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Preface

This report was prepared for the Advanced Research Pw*c Agency. The work
was performed in the Applied Scince and Technology program of RAND'
National Defense Research Institute (NDR, a federally funded research and
development center sponsored by the Office of the Secretary of Defense and the
Joint Staff. It is one of a trilogy of papers working through simple examples to
illustrate deeper issues that arise in variable-resolution modeling. This report
describes theoretical results regarding aggregation and disaggregation in combat
models. The other papers are Paul Davis, An Introduction to Variabe-Resoution

Modeling and Cros-Resoluton Modd Connection, R-4252-DARPA, 1993, and
Richard J. Hillestad, John Owen, and Donald Blumenthal, Experiments in Variable-

Resolution Conbat Aodelng, N-3631-ARPA, forthcoming. Initial versions of all

three papers were presented at a conference on variable-resolution modeling
organized by RAND and the University of Arizona and sponsored by ARPA and
the Defense Modeling and Simulation Office in May 1992.
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Summary

Most models of air and land combat use schemes of aggregation and

disaggregation in representing combat systems, in spatial configuration, and in

depicting the progress of a battle. For example, the use of firepower "scores" is

an extreme case of aggregation of weapons into a single measure. Combining

like systems into weapons categories-partial aggregation-is a common
approach to representing a large number of aircraft or ground weapon types.

This report explores different approaches to aggregation and what is known

theoretically about aggregation and disaggregation in Lanchester combat models
that in two dimensions are commonly called square-law models. It defines

requirements for consistency between aggregate and higher-dimensioned models

of this type. Some important conclusions are that aggregation should take into

account the specific capabilities of the opponent (raising concern about many

"scored" approaches that attempt to evaluate force components in isolation), and

that partial aggregation (grouping "like" systems) and disaggregation of

previously aggregated results can be done consistently only when certain
restrictions on the relative attrition capabilities of weapon systems hold. When

this is the case, specific nonarbitrary weightings can be determined for the partial

aggregations.
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1. Introduction

A common problem among military strategists and analysts is that of estimating
the "strength" of a military unit Such an estimate is needed to judge the success
of operations, to compare the military forces of allies and opponents, and to
determine "how much is enough" in defense budgeting. Yet military forces are
composed of many distinct types of weapons and capabilities. Furthermore,
success in battle is a function of many factors, including training, tactics, morale,
terrain, command and control, etc. Ultimately a strength assessment is made on
the basis of a score, that is, an aggregation of the force values into a single
measure. Clearly, military experience and training permit some commanders to
make good assessments of strength. But such estimates are nearly always highly
situation-dependent, and are possible only if the commander has the required
experience base.

When analysts evaluate new and perhaps undeveloped capabilities against
possible threat forces, often they are forced to create an aggregate estimate of the
strength of these forces. Thus, a fundamental problem of military analysis is how
to aggregate or "score" a military force. Usually the weights come from what is
considered experience, judgment, perhaps engineering or proving-ground tests,
etc.

Aggregation is required for other reasons as well. Historical data are often
available in less detail than might be desired; overall losses rather than losses of
specific weapons systems may be all that is known, and certainly the exact causes
of loss are usually unknown or unrecorded. Comprehension and understanding
are frequently better served by more aggregate descriptions (the "forest versus
trees" argument). Finally, analysis may require more efficient computation than
is available with detailed battle simulations.

In general, the ability to aggregate and disaggregate combat forces and their
processes is necessary and desirable-yet little theory and science underlie most
approaches taken in this regard.' Aggregation in linear dynamical systems has
been a topic of interest, e.g., in economics as well as in combat simulations, for

lSeeP. KI Davis and D. BIumnthal, Thereof Sand Pmblem: A White Paper on the State of
Military Combat Modeling, RAND, N-3148-OSD/DARPA, 1991.
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some time2 But the typical focus has been on nearly decomposable systems or
weakly coupled system that may be amenable to approximated methods for
solution wherein the system is partitioned into smaller subsystems for individual
treatment followed by a reassembly for solution of the given system 3 However,
the current authors are unaware of a systematic treatment of the conditions
necessary to effect a consistent aggregation in the sense defined here. Combat
models exhibit numerous approaches, but most are ad hoc. This report examines
some of these approaches, illustrates some of the problems, and then attempts to

describe what is known and possible in a theoretical sense for basic square-law
Lanchester systems in dimensions higher than two.

The report is organized to first illustrate some common approaches used in

aggregation or scoring, particularly in military conflict simulation models. Then,
it shows some of the problems with these approaches. Finally, using Lanchester
theory as a basis, it describes the requirements for theoretically "consistent"

aggregation, disaggregation, and partial aggregation. An appendix provides the
theorems and other mathematical considerations underlying the results in the

main body of the text.

2 FL A. Simon and A. Ando, "Aggregation of Variables in Dynamic Systems," Ewnmetrca,
Vol. 29, pp. 111-138 (reprinted in A. Ando, F. M. Fisher, and H. A. Simon, Essm on the Strudue of
Social SenceModes, Mrr Press, Cambridge. Massachusetts, 1963, pp. 6-%).

3G. Kron, "Solving Highly Complex Elastic Structures in Easy Stages," ourna of Appied
Mechanics, VoL 2Z. 19SS, pp. 235-24.
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2. Common Approaches to Aggregation
and Disaggregation

Consider a military force composed of multiple types of weapons with different

capabilities-the "combined arms" army, for example. Each weapon type and

supporting system is important to prevent weakness (armor without infantry, for

example), or because of dependencies (artillery requires adequate fire control), or

to provide synergism in battle (rolling artillery barrages to reduce the defender

advantage as attacking armor moves into range). Yet these weaknesses,

dependencies, and synergisms are influenced by terrain, opponent capability,

and tactics to be employed. How can one aggregate or score such a situation-

dependent process?

The simplest form of aggregation involves assigning a value to each weapon

type, multiplying by the number of each type and adding these values to obtain a

force score or total aggregation. This is the approach taken by the WEI/WUV

method,' which, although once used widely, is not currently favored by the US.

Army as an approach to modeling. Nevertheless it is still used in various models

and academic debates. 2 Some uses of scoring have gone further. For example,

scores have sometimes been disaggregated and the results used to estimate the
losses of individual weapons systems or weapon categories, and the ratios of

force scores have been used to predict movement of forces in combat.3 Almost
all evaluations of military capability in models or exercises use some form of
aggregation because the number of different systems is too large to consider
directly.4 The number of different systems in a typical mechanized army division
may be 25 or more. Thus, partial aggregation of similar systems is a common
approach. The subject of this report is what can be said about the theoretical
"correctness" of these various approaches to aggregation and disaggregation.
We first take up the issue of total aggregation.

IWopon Efftctiveis Indis/Weighted Unit Values III (WEI/WV I), U.S, Army Concepts
Analysis Agency, November 1979.

2For example, some models used in the public debate on convetionali ars control in Europe

and to estimate outcomes prior to the Desert Storm operations used scored forces. See J. Bracken,
-Stability of Ground and Air Forces Without and With a Buffer, Phaanx, Vol. 24, No. 2, June 1991.

3 B. W. Bennett, C. Jones, A. Bullock, and P. Davis, Main Theter Wrfme Modding in the RAND
Statey Assessw t System (3.0), RAND, N-2743-NA, 1968.ri ra,



4

3. Aggregation to Scalars: Scoring

Scores or strength estimates have been necessary from the beginning of
organized combat. Initially, with largely homogeneous forces, such a score could

be based on the quantity of personnel available and an estimate of individual

strength. Even then, the number that could engage at any one time was

important, and tactics and terrain could allow a smaller force to defeat a larger
one. As forces became more heterogeneous it was necessary to give a relative

evaluation of various components. The Soviets carried this to a scientific extreme

with the "Correlation of Forces" methodology,' which attempted to predict the

success of operations by evaluating force scores against time, position, and

attrition objectives. A U.S. counterpart to this approach is the "Quantified

Judgment Model" of Colonel T. N. Dupuy,2 which evaluates the outcome of
battles based on a force score that is situation dependent and draws data from

historical battles. The WEI/WUV scoring approach estimates strength in terms
of division equivalents, and a more recent approach called "Situation Adjusted

Scores" 3 attempts to estimate force strength with more attention to the situations

of combat. Various models attempt to use these force aggregations for purposes

of predicting campaign outcomes in terms of attrition, force movement, and

battlefield success.4

A number of problems arise in attempting to score complex military forces. First,

the value of a force should depend strongly on the opponent and situation. A
technically sophisticated armored force may not be of great military value in low-

intensity urban or jungle conflict; advanced armored forces may be sitting ducks

for an uncontested air force. The situation and opponent aspects of scoring may

have been implicit during the Cold War, when the opponent was assumed to be
the Soviets and the Warsaw Pact in Central Europe. But when the opposition

could be any of a number of possible enemies with widely varying capability,
one scenario's aggreptions would seem to be inappropriate for many others.

Clearly, Soviet .-s in the hands of Iraqi soldiers during the recent Gulf War did

'I. HlVaW "OCak% War, CAclt Peae Soviet Mfitary Determants of Sufficiency in
ten Rm Huber (d.)..@,& y Sh.Wty, nomos V I _lgseicf Daden-Baden 1990.

.N. Duuy, Uxri ndkg Wai, Paraon louse Publshs, New York 1967.
3P. Allen, Sihatman Fce SwinS: Accomtingfor Combined Arms Eff ts in Aggreate CoGat

Medes, RAND, N-3423-NA, 1992.
4See, for exampie, the RSAS descpton referenced above, or Joshua M. Epstein, "Te 3:1 Rule,

the Adaptive Dynmic Model, and the Future of Security Studies, Inte wtimi Secuity, Spring 1989.



5

not have the lethality (score) that they might have had if operated by trained
Soviet or East German soldiers.

Another problem is that determination of scores by subjective judgment has been
unscientific to say the least. Experts, when called upon, must draw on
experience. But the experience ase is limited either to specific contrived
exercises that cannot be expected to represent wirfare realistically, or to
historical experience with known weapons and situations. If experts are to
evaluate proposed or experimental weapon systems or new situations and
opponents, they must do it with guesswork.

As if the aggregation of a combined arms force were not difficult enough, it is
even harder to use the aggregation to predict more than the likelihood of a single
battle outcome. This requires a prediction of movement of forces in combat and,
in order to predict the next battle, the composition of forces surviving. This

means that the attrition results of earlier battles must be disaggregated. In
mathematical parlance, this is a one-to -nany mapping, and it simply cannot be
done uniquely without additional information. Given a 10 percent attrition of an
aggregated force, what components of the force survive? Should the losses be

distributed evenly according to number of systems, or should they be distributed
by relative vulnerability, relative lethality, or what? The following examples
illustrate some of the problems with aggregation to scores and disaggregation.

Air/Ground Tradeoffs Using Scores

The first example is a simplification of a serious debate that took place during the

development of NATO's conventional arms control position in the late 1980s.

The basic question was whether tactical aircraft helped or hindered stability in
the central region conventional-force balance. It is assumed that defensive

predominance is good and attacker predominance bad from the standpoint of
stability. Let A be the attacker ground force score and D be the defender
ground force score. The ground force ratio is then FR = AID. In one analysis,

the air forces are added and considered to be killers of ground forces, and
therefore they reduce the number of ground weapons and resulting scores.
Assuming equal air forces for both attacker and defender, the forces removed by
air attacks from each side is a. The resulting force ratio is then

FR = (A -a)
(D- a)'

5 lracken, op. ci See also the comments following Bracken's article in the same journal.
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which favors the attacker under the doctrinal assumption that, as the attacker

requires the greater force, we have A > D.6 In this evaluation the air forces are
considered to be destabilizing, as they permit the attacker to gain more of an
advantage.

In a countervailing evaluation, the air forces are added and are considered to add

firepower to each side. Thus, again assuming equal air forces, the firepower
added is b to each side. The resulting force ratio is then

(A + b)
(D+b)"

which favors the defender under the same assumption that A > D, and in this

evaluation tactical aircraft could be seen to be stabilizing. A similar paradox is
easily developed for helicopters, long-range ground fires, etc. The important
point is that the use of aggregation (of air power to ground forces) has somehow

eliminated information that might be necessary in the evaluation of airpower and
stability.

Disaggregation of Scored Results

There are two commonly used approaches to disaggregation in combat models.
The simplest approach apportions the losses of individual weapon systems based
on the initial proportion of the systems of each type. This means that a 10
percent loss in aggregated score causes a 10 percent loss in the quantity of each
type of system. This type of disaggregation is illustrated in the left curve in
Figure 1, which is based on a square-law Lanchester attrition calculation

described in the next section. Note that this type of disaggregation keeps the
proportion of weapons constant in time. On the right side of Figure 1 the
disaggregation has been done in proportion to the relative weight of the
particular weapon used to create the score. That is, let w, and w2 be the weights
("scores") of two weapon systems and let N1(t) and N2(t) be the number of those
systems at time t. The score of this two-weapon unit is

S(t) = wN 1(t) + w2N2(t).

Let the losses of this scored unit in an interval dt be denoted by dS, and let these

losses be computed by the same Lanchester square law. In this type of

disaggregation, the fractional losses of systems 1 and 2 in the interval dt are

computed to be

6We assume that A > D, otherwise the potential attacker would probably not attack.
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and ~N,(t) to,+ W2 S(t)

N2 (t) WI +W2 SO)

After extacting these losses for the interval, the system is rescored and the
Landusater square law attrition is recomputed for the next tine interval. This
results in a disrptone drawdown and, of course, a different overall
solution. Mwe weaker component of the forces takes a proportionately large
amount of the loss as time advances. Either case could occur. Without
additional information about tactics, how fire was allocated, etc., it is wot possible
to say which, if either, is correct. This is an illustration of the one-to-many
mapping problems that are prevalent in attempts to disaggregte results in
combat models. When these results are used in scoring the forces in the next
stage of battle, the predicted campaign outcomes can be dramatically different
depending on the approach taken.

84mv~ng Weapons: swsv~ift Weapons:
Diseggregmon by Number Disaggegmlon by score

... .. .. ..
zz

Figure 1-Alternative Dinaggregations of Scored Combat



4. Theoretical Results on Aggregation and
Disaggregation

Some important questions about aggregation and disaggregation are: How does
an aggregation of a system relate to its more detailed representation? Given
consistency requirements between two representations at different resolution, is
there a "correct" way to aggregate? When is a consistent partial aggregation
possible? When can aggregated combat results be disaggregated?

It is necessary to define the notion of consistency first. Figure 2 demonstrates the
consistency between two models as defined in terms of the model output
measures. At any time of interest the analyst should be able to compare the
outputs of two models, and after an appropriate "mapping," the outputs should
match within some small amount. The mapping is required because the analyst
may be interested only in some aggregated outputs, and on the other hand, the
outputs of one model may need to be converted into the similar measures
produced by the other model. The differences between the outputs, because they
represent a vector, must be measured in terms of a scalar norm of the -, -.rences.
If this norm is small, then the models can be considered to have epsilon
consistency with respect to the measures at the times of interest.

Figure 3 illustrates a slightly simpler representation of consistency. In this case
we desire absolute consistency (e = 0) between an aggregated model and a more

z o) Z t)

- C(O) =IIZ(O) - Z(O)It (t) =IIZ(t) - Z'(t)l

* The models have consistency when
Z' 0) e(t)is"smallenough forall tof

interest

Figure 2-Consistency in Dynamic Models
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X(O) 10 MdlA-1.X(t)

Map A MapA
(Aggregation) (Aggregation)

___ _Model B_ _y(B
Y(0) 1 (Aggregate) Yt

Figure S-Absolute Consistency in Aggregation

detailed model. The mapping goes only one way-the outputs of the detailed
model are aggregated to match the aggregate model. When this mapping can be
done with the same mapping or aggregation functions at all times and the
outputs match exactly, then we say the two representations have absolute
consistency and are commutative. We now ask, under what conditions can we
aggregate Lanchester square-law combat models partially and completely and
maintain absolute consistency?

Because the constant-coefficient, heterogeneous Lanchester square-law1 models
lead to a system of linear differential equations, it is possible to derive and state
strict theoretical results with respect to aggregation and disaggregation.2 The
square-law Lanchester system is described by the pair of vector differential
equations

dX(t) = -AY(t)
dt

and

ISee J. . Taylor, Fnrtm-Fomcs Moddeg, Military Operations Research Sodety of America,
Adigton VA, 1981.

,9t is dew that coat" does not strictly follow a Lanchester square law, but rnderstanding the
I it F reption and disaggregaon o this "ideal system isan important first step to

di how iit be done in more complex model say, posibly in ones represented by
nonlear dierental equations that may be equivalent to higher-Order liner ones, as one-
dimenional and some ligher-dimensional Riccati equations are This matter requires further study.
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dY(t)
dt

where X = [xanx 2 .... and Y = [Y,Y 2,...,Y. m the vecorsofudex
and side Yweapon system. A = [A ] and B = [Bq] ae the Landeser
coefficient matrices defining the rate at which Y system dn x system, a
vice versa, respectively.

An aggregation of thb system is a reduced-dimension system

dU(t) = -CV(t)

dt

and

dV(t) = -DU(t),
dt

where U(t) and V(t) are aggregations of X and Y sud that U = RX and V = SY.
The vectors U and V are of length r and s which are les than m and n (otherwise,
U and V would not be aggregations, according to our definition). R and S are
aggregation mappings (matrices) which are nonnegative (it's not clear what
negative weights of weapons systems would imply). Thus, if R is a matrix of
diWsio x n, then the resulting Uis a scalar. IfRis2xn, thenthevectorof
X systems is reduced to two aggregate components that comprise U. It is not
necessary that X and Y or U and V have the same dimensions. U might be a
scalar in the aggregated system and V a vector of systems.

Consistent Scalar Aggregation

Consider the case in which the aggregation matrices R and S are vectors and
therefore map X and Y to scalars. This, in effect, weights the components for X
and Y into scalar "scores" for the two sides. Results from linear algebra and
systems theory dictate the requirements on R and S such that consistency
between the resulting models is achieved. By conistency we mean that the
result obtained from aggregating the solution of the unaggregated differential
equation system is the same as the solution of the system of aggregated
differential equations; ie., in mathematical parlance, the operations of differential
equation system solving and aggregation commute. We slate the results here
and provide the mathematical propoitions and their proofs in the appendix.



First, the elpenvalues of the product matrices AB and BA are desired to
characterize the time response of the systems. That is, the time response for X
and Y is the solution of the system of differential equations as a function of time,
subject of course, to initial conditions X(O) = X .YO) = Yo,

[yw] ['AB -G(AB)A] [X

where

k=O

and

G(z) = t2k+lZk /(2k + 1)!,
k=O

both analytic functions over the finite complex plane and recognizable as
cosh(t4z-- and (sinh(tlii)) / 4z- respectively. Now, if we replace AB and BA
by similarity transformations on their respective Jordan forms,

AB =WAW-1 and BA = ZPZ 1,

where the diagonal of A contains the eigenvalues of AB and the diagonal of r
contains the elgenvalues of BA, we have a more computationally palatakble form-

[ XMI) = WF(A)W-1 -WG(A)WIA] 1 r;
YMt J -ZG(r)zv1 B zF(r)z 1  JiYOJ

FacL 77e matrices AB and BA are nonnegative matrices with nonnull colums and
nonnufl ros and, consequently, have maximal positive eigenwalues and con'esponding
nonnegative left eigenvetors whose components are the weights tHat yield comtmutative
or consistent scalar aggregation of X and Y.3

31M rn Owe product umtrice, AB and BA we important b me by diE tatig the
OqUICSfardX(~*. This Sivea d2X(t)/dt2m -AAY(t)/dt - ABXQt). with a hlwiaw argumnt for BA.
huMfluanhdamdepend an AB and BA, radw urha on A and B eparately.
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It is best to give an example of such an aggregation. Table I illustrates a
consistent aggregation for a 2 x 2 Lanchester system reduced to a single
component on each side. The original A and B matrices are shown at the upper

left; possible C and D matrices (scalars in this case) are shown with the weights
derived from the eigenvectors. There are two sets of weights because there are
two possible eigenvalues and associated vectors.4 The left part of the table
shows the direct integration of the heterogeneous system in X and Y as a function

of time; the columns labeled "weighted" are obtained by weighting the timewise
values of X and Y. The columns labeled "integrated" u(t) and v(t) are obtained

by using the R and S obtained with the left eigenvalues and integrating initial
values u(O) and v(O). The fact that these match at each time t shows the
consistency of the aggregation. The columns labeled "ur(t)" and "vr(t)"
demonstrate that consistency is also achieved with weights based on the other

(right) eigenvectors.5

Consider what has been lost by the aggregations when one chooses such a
consistent set of weights. The two-dimensional Lanchester system in Table I has
only positive components on the diagonals. These are actually the equations for
two separate battles. X, shoots at Y1 and Yj shoots at X1. X2 shoots at Y2 and Y 2

shoots at X2, but there are no shots between X1 and Y 2, X2 and Y1, or vice versa.
As a result of the preceding, we have that the consistent aggregations weight the

components of X with R = [0 11 or R = [10] and, similarly, S = [0 1 or S = [10].
Thus, either one battle or the other can be represented in a consistent
aggregation, and there is no consistent aggregation for an "average" battle
incorporating components of both.6 The columns labeled "uu" and "wP"

represent an attempt to approximate an average battle by averaging the weights.
Comparison of the columns labeled "weighted" with those labeled "integrated"
indicates that consistency has not been maintained in this attempt.

The point of this example is to show that something is lost in an aggregation,
namely some aspect of the response of the detailed system. And as the
illustration shows, the components left off may be important (in this case, the
other battle). Figure 4 illustrates this example, showing the aggregated response

4 Consistency applies only as long as no force components become negative. When this happens
the original systems and aggregations must be changed, as negative weapons have no meaing In
the original systems, one simply deletes those components of X or of Y that go to zero and the
corresponding rows and columns in A and B and proceeds with the reduced system of equations
with, of course, new aggregation operators Rand S.

SThne is an optional scale factor that can also be applied to change the overall magnitude of the
aggregated u and v components.

6 This can be understood intuitively by considering the fact that the different components will
generally attrite at different rates, leading to a continuously changing mix of systems.
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matching the X1, Y, components with one set of weights and rnatching the X2, Y2

components with the other set.

Partial Aggregation and Disaggregation of Lanchester Systems

It is common to group system by typ in a combat model and create an
aggregated weapon type for e-,ch such grouping. Fighter aircraft of similar
capabilities might be grouped into equivalent fighter systems, or all tanks might
be aggregated into an "equivalent" tank. This implies a partial aggregation of the
system and, in terms of the earlier described aggregation mappings, we define R
to have the canonical form

[I Pi [0............................. ]
[0 ... J1[ P2 J[O................... 01

[0 ........................... 0]1 [~ P

where each PA is a nonnull vector of nonnegative weights on specific components
of X. We rule out aggregation of a component into two different aggregate
components, although it could be treated; but the treatment in what follows,
particularly in the appendix, would be laborious in its details and not likely to be
illumidnating.

ft11M-

Scalar Aggregation (ist slgenvalus) Scalar Aggregation (2nd elgenvaluse)

40.0

3: 20 .0 3: 400.0...e
2Dme X2

0.g0r 0.0smet clrAgrgto ltaie
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For the heterogeneous Lanchester system, we can state the following two facts
about the ability to do this and maintain consistency between the two models.
These results are established in the appendix

Fact i (Partial Aggregation). One cannot geneiully partially aggregate a square-law
Lanchester system so that u and v are vectors and consistency is maintained without
applying additional restrictive conditions on the matrices A and B.

Fact 2 (Disaggreptlon). It is not generally posse to daggregate a previously
aggregated system and obtain a system consistent with the original disagregated system
without additional restrictive conditions on the matrices A and B.

The condition required to partially aggregate or disaggregte a square-law
Lanchester system is that there is a constant relative effectiveness or vulnerability
between the various components of X and Y. For example, the following is
shown in the appendix.

Fact 3 (Partial Aggregation). Partial ag ation is possible (consistency maintained)
when there is a constant proportionality in the effects of some of the weapons of a side
with respect to all of the weapons of the other side.

For example, if weapon 1 of side 1 is twice as effective as weapon 2 of the same
side against all systems (components of Y), then weapon 1 and weapon 2 can be
aggregated into a single representative weapon and this aggregated model will
correctly predict the square-law attrition of each component of Y. This partially
aggregated system model is consistent with the nonaggregated model if the
weighting of the two weapons is proportional to their relative effectiveness.

Figure 5 illustrates this case, in which components x, and x2 have been
aggregated while x3, y,, y2, and y3 remain disaggregated. The trajectories of the

components of Y remain the same regardless of whether the aggregated or
disaggregated X is used in the equations.

This condition is not enough to be able to restore X from its aggregated state at
some later time, however. This is because the system may have differential
attrition of the components of X (x, and x2 in the example) so that the number of
surviving elements varies over time. Once aggregated, without additional
information there is no way to turn U back into x, and x2. What is a condition
that would permit this? In the appendix we show the following is true.

Fact 4 (Disaggregation). If, in addition to the previously stated relative effectiveness of
two or more systems, the same systems also have a proportioality in vulnerability that is
constant with respect to all systems of the opponent, then it is possible to aggregate these
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systems consistently and at any point in time disaggregate the aggregated system back to
the original more dletailed model.

In other words, if we can say that weapon 1 is twice as effective against all
weapons as weapon 2 and that weapon 1 is, say, one-third as vulnerable as
weapon 2 to all opposing systems, then the detailed model can be partially
aggregated and later disaggregated while satisfying the consistency requirement.

These are the conditions under which the scoring of weapons and later
disaggregation of those scores make the most sense, since the aggregated values
can be used without any loss of information. The information needed to restore
the system is in the knowledge about relative effectiveness and vulnerability. As
a final example, consider the three-component model shown in Table 2. The
columns of the table show the consistency between the aggregation of the first
two components of a three-dimensional example (three weapon systems) and the
original system. The table also shows the reconstruction of the original system
from the aggregated components (possible only because the respective
components in the differential equations are linearly related). Note that

0.Imu O W m nml m m m m m m msw m-
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consistency is achieved until t = 1.6, at which time x, goes to zero. At this point
the original Lanchester system must be reduced to leave out x, and all
aggregations recalculated to maintain consistency. In this example we stopped
the calculations at this point.
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5. Conclusions

We have shown that aggregation and disaggregation should be performed
carefully in models of combat if consistency is to be preserved; but it can be done,
provided that the attrition matrices satisfy certain additional reasonable

conditions when the aggregations are not to be total. Although we do not
suggest that the Lanchester square law is a realistic depiction of actual conflict,
the fact that, even for this linear system of equations, consistent aggregation and
disaggregation cannot be done without severe restrictions on the attrition
matrices A and B implies that ad hoc approaches to varying resolution may not
lead to consistent models. The aggregation weights cannot be arbitrary. Once
the attrition matrices A and B are specified, the aggregation weights, when
consistent aggregation is possible, are dictated by mathematical considerations,
as we show in the appendix.

Clearly, the absence of general conditions of the type shown here for more
complex models implies that empirical tests comparing models of different
resolution should be made before conclusions can be drawn regarding the
goodness of an aggregation.

We do not mean to argue that detailed models are always better. Often the
aggregate results of combat (overall losses and advances of front lines) are
known from history, but the details of specific forces, conditions, tactics,
effectiveness, fire allocation, and so forth are missing. This means that an
aggregate model can be tested or fit to the data, but an attempt to extrapolate to
detailed losses is highly subjective. Thus, the most correct model based on
empirical data could very well be the aggregate, low-resolution one. On the
other hand, the frequent absence of any empirical data on how forces or weapons
might fare in battle has often forced analysts to build models in high detail in
hopes that engineering test data can be extrapolated to combat outcomes.
Frequently, however, this approach amounts to compounding assumption upon
assumption regarding interactions in conflict--assumptions that are completely
subjective.

The material in this research sheds very little light on this problem. It does
suggest, as noted earlier, that aggregation and disaggregation cannot be done
arbitrarily and that fairly strong requirements are necessary to obtain consistent
high- and low-resolution models.
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Further research in this area should examine when models and aggregations can

be made partially consistent. That is, suppose the conditions for aggregations
and disaggregations stated in this report are approximately satisfied. What does

this imply for how far apart the aggregate solution of the unaggregated

differential equations is from the solution of the aggregated differential equations

as time advances?

Another area of investigation to consider is the possibility of extending this

research to Lanchester models with nonlinear differential equation formulations

that may be equivalent to higher-order linear ones as, for example, certain
higher-dimensional Riccati differential equation systems with special structure

are.
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Appendix

MATHEMATICAL CONSIDERATIONS

Preliminaries

We consider here a rather sharply defined Landster system model of

continuous combat between two opposing forces whose resources fall into
different classes or types, e.g., tanks of one or more types, missile launchers,
personnel vehicles, howitzers, helicopters, troops of different types, etc. The
numbers of each resource type form the different components of a strictly
positive m x I vector X for one side and of a strictly positive n x 1 vector Y for the
other side.

The model assumes that the state of the battle at a time t > 0 is represented by the

pair (X, Y), which are obtained as the solutions of the system of ordinary

equations mentioned earlier.

4X=-AY, X(0)=X 0 >0dt (1)

dY -Bx, Y(0) fY0> 0,dt

where A: m x n and B: n x m are the nonnegative attrition matrices. The
elements a# of A represent the time rate of attrition of the ith resource xi by one
unit of the jth resource y, of the opponent. The elements by of B are similarly
defined with x and y interchanged.

We note that the components of the vectors, X and Y, in the solution of equation
(1) are monotone-decreasing functions of time. When any component, or

components, of these vectors reaches zero, we consider the time duration of this
system, but not necessarily the battle, to be terminated. A new system, if the
battle is to continue, is created, with its dimensions reduced by the number of
components that have reached zero; these components and those rows and

columns of the matrices that are associated with them are removed.

The new system is still a Lanchester system with the same generic form and
properties the system (1) has, with initial conditions for the positive vectors being
the respective values they attained at the end of the previous time period.
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Although the same battle continues, we simply consider it as continuing under a
new system, new only in the sense that its dimensions have been reduced and its

initial conditions changed.

This process of "culling" the system of variables and associated rows and

columns in the attrition matrices (that could, if not culled, lead to the absurdity of

negative numbers of resources) can be continued so long as there are positive
components left on each side, or stopped earlier if it is deemed that the battle is

over.

We further make a reasonable assumption of choice that each resource on either

side has some attriting effect on at least one resource of the opponent, and each

resource on either side is vulnerable to attriting effects of at least one resource on

the opponent's side. Thus, not only are A and B matrices of nonnegative

components, we require also that they have no completely null column and no

completely null row. This property of no null columns and no null rows in the

attrition matrices, with their nonnegativity, is sufficient for their respective

products to satisfy the hypotheses of one or the other of the Perron-Frobenius

theorems on the existence of a maximal positive eigenvalue and corresponding

positive or nonnegative eigenvector for nonnegative matrices that we will use

later on.1 (Of course, one can easily conceive of resources with value that is not

of an attriting nature, e.g., petroleum supplies, or with an invulnerable nature,

e.g., aircraft against an enemy with no air defenses; and one can deal with such

cases. However, for some mathematical convenience later, namely, to avoid the

potential for zero Perron eigenvalues and concomitant complications, we exclude

these cases by our assumptions above.)

As is to be expected from the general theory for systems such as (1), its solution is

an analytic vector function of the initial condition vectors. We define

F(z) t2kz and G(z) = t2klzk (2)
(2k+1)!

Then, we have for the solution of (1)

FX(t)] F(AB) -G(AB)A X0 13)
y(t)J = [-G(BA)B F(BA) J L (3)

1 See, e.g., chapter 2 of R. S. Varga, Matrix Iteative Analysis, Prentice Hall Inc., Englewood Cliffs,

N.J., 1962.
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for as long as no component of the solution vector becomes negative. For z = AD
or for z = BA, computing a solution in the form (3) can be laborious;
corsequently, employing the similarity transformations,

AB = WAW - 1  and BA - ZrZ 1 ,

we have a much more computationally tractable form

[XMI =r F() -,,,(<^,,,-,.,
-zG(r)Z-IB ZF(r)z -1 I [ '

where the diagonals of the Jordan canonical form matrices (even possibly
diagonal), A and r, contain the eigenvalues of AB and BA, respectively.

However, it may be that the dimensionality of the problem is still too high, either
for computational reasons or, more importantly, because the detail is too fine for
understanding the progress of the battle at various levels of generality or
resolution. Thus, to relieve these objections to the size of the dimensionality of

the original problem, one frequently employs weighted linear aggregations of the
resources on either side, either into a single scalar value for each side (total
aggregation) or into smaller numbers of groups of resources than the original
numbers (partial aggregation) or, perhaps, even total scalar aggregation on one
side and no aggregation on the other (unilateral aggregation). Having presented
some illustrative examples earlier, our purpose here is to examine

mathematically some aspects of aggregation and conditions for potential
disaggregation.

We define linear dimension-reducing aggregation operators, R and S, to be r x m
and s x n nonnegative matrices, respectively, with r and s strictly less than m and

n, respectively, such that

U=RX and V=SY (4)

form a reduced-dimension Lanchester system in the above-defined sense. Thus,
we have a system of ordinary differential equations for U and V of similar form
to (1) for X and Y:

dl(t) = -CV(t), U(O) =U o > O,
dt
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NO) -DU(t), V() - Vo  0, (5)dt

where C and D are new r x s and s x r nonnegative attrition matrices,
respectively, with the same properties of having nonnull rows and nonnull

columns as A and B.

The solution to the reduced-dimension aggregated Lanchester system (5) is of
exactly the same form as the solution (3) of (1), namely,

U(t)1 [" F(CD) -G(CD)C1 [Uo] (6)
V(t)J = L-G(D)D F DC)] J Vo(

The %gregation operators R and S appearing in (4) are defined to be in canonical
form if they are in the forms illustrated below:

[[ P, 1 [0 ............................... 0]
R= ....... 0 A2 110 ...................... 01

R=] (7)
[0 .............................. 0] p, 1

and

[I 10 ...................................... 01]
[0 ... 0[1 O2 1[0 ......................0 (0)

[0 .......................... ........... 0 [ a, ]j

where the row vectors p, i = 1,...,r and oi, i = i,...,s are nonnull and nonnegative

and are of respective dimensions mi and n3. For convenience, we shall consider
aggregation operators in the above canonical forms (7) and (8). (Conceivably one
could presume aggregations that allow a resource to be in two or more aggregate
groups; but because of the additional complexity of details in their treatment, we

conveniently refrain from examining such cases.)

A central desideratum for aggregation operators, one that makes for a sense of
consistency, is that the operations of differential equation solving and
aggregation commute. That is, the result obtained by first solving the ordinary
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differential equation system (1) to obtain the solutions given by (3), or of any
other equivalent form, and then applying the dimension-reducing aggregation
operators, R and S, to the solutions is identical to the result of first applying the
operators, R and S, to the differential equations (1) to get the differential equation
system (5) in U and V and then solving this system (5) to get the reduced-

dimension result (6).

In the following sections we shall be concerned with presenting conditions on A,
B, R, S, C, and D that will produce the desired commutativity in the different

situations of total (scalar) and partial aggregation; verification that the matrices
AB and BA satisfy the hypotheses of one or the other of the Perron-Frobenius
theorems mentioned below, which are useful in determining R and S that

preserve the desired commutativity; and conditions for the inversion of
aggregation, i.e., disaggregation.

General Conditions for the Preservation of Lanchester
System Property and Commutativity of Aggregation
and Differential Equation Solving

Theorem 1. If aggregation operators , r x m, and S, s x n, and nonnegative matrices

C and D of compatible dimensions exist such that

RA = CS and SB = DR, (9)

then U and V defined by (4) will produce a Lanchester system (5)from the Lanchester
system (1). Moreover, with compatible initial conditions, the solution (6) of(4) will be

identical to the pair, (RX, SY), where (X, Y) is the solution (3) of(1).

ProoL Let X and Y satisfy a Lanchester system of differential equations (1).

Suppose that nonnegative R, S, C, and D exist such that (9) holds. Then we have

dU R±- -RAY = -CSY =-CV

dW dt

and

dV =S= -SBX = -DRX =-DV.
T dt
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Hence, with positive initial values, Uo and V0, for U and V, respectively, U and V
form a LAnd ter system pair as in (5).

Now, corsider any analytic function,flz) (particularly F(z) and G(z) defined in
(2)), representable by an absolutely convergent power series in z in some disk of
the complex plane with a radius exceeding the spectral radii of AB, BA, CD, and
DC (those of AB and BA are equal, as are those of CD and DC). Thin, applying
the associative law for matrices successively, we have that the relations (9) imply
that R(AB) = C(SB) = (CD)R, S(BA) = (DC)S, R(ABP = (CD)R, S(BA)l = (DC)kS,
and, finally,

Rf(AB) =flCD)R and SflBA) =flDC)S. (10)

Let the U and V satisfy (5) with initial values of 12O = RXo and V0 = SY0,

respectively. Then, applying R to X, S to Y, and (10) withf replaced by F and G
as defined in (2) in the solution (3) to equation (1) completes the proof of the
theorei. Q.E.D.

Bilateral Total (Scalar) Aggregation

In this section, we are concerned with defining the row vectors R and S which

totally aggregate X and Y down to scalars and, consequently, make U, V, C, and
D positive scalars. We will make use here of the two Perron-Frobenius
theorems:2

(i) Let M be a nonnegative, irreducible square matrix. Then it has a positive eigenwlue
(called the Perron eigenvalue) that is simple and is not exceeded by the absolute value
of any of its other eigenwlues. Furthermore, corresponding to this eigenvalue is a

positive eigenvector (left eigenrow or right eigencolumn).

(ii) Let M be a nonnegative, reducible, square matrix, but for which there exists no

permutation matrix, P, such that PMPT is a strictly upper triangular matrix. (The
superscript T denotes transpose.) Then it has a positive eigenvalue that is equal to
its spectral radius and a corresponding nonnegative, nonnull left eigenrow and right

eigencolumn.

(A square matrix, M, is reducible if there exists a permutation matrix, P, (i.e., a

square matrix whose only nonzero elements are a single 1 in each row and in

each column) such that

2114
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where N, and N3 are square matrices and 0 is a null matrix; M is irreducible if no
such permutation matrix exists. A square matrix is strictly upper triangular If all
of its elements ae zero except those strictly above the main diagonal, which ae
uetred.)

Teae 2. If no row or cohumn o er of then gatiue matrice A or B is a xu
vector, then ther exist no permutations, P or Q, such that either AB = PABPT or BA =
QBAQ T is similar to a strictly u r triangular matrix.

(Hence, AB and BA, being nonnegative, also satisfy the hypothses of one or the
other of the Permon-Frobenius theorems, depending on whether they are
irreducible or reducible.)

ProoL For the sake of a contradiction later, let us assume that, by permuting the
rows and columns of AB (via the same permutation), AB is transformed into a
strictly upper triangular matrix. Then this strictly triangular matrix has a null
first column and a null last row. Let the column of AB that becomes the first
column under the permutation be the jth column for a particular j. Let K be that
set of integers k such that by > O whenever i = k K is not empty, by the
hypothesis of the theorem. Since adb4 must equal zero for every i = 1,...,m and
k= 1,...,m (ABbeingmx im), the kth columns of A must be null whenever kis in I,
contry to the hypotheses of the theorem.

Similarly, let the row of AB that becomes the last under the permutation be the
ith for a particular i. Anew, let K be that set of integers k such that a# > O
whenever j = k. Arguing similarly to the above, we must have that the kth rows
of B must be null whenever k is in . Again, we have a contradiction to the
hypotheses of the theorem.

Reversing the roles of A and B in the arguments above and applying them to the
n x n matrix BA, we again arrive at the findings that A must have some null row
or rows and B must have some null column or columns, contrar to the
hypotheses of the theorem. Therefore, neither AB nor BA is similar under
permutation to a strictly upper triangular matrix. Q.E.D.

Thus AB and BA satisfy the hypotheses of the Perron-Frobenius theorems. Now
it is easy to demonstrate that if A and B are square matrices, then they have the
same set of eigenvalues; but what can be said if they are not?
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Let A and p be the Perron eigenvalue and corresponding left eigenrow for AB,

and p and a be the same for BA. For convenience, though it is not necessary, let
the norm of these two eigenrows be unity.

Leumma . With the above definitions, we how that X = p and, #1 these eigenvalues are

siple, then pA / MAI = a and aB / laBI = p.-

Proof. The assumption that A and p are Perron eigenvalues of the respective

matrices AB and BA implies that A is also an eigenvalue of BA and therefore
A!Sjp. Similarly, p is also an eigenvalue of AB and thereforep - A. Hence,

If AB and BA are irreducible, then their Perron eigenvalue is simple. If they are
reducible, then we must assume additionally that the maximum of all the Perron
eigenvalues of the submatrices on the main diagonal is unique. Then,

multiplying p(AB) = Ao by A on the right on both sides and applying the

associative law, we have that (pAXBA) = W(pA). Hence, since A is simple, we
have that pA /A I = a. Similarargument yields that aB / IaBI = p. Q...D.

Therefore, for total aggregation on both sides, we define

R = kp/IpAI and S = Ka/larBI.

In order to achieve our desideratum of consistency, i.e., commutativity of
aggregation and differential equation solving, we impose the hypothesis of
Theorem 1 and the requirement that the Perron eigenvalues of AB and BA are

simple if so needed when these matrices are reducible. Then, from the above

lemma, we have that

RA=(pA) = CC C(pA)
pAI = C J --ilaBllAI

and

SBI= = DR = - kD(BI
laBi IpA I VAI aBI
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fomwhkhweget

k V

kD

CD=lpAIIBI .

Furthemiore, from this, pAB = ko, aBA = ac, and the lemma, when the
eigenvalues are simple, we have that Ap = cBIpAI and Aa = pA I aBI. Taking
absolute values of either, we conclude that A = IpAII oBI and CD = A. Some
freedom of scaling in aggregation exists; but C, D, k, and jw are not entirely
arbitrary. They iaust satisfy the above relations.

This concludes the definition of the total (scalar) aggregation operators (row
vectors, in this case) sufficient to produce commutativity of the aggregation and
the solution of the Lanchester differential equations.

Unilateral Total Aggregation

For the sake of definiteness, let us assume that it is the resources in the vector X
that are to be aggregated into a single somehow representative resource, U = RX
and that the vector Y is not to be aggregated; i.e., the aggregation operator S is
replaced by the identity operator, and V = Y. At the outset, we assume the
aggregation row vector R is determined from considerations external to the
mathematical ones above. Of course, we should have the desired previously
mentioned commutativity. This is not possible with arbitrary A and B as it was
in the case of bilateral total aggregation, as we shall see.

The relations U = RX and V = Y, the equations (5) with U being a scalar, and

dV
= -BX = -DU = -DRX
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imply that every row of B must be proportional to R where the constants of

proportionality are the elements of D. We note further that if all the rows of a
matrix are proportional to some common row, here R, then also all the columns

must be proportional to some common column, here D, the constants of

proportionality being the elements of R. That is, the elements of B must be of the

form pjqj.

Conversely, if the elements of B are of this form, then to preserve the desired
commutativity, R must be proportional to a row vector whose elements are q,

j = 1....m. Consequently, we have proved the following:

Theorem 3. Unilateral aggregation of X with no aggregation of Y is possible if, and

only f the elements of B are of the form piq, i = 2,....n, j = 1....m, and then the

aggregation vector, R, is proportional to any row of B.

The attrition operator C is then determined from RA = C.

Clearly, interchanging X and Y and m and n, and replacing B by A and R by S, we

have the same unilateral aggregation theorem for the opponent's resource vector.

Incidentally, we note that the above form for B is not unreasonable from the

point of view of modeling. It essentially postulates an attrition matrix element bq
against Y due to X, which is the product of a generalized overall "average"

vulnerability factor pi for the resource Y and a generalized overall "average"

lethality factor qj for the resource Xj.

Unilateral Partial Aggregation

Again for definiteness, we consider aggregation on the resource vector X with

the aggregation operator, R, where the dimension r exceeds unity and with no

aggregation on Y. Here we have that U = RX and V = Y. Consequently, RA = C
and B = DR are the sufficient conditions to achieve the desired commutativity

and Lanchester consistency. Since D here is of dimension n x r and R is of

dimension r x m, it is clear that it is necessary that there be blocks of columns in

B whose numbers of columns correspond to the lengths of the component

subvectors in the canonical representation of the aggregation operator R shown

in (7).

If we assume that a permutation of the indices of the resources is made so that

such blocks become blocks of contiguous columns, a block for each aggregation
subvector in the canonical form of R, we then see that these blocks in B have the

same form [pj]qJ as B had in the previous section on unilateral total aggregation

but over a restricted integer interval of values of j for each block. Then the
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component subvectors in R become row vectors proportional to the particular

row vectors [q1] that are common to the pertinent block of columns in B. And the

corresponding columns of D become column vectors proportional to the

pertinent common column [p., their constants of proportionality being the

reciprocals of the constants of proportionality in the subvectors of R. Thus R and

D are determined up to scale constants that are reciprocally related.

The attrition matrix, C, on the right-hand side of the equation for d~ldt for the

reduced Lanchester system (5) is obtained directly from RA = C. Once again, as
in the subsection above, we arrive at necessary and sufficient conditions, RA = C
and B = DR, with a particular structure for B, that permit a unilateral aggregation
and either define R or, if R is determined exogeneously, define rows of B. B

cannot be arbitrary. If it is arbitrarily chosen, aggregations with the desired

consistency and commutativity properties cannot be achieved.

Bilateral Partial Aggregation

Here we revert to Theorem 1 giving sufficient conditions on the relevant

matrices, A, B, R, S, C, and D, that provide the desired commutativity and

consistency-that is, of course, when A and B have the appropriate structure. In

other words, we require that RA = CS and SB = DR.

The arguments are similar to those in the preceding subsection and will not be

carried out in detail. However, there are a few points that are different or that

need some minor modification.

We have seen in the preceding subsection that the prior specification of the
lengths of the blocks of resources in X that are to be aggregated determines the

numbers of columns in B that are proportional to a common column as well as

the common column up to a multiplicative constant or, conversely, that the

appearance of sets of columns in B that are proportional to a common column

determines the aggregation subvectors in R, again up to a multiplicative scale

factor.

We also note that if there are sets of columns of B or of A that are proportional to

a common column, then SB and RA respectively have the same respective sets of

columns that are proportional to a common column (not the identical columns,

but ones that are those columns multiplied on the left by S or R respectively).

Consequently, again R will be composed of subvectors that will be proportional

to row vectors whose components will be those constants of proportionality in

each block in B sharing a common column vector. Conversely, if R is specified,

then the column indices of blocks of columns in B that have to be proportional to
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a common column are identified and, up to a multiplicative scalar factor, the row
vectors of the constants of proportionality in these blocks are proportional to the
corresponding components in R.

Similarly, corresponding properties of A are determined by a priorly determined

S, and conversely, properties of S by a priorly determined A. The attrition
matrices C and D are then determined by solving the linear equations RA = CS
and r = DR for the elements of C and D respectively. This should always be
poss' to do uniquely if the full aggregation possibilities afforded by the blocks

of proportional columns in A and in B are effected. If this is not done, then we
have undetermined systems and degrees of freedom because choices in C and D
exist.

Disaggregation

Obviously, disaggregation to the unaggregated X and Y directly from U and V in
the solution (6) of the system of aggregated differential equations (5) without
using other information is impossible, no more possible than, for example,

determining the value of two numbers from their arithmetic average without
another piece of information, such as their difference, another differently
weighted average, or some other functional relationship between the two.

In the case of completely general A and B that, of course, still satisfy our original

condition of not possessing any null columns or rows, there are two possible
options (whose full description is outside the intent of the current work) to
provide the additional information. They are both based on solving the
eigenvalue problems for AB and BA (really only one eigenvalue problem, if A
and B are square).

Omitting complicating details that can occur when either or both of the matrix
products AB and BA are not diagonalizable, we know that the solution (X, Y) of
the original system (I J can be written in terms of two linear combinations of
exponentials involving square roots of the eigenvalues of AB and BA whose
coefficients can be determined from the solution (U, V) of (5) in either of two

ways.

The solution (U1, V) of the reduced Lanchester system (5) can also be considered
in terms of linear combinations of the very same exponentials, although some of
the coefficients are zero because the system is reduced.

The unknown coefficients for two linear combinations of exponentials are related
through two underdetermined systems of linear equations to the now known
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coefficients in the linear combination coefficient representations of U and V,

where the two matrices defining the two systems have the exponentials

evaluated at a given time, say, the current. The systems can now be determined

by either storing the solution (U, V) of (5) for a succession of values of time

sufficient to make the two systems of linear equations in the unknown

coefficients determined, or by differentiating U and V a sufficient number of

times for the current or any other value of t to enlarge the two systems of
equations in the unknown coefficients to become determinate.

Now, for the not-so-general cases, suppose that X is either totally aggregated or

partially so. Now suppose that, in addition, all rows of A, in the case of total

aggregation, are proportional either to some common row or to blocks of rows :f
A coinciding with the blocks of components of X that are being aggregated into a
single component of U, in the case of partial aggregation.

Then, it is essentially obvious that each component of X in the totally aggregated

X case is linearly related to the solution U, the vector of slopes of these linear

relations being proportional to the vector of constants of proportionality among
the rows of A. The intercepts are determined from the differences between the

initial conditioiis for U and the initial conditions for the particular component of

X of imnediate conu'.m. The arguments in the case of partial aggregation are

identical, except kat they are applied individually to each aggregated block of
components of X and the associated component of U. Of course, the same

arguments are applied to any aggregation, total or partial, of Y, provided that all

or else the relevant blocks of rows of B are proportional to common rows
respectively.


