1.8*y(k-1)+1.21*y(k-2)-0.36*y(k-3)+0.04*y(k-4),
yFminl(k)=y(k-1)-1.8*y(k-2)+1.21*y(k-3)-0.36*y(k-4)+0.04*y(k-5);
phit(k,:)=[u(k-3) u(k-4) y(k-3) y(k-4) uF(k) uFminl(k) yF(k) yFmin1(k)];
K(:,k)=(P*phit(k,:)'y/(1+phit(k,:)*P*phit(k,:)');
P=P-(P*phit(k,:)*phit(k,:)*P)/(1+phit(k,:)*P*phit(k,:)');
th(: k+1)=th(:.k)+K(: k)*(ubar(k)-phit(k,:) *th(: k)):

end

% Plotting the results

subplot(211)

axis([0O w -1.5 1.5));

plot(v(l,1:w));

title(REFERENCE INPUT v(t)');

xlabel('TIME (Sec.)’);

ylabel'MAGNITUDE;

grid,pause

axis

clear ¢

subplot(212)

t=1:w;

plot(t,th(1,1:w),t,th(2,1:w),t,th(3,1:w),t,th(4,1:w),...
t,th(5,1:w),t,th(6,1:w),t,th(7,1:w),t,th(8,1:w));

title('ESTIMATED CONTROL PARAMETERS);

xlabel('TIME (Sec.)");

ylabel(MAGNITUDE";

grid;

gtextChl');

gtext('k2');

63




grext('cl’);
gtext('c2");
gtext('bl’);
gtext('kl’);
glext('b2");
gtext('h2’);
pause
meta 1b

clg

subplot(211)

axis([0 w -10 10]);

plot(ym(1,7:w));

title( THE SIGNAL TO BE FOLLOWED);
xlabel(' TIME (Sec.)");
ylabel'MAGNITUDE');

grid,pause

subplot(212)

plowy(1,1:w));

title(THE OUTPUT OF OUR PLANT);
xlabel(' TIME (Sec.)’);
ylabel((MAGNITUDE');

grid,pause

meta 2b

clg

axis([0 w -6 6]);
plot(ym(1,1:w));

hold on
plot(0.625*y(1,1:w),'+);
plot(0.625*y(1,1:w));
title(DESIRED OUTPUT ym(t){--} vs ACTUAL OUTPUT y(){++});
xlabel(' TIME (Sec.)');
ylabel(MAGNITUDE:
grid

hold oft

meta 3b

axis

T G e S G G T S S o T %o % Yo o e T %o % o o %o %o %o %o To To To To Fe T o To To %o Te Yo Fe Yo To % %
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% A DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE LTI SYSTEMS

%

% Designing a controller using recursive least squares estimates

%  of the compensator parameters.

%

% Experimenting with a unstable system

G

%G % % Yo e % % To T %o Te %o Fo Te To Yo Fo Fo %o Fo Fo To T Fo Fo Fo Fo Fo Fo Fo Fo Yo %o %o % % %o % % % % % %
%

! del *.met

clear,clg.clc

% Generating the reference input signal
w=10000);
t=():w;
v=square(t/(40*pi));
% Initialization of the parameters
kmax=length(v)+1;
u=zeros(1,kmax);
ubar=zeros(1,kmax);
uF=zeros(1,kmax);
uFminl=zeros(1,kmax);

=zeros( 1,kmax);
yF=zeros(1,kmax);
yFminl=zeros(1,kmax);
ym=zeros( 1, kmax);
th=zeros(8,kmax),
P=w*eye(8);
% Generating the reference model
for j=2:kmax-1 -

ym(j)=0.8*ym(j-1)+v(j-1);

end

% Designing the controller

for k=6:kmax-1
h1=th(1,k);h2=th(2,k);kI=th(3,k); k2=th(4,k); b1=th(5,k);b2=th(6,k);
¢l=th(7.k);c2=th(8,k);
u(k)=(h1+1)*u(k-1)+(h2-0.25)*u(k-2)+k 1 *y(k-1)+k2*y(k-2)+v(k)-v(k-1)+0.25*v(k-2),
ubar(k)=u(k-2)-u(k-3)+0.25*u(k-4);
uF(k)=u(k)-1.8*u(k-1)+1.21*u(k-2)-0.36*u(k-3)+0.04*u(k-4);
uFminl(k)=u(k-1)-1.8*u(k-2)+1.21*u(k-3)-0.36*u(k-4)+0.04*u(k-5).
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y(k)=-y(k-1)-2*y(k-2)+u(k-1)*+2*u(k-2);

yE(k)=y(k)-1.8*y(k-1)+1.21*y(k-2)-0.36*y(k-3)+0.04*y(k-4);

yFminl(k)=y(k-1)-1.8*y(k-2)+1.21*y(k-3)-0.36*y(k-4)+0.04*y(k-S5):

phit(k.:)=[u(k-3) u(k-4) y(k-3) y(k-4) uF(k) uFmin1(k) yF(k) yFmin1(k)].

K(:.k)=(P*phit(k,:)')/(1+phit(k,y*P*phit(k."));
=P.(P*phit(k.:)"*phit(k.:)*P)/(1+phit(k, .y *P*phit(k,));

th(: k+1)=th(;,k)+K(:.k)*(ubar(k)-phiz(k,:)*th(:,k));

end

% Plotting the results

subplot(211)

axis([0 w-1.5 1.5));

plot(v(1.1:w));

title(REFERENCE INPUT w(t)");

xlabel('TIME (Sec.)),

ylabel((MAGNITUDE)),

grid, pause

axis

clear t

subplot(212)

t=1.w;

plot(t,th(l,1:w).t.th(2,1:w).t.th(3,1:w),t,th(4,1:w),...
t.th(5,1:w),t,th(6,1:w),t,th(7,1:w),t,th(8,1:w));

title(ESTIMATED CONTROL PARAMETERS),

xlabel('TIME (Sec.)");

ylabel('MAGNITUDE);

grid;

gtext(hl'):gtext(h2').gtext('cl);gtext('c2);

gtext('b1').gtext('b2').gtext('k2");gtext(‘’k1’);

pause

meta 1b

clg

subplot(211)

axis([0 w -10 10)),

plot(ym(1,7:w)),

title('THE SIGNAL TO BE FOLLOWED"),

xlabel('TIME (Sec.)");

ylabel('MAGNITUDE"),

grid pause

subplot(212)

plot(y(1,1:w));

title('THE OUTPUT OF OUR PLANT),
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xlabel('TIME (Sec.)'),

ylabel(MAGNITUDE'),

grid,pause

meta 2b

clg

axis(fO w -6 6]).

plot(ym(1,1:w));

hold on

plot(0.625*y(1,1:w),'+);

plot(0.625*y(1,1:w));

title('DESIRED OUTPUT ym(t){--} vs ACTUAL OUTPUT y(t)'{++}),
xlabel('TIME (Sec.)");

ylabel(MAGNITUDE"),

grid

hold off

meta 3b

axis
%%%%%%%%%%0%%%%%%%%%%%%%%6%%%%%%%%6%6%%6%%%% %% %% %%
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APPENDIX C

BNN SOFTWARE SIMULATOR

K% %% %% % G T T Te % %% %% % % % % %% % %% %% %% %% %% %% %% %% %% %
%

% SOFTWARE SIMULATOR FOR BNN

%

G %% % Fe Fe % % T Fe o % Fo % Fo Fo Fe T Fe T Fe Fe Fo Fe Fo Fe Fo Fe T Fo Fo Fo T Fo Fo Fo Fo % Fe % Fo %o %
! del *.met

clear.clg.clc

rand('normal’);

% Random input to train the system.
num=15000;

ul=rand(1,num);

k=0:num;

% Actual input to the system.
v=0.04*sin(k/(9*pi))-0.03*cos(k/(5*pi));
kmax=length(v);

% Calculating the reference output.
ym=zeros(1,kmax-1);
y=zeros(1,kmax-1);
utml=zeros(1.kmax-1);
mu=0.04;
for i=2:kmax-1
ym(1)=0.8*ym(i-1)+v(i-1);
end
for j=2:kmax-1
%miodel ]
y(+1)=0.5*y(j)+0.4*y(j- 1)+ul jHY*3+0.3*ul (j)2-0.1 *ul(j);
%Zmodel2 y(j+1)=(y()*y(-D)*(y(j)+2.5)/(1+y(2+y(j- 1) 2))+ul():
%omodel3 y(+D=y(G)/(1+-v()*2)+ul (jH*3;
%emodeld y(j+1)=(y()*y(G-1)*y(-2)*ul - D*(y(-2)+ )+ul G (1+yG- DA2+y(-21°2);
end
% Initialization of the neural network.
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[w3,w2,b2,wl,bl]=initial2(1,18,18,5);

% Training the neural network.

for t=4:kmax-1
u={ul(t-2) ul(t-3) y(t-2) y(t-3) (y(t)-0.8*y(t-1)I';
utml(t-1)=net2(w3,w2,b2,wl,bl,u);
[w3,w2,b2,wl,bl]=bp2(w3,w2,b2,wl,bl,u,ul(t-1),mu);

end

% Plots of the desired signals.
subplot(221)

axis([0 200 -4 4});
plot(ul(1:200));
titte(RANDOM INPUT");
grid

subplot(222)

axis([0 200 -4 4));

plot(utm1(1:200));

title(COUTPUT OF THE NEURAL NETWORK");
grid

subplot(223)

axis([0 1000 -0.1 0.1});
plot(v(1:1000));
title(INPUT");

grid

subplot(224)

axis([0 1000 -0.4 0.4));
plot(ym(1:1000));
title(DESIRED RESPONSE");
grid,pause

meta h

% Controlling the plant with a neural identifier-controller.
clg

clear u; clear y;clear t;

u=zeros(1,10000);

y=zeros(1.10000);

i1=zeros(5,10000);

i2=zeros(5,10000);
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for 1=4:9999;
i1G,0=(u(t-1) u(t-2) yt-1) y(t-2) v()]";
u(t)=net2(w3,w2,b2,wl,bl,il(:,t));
y(O=(y(t-1)*y(t-2)/(1+y(t- 1 2+y(1-2)A2))+u(t-1);
i12¢:,t)=(u(t-2) u(t-3) y(t-2) y(t-3) (y(t)-0.8*y(t-1))]";
[w3.w2,b2,w1,bl]=bp2(w3,w2,b2,w1,bl,i2(:,t),u(t-1),mu);
end

% Ploting the results.

subplot(111)

n=1:999;

axis([0 1000 -0.6 0.6));

plot(n,ym(1,1:999),n,y(1,1:999),".");

title(DESIRED OUTPUT {--} vs ACTUAL OUTPUT {..}");
grid,pause

meta hh

%% % %% % % % Fe % Fo %o Fo %o %o T Fo Fe % %o % Fo T Fo %o T Fo T Fe T Fo T % %o Fo T Fo o % Fo T Fo To %

%% % % Go e Fe Fo To e T T Fo o Fe % Fo To %o T T Fo % Fe T %o e To Fo Fo Fe Fo Fo Fo Fo %o T Fo Fo Fe Fe Fo
e e e

%

% BNN DMRAC WITH UNKNOWN NONLINEAR NONMINIMUM

% PHASE SYSTEM

%

e Ye T Fe Fe Ge T Fe Fe T Fo Fe % Fe T Fo Fe Fo Fo Fo Fo Fo %o Fe Fo Fo Fo Fe Do T T Fe Yo Fe Fo Fe Fo Fe Fo G Fe e
% % %

! del *.met

clear.clgclc

rand(‘normal’);

% Random input to train the system.
num=1000;

ul=rand(1,500000);

k=0:num;

% Actual input to the system.
v=(..03*square(k/(10*pi));
Jev=0.04*sin(k/(Y*pi))-0.03*cos(k/(5*pi));
kmax=length(v);

% Calculating the reference output.
ym=zeros(1,kmax-1);
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y=zeros(1l .kmax-1);
utml=zeros(l,kmax-1);
mu=0.099;
for i=2:kmax-1
ym(i)=0.8*ym(i-1)+v(i-1);
end
for j=2:kmax-1
%model2
y(+D=(y()*y(-D*(y()+2.5)/(1+y(Y2+y(-12))+ul (j}+2*ul G-1);
%model3 y(+ D=y (1+y(§) 2)+ul G)3;
%model4 y(i+1)=(y()*y(-1)*y(-2)*ul(-D)*(y(-2)+ )+ul ())/(1+y(-12+y(-2)/2);
%modell y(j+1)=0.5*y(3)+0.4*y(j-1)+ul(j)*3+0.3*ul (j)*2-0.1*ul(j);
end

% Initialization of the neural network.
{w3,w2,b2,wl bl]=initial2(1,20,20,5);
% Training the neural network.

for t=4:kmax-1
u=[ul(t-2) ul(t-3) y(t-2) y(t-3) (y(t)-0.8*y(t-))]’;
utml(t-1)=net2(w3,w2,b2,wl,bl,u);
[w3.w2,b2,wl,bl]=bp2(w3,w2,b2,wl,bl,uul(t-1),mu);
end

% Plots of the desired signals.

subplot(221)

axis({0 200 -4 4});
plot(ul(1:200));
titte(RANDOM INPUT");
grid

subplot(222)

axis([0 200 -4 4));

plot(utm1(1:200));

title(OUTPUT OF THE NEURAL NETWORK);
grid

subplot(223)

axis([0 1000 -0.1 0.1));
plot(v(1:1000));
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title('INPUT);
gnd

subplot(224)

axis([0 1000 -0.4 0.4));
plot(ym(1:1000));
titte(DESIRED RESPONSE");
grid,pause

meta h

% Controlling the plant with a neural identifier-controller.

clg

clear u

clear y

cleart
u=zeros(1,num);
y=zeros(1,num);
il=zeros(5,num);
i2=zeros(5,num);

for t=4:999;
i1¢:,0=[u(t-1) u(t-2) y(t-1) y(t-2) v()}’;
u(t)=net2(w3,w2,b2,wl,bl,il(:,t));
y(£)=(y(t-1)*y(t-2)/(1+y(t-1 " 2+y(1-2)2))+u(t-1);
i2(:,H)={u(t-2) u(t-3) y(t-2) y(t-3) (y(1)-0.8*y(t-1))]";
[w3,w2,b2,wl,bl]=bp2(w3,w2,b2,wl,bl,i2(:,t),u(t-1),mu);
end

% Ploting the results.

subplot(111)

n=1:999;

axis([0 1000 -0.6 0.6]);

plot(n,ym(1,1:999),n,y(1,1:999),".");

title(DESIRED OUTPUT {--} vs ACTUAL OUTPUT {..}");
grid,pause

meta hh

% % %o %0 T Fe % T e To Te Te Te Fo Te Ve Fe Fo Te Te Te To To Fo Te Fe Fo Fo Fo Fo Fe Te Fo Fe T T Fe o Te Fo e Fe Fe Fe
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%% % o %o %o %o Fo % Fo % Fo Fo T Fo % Fo %o Fo Fo %o % Fo T %o Fo % T Fo T Fo Fo Fo %o Fo %o %o Fo % Fe Fe Fo T %
%

function [W3,W2,b2,W1,bl])=initial2(ny,M2,M1,nu)

%
% initializes the neural network

%

%  ny=number of outputs, nu=number of inputs,
%  M2Ml=number of neurons in hidden layers
%

rand('normal’)

W3=rand(ny,M2);

W2=rand(M2,M1); b2=rand(M2,1);
Wl=ones(M1,nu); bl=rand(M1,1);
end

G Te Te T Fo Fo To e T T T Te Fo Fo o Fo To To %o Fo Fo %o o Fo Te T %o Fo Fo Fo T %o % % Fe Fe Fe e T T Fe Fe Fe Fe

T Te Te Fo Fe Te Fe T To Fo To Fo To Fo Fo o Fo o Fo To Fe Fo o Fo T Fo Fo Fo %o Fo %o Fo Fo T Fo % Fe %o Fe Fe Te Fe Fe Fe
%

function y=net2(W3,W2,b2,W1,bl,u)

%

% sets up the data structure for 2 layer neural network
% u=input, y=output

% W=weights, b=biases

%

v=sigmoid(W1*u+bl);

z=sigmoid(W2*v+b2);

y=W3*z;

end

Y % T Te e Te Te T Te Fe Fo o o Te To Fo Fe Fo To o To T Fo To Te o To T % Fo Fo Fo o To T T % Fe Yo T e Te % %

G Te Te Te e Te Te T e Te Te Te Fe To To Fe T Fe To Fo Fo T Fo T To o Fo Yo To Yo Te Fe T Fo Fe T Fe Te Fe Fe Y Fe e T
%

function [W3,W2,b2,W1,b1]=bp2(W3,W2,b2,W1,bl,u,yd,mu)

%

% updates the weights and the biases of a 2 layer neural network with backpropagation
%

% uis the input to the network,

% yd is the desired reference model to track

% mu is the learning rate

vb=W1*u+bl; v=sigmoid(vb);
zb=W2*v+b2; z=sigmoid(zb);
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y=W3*z;

e=y-yd;

d3=e;
d2=diag(W3'*d3)*dsig(zb);
d1=diag(W2'*d2)*dsig(vb);

W3=W3-mu*d3*z';

W2=W2-mu*d2*v', b2=b2-mu*d2;
WI1=WI1l-mu*dl*u’; bl=bl-mu*d};
end

%% % % Fe Fo Fe % Te To % Fo %o Fo % Fo Fo %o Fo %o Fe %o % T Fe Fo Fo Fo Fo Fo T Fo Fo Fe T Fo T % Fe T Fe % Fe Fe

% % e % % T e T % Fe Fo %o %o % T % T Fo % %o Fe T Fo Fo Fo %o Fo Fe %o Fo Fo Fo Fo Fo Fo %o % Fe % G % % Fe %
%

function y=sigmoid(x)

%

% introduces the nonlinearity to neural network

%

x=min(x,100); x=max(x,-100);

y= (1-exp(-x))./(1+exp(-x));

end

% % e T e Fe e T e To Fe T Fe Te Fo Fo Fo Fo Fe Fo Fe Fo To Fo Fo Fe Fo To Fe To Fo Te Fo Fo Fo Fo Fo Fe To Fe Fo Fo o F

%% Fe % Fe Fe e Te Fo Fo Fe Fe Fo To e Fo o Fo Fo Fe %o T Fo T Fo Fo Fo Fo Fo o Fo Fe Fo T Fo Fo T Fe e Fo F Fe Fe Te
%

function d=dsig(x)

e

% takes the derivative of sigmoid

%

% x is a vector

%

x=min(x,100); x=max(x,-100);
temp=exp(-x);

d=temp ./ (1+2*temp + temp .* temp);
end

% T Fe Te Fe Fe Te Te e Te Fe Fe To % Fe To To Fe T Fo Fe Fe Te Fo Fe To To Fo Fo Fo Fo Fo T Fe Fo To Fo Fo To Fo Fo Fe T F
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