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Preface

This report was prepared for the Advanced Research Projects Agency. The work
was performed in the Applied Science and Technology program of RAND’s
National Defense Research Institute (NDRI), a federally funded research and
development center sponsored by the Office of the Secretary of Defense and the
Joint Staff. It is one of a trilogy of papers working through simple examples to
illustrate deeper issues that arise in variable-resolution modeling. This report
describes theoretical results regarding aggregation and disaggregation in combat
models. The other papers are Paul Davis, An Introduction to Variable-Resolution
Modeling and Cross-Resolution Model Connection, R-4252-DARPA, 1993, and
Richard J. Hillestad, John Owen, and Donald Blumenthal, Experiments in Variable-
Resolution Combat Modeling, N-3631-ARPA, forthcoming. Initial versions of all
three papers were presented at a conference on variable-resolution modeling
organized by RAND and the University of Arizona and sponsored by ARPA and
the Defense Modeling and Simulation Office in May 1992.
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Summary

Most models of air and land combat use schemes of aggregation and
disaggregation in representing combat systems, in spatial configuration, and in
depicting the progress of a battle. For example, the use of firepower “scores” is
an extreme case of aggregation of weapons into a single measure. Combining
like systems into weapons categories—partial aggregation—is a common
approach to representing a large number of aircraft or ground weapon types.
This report explores different approaches to aggregation and what is known
theoretically about aggregation and disaggregation in Lanchester combat models
that in two dimensions are commonly called square-law models. It defines
requirements for consistency between aggregate and higher-dimensioned models
of this type. Some important conclusions are that aggregation should take into
account the specific capabilities of the opponent (raising concern about many
“scored” approaches that attempt to evaluate force components in isolation), and
that partial aggregation (grouping “like” systems) and disaggregation of
previously aggregated results can be done consistently only when certain
restrictions on the relative attrition capabilities of weapon systems hold. When
this is the case, specific nonarbitrary weightings can be determined for the partial

aggregations.
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1. Introduction

A common problem among military strategists and analysts is that of estimating
the “strength” of a military unit. Such an estimate is needed to judge the success
of operations, to compare the military forces of allies and opponents, and to
determine “how much is enough” in defense budgeting. Yet military forces are
composed of many distinct types of weapons and capabilities. Furthermore,
success in battle is a function of many factors, including training, tactics, morale,
terrain, command and control, etc. Ultimately a strength assessment is made on
the basis of a score, that is, an aggregation of the force values into a single
measure. Clearly, military experience and training permit some commanders to
make good assessments of strength. But such estimates are nearly always highly
situation-dependent, and are possible only if the commander has the required

experience base.

When analysts evaluate new and perhaps undeveloped capabilities against
possible threat forces, often they are forced to create an aggregate estimate of the
strength of these forces. Thus, a fundamental problem of military analysis is how
to aggregate or “score” a military force. Usually the weights come from what is
considered experience, judgment, perhaps engineering or proving-ground tests,
etc.

Aggregation is required for other reasons as well. Historical data are often
available in less detail than might be desired; overall losses rather than losses of
specific weapons systems may be all that is known, and certainly the exact causes
of loss are usually unknown or unrecorded. Comprehension and understanding
are frequently better served by more aggregate descriptions (the “forest versus
trees” argument). Finally, analysis may require more efficient computation than
is available with detailed battle simulations.

In general, the ability to aggregate and disaggregate combat forces and their
processes is necessary and desirable—yet little theory and science underlie most
approaches taken in this regard.! Aggregation in linear dynamical systems has
been a topic of interest, e.g., in economics as well as ir combat simulations, for

15ee P. K. Davis and D. Blumenthal, The Base of Sand Problem: A White Paper on the State of
Military Combat Modeling, RAND, N-3148-OSD/DARPA, 1991.




some time.2 But the typical focus has been on nearly decomposable systems or
weakly coupled systems that may be amenable to approximated methods for
solution wherein the system is partitioned into smaller subsystems for individual
treatment followed by a reassembly for solution of the given system.> However,
the current authors are unaware of a systematic treatment of the conditions
necessary to effect a consistent aggregation in the sense defined here. Combat
models exhibit numerous approaches, but most are ad hoc. This report examines
some of these approaches, illustrates some of the problems, and then attempts to
describe what is known and possible in a theoretical sense for basic square-law
Lanchester systems in dimensions higher than two.

The report is organized to first illustrate some common approaches used in
aggregation or scoring, particularly in military conflict simulation models. Then,
it shows some of the problems with these approaches. Finally, using Lanchester
theory as a basis, it describes the requirements for theoretically “consistent”
aggregation, disaggregation, and partial aggregation. An appendix provides the
theorems and other mathematical considerations underlying the results in the
main body of the text.

2H. A. Simon and A. Ando, “Aggregation of Variables in Dynamic Systems,” Econometrica,
Vol. 29, pp. 111-138 (mintedin A. Ando, F. M. Fisher, and H. A. Simon, Essays on the Structure of
Social Science Models, Press, Cambridge, Massachusetts, 1963, pp. 64-91).

3G. Kron, “Solving Highly Complex Elastic Structures in Easy Stages,” Journal of Applied
Mechanics, Vol. 22, 1955, pp. 235-244.




2. Common Approaches to Aggregation
and Disaggregation

Consider a military force composed of multiple types of weapons with different
capabilities—the “combined arms” army, for example. Each weapon type and
supporting system is important to prevent weakness (armor without infantry, for
example), or because of dependencies (artillery requires adequate fire control), or
to provide synergism in battle (rolling artillery barrages to reduce the defender
advantage as attacking armor moves into range). Yet these weaknesses,
dependencies, and synergisms are influenced by terrain, opponent capability,
and tactics to be employed. How can one aggregate or score such a situation-
dependent process?

The simplest form of aggregation involves assigning a value to each weapon
type, multiplying by the number of each type and adding these values to obtain a
force score or total aggregation. This is the approach taken by the WEI/WUV
method,! which, although once used widely, is not currently favored by the US.
Army as an approach to modeling. Nevertheless it is still used in various models
and academic debates.2 Some uses of scoring have gone further. For example,
scores have sometimes been disaggregated and the results used to estimate the
losses of individual weapons systems or weapon categories, and the ratios of
force scores have been used to predict movement of forces in combat.> Almost
all evaluations of military capability in models or exercises use some form of
aggregation because the number of different systems is too large to consider
directly.# The number of different systems in a typical mechanized army division
may be 25 or more. Thus, partial aggregation of similar systems is a common
approach. The subject of this report is what can be said about the theoretical
“correctness” of these various approaches to aggregation and disaggregation.

We first take up the issue of total aggregation.

YWeapon Effectiveness Indices/Weighted Unit Values 11l (WEI/WUV III), U.S. Army Concepts
Analysis Agency, November 1979.

2Forexample,somemodelsusedhthepublicdebateonconvmﬁonllmconholin&nope
and to estimate outcomes prior to the Desert Storm operations used scored forces. See J. Bracken,
“Stability of Ground and Air Forces Without and With a Buffer,” Phalanx, Vol. 24, No. 2, June 1991.

3B. W. Benmett, C. Jones, A. Bullock, and P. Davis, Main Theater Warfare Modeling in the RAND
Strategy Assessment System (3.0), RAND, N-2743-NA, 1988.

Toid.




3. Aggregation to Scalars: Scoring

Scores or strength estimates have been necessary from the beginning of
organized combat. Initially, with largely homogeneous forces, such a score could
be based on the quantity of personnel available and an estimate of individual
strength. Even then, the number that could engage at any one time was
important, and tactics and terrain could allow a smaller force to defeat a larger
one. As forces became more heterogeneous it was necessary to give a relative
evaluation of various components. The Soviets carried this to a scientific extreme
with the “Correlation of Forces” methodology,! which attempted to predict the
success of operations by evaluating force scores against time, position, and
attrition objectives. A U.S. counterpart to this approach is the “Quantified
Judgment Model” of Colonel T. N. Dupuy,? which evaluates the outcome of
battles based on a force score that is situation dependent and draws cata from
historical battles. The WEI/WUYV scoring approach estimates strength in terms
of division equivalents, and a more recent approach called “Situation Adjusted
Scores”? attempts to estimate force strength with more attention to the situations
of combat. Various models attempt to use these force aggregations for purposes
of predicting campaign outcomes in terms of attrition, force movement, and
battlefield success.4

A number of problems arise in attempting to score complex military forces. First,
the value of a force should depend strongly on the opponent and situation. A
technically sophisticated armored force may not be of great military value in low-
intensity urban or jungle conflict; advanced armored forces may be sitting ducks
for an uncontested air force. The situation and opponent aspects of scoring may
have been implicit during the Cold War, when the opponent was assumed to be
the Soviets and the Warsaw Pact in Central Europe. But when the opposition
could be any of a number of possible enemies with widely varying capability,
one scenario’s aggregations would seem to be inappropriate for many others.
Clearly, Soviet . ."ks in the hands of Iraqi soldiers during the recent Gulf War did

15, Hines, “Calculating War, Calculating Peace: Soviet Military Determinants of Sufficiency in
Euroge,"in Reiner Huber (ed.), Militery Stability, nomos Verlagsgesellschaft, Baden-Baden, 1990.
3‘!‘. N. Dupuy, Understanding Wer, Paragon House Publishers, New York, 1987.
P. Allen, Situstional Force Scoring: Accounting for Combined Arms Effects in Aggregate Combat
Models, RAND, N-3423-NA, 1992.
‘See,foremple.ﬂnRSASdeaa?::imrdameedabove,or]odmaM.Eps&ein‘"l‘heS:l Rule,
the Adaptive Dynamic Mode), and the Future of Security Studies,” International Security, Spring 1989.




not have the lethality (score) that they might have had if operated by trained
Soviet or East German soldiers.

Another problem is that determination of scores by subjective judgment has been
unscientific to say the least. Experts, when called upon, must draw on
experience. But the experience Lase is limited either to specific contrived
exercises that cannot be expected to represent warfare realistically, or to
historical experience with known weapons and situations. If experts are to
evaluate proposed or experimental weapon systems or new situations and
opponents, they must do it with guesswork.

As if the aggregation of a combined arms force were not difficult enough, it is
even harder to use the aggregation to predict more than the likelihood of a single
battle outcome. This requires a prediction of movement of forces in combat and,
in order to predict the next battle, the composition of forces surviving. This
means that the attrition results of earlier battles must be disaggregated. In
mathematical parlance, this is a one-to nany mapping, and it simply cannot be
done uniquely without additional information. Given a 10 percent attrition of an
aggregated force, what components of the force survive? Should the losses be
distributed evenly according to number of systems, or should they be distributed
by relative vulnerability, relative lethality, or what? The following examples
illustrate some of the problems with aggregation to scores and disaggregation.

Air/Ground Tradeoffs Using Scores

The first example is a simplification of a serious debate that took place during the
development of NATO’s conventional arms control position in the late 1980s.5

The basic question was whether tactical aircraft helped or hindered stability in
the central region conventional-force balance. It is assumed that defensive
predominance is good and attacker predominance bad from the standpoint of
stability. Let A be the attacker ground force score and D be the defender
ground force score. The ground force ratio is then FR = A/D. In one analysis,
the air forces are added and considered to be killers of ground forces, and
therefore they reduce the number of ground weapons and resulting scores.
Assuming equal air forces for both attacker and defender, the forces removed by
air attacks from each side is 4. The resulting force ratio is then

_(A-a)

FR = (D -a)’

S5Bracken, op. cit. See also the comments following Bracken’s article in the same journal.




which favors the attacker under the doctrinal assumption that, as the attacker
requires the greater force, we have A > D .6 In this evaluation the air forces are
considered to be destabilizing, as they permit the attacker to gain more of an
advantage.

In a countervailing evaluation, the air forces are added and are considered to add
firepower to each side. Thus, again assuming equal air forces, the firepower
added is b to each side. The resulting force ratio is then

(A+b)

FR="D+b)

which favors the defender under the same assumption that A > D, and in this
evaluation tactical aircraft could be seen to be stabilizing. A similar paradox is
easily developed for helicopters, long-range ground fires, etc. The important
point is that the use of aggregation (of air power to ground forces) has somehow
eliminated information that might be necessary in the evaluation of airpower and
stability.

Disaggregation of Scored Results

There are two commonly used approaches to disaggregation in combat models.
The simplest approach apportions the losses of individual weapon systems based
on the initial proportion of the systems of each type. This means that a 10
percent loss in aggregated score causes a 10 percent loss in the quantity of each
type of system. This type of disaggregation is illustrated in the left curve in
Figure 1, which is based on a square-law Lanchester attrition calculation
described in the next section. Note that this type of disaggregation keeps the
proportion of weapons constant in time. On the right side of Figure 1 the
disaggregation has been done in proportion to the relative weight of the
particular weapon used to create the score. That is, let w; and w; be the weights
(“scores”) of two weapon systems and let N(t) and Ny(t) be the number of those
systems at time ¢. The score of this two-weapon unit is

S(t) = w,Nl(t)+ W2N2(t).

Let the losses of this scored unit in an interval df be denoted by dS, and let these
losses be computed by the same Lanchester square law. In this type of
disaggregation, the fractional losses of systems 1 and 2 in the interval dt are
computed to be

6We assume that A > D, otherwise the potential attacker would probabiy not attack.




le = Wy ds
Ni(t) w +w, 5(t)

dN: = Wy ds
Ny(t)  w, +w, S(t)°

After extracting these losses for the interval, the system is rescored and the
Lanchester square law attrition is recomputed for the next time interval. This
results in a disproportionate drawdown and, of course, a different overall
solution. The weaker component of the forces takes a proportionately larger
amount of the loss as time advances. Either case could occur. Without
additional information about tactics, how fire was allocated, etc., it is not possible
to say which, if either, is correct. This is an illustration of the one-to-many
mapping problems that are prevalent in attempts to disaggregate results in
combat models. When these results are used in scoring the forces in the next
stage of battle, the predicted campaign outcomes can be dramatically different
depending on the approach taken.

BAND AT 7O1-0083

Surviving Weapons:
Disaggregation by Score

Number of weapons
Number of weapons

Figure 1—Alternative Disaggregations of Scored Combat




4. Theor:tical Results on Aggregation and
Disaggregation

Some important questions about aggregation and disaggregation are: How does
an aggregation of a system relate to its more detailed representation? Given
consistency requirements between two representations at different resolution, is
there a “correct” way to aggregate? When is a consistent partial aggregation
possible? When can aggregated combat results be disaggregated?

It is necessary to define the notion of consistency first. Figure 2 demonstrates the
consistency between two models as defined in terms of the model output
measures. Atany time of interest the analyst should be able to compare the
outputs of two models, and after an appropriate “mapping,” the outputs should
match within some small amount. The mapping is required because the analyst
may be interested only in some aggregated outputs, and on the other hand, the
outputs of one model may need to be converted into the similar measures
produced by the other model. The differences between the outputs, because they
represent a vector, must be measured in terms of a scalar norm of the ..  2rences.
If this norm is small, then the models can be considered to have epsilon
consistency with respect to the measures at the times of interest.

Figure 3 illustrates a slightly simpler representation of consistency. In this case
we desire absolute consistency (€ = 0) between an aggregated model and a more

RAMD #217-02-0203
{ X (0) > Model A X (£ Y *
Map A Map A
|
Z(0) Z(t)
£(0) =11Z(0) ~ Z'(OM e(t)y=11Z(t)~Z'(t)}
» The models have consistency when
Z'iO) €(t) is “small enough” for ali tot Z'it)
interest.
Map B Map B
* Y (0) > Model B Y (t ) }

Figure 2—Consistency in Dynamic Models




Model A
X(0) w——ly (Detalied) e X (t)
Map A Map A

(Aggregation) (Aggregation)

‘ Model B > |
#
Y () (Aggregate) Y

Figure 3—Absolute Consistency in Aggregation

detailed model. The mapping goes only one way—the outputs of the detailed
model are aggregated to match the aggregate model. When this mapping can be
done with the same mapping or aggregation functions at all times and the
outputs match exactly, then we say the two representations have absolute
consistency and are commutative. We now ask, under what conditions can we
aggregate Lanchester square-law combat models partially and completely and
maintain absolute consistency?

Because the constant-coefficient, heterogeneous Lanchester square-law! models
lead to a system of linear differential equations, it is possible to derive and state
strict theoretical results with respect to aggregation and disaggregation.? The
square-law Lanchester system is described by the pair of vector differential
equations

dX(t)

— = —AY (1)

ISee J. G. Taylor, Force-on-Force Modeling, Military Operations Research Society of America,

Arli:?mVA,lm
ltisdettlutconintdoesnots(ﬂcﬂyﬁilowalmmhswrsqumhw,butmdqmuhgh
requirements for aggregation and disaggregation of this “ideal” system is an important first step to
mdmﬂngwitndgllhmmmecmwlexmoddgny,pmdblymmwwdby
nonlinear differential equations that may be equivalent to higher-order linear ones, as one-
dimensional and some higher-dimensional Riccati equations are. This matter requires further study.
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dy “’ e _pxw,

where X = [X,, X;,..., X, Jand Y =[Y,,Y,,..., Y, ] are the vectors of side X
and side Y weapons systems. A =[Ay] and B = [B,] are the Lanchester
coefficient matrices defining the rate at which Y systems destroy X systems and
vice versa, respectively.

An aggregation of this system is a reduced-dimension system

dU(t) ) _ _cyey

dv(t)
T:-DU(t),
where U(t) and V(t) are aggregations of X and Y such that U= RXand V = SY.
The vectors U and V are of length r and s which are less than m and 7 (otherwise,
U and V would not be aggregations, according to our definition). R and S are
aggregation mappings (matrices) which are nonnegative (it’s not clear what
negative weights of weapons systems would imply). Thus, if R is a matrix of
dimension 1 x #, then the resulting U is a scalar. If R is 2 x n, then the vector of
X systems is reduced to two aggregate components that comprise U. It is not
necessary that X and Y or U and V have the same dimensions. U mightbe a
scalar in the aggregated system and V a vector of systems.

Consistent Scalar Aggregation

Consider the case in which the aggregation matrices R and S are vectors and
therefore map X and Y to scalars. This, in effect, weights the components for X
and Y into scalar “scores” for the two sides. Results from linear algebra and
systems theory dictate the requirements on R and S such that consistency
between the resulting models is achieved. By consistency we mean that the
result obtained from aggregating the solution of the unaggregated differential
equation system is the same as the solution of the system of aggregated
differential equations; i.e., in mathematical parlance, the operations of differential
equation system solving and aggregation commute. We state the results here
and provide the mathematical propositions and their proofs in the appendix.




1

First, the eigenvalues of the product matrices AB and BA are desired to
characterize the time response of the systems. That is, the time response for X
and Y is the solution of the system of differential equations as a function of time,
subject, of course, to initial conditions X(0) = X,.Y{0) = Yy,

X(t) F(AB) -G(AB)A][X,
Y(t)| = |-G(BA)B F(BA) ||Y, ]’

where

F(z)= 3 142* / 2k

k=0

G(z) = 2:’**‘:‘ /(2k +1)!,

k=0

both analytic functions over the finite complex plane and recognizable as
cosh(tz) and (sinh(yz)) / Vz respectively. Now, if we replace AB and BA
by similarity transformations on their respective Jordan forms,

AB = WAW™! and BA=12Zrz7,

where the diagonal of A contains the eigenvalues of AB and the diagonal of I
contains the eigenvalues of BA, we have a more computationally palatable form:

[xm] WF(AW™'  -WG(AWA|[ X,
Y(t) -ZG(T)Z'B  ZF(T)Z? Y |-

Fact. The matrices AB and BA are nonnegative matrices with nonnull columns and
nonnull rows and, consequently, have maximal positive eigenvalues and corresponding
nonnegative left eigenvectors whose components are the weights that yield commutative
or consistent scalar aggregations of X and Y 3

3The reason the product matrices, AB and BA, are important is seen by differentiating the
.qmﬂmludX(l)/lt This gives d2X(1)/dt2= -AdY(t)/ &t sABX(t), with a similar argument for BA.
solutions depend on AB and BA, rather than on A and B separately.
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It is best to give an example of such an aggregation. Table 1 illustrates a
consistent aggregation for a 2 x 2 Lanchester system reduced to a single
component on each side. The original A and B matrices are shown at the upper
left; possible C and D matrices (scalars in this case) are shown with the weights
derived from the eigenvectors. There are two sets of weights because there are
two possible eigenvalues and associated vectors.* The left part of the table
shows the direct integration of the heterogeneous system in X and Y as a function
of time; the columns labeled “weighted” are obtained by weighting the timewise
values of X and Y. The columns labeled “integrated” u(t) and (t) are obtained
by using the R and S obtained with the left eigenvalues and integrating initial
values u(0) and (0). The fact that these match at each time ¢ shows the
consistency of the aggregation. The columns labeled “ur(t)” and “vr(t)”
demonstrate that consistency is also achieved with weights based on the other
(right) eigenvectors.’

Consider what has been lost by the aggregations when one chooses such a
consistent set of weights. The two-dimensional Lanchester system in Table 1 has
only positive components on the diagonals. These are actually the equations for
two separate battles. X; shoots at Y, and Y;shoots at X;. X; shoots at Y,and Y,
shoots at Xj, but there are no shots between X; and Y, X; and Y;, or vice versa.
As a result of the preceding, we have that the consistent aggregations weight the
components of X with R = [0 1] or R =[1 0] and, similarly, S ={01}or S =(10).
Thus, either one battle or the other can be represented in a consistent
aggregation, and there is no consistent aggregation for an “average” battle
incorporating components of both.¢ The columns labeled “uu” and “vv”
represent an attempt to approximate an average battle by averaging the weights.
Comparison of the columns labeled “weighted” with those labeled “integrated”
indicates that consistency has not been maintained in this attempt.

The point of this example is to show that something is lost in an aggregation,
namely some aspect of the response of the detailed system. And as the
illustration shows, the components left off may be important (in this case, the
other battle). Figure 4 illustrates this example, showing the aggregated response

4Consistery applies only as long as no force components become negative. When thislupﬁiau
the original systems and aggregations must be changed, as negative weapons have o meaning.
the original systems, one simply deletes those components of X or of Y that go to zero and the

ing rows and columns in A and B and proceeds with the reduced system of equations
with, of course, new aggregation operators Rand S.

is an optional scale factor that can also be applied to change the overall magnitude of the
aggregated u and v components.

5msmnbem\derstoodinhﬁtivelybycmddeﬁngu\efad that the different components will

generally attrite at different rates, leading to a continuously changing mix of systems.
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matching the X, Y, components with one set of weights and matching the X, Y,
components with the other set.

Partial Aggregation and Disaggregation of Lanchester Systems

It is common to group systems by type in a combat model and create an
aggregated weapon type for exch such grouping. Fighter aircraft of similar
capabilities might be grouped into equivalent fighter systems, or all tanks might
be aggregated into an “equivalent” tank. This implies a partial aggregation of the
system and, in terms of the earlier described aggregation mappings, we define R
to have the canonical form

SR | (TR 0}
R (USSR | ( o |
[0u et eeeeeeeeeee e eeeeeeeeeen ol p |

where each P is a nonnull vector of nonnegative weights on specific components
of X. We rule out aggregation of a component into two different aggregate
components, although it could be treated; but the treatment in what follows,
particularly in the appendix, would be laborious in its details and not likely to be
illuminating.

RAND 21 7-04-0209
Scalar Aggregation (1st eigenvalue) Scalar Aggregation (2nd eigenvaiue)

Figure 4—Consistent Scalar Aggregation Alternatives
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For the heterogeneous Lanchester system, we can state the following two facts
about the ability to do this and maintain consistency between the two models.
These results are established in the appendix.

Fact 1 (Partial Aggregation). One cannot generally partially aggregate a square-law
Lanchester system so that U and V are vectors and consistency is maintained without
applying additional restrictive conditions on the matrices A and B.

Fact 2 (Disaggregation). It is not generally possible to disaggregate a previously
aggregated system and obtain a system consistent with the original disaggregated system
without additional restrictive conditions on the matrices A and B.

The condition required to partially aggregate or disaggregate a square-law
Lanchester system is that there is a constant relative effectiveness or vulnerability
between the various components of X and Y. For example, the following is
shown in the appendix.

Fact 3 (Partial Aggregation). Partial aggregation is possible (consistency maintained)

when there is a constant proportionality in the effects of some of the weapons of a side
with respect to all of the weapons of the other side.

For example, if weapon 1 of side 1 is twice as effective as weapon 2 of the same
side against all systems (components of Y), then weapon 1 and weapon 2 can be
aggregated into a single representative weapon and this aggregated model will
correctly predict the square-law attrition of each component of Y. This partially
aggregated system model is consistent with the nonaggregated model if the
weighting of the two weapons is proportional to their relative effectiveness.

Figure 5 illustrates this case, in which components x, and x, have been
aggregated while x,, y,, ¥, and y, remain disaggregated. The trajectories of the
components of Y remain the same regardless of whether the aggregated or
disaggregated X is used in the equations.

This condition is not enough to be able to restore X from its aggregated state at
some later time, however. This is because the system may have differential
attrition of the components of X (x; and x; in the example) so that the number of
surviving elements varies over time. Once aggregated, without additional
information there is no way to turn U back into x; and x,. What is a condition
that would permit this? In the appendix we show the following is true.

Fact 4 (Disaggregation). If, in addition to the previously stated relative effectiveness of
two or more systems, the same systems also have a proportionality in vulnerability that is
constant with respect to all systems of the opponent, then it is possible to aggregate these




16

Partial Aggregation (x; is .5 as effective as x,)
U‘8X‘+.512

1.20

Figure 5—An Example of Partial Aggregation

systems consistently and at any point in time disaggregate the aggregated system back to
the original more detailed model.

In other words, if we can say that weapon 1 is twice as effective against all
weapons as weapon 2 and that weapon 1 is, say, one-third as vulnerable as
weapon 2 to all opposing systems, then the detailed model can be partially
aggregated and later disaggregated while satisfying the consistency requirement.

These are the conditions under which the scoring of weapons and later
disaggregation of those scores make the most sense, since the aggregated values
can be used without any loss of information. The information needed to restore
the system is in the knowledge about relative effectiveness and vulnerability. As
a final example, consider the three-component model shown in Table 2. The
columns of the table show the consistency between the aggregation of the first
two components of a three-dimensional example (three weapon systems) and the
original system. The table also shows the reconstruction of the original system
from the aggregated components (possible only because the respective
components in the differential equations are linearly related). Note that
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consistency is achieved until ¢ = 1.6, at which time x, goes to zero. At this point
the original Lanchester system must be reduced to leave out x; and all
aggregations recalculated to maintain consistency. In this example we stopped
the calculations at this point.
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5. Conclusions

We have shown that aggregation and disaggregation should be performed
carefully in models of combat if consistency is to be preserved; but it can be done,
provided that the attrition matrices satisfy certain additional reasonable
conditions when the aggregations are not to be total. Although we do not
suggest that the Lanchester square law is a realistic depiction of actual conflict,
the fact that, even for this linear system of equations, consistent aggregation and
disaggregation cannot be done without severe restrictions on the attrition
matrices A and B implies that ad hoc approaches to varying resolution may not
lead to consistent models. The aggregation weights cannot be arbitrary. Once
the attrition matrices A and B are specified, the aggregation weights, when
consistent aggregation is possible, are dictated by mathematical considerations,
as we show in the appendix.

Clearly, the absence of general conditions of the type shown here for more

complex models implies that empirical tests comparing models of different
resolution should be made before conclusions can be drawn regarding the

goodness of an aggregation.

We do not mean to argue that detailed models are always better. Often the
aggregate results of combat (overall losses and advances of front lines) are
known from history, but the details of specific forces, conditions, tactics,
effectiveness, fire allocation, and so forth are missing. This means that an
aggregate model can be tested or fit to the data, but an attempt to extrapolate to
detailed losses is highly subjective. Thus, the most correct model based on
empirical data could very well be the aggregate, low-resolution one. On the
other hand, the frequent absence of any empirical data on how forces or weapons
might fare in battle has often forced analysts to build models in high detail in
hopes that engineering test data can be extrapolated to combat outcomes.
Frequently, however, this approach amounts to compounding assumption upon
assumption regarding interactions in conflict—assumptions that are completely
subjective.

The material in this research sheds very little light on this problem. It does
suggest, as noted earlier, that aggregation and disaggregation cannot be done
arbitrarily and that fairly strong requirements are necessary to obtain consistent
high- and low-resolution models.




Further research in this area should examine when models and aggregations can
be made partially consistent. That is, suppose the conditions for aggregations
and disaggregations stated in this report are approximately satisfied. What does
this imply for how far apart the aggregate solution of the unaggregated
differential equations is from the solution of the aggregated differential equations
as time advances?

Another area of investigation to consider is the possibility of extending this
research to Lanchester models with nonlinear differential equation formulations
that may be equivalent to higher-order linear ones as, for example, certain
higher-dimensional Riccati differential equation systems with special structure
are.




Appendix
MATHEMATICAL CONSIDERATIONS

Preliminaries

We consider here a rather sharply defined Lanchester system model of
continuous combat between two opposing forces whose resources fall into
different classes or types, e.g., tanks of one or more types, missile launchers,
personnel vehicles, howitzers, helicopters, troops of different types, etc. The
numbers of each resource type form the different components of a strictly
positive m x 1 vector X for one side and of a strictly positive n x 1 vector Y for the
other side.

The model assumes that the state of the battle at a time ¢ > 0 is represented by the
pair (X, Y), which are obtained as the solutions of the system of ordinary
equations mentioned earlier:

X __ay, X(0)=X, >0

dY
— , - Y ,
&t BX, Y(0) s >0

where A:m xn and B: n xm are the nonnegative attrition matrices. The
elements a; of A represent the time rate of attrition of the ith resource x; by one
unit of the jth resource y; of the opponent. The elements b;; of B are similarly
defined with x and y interchanged.

We note that the components of the vectors, X and Y, in the solution of equation
(1) are monotone-decreasing functions of time. When any component, or
components, of these vectors reaches zero, we consider the time duration of this
system, but not necessarily the battle, to be terminated. A new system, if the
battle is to continue, is created, with its dimensions reduced by the number of
components that have reached zero; these components and those rows and
columns of the matrices that are associated with them are removed.

The new system is still a Lanchester system with the same generic form and
properties the system (1) has, with initial conditions for the positive vectors being
the respective values they attained at the end of the previous time period.




Although the same battle continues, we simply consider it as continuing under a
new system, new only in the sense that its dimensions have been reduced and its
initial conditions changed.

This process of “culling” the system of variables and associated rows and
columns in the attrition matrices (that could, if not culled, lead to the absurdity of
negative numbers of resources) can be continued so long as there are positive
components left on each side, or stopped earlier if it is deemed that the battle is
over.

We further make a reasonable assumption of choice that each resource on either
side has some attriting effect on at least one resource of the opponent, and each
resource on either side is vulnerable to attriting effects of at least one resource on
the opponent’s side. Thus, not only are A and B matrices of nonnegative
components, we require also that they have no completely null column and no
completely null row. This property of no null columns and no null rows in the
attrition matrices, with their nonnegativity, is sufficient for their respective
products to satisfy the hypotheses of one or the other of the Perron-Frobenius
theorems on the existence of a maximal positive eigenvalue and corresponding
positive or nonnegative eigenvector for nonnegative matrices that we will use
later on.! (Of course, one can easily conceive of resources with value that is not
of an attriting nature, e.g., petroleum supplies, or with an invulnerable nature,
e.g., aircraft against an enemy with no air defenses; and one can deal with such
cases. However, for some mathematical convenience later, namely, to avoid the
potential for zero Perron eigenvalues and concomitant complications, we exclude
these cases by our assumptions above.)

As is to be expected from the general theory for systems such as (1), its solution is
an analytic vector function of the initial condition vectors. We define

_ hod tlek B d tzhﬂzk
p(z)-zm and G(z)',ga_mu)! . )

Then, we have for the solution of (1)

)-[oee we) e

ISee, e.g., chapter 2 of R. S. Varga, Matrix Iterative Analysis, Prentice Hall Inc., Englewood Cliffs,
N.J., 1962.




for as long as no component of the solution vector becomes negative. Forz = AB
or for z = BA, computing a solution in the form (3) can be laborious;
consequently, employing the similarity transformations,

AB=WAW' and BA=2Zrz?!,
we have a much more computationally tractable form:

[x(u]== WF(AW™  -WG(AWA]| [X,
Y(t)|”|-2zG(r)z'B  ZFK(T)Z?! Yo)’

where the diagonals of the Jordan canonical form matrices (even possibly
diagonal), A and T, contain the eigenvalues of AB and BA, respectively.

However, it may be that the dimensionality of the problem is still too high, either
for computational reasons or, more importantly, because the detail is too fine for
understanding the progress of the battle at various levels of generality or
resolution. Thus, to relieve these objections to the size of the dimensionality of
the original problem, one frequently employs weighted linear aggregations of the
resources on either side, either into a single scalar value for each side (total
aggregation) or into smaller numbers of groups of resources than the original
numbers (partial aggregation) or, perhaps, even total scalar aggregation on one
side and no aggregation on the other (unilateral aggregation). Having presented
some illustrative examples earlier, our purpose here is to examine
mathematically some aspects of aggregation and conditions for potential
disaggregation.

We define linear dimension-reducing aggregation operators, Rand S, tober xm
and s x 71 nonnegative matrices, respectively, with r and s strictly less than m and
n, respectively, such that

U=RX and V=8Y 4)

form a reduced-dimension Lanchester system in the above-defined sense. Thus,
we have a system of ordinary differential equations for U and V of similar form
to(l)forXand Y:

dugt) _

== ~CV(1), U(0) = Uy >0,
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-‘-’-V-E:-'l = -DU(t), V(0) = V, >0, ®)
where C and D are new r x s and s X 7 nonnegative attrition matrices,
respectively, with the same properties of having nonnull rows and nonnull
columns as A and B.

The solution to the reduced-dimension aggregated Lanchester system (5) is of
exactly the same form as the solution (3) of (1), namely,

1563]- [ 68 4] (%] o

The »ggregation operators R and S appearing in (4) are defined to be in canonical
form if they are in the forms illustrated below:

S (/USSR 0]
R [ (R 1) G S | (1 JOO OO 0] -
(SN 0l p 1]
and
[ 07 MO 0]
= [o....... (1) I S P (1 OOt 0] ’ ®)
(T of o, 1}

where the row vectors p;,i = 1,...r and 6, i = i,....s are nonnull and nonnegative
and are of respective dimensions m; and n;. For convenience, we shall consider
aggregation operators in the above canonical forms (7) and (8). (Conceivably one
could presume aggregations that allow a resource to be in two or more aggregate
groups; but because of the additional complexity of details in their treatment, we
conveniently refrain from examining such cases.)

A central desideratum for aggregation operators, one that makes for a sense of
consistency, is that the operations of differential equation solving and
aggregation commute. That is, the result obtained by first solving the ordinary




differential equation system (1) to obtain the solutions given by (3), or of any
other equivalent form, and then applying the dimension-reducing aggregation
operators, R and S, to the solutions is identical to the result of first applying the
operators, R and S, to the differential equations (1) to get the differential equation
system (5) in U and V and then solving this system (5) to get the reduced-
dimension result (6).

In the following sections we shall be concerned with presenting conditions on A,
B,R, S, C, and D that will produce the desired commutativity in the different
situations of total (scalar) and partial aggregation; verification that the matrices
AB and BA satisfy the hypotheses of one or the other of the Perron-Frobenius
theorems mentioned below, which are useful in determining R and S that
preserve the desired commutativity; and conditions for the inversion of

aggregation, i.e., disaggregation.

General Conditions for the Preservation of Lanchester
System Property and Commutativity of Aggregation
and Differential Equation Solving

Theorem 1. If aggregation operators R, r x m, and S, s x n, and nonnegative matrices
C and D of compatible dimensions exist such that

RA=CS and SB=DR, 9)

then U and V defined by (4) will produce a Lanchester system (5) from the Lanchester
system (1). Moreover, with compatible initial conditions, the solution (6) of (4) will be
identical to the pair, (RX, SY), where (X, Y) is the solution (3) of (1).

Proof. Let X and Y satisfy a Lanchester system of differential equations (1).
Suppose that nonnegative R, S, C, and D exist such that (9) holds. Then we have

au _ pdX _ _RAY = —CSY = —CV
dt dt

and
4V _ 4 _ X - _DRX = -DV.
at o dt




Hence, with positive initial values, Uy and V), for Uand V, respectively, U and V
form a Lanchester system pair as in (5).

Now, consider any analytic function, {z) (particularly F(z) and G(z) defined in
(2)), representable by an absolutely convergent power series in z in some disk of
the complex plane with a radius exceeding the spectral radii of AB, BA, CD, and
DC (those of AB and BA are equal, as are those of CD and DC). Then, applying
the associative law for matrices successively, we have that the relations (9) imply
that R(AB) = C(SB) = (CD)R, S(BA) = (DC)S, R(AB) =(CD}R, S(BA)=(DC)'S,
and, finally,

RAAB)=fICD)R  and  SABA)=fDC)S . (10)

Let the U and V satisfy (5) with initial values of Uy = RX and Vo = SY,,
respectively. Then, applying Rto X, S to Y, and (10) with f replaced by F and G
as defined in (2) in the solution (3) to equation (1) completes the proof of the
theorem. Q.E.D.

Bilateral Total (Scalar) Aggregation

In this section, we are concerned with defining the row vectors R and S which
totally aggregate X and Y down to scalars and, consequently, make U, V, C, and
D positive scalars. We will make use here of the two Perron-Frobenius
theorems:?

(i) Let M bea nonneguative, irreducible square matrix. Then it has a positive eigenvalue
(called the Perron eigemvalue) that is simple and is not exceeded by the absolute value
of any of its other eigenvalues. Furthermore, corresponding to this eigenvalue is a
positive eigenvector (left eigenrow or right eigencolumn).

(ii) Let M be a nonnegative, reducible, square matrix, but for which there exists no
permutation matrix, P, such that PMPT is q strictly upper triangular matrix. (The
superscript T denotes transpose.) Then it has a positive eigenvalue that is equal to
its spectral radius and a corresponding nonnegative, nonnull left eigenrow and right
eigencolumn.

(A square matrix, M, is reducible if there exists a permutation matrix, P, (i.e, a

square matrix whose only nonzero elements are a single 1 in each row and in
each column) such that

Mhid.




r _{Ny N},
pM.P =[o NS]

where N) and N; are square matrices and 0 is a null matrix; M is irreducible if no
such permutation matrix exists. A square matrix is strictly upper triangular if all
of its elements are zero except those strictly above the main diagonal, which are

unrestricted.)

Theorem 2. If no row or column of either of the nonnegative matrices A or B is a mull
vector, then there exist no permutations, P or Q, such that either AB = PABPT or BA =
QBAQY is similar to a strictly upper triangular matrix.

(Hence, AB and BA, being nonnegative, also satisfy the hypotheses of one or the
other of the Perron-Frobenius theorems, depending on whether they are
irreducible or reducible.)

Proof. For the sake of a contradiction later, let us assume that, by permuting the
rows and columns of AB (via the same permutation), AB is transformed into a
strictly upper triangular matrix. Then this strictly triangular matrix has a null
first column and a null last row. Let the column of AB that becomes the first
column under the permutation be the jth column for a particular j. Let K be that
set of integers k such that b; > 0 whenever i = k. K is not empty, by the
hypothesis of the theorem. Since aaby; must equal zero for every i = 1,...,m and

k = 1,...m (AB being m x m), the kth columns of A must be null whenever kis in K,
contrary to the hypotheses of the theorem.

Similarly, let the row of AB that becomes the last under the permutation be the
ith for a particular i. Anew, let K be that set of integers k such thata;> 0
whenever j = k. Arguing similarly to the above, we must have that the kth rows
of B must be null whenever k is in K. Again, we have a contradiction to the
hypotheses of the theorem.

Reversing the roles of A and B in the arguments above and applying them to the
n x n matrix BA, we again arrive at the findings that A must have some null row
or rows and B must have some null column or columns, contrary to the
hypotheses of the theorem. Therefore, neither AB nor BA is similar under

permutation to a strictly upper triangular matrix. Q.E.D.

Thus AB and BA satisfy the hypotheses of the Perron-Frobenius theorems. Now
it is easy to demonstrate that if A and B are square matrices, then they have the
same set of eigenvalues; but what can be said if they are not?




Let 4 and p be the Perron eigenvalue and corresponding left eigenrow for AB,
and s and o be the same for BA. For convenience, though it is not necessary, let
the norms of these two eigenrows be unity.

Lemma 1. With the above definitions, we have that A = y and, if these eigenvalues are
simple, then pA / |pA| = ¢ and oB / |oB| = p.

Proof. The assumption that A and y are Perron eigenvalues of the respective
matrices AB and BA implies that 4 is also an eigenvalue of BA and therefore
A < p. Similarly, pis also an eigenvalue of AB and thereforey < 1. Hence,
A=p.

If AB and BA are irreducible, then their Perron eigenvalue is simple. If they are
reducible, then we must assume additionally that the maximum of all the Perron
eigenvalues of the submatrices on the main diagonal is unique. Then,
multiplying p(AB) = Ap by A on the right on both sides and applying the
associative law, we have that (pAXBA) = A(pA). Hence, since 4 is simple, we
have that pA /[pA| = 0. Similar argument yields that oB / |oB| = p. Q.E.D.

Therefore, for total aggregation on both sides, we define

R =kp/|pA| and S = xo/|oB| .

In order to achieve our desideratum of consistency, i.e., commutativity of
aggregation and differential equation solving, we impose the hypothesis of
Theorem 1 and the requirement that the Perron eigenvalues of AB and BA are
simple if so needed when these matrices are reducible. Then, from the above
lemma, we have that

RA = k(pA! —CS= xCo _ xC(pA)
loA| loB|  |oB] |pA]
and
SB = x(oB) _ DR = X0p _ kD(oB)

|oB| R




from which we get
xC
k= ,
foBi
kD
" o] ¢
and
CD =lpAlicBI .

Furthermore, from this, pAB = Ap, 6BA = A0, and the lemma, when the
eigenvalues are simple, we have that 1p = oBlpAl and Ao = pAloBI. Taking
absolute values of either, we conclude that 2 = IpAlloBl and CD =A. Some
freedom of scaling in aggregation exists; but C, D, k, and x are not entirely
arbitrary. They 1nust satisfy the above relations.

This concludes the definition of the total (scalar) aggregation operators (row
vectors, in this case) sufficient to produce commutativity of the aggregation and
the solution of the Lanchester differential equations.

Unilateral Total Aggregation

For the sake of definiteness, let us assume that it is the resources in the vector X
that are to be aggregated into a single somehow representative resource, U = RX,
and that the vector Y is not to be aggregated; i.e., the aggregation operator § is
replaced by the identity operator, and V = Y. At the outset, we assume the
aggregation row vector R is determined from considerations external to the
mathematical ones above. Of course, we should have the desired previously
mentioned commutativity. This is not possible with arbitrary A and B as it was
in the case of bilateral total aggregation, as we shall see.

The relations U = RX and V = Y, the equations (5) with U being a scalar, and

dv
—=-.x=- -
X B DU = -DRX




imply that every row of B must be proportional to R where the constants of
proportionality are the elements of D. We note further that if all the rows of a
matrix are proportional to some common row, here R, then also all the columns
must be proportional to some common column, here D, the constants of
proportionality being the elements of R. That is, the elements of B must be of the
formpg;.

Conversely, if the elements of B are of this form, then to preserve the desired
commutativity, R must be proportional to a row vector whose elements are g;,

j=1,...m. Consequently, we have proved the following:

Theorem 3. Unilateral aggregation of X with no aggregation of Y is possible if, and
only if, the elements of Bare of the form piq;, i=1,..,n, j=1,...,m, and then the
aggregation vector, R, is proportional to any row of B.

The attrition operator C is then determined from RA = C.

Clearly, interchanging X and Y and m and n, and replacing Bby A and Rby S, we
have the same unilateral aggregation theorem for the opponent’s resource vector.

Incidentally, we note that the above form for B is not unreasonable from the
point of view of modeling. It essentially postulates an attrition matrix element b;
against Y due to X, which is the product of a generalized overall “average”
vulnerability factor p; for the resource Y; and a generalized overall “average”
lethality factor g; for the resource X;.

Unilateral Partial Aggregation

Again for definiteness, we consider aggregation on the resource vector X with
the aggregation operator, R, where the dimension r exceeds unity and with no
aggregationon Y. Here we have that U= RX and V = Y. Consequently, RA=C
and B = DR are the sufficient conditions to achieve the desired commutativity
and Lanchester consistency. Since D here is of dimension n x r and R is of
dimension 7 x m, it is clear that it is necessary that there be blocks of columns in
B whose numbers of columns correspond to the lengths of the component
subvectors in the canonical representation of the aggregation operator R shown
in (7).

If we assume that a permutation of the indices of the resources is made so that
such blocks become blocks of contiguous columns, a block for each aggregation
subvector in the canonical form of R, we then see that these blocks in B have the
same form [pg4;] as B had in the previous section on unilateral total aggregation
but over a restricted integer interval of values of j for each block. Then the
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component subvectors in R become row vectors proportional to the particular
row vectors [¢;] that are common to the pertinent block of columns in B. And the
corresponding columns of D become column vectors proportional to the
pertinent common column [p/], their constants of proportionality being the
reciprocals of the constants of proportionality in the subvectors of R. Thus R and
D are determined up to scale constants that are reciprocally related.

The attrition matrix, C, on the right-hand side of the equation for dU/dt for the
reduced Lanchester system (5) is obtained directly from RA = C. Once again, as
in the subsection above, we arrive at necessary and sufficient conditions, RA = C
and B = DR, with a particular structure for B, that permit a unilateral aggregation
and either define R or, if R is determined exogeneously, define rows of B. B
cannot be arbitrary. If it is arbitrarily chosen, aggregations with the desired
consistency and commutativity properties cannot be achieved.

Bilateral Partial Aggregation

Here we revert to Theorem 1 giving sufficient conditions on the relevant
matrices, 4, B, R, S, C, and D, that provide the desired commutativity and
consistency—that is, of course, when A and B have the appropriate structure. In
other words, we require that RA = CS and SB = DR.

The arguments are similar to those in the preceding subsection and will not be
carried out in detail. However, there are a few points that are different or that
need some minor modification.

We have seen in the preceding subsection that the prior specification of the
lengths of the blocks of resources in X that are to be aggregated determines the
numbers of columns in B that are proportional to a common column as well as
the common column up to a multiplicative constant or, conversely, that the
appearance of sets of columns in B that are proportional to a common column
determines the aggregation subvectors in R, again up to a multiplicative scale
factor.

We also note that if there are sets of columns of B or of A that are proportional to
a common column, then SB and RA respectively have the same respective sets of
columns that are proportional to a common column (not the identical columns,
but ones that are those columns multiplied on the left by S or R respectively).
Consequently, again R will be composed of subvectors that will be proportional
to row vectors whose components will be those constants of proportionality in
each block in B sharing a common column vector. Conversely, if R is specified,
then the column indices of blocks of columns in B that have to be proportional to
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a common column are identified and, up to a multiplicative scalar factor, the row
vectors of the constants of proportionality in these blocks are proportional to the
corresponding components in R.

Similarly, corresponding properties of A are determined by a priorly determined
S, and conversely, properties of S by a priorly determined A. The attrition
matrices C and D are then determined by solving the linear equations RA = CS
and £ * = DR for the elements of C and D respectively. This should always be
poss.’ ' to do uniquely if the full aggregation possibilities afforded by the blocks
of proportional columns in A and in B are effected. If this is not done, then we
have undetermined systems and degrees of freedom because choices in Cand D
exist.

Disaggregation

Obviously, disaggregation to the unaggregated X and Y directly from Uand V in
the solution (6) of the system of aggregated differential equations (5) without
using other information is impossible, no more possible than, for example,
determining the value of two numbers from their arithmetic average without
another piece of information, such as their difference, another differently
weighted average, or some other functional relationship between the two.

In the case of completely general A and B that, of course, still satisfy our original
condition of not possessing any null columns or rows, there are two possible
options (whose full description is outside the intent of the current work) to
provide the additional information. They are both based on solving the
eigenvalue problems for AB and BA (really only one eigenvalue problem, if A
and B are square).

Omitting complicating details that can occur when either or both of the matrix
products AB and BA are not diagonalizable, we know that the solution (X, Y) of
the original system (1* can be written in terms of two linear combinations of
exponentials involving square roots of the eigenvalues of AB and BA whose
coefficients can be determined from the solution (U, V) of (5) in either of two

ways.

The solution (U, V) of the reduced Lanchester system (5) can also be considered
in terms of linear combinations of the very same exponentials, although some of
the coefficients are zero because the system is reduced.

The unknown coefficients for two linear combinations of exponentials are related
through two underdetermined systems of linear equations to the now known




coefficients in the linear combination coefficient representations of U and V,
where the two matrices defining the two systems have the exponentials
evaluated at a given time, say, the current. The systems can now be determined
by either storing the solution (U, V) of (5) for a succession of values of time
sufficient to make the two systems of linear equations in the unknown
coefficients determined, or by differentiating U and V a sufficient number of
times for the current or any other value of ¢ to enlarge the two systems of
equations in the unknown coefficients to become determinate.

Now, for the not-so-general cases, suppose that X is either totally aggregated or
partially so. Now suppose that, in addition, all rows of A, in the case of total
aggregation, are proportional either to some common row or to blocks of rows >f
A coinciding with the blocks of components of X that are being aggregated into a
single component of U, in the case of partial aggregation.

Then, it is essentially obvious that each component of X in the totally aggregated
X case is linearly related to the solution U, the vector of slopes of these linear
relations being proportional to the vector of constants of proportionality among
the rows of A. The intercepts are determined from the differences between the
initial conditions for U and the initial conditions for the particular component of
X of immwxhiate conem. The arguments in the case of partial aggregation are
identical, except that they are applied individually to each aggregated block of
components of X and the associated component of U. Of course, the same
arguments are applied to any aggregation, total or partial, of Y, provided that all
or else the relevant blocks of rows of B are proportional to common rows
respectively.




