
AD-A28 2 365 •
VIIIIUUII

Real World Software Engineering

Final Report

Donald Gotterbarn, Robert Riser, and Suzanne Smith

July 15, 1994IC

U.S. Army Research OfficeG

Contract/Grant DAAL03-92-G-0411

East Tennessee State University

Approved for Public Release;

Distribution Unlimited

9 2TS QUALITY IMETCE 5

\~94-238 1808
ll~iff~lhih~iI 94 7 26 0 85

REPORT DOCUMENTATION PAGE jMBNo. 0_0_____

PuOliK regiofleriq bt.jt~ft for this C0110C10"' Of 'flfO'fflbVtOfl I' t' atd to av"aq "r h es ' fIs@. 1010=~fl t1V# time foe etvwinq YttuctiOAir. %~ ~R#A *wsting aDM1 sourm.
ge-eir4. and mafltafl:n thi data n•d. and¢cOmeesiq n eev'7wti the €OllectiOn ofmatiof. Send ¢omment rtnqs = w twden 0• |mae 0•i t other alaea of t"
C~Arliol Of 1111 maiiitonl lJO~ -W.iualf~ thui sl cur ujd". :0 *ash-w ~on N0@uttSe"vKea. Diftecn~t o e V nol mto grt~a.dRglI lSjfeoI qvnMhwaV. Suit@ 1204. Arangtqtn. .2 J20l.4301.angt~ome ioffm 4oMnagement and udqet. Pae& tAdctnuIc(?4.lL amqon C21
1. AGENCY USE ONLY (Leave blank) 2. REPORT OATE 3. REPORT TYPE AND DATES COVERED

T 6/TT94 Final RSUoTL 28 Sep 92-31 May 94
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Real World Software Engineering

6. AUTHOR(S)

Donald Gotterbarn
Robert Riser

. a;•nin• Sm-i t'h
7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES1 8. PERFORMING ORGANIZATION

REPORT NUMBER
East Tennessee State University
Department of Computer and Information Sciences
Box 70711
Johnson City, TN 37614-0711

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING

U. S. Army Research Office AGENCY REPORT NUMBER

P. 0. Box 12211
Research Triangle Park, NC 27709-2211 ito 3 , - .p,)9

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

"12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRISUTIMN COOK

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 20words)

The Real world Softowre Engeeing project involved the development and imleuntatim of a
t -!sr undergraduate softure engineering course thich provides thorough coverage of the
softmire development process along with relisuc and varied project exper s. The course is built

around three projects which differ in several significant ways:s.ze, complexity, tem stcture,
deliverables, and development methodology. ¶11e projects are carefully choreo8raK to provide varied
teem experiences and allow stbxl•ts to functim in a variety of roles and respcmibilities.

Coordt lectur, laboratory, and project activities are provided. A layered approach in dhich
topics are initially introdued and revisited in inresing depth is uti•liz in lectures and project
work. Ada is used first as a s ticm and desii tool and later as an implemetation language.
Continuous aseesswat with an s on reviews is utilizld in the projects.

Deliverables of the project include an overvidw of the course, detailed syllabus, an integrated ule
of lecture, laboratory, and project activities, lectres and associated hAdos, laboratories and
associated hnd•uts, uetiuxis & moterials related to =uging and aesesmng projects.

14. nn E 15. NUMBER OF PAGES

Software engineering education -L PRt0 CON

17. SECUMT COASSIFICA 10. SECURITY CLASSIICATION 19. SECUFTY CLAS ONI 20. L1TATION ON iWSAS Y-
OF REPORT OP THIS PAGE OF ABuSTIRCT

UNCASSIFIED UNCLASSIFIED UNCLASS~r UL/ED0[

NSN 754001-280SSOO Standard Form 2" (Rev. 249)
0e Mood b, Aft SM. ZW1

Broad Agency Announcement (BAA) # 92-25

Category 2

SECTION A

Real World Software Engineering

Acceslon For

NTIS CRAMJ
DTIC TAB
Unannounced 0
Justification ..

By_
Distribution .

Availability Codes

Avail and I or
Dist Special

Points-of-Contact 'I
Technical: Administrative:

Professors Donald Goerbarn, Profesor Gordon Balles
and Robert Riser Fast Tennessee Stage University

Demenm of Computer
East Tennessee State University and Infounation Sciences
Department of Computer Box 70,711

and Information Sciences Johnson City, Tennessee
Box 70,711 37614-0711
Johnson City, Tennessee 37614-0711 (615) 929-6958
(615) 929-6849,5609 I01baileetsu.bitnet
i01SbamretsuJOlrlsefIetsu
FAX: (615) 461-7119

Structure of the deliverable

Introduction to this document.
a. Purpose and Goals
b. Technical details about the document
c. Structure of the document
d. Course overview and outline
e. Integrated course structure(matrix of course)
f. dknowledgements

Lectures
a. Introduction to lecture forms,
b. Lectures and associated handouts

III Labs
a. Introduction to labs
b. Introduction to lab forms
c. Labs

IV Projects
a. Introduction to projects
b. Selecting a project
c. Management of Teams

i. General Guidelines
ii Peer and Project Evaluation

Managing the Small Project Teams
Managing the Extended Project Teams

iii Extended Team Meetings
d. Management of Extended Project

I Scheduling
ii Configuration Management

e. Project Ideas
f. Inverted Functional Matrix Team Organization

V Can study-

VI Student assessment

VII Ada environment-

VIII Resources
a. Software engineering bibliography
b. Ada bibliography
c. Case tools list

Real-World Software Engineering
I NTRO-UCn
a. Purpose mid 0.61

Based on our experience teaching software engineering, we at East Tennessee State
University are convinced that a one-semester software engineering course cannot
adequately cover all aspects of the software development process and still provide
students with meaningful project experience. Current software engineering course
models emphasize either the product or the process [Shaw 911. These models rarely
finish a realistic product or do so by marginal treatment of significant aspects of the life
cycle. For example, while concentrating on implementation details, topics such as
detailed design reviews, configuration management, and maintenance are minimized.

To address this problem, East Tennessee State University is expanding and changing
its undergraduate curriculum In software engineering. Integral to this effort, we are
incorporating into the undergraduate curriculum lessons learned while developing and
teaching software engineering courses at the graduate level. This proposal was to
develop a two-semester undergraduate course which presents real-world software
engineering. The course provides a thorough coverage of the software development
process with realistic project experience.

The course is designed to present software engineering In a layered approach where
"inter-related topics are presented repeatedly in increasing depth" [Ford 87].
Furthermore, the relationship of software engineering principles to software
development is emphasized by the careful coordination of project and lecture stages
[Shaw 91]. For example, in the first four weeks the students are rapidly intoduoed to
the fundamental principles of software engineering concurrent with a small project.
During the remainder of the first semester, a thorough examination of analysis and
design and their controlling disciplines is presented. The second semester addresses
the remaining principles of a complete, mature software development process
[Humphrey 88].

In order to provide an instructional mechanism and realistic project experience, the
course uses both the "small group project" model and the "large project team" model
[Shaw 911. The first project is a "toy project" which is fully specified by the instructor.
The management organization for this project is a chief programmer team [Brooks 821.
During this four-week project, the students are also introduced to Ada using a "program
reading methodology" [Deimel 901. Ada is also used as the specification language.
As the toy project nears completion, a large poject for an external client is Introduced.

A matrix management organization is used for this project. The first semester takes
this project through Preliminary Design Review. Successful deliverables from this
semester will be used in the second semester. Emphasis is placed on validation
techniques for requirements and design. CASE tools are used to document and

validate the designs.

The second semester has three major project components. First is the completion of
a large project involving a real client. This project begins with a baselined design
document, specified in Ada, and continues through acceptance testing. The second
major component is multiple small maintenance requests applied to an Ada artifact.
This disciplined approach to maintenance gives the students experience needed by
industry, which is rarely achieved in traditional software engineering courses. Finally,
during a four-week assessment period, various formal methods, metrics, and tools are
applied to the three course projects. In this assessment, both the processes and the
products are evaluated to capture their strengths and weaknesses.

Innovations Include:

Ada - first introduced through program reading, then as specification and
design notation, later as an implementation language;

Industrial Setting - working on multiple teams and team organizations,
working on different sizes and types of projects, assuming different roles,
experience with a variety of CASE tools;

Continuous Assessment - integrated into all project activities using

formal reviews with an emphasis on validation and verification throughout
the life cycle;

Closing Assessment Period - a period dedicated to appraising the
strengths and weaknesses of the processes and products discussed and
developed during the course; and

Professionalism - integration of professional, ethical, and legal issues in
accordance with the recommendations of the IEEE/ACM Computer
Society Task Force.

b. Technical details relating to this document

All of the materials used in this course have been formatted in WordPerfect 6.0 for
windows. The entire document can be printed using that software. We have provided
it in this format to enable easy modification and adaptation by anyone using these
materials for teaching software engineering. The only restriction is on the material in
section d below which is from a copyrighted paper. This entire package of materials
is also available in postscript format. Both the wordperfect and postscript versions of

2

this material are availabI3 from the Defense Documentation Center..

C. Structure of the document.

These materials are designed to be used as a complete two semester course in
software engineering. The materials contained herein can be used either in whole of
in part. For example, most of the projects can be adapted to a one semester course
in software engineering, or a course which uses C++, rather than Ada as the language
of choice. The lectures are self contained, all relevant overheads and handouts are
associated with each lecture. The document is divided up by pedagogical tasks
associated with teaching an extended software engineering course. The tasks include
lectures, development and management of software development projects, assessing
the students work in those projects and their understanding of the course materials,
and tutoring them in the additional languages required to do their projects. Although
the work is divided into sections dealing with each of these tasks, the material in each
of these sections is cross referenced to relevant material in other sections. We have
also included a section on resources available in the summer of 1994.

d. Course Overview

In the development of this course, we presented our research in several forums,
including the Seventh Conference on Software Engineering Education. The description
of the course presented there is appended below.

3

Real-World Software Engineering:

A Spiral Approach to Project Oriented Course

Donald Gotterbarn and Robert Riser

East Tennessee State University
Johnson City, Tennessee 37604-0711

Abstract. A one-semester course cannot adequately cover the software
development process and still provide meaningful project experience. We have
developed and implemented a tightly- coupled two-semester undergraduate course
which presents, in a spiral form, theory and practice, product and process.
Coordinating the increase in depth of the lectures as topics are revisited
repeatedly, with increasingly demanding projects, constitutes our spiral approach.
Three projects differ in size, complexity, team structure, artifacts provided and
delivered, and development methodologies. The projects are carefully
choreographed to provide varied team experiences and allow each student to
function in a variety of roles and responsibilities. The project framework
provides a series of passes through the software development process, each pass
adding to a body of common student experiences to which subsequent passes can
refer. By the middle of the first semester students, individually and in teams,
have begun accumulating their own "war stories"; some positive, some negative.
This personalized knowledge provides a solid base for more advanced concepts
and classroom discussion.

I Introduction

Based on our experience teaching software engineering, we are convinced that a one-
semester software engineering course cannot adequately cover all aspects of the software
development process and still provide students with meaningful project experience.
Current software engineering course models emphasize either the product or the process
[Shaw 91]. These models rarely finish a realistic product or do so by marginal treatment
of significant aspects of the life cycle and premature immersion in implementation details.
For example, while concentrating on implementation details, topics such as detailed design
reviews, configuration management, and maintenance are not given adequate attention.

' This project was partially fended by DARPA research grant DAAL&-92-G-

0411.

4

To address this problem, we have expanded and changed our undergraduate curriculum
in software engineering. Integral to this effort we have incorporated lessons learned while
developing and teaching software engineering courses at the graduate level. Moreover,
we integrate graduate software engineering milestone reviews into the undergraduate
software engineering classroom. A DARPA grant emabled us to complete development
and implementation of a two-semester undergraduate course which presents, in a spiral
form, theory and practice, product and process, throughout the tightly coupled two-
semesters; mimicking a real-world software engineering process. 2

Our course differs from other multi-semester courses in two ways. First, rather than
separating theory and practice into different semesters [Adams 93]; we blend them
throughout. Second, rather than mistakenly presenting the software development life cycle
as two discrete pieces, analysis and design in one semester and code and test in the other,
we more accurately model the iterative nature of software development. Our approach
combines a thorough coverage of the software development process with realistic project
experience.

This paper describes our course, related experiences, and lessons learned during its
development and initial offerings.

2 The Approach

The two-course sequence is designed to present software engineering in a layered
approach where "inter-related topics are presented repeatedly in increasing depth" [Ford
87]. Furthermore, the relationship of software engineering principles to software
development is emphasized by the careful coordination of project and lecture stages [Shaw
91]. The combination of these two techniques, coordinating the increase in depth of the
lectures with more demanding project experiences, constitutes our spiral approach.

The course is built around three projects which differ in several significant ways: size,
complexity, team structure, artifacts provided and delivered, and development
methodologies. The projects are carefully choreographed to provide varied team
experiences and allow each student to function in a variety of roles and responsibilities.

In the first five weeks the students are rapidly introduced to the fundamental principles
of software engineering and, while working in teams, they complete a modest
development project. Despite the introduction of sound software engineering principles,
the simplicity of the project allows student teams to concentrate on the end product rather
than the development process and still achieve a modicum of success.

As the first project nears completion, a second, extended project with a real customer is
introduced. It spans both semesters and requires revisiting concepts in depth that were
merely touched upon in the first project. The large project is also a vehicle to introduce

The syllabus for the course is included as Appendix A.

5

and utilize new concepts, such as detailed design and configuration management The use
of a real customer provides an opportunity to study more complex requirements and
exposes students to problems which were not apparent in the small project The added
complexity, introduced by size, real customer, and intricate requirements, demands the use
of more effective controlling disciplines and increased attention to the software process.

The third project requires the students to perform maintenance on an existing large
software system. To mimic the typical industrial situation, these maintenance tasks are
assigned while the students are still working on the large project. Work on the
maintenance tasks and the large project overlap and they have a common due date. These
tasks provide yet another opportunity to revisit and reinforce significant software
engineering concepts, but this time from a maintenance perspective. Maintenance is
treated as a complete software development task. Students can now understand the
benefits of following good software engineering practices.

Finally, during a four-week assessment period, various formal methods, metrics, and tools
are applied to the three course projects. In this assessment, both the processes and the
products are evaluated to capture their strengths and weaknesses.

3 The Projects

In order to provide an instructional mechanism and realistic project experience we
combine two models from [Shaw 91], the "small group project" and the "large project
team" and supplement this with a set of maintenance tasks and a closing assessment
perixi.

3.1 Project 1: The Modest/Toy Project

The requirements are provided and students are expected to specify, design, code, and test
a solution. Toy projects recently used included a bottle and can recycling device, an
automated fire and security alarm system, a kiosk vending machine system and an EMS-
911 telephone exchange. The toy project is scheduled for weeks 2 through 6 of the first
semester. Since work must begin quickly, controlling disciplines are imposed upon the
teams with minimum justification at this point. For example, students are immediately
introduced to various lifecycle elements (scheduling, project organization, configuration
management, quality assurance, and verification and validation techniques) by "living
them" but only later are these topics formally addressed in lectures. While the project is
implemented in a language familiar to the student, Ada specifications are introduced in
high-level design.

These projects involve minimal logical complexity so that the students might devote their

See Appendix B for some examples of such projects.

6

attention to the details of the design and development of the software. Students are asked
to mimic a waterfall lifecycle. Teams are limited to four to six members each and we
have found that instructors can successfully manage up to three different toy projects.
Keeping track of the details of more than three simultaneous projects imposes a
considerable burden without any benefit. Of course this means that for larger classes
multiple teams will be working independently on the same project. There are some
educational benefits to having several teams attempting the same project.

A democratic team organization is used for toy projects. At this point in the course, the
instructor has inadequate knowledge of individual student's project-oriented skills to be
able to place them in other organizational models. Because each project is relatively
small, students approach it as individuals in an ad hoc fashion. Careful professorial
management is required to minimize this mistake. As a means of tracking progress and
focusing their efforts, a software project management plan (SPMP)', including scheduled
product reviews and deliverables, is provided. This software project management plan
applies equally well to all of the toy projects.

Due to time constraints, we strongly recommend that the professor serve as the user for
these projects. As the user, the instructor must assume a naivete about computing and
only answer questions from the user perspective. We have found that it is helpful to
declare which role --customer or professor-- is being assumed at any given time (e.g.
during requirements clarification and formal reviews of deliverables). This is necessary
to resist "professorial micro management" of projects. This over-management problem
is further minimized by the involvement of other faculty in roles such as user, customer,
staff, and reviewer.

In order to encourage meeting deadlines, we require regular team meetings. To help
students who have not experienced task oriented meetings, we provide a task oriented
team meeting report form'. We use this form to describe how to control and track tasks.
Completed team meeting reports are required at the beginning of each week and any
common problems are disc,:ssed with the class. Later this material is revisited in
discussions of project status reports and assessment techniques.

The team meeting reports also serve as an early warning system for a variety of personnel
problems. Even at this early stage, students sometimes shirk their responsibilities. We
recommend team sizes of six students: if one or two students fail to contribute, or leave
the team, it can still successfully function.

During this project, students are introduced to Ada through a "program reading
methodology" [Deimel 90] using several artifacts developed especially for the course. At
this point Ada is used only as a specification language. We have found John Herro's

4 A sample modest project management plan is contained in Appendix C.

s A sample team meeting report form Is contained in Appendix D.

7

shareware tutorial, The Interactive Ada Tutor'. to be useful as a self-paced introduction
to Ada. As the toy project nears completion, a large project for a real customer is
introduced.

The deliverables from each team's project include a requirements analysis document, a
system design, the outline of a test plan which is traceable to the requirements, test cases,
meeting reports, and an implemented system.

3.2 Project 2: The Extended Project

Beginning with an initial request from a "real customer", students are expected to
complete all aspects of a solution, from requirements engineering (elicitation, analysis, and
specification) through implementation. This project begins in week five of the first
semester and extends through week eleven of the second semester. Analysis and design,
up through Ada specifications, are completed by the end of the first semester with detailed
design, coding, and testing to follow in the second semester.

Several items introduced in project one are revisited and expanded upon here, including
reviews, controlling techniques, software development standards, Ada as a software
development tool, and development team organizations.

Internal project reviews are emphasized [Bruegge 91]. The SPMP for the extended
project7 requires reviews at appropriate places. For example, students experience for the
first time a formal requirements review in the presence of a customer. The schedule
includes time for them to modify their documents based on the reviews. Students are
uncomfortable reviewing the work of their peers and uncomfortable presenting their work
to peers. We address these two problems in several ways. The reviews are highly
structured by providing the students with general guidelines for a review process and
specifications for the content of preliminary and detailed designs'. We have found that
it also helps to have another faculty member, who is carefully coached to assume an
attitude of constructive criticism, participate in the reviews.

In some cases we have multiple reviews on the same day for teams which have an
obvious vested interest in the other team's work. This interest, even if generated out of
self-defense, guarantees careful prior attention to the material being reviewed. For
example, the preliminary user manual review and the preliminary requirements review are
scheduled for the same day. These reviews also provide ample opportunity for "planned
spontaneity" on the part of the instructor. The multiple review approach insures that other
viewpoints are heard and prompts an apparently spontaneous discussion of viewpoint
analysis and resolution.

'Useful introductory Ada tools Include: [Herro 8], [Benjamin 91), and [Booch93].

' A sample project management plan for extended projects is in Appendix L

'The review guideline. and formats for detailed and preliminary design are contained in Appendix F.

8

A tool to help students overcome their concerns with reviews is an educational materials
package from the Software Engineering Institute. The package includes a video-tape
"Scenes of Software Inspections" and discussion aids. [Deimel 911 In less than 20
minutes, students see several dramatizations of common pitfalls in formal reviews. The
presentation makes the pitfalls and the problems they generate obvious to the students.
Each dramatization is intended to be followed by a discussion of how to avoid these
pitfalls. This discussion reduces anxiety about reviews and develops an appreciation of
appropriate review roles and behavior. The students are required to attend at least one
formal review in our graduate software engineering program.

While Ada was introduced in the high level specification of project one, it is now used
as a requirements specification and design tool. It is also the implementation language
for the extended project. Following our spiral approach, the program reading
methodology is continued. The examples and classroom exercises provided go into
greater depth. In-class discussion of Ada syntax is minimized and there is a continued
reliance on self-paced Ada tutorial materials, laboratory experiences, and the Ada
Language Reference Manual [ANSI/MIL-STD-1815a, 19831.

We now justify the controls which were imposed in the toy project. Recognized
standards, such as DOD, NASA, or IEEE models, are formally introduced and are
required for all project documents and procedures. The size and complexity of the current
project helps students appreciate the importance of all aspects of the standards, both
managerial and technical, in controlling both process and product. The use of accepted
controlling techniques is also reinforced.

The project team organization changes dramatically for this project. Rather than multiple
projects with democratic teams, the entire class is organized to work on a single project
and students assume roles on various functional teams, e.g., requirements, configuration
management, testing, design, and programming. Several of these teams start work
immediately following the client request.

New concepts are also introduced in project two, including rigorous controlling techniques
such as configuration management, formal test plans, team walkthroughs and inspections,
a matrix organization requiring inter-team and intra-team communication, verification and
validation, software quality assurance, and requirements elicitation.

Configuration management is enforced. A configuration management plan is developed
by a student selected as configuration manager. This plan is developed and presented to
the class for review. The revised plan is automated and in place prior to the development
or submission of any other configuration items. From this point on, all documents
submitted for formal review are immediately placed under configuration management and
subsequent modifications must follow the configuration management plan.

The careful selection of a configuration manager (CM) greatly improves the chances for
a successful project. The student selected as the CM is placed in a unique position among

'A sample plan developed by a student Is attached as Appendix G.

9

peers. The instructor, like other managers, must provide appropriate support and direction
for the CM.

Because students have little exposure to formal test design and testing methods, we
provide them with a sample test plan. Because the sample test plan is keyed to
requirements and design, we use it to introduce traceability. Most students view testing
simply as code verification. To address this narrow view we require that the test team
begin work on its plan shortly after requirements analysis is underway. The degree of
abstraction of the requirements forces the test team to treat testing as a complete lifecycle
issue.

In addition to revisiting formal reviews, we add required team inspections and
walkthroughs of their configuration items. These processes occur during team meetings.
To give the widest possible range of experiences, the students are required to function in
two different review roles on each team during the semester. Since each student is on two
teams, they experience four different roles.

A significant aspect of this project is our employment of a matrix organization. The class
is organized as a project team working on a single project. This resembles a functional
organization. We make it resemble a matrix organization when we divide the class into
several functional teams, as described above. Each student, with the exception of the CM,
serves on at least two teams [Stuckenbruck 81]. The correct allocation of students to
functional teams is critical for project integrity. For example, students should not be on
both the coding and the test team. A critical guideline is that no student be assigned to
two teams which are responsible for validating each other's work. Many teams act as
cross checks on each other during development. For example, if at all possible there
should be a user's manual team which meets independently with the user, while the
requirements team meets with the customer. During the requirements review the user's
manual team can be used to help validate the requirements. Appendix H contains a model
of a matrix organization for a class of fifteen students; a model for a class of twenty-five
students has also been developed.

This methodology has the virtue of placing many students in leadership roles. Because
teams which must communicate directly with each other have no common students, a
higher level of precision is required in inter-team communications. They cannot rely on
a student who is on both the sending and the receiving team to clarify document
ambiguities. Although most students function as members of only two teams, they learn
about the functions and products of the other teams through the review process.

The first semester takes this project through preliminary design review. Emphasis is
placed on validation techniques for requirements and design. Successful deliverables,
specified in Ada, from this semester become baseline documents for the second semester.
The second semester begins detailed design and continues through acceptance testing.
The deliverables from the class and teams have included: requirements documents from
the requirements team; test plan and testing report from the test team; configuration
management plan, change report log, system build report from the configuration manager,
preliminary and detailed design documents from the respective design teams; meeting

10

reports from all teams, and an implemented and accepted system.

3.3 Project 3: The Maintenance Project

Another major component of the second min-ster involves multiple maintenance requests
applied to a large Ada artifact. This disciplined approach to maintenance gives the
students experience needed by industry but rarely achieved in traditional software
engineering courses.

Students perform major maintenance (including corrective, enhancement, and adaptive
activities) on an existing software system. A maintenance configuration management plan
which introduces version control techniques, and a maintenance project management plan
is provided. The maintenance project is scheduled for weeks six through eleven of the
second semester, overlapping the extended project. A variety of maintenance tasks, like
those described by Engle, Ford, and Korson [Engle 89], are assigned. Without guidance
students tend to revert to "code and fix" habits.

A new project organization is introduced here. The students are organized into chief-
programmer teams [Brooks 82]. The choice of chief-programmer is based on our
knowledge of the students' skills and attitudes demonstrated on the other course projects.
Each team is given responsibility for different maintenance tasks [Callis 91]. These tasks,
applied to a single large artifact, require inter-team communication and stronger change
control, and introduce the problem of maintaining conceptual integrity. This new
complexity provides new challenges to the student CM.

The maintenance project helps students see the utility of controlling techniques during
original development. By equating maintenance and development the students revisit
most of the concepts previously discussed. This third trip through the spiral makes it
easier for them to work with a large unfamiliar artifact. Many students find this
somewhat surprising and rewarding.

3.4 Project Assessment Period

Continuous assessment is integrated into all project activities using formal reviews and
an emphasis on validation and verification throughout the life cycle. In addition, an
extended closing assessment period is dedicated to appraising the strengths and
weaknesses of the processes and products discussed and developed during the course.

This assessment period, based on the final phase of the Design Studio course from
Carnegie Mellon's Master of Software Engineering curriculum [Tomayko 91], takes place
during the final four weeks of the second semester. It also incorporates aspects of the
lessons learned document of the NASA software development standard [NASA 86].
Students learn to be constructively critical of their own work and to be realistic about
their plans. The major purpose is to determine to what degree the original project plans
were realized and to discover shortcomings of the software product and, perhaps more

11

importantly, the software process. The assessment includes an analysis of possible
product improvements and a discussion of how to revise the product accordingly.

4 Innovadons and AdvUtps of this Apprach

This course provides a commercial-like environment where students work on multiple
teams and team organizations, work on multiple projects, and asmime different roles. This
interplay of models accurately reflects what the students will encounter in industry. This
setting is also modeled by using a variety of project types, namely, the "real client" and
the "toy project" described by Bruegge, Cheng, and Shaw [Bnaegge 911. Our projects
collectively meet the standards set forth by Shaw and Tomayko. For example, the large
project has a real customer and a target audience. "A project with a real client is the best
motivator" [Shaw 91]. But this project is only pursued after the students have completed
a sheller project and have been exposed to the proper techniques of software
development. Students will gain p a -in-the-large experiences on the extended
project and on the maintenance project. Acquisition of new domain knowledge, another
standard set forth by Shaw and Tomayko, is required to some extent in all three projects.
F'ially, configuration management tools appropriate to each type and size of project are
used [Shaw 91]. These projects provide both a teaching mechanism and realistic project
experience for the students.

Multiple modes of communication are experienced. The democratic model gives the
students experience with a small project and intra-team communication. The matrix
organization gives the students experience with inter-team communication. The
maintenance project requires both of these forms of communication. All of these forms
of communication are needed by the successful software engineer.

ETSU's College of Applied Science and Technology has an ongoing emphasis on written
and oral communication skills. In all work for this course, including reviews, formal
presentations and documents, the students are required to adhere to the standards as
specified in the Language Skills Handbook (AST 901. Reviews and presentations could
be videotaped for review, development and evaluation.

Ada is used throughout all course activities. This is our students' first exposure to Ada.
It is introduced early in the first semester using program reading techniques [Deimel 901.
For example, students learn to read Ada specifications as illustrations of simple designs.
At the same time, Ada's complexities are progressively introduced by reading other Ada
examples. In addition to programn reading and extensive use of Ada examples, students
learn to write high-level design specifications in Ada. A major objective is to have the
students produce and validate a complete Ada specification of a large project by the end
of the first semester. Students come to view Ada as more tha an implmntaio
language. During the second semester, the Im project is implemented in Ada, and
maintenance is performed on an existing Ada software system. We use Ada Quality and
Style: Guidelines for Professional Programmers [SPC 91] as our Ada style guide.

12

Professional, ethical, and legal issues are integrated into both the lecture and laboratory
components of the course. This is consistent with the recommendations of the
EEACM Computer Society Task Force. Our model of the industrial me"ting provides

a context in which to discuss a range of ethical situations not normally encountered in
typical software engineering courses.

5 Condusion

We have found this spiral approach to be an effective teaching and learning tool. The
project framework provides a series of passes through the software development process,
each pass adding to a body of common student experiences to which subsequent passes
can refer. By the middle of the first semester students, individually and in teams, have
begun accumulating their own "war stories"; some positive, some negative. This
personalized knowledge provides a solid base for more advanced concepts.

Acknowledgements

We would like to acknowledge Dr. Suzanme Smith's contribution in the development of
the research grant proposal used to support this work. East Tennessee State University
provided institutional support throughout the project A special debt is owned to the
software engineering students who survived early versions of this course and helped us
develop a better product. We would like to thank the Defense Advanced Research Project
Office and the Ada Joint Program Office for their support of the improvement of software
engineering curricula and the support by the U.S. Army Research Office.

References

[Adams 93] E. Adams, "Experiences in Teaching a Project-Intensive Software Design Course,"
Proceedings of the First Annual Rocky Mountain Small College Computing Conference, volume
8, number 4, March 1993, pp. 112-121.

[ANSI/MIL-STD-1815a, 1983] ANSI, American National Standard reference manual for the Ada
o~emming 1agone, ANSI, New York, New York, 1983.

[AST 90] School of Anolied Science and Technoloav Lam a Skills Hud L East Tennessee
State University, 1990.

[Benjamin 1991] G. Benjamin, A intmaual. to Acconw Aplebvo
McGraw-Hill, IncNew York, N.Y., 1991

(Booch 93] G. Booch, Software Engineerina with A& Benjamin/Cummings Publishers, Menlo
Piak, CA, Forthcoming.

[Brooks 82] F. Brooks, The Mythical Man Month, Addison-Wesley, Reading, MA, 1982.

13

[Bruegge 91] B. Bruegge, J. Cheng, and MI. Shaw, "A Softwmr Engineering Project Course with
a Real Client," CMU/SEI-91-EM-4.

[Cullis 91] F.W. Cailis and D.L. Thidna, "A Controlled Softwar Maintenance Project," Saftwa
SEI Conference 1991. Pittsburgh, PA, Octoher 7-8, 1991, Spinger-Verlah

New York, NY, pp. 25-32.

[Deimel 90] LE. Deimel and J.F. Neveda, "Reading Computer Program: Instructor's Guide and
Exercises," CMU/SEI-90-EM-3.

[Deimel 91] LE. Deimel, "Scenes from Software Inspections," CMU/SEI-91-5.

(Engle 89] C.B.Engle, G. Ford, and T. Korson, "Software Maintenance Exercises for a Software
Engineering Project Course," CMU/SEI-89-EM-l.

fFord 87] G. Ford, N. Gibbs, and J. Tomayko, "Software Engineering Education: An Interim
Report from the Software Engineering Institute," SEI-87-TR-8.

[Herro 88] John Herro, The Interactive Ada-Tutor, Software Innovations Technology, 1083
Mandarin Drive N.E.. Palm Bay FL 32905-4706

[Humphrey 88] W. S. Humphrey, "Characterizing the Software Process: A Maturity Framework,"
IEESfitare, March 1988, pp. 73-79.

[NASA 861 NASA Sfw-DID-41, "Lessons Learned Document Data Item Description."

[Shaw 911 M. Shaw and J. Tomayko, "Models for Undergraduate Project Courses in Software
Engineering," Software Engineering Education, SEI Conference 1991, Pittsburgh. PA, October 7-8,
1991, Springer-Verlag, New York, NY, pp. 25-32.

[SPC 91] Software Productivity Consortium, Ada Oualitv and Style: Guideline for Professional
rnammer, Software Productivity Consortium, Hemdon, Virginia, 1991.

(Stoecklin 93) S. Stoecklin, Ada Lab Exercises funded by a Darpa Grant 1993.

[Stuckenbruck 81] L.C. Stuckenbruck, A Decade of Proiect Mananement Project Management
Institute, 1981.

[Tomayko 91] J.E.Tonayko, "Teaching Software Development in a Studio Enviromnent," S
Blletin volume 23, number 1, March 1991, pp. 300-303.

14

e. Integrated Course Structure

Three elements need to be carefully integrated to make this course a success.
Lectures to the students about the principles and concepts of software engineering must
be coordinated with their project tasks and the labs must illustrate both lecture materials
and clarify project tasks. Our model for this integration is illustrated ini the matrix below.
The Roman numerals in the first column indicate the semester, the numbers in the lecture
column correspond to the lecture numbers in section II of this document, the lab numbers
correspond to the lab numbers in section III of this document, and the configuration items
for the various student items correspond to the configuration items for their projects.
These configuration items are described in section IV d.

Week Lecture Lab Project

I-1 001 - Intro, syllabus,
policies,overview

I-1 002 - Definitions of SE, software
life cycle, quality, process

1-2 003 - Requirements extraction - 001 - Small project customer Begin Cl-i
what & how request, team organization,

project mgmt plan

1-2 004 - Intro to structured analysis, 002 - CD, DFD exercise Cl-1
context diagram, DFDs, data

I dictionary

1-3 005 - Quality standards in 003 - Feedback on Cl-1, small Begin CI-2
requirements,requirements project CD, DFD, DD
extraction, DFDs

1-3 006 - Intro to design 04A - Structure charts CI-2

1-4 007 - DFDs and DD, structure 005 - CI-3 for small project, Begin CI-3
charts, test plans and Feedback on Cl-2
requirements traceability

1-4 008 - Design concepts; 006 - Additional Feedback on CI-3
architectural, behavioral, CI-2, preparation for design
procedural design review

1-5 009 - Testing and test plans 007 - Development of classes
of tests for small project

1-5 010 - Ada and design; Ada as a 008 - Design review Cl-4
design notation presentation

15

Week Lecture Lab Project
146 011 - Software maintenance 000 - Feedback on design

review preentation__
1-6 012 -Controling discolines; 010 -Feedback on Cl-5,

configuration management preparation for acceptance
I _ _ __ _ teog_ _ _

1-7 013 - Ada and maintenance 011 - Extended project Cl-5
-utoe request_ _

1-7 014 - Software Ieo cycle models 012 - Extendled project team CI-6
or~aniat~onCI-7

1-8 015 - Reqluirements elicitation, 013 - Peer review and Cl-S
_____ analysi and specification accepance tes t /eview______

1-8 016 - Ada as a specification and 014 - Instructors assessment
maintenance tool of emall profect~teamn

assslgnmends , distibue
_____ _________________ SPMP_______

1-9 017 - Reqluirements standards 015 - Use project perspective
______ 21867A __________________

1-9 018 - Team organization and 016 - Tasks for configurmation
software quality manager, requirements, user

I_ _ _ __ _ _ Interface, and test plan teams __ _

1-10 019 - Examination 1-1 (Examination 1-1, cont) ______

1-10 020 - Returnildiscuss first 017 - Presentatironrvlew of Cl-I
examination; from ERD's to Ada configuration management

I _ _ _ _ plan_ _ _

1-il 021 - Verification and validation 018 - Preliminary reqluirements
review; Preliminry" user

________________ manual, user interface review

1-11 022 -Testing 019 -Preliminary test plan
review__

1-12 023 - More on Structured 020 - Requiremnents review CI-2
analysis; proces specifications Cl-3

CI-4

1-12 024 - TrWWforM analysis. C-
transaction analyrsis _ __ _

16

Week Lecture Lab Project

1-13 025 - Coupling and cohesion

1-13 026 - Preliminary design using 021 - Stw preliminary design
functional decompoItlon; ko to
object-orlentatIon, object -
oriented analysis _ _ _ _ _ _ __ _ _ _

1-14 027 - High level OO , identifying 022 - Ada laboratory
objects, Rumbaugh notation environment

1-14 028 - Ada packages 023 - Peer review of extended
project through preliminary
design; preliminary design
review

1-15 029 - Software quality assurance 024 - User manual/interface
and reviews and test plan reviews

1-15 030 - Review standards, review CI-6
checklists CI-7

Cl-8

1-16 Final Examination 1-2

I1-1 031 - High level design vs 025 - Review extended project
detailed design; Detailed design specifications and preliminary
deliverable and procedures design completed in semester

I1-1 032- Reuse 026 - reorganize project and
teams

11-2 033 - Nassi-Shnelderman 027 - Nassi-Shnelderman

diagrams diagrams; project teams work

11-2 034 - Ada: text VO

11-3 035 - Ada: data types

11-3 036 - Ada: statements, control
structures
037 - Ada: structured data types,

11-4 038 - Ada: access data types 026 - Detailed design review

11-4 039-Ada procedures, functions, 029 - Feedback on detailed
- . design

040- Ada Generics

17

Week Lecture Lab Project

11-5 041 - Ada: exceptions 030 - Videotape on code
I - _eco

11-5 042 - Ada: sequential and direct
files

11-6 043 - Ada: Tasks

11-6 see note

11-7 044-Examination I1-1
11-7 045-RevIew Examination I1-1 031 - Maintenance project

description, team organization,
team assignments, assignment
of maintenance 1

11-8 see note

11-8 * see note

11-9 046 - Use cases 032 - Code Inspections

11-9 *see note 033 - Maintenance project:
review task 1, assignment of
task 2

11-10 *see note

11-10 'see note

11-11 see note 034 - Maintenance project: CI - 10
review task 2, assignment oftask 3

11-12 *see note 035 - Extended project: Cl -1I
system acceptance test

11-12 * see note 036 - Feedback, Instructors
assessment of acceptance test
and extended project

11-13 047 - Implementation languages

11-14 048 - Project scheduling, work
breakdown structures

11-14 049 - Project estimation, 037 - Estimation: function
COCOMO points wrt extended projects

18

Week Lecture Lab Project

11-15 'see note 038 -Individual and small
group analysis of ethial

11-15 050 - Course assessment

11-16 Final Examination II

• NOTE Meetings during these weeks are used to meet the needs of the extended
project. They can be utilized for the various reviews, individual team
meetings, or project meetings with the entire class.

.. Acknowledgements

The Defense Advanced Research Project Agency and the Ada Joint Project Office
provided the opportunity to undertake this project. We appreciate their interest in and
commitment to undergraduate software engineering education and their continued support
throughout the project. Likewise we appreciate the support of the U.S. Army Research
Office.

This course was developed and tested over several semesters at East Tennessee State
University. The students in these classes played vital roles in helping us develop a better
product. In particular a special debt is owed to the following students for their intensive
efforts during the summer of 1993: Woody Beverly, Darlene Fladager, Mitch Moses, Drew
Picklesimer, Kellie Price, Eugene Price, James Stephenson, and Mike Stillwell.

Bob Tolbert provided technical assistance and brought consistency to the documentation
of the lectures, laboratories, and supporting materials. Luke Pargiter's expertise and
patience in providing hardware and software support was invaluable.

Finally, we appreciate the institutional support provided by East Tennessee State
University in the form of released time, laboratory facilities and support, administrative
support, and commitment to undergraduate software engineering curriculum.

19

Real-World Software Engineering
II LECTURES

a. Lecture format and lecture forms.

The course, covering two semesters, consisted of formal lectures, discussions,
laboratory meetings during scheduled class meetings and team meetings outside of
scheduled class hours. This section contains the lectures in the order in which they are
given to the class. The two semesters are divided up into two class meetings per week.
The amount of time given to formal lecture during these meetings varied depending upon
the project stage and students understanding of and progress on project deliverables.
Because of difficulties in establishing team meeting times, some class time was devoted
to team meetings. Using class meeting time in this way also offers the teacher an
opportunity to participate in the meetings. Because the projects are the major scheduling
factor in this course, it is important to be flexible in terms of trying to cover two lectures
every week. Project reviews, e.g., requirements reviews, design reviews, and test plan
reviews, are most effective when the entire class participates. These reviews consume
class meeting time. We have found that this course must rely on the students doing the
required readings. Because of the other events which use class time, the student can
not depend on the teacher to cover every concept during formal lecture.

The lecture forms provide most of the structure for a lecture and significant detail
for each lecture. The form starts out with the general topics for the lecture. These are
stated in terms of the concepts that are addressed in the lecture. They are followed by
the instructional objectives of that particular lecture. The objectives are generally stated
in terms of behavioral goals. Both the topics and the objectives can be used in test
construction. The topics can be used to construct concept questions and the objectives
can be used to construct performance questions.

We have used the SET UP, WARM-UP section to provide some connection
between the current lecture and a previous lecture or topic. In some cases, e.g. when
there are several lectures on Ada syntax, we have not provided such a connection.

The CONTENTS section contains the main body of the lecture. The topics are
presented in several paragraphs. The overheads used for that lecture follow the
CONTENTS section. As a topic is described in the CONTENTS section, the related
overhead is named by using both the lecture number and an overhead number,
e.g.,L23OH2. This refers to the second overhead used in lecture 23. The overheads are
formatted for easy duplication. Overheads generally contain examples of the concept
being discussed in the CONTENTS section. They can also contain sample exercises to
be done during class in order to reinforce concepts just discussed. The CONTENTS
section contains answers to the exercises on the overheads. In a few cases, such as the
sample test plan overhead, we have included rather lengthy explanations of the overhead
In the form of instructor notes.

The PROCEDURE section contains subsections on teaching method and
vocabulary introduced. The presumption is that the major teaching method is lecture and
discussion using the overheads and handouts included in the lecture forms. In several
cases we have included some hints at additional discussion or alternative teaching
methods that we have had success with when covering a particular topic. The vocabulary
introduced can be provided to the student as a review tool.

The RELATED LEARNING ACTIVITIES section list the particular labs which we
have associated with a particular lecture. These labs frequently tie the theoretical lecture
material to the practical concerns of their projects.

There are two sections on readings, one is the assigned reading in the textbooks
we use for the course, and the other is a list of reading on the same topic in other
software engineering textbooks. If we cited the work of another software engineer in the
lecture or overhead material, then a reference to that material is included in the reading
list.

On some occasions, the contents refer to an overhead used in a previous lecture,
e.g., lecture five refers to an overhead from lecture 3. When this happens, the earlier
overhead is also included in the current lecture. Lecture 5 has an overhead from lecture
3 in it.

These forms should provide you with an adequate foundation for structuring you
lectures and relating them to the significant experiential elements of this course.

b. Lecture Forms

2

LECTURE NUMBER: 001

TOPIC(S) FOR LECTURE:
Introduction to course

INSTRUCTIONAL OBJECTIVE(S:
1. Learn names of Instructor(s), and other students.

2. Learn course format, and course policies.

3. Become familiar with detailed course syllabus.

SET UP. WARM-UP:
(How to involve the learner: recall, review, relate)

Try to set tone for the rest of the course. In previous courses you have
covered many aspects of software development (mention specific topics such
as programming, design; mention specific courses). We'll be looking at those
as well as others as we consider software as an engineered groduct; some
topics will be completely new, some technical, some non-technical.

Realistic team project experiences will be integrated into the course. Since
the instructor(s) and students will be spending a lot of time together in the
classroom and in your team projects, it is important to get to know one
another and to develop a comfortable working atmosphere.

(Learning Label- Today we are going to learn ...)
Today we want to give a sense of the course; specifically an overview
including how class and project activities will be integrated, the course
format, syllabus, and course policies.

CONTENTES:
1. Introductions

a. Professor(s) introduce themselves and others responsible for
the course.

b. Have the students introduce themselves since they will be
working together on projects.

1 Lecture 001

2. Approach

a. This is a two-semester undergraduate software engineering
class that presents a thorough coverage of software
engineering while at the same time providing meaningful project
experiences that mimics a real-world software engineering
process. You will each get to work with several people in a
vaariety of roles on several projects.

b. We are taking a "spiral approach" to the material presented.
Our first pass through some topics will be exactly that - a first
pass. We intend the depth provided to be sufficient for
application to your first project. Gaps will be filled in during
subsequent passes in the spiral. Similarly there are many
techniques and methodologies for analysis and design but we
need to choose specific ones to apply to the first project in a
timely fashion. So, don't worry that we're moving on to design
and you feel that there are many aspects of analysis that have
not been covered.

c. The understanding that project activities and class activities will
be carefully coordinated is important. It is also important to
make students aware that factors in the success or failure of
software projects include non-technical problems as well as
technical problems.

3. Distribute and discuss course policies.
L1HD1
a. Course description and typical class format.

b. Prerequisites.

c. Textbooks.

d. Grading policies.

4. Questions from students?

5. Distribute and discuss detailed course syllabus.
L1 HD2
a. Walk through first week of the sylabus in order to explain all

aspects and notation.

2 Lecture 001

6. Questions from students?

teaching method and media:
Set tone for course; try to generate enthusiasm, team concept, opportunities
to gain realistic project experience.

Read D. Gotterbam and Robert Riser, "Real-World Software Engineering: A
Spiral Approach to a Project-Oriented Course," Lecture Notes in Computer
Science 750. Software Engineering Education, ed Jorge L. Diaz-Herrera,
Springer Verlag 1994 pp 119-151 for a complete understanding of the
structure of this course.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:overheads:

handouts:
Li HD1 Course policies
L1 HD2 Detailed course syllabus

RELATED LEARNING ACTIVITIES:

READING ASSIGNMENTS:

RELATED READINGS:

3 Lecture 001

COURSE POLICIES

COURSE DESCRIPTION: This is a two-semester software engineering course that
covers all aspects of the software development process while providing
participants with realistic project experiences. Each student will function on
multiple project teams in a variety of roles and responsibilities.

Project and lecture activities will be coordinated. Typical class
meetings will consist of a lecture component and a lab component. The lab
component will include both individual activities and project team activities.

PREREQUISITES: File Processing, Data Structures

TEXT: a) Software Engineering 4th edition, Sommerville
b) Software Enoineerina with Student Proiect Guidance, Mynatt
c) Ada Minimanual, Benjamin

GRADING: Tests (2, equally weighted) -------------------------- 40%
Team project 1 --- 15%
Team project 2 --- 25%
Participation: -- 20%
Includes attendance, class discussion,exercises and assignments,
quizzes on assigned reading, presentation responses

A passing average on each of the four components above is required to pass
the course.

Individual project grades will be based on 3 factors: team project grade, peer
review, and instructors' perceptions of individual contributions.

All deliverables are due at the start of class on the specified due date unless
otherwise stated.

GRADING SCALE: 93 -100: A 77 - 79: C+ 0 - 54: F
90 - 92: A- 70 - 76: C

65 - 69: C-
88 - 89: B+
83- 87: B 60- 64: D+
80 - 82: B- 55 - 59: D

L4HD1
4

DETAILED COURSE SYLLABUS

Week One

Topics:
Introduction to course, course objectives, workshop format, grading policies,

and team projects
Introduction to software engineering, quality software, requirements from the

viewpoints of the customer and user, development of abstract and
requirements list from problem specification, and the example
project

Readings for class:
Sommerville Chapter 1 (pp. 1-5)
Mynatt Chapter 1 (pp. 1-27)

Week Two

Topics:
requirements extraction
analysis process
context diagrams, data flow diagrams (DFDs), and data dictionary

Readings for class:
Mynatt Chapter 2 (pp. 44-62 and pp. 70-74)
Sommerville Chapter 3 (pp. 47-63)

L1HD2
5

Week Three

Topics:
quality standards in requirements
requirements extraction
function-oriented design - more on DFDs and data dictionaries, structure

charts

Readings for class:
Sommerville Chapter 3 (pp. 47 -63)
Sommerville Chapter 10 (pp. 171-188)
Sommerville Chapter 12 (pp. 219-237)
Mynatt Chapter 2 (pp. 44-62)
Mynatt Chapter 4 (pp. 143-156)

Week Four

Topics:
data flow diagrams and data dictionaries
structure charts
requirements traceability

Readings for class:
Sommerville Chapter 12 (pp. 219-234)
Sommerville Chapter 10 (pp. 171-188)
Mynatt Chapter 4 (pp. 143-156)

L1HD2
6

Week Five

Topics:
testing and test plans
Ada and design notation

Readings for class:
Sommerville Chapter 19 and 22 (pp.378-388 and pp.425-441)
Mynatt Chapter 7 (pp.276-315)
Sommerville Appendix A (pp.607-620)

Week Six

Topics:
software maintenance
configuration management and software quality assurance (SOA)

Readings for class:
Sommerville Chapter 28 (pp. 533-541)
Sommerville Chapter 29 (pp. 551-564)
Mynatt Chapter 8 (pp. 334-340)

Week Seven

Topics:
Ada and maintenance
software life cycle models

Readings for class:
Sommerville Chapter 1 (pp. 5-18)
Mynatt Chapter 1 (pp. 12-27)

LIHD2
7

Week Eight

Topics:
requirements analysis and specification - client requests, definition of

requirements, requirements specification
Ada as a specification tool and a maintenance tool

Readings for class:
Sommerville Chapter 5 (pp. 85-103)
Mynatt Chapter 2 (pp. 62-83)

Week Nine

Topics:
requirements standards, 2167a
team organization and software quality

Readings for class:
Sommerville Chapter 3 (pp. 45-61)
Sommerville Chapter 5 (pp. 85-103)
Mynatt Chapter 2 (pp. 62-91)
Mynatt Chapter 1 (pp. 31-42)

Week Ten

Topics:
Examination I-1
ERDs and Ada

Readings for class:
None

L1HD2
8

Week Beim

Topics:
verificaton and valato (V&V)
testing

Readings for class:
Sommerville Chapter 19 (pp. 373-386)
Sommerville Chapter 22 (pp. 425-439)
Sommerville Chapter 23 (pp. 441-454)
Sommerville Chapter 24 (pp. 457-473)
Mynatt Chapter 7 (pp. 274-316)

Week Twelve

Topics:
relationship between requirements and preliminary design, more on structure
charts, transform analysis, transaction analysis, designing data structures,
abstraction

Readings for class:
Sommerville Chapter 2 (pp. 71-82)
Sommerville Chapter 12 (pp. 222-228)
Mynatt Chapter 4 (pp. 62-69)
Mynatt Chapter 4 (pp. 143-169)

Week Thirteen

Topics:
introduction to object-odented development
coupling and cohesion

Readings for class:
Sommerville Chapter 10 (pp. 182-188)
Mynatt Chapter 3 (pp. 94-130)
Mynatt Chapter 4 (pp. 144-150)

L1HD2
9

W Foureon

Topics:
high-level object-oriented design
notation for preliminary design
Ada packages

Readings for class:
Benjamin Chapter 8 (pp. 73-78)
Sommerville Chapter 10 (pp. 177-182)
Sommerville Chapter 11 (pp. 194-236)
Somrnmerville Appendix A (pp. 610 -613)
Mynatt Chapter 8 (pp 364-368)

Week Afteen

Topics:
Introduction to software quality assurance
Reviews - walklhroughs and inspections
Review standards and checklists

Readings for class:
Sommerville Chapter 31 (pp. 589-598)
Mynatt Chapter 2 (pp. 77-79)

Week Scteen

FINAL EXAMINATION I

Week Seventee

Topics:
reliability and reuse In detailed design
The relation between detailed and high-level design
detailed design procedures
detailed design deliverables

Readings for class:
Sommerville Chapter 16 (pp. 309-328)
Mynatt Chapter 1 (pp. 77-79)
Mynatt Chapter 3 (pp. 94-138)
Mynatt Chapter 4 (pp. 169-183)
Benjamin Chapters 9 and 12 (pp. 79-85 and 111-117)

L1HD2
10

Week Eighteen

Topics:
Nassi-Shneiderman chart notation
Introduction to Ads
I/O in Ada

Readings for class:
Mynatt Chapter 5 (pp. 198-202)
Benjamin Chapter I (pp. 1-10)

Week Nineteen

Topics:
Ada data types
Ada statements
Ada structured data types

Readings for class:
Benjamin Chapters 2-3 (pp. 11-28)
Benjamin Chapter 4 (pp. 29-37)
Benjamin Chapter 5 (pp. 39-50)

Week Twenty

Topics:
access data types in Ada
Ada procedures, functions, and packages
Ada generics

Readings for class:
Benjamin Chapter 7 (pp. 63-72)
Benjamin Chapters 6 and 8 (pp. 51-62 and 73-78)
Benjamin Chapter 9 (pp. 79-87)

L1HD211

Week uTItpun

Topics:
exceptions and exception handlers In Ada
sequential and direct files In Ada

Readings for class:
Benjamin Chapter 10 (pp. 89-96)
Benjamin Chapter 12 (pp. 111-117)

Week Twnatywo,

Topics:
tasks in Ada
Project meetings * see note

Readings for class:
Benjamin Chapter 11 (pp. 97-109)

Week Twenty-three

Topics:
Examination I1-1
Handback and review examination I1-1

Week Twenty-four

Topics:
project meetings * see note

Readings for class:
none

Week Twenty-five

Topics:
introduction to use cases
project meetings * see note

Readings for class:
none

LIHD2
12

Week Twenty-six
Topics:

project meetings see note

Readings for class:
none

Week Twenty-eeven

Topics:
project meetings * see note

Readings for class:
none

Week Twenty-eight

Topics:
implementation languages - project driven choices

Readings for next class:
Mynatt Chapter 5 (pp. 207-235)
Mynatt Chapter 6 (pp. 239-271)

Week Twenty-nine

Topics:
project scheduling
work breakdown structures
software project management (SPM) - planning, scheduling
COCOMO
code estimation techniques

Readings for class:
Sommerville Chapter 25 (pp. 477-492)
Sommerville Chapter 26 (pp. 495-507)
Sommerville Chapter 27 (pp. 511-533)
Mynatt Chapter 1 (pp. 17-27)

L1HD2
13

Week Thirty

Topics:
professionalism, ethical issues
course assessment

Readings for class:
Sommerville Chapter 21 (pp.407-425)

Week Thirty-one

FINAL EXAMINATION II

* NOTE

Meetings during these weeks are used to meet the needs of the
extended project. They can be utilized for the various reviews,
individual team meetings, or project meetings with the entire class.

L1HD2
14

LECTURE NUMBER: 002

TOPIC(S) FOR LECTURE:
Introduction to software engineering, quality software, life cycles, and process
models.

INSTRUCTIONAL OBJECTIVE(S):
1. Understand software crisis, software engineering, quality software, and

process models.
2. Realize the reasons leading to a software crisis and the emergence

of software engineering.
3. Understand the attributes of quality software.
4. Recognize the different viewpoints in the development of software.

SET UP. WARM-UP:
(How to involve the learner: recall, review, relate)

The importance of developing quality software is related in this lecture to the
projects. The students begin thinking about the importance and role of
maintenance in the development of large software systems. The concept of
having a good process by which to develop the products is introduced.

(Learning Label- Today we are going to learn ...)

The introduction of software engineering is related to the students' previous
experience with developing software in other classes. The idea of
programming in the small (previous experience) versus programming in the
large (software engineering) is expressed. Emphasis is placed on the fact
that software development in a real-life situation is a team effort.

1 . Software Crisis

L2OH1
a. The phrase "software crisis" was coined in the late 1960's at a

conference which was addressing the problems of software
development. It refers to a series of problems with software
development practices including: the inability to deliver software within
budget, on schedule, and meeting customer needs.

L20H2
b. Factors contributing to the software crisis are described.

1 Lecture 002

2. Software Engineering

L20H3
a. In defining "software engineering" one must consider what is meant

by software (the products -- the source code and the internal and
external documentation needed for development, installation,
utilization, and maintenance) and what is meant by engineering (the
process -- the application of a systematic and measurable approach).

L20H4
b. Software engineering is needed for the development of large, complex

software systems that are developed by teams rather than individuals,
that require understanding of the technical and nontechnical aspects
of software development, and that require project management and
effective user interface.

3. Quality Software

L20H5
a. The primary goal of software engineering is the production of quality

software (i.e., well-engineered software).

L20H6
b. The attributes of quality software are not an agreed upon list of

characteristics. The attributes are often dependent on the point of
view of the person involved (e.g., sponsor/customer, user, maintainer).
It is the developers job to satisfy these multiple perspectives.

4. Software Development Life Cycle

L20H7
a. The activities required throughout the life cycle of a software system

are divided into stages with each stage having its own set of activities.
The manner, in which these stages are organized, is the process
model. Different organizations of these stages lead to different
process models.

L20H8
L20H9
b. The stages of the waterfall model. Use this opportunity to compare

and contrast the different stages of software development.

L2OH1O
c. The stages of the prototype model

2 Lecture 002

L2OH 11
5. Difficulties in Software Development

teaching method and media:
It is important to touch on all the stages of the life cycle here to give
a general overview of software developement. The details of these
stages will be presented in later lectures.

vocabulary introduced:
software crisis
software engineering
quality software
sponsor/customer
user
maintainer/modifier
process models
requirements
waterfall model
analysis
design
testing
maintenance
prototyping

INSTRUCTIONAL MATERIALS:
overheads:
L2OH1 Software crisis
L20H2 Factors that contribute to the software crisis
L20H3 Definitions of Software engineering
1-20H4 The concerns of software engineering
L20H5 Characteristics of quality software (Sommerville)
L20H6 Perspectives on Software Quality (Mynatt)
L20H7 Software development life cycle
L2OH8 Development Models
L20H9 Waterfall model
L2OH1O Prototyping model
L2OH11 Difficulties in software development

READING ASSIGNMENTS:
Sommerville Chapter 1 (pp. 1-5)
Mynatt Chapter 1 (pp. 1-27)

3 Lecture 002

RELATED READINGS:
Berzins Chapter 1 (pp. 1-3)
Booch Chapter 4 (pp. 27-31)
Booch(2) Chapter 2 (pp. 17 -20)
Ghezzi Chapter 2 (pp. 17-40)
Pressman Chapter 1 (pp. 3-36)
Schach Chapter 3 (pp. 47-70)

4 Lecture 002

Software Crisis

Problems encountered in the development of
large software systems

Over Budget

Behind Schedule

Failure To Meet Customer Needs

Low Quality

L2OH1
5

Factors Contributing To
Software Crisis

Inability to predict time, effort, and cost in

software development

Poor quality of software

Changes in the ratio of hardware to software
cost

Increasingly important role of maintenance

Advances in hardware and software

Demand for larger and more complex software

L20H2
6

Definitions of Software Engineering

IEEE: the systematic approach to the
development, operation, maintenance,
and retirement of software

Pressman: the establishment and use of sound
engineering principles in order to obtain,
economically, software that is reliable and
works efficiently on real machines.

Fairley: the technological and managerial
discipline concerned with the systematic
production and maintenance of software
products that are developed and modified
on time and within cost estimates. The
primary goals are to improve software
quality and to increase productivity.

Gotterbarn/Riser/Smith: the planning,
development, and maintenance of computerized
solutions to real problems. It encompasses
techniques which treat software as an engineered

product requiring planning, analysis, design,
construction, testing, documentation, maintenance,
and management.

7 L20H3

Software engineering concerned with

Technological and managerial aspects of software
development

Systematic production and maintenance of

software

Developing software on time and within budget

Assuring software quality

Assuring software reliability

Reducing costs

Increasing productivity

Increasing benefits

Software as an engineered product; attention to
process as well as product

8 L20H4

Quality Software

Well-engineered

Attributes:

1. provides required functionality

2. should be maintainable

3. should be reliable

4. should be efficient

5. should offer appropriate user interface

6. should be cost effective

9 L20H4

Low costs

Pr~a morliit Ein fsRemngaeo /

kcreased Efficiency of Le

Unirum Errors
Good Documenlalion

10 L20H6

Software Development Life Cycle

The activities involved in the production of a
software system

The development, operation, maintenance, and
retirement of software

Development activities include:

requirements analysis and specifications

design

implementation

system testing

installation

maintenance

11 L20H7

Development Models

Ways in which the set of steps in software
engineering are applied

Examples of software process models:

waterfall model

prototyping

12 L20H8

Waterfall Model

Requirements -

definition

System and

Software Design

Implementation

and unit testing

Integration
and system

testing

Operation
mad

L20H9
13

14 L20HIO

Difficulties in
Software Development

Communications

Sequential nature of system development

Project characteristics

Characteristics of personnel

Management issues

15 L20H 11

LECTURE NUMBER: 003

TOPIC(S) FOR LECTURE:
Requirements Analysis and Specification
The importance and the difficulty of requirements extraction
A method for doing requirements extraction

INSTRUCTIONAL OBJECTIVE(S):
1. Understand the difficulty of gathering and specifying requirements
2. Do a preliminary requirements abstraction
3. Develop a requirements list

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In your other courses, such as data structures, you were given detailed
descriptions of the tasks your program was supposed to perform.
Sometimes the overall structure of the program was also provided for you.
Given such clear descriptions, you were optimistic about your ability to
quickly write programs which fit the guidelines of those program descriptions.
This is not the way most programming tasks really start. Suppose one of
your friends asked you to help her develop a program which she was writing
for a friend. What would be the first thing you would ask about the program?
(List several of the responses on the board. What you are looking for is -
Wbha is the program supposed to do? or What are its functions?) The
answer to this question about functions is often given in what is called a
problem specification of a client's reauest.

(Learning Label- Today we are going to learn ...)
Today we are going to look at such a request as it might be made by
someone who wants a computer system developed for them. We shall see
how difficult it is to arrive at those problem descriptions. These problem
descriptions are the basis for the program descriptions which you take for
granted. From this problem description we will start to develop a list of the
desired functions. This list is sometimes called a systems requirement list.

1. Introduce the concept of a problem specification

a. Give class examples of preliminary problem specifications, e.g.,
"Build a house for me which will hold my children", "Write a
program which will control the temperature in an incubator for
premature children", "Build a dream house for your parents --
money is no object", "Describe a centralized college registration
system."

Lecture 003

2. Discuss the problems with such specificaticns and discuss why each
difficulty occurs.

a. Vagueness , insufficient detail - the client assumes a familiarity
with the problem domain which you don't have.

b. Ambiguity - can be caused by 2a, or client is not aware of other
possibilities, or the problem can be described from multiple
perspective. People are not used to communicating at the
required level of precision.

c. Incomplete - functions are missing because they were not
thought of and combinations of conditions were not considered.

d. Instability of description -problem descriptions vary over time
because of changing conditions.

e. Discuss the role of a professional software engineer in
attempting to resolve these difficulties.

3. The goal of requirements extraction is to solve these problems by
completely defining the problem space-WHAT is required. A first step
is to separate out all of the functionality in the original request.

a. Extracting all of the functions in the client request helps one
identify the problems in the original request. The functions can
be recorded in a system requirements list which later become
part of a Software Requirements Specification (SRS).

b. This results in a complete description of the external behavior
of the product. This initial list of the external behavior of the
system needs to be refined by removing the difficulties of 2a-
2e. This refinement require communication with and
participation of the client.

4. Hints for developing a requirements list.

a. In order to better understand the product, try to visualize it in

action.

b. List "what a product does" rather than "how it does it."

c. Understand the domain in which the product operates.

2 Lecture 003

d. Look for functional requests by analyzing the client request for
verbs.

5. Distribute the Preliminary Client Request for the KoFF System.

L3HD1
a. Read through it with the class.

b. Ask them how they would go about building the system and
direct the discussion toward building a requirements list.

c. Begin to identify functions by working through the first two
paragraphs looking for verbs and other indications of what the
system does. Write some of the requirements for these
identified functions.

L3OH1
d. Show them the preliminary requirements list for KoFF and

discuss its imperative structure.

e. Discuss the adequacy of this list. Sample problems are
contained on the instructor's copy of the preliminary
requirements list. In discussing the requirements, lead the
students toward the need for testable requirements. (One
technique is to divide the class into groups and have each
group review the adequacy of this fist and report their findings
to the class as a whole.)

6. Discuss multiple viewpoints of this system.

a. The customer is satisfied with many aspects of the system,
e.g., the customer is pleased that the user is charged for a
tape even before it is dispensed.

b. The user is unsatisfied with many aspects of the system, e.g.,
there is no person the user can talk with about the system.

teaching method:

Lecture/discussion on Initial concepts was followed by working through
the Preliminary Client Request for a video rental system. A discussion
of the completeness and consistency of the client request was
followed by a discussion of a Systems Requirement List. This can

3 Lecture 003

also include a small group exercise. In discussing the requirements,
lead the students toward the need for testable requirements.

Voabulry introduced:
customer(has the money)
problem space
problem specification
requirements
software requirements speciflcation(SRS)
viewpoints (customer, user, etc.)

INSTRUCTIONAL MATERIALS:
overheads:
L3OH1 Preliminary requirements list - KoFF video rental system

handouts:
L3HD1 Preliminary client request-video rental system

RELATED LEARNING ACTIVITIES:

(labs and exercises)

LABOO0

ClI 1, for small project requirements list is an exercise on this subject.

The KoFF preliminary client request for a video rental system can be used
as an in-class or take home exercise. Have the students fill in the missing
details in the narrative and discuss the results in class; then have them
develop a complete requirements list from their revised client request.

READING ASSIGNMENTS:
Sommerville Chapter 3 (pp. 47-63)
Mynatt Chapter 2 (pp. 44-49) and (pp. 70-74)

RELATED READINGS:
Berzins Chapter 2 (pp. 23-75)
Ghezzi Chapter 2 (pp. 20-29)
Pressman Chapter 6 (pp. 173-177)
Schach Chapter 6 (pp. 137-153)

4 Lecture 003

KoFF Preliminary System Requirements

1 KoFF shall accept membership application
information which includes name,
address, social security number and
charge card information.

2 KoFF shall validate charge cards and
generate unique RRR club numbers, both
of which shall be recorded along with the
membership applications.

3 KoFF shall charge applicants the
membership fee.

4 KoFF shall, upon request from a current
club member, display a list of available
video tapes.

5 KoFF shall verify that member's card has
not expired.

6 KoFF shall dispense the selected video
tape to a valid club member.

7 KoFF shall bill the customer the fee for
the dispensed video tape and retain the
membership card.

5 L3OH1

8 KoFF shall accept returned video tapes
and return the membership card after
billing for any late fees.

9 KoFF shall make automated phone calls
when video tapes are five days late.

10 KoFF shall void all cards when a tape is
ten days late and make appropriate
charges.

11 KoFF shall print membership cancellation
letters.

12 KoFF shall dispense sale tapes and issue
a charge to customer's account.

13 KoFF shall print rental tracking information
every two weeks.

14 KoFF shall print membership information
on request.

6 L3OH1

Automated Video Rentsl &vjMn Doesmlotion

Client Request

Mr. Richard wants a computerized automated video cassette rental system which
will be housed in unstaffed kiosks. These kiosks can be free standing in mall
parking lots or can be placed in enclosed shopping malls. This device, KoFF (Kiosk
of Famous Flicks), will accept applications for membership in Mr. Richard's Rapid
Rental club (RRR), display titles of available tapes, dispense tapes, accept returned
tapes, and take care of billings. It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a
keyboard attached to the kiosk. This information will include a current charge card
number and an approval to automatically charge that card for selected items
including a membership fee of $ 10.00. Customers will be notified of membership
in RRR by mail and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their
charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer
can see a list of the available tapes by category by inserting one of their
membership cards into the kiosk. The customer can select an available tape and
rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk.
When a tape is returned to the tape-in slot, its bar code will be scanned, the
customer will automatically be charged appropriate late fees and the membership
card will be returned. Failure to return the tape within five days of its due date
generates a phone call to the customer which plays a recorded message about the
overdue tape and the accruing late charges. When the 10-day late limit is reached,
the customer is charged for the late days and the cost of the tape. The customer
is also charged a tape restocking fee and all of his/her membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this
process. Videos which have not been rented for two weeks are listed for removal
and videos which have been rented several times in a week are listed for additional
copies. Every two weeks KoFF sends Mr. Richard's computer a copy of this report.
He decides which tapes to add and which to remove. He updates the list of titles
and records the quantities of those titles along with their identifying bar codes. He
also assigns the rental price for that title. Sometimes instead of replacing a slow
moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of
the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental
activity of RRR members by tape title and tape category -- Adventure, Comedy,
Children, Restricted, the rental activity of particular titles and copies of that title, and
detailed and summary financial reports of RRR member accounts.

7 L3HD1

KoFF Preliminary System Requirements Ust

1. KoFF shall accept membership application information which includes name,
address, social security number and charge card information.

2. KoFF shall validate charge cards and generate unique RRR club numbers,

both of which shall be recorded along with the membership applications.

3. KoFF shall charge applicants the membership fee.

4. KoFF shall, upon request from a current club member, display a list of
available video tapes.

5. KoFF shall verify that member's card has not expired.

6. KoFF shall dispense the selected video tape to a valid club member.

7. KoFF shall bill the customer the fee for the dispensed video tape and retain
the membership card.

8. KoFF shall accept returned video tapes and return the membership card after

billing for any late fees.

9. KoFF shall make automated phone calls when video tapes are five days late.

10. KoFF shall void all cards when a tape is ten days late and make appropriate
charges.

11. KoFF shall print membership cancellation letters.

12. KoFF snail dispense sale tapes and issue a charge to customer's account.

13. KoFF shall print rental tracking information every two weeks.

14. KoFF shall print membership information on request.

8 L3Hfr1

KoFF Preliminary System Requirements
(instructor's notes)

This exercise is designed to illustrate the difficulty of abstracting requirements. It shows the
importance of iteration. Several of the items in the requirements list above are incomplete.
They do not meet even the explicit conditions of the customer request. Some of the missing
requirements are listed below. A good exercise is to have the students fill in the missing
requirements. Several of the requirements in the list are deliberately ambiguous and others
are vague. Have the students resolve the ambiguities and remove the vagueness. Notice that
none of the requirements talk about response time for example. There are several unstated
requirements of the system. The client request does not even deal with how a customer can
renew their membership. There is some opportunity for a discussion of professionalism,
because the question of exception conditions is not even touched in the client request and not
addressed in the requirements list. A discussion about the professional's responsibility to
produce a quality system is useful here. What is the professional's responsibility to help design
a more effective system? The requirements do not address non-system problems such as
damaged tapes nor do they address detection of fraud such as the return of empty tape boxes
or the return of tapes boxes with blank tapes in them.

When developing DFDs and Structure charts this exercise can be easily partitioned into
customer management, tape management, financial management and system reporting
segments. The concept of design partitioning can be related to design modularity in later
discussions.

The example also provides an opportunity for the discussion of some ethical issues. RRR
members are having detailed information about their rental habits retained by the system. Is
this a violation of their privacy rights? The system does not need to associate the member's
names with the rental of a video. The management of the system only requires capturing
information about the frequency of rental of a particular video. Is capture of this information
consistent with the ACM Code of Ethics and Professional Conduct section I1?

The requirements list below includes some of the missing requirements.

1. KoFF shall accept membership application information which includes name, address,
social security number and charge card information.

A telephone number is also needed to call delinquent accounts.

2. KoFF shall validate charge cards and generate a unique RRR club numbers, both of
which shall be recorded along with the membership applications.

KoFF shall record the expiration date and other charge card information.

KoFF shall produce three membership cards with membership information and print
letters of acceptance for new members. or KoFF shall print the order to make and mail
the cards and acceptance letter.

9 L3HD1

(How do"s KoFF process applications from members who have been rejected for not

returning tapes within the ten-day grace period?)

3. KoFF shall charge applicants the membership fee.

4. KoFF shall, upon request from a current club member, display a list of available tapes
and their rental price.

5. KoFF shall verify that members card has not expired.

KoFF shall do ?what? if the card is expired.

6. KoFF shall dispense selected tape to a valid club member.
(How are tapes stuck in the dispensing chute handled?)

KoFF shall require the selection of a rental (a charge) duration.

7. KoFF shall bill the customer the fee for that video and retain the membership card.

8. KoFF shall accept returned tapes and return the membership card after billing for any
late fees.

provided the card has not expired during the rental.

KoFF shall not dispense tapes to members whose cards are within 10 days of
expiration. (If card expires during rental period then there is no way to charge for an
unreturned tape.)

9. KoFF shall make automated phone calls when tapes are five days late. (What is the
content of that call?)

10. KoFF shall void all cards when a tape is ten days late (Is this count based on ten 24
hour units or on ten calendar days?) and make appropriate charges. (Because cards
are voided, no one can access the system to return a tape which is eleven days late.
What happens if they put the tape in the tape-in slot? Does the system keep the tape
it already charged the customer for, or does it return the tape to the customer?)

KoFF shall capture all voided cards when they are entered.

11. KoFF shall print membership cancellation letters.

12. KoFF shall dispense sale tapes and issue a charge to customers account.

KoFF shall return the card with the sale tapes.

KoFF shall display sale tapes when requested by a member.

10 L3HD1

13. KoFF shall print rental tracking Information every two weeks.

14. KoFF shall print membership information on request.

11 L3HD1

12 L3HD1

LECTURE NUMBER: 004

TOPIC(iS FOR LECTURE:
Introduction to the structured analysis model.

INSTRUCTIOAL OBJECTIVES:

1. Understand the concept, notation, and relationships between:

a) context diagram,

b) data flow diagrams, and

c) data dictionary.

2. Construct a context diagram from a narrative description of a system.

3. Construct a first-level data flow diagram from a narrative description
of a system and a context diagram.

4. Construct data dictionary items for the data flows and data stores in
the context diagram and data flow diagrams.

5. Understand the concepts of leveling and balancing in data flow
diagrams.

SET UP.WARM-UP:
(How involve learner: recall, review, relate)

Recall our earlier discussions of the various activities/phases involved in
software development and your work on developing a requirements list for
your projects. What you've been involved in is defining the problem to be
solved. Requirements analysis and specification (or just analysis) involves
defining the problem. In general, analysts ask 'what" type of questions; what
is the problem to be solved; what is needed; what do you want the system
to do. Analysts extract requirements and then they specify them (write them
down). Common sense tells us that we have to define a problem before we
can solve it; that forging ahead without fully understanding the problem isn't
an effective approach, particularly with complex problems. Only when the
problem has been analyzed (defined and specified) does it make sense to
start considering how to solve it, i.e., consider design. Designers ask "how"
type of questions; how are we going to solve the problem.

1 Lecture 004

(Learning Label- Today we are going to loam ...)
Today we're going to look at some methods for modeling a system in order
to urlderstand it and to develop and clarify requirements. Specifically we're
going to look at structured analysis.

Hand out narrative description of small college book orderng example.

L4HD1

a. Give class a few minutes to read it.

b. Suggest visualizing system "in action" and imagine what
(physical) inventory cards, department book requests, books
needed file, book order form, and order list might look like.
Show overheads of these to clarify and assure that everyone
understands the system.

I Inventory card L4OHI
ii Book request L4OH2
iii Books needed file L4OH3
iv Book order form L40H4
v Order list L40H5

2. Context diagram (CD)
L40H6
Use CD for small college book ordering example to introduce purpose,
concept, notation, and vocabulary related to CDs.

a. CD is the first level of the structured analysis model.

b. CD defines system scope; boundaries.

c. CD shows nMt flows of information into and out of the system.
The notation for a net flow is a vector pointing in the direction
of the flow.

d. CD shows external entities (source,sink); things outside the
system with which the system must interact. The notation for
an external entity is a rectangle. Mynatt calls a context
diagram a high-level data flow diagram.

2 Lecture 004

3. Data dictionary (DD)
L40H7
Use DD for small college book orderng example to introduce purpose,
concept, notation, and vocabulary related to DDs.

a. All data flows in CD will be described in the data dictionary. As
with word entries in a normal dictionary, DD items are arranged
in an easily retrievable order (alphabetical) and provide a
detailed definition of the item.

b. Discuss entries from the example to explain notation and
relationship between the CD and DD.

c. Review Mynatt's DD conventions. L40H8

4. Based on sample CD and DD, recap how CD and integrated DD
convey items above. Note that the CD views the system from the
outside.

5. Data Flow Diagrams (DFDs)

a. Now that we understand the boundaries of the system and how
it interacts with external entities, we can look inside the system.
That is, we can begin considering what is needed to transform
the net inputs into the net outputs. The next level of modeling
is the first-level DFD.

L4OH9
b. Use DFD for small college book ordering example to introduce

DFD purpose, concept, and notation, and the relationship
between the CD, DD, and DFD.

Transform (process, function) - transforms input flows
into output flows. Each transform name should describe
the purpose of the transform and consist of an action
verb and object. The notation for a transform is an oval,
circle, or rounded rectangle.

ii Data flow - data in motion. Each data flow must appear
in the data dictionary. Each data flow must be labeled
unless it is going to or from a data store and the label
would be the same as the data store name. Dataflow
names are always nouns.

iii Data store - data at rest. Data repository; place where
data stored; represents a time delay. Each data store
must also appear in the data dictionary. Data store
names are always nouns.

3 Lecture 004

iv Very briefly introduce the concept of leveling by
suggesting that we could focus on a particular transform
of the first-level DFD and draw another DFD (a child
diagram) representing what goes on inside that
transform. Introduce parent-child diagram concept.

v It is important to adopt some consistent naming and
numbering notation in order to easily move between
different levels of DFDs. Describe convention for
numbering diagrams and transforms in diagrams.

vi A transform that cannot to be broken down any further
is called a primitive transform.

c. There are two methods to get a first draft of a first-level DFD
using a context diagram:

create an event list (an event is something to which the
system must respond). For each event, construct a
transform representing the system's response to the
event; then connect the transforms adding appropriate
internal data flows and data stores.

ii construct a transform to receive each of its input data
flows and a transform to produce each output data flow.

Note that these are simply ways to get started by identifying
transforms. Use the context diagram L4OH6 to illustrate
method ii. You should derive a DFD with four transforms: Get
department requests, Buy used books, Receive new books,
and Generate book order form. This model is not yet
complete and does not model the problem. You need to refine
this model in several ways. Possible refinements include
adding some internal data flows and data stores to allow
transforms to interface properly, combining, adding or
eliminating transform to more accurately reflect the system.
The result will look something like L40H9.

d. Illustrate the concept of leveling and establishment of a
consistent numbering/naming convention, by decomposing the
replenish books transform. Discuss the parent/child
relationship of CD and different levels of DDs.

e. Illustrate and give a brief introduction to the concept of
balancing between DFD levels, including both data balancing
and functional balancing.

6. Physical model vs logical model

a. Physical model - implementation dependent; useful in depicting

4 Lecture 004

existing system. Point out that our model of the small college
book ordering system is a physical model.

b. Logical model - implementation independent; useful in
requirements analysis and specfication. Point out that during
analysis we want to avoid implementation details and develop
a logical model of the system.

PROCEDURBE:
teachin0 method:

The small college book ordering example is used to introduce the concepts,
notation, and vocabulary of context diagrams, data flow diagrams, and data
dictionary. The class is given a few minutes to familiarize themselves with
the requirements followed by a short discussion to assure that they
understand the system and can visualize it in action. A CD, then a DD, and
finally a first-level DFD for the system are provided and explained.

vocabulary introduced:
structured analysis
context diagram
external entities, source, sink
data flows
data dictionary
data flow diagrams
transform, process, activity
data store
leveling
parent/child diagrams
balancing
data balancing
functional balancing
event, event list
physical model, logical model

INS;TRUCTIONAL MATERIALS:

overheads
L4OH1 Small College book ordering: Inventory card
L40H2 Small College book ordering: Book request
L40H3 Small college book ordering: Books needed file
L40H4 Small College book ordering: Book order form
L40H5 Small College book ordering. Order list
L40H6 Context diagram - Book Order System
L40H7 Data dictionary notation examples
L4OH8 Data dictionary conventions

5 Lecture 004

L4OH9 I st Level DFD - Book Order System

L4HDI Small college textbook ordering example

RELATED LEARNING ACTIVITIES:
(labs and exercises)

The small college book ordering system can be used for in-class and lab
exercises to reinforce concepts, vocabulary, and notation for CDs, DDs, and
DFDs.

Lab002 is an exercise on CDs and first level DFDs.

READING ASSIGNMENTS:
Mynatt Chapter 4 (pp. 44-62)

RELATED READINGS:
Berzins Chapter 3 (pp. 109-112)
Ghezzi Chapter 5 (p. 161)
Pressman Chapter 7 (pp. 208-211)
Schach Chapter 7 (pp. 162-170)

6 Lecture 004

EXAMPLE - SMALL COLLEGE BOOK ORDERING

The following describes how the bookstore at a small private college manages the
ordering of textbooks.

The bookstore maintains an inventory card for each course in the college
catalog. Each inventory card contains the title, author, and publisher of the
textbook currently used. It also contains the number of the textbooks that
are already in stock.

Midway through the spring semester, each academic department provides
the bookstore with textbook information for each course they will be offering
in the next academic year. The information provided is title, author, and
publisher of textbook to be used, and the expected course enrollment, if
known.

The bookstore then creates a Books Needed File containing the title, author,
publisher, and number needed (expected enrollment minus the number in
stock) for each book to be used in the next academic year.

During the last week of the spring semester the bookstore will buy books
from students if the Books-Needed-File indicates a need. Of course, each
time a used book is purchased, appropriate updates are made in the
bookstore's records.

Over the summer the bookstore prepares an Order-List containing the title,
author, publisher, and number to be ordered for each book that is still
needed. The Order List is then used to create an individual Book Order
Form for each publisher. These Book Order Forms are sent to the
publishers.

7 L4HD1

Small College Book Ordering System

Inventory Card

Course:

Textbook title:

Author:

Publisher:

Number in Stock:

8 L401H

Small College Book Ordering System

Book Request

Course:

Textbook Title:

Author:

Publisher:

Expected Enrollment:

9 L4OH2

Small College Book Ordering System

BOOKS NEEDED FILE

NUMBER
BOK ITLE AUTHOR EPULIL.•HE NEEDED

{one entry for book to be used next year)

10 L40H3

Small College Book Ordering System

ORDER LIST

Book Tid Autho Pub•,hw

(one entry for each book to be ordered)

11 L4OH4

Small College Book Ordering System

BOOK ORDER FORM

Publisher:

Book Tde Authr um

12 L40H5

Context Diaram

Book Order System

Acadmic

Book USo !

Order Bo
Sy1t -4o

13 L40H6

Data Dictionary Notation Examples

Book Request = Course + Title + Author +
Publisher + [Expected
Enrollment]

Course = Department + Course Number

Course Number = 112131 + { digit)3

Digit = 1121314151617181910

Department = School Code + Department Number

Inventory Card = Title + Author + Publisher +
InStock

An inventory card is maintained for each

course in the college catalog.

Inventory File = { Inventory Card }

Order List ={Title + Author + Publisher + Quantity}

14 L40H7

Data Dictionary Conventions

= is equivalent to / is comprised of

+ AND / together with

I either-or

[] one or more optional elements

(} iterations of

{ }* upper limit

{ 1. lower limit

literals

Comments may be added to a data dictionary.

15 L40H8

1st Level DFD
Book Order System

InVentory

Replinish

BooksNew Books

16 L40119

LECTURE NUMBER: 005

TOPIC(S) FOR LECTURE:
Quality standards in requirements
Requirements extraction using the video rental example
Development of DFDs using an analysis of system inputs and outputs
Balancing and data dictionaries

INSTRUCTIONAL OBJECTIVE(S):

1. Recognize and correct problems in a requirements list.

2. Develop DFDs from a requirements list.

3. Determine if DFDs are balanced.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

As you leaned in your laboratory requirements project (LabO01) to develop Cl-i,
it is not easy to generate a complete and effective requirements statement.
(Display the preliminary client request.) L3HD1
What sort of thing does this request fail to do? (Discuss some of the obvious
failings of the request, such as, the failure to get a client phone number or the
failure to say what should be done when clients insert an expired card into the
system).

(Learning Label- Today we are going to learn ...)

Today we are going to learn how applying some standards of quality requirements
helps to clarify the desired functionality of a system and how we can move from
a requirements list to data flow diagrams.

CONTENTS:
1. Present standards for quality requirements. Refer to failure of the

Preliminary Video Rental (KoFF) Client Request to meet these standards.

a. Requirements should be testable.

b. Requirements should be specific.

c. Requirements should be feasible.

Lecture 005

L5HD1

2. Handout and display the Revised Client Request and work through each of
the changes characterizing why they were made and how they relate to the
above standards.

a. The addition of a time limit for transactions introduces specifkcity and
testability. However, the time limit cannot apply to things outside the
system. This presages the use of DFDs and context diagrams to
help clarify what is outside of the system.

b. The addition of charge card type and date is needed tor the system
to later validate the card.check later.

c. The inclusion of a requirement for more detailed customer
information leads to a more specific testable requirement.

d. Because it is not feasible to print reports at the kiosk, report
information must be transmitted outside the kiosk.

e. This is a good time to consider whether the software developer is
responsible for leaving something out of the system that the user did
not disclose to him. In some cases the developer would not
otherwise have any knowledge that an item would be needed and in
other cases the developed might know of useful additions to the
system. Briefly discuss ethics issues and the developer's
responsibility here.

L5HD2
3. Display the revised requirements list showing how the changes in the Client

Request are reflected in the requirements list.

a. A good example of ambiguity is the 10-day late penalty. Until the
word calendar was added to requirement 10 from the preliminary
requirements(L3OH1) (Now requirement 15) it was not clear whether
the requirement referred to calendar dates or 24-hour clock periods.
Note that this problem is pervasive. Refer to additional examples,
e.g. Sommerville reading.

4. How do you generate DFDs from a requirements list?

L5OH1
a. Also discuss the inputs and outputs to the system and develop a list

from the students; then show overhead

L50H2

2 Lecture 005

b. Using the input-output list show them how to generate a context
diagram(Mynatt). Do only part of the list on the board and then
show the complete context diagram. Relate each of the inputs and
outputs back to the requirements list. Note how some inputs may be
merged under a single label and this is only revealed by use of a
data dictionary. Membership application is a good example of this.

L50H3
c. Talk about the major functions of the system -membership control,

tape control, billing, and report generation - as the initial transforms
of the DFD. Show the level one DFD.

L50H4
d. Show the next level of the Manage Membership transform as an

example of leveling.

e. Revisit the concept of balancing
i Ask why the inputs and outputs for member management in

diagram 1 do not match the inputs and outputs for member
management in diagram 0. This shows that the verification of
balancing depends on the data dictionary.

ii Reintroduce the concept of a data dictionary showing them
the entry for "Application" L50H5 which consists of several
elements.

iii Explain to students that there are several reasons for dividing
up complex data flows. These reasons include reference to
some elements which may be classified or privileged
information, or some other process may only look at one
element

teachina method:

Lecture on initial concepts is followed by working through the Preliminary
Client Request for a video rental system. An interactive discussion of the
completeness and consistency of the client request is followed by a
discussion and development of DFDs.

vocabulary introduced:
feasible
leveling
testable
specificity

INJTRUCTIONAL MATERIALS:

3 Lecture 005

L3HD1 Preliminary client request-video rental system
LSOHI System input and output list
L50H2 Context diagram-video rental system
L50H3 Level zero DFD-video rental system (Manage Membership)
L50H4 Level one DFD - video rental system (Manage Membership)
L50H5 Example data dictionary entry from KoFF DD

handouts:
L5HD1 Revised client request for KoFF automated video rental system
L5HD2 Adjusted requirements list for KoFF video rental system

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab003 - Building the CD, DFDs, and DD for the small project is an exercise
on this subject.

READING ASSIGNMENTS:
Sommerville Chapter 3 (pp. 47-63)
Mynatt Chapter 2 (pp. 44-62)

4 Lecture 005

Automated Video Rental Svstem Description
Client Request

Mr. Richard wants a computerized automated video cassette rental system which will be
housed in unmanned kiosks. These kiosks can be free standing in mall parking lots or
can be placed in enclosed shopping malls. This device, KoFF (Kiosk of Famous Flicks),
will accept applications for membership in Mr. Richard's Rapid Rental club (RRR), display
titles of available tapes, dispense tapes, accept returned tapes, and take care of billings.
It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a keyboard
attached to the kiosk. This information will include a current charge card number and an
approval to automatically charge that card for selected items including a membership fee
of $ 10.00. Customers will be notified of membership in RRR by mail and will receive
three RRR movie rental cards and a unique personal identification number. Membership
expires on the expiration date of their charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer can
see a list of the available tapes by category by inserting one of their membership cards
into the kiosk. The customer can select an available tape and rental duration. They will
be charged for it and the tape will be dispensed from the tape out slot. Their card will be
retained until the tape is returned to that kiosk. When a tape is returned to the tape-in
slot, its bar code will be scanned, the customer will automatically be charged appropriate
late fees and the membership card will be returned. Failure to return the tape within five
days of its due date generates a phone call to the customer which plays a recorded
message about the overdue tape and the accruing late charges. When the 10-day late
limit is reached, the customer is charged for the late days and the cost of the tape. The
customer is also charged a tape restocking fee and all of his/her membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this process.
Videos which have not been rented for two weeks are listed for removal and videos which
have been rented several times in a week are listed for additional copies. Every two
weeks KoFF sends Mr. Richard's computer a copy of this report. He decides which tapes
to add and which to remove. He updates the list of titles and records the quantities of
those titles along with their identifying bar codes. He also assigns the rental price for that
title. Sometimes instead of replacing a slow moving tape, he simply drops its rental price
or tries to sell it. Sale tapes are indicated on a special screen. When a customer selects
a sale tape, a record of the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental activity
of RRR members by tape title and tape category -- Adventure, Comedy, Children,
Restricted, the rental activity of particular titles and copies of that title, and detailed and
summary financial reports of RRR member accounts.

5 L3HD1

KoFF Preliminhry System Requirements Ust

1. KoFF shall accept membership application information which includes name,
address, social security number and charge card information.

2. KoFF shall validate charge cards and generate unique RRR club numbers, both
of which shall be recorded along with the membership applications.

3. KoFF shall charge applicants the membership fee.

4. KoFF shall, upon request from a current club member, display a list of available
video tapes.

5. KoFF shall verify that member's card has not expired.

6. KoFF shall dispense the selected video tape to a valid club member.

7. KoFF shall bill the customer the fee for the dispensed video tape and retain the
membership card.

8. KoFF shall accept returned video tapes and return the membership card after
billing for any late fees.

9. KoFF shall make automated phone calls when video tapes are five days late.

10. KoFF shall void all cards when a tape is ten days late and make appropriate
charges.

11. KoFF shall print membership cancellation letters.

12. KoFF shall dispense sale tapes and issue a charge to customers account.

13. KoFF shall print rental tracking information every two weeks.

14. KoFF shall print membership information on request.

6 L3HD1

KoFF Preliminary System Requirements
(Instructor's notes)

This exercise is designed to illustrate the difficulty of abstracting requirements. It shows the
importance of iteration. Several of the items in the requirements list above are incomplete.
They do not meet even the explicit conditions of the customer request. Some of the missing
requirements are listed below. A good exercise is to have the students fill in the missing
requirements. Several of the requirements in the list are deliberately ambiguous and others
are vague. Have the students resolve the ambiguities and remove the vagueness. Notice that
none of the requirements talk about response time for example. There are several unstated
requirements of the system. The client request does not even deal with how a customer can
renew their membership. There is some opportunity for a discussion of professionalism,
because the question of exception conditions is not even touched in the client request and not
addressed in the requirements list. A discussion about the professional's responsibility to
produce a quality system is useful here. What is the professional's responsibility to help design
a more effective system? The requirements do not address non-system problems such as
damaged tapes nor do they address detection of fraud such as the return of empty tape boxes
or the return of tapes boxes with blank tapes in them.

When developing DFDs and Structure charts this exercise can be easily partitioned into
customer management, tape management, financial management and system reporting
segments. The concept of design partitioning can be related to design modularity in later
discussions.

The example also provides an opportunity for the discussion of some ethical issues. RRR
members are having detailed information about their rental habits retained by the system. Is
this a violation of their privacy rights? The system does not need to associate the member's
names with the rental of a video. The management of the system only requires capturing
information about the frequency of rental of a particular video. Is capture of this information
consistent with the ACM Code of Ethics and Professional Conduct section I1?

The requirements list below includes some of the missing requirements.

1. KoFF shall accept membership application information which includes name, address,
social security number and charge card information.

A telephone number is also needed to call delinquent accounts.

2. KoFF shall validate charge cards and generate a unique RRR club numbers, both of
which shall be recorded along with the membership applications.

KoFF shall record the expiration date and other charge card information.

KoFF shall produce three membership cards with membership information and print
letters of acceptance for new members. or KoFF shall print the order to make and mail
the cards and acceptance letter.
(How does KoFF process applications from members who have been rejected for not

7 L3HD1

returning tapes within the ten-day grace period?)

3. KoFF shall charge applicants the membership fee.

4. KoFF shall, upon request from a current dub member, display a list of available tapes
and their rental price.

5. KoFF shall verify that member's card has not expired.

KoFF shall do ?what? if the card is expired.

6. KoFF shall dispense selected tape to a valid club member.
(How are tapes stuck in the dispensing chute handled?)

KoFF shall require the selection of a rental (a charge) duration.

7. KoFF shall bill the customer the fee for that video and retain the membership card.

8. KoFF shall accept returned tapes and return the membership card after billing for any
late iees.

provided the card has not expired during the rental.

KoFF shall not dispense tapes to members whose cards are within 10 days of
expiration. (If card expires during rental period then there is no way to charge for an
unreturned tape.)

9. KoFF shall make automated phone calls when tapes are five days late. (What is the
content of that call?)

10. KoFF shall void all cards when a tape is ten days late (Is this count based on ten 24
hour units or on ten calendar days?) and make appropriate charges. (Because cards
are voided, no one can access the system to return a tape which is eleven days late.
What happens if they put the tape in the tape-in slot? Does the system keep the tape
it already charged the customer for, or does it return the tape to the customer?)

KoFF shall capture all voided cards when they are entered.

11. KoFF shall print membership cancellation letters.

12. KoFF shall dispense sale tapes and issue a charge to customers account.

KoFF shall return the card with the sale tapes.

KoFF shall display sale tapes when requested by a member.

13. KoFF shall print rental tracking information every two weeks.

8 L3HD1

14. KoFF shall print membership information on requet.

9 13H01

DFD Preparation

System inputs:
Member's name and address.
Member's phone number.
Member's charge card data.
Membership card information.
Membership card.
Tape selection.
Rental duration.
Returned Tape

Internal processes:
Generate card numbers.
Validate card.
Retain expired cards.
Not process cards within 10 days of expiration.
Void all cards of those who transgress the lateness limit.

System outputs:
Membership acceptance information.
Membership billing to charge company.
Available rental videos to the monitor.
Videos for sale to the monitor.
Sale and rental tapes.
Membership card.
Mr. Richard's financial reports.
Dispensed tape
Dunning phone call
New member letter

10 L5OHI

KoFF Automated Video Rental System
Context Diagram

RCHARDE

11 L50H2

KoFF Automated Video Rental System
Diagram 0

Mmbonb*
AppEnd"

Umbenhip
Fee Charge

GZNZRATZ
RZPORTS

3

MANAGZ
MZMBZRSHIP

I Umber

i7lý 8ftwe
Cbaage

dam
r

Umber
MZMBZR r T

10T card f INFO C rVw

ce PZRFORM
CUSTOMZR

BILLING

oe

-
4

Dispensed membership card 6ýý i.
MANAGZ Dots 9

TAPZ
Reftraed tape INVZNTORY Confirm a

2

List of ru TAIPZ
INFO

Up" c a

Um nhip
equee cut lab Tape

12 L50H3

KoFF Automated Video Rental System
Diagram I

Mmbmnhip K benbi
Appkasea In

ENROLL
MEMBER

1.1

INVALIDATE
MEMBER I Stakm baw

_,.. ,., / NUMBERS /
1.2

4,r

13 L50H4

Excerpt from KoFF DD

Data Dictionary:

Application = Name + Address + Phone number +
Charge card type + Charge card
number + Card Expiration Date.

Address = Street-address + City-State +
Zipcode.

Name = First Name + Last Name.

14 L50H5

Automated Video Rental S&stem DescrIption
REVISED* Client Request

Mr. Richard wants a computerized automated video cassette rental system which will be
housed in unmanned kiosks. These kiosks can be free standing in mall parking lots or can be
placed in enclosed shopping malls. This device, KoFF (Kiosk of Famous Flicks), will accept
applications for membership in Mr. Richard's Rapid Rental club (RRR), display titles of available
tapes, dispense tapes, accept returned tapes, and take care of billings. It will also maintain
reports of rental transactions. To assure customer satisfaction, all transactions with the
customer should take place In less than 90 seconds.

One becomes a member of the club by entering membership information on a keyboard
attached to the kiosk. This information will include a current charge card number type and
expiration date and an approval to automatically charge that card for selected items including
a membership fee of $ 10.00. Customer Information will also Include customer's name,
mailing address and telephone number. Customers will be notified of membership in RRR
by mail from Mr. Richard's office and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer can see a
list of the available tapes by category by inserting one of their unexpired membership cards
into the kiosk. Expired cards are captured by KoFF. Customers with more than 10 days
to expiration can continue to Interact with KoFF. The customer can select an available
tape and rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk. When a tape
is returned to the tape-in slot, its bar code will be scanned, the customer will automatically be
charged appropriate late fees and the membership card will be returned. There is a hardware
device that determines if the correct tape was returned undamaged. Failure to return the
tape within five days of its due date generates a phone call to the customer which plays a
recorded message about the overdue tape and the accruing late charges. When the 10-day
late limit is reached, the customer is charged for the late days and the cost of the tape. The
customer is also charged a tape restocking fee and all of his/her membership cards are
invalidated. KoFF shall transmit membership cancellation letters to Mr. Richard's
computer. KoFF shall capture all invalidated cards. The customer is notified of this.

The selection of videos must be updated. KoFF keeps information to help in this process.
Videos which have not been rented for two weeks are listed for removal and videos which have
been rented several times in a week are listed for additional copies. Every two weeks KoFF
sends Mr. Richard's computer a copy of this report. He decides which tapes to add and which
to remove. He updates the list of titles and records the quantities of those titles along with their
identifying bar codes. He also assigns the rental price for that title. Sometimes instead of
replacing a slow moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of the sale is
made, the tape is dispensed and the membership card is returned.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental activity of
RRR members by tape title and tape category ,i.e., Adventure, Comedy, Children, Restricted,

15 L5HD1

the r &nt * actvity of partioar tldes and copies of that tile, and detaed and summary acm
reports of RRR member accounts.

Bold items reflect revisions

16 LSHDI

KoFF Adjusted Requirements list

1. KoFF shall accept membership application information which includes name,
address, social security number and charge card information. A telephone
number Is also needed to call delinquent accounts.

2. KoFF shall validate charge cards and generate a unique RRR club numbers, both
of which shall be recorded along with the membership applications.

3. KoFF shall record the expiration date and other charge card Information.

4. KoFF shall transmit the order to make and mall the cards and acceptance
letter to Mr. Richard's computer.

(How does KoFF process applications from members who have been rejected for not
returning tapes within the ten-day grace period?)

5. KoFF shall charge applicants the $10 membership fee.

6. KoFF shall, upon request from a current club member, display a list of available
tapes and their rental price.

7. KoFF shall verify that a member's card has not expired.

8. KoFF shall retain the card If the card Is expired.

9. KoFF shall dispense a selected tape to a valid club member.
(How are tapes stuck in the dispensing chute handled?)

10. KoFF shall require the selection of a rental (a charge) duration.

11. KoFF shall bill the customer the fee for the selected video and retain the
membership card.

12. KoFF shall accept returned tapes and return the membership card after billing for
any late fees, provided the card has not expired during the rental.

13. KoFF shall not dispense tapes to members whose cardsa we within 10 days
of expiration. (If card expires during rental period then there is no way to
charge for an unretumed tape.)

14. KoFF shall make automated phone calls when tapes are five days late. (What
is the content of that call?)

15. KoFF shall void all cards and make appropriate charges when a tape is ten
calendar days late. (Because cards are voided, no one can access the system
to return a tape which is eleven days late.)

17 L5HD2

16. KoFF shall capture all voided cards when they are entered.

17. KoFF shall tbansmt membership cancellation letters to Mr. Richrd's compuler.

18. KoFF shall dispense sale tapes and Issue a charge to customers account within
I minute of the start of the transaction.

19. KoFF shall return the card with the sale tapes.

20. KoFF shall display sale tapes when requeted by a member.

21. KoFF shall transmit rental tracking information for two-weeks activity when
requested by Mr. Richard.

22. KoFF shall transmit membership information upon request from Mr. Richard.

Bold items reflect revisions.

Parentheses indicate questions for class discussion on potential weaknesses in the
requirements.

18 L5HD2

TOPI FLEM TURE:
Introduction to design

INST'RUCTICI OBJECTIV)M:

1. Distinguish betwee analysis arnd design.
2. Identify key design goals.
3. Know the general Inputs and outputs of design.
4. Undenrtnd the purpose and notation of structure charts.
5. Understand fan-In, fan-out, coupling, and cohesion as structured

design criteria.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

During the first class we dicussed the diferent activities in th software 09
cycle and some models of the fe cycle. Some aspeca of design hsv been
touched upon In Introductory programming classes, and possbly some other
courses. Some arew, of the topic will either be covered In more depth and
other areas are new material.

We are taking a "spiral approach" to the material. Our irst pan through
some topics will be exactly that - a first pass. We Intend the depth provided
to be sufficient for application to your fr project Gaps will be filled in
during subsequent passes in the spiral. Similarly ther are many techniques
and methodologies for analysis and design but we need to choose specific
ones to apply to the first project in a timely fashion.

(Learning Label- Today we are going to learn ...)

L2OH8 LBOH1 L60H2
In our second lecture we considered various activities of the software life
cycle. The waterfall model shows the stages of sotware devlopment. We
have discussed requirements analysis and you have experiened this In your
small projects. Today we are going to Introduce the concept of design and
how it relates to requirements.

I. What Is design?

a. Whereas analysis defines the problem speceJl.e., what nees s
ae to be met, design onsiders WI to solo the prblem; hw
to meet the requiremnt.

I Lecture 006

b. Design Involves establishing the overall system architecture;
the components and the relationship between the components

C. Identifies how to meet the specified requirements subject to the
stated goals and constraints. Point out how customer goals
(non-functional requirements) can lead to different solutions.

L60H3
d. Preliminary design is the identification and selection of major

system components and how they relate. (A black box view.)

L60H4
e. Detailed design is a refinement of preliminary design in which

the internal aspects of the components and the interfaces are
detailed. (A white box view.)

f. In practice, we iterate between requirements analysis and
design. Realistically there is often not the clean break between
these activities that is implied by the life cycle. Typically it is
not possible to completely specify the system and proceed to
design knowing the requirements are stable.

L60H5
g. Key design goals. Design is intended to solve the custopmers

needs. Other important aspect of design that are frequently
forgotten relate to both the developer and the customer.
Software should be designed so that it is easily testable and
has components that can potentially be revised. Designing with
future maintenance in mind is also important.

2. Structure charts

a. Discuss the analogy of structure charts to architectural
blueprints for a house. These are desin documents; produced
after the requirements have been determined. The blueprints
show the architecture of the house: the components (rooms,
heating system, plumbing, etc) and the relationship between
the components.

b. Structure chart is one way to depict a software design.

L60H6
Note notation and information conveyed:
i Components (modules) represented as rectangles.
ii Purpose of each component is conveyed in its name.
iII Interfaces between components (data couples, control

couples) are show as vectors with labels. Data couples

2 Lecture 006

start with an open circle and end with an arrowhead.
Control couples start with a filled-in circle and end with
an arrow head. (Mynatt pg 152)

iv Hierarchy (make analogy with organization chart)
showing who calls who, who reports to whom. As a
familiar analogy, use segments of school's organization
chart depicting President at level-i, and VP's at level-2.
Take VP-Academic Affairs down to Dean level, chair
level, and faculty level. As precursor to fan-in/fan-out,
without using the terms, ask questions such as: What
would you think about the organization if there were 37
vice-presidents reporting to the president? If there was
1 dean reporting to a VP? If there was a lower level
function that was called upon by many different
functions at higher levels?

3. Design measures/criteria (use L60H6)

a. Fan-in - A component's fan-in is the number of higher level
components that call upon it; its bosses. (Calculate Normal
Deductions has fan-in of 2.)

b. Fan-out - A component's fan-out is the number of components
that it calls upon its immediate subordinates. (Issue pay checks
for all employees has a fan-out of 4.)

c. Coupling is a measure of dependency between components.
A design goal is to minimize coupling by eliminating
unnecessary dependencies. Intuitively, loosely coupled
components are desirable because their independence makes
them more maintainable and have a greater chance of being
reusable.

d. Cohesion is a measure of the internal strength of a component;
of how well the elements within a component contribute a
single well-defined purpose. A design goal is to maximize
cohesion. Intuitively, highly cohesive components are
desirable. Analogies with familiar team and team concepts are
useful here. For example, athletic teams that are cohesive (all
of members work well together; often teams with lesser talent
are more successful than teams with greater talent).

e. Note that strong cohesion and loose coupling are related; they
have an inverse relationship. Minimizing coupling (the
dependencies between components) will result in more
cohesive components. Conversely, improving (increasing level
of) cohesion will reduce (improve) coupling.

3 Lecture 006

4. There are many different design strategies and methodologies: for
example, structured design methods and object-oriented design
methods. While we will be talking about some general design
principles, we will use structured design in the first project and thus
will be adopting some specific structured design notation and method.

teaehin method:

The intent at this point is to briefly introduce design in general and structured
design In particular. A sample structure chart for a familiar type of system
is used as a vehicle to describe the notation to be used and how to use it in
design. Ask the students, near the end of the lecture, how the structured
model helps in achieving the design goals identified in 1 g above.

vocabulary introduced:

design
preliminary design
detailed design
general design goals (maintainability, reusability, ease of testing)
structured design
object-oriented design
structure chart
fan-in
fan-out
coupling
data couples
control couples
cohesion

INSTRUCTIONAL MATERIALS:
overheads:

L2OHB Waterfall model
L6OH1 Software requirements analysis
L60H2 Software specifications
L6OH3 Preliminary design
L6OH4 Detailed design
L6OH5 Key design goals
L60H6 Example structure chart

handouts:

RELATED LEARNING ACTIVITIES:
(labs exercises)

LabOO4 Discussion questions aimed at verifying understanding of the
content and notation of structure charts are helpful. For
example, provide a structure chart similar to that in OH5 and

4 Lecture 006

ask about the hierarchy, Interfacas and coupling between
particular
modules, fan-in and fan-out for specific modules, and
cohesiveness of specific modules.

READING ASSIGNMENTS:

Sommerville Chapter 10 (pp. 171-189)
Sommerville Chapter 12 (pp. 219-237)
Mynatt Chapter 4 (pp. 143-156)

RELATED READINGS:
Ghezzi Chapter 4 (pp. 61-115)
Pressman Chapter 10 (pp. 315-359)
Schach Chapter 10 (pp. 289-331)

5 Lecture 006

Software Requirements Analysis

Input

Client request

Process

Identify customer needs

Output

Software requirements document

6 L6OH1

Software Specifications

Input

Software requirements documents

Process

Analyze and refine software
requirements into testable
specifications

Output

Software specifications document

Test plan/test procedures

7 L6OH2

Preliminary Design

Input

Software specifications document

Process

Generate a software architecture to

satisfy the specifications

Output

Preliminary design document

8 L6OH3

Detailed Design

Input

Preliminary design document

Process

Refine each module in the preliminary
design into detailed logic

Output

Detailed design representation

9 L60H4

Key Design Goals

Maintainability

Reusability

Ease of testing

10 L6OH5

Example Structure Chart

MR ALLIT

CALUUT CAL065T ?ATUAT
imnoAL N0T PAYNATAT 3E

PAYC103 FO HULYungA S A

ncoi~DA woniWN3R I

CSUIISL -

11LSH

LECTURE NUMBER: 007

TOPIC(S) FOR LECTURE:
Data flow diagrams and data dictionaries
Structure charts and data coupling
Requirements traceability

INSTRUCTIONAL OBJECTIVE1:

1. Recognize and correct problems in data flow diagrams(DFDs).
2. Develop data dictionaries for DFDs.
3. Develop structure charts.
4. Understand relationship between test plans and requirements.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

(Write "WAYCY" on the board.) In some of your other programming classes
you are given a program specification and are expected to immediately start
coding. This method of software development has unfortunately become a
software development methodology and has led to the acronym WAYCY --
Why aren't you coding yet?. As we have seen with the video rental system,
a clear understanding of the system to be developed requires an iterative
process. Recently we developed a DFD for the video rental system. Are we
ready to code yet? (Display the context diagram for KoFF L50H2.) There
are still many questions that can be asked about the video rental system we
are using as an example. Does this diagram represent the needed detail
to build the video rental system? What is the Information needed in
"Membership application"? To determine that information we need to know
the content of this data flow. This requires the development of a data
dictionary and the development of an overall system architecture for the
system.

(Learning Label- Today we are going to learn ...)
Today we are going to learn how the data dictionary is related to the analysis
of requirements in a data flow diagram and how it is related to the
development of a system structure chart, which is one possible
representation of a system architecture.

CQNIENTS:
1. Review the Iterative nature of the software development process and

discuss how changes made later in a system are more difficult to
correct and more error prone.

L50H3
2. Display the first-level DFD for the video rental system. Ask them if the

diagram is a complete and correct representation of the system.

Lecture 007

L5HD2
a. Select requirements one at a time and trace it through the

DFD. The completeness can be examined by checking the
requirements list and the data dictionary.

L7HD1
b. Correctness can be evaluated only when the system is clearly

specified. Hand out a complete data dictionary and examine
several entries. Review the format adopted for this class for a
data dictionary L4OH7, L40H8

3. Another way to see if you clearly understand a system is to design a
structure chart for it.

a. A structure chart is not tied to a particular type of computer or
programming language. It is a high-level design of the system
showing the system architecture.

b. There are many methods for deriving structure charts. One is
to divide the system into its major tasks. Show the first level
of the structure chart L7OH1. Be sure to specify that this is
just one version of a structure chart.

c. Discuss how "Enroll Members" and "Select Tapes" on the
structure chart gather the major inputs to the system. Show
how the major internal processing, including the dispensing and
accepting of tapes, has been relegated to a single process.

4. The concentration of internal processing in one component (3.c above)
can be used to introduce some issues about design including
complexity and testing.

a. Ask the students if having a single component doing all the
internal processing is a good design. You are looking for them
to be concerned about the complexity and the possibility for
error.

b. Discuss the concept of a central transform and how to reduce
complexity. Redisplay the first-level DFD for the video rental
system (L50H3) and ask them where most of the information
transformation takes place(Manage Tape Inventory). Discuss
how the complexity might be reduced by separating out
functions. Return to the discussion of the structure chart as a
way to determine how to remove some complexity.

2 Lecture 007

5. Work through the lower levels of the structure chart and review the concept
of data coupling.

a. Work through the "Enroll Members" structure chart. L70H2
Use the data dictionary to determine what information needs to
be passed to each component. Explain how this approach
enables a clear division of labor. The goal of the "Enroll
Members" component is to do one thing; to develop and pass
the "new member letter" to the rest of the system.

b. Do a high level examination of the "Select Tapes" component.
Show overhead L70H3 which just lists the sub-components of
"Select Tapes". Use this to reinforce the concept of passing a
data item to the rest of the system by tracing a members
request for a tape into the lower levels of the structure chart.

c. Carry the concept of passing information to the rest of the
system to the discussion of "Manage Tape Inventory". Would
the complexity of "Manage Tape Inventory" be reduced if it
didn't really transform anything but was simply a switch for data
going to and from other processes? Display the "Manage Tape
Inventory" overhead L70H4 and work through the Late
Processing component.

6. Introduce the notion of testing at this stage of the life cycle.

a. Test plans can be developed which are related to the
requirements list. Test plans should contain details on specific
tests to be conducted, tests can then be traced to certain
requirements at any point in the software development life
cycle. This is called requirements traceability. And
requirements can then be traced to specific tests.

b. Testing can be designed which is directly related to the
structure chart. Even before any coding is started, tests which
specify the interface requirements between system components
can be specified and added to the test plan.

teaching method:

Discuss the details of video rental DFD by asking questions which
require the use of the data dictionary. Then present a method for
building structure charts by dividing a system into inputs, processes,
and outputs.

3 Lecture 007

tooe plan

INSTRUCTIONAL MATERIALS:

L5HD2 Revised Requirements List
L50H4 Context diagram-video rental systen
L50H5 Level one DFD-vkdeo rental system
L7OH1 Top-level structure chart-video rental system
L70H2 Structure chart for enroll members
L70H3 Structure chart for select tapes
L70H4 Structure chart for manage tape inventory

handouts:
L7HDI video rental system data dictionmary

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 005 Cl 3, for small project is an exercise on this subject.

READING ASSIGNMENTS:

Sommerville Chapter 12 (pp.212-234)

RELATED RE613INGS:

Berzins Chapter 3 (pp. 109-114)
Ghezzi Chapter 7 (pp. 394-400)
Pressman Chapter 11 (pp. 367-391)
Schach Chapter 10 (pp. 291-299)

4 Lectu 007

sTiucTuUI CIANT

cumm

5 L7,01,

ENROLL NEW MEMBERS
STUCTURE CHART

-m

*1

c--ý

m "m 0

LII

NPU omBA it : mwtg

=- mm

L! -- -- -- --

- UM

Af1JA'lO l U~lCAl USI0 IfA* l At-

- TH

SELECT TAPES
STRUCTURE CHART

INTUNUNThl A18

CA~sl TA iI ~~

cmi
cum

LO CARD
CADS P AD

7 L70H3

MANAGE TAPE INVENTORY
STRUCTURE CHART

TaPt

TAPES TAME PROCESNG Bm~ijty

CANCEL OVDuE
xuuuu TAME

lImnE COMELM~ON
_ LETm

8 L70H4

Data Dictionary for KoFF Example

access number - digit + digit + digit + digit

bar code - { digit)}O

billing confirmation - not ok I ok + confirmation number

billing data - member card number + unique personal identification number
+ charge amount

blank ." *blank character *

box number - { digit)},

cancellation letter- customer name + customer address + member card
number

category Adventure I Comedy I Children I Restricted

cents amount = digit + digit

charge amount = dollar amount + '.' + cents amount

charge card number - { digit I'1°0

charge card # - charge card number

charge card type w American Express I Discover I Master Card I Visa

charge confirmation - not ok I ok + confirmation number

city = { letter })0

confirmation - ok I not ok

confirmation number = { digit)'Io1

customer address - street + city + state code + zip code

customer confirmation - not ok I ok + confirmation number

customer name - { letter)"

customer validation = charge card type + charge card number + expiration

L7HDI
9

date

day - digit + digit

dispensed membership card - returned membership card

dispensed tape. * returned tape *

digit- 01l 1213141516171819

dollar amount - {digit)40

duration - digit + digit

expiration date - month + T' + day + 'T + year * last two digits only

invalid card # - member card number

letter - AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZlalblcldlelflglhI
illklllmlnlolPlqlrlsltlulvlwlxlYlzlblank

list of rental tapes - { movie info) * display selectable tapes to rent

list of sales tapes. { movie info) * display selectable tapes to buy'

member card number - digit + digit + digit + digit + digit

member info - charge card type + charge card number + expiration date +
customer name + customer address + telephone number +
unique personal identification number + member card number
+ member status

member number - member card number + unique personal identification number

member status - valid I invalid

membership application - charge card type + charge card number + expiration
date + customer name + customer address + telephone
number

membership card- * physical card in system'

membership fee - charge amount

membership fee charge - charge card type + charge card number + expiration
date + membership fee

L7HDI
10

month - digit + digit

movie info - movie name + bar code + category + movie rating + quantity +
transaction type + pric

movie name. { letter)2

movie rating =G I PG I PG-131 R I NC-17 I X

movie request , movie name + transaction type + [duration]

new member letter - customer name + customer address + unique personal
Identification number + member ,:ard number +
expiration date

prefix - digit + digit + digit

phone call . call to customer about late tape *

price - charge amount

quantity - digit + digit

rental info - member card number + movie info

reports - see KoFF description for this information *

returned tape - * tape brought back into KoFF *

sales info - member card number + movie info

state code - letter + letter

status change , member card number + invalid

street - street number + street name I 'P.O. Box' + box number

street name - { letter)},

street number., { digit)}

tape charges - charge card type + charge card number + expiration date +
charge amount

tape selected bar code

telephone number - prefix + access number

L7HD1
11

transaction type rental I sale

unique personal identification number - { digit }5

year - digit + digit

zip code digit + digit + digit + digit + digit[+ digit + digit + digit + digit]

L7HDI
12

LECTURE UBE008

TOPIC(S) FOR LECTURE:

General concepts of design
Architectural design
Behavioral design
Procedural design

INSTRUCTIONAL OELJECTIVE(Si):

1. Recognize different clasifications of design.
2. Understand different design stages.
3. Recognize different design techniques.

SET UP. WARM-UP:
(How to involve learner: recall, review, relate)

Once we have developed a complete set of requirements we have to
transition from the question of what is wanted -- the solution space- to an
analysis and presentation of how we can achieve what the client wants. This
process is called "Design* and it has several stages, just as requirements
has several stages. Sommerville characterized design as "... a creative
process which requires experience and some flair on the part of the
designer."(page 176) Although there is some creativity required, the
transition from the problem space to the solution space is a major step which
requires some significant preparation and is accomplished in a series of
stages.

(Learning Label- Today we are going to learn ...)
Today we are going to take a broad look at design and divide it into some
manageable stages.

1. The design stage of the life-cycle.

a. The product of design shows how a system can meet the
user's needs as specified in the requirements. Whereas
analysis defines the problem, the design shows how to solve
it. The design is the basis for the implementation. Part of this
design product is the user interface.

L8OH1
b. The goals of design have many similarities to the goals of

requirements development: clarity, completeness, correctness
functionality, and continued usability. The design must be
feasibility from both a technical and a practical perspective.

Lecture 008

c. Design is a multi-staged process in the software development
life cycle. The first stage of design - High Level or Preliminary
Design - identifies the major component of a system and the
relations between them. The second stage of design - Low
Level or Detailed Design describes the internal characteristics
of these components. Low level design also develops utility
components of the system. Explain the ambiguity in "Design".
It is both a process consisting of High level and low level
design and a product of the life cycle which is used for
implementation.

d. All implemented systems which have any longevity will have to
change. A standard of well-designed software is its ease of
maintainability. Parnas emphasized "Design for change!" as
a mark of quality design.

e. When we design we should think of potential multiple
applications of software. We add to Parnas' standard for
quality "Design for reuse".

L80H2
2. There are three distinct components of software design.

a. Architectural design - definition of the software structure;
components and their relationships. This step requires a clear
choice of how the system will be decomposed into components,
e.g., modules in structured design, objects in object-oriented
design. When decomposing into components, considerations
include:

i design goals: modularity, low coupling
ii functional considerations: major system tasks
iii data storage activities
iv major system objects
Shows the environment and its interfaces, and constraints.

b. Behavioral design - a description of the way a system responds
to specific inputs. This is a picture of the state a system will
adopt given a description of the system's current state and its
current input. A good example of state transitions is an
elevator. If an elevator is on the floor above you and you press
the up button. The elevator changes to the moving down state.
If the elevator is on a floor below you, then pressing the same
up button causes the elevator to change to the moving-up
state. This shows how the same input can result in two
different outputs.

2 Lecture 008

c. Functional design - a system as a set of entities performing
relevant tasks, and decomposed Into relevant components.
This view Includes a description of the tasks performed by each
entity and the interaction of the entity with other entities and
with the environment. The architectural view Is an elaboration
of functional design, showing interfaces and information flows.

3. All three types are important for a complete design. The order will
vary depending on the type of system being developed. These
classifications provide a model for ways to partition the design
process. For example the development of a telephone switching
system might start with a behavioral design.

4. In an effort to achieve clarity of design, each design type has its own
separate language or design notation which can be divided into a
language-like notation and a graphical notation. L8OH3

a. Architectural-structure charts, pseudo-code

L8OH4
b. Behavioral- Harrell state charts, control specifications

c. Functional- data flow diagrams, process specifications,
implementable components

d. Ada as a textual notation can be used for all three components
of software design.
i can be abstractly stated
ii not a large step to implementation

5. The process of design can also be divided into different stages

a. Preliminary - the first step in a progressive transformation of
the requirements
i audience - customer, developer
ii notation - graphical: structure charts, object diagrams

text: prose descriptions

b. Detailed - each of the components is designed in detail,
algorithms and data structures are selected which are
consistent with the interface established in preliminary design.
i audience - design team, coders, technical staff
ii notation - graphical: Nasml Shneidermann charts

text: Formal n 0 00 o-co,
PDLs, AdL

3 Lecture 008

K ~l. -- --.-- --, -'-.-"-.-~--

wtad iemuW deepg
dtledeepg

behavioral design
-icioa deep

pr~iirydesig
sciuion aspace
user interace, deepg
Harwell State Transition diagrams

INSTRUCTIONAL MATERIALS:

LSOH1 Goals of requIment
LeO02 Distinct classifications of design
L803 Examples of design noon
L801-14 Example of a transition tat diagram

bKLIWABNAI- ~ l
RELATED LEARNING ACTIVITES:

(labs and exercises)
LabOO6 Feedback on CI 2
READ[IGNMNTS:

Sommerville Chapter 10 (pp. 171-188)
Mynatt Chapter 4 (pp. 143-156)

REIATD READINGS:
Berzins Chapter 4 (pp. 207-216)

oo Chapter 2 (pp. 36-3)
Booch(2) Chapter 2 (pp. 25-28)
Ghezzi Chapter 4 (pp. 61-115)
Pressman Chapter 10 (pp. 315-35M)
Robedt Flrth, at al "A ClSsschlton Scheme for Software Develolmwet
Methods," TR, SEI/CMU-87-TR-41, November 1987

4 Lecture 006

couuON GOALS OF ftRQ ENrAle)mQ

Clear

Complete

Correct

Functional

Testable

Maintainable

Reusable

Feasible

5 LOO014

DISTINCT COMPONENTS OF DESIGN

a. Architectural - definition of the software
structure

i Design goals:
Modularity, low coupling

ii Functional considerations:
Major system tasks

iii Data storage activities
iv Major system objects: object oriented

b. Behavioral - a systems as a set of
transitions between states

c. Functional - a system as a set of entities
performing relevant tasks

6 L80H2

Examples of Design Notation

C -on a~mbl.e T -a x t

Architectural Structure charts Pseudo-Cods

Behavioral Harrell stats charts Control
specWcdons

Functional Data Flow Diagrams Pro
sipifications

7 LSOH3

EXA"Vg6MPLE TRANSITION STATE DIAGRAM

STATS AT

SI~lVATOR

ACTION

IUSULT

8 LS0H4

UECTURE NUMBERO00

TPJMM FOR LE:CTURE:

Testing
Test plans

INSTIUCTIONAL OJECTIVE(Sil
(indicate learner behavior expected or learning outcome)

1. Understand the different typs of code testing.
2. Be able to develop a test plan.

SET UP. WARM-UP:
(How to involve learner: recall, review, relate)

We normally think of testing as only relevant to the coding aspects of a system
and so we do not pay much attention to testing until the coding phase has already
started.

As you will see later, testing is a process that can begin very early in the
development life cycle and continues throughout the process.

This is a narrow view of testing. When we employ a broader view of testing we
will develop a better product.

(Leaming Label- Today we are going to learn ...)
Today, using the KoFF system, we are going to learn about the elements of a test
plan and how the early development of a test plan improves requirements.

1. In the development of a system, we can divide the test into two basic
categories --black box testing, and white box testing. Black box testing
examines the external behavior of software, primarily testing that particular
inputs result in their expected outputs. White box testing examines the
internal structure and behavior of software. These two types of tests are
employed at several testing stages of software development.

2. There are four hierarchically structured stages of testing, that most
students are familiar with:
a. unit: examines Individual procedure as a stand alone components

b. module: groups together units so that they can be tested together

c. sub-system: groups together collections of modules and test both
their Internal correctness and their interface with other subsystems

Lecture 009

d. systems: groups together sub-systems and test the entire system.
This test for satisfaction of both functional and non-functional
requirements.

There is a different type of testing, called acceptance testing, which occurs
when a software product is delivered to a customer. The function of this
type of testing is to prove that the software meets the needs stated in the
requirements specification. Because this type of testing is tied to the
requirements, a preliminary draft can be developed shortly after the
requirements are finished. The specification of the precise system functions
to be tested helps to clarify the requirements. One of the goals in the
development of a preliminary test plan is to develop a requirements
validation test matrix which related every requirement to a specific test or
set of tests- called a test suite.

2. Test Plan contents
Using the attached instructors notes, work through the Preliminary test plan.
L9OH1
a. Preliminary Test Plan- There are many forms of test plans, but they

all have similar goals in common, namely, to test that all
requirements are satisfied and to record testing information in
sufficient detail so that test can be repeated if necessary. To
produce similar results it is necessary to record both the test that to
be done and the order in which they are done, that is to generate a
test schedule.

In the development of a test plan, the test plan designer picks
several categories of function, such as external access, to organize
the test around.

L9OH2
b. The Test\Requirement Traceability Matrix connects each requirement

from the requirements list to a particular type of test. Some
requirements will have several tests associated with them such as
requirement 2. Later in the design stage, other types of tests such
as inspections and reviews will be included in the test plan. This
matrix can also be used to specify, under demonstration, those tests
which will be part of acceptance testing.

L9OH3
c. The test schedule is important because some test cannot be

conducted until other stages of development have been successfully
completed and tested. The test schedule provides information to the
development team about the order in which they should produce
their products.

2 Lecture 009

L90H4
d. The Status Report shows the progress of all testing up to the point

of the report within the categories of testing : access, etc, decided
upon by the test manager.

L9OH5
e. Test Results Form is used to keep track of the results of individual

tests. Depending on the results of the tests and other information
gathered during testing, the requires further analysis section may be
filled out. Samples of how these forms are filled out are included as
overheads, upon in the design of the test plan.

L9OH6
f. Tests to be Performed is the schedule of the order of the te.% g

within categories and the dependencies needed to be satisfied to
preform any test.

L90H7
g. Test Procedure Form spells out the low level structure of the tests

to be preformed within a suite of tests.

3. Building a test plan provides you with a way to validate requirements.
a. Example - in the KoFF system, by designing access tests it was

discovered that a way was not described in the system requirements
for the owner to obtain legal access to the system.

b. The plan also helps avoid incomplete testing. Failure to complete all
stages of testing can have significant consequences. Example of
incomplete testing - Hubbell telescope - all the pieces of the system
were tested but the pieces were not integrated and tested
together. This resulted in an expensive system failure.

teaching method:
(types of activities)
This lecture contains a handout -- KoFF Video Rental System Preliminary Test
Plan-- and a set of instructor notes explaining the plan. The students need to have
a copy of the plan in their hands to follow the lecture and to be able to use it as
a model for the development of their own plans.

vocabulary introduced:
unit testing
module testing
subsystem testing
systems testing
test plan
system failure

3 Lecture 009

integration testing
requirements validation matrix

INSTRUCTIOAL MATERIALS:

L9OHI Preliminary test plan (KoFF system)
L9OH2 Test requirementtraceability matrix
L90H3 Test schedule
L901H4 Status report
L90H5 Test results form
L90H6 Tests to be performed
L90H7 Test procedure form
handouts: KoFF test plan

RELATED LEARNING ACTIVITIES:
(labs and in class exercises)

Lab007- Have student develop classes of test which would include all of the
requirements for their projects

READING ASSIGNMENTS:
Sommerville Chapter 19, 22 (pp. 378-88, 425-441)
Mynatt Chapter 7 (pp. 276-315)

RELATED READINGS:
Ghezzi Chapter 6 (pp. 260-297)
Pressman Chapter 13 (pp. 631-659)

4 Lecture 009

KoFF Video Rental System

PREUMINARY TEST PLAN1

1.0 Introduction

The test plan is presented in sections 3.0 and 4.0 of this document. Section 3.0
describes the methodology to be used for the testing process. Section 4.0
contains test procedures to be executed. These procedures are derived from the
requirements specification document for the KoFF Video Rental System. Test data
developed will be included in the Appendix. The test results will also be included
in the Appendix at the completion of the testing.

2.0 Referenced Documents
Electronic Fund Transfer and Charging Standards....
KoFF Client Request dated June 11, 1993.
KoFF Data Flow Diagram dated June 14, 1993.
KoFF Preliminary Design documents dated June 15,1993.

3.0 Test Methodology

The following paragraphs will describe the items to be considered in the planning
of the tests for the KoFF Video Rental System.

3.1 Test Group Involvement

Considering the size of the test group and the short time period allocated
for the test activity, the test group will participate in the subsystem test,
perform the integration test and then demonstrate the acceptance test. The
participation in subsystem testing is limited to observing the designer's test
so that the test group is familiar with the use of the system.

3.2 Requirements Traceability

The methodology for showing traceability of the requirements to the test is
be that the requirements are identified by line number in the requirements
list, rather than by paragraph number in the client request. The method for
verifying the requirements is identified. The methods used are: 1)
inspection of code, hardware , or execution results; 2) test and analysis of
test results; and 3) demonstration of the system. Similar requirements will
be grouped in the test procedures.2 The test/requirements traceability
matrix is figure 3.2-1.

This plan presumes a test team of four experienced software engineers.

2 Another technique is to group requirements by major system functions.

5 L9OH1

Test/Rqulrmmsnt Tramolllty Matrdx

Requirement Test/Test Method

Inspection Test/Analysis Demonsrtn

1 D4
2(1) A2
2(2) D4
2(3) D7
2(4) DIO
3 D8
4 Cll
5 C7
6 B1
7 A2
8 C3 C3
9 C4 C4
10 B7
11(1) C0 C1
11(2) C6
12(1) A2
12(2) Cl
12(3) C3
12(4) C8
12(5) C12
13
14 C13 C13
15 D9 D9
16 C2 C2
17 D14
18(1) C5 C5
18(2) C6
19(1) Al
19(2) A2
19(3) Cl
20 82
21 C15 Cl
22 C16

Figure 3.2-1

6 L90H2

3.3 TEST SCHEDULE

The planning schedule for the tests is in Figure 3.3-1. The schedule identifies the
plan for completing the plan, developing procedures, test data sets, test software,
and test execution.

Test Schedule

Start Date Complete Date Activity

June 10 June 15 Complete Test Plan

June 28 June 30 Order test equipment

June 30 July 12 Develop test procedures

July 12 July 15 Generate Test Data

Test to be performed

July 16 July 18 ACCESS TO THE SYSTEM
integration order 1-5

July 19 July 23 SELL TAPES
integration order 6-9

July 24 July 27 RENT TAPES
integration order

July 27 July 27 REGULAR CHARGES
integration order

July 27 August 5 LATE CHARGES
integration order

August 5 August 7 MANAGING TAPES
integration order

August 7 August 10 REPORTS
integration order

Figure 3.3-1

7 L90H3

&.4 Status Report and Problem Report

A form showing the means for tracking and reporting the testing of the system is
included in Figure 3.4-1. A problem reporting form was not used.

Function Number's of Test Procedures %
Procedures Scheduled/Executed/Successful Success

A. Access

B. Inquiry/Selection

C. External Responses

D. Add/Delete/Update
Figure 3.4-1

3.5 Test Procedures/ Results

Figure 3.5-1 will be used to describe test procedures. Figure 3.5-2 will be used to
describe the process for recording test results, including version tested, date tested,
and results will be described. The forms to be used are in Figure 3.5-1 and 3.5-2.

TEST PROCEDURE FORM

Function:

Procedure:

Requirements:

Prerequisites:

Test Data Required:

Test Steps:

Analysis Required:

Figure 3.5-1

8 L90H4

Test fseUb P

Test Procedure:

Date Test Executed:

Version Number Tested:

Test Results:

Problems Identified:

Analysis Results:

Retests Required:

Figure 3.5-2

The test procedures are developed from the requirements and user documentation for
integration testing.

The first procedures will be for a test of the integrated system functionality. It will quickly
answer the question, "Is it worth proceeding to perform the detail tests?"

Then the detailed procedures for each requirement, or group of requirements, will be
developed. These procedures will take into consideration testing the lmits as well as the
normal Input data cases. Criteria for evaluation of results will be included. The Input data
needed will be defined. Any processes that need to be developed to prepare or evaluate
the data will be de ned.

On most projects, the integration and acceptance tests would not be included on the same
test plan. However, it appears that would be appropriate on this project. The acceptance
tests will also be developed from the requirements document and also use to the maximum
extent possible the actual data available. These tests will have the objective of testing the
use of the system in the environment of the user community.

9 L90H5

. • • • . +j-ar, , "r W

4,0 Ted Piromdue
TAS to Bo omi

FunctloVProcsdure Order of Tes SucOuslui

I tegraago Tests
A. Awore

1. Customer legal card 3 D.4
2. Customer card expired 4 D.4
3. Customer card Invalid D.4, DO
4. Owner legal access

B. InquIrySelection
1. Rental Inquiry 10 A.1, D.4, D.5
2. Sales Inquiry 5 A.1, D.4, D.10
3. Tape Rental Report
4. Sales Report
5. Customer Rental Report
6. Tape selection 6, 11
7. Duration selection 12

C. External Responses
1. Accept/Return Member Card 2
2. Capture invalid card
3. Capture Expired Card
4. Rental Dispensing
5. Sales Dispensing 8
6. Tape Charges 7, 13
7. Membership charges
8. Late Charges
9. Restocking Charges
10. Validate charge card
11. Send new member information
12. Accept input tapes 14
13. Late notice phone call
14. Send member removal information
15. Send membership information
16. Send rental tracking information

D. Modfy/Update/Add
1. Change video tape ties
2. Change video tape to sale item
3. Change Video tape prices
4. Add new member 1
5. Change movie rental information
6. Change customer status to Invalid
7. Create membership number and pin
8. Add charge card information
9. Invalidate membership card number
10. Change Sales inventory information 9

Figure 3.5-1

10 L90H6

TEST PROCEDURE FORM

Function: A.1

Procedure: Customer legal access

Requirements: 1

Prerequisites: Legal membership

Test Data Required: Valid membership card
number

Test Steps:
a. Insert valid card into system
b. Verify rental sales option screen displayed
c. Select quit
d. Verify card inserted is card returned
e. Insert a card which is not an RRR membership

card *
f. Verify display of "Not an RRR card"
g. Verify card inserted is card returned

Analysis Required:
(note: The requirements did not specify what to do if a
non-RRR card was inserted. The test designer made
a design decision here.)

L9OH7
11

TEST POEUEFORM

Function: A.2

Procedure: Process expired card

Requirements: 8

Prerequisites: Legal membership

Test Data Required: Valid membership card
number with expired date

Test Steps:
a. Insert valid, but expired card into system
b. Verify expired card screen is displayed
c. Verify card is captured
d. Verify membership file is updated *
e. Verify that the "Welcome to KoFF" screen is

displayed after 90 seconds.

Analysis Required:
Check timing for screens

(note: Requirements did not say how to track expired
cards.)

LgOH7
12

TEST PROCEDURE FORM

Function: A.3

Procedure: Customer legal access

Requirements: 16

Prerequisites: Legal membership, invalidated
card

Test Data Required: Invalid membership card
number

Test Steps:
a. Insert invalid card into system
b. Verify invalid card screen is displayed
c. Verify card is captured
d. Verify membership file is updated *
e. Verify that the "Welcome to KoFF" screen is

displayed after 90 seconds.

Analysis Required:
(note: Requirements did not say how to track expired
cards.)

L90H7
13

TEST PROCEDURE FORM

Function: B.1

Procedure: Process Rental Inquiry

Requirements: 6

Prerequisites: Legal membership

Test Data Required: Valid membership card
number, list of available rental
tapes

Test Steps:
a. Insert valid card
b. Verify that rental/sales selection screen is

displayed
c. Select Rentals
d. Verify that rental selection screen is displayed
e. Verify that all and only available tapes are
displayed
f. Select quit
g. verify that "Thank You screen is displayed"
h. Insert valid card
i. Verify that rental/sales selection screen is

displayed

L1OH7
14

j. Select Rentals
k. Verify that rental selection screen is displayed
I. Verify that all and only available tapes are

displayed
m. Select tape
n. Select duration
o. Verify that customer's account is charged
p. Verify that the correct tape is dispensed
q. Verify that available tape list is changed
r. Verify that membership history is changed
s. Verify that "Thank You" screen is displayed for

30 seconds
t. Verify that the "Welcome to KoFF" screen is

displayed.

Analysis Required:

L9OH7
15

TEST PROCEDURE FORM

Function: B.1

Procedure: Process Rental Inquiry
(no duration selected)

Requirements: 6

Prerequisites: Legal membership

Test Data Required: Valid membership card
number, list of available rental
tapes

Test Steps:
a. Insert valid card
b. Verify that rental/sales selection screen is

displayed
c. Select Rentals
d. Verify that rental selection screen is displayed
e. Verify that all and only available tapes are

displayed
f. Select tape
g. Verify that within 45 seconds "please select

duration is displayed"
h. Select duration
i. Verify that customer's account is charged

L90H7
18

j. Verify that the correct tape is dispensed
k. Verify that available tape list is changed
I. Verify that membership history is changed
m. Verify that "Thank You" screen is displayed for

30 seconds
n. Verify that the "Welcome to KoFF" screen is

displayed.

Analysis Required:

L9OH7
17

Preliminary Test Plan Insructor Notse

Numerous test plan models exit. This test plan model is designed to show students how to
trace tests to specific requirements. It also can be used to show students how the
development of a test plan can act as a verification technique for requirements.

The plan is divided into four major sections. The introduction outlines the structure of the
plan and how it relates to a particular system. The second section on referenced documents
should mention those system development documents which were used to build the plan.
It should also include reference to documents which specify special constraints for the
system. Because the video rental system automatically charges the customers accounts,
its processing must conform to the electronic funds transfer act. Knowledge of these
standards is needed to construct adequate tests of the customer charge card functions. The
third section specifies the test methodology and the fourth section lists specific test
procedures. In this plan they are in the form of test scenarios. Other techniques would
include specific code or the results of automatic test generators. They would also include
justification for the choice of particular test cases as effective test cases. This is a
preliminary plan built at an early stage of the life cycle so low level code details are not
included. At this stage of development, the presumption is that detail testing will be
completed separately and the primary function of this plan is to specify integration testing.

The order of the major sections in the report does not reflect the order in which major
decisions are made about the test plan. Section 3 is the major body of the plan. Section
3.2 is the traceability matrix which is used to trace failed tests to particular requirements.
The requirements numbers refer to the KoFF Adjusted Requirements List. The specific tests
or test methods for each requirement are filled in from the test procedures listed in section
4.0. Section 3.3, the test schedule, is also dependent on section 4.0.

The first step in the development of this test plan is to divide the system into its major
functions. The selection of these functions will determine all the other elements in the plan.
In the development of this plan, the major function we selected were: system access, inquiry
and selection, external responses, modify the data-update, add, delete. These are listed
under major functions in the Test Status Report (Figure 3.4-1). The remainder of that report
is filled out as the system is developed. These are the categories used to group integration
tests.

The second step is to subdivide these integration test categories and fill the tests to be
performed (Figure 3.6-1) in section 4.0. The integration tests are listed as sub-functions.
For example, the sub-functions under access include attempts to access the system with all
status of membership card and attempts to access the system by Mr. Richard. The
subfunctions are determined by referring back to the requirements. A general testing
strategy is determined, which is listed in the test schedule (Figure 3.3-1). In this example

L9OH7
18

it is: test access to the system, test selling tapes, test renting tapes, test regular charges,
test late charges, test membership management, test tape management, and test writing
reports. This is used to determine the order of testing. Before anyone can access the
system they must be a member so the first function to test is D.4. Then A.1 customer legal
access can be tested. The sequence of the test for access are listed. Many integration
tests get repeated as major elements in the testing" strategy are visited. The tape selection
B.6 tests are executed in the rental tapes test and in the sales tapes tests. This is a good
way to introduce a discussion of regression testing. After the order of integration testing
is specified, the specific integration test which must be complete in order to begin the current
integration test is listed under "successful prerequisite".

At least one problem with the requirements surfaces when students try to list the successful
prerequisites for integration test A.4 (Owner legal access) in section 4.0. The requirements
are quite vague about the way Mr. Richard will access the system. If it is unknown whether
he wants to do his updates at the Kiosk by using a special access card or do his updates
remotely, then there is no way to test this requirement. Working through a preliminary test
plan shows an unstated requirement.

The third step is to use the table developed in section 4 under Test to be performed and
return to section 3 to fill in the test matrix. For example, the first requirement in the revised
requirement list is to accept membership. During system integration this is tested by test
set D.4. In the requirements matrix list D.4 in the same row with requirement 1. Follow this
procedure when filling out the rest of the matrix.

The last element is to give complete test procedure or scenarios using Test Procedure
Forms. A complete test plan will have a test procedure form tied by function name to each
integration test. The scenario for "Legal Access" will be tied to integration test A.1. The
scenarios represent the external behavior of the system and can be specified at this stage
of development. They are also useful requirements clarification tools because they are they
can be understood without a technical background and they sometimes reveal missing or
incomplete requirements (see notes to Test Procedure Forms).

The procedures related to particular functions are filled-in during detailed design. The test
plan again functions as a test of a higher life cycle stage. When the test are actually
performed, the test results form is filled out and attached to the test procedure form. When
all testing is complete, the test status form is completed.

L90H7
19

LECTURE NUMBER: 010

TOPIC(S) FOR LECTURE:
Ada as a Design Notation

INSTRUCTIONAL OBJECTIVEWS:

1. Make students aware of another approach to designing a solution, i.e.,
an object-oriented approach.

2. Introduce Ada package specifications as part of a design notation.

SET UP. WARM-UP:
(How to involve learner: recall, review, relate)
(Learning Label- Today we are going to learn ...)

In a previous lecture, the concept of design was introduced, using a
functional approach. This lecture looks at a more object-oriented approach
to design where the system is decomposed into subsystems and the
associated information and actions/tasks are delineated.

L1OOHI

1. Discuss criteria for "good software design"

a. A design should be readily understandable.

b. A design should be readily modifiable.

c. A design should be testable.

d. A design should be reusable.

2. Ada as a design tool

L10OH2
a. Ada notation allows us to perform the necessary design tasks

of high-level or architectural design, interface design,
component specification, algorithmic or low-level design.

L10OH3
b. Three classes of subsystems can be used for this type of

decomposition: user utilities e.g., directly involving the user;
resource management utilities managing the data stores; and
service utilities. Design can be begun by decomposing the
system into subsystems or design objects.

1 Lecture 010

LIOOH4
c. Working from the analysis documents (the requirements list,

context diagram, data flow diagrams, and data dictionary) one
can make a preliminary list of the major subsystems. For
example, consider the did for the KoFF video rental system.
The following subsystems are derived from the KoFF
subsystem L50H3:

member
tape
rental
charge card
reports
screens

The first draft of the Ada specification for the Member
subsystem was presented to show how Ada provides a design
notation that is understandable, modifiable, and testable.

d. Consider the member subsystem. Identify the major
processes or actions, data and attributes required for this
system. L-0OH4 Using this list one can develop an Ada
package specification for the members of the subsystem. The
details of the member subsystem are hidden in the procedures
and functions.

e. Develop similar package speciations for L100H4,
L100H5,0H6,0H7,0H8,0H9
This Ada specification is not a complete one.

teachinog method and media:

vocabulary introduced:

subsystems
user utilities
resource management utilities
service utilities
Ada specifications

INSTRUCTIONAL MATERIALS:
overheads:
LIOOH1 Software Design
L100H2 Ada as a Design Tool - design tasks
L100H3 Ada as a Design Tool - subsystems
L50H4 KoFF system - context diagram
1-50H5 KoFF system - level 0 diagram

2 Lecture 010

L10OH4 KoFF Subsystems - Member
L100H5 KoFF Subsystms a ADA spedf•atons
LI1OH6 KoFF Subsystems - Top
LI1OH7 KoFF Subsystems - Rental
LI0OH8 KoFF Subsystems - Charge Card
L10OH9 KoFF Subsystem - Repoa , Soreens

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 008 - Design review team presentations for small projects
READING ASSIGNMENTS:

Sommerville Appendix A pg 607-620

RELATED READINGS:
Booch Chapter 4 (pp. 28-43)
Booch(2) Chapter 2 (pp. 17-32)

3 Lecture 010

Software Design

Criteria for "good software design"

Design should be readily understandable

Design should be readily modifiable

Design should be testable

Design should be reusable

4 L10OH1

Ads as a Design Tool

Design tasks

High-level or architectural design

Interface design

Component specification

Algorithmic or low-level design

5 L10OH2

Ada as a Design Tool

Three classes of subsystems

User utilities
items specified in the requirements

Resource management utilities
responsible for some resource within
the system

Service utilities
provides services to other subsystems

6 L10OH3

KoFF Subsysem

Member

information:
name
address
telephone number
charge card info

type
number
expiration date

member card number
unique personal identification number
member status

actions on this information:
enroll a member
invalidate a member
modify a member's information
generate membership numbers
check membership status
retrieve charge card number

7 LI0OH4

K FF 8by~m

package MemberPkg is

type Member is private;

procedure Enroll (a member : Member);

procedure Invalidate
(a_member: Member);

procedure Modify (a member : in out
Member);

procedure Generate (for : Member;
cardnumber : out integer;
id_number : out integer);

procedure Retrieve (Charge cardnumber:
out integer;

for_a : Member);

function Checkmembership_status (for a :
Member) return Statustype;

private
type Member is ...

end MemberPkg;

8 L10OH5

KoFF Subyms

Tape

information:
movie name
category
movie rating
quantity
transaction type
price
info per tape

bar code number
availability status

actions on this information:
buy a tape
update inventory

add tape
delete tape
modify tape title
modify tape quantity
modify tape transaction type
modify tape price

change availability status
determine available rental tapes
determine available sales tapes

9 LI0OH6

KoFF Subsystems

Rental
(associates MEMBER and TAPE)

information:
member card number
bar code number
check out date
duration length

actions on this information:
rent a tape
return a tape
process 5-day late tape
process 1 0-day late tape

10 L10OH7

KoFF Subsystems

Charge Card
confirm customer charge card
bill membership fee
bill rental fee
bill sales fee
bill 10-day late fees

11 L100H8

KoFF Subsystems

Reports
generate new customer information report
generate membership cancellation letter
generate tape rental report
generate customer rental report
generate detailed financial report
generate summary financial report

Screens
display list of available rental tapes
display list of available sales tapes
display selection menu
display membership application info
get application information
get rental information
get sales information

12 LIOOH9

LECTURE NUMBER: 011

TOPIC(S) FR LECTURE:
Software maintenance

INSTRUCTIONL OBJECTIVES:

I. Know the relative effort and costs associated with software
maintenance.

2. Distinguish between the three types of maintenance (corrective,
adaptive, perfective).

3. View performance of maintenance as a rerun of the software
development process, involving analysis, design, Implementation,
testing, and associated documentation.

4. Understand preventive maintenance and its Importance.
5. Appreciate the need to effectively manage and control change.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

Refer back to early lectures on activities involved in software development.
Use overhead LI 1OHI to review phases. This chart depicts the percent
of effort for the various phases in developing a software product. Today
we're going to talk about what happens after the product has been
delivered and is being used.

(Learning Label- Today we are going to learn ...)

CONTENTS:

1. Discussion - What is maintenance, In general? In the context of
hardware (e.g. automobiles) this generally means fixing a mistake.
What is maintenance in the context of software? In the context of
software, maintenance is much broader and includes
enhancements and additional functionality as well as fixing
mistakes. [Note: Pressman's discussion of the differences between
hardware and software Is particularly useful here. See item 5
below.] Managing maintenance and controlling maintenance costs
are significant issues in software engineering. Software
maintenance encompasses all of the activities relevant to the
software product that occur aftkr it has been delivered and installed.

2. Discussion - What are these activities; i.e. what are the different

types of maintenance?

a. Corrective - fixing defects that were not discovered during

1 Lecture 011

system development.

Examples - An auto manufacturer recalling vehicles; a
pacemaker manufacturer discovering a software defect after
installation.

b. Perfective, or enhancement - adding new features and
functionality to system. Note that Sommerville disagrees
with this definition when he says perfective maintenance
improves system without changing its functionality.

Example - adding a Thesaurus to a word processor.

c. Adaptive - modification in order to respond to changes in the
environment in which system is operating.

Examples - change in income tax package every year due to
changes in tax laws; adding mouse capability to a program.

d. Characterize perfective and adaptive as "good" maintenance
in the sense that this activity is not an indicator that the
software is bad; perhaps is an indicator of success, that it is
being used and is capable of being modified. Characterize
corrective as "bad" maintenance in the sense that it does
indicate a defective product.

3. Maintenance costs/effort.

a. Relative to amount of effort spent on development (up to
time product is delivered and installed), how much effort is
devoted to product maintenance (everything after delivery
and installation)?

Ll1OH2
Note that more than twice as much effort is expended to
maintain product as to develop it. Therefore anything that
can lead to reducing maintenance costs is a significant
contribution.

This should make it clear why maintainability is consistently
listed as a key goal in software development (recall it is one
of Sommerville's key characteristics of well-engineered
software; it is a key consideration during design; writing
maintainable code has been drilled into you in programming
courses).

b. Li 1 OH3 reports on experiences of several large companies

2 Lecture 011

on the relative costs of fixing a defect at various stages in
the development process. For example if it takes $10 to
detect and correct a fault during the implementation phase,
that same fault could have been corrected for only $2 if
caught during specification. Similarly, it will cost $200 if not
detected until after the system is delivered and in use. The
key point, in either case, is that the earlier errors are
detected and corrected, the less cost and effort is involved.

c. Li 1 OH4 is based on industry data where identified defects
were classified as requirement definition problems, design
problems, etc. Note that half are requirements problems,
and 75% are pre-implementation errors.

MORAL - It pays to find faults early.

d. Discussion question - Which of the types of maintenance
(corrective, perfective, adaptive) do you think is most
prevalent? least prevalent?

Li 1OH5. Point out and discuss the misperception that most
maintenance is corrective.

4. Approach to maintenance

a. Consider a maintenance scenario. A software l2rouc is
developed using a sound software engineering lro.0.s, is
installed, and is being used successfully by satisfied
customers. Based on use, it becomes apparent that a new
capability would make things even nicer. The customer
requests the new feature (perfective/enhancement
maintenance request). What does the software organization
do? Discuss each of the major software life cycle phases
and let the discussion bring out that maintenance is actually
a rerun of the software development process (requirements
definition, specification, design, implementation, testing).
L11 OH6

b. What qualities should the personnel involved in maintenance
possess? Let discussion bring out that they need analysis
skills, dssign skills, etc.

Unfortunately attitudes towards maintenance tasks are often
inconsistent with the importance of maintenance. It seems to
be undervalued; some organizations may talk about the
importance of maintenance but not put their money where

3 Lecture 011

their mouth is. Some manifestations this mistake include the
following:
i The role of maintenance programmer is an entry-level

position in some organizations. You put the new kid
there and their first promotion is out of maintenance.

ii Maintenance is not sufficiently emphasized as an
important criteria for acceptance of the product.

iii Mention specific suggestions by Boehm in
Sommerville.

c. Introduce preventive maintenance by asking if they can think
of another type of maintenance term, outside software, that
they've heard. Extract the term preventive maintenance.
What does the term mean to you in general; what sorts of
things does it entail? While not specifically addressed in
most textbooks, Pressman suggests that preventive
maintenance is a fourth type of maintenance activity. It
occurs when software is changed to improve future
maintainability or reliability, or to provide a better basis for
future enhancements.

Point out that it is normally not difficult for software
developers to anticipate/predict requests for change that are
likely to be made after the product has been in use for some
period of time. Discuss this, give examples, and relate this
to the students current projects. Stress that this knowledge
of likely areas of change can be used by designers and
implementors in assuring that the software is amenable to
change; i.e. is maintainable.

5. The following discussion of the differences between hardware and
software is optional but, if time permits, is an excellent introduction
to the topic of software maintenance. The discussion is from
Pressman, pages 10-13.

Begin by asking "what are the differences between hardware and
software". Present the following differences given by Pressman.

a. Software is developed/engineered; not manufactured. E.g.
developing hardware involves analysis, design, etc but it is
ultimately manufactured. What is the manufacturing phase
for software? There is essentially no such phase for
software. Consider automobile; when are defects introduced
into a car? Many occur during manufacturing phase (e.g.
"Monday cars"). We should have little of that with software
since it's a simple replication process. The key point here is
that hardware costs are concentrated in manufacturing and
that is not true for software. Therefore a whole category of

4 Lecture 011

defects that are frequent in hardware should not even exist
in software.

b. Software doesn't wear out. Sketch the failure rate curve,
Pressman Figure 1.2, for hardware. Discuss:
i Why high failure rate early? hardware exhibits high

failure rates early (WHY? - design/mfg defects)
ii Why. dro7 Defects corrected & failure rate drops to

steady state for some period of time
iii Why rise aoain? After a while failure rate rises as

hardware suffers from cumulative effects of dust,
vibration, abuse, environmental factors; i.i. it begins to
wear out.

Sketch the idealized failure rate curve for software,
Pressman Figure 1.3. Since software is not susceptible to
those things that cause hardware to wear out, we might
expect failure rate curve for SW to look like this.

Show the actual failure rate curve for software, Pressman
Figure 1.4. Discuss:
i High failure rate early
ii As changes made to correct defects, new defects are

introduced, causing "spike".
iii Before curve returns to steady state, more changes

made & another spike.
iv Slowly, minimum failure rate rises (look at actual curve

if spikes ignored); the SW is deteriorating due to

6. Configuration management - introduce term as transition to next
lecture.

Maintenance involves dealing with change. Software maintenance
must be dealt with in an effective controlled manner, consistent with
the way we deal with software development. Otherwise errors will
be introduced and costs will unnecessarily increase, and
maintenance efforts and costs would continue to predominate. The
management and control of software change is called iguration
management, the topic of the next lecture.

teaching method and media:

Generate discussion by a series of leading questions. This topic presents
a particularly good opportunity for discussion since analogies with
hardware are familiar and plentiful. Student responses can inevitably lead

5 Lecture 011

into the lecture material and provide an appropriate for
presenting the charts on maintenance efforts and costs.

voabun Inroduced:
maintenance
corrective maintenance
perfective maintenance (enhancement)
adaptive maintenance
failure rate
configuration management

INSTRUCTIONAL MATERIALS:overheads:
L11OH1 Development Effort
Li 1OH2 Relative costs of phases of development
L 101H3 Relative maintenance cost by phase of development

detected
Li 1 0H4 Defects classified by time of introduction
Li 10H5 Maintenance effort distribution
Li 1 OH6 Input-Process-Output of maintenance

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 009 - Feedback on design review presentations

Discussion questions (see procedure above).

Exercise: For the small project give an example of corrective, adaptive,
and perfective maintenance. Make a list of enhancement
requests that might be anticipated in the first year or so of
operation. Categorize these as to type of maintenance.

READING ASSIGNMENTS:
Sommerville Chapter 28 (pp. 533-541)
Mynatt Chapter 8 (pp. 334-340)

RELATED READINGS:
Booch Chapter 23 (pp. 422-423)
Booch(2) Chapter 19 (p. 403)
Ghezzi Chapter 2 (pp. 25-30)
Pressman Chapter 1 (pp. 7-22)
Schach Chapter 1 (pp. 8-12)

6 Lecture 011

Development Effort *

Requirements 10%

Specification 10%

Design 15%

Code 20%

Module Test 25%

Integration Test 20%

• does not include maintenance, which
constitutes the largest portion of the
software life cycle

7 L11OHI

Approximate Relative Costs
Phases of SotaeProduction Proes

Source: Schach, Software Engoee" n

mhintmenmce 67.0%6

8 L 1 OH2

ILI

EE

9. I i H

Software Dfects Clrniflec
By Time of Introduction

Inadequate or incorrect

requirements definition 50%

Inadequate or incorrect design 15%

Errors in detailed design 10%

Coding Errors 20%

Other 5%

10 Ll1OH4

Maintenance Effort Distribution

............ .-......

... X115

Maintenance

Input

Software specifications
Preliminary design document
Detailed design document
Test plans and procedures
Source code
Proposed changes

Process

Incorporate changes
Retest system

Output

New program
New and/or revised documentation

12 LIOH6

LECTURE NUMBIER:012

TOPqAJB FOR LECTURE:

The kmportance of controlling Icnes in sare development
Confguraon managemen
Ways to Implement manaement

INSTRUCTIONAL OBJECTE

1. Recognize the role of configuration management over the entire life
cycle.

2. Develop and evaluate a configuration nagement plan.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

L 11-1H4
We have just talked about maintenance. Maintenance is change to software
that occurs after a system Is developed. As we have seen, some errors are
introduced into the software during the maintenance process. The
development of software is a continuous process of change and affords
developers a continuous opportunity to introduce errors into the system.
Some would consider this opportunity for the Introduction of error
unacceptable. We cannot after the nature of the development process, but
if we manage and control the process of change we can restrict the
opportunities for introducing error.

(Learning Label- Today we are going to loam ...)
In software engineering, the principles for controlling and managing change
are called configuration management. Today we are going to look at the
principles of configuration management and ways in which configuration
management can be implemented.

1. Motivate the need for cnfiguration manaaement(CM) by discussing
the simultaneous update problem and version control. CM is not just
an issue about software. You have revised your small project
requirements list several times. Ask the students what changes were
made to the requirements list and whether they all were certain that
all would have been approved by the customer? Did you check with
the customer?

a. Multiple people working on a large project can have different
understandings of what the system is supposed to do or may
make small changes which do not work well with other parts of
the system. Using the test plan L90H6 remind the student
that the test planner made a change which required the KoFF

1 Lecture 012

system to track expired cards. Was this information
communicated to the designers, coders or even to the
customer? What is the likelihood of this change made by the
test planner ever getting implemented? What can be done to
assure that these kinds of changes are acceptable and will get
implemented? There is a need for control management and
communication of change.

b. There are multiple sources and reasons for change requests.
These occur throughout the development process as well as
after system development. Talk about change requests as
desired improvements in the system. As the customer better
understands the system he/she sees new and improved ways
that the system could be developed. Changes also come from
the developers' improved understanding of the requirements,
and changes in the environment while a system is being
developed. This can lead to chaos unless carefully managed.

c. Sometimes systems are developed in different versions, e.g.,
DOS 2.2 - DOS 6.0. Each version of each system has to be
tracked and maintained. Versions are not always sequentially
developed, as was DOS 4, DOS 5, and DOS 6. Sometimes
multiple versions of the same system are developed
concurrently to fit on different hardware platforms, e.g., UNIX
for DEC and IBM can be developed at the same time. The
requirements for these systems are different, and one must
track and maintain multiple versions of the "same" product.

d. Talk about baselining as a technique for limiting or controlling
this chaos. How is baselining done? Be sure to emphasize
that this involves formal review and agreement by all concerned
parties. Once an item is baselined it is under change control
and can only be changed by formal change control procedures.
What is it that gets baselined. Proposed changes to baselines
are called Chanoe Requests(CR).

2. Methods of CM require a plan, a well defined process, and a manager
to carry out the plan.

a. Ask the class what things they need to keep constant to
develop a system. List these on the board. Discuss them as
Configuration Items (CI). Display overhead of standard
configuration items L12OH1. Work through each item talking
about those items which are new to them. Be sure to
emphasize that any change requires approval and
communication of the change as well as updating the affected
documents. Another function of CM is to maintain consistency

2 Lecture 012

between the documentation of a system and the system itself.

b. CM is complex and requires a plan to be sure it is executed.
Display overhead L120H2. Go over the contents of the IEEE
CM Plan. Briefly go over the management issues, such as how
configuration management relates to other organizations.
Discuss overhead item 2.d which includes naming conventions
for components and how CRs will get processed. Distribute
handout L12HD1 as an example of a portion of a student-
produced CM plan.

c. To maintain control, baselined configurations items are
sometimes placed in a special electronic library. Permission to
change or modify Cis is gained through a CR approval process.
CRs are generally approved by groups called Configuration
Control Boards (CCB). Discuss some standards used to
decide the approval of CRs; e.g, functional need, cost versus
benefit analysis, impact on other modules, politics (the
president of the company "just wants it").

d. There are several virtues of CM which include reducing the
number of errors generated, minimizing the use of storage,
giving visibility to system development progress each time a
new Cl is baselined and reducing the time and effort costs
associated with uncontrolled change.

PROCEDURE:
teaching method and media:

At this point in the course students have likely experienced
uncontrolled changes within their small projects. Some of these have
also likely caused problems. Their own "war stories" can serve to
enhance their interest and appreciation of the necessity for
configuration management. The primary teaching technique consists
of using lecture and overheads with frequent reference to problems
they have encountered in their small project teams.

vocabulary introduced:
configuration management (CM)
configuration item (CI)
baseline
discrepancies versus changes
configuration control board (CCB)
change request (CR)

3 Lecture 012

IN1STRUCTIONAL MATERIIALS:

L12OH1 Configuration items
L120H2 IEEE Model for a configuration management plan

handouts:
L12HDI Student configuration management plan

RELATED LEARNING ACTIVITIEa:
(labs and exercises)

Lab 010 - Feedback on CI-5, test plans, and test cases.Small project
team preparation for team acceptance test presentations

READING ASSIGNMENTS:
Sommerville Chapter 29 (pp. 551-564)
Mynatt Chapter 8 (pp. 336-340)

RELATED READINGS:
Ghezzi Chapter 7 (pp. 403-408)
Pressman Chapter 21 (pp. 693-708)
Schach Chapter 4 (pp. 87-93)
James Tomayko, "Support Materials for Software Configuration
Management," Support materials, SEISM_4_1.0
IEEE Standard for Software Configuration Management Plans, IEEEiS 28

4 Lecture 012

Configuration Items

Requirements Documents
Client Request
Requirements Ust
Analysis Documents
Revision History
Revision requests and approvals

Design Documents
Preliminary Design Documents
Preliminary Design Review Documents
Detailed Design Documents
Detailed Design Review Documents
Revision History
Revision requests and approvals

Code Documents
Source code modules
Object code modules
Compiler used
System build plan

Other Documents
Test Plan
Test Cases
Test Results
User Manual
Referenced Documents

5 L12OH1

IEEE Model for a
CONFIGURATION MANAGEMENT PLAN

1. Introduction
a. Purpose
b. Scope
c. Definitions and acronyms
d. References

2. Management
a. Organization
b. Configuration management responsibilities
c. Interface control
d. Implementation of plan
e. Applicable policies, directives and

procedures

3. Configuration management activities
a. Configuration identification
b. configuration control
c. Configuration status accounting
d. Audits and reviews

4. Tools, techniques, and methodologies

5. Supplies Control

6. Records collection and retention

6 L12OH2

Cow Omrion IMiPlMan

I PROJECT: Third Eye Project
I FILE NAME: CM_PLAN.DOC
I DOCUMENT NAME: Configuration Management Plan

I PURPOSE:
I This document describes the responsibilities of
I Configuration Management.

I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Kellie Price
I * Created initial revision of document.

+- ----------------- m--------------------------------

Computer and Information Sciences
Third Eye Projet

Configuration Management Plan

Kellie Price

Table of Contents

1. PURPOSE
1

2. MANAGEMENT
2

2.1 CONFiGURATION MANAGER RESPONSIBILITIES 2
2.2 ORGANIZATION

2
2.2.1 REQUIREMENTS TEAM 2

2.2.2 USER MANUAL TEAM 2
2.2.3 TEST PLAN TEAM 3
2.2.4 PRELIMINARY DESIGN TEAM 3
2.2.5 DETAILED DESIGN TEAM 3
2.2.6 CODE & UNIT TEST TEAM 3
2.2.7 TESTING TEAM 4

3. CONFIGURATION MANAGEMENT ACTIVITIES 5
3.1 C.M. REQUIREMENTS DOCUMENTS 5
3.2 C.M. CONTROL
5

4. CONFIGURATION MANAGEMENT RECORDS 6
4.1 C.M. FILES
6

L12HD1
7

1. PURPOSE

The Configuration Management Plan defines the Configuration Management
(CM) policies which are to be used in the Third Eye Project. It also defines
the responsibilities of the project configuration manager.

2. MANAGEMENT

2.1 CONFIGURATION MANAGER RESPONSIBILITIES

The first responsibility of the configuration manager is to
develop and implement this Configuration Management Plan.

Throughout the project, the configuration manager will report
directly to the customer. It is the configuration manager's
responsibility to ensure that the project is implemented in a
straight-forward and well-defined manner according to the
customer's specifications and standards established by
Configuration Management for this project.

2.2 ORGANIZATION

This project will be divided into 7 teams as follows:
(Refer to CMTEAMS.DOC for the specific team assignments)

NOTE: All of the documents required of each team below
are listed in the file CM_DOCS.DOC.

2.2.1 REQUIREMENTS TEAM

The Requirements Team is responsible for
communicating with the customer in order to determine
and well-define the software system requirements. The
documents required of the Requirements Team are:

"* Narrative description of system
"* List of requirements (acceptance criteria)

"* Context Diagram
"* A series of leveled Data Flow Diagrams
"* Data Dictionary
"* Process Specifications

L12HD1
8

2.2.2 USER MANUAL TEAM

The User Manual team is responsible for producing all
user documentation for the system. The documents
required of the User Manual Team are:

"* Preliminary format of user manual
"* User Manual

2.2.3 TEST PLAN TEAM

The Test Plan team is responsible for designing
subsystem and system tests. The documents required
of the Test Plan Team are:

* Test plan

2.2.4 PRELIMINARY DESIGN TEAM

The Preliminary Design team is responsible for creating
a preliminary design structure of the system based on
the software system requirements. The documents
required of the Preliminary Design Team are:

"* An Object Model:
"* Complete object diagram
"* Class dictionary

"* Object-Requirements traceability matrix
"* Ada Specifications for each object class

2.2.5 DETAILED DESIGN TEAM

This team is responsible for creating algorithms to
implement the system structure. The documents
required of the Detailed Design Team are:

* Data Structure Design using a data structure

dictionary

"0 Algorithm Design using Nassi-Shneiderman models

"0 An object attributes and object operations traceability

matrix

2.2.6 CODE & UNIT TEST TEAM

L12HD1
9

The Code & Unit Test team Is responsible for producing
source code for the algorithms produced by the Detailed
Design Team, integration of the modules to produce a

working system. The documents required of the Code
& Unit Test Team are:

* Source code

2.2.7 TESTING TEAM

The Testing team is responsible for implementing the
tests in the test plan and using them to test the system.
The documents required of the Testing Team are:

"* Test data
"* Documented test results

3. CONFIGURATION MANAGEMENT ACTIVITIES

3.1 C.M. REQUIREMENTS DOCUMENTS

The configuration manager has provided documentation to
assist the teams in meeting the C.M. requirements. This
documentation is in a series of files which are available on the
project file server. The C.M. requirements defined in these files
are as follows:

DESCRIPTION FILENAME

" Documents required by C.M. CMDOCS.DOC
" Document header info CMHEADR.DOC
" Document naming conventions CMNAMES.DOC
" Document format & standards CMFORMT.DOC
" Change request form format CMCHREQ.DOC
" Configuration item request procedure CMCIREQ.DOC
" Configuration item access procedure CMACESS.DOC
" Configuration item change process CMCHPRO.DOC
" Configuration item baseline process CMBASLN.DOC

3.2 C.M. CONTROL

The configuration manager will provide the teams and team
members controlled access to their respective configuration
items. In order to have access, however, the teams and/or
team members must provide the configuration manager with a
written

L12HD1
10

request for any desired configuration items as defined in the file
CM_CIREQ.DOC.

4. CONFIGURATION MANAGEMENT RECORDS

All BASELINED Configuration Items and documents will be maintained on the
project file server in a directory structure as defined in the file
CMFILES.DOC.

4.1 C.M. FILES
All Configuration Management files (including the requirements
files listed in section 3.1) are listed below:

DESCRIPTION FILENAME

"* Configuration item access procedure CMACESS.DOC
"* Configuration item baseline process CMBASLN.DOC

* Configuration item change process CMCHPRO.DOC
* Change request form format CMCHREQ.DOC
* Configuration item request procedure CMCIREQ.DOC
* Original customer request CMCRQST.DOC
* Documents required by C.M. CMDOCS.DOC
* C.M. file directory structure CMFILES.DOC

* Change request form CM_FORM.DOC
* Document format & standards CM_FORMT.DOC
* Document header info CMHEADR.DOC
* Document naming conventions CMNAMES.DOC
* Document page header CMPGHDR.DOC
* Configuration Management Plan CMPLAN.DOC
* Software Project Management Plan CMSPMP.DOC
* Project team organization CMTEAMS.DOC

L12HD111

LECTURE NUMBER: 013

TOPIC(SM FOR LECTURE:
Ada and maintenance

INSTRUCTIONAL OBJECTIVES:

1. Understand technical aspects of a language which support
maintainability.

2. Recognize the language features of Ada which support maintainability
of a software system.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)
(Learning Label- Today we are going to learn ...)

L13OH1

1. Consider and discuss three technical factors that affect the
maintainability of a software system: completeness and consistency,
understandability of program and its documentation, and modifiability
of the system.

a. Software systems in industry which have high maintenance
costs are systems which are long lived, are complex, and must
adapt to changing requirements and changing hardware. The
technical factors in L13OH1 are needed to make such software
systems more maintainable.

b. Completeness and consistency of system documentation are
independent of the implementation language. I a system is
complete and consistent then any changes made to the
program are reflected in the requirements definition, design
documents, test plans, etc. The implementation of such
completeness and consistency Is dependent on project
management.

c. Understandability of a program and its documentation is
important so that changes can be readily made. The
understandability of the program Is a language dependent
technical factor.

d. Another language dependent technical factor Is the modifiability

Lecture 013

of the system. A system is modifiable if a change made to one
part of the system affects that part and that part only. The
language, therefore, needs to provide the language features
which allow a system to be built of stand-alone components
which do not interfere with other system components.

L130H2
2. Discuss specific language features of Ada that support maintainability.

a. Named association, illustrated in overhead L13OH3, provides
the ability to assign names to formal parameters and to use
these names in actual parameter association.

b. Overloading provides the ability to define multiple meanings to
individual operators and procedure/function names.
Overloading allows expressions of user-defined types to be
written using familiar notation. An example is given on
overhead L130H4.

c. Discuss packages and how they promote modifiability in a
system because subsystems can be built which act as stand-
alone components.

d. Discuss the separation of interface specifications and bodies
which allows the details of implementation to be abstracted
away. This feature promotes understandability because only
the essential interface information is shown and the
implementation details are hidden away in the unit's body.
Discuss separate compilation of the specifications.

teachinog method and media:

vocabulry introduced:.
named association of parameters
overloading
separate compilation
Ada package specification and body

INSTRUCTIONAL MATERIALS:
overheads:
L13OH1 Maintenance
L130H2 Ada and Maintainability - features
L13OH3 Ada and Maintainability - example of named association of

parameters
L13OH4 Ada and Maintainability - example of overloading

2 Lecture 013

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 011 - Presentation of customer request for extended project

READINGI ASSIGNMENTS:

None

3 Lecture 013

"' IIM

Maintenance

Technical factors that affect the maintainability
of a software system

1. Completeness and consistency of
system documentation

2. Understandability of program and its
documentation

3. Modifiability of the system

4 L13OH1

Ada features which support maintainability:

Named association of parameters

Overloading

Packages

Separation of interface specifications

5 L130H2

ADA AND MAINTAINABILITY

An example of named association of parameters

procedure definition:

procedure compute-speed
(old x coord, old•y_coord, old z coord,
new x coord, newjy_coord, new z coord:in real;

speed : out real);

procedure invocation:

compute-speed
(13.459, -18.634, 28.775,
24.762, -98.628, 45.350,

value);

compute-speed (old x coord => 13.459,
old_ycoord => -18.634,

old-z-coord => 28.775,
new x coord => 24.762,
new y_coord => -98.628,
new z coord => 45.350,
speed => value);

6 L13OH3

AN EXAMPLE OF OVERLOADING

type complex-number is
record
end record;

procedure multiplycomplex
(c_1, c_2 : in complexnumber;
c_3 : out complexnumber);

multiplycomplex (c stream,
c0pause,
c dir);

function "*" (c_1,
c_2 : in complexnumber)
return complex-number;

c dir := cstream * c-pause;

7 L130H4

LECTURE NUMBER: 014

TOPIC(S) FOR LECTURE:
Software life cycle models

INSTRUCTIONAL OBJECTIVE(Sa:

1. Understand the concept of a software life cycle.
2. Understand that a variety of life cycle models exist.
3. Distinguish between several life cycle models, including waterfall,

prototyping, and spiral models, and know the strengths and
weaknesses of each.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

Refer back to the introductory lectures on the various activities in software
development. At that time we briefly described the classic life cycle model
and discussed some of its strengths and weaknesses. We're going to review
those today, with a little more detail, and then discuss some other life cycle
models and look at their strengths and weaknesses.

(Learning Label- Today we are going to learn ...)

We will be looking at gcess here, as distinguished from argJuIt. An
organization that can devote attention to process as well as product has
achieved some measure of maturity.

1. Concept of a life cycle model - a series of phases through which the
software product progresses is a software process model, or a
software life-cycle model.

a. Fundamental (generic) steps in software development.
Review the fundamental activities: requirements analysis,
specification, design, implementation, testing, maintenance.
Emphasize that in general there are not the sharp boundaries
between the different life cycle activities that are implied when
we differentiate between them in order to discuss them.

An artificial boundary between these activities is indicated by
the development of a milestone document.

b. Ad hoc methods (e.g. the "build-and-fix model"), though used
in places and even referred to as models, are not really life
cycle models but instead demonstrate the absence of a model.

1 Lecture 014

We are considering here systematic approaches that represent
reoeatable processes.

c. Discussion question: Why is it important for a software
development organization to have a well defined process?
i To define activities that are to be carried out and

deliverables and milestones associated with each
ii To introduce consistency among projects
iii To provide checkpoints for management control and for

go/no go decisions
iv Increasing software backlog due to increased demand

for software services - Use this to further emphasize the
need for an effective process for software development.

2. Classic life cycle model (Waterfall)

a. Description - L14OH1 - Fig 1.7 Pressman
This is a systematic, igntial approach similar to traditional
engineering cycles and note that there is feedback between life
cycle phases. There are verification activities included in each
phase.
Consider the phases:
i System engineering - Typically the software is part of

some larger system and this phase involves establishing
requirements for the entire system and then allocating
some subset of this to software.
Use the small projects as an example. Identifying the
system context (scope) and interfaces with external
entities. This "external" view was necessary before
devoting attention to the software system.

ii Software requirements analysis - This involves the
extraction and clarification of requirements for the
software system.
Requirements and specification of requirements are
documented and reviewed with customer and are
baselined as a software configuration item. A
preliminary test plan, based on the requirements list, is
also developed and baselined here.

iii Design - The design is documented and reviewed with
customer and becomes part of the software
configuration.

iv Coding and component testing -
The results of component coding and component testing
are documented and checked against the original test
plan and design. Code, test data & test results become
a part of the software configuration.

2 Lecture 014

v Integration and system testing
After successful test results are achieved, the test plans
and results are reviewed with customer and become
part of the software configuration. This testing is called
acceptance testing.

vi Maintenance - reapplies each of the preceding life-cycle
phases to an existing system.

vii The waterfall model is the oldest and most widely used
software life cycle model. Schach presents a variation
on the waterfall model which includes verification at
every phase. If verification is included as an integral
part of each phase then it is clear that this is not an ad
hoc model. L 401H2 Here a phase is not complete until
the documentation is reviewed and approved and placed
under configuration control.

b. Strengths of waterfall model
i Disciplined - requires documentation and verification at

each phase.
ii Documentation-driven.
iii Widely used.
iv Far better than ad hoc approach.

c. Weaknesses of waterfall model

Even with feedback, the model is essentially sequential
and, for many projects, that is not realistic. It is often
difficult for the customer to state all requirements
explicitly at the start of a project.

ii Documentation-driven - While listed as an advantage, it
can also be a disadvantage. The documentation is often
not adequate for the customer to understand and even
though he/she is signing off at each phase, he/she may
not really understand the system from that
documentation.

iii A working version of the system is not available until the
later phases. This problem is addressed in the
prototype model.

3. Prototyping model - Introduce this by discussing how the weaknesses
of the waterfall model might be addressed.
Prototyping is the creation of a functionally- equivalent model of the
system, or a subset of the system, that can be demonstrated to the
customer. This demonstration can take several forms; a paper model
(e.g., showing user screens and reports), an existing system that

3 Lecture 014

provides similar functionality and/or Interface, or a skeleton version of
the final system. Note different forms the model can take.
L140H3
a. Prototyping begins with requirements gathering (involving

developers and customers) followed by a rapidly developed
design and construction of a prototype. The customer
evaluation of this working version, leads to a clarification of the
requirements.

b. Discuss Brooks' observations, made in 1975, in The Mythical
Man-Month. Read from chapter 11 (Plan to Throw One Away),
p 116. L140H4

c. Discuss problems associated with prototypes.
i Customer sees working version early and may confuse

the prototype and the final system, thus expecting a
finished product in an unreasonable amount of time.
This may result in pressure to turn the prototype into the
real system and, in turn, would result in an inadequate
(unmaintainable, untested, etc) product.

ii Implementation compromises are made to get a working
prototype early. Developer, for a variety of reasons,
may forget these compromises.

4. Spiral model - The spiral model was developed by Barry Boehm to
incorporate the advantages of prototyping into the waterfall model.

a. Background - The development of application software for real
customers always involves elements of risk. What are some
risks?
i It may not be clear that some requirements are

attainable (response times, dependency on new
technology, new theory, schedule requirements,
necessary personnel/expertise not available,
requirements not testable, etc)

ii Dependencies on other systems or hardware which are
beyond the developed control (relate to small projects)

Note that one way to reduce risk would be to build a prototype
in order to resolve risks early in the project. Review the
weaknesses of the previously discussed models (waterfall and
prototyping) as an introduction to the spiral model. This gives
an historical perspective and emphasizes the evolution of
process models for large software systems.

4 Lecture 014

The intent of the spiral model is to encompass the best
features of the waterfall and prototyping approaches and, at the
same time, incorporate risk analysis. In the spiral model, risks
are identififid and an attempt Is made to resolve them through
the use of prototypes and other means the students how
this relates to the projects they are wo

L140H5
b. Major activities represented by the 4 quadrants.

i Top-left quadrant: Planning - determination of objectives,
alternatives, constraints; requirements

ii Top-right quadrant: Risk analysis - analysis of
alternatives and identification/resolution of risks

iii Bottom-right quadrant: Develop this portion of the
system following the most appropriate process model.

iv Bottom-left quadrant: Customer evaluation - assessment
of how the product of this phase relates to the initial
plan and the product of the previous phase. This is
followed by planning the next iteration of the spiral.

c. With each iteration around the spiral, progressively more
complete versions of the software are built. During the first trip
of the sp;ral, objectives are established, alternatives for
achieving those objectives and constraints are identified.
Based on the risk evaluation a development model is chosen.
(For example, if risk analysis indicates sufficient uncertainty in
requirements, prototyping may be used). Finally the results are
evaluated and the next trip around the spiral planned. Key
elements of this model are the assessment of risk at regular
intervals and the initiation of actions to address/minimize the
risks. Thus high risks would be addressed early. Risk analysis
is done before each cycle and an assessment is done at end
of each cycle.

d. Strengths of spiral model
i Emphasis on risk identification, assessment, and

resolution.
ii Considered by many to be the most realistic approach

to development of large scale software systems.
iii Incorporates advantages of waterfall and prototyping

models.

e. Weaknesses of spiral model
i Applicable for large-scale systems only.
ii Requires risk assessment expertise.

5 Lecture 014

5. There are many Wie cycle models possible; weove looked at some
representative models and their strengths and weaknesses. Ask the
students what factors might determine the particular lUfe cycle model
an organization chooses for a project.

a. Stability of requirements

b. Problem domain

c. Risk: economic, schedule, feasibility, safety, ethicality

d. Organization and expertise available

PROCEDU.E:

teaching method and media:

vocabulary introduced:

software process model/life cycle model
process (vs product)
repeatable process
waterfall model
prototyping model
spiral model
risk, risk analysis

INSTRUCTIONAL MATERIALS:overheads:
L140H1 Waterfall model (Fig. 1.7, Pressman)
L140H2 Waterfall model (Schach, p.50)
Li 40H3 Prototyping (Pressman, p. 28)
L140H4 Quote from Brooks, The Mythical Man-Month
L140H5 The spiral model (Sommerville, p. 15)

handouts:

RELATED LEARNING ACTIVITIES:

(labs and exercises)

LabOl2 Project Team Organization

READING ASSIGNMENTS:
Sommerville Chapter 1 (pp. 5-18)
Mynatt Chapter I (pp. 12-27)

6 Lecture 014

RELATED READINGS:
Ghozzl Chapter 7 (pp. 357-383)
Pressman Chapter I (pp. 24-36)
Schach Chapter 3 (pp. 47-66)

7 Lecture 014

Classic Life Cycle (Pressman)
Waterfall Model

B L14OH1

Waterfall Model (Schach)

Vw* ----------- - - - --.l,. I-,. ,4

'"'mugs. 4------------------------------

V.WS, <, .

vu I_ I

I I Il

vII

It

It!:: I 1

Opmdtles mods

9 L14OH2

PsuedoCode Example

Policy for ordering new stock

For each NewStockRequest, do the following:

1. Search for an AuthorizationForm with
ReferenceNumber equal to the
RequestNumber on the
NewStockRequest.

2. If there is no match
Then Discard this New_StockRequest
Else

a. Write a PurchaseOrder for
OrderedItem

b. From Supplier Catalog, select a
Supplier who carries the
OrderedItem

c. Copy Supplier_Name and
Address to PurchaseOrder

d. Copy PurchaseOrderNumber to
NewStockRequest

e. File NewStock_Request with
AuthorizationForm

8 L230H3

.. P.....mDat.D........For
P..oc... Name:. .a .n..ue

Purpose:~~ .. Evry..r.ee.prdue.he..oPe u tOOc.....dat
eDloe :1ao Detotn t utu

Proess Da r ay ptxam -a
Puroset Employee. Union:: ..u.o by eno Numbern

Employeean NamenWeklEndngtat

Inpu eaah Emps:l~Oyee Unin*DutionDeuto
Output DtaFots Union Exedu seo REgnteryUno
Summarytu Union CheckUio edconRgsr

Oupu Unio .S......ry.
Shelly-Cashmn..Figure.4-

.. 0.. .. .

Function:~~ .h liit

lnp ~ ~ ~ SA a Awh en se yAA

t.Fnt hecpevou cash wi thawl
Iný:ýýesfputso: !!.h dntf~r M.on~nubrEp

date6 Latasatiensurdtatte, card

Sourc1 Inplute details redfro the datead amogneticf

stripe

Outputs:* Card-status *` ý(OK. invalid)
Destination: Auto-eter~e.. The.:card status is passed to

another part of the software.

Requires: Bank-list, Account-format, Todals-date
Pre-conditWon:

Card has been input and stripe data read
Post-condition:

11Bank-ldentifier is in. Bank-list and .

Account-number matches Account-format
and expiry-date >= Todays-date and Last-
Transaction-date <= TodaYs-date and
Card-status =OK
or (if any of these tests falt). .

Card-status =invalid

Sommerville, Figure 5.1

10 1_230115

Translation of Bank Loan Qualification
Policy into a Data Flow Diagram

Automatic

AvgSavBa DeermneLoan-Decision .
Avg-Sav-Bal •Automatic

\ ~Loan

The customer is approved if he or she has maintained an
average monthly checking balance of at least $1,000 for each of
the last three months and has averaged no more than two
overdrafts per month. Customers meeting only one of these
conditions but maintaining an average savings account balance
of at least $500 for each of the last three months receive
conditional approval with an automatic loan limit of $500.

11 L230H6

Decision Table Covering Policy
For Automatic Loan Qualification

Avg Ck Bal >=
1000 Y Y Y Y N N N N

Num overdrafts <=
2 Y Y N N Y Y N N

Avg Sav Bal >= 500
_YNYN Y N Y N

Approve X X

Cond. Approve I X X

Reject X X.XX

12 L230H7

Decision Tree Expressing A Bank's Policy
Concerning Loan Qualifications

Checking Number of Savings Balance Result
Balance Overdrafts >-oo Approve

<=2 •Approve

<500

>=1000

Cord Appr.

Rejecl
<500

1312>=500
<1000 <500

<100 Reject

<500

13 L230H8

Decision Tree Showing the Flow of Control

L L Menu
Computer Software Menu
Science Hardware Menu
Menu

C Exit

FFLFinance Menu

Subject B Business / Marketing Menu
Menu Menu A ccounting Menu

IM Exit

E Math
Prompt for enu A Algebra Menu

2 Title CC

Exit 0 Calculus Menu

rompt for Others Menu

4 Author Exit

Exit

Eliason,p. 390

14 L230H9

Finite State Machine Representation
Of Combination Safe

jr"i lA B

Saf e loc d Saf e unlocked

Any other Any otherAnote
dial movement dial movement dany motheren

SInitial state

X: (A' Y' '

) ,~Final state
Sound Alarm ~A

Schach, Figure 7.8

15 L230H10

Petri Nets

Marked Petri net p2
tit2I'/

p ' p3

t transition
* p place
4

Petri net of above p2

after firing Q
transition tI ti

pp3

Schach, Figures 7.14,7.15

16 L230H1 la

Petri Nets

Petri net after 2
firing transition 12

t2

11

pl

* 0p3

0p4

Schach, Figure 7.16

17 L230H11b

Execution of a Petri Net

18 L230H12

A Warn br Diagrmm

Depulment code
Course wrbner ~Mi

Section Secflon 4imber
kistructor0

hfohflInim

Errolment

aass stan*n
Prefrecquisites - ,(Majir (i, M)

KPrevious courses (1, 4)
rLaboratory type

Oackoard0 Pr*tor
Faclities Lecture'hal Lab tabe

@
CCTV

Se~ninr room

Jorms, p. 198, Figure 4-25

19 L230H13

LECTURE NUMBER: 024

TOPIC(S) FOR LECTURE:
Transform analysis
Transaction analysis

INSTRUCTIONAL JECTIVEC:

1. Understand transform analysis and its application.
2. Understand transaction analysis and Its application.
3. Recognize when transform analysis is appropriate and when

transaction analysis is appropriate.
4. Understand the process of refining first-draft structure charts produced

by transform analysis or transaction analysis considering design
criteria such as coupling and cohesion.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In your first project you had to develop structure charts, without using any
well-defined method.

(Learning Label- Today we are going to learn ...)

Today we're going to look at two methods of developing structure charts from
data flow diagrams.

1. Transform analysis is a set of design steps that can be applied to map
a data flow diagram into a structure chart. Theoretically, transform
analysis can be applied to any system but it is more appropriately
applied to specific types of systems. The input to transform analysis
is the DFD model; the output is a first-draft structure chart.

2. The first step in transform analysis is to identify the central transform
in a DFD.

a. L240H1
For many systems input comes Into the system from the
external world (keyed In by user, signals from a sensor), is
transformed by some Internal process(es), and results are
output (printed report, graphics display, signal to external
device). The overhead represents this as a function of time as
the system performs its task. Note that Information flows from
its external entry Into the system (the afferent streams), Into
some Internal representation where the essential transformation
takes place, and then flows out (the efferent streams)to the
external world. Tracing the input, at some point the input data

Lecture 024

ceases to be input and becomes internal data, i.e. it ceases
being raw data (through verification, editing, filtering, ...
operations). Similarly, at some point the internal data is
transformed into output data. The key to transform analysis is
identifying the part of the system where the "essential
transform" takes place; the boundaries at which raw input data
has been transformed into essential data, and at which
essential data becomes output data but still has to be
formatted, refined, etc before it can be output from the system.

L240H2
For example, consider this master file update (briefly review or
explain a traditional master file update). Where does the
essential transformation occur? Points A and B in the
overhead are the beginning of the afferent streams; at these
points Field and Master Record enter the system. Tracing
each of these inward, it is at points E and F where these input
data have been transformed into essential data (Valid
Transaction and Valid Master Record, respectively); up to these
points the raw inputs have been simply validated and edited.
Points C and D are the ends of the efferent streams; at these
points the outputs New Master Record and Applied Transaction
Report Line, exit the system. Tracing each of these back into
the system, it is at points G, H, and I where the most logical
data flows first appear (Applied Transaction, Updated Master
Record, and Unmatched Master Record, respectively); following
these points the data is simply being formatted. The points E,
F, G, H, and I mark the boundaries of the central transform. If
these points are connected, as is shown by the dotted line, the
transforms inside (5 and 6) comprise the central transform.

L240H3
This system inputs a file name and outputs the number of
words in the file. Again, identify the central transform.

b. Given a DFD, the central transform can be identified as follows:
i Trace each physical input to the point at which the

activities performed are not just editing, verifying, or
otherwise cleansing the data, but are truly transforming
it some way (performing calculations, using it to derive
new information, etc). Mark those points. In so doing
you are marking the data flow that represents the input
in its most essential form.

ii Trace each physical output backward into the system to
the point where the activities are no longer simply
formatting the data for output. Mark those points. In so

2 Lecture 024

doing you are marking the data flow that represents the
output in its most essential form.

iii Connect the points marked in steps i and ii above. The
transform(s) enclosed represent the central transform.

The central transform is the part of the DFD that
contains the essential functions of the system and is
independent of the particular implementation of the input
and output. The identification of the central transform
allows the designer to clearly separate interfaces to and
from the system from the essential system processing.

3. L24OH4
Once the central transform has been identified, a first-draft structure
chart can be developed. The second level of the structure chart
consists of a set of controller modules, one for each of the afferent
streams, one for the central transform, and one for each of the
efferent streams.

Consider the previous example of the system to count the number of
words in a file (L24OH3). The first-draft structure chart resulting from
transform analysis is shown L24OH5. Consider the cohesiveness of
these modules. Read-and-validate-file-name and Format-and-display-
word-count exhibit communicational cohesion. Their cohesion levels
can be improved with the refinement shown in L24OH6. Now, all of
the modules are functionally cohesive. This refinement represents a
good preliminary design.

4. L240H7
Structure charts produced through transform analysis are balanced
hierarchies. The central transform is isolated from the input and
output environment by placement at a separate level. The highest
level modules are isolated from low-level I/O details since they see
only the net results of low-level module activity.

5. The first-draft structure charts produced by transform analysis must be
refined with consideration given to design criteria such as cohesion,
coupling, fan-in, fan-out, and modularity. Other good examples are
given in Mynatt in section 4.3. A more detailed example involving the
SafeHome security system is provided in Pressman, pages 372-381.

6. While transform analysis is the most widely applied structured design
technique, another method, transaction analysis, is more appropriate
for "transaction centers" within a system. A transaction center occurs
when a single transform in a DFD triggers multiple data streams
flowing out of that activity. Transaction centers are easily
recognizable.

3 Lecture 024

L24OH8, L240H9
Consider these examples as well as Mynatt's ATM example in Figure
4.12. A good way to design a transaction center is to separate it into
two pieces; one to analyze the transaction (the afferent to the
transaction center), and one to dispatch the transaction. This
separates the different transactions at a very high level and
discourages the tendency to share common elements.

Discuss the types of structure charts that result. For example,
applying transaction analysis to the DFD in L240H9 yields the first-
draft structure chart in L240H10. Other good examples are given in
Mynatt in section 4.4. A more detailed example involving the
SafeHome security system is provided in Pressman, pages 382-389.

7. L24OH11
The structure charts produced by transform analysis and transaction
analysis must be refined with consideration given to design criteria
such as cohesion, coupling, fan-in, fan-out, and modularity. They
must also be reviewed to verify that the final structure chart meets the
requirements represented by the DFDs. Discuss the concordance
example in Mynatt, Section 4.3.4, pages 162-167.

PROCEDURE:
teaching method and media:

vocabulary introduced:
transform analysis
afferent streams
efferent streams
central transform
factoring
balanced hierarchy
transaction analysis
transaction center

INSTRUCTIONAL MATERIALS:
overheads:

L240H1 Transform flow
L24OH2 DFD for master file update
L240H3 DFD for word counter
L240H4 First-level factoring
L240H5 First-level structure chart of word counter
L240H6 Refinement of word counter structure chart
L240H7 Balanced hierarchies
L240H8 Transaction center
L240H9 Ship control system
L24OH10 Ship control system
L240H1 1 Refinement and verification of structure chart

4 Lecture 024

hanldouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Sommerville Chapter 2 (pp. 222-228)
Mynatt Chapter 4 (pp. 143-169)

RELATED READINGS:
Ghezzi Chapter 7 (pp. 394-402)
Pressman Chapter 11 (pp. 369-389)
Schach Chapter 10 (pp. 299-302)

5 Lecture 024

Transform Flow

om ibIOpigw

6 L240H1

DFD For Master File Update

lawl

Vourdn SeinarNote

7 L240H2

DFD For Word Counter

* I

*J IN

.. . . .
I~

am I

I a
I a

S

hbld hNd

Schach, Figure 10.3

8 L240H3

First Level Factoring

@ :coo&

Pressman, Figure 11.9

9 L240H4

First.Level Structure Chart
of Word Counter

PERFORMwonI
COUNT

fil ,. Ua.u A..i
a/idated word

flag
Neamme cmun

READ AND COUNT FORMAT
VALIDATE NUMIER AND DIPLAY
FILE NAME OF WORDS WORD COUNT

O�- control isfornngleon

10 L24OH5

Schach, Figure 10.4

11 L24OH5

Reflnmnt of Word Counter Structure Chart

_I

UAB VALBA~~tI II~ iAPA

CIT COUNT

SI rT 0 W.OD U WI

lCOT COCONT

12

Balanced Hierarchies

Structure charts produced through transform
analysis are balanced hierarchies.

The central transform is isolated from the
input and output environment by
placement at a separate level.

The highest level modules are isolated
from low-level I/0 details since they see
only the net results of low-level module
activity.

13 L240H7

Transaction Center Exmple

Audi

Adot

tows$
Flbgr

14u L2408

Ship Control System

Transaction Transacion
Tag Type Transaction Effect

Turn Turn ship. Turn ship from present angle by specified
amount.

Set Set ship
course. Set ship to absolute course.

Fire Fire missile. Fire missile In specified direction.

Scuttle Self -destruct. Blow up ship after specified time.

Yourdon Seminar Notes

15 L24OH9

Ship Control System
Structure Chart

COMMANDZ

SYNACICLL PARAMITI FUIRST OUTU
VALD URNConoumh UL-RTRUR

Voudon Semina Notes

16MO Comm0H1

Refinement and Verification Of
Structure Chart

The structure charts produced by transform
analysis and transaction analysis must be
refined with consideration given to design
criteria including modularity, cohesion,
coupling, fan-in, and fan-out.

The refined structure charts must also be
reviewed to verify that they meethe
requirements.

17 L240H 11

LECTURE NUMBER: 025

TOPIC(S) FOR LECTURE:
Coupling and cohesion

INSTRUCTIONAL OBJECTIVES:

I. Understand the design goals for cohesion.
2. Understand and distinguish between the various cohesion levels.
3. Understand the design goals for coupling.
4. Understand and distinguish between the various coupling levels.
5. Evaluate a design based on Its coupling and cohesion characteristics.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In earlier lectures we have discussed coupling and cohesion as design
criteria. Recall that cohesion is a measure of internal strength of a
component; a measure of how well the internal elements of a component
work towards the goal of the module. Thus, in design we want to maximize
cohesion; to design highly cohesive components. Recall also that coupling
is a measure of the dependencies between components; a measure of the
relationship between components. Thus, in design we want to minimize
coupling; to restrict the dependencies between components to those that are
necessary.

(Learning Label- Today we are going to learn ...)
Today we are going to discuss various levels of coupling and cohesion and
how to evaluate a design based on its coupling and cohesion.

CO QTE .:

L250H1
1. One attribute of a design is its modularity. What do we mean by that;

exactly what is a module? Consider a module as a black box with
four basic attributes.
i It interface, Input and output - what it gets from its invoker

(input) and what it returns (output)
ii Function - what it does to its input to produce its output
iii Mechanics - procedural logic to performs its function
iv Internal data - its own private data or work-space or data

structure

items I and ii comprise the external view of a module. items iii and iv
comprise the internal view. Preliminary design is concerned with the
external view. Functional independence Is a key to good design, and
thus, to software quality. Why? Because the design will be
maintainable, testable, and have a higher potential for reuse. Ideally,

Lecture 025

this is achieved by developing modules that are single-minded (do a
single, clearly-defined function), avoid interactions with other modules
except where necessary. In those cases, where interaction is
necessary, keeps it as simple as possible.

2. Cohesion is a design criteria; a measure by which we can evaluate a
design. Cohesion is a measure of a module's internal strength; a
measure of how well a module's internal elements are related to each
other. Ideally, a cohesive module does just one thing. A function with
no side-effects is an excellent example of a cohesive module. A
number of levels of cohesion have been identified. L25OH2 As the
overhead indicates, these levels represent a spectrum. The scale in
= linear. The low end (coincidental) is very bad, and should always
be avoided,whereas the middle levels, which are not that far away
from the high end (functional), are sometimes unavoidable. L250H3
The lower levels of cohesion lead to a maintenance problem.

a. Coincidental cohesion - there is little or no meaningful
relationship between the elements of the module. Such
modules perform multiple, unrelated tasks. This is the worst
type of coupling and also easiest to avoid. The problems are
obvious: difficult to maintain and offer little opportunity for
reuse.

b. Logical cohesion - module performs a series of related actions,
one of which is selected by the calling module. This occurs
when elements are grouped into a class of related functions
and placed into a single module. Examples are a module that
handles all output, general purpose error handling, and
modules that perform all input. Problems with logical cohesion
include a complex interface , hard to understand module, and
code for different actions may intertwine, causing maintenance
problems. For example in L250H4, the addition or deletion of
hardware would cause significant modification in the module.

c. Temporal cohesion - module performs a series of actions that
are related by time, actions that must be done at the same time
(or in the same time span). Typical examples are initialization
modules that do a variety of things (like open files, clear
counters, initialize flags); or "wrap-up" modules that close files,
compute final totals and averages, and print final report. CS1
instructors tend to emphasize these types of modules; (e.g.,
initialize all conditions and totals, other housekeeping chores).
This leads to tight coupling.

d. Procedural cohesion - module performs a series of actions that
must be done in a particular order; the elements are related

2 Lecture 025

more to program procedure than to program function. They
often tend to cut across functional boundaries. Not always
bad, in fact from this point upward on the cohesion spectrum,
the levels of cohesion are significantly more maintainable than
the lower levels. An example of procedural cohesion is a
module that reads a part number from a data store and
updates a repair record in a maintenance data store. Although
procedurally cohesive modules are more maintainable than
those with lower levels of cohesion, they are not easily
reusable.

e. Communicational cohesion and sequential cohesion - perform
a series of actions related by a sequence of steps; an
assembly-line order. If all the actions are preformed on the
same data structure than the cohesion is communicational.

Examples: Determine length and slope of line
Read record and eliminate duplicates.
Format and verify voter profile.

Tasks at this level are directly related to the problem so
maintainability is not bad but, again, decreases potential for
reuse

f. Functional cohesion - module performs a single task and each
part of the modules is necessary to perform that task.

Examples: Calculate sales commission
Get temperature of furnace
Determine students GPA

Note: the cohesiveness of many of the earlier examples could
be improved to functional by breaking them into multiple
modules.

Discuss why such modules are easier to maintain
Fault isolation
Easy to understand
Less chance of impacting other modules
Easier to extend/replace
Better chance of reuse

Example: Discuss this example with the students. L250H5

g. Informational cohesion - This is an additional level of cohesion
identified by Schach. A component exhibits informational
cohesion if it has a number of elements, each preforming an
action on the same data structure, and, each element has its
own entry point.

3 Lecture 025

Example: L25OH6 The difference between this and logical
cohesion is that here the various elements, each performing
one action, are independent whereas in logical cohesion the
elements are intertwined. This lies just below functional on the
cohesion scale.

Summary on cohesion: If a module exhibits more than one
type of cohesion, it is labeled as the wors of those types. One
should develop modules that have a single problem-related
function. This increases independence, clarity, maintainability,
and reuse. A functionally cohesive module can be accurately
described with a simple sentence containing an imperative verb
and a specific singular object. Otherwise, the module is less
than functionally cohesive. L25OH7, L25OH8 is Meilor Page-
Jones' organization of cohesion and its trade-offs. The Y-axis
represents the lifetime cost per amount of functionality provided
and the X-axis is the levels of cohesion. Page-Jones has an
excellent discussion of these trade-offs.

3. Coupling is another design criteria; a measure by which we can
evaluate a design. Coupling is:
i a measure of the dependence between two modules
ii a measure of interconnection between module
ii it is the degree of interaction between two modules.
A major design goal is to minimize dependencies by; developing
loosely coupled modules. Low coupling is achieved by eliminating
unnecessary relationships and minimizing the number and "tightness"
of necessary relationships. A number of levels of coupling have been
identified. L250H9 spectrum (p 336 Pressman). As the overhead
indicates, these levels represent a spectrum. As with the cohesion
spectrum, the scale in not linear.

L250H10
a. Content coupling - One module refers to the internals of

another.

Examples (Assume modules A and B) include:
A modifies a statement of B
A refers to local data of B
A branches inside B

These are c easy to avoid, inexcusable, violations of anybody's
programming standards.

0. Common coupling - Two modules have access to same global
data area.

4 Lecture 025

C. Control coupling - One module passes an element of control to
another module, i.e. expJJ.ii controls its logic. Examples of
control are function codes, flags, and switches. If a table
lookup routine passes back a flag "entry not found" there is no
control coupling. If however, it passes back "entry not found,
add this item" then the table look up module that called it is
control coupled. In the latter case the boss is being told what
to do; in the former case the boss is being apprised of the
situation.

d. Stamp coupling - One module passes a data structure as a
parameter but the called module ooerates on some but not all
of the individual components of the data structure. Stamp
coupling exposes modules to more data than they need. This
exposes the data structure to corruption.

e. Data coupling occurs when parameters are passed or a data
structure, all of whose elements are needed by the called
module. The fact that a data structure is passed does not entail
stamp coupling.

f. Two modules may exhibit more than one type of coupling. In
such cases, the degree of coupling is considered as the worst
of the types exhibited.

L250H 11 is an example of different couplings. Discuss this
with the class and go over the answers L250H1-2.

g. Considerations in designing modules:
i imagine modules as library functions; how would they be

easiest to understand; how might they be reusable?
ii Assume each module will be implemented by a different

programmer. How independently can the programmers
work? Are there any assumptions, constraints, or
conventions that one module need be aware of and how
likely are they to change? Can the change be isolated
to a single module?

If two modules are highly coupled, there is a higher probability
that a change in one will require a change to the other.
L250H13 is Page-Jones' organization of coupling and its
tradeoffs.

teaching method and media:

vocabulary introduced:

5 Lecture 025

cohesion
coincidental cohesion
logical cohesion
temporal cohesion
procedural cohesion
communicational cohesion
sequential cohesion
functional cohesion
informational cohesion
coupling
content coupling
common coupling
control coupling
stamp coupling
data coupling

INSTRUCTIONAL MATERIALS:

L250H1 Attributes of a module
L25OH2 Cohesion Spectrum (Pressman, p 334)
L25OH3 Cohesion level definitions
L25OH4 Logical cohesion example (Schach)
L25OH5 Structure chart showing cohesion of each module (Schach, Fig

9.7)
L25OH6 Module with informational cohesion (Schach, Fig 9.6)
L25OH7 Guidelines for determining cohesion level (Pressman, p. 335)
L250H8 Costs as function of cohesion level (Page-Jones, Table 6.2, Fig

6.15)
L250H9 Coupling spectrum (Pressman, p 336)
L250H10 Coupling level definitions
L250H1 1 Coupling example (Schach, Fig 9.11 - 9.12)
L25OH12 Coupling example (Schach, Fig 9.13)
L25OH13 Qualities of coupling levels (Page-Jones, Table 5.2)

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Mynatt Chapter 4 (pp. 144-150)

RELATED READINGS:
Ghezzi Chapter 3 (pp. 49-52)
Pressman Chapter 10 (pp. 332-337)
Schach Chapter 9 (pp. 235-253)

6 Lecture 025

Molir Pep-Jones, Prasical Dudse to SruuadM DUIgn 2Wnd u, 1968,

7 Lecture 025

Attributes of a Module

Interface - Its input and output

Function - What it does to its input to
transform it into output

Mechanics - Internal logic (code)

Internal data

8 L250H1

dlam"u

LqkIalo kqu.UhIpd

9 L250H2

COHESION LEVELS

Coincidental - Little or no meaningful
relationship between elements of
the module

Logical - Performs series of logically
related functions in module;
functions falling into some general
category

Temporal - Performs series of actions related
by time (that must all be done at
same time or in same time span)

Procedural - Performs series of actions that
must be done in a particular
order; elements related more to
procedure than to function

Communicational
Sequential- Performs series of actions related

by sequence (output of step is
input to next) or all of the actions
performed on the same data

Functional - Performs a single task and each
element of module is necessary
to perform that task

10 L250H3

Example of Logical Cohesion

Module Performing All Input and Output
1. Code for all input and output
2. Code for input only

3. Code for output only
4. Code for disk and tape I/0
5. Code for disk I/0
6. Code for tape I/0
7. Code for disk input

8. Code for disk output
9. Code for tape input

10. Code for tape output

37. Code for keyboard output

Source: Schach, Fig 9.5

11 L250H4

Cohsio ofEach Mdl

huB"o

12do L250H5M

Module with Infomutional Cohesion

DOIOR of

Eatry mpdatem-Ur"Jka-tabl.

"Ita

Katry P prlmtsal1eirgI*m jail.

13 L250H6

Guidelines for Determining Cohesion Level

A useful technique in determining whether a
module is functionally bound is writing a sentence
describing the function (purpose) of the module,
and then examining the sentence. The following
tests can be made:

1. If the sentence has to be a compound
sentence, contains a comma, or contains more
than one verb, the module is probably performing
more than one function; therefore, it probably has
sequential or communicational binding.

2. If the sentence contains words relating to
time, such as "first", "next", "then", "after", "when",
"start", etc., then the module probably has
sequential or temporal binding.

3. If the predicate of the sentence doesn't
contain a single specific object following the verb,
the module is probably logically bound. For
example, Edit A/ Data has logical binding: Edit
Source Statement may have functional binding.

4. Words such as "initialize", "clean-up", etc.,

imply temporal binding. Functionally bound

14 L250H7

modules can always be described by way of their
elements using a compound sentence. But if the
above language is unavoidable while still
completely describing the module's function, then
the module is probably not functionally bound.

Source: Pressman, p 335

15 L250H7

Costs As Function of Cohesion Level
Effect on

Cleanli- overall
ness of Under- system

Cohesion Imple- Modifia- standa- maintain-
level Coupling mentation bility bility ability

Functional Good Good Good Good Good

Sequential Good Good Good Good Fairly good

Communi-
cational Medium Medium Medium Medium Medium

Procedural Variable Poor Variable Variable Bad

Temporal Poor Medium Medium Medium Bad

Logical Bad Bad Bad Poor Bad

Coinci-
dental Bad Poor Bad Bad Bad

L
!
f Ceoddmfal

e
t
I

C
C"U I
It Tmpowl

Lelleal CemmaaakdleaiqueatlaIcmurelealboal

Level of Coheolos

I16m: hge-Jseu

16 L25OH8

Coupling Spectrum

A NMaure dfike Iulripeuiene
Amnag &o&tan M18dawe

Cupft C"qbg

Cnpt Cnkd

Low 0000611104 Ceqbglpdrum lig 1 0 00 w

I~wrma. IU2,.1

17 L250H9

COUPLING LEVELS

Content- One refers to internals of other

Common - Have access to same global data
area

Control - Communicate at least one
element of control

Stamp - Communicates a data structure
and the called module operates
on some butnot all of the
individual components of the data
structure

Data - Only parameters communicated
or a data structure in which all of
the elements are needed by the
called module

18 L25OH10

Coupling Examples (Schach)
Module Interconnection Diagram for

Coupling Example

1- b af WI

Interta
ce Description

Number In Out
1 aircraft type status flag
2 ---- list of aircraft

parts
3 function code
4 list of aircraft

parts
5 part number part

manufacturer

6 part number part name
Coupling Between Pars of Modules

19 L25OH12

a. Are we building the right product?

Validation involves checking that the program as implemented
meets the expectations of the customer as specified in the
requirements specification documentation. In other words, we
want to demonstrate through tests whether or not the software
product meets the customer's expectations. The completed
end product is tested.

c. Dynamic analysis is the primary technique used in
accomplishing validation.

4. Discuss verification and validation activities of each phase of the
traditional process model are examined. L21OH5, L21OH6 L21OH7
-Review of software products is traced back to its requirements.
L21OHS, L21OH9 - Maintenance is a reiteration of the software
development life cycle. Maintenance also re-applies previous test
cases to assure no loss of functionality during maintenance changes.

5. Acceptance criteria are important in the accomplishment of validation.
Without established, agreed upon criteria by which to judge validation,
certification of customer satisfaction is difficult. The role of acceptance
criteria within the software requirements specification is discussed.
The acceptance tests provide predefined criteria for functionality,
performance, interface quality, and other identified quality attributes.

L21OH10
6. The acceptance criteria described above are often called explicit

requirements because the customer has explicitly stated them in the
software requirements specification. There is another type of
requirements which developers need to be concerned about; these
requirements are called implicit requirements. Implicit requirements
are quality factors which the customer desires or expects in the
software but may not explicitly state. Examples of implicit
requirements include reliability and robustness.

L21OH11
7. The activities of verification and validation should be thoroughly

planned and documented in a Software Verification and Validation
Plan. This document serves as the blueprint for all V&V activities.
Give examples of the major bullets on this overhead.

3 Lecture 021

tmbachi method and mock:

vocaabul&rM intrduced:

verification
validation
acceptance criteria
static analysis
dynamic analysis
formal analysis

INSTRUCTIONAL MATERIALS:

overheads:
121OHI Verification and Validation
1210112 Types of Analysis Used in Verification & Validation
121OH3 Verification
L210H4 Validation
121O0H5 Requirements Analysis and Definition Phase
121O0H6 Design Phase
L210H7 Implementation Phase
121O0H8 Testing Phase
121O0H9 Maintenance Phase
L21OH10 Framework for a Software Requirements Specification
L21OH11 Software Verification and Validation Plan

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 018 - Preliminary requirements presentation/review
Preliminary users manual presentation and review

READING ASSIGNMENTS:
Sommerville Chapter 19 (pp. 373-386)
Sommerville Chapter 22 (pp. 425-439)

RELATED READINGS:
Ghezzi Chapter 6 (pp. 255-344)
Pressman Chapter 19 (pp. 632-663)

4 Lecture 021

Verification and Validation (V&V)

Major approaches within software engineering
process models for ensuring the production of
quality software

Complementary but distinct

Continuing process through each stage of
software life cycle

Two objectives:
1. Discovery of defects in any

development product
2. Assessment of whether or not the

system satisfies specified
requirements

Types of analysis:

Static analysis

Dynamic analysis

Formal analysis

L21OH1
5

Types of Analysis Used In V&V

Static Analysis
No execution involved
Manual or automated examination

examples:
Software reviews
Static program analyzers

Dynamic Analysis
Execution involved

Examines functional, structural, or
computational aspects of software
examples:

Unit testing
integration testing
Acceptance testing

Formal Analysis
Use of mathematical techniques to
evaluate product
examples:

Symbolic execution
Proof of correctness

6 L210H2

Verification

Are we building the product right?

Evaluate the end product of each phase

Look for errors generated within a phase
and/or by the transformation between phases

Tasks are to assume that the products of
each software life cycle phase:

1. Comply with previous life cycle phase
requirements and products

2. Satisfy the standards, practices, and
conventions of the phase

3. Establish the proper basis for initiating
the next life cycle phase activities

7 L210H3

Valldao•"o

Are we building the right product?

Checking that the system as implemented
meets the expectations of the software
procurer/customer

Tasks are to validate that the end product
complies with established software and
system requirements

8 L21OH4

SRqummIS Analys and Dnton Phas

Verification activities:
Formal review of requirements
specification document
Review of project plan document
Review of preliminary user manual

Validation activities:
Delineation of acceptance criteria
Generation of requirements-based test
cases

Development of Project V&V Plan

9 L210H5

Design Phan

Verification activities:
Formal review of design documents
Review of Project V&V Plan
Generation of test plans for unit, design-
unit, and system testing
Generation of design-based test cases
Review of test plans

Validation activities:
Generation of test plan for acceptance
testing
develop a requirements traceability matrix

Completion of Project V&V Plan

10 L21OH6

Implementation Phase

Verification activities:
Review of software products
Unit testing
Generation of code-based test cases

Validation activities:

Develop a component to design
traceability matrix

11 L21OH7

Testing Phase

Verification activities:
Generation of code-based test cases
Design unit testing
System testing

Validation activities:
System testing
Acceptance testing

12 L21OH8

Maintenance Phase

Verification activities:
All previous activities

Validation activities:
All previous activities
Regression testing
Generation of test cases for validating
modifications

13 L21OH9

Framework for
Software Requirements Specification

1 Introduction
1.1 System reference
1.2 Business objectives
1.3 Software project constraints

2 Software description
2.1 Objects and operations
2.2 Flow model
2.3 Data dictionary
2.4 System interface dictionary

3 Processing narratives
3.n Transform n description

3.n.1 Processing narrative
3.n.2 Restrictions/limitations
3.n.3 Performance requirements
3.n.4 Design constraints
3.n.5 Supporting diagrams

4 Validation/acceptance criteria
4.1 Testing strategy
4.2 Classes of tests
4.3 Expected software response
4.4 Special considerations

5 Bibliography
6 Appendix

14 L21OH10

Software Verification and Validation Plan

Plan for the conduct of software verification and
validation

Outline:
1. Purpose
2. Referenced Documents
3. Definitions
4. Verification and Validation Overview

4.1 Organization
4.2 Master schedule
4.3 Resources summary
4.4 Responsibilities
4.5 Tools, techniques, and methodologies

5. Life Cycle Verification and Validation
5.1 Management of V&V
5.2 Concept Phase V&V
5.3 Requirements Phase V&V
5.4 Design Phase V&V
5.5 Implementation Phase V&V
5.6 Test Phase V&V
5.7 Installation and Checkout Phase V&V
5.8 Operation & Maintenance Phase V&V

15 L21OH11

Software Verification and Validation Plan

Outline (cont.):
6. Software Verification and Validation

Reporting
7. Verification and Validation Administrative

Procedures
7.1 Anomaly reporting and resolution
7.2 Task iteration policy
7.3 Deviation policy
7.4 Control procedures
7.5 Standards, practices, and conventions

Source: IEEE

16 L21OH 11

LECTURE NUMBER: 022

TOPIC(S) FOR LECTURE:
Testing

INSTRUCTIONAL OBJECTI-VE(f:

1. To understand the role of testing within verification and validation and
the software life cycle.

2. To recognize the different types of testing and the purpose of each.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)
(Learning Label- Today we are going to learn ...)

In previous classes, we have talked about the production of quality software
and the use of verification and validation. Today we will be examining one
aspect of verification and validation in detail -- testing.

L220H1
1. Testing is often confused with verification and validation; however,

testing is only one component of the verification and validation.

Testing, according to the IEEE definition, is "the process of exercising
or evaluating a system by manual or automatic means to verify that
it satisfies specified requirements or to identify differences between
expected and actual results." Testing is designed to reveal defects.
It shows where a system is correct and where it is wrong. Note that
testing and debugging are different; testing reveals the existence of
defects while debugging locates and corrects them. In the 1960's and
1970's, it is estimated that over 50 percent of development time and
development costs were spent on testing. During this time, people
were attempting to test quality into the software instead of building
quality into software from the beginning of the life cycle as verification
and validation attempts to do now.

L220H2
2. Discuss the principles of testing which were presented by Mynatt.

L220H3 Note the difference of emphasis from the IEEE definition,
Mynatt focuses on error detection while the IEEE definition focuses on
showing correctness. Point out that the first four steps can and

1 Lecture 022

should be done as a part of requirements analysis. If a clear set of
tests cannot be written during analysis, the indicates that the
requirements are not clear.

L22OH4
3. The three primary types of testing are unit or module testing,

integration testing, and acceptance testing. Unit or module testing is
performed during the implementation phase by the programmer who
is building the module.

a. The primary goals of unit/module testing are to ensure that the
module operates correctly and that it carries out its intended
function, and to identify the presence of defects. This is
generally done by the implementor.

b. Integration testing is the testing of groups of integrated
modules (or subsystems) or the entire system. The most
common types of integration testing are design unit and system
testing. Design unit testing first uses design information in
selecting the modules to integrate and test. This is based on
the structure chart. System testing is testing of the whole
system. This is an internal acceptance test in a simulated
environment. The goals of integration testing are to determine
if the subsystem of modules or system meets requirements and
functions properly and to test the interface among the modules
or subsystems.

c. Acceptance testing is performed on the finished product in the
operational environment. This type of testing is carried out by
the sponsor/customer. The goal of acceptance testing is to
demonstrate that the systom is ready to use and that it meets
all the customer's requirements and satisfies all acceptance
criteria.

L220H5
c. Discuss the interaction between the various types of testing.

L220H6
4. A primary concern in performing testing is the generation of test

cases. You want to generate enough test cases to thoroughly
exercise the software but not so many test cases as to make thorough
analysis of the test results impossible. Exhaustive testing, which tests
every input and exercises every line of the software, is the technique
to use to thoroughly test software, but it is computationally impossible
and time-wise too expensive. Alternatives to exhaustive testing
include functional analysis, structural analysis, and data-structure-
based analysis. These are three complementary approaches to the

2 Lecture 022

generation of test cases.

L220H7
5. Functional testing, black box testing,is based on functionality, inputs,

and outputs of a module with no regard to the internal workings of the
module. Three techniques for deriving test cases for functional testing
are equivalence partitioning, cause-effect strategy, and boundary
values strategy.

Discuss examples for each technique for deriving functional test cases
and work through the exercises with the class. L22OH8, L22OH9,
L220H10, L22OH11, L220H12,1_220H13, L22OH14, L22OH15,
L22OH16. SUggested partitions for L22OH1 1 include: first character
alphabetic and non-alphabetic; length less than 6, greater than 10,
and between 6 and 10 inclusive; valid and invalid characters; and
passwords which are and are not in the dictionary.

6. Structural testing is based on the internal logic of a module. L220H 17
The concept of coverage analysis is used in structural testing. The
types of coverage include statement, decision, condition, and path.
Discuss examples L220H18, L22OH19, L220H20, L220H21,
L220H22

7. In performing integration testing, common methods of integration are
used in grouping the modules or subsystems for testing. These
methods are top-down testing, bottom-up testing, thread testing, and
stress testing. L220H23

8. Many testing and debugging tools are available in today's
development environments. Some of these tools include static
analysis tools, dynamic analysis tools, test data generators and
oracles, file comparators, and simulators. L22OH23

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:
testing
unit testing/module testing
integration testing
design unit testing

3 Lecture 022

strun ni -ays
damucure d West

cause-~ed strategy
boundary values strategy
- coverage

decision coverage
condition coverage
path coverage
top-down testing
bottom-up testing
thread testing
stress testing
static analysis tools
dynamic analysis tools
test data generators
test oracles
file comparators
simulators

INSTRUCTIONAL MATERIALS:

L220H1 Testing
L22OH2 Steps of Testing
L22OH3 Principles of Testing
L22OH4 Types of Testing
L220H5 V&V Testing Activities
L220H6 Generation of Test Cases
L220H7 Functional Testing
L220H8 Equivalence Partitioning
1.220H9 Examples of Equivalence Partitioning
L22OH10 Test Matrix for Equivalence Partitioning
L22OH1 1 Exercise on Equivalence Partitioning
L22OH12 Cause-effect Strategy
L22OH13 Example of Cause-efec Strategy
L22OH14 Test Matrix for Cause-effect Strategy
L22OH15 Boundary Value Analysis
L22OH16 Examples of Boundary Value Arysis
L22OH17 Structural Testing
L22OH18 Statement Coverage
L220H19 Example of Statement Coverage
L22OH20 Decision Coverage
L22OH21 Condition Coverage

4 Lecture 022

L22OH22 Test* Stralsne
L22OH23 TeStn aid Dobing Tool

RELATED LEARMN ACTIMIIE:
(iebs and -)

Lab 019 - Prelminary tNet plan prese-d-ntoeevew
READING ASSIGNMENTS:

Sommervlle Chapt•r 23 (pp. 441-454)
Sommerville Chapter 24 (pp. 457-473)
Mynatt Chapter 7 (pp. 274-316)

RELATED READINGS:
Booch Chapter 23 (pp. 420-421)
Booch(2) Chapter 19 (p. 402)
Ghezzi Chapter 6 (pp. 260-293)
Pressman Chapter 18 (pp. 595-626)
Schach Chapter 12 (pp. 385-416)

5 Lecture 022

Testing

The process of exercising or evaluating a system
by manual or automatic means to verify that it
satisfies specified requirements or to identify
differences between expected and actual results

An aspect of verification and validation

6 L22OH1

Steps of Testing

1. Select what is to be measured by the test

2. Decide how whatever is being tested is to
be tested

3. Develop the test cases

4. Determine what the expected or correct
result of the test should be and create the
test oracle

5. Execute the test cases

6. Compare the results of the test to the test
oracle

7 L220H2

Principles of Testing

Testing is the process of executing a program with
the intention of finding errors.

It is impossible to completely test any non-trivial
module or any system.

Testing takes creativity and hard work.

Testing can prevent errors from occurring.

Testing is best done by several independent
testers.

8 L220H3

Types of Testing

Unit testing/module testing

Integration testing

Design unit testing

System testing

Acceptance testing

9 L22OH4

V & V Testing Activities

DEilGN rwd
MIFORMATIOI UQUMUaNTSDESIGN

UNl
TEST

MODULE UNIT I
TEST

MODULE LM

VALlATID

MOUI|9OUR ACCPTNC

10 L220H5

Generation of Test Cases

Exhaustive testing

Alternatives to exhaustive testing:
Functional analysis
Structural analysis
Data-structure-based testing

11 L220H6

Functional Testing

The specification of external behavior is used
to derive test cases

Also called black-box method

Techniques to deriving test cases:
Equivalence partitioning
Cause-effect strategy
Boundary values strategy

12 L22OH7

Equivalence Partitioning

A equivalence partition consists of a class or
set of data items all of which are similar to
each other on some relevant dimension

Divide input/output into finite number of
equivalence partitions

Take each input/output condition and
divide it into 2 or more groups -- valid
equivalence partitions and invalid
equivalence partitions

Test one item from each partition

13 L22OH8

Examples of Equivalence Partitioning

Specifications for Customer Number
Customer numbers must be within the range
1-32700 inclusive without 9 in the unit
positions

Partition into:
non-numeric value and numeric value

test groups
1-32700
<1
> 32700

9 in unit position
< 9 in unit position

14 L220H9

Test Matrix for Equivalence Partitioning

Using the specification of the Customer
Number:
Partitions or equivalence classes

Number value 1 non-numeric
2 numeric

Range 3 1-32700
4 <1
5 > 32700

Unit Position 6 9
7 <9

- -- -- - - - - -- - --- - -- ----------- mm m - -- -- --- mýM - - -- - - ---------

Equivalence Test Cases
Class Entries 1 2 3 4 5
1 X
2 X X X
3 X
4 X
5 X
6 x
7 X

Test Cases:
1. 32708 4. lAB

15 L220H 10

2. 0 5. 009
3. 2708

16 L220H1 0

Exercise of Equivalence Partitioning

ValidateNewPassword accepts a password from
a user and validates that it conforms to the
following rules:

1. A password must be between 6-10
characters inclusive

2. The first character must be alphabetic
3. The remaining characters may be any

character except control characters
4. The password must not be in a dictionary

Exercise: Develop the test matrix for
equivalence partitioning.

17 L220H11

Cause-effct Stratsgy

Tests combinations of inputs

Causes (inputs) and effects (outputs) are
identified

18 L220H12

Example of Cause-effect Strategy

DetermineMaxLoad accepts the GPA for a
student and the level of the student (upperclass or
lowerclass) and calculates and outputs the
maximum class load which the student may take
during one semester. If the student has a GPA of
4.0, he/she has a maximum class load of 20. If
the student has a GPA of 3.5 or better, he/she
has a maximum class load of 18. If the student
has a GPA of less than 3.5 and is an
upperclassmen, he/she has a maximum class load
of 18. If the student has a GPA of less than 3.5
and is an lowerclassmen, he/she has a maximum
class load of 16.

Causes
GPA 4.0

3.5 or higher
< 3.5

Level upperclass
lowerclass

Effects
20
18
16

19 L22OH13

Test Matrix for Cause-effect Strategy

Test Cases
S12 a 45 6

GPA 4.0 X X
GPA >= 3.5 X X
GPA < 3.5 X X
upperclass X X X
lowerclass X X X

Eff~ects
20 X X
18 X X X
16 X

Test Cases:
1. Upperclass with 4.0
2. Lowerclass with 4.0
3. Upperclass with 3.75
4. Lowerclass with 3.4
5. Lowerclass >= 3.5
6. Upperclass >= 3.5

20 1220H14

Boundary Value Analysis

Boundary conditions are the situations directly
on, above, and below the edges of input
equivalence classes

Include:
< Beginning element
Beginning element
Middle element
End element
> end element

21 L22OH15

Examples of Boundary Value Analysis

Specifications for Calculating Pay
Compute gross pay including overtime rate for
hours over:

Partitions < 40
= 40
> 40

Boundary values are 0 and 40

Test:
<0
0-40
> 40

Sample of test values:
-1 outside of low boundary,
0 at the low boundary,

20 middle value,
40 at upper boundary,
41 above upper boundary

22 L220H16

Structural Testing

Approach to testing where the internal logic of
a module is used to derive test cases

Also called white-box or glass-box testing

Techniques to derive test cases:
Statement coverage
Decision coverage
Condition coverage
Path coverage

23 L220H17

Statement Coverage

Develop test cases such that every statement
is executed at least once

May be too much test data

Does not test all logic (e.g., combination of
statements

24 L22OH18

Example of Decision Coverage

1. if (ORDER >= 20) or (CUSTOMER = 'G')
then DISCOUNT := 10

else if (ORDER >= 10) or (CUSTOMER = 'E')
then DISCOUNT := 7

else if (ORDER < 20) and (CUSTOMER = 'V')
then DISCOUNT := 5

else
DISCOUNT := 0;

2. if CUSTOMER= 'G'
then VIP := true

else
VIP := false;

Test Cases:
1. 20 and 'G' => DISCOUNT = 10 and VIP = true

2. 12 and 'E' => DISCOUNT = 7 and VIP = false

3. 12 and 'V => DISCOUNT = 5 and VIP = false

4. 9 and 'S'-=> DISCOUNT = 0 and VIP = false

25 L220H 19

Decision Coverage

Develop test cases such that each branch is
traversed at least once

What are examples of branch statements?

Does decision coverage satisfy statement
coverage?

26 L220H20

Condition Coverage

Develop test cases such that all combinations of
truth values in a decision takes are tested at least
once

What are examples of conditions?

Does condition coverage satisfy decision
coverage?

What must be added to decision coverage to
change it to condition coverage?

27 L220H21

Testing Strategies

Top-down testing

Bottom-up testing

Thread testing

Stress testing

28 L22OH22

Testing and Debugging Tools

Static analysis tools

Dynamic analysis tools

Test data generators and oracles

File comparators

Simulators

29 L22OH23

LECTURE NUMBER* 023

TOPIC(S FOR LECTURE:
More on the Structured Analysis model

INSTRUCTIONAL OBIJI::CIVEM:

1. Understand the concept and repesentation of control flows and control
transforms In DFDs.

2. Understand use of proem specifications and control 9sp to
describe primitine tranorms.

3. Know that a wide range of methods for writing process and control
specifcations exist and be familiar with a number of them, Including
narrative English, pseu e, decision tables, decision trees, graphs,
functions, finite state machines, and Petri nets.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

You are familiar with many aspecs of the structured analysis model, having used
it in your first project. You produced a CD, a wveled and balanced set of DFDs,
and an integrated data dictionary.

(Learning Label- Today we are going to learn ...)

Today we're going to discuss some additional aspects of tha structured analysis
model.

CONT.ENTS:

1. Review the structured analysis model already presented and discuss
some further aspects.

a. Context diagram shows the net iWp and not outpuft of the
system. it shows no decomp ositio of the system. it Is •the first
level of the model nd depicts the relatonship between the system
and the sources and destinations of the system's inputs and
output.

b. DFDs
I Naming of transforms - the ftsms represent actions

(functions) and should be named as memanngful as
poesIbie yet In only a few words. Theonaecons•tofan

1 Lecture 023

action verb indicating the function to be performed followed
by an object (noun) or adjective/noun. Generic names
(e.g. Process input, or Handle transaction) that convey little
knowledge of the transform's function must be avoided.

ii Naming of data flows - data flows are named vectors
representing "data in motion". They must also be named
concisely but meaningfully. Data flow names are always
nouns.

iii Control flows - a data flow that represents an element of
control (a flag, switch, command signal, etc.) is called a
control flow. Generally control flows are not shown (for
example, every transform has a "trigger" that invokes it) but
at times, particularly in real-time systems, control flows are
modeled. A control flow is indicated as a dashed vector.
A transform that handles only control flows may be
represented by a dashed circle rather than a solid circle.
Such a transform is called a control transform.

iv Extensions for real-time systems - There are a number of
extensions to the basic structured analysis notation
intended to better model real-time systems. Discuss these
briefly in order to let students know that these extensions
exist and that, without them, real-time systems cannot be
adequately modeled. Pressman provides an excellent
discussion of these extensions.

v Placement of data stores - are they shown on multiple
levels? where are they shown? In general, a data store is
shown on the diagram in which it first appears as an
interface between two transforms.

vi Review concept of decomposition (leveling), balancing.

2. Discuss how one knows when to stop leveling.

a. Leveling continues until a transform is identified that cannot be
further decomposed. A transform that cannot be further
decomposed is called a functional primitive, or simply a primitive.
While there are no rules for recognizing a primitive, there are a
number of guidelines. Discuss these:
i the transform is a simple, obvious, or well-known function

and further decomposition is clearly unnecessary
ii the transform has a single input and a single output
iii the policy governing the transform can be easily and clearly

described on a single page

b. A process specification is then written for each primitive. Process

2 Lecture 023

specifications are also referred to as process specs, p-specs, or
mini-specs. A process specification provides a detailed
explanation of the internal processing policy of a primitive.
Discuss some forms of process specifications that students are
already familiar with, e.g. pseudocode.

3. Process specifications (P-specs or mini-specs) - There are many forms
of representing process specifications with varying levels of formality.
Use examples to illustrate a variety of these notations.

a. Narrative English is perhaps the most common form but is rarely,
if ever, the best form. Illustrate using the verify credit transform
described in narrative form in L23OH1.

b. L230H2
Discuss the pseudocode version of Verify Credit and how it is a
significant improvement. Pseudocode, or structured English,
allows logic to be stated clearly and unambiguously. While
informal, standards should be imposed on pseudocode including
use of the basic control structures, and reference to data
dictionary entries.

C. L230H3, L230H4, L230H5
Discuss further examples; different styles.

d. L230H6, L230H7
Discuss the narrative and data flow diagram description of
(L240H6) a transform to decide on approval for a loan. This is
more formally and more effectively represented in a decision table,
as shown in L21OH7.

e. L230H8
Discuss the same example represented as a decision tree.

L230H9 Another decision tree example.

f. Other forms - Discuss following as examples of other forms for
process specifications and stress that for a given transform, the
most appropriate form should be chosen.
i L23OH10 Finite state machine example
ii L230H11a, L230H1Ib, L23OH12 Petri net examples
iii L23OH13 Warnier diagram example (for data store

specification)

3 Lecture 023

EBQ .DLMBE
tMmhWn mlhad mid ,mmia:

vocabulirv Introduced:
Control flows

Control transforms
Petri net
Decision trees
Decision table
Psuedocode
Functional primitive
Finite state machine
Wamler Orr diagram

INSTRUCTIONAL MATERIALS:
avereds:
L230H1 Narrative - Verify credit transform
L230H2 Psuedocode Example - verify credit
L23OH3 Another Psuedocode Example -
L230H4 Data Dictionary Example
L230H5 Structured Requirements Specification
L23OH6 Transform from DFD with narrative
L230H7 Decision table for loan qualification
L230H8 Decision tree
L230H9 Decision tree showing flow of control
L23OH 10 Finite State Machines
L230H 11 a Petri nets
L230H 11 b Petri nets
L23OH12 Execution of a Petri net
L230H13 Wamier diagram

handouta:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 020 - Final requirements presentation/review
READING ASSIGNMENTS:

Sommerville Chapter 4 (pp. 71-82)
Mynatt Chapter 2 (pp. 62-69)

RELATED READING&:
Ghezzi Chapter 5 (pp. 160-198)

4 Lecture 023

Pressman Chapter 7 (pp. 207-235)
Schach Chapter 7 (pp. 157-193)

5 Lecture 023

Narrative Description of Verify_ CrMdit

"I gather together all of the orders that accumulated

the previous day. First I look them all up in customer

payment history file and I pull out whatever histories

I can find. Then I go through all the histories and

add up the overdue balances and mark off the date

of the oldest balance. Then I separate the records

into two piles. The ones that have no overdue

balance or even a balance up to $100 go to Sally.

She also gets the ones that aren't more than 60 days

old regardless of the overdue balance. She ok's

credit for them. All the rest go to Jim who demands

prepayments."

6 L230H1

Structured English Version of Verify Credit

FOR each Order

Look up CustomerPaymentHistory for
CustomerName (on Order)

IF no record found (new customer)
THEN Issue a Prepayment Request

ELSE (existing customer)
Compute OverdueBalance

IF OverdueBalance > 100
THEN IF Age_OfOldestBalance > 60

days

THEN Issue
PrepaymenLtRequest

ELSE (overdue less than 61 days)
Issue
CreditConfirmation

ELSE (overdue balance < $101)
Issue CreditConfirmation

7 L230H2

Prototyping (Pressman)

stop d i

-xW

10ou QUM0

Plan to Throw One Away

In most projects, the first system built is barely
usable. It may be too slow, too big, awkward to use, or
all three. There is no alternative but to start again,
smarting but smarter, and build a redesigned version in
which these problems are solved. The discard and
redesign may be done in one lump, or it may be done
piece-by-piece. But all large-system experience shows
that it be done. Where a new system concept or
technology is used, one has to build a system to throw
away, for even the best planning is not so omniscient
as to get it right the first time.

The management question, therefore, is not
whether to build a pilot system and throw it away. You
will do that. The only question is whether to plan in
advance to build a throwaway, or to promise to deliver
the throwaway to customers. Seen this way, the
answer is much clearer. Delivering that throwaway to
customers buys time, but it does so only at the cost of
agony for the user, distraction for the builders while they
do the redesign, and a bad reputation for the product
that the best redesign will find hard to live down.

Hence plan to throw one away; you will, anyhow.

Source: Brooks: The Mythical Man-Month,
1975, p. 116.

11 L140H4

The Spiral Model (Sommerville)

mutruhua 3u b~u abu

12Lo0H

LECTURE NUMBER: 015

TOPIC(S) FOR LECTURE:
Requirements analysis & specification structure
An introductory discussion of requirements identification

INSTRUCTIONAL OBJECTIVE(S%:

1. Understand the goals of requirements and their position in the life
cycle.

2. Understand the stages in requirements development.
3. Be able to use language syntax, context questions and elicitation to

develop requirements.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In working on your projects you have no doubt come to realize the
importance of a clear understanding what is to be developed before starting
to build it. In software development, the first step toward such a clear
understanding takes place in the requirements process. The completion of
this process is marked by the development of a requirements document,
sometimes called a software requirements specification.

(Learning Label- Today we are going to learn ...)
Today we are going to learn about the stages of the requirements process
and the structure of a requirement document.

1. Understand requirements in terms of its 3 primary goals. The first
goal is paramount during early stages of the life cycle but diminishes
later when the other two goals become more important.

a. To establish agreement about a system between the sponsors,
users and developers of a system.

b. To function as a transition from the problem space into the
solution space by being the basis for software design.

c. To support the verification and validation of the system.

2. The requirements process and document address the goals of
requirements listed above.

1 Lecture 015

a. Requirements definition is the process of determining
requirements for a system. The audience here is generally the
user and the contractor.
i Software requirements are distinguished from system

requirements when the software requirements are part
of a larger system.

ii L15OH1
As a formal description of the understanding between
customer and software developer, introduce the
documentation required by the Department of Defense
(DOD) software standard 2167a. This also shows the
standards for formally validating these documents.

b. The details of the initial requirements are elaborated in a
requirements specification. Sometimes this is divided into high
level requirements specification which talks about systems
details and software specification which is a document
addressed to system designers. Sometimes these are stated
formally, allowing a high degree of testability.

C. Requirements validation - refer back to Li 50H1.

3. There are several distinct tasks which must be accomplished to
identify the requirements. This process is referred to as requirements
definition.

a. Requirements are generally elicited from people. The more
complex a system is, the more likely it is multiple people are
involved and, thus, multiple viewpoints exist.

L150H2 illustrates the use of syntax as a guide to identify the
actual requirements. Discuss each of these items using Koff
as an example.

b. Linguistic analysis is only a starting point. Other techniques
are required as well. Ask the class for techniques they would
use to develop the requirements for a medical diagnosis
system. Bring out the need for interviewing experts,
understanding the environment (including the equipment), the
technicians using the equipment, and the user of the output of
the system. Then discuss the techniques below.
i Context analysis as a method of identification asks why

the software is created, what is the environment of the
software, and what are the operational, economic
boundary conditions that acceptable software must
satisfy. The result of this is called software needs or
system needs and results in a needs report which

2 Lecture 015

should be included in a software requirements
specification.

ii Elicitation of requirements related information from end-
users, subject matter experts and customers. This is
both a fact finding and validation effort. Fact finding
includes interviews, questionnaires, and observation of
the environment. Validation involves presenting results,
including documentation and prototypes, to the customer
and resolving open issues.

iii Using system requirements such as those associated
with embedded software.

iv Developing user interface requirements. Prototyping
may be useful here. It is important to talk to the user
rather than the customer or sponsor at this point.

c. Identification of software development constraints: cost,
hardware,fault tolerance.

d. There are several other tasks in requirements analysis. They
involves relating all of the requirements gathered from diverse
sources. One needs to:
i assess potential problems;
ii classify the requirements into categories, determine a

method to represent the requirements, and select
validation techniques. These will be discussed in later
lectures.

teaching method and media:
Lecture and overheads

vocabulary introduced:
functional requirements
non-functional requirements
context analysis
requirements elicitation
linguistic analysis

INSTRUCTIONAL MATERIALS:

LI 50H1 Software requirements analysis - DoD standard 2167A
Li 50H2 Requirements identification through linguistic analysis

handouts:

3 Lecture 015

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 013 - Peer/self assessments and acceptance reviews for small
projects.

READING ASSIGNMENTS:
Sommerville Chapter 5 (pp. 85-103)
Mynatt Chapter 2 (pp. 62-83)

RELATED READINGS:
Berzins Chapter 2 (pp. 23-47)
Pressman Chapter 6 (pp. 173-189)

4 Lecture 015

Software Requirements Analysis

V A V FuucUw/?rmeW

fmorni adnfcoo

D.1g DKUOmt(SDD) Qudkj bft aA. n

Nut. rq"Ubrunuofq"k

Cmphtm~e .1p" W&nI own

laterheeII4WrMUt *1ebi64 (4qmalicts rpmb _____

I MPFdn~s) Attend Ill

hiftwin specuftboi eve

5 LISOH1

Requirements Identification Through
Linguistic Analysis

Statements with the verbs "shall", "will", "must", "are", or
"is.

Statements that specify numbers, for example, limits,
ranges of values, or tolerances.

Statements that are pre-defined or declarations of
requirements.

Statements that specify constraints.

Statements that specify size.

Statements that define dependencies, relationships,
sequence, logical flow, or behavior.

Statements that specify interfaces, inputs, outputs, events,

or interrupts.

Statements that define the data.

Statements that define support.

Statements that specify the environment.

Statements that specify human processing.

Statements that imply requirements, for example,
prerequisites.

6 L150H2

LECTURE NUMBER: 016

TOPIC(S) FOR LECTURE:
Ada as a specication tool and a maintenance tool

INSTRUCTIONAL O&JECTIVE(St:

1. Understand the structure of Ada systems from program reading of an
example.

2. Understand the interface between Ada packages.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In a previous lecture, we discussed some of the language features of Ada
which support design and maintenance activities. We described how to work
from the products of the analysis phase (i.e., requirements list, CD, DFDs,
data dictionary) to derive subsystems which compose the proposed system.
These subsystems contain information and/or tasks to be accomplished in
the system and can usually be classified as user utilities, resource
management utilities, and service utilities. Using this approach to high-level
architecture of the system allows a high degree of data and functional
abstraction. These subsystems can then be shown in Ada package
specifications. The design of the interface for these packages or the
subprograms within the packages allows you to establish what information
flows to and from these subsystems and how the subsystems interact.

(Learning Label- Today we are going to learn ...)

Today we are going to look at another problem specfication, its analysis, and
its design.

1. L16HD1
Hand out and discuss the narrative description of the spell checker
problem.

Using the context diagram (L16OH1) and the first level DFD
(L160H2), discuss how to determine the subsystems. Possible
subsystems (and their actions) include:

a. Main dictionary (look up a word, keep a counter)

b. Fast dictionary (look up a word, build, keep a counter)

c. Auxiliary dictionary (look up a word, add a word, keep a
counter)

Lecture 016

d. Word (get from line, look up in dictionaries, handle unknown

word, keep a counter)

e. Line (get from file, keep a counter)

2. L16HD2
Provide a possible solution - distribute the Ada package
specifications, the driver, and one example of a package body.

Using L160H3, show the students how these packages and
procedures interact. Discuss the design of the software system as
shown in these packages. Look at the cohesiveness and coupling
provided.

3. Examine the Ada packages for the spell checker, including program
features of Ada and the maintainability aspects of the program.
Generate discussion through questions about making modifications;
e.g. what packages would be affected if changes were made to the
package specification of Counter, TesLops, and Maindict or the
package body of TesLops.

teaching method and media:

vocabulary introduced:
package specification and body

INSTRUCTIONAL MATERIALS:overheads:
L161OH1 Context diagram for Spelling checker
L16OH2 Level 0 DFD for Spelling checker
L160H3 Structure chart for Spelling checker

handouts:
L16HD1 Spelling checker requirements
L16HD2 Ada package specifications, driver, and example of package

body

RELATED LEARNING ACTIVITIES:
(labs and exercises)
LabOl4 small project assessment

READING ASSIGNMENTS

None

2 Lecture 016

Context Diagram
Spell Checker

USer

Ipll

Input fi%

rO~mu
requ
est
= command + name of input file
word info = word + line
direction = ingnore I add to dictionary I correctly spelled

word
statistics = number of lines processed + number of words

processed + number of words found in main
dictionary + number of words found in fast
dictionary + number of words found in auxiliary
dictionary

3 LI6OH1

ul un Ul • nO w • m . ,

Levol 0
S•ll Ch•-,•or

/

•k•mry Word

cw
•mmris

• ,
/

flit Word No

4 L16OH2

Structure Chart
Spell Checker

TexLIO0 Disk-1O DirecLIO0

5 L160H3

Spelling Checker Requirements

Narrative:

Spell is a general-purpose spelling checker that operates on an existing
editor-created text file to produce an output text file that has been checked for
spelling errors. Spell parses out the words from an input file and compares them
with entries in its dictionaries. Whenever a word is not found in Its dictionaries, the
checker will indicate the word and the line of text that contains the word and seek
the user's directions regarding the word.

Spell features a large permanent dictionary accessed from disk, as well as
a small "fast" dictionary that is built and loaded into fast memory and contains the
most commonly used words in the English language. In addition, an auxiliary
dictionary that contains words inserted by the user is on line. This auxiliary
dictionary is the only one that may be modified and maintained by the user.
Unknown words that are correctly spelled may be automatically added to the
auxiliary dictionary.

In addition to the output file, Spell will provide statistical information on the
file which was processed. This information includes the number of lines of text
processed, the number of words processed, the number of words found in the main
dictionary, the number of words found in the fast dictionary, and the number of
words found in the auxiliary dictionary.

Spell is required to run on a microcomputer in an interactive manner. The
microcomputer must have, at a minimum, a video terminal, two disk drives (floppy
or hard), and 128,000 bytes of random access memory. Spell should be able to
process at least 200 words per minute.

6 L16HD1

package COUNTERS is

type COUNTER is limited private;

procedure INITIALIZE (C : out COUNTER);
-- used to initialize an object of type COUNTER to zero

procedure INCREMENT (C : in out COUNTER);
-- used to increment an object of type COUNTER by one

procedure DISPLAY (C :in COUNTER);
-- used to display the value of an object of type COUNTER

privatetype COUNTER is new integer;
end Counters;

7 L16HD2

with Direct-io, COUNTERS; use COUNTERS;

package TEXT_OPS Is
- from Direcio import "type Filtype
- from COUNTERS Import type COUNTER

type LINE Is limited privat;
type WORD Is lmited prIate;

INPUT : Direcko.Filejype;
END_OF_LINE, LONGWORD : boolean;
-ENDOF_LINE Is set by GET_LINE to true at the end of a line
-- LONGWORD is set by GET NEXT WORD to true if word is over
- 13 characters

function GET_LINE return LINE;
-- obtains the next line of text for processing

function GETNEXT_WORD (L :LINE) return WORD;
- obtains the next word in line for processing

procedure GETINPUTTEXT (NAME :in String);
-- fetches an existing text file with Name

procedure CREATEOUTPUTJEXT (NAME :in out String);
-- opens a new text file Name

procedure PUT_OUTPUT (L :in LINE);
-- sends line to the output text file

procedure WORDHANDLER (W: in WORD; L : In out LINE;
W_COUNT, LCOUNT in COUNTER);

-- handles an unidentified word

function UPPERCASE (W: WORD) return WORD;
- converts a word to uppercase

function SPECIALENDINGI (W WORD) return boolean;
-- returns true If word ends in 'S' or 'D'

function SPECIAL_ENDING_2 (W : WORD) return boolean;
- returns true if word ends in 'ED', 'ER', or 'LY'

function SPECIALENDING.3 (W : WORD) return boolean;
-- returns true If word ends in 'EDS', 'ERS', or 'ING'

function STRIPENDINGI (W :WORD) return WORD;
-- removes '5' or 'D' ending from word

8 L16HD2

function STRIP_ENDING_2 (W : WORD) return WORD;
- removes 'ED', SER' or I.Y' ending from word

function STRIPENDING_3 (W : WORD) return WORD;
-- removes 'EDS', 'ERS' or 'ING' ending from word

function INGENDING (W : WORD) return WORD;
- returns true if word ends In 'ING'

function ADDE (W : WORD) return WORD;
-- adds 'E' to word

procedure DISPLAY._LINE (L : In LINE);
-- displays a line on a video terminal

procedure DISPLAYWORD (W: in WORD);
-- display a word on a video terminal

procedure REMOVEAPOSTROPHES (W: in out WORD);
-- removes first and last apostrophes, If present in
-- either the first or last character of the word

function LENGTH (W: WORD) return integer;
-- returns the number of nonblank characters in the word

private
LINELENGTH: constant :- 80;
WORD_LENGTH : constant :. 13;

type LINE is array (1 ..LINELENGTH) of character;
type WORD is array (1 ..WORD_LENGTH) of character;

end TEXTOPS;

9 LI6HD2

with TEXT_OPS; use TEXTOPS;

package TESTWORD Is
-- from TEXTOPS import WORD

function IDENTIFY-WORD (W: WORD) return boolean;
- returns true whenever word is found in one of the
- available dictionaries

end TESTWORD;

10 L16HD2

with TEXT_OPS; use TEXTOPS;

package MAIN-DICT Is
- from TEXTOPS Import WORD

NUMFOUND_MD : integer;
- NUMFOUNDMD is incremented by one every time a word
- is found in the main dictionary

procedure CLOSE_MD;
-- closes the main dictionary file

function LOOKUPMD (W: WORD) return boolean;
-- returns true if word is found in main dictionary

end MAINDICT;

11 L16HD2

with TEXTOPS; use TEXTOPS;

package FASTDICT Is
-- from TEXT_OPS Import WORD

NUMFOUNDFD :integer;
-- NUMFOUNDFD Is Incremented by one every time a word
- is found in the fast dictionary

procedure CLOSEFD;
-- closes the fast dictionary file

procedure BUILDFD;
-- builds fast dictionary file from main dictionary

function LOOKUPJD (W: WORD) return boolean;
-- returns true if word is found In fast dictionary

end FASTDICT;

12 L16HD2

with TEXT-OPS; use TEXT-OPS;

package AUXkDICT is
- from TEXTOPS import WORD

NUM_FOUNDAD : integer;
- NUM_FOUNDAD is Inoremefted by one every time a word
-- Is found in the auxlary dictiory

procedure CLOSEAD;
-- closes the auxiliary dictionary file

function LOOKUPAD (W : WORD) return boolean;
- returns true if word is found In auxilar dictionary

procedure INSERTAD (W :in WORD);
- used to insert a word into auxiliary dictionary

procedure INSERT_AD_UNUSED (W: in Word);
- used to insert a word Into the unused portion of
-- the auxiliary dictionary

end AUXDICT;

13 L16HD2

with TEXTOPS, MAINDICT, FASTDICT, AUXDICT;
use TEXT OPS, MAINDICT, FASTDICT, AUX _DICT;

package body TESTWORD is
-- frum TEXTOPS import WORD, UPPERCASE, LENGTH,

SPECIAL_ENDING 1, SPECIALENDING_2,
SPECIALENDING 3, STRIP_ENDING_1,
STRIPENDING_2, STRIPENDING_3,

INGENDING, ADDE,
REMOVEAPOSTROPHES

-- from MAINDICT import LOOKUPMD
-- from FAST..DICT import LOOKUP_FD
-- from AUXDICT import LOOKUPAD, INSERTADUNUSED

function IDENTIFY_WORD (W: WORD) return boolean is
TEMPWORD: WORD;
I :integer;

function ISINDICTIONARIES (W: WORD) return boolean is
begin

if (Length(W) <. 6) and then LOOKUPFD (W) then
return True;

elsif LOOKUPAD (W) then
return True;

elsif LOOKUPMD (W) then
INSERT_AD_UNUSED (W);
return True;

else
return false;

end if;
end IS_IN_DICTIONARIES;

begin --IDENTIFYWORD
W :* UPPERCASE (W);
-- remove apostrophe if it is first or last symbol
REMOVEAPOSTROPHES (W);
if SPECIAL_ENDING I (W) then

TEMPWORD :. STRIP ENDING 1 (W);
if IS IN DICTIONARIES (TEMP.WORD) then

return true;
end if;

elsif SPECIALENDING-2 (W) then
TEMP WORD :. STRIP ENDING_2 (W);
if IS_IN_DICTIONARIES (TEMPWORD) then

return true;
end if;

14 L16HD2

guul 8PECIAL6.ENDING..3 (W) the
TEMP...WORD := STRIPýENDING_3 (W);
If ISjNDICTIONARIES (TEMP-WORD) the

if ING._eNDING (W) then
TEMP..WORD*: ADDELE (W);
i ISIN_DICTIONARES (TEMP..WOR) the

weturn tue;

end Uf;

Nf ISINDICTIONARIES (W) then
return True;

return False;
end if;

end IDENTIFYWORD;

enid TEST WORD;

15 L1BHD2

with TEXTOPS, COUNTERS, TEST-WORD, MAINDICT, FAST'_DICT,
AUXDICT,

TEXTIO, DISKIO;
Use TEXTOPS, COUNTERS, TESTWORD, MAIN_DICT, FASTDICT,
AUX._DICT,

TEXTK), DISKJO;

procedure SPELL is
- from COUNTERS import INCREMENT and DISPLAY
- from TEXT_OPS import LINE, WORD, GETLINE, GET_NEXTWORD,
- ENDOF_LINE, LONG_WORD, INPUT,
- GETJNPUT_TEXT, CREATEOUTPUTTEXT,
- PUTOUTPUT, AND WORDHANDLER
-- from TESTWORD Import IDENTIFY..WORD
-- from MAIN_DICT import NUMFOUNDMD and CLOSE_MD
-- from FAST._DICT Import NUM_FOUND_FD and CLOSE_FD
-- from AUX_DICT Import NUM_FOUND_AD and CLOSE AD
- from TextI import put, get, newjlne, and putjine
-- from Diskjo Import encAo_file

package INT_10 is new IntegerlO (integer);
use INT_10;

INPUT_LINE : LINE;
A_WORD : WORD;
NAME :String (1..20);
LINECOUNT,
WORD_COUNT : COUNTER;

procedure INFORMATION;
begin

put ("What is the name of the text to be checked?");
new line;
put ("Your must use the '.TEXT' suffix> ");
get (Name);
GET_INPUT TEXT (NAME);
newJine (3);
put ("What is the name of the new text'?);
newJine;
put ("You must use the '.TEXT' suffix >
get (NAME);
CREATEOUTPUT-TEXT (NAME);

end INFORMATION;

begin
INITIALIZE (LINECOUNT);
INITIALIZE (WORDCOUNT);
INFORMATION;

16 L16HD2

k~op
INPUTLINE :- GETJJNE;
ad when END._OF••L* (INPUT);
INCREMENT (LINECOUNT);

17 L16HD2

loop
A_WORD :a GET_NEXT,_WORD (INPUTLINE);
exit when ENDOFLINE;
if not LONGWORD then

INCREMENT (WORDCOUNT);
if not IDENTIFYI WORD (AWORD) then

put (ASCII.BEL);
WORDHANDLER (AWORD, INPUTLINE,

WORD_COUNT,
LINECOUNT);

end if;
end if;

end loop;
PUTLOUTPUT (INPUTLINE);

end loop;
new line (3);
put ("The number of lines processed is ");
DISPLAY (LINE.COUNT);
new line;
put ("The number of words processed is ");
DISPLAY (WORDCOUNT);
newline;
put ("The number of words found in main dictionary: ");
putline (NUMFOUNDMD);
new line;
put ("The number of words found in fast dictionary: ");
puLline (NUMFOUNDFD);
new line;
put ("The number of words found in auxiliary dictionary: ");
put.line (NUMFOUNDAD);
new line;

end SPELL;

18 L16HD2

LECTURE NUMBER: 017

TOPICta) FOR LECTUR3E:

1. Requirements as an end product and the standards applied to them.
2. The requirements development process.
3. Requirements validation.

INSTRUCTONAL OLQECTIVE(al:

1. Use several techniques to extract requirements.
2. Understand several methods of requirements specification.
3. Follow the steps in a requirements standard such as 2167a.
4. Develop a requirements validation plan.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

As you recall we have discussed several techniques for identifying
requirements. Once the requirements are identified there are still several
major tasks which have to be accomplished.

(Leaming Label- Today we are going to learn ...)
Today we are going to learn about the elements that make up the remaining
stages of the requirements process and how they relate to a requirements
document. We will discuss the elements of a requirements document and
the steps in the process of developing the document.

1. Ask the students to recall the 3 primary goals of a requirements
document.

a. To establish agreement about a system between the sponsors,
users and developers of a system.

b. To function as a transition from the problem space into the
solution space by being the basis for software design.

c. To support the verification and validation of the system.

2. The development of requirements Is quite difficult and several
organizations have formulated complete software development
methodologies which include a discussion of requirements.

a. Requirements definition: as the process of determining
requirements for a system. The software development process
has been formalized by a number of organizations, Private
Companies, NASA, DoD. We will look at one of those
standards DoDSTD 2167A.
I Software requirements are distinguished from system

Lecture 017

requirements when the software requirements are part
of a larger system.

L17OH1
ii Discuss the document structure endorsed by 2167a. The

relation is systems contain segments, segments contain
configuration items, configuration items contain
configuration components(CSCs) and components
contain units(CSUs).

iii This standard treats software development as a
milestone-driven project. Milestones are generally
documents or clearly specified events. 2167a
characterizes several processes separated by the
completion of milestones. L170H2
Point out the reviews. Work through the chart showing
the relation to what steps they have experienced in the
small project.

b. Briefly discuss functional requirements and tasks to be
accomplished. Functional requirements are the external
behavior(the functions) expected by the user of the system.
These tasks must be dearly stated in a precise manner so that
they can be tested. For example a functional requirement of
the KoFF system would be dispense tapes.

c. Discuss non-functional requirements in terms of restrictions or
constraints on the system. These are elements which the
customer lives with all the time and so they are the hardest to
extract from him/her. They are caused by hardware, laws, the
environment, oolitical preferences. Sometimes these
requirements are very hard to gather. Ask the students why
there might be more difficulty gathering these requirements.
(The sort of answer you are looking for includes "The customer
takes their environment for granted and presumes that you
understand the constraint of their system.) For example - the
customer forgot to tell you that their hardware is a Commodore
64 computer with 64 K RAM.
i Metrics for non-functional requirements include speed,

size, ease of use, reliability, robustness, portability
ii Review the Mynatt list on pages 71 and 72 & give

examples.

d. Ask the students about non-functional requirements of their
small projects. [E.g., the system is to be implemented in
Pascal, the KoFF system must release tapes within 3 seconds
of selection. Note that the function to be performed -dispense
tapes- has not changed.] Another example is writing a system
for a foreign customer, where the documentation must be in
their language.

2 Lecture 017

e. Requirements Specification presents the details of the system.
Sometimes this is divided into high-level requirements
specification which talks about systems details and software
specification which is a document addressed to system
designers. There are many ways to express these details.
Natural language has several ambiguities. Sometimes the
same requirements get listed as two tasks because the
developer did not realize it was the same task. Formalism
have been developed to try to reduce ambiguity. Examples of
such formalism are formal-algebraic specification and special
languages such as PSLJPSA and SADT.

f. Specifications should include all the default conditions and how
to handle error conditions. Often default conditions are
forgotten by the analyst or the customer. In these cases when
the system is executed, it is initialized to a default state no one
considered, which could be unpredictable and or dangerous.
Because the analyst is not completely familiar he/she does not
know how error conditions should be handled. All error
conditions and how to handle them should be specified in the
requirements.

g. Requirements validation - it is critical to get the requirements
correct because any mistake made here will cost more in effort
and dollars later on.. There are many standards for
requirements. They should be checked for consistenc,
correctness. and comoleteness, feasibility, functionality,
testability, easy to change
i Formal review - walk-throughs and inspections
ii Requirements validation matrix-compare this with the

requirements traceability matrix used in the sample test
plan L9HD1.

3. There are several distinct tasks which must be accomplished to
develop a requirements definition.

a. Remind them of the discussion of requirements identification
and ask them to describe the three methods of requirements
gathering discussed in the last class.
i Context analysis as a method of identification (from

Ross) which asks why the software is created, what is
the environment of the software, and what are the
operational, economic boundary conditions that
acceptable software must satisfy. The result of this is
called software needs.

ii Elicitation of requirements related information from end-

3 Lecture 017

users, subject matter experts and customers. This is
both a fact finding and validation effort. Fact finding
Includes Interviews, questionnalres, and observation of
the environment. Validation involves presenting
documentation of the results to the customer and
resolving open issues.

b. There are several other inputs to the process of requirements
gathering.
I Using system requirements such as those associated

with embedded software)
ii Developing user Interface requirements (2167a Interface

Requirements Specification IRS)

C. Identification of software development constraints: cost,
hardware,fault tolerance.

d. Requirements analysis involves relating all of the requirements
gathered from diverse sources- satisfy the customer
i Assessment of potential problems and determination of

acceptable risk
ii Classification of requirements done in terms of

mandatory, desirable, and inessential. It is also helpful
to classify them in terms of stability- which ones are
likely to change. Ask them how this knowledge would
effect design. They should isolate requirements that are
likely to change.

iii Consider both the technical(can computers do it) and
operational(can the staff use the system in our
environment) feasibility of the system. Also consider the
economic feasibility of the system. What would the
student think of developing a checkbook balancing
program which required input using reverse polish
notation for a computer that weighed 20 pounds and
cost $350.00.

e. Requirements representation- a step of requirements definition
which portrays the results of requirements identification.
i Use of models
ii Prototyping as a means of clarifying the requirements

f. Requirements communication involves presenting the
requirements to diverse audiences for review and approval

g. Requirements validation
I Show 2167a requirements summary evaluation criteria

and go over them. L1701-13
ii Show 2167a figure 5 and review the items LI 70H4

4 Lecture 017

Traceability to system specification and statement
of work. Consistency with IRS and other
specifications for interfacing items. Testability of
requirements. Adequacy of quality factor
requirements.

Traceability to system specification and statement
of work. Consistency with other specifications
for interfacing items. Testability of requirements.

iii Discuss verification and validation(V&V) as a separate
process and then show and discuss the V&V standards
for requirements analysis. L17OH5

iv Establishment of acceptance criteria
iv Tie this to development organizations which is the

subject of the next class. Some methods of organizing
software development teams improve the quality of the
validation.

teaching method and media:

The class was primarily lecture with some discussion.

vocabulary introduced:

2167a
Requirements validation plan
Computer software configuration item (CSCI)
Computer software components (CSC)
Computer software units (CSU)
Hardware configuration items (HWCI)
Interface requirements specifications (IRS)

INSTRUCTIONAL MATERIALS:overheads:
L170H1 The language of Standard 2167A
L170H2 Deliverable products
L170H3 Requirements summary evaluation criteria
L170H4 Software requirements analysis
L170H5 Verification and validation standards for requirements analysis

hand5utu:

5 Lecture 0 17

BE:LATiEn LEAR:NING ACTIVITIES:

(labs and exercmes)
Lab 015 - Initial user perspective of extended project

READING SIGNMNTS:
Sommerville Chapter 3 (pp. 45-61)
Sommerville Chapter 5 (pp. 85-91)
Mynatt Chapter 2 (pp. 62-91)

RELATED READINGS:
Ghezzi Chapter 5 (pp. 151-160)
John Brackett, Software FBuIrernents SEI-CM-19-1.2, January 1990.

6 Lecture 017

DoD-STD-21 67A
Example of System Bradow and

CSCI Deowmposition

Fs 7csc~cDK

IIcSucs

7~LI70H 1

DoD-STD-2167A
Deliverable Products, Reviews, Audits

and Baselines

-ImT

AMn mhIT m Iva.

Umm

8 L170H2

Requirements Evaluation Criteria

Criterion Attributes

Language m Concise, quantitative
requirements

* Proper use of Shall and Will

Consistency m Standardized format
m Technical consistency
m Uniform level of detail

Completeness u Acceptable technical level
n Timing, accuracy requirements

stated
n Capacities specified
* Terms and acronyms defined

Lack of m Clear organization
ambiguity m Firmness of requirements

m Clear functional traces possible
* Requirements not open to

interpretation

Necessity m Requirements needed to fulfill
system objectives

* Requirements not superfluous
Testability m All the above criteria satisfied

* Capability to develop physical
and functional tests

9 L17OH3

Evaluon Cdtra for Products of

Internal Consistency

Understandability

Traceability to the indicated documents

Consistency with the indicated documents

Appropriate analysis, design, or coding
techiques used

Appropriate allocation of sizing and timing
resources

Adequate test coverage of requirements

10 L17OH4

Software Requrements Analysis

braut PonMotti __________ hIpbfornd"i

V & V Phmsio

__________I Anale hFIt dAh m "mb

how D.I(I) j b" rq~kmnt+ I I d. rqkC n O u

IhN iNWunll I*M

Tuhailylll

Cmplstm ad umslim

Idw.mho(U hu ihmIma h

"awm % dip • •Un
•i .1 alhutd bil.

rm pf)

Software Spd1utlu Review

11 L170H5

LECTURE NUMBER:018

TOPIC(i) FOR LECTURE:
1. Team organizations and software quality.
2. Roles and responsibilites In a matrix organization.

INSTRUCTIAL OBJECTIV91:
1. Understand different project team organiz and their Impact on

quality.
2. Understand the variety of roles in software development.

SET UP. WARM-UP:
(How to involve learner: recall, review, relate)

Most software projects today are too large to be completed by a single
individual. Several people have to work together in completing individual
tasks which contribute to the final software product, and several groups of
people have to work together organizing the components which constitute the
final complex software artifact. The structure, effective organization, and
management of these teams has a direct impact on the quality and timeliness
of the final software product.

(Learning Label- Today we are going to learn ...)

Today we are going to look at different types of organizations and their
impact on quality.

1. Team organization- Software development like any management effort
must organize people so that they can effectively accomplish their
goals. The structure of the team is dictated by its goals. Discuss how
sports teams are organized. Each member of a team has a specific
role and has particular constraints placed on him/her. The third
baseman is encouraged to handle the ball when it is hit or thrown to
him/her. However the third baseman is prohibited from pitching the
ball.

2. Teams can be organized based on control or function.

a. We characterize team organization based on where decision
making control resides. A team can have centralized control
where a recognized leader is responsible for all final decisions
and to resolve all technical issues. One such model is called
a chief programmer team. A team organization can also be
based on a distributed model of control, emphasizing group
consensus. This Is illustrated in a democratic team
organization. There can also be hybrid combination of these
two types of control.

1 Lecture 018

b. We can also define an organization in terms of its functions.
Large organizations have a control structure which ia tied to
the major functions of the organization. For example consider
an organization whose primary goal is sales. It will have
departments for marketing sales and publicity but not for
manufacturing. The primary decision making responsibility will
be distributed to each of these departments.

3. Four basic organizational structures that have been used to model
teams after are:

a. An application organization is a traditional hierarchical
organization with clearly visible product objectives. The chain
of command and control is vertical. This structure has the
advantages of isolating the lower levels from higher level
decisions.

b. A functional organization is organized around technical skills of
expertise. A system testing group or an analysis group
represent a functional unit in a functional organization.
Function groups, like application groups, normally work on
many projects. This is a service oriented structure rather than
a product oriented structure. This has the problem that
because a manager directs several projects, which project is
only a part time effort. Reporting in this group is not to the
project manager directing the project but to the functional group
manager.

c. A project organization is a single group formed to carry out a
single long term project. Because this group is dedicated to a
single project it has significant visibility.

d. A matrix organization is organized on two axes -- one being
skill groups and the other being projects. The vertical axes
consists of groups such as test, code, requirements, etc. While
the horizontal axes consists of the projects currently under
review or in progress. This model enables the allocation of
human resource to multiple projects. This is useful for
temporary or short lived projects. Personal who are already
familiar with the environment will get assigned to the project.
However this type of organization does not foster devotion to
an individual project.

L180H2
4. Several software team organizations can be used within these

2 Lecture 018

business organization.

a. The democratic team in which there are no predetermined lines
of communication is a common model of team. This is
essential the model followed on your first project. Ask the
students what problems exist for this type of team. You are
looking for things like: no clear decision maker and so work had
to be redone and significant difficulty in communication. For
each additional team member, we reduce the communications
capability. The total number of lines of communication in this
type of team is N(N-1)/2.

b. The chief programmer model, sometimes called the surgical
model established very clearly defined roles and threads of
control. The team is made up of about six programming
support personnel, one of who is the backup for or assistant to
the chief programmer who could replace the chief programmer
if necessary. The chief programmer designs and implements
the critical parts of the software. The other members of the
team consist of an administrator who takes care of the day to
day non-programming details; a librarian who maintains all the
program listings and can function as project configuration
manager. The team will also have a toolsmith or language
specialist who cal take can of critical language decisions. In
this model communication is minimized through the
administrator. If a new programmer is added then there is only
one new line of communication to the administrator.

c. There are hybrids of these two teams which minimize
communication using a surgical model and then open the lines
of communication at the more technical level using the
democratic model.

5. Assessment of team organization

a. Different teams are appropriate to different projects, no one
team organization is appropriate for all tasks.

i. decentralized control works well when communication at
a low level is needed to achieve the goal.

ii. centralized control works well when the problem is well-
understood and rapid development is important.

b. Discuss the advantages and disadvantages of each type of
team organization.

3 Lecture 018

PROCEDUEM:
teachin method and media:

vogggular intro:lucW:

functional organization
chief-programmer team
centralized control
democratic team
matrix organization

INSTRUCTIONAL -MATERIALS:
overheads:

L18OHO1
L18OH02

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 016 - Immediate tasks for configuration management,
requirements, user interface, and test plan teams.

READING ASSIGNMENTS:

Mynatt Chapter 1 (pp. 31-42)

RELATED READINGS:
Ghezzi Chapter 8 (pp. 440-446)
Schach Chapter 11 (pp. 357-368)

4 Lecture 018

Software Development Teams and
OroanizatUons

Team Management Goals:

Clear assignment of responsibility

Facilitate cooperation for common goals
effective size
clear leadership structure

Control based organization

Centralized control

Distributed control

Hybrid forms of control

Functional Based organization

5 LiSOHi

Li801-12

Teams and Risks

Software Orgnaizations:

Organizational

Functional

Software Teams

Democratic Team

Surgical/Chief Programmer Team

Hybrid Team

6 L180-12

LECTURE NUMBER: 020

TOPIC(S) FOR LECTURE:
Moving from entity relationship diagrams (ERDs) to Ada

INSTRUCTIONAL OBJECTIVE(SM:

1. Understand the concepts and notations of ERDs
2. To learn how to use ERDs to derive objects and operations to form an

Ada specification.

SET UP, WARM-UP:
(How involve learner: recall, review, relate)

In a recent class, you were Introduced to ERDs as an analysis notation for
understanding the problem domain during structured development. These
ERDs can also be used to assist in deriving the objects and operations for
a problem domain.

(Learning Label- Today we are going to learn ...)

Today we will look at using ERDs to derive objects and operations.

CONTENTS:

1. Entity relationship diagram (ERD)

a. An ERD graphically depicts the static nature of the major
entities of the system and their respective interrelationships.
An ERD can be derived from an event list. An event fist is a
list of the system's actions which affect the system's
processing. This list can be stated in a standard sentence
format with a subject, verb, and direct object. An ERD can be
derived from an event list by defining the subjects and direct
objects as entities and the verbs as relationships between the
entities. An entity is some individual item of interest in the
problem domain. An ERD Is a network which depicts how
entities of the system are interrelated.

b. ERDs are well known and understood and provide a good
starting point for the derivation of objects and operations in a
problem domain. The derivation of objects and operations in
a problem domain is not a well understood process, as of yet.

Lecture 020

ERDs provide a static view of a system which can be used as
a building block for the data abstraction of object-oriented
design. The usefulness of the ERD is that it provides a frame
of reference for Identifying the objects of the object-oriented
design.

2. Entity categories

a. The entities from the ERD provide a starting place for
determining the objects of a system; however, not all entities
from the ERD will become objects in the final design. The
entities are first categorized before determining which entities
become objects In the design.

b. The following entity categories have been idantified as common
types of entities which exist for a system:
i External entities are the terminators on the context

diagram which do not "own" any data in the problem
domain. These entities do not require data definition
within the scope of the system.

!I Internal entities are the terminators on the context
diagram which do "own" data in the problem domain.
These entities require data definition within the scope of
the system.

iii User-view entities present a "view" to the user.
Examples are a report or a screen.

iv Dependent entities have little significance to the system
alone and must be associated with another entity for
identification.

v Identifiable entities are independent system elements.

3. Objects and operations from entities

a. Any entities which are derived from nonautomated events are
eliminated from further consideration.

b. External entities and dependent entities are eliminated from
consideration as objects. External entities are excluded from
the design since they are not part of the problem domain.
Dependent entities are excluded from the object list since they
are represented in the design by other objects upon which they
are dependent.

c. The remaining entities provide a preliminary flist of objects for
the system.

2 Lecture 020

d. The operations which remain are associated with the
operations specified in the ERD. The DFDs for the system
may help to identify operations based on events in the ERD.

e. Each object and its associated operations becomes a
subsystem (i.e., Ada package specification) for the system.
These package specifications will be completed giving the
interface for each operation.

PROED~EURE:
teaching method and media:

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:

handouts:

RELATED LEARNING ACTIVITIES:

(labs and exercises)

Lab 017 - Configuration management plan presentation/review

READING ASSIGNMENTS:
none

RELATED READINGS:
Stoecklin, Adams, and Smith, "Object-oriented Analysis" at Proceedinas of

the Fifth Washington Ada Symposium, June 1988, Tysons Corner,
Virginia, pp. 133-138.

3 Lecture 020

LECTURE NUMBER: 021

TOPIC(S FORLE UE
Verification
Validation

INSTRUCTIOAL OBJECTIVES:

1. To understand the roles of verification and validation in the software
life Cycle.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In previous classes, we have talked about the production of quality software
being a major concern In software engineering. A necessary approach to
achieve quality software is through the use of verification and validation.

(Learning Label- Today we are going to leam ...)

Today we will be examining verification and validation in detail.

1. Introduction to verification and validation (V&V) L210H1

a. Prior to the use of verification and validation, testing was the
primary means of ensuring the quality of software. However,
testing was performed in an informal, arbitrary manner usually
by the programmer working in isolation. Testing also occurred
only at the end of development after implementation. Quality
products are developed during a quality process. People were
trying to put quality into the software AFTER the software was
developed. They were trying to test quality into the software
but this approach was not working.

b. Verification and validation are process for ensuring quality
software throughout the life cycle from requirements through
maintenance. V and V are complimentary, yet distinct. The
main objectives of V and V are the discovery of defects in any
of the products (requieents document, design document, et)
as they are developed; and the assessment of whether or not
the system satisfies the specified requirements. This process
permeates the entire life cycle. Errors should be detected as

Lecture 021

early in the development cycle as possible.

L210H2
c. Three types of analysis are used in V&V. Static analysis

involves no execution; it is the manual or automated
examination of a product (e.g., software requirements
specification document, source code). Examples of static
analysis include software reviews and static program analyzers.

Dynamic analysis involves execution of software where the
functional, structural, or computational aspects of the software
are examined. Examples of dynamic analysis include unit or
module testing and acceptance testing.

Formal analysis is the use of mathematical techniques to
evaluate a product; examples of formal analysis include
symbolic execution and proof of correctness.

2. Verification

L210H3
a. Are we building the product right? Verification involves

evaluating the end product of each phase; we are looking for
errors generated within the phase and/or by the transformation
between phases. The product is evaluated for its consistency,
completeness, and correctness according to the previous
phase. This is done during each phase and not at the end of
the life cycle. The most common errors occur between phases.

b. Although the product is the primary focus, the quality of the
development process is also being evaluated.

c. The tasks of verification are to assume that the products of
each software life cycle phase:
i Comply with previous life cycle phase requirements and

products,
ii Satisfy the standards, practices, and conventions of the

phase, and
iii Establish the proper basis for initiating the next life cycle

phase activities.

d. Static analysis, dynamic analysis and formal analysis are used
in accomplishing verification.

3. Validation L21 0H4

2 Lecture 021

q r s t u

p Data - Data or Common Commonstamp

q Control Data or ---
stamp

r - Data -

s Data
t Common

20 L25OH12

Qualities of Coupling Levels (Page-Jones)

Suscepti- Module's
bility Under- Usability

Coupling to ripple Modifia- stand- in other
Type effect bility ability systems

Data Variable* Good Good Good
Tramp Poor Medium Medium Poor

Stamp Variable' Medium Medium Medium
Bundling Variable* Medium Poor Poor

Control Medium PoorT PoorT Poorl
Hybrid Medium" Bad Bad Bad

Common Bad Medium Bad Poor

Content Bad Bad Bad Bad

Depends on the breadth (the number of individual items)

of the interface.

T Poor mainly because of concomitant problems in the

interface and the cohesion of one of the modules.

If the convention used in the hybrid data has to be
changed, the ripple effect can be devastating.

21 L25OH13

LECTURE NjUMBER: 028

TOPIC,) EM (LECTURE:

P'reFi.I" design using, -1unionaldsi - pae
Problem soMng paraegms
Introduction to object-orlestIon

INSTFRUCTICNA& L BJ DTVE=:

1. Understand functional preliminary design
2. Define basic concepts of object-orlenttion
3. Understand an object-oriented approach to analysis

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

L260H1
We have learned the basic elements of design. The inputs and outputs to
the design process have been defined for us. One of our authors -Mynatt-
describes the preliminary design process and includes in that process
interface design and software design. She and others have described design
as "basically a creative process!. What does she mean?

(Learning Label- Today we are going to learn ...)
L260H2
The problem with preliminary design seems to arise at the transitions from
analysis to an architecture and from an architecture to a documented
solution. Today we will look at some ways to male those transitions easier
and concentrate on a new approach called object orientation.

CONTENTS:
L260H3
I. Discuss where the difficulty les In design. Define domain analysis as

required knowledge of the system environment. Discuss the
difficulties they just had in moving from data flow diagrams to structure
charts. The translation process between the problem domain and the
solution domain Is difficult and it is made more difficult by using
different notations being used to talk about the problem domain and
the solution domain. For example, data flow diagrams for the problem
space and structure charts for the soiution space. domain.

In SA/SD attention shifts from analysis to design, the way you look at
the problem changes. Although there are techniques to help move
from SA to SD, this shift of focus makes the transition more difficult.

L260H4
2. Discuss how object-odented design Is Intended to address this

1 Lecture 026

problem by providing a seamless transition between development
stages. The focus of object-oriented design is on the things in the
system and these things tend to be more stable throughout the
development process. One starts with a set of objects which are easily
understood in the analysis stage. Object-oriented design is an
elaboration of the way these object are related to form a solution to
the initial problem.. The details of the design get embodied into the
objects. This encapsulation facilitates maintenance and reusability.

L260H5
3. Begin an illustration of object oriented development by giving

preliminary definitions of Objects, Classes and Inheritance.

4. Spend about 10 minutes with an object identification exercise
L260H6. Brainstorm with the students about the objects that are
needed. The objects they identify will include bottle, fill, label, wash,
cap, box, ship List the objects on the board as they describe
them. Pause to show them that they have outlined a system without
being language specific. Discuss some of these candidate objects,
noting that some of them are both nouns and verbs. Label is an
interesting one. A label has data-the type of beverage--, it also has
some properties -- glue on one side-- which enable it to undergo the
Labeling process. Once they are convinced that they have a high
level, language independent, description of a system, develop an Ada
package called LABEL L260H7 to show them how an object can be
specified in Ada. Use the package to explain some of the concepts
of reuse and encapsulation. If there is time you might want to give
a high level treatment of generics and develop a generic package
called FILL which is passed two parameters, the size of the bottle to
be filled and the type of beverage to be placed in the bottle.
Exceptions could be touched on here as the error conditions for this
package, e.g., overflow of bottle and not.completelyjfill the bottle.

L260H8
4. Discuss Wenger's distinction between Object-oriented languages and

object-based languages. Because Ada does not currently support
inheritance it is useful to spend some time talking about the virtues of
object-orientation and that many of those virtues can be achieved
independent of the implementation language. Work done at the
NASA software engineering lab has proven that the use of an object-
oriented methodology, independent of the language environment and
the availability of inheritance, produces significant benefits. Use
L260H9 to discuss some of the elements of object-orientation.
Software engineering starts with real world non-computer objects, e.g.,
cars, or vending machines. These objects are easily identifiable and
are more than just functions or data. Emphasize the black-box
nature of these objects. They present and external interface to the
work and restrict access to their internal implementations. In Object-

2 Lecture 026

orientation, this is called information hiding makes non-essential
information inaccessible. This can be modeled in an Ada package.
The body of a package physically encapsulates both data and
function.

Talk about data and functional abstraction and how they are combined
in object-orientation. Functional abstraction focuses on the interface
to the object, but is does not know how the function is accomplished
within the object. Using a vendor supplied sort package is a good
example of this.

Inheritance can be simply modeled. Tell the students that you have
a Rumbo outside. When they ask what it is, tell them it is a car.
Point out that now they can tell you several things, both attributes and
functions, about a Rumbo because it inherits characteristics from the
class CAR. This is a good point to use a sample of Rumbaugh
notation. Show a class diagram for car and them under it place two
other class diagrams for SEDAN and STATION WAGON. Draw an
inheritance relation between these three showing how sedan and
station wagon inherit all of the characteristics of car. Use the example
of the car and return to the concept of abstraction. The CAR object
can be presented at several levels of abstraction. A high level of
abstraction views a CAR as an object which transports people. At a
lower level we can talk about its structure or the interconnectedness
of its part; and at a lower level we can talk of the functions of its parts.
These levels of abstraction model the stages of object-oriented
development from analysis to preliminary design to detailed design.

L260H10
5. Review the standard problem solving paradigms and how object-

oriented design fits in with these paradigms. The choice of paradigm
directs the entire development life cycle. Paying attention to
paradigms is a shift in focus from "Let's see how I can solve this
problem in 'C' "to "What design technique will best support a solution
to this problem?"

6. Begin a discussion of domain analysis and talk about the different
categories of objects, viz., physical objects, roles, incidents like airline
flights, and interactions between objects like employee works for
company. How these object are related in object-oriented design will
be the subject of the next lecture.

P.OEQDURE:
teaching method and media:

3 Lecture 026

objects
oncapsul Won
inheritance
object-based
object-oriented
Information hiding
procedural abstraction
data abstraction
functional abstraction

INSTRUCTIONAL MAERIALS:

L260H1 Design
L260H2 Preliminary design - The Transitions
L26OH3 Preliminary design - The Transitions, Missing Elements
L26OH4 Object-Oriented Design
L260H5 Object Orientation
L260H6 An exercise to identify some objects in a problem specification
L26OH7 Ada package specification for Don's Brewery
L260H8 Object-oriented vs object-based
L260H9 General characteristics of object orientation
L260H I0 Object-oriented development

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 021 - Preliminary design
READING ASSIGNMENTS:

Sommerville Chapter 10 (pp. 182-188)
Mynatt Chapter 3 (pp. 94-130)

RELATED READINGS;.

Berzins Chapter 4 (pp. 207-214)
Booch Chapter 5 (pp. 44-50)
Booch(2) Chapter 3 (pp. 34-41)
Ghezzl Chapter 4 (pp. 115-121)
Pressman Chapter 8 (pp. 239-262)
Schach Chapter 9 (pp. 262-264)

4 Lecture 026

Design

Preliminary Design

Input Software specifications

Process Generate architecture to meet
specifications

Output Preliminary design document

Detailed Design

5 L26OH1

Preliminary Design - The Transitions

Input Problem description in terms of
functions

Determine a solution

Process Preliminary solution in terms of
system architecture, might include
interface design

Record a solution

Output Preliminary design document

6 L26OH2

Preliminary Design - The Transitions
Missing Elements

Input Problem description in terms of functions

DOMAIN ANALYSIS: non-functional
requirements, understanding of the
environment

Determine a solution

How ?- "Basically a creative
process", "A Flair"

Process Preliminary solution in terms of
system architecture, might include
interface design

Record a solution

What method of notation best reflects
both the problem and the solution?

Output Preliminary design document

7 L260H3

Object-Oriented Design

Goals of Object-Oriented Design

Avoid translation problem between
problem and solution statements.

Establish a seamless transition from
design to implementation.

Make programming simpler, more like
real-life (Alan Kay-Smalltalk)

Facilitate reuse of all system components.

Make all forms of maintenance easier and
more reliable.

8 L260H4

Object Orientation

Objects Real world entities (SE) or
modules with constructor and
inspectors, Ada packages
(Programmers)

Classes A template for similar objects
or instances

Inheritance A class acquires the
characteristics from one or
more other classes.

9 L26OH5

An Exercise to Identify Some Objects In a
Problem Specification

Don is going to automate one aspect of his
brewery. He wants a computerized system to
control the bottling of the beverages: lager,
ale, stout, and bitters, that he brews. The
returnable bottles come in 3 sizes: one pint,
two pints and three pints.

10 L260H6

Ada Package Specification for Don's B8ewry

with Text_10;
uses Text_10;
with BOTTLE;
uses BOTTLE;

Package LABEL is
Procedure GETLABEL;
Procedure WET_LABEL;
Procedure PLACE_LABEL;

end LABEL;

Package body LABEL is

as

Type
Records
Functions
Procedures
end LABEL;

11 L26OH7

Object-OrIented vs Object-Based

Peter Wenger 1986
The essential elements for object orientation

1. Support for data abstraction

2. Management of data abstraction by
typing

3. Composition of abstract data types
through an inheritance mechanism

"The benefits of object-orientation have been
proven to be dependent on the adoption of
object-oriented methodology rather than on
the implementation details" Mike Stark-
Software Engineering Laboratory

12 L260H8

Abstracton
Process
Enft
Levels of abstraction
Functional and data

Encapsulation

Inheritance

13 US60H

Object-Or0nt IvlIsm n

Problem Solving Paradigms

Procedural
Stream of actions
Data structures are passed
State of system maintained globally

Logical

Access-Oriented

Object-Oriented
Problem domain objects
Control distributed in objects
State maintained by separate objects

Functional

Change of orientation from coding as a foundation
for a solution to the requirements and design as a
foundation for a solution

14 L26OH10

LETURE NUBMER:.027

TOPIQB1 FOR LETURM:
1. High le0 oWet-lodanted design
2. Steps In prelimnary design
3. Validatlng preilirnary deslgn
4. Notation for preliminry depgn

INSTRUCTIONA OELJECTIVgtM:

1. Understand the steps In prelminary design and how to tes IL
2. Develop a prelminary object-oriented design.

SET UP. WARM-UP:
(How Involve learner: recall, review, relate)

In our previous discussion, we introduced some of the elements of object-
oriented development.

(Leaming Label- Today we are going to learn ...)
L270H1
One can use the preliminary products of structured analysis to aid In the
development of object-oriented design. Today we shall examine the
components of an object-oriented design and look at the detail of a
preliminary object-oriented design.

L270H2
1. Review basic object-oriented concepts, especially message passing

and encapsulation since this will get connected with Ada later on.
Illustrate these using examples consistent with the KoFF system.
Examples of object classes include a video-tape and a VCR. The
particular instances could be a particular video tape and your VCR.
Message passing can be illustrated by : pushing the display button on
the VCR or the end of tape message on the particular video tape
which sends a message to the VCR activating a number of processes.
The VCR Is a good model for explaining encapsulation in so far as we
do not know the internal workings of the VCR activated by the PAUSE
or DISPLAY buttons. Inheritance is illustrated by talking about the
classification of the video tape movies. Each movie has many
characteristics in common with other movies but they are separated
by classification into 'G', 'PG', etc. This is modeled in a class
hierarchy. For example we could have a superclass tape, and each
subclass type of type -'G', 'PG', etc - inherits characteristics from the
super class. Each tape could also be considered s an aggregate of
2 take up reels, one tape, and one case.

L27OH3

Lecture 027

2. Give an overview of both preliminary and detailed design. Be sure to
revisit the concept of domain analysis and other information gathering
techniques. Discuss class design as a method to decompose a
system into sub-systems and how this can be done in terms of
external system responsibilities during preliminary design. The
students might find this easier to understand if you talk in terms of
architectural responsibilities. The interfaces that are considered at this
stage are related to the external behavior required by the user to
access the system. Design validation is an important concept to
reinforce. The input documents such as event lists, use cases or
functional requirements lists can be traced to see that the design
meets all of the system requirements. Briefly discuss the outputs of
preliminary design with an emphasis on the traceability matrix and the
information from preliminary design passed to detailed design. Show
the detailed design slide very briefly. Emphasize that this is where
implementation details begin to appear. L270H4

3. After the overview of design, begin a detailed discussion of object
identification, as the first step in preliminary design. L270H5 indicates
the different kinds of things that are candidates for objects for a
system.

Ask the students to think of systems where each of these might be an
object. You might also use the KoFF system, a garage door opener,
or a spell checker. Others have used ATM systems, motor vehicle
registration systems , and air traffic control systems. The goal is to
get them to think of system objects as including more than tangible
things.

L270H6
a. Discuss various object identification techniques.

i Be sure to admit the limitations of the noun
identification technique. Show the KoFF system
L270H7 description and start to list the nouns in
it. L270H8 Then show a partial noun list and
ask them to identify synonyms, e.g, membership
card and movie rental card. Have them remove
the synonyms. Tell them that objects have
attributes, and one simple way to identify
attributes of objects is to look for things that
cannot exist independently but must be properties
of something else. For example, color cannot
exit alone but must be the property of some
object. Similarly, in the KoFF system, Price
would be an attribute of a TAPE. Look at the list
again for nouns which are attribute candidates,
e.g., due-date must be the property of some

2 Lecture 027

object. Then have them group some the nouns
into major categories, such as billings, member,
and tapes. These categories include most of the
nouns which can be potential objects or can be
major partitions of the design.

Hi Discuss use cases as another identification
technique. L270H10 Conversations with the
customer generate descriptions of external
system behavior which can be modeled in mini-
scenarios, called use cases. These scenarios
might reveal some additional system objects.
(This is a recent technique developed by
Jacobsen).

b. Return to the Object identification slide and discuss a
method for identifying objects behavior which is based
on finding verbs which indicate an objects responsibility.
L270H6 L270H9 Use the KoFF system description
and look for verbs, associating each verb with some
object identified in the noun identification pass. These
verbs are candidates for object operations. Sometimes
operations have characteristics, such as time
constraints, or the number of times they can be
repeated. These constraints can be indicated by
adverbs. Examine each object in the list for relevancy.
Remove synonymous objects and objects which are not
directly related to the system. Remove nouns which
cannot exist independently.

4. Present the Rumbaugh object-model notation as a way to describe the
objects that have been identified. Go over the notation. Be sure to
discuss: multiplicity, association, generalization and specialization, and
subclass and superclass. It is helpful to use examples from their small
projects here. L270H11 L270H12 L270H13 For example,
aggregation can be illustrated by talking about a vending machine
consisting of slots and a change maker. A video tape can also be
considered an aggregate of: the tape, two take up reels, and the case.
Derived attributes can be illustrated with KoFF tape due date, since

it is a function of the rental duration and the initial rental date.

L270H14
5. Clearly discuss the deliverables required for the preliminary design for

the extended project. An object model consisting of an object diagram
using Rumbaugh's notation is required. They use OMTool for this.
The object model also includes an object dictionary and a traceability
matrix. The importance of the object traceability matrix for testing and

3 Lecture 027

further development is emphasized. They are also expected to do
Ada specifications for each object as an Interface description. The
preliminary design team should also develop all user interfaces, e.g.,
design major menus for the system. (If you have a user interface
team, instead of a user manual team, then the design of menus
belongs to the user interface team)

L270H15, L270H16
6. The Class dictionary provide significant information needed for design

and implementation. The developer can use this dictionary to cross
check the attributes of this class. The specification of the information
needed from other objects helps in the interface design. The object
traceability matrix is used to verify that every requirement is accounted
for in the object design.

teaching method and media:

vocabulary introduced:
traceability matrix
object class
instance
encapsulation
message
method
inheritance
class hierarchy
object model notation
class dictionary
subclass
generalization
specialization

INSTRUCTIONAL MATERIALS:

L270H1 Outline
L270H2 Definitions
L270H3 Object-oriented design (1)
L27OH4 Object-oriented design (2)
L27OH5 Identification of objects
L27OH6 Object identification techniques
L270H7 KoFF Automated Video Rental System description
L270H8 A KoFF partial noun list
L270H9 A KoFF partial noun and verb list
L270H10 KoFF use cases

4 Lecture 027

L270H1-1 Examples of Rumbaugh object-oriented design notation
L27OH12 More examples of Rumbaugh object-oriented notation
L270H13 Object model notation based on Rumbaugh et al.
L27OH14 Preliminary design deliverables
L270H15 Example layout of class dictionary
L27OH16 Example object traceability matrix entry

handouts:

RELATED LEARNING ACTIVITIES:

(labs and exercises)

Lab 022 - Ada laboratory environment

READING ASSIGNMENTS:
Mynatt Chapter 8 (pp. 364-368)
Sommerville Chapter 10 (pp. 177-182)
Sommerville Chapter 11 (pp. 194-236)

RELATED READINGS:
Ghezzi Chapter 4 (pp. 115-122)
Pressman Chapter 12 (pp. 395-418)
Ivor Jacobson.Obiect-Odented Software Engineering, ACM Press
James Rumbaugh, et.al, Object-Odented Modeling and DesiMn, Prentice Hall

5 Lecture 027

OUTLINE

Definitions

Design

High Level Design (Preliminary
Design)

Low Level Design (Detailed Design)

Steps in High Level Design

Notation to Express the High Level
Design Model

Preliminary Design Deliverables

6 L270H1

Definitions

OBJECT CLASS Models "things" in the world:
the model has attributes,
operations, and a precise
interface that receive
messages. (a factory waiting
to create instances)

INSTANCE An actual object waiting to
perform services and having
state. (the object)

ENCAPSULATION An object's state data cannot
be directly accessed, it can
only be asked for a service.

MESSAGE The only way objects
communicate and request
services from other objects.

7 L270H2

Definitions (cont.)

METHOD An object class's service or
behavior in response to a
message.

INHERITANCE The state and services of a
superclass are available to a
subclass.

AGGREGATE An object made up of several
components.

CLASS HIERARCHY

8 L270H2

OBJECT-ORIENTED DESIGN (1)

High Level Design

Input Requirements Documents

Costumer Interviews

Domain Analysis

Process Identify Domain Object
Classes

Class Design
Divide System
Responsibilities

Design Interfaces

Identify Object Relationships

Design Validation

Output Preliminary design
deliverables

9 L270H3

OBJECT-ORIENTED DESIGN (2)

Low Level Design

Input Preliminary Design
Deliverables

Process Identify Internal aspects of

Objects

Data Structure Design

Algorithms for Operations

Identify Object Relationships

Validation

Output Detailed design deliverables

10 L27OH4

Identification of Objects

Potential Objects are:

Devices the system interacts with

Events

Incidents

Interactions

Locations of things

Organizations

Remembered Events

Roles of People or Things

Systems outside the current. application

Tangible things

11 L27OH5

S ~Where Have all the Objects Gone?object identication nque

First phase:

Name Objects
A noun list from requirements or customer
conversations.

Data Dictionary entries*

Data Flow Diagrams*

Requirements List*

Use cases

Determine Object's Behavior

A verb list (Responsibilities)

Assign Methods to Objects

Eliminate Irrelevant Objects

(* Used later in validation of object identification)

12 L270H8

Object Identification Techniques (cont.)

Second phase: (using remaining objects)

Assign attributes

Abstract superclass objects based on common
behaviors and objects

Distinguish Private methods from public
contracts

13 L270H6

Automated Video Rental System Description
Client Request

Mr. Richard wants a computerized automated video cassette rental system which
will be housed in unmanned kiosks. These kiosks can be free standing in mall
parking lots or can be placed in enclosed shopping malls. This device, KoFF (Kiosk
of Famous Flicks), will accept applications for membership in Mr. Richard's Rapid
Rental club (RRR), display titles of available tapes, dispense tapes, accept returned
tapes, and take care of billings. It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a
keyboard attached to the kiosk. This information will include a current charge card
number and an approval to automatically charge that card for selected items
including a membership fee of $ 10.00. Customers will be notified of membership
in RRR by mail and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their
charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer
can see a list of the available tapes by category by inserting one of their
membership cards into the kiosk. The customer can select an available tape and
rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk.
When a tape is returned to the tape-in slot, its bar code will be scanned, the
customer will automatically be charged appropriate late fees and the membership
card will be returned. Failure to return the tape within five days of its due date
generates a phone call to the customer which plays a recorded message about the
overdue tape and the accruing late charges. When the 10-day late limit is reached,
the customer is charged for the late days and the cost of the tape. The customer
is also charged a tape restocking fee and all of his/her membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this
process. Videos which have not been rented for two weeks are listed for removal
and videos which have been rented several times in a week are listed for additional
copies. Every two weeks KoFF sends Mr. Richard's computer a copy of this report.
He decides which tapes to add and which to remove. He updates the list of titles
and records the quantities of those titles along with their identifying bar codes. He
also assigns the rental price for that title. Sometimes instead of replacing a slow
moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of
the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental
activity of RRR members by tape title and tape category - Adventure, Comedy,
Children, Restricted, the rental activity of particular titles and copies of that title, and
detailed and summary financial reports of RRR member accounts.

14 L27OH7

A KoFF Partial Noun List

NOU~L Major Categoie
Kiosk
tapes tapes
titles
billings billings
rental transactions
member member
membership information
keyboard
charge card number
membership fee
movie rental cards
personal identification number
expiration date
list
membership card (syn)
available tape
rental duration
tape-out slot
tape-in slot
bar-code
due-date
phone-call
late-fees
overdue tape
etc.

15 L27OH8

A KoFF Partial Noun and Verb List

Noun Categories, Verbs

Kiosk

tapes tapes dispense, accept,
report, list

titles

billings billings
rental transactions

member member enter info, charge
fee,

membership information issue card

membership fees

16 L27OH9

KoFF USE CASES

Rent a Tape

Buy a Tape

Return a Tape

Membership Card Rejection

Rent a tape:
Conversation with customer:"How do you
want someone to rent a tape?"

What new information does this reveal?
"What are the desired functions for tape
rental?"

17 L27OH10

Exam ples of Rumbaugh Object-Oriented
Design Notation

Nm.e

Chun Mme.uh u4a

Mak: reuN26

Wlake I NM

,pmgdu
*pvath(urgbt):

UbdUI1L70H Iudaa2

More Examples of Rumbaugh Object-
Oriented

Design Notation

Ordeuf Wde Atlbdb Drdud Cha:

(I am CmEN., Niemm

Aggrpu

ACm

1rt-I lar-

19 L270H12

KoFF USE CASES

Rent a Tape

Buy a Tape

Return a Tape

Membership Card Rejection

Rent a tape:
Conversation with customer:"How do you
wmant someone to rent a tape?"

What new information does this reveal?
"What are the desired functions for tape
rental?"

17 L270H 10

Examples of Rumbaugh Object-Oriented
Design Notation

lime Na..

1Attribite~s
attribute: dattype w l.

attrrsibue: aaye= udt

ISp~ratlsu(Argjet):

Multlpklty of lmbdat:

Geueralkutlm(Iuherksmamee In* asetym

SCho Mamy(ure or sorn)

I~ubea~s4 Subcau2of .me)

18 L270HI11

Object Model Notation
Based on Rumbaugh et al.

Aggregation:
A special form of association between a
whole and its parts.

Association:
A relationship among instances of two or
more classes.

Association as a class:
Each link is an instance of a class.

Qualifier:
Reduces the multiplicity of an association
at the many end.

Role:
Appear as nouns in product description
and uniquely identify one end of an
association.

20 L270H13

Preliminary Design Deliverables

An Object Model:

A complete object diagram using

Rumbaugh notation as presented in class.

A Class Dictionary entry for each object.

An Object-Requirements traceability
matrix.

Ada Specifications for each object class.

Descriptions of all major user interfaces, e.g.,
menu formats and options.

21 L27OH14

CLASS DICTIONARY

OBJECT CLASS NAME:

OBJECT DESCRIPTION:

ATTRIBUTE DESCRIPTION:

Method Descriptions:

Input information needed from other objects:

22 L270H15

Object Traceability Matrix

Functional Object 411
Requirement Name age

ID

1 MEMBER MEMBERSHIPOPS

23 L27OH16

LECTURE NUMBER: 028

TOPIC(S) FOR LECTURE:
Ada packages

INSTRUCTIONAL OBJECTIVE(SM:

1. To understand the use and usefulness of Ada packages.
2. To learn the syntax of Ada packages.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

Soon the students will be working on the preliminary design of their second
project which is to be implemented in Ada. The preliminary design is also to
be accomplished using Ada package specifications. The students have been
introduced to Ada packages in previous classes.

(Learning Label- Today we are going to learn ...)

In today's lecture, they will have a more detailed look at the syntax of Ada
packages through several examples.

L280H1
1. Give a brief overview of three program units in Ada - procedures and

functions, packages, and tasks. Relate procedure and functions to a
language students are already familiar with. The development of
packages is a primary goal of the preliminary design team. Be sure
to emphasize the correspondence between packages and objects.

2. Detailed look at Ada packages L280H2

a. A package Is a collection of related entities available for use by
other program units. A package can include constants,
variables, types, procedures, functions, exceptions, tasks, and
even other packages. Packages are passive. They have to be
invoked by operations of other entities.

b. A package can be used for a collection of declarations, a group
of related program units, or an abstract data type.

c. There are two parts to a package. They are stored as two

1 Lecture 028

different files, each having the same name but a different
extension:
i The specification is the public or visible part which

provides the interface information and indicates the
entities which are made available by this package. The
public or vissible part is what you are going to provide
to the system. This corresponds to OMT's method part
of an object. The specification can be created in the
preliminary design phase of the software life cycle.

ii The body is the hidden part which contains the
implementation details. Knowledge of the package
details of the package body is not needed in order to
use the package. The package body contains the
bodies of the subprograms which are declared in the
package specification. If also contains local
declarations, and subprograms which are inaccessible
to the user of the package. The package body is
optional. Sometimes it is not needed; for example, a
package may contain only declarations such as shown
in L28OH3.

d. Discuss/review the software engineering concepts of
abstraction, encapsulation, information hiding, modularity, and
reusability and how these are supported by Ada packages as
in L280H4.

e. Ada supports various levels of information hiding and
encapsulation. What follows is a series of refinements of an
Ada Queue package, each of which more effectively hides and
encapsulates information.

L28OH5 Presents a package in which all data and
operations are publicly accessible and the body L280H6
has minimal details. A Procedure X could use a
Queue_type, but it could only Enter and Remove. (E.G.
procedure X is

trans A
QueueA, QueueB:Queue.type;

enter(TransA,QueueA);

ii. L280H7 Declares the Queue type as a private type, and
hides implementation details such as the fact that it is a
linked list.

iii. L280H8 Here a greater degree of encapsulation is
achieved by moving all implementation details to the

2 Lecture 028

package body. L280H9. All that is visible is the
interface transaction type and the two procedures,Enter
and Remove. Data has to be accessed by the method
specified in the package specification.

f. L28OH11 - If in, Wut, or in out, is omitted from a procedure or
function header, the parameter defaults to an in parameter. In
the formal parameter list for a procedure or function each
parameter is labeled as 'in' (for an input parameter), 'out' (for
an output parameter, and 'in out". The parameter defaults to
in.

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:
Ada packages
Ada package specification
Ada package body
private data type
limited private data type

INSTRUCTIONAL MATERIALS:

L280H1 Ada program units
L280H2 Ada packages
L280H3 Example of package specification - Solar System
L280H4 Software engineering concepts supported by Ada packages
L280H5 Example of package specification - Queue
L280H6 Example of package body - Queue
L280H7 Example of package specification with data declarations in

private section - Queue
L280H8 Example of package body to go with overhead 7
L280H9 Example of package specification with all data inside package

body.
L28OH10 Example of package body to go with overhead 9
L280H1-1 Procedure and function headers

handouts:

RELATED LEARNING ACTIVITIES:

(labs and exercises)

3 Lecture 028

Lab 023 Peer reviews and preliminary design review presentalton

READING ASSIGNMENTS:
Benjamin Chapter 8 (pp. 73-78)
Sommerville Appendix(pp. 610-613)

RELATED READINGS:
Booch Chapter 6 (pp. 53-74)
Booch(2) Chapter 4 (pp. 43-65)

4 Lecture 028

Ada Program Units

Procedures and functions

Packages

Tasks
Provides concurrency

5 .L280H1

Ada Packages

A program unit that allows a collection of
related entities to be made available for use
by other program units

Two parts to a package:

Specification

The public or visible part
Interface information

Body

The hidden part
Implementation details

6 L280H2

Software Engineering Concepts
Supported by Ada Packages

Abstraction
A view of a problem that extracts the
essential information relevant to a
particular purpose and ignores the
remainder of the information

Encapsulation
The technique of isolating data and
related procedures/functions within a
module and providing a precise
specification for the module

Information hiding
The technique of forbidding the use of
information about a module that is not in
the module's interface specification

Modularity
The purposeful structuring of the modules
of a system so that a change to one
component has minimal impact on other
components

Reusability
The extent to which a module can be
used in multiple applications

7 L28OH4

Example of Package Specification

package SOLARSYSTEM is

type PLANET is (MERCURY, VENUS, EARTH,
MARS, JUPITER, SATURN, URANUS,
NEPTUNE, PLUTO);

subtype TERRESTRIALPLANET is PLANET
range MERCURY..MARS;

NUMBEROFMOONS:constant array (PLANET)
of NATURAL := (MERCURY => 0, VENUS =>
0, EARTH => 1, MARS => 2, JUPITER => 12,
SATURN => 10, URANUS => 5, NEPTUNE
=> 2, PLUTO => 0);

end SOLARSYSTEM;

8 L280H4

Example of Package Specification

package QUEUE is
type TRANSACTION is

record
ACCOUNTID : integer;
NAME : string;
ADDRESS : string;

end record;
SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1 ..SIZE;
type SPACE is array (INDEX) of TRANSACTION;
type QUEUETYPE is

record
ITEMS : SPACE;
HEAD :INDEX := 1;
TAIL :INDEX:= 1;
COUNT: integer range 0..SIZE := 0;

end record;

procedure ENTER (T : in TRANSACTION;
Q :in out QUEUETYPE);

procedure REMOVE (T : out TRANSACTION;
Q :in out QUEUETYPE);

end QUEUE;

9 L280H5

Example of Package Body

package body QUEUE is

procedure ENTER (T : in TRANSACTION;
Q : in out QUEUETYPE);

begin

end;

procedure REMOVE (T : out TRANSACTION;
Q : in out QUEUETYPE);

begin

end;
end QUEUE;

10 L280H6

Example of Package Specification

package QUEUE is
type TRANSACTION is

record
ACCOUNTID : integer;
NAME : string;
ADDRESS : string;

end record;
type QUEUETYPE is private;
procedure ENTER (T : in TRANSACTION;

Q : in out QUEUETYPE);
procedure REMOVE (T : out TRANSACTION;

Q : in out QUEUETYPE);
private

SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1 ..SIZE;

type SPACE is array (INDEX) of
TRANSACTION;

type QUEUETYPE is
record

ITEMS : SPACE;
HEAD :INDEX := 1;
TAIL :INDEX:= 1;
COUNT: integer range 0..SIZE :- 0;

end record;
end QUEUE;

11 .L28OH7

Example of Package Body

package body QUEUE is

procedure ENTER (T : in TRANSACTION;
Q : in out QUEUETYPE);

begin

end;

procedure REMOVE (T : out TRANSACTION;
Q : in out QUEUETYPE);

begin

end;
end QUEUE;

12 L280H8

Example of Package Specification

package QUEUE is

type TRANSACTION is
record

ACCOUNTID : integer;
NAME : string;
ADDRESS : string;

end record;

procedure ENTER (T : in TRANSACTION);

procedure REMOVE (T : out TRANSACTION);

end QUEUE;

13 L28OH9

Example of Package Body

package body QUEUE is
SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1 ..SIZE;

type SPACE is array (INDEX) of
TRANSACTION;

type QUEUETYPE is
record

ITEMS : SPACE;
HEAD :INDEX:= 1;
TAIL :INDEX:= 1;
COUNT : integer range 0..SIZE := 0;

end record;

A_QUEUE : QUEUETYPE;

procedure ENTER (T : in TRANSACTION) is
begin

end;

procedure REMOVE (T : out TRANSACTION) is
begin

end;
end QUEUE;

14 L28OH10

Procedure and Function Headers

procedure ENTER (T : in TRANSACTION);

procedure REMOVE (T : out TRANSACTION);

procedure MODIFY (T: in out TRANSACTION);

function CUBE (X : integer) return integer;

15 L280H 11

LECTURE NUMBER: 029

TOPIC(S) FOR LECTURE:
1. Introduction to software quality assurance (SQA)
2. Reviews - wakthroughs and Inspections

INSTRUCTIONAL OBJECTIVE(S):

1. Understand the scope of quality assurance and the related activities.
2. Understand the purpose of technical reviews, specifically of

walkthroughs and Inspections.
3. Understand general guidelines for technical reviews.

SET UP, WARM-UP:
(How involve learner: recall, review, relate)

The issue of software quality has come up in a number of earlier lectures,
both directly and indirectly. Recall, for example, verification and validation
(V&V) - see L290H1. V&V activities were aimed at ensuring two things:

1) verifying that the system meets its specification (Are we building the
product right?); and

2) validating that system as implemented meets the clients'/users'
expectations (Are we building the right product right?).

V&V are activities undertaken to increase the chances of achieving software
quality. Similarly, recall configuration management deals with controlling and
managing change. CM activities are also undertaken in order to increase the
chances of achieving software quality. Both V&V and CM activities are
software quality assurance (SOA) activities.

(Learning Label- Today we are going to leam ...)

Today we're going to look further at SOA.

1. L290H2
Pressman defines SQA as an "umbrella activity" which encompasses
V&V, CM and a number of other types of activities. SOA is concerned
with both product and process quality and it encompasses:

a. Technical methods and tools - These are used throughout the
software life cycle. They include methods and tools to aid In
developing high-qualty specifications, to methods and tools for
Implementation and testing.

1 Lecture 029

b. Technical reviews - These are also applied at every stage of
the software life cycle.

c. Testing - Testing is used to reveal the presence of problems at
any stage of developement.

d. Configuration management - The control and management of
change applied to all artifacts of software development.

e. Standards - Both the development of and compliance with
standards.

f. Measurement and reporting - These activities involve
measurement to track quality and to improve quality by
modifying the process in light of these measurements.

Use L290H3 and L290H4 to explain the importance of SQA at the
beginning of the development process.

2. L290H5 What is software quality?
Pressman defines software quality as "conformance to explicitly stated
functional and performance requirements, explicitly documented
development standards, and implicit characteristics that are expected
of all professionally developed software.

Point out that there are three components of quality:

a. Meets (explicit) requirements; (This involves the software
product).

b. Meets (explicit) standards; (This involves the software
process.) The quality of the process affects the quality of the
product.

c. Meets (implicit) requirements - these are standards expected
of all professionally developed software; Note that software
could meet all of its explicitly stated requirements yet still be of
questionable quality. These are some things that a customer
should expect even without saying so.

Discuss some of these implicit characteristics that should be
expected of all quality software? (Let short discussion bring out
such things as maintainability, reusability, robustness,
portability, etc).

L290H6 shows how quality factors are evidenced in the final
product.

2 Lecture 029

3. Software reviews - Reviews are one of the most important SQA
activities.

L290H7
A review of some component of a software development process
serves to uncover defects so that they can be corrected/removed
before going on. There are many types of reviews, both formal and
informal.

a. The most common types of reviews are called structured
walkthroughs and inspections. In both, a team of software
professionals carefully reviews an item, thereby increasing the
chances of defects being located.

b. L290H8
Technical reviews uncover errors in the item under review,
verify that the software under review meets its requirements,
and ensure conformance to standards. Note also that reviews
can serve as training activities to new and/or inexperienced
personnel.

c. Reviews occur at meetings. Guidelines for review meetings
typically suggest participation of 3-6 appropriate people and
require advance preparation of 1-2 hours. The focus of the
review is the improvement of the product under review.

L290H9
Roles for a review include:
i Review leader - evaluates review item for readiness,

distributes review materials to reviewers, typically a day
before the review. The review leader, like the other
reviewers, is expected to spend 1 to 2 hours reviewing
the material in preparation for the review. The review
leader also schedules the review and prepares the
agenda.

ii Recorder - One of the reviewers is responsible for
recording (in writing) all important issues raised during
the review.

iii Producer - The developer of the item under review
"walks through" the product, explaining the material,
while reviewers raise issues identified in their advance
preparation or during the review itself.

iv Other reviewers - Each has carefully reviewed the
materials and comes prepared with a list of items not
understood and a list of items he/she believes to be
incorrect.

3 Lecture 029

d. There are different methods of conducting the review. One is
"participant-driven", in which each participant goes through
his/her lists of unclear/incorrect items and the presenter
responds. Another is "document-driven" in which the
presenter(s) walk the reviewers through the item under review,
and the reviewers bring up their concerns as they are
encountered. The document-driven approach is more
thorough. In practice, a majority of faults in document driven
walkthroughs are detected by the presenter during the
walkthrough.

4. L29OH10 Review reports
The recorder notes all issues raised that need to be addressed.
These are summarized at the end of the review and a "review issues
list" is produced. A "review summary report" is also completed,
containing the item reviewed, names of reviewers, and findings and
conclusions.

Discuss examples in in L290H1 1 and L290H1-2 The review issues
list identifies problem areas and serves as action item checklist for the
producer as he/she addresses the issues.

5. L290H13
Discuss the review guidelines, adapted from Pressman.

a. Review the product, not the producer.

b. Set and maintain an agenda.

c. Limit debate and rebuttal.

d. Focus on identifying problems, not on attempting to solve them.

e. Keep a written record.

f. Limit the number of participants.

g. Insist upon advance preparation of participants.

h. Develop a checklist for likely review items.

i. Allocate resources for reviews.

j. Provide appropriate training for reviewers.

k. Establish a follow-up procedure to assure that items on review
issues list are addressed.

4 Lecture 029

Do not allow reviews to be used as a means of assessing
participants.

6. Effectiveness of reviews - Evidence has shown that formal technical
reviews are extremely effective in meeting their objectives.

PROCEDUBE.
teaching method and media:

vocabulary introduced:

quality
implicit requirements
explicit requirements
software quality assurance (SQA)
technical reviews
walkthrough
inspections

INSTRUCTIONAL MATERIALS:
overheads:
L290H1 V & V activities
L290H2 Software quality assurance
L290H3 Source of errors by life cycle phase
L290H4 Relative cost of errors by life cycle phase
L290H5 Software quality
L290H6 McCall's software quality factors
L290H7 Software reviews
L290H8 Purpose of technical reviews
L290H9 Review roles
L290H1-0 Review reports
L290H1 1 Review issues list
L29OH12 Technical review summary report
L290H1-3 Review guidelines

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 024 - User interface presentation/review
Test plan presentation/review

READING ASSIGNMENTS:
Sommerville Chapter 31 (pp. 589-598)
Mynatt Chapter 2 (pp. 77-79)

RELATED READINGS:
Pressman Chapter 17 (pp. 549-589)
Schach Chapter 5 (pp. 101-109)

5 Lecture 029

Relationship of V&V and CM to SQA

V&V activities aimed at:

Verifying that the system meets its
specification (Are we building the product
right?); and

Validating that system as implemented
meets the clients'/users' expectations (Are
we building the right product right?).

CM activities aimed at:

Controlling change and

Managing change.

V&V and CM activities are both undertaken in
order to increase the chances of achieving
software quality.

Both are software quality assurance (SQA)
activities.

6 L290H1

Software Quality Assurance (SQA)

SQA is an "umbrella activity" which
encompasses V&V, CM and a number of
other types of activities. SQA is concerned
with both product and process quality.

SQA encompasses:

Technical methods and tools

Technical reviews

Testing

Configuration management

Standards

Measurement and reporting

SQA is concerned with "whole-life cycle"

quality.

7 L290H2

Source of Errors by Life Cycle Phase

Errors Found Early are Easier
To Find and Manage

SSource of Errors - Vos

50% Communications of the AC. Ja.

30%

10%

Requirements Software Coding Testing Deployment
Definition Design

8 .L29OH3

Relative Cost of Errors by Lfe Cycle Phase

$10
Relative Cost to Correct Errors - $1 000's

s5 Source: AT&T Bel Las Estimates I
$1

Requirements Software Coding Testing Deployment
Definition Design

9 L290H4

Software Quality

"conformance to explicitly stated functional
and performance requirements, explicitly
documented development standards, and
implicit characteristics that are expected of all
professionally developed software".

source: Pressman

Three components of software quality

Meets (explicit) requirements

Meets (explicit) standards

Meets (implicit) requirements

10 L290H5

McCall's Software Quality Factors

ftWW*a(Cuhrkk?) PamI~ (WIo~lkdbm
I. udfmW .hh

r~bIky(Culehaupk?

add*ll (IouIhAh6mm
TutbIIay (Cu I [hdi) UrnuthMIft?

htaqwrhibly (WE Ibeuhtb
Frud h" MANuc hirek Wi
19"i TrAuadakrym?

Praduc Opmrds.

CyrrCtum (hu dwit AlI Wat?)

ldAkhly (llukdlkACeuradyifufiinel?)

KIffdq (Wlkrsuam~yvharwaevwiuit?)

Uuabb (CH I m i?)

11 L290H6

Software Reviews

One of the most important SQA activities.

A review is intended to uncover defects so
that they can be corrected/removed before
going on.

Two common types of reviews:

Walkthroughs

Inspections

Both involve a group of software professionals
carefully reviewing an item, thereby increasing
the chances of defects being located.

12 L290H7

Purpose of Technical Reviews

To uncover errors in the item under review.

To verify that the software under review meets
its requirements.

To ensure conformance to standards.

Reviews can also serve as training activities
to new and/or inexperienced personnel.

13 L290H8

Review Roles

Review leader
Evaluates item for readiness

Distributes review materials in advance

Reviews the material prior to meeting

Schedules review and prepares agenda

Recorder
Records all important issues raised during
review

Producer
"Walks through" the product, explaining
the material, while reviewers raise issues
based on their advance preparation

Other reviewers
Review materials in advance and come
prepared with a list of items not
understood and a list of items he/she
believes to be incorrect

14 L29OH9

Review Reports

Review issues list

Identifies problem areas raised during
review that need to be addressed

Serves as action item checklist for the
producer as he/she addresses the issues

Review summary report

Item reviewed;

Reviewers;

Findings and conclusions.

15 L290H10

Review Issues List

Review Number: D-004
Date of Review: 07-11-86
Review Leader: R.S. Pressman
Recorder : A.D. Dickerson

1. Prologues for module YMOTION. ZMOTION are not consistent
with deskin standards. Purpose of the module should be explicitly
stated (reference is not acceptable) and data item declaration
must be specified.

2. LooU counter for interolation In X. Y. Z axes increments one time
too many for step motor control. Review team recommends a
recheck of stepping motor specifications and correction (as
required) of the loop counter STEP.MOTOR.CTR.

3. TLo= In reference to current X position. X.POSITION in modules
XMOTION and ZMOTION. See marked PDL for specifics.

4. PDL psuedo-code statement must be exoanded. The psuedo-
code statement: "Converge on proper control position as in
XMOTION" contained in modules YMOTION and ZMOTION
should be expanded to specifics for Y and Z motion control.

5. Review team recommends a modification to the "position
comparator" algorithm to Improve run time performance.
Necessary modifications are noted in annotated PDL. Designer
has reservations about the modification and will analyze potential
impact before implementing change.

Figure 17.6b - Pressman

16 L290H 11

Technical Review Summary Report

Review Identification:
Project: Review Number:
Date: Location: Time:

Prgduct Identification:

Material Reviewed:

Producer:

Brief Description: /

Material Reviewed: (note each item separately)

Review Team: (indicate leader and controller)
Name Signature

2.
3.
4.

Product Appraisal:

Accepted: as is () with minor modification ()
Not Accepted: major revision () minor revision ()
Review Not Completed: (explanation follows)

Supplementary Material Attached:

Issues List () Annotated Produce Materials ()
Other (describe)

Figure 17.6b - Pressman

17 L29OH12

Review guidelines

Review the product, not the producer

Set and maintain an agenda

Limit debate and rebuttal

Focus on identifying problems, not on
attempting to solve them

Keep a written record.

Limit the number of participants.

Insist upon advance preparation of
participants

Develop a checklist for likely review items.

Allocate resources for reviews.

Provide appropriate training for reviewers.

Establish a follow-up procedure to assure that
items on review issues list are addressed.

Do not allow reviews to be used as a means
of assessing participants.

18 L29OH13

LECTURE NUMBER: 030

TOPIC(S) FOR LECTURE:
Review standards and checklists

INSTRUCTIONAL OBJECTIVE(S):

1. Understand that review standards exist for various software life cycle
stages and products.

2. Become familiar with some review standards.
3. Become familiar with the concept of review checklists, particularly for

preliminary design reviews and detailed design reviews.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We recently talked about technical reviews (walkthroughs and inspections)

as a primary SQA activity.

(Learning Label- Today we are going to learn ...)

Today we want to introduce you to some accepted standards for reviews.

CONTENTZ:

1. L3OH1
Many professional and governmental organizations have developed
standards for SQA. For example, the DOD has an SQA standard
which we have discussed earlier (DOD-STD-2167A) and which covers
the entire software development life cycle. Other government
agencies with unique requirements, such as the Federal Aviation
Administration (FAA), have their own standards.

L300H2
The IEEE has a standards development organization which builds
quality standards for many of the phases of software development.
They have, in fact, developed a general SQA plan. Discuss aspects
of the IEEE SQA Plan.

2. L300H3
In order to achieve SQA, reviews must be conducted at critical points
in the software development process. Discuss the critical review
points shown.

3. Checklists have been developed for each of the critical reviews. Such

checklists help to structure the reviews and assure that important

1 Lecture 030

points are not overlooked. Discuss examples of these checklists.

L300H4a - Checklist for preliminary design review
L300H4a - Checklist for detailed design walkthrough
L300H5a - Checklist for code review - Myers
L300H5b - continuation of code review checklist - Myers
L300H6 - Preliminary design review form
L300H7a - Detailed design review form
L300H7b - continuation of detailed design review form

teaching method and media:

vocabulary introduced:
review standards
review check lists
critical design review
system test review

INSTRUCTIONAL MATERIALS:
overheads:
L300H1 IEEE SQA plan - Pressman, p 588
L300H2 SQA standards - Pressman, p 589
L300H3 Some important review points
L300H4 Design review checklist - Pressman
L300H5 Code review checklist
L300H6 Preliminary design review checklist
L300H7 Detailed design review checklist

handouts:

RELATED LEARNING ACTIV!TIES:
(labs and exercises)

RELATED READINGS:
Pressman Chapter 17 (pp. 586-590)
Meyers (The Art of Software Testing)

2 Lecture 030

SQA Standards

DOD-STD-2167A Software engineering

DOD-STD-2168 Software quality
evaluation standard

FAA-STD-018 SQA standard for the
FAA

IEEE Std. 730-1984 SQA plans

IEEE Std. 983-1986 Software quality
assurance planning

IEEE Std. 1028-1988 Software reviews and
audits

IEEE Std. 1012-1986 Software verification and
validation plans

3 L30OH1

ANSI/IEEE Standards 730-1984 and 983-1986
Sotwa Quality ura Plan

I. Purpose of the plan

II. References

Ill. Management
A. Organization
B. Tasks
C. Responsibilities

IV. Documentation
A. Purpose
B. Required software engineering documents
C. Other documents

V. Standards, practices, and conventions
A. Purpose
B. Conventions

Vi. Reviews and audits
A. Purpose
B. Review requirements

1. Software requirements review
2. Design reviews
3. Software verification and validation reviews
4. Functional audit
5. Physical audit
6. In-process audits
7. Management reviews

VIl. Software configuration management

Vill. Problem reporting and corrective action

IX. Tools, techniques, and methodologies

X. Code control

Xl. Media control

XAl. Supoller control

XIII. Pec, V.s collection, maintenance, and retention

4 L300H2

Some Important Review Points
Review UM

Systems requirements Understand system and interface
review specifications. Establish major

functional baseline.

Software requirements Assess the functional
review requirements and initiate

preliminary design.

Master test plan Assess initial master test plan,
review particularly the overall test

strategy.

Preliminary design Assess the architectural design.
review Assess the acceptance and

system test specs. Establish
preliminary design baseline.

Critical design review Assess detailed design including
data base design. Assess final
master test plan, integration and
unit test specs, and acceptance
test procedures. Authorize start
of coding.

Code reviews Assess units of code. Establish
test baseline.

System test review Assess systems test results.
Determine readiness for
acceptance testing.

Acceptance test Assess acceptance test results.
review Accept software package. Create

product baseline and approve
I operational implementation.

Design Review Checklists - Pressman

5 L30OH4a

Preliminary di rview:

1. Are software requirements reflected in the
software architecture?

2. Is effective modularity achieved? Are
modules functionally independent?

3. Is the program architecture factored?

4. Are interfaces defined for modules and
external system elements?

5. Is the data structure consistent with the
information domain?

6. Is the data structure consistent with

software requirements?

7. Has maintainability been considered?

8. Have quality factors been explicitly
assessed.

6 L3OOH4a

Design Review Checklists - Pressman

Detailed Design walkthrough
1. Does the algorithm accomplish the

desired function?

2. Is the algorithm logically correct?

3. Is the interface consistent with
architectural design?

4. Is the logical complexity reasonable?

5. Have local error handling and
"antibugging" been specified?

6. Are local data structures properly defined?

7 L30OH4b

Code Review Checklista (GIenford Meyem)

Data reference

1. Unset variables used?
2. Subscripts within bounds?
3. Non-integer subscripts?
4. Dangling references?
5. Correct attributes when aliasing?
6. Record and structure attributes match?
7. Computing addresses of bit-strings?
8. Passing bit-string arguments?
9. Based storage attributes correct?
10. Structure definitions match across

procedures?
11. String limits exceeded?
12. Off-by-one errors in indexing or

subscripting operations?

Data declaration

1. All variables declared?
2. Default attributes understood?
3. Arrays and strings initialized properly?
4. Correct lengths, types, and storage

classes assigned?
5. Initialization consistent with storage class?
6. Any variables with similar names?

8 L30OH58

Code Review Checklists

Computain
1. Computations on non-arithmetic

variables?
2. Mixed-mode computations?
3. Computations on variables of different

lengths?
4. Target size less than size of assigned

value?
5. Intermediate result overflow?
6. Division by zero?
7. Base-2 inaccuracies?
8. Variable's value outside of meaningful

range?
9. Operator precedence understood?
10. Integer divisions correct?

omQarsn
1. Comparisons between inconsistent

variables?
2. Mixed-mode comparisons?
3. Comparison relationships correct?
4. Boolean expressions correct?
5. Comparison and boolean expressions

mixed?
6. Comparisons of base-2 fractional values?
7. Operator precedence understood?
8. Compiler evaluation of boolean

expressions understood.

9 L30OH5b

Preliminary Design Review Form

Project Name

Reviewer Name_

I. High Level Issues

A. Requirements: any requirements missed,
requirements over-worked?

B. Design : suggestions for improvement of
architecture or procedures; other
strategies

II. Design Deliverable Details

A. Test Plan: items over-tested or under-
tested, suggested tests

B. DFD: good use of notation, clear model,
suggested improvements

C. Comments on other deliverables

10 L30OH6

Detailed Design Review Form

Project Name :

Reviewer Name :

I. High Level Issues

A: Requirements: any requirements missed,
requirements over-worked?

B: Design : suggestions for improvement of
architecture or procedures; other
strategies

C: The Design fits the whole specification
including quality standards such as
flexibility, friendliness, efficiency, and cost
effective.

II Design Deliverable Details

A: Revised Test Plan: items over tested or
under-tested, suggested tests

B: Design Model: good use of notation, clear
model, suggested improvements

11 L30OH7a

Ill Detailed Design

A: Can design be implemented easily:
availability of adequate programming and
testing manpower. Adequate hardware
facilities-computer, data storage...

B: Is the design programmable- does not
require exotic functions

C: Is there a suggested or obvious order of
implementation or approximate times for
the development of and description of the
production relations between the modules.
What is the order of need for equipment

required to implement the design.

D: Comments on other deliverables

12 L30OH7b

LECTURE NUMBER: 031

TOPIC(S) FOR LECTURE:
The relation between detailed and high level design.
Detailed design procedures.
Detailed design deliverables.

INSTRUCTIONAL OBJECTIVE:

1. Develop a detailed design.
2. Understand different products of detailed design

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

Last time, when we spoke of design, we looked at the general elements of
object-oriented design and paid particular attention to the elements of
preliminary design. One of the questions we addressed in structured design
was "How does one develop a design from the analysis documents." Today
we will look at a similar question for object-oriented development.

(Learning Label- Today we are going to learn ...)

How does one move from preliminary object-oriented design to detailed
object-oriented design and what are the products of detailed object-oriented
design?

CO -T.. T :
1. Design consists of several steps L311OH1

L31OH2
2. Briefly remind them of the elements that make up objects. Show them

a sample notation from the KoFF System on the board using
Rumbaugh notation. For example the subclasses of tapesforsale
and tapeasJo_rent inherit all class attributes from the superclass
TAPE. L310H3 show the notation for inheritance and an association
between the Member object class and the Tape object class.

3. Revisit the stages of preliminary design and discuss some sample
products of preliminary design. L31 OH4

a. Talk about the Object Traceability Matrix and how it functions
to validate the design. It also helps to show the completeness
of the design. L31OH5

Verification matrices tie Ada software components to the

1 Lecture 031

deliverables of the previous development phases (i.e.,
preliminary and detailed design). These verification matrices
provide a means of tracing the transitions between all phases
of the life cycle. For example, by means of a verification matrix
for preliminary design, every Ada package specification can be
traced back to an object in the object model, and that object,
in turn, can be traced back to the requirement(s) which it
satisfies. In this way, verification matrices make visible the
relationship of Ada to software analysis and design.

b. When the preliminary design is complete it should be compared
to the functional requirements list for consistency and
completeness. Each requirement must be satisfied in the
design and each design element must be tied to a requirement.

L31OH6
c. Discuss the contents and function of the Class Dictionary and

how it provides traceability to the Ada specification for each
object. It is through the dictionary that an Ada specification is
tied to an object and the object is tied to a requirement through
the traceability matrix.

d. Point out that reusability is actually improved because the
Class Dictionary does not include:
i implementation decisions
ii data type specifications
iii how operations accomplish their tasks
iv where an object's methods are called from

e. Similarly Ada specifications provide interface information but
they should not provide any of the items in d. above. This
information should be put in the body of the package.

4. Detailed design is the selection, specification, design and
representation of the internal aspects of objects. Show the detailed
design overhead L31OH10. Make clear that detailed design is not
intended to change any object interface and therefore should not alter
the preliminary design. Since implementation details were not shown
in preliminary design's Ada specifications or object model, detailed
design should not impact preliminary design. L310H7 Visible data
structures are declared in the package specification and hidden data
structures are declared in the body. Visible data structures
characterize the data to be passed to other independent packages
while the hidden data structures characterize variables used in the
formulation of internal operations. This may include defining internal

2 Lecture 031

values of variables. This is a good example of modularization
process.

5. The design of the data structures at this stage is significant for later
ease and quality of the implementation. Discuss some standards of
data structure design. When discussing coupling and cohesion as a
standard, be sure to point out that there is coupling and cohesion
within an object and between objects.

6. The data structure design is documented in the data dictionary. Show
the Data Structure Dictionary and discuss how to fill it out. L3101H8
The algorithms for each method will also be specified in some pseudo-
code, such as Nassi Shneiderman models.

7. Show the Detailed Design Traceability Matrix and discuss how to fill
it out. L3101H9

To establish traceability between software development phases, we
have also designed an object traceability matrix (Figure 4). This
matrix provides a backward trace from each design object to a specific
requirement (preliminary design traced to requirements) and a forward
trace from each design object to a specific Ada specification
(preliminary design traced to detailed design). The introduction of this
form allows us to revisit the concept of traceability in the software life
cycle.

Traceability is extended into detailed design by means of a detailed
design traceability matrix. We created this matrix to provide
traceability between preliminary design, detailed design and
implementation. The detailed design matrix first provides traceability
between an object's attributes and its data structures and between
those data structures and their Ada package representation. The
matrix also provides traceability between the object's operations, the
detailed design model of those operations and the Ada package
embodying those operations.

8. Detailed design should also expand upon the user interface developed
in preliminary design. Suppose for example the preliminary design
team specified the format for the screen used to call help. The type
of content needed by each help screen should be determined in
detailed design, e.g., will help screens have an option to do a core
dump or merely an option to abort or continue processing.

3 Lecture 031

L31OH10,L31OH11
9. These are the deliverables of preliminary and detailed design. There

may be some continuing problems which need to be addressed.
There is a possibility that this low level design will reveal problems
with the earlier stages of the software development. Problems could
include missing, contradictory or non-feasible requirements. They
could also include requirements which were not satisfied by the
preliminary design. Before any changes can be made, configuration
management is alerted. The traceability matrixes enables
configuration management to determine the relationship between any
element in design and the requirements.

10. The next lecture will present a method for annotating the algorithm of
an objects methods or operations.

teaching method and media:

vocabulary introduced:
object traceability matrix
class dictionary
Nassi Shneiderman model
Data Structure Design Trace Matrix

INSTRUCTIONAL MATERIALS:
overheads:
L31OH1 Outline
L31OH2 Definitions
L31OH3 Rumbaugh Model
L31OH4 Object oriented preliminary design
L31OH5 Object Traceability Matrix
L31OH6 Class Dictionary
L31OH7 Object oriented detailed design
L31OH8 Data structure dictionary
L31OH9 Detailed design traceability matrix
L31OH10 Detailed design deliverables
L31OH11 Preliminary design deliverables

4 Lecture 031

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 025 - Resolution of outstanding issues from last semester

READING ASSIGNMENTS:
Mynatt Chapter 1 (pp. 31-42)
Mynatt Chapter 3 (pp. 94-138)
Mynatt Chapter 4 (pp. 169-183)

RELATED READINGS:
Schach Chapter 10 (pp. 321-324)

5 Lecture 031

OUTLINE

Design

High Level Design (Preliminary
Design)

Low Level Design (Detailed Design)

Steps in Low Level Design

Notation to Express the Low Level
Design Model

Detailed Design Deliverables

6 L310H1

Definitions

OBJECT CLASS Models "things" in the world:
the model has attributes,
operations, and a precise
interface that receive
messages. (a factory
waiting to create instances)

INSTANCE An actual object waiting to
perform services and having
state. (the object)

ENCAPSULATION An object's state data
cannot be directly accessed,
it can only be asked for a
service.

MESSAGE The only way objects
communicate and request
services from other objects.

METHOD An object class's service or
behavior in response to a
message.

7 L31OH2

Rumbaugh MOdOl

M uutth Iit #tapst

#pna Weid 0H3yft dt

OBJECT-ORIENTED PRELIMINARY DESIGN

High Level Design

Input Requirements Documents

Costumer Interviews

Domain Analysis

Process Identify Domain Object
Classes

Class Design
Divide System
Responsibilities

Design Interfaces

Identify Object Relationships

Design Validation

Output Preliminary design
deliverables

9 L310H4

Object Traceability Matrix

Functional Object Name Ada Package

Requirement id.

1 MEMBER MEMBERSHIP_
OPS

10 L31OH5

CLASS DICTIONARY

OBJECT CLASS NAME:

OBJECT DESCRIPTION:

ATTRIBUTE DESCRIPTION:

Method Descriptions:

Input information needed from other objects:

11 L31OH6

OBJECT-ORIENTED DETAILED DESIGN

Low Level Design

Input Preliminary Design
Deliverables

Process Identify Internal aspects of
Objects

Data Structure Design
Data Structure
Dictionary

Algorithms for
Operations

Nassi-Shneiderman
Models

Identify Object Relationships
((Update the Object
Model with permission
from CM))

Output Detailed design deliverables

12 L310H7

Data Structure Dictionary

OBJECT CLASS NAME:

Ada PACKAGE NAME:

DATA STRUCTURE NAME:

ATTRIBUTE(S) COVERED:

DESCRIPTION:
use data dictionary notation
suggest a data type

13 L310H8

Detailed Design Traceability Matrix

DATA STRUCTURES
Data Structure Objects and Ada
Name Attributes Package

MemberRecord MEMBERNAME MEMBERSHIP
MEMBER-FEE _OPS

OPERATIONS
Nassi-Shneiderman Object_ Ada
Model Name Operations Package

ENROLLMEMBER ENROLL MEMBERSHIPOPS

14 L31OH9

DETAILED DESIGN DEUVERABLES

Data Structure Design

Data Structure Dictionary
object entries
attribute entries

Algorithm Design

Nassi-Shneiderman (NS) models for
each operation

Traceability Matrix

Data structures are related to
ObjectAttribute

NS models are related to
ObjectOperations

Detailed user interfaces

Report Formats

Low level menu content, e.g.,
categories of menu information

15 L31OH10

Prelliminary Deign Dliverabls

An Object Model:

An complete object diagram using
Rumbaugh notation as presented in class.

A Class Dictionary entry for each object.

An Object-Requirements traceability matrix.

Descriptions of all major user interfaces,
e.g., menu formats and responses

Ada Specifications for each object class.

16 L31OH11

LECTURE NUMBER: 032

"TOPICQS FOR LECTURE:
Reuse

INSTRUCTIONAL OBJECTIVE(S):

I. To understand the role of reuse in the development of software.
2. To learn the language features of Ada which support reuse.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

One of the primary considerations in design is reuse. This can be achieved
by the design and development of reusable modular components. Reuse
supports maintainability, testability, and consequently reduces the amount of
effort needed to develop quality systems.

(Learning Label- Today we are going to learn ...)

In today's lecture we will examine the issue of reuse.

1. Introduction to the concept of reuse L320H1

a. Reuse, according to the IEEE definition, is the extent to which
a module can be used in multiple applications. Usually, we are
talking about the reuse of code, but reuse throughout the life
cycle would also increase productivity. Reuse of design, part
of a manual, or set of test data are examples of other types of
reuse which may become more common in the future. In
relation to code, reuse is the use of components of one product
in order to facilitate the development of a different product with
different or similar functionality.

b. As will be seen later in the Ada examples, components must be
generalized in order to provide for reuse. Components must
also be written so that they are understandable, documented
according to a set of organizational standards, and portable.
L320H2

These attributes are needed if the components are to be
understood and adaptable. Designing for reuse is more time-
consuming than designing for a particular functionality;
therefore, there needs to be an organizational policy decision

1 Lecture 032

for reuse to be successful. Project managers must be willing
to invest extra effort for long-term benefits instead of working
only towards immediate results.

c. Increased productivity is a primary benefit of reuse. Increased
productivity which equates to savings in time, effort, and cost
during development is a result of having fewer components to
design, implement, and validate. Other benefits are shown on
overhead.

L320H3
d. However, there are several problems hindering widespread

reuse in industry in the United States (reuse is more common
in Japan and Europe). These problems are shown on
overhead L320H4.

e. Four main types of reuse of code are application systems,
subsystems, modules or objects, and functions. L320H5
Reuse of application systems is the portability of application
systems over a range of machines. This type of reuse is
commonly dcne already. Reuse of functions is also already
commonly accomplished; for example, a library of mathematical
functions is a common feature for programming environments.

2. Ada supports reuse in these ways: generics, passing subprograms,
and unconstrained arrays L320H6.

a. A generic unit, which is a parameterized template, provides for
reuse. The instantiation of a generic tailors that generic to a
specific function. Ada's support generics for procedures,
functions, and packages. There are three aspects to defining
and using generics: generic unit declaration, generic
subprogram or package body, and instantiation of an instance
of the generic unit. L320H7, L320H8, L320H9,
L320H 10

L320H7 is an example of a generic procedure to interchange
two items. L320H8-L320H1-0 is an example of a generic stack
package.

b. Compilation units can be reused in different contexts based on
the passing of types and subprograms as parameters.
L320H1-1, L320H1-2, L320H13 is an insertion sort which
demonstrates this.

2 Lecture 032

c. The use of unconstrained arrays allows arrays to be
dynamically allocated; instead of having to specify the
dimensions at compile time as in Pascal. L320H14

teaching method and media:

vocabulary introduced:
reuse
generic
instantiation
unconstrained array

INSTRUCTIONAL MATERIALS:
overheads:
L320H1 Reuse
L320H2 Factors in implementing reuse
L320H3 Benefits of reuse
L320H4 Problems hindering reuse
L320H5 Types of reuse
L320H6 Ada and reuse
L320H7 Example of generic procedure
L32OH8 Example of generic package specification
L320H9 Example of generic package body
L320H10 Example of generic instantiation
L320H1-1 Example of passing types and subprograms package

specification
L320H1-2 Example of passing types and subprograms package body
L320H13 Example of passing types and subprograms instantiation
L320H14 Example of Pascal array

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 026 - Reorganization of extended project

3 Lecture 032

READING ASSIGNMENTS:
Sommerville Chapter 16 (pp. 309-328)
Benjamin Chapter 9 and 12 (pp. 79-85 and 111-117)

RELATED READINGS:
Berzins Chapter 8 (pp. 487-492)
Booch Chapter 14 (pp. 253-254)
Booch(2) Chapter 12 (pp. 252-255)
Ghezzi Chapter 2 (pp. 28-29)
Pressman Chapter 1 (pp. 13-15)
Schach Chapter 15 (pp. 483-484)

4 Lecture 032

Rouse

The extent to which a module can be used in
multiple applications [IEEE]

Practice of taking portions of previously
developed software and using them in new
software, perhaps with some minor alterations

Accomplished in design -- design for reuse

5 L320H1

Factors In Implementing Reuse

Components must be generalized to satisfy a
wider range of requirements

Requires an organizational policy decision to
increase short-term costs for long-term gain

Components should be understandable,
documented according to a set of
organizational standards, and portable

6 L320H2

Benefits of Reuse

Considerable savings in time, effort, and cost
during development

Increase in system reliability

Reduction in overall risk

Effective use of specialists

Embodiment of organizational standards in
reusable components

7 L32OH3

Problems Hindering Reuse

Need for properly catalogued and documented
base of reusable components

Organizations are reluctant until the cost-
effectiveness of reuse is demonstrated

CASE tools do not support reuse

Confidence level among software engineers
for reusable components is still low

Legal issues over ownership of contract
software

8 L32OH4

Type of Rwus

Application systems

Subsystems

Modules or objects

Functions

9 L32OH5

Ada and Rouse

Generics

Passing of types and subprograms as
parameters

Unconstrained arrays

10 L320H6

Example of Generic Procedure

--header
generic

type ITEM is private;
procedure INTERCHANGE (FIRST, SECOND:

in out ITEM);

---------- -------------------

--body
procedure INTERCHANGE (FIRST, SECOND:

in out ITEM) is
TEMP : ITEM;

begin
TEMP := FIRST;
FIRST := SECOND;
SECOND := TEMP;

end;

--instance
procedure INTEGERINTERCHANGE is new

INTERCHANGE (ITEM => integer);

--instance

procedure BOOLEAN_INTERCHANGE is new
INTERCHANGE (ITEM => boolean);

11 L32OH7

Example of Generic Package Specification

generic
SIZE : positive;
type ITEM is private;

package STACK is
procedure PUSH (X : in ITEM);
procedure POP (X : out ITEM);

STACKOVERFLOW,
STACKUNDERFLOW :exception;

end STACK;

12 L320H8

Example of Generic Package Body

package body STACK is
SPACE : array (1 ..SIZE) of ITEM;
INDEX : integer range 0..SIZE := 0;

procedure PUSH (X: in ITEM) is
begin

if INDEX = SIZE then
raise STACKOVERFLOW;

else
INDEX := INDEX + 1;
SPACE (INDEX) := X;

end if;
end PUSH;

procedure POP (X : out ITEM) is
begin

if INDEX = 0 then
raise STACKUNDERFLOW;

else
X:= SPACE (INDEX);
INDEX := INDEX - 1;

end if;
end POP;

end STACK;

13 L320H9

Example of Generic Instantlation

package INTEGERSTACK is
new STACK (10, integer);

---------- - --- ------------- ---------

type EMPLOYEE is
record

NAME : string (1 ..40);
ID :integer;

end record;

package EMPLOYEESTACK is
new STACK (SIZE => 25,

ITEM => EMPLOYEE);

14 L32OH10

Example of Passing Types and Subprograms
Procedure Specification

generic
type ITEM is private;
type VECTOR is array (integer range <>) of

ITEM;
with function ">" (A,B : ITEM)

return BOOLEAN is <>;
procedure INSERTIONSORT(A in out
VECTOR);

15 L320H1 1

Example of Passing Types and Subprograms
Procedure Body

procedure INSERTIONSORT(A in out
VECTOR) is

I, J : integer;
T :ITEM;
L :integer := A'first;
U :integer := A'last;

begin
1:= L;

while I /= U loop
T:=A(I + 1);
J:=lI+ 1;

while J/= L and then A (J - 1) > T loop
A (J) :=A (J- 1);
J := J- 1;

end loop;
A (J) := T;
I :=1 +1;

end loop;
end INSERTIONSORT;

16 L320H12

Example of Passing Types and Subprograms
Instantiation

type EMPLOYEE is
record

NAME : string (1..40);
ID :integer;

end record;

type EMPLOYEEARRAY is array (integer
range <>)

of EMPLOYEE;

function ">" (AB : EMPLOYEE) return boolean is
begin

return A.ID > B.ID;
end;

procedure EMPLOYEESORT is new
INSERTIONSORT (ITEM => EMPLOYEE,

VECTOR => EMPLOYEEARRAY,
"1>"1 => "1>");

--------------------------------------- m -------------

procedure EMPLOYEESORT is new
INSERTIONSORT (EMPLOYEE,

EMPLOYEEARRAY, ">");

17 L32OH 13

Example of Pascal Array

const
SIZE = 17;

type
MATRIX = array [1 ..SIZE, 1 ..SIZE] of char;

procedure TRANSPOSEMATRIX
(INMATRIX : MATRIX;

var OUTMATRIX : MATRIX);

Example of Ada Unconstrained Array

type MATRIX is array (integer range <>,
integer range <>) of character;

procedure TRANSPOSEMATRIX
(INMATRIX : in MATRIX;

OUTMATRIX : out MATRIX);

18 L320H14

LECTURE NUMBER: 033

TOPIC(S) FOR LECTURE:
Nassi-Shnelderman Chart notation

INSTRUCTIONAL OBJECTIVE(SM:

1. To learn Nassi-Shneiderman Chart notation for representing
algorithms used in detailed design.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have begun looking at detailed design. The algorithms developed in
detailed design must be clearly communicated at a high level of abstraction
but which can also be easily implemented. One such notation is Nassi
Shneiderman diagrams.

(Learning Label- Today we are going to learn ...)

Today we will look at a notation for representing detailed design.

1. There are a number of ways to represent algorithms. Although the
most commonly used is pseudo-code, we chose to use Nassi
Shneiderman diagrams. We chose them in order to discourage
students from writing code during design. Discuss the advantages
and disadvantages of Nassi Shneiderman charts (NSC). L330H1

L330H2
2. Present the students with the notation and rules for creating NSC.

3. The three basic constructs for representing any algorithm are
sequence, selection, and iteration. Discuss the Nassi-Shneiderman
Chart notation for these are shown in overhead L330H3.

4. Discuss the more complicated examples given in overheads 1L33014,
L330H5, L330H6, L330H7.

teaching method and media:

Lecture and overheads are the chief media for this lecture.

Lecture 033

INSTRUCTIONAL MATERIALS:
overhead:
L330H1 Nassi-Shneiderman Charts
L330H2 Rules for drawing and creating Nassi-Shnelderman charts
L330H3 Notation for sequence, selection, and Iteration
L330H4 Example notation for complex IF statements
L330H5 More Complex IF statements
L330H6 Example notation for CASE statements
L330H7 Example notation for a procedure
L330H8 Example notation for DO WHILE loop

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 027 - Nassi-Shnsiderman charts
Preparation for detailed design review

Use Lab to have the students practice NSCs.

READING ASSIGNMENTS:
Mynatt Chapter 5 (pp. 198-202)

RELATED READINGS:
Pressman Chapter 10 (pp. 345-350)

2 Lecture 033

Nassi-Shneiderman Charts

Method for representing structured algorithms

Advantages:

Easy to learn

Easy to read
Easy to convert to source code

Good at encouraging structured design
Flexible in the level of detail shown

Standardized

Disadvantages:

Difficulty in drawing and modifying if
no access to CASE tool that provides
this notation

3 L33OH1

Rules for Drawing and Creating
Nasai-Shnelderman Charts

The charts are always rectangular.

The flow of control in a Nassi-Shneiderman chart
always starts at the top.

Flow of control always moves from top to bottom,

except when iteration is involved.

Vertical lines may never be crossed.

A rectangle may be exited in a downward direction
only.

A rectangle may be empty, representing null or
empty action.

A rectangle may represent another Nassi-
Shneiderman chart (for example, a call to another
procedure).

(Mynatt)

4 L330H2

NassI-Sh neiderman Notation

c. limb p4.
L labia m

Aima A AdimA Aimi LAdC Aimi AdimI

Aim A

5 L330H3

NasslaShneiderman Notation
For Complex If Statements

11 staEent (MuIplke Ondtin)

stdudt afttdende z pariMse
AND

Yea stuadeat mi.u feale

NESTED IF STATEMENT
a. Liner nested IF obtamenut

record cede as 'A'

record code T3

einater A

conater C emr counter

6 L330H4

Nassi-Shneiderman Notation
Another Example of a Complex IF Statement

b. N.iW , siled If] lm t

d ideutattn=u fce emale

Yea~~ad 1 0 i Me

nnnl.ptutudeat

addd I

tNo ndd

Xt//,. a bI

pLdetduts y"uagje"t

7 L33.H5

NassIaShneloderman Notation
for CASE Statements

lAnd letailpfret, TrousedjaCodeq goo#e

TnusaeU..Code

\L otter

lehl'rie *0.1

FMt letadjrle, Cons.Iu aKp-No

8 ~LM3H6

NasslaSh nelderman Notation
for Case Statements

]i o ther

facremest Imeromest bereaeut beremest
eosuterýA esuateri s3tr error-toaster

9 L330H7

Nassi-Shneiderman Notation for
Nested IF Statements

COMPutekIpley~etpay

Set ANlFields Valid to true

Set error message to bsauk

lead imp..No, Pay late, lHriWorked

Paylgate > 556
Yet No

Yes IrsWorked>6 if

error Messge

525.00'aeed error message. 'Heins worked
l1 FieldsValid= exceedsd limb of 1'

fAlse AD FieVld s V=i fals

Yet N

Priat NmoN
Pay-Asti, IMP-Weeklyjay a OY -nJr Ir rk

In Worked, Paylate * IrsWorked; 35 OT~p Owverth
in " hyjate a13;error-mesage ?nat Kmp_ý*, PaylAate, bpWUIYN" (hyta1

IRnWorked, I'M)+ Ovede Py; Prht

10 L330H6

Nassi-Shneiderman Notation
For DOWHILE Loops

Procm -Steudet hiobets
Set TotalFernaleilurolled to zero
Set Total-Malea-Enrolled to zero
Set Total-Studefts Enrolled to zero
Reid Studeat Record

WHILE records edit

Yet i eatru-tat 11511O

frit student detaib

Increment Total-Studensh Enrolled

IF Student Sex *Female

Yea No

Increment Increment
Total Fernales Total-Males

Enrolled Enrolled

lead Student Record
Print Total eMules Esnrokd
Pfkit Tatal -ae ra~ll ardh
P fn Tatmi9al Eumt ri

11 L330H8

LECTURE NUMBER: 034

TOPICISM FOR LECTURE:
Introduction to Ada and I/O in Ada

INSTRUCTIONAL OBJECTIVE(SA:

1. To understand the uniqueness of Ada.
2. To loam the elementary features of the Ada programming language and how

it handles input and output.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

You will begin the implementation phase of the second project soon. This
project is to be implemented in Ada. In previous classes, we have looked at
Ada software artifacts through program reading.

(Learning Label- Today we are going to learn ...)

Now we will look in detail at Ada in order to prepare for the implementation
phase of the second project.

COTNTE~I:

L340H1
1. Discuss the general characteristics of Ada. Although it was built for

embedded systems, it is a general purpose language.

2. It is assumed that students are already proficient in a standard
strongly typed programming language. The implementation details of
Ada will be covered quickly to enable students to start work on their
project implementation. This rapid introduction is done by frequent
references/comparisons to the language in which they are already
proficient.

3. Standard input and output with Text_10 L340H2

a. Ada contains no Input and output standards; instead, Ada
provides a generai-purpose package called Text_lO which
contains a collection of subprograms, types, subtypes, and
exceptions used for file manipulation and input and output to
keyboard and monitor. The Textl0 package provides directly
the routines needed for input and output of character and string
data types. Included in TextlO are generic packages for input

1 Lecture 034

and output of integers, floating point numbers, fixed point
numbers, and enumeration data type. There are Ada I/0
packages for manipulating other data types as well.

b. L340H3 shows the basic routines provided by Ada along with
their equivalent Pascal statement.

Get is analogous to Pascal's Read. GetLine however
reads strings only and requires a second parameter into
which the length of the line read is placed.

ii Similarly, PutjLine is available only for the string data
type. Put needs formatting information for integers and
decimal numbers. Point this out in the examples shown.
X (in fourth example) is an integer and Y (in fifth
example) is of type float. Point out also that Ada
enables you to specify the base of the number being
printed.

c. L340H4
Discuss the sample program shown.

Note the following: "with" and "use" are parts of the
"context clause"; The "use" clause cause the compile to
look at TextIO for commands; so that one need only
write PUT("Hello world!"); rather than
Text_lO.PUT("Hello world");

ii. The "with" clause tells the compiler that the procedure
needs the help of another package, and specifies that
package name.

d. Text_10 also provides standard input and output for text files.
L34OH5 A text file is a collection of characters that are
organized into lines and pages and is terminated with a file
terminator. The data type for a text file, as provided in
Text_10, is File Type. There are two file modes for text files:
Infile for reading data from a file and OutFile for writing data
to a file. Every text file must be specified in one of these two
modes.

e. Text 1O provides several routines for the management of files
including Create, Open, Close, Delete, Reset, EndofLine,
and EndofFile. Discuss these using overheads L34OH6,
L340H7, L340H8.

2 Lecture 034

f. Exceptions are abnormal conditions that occur at run time.
Discuss some of the commonly used exceptions shown on
overheads L340H9, L340H10.

g. Discuss the sample program illustrating file usage is shown on
overhead L340H11.

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:
Text_10
text file
file mode

INSTRUCTIONAL MATERIALS:
overheads:

L340H1 Ada
L340H2 Standard input and output with Text_10
L340H3 TexL_1O Operations
L340H4 Sample program using Text_10
L340H5 Standard input and output on files
L340H6 File management
L340H7 File management(cont.)
L340H8 File management(cont.)
L340H9 Exceptions provided by Textj10
L34OH10 Exceptions provided by Text_lO(cont.)handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapters I (pp. 1-10)

RELATED READINGS:

3 Lecture 034

Booch Chapter 6 (pp. 69-80)
Booch(2) Chapter 4 (pp. 60-71)

4 Lecture 034

Ada

General-purpose

Strongly typed

Block-structured

Procedural

Supports concurrency, exception handling, and
low-level, implementation-dependent features

Designed to support software engineering
concepts

Information hiding
Modularity
Reusability
Maintainability

5 L340H1

Standard Input and Output with Text_10

Text_1O is package of routines provk input and
output on text files, keyboard, and monitor

Directly provides routines for input and output of
character and string types

Provides generic packages for:
Integer (IntegerjlO)
Float (Float 10)
Fixed-point (Fixed_10)
Enumeration (Enumeration10)

6 L340H2

Text_10 Operations

AdaBRoutine Pascal Equivalent

Get (A); read (A);

GetLine (A, Length); readln (A);

Put ("hello"); write ('hello');

Put (X,2,10); write (x:2);

Put (Y,3,2,O); write (y:6:2);

PutLine ("hello"); writeln ('hello');

Skip_Line; readln;

Skip_Line (2); readln;
readln;

NewLine; writeln;

NewLine (2); writeln;
writeln;

7 L34OH3

Sample Program using Text_10

with Text_10; use Text_10;
procedure POWER is

package INT_10 is new Integer_10 (integer);
use INT 10;

BASE, COUNT, EXPONENT, PRODUCT
integer;
begin

Put Line ("Please enter the base value");
Get (BASE);
Put-Line ("Please enter the exponent value");
Get (EXPONENT);
COUNT := 1;
PRODUCT := BASE;
while COUNT < EXPONENT loop

PRODUCT := PRODUCT * BASE;
COUNT := COUNT + 1;

end loop;
Put ("Base =
Put (BASE);
Put(" Exponent=");
Put (EXPONENT);
Put ("Product =
New-Line;
Put (PRODUCT);

end POWER;

8 L340H4

Standard Input and Output on Files

Text file
A collection of characters that may be
organized into lines and pages (using line
terminators and page terminators). The end
of a text file is indicated with a file terminator.

Supported in TextlO

Data type called File_Type

File modes available for text files:

InFile indicates a file is read only

OutFile indicates a file is write only

9 L34OH5

File Management

Create
Opens a new external file and associates an
internal file with it; file is initially empty

Default file mode is OutFile

Parameters: 1 - file identifier
2 - access mode
3 - external file name

Example of use:

Create (Reportfile, OutFile,"a :\summary.rep");

Open
Opens an existing file for processing, starting
at the beginning of the file

No default file mode

If the external file specified does not exist, a
NameError exception is raised

Open (Source2, InFile,
"a :\progljones-pas");

10 L34OH6

File Management (cont.)

Close
Removes the association of the Ada file
identifier with its associated external file

Close (Source);

Delete
Deletes the external file associated with the
given Ada file identifier

Delete (Report file);

Reset
Moves back to the beginning of the file,
possibly changing the file mode, and allowing
reading or writing operations to resume from
the beginning of the file. The file mode is
changed only if a new mode is specified as
the second parameter.

Reset (Sourcel);

Reset (Source2, OutFile);

11 L340H7

File Management (cont.)

Boolean functions to test for the current position in
reading input:

EndofLine Returns true if the next
component is a line terminator or
file terminator; otherwise, returns
false

EndofLine (Sourcel);

EndofPage Returns true if the next
component is a page terminator
or file terminator; otherwise,
returns false

EndofPage (Sourcel);

EndofFile Returns true if the next
component is either a file
terminator or the three-component
sequence of line terminator, page
terminator, file terminator;
otherwise, returns false

End_.ofFile (Sourcel);

12 L34OH8

Exceptions Provided by Text-10

Status-Error Attempt to use a file that has not
been opened or to open a file that
is already open

Mode-Error Attempt to perform an input
operation on a file of mode
Out-File or to perform an output
operation on a file of mode
In-File

Name-Error Attempt to associate an internal
file with an external file if an
invalid external file name is
specified

Use-Error Attempt to perform some
input/output operation on an
external file for which
implementation does not allow
that operation

13 L34OH9

Exceptions Provided by Text_10 (cont.)

DeviceError A problem with the hardware,
software, or media providing
input/output services

EndError Attempt to read past end of an
input file

DataError Input data that is not of expected
form

LayoutError Itivalid Text_10 formatting
operations

14 L340H 10

Sample Program using Files

with Text_10;
use Text_10;

procedure MAIN is

package INT_10 is new Integer_10 (integer);
use INT_IO;

INPUTFILE :FileType;
NEXT_ITEM :integer;

begin
open (INPUTFILE, InFile, "a:\testresults.dat");

while not End of File (INPUTFILE) loop
Get (INPUT_FILE, NEXTITEM);
Put ("Test result =
Put (NEXTITEM);
NewLine;

end loop;

Close (INPUTFILE);
end MAIN;

15 L34OH1l

LECTURE NUMBER: 035

TOPIC(S) FOR LECTURE:
Data types in Ada

INSTRUCTIONAL OBJECTIVE(S):
1. To introduce the concept of a compilation unit.

1. To learn the features of the Ada programming language concerning
scalar data types.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)
(Learning Label- Today we are going to learn ...)

1. Ada's program structure L350H1

a. Comments in Ada by begin with a double hyphen -"

Comments terminate at the end of a line. There is no other
comment terminator.

b. Compilation units are the pieces of a program that can be
compiled separately. Compilation units include package
specifications, package bodies, subprogram declarations, and
subprogram bodies. The Ada compiler maintains a program
library with the needed information about the compilation units
used in a program. These compilation units can be specified
in the context clause. Ada can use this Information to provide
consistency checking across the separate compilation units.
The main program does not have any parameters.

2. Ada data types L350H2

a. Ada provides scalar data types (discrete and real), composite
data types (arrays and records), access data types, private
data types, subtypes and derived types. Today we are only
examining the scalar data types of Ada. The discrete data
types to be examined are represented intemally as integer (Ada
provides predefined Integer types Intqger, Natural, PoMUvm)
and enumeration (Ada provides predefined enumeration types
Chaae and Soolmn). The real data types provided by Ada
are floating point (Flost) and fixed point. For each of these

1 Lecture 035

data types, we will look at the predefined range of values for
Ada's predefined data types, user-defined data types,
declaration of objects, declaration of constants, operations and
operators, attributes, and input/output. Universal integers and
universal reals are also discussed. Review the overheads.
L350H12 is an exercise to use in class. There will be
constraint errors on Pred(Monday), Succ(Sunday) and Val(7).
L350H3, L350H4, L350H5, L350H6, L350H7, L350H8,
L350H9, L350H1-0, L350H1 1, L350H1 2, L350H1 3, L350H1-4

teaching method and media:

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:
L350H1 Ada's program structure
L350H2 Ada's data types
L350H3 Integer data type
L350H4 Named numbers
L350H5 Real numbers
L350H6 Formatting numeric output
L350H7 Arithmetic operations
L350H8 Numeric attributes
L350H9 Enumeration data type
L350H10 Enumeration I/O
L350H1-1 Attributes for enumeration data type
L35OH12 Examples of enumeration attributes
L350H1-3 Derived type declarations
L350H1 4 Subtype declarations

handouts:

2 Lecture 035

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapters 2-3 (pp. 11-28)

RELATED READINGS:
Booch Chapter 8 (pp. 103-115)
Booch(2) Chapter 6 (pp. 93 - 105)

3 Lecture 035

Ada's Program Structure

Comments
Begins with a double hyphen "--" and extends
to the end of the line

Compilation units
Pieces of a program that can be compiled
separately

May be package specification, package body,
subprogram declaration, or subprogram body

Ada keeps a library ("program library") with
information about the compilation units used
in a program; thus, Ada can check for
consistency between the compilation units

Context clause

Main programs
Only parameterless procedures

4 Lecture 035

Ada's Data Types

Specify a set of values and a set of operations
applicable to these values

Provided by Ada:
Scalar

Discrete
Integer (Integer, Natural, Positive)
Enumeration

Character (Character)
Boolean (Boolean)

Real
Floating point (Float)
Fixed point

Composite
Arrays

Constrained
Unconstrained
Strings (String)

Records
Access (i.e., pointers)
Subtype and derived types

5 L35OH2

Integer Data Type

Predefined range of values
Integer'flrs.lInteger'last

Subtypes of integers
Predefined subtypes

Natural integer >= 0
subtype NATURAL is integer

range O..integer'last;

Positive integer >= 1
subtype Positive is integer

range 1 ..integer'last;

User-defined subtypes
type INDEX is range 1.50;

Declaring integers
NUM : Integer;
INCREMENT: Integer.:= 1;

-- constant must be initialized
DECREMENT-: constant Integer := 1;

A,B,C : Integer .' 0;
X,Y,Z :Integer := 2,3,4; -- illegal

6 L350H3

Named Numbers

A constant that is declared without assuming a
type and can be used with all numeric types.

TENS : constant := 10;
HUNDREDS : constant := TENS * 10;

7 L350H4

Real Numbers

Floating Point
Relative error

Predefined range of values
Float'first.. Float'last

User-defined subtypes
type CELSIUS is digits 3;
type DISTANCE is digits 3 range -50..50;

Declaring floats
ROOMRATE : Float;
PI : constant Float := 3.1456;

Fixed Point

Must define accuracy specification (absolute
error) and range in declaration

type RATE Is delta 0.001 range 7.0..12.0;

8 L35OH5

Formatting Numeric Output

For integers:

Put (INTEGERVALUE, width_offield);

Put (X, 3); -- outputs 3
Fid rt justified
width

For reals:

Put (REALVALUE, fore, aft, exp);
fore=number of digits before decimal point
aft=number of digits after decimal point
exp=the base, e.g. O=base 10

Put (2.573, 3, 2, 0); -- output 2.57

9 L350H6

Arithmetic Operations

Unary Arithmetic Operations

absolute value abs
unary plus +
unary minus

Binary Arithmetic Operations
Opeatin pftrar

exponentiation **
multiplication *

division /
modulus mod
remainder rem
addition +
subtraction

Relational Operators

equal_
not equal /-
less than
less than or equal
greater than
greater than or equal

10 L35OH7

Numeric Attributes

Attribute
gives information about particular properties of
a type

Attributes for integers:
First first value in integer's range
Last last value in integer's range

put(integer'first); prints the first integer

Attributes for floats:
First first value in float's range
Last last value in float's range
Digits number of significant figures
Small smallest positive float number
Large largest positive float number

11 L35OH8

Enumeration Data Type

Subtypes of enumeration data types
Predefined subtypes

Boolean false, true
Character ASCII character set

User-defined subtypes
type DAY is (MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Declaring enumeration data types
TODAY : DAY;
TOMORROW : DAY := TUESDAY;
FIRST DAY : constant DAY := MONDAY;

Operators
Relational (=, /=, <, <=, >, =)
Membership (in, not in)
Boolean operators (and, or, xor, not)

12 L35OH9

Enumeration I/O

Remember that Text_10 provides a generic
package for enumeration input and output

package DAY_10 is new Enumeration_10
(DAY);
use DAY_10;

package BOOLEAN 10 is
new ENUMERATION_10 (Boolean);

use BOOLEANIO;

13 L350H10

Attributes for Enumeration Data Type

First first value in enumeration data type

Last last value in enumeration data type

Pred predecessor of argument
constraint error on first

Succ successor of argument
constraint error on last

Pos position in list (count starts at 0)

Val value associated with argument which is
the position in the list

14 L350H 11

Examples of Enumeration Attributes

type DAY is
(MONDAY,TUESDAY,WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

DAY'First

DAY'Last

DAY'Pred (TUESDAY)

DAY'Pred (MONDAY)

DAY'Succ (TUESDAY)

DAY'Succ (SUNDAY)

DAY'Pos (TUESDAY)

DAY'Val (2)

DAY'Val (7)

15 L35OH12

Derived Type Declarations

defines a new and distinct type which inherits all
the features of the parent type

new type is not compatible with parent type

with Text10; use Text_10;
procedure DERIVED_DEMO is

type LENGTH is new Integer;
type AREA is new Integer;
package AREA_10 is new Integer_10

(AREA);
use AREA_10;
Li, L2 : LENGTH =3;
A : AREA;
function "*" (X, Y : LENGTH) return AREA

is
begin

return AREA (Integer (X) * Integer (Y));
end;

begin
A := L1 * L2;
- The '*' will only work if Li and L2
- match the data type
Put (A);

end DERIVEDDEMO;

16 L35OH13

Subtype Declarations

Does not define a new (i.e., distinct) type but
promotes readability

Provides a new name for another (potentially
constrained) data type

Inherits all the properties of base type

type DAY is
(MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

subtype WEEKDAY is DAY
range MONDAY..FRIDAY;

17 L350H14

LECTURE NUMBER: 036

TOPIC(S) FOR LECTURE:
Statements In Ada

INSTRUCTIONAL OBJECTIVEIS•:

1. To learn the features of several Ada statements.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)
(Learning Label- Today we are going to learn ...)

I. Ada statements L360H1

a. A statement Is a program construct defining an action to be
performed during execution. There are two types of statements
in Ada: simple (e.g., assignment statement) and compound
(e.g., loop, If, case). A compound statement is a control
structure that surrounds other statements whereas a simple
statement does not. Every statement is terminated by a
semicolon; in fact, the semicolon is considered part of the
statement and not a statement separator.

L360H2
b. The Ada statements examined am assignment statement, null

statement, block statement, iteration statements (basic loop, for
loop, while loop), and selection statements (if, case). Discuss
examples of each of these. Discuss only the unique features
of Ada are discussed.

c. The null statement uses the reserved word null to show a
statement that performs no action. This type of statement is
commonly used in case statements and exception handlers.

d. The block statement encapsulates a collection of declarations
and statements that are logically related. The scope of the
declarations and exceptions within a block Is the block itself.
The block statement is commonly used for several purposes.
It ensures that the declaration(s) within the block are not used
Inappropriately by other parts of the program. It documents the
extent of the declaration(s), and it provides an exception
handler environment. The declaration part and exception

1 Lecture 036

handler part are optional.

e. The simplest loop in Ada provides for an infinite loop (i.e., one
that loops forever) L360H3. This type of loop is useful for
activities such as data-sampling that must continue forever
once initiated. The loop can be constructed to end by including
one or more exit statements within the loop. An unconditional
or conditional exit statement may be used. L360H4, L360H5,
L360H6, L360H7

f. Discuss the remaining Ada statements, L360H4-L360H7

PBROEDURBE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:
L360H1 Ada statements
L360H1t2 Ada statements
L360H3 Iteration statements - basic loop
L360H4 Iteration statements - for loop
L360H5 Iteration statements - while loop
L360H6 Selection statements - if statement
1-36OH-7 Selection statements - case statement

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapters 4 (pp. 29-37)

RELATED READINGS:
Booch Chapter 11 (pp. 187-197)
Booch(2) Chapter 9 (pp. 181-190)

2 Lecture 036

Ada Statements

A program construct defining an action to be
performed during execution

Terminated by semicolon

Two types
Simple

Compound

3 L36OH1

Ara SLOt,.e-t

Assignment statement

Null statement
Statement that performs no action

when others =, null;

Block statement
Encapsulates a collection of declarations and
statements that are logically related

Scope of identifiers and exceptions for block
is the region of program text that begins with
the declaration and extends to the end of the
block

declare
TEMP : Integer:= NUM_1;

begin
NUM_I._- NUM_2;
NUM_2 := TEMP;

- exception handlers can go here
end;

4 L36OH2

Iteration Statements
Basic Loop

Structured to loop forever (one entry, no exit)

loop
- statements

end loop;

To leave such a loop, use the exit statement

loop
- statements
exit;
- statements

end loop;

COUNT := 1;
loop

COUNT := COUNT +1;
- statements
exit when (COUNT = 10);

end loop;

5 L36OH3

Iteration Statements
For Loop

(X is implicitly declared with the 'for')
for X in 1.3 loop

- statements
end loop;

for INDEX in 1..USERINPUTLIMIT loop
- statements
NAME := ANARRAY (INDEX);
- statements

end loop;

for CH in 'A'..'Z' loop
put (CH);

end loop;

for CH in reverse 'A'..'Z' loop
put (CH);

end loop;

6 L360H4

Iteration Statements
While Loop

Sequence of statements is repeated as long as
condition in while condition is true

while not endof file (SOURCE2) loop
get (SOURCE2, A);
- statements

end loop;

COUNT := 1;
while (COUNT /= 10) loop

COUNT.:= COUNT +1;
- statements

end loop;

SUM := 0;
Get (AVALUE);
while (A VALUE/= 0) loop

SUM := SUM + AVALUE;
Get (AVALUE);

end loop;

7 L36OH5

Selection Statements
If Statement

if VAL_1 > VAL_2 then
MAX:= VAL_1;
Putline ("First value is largest");

end if;

if BALANCE <= 0.0 then
SERVICECHARGE := 10.00;

elsif BALANCE< 300.00 then
SERVICECHARGE 3.00;

else
SERVICECHARGE := 1.00;

end if;

if BALANCE : 0.0 then
if BALANCE < 300.00 then

SERVICECHARGE := 3.00;
else

SERVICECHARGE := 1.00;
end if;

else
SERVICECHARGE := 10.00;

end if;

8 L360H6

Selection Statements
Case Statement

case SCORE Is
when 85..100 =: GRADE := 'A';
when 75..84 =)o GRADE := 'B';
when 60..74 =o GRADE := 'C';
when 0..59 =2 GRADE := 'F';
when others =: null;

end case;

case GRADE is
when 'A' I 'B' I 'C' =: put~line ('pass');
when 'F' =2 putline ('fail');
when others =o put-line ('invalid score');

end case;

case SELECTIONCODE is
when 'V' =>

BALANCE := BALANCE - AMOUNT;
Put-Line ("Removing cash");

when 'D' =:
BALANCE := BALANCE + AMOUNT;
PutLine ("Adding cash");

when others =2 PutLine ("Invalid key");
end case;

9 L360H7

LECTURE NUMBER: 037

TOPIC(S) FOR LECTURE:
Structured data types in Ada

INSTRUCTIONAL OBJECTIVE(SI:

1. To learn the features of the Ada's structured data types.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have already discussed Ada's scalar data types (integers, etc).

(Learning Label- Today we are going to learn ...)
Today we are going to look at Ada's composite data types.

CONTENTS:

1. Ada data structures L370H1

a. Arrays are composite data structures which contain a collection
of components of the same data type L370H2. Ada provides
two types of arrays: constrained and unconstrained.
Constrained arrays have their lower and upper bounds for their
indices defined in the type declaration L370H3.
Unconstrained arrays define their index type in the declaration
but do not define their lower and upper bounds for their indices.
These bounds are defined in the object declaration L370H4.
This feature allows objects of different sizes to be created from
the same data type; we have seen in a previous class how this
language feature is helpful in reusability. The operations and
I/O for arrays are the same as for Pascal. L370H5. Ada
provides attributes for arrays (Firmt, Last, Range, Length)
Use the definitions of L370H6 and work through the exercise
on L370H7.

b. String data type is a predefined unconstrained array of type
Character. At object declaration, the size of the string is
specified. The I/O provided by TextjlO was discussed
previously. Ada provides the attributtes Value and Image for
strings. L370H8, L370H9, L370H10

c. Record data types are composite data structures which contain
a collection of components of possibly different data types.
Records are the same in Ada as in Pascal except for the ability
to initialize values at type declaration and object declaration.

1 Lecture 037

Variant records and discriminants are covered In the textbook
but will not be discussed in class. L370Hl1, L370H12

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:

L370H1 Ada data types
L370H2 Array data types
L370H3 Constrained arrays
L370H4 Unconstrained arrays
L370H5 Arrays
L370H6 Array attributes
L370H7 Examples of array attributes
L370H8 String data type
L370H9 String data type - operations and I/O
L370H10 String attributes
L370H1-1 Record data type
L370H12 Record data type - accessing, operations, I/O

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapter 5 (pp. 39-50)

RELATED READINGS:
Booch Chapter 8 (pp. 115-124)
Booch(2) Chapter 6 (pp. 105-115)

2 Lecture 037

Ada Data Types

Scalar
Discrete

Integer (Integer, Natural, Positive)
Enumeration

Character (Character)
Boolean (Boolean)

Real
Floating point (Float)
Fixed point

Composite
Arrays

Constrained
Unconstrained
Strings (String)

Records

Access (i.e., pointers)

Private

Subtype and derived types

3 L370H1

Array Data Types

Data structure consisting of a linear sequence of
components of the same data type

Two types of arrays:
Constrained

The lower and upper bounds for each
array index are defined at type declaration

Unconstrained
The lower and upper bounds for each
array index are not defined at type
declaration but are defined at object
declaration

4 L370H2

Constrained Arrays

Type declarations

type COST is array (1..8) of Float;
type MATRIX is array (1..3, 1..3) of Integer;

Object declarations

COATCOSTS : COST;

DRESSCOSTS : COST := (90.0, 80.0,
70.0, 60.0, 97.5, 81.0, 72.0, 85.0);

DRESS2_COSTS : constant COST := (90.0,
80.0, 70.0, 60.0, 97.5, 81.0, 72.0, 85.0);

JEANCOSTS : COST := (1 => 30.0,
2 => 19.0, 3 => 15.50, 4 => 56.0,
5 => 27.50, others => 28.0);

-- called anonymous array object
NEWCOSTS : array (1 ..8) of Float;

MATRIX_1, MATRIX_2 : MATRIX;

5 L370H3

Unconstrained Arrays

Type declarations

type VECTORTYPE is array
(Integer range <>) of Integer;

type MATRIXTYPE Is array
(Positive range <>, Positive range <>)
of Integer;

Object declarations

VECTORI : VECTORTYPE (1..30);

VECTOR2 : VECTORTYPE (1..10);

MATRIXI : MATRIXTYPE (11.3, 1..10);

MATRIX2 : MATRIXTYPE (1..4, 1..6);

6 L37OH4

Arrays

Array I/O
By component data type

Accessing arrays
By component

COATCOSTS (2) := 124.50;
Put (COATCOSTS (3));

As whole
Can use -- =
Must be same data type

MATRIX 1 := MATRIX_2;

Relational operators <, <=, 3, and)= may
be applied to one dimensional arrays
whose elements are of a discrete type

By slice
Accessing consecutive components of an
array

MATRIXI (1..3) := MATRIX_2 (4..6);

7 L37OH5

Array Attributes

First returns lower bound of first array
index

First(N) returns lower bound of Nth array
index

Last returns upper bound of last array
index

Last(N) returns upper bound of Nth array
index

Range returns range of first array index
Range(N)

Length returns number of elements in first
index range

Length(N)

8 L370H6

Examples of Array Attributes

type MATRIXTYPE is array (1..3, 0..30) of
Integer;

MATRIX: MATRIXTYPE;

MATRIXTYPE'First (1)

MATRIXTYPE'First (2)

MATRIX TYPE'First

MATRIX'Last (1)

MATRIX'Last (2)

MATRIXTYPERange (1)

MATRIXTYPE'Range (2)

MATRIX'Length

9 L370H7

String Data Type

type STRING Is array (Positive range o)
of Character;

Object declarations

FILENAME : String (1..30);

ERRMSG : constant String
:= "error - file not found");

LINE : String (1..80) := (others =: '"');

10 L37OH8

String Data Type

String operations
Relational operators (=,/=, , =, >, ,=)
Assignment (:=)
Concatenation (&)

String I/O

PutLine (Item : in String);

Put (Item : in String);

GetLine (Item : out String;
Last : out Natural);

GetLine (Item : out String);

11 L37OH9

String Attributes

Value function that maps the value of String
into the corresponding value of the
discrete type

X integer := Integer'Value ("1000");

Image function that maps values of integer
or enumeration type into an
expression of type String

ONETHOUSAND : String (1..4)
• lnteger'lmage (X);

12 L370H1 0

Record Data Type

Data structure consisting of a collection of
components of the possibly different data types

Type declarations

type NAMETYPE is
record

LASTNAME : String (1..20);
FIRSTNAME : String (1..20);
MIDDLEINITIAL : Character;

end record;

Object declarations

MYNAME : NAMETYPE;

YOURNAME : NAME TYPE :-
(MIDDLEINITIAL =>",
others =o" ");

HIS NAME : NAME TYPE :=
("'Appleseedless ",
"Johnny ", 'P');

13 L370H1 1

Record Data Type

Accessing records

MYNAME.MIDDLEINITIAL- T;

Operations on records
:=v =, /=

Component selection

Record I/O
By component only

14 L370H12

LECTURE NUMBER: 038

TOPIC(S) FOR LECTURE:
Access(pointer) data types in Ada

INSTRUCTIONAL OBJECTIVE(S):

1. To learn the features of Ada's access data types.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have already discussed scalar and composite data types.
(Learning Label- Today we are going to learn ...)

Today we'll discuss access, or pointer data types.

1. Ada access data types L380H1

a. The access data type (often called pointer data type) enables
the dynamic creation of objects during the execution of a
program.

L380H2
b. There are three steps to using access data types. First, the

access type and objects of that type must be declared. When
an object of an access data type is created, the object is
automatically initialized to the value null. Here B1, B2, and B3
are initialized to null. This is the only case in which Ada
defines an implicit default value.

Second, objects of the access type are dynamically allocated.
Using the allocator new in an assignment statement
dynamically allocates the objects of an access type. The
allocation process also allows for the initialization of values
either by positional or named notation.

Third, allocated objects can be referenced at execution time.

L380H3
c. Access data types can be compared using the relational

operators = or /a. This is valid only If they are of the same
type.Ada also provides a notation .11 which refers to all the
values of an access data type (e.g., all the fields of the record
type if the access data type pointed to a record).

1 Lecture 038

L380H4
d. illustrate pointers through the linked list Implementation of a

tree as shown in L380H4.

PROEDURBE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:ovehads=:
L380H1 Ada data types
L380H2 Steps to using access types in Ada
L38OH3 Operations on access types
L380H4 Example of linked list

handouts:

RELATED LEARNING ACTIVITIES:

(labs and exercises)

Lab 028 - Detailed design review presentation

READING ASSIGNMENTS:
Benjamin Chapter 7 (pp. 63-72)

RELATED READINGS:
Booch Chapter 8 (pp. 124-129)
Booch(2) Chapter 6 (pp. 115-121)

2 Lecture 038

Ada Data Types

Scalar
Discrete

Integer (Integer, Natural, Positive)
Enumeration

Character (Character)
Boolean (Boolean)

Real
Floating point (Float)
Fixed point

Composite
Arrays

Constrained
Unconstrained
Strings (String)

Records

Access (i.e., pointers)

Private

Subtype and derived types

3 L38OH1

Steps to Using Access Types in Ada

1. Declare access type and objects of that type.

type BUFFER is
record

MESSAGE :String (1..10);
PRIORITY .Integer;

end record;
type BUFFERPTR is access BUFFER;

Bi, B2, B3 : BUFFERPTR;

2. Dynamically allocate objects of the access
type.

B1._' new BUFFER;
B2 := new BUFFER'(MESSAGE ="

PRIORITY => 2);

3. Work with allocated objects.

B1 := null;
B1.MESSAGE "-"Error - PI";
B1.PRIORITY := 10;
B2 "- BI;

4 L38OH2

Operations on Access Types

Relational operators (:,/:)

Assignment (:=)

.all notation

5 L38OH3

Example of Linked List

type NODE;
type TREE Is access NODE;
type NODE is

record
LEFT TREE;
VALUE : string (1..5);
RIGHT : TREE;

end record;

ROOT :TREE;
TEMP :TREE;
PTR : TREE;

ROOT := new NODE;
ROOT.VALUE := "NODE1";
TEMP := new NODE;
TEMP.VALUE := "NODE2";
ROOT.ILEFT := TEMP;

TEMP := new NODE;
TEMP.VALUE := "NODE3";
PTR := ROOT.LEFT;
PTR.RIGHT := TEMP;

6 L38OH4

LECTURE NUMBER: 039

TOPIC(S) FOR LECTURE:
Procedures, functions, and packages in Ada

INSTRUCTIONAL QBJECTIVES:

1. To learn the features of the Ada programming language concerning
procedures, functions, and packages.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In other lectures we have looked at using Ada specifications in high
level design. The Implementation details and the special capabilities
of Ada, such as overloading, were not discussed.

(Learning Label- Today we are going to learn ...)
Today we shall revisit Ada's packages, functions, and procedures
examining the details needed to implement these language structures..

CONT-.TS:

1. Ada subprograms L390H1

a. As in other programming languages, procedures and functions
are provided in Ada as fundamental tools for designing and
building modular programs. Procedures are used to execute
a group of statements, and functions are used to determine
and return a value that is used In an expression.

b. Ada allows for procedures and functions to have a specification
part and a body or implementation part L390H2. The
specification part is the interface information and may be
compiled in a file separate from the body. This separate
compilation feature allows the subprogram to be used by other
compilation units without the Implementation details in the
subprogram body being completed. Also if changes are later
made to the implementation details, there is no need to
recompile the other compilation units which use this
subprogram.

c. Ada provides three parameter modes L390H3. The In mode
allows the parameter to act as a local constant within the
subprogram, the out mode allows the parameter to be
assigned a value by the subprogram, and the In out mode
allows the formal parameter to be initialized to the value of the

1 Lecture 039

actual parameter and then another value to be assigned to the
parameter. The In mode is the default parameter mode.

d. For In parameters only L390H4, a default value may be
specified in the formal parameter list, and then the
corresponding actual parameter may be omitted. If the default
parameter is not the last parameter in the formal parameter list,
named notation must be used to specify any remaining actual
parameters in the procedure call.

e. Ada provides two types of parameter association 1-390H5. In
positional notation, which is the type commonly used in other
programming languages, the order of the actual parameters
must match the order of the formal parameters. In named
notation, the name of the formal parameter is associated with
the actual parameter so that the order of the actual parameters
does not matter. Additionally, once named notation is used in
a list, it must be used for the remaining parameters in the list.

f. The return statement can be used in both procedures and
functions to terminate the subprogram and transfer control back
to the calling routine L39OH6. In a function, the value to be
returned is also indicated in the return statement. L390H8
There can be one or more return statements in any
subprogram, but there must be at least one in a function. A
complete example showing the declaration, body, and
invocation of a procedure and function are shown on L390H7
and L390H8.

g. Overloading is the use of the same name or operation symbol
for different entities whose scope overlap. They are said to be
overloaded provided that there is no ambiguity. Overloading
can be used for subprogram identifiers as well as operators,
task entry identifiers, and enumeration literals L390H9. The
compiler distinguishes the correct intended function by the
parameters passed or by the context of an overloaded name.
Therefore, for all overloaded subprograms, some aspect of the
subprogram profile (the parameter order, number, or type or
the returned data type on a function) must be unique from
other subprograms with the same name. If some ambiguous
reference is made, explicit resolution of the conflict can be
made through named parameter association or a qualified
expression L390H1-0.

h. Discuss the scope and visibility rules L39OH1-1

2 Lecture 039

2. Ada packages O390H1-2

a. Ada packages were introduced in an earlier class. We saw
that packages provide a mechanism for organizing large or
complicated programs.

b. Private and limited pivate data types can be declared in a
package specificaton L390H13. These data types allow the
name of the Identifier to be visible but the implementation
details of the data types to be hidden. These data types are
used to restrict the operations available for certain date types.
L390H14, L390H15

PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

yocabulay introduced:
parameter modes
private data type
limited private data type

INSTRUCTIONAL MATERIALS:overheads:
L390H1 Ada program units
L390H2 Ada procedures and functions
L390H3 Parameter modes
L3901H4 Default parameter values
L390H5 Parameter association
L390H6 Return statement
1-390H7 Procedure
1-390H8 Function
L390H9 Overloading
L390H10 Explicit resolution with overloading
L390H11 Scope and visibility rules
L390H12 Packages
L39OH13 Private and limited private data types
L39OH14 Private data type
L39OH15 Limited private data type

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)
Lab 029 - Feedback on detailed design

3 Lecture 039

READINQ ASSJIGNMENTS:

Benjamin Chapter 6 and 8 (pp. 51-62 and 73-78)

RELATED READINGS:
Booch Chapter 13 (pp. 218-241)
Booch(2) Chapter 11 (pp. 216-240)

4 Lecture 039

Ada Program Units

Procedures and functions

Packages

Tasks

5 L39OH1

Ada Procedures and Functions

Procedure
Used to execute a group of statements

Function
Used to determine and return a value that is
used in an expression

Each has a specification (interface information)
and body (implementation details)

Permits a subprogram name and parameter
requirements to be available to other
compilation units separate from the
subprogram body

6 L390H2

Parameter Modes

Indicates the flow of the data between the caller
and the called unit

3 types of parameter mode:

1. in
Acts as a local constant to the procedure

procedure DRAWLINE (FROM,
TO : In POINT);

2. out
A variable which may only be assigned a
value by the procedure

procedure FINDMAX (A, B : In Integer;
MAX : out Integer);

3. in out
A variable which is initialized to the value
of he actual parameter and may be
assigned a value by the procedure

procedure SORT (DATA : In out
NAMES);

7 L39OH3

Default Parameter Values (for IN only)

type DIRECTION is (ASCENDING,
DESCENDING);

procedure SORT (DATA :in out NAMES;
ORDER : in DIRECTION := ASCENDING);

SORT (CLASS, DESCENDING);

SORT (CLASS); -- uses default value

---------------- --------------------

procedure SPACES (COUNT : Integer := 1) is
begin

for I in 1..COUNT loop
Put (" ");

end loop;
end SPACES;

SPACES (4);

SPACES; -- only one space will be output

a L39OH4

Parameter Association

Positional notation
Order of actual parameters must match order
of formal parameters

Named notation
Name of formal parameter is associated with
actual parameter

procedure SEARCHFILE (KEY : in NAME;
INDEX: out FILEINDEX);

Position

SEARCHFILE ("SMITH J", RECORDENTRY);

Named Notation
3 variations with Identical results

SEARCHFILE (KEY => "SMITH J",
INDEX => RECORDENTRY);

SEARCHFILE (INDEX => RECORDENTRY,
KEY => "SMITH J");

SEARCHFILE ("SMITH J",
INDEX => RECORDENTRY);

9 L39OH5

Return Statement

Used to terminate a procedure or function and
transfer control back to the calling routine

In a function, the return statement indicates the
value to be returned

procedure MIN (A, B : in Integer;
C : out Integer) is

begin
if (A < B) then

C := A;
return;

end if;
C :=B;

end MIN;

function MIN (A, B : in Integer)
return Integer is

begin
if (A < B) then

return A;
end if;
return B;

end MIN;

10 L39OH6

Procedure

procedure DIVIDE (DIVIDEND,
DIVISOR : In Integer;
QUOTIENT,
REMAINDER : out Integer);

procedure DIVIDE (DIVIDEND,
DIVISOR : In Integer;
QUOTIENT,
REMAINDER : out Integer) is

begin
QUOTIENT := DIVIDEND / DIVISOR;
REMAINDER.-- DIVIDEND rem DIVISOR;

end DIVIDE;

DIVIDE (120, 4, AQUOTIENT,
A_REMAINDER);

11 L390H7

Function

function AVERAGE (A, B, C : in Float)
return Float;

function AVERAGE (A, B, C : in Float)
return Float is

SUM : Float;
begin

SUM: A + B + C;
return SUM / 3.0;

end AVERAGE;

CURRENTAVERAGE := AVERAGE (TESTI,
TEST2, TEST3);

12 L390H8

Overloading

The same name or operation symbol is used for
different entities whose scope overlap and there is
no ambiguity.

Allowable for:

Operators

Subprogram identifiers

Task entry identifiers

Enumeration literals

Meaning determined by operand, parameters, or
context of use

13 L39OH9

Explicit Resolution with Overloading

2 means of explicit resolution in meaning for
subprograms:

1. Named parameter association

2. Qualified expression

type BEEF is (STANDARD, GOOD, CHOICE,
PRIME);

type INTEREST is (PRIME, BONDS,
DISCOUNT);

procedure PROCESS (THE_.CUT: BEEF);
procedure PROCESS (THERATE : INTEREST);

PROCESS (PRIME); -- ambiguous reference

PROCESS (THERATE => PRIME);

PROCESS (BEEF'(PRIME));

14 L39OH10

Scope and Visibility Rules

3 types of visibility possible for an object:

1. Directly visible

2. Visible by selection

3. Hidden

procedure P1 is
X : Integer;
Y : Integer;

procedure P2 is
X : Integer;

begin
X := 4; -- X of P2 directly visible
P1.X := 3; -- visible by selection
Y := 5; -- Y of P1 directly visible

end P2;

begin - P1
P2; -- directly visible
X := 6; -- X of P1 directly visible
for I in 1.3 loop

for I in 1..10 loop
-- outer I is hidden in inner 1,,op

end loop;
end loop;

end P1; adapted from Benjamin

15 L39OH1 1

PtmdgW

Programming unit that allows a collection of relisd entitles to be made availle for
use by other program units

package STACKS Is
type STACK Is private;
procedure PUSH (ELEMENT : In Integer;

ON : In out STACK);
procedure POP (ELEMENT : out Intger;

ON : In out STACK);
private
- STACK defined

end STACKS;

with STACKS; use STACKS;
procedure MAIN Is

ASTACK, BSTACK : STACK;
begin

PUSH (10, ASTACK);
PUSH (20, BSTACK);

end;

16 L39OH12

Pizlva awl Ume Pdl oDal Types

Defined in a package specification

Name is visible to user but implementation detals are hidden

Purpose: to restrict operations available outside of package body

17 L39OH13

rite DaIN Type

Operations available on private data types:

Assignment (:-)

Relational operators (u,/=)

Subprograms defined In Its package

package STACKS Is
type STACK Is private;
procedure PUSH (ELEMENT : In Integer;

ON : In out STACK);
procedure POP (ELEMENT : out Integer;

ON : In out STACK);
private

MAX ELEMENTS : constant Integer := 100;
type LIST Is army (1..MAX ELEMENTS) of

Integer;
type STACK Is

record
STRUCTURE : LIST;
TOP : Integer range I..MAX_ELEMENTS;

end record;
end STACKS;

18 L39)H14

U~ Private Data Type

Operations available on limited private data types:

Only subprograms defined In Its package

package STACKS Is
type STACK Is Hlimted private;
procedure PUSH (ELEMENT: In Integer;

ON : In out STACK);
procedure POP (ELEMENT : out Integer;

ON : In out STACK);
private

MAXELEMENTS : constant Integer := 100;
type LIST Is array (1..MAXELEMENTS) of

Integer;
type STACK Is

record
STRUCTURE : LIST;
TOP : Integer range 1..MAXELEMENTS;

end record;
end STACKS;

19 L39OH 15

LECTURE NUMBER: 040

TOPUMS FOR LgCTURE
Generics In A

INSTRUCTIONAL OBJECTIVES1

1. To learn the features of Ada generics.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)
Often we find components of a system that are very similar in the task they perform
(e.g., a sort procedure for an integer array, a sort procedure for a character array,
and a sort procedure for a real army). Separate procedures, each of which uses
the same sort algorithm, are written. A means of creating a template of a
component (e.g., a sort template) that could be tailored at execution time would be
beneficial. Ada generics provide such capability.

(Learning Label- Today we are going to learn ...)

Today we are going to examine the syntax for building generic program units.

CONTENTS:

1. Suppose you are asked to write a procedure to return the successor
of a given element in a "days of the week! list. Suppose a further
requirement is that the list be treated as a circular list (e.g., the
successor of the last element is the first element). A simple solution
is shown in L400H1.

L400H2
Three more generalized solutions are shown in this overhead. Each
of these attempts at generality has drawbacks. The first addresses a
logic problem by taking advantage of a runtime error; the second is
not completely general because it *hard codes' the values of the first
and last elements of the list; the third, while more general, has limited
potential for reuse beyond this particular instance of a list.

2. L400H3
Ask how the third solution on L400H2 could be modified to work for
a list of Integers from 1 to 10. Students are likely to quickly realize
that defining a type SIZE as shown and substituting SIZE for DAYS
in the function WRAP will work. Similarly ask how they could make
this function work for the letters of the alphabet.

Lecture 040

3. a. This method of achieving generality by changing the data type
upon which the function operates is the way generic
subprograms achieve generality.

L40OH4 shows the generic for the WRAP function. Describe
how type ELEMENT can be instantiated as DAYS, SIZE, or any
other discrete data type.

b. A generic program unit defines a template from which other
kinds of program units can be created, as in L400H4. For
example, a generic subprogram may be used to create a class
of similar program units whose only differences are based on
the types upon which they operate. A subprogram or package
may be made into a generic in Ada.

4. L400H5
a. Discuss the three aspects to defining and using a generic unit:

the generic unit declaration, the generic subprogram or
package body, and the generic instantiation L400H5. The
instantiation is the process of creating a program unit from a
generic program unit. A generic program unit can't be called
directly, but an instantiation of a generic program unit must be
created. An instantiation is a declaration, not a statement and
therefore must appear in the declarative part of a program unit
which uses the function.

b. L400H6, L400H7, L400H8, L40OH9, L400H1O
Use these overheads to illustrate generic subprograms,
package bodies, and instantiations.

c. One possible kind of parameter to a generic program unit is a
data type. Generic formal parameter types determine the type
of parameter with which the generic can be instantiated and the
operations available on objects of that type within the generic
body.

L400H11 shows the eight generic formal parameter types.

d. Another possible kind of parameter to a generic program unit
is an object and value. Discuss the example of this type of
parameter as shown on overhead L400H12.

e. The last kind of parameter to a generic program unit is a
subprogram. A generic formal subprogram matches with any
actual subprogram having the same parameter and return-type
profile. Examples are given on overheads L40OH13 and
L400H1-4.

2 Lecture 040

teffhirn method and medi:

INSTIRUCTIONL MATRLALS:overeld:

L400H1 Moving towards generic units
L40OH2 Moving towards generic units
L40OH3 Moving towards generic units
L40OH4 Moving towards generic units
L40OH5 Ada generic unit
L400H6 Generic subprograms
L40OH7 Generic subprograms
L400H8 Specification of genedc package
L40OH9 Body of generic package
L400H1O Instantiation of generic package
L400H11 I Generic formal parameter types
L40OH12 Generic formal objects
L40OH13 Generic formal subprograms
L40OH14 Generic formal subprograms (cont.)

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 029 - Feedback on detailed design review presentation

READING ASSIGNMENTS:

Benjamin Chapter 9 (pp. 79-87)

RELATED REAINGS:
Booch Chapter 14 (pp. 243-257)
Booch(2) Chapter 12 (pp.242-257)

3 Lecture 040

Moving Towards Generic Units

type DAY is (MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY, SUNDAY);

function WRAP (D : DAYS) return DAYS Is
begin

if D = SUNDAY then
return MONDAY;

elsif D = MONDAY then
return TUESDAY;

elsif D = TUESDAY then
return WEDNESDAY;

elsif D = WEDNESDAY then
return THURSDAY;

elsif D = THURSDAY then
return FRIDAY;

elsif D = FRIDAY then
return SATURDAY;

else
return SUNDAY;

end If;
end WRAP;

4 L400H1

Moving Towards Generic Units

function WRAP (D : DAYS) return DAYS is
begin

return DAYS'Succ (D);
exception

when Constraint error =:
return DAYS'First;

end WRAP;

function WRAP (D : DAYS) return DAYS is
begin

if D = SUNDAY then
return MONDAY;

else
return DAYS'Succ (D);

end WRAP;

function WRAP (D : DAYS) return DAYS is
begin

if D = DAYS'Last then
return DAYS'First;

else
return DAYS'succ (D);

end WRAP;

5 L400H2

Moving Towards Generic Units

function WRAP (D : DAYS) return DAYS is
begin

if D = DAYS'Last then
return DAYS'First;

else
return DAYS'succ (D);

end WRAP;

What modifications would you make to WRAP in
order to provide a wrap-around successor capability
for the type SIZE?

type SIZE Is range 1..10;

6 L400H3

Moving Towards Generic Units

-- generic specification
generic

type ELEMENT is (<>);
function WRAPAROUND (D : ELEMENT)

return ELEMENT;

-- generic body
function WRAPAROUND (D : ELEMENT)

return ELEMENT is
begin

If D = ELEMENTLast then
return ELEMENT'First;

else
return ELEMENT'Succ (D);

end if;
end WRAPAROUND;

-- generic instantiation
function WRAP is new

WRAPAROUND (ELEMENT => DAYS);
function WRAP is new

WRAPAROUND (ELEMENT => SIZE);
function WRAP is new

WRAPAROUND (Character);

7 L40OH4

Ada Generic Unit

Defines a template from which other kinds of program
units can be created

Subprogram or package can be a generic

Three aspects of defining and using a generic unit:

1. Generic unit declaration
2. Generic subprogram or package body
3. Generic instantiation

8 L40OH5

Generic Subprograms

A subprogram that will handle values of arbitrary type

procedure GENERICDEMO Is
X, Y : Integer;
generic
- generic specification

type ELEM is private;
procedure EXCHANGE (U, V : in out ELEM);
- generic body
procedure EXCHANGE (U, V : in out ELEM) is

T : ELEM;
begin

T:= U;
U :V;
V ,-T;

end EXCHANGE;
- end of generic declaration
- generic instantiation

- (goes in program that Invokes SWAP)
procedure SWAP is new EXCHANGE (Integer);
- generic subprogram call

begin

y:=- 2;

SWAP (X, Y);

end GENERICDEMO;

9 L40"H6

Generic Subprograms

generic
- generic specification

type ELEM Is private;
with function "'" (LEFT, RIGHT : ELEM)

return ELEM is <:;
function SQUARING (X : ELEM) return ELEM;

- generic body
function SQUARING (X : ELEM) return ELEM is
begin

return X * X;
end SQUARING;
- end of generic declaration

- example of use
with SQUARING;

- instantlation of SQUARE
procedure FUNCTIONDEMO is

function SQUARE is new SQUARING (integer);
X : Integer := 8;

begin
X := SQUARE (X);

end FUNCTIONDEMO;

10 L400H7

Specification of Generic Package, GENERIC_UST

generic
type ELEM Is private;

package GENERICLIST is
type CELL is private;
type POINTER is access CELL;
type ARR is array (integer range <c) of ELEM;
function MAKE (A : ARR) return POINTER;
function FRONT (P : POINTER) return ELEM;
function REST (P : POINTER) return POINTER;
function ADDON (E : ELEM;

P : POINTER) return POINTER;

private
type CELL is

record
VALUE : ELEM;
LINK : POINTER;

end record;
end GENERICLIST;

11 L40OH8

Body of Generic Package, GENERICLIST

package body GENERICLIST is

function MAKE (A : ARR) return POINTER is
P : POINTER;

begin
for X In reverse A'Range loop

P := ADDON (A(X), P);
end loop;
return P;

end MAKE;

function FRONT (P : POINTER) return ELEM Is
begin

return P.Value;
end FRONT;

function REST (P : POINTER) return POINTER is
begin

return P.LINK;
end REST;

function ADD ON (E : ELEM;
P : POINTER) return POINTER is

begin
return new CELL'(EP);

end ADDON;

end GENERICLIST;

12 L400H9

Instantlation of Generic Package, GENERICLIST

type PERSON Is
record

LASTNAME : String (1..10);
SSN : SOCSECNUM;
BIRTHDAY : DATE;

end record;

package PERSONLIST is
new GENERICLIST (PERSON);

with GENERICLIST;

procedure LISTDEMO is
package INTLIST Is

new GENERICLIST (ELEM =o Integer);
P : INTLIST.POINTER;

begin
P := INTLIST.MAKE ((1, 2, 3, 4));
P := INTLIST.ADD ON (5, P);
while P /= null loop

Put (INTLIST.FRONT (P));
P := INTLIST.REST (P);

end loop;
end LISTDEMO;

13 L400H10

Generic Formal Parameter Types

type ITEM is private;
-- Matches almost any type
-- Matches any type for which assignment and
-- Tests for equality are available

type LIMITEDITEM is limited private;
-- Matches any type except for unconstrained
-- Array type

type DISCRETEITEM Is();
-- Matches any discrete type

type ARRAYITEM is array (DISCRETEITEM)

OF ITEM;

type PTR_ITEM Is access ARRAYITEM;

type INTEGERITEM is range <>;

type FLOATITEM Is digits <>;

type FIXEDITEM is delta <;

14 L400H1 1

Generic Formal

generic
SIZE : Integer; -- formal object
type ELEM is private;

package STACK Is
procedure PUSH (E : ELEM);
procedure POP return ELEM;

end STACK;

package body STACK Is
SPACE : array (1..SIZE) of ELEM;
INDEX : SPACE'range := 1;
procedure PUSH (E : ELEM) Is
begin

SPACE (INDEX) := E;
INDEX := INDEX + 1;

end PUSH;
procedure POP return ELEM Is
begin

INDEX := INDEX- 1;
return SPACE (INDEX);

end;
end STACK;

- Instantlation
package INTSTACK Is new STACK (25, Integer);

15 L40OH12

Generic Formal Subprograms

generic
type ELEM is private;
type VECTOR is array (Integer range <:)

of ELEM;
with function ">" (X, Y : ELEM) return Boolean;

procedure SORT (A : in out VECTOR);

-- m -----------------

with SORT;
procedure GENERICDEMO is

type INTVECTOR is array (integer range <:)
of Integer;

A : INTVECTOR (1..10) := (4, 7, 10, 2, 5, 8,
1, 2, 6, 9);

procedure INTSORT is new SORT (integer,
INTVECTOR, ">");

- instantiation
begin

INTSORT (A);
for X In A'range loop

Put (X, 4);
end loop;

end GENERICDEMO;

16 L400H13

Generic Formal Subprograms

generic
type ELEM is private;
type VECTOR is array (integer range <:)

of ELEM;
with function ":" (X, Y : ELEM)

return boolean is co;
procedure SORT (A : in out VECTOR);

-------------- m----------------------------- ----

type EMPLOYEE is
record

NAME : String (1..40);
ID : Integer;

end record;
type EMPLOYEEARRAY is array (Integer

range <>) of EMPLOYEE;
function GT (A, B : EMPLOYEE) return Boolean is
begin

return A.ID > B.ID;
end GT;

-- instantlation
procedure EMPLOYEESORT is new SORT

(EMPLOYEE, EMPLOYEEARRAY, GT);

17 L400H 14

LETURE NUMBIER: 041

TOPIC(S) FOR LECTURE:
Exceptions and exception handlers in Ada

INSTRUCTIONAL OBJECTIVE S-:

1. To learn the features of the Ada capabilities regarding exceptions and
exception handlers.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

Ada provides a mechanism for responding to and managing errors.

(Learning Label- Today we are going to learn ...)
Today we are going to learn about these capabilities and how to use them.

1. Ada exceptions

a. Exceptions are error conditions that may arise durng program
execution and cause the suspension of normal program execution
L41 OH1. Common examples include division by zero and writing
to a file that is not open. Discuss other types of error conditions.
Real-time systems must have the ability to handle error situations
to be reliable; termination of a program upon encountering an error
is not always desirable and, in some cases, is disastrous. For
example a pacemaker.

b. Raising an exception brings the exception or error situation to
attention of the programmer and it automatically responds by
transferring control to an exception handler. Predefined exceptions
are automatically raised by Ada; user-defined exceptions are
raised by the aisle statement L41OH2. The scope of user-
defined exceptions is the same as identifiers.

2. Ada exception handlers

a. An exception handler Is that portion of code which responds to an
exception L41O0H3. An exception handler allows a program to
recover from an error or, at a minimum, print a meaningful error

1 Lecture 041

message and terminate the program gracefully.

b. Exception handlers begin with the word exception and may appear
at the end of a begin..end block or frame. This means that an
exception handler can

appear at the end of the body of a subprogram, package, task and

generic unit.

3. Exception propagation

a. If no exception handler is included in a unit, raising the exception
causes several things to happen. First, execution of the unit is
terminated and the exception is "propagated" to a unit at the next
highest level that does contain an appropriate handler L41 0H4.
How the exception is propagated depends on the type of frame in
which it was raised.

Discuss each of the results of an exception being raised in each
of the program units in which an exception can be defined. For
the frames in L410H4, each frame terminates and then: for a
block an exception is re-raised at the point immediately after the
block, for a subprogram the same exception is raised at the point
immediately following the subprogram callfor a package which is
a library unit the main program dies otherwise the exception is
raised in the next highest level; and a task merely terminates
without re-raising the exception. Discuss the example in L41 OH5

b. Special form of raise statement can be used inside an exception
handler to re-raise the exception currently being handled to
propagate the exception to the next higher level. See example of
RAISE used to propagate an exception. L41 OH6

c. Discuss User defined exceptions L41 01-17. Trace the example in
L410H8

teaching method and media:

vocabula2y introduced:

2 Lecture 041

INSTrRUCTIONAL MATERIALS:

L41OHI Ada exceptions
141O0H2 Predefined exceptions
L410H3 Exception handlers
1410H4 Exception propagation
14101H5 Example of exception propagation
1411OH6 Special use of Raise statement
141O0H7 User-defined exceptions
1411OH8 Example of user-defined exception

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 030 - Video on Code inspections

READING ASSIGNMENTS:
Benjamin Chapter 12 (pp. 111-117)

RELATED READINGS:
Booch Chapter 17 (pp. 312-322)
Booch(2) Chapter 15 (pp.318-335)

3 Lecture 041

Ada Exceptions

Exception

An error condition which may arise during
program execution and cause suspension of
normal program execution

Exception handler

A portion of program text specifying a response
to an exception

Allows program to recover from an error or, at a
minimum, print a meaningful error message and
terminate the program gracefully

Raising an exception

Brings the exception condition to the
programmer's attention

Causes transfer of control to an exception
handler

raise STACKOVERFLOW;

4 L41OH1

Predefined Exceptions

Predefined by the language sl. cation

Automatically reported or raised in Ada programs

Examples:

Numeric_error Attempt to divide by zero or
occurrence of numeric overflow on
a numeric operation such as
addition

Constraint error Attempt to violate some form of
constraint, including range
constraints, index constraints,
or discriminant constraints

Storageerror Insufficient storage available to
satisfy the run-time
requirements of a program

5 L41OH2

Exception Handlers

Specifies the exception to be handled and the action
to be taken for each exception

Only appear at the end of four different program
units:

A begin..end block
Body of a subprogram
Body of a package or generic unit
Body of a task

with TextlO; use TextO;
procedure EXCEPTION_DEMO is

X : Integer range 1.20;
begin
X := 43;
-- other statements

exception
when Constrainterror =>

Put ("Constraint Error Exception ");
when others =>

Put ("Other Exception ");
end EXCEPTIONDEMO;

6 L410H3

Exception Propagation

When an exception is raised in a unit that does not
define an exception handler for that exception,
execution of the unit is terminated and the exception
is propagated to a unit that does contain the
appropriate handler

How exception is propagated depends on where it
was raised

A begin..end block

Body of a subprogram

Body of a package

Body of a task

7 L41OH4

Example of Exception Propagation

with TextjlO; use Text-lO;

procedure EXCEPTDEMO is
procedure RAISEEXC is
begin

Put (" raiseexc");
raise Constraint_error;

end RAISE_EXC;

procedure HANDLEEXC Is
begin

Put (" handleexc");
RAISE.EXC;

exception
when Constrainterror ->

Put (" Constraint error caught'";
end HANDLEEXC;

begin
Put ("Exceptidemo: calling handle_exc");
HANDLEEXC;
Put ("Except-demo: back from handle_exc");

exception
when Constraint-error =>

Put ("Constraint error In ExcepLdemo");

end EXCEPTDEMO;

8 L410H5

Special Use of Raise Statement

Special form of raise statement can be used inside
an exception handler to re-raise the exception
currently being handled

begin
-- allocate some resource which shouldn't
-- be permanently allocated; causes exception

exception
when others =>

-- code might clean up resources that were
-- allocated in the enclosing unit
raise;

end;

9 L410H6

User-definod Exceptions

Programmers may define their own exceptions

Examples of exception declarations:
TABLEFULL : exception;
ILLEGALDATA : exception;
STACKOVERFLOW : exception;

Scope of exception name is same as scope of other
identifiers in a declaration

10 L41OH7

Example of User-defined Exception
with TextJO; use TextjO;
procedure SCOPEDEMO Is

E : exception;

procedure P Is
begin

raise E;
end P;

procedure Q Is
E : exception;

begin
P;

exception
when E =>

Put line ("Handler for Q.E");
end 0;

begin
0; - raise exception handler in 0
P; - raise exception handler below

exception
when E =>

Putline ("Handler for ScopeJDemo.E");
end SCOPE_DEMO;

11 L410H8

LECTURE NUMBER: 042

TOPIC(S) FOR LECTURE:
Sequential and direct files In Ada

INSTRUCTIONAL OBJECTIVE(Sh:

1. To leam the Ada features regarding sequential and direct files.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

When we first began looking at the syntax of Ada, we examined the
capabilities for files as provided in TextjlO. TextjO works on text files
which are treated as a stream of characters including end of line terminators,
end of page terminators, and end of file terminator.

(Learning Label- Today we are going to learn ...)

Today we are examining how Ada supports sequential and direct files.

CONTENTS:

1. Ada files

a. L420H1
Ada provides three packages for file services TextjlO which
supports text files, SequentlaljlO which supports sequential
files, and Direct 10 which supports direct access files.

b. Sequential_lO and DirectjlO are generic packages and, unlike
TEXTJO, must be instantiated. They provide the same data
type (Flle..Type) as TextlO and the same file modes.
DirectjlO also provides another file mode Inout file which
allows for a read-write file. Both files provide the same
procedures as TextlO for creating, deleting, opening, closing,
and resetting files.

c. L420H2
SequentlaUO creates a sequential binary file of the same
data type. Three additional subprograms are provided by this
package for the support of sequential files: Read, Write, and
End.ofjfile.

d. L420H3

1 Lecture 042

In DirectjlO, files are viewed as a set of elements occupying
consecutive positions. An element in the file can be randomly
accessed and updated by its index which indicates its position
in the file. The index numbering for a file starts at 1. An open
direct access file maintains a current index which is the index
of the component used in the next read or write operation. The
following additional subprograms are provided in Direct_10:
Read, Write, Set-Index, Index, Size, and End.ofFile

e. L420H4
The subprograms for reading and writing can work off the
current index or an index can be specified in the parameter list.
If an index is specified it becomes the current index. For both
operations, the current index is incremented by one after the
operation is done.

f. L420H5
Discuss the example of sequential I/O shown.

PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:

L42OH1 Ada files
L420H2 Sequential files
L42OH3 Direct-access files
L420H4 Direct-access files (cont.)
L42OH5 Example of usefulness of Sequential_10

handoutsi:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapter 10 (pp. 89-96)

RELATED READINGS:
Booch Chapter 19 (pp. 356-373)

2 Lecture U42

Ada FiR•s

Ada provides three packages for file services:

Text_10 A package providing support for
text files

SequentiallO A generic package providing
support for sequential files

DirectlO A generic package providing
support for direct-access files

Uses another file mode
InoutFile

3 L420H1

Sequential Files

Subprograms provided in Sequential_10:

procedure Read (File : in File_Type;
Item : out ElementType);

procedure Write (File : in File_Type;
Item : in ElementType);

function EndofFile (File : in File_Type)
return Boolean;

4 L420H2

Direct-Access Files

File is viewed as a set of elements occupying
consecutive positions; an element at arbitrary
position can be randomly accessed and updated
by its index

Numbering of index starts at 1

Subprograms provided in Direct_10:

procedure Read (File : in FileType;
Item : out Elementype);

procedure Read (File : in File_Type;
Item : out Elementype;
From : in PositiveCount);

procedure Write (File : in File_Type;
Item : in ElementType);

procedure Write (File : in File_Type;
Item :in Element_Type;
To :in PositiveCount);

5 L42OH3

Direct-Access Flies (cont.)

More subprograms provided in Direct_10:

procedure SetIndex (File : in File_Type;
To :in Positive_Count);

function Index (File :in Fileype)
return Positivecount;

function Size (File : in FileType)
return Count;

function End ofFile (File : in FileType)
return Boolean;

6 L42OH4

Example of Usefulness of Sequential_10

generic
type ITEM Is private;
with function "c" (LEFT, RIGHT : ITEM)

return Boolean is >;
procedure GENERICMERGESORT

(INPUTFILENAME,
OUTPUT_FILE_NAME : in String);

---------------------------- e-------ee ------------

with SequentialjlO;
procedure GENERICMERGESORT

(INPUTFILENAME,
OUTPUTFILE_NAME : in String) is

package ITEM_10 is new Sequential_10
(ITEM);

use ITEM_10;

-- rest of program

end GENERICMERGESORT;

7 L42OH5

LECTULE NJMEI: 043

T(PIC(Al FOR LEC.TM:l

tasks In Ada

1INSTRUCTIOA OBJECTIVE(a):

1. To learn the features of Ada tasks.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

L430H1 We have discussed several Ada program units. Tasks are another
type of Ada program unit. They provide parallel processing. We will find that
although they resemble packages, there are several significant differences
between tasks and packages.

(Learning Label- Today we are going to learn ...)

1. Ada tasks
L430H2
a. Tasks are the programming unit in Ada which provides parallel

processing; in other words, a task can be activated and
executed concurrently with other program units. A task is not
itself a compilation unit but must be declared within a
subprogram, package, or generic package. A task has a
specification and a body. A task is declared in the declarative
part of these programming units. A task Is activated when the
begin statement of its parent unit is reached. A task may be
called by any other programming unit.

b. A task can perform functions such as mutual exclusion and
synchronization, which had been limited to operating systems.

L430H3
c. The entry declaration In the task specification defines the

functions or services that the task provides. The entry
declaration Is similar to a subprogam declaration.

L430H4
d. The task body contains the accept statement which

corresponds to the entry In the specification.

Lecture 043

L43OHi5
e. A rendezvous is the meeting of the calling unit and called task

This is an indivisible action where the calling unit and called
task are locked together.

L430H6
f. The stages of the calling unit and called task are shown on

overheads L430H7.

g. Use the program in lecture 16 to reinforce what students have
learned about Ada.

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheds:
L430H1 Ada program units
L430H2 Ada tasks
L430H3 Task specification
L430H4 Task body
L430H5 Rendezvous
L430H6 Stages of a rendezvous (entry call first)
L430H7 Stages of a rendezvous (accept first)

handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Benjamin Chapter 11 (pp. 97-109)

RELATED READINGS:
Booch Chapter 16 (pp. 276-309)
Booch(2) Chapter 14 (pp.280-315)

2 Lecture 043

Ads Program Units

Procedures and functions

Packages

Tasks

3 L430H1

Ada Tasks

Ada program unit that can be activated and
executed concurrently with other program units

Allows certain capabilities previously performed
only by operating system to be performed in
language

Not a compilation unit; declared within a

subprogram, package, or generic package

Has specification and body

Aspects involved in a task:
Task entry
Entry call
Accept statement
Rendezvous

4 L43OH2

Task Specification

Defines interface which other (related) program
components use to interact with the task

Interface consists of task entry declarations
Like the subprogram declarations in a
package specification

Define functions or services that the task
provides

task SINGLETELLER is
entry DEPOSIT (ID : CUSTID;

VAL : MONEY;
STAT: out STATUS);

entry WITHDRAW (ID : CUSTID;
VAL :MONEY;
STAT : out STATUS);

entry BALANCE (ID : CUSTID;
VAL : out MONEY;
STAT : out STATUS);

end SINGLETELLER;
------ m- -------- - ------------S. . . .

-- entry call to above task
SINGLETELLER.DEPOSIT (ID, AMOUNT,
STAT);

5 L430H3

Task Body

task SINGLETELLER Is
function RANDOMTRANSACTIONTIME Is
begin

loop
select

accept DEPOSIT (ID :CUSTID;
VAL :MONEY;
STAT :out STATUS) do

BANKDATABASEUVERIFYCUSTID
(ID, VALID);

If not VALID then
STAT := BADCUST ID;

else
BANKDATABASE.DEPOSIT (ID, VAL);
STAT := SUCCESS;
end if;

end DEPOSIT;
or

accept WITHDRAW (...) do..end;
or

accept BALANCE (.)do..end;
end select;

end loop;
end SINGLETELLER;

6 L430H4

Rendezvous

Meeting of calling and called tasks

IndiMvsible action

Two tasks locked together; calling task waits while
called task executes; after called task completes,
both tasks proceed independently of each other

Achieves:
Synchronization
Exchange of information
Mutual exclusion

7 L430H5

Stages of a Rendevous
Entry CaH First

Cd

8 L430H6

Stage of a Rendezvous
Accept First

CA

9how

9 L430H7

LECTURE NUMBER: 046

TOPIC(S) FOR LECTURE:
Introduction to use cases

INSTRUCTIONAL OBJECTIVEM:

1. Understand Jacobson's concept of use cases and their use as an
anlysis, design, and test tool.

2. B able to develop use mses.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have discussed a number of ways to elicit requirements from the
customer and user. The ability for a software developer to consider multiple
viewpoints of the system and to consider a system from an external (to the
system) is crucial. The requirements for a system describe the desired
external behaviors of the system. A methodology has been developed
recently which emphasizes the external behavior of a system as it relates to
the system users.

(Learning Label- Today we are going to learn ...)
Today we're going to describe this method. It was developed by Jacobson
and is called the use case driven approach.

1. Introduce Jacobson's use case concept. Use cases are one part of
Jacobson's requirements model. The other components are a
problem domain object model and a user interface model.

Use cases are developed early so that the requirements, user
interface, and test teams can get another view of the system.

2. L460H1
a. Jacobson's use cIa model Involves actor and use cseu as

tools to identify/define what exists outside the system (actors)
and what should be performed by the system (use cases). The
actors include th users and user roles. Consider the Koff
system. Who are the actors?

(1) Customer (2) Operator (3) Owner

Contrast how these actors Interact with the system. Among
other things, the customer removes tapes and returns tapes;
the

Lecture 046

operator maintains the machine and stocks tapes; the owner
gets reports and determines rental and sale tapes.

b. Use cases represent what the users should be able to do with
the system. Each use case is a complete course of events
initiated by an actor and it specifies the interaction that takes
place between the actor and the system. Each time a user
uses the system, he/she will perform a behaviorally related
sequence of transactions in a dialogue with the system. Each
of these is a use case, or a scenarios. A detailed description
is written for each use case.

3. a. L460H2
Jacobson discusses a recycling system as a first example. The
system consists of a machine that accepts a variety of
recyclable materials deposited by a users. Once a user
deposits items, the machine generates a receipt based on the
items deposited.

b. L46OH3
The customer should be able to deposit items. This forms one
use case, Deposit Item. Discuss it.

c. L460H3
The operator should be able to get a daily report of what items
have been deposited. This is another use case, Generate
Daily Report. Discuss it.

4. L460H4
As requirements analysis continues and more information is
determined, the use cases will be described in more detail. Discuss
this elaboration of the Deposit Item use case.

5. Introduce the concept of "extends" with use cases. One use case can
be inasteLgdJint another, thus ending the other use case. This is
particularly useful in considering abnormal conditions.

L46OH5
Discuss Item Is Stuck as an example of this. Note that Deposit Item
is described completely independent of this new use case.

6. Work through a use case, called Withdraw Tape, for a customer
withdrawal of a rental tape in the Koff system. See if anyone notices
that a receipt is never issued to the customer. Discuss this oversight.

2 Lecture 046

7. Pick any of the use came examples and discuss IM cases that could
be developed for IL Point out tha the use cas approach has
applicatfion In both structured analysi anid.ojc-ine analyis.

teachr• method mnd media:

vocwu~ll 'inrodud:
use case
scenario
actor

INSTRUCTIONAL MATERIALS:overheads:

RELATED LEARNING ACTIVITIES:
(labs and exercises)
Lab 032 Code Inspections

READING ASSIGNMENTS:

RELATED READINGS:
Jacobson Chapter 7 (pp. 148-195)

3 Lecture 046

Jacobson's Use Case Model

Uses actors and use cases as tools to identify:

what exists outside the system (actors); and

what should be performed by the system (use
cases).

Each time a user uses the system, he/she will
perform a behaviorally related sequence of
transactions in a dialogue with the system. Each
of these is a use case, or a scenarios. A detailed
description is written for each use case.

4 L460H1

Deposit Item Use Case

Deposit Item is started by Customer when he/she
wants to return cans, plastic containers, or glass
containers. With each item that Customer places
in the recycling machine, the system will increase
the received number of items from Customer as
well as the daily total of this particular type. When
Customer has turned in all the items, he/she will
press the receipt button to get a receipt containing
a summary of the deposited items and the amount
due.

5 L460H2

Generate Daily Report Use Case

Generate Daily Report is started by Operator
when he/she wants to print out information about
the items deposited that day. The system will
print out how many of each deposit items have
been received this day, as well as the overall total
for the day. The total number will be reset to zero
to start a new daily report.

6 L46OH3

More Detailed Deposit Item Use Case

The course of events starts when the customer presses
the "start-button" on the customer panel.

The customer can now deposit items via the customer
panel. The sensors inform the system that an object
has been inserted. They also determine the size and
type of the deposit item and return these results to the
system.

The daily total for the deposited item is incremented, as
is the number of deposited items of that type from this
customer.

When the customer is finished depositing items, he/she
asks for a receipt by pressing the "receipt button" on the
customer panel.

The system compiles the information to be printed on
the receipt. For each type of deposit item, its return
value and the number of deposited items from this
customer is extracted.

The information is printed, with a new line for each
deposit item, by the receipt printer.

Finally, the grand total for all returned deposit items is
extracted by the system and printed out by the receipt
printer.

7 L460H4

Extending a Use Case

Item Is Stuck Use Case

Item Is Stuck is inserted into Deposit Item
when Customer deposits an item that gets
stuck in the recycling machine. Operator is
called and Customer cannot turn in more
items until Operator informs him/her that the
machin" cE.ý. be used again.

8 L460H5

LECTURE NUMBER: 047

TOPIC(S) FOR LECTURE:
Implementation languages

INSTRUCTIONAL OBJECTIVE(Sl:

1. Understand the factors involved in seleching a programming language.
2. Understand factors that affect the quality of source code.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

All of you have experience in several programming languages (Pascal from
CS-1 and CS-2, assembly language, and Ada in this class). Some of you
also know other languages (COBOL, C, FORTRAN).

(Learning Label- Today we are going to learn ...)

Today we're not going to look at any language in particular, but rather look
at some factors that should be considered in evaluating languages. As we
do this, think of the languages that you know and consider how aspects of
the language are supportive of software engineering principles and how other
aspects are not. You may have thought of a language strictly as an
implementation tool. This was likely the case in CS-1.

At this point, however, you should be able to look beyond that. For example,
Mynatt's detailed design checklist includes "Is the design appropriate for the
target programming language?" Similarly, in our discussions of your project,
the question of language support, i.e. how easily a design is implementable,
has come up.

CQNTENT.5

NOTE: This lecture is based on Mynatt's discussion of choosing a
programming language in section 5.7. She offers many good
examples and observations to support the ideas outlined here.

1. Ask students about the impact of language choice. Is the choice of
language important? Why?

Make sure student responses include significant impact the language
will have on such things as:
i Maintainability,
ii Coding and testing,
iii The amount of distortion between the implementation model

and the design model,

1 Lecture 047

iv the effectiveness of the personnel.

L470H1
Note that good code can be written in any language, even assembly
language, but it is much easier if the language itself actively supports
the production of efficient, reliable, maintainable software. Point out
that there are trade-offs involved and that no single language can
simultaneously achieve a high degree of success in each of these
areas. For example, Ada is highly maintainable but has low
performance in terms of execution speed until properly tuned. On the
other hand, C is difficult to maintain but has a high level of
performance in terms of execution speed.

Ask what is the "language of choice" currently? In terms of the
number of lines of code in existence and still being maintained, the
answer is COBOL; the vast majority of software world-wide is written
in COBOL.

2. L470H2 - Pragmatic factors in choosing a language.
Point out that the question of what language is going to be used to
implement a project does not even arise in many cases. Why?
Because more often than not the choice is dictated by the by the
customer or the organization or some standard, or something else
beyord t;ie particular project. What are some of these pragmatic
factors?

a. Dictated by client. The client wants it written in BASIC, or
COBOL, or Ada, for example. There are many reasons for
such a requirement by the client, including organizational or
sponsor standards that call for a particular language (e.g. DoD
and Ada), availability of compiler (and/or other software
development tools).

b. Existing expertise. Selecting a new language over one in
which the coders are experienced involves training. The
training needs to be sufficient to take advantage of the features
of the new language in order to have the language used
effectively.

Concerning the question of which language is "most suitable"
for a given project, work through Schach's example involving
the QQQ corporation (pages 340-341).

c. Language used in other projects, both previous and concurrent.
Cite DoD problems that led to development of Ada.

d. Concurrency

2 Lecture 047

3. L470H3
Language characteristics that can support efficient, reliable,
maintainable software. First ask class to list some characteristics.

a. Modularity - A language should support the partitioning of a
large product into modules. To do so it must support separate
compilation of modules.

Note Ada's compilation units (procedures, functions, packages,
generics, and tasks), each of which consists of two parts (the
specification and the body) which are themselves separately
compiled.

b. Power and suwabilty - Power refers to a language's ability to
carry out programming tasks simply an with little, ,ramming
effort. Power also is relative to the type of prculem being
solved. Different languages are suitable for different purposes.

c. Simplicity, clarity, orthogonality

Simplicity refers to the size of its vocabulary. Some
languages are so large that it is difficult to become
familiar with the entire language. This can result in a
tendency for subsets to be adopted which, in turn, leads
to incompatible subsets. Discuss Pascal as simple, PLI
and Ada as complex.

ii Clarity refers to how natural, meaningful, and
unambiguous the language is to the programmer. Some
languages are more machine/architecture oriented and
thus less problem oriented (and less clear).

iii Orthogonality of a language refers to its consistency in
allowing language features to be combined. It relates to
clarity and simplicity because lack of orthogonality
results in lots of special cases for the programmer to
remember. Examples include Pascal's restrictions on
reading/writing certain types.

d. Syntax - It is desirable that the syntax be simple, consistent,
and supportive of clear code. Examples include:
i method of indicating blocks (begin-end, etc). Note the

explicit keyword approach of some languages (if-endif)
versus the begin-end approach of others.

ii format of statements - can encourage or discourage use
of white space, indentation.

iii rules for identifier names - can encourage or discourage
use of meaningful Identifiers.

3 Lecture 047

B. Structured programming and control structures - An accepted
definition of structured programming Includes:
i selection and iteration control structures with controlled

goto (forward direction only, heavily restricted, perhaps
to exception handling);

ii one entry, one exit

A language should have a strong effective implementation of
the basic control structures.

f. Exception handling - Most programming languages do not
include facilities to detect and handle exceptions. This is a
serious defect.

g. L47OH4 - Typing
According to Sommerville, "it is essential that a high-level
programming language with strict typing be used for system
development. Achieving fault-free software is virtually
impossible if low-level programming languages with limited type
checking are used."

Discuss the "need to know" principle. This should be used to
control access to system data. Key to effective information
hiding Is a language's typing system. Cite Ada's use of private
types to ensure that the details of a data structure's
implementation is inaccessible beyond where it is defined.

h. L470H5 - Information hiding
Languages like Ada and C++ offer direct support for
information hiding. Refer to Sommerville section 15.1.2 for an
excellent discussion of data typing.

L470H6 - Procedural and data abstraction
According to Mynatt, a language should include these features

i Mechanisms for high-level encapsulation of procedural
abstractions and data abstractions.

ii Distinction between the specification of an abstraction
and the implementation of an abstraction.

iii Mechanisms to protect outside access to encapsulated
information.

iv Methods for importing modules from other sources.

j. Tools - structure editors, debuggers, programming
environments, package libraries

k. Maintenance

4 Lecture 047

I. Reuse (libraries, packages)

m. The level of a language's support for object-oriented
approaches (e.g., direct support for the definition of classes,
inheritance, encapsulation, wind messaging) is becoming
increasingly important.

Note the ongoing debate between proponents of Ada and C++. On
the Ada side, it has strong typing that leads to greater reliability and
maintainability and it is standardized which leads to true portability.
On the C++ side, it is object-oriented and that should lead to ease of
development and reuse.

4. L47OH7
Discuss the following factors affecting the quality of source code.

a. Use of structured coding techniques.

b. Good coding style.
i Shorter is simpler.
ii Fewer decisions is simpler.
iii Nested logic should be avoided.
iv Negative logic should be avoided.

c. Well-chosen local data structures.

d. L47OH3 - Well-written internal comments.
-. i Program headers.

ii Internal module headers.
iii Line comments.

e. Readable, consistent source code format and identifier naming.
i Vertical white space.
ii Horizontal white space (indentation).
iii Readability of comments (spelling, grammar, clarity)

f. Summarize the discussion by discussing how critical the
adoption of a written set of programming standards is to
enforcing quality code. Call attention to the Ada Quality and
ByI manual.

g. Point out also that well designed modules (highly cohesive,
loosely coupled) are easier to document. Ask why and discuss.

5 Lecture 047

teaching method and media:

yocabula[X Introduced:

structured programming
syntax
orthogonality

INSTRUCTIONAIL MATERIALS:

L470H1 Active support from implementation language
L470H2 Pragmatic factors in language selection
L470H3 Features language should/must support/possess - 1
L470H4 The case for strong typing
L470H5 Features language should/must support/possess - 2
L470H6 Mynatt: procedural and data abstraction
L470H7 Factors affecting quality of source code - 1
L470H8 Factors affecting quality of source code - 2
handouts:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Mynatt Chapter 5 (pp. 207-235)
Mynatt Chapter 6 (pp. 239-271)

RELATED READINGS:
Pressman Chapter16 (pp. 513-545)
Schach Chapter 11 (pp. 339-356, 369-381)
Schach Chapter 15 (pp. 469-489)

6 Lecture 047

Active Support From
Implementation Language

Good code can be written in any language, even
assembly language.

BUT, it is much easier and more likely if the
language itself actively supports the production of
efficient, reliable, maintainable software.

7 L470H1

Pragmatic FaCtors In RM Seectin

Dictated by client

Existing expertise/experience

Language used in other projects

Concurrency

8 L47OH2

Features Language
Should/MustSupport/Possess- 1

Modularity The partitioning of a large product into
modules

Power and suitability

Simplicity, clarity, orthogonality

Simple, consistent syntax; supportive of clear code
includes:

Method of indicating blocks
Statements format
Rules for identifier names

Stiuctured programming

Exception handling

Strong typing

9 L470H3

The Case For Strong Typing

"... it is essential that a high-level programming
language with strict typing be used for system
development. Achieving fault-free software is
virtually impossible if low-level programming
languages with limited type checking are used."

Sommerville

10 L470H4

Features language

Should/Must Support/Poea.ss 2

Information hiding

Procedural and data abstraction

Tools

Maintenance

Reuse (libraries, packages)

Support for object-oriented approaches

11 L47OH5

Mynatt: Procedural and Data Abstraction

To adequately support procedural and data
abstraction, a language should include:

Mechanisms for high-level encapsulation of
procedural abstractions and data abstractions.

Distinction between the specification of an
abstraction and the implementation of an
abstraction.

Mechanisms to protect outside access to
encapsulated information.

Methods for importing modules from other
sources.

L470H6

12

Factors Affecting Quality of Source Code m1

Use of structured coding techniques

Good coding style.

Shorter is simpler.

Fewer decisions are simpler.

Nested logic should be avoided.

Negative logic should be avoided.

Well-chosen local data structures.

13 L47OH7

Factors Affecting Ouality of Source Code- 2

Well-written internal comments.

Program headers.

Internal module headers.

Line comments.

Readable, consistent source code format and

identifier naming.

Vertical white space.

Horizontal white space (indentation).

Readability of comments (spelling, grammar,
clarity)

14 L47OH8

LECTURE NUMBER: 048

TOPICQfB) FOR LECTURE:
Scheduling sofware -c
Work brekdown structures
Network Schelnt Techkques
Introduction to Estimation techniques

INSTRUCTIONAL MBECTIVE(a):

1. Un nd nmilestones
2. Recognize the elemnts of a work breakdown structure
3. Be able to develop a PERT chart
4. Understand sltck time and critical paths

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

At this point, you have all participated In all aspects of the software
development process and have experienced some of the difficulties with it.
You are not alone in this. Show GAO overhead L480H1. Note that almost
50% of the contracted software was not used. The goals of software
engineering can be described as delivering the right product, on-time and
within budget. Meeting these goals requires a plan, generally called a
software project management plan (SPMP).

(Learning Label- Today we are going to learn ...)

We have provided a basic SPMP for each of your projects. Today we are
going to look at how to develop and read SPMPs. We will also see a
special notation used for SPMPs.

CON -.T.S:

1. There are several unique elements in software that make the
development of software projects more difficult than the development
of hardware object Many ators recognize that the are significant
differences between hardware and software that make the
development task for each type of product very different. Review the
differences mentioned on L48OH2.

a. Reuse is aided by common Interfaces, many of which have
been legislated by engineering societies, e.g., the standard
electrioca plug.

Lecture 048

b. The difference in the tangible nature makes it more difficult to
track the progress of the development of software. Hardware
tends to conform to well know physical laws. Even in those
cases where we do not understand the laws, hardware can be
experientially tested, e.g. a scientist grows cracks in airplane
wings by subjecting them to specific stresses and then recalls
those planes which have undergone similar stress.

c. A significant difference between hardware and software is the
phase in the development process where errors get introduced.
Most hardware errors get introduced in the manufacturing
process, while most software errors get introduced in the
analysis and design process.

2. Software project management begins with the completion of the
requirements. The task needs to be defined before a plan can be
made. Discuss the basic steps in the development of a plan.
Emphasize that even the SPMP is subject to revision. Requirements
are input to the SPMP. L480H3

L48OH4
3. Divide up the task- people have used the term mniestones to indicate

major points at which a project should be tracked. We know some
major divisions for a software development project. These milestones
have been associated with major project deliverables which are clearly
defined, e.g., 2167a has a series of clearly defined document
deliverables. When dealing with relatively small projects this division
of the system is adequate. However when we are talking about
programming in the large and large projects such as the
environmental control software for the space lab, there is too much
time between these milestones to adequately track a project. There
are years between these milestones. Another way to handle this
problem is to break the major milestones down into smaller, but still
discrete and measurable units of work- sometimes referred to as "inch
pebbles". The smaller the degree of granularity --the time required to
complete one of these task-- the more accurate the scheduling
estimates tends to be.

The milestones and inch pebbles are discrete events that mark the
completion of events. These are distinguished from activities that take
place over time. Milestones are completions of these project activities.
Activities have beginnings and ends and have duration, while
milestones are points in time.

2 Lecture 048

L48OH5
4. We can divide the system up into its larger phases and for each

phase that takes longer than our desired granularity we can further
subdivide the task. The results of this process are called work
breakdown structures (WBS) or discrete pieces of work. Within a
computer system work breakdown structures are very detailed and
include such items as:a description of the task, who is responsible for
the task, what resources are needed to accomplish the task, etc.

5. Let us do a preliminary work breakdown list for building a skyscraper.
Ask the students to name the tasks in building a skyscraper. List
these randomly on the chalkboard. This kind of list does not show
interdependence of WBS tasks. Show L480H6 overhead as your
preliminary list and explain the need for each item. Return to this
overd after you have worked through a PERT chart. Ask them to
identify which events have to be done in sequence and which events
can be done concurrently. One way to display these relationships is
to place the WBS activities on an graph called a vertex activity graph-
the activities occur at the vertices. This was formalized as a method
by the Polaris project and the method is called Performance and
Evaluation Review Technique (PERT).

We can impose an ordering on the WBS list in terms of what things
have to be completed before others and what is our estimate of their
duration. Show activity list L480H7. This shows the dependencies
for each task in the prerequisite column and the duration of each task
in the time column.

L480H8
6. PERT charts-There are many ways to develop PERT charts. One

way is to view an activity as a set of parameters consisting of the
WBS #, the earliest possible start date for that activity, the latest
possible start date, and the estimated duration of the task. The lines
entering a graph node or activity represent those task which must be
completed before the activity in that node can be started.

L48OH9a is a skeleton PERT chart to use as an example. L48OH9b
is a completed PERT chart for this example.Begin to develop the
PERT chart on the board. Fill in all of the parameters and then point
out those places where there is no difference between the earliest
possible and the latest start time.

L480H10
7. Introduce Critical Path Method as an important function of activity

networks. Define the critical path and slack time. Discuss how any
delay in critical path elements will delay the schedule. Describe how

3 Lecture 048

this process indicates how long it will take to complete a project.

L48OH1 1 Summarize the definitions and discuss this overhead.

8. False safety factor- Sometimes we think that the way to meet the
schedule determined by a PERT chart is to just add some time. For
example, Sommerville pg 503 "increase the estimate to cover
anticipated problems and add a contingency factor to cover
unanticipated problems." However studies have shown that this is not
an effective technique. Adding time to a schedule actually makes a
project take longer and the same unexpected surprises occur later in
the project.

9. Once a PERT chart and its accompanying schedule are done. The
schedule should immediately be reviewed for those typical items that
impact a schedule but are often forgotten. How will the vacation
schedule impact the availability of personnel? How long will it take to
train the staff on the new system or CASE tools? What other projects
are planned such as migrating to a new operating system in the
middle of your project? These will all negatively impact the project
schedule. What is the budget cycle of the external agency. Many of
those government projects which were not delivered were funded in
September but were not re-funded in October, the beginning of the
federal governments fiscal year.

10. Discuss the two standards for SPMPs on L48HD1 and L48HD2.

PROCEDURE:
teaching method and media:

vocabulary introduced:

activity networks
CPM
risk analysis
PERT
slack time
critical paths
milestones
work breakdown structures

INSTRUCTIONAL MATERIALS:
overheads:
L480H1 GAO survey of software contracted for by government
L480H2 Hardware vs. software development

4 Lecture 048

L480H3 The software project management life cycle
L48OH4 Milestones vs. Inch pebbles
L480H5 Work breakdown structure
L48OH6 Planning Exercise
L48OH7 Activity dependencies - tasks, time, and prerequisites
L480H8 Contents of the graph node
L480H9a Pert chart Outline
L48OHOb Pert chart Completed
L48OH10 Critical path method
L48OH11 I Critical path definition

handlouts:
L48HD1 IEEE project plan outline
L48HD2 NASA project plan

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
Sommerville Chapter 25 (pp. 477-492)
Sommerville Chapter 26 (pp. 495-507)

RELATED READINGS:
Ghezzi Chapter 8 (pp. 415-440)

5 Lecture 048

GAO Survey of Software
Procured by Government

Category Amount Percent
(millions)

Used as delivered $0.119 1.75%
Used after changes $0.198 2.91%
Used but reworked or
later abandoned $1.3 19.12%
Paid for but not
delivered $1.95 28.68%
Delivered but NEVER
successfully used $3.2 47.05%
Total cost of
software surveyed $6.8 100%

6 L48OH1

Hardware versus Software Development

Reusable Parts

Tangible

Physical laws

Experiential standards

Source of problems

In development

In maintenance

Testing Standards

7 L48OH2

The Software Project Management Life Cycle

1. Prepare the SPMP
1. Examine the functional and non-

functional requirements
2. Divide the project up into

understandable units and required
deliverables

3. Review the items in 2. and add to
them the derived deliverables

4. Build work breakdown structures for
each major task

5. Develop an activity network for the
project schedule.

6. Develop an SPMP

11 Execute the SPMP
1. Start activities according to the

schedule
2. Frequently monitor the project

schedule
3. Modify the SPMP or internal subplans

as needed.

8 L48OH3

Milestones Versus Inch Pebbles

2167a

Requirements Specification Review

Preliminary Design Review

Detailed Design Review

Code and Test

System Test

Acceptance Test

Inch Pebbles

Activities versus Events

9 L480H4

Work Breskdown Structure

Task name or ID: (critical path ?)
Description of task:
Dependencies:(Predecessors)
Project members:(skills needed)

Duration: Start Date: End Date:

Resources Required:
Entry Criteria:
Completion Criteria:
Responsible Staff member:

Acceptance Criteria:
Exit Criteria:

Sign-off person:

Task deliverables:
validation complete date-
documents complete date-
reviewed date-
CMS date_

Risks:

Risk Plan:

10 L480H5

Planning Exercise

Project: Build a skyscraper:

Tasks: (WBSs)

Fence off site
Erect Workshops
Dig foundation
Install on-site concrete plant
Bend reinforcing rod
Fabricate steel work
Paint steel work
Place reinforcements
Pour foundation
Erect steel work
Place a tree

11 L48OH6

Activity Dependencles

Project Build a building:

Tasks Time Prereq.

1 Fence off site 2 0
2 Erect Workshops 4 1
3 Dig foundation 6 1
4 Install on-site

concrete plant 4 1
5 Bend reinforcing rod 3 2
6 Fabricate steel work 7 2
7 Paint steel work 3 6
8 Place reinforcements 5 3,5
9 Pour foundation 8 4,8
10 Erect steel work 10 9,7
11 Place a tree 0 10

12 L48OH7

Contunit of the Graph node

JD=-

L u

WBS task id number

EST (earliest start time) = Max{pred(TIME) +
pred(EST))

Iinme= anticipated duration
of this activity

LSI(latest start time)= Min {succ(LST)-
TIME)

13 L480H6

Examle Peon Chant Outlne

r4 9

14 L480H•a

(I r/- 912

16 6

CrIIcal Path Method (OPM)

latime = LST- EST;

Qriticaloath = path whose slack time =0.

Jime to complete prA c

= sum of (max of (EST (PRED Time) + TIME)

16 L40HI10

Critical Path Definition

The critical path is the longest path through
the network in terms of the total duration of
tasks

In complicated projects many "near
critical" tasks and paths may exist

Delays in a non-critical path task may
result in a new critical path

Lengthening the critical path lengthens the
project

Questions Answered by Critical Path Analysis

What is the minimum elapsed time to
complete the project?

What tasks determine whether the project
is completed in the minimum time?

What is the latest time we can start a
particular activity without impacting the
overall finish time?

17 L480H11

IEEE Projec Plan Outllrm (1):

Title Page
Revision Sheet
Preface
Table of Contents
Ust of Figures
List of Tables

1. Introduction
1.1 Project Overview
1.2 Project Deliverables
1.3 Evolution of the SPMP
1.4 Reference materials
1.5 Definitions and Acronyms

2. Project Organization
2.1 Process Model
2.2 Organizational Structure
2.3 Organizational Interfaces
2.4 Project Responsibilities

18 L48HD1

IEEE Pr-etPlan Outlrne (2):

3. Managerial Process
3.1 Management Objectives

and Priorities
3.2 Assumptions, Dependencies,

and Constraints
3.3 Risk Management
3.4 Monitoring and Controlling

Mechanisms
3.5 Staffing Plan

4. Technical Process
4.1 Methods, Tools, and Techniques
4.2 Software Documentation
4.3 Project Support Functions

5. Work Elements, Schedule, and Budget
5.1 Work Packages
5.2 Dependencies
5.3 Resource Requirements
5.4 Budget and Resource Allocation
5.5 Schedule

Additional Components
Index (optional)
Appendices (optional)

19 L48HD1

"NASA-Sf w-i -Ad
1.0 Introduction

1.1 Identification
1.2 Scope
1.3 Purpose
1.4 Organization
1.5 Objectives
1.6 Program Constraints
1.7 Program Software Schedules
1.8 Program Controls

2.0 Applicable Documents
2.1 Reference Documents
2.2 Information Documents
2.3 Parent Documentation

3.0 Resources & Organization
3.1 Project Resources

3.1.1 Contractor Facilities
3.1.2 Government Furnished

Equipment, Software & Services
3.1.3 Personnel

3.2 Responsibilities
3.3 Panels

3.3.1 Review Panels
3.3.2 Advisory Panels

3.4 Software Development
3.4.1 Organizational Structure

Software Development

NASA-Sfw-DID-Ad

20 L48HD2

3.4.2 Personnel - Software
Development

3.4.3 Resources - Software
Development

3.4.4 Software Development Tools,
Techniques, Methodologies

3.4.5 Software Environment Section

4.0 Life-Cycle Management
4.1 Concept and Project Definition
4.2 Software initiation
4.3 Software Requirements Definition
4.4 Software Preliminary Design
4.5 Software Detailed Design
4.6 Software Implementation
4.7 Software and System Integration and

Testing
4.8 Software Acceptance Testing
4.9 Sustaining Engineering

21 L48HD2

5.0 Management Controls
5.1 Engineering Master Schedules and Risk

Management
5.1.1 Activities
5.1.2 Activity Network

5.2 Engineering Master Schedule Reviews
and Reporting Policies

5.3 Risk Management
5.3.1 High Risk Areas
5.3.2 Technology Risks
5.3.3 Disaster Risks and Recovery

5.4 Status and Problem Reports

22 L48HD2

6.0 Software Support Environment
6.1 Software Development
6.2 Software Acquisition
6.3 Software Integration
6.4 Operation and Maintenance
6.5 Software Tools

7.0 Software Product Assurance
7.1 Software Configuration Management
7.2 Software Independent Verification and

Validation
7.3 Software Security
7.4 Software Product Assurance
7.5 Software Interface Definition and Control
7.6 Waivers to SPMP Policies and

Procedures
7.6.1 Permanent Waivers
7.6.2 Temporary Waivers
7.6.3 Tool and Testbed Waivers

8.0 Notes
9.0 Appendices
10.0 Glossary

23 L48HD2

LECTUREQNUMBER09

TOP&W)S FOR LECTURE:

COCOMO
Lines of code estimation techniques
Function Points and lines of code

INSTRUCTIONAL OBLJECTIVE(S:

1. Use COCOMO equations
2. Do a function point analysis
3. Develop other function point metrics

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have seen the difficulties that arises in trying to correctly schedule a
software project and the allocation of resources needed for Its development.
These resources have to be paid for. Most of us want to know how much
something is going to cost before we order it. Software is no different. We
would like to know how much we are going to pay for software before we
purchase it. This Is no problem for packaged software; we simply look at the
price on the box, but how do we determine the cost of software which has
not yet been developed or even been thought of before. What do you say
when the president of the United States tells you she/he wants a system that
will let everyone vote in federal elections from their homes and asks you how
much will ft cost to develop a "Home Voting and tabulating system"? How
can you determine what it would cost to develop the project you have just
completed?

(Leaming Label- Today we are going to learn ...)

There are reasonable ways to approach this problem of estimating the cost
of developing software. Today we shal look at two of them - The
Constructive Cost Model (COCOMO) and Function Point Analysis.

1. COCOMO Is a series of formulae which, using an estimate of the total
number of lines needed for the product, produces: cost estimates,
scheduling estimates and manpower requirements for each phase of
the life cycle.

L490H1I
2. Describe the origin of COCOMO in a business environment and

describe how it was empirically derived. This Is important to follow up

1 Lecture 049

on so that the students understand that COCOMO and most other
estimation techniques can be empirically calibrated for better
accuracy. Although it does not presuppoe a perfect environment,
COCOMO makes several assumptions about the development
environment of the project being estimated. Review these
presumptions.

3. COCOMO does not make the mistake of presuming that all estimates
start from the same point. Sometimes a rather quick estimate is
needed based on relatively little detail. This is a Basic estimate.
Discuss the intermediate level of detail used for an estimate and use
this as an opportunity to discuss the different project cost drivers used
for an intermediate estimate. The students find it easy to understand
how slow turn around time and high reliability requirements impact
software development time. Time discussing the cost drivers is well-
spent.

4. After the discussion of cost drivers it is easy for the students to
understand the impact of the different development environments.
These environments represent a scale of difficulty. The software
development process is more stable and easier to understand and
control in an organic environment.

a. The organic environment is characterized by a thorough
understanding of the product and product objectives, extensive
experience with related systems, limited pre-defined
requirements, limited commitment to externally defined
interfaces, minimal need for innovation and a low need for an
early completion date.

b. You should plead Ignorance about the origin of the label "semi-
detached". The semi-detached development environment is
between the organic and the embedded environment. The
semi-detached environment requires considerable
understanding of project objectives, experience with related
systems, need to meet predefined requirements, and need for
conformance to external interfaces. It also involves some
concurrently developed hardware and some need for
innovation.

c. Embedded development must meet predefined requirements
conform to external interfaces and requires concurrently
developed hardware. It also requires considerable innovation
and has a high need for early completion.

2 Lecture 049

L49OH2
5. Discuss COCOMO as almost a single driver estimation tool which

provides equations for each development environment and the only
variable is delivered source instructions(DSI). Put off any discussion
for awhile about how you derive the number of DSI. Work through
each of the person-month equations. Carefully distinguish between
the person months (or effort required) and the time to develop(TDEV)
the software or the period of time in which that effort can be
squeezed. Go through the TDEV equations.

6. Other results- show that it is relatively easy to determine the average
number of personnel needed during the life of the project -PM/TDEV-
but that this does not tell you how many people you need during any
particular phase. Introduce the Rayleigh Curve here as a mean of
determining how many people you need for each phase of the life
cycle.

7. An example of how to calibrate COCOMO is given in the Ada
modifications to COCOMO which were also done by Barry Boehm.
L49OH3

8. a major criticism of COCOMO is that it is difficult to initially estimate
line of code before a system is actually written. Function points is one
way to determine DSI. When you introduce function points (FP) be
sure to emphasize that FP is a dimensionless number. It does not
really count "FUNCTIONS'.
a. Go over the general FP equation. Then discuss how they

derive the sum of functional factors.

L49OH5
b. Show the chart indicating how to adjust the complexity of the

function points and derive a total L49OH4. This provides
some discrimination among type of inputs and outputs which is
based on complexity.

L49OH6
c. Then show the chart t, degrees of influence and weighting

factors L49OH7.

d. Work through a set of numbers and arrive at a FP. Ask the
student what this number represents. They will have trouble
coming up with an answer. Make clear that this is a number
that can be used to compare software projects if the same

3 Lecture 049

mechanism used on both projects to derive function points.

L490H8
8. Uses of Function points- They can be used as a productivity measure

or a quality test. We started to look at function points as a way to
determine the lines of code that a system might have before the code
was even written. Using past experience we have determined that the
lines of code that it takes per function point varies from language to
language. A correlation between function points and lines of code, for
one development environment, is shown. If it is estimated that a
project will take 200 function points and it is being written in Ada then
it will take approximately 14400 lines of code. This lines of code
approximation can be used in the COCOMO equations.

9. Emphasize that these numbers are approximations and are different
for different development environments. But these values can be
calibrated for any consistent development environment.

PROCEDURE:
teaching method and media:

vocabulary introduced:
COCOMO
Person-month equations
Time of development equations
Function points
Weighting factors
Degrees of influence

INSTRUCTIONAL MATERIALS:
overheads:
L490H1 COCOMO
L49OH2 COCOMO equations
L49OH3 Ada modifications to basic COCOMO
L490H4 How to determine code size
L490H5 Functional point counting
L49OH6 Degrees of influence
L49OH7 Weighting factors
L49OH8 Additional function point metrics

handouts:

4 Lecture 049

RELATMD LEw. NIlAC/TT ES:
Pabs and exeroises)

Lab 037 - Function Points

RAIMING UENTi:
SoMmv Chapter 27 (pp. 511-533)
Mynatt Chapter I (pp. 17-27)

BELATED READINGS:
Ghezzi Chapter 8 (pp. 415-433)
Pressman Chapter 3 (pp. 83-89)
Schach Chapter 8 (pp. 212-215)

5 Lecture 049

COCOMO

Assumptions of the Basic COCOMO Model:
Requirements
Low volatility
Good S.E. practice
Good management

Three levels of detail:

Basic -

Intermediate -

Detailed -

Three development environments:

Organic -

Semi-detached -

Embedded -

DSI:
Delivered
Source
Instructions

6 L49OH1

COCOMO Equations

COCOMO Person-month Equations:

Organic: PM = 2.4 * KDSI1'"5

Semi-detached: PM = 3.0 * KDSI1' 12

Embedded: PM = 3.6 * KDSI120

COCOMO Time of Development Equations:

Organic: TDEV = 2.5 * (PM) 0°'

Semi-detached:TDEV = 2.5 * (PM)°'

Embedded: TDEV = 2.5 * (PM)0.32

Full-time Software Personnel = PM/TDEV

Work distribution:

7 L49OH2

Ads ModIfications to Bsic COCOMO

Assumes smaller teams initially

Longer design period

PM = 2.8 * KDSI1"4

TDEV = 3 *PM°'-z

PM for PD, DD, CUT, IT =
PM * (.23, .29, .22, .26)

TDEV for PD, DD, CUT, IT =
TDEV * (.39, .25, .15, .21)

8 L49OH3

How To Determine Code Size

Function Points =

Sum of Functional Factors *
[0.65 = 0.01 * Sum of Weighting Factors]

Five Functional Factors
Number of user inputs
Number of user outputs
Number of user inquiries
Number of files
Number of external interfaces

9 L490H4

--- t lntrsll Size of Task-,
(For Productivity Studies)

Information Technical Environmental
Processing Complexity Factors

Size Adjustment

" Inputs X a Batch vs on-line X * Project
" Outputs a Performance management/Risk
"U Etc. m Ease of use E People skills, etc.

U Methods, Tools,
_ __ Languages

(r~-otal Sh OfT2-.,

Unadjusted Functional Point Counting

Level of Information Processing Function

Description Simple Average Complex Total

External x 3 = x 4 = x 6 =
input

External x 4 = x 5 = x 7 -
output

Logical x 7 = x 10= x 15 =
internal file

Ext. interface x 5 = x 7= x 10 =
file

External x 3 = x 4= x 6 =
Inquiry

Total
unadjusted
function
points

10 L490H5

Technical Complexity Factor

ID Characteristic DI ID Characteristic DI

C1 Data communications C8 On-line update

C2 Distributed functions C9 Complex processing

C3 Performance C10 Re-usability

C4 Heavily used configuration C11 Installation ease

C5 Transaction rate C12 Operational ease

C6 On-line data entry 013 Multiple sites
C7 End user efficiency C 14 Facilitate change

Total degree of
influence

TCF = 0.65 +0.01'l x (Total Degree of Influence)

TCF - Technical DI Values
complexity
factor

DI - Degree of Not present
influence or no influence = 0

FP - Function points Insignificant influence = 1

UFP - Unadjusted Moderate influence = 2
function points

Average influence = 3

Significant influence = 4

Strong influence,
throughout = 5

Thus each degree of influence is worth 1 percent of a TCF which can range from

0.65 to 1.35.

The intrinsic relative system size in Function Points is computed from

FP's = UFP's X TCF

Function points are therefore dimensionless numbers on an arbitrary scale.

11 L49OH6

Weighting Factors

Does the system require reliable backup and
recovery?

Are data communications required?

Are there distributed processing functions?

Is performance critical?

Will the system run in an existing, heavily
utilized operational environment?

Does the system require on-line data entry?

Does the on-line data entry require the input
transaction to be built over multiple screens or
operations?

Are conversion and installation included in the
design?

Is the system designed for multiple
installations in different organizations?

Is the application designed to facilitate change
and ease of use by the user?

12 L49OH7

Additional Function Point Metrics:

Productivity = Function Points/ Person-Months

Quality = Errors/Function Point

Cost = $/Function points

Documentation = Pages/Function Point

Correlations between function points and lines of
code:

Basic assembler 360
Macro assembler 213
C 128
COBOL 105
FORTRAN 105
Pascal 80
Ada 72
Basic 64
4GL 25

13 L49OH8

LECTURE NUMBER:050

TOPIC(S) FOR LECTURE:
Assessment of projects

INSTRUCTIONAL BJECTIE:
(indicate learner behavior expected or learning outcome)

1. Encourage students to compare different development metoologles
2. Encourage students to compare different development environments
3. Review significance of each phase of the development life-cycle

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

We have completed work on several different types of projects, using
different methodologies and team organizations. Each of these differences
impact not only the final product developed but also the process of
development.

(Learning Label- Today we are going to learn ...)

Now that you have completed the project work for this course. We should
take some time to re-examine some of the processes we have been through.

1. Introduce a series of discussions on the various methodologies.
Project I employed a structured methodology, while project 2 used an
object-oriented methodology. Would an object-oriented(O-0)
methodology have been better for project 1? Try to direct the
discussion away from the questions of how hard it would be to learn
object-oriented methodologies quickly and direct the discussion to the
appropriateness of the 0-0 methodology. Get them to articulate the
difference between the methodologies.

2. The projects differed in terms of structure and the communications
required. Discuss whether the structure imposed on the extended
project should have been used on the small project as well. This
opens a good discussion on the positive and negative impacts of
controlling disciplines- CM, SQA, V & V. At some point they will start
to talk about the problems of team interactions. Direct this to an issue
of the importance of good team communication and away from
question of conflicting personalities.

3. Questions of effective intra-team communications can be discussed

here along with the importance of clear and baselined documents.

1 Lecture 050

This can be used to review each stage of the life cycle.

4. An assessment which we used In a previous class Is Incuded as
Instructor notes. The questions we ased can be used to develop you
own assessment questions.

teaching method and media:

yocabulga introduced:

INSTRUCTIONAL MATERIALS:

RELATED LEARNING ACTIVITIES:
(labs and exercises)

READING ASSIGNMENTS:
None

RELATED READINGS:
None

2 Lecture 050

Instructor Notes

Software Engineering Survey

In an effort to improve the structure of this course and the quality of its instruction
we ask that you complete this survey. We value your judgements. Your thoughtful
responses will significantly add to the quality of this course.

This questionnaire is a significant portion of the final examination. You will get
FULL credit for this question simply by giving us your thoughtful responses.

A PROJECT 1 (Small project names)

The purpose of project 1 was to give you a rapid introduction to software
engineering and to let you quickly experience the entire software lifecycle by taking
a small project from requirements through implementation.

1. Were these projects appropriate for this purpose?

2. The team organization used for this project is called a democratic team. Did
this organization help or hinder your progress on the project.

3. Would it have helped to have one or more of the teachers present at some
of your team meetings?

4. How did you keep track of what tasks had to be done and whether they were
done?

B PROJECT 2 (Extended project name)
In this project we used a "matrix model" of team organization.

1. Did the experience of working on several different teams during the project
help you better appreciate the additional problems in developing more
complex software? Did you find it a helpful experience to work on several
teams? (In the matrix structure you switched teams several times. How did
you feel about that?)

2. Unlike project one, here you had to interact with other teams. What did you
think of this experience?

3. One of the modifications we are considering for future use is the
establishment of a "tools team" that would learn all the CASE software tools
and provide training and on-going help in the use of the tools. What do you
think about this idea?

3 Lecture 050

4. Another modification we are considering for future use is the establishment
of a "user interface team" that would be responsible for the user manual and
the design of the user interface. What do you think about this idea?

5. Can you think of any other teams that might be helpful?

6. In this project we introduced configuration management. In what ways did
this help your work on the project? How might it be improved?

7. How did the use of object-oriented design help on this project?

8. There were two different software project management plans provided to you
for this project. Was the more detailed plan (inch pebbles) more help to you?

9. Some people say it is very hard to shift from a structured analysis model
(DFDs, Context Diagrams, data dictionary, process specifications) to an
object-oriented model.

a. How did the requirements list and the structured analysis model help
you to make the transition?

b. How did our discussion of Ada and our explanations of the object-
oriented model help you make this transition?

C REVIEWS

1. We required a number of reviews (requirements, preliminary design, test
plan...) as the projects were developing.

a. List what you consider the major strengths of the in-class reviews.

b. List what you consider the major weaknesses of the in-class reviews.

c. How could we respond to these weaknesses?

2. We required that each team member take part in these reviews. How did
this help you?

3. We are thinking of assigning some students who were not part of the team
as reviewers for each presentation. How do you think this might improve the
review process?

4 Lecture 050

D TEAMS

1. In project one we used a democratic team, in project two a matrix
organization, and in the maintenance exercises a chief-coordinator
organization. Which structure did you find the most productive? Which
structure did you find the most comfortable?

2. We assigned students to teams based in part on student input. How do you
think we should assign students to teams?

E Ada

1. Was it helpful to implement the large project in a new language? (Try to
separate your answer from the question of the adequacy of our current Ada
environment)

2. Did the use of Ada help you see the application of software engineering
principles in specifications? In design?

3. Ada was gradually integrated into this course; first by showing specification
examples and then by showing program segments. We read through code
in class. We revisited Ada code several times in increasing depth. Was this
technique (called program reading) a helpful way to introduce Ada as
opposed to simply studying syntax?

F EVALUATION

1. Please comment on the peer evaluation process used in assessing the
projects.

2. Were the examinations fair and did they adequately cover the material? How
would you like to change the structure and content of these tests.

3. Can you think of any other ways we might use to improve our evaluation of
your work in the course?

4. We gave a variety of feedback as the projects progressed: first draft reviews,
review evaluations, meetings with customers or users etc. Was this
adequate and helpful? Were there some other things we could have done
to help your team's progress.

5. Were the software project management plans for the projects adequate?

5 Lecture 050

G OVERALL COURSE APPROACH

1. This course involved three professors. How was this helpful and how was
it not helpful? Would you like to see other classes *team-taught?

2. One of the major goals of this course was to give you experience in a real
world software development environment functioning in a variety of roles and
working with a variety of people.

a. Do you think that the course adequately reflected the real world?
b.. Do you feel that this course helped prepare you for working in an

industrial environment?
c. How would you modify the types and the number of software projects

to help accomplish this goal.

3. In our spiral" approach we briefly introduced a subject in one lecture, then in
later lectures we provided additional detail. In some cases subjects were
revisited several times, each in increasing depth, e.g., testing, design, or
configuration management. Do you think this approach helped in building
your understanding?

4. The spiral approach was also used in the projects. Did this approach help?
For example, would the extended project have been harder for you to do if
you had not first done a smaller project?

5. Was the coordination of the lecture, projects, and readings effective?

6. List what you consider the major strengths of this course

7. List what you consider the major weaknesses of this course
8. How might we still meet our goals and respond to these weaknesses?

H TEXTBOOKS

1. Comment on the value of the Sommerville textbook to the course.

2. Comment on the value of the Mynatt textbook to the course.

3. Comment on the value of the Benjamin textbook to the course.

If there is anything else you want to comment on, then please do?

6 Lecture 050

ReIl-World Software Engineerng
in LABS

a. Laborstory MeslUns.

Stuctured labs are utiized throughout the course. By structured labs w mean mestings
held at the same time as regul class meetings and during which the instructor was
present providing guidance and support for the studeWt' effors, particularly team eftrls.

Laboratories are utilized for a variety of activities, most of whdch are directly related to the
team projects. They provide opportunities for student teams to meet, for instructor
Interaction with teams, and for customer or user interaction with teams. Lab activities
Included organizatonal Meetings, Customer requests, distribution and discUssion of project
materials (e.g. software project managemetM plan, meetin rport templates, presentation
guidelines and assment forms), structured exercises on methods and tools, feedback
to teams on deliverables and presentations, formal reviews, code Inspections, and
"steering" of teams where necessary.

The amount of faculty direction varies from lab to lab. Some labs consist of exercises
where the student interacts directly with the instructor. Some labs are used to
demonstrate a CASE tool that is being used for a segment of a project. Other labs
consist primarily of team meetings. Less structured labs are useful when deadlines for
major deliverables ap'ro . These labs are primarily dedicated to team meetings to
work on team deliverables, The connection of the lab time to the projects is further
reinforced by having reviews of team deliverables during lab time.

We believe it is essential to have student labs scheduled at the regular class meeting
times. Students have no conflicting obligations at that time and any scheduling difficulties
for team meetings are eliminated. Equally Important is the availability of the instructor.
The Instructor is an immediate resource to provide whatever level of steering is necessary
to keep the team effort on track. While the instructor should avoid micro-management
of team projects, he/she must be willing to Intervene at times. Availability of the Insftror
has other advantages as well. Teams are sometimes composed of personalities that do
not easily co-exist. The students' knowledge that the instructor is close by helps to
minimize the eruption of overt hostilities. Your availability to the students reinforces the
notion that you an they ae working toward a single goal - the development of a
successful software projecL

Be flexible with lab time. Use it to keep the projects on-track. Always provide some
guidance for the lab. You must do what you can to avoid the tenency some students
have to think tha lob *nm Is just an opportunity to leave early. Your presence In the lab
or being readily available during labs will effectively minimize this attitude.

b. Introductlon to lab forms

The lab form is similar to the lecture form and provides a consistent structure for each of
the labs. Each lab description consists of the following sections.

LABNUMBER - The labs are numbered sequentially and the number is used to
cross reference lectures and laboratories.

TOPIC(S) FOR LAB - These usually refer to the projects and indicate the specific
activity and/or project deliverable to which the lab Is related.

INSTRUCTIONAL OBJECTIVE(S) - Again, these usually refer to the projects and
are generally stated in terms of behavioral goals.

ASSOCIATED LECTURE NUMBER - This identifies the particular lecture with
which this lab is associated. In many cases these labs relate the lecture material
to the practical concerns of their projects.

PROCEDURE - A step-by-step description of the activities to be conducted is
provided. Handouts or overheads are referenced where used.

ASSOCIATED HANDOUTS - A list of any handouts used during the lab is
provided. A copy of each handout for a lab immediately follows the lab form.

c. Labs

The lab forms for the individual laboratories follow.

2

LAB..UMJfBER: 001

TOPIC(S) FOR LAB:
Customer requests
Smal projects team organization
Requirements

INSTRUCTIONAL OBJECTIVEMS:

1. Understand specific customer request.
2. Meet fellow team members for small project.
3. Develop an abstract and list of requirements for the small team project.

ASSOCIATED LECTURE NUMBER:

Lecture 003

SET UP. WARM-UP:

Recall in the preceding lectures, you were introduced to the process of developing
a requirements for a requested system and typical problems related to customer
requests. We characterized the process of developing good requirements as one
of extraction. We also talked about the importance of understanding the system
and developing and specifying the requirements. Today you're going to become
a member of a project team, listen to a customer who wants your team to develop
a system, and begin work on developing the system requirements.

1. HANDOUT(S) - Project descriptions.
The instructor(s), role-playing as customer(s), present their requests to the
class. The request is In the form of a written narrative description and an
oral description. Any questions are discussed and answered from a
customer perspective. It is important to resist the tendency to deal, as the
customer, with technical questions; the customer has domain expertise but
not software engineering expertise. Students have not yet been assigned
to teams or projects. All students listen to all customer requests at this
point. [Note - a paper entitled "Bringing the Customer into the Classroom"
is Included in the projects section of this packet]

2. HANDOUT - Software project management plan (SPMP)
Discuss the plan with particular attention to configuration items (CIs),
presentations, and schedule.

3. HANDOUT - Small project team and project assignments
Announce and distribute the project team and project assignments. Note

1 Lab 001

that no organizational structure is imposed; a democratic team organization
is implied. Teams are encouraged, as a first order of business, to
determine some times when they can all meet. Have the team fill out a
contact sheet containing the name and phone number of each team
member.

4. HANDOUT - Team meeting report template
Inform the teams that a record is to be submitted for each team meeting.
The form provided is to be used. At the first class meeting of each week
teams are to submit their meeting records for each meeting from the
previous week. Make the templates available in electronic form.

5. Teams are given the remainder of the period to meet and begin
development of a list of requirements (Cl-1). Their customer is available for
the remainder of the class period to answer questions regarding the
requested system.

HANDOUT - disk with client request
Each team is provided with a disk containing the preliminary client request.
This will be refined for the first configuration item (see SPMP).

ASSOCIATED HANDOUTS:
1. Project description(s) - preliminary client request
2. Software Project Management Plan (SPMP)
3. Team and project assignments
4. Disk containing preliminary client request
5. Template for team meeting records

2 Lab 001

PROJECT DESCRIPTION: KIOSK VENDING MACHINE

A system is needed to control a kiosk vending machine that consists of three
apparently separate vending machines that are actually under common control. The
kiosk has three walls, each wall housing one vending machine. Each machine can
dispense up to 32 different items and has its own coin slot, dollar bill slot, and
selection panel. The coin slots accept quarters, dimes and nickels. The dollar bill
slots accepts only one-dollar bills. The selection panels consist of a series of buttons,
each showing a graphical representation of the item to which the button corresponds
or an "empty" indicator.

To use any of the machines, a customer enters money, presses on. or more buttons
on the selection panel, and then presses a "dispense" button. Assuming sufficient
money has been entered, the selected items are dispensed and the correct change
returned. A customer can cancel a transaction at any time prior to hitting the
"dispense" button and his/her money is returned. If a customers requests cannot be
honored, his/her money is also returned automatically.

All three machines are to have a common control system that keeps track of each
machine's st tus including the total amount of money it has taken in, and the number
of items dispensed (for each of the 32 different items). The money supply and money
input is shared by the three machines and the system must keep track of the number
of coins it has (quarters, dimes, and nickels), and number of dollar bills it has.

A maintenance operator services the kiosk frequently. The operator must be able to
request a report of the kiosk status as well as the status of any of the individual
machines. The operator must also be able to restock the machines, reprice items,
and replenish and collect money.

There are several mechanical functions that can go awry and the existence of these
problems are indicated by an alarm which is transmitted to the operator's pager.
Alarm conditions always indicate the machine involved and the particular condition.
Conditions include a stuck item, stuck coin or dollar bill slot, machine low on money or
type of change, machine out of money, machine out of particular items, and machine
or kiosk door open. The operator needs the ability to turn the alarm indicators off.
Stuck items or coins disable the particular machine until it is serviced. The machine
out of money condition disables the kiosk until it is serviced. A problem analysis
report is generated monthly.

3 Lab 001

PROJECT DESCRIPTION: GAZEBO LOTTERY SYSTEM

A small town has decided to operate a local lottery. A software system is
needed to control it. Housed in a gazebo in the center of the town square, it consists
of three apparently separate lottery ticket machines that are actually under common
control. A structure inside the gazebo has three walls, each housing one lottery ticket
machine. Each machine can dispense up to three different types of lottery tickets and
has its own coin slot (quarters only), dollar bill slot (ones only), and selection panel.
The selection buttons each show a graphical representation of the type of lottery ticket
to which the button corresponds, or, an "empty" indicator.

To use any of the ticket machines, a customer enters money and then uses the
selection panel to select the type of lottery tickets and the numbers to play. The
customer may make multiple selections and, for each, he/she enters the ticket type
(daily, weekly, or monthly) and five numbers (numbers from 1 to 20 can be selected).
After all selections, the customer presses a "dispense" button. If sufficient money has
been entered (initially all tickets are $1), the selected lottery tickets and correct change
are dispensed. A transaction can be cancelled at any time prior to hitting the
"dispense" button and the money is returned. If a customer's selections cannot be
honored for any reason, his/her money is also returned. Each lottery ticket dispensed
contains the time and date, the machine number, and the five numbers selected.

All three lottery ticket machines share a common control system that keeps
track of each machine's status including the total amount of money taken in, the
number of lottery tickets dispensed (for each of the three different types), and the
numbers selected. The money supply and money input is shared by the three
machines and the system must keep track of the number of coins and dollar bills.

An operator is present whenever the gazebo is open, and performs system
start-up and shut-down at the beginning and end of each day, respectively. The
operator can request a report of the gazebo status as well as the status of any of the
individual lottery ticket machines. The operator must be able to restock the ticket
supply, reprice tickets, and replenish and collect money. At the end of each day, the
operator enters the winning numbers for the daily lottery and requests a daily lottery
report including the date, winning numbers, number of winners, and the amount due
each winner. Seventy-five percent of the money is distributed evenly among the
winners; twenty-five percent goes to the town. In a similar fashion, once a week the
operator requests the weekly lottery report, and once a month he/she requests the
monthly lottery report.

Several mechanical malfunctions can occur and their existence is indicated by
an alarm which is monitored by the operator. Alarm conditions indicate the ticket
machine involved and the particular condition. Conditions include stuck ticket
dispenser, stuck coin or dollar bill slot, machine low on money or type of change,
machine out of money, machine out of tickets, and machine or door open. The
operator must be able to turn the alarm indicators off. Stuck ticket dispensers or coins
disable the particular machine until it is serviced. The machine out of money condition
disables the gazebo. A problem analysis report is generated on demand.

4 Lab 001

PROJECT DESCRIPTION: PAVILION RECYCLING SYSTEM

A small town is interested in developing a system to control a recycling machine for
returnable glass, plastic, and metal cans or bottles. The system will physically be
located in a centrally located pavilion, near the town hall. The recycling machine can
be used by up to three customers at the same time and each customer can return all
three types of items. These items come in various types and sizes. The machine
must check which type of item was turned in so that it can print a receipt. A receipt,
which can be taken to a cashier, will be printed out. The receipt must contain the total
value of the items turned in and the value of each item type (glass, plastic, metal).

The machine has to be maintained, so information kept for the maintenance operator
must include the total quantity of each item type that has been turned in since the last
time the totals were cleared. This information should be able to be printed out. In
addition to these totals, the maintenance operator should be able to change the values
assigned to individual item types. The machine has numerous mechanical functions
which can go awry. The machine has an alarm which indicates that an item is stuck
or that the receipt roll is out of paper.

To return items the customer first presses the receipt button to clear all totals. The
system then places the items into the correct item type slots. With each item
deposited the machine increases the daily totals and the customer totals for that item
type. The customer presses the receipt button again to indicate the end of his/her
transaction. The action prints the receipt and updates the daily totals.

The operator needs the ability to turn the alarm off, print the daily reports, and clear
the report totals. Not only can the value of the items be changed, but because
manufacturers regularly change their packaging, the operator must be able to change
the allowable sizes for each item type. When items are stuck the customer is
prevented from inserting more items but that customers totals are not lost. After the
stuck item is cleared from the machine, the customer can continue to insert items
which are added to his/her previous totals.

Everything associated with the sorting and validating of the glass, plastic, and metal
submitted is done by separate hardware located within the recycling machine. This
hardware will determine the type and size of items submitted and provide that
information, along with chute number, to the software system.

In addition to the daily report, weekly and monthly reports must be generated. These
will be requested by the operator at the end of each day, week, and month,
respectively. Each of these reports must be broken down by type of recyclable and
chute used, and must also report grand totals.

5 Lab 001

SoftwaIV Pmo mu~imil, Plan
small Pro, W

la Requirements statement distributed

lb C1-1 Requirements document: abstract of project and detailed
list of requirements

2b Cl-2 Analysis decisions completed, documents delivered: CD,
DFD, and data dictionary

3b CI-3 Design documents delivered: system architecture -
structure chart and external descriptions of modules and
interfaces

4b CI-4 Test plan delivered: classes of tests for each requirement

Presentation of design review
Modify design and check coding standards
Begin coding system and design of test cases

5b CI-5 Test cases delivered: specific tests, their input and
expected output and their relation to requirements

Code reviews and unit tests and corrections
System testing and corrections to program

6b CI-6 Documented source code

CI-7 Executable code

7a CI-8 Certified Acceptance Test: documentation of test cases
and their relation to the test plan and documentation of
the consistency of the source code structure with the
architectural design; also Include package of Cl-1 through
CI-5

Presentation of system to customer

NOTE: All presentatlonrevlew Item are distributed to designedW
revIewem 24 hours prior to the prentaton/revlew.

6 Lab 001

TEAM EmTIN REIO=D

TEAM ID:

DATE: LOCATION: START TIME: END TIME:

PRESENT: ASSENT:

AGENDA

ITEM PERSON RESPONSIBLE
1.

RESOLUTION:

2.

RESOLUTION:

3.

RESOLUTION:

4.

RESOLUTION:

7 Lab 001

SUMAMARY (Nsw Issues d~flbults, ftc):

TASK LIS

TASK DUEDATE PERfSONL

S L6 001

LABUMBEB: 002

TOPIG(S• FOR LAB:
Context diagrams
Data flow diagrams
Leve.ng
Balancng

INSTRUCTIONAL O&JECTIVEMS:

1. Identify external entities, system Inputs, and system outputs from a problem
specifcation In the form of a context diagram.

2. Develop the first level of a data flow diagram from a context diagram.
3. Verify the balancing of a data flow diagram with a context diagram.

ASSOCIATED LECTURE NUMBER:

Lecture 004

SET UP. WARM-UP:

During the associated lecture session the students were introduced to the concepts of
context diagrams, data flow diagrams, leveling, and balancing. During this class
presentation the students, as a group, examined several examples of context diagrams
and data flow diagrams as well as developing ones from a problem specification. A
problem of a similar level is presented here for the small project teams to attempt, as a
group, to develop a context diagram and first-level data flow diagram.

PROCEDURE:

1. HANDOUT - A narrative description of a client request
The students, separated into their project teams, are handed a brief description of
a problem specification and are given 10 minutes to develop a context diagram.

2. The class is reconvened as one group. The instructor draws the circle
representing system in the context diagram on the board and solicits inputs,
outputs, and external entities from the various teams. This is used to discuss the
scope of the problem (e.g., what is Included and what is excluded from the
system) and to clarify the problem description. The result is a context diagram to
be used as input to the next step in this lab.

3. Steps 1 and 2 are repeated to develop a first level data flow diagram.

ASSOCIATED HANDOUTS:
Narrative description of a client request

Lab 002

EXAMPLE OF CUENT REQUEST - MATCH MAKING SERVICE

I run a match-making service that I want to automate. Hero's how it works. I guarantee
people who subscribe to my service that I will provide them with the names of three
compatible persons of the opposite sex whenever they request with the following two
conditions:

(1) they can't request names more than once a month; and
(2) they can't expect all three names provided to be new (since their previous

requests) unless they have contacted and talked to those provided on
previous lists. (I.e. any name on a previous list will continue to appear on
new lists unless they have contacted and talked to that person and reported
it back to me).

I build a profile for each subscriber. The profile includes such things as personality traits,
interests, intellectual level, education, age, values, etc. The profile is based on
information obtained from three sources: a detailed questionnaire completed by the
subscriber; a personal interview with the subscriber; and a questionnaire completed by
each of three references whose names are provided by the subscriber.

People who want to subscribe to the match-making service are not automatically
accepted. A review of applicant is conducted based on the questionnaire, references,
and medical history. Based on the review, applicants are notified of their acceptance or
rejection.

2 Lab 002

EXAMPLE OF CUENT REQUEST - SMALL COLLEGE BOOK ORDERING

The following describes how the bookstore at a small private college manages the
ordering of textbooks.

The bookstore maintains an inventory card for each course in the college catalog.
Each inventory card contains the title, author, and publisher of the textbook
currently used. It also contains the number of the textbooks that are already in
stock.

Midway through the spring semester, each academic department provides the
bookstore with textbook information for each course they will be offering in the next
academic year. The information provided is title, author, and publisher of textbook
to be used, and the expected course enrollment.

The bookstore then creates a Books Needed File containing the title, author,
publisher, and number needed (expected enrollment minus the number in stock)
for each book to be used in the next academic year.

During the last week of the spring semester the bookstore will buy books from
students if the Books-Needed-File indicates a need. Of course, each time a used
book is purchased, appropriate updates are made in the bookstore's records.

Over the summer the bookstore prepares an Order-List containing the title, author,
publisher, and number to be ordered for each book that is still needed. The Order
List is then used to create an individual Book Order Form for each publisher.
These Book Order Forms are sent to the publishers.

3 Lab 002

EXAMPLE OF CUENT REQUEST - STUDENT GOVERNMENT ELECTION

As the advisor to the Student Government Association (SGA), I would like an automated
election system developed. The system could then be used for SGA elections, various
referenda, and other types of campus elections (for example, balloting for homecoming
king and queen) that are conducted by student organizations.

I would like to be able to use the system to create the ballot, to conduct the voting, and
to report results. Typical SGA elections consist of several types of votes. First, there are
several offices for which all eligible voters can vote for one exactly candidate (e.g., for
offices such as President, Vice-President, Secretary, etc). Second, senators are elected
to represent a particular school or college and only students majoring in that school or
college are eligible to vote. For example, the College of Arts and Sciences may have 7
senate seats and 12 candidates. In that case, students majoring in a department within
Arts and Sciences would be able to vote for up 7 candidates from a list of 12. Similarly
College of Business majors elect senators to represent business, and so on for each
school or college. Incidentally, there are also a number of "at large" senate seats for
which all students vote. Third, there may be issues placed on the ballot.

I envision a system in which we would strategically place PC's to serve as "voting booths"
at several campus locations and students would use these to cast their votes. The ballot
would have previously been created and placed in these machines.

4 Lab 002

LABNM•$fl : 003

TOPIC(S) FOR LAB:
Requirements list for small project
Context diagrams
Data flow diagrams
Leveling
Balancing

INSTRUCTIONAL OBJECTIVES):

1. Clarify requirements for small project.
2. Identify external entities, system inputs, and system outputs from a problem

specification for the team's small project in the form of a context diagram.
3. Develop the data flow diagram flows for the team's small project.
4. Verify the balancing of the data flow diagrams and context diagram.

ASSOCIATED LECTURE NUMBER:

Lecture 005

SET UP. WARM-UP:

During an earlier lecture session, the students were introduced to the concepts of context
diagrams, data flow diagrams, leveling, and balancing. The students, as a group,
considered several examples of context diagrams and data flow diagrams as well as
developing ones from a problem specification. The students also worked individually on
a problem of a level similar to their first team project. The possible answer was
discussed during dass. The teams, on their own, begin developing these same diagrams
for their small project.

PROCEZDURE:

1. The students meet in their individual teams to discuss, with their customer, the
abstract and requirements list which they have previously submitted to their
customer. This interaction is intended as a preliminary review to make sure that
the requirements list is an adequate first draft (i.e. to assure they are on the right
track and, if not, to redirect them). If there are multiple small project teams then
other faculty can act as customers for the projects.

2. Based on these documents and their discussion with their customer, the students
are given the rest of the lab period to begin work on their context diagram and
data flow diagrams for the small project. The customer does not meet with the
student team during this time but is readily available should questions arise.

ASSOCIATED HANDOUTS:

Lab 003

LABNUMB: 004

TOPIC(S) FOR LAB:
Structure charts
Coupling
Cohesion
Fan-in, Fan-out

INSTRUCTIONAL OQJECTIVEIS%:

1. Clarify understanding of notation and content of structure charts

ASSOCIATED LECTURE NUMBER:
Lecture 006

SET UP. WARM-UP:

During an earlier lecture session, the students were introduced to the structure charts as
a design representation, including the notation used and the information conveyed in
structure charts. Also discussed were coupling, cohesion, fan-in, and fan-out as design
criteria. As a followup, we're going to examine some structure charts to verify your
understanding.

1. Provide a well-designed structure chart and briefly explain the system depicted.
Examples are plentiful, including the following:

a. Mynatt, pp. 161 - Subscription system
b. Mynatt, pp. 165 - Concordance system
c. Schach, pp. 295 - Count words in a file
d. Conger, pp. 299 - Master file update
e. Kendall, pp. 348-353 - Pay invoice system
f. Eliason, pp. 466-467 - Enter customer payments

2. Ask a series of specific questions aimed at clarifying the notation and terminology
of structure charts. These should cover hierarchical Issues, notation for data and
control couples, fan-in and fan-out counts, and naming of components.

3. Ask a series of discussion questions to illustrate how one can examine a design
through the structure chart. Include discussion of interfaces (coupling and
cohesion).

ASSOCIATED HANDOUTS:
Structure chart example

1 Lab 004

LAB NUMBER: 005

TOPIC(S) FOR LAB:

Preliminary design (structure chart, external module description)

INSTRUCTIONAL OBJECTIVE(Sf:

1. Begin development of CI-3, a structure chart and external module
descriptions, for the small team project.

ASSOCIATED LECTURE NUMBER:
Lecture 007

SET UP. WARM-UP:

Recall that we described requirements analysis and specification as extraction
processes and as iterative processes. As you proceed in your projects it will
continue to be important to interact with your customer, and refine and change the
requirements and associated documentation as changes occur. We have looked
over your CD, DD, and DFDs (CI-2) recently submitted and noted problems that
need to be addressed before beginning your designs. The requirements have to
be accurate before you build your design on them.

Then we want you to begin the designs, as illustrated in the lecture, for your small
project. Specifically you are to develop a structure chart and external descriptions
of the components.

1. Feedback of the first-draft CD, DD, and DFDs are provided to each team
(separately) based on a preliminary review, by the instructor, of the
functionality and the notation. This interaction also provides a further
opportunity for requirements to be refined and understood. It is made clear
that any problems identified are to be addressed and incorporated into all
documentation.

2. Teams are given the remainder of the period to begin development of their
structure chart and external module descriptions (CI-3). The
customer/instructors are available for the remainder of the lab period.

ASSOCIATED HANDOUTS:

Lab 005

LAB NUMBER: 006

TOPIC(S) FOR LAB:
Additional feedback on CI-2
Preparation for small project teams' design review presentations

INSTRUCTIONAL OBJECTIVE(SM:
1. Understand suggestions to improve and/or correct teams' first drafts of CD,

DD, and DFDs submitted previously.
2. Begin preparing teams for design review presentations.

ASSOCIATED LECTURE NUMBER:

Lectures 007 and 008

SET UP. WARM-UP:

As you further refine the project requirements, interaction with your customer and
one another continues to be critical. As changes and refinements occur, it is also
critical to modify all CIs to reflect the current system. We have done a more
thorough review of your CD, DD, and DFDs and want to discuss our findings so
that you can incorporate our suggestions into your model.

In addition, we want to prepare you for the upcoming design review presentations.
As a team, you have spent a good deal of time extracting and understanding your
customers needs and attempting to specify them clearly and completely. At this
point it !-, in the best interests of both you and your customer to have that work
more formally reviewed for the purpose of improving it and to assure that it is
complete and correct. That is the intent of the design review. In preparation, we
are also going to review some general procedures for reviews and point out some
common pitfalls.

1. Detailed feedback on the first-draft CD, DD, and DFDs are provided to each
team (separately). Careful attention has been given to both notation and
functionality. This interaction also provides a further opportunity for
requirements to be refined and understood. It is made clear that the
corrections are to be incorporated into all documentation.

2. The predominant method of design evaluation is the design review.
Typically design reviews are conducted at several points in the design
process. At each review, the basic questions to keep in mind are:

(1) Does the design fulfill the requirements?

(2) Does the design meet established design standards (quality,
maintainability, cohesion, coup!ing, reuse, testability, ...)

1 Lab 006

To show that the design fulfills the requirements, the reviewer can go
through the requirements list, one-by-one, and assure that the design meets
the requirement. How effective this is depends on the quality of the
requirements list.

3. Discuss the following regarding the formal design review presentations.

a. The purpose of the review is to improve the product. All participants
(developers, customers, and other reviewers) have a common goal:
to identify problems that need to be addressed and to come out with
clear and complete requirements that, If met, will satisfy the
customer. This is a gualitv assurance actity.

b. A common tendency of the development team is to defen their work
and, in so doing, to reuZ change. It is understandable why this
occurs but clearly it is contrary to the purpose of the review. It is
much easier and cost effective to make changes now than later.

c. Another manifestation of this problem is the "that wasn't in the
specs" response. Ifs unrealistic to expect the specs to be complete.
As the maintenance lecture and readings demonstrated, most
defects can be traced to requirements problems. Your job is to
etract requirements and then improve them if necessary.

d. Reviews are to identify problems but not to solve them. Resist the
urge to come up with solutions (to hack) during the review, or to let
others come up with solutions. Note the issue and assure the
customer that it will be addressed if possible.

e. The customer is the person whose needs must be met and the
customer is the person who is going to pay you. You can't insult the
customer by implying that you understand his/her needs better than
he/she does. (Even if you do, and you probably don't.)

f. Sometimes the best answer is "I don't know" or "we didn't consider
that". It's unusual Dot to have some requirements that were
overlooked or misunderstood. Assuring the customer that the issue
will be addressed (and subsequently addressing it) is sufficient.

Bluffing, or conning, to "cover yourself" is dangerous. You are
unlikely to fool everyone and you risk damaging your credibility. One
of the things happening at these reviews, particularly early ones, is
that you are building a rapport with the customer; you are
establishing credibility.

g. This is a team effort. A team working on a project is different from
a group where each individual is working on different things. The
customer should see a team working on "our project" rather than a
group of individuals, each working on "his/her" part. All teams

2 Lab 006

members should be knowledgeable about the entire project, but each
will have more detailed knowledge in particular areas. Cooperating
in responses, deferring a question to the appropriate person, is
appropriate. Demonstrate that you are a team.

f. Plan the presentation ahead of time. Don't wing it. Plan who will do
what, and when. Then make a dry run of the entire presentation
ahead of time. This is necessary even if each person has his/her
part well prepared. To do otherwise is analogous to doing unit
(module) testing and not doing integration testing.

This will eliminate timing problems and smooth transitions in
the presentation. A common problem is abrupt transitions.

4. HANDOUT - Preliminary design review form
Distribute and discuss preliminary design review form. Each student will
utilize this form as a reviewer (in reviewing the other team presentations.)

5. HANDOUT - Suggestions for giving and oral presentation
Distribute and discuss suggestions for giving an oral presentation. These
suggestions are for an oral presentation in general but are directly
applicable to the team presentations that will occur throughout the course.

6. HANDOUT - Oral presentation evaluation form
Discuss the evaluation form. This will be used by reviewers to provide
feedback on all presentations in the course.

7. Remind students that material to be reviewed must be provided to
reviewers in advance. Make arrangements for the materials to be provided
to the instructors for duplication and then made available to the reviewers.

ASSOCIATED HANDOUTS:
Preliminary design review sheet.
Suggestions for giving and oral presentation
Oral presentation evaluation form

3 Lab 006

Preliminary Design Review Form

Project Name

Reviewer Name

I. High Level Issues

A. Requirements: any requirements missed, requirements over-worked?

B. Design : suggestions for improvement of architecture or procedures; other
strategies

II. Design Deliverable Details

A. Test Plan: items over-tested or under-tested, suggested tests

B. DFD: good use of notation, clear model, suggested improvements

C. Comments on other deliverables

4 Lab 006

Suggestions For Giving An Oral Presentation

1. In preparation, concentrate on "why" rather than "how" questions. Why am I
giving this talk? Why is this audience interested in this topic? Ask yourself:

A. What is my purpose? (For example, am I reporting on a topic, am I
arguing a case, am I trying to change their opinion, etc.?)
(1) Why am I talking to this audience about this topic?
(2) What do I want them to know, think, do, or feel as a result of my

talk? Do I want to change their opinion on the subject?
(3) What must I do in my presentation to achieve this?

B. Who will be listening to me? (I.e. who is the audience?)
(1) How much do they know about my topic? (Don't always assume

that they're already familiar with the topic.)
(2) What is their attitude about my topic?

2. Prepare and then rehearse the presentation. Don't "wing it". Lack of
preparation is usually obvious to the audience. Get a friend to watch you
rehearse the presentation or rehearse in front of a mirror.

3. Check out the room ahead of time. Make sure you know how to operate any
equipment you'll be using and make sure it's working properly.

4. You'll usually have a specific amount of time allotted for the presentation. Use
it wisely. Organization and format are critical, especially when the allotted time
is short. Be sure, through rehearsing, that your presentation fits the time
allotted.

5. Consider this outline for your presentation.

A. INTRODUCTION - Give the title of the presentation, your name, and the
names of anyone else involved. (For example if you are presenting the
work of a team, identify the team members. If you are presenting a
review of an article, identify the author and source of the article.)

B. OVERVIEW
(1) Purpose and scope - Don't assume the audience is already

familiar with the topic. Give a brief description (i.e. an abstract).
Jumping immediately into details will quickly lose the audience.
This is the time to give your audience a reason to listen to you.

(2) Outline of presentation.

5 LabO006

C. BODY OF PRESENTATION - Have a specific but limited number of
points to cover; don't try to do too much. Make a smooth, logical
transition between points as well as between the introduction and
overview, the overview and the body, and the body and the conclusion.

D. CONCLUSION - Summarize key points, findings, or recommendations.

E. QUESTIONS - There may be a planned question and answer period to
follow the presentation. If not, allow a few minutes for questions. Don't
be intimidated or defensive; usually the questioner is genuinely interested
and may even be helping emphasize or clarify a point. Answer as best
you can and don't be afraid to say "I don't know".

6. Use the speaking medium to its best advantage. Remember you are giving a
talk, not a written report. Use the strengths of oral speech. Give the big
picture; explain rationales; motivate the audience. Oral communication is a
much more natural, personal, human activity than is written communication.
Talk to and look at your audience.

7. Avoid technical jargon unless you're sure it is familiar to the audience. Use
simple straightforward sentences. Explain clearly the real meaning of any
statistics, numbers, charts, or graphs that you use.

8. Include your own opinions, observations, or perceptions. Personalize the topic
to your own (and/or the audience's) common experiences.

9. If appropriate use visual aids to enhance the presentation but remember that
they are aid" to your talk and should not simply display the same words you're
speaking. They can be overhead transparencies, chalk/chalkboard, handouts,
slides, computer demonstration, or combinations of these. Visual aids can
support, enhance, clarify subject matter and to focus attention on major points.

They must be visible to the audience; they're not effective if your audience can't
see them. This is a common mistake in using a computer demonstration in
which the screen can be seen by only part of the audience or when the print on
overhead transparencies is too small or too light. Make sure your visual aids
are legible and large enough to be seen.

Make the message of each visual aid clear. Beware of including too much.
Keep them simple.

Don't read the visual aids; use them to focus attention on key points. One of
the quickest ways to lose your audience is to read to them instead of speaking
to them.

6 Lab 006

10. Most presenters are nervous but it doesn't have to hurt the effectiveness of the
presentation. The audience will tolerate nervousness and, in fact, will tend to
"pull for you". They won't tolerate your disinterest or lack of preparation. Give
the audience the sense that you've got something to say; that you want to be
there. Some suggestions to help deal with your nervousness:

A. Prepare.

B. Maintain eye contact. Look at and speak to the audience.

C. Move around as you speak; use some expression. Come out from
behind the podium. Don't lean on the podium or sit on the desk. Show
that you're interested.

D. Avoid nervous or annoying mannerisms and expressions. Rehearsing
the presentation will help reveal these.

E. If you use written notes then put them on index cards. They're less
obvious and avoid the effect of "nervous hands" shaking your notes and
distracting the audience.

11. Dress appropriately. If you're not sure what is appropriate then find out ahead
of time. It's possible to be over-dressed and it's possible to be under-dressed.

7 Lab 006

ORAL PRESENTATION EVALUATION FORM

PRESENTER EVALUATOR

Use the scale below to rate the presentation on Organization, Delivery, Content, and Overall
Effectiveness. The following qualities should be present for an ABOVE AVG to EXC rating.

ORGANIZATION
"* Obviously well prepared, organized
"• Intro includes (1) name of presenter & others Involved (project team, committee, advisor,

etc); (2) purpose; (3) brief overview
"• Body of talk covers main ideas; smooth transitions between points
"• Concludes with definite ending; summarizes main points
"• Uses time well, stays within allotted time frame (excluding questions)

DEULVERY
"• Obvious knowledge/understanding of subject
"* Talks (not reads) to audience; looks at audience
"• Poised; able to control nervousness; no distracting mannerisms; good posture; natural

movement; appropriately dressed
"* Talks dearly, easily understood, good grammar & pronunciation

CONTENT
• All requirements specified in particular assignment met

. Eseence of talk clearly conveyed to, understood by audience
* Supporting materials and visual aids, if used, enhanced presentation; were easy to

read/understand by all; were effective
* Questions handled well

Mark an X to indicate your rating. The scale ranges from unsatisfactory (UNS) on the left to
excellent (EXC) on the right.

ORGANIZATION RATING DELIVERY RAT1NG
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I-...I-...I-...I-...I-...I-...I-...I-...I I-...I---I I-....I-...I.. -- I..

CONTENT RATING OVERALL RATING
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I . ..I- -I.. .I.. I---I--I-I .. I!---- - -- I-,.. . .I-- ..

Please use other side for additional COmments.

8 Lab 06

L.ALBNUfMER: 007

TOPIC(S) FOR LAB:
Test plans

iNSTRUCTIONA OBLJECTIVEgS:

1. Develop Ci-4 (classes of tests) for small team project.

ASSOCIATED LECTURE NUMBER:
Lecture 009

SET UP. WARM-UP:

In the testing lecture we distributed and discussed a preliminary test plan for the
KoFF Video Rental System. A key feature was the traceability between tests and
requirements. We want you to develop a similar test plan for your small projects;
in particular, the equivalent to section 4.0 (Figure 3.5-1) of the Koff preliminary test
plan. The test plan you develop will form the basis for acceptance testing of the
system.

1. Refer back to the Koff Preliminary Test Plan. Specifically review:
a. Section 3.1 (Requirements Traceability) and Figure 3.2-1

(Test/Requirement Traceability Matrix);
b. Section 4.0, Figure 3.5-1 (Tests to be performed).

In this example, first discuss the development of categories of tests. Then
discuss the development of Items to be tested within each category,
followed by the ordering of the tests and prerequisites for each test.

2. Teams are given the remainder of the period to meet and begin
development of a test plan (CI-4) for the small project. Their customer and
the instructors are available for the remainder of the lab period.

ASSOCIATED HANDOUTS:
Preliminary test plan for KoFF system (distributed in associated lecture)

Lab 007

LAB NUMBER: 006

TOPIC(S- FOR LAB:
Design review team presentations for small projects

INSTRUCTIONAL OBJECTIVE(SM:

1. Present requirements, design, and test plans for review.

ASSOCIATED LECTURE NUMBER:
Lecture 010

SET UP. WARM-UP:

Earlier we discussed the purpose and general procedures of formal reviews.
Today we are all going to participate, each in multiple roles, in preliminary design
reviews for your small projects. Each of you will participate as a member of a
team whose work is being reviewed and as a reviewer for the other teams.
Remember that the purpose of the review Is to Improve the quality of the software
system under development.

1. a. Remind teams that during their review they should note any issues
which arise that require attention. Each item on this "issues list"
must be addressed and appropriate modifications made where
needed. The issues list thus serves as action item checklist for the
team as they addresses the issues.

b. The instructor should maintain his/her own issues fst as a means of
establishing a follow-up procedure to assure that the items are
addressed.

2. Determine the order of the team presentations and begin the reviews.

Instructors should maintain their role as customer as much as possible,
reverting to role of instructor only when necessary for such things as
maintaining the schedule, reminding participants of the purpose and/or
ground rules, and maintaining order. Critiques should be saved until the
next lecture or lab.

ASSOCIATED HANDOUTS*
Material to be reviewed has been provided to reviewers in advance.

Lab ON

LAB NUMBER: 009

TOPIC(S) FOR LAB:
Feedback on design review presentations.

INSTRUCTIONAL OBJECTIVE(S):
I. Provide timely feedback on recent design review presentations.
2. Provide timely feedback on all configuration items for small projects

submitted to this point.

ASSOCIATED LECTURE NUMBER:

Lecture 011

SET UP. WARM-UP:

You recently experienced your first design review presentation with your customer
and other reviewers. We want to provide you with our reactions to the
presentations.

PBREDURE:

I. With all teams present, provide general Information pertaining to customer
reviews in general. Defer specific comments on their presentations for
individual meetings with each team. It is helpful to review the guidelines
presented in Lab 006 and relate them to specifically to their reviews.

2. Meet separately with each team to provide specific feedback on the items
reviewed (requirements list, CD, DD, DFDs, structure chart and interface
descriptions, and test plan). Specifically ask about their "issues list" which
should have been compiled during the review. (Use your own issues list as
a check.) Ask how each item was addressed and the disposition of each.

This meeting is critical to establish baseline requirements and design.
Teams are about to begin implementation and agreement must be reached
on what is to be implemented; in a sense the requirements and design are
being frozen (after the necessary changes based on the review are made).
An early deadline needs to be placed on teams for making the necessary
revisions and baselining the configuration items.

ASSOCIATED HANDOUTS:

Lab 009

ABNMBliER: 010

TOPIC(S) FOR LAB:
Feedback on C1-5, test plans and test cases.
Small project team preparation for team acceptance test presentations.

INSTRUCTIONAL OBJECTIVE(S):
1. Provide timely feedback on CI-5.
2. Prepare teams for acceptance review presentations of small projects.

ASSOCIATED LECTURE NUMBER:

Lecture 012

SET UP. WARM-UP:

Soon your team will be meeting with your customer to conduct acceptance testing.
Today we want to review your test plans and test cases in preparation for an
acceptance test with the customer.

1. Distribute copies of each team's CI-5 to the class. Discuss each of these.
Pay particular attention to whether all requirements are completely tested.

2. HANDOUT - Acceptance test review
Distribute and discuss acceptance review checksheets.

Discuss how their test review presentations will differ from a normal
acceptance test. In-class acceptance testing cannot meet all of these
conditions, but certainly a simulation can be done which at least meets
conditions 2 and 4. Documentation can be presented so that the
maintainability (condition 3) is clear.

The product demonstrated should be as close to the product to be delivered
as possible. Discuss the potential problems caused by embedding test
scaffolding or a test harness Into the software being demonstrated. This
should be avoided wherever possible, and where necessary the scaffolding
should be removed when the system is delivered to the customer. Point
out that this could mean that the system on which acceptance testing is
conducted is a different system that the one delivered.

3. Stress that these tests will form the basis for acceptance testing.

ASSOCIATED HANDOUTS:
Acceptance test review

Lab 010

Acceptance Test Review

The Acceptance test is normally the final test before customer acceptance of a compieted
and proven product. There are several conditions that characterize such a test.

1. It is generally done with customer supplied data and under supervision of the
customer organization.

2. The customer is concerned with the ease of use of the system and the ease of
training other users.

3. The customer wants a system which is easy to maintain. Sometimes final
approval requires the approval of the maintenance organization.

4. The customer's primary question is if the system meets the specified requirements.
This is most easily shown by publicly executing the scenarios of the test plan.

5. The customer is interested in more than just the software. They are interested in
all of the deliverables including tested user manuals and training manuals,
maintenance and update information.

6. Programs that work on one machine may not work on another. It is important to
try to test in an environment similar to the one in which the system will be
installed?

In-class acceptance testing cannot meet all of these conditions, but certainly a simulation
can be done which at least meets conditions 2 and 4. Documentation can be presented
so that the maintainability (condition 3) is clear. The product demonstrated should be as
close to the product to be delivered as possible. Do not embed test scaffolding or a test
harness into the software being demonstrated.

2 Lab 010

projects is that the instructor has other faculty or administrators available as
information resources.

c. Management of Team&.

i. General Guidelines

There are several guidelines to the development and management of team projects.

1. Carefully select the project. Selecting a project that is too simple allows the
students to su,•ceed in spite of sloppy development (i.e., hacking) ,iad does not
give them an appreciation for the complexity of software development. Selecting
a project that is too complex presents the students with an unmanageable task.
Student satisfaction with the learning experience is greater when they deliver a
functioning system.

2 Carefully separate the roles of Instructor and customer. Regardless of
whether the customer is real, is simulated by someone other than the instructor,
or is role-played by the instructor, the roles should remain separate. The customer
has domain expertise and understands his/her own needs but does not necessarily
have computer science expertise. The instructor has computer science expertise
but does not necessarily have domain knowledge or understand the customer's
needs. During interactions, students should always be aware of who is responding
- the customer or the instructor. When role-playing, a simple yet effective way to
make this visibly apparent is for the Instructor to have an instructor hat and a
customer hat (baseball caps work particularly well) and to always remember to
wear the appropriate hat. A less visually apparent method is to simply preface
statements appropriately (e.g., "as the customer, ... ").

3. Provide appropriate access to the Instructor and to the customer and
facilitate Interaction between students and customer. The level of accessibility
will be different for the instructor and the customer. Access to the instructor is
typically open. Students also need extensive access to the customer, particularly
during requirements elicitation, but that access should be more limited. Meetings
with the customer need to be scheduled, as they would be in the real world.

4. Use team projects rather than Individual projects. Team projects require
communication between team members as well as with the instructor and
customer and better reflect the real world. The number of projects to be managed
simultaneously by the instructor is reduced. Teams of four to six students are
appropriate.

4

5. Solve the problem before assigning It. Prior to assigning the project, the
instructor should work out a solution, at least through design. This will assure that
the instructor is familiar with the problems that the students will face during
development.

6. Provide appropriate steering to student teams. While the students should
define the requirements and develop a solution on their own, appropriate steering
away from known pitfalls or overly complex solutions will increase the chances for
success. Steering students away from premature concentration on implementation
details is often necessary.

7. Require deliverables other than the source code. Appropriate deliverables
such as requirements documents, design documents, and test plans and results
should be required of the students. Otherwise, students can resort to old habits
of concentrating strictly on implementation.

ii. Peer and Project Evaluation

Managing the Small Prolect Teams

In the small project a single team of students works on all phases of the software
development. For this type of team structure, a peer evaluation only has to address
intra-team issues. Because of the relatively short duration of this project, we only use
a peer evaluation at the end of the project. Thus, in this case peer evaluations do not
help to identify team issues such as some students failing to carry their share of the
load. These are, however, identified by team meeting reports and other interactions
with students and student teams during the project. In the peer evaluation we have
found it useful to ask each student about their own as well as every other team
member's contribution. Students are less prone to exaggerate their own performance
and accomplishments if they are aware that other students are also describing their
work. This question also helps, when students understate their own contribution to the
project. In general we have found the question about what sequence they would re-
hire their own teammates to be a useful question doing most stages of development.
A sample peer evaluation follows.

5

SMALL PROJECT PEER EVALUATION

GAZEBO TEAM: PEER/SELF EVALUATION NAME:

Your responses are confidential and will be seen only by the Instructors. Be
completely honest. Use back for additional comments.

1. Evaluate the performance of each team member, including Yourself with respect
to each of the following questions by indicating SA (strongly agree), A (agree), D
(disagree), or SD (strongly disagree).

STUDENT
1 2 3 4 5 6

He/she took a fair share of the
responsibility and work.

He/she took a leadership role.

He/she kept aware of the project's
problems and progress.

He/she is knowledgeable of the
tools and techniques used.

He/she attended meetings and
cooperated with rest of team.

He/she gave an honest effort
and completed tasks on time.

I would choose to work with
him/her on another project.

6

2. Complete Columns A and B for each team member, including yourself.

COLUMN A: Enter +,=, or - as follows.

+ means this person made a significant contribution to the team and should
be given a bonus; their individual project grade should be higher than the
team grade.

- means this person did their share; their individual project grade should
be equal to the team grade.

means this person's performance was less than adequate and his/her
individual project grade should be lower than the team grade.

COLUMN B: Describe his/her major contributions.

(A) (B)
TEAM MEMBER _-- MAJOR CONTRIBUTION(S)

Student Namel

Student Name2

Student Name3

Student Name4

Student Name5

Student Name6

7

3. For each item below, rate your team's oerformance and deliverables produced.
UNS represents unsatisfactory and EXC represents excellent.

(a) Interaction with user in understanding/defining requirements
BELOW ABOVE

UNS AVG AVG AVG EXC

(b) Configuration Item 1 - narrative description (abstract) of project and
requirements list.

BELOW ABOVE
UNS AVG AVG AVG EXCI"--I'-"--"''"-I--I-----I-----I

(c) Configuration Item 2 - analysis documents: context diagram, leveled data
flow diagrams, data dictionary.

BELOW ABOVE
UNS AVG AVG AVG EXCI---I------I------I----I---I---I----I

(d) Configuration Item 3 - design documents: system architecture (structure
chart and external description of modules and interfaces).

BELOW ABOVE
UNS AVG AVG AVG EXCI'---I'-I--I------I----I---I----I----I

(e) Configuration Items 4 and 5 - test plan (classes of tests for each
requirement); test scenarios (specific tests, input, expected output, etc.)

BELOW ABOVE
UNS AVG AVG AVG EXCI'----I----i--i-------I-- -I-i---

(f) Configuration Items 6 and 7 - documented source code; executable.
BELOW ABOVE

UNS AVG AVG AVG EXC
I-'-I--I'-- -I---I--I

8

(g Configuration Item 8 - documentaton oI testing; Soeptanos testing
Pln, docum eftatio, eft

BELOW ABOVE
UNS AVG AVG AVG EXC

I I I I , ' I

(h) Configuration Item 7 - ---epanc, test review
BELOW ABOVE

UNS AVG AVG AVG EXC

(i) Overall, rate the your team's performance for the entire project?

BELOW ABOVE
UNS AVG AVG AVG EXC

() Overall, the tools team and the materials they have produced have been
NO LITrLE MUCH
HELP HELP OK HELP HELP

4. If you had to do this project again and were in charge of hiring personnel, in
what order would you rehire the team? In other words, who would be the
person on your team you would rehire first, second, third, etc.? (Be sure to
include yourself).

1.

2.

3.

4.

5.

6.

9

SMALL PROJECT EVALUATION

In addition to a peer evaluation, we use a project evaluation form. We do not
comment on a particular students contribution on this form. We comment on the
quality of the delivered product giving a clear grade for the quality of the product. We
also include an individual student grade for their contribution to the project. This grade
may differ significantly from the product grade. A sample of a completed small project
evaluation follows.

10

PROJECT I EVALUATION: FIRE AND SECURITY ALARM SYSTEM

TEAM MEM E__ER:

TEAM PRODUCT GRADE: TEAM MEMBER'S GRADE:

COMMENTS ON DEUVERED PRODUCT

Thaee comments pertain to the delivered softmware product and are not
necessrly reflectve of the time and/or effort expended.

OVERALL PACKAGING

Product gives appearance of having been thrown together up to the last minute,
including some items being crossed out and others being penciled in.

NARRATIVE DESCRIPTION

In paragraph 7, "same span of time is still too vague to be tested.

REQUIREMENTS LIST

#9 and Footnote are inconsistent with one another.

#13, #15: indentation erratic.

#20: incident reports and frequency reports never fully defined.

CONTEXT DIAGRAM, DFDs, DATA DICTIONARY
Many items missing from data dictionary, including:

Notify
Incident report
Frequency report
Incidents
Signal to Fire Equipment
Signal to Warning Device
Signal to Lock/Unlock
Room Function

No data stores defined in data dictionary.

11

Project I Evaluation - cont

Use of "Flag in data dictionary Is still awkmard. It would be much more
meaningful to do something like the following:

Hazard level - High I Normal
Type - Fire I Security
Alarm condition - In-service I Out-of-Service
etc.

In some cases, more meaningful names could easily be used; for example
Type is still too vague.

Context diagram and DFD are not balanced.

DFD is rough; far from form expected in finished product.

No leveling of DFD.

Transform 1 has no output.

Transform 2 has no input.

As shown in model, SetUpFile should be an external entity.

DESIGN DOCUMENTS

No external description of modules and interfaces submitted.

Various inconsistencies or omissions in structure chart; for example Get Info
(page 2) doesn't return any Information.

Module (and procedure) names should always be as descriptive as possible

and consist of Verb and Object.

CODE

Design and code are inconsistent.

In places it is tough to distinguish between test modules and product modules;
for example the OurTime procedure.

Programming standards were not followed in several aspects including identifier
dictionaries, input and output dscItions, use of meaningful identifier names

12

PI, %At 1 Evaluation - cont

(for example, look at ThieCompare and TimeSubtrac).

Inconsistent Ocumntation blocks (for example, none on Init and
CailProcedures).

Comments - look at 11.7 of programming standards.

What is purpose of procedure CallProcedures?

TEST PLAN, TEST RESULTS

Test categories too broad; for exaffr%,., consider Section C (Alarm Responses) -
these need to be broken do irther to adequately lte system.

Test procedure form: (a) all look like low-level unit tests; (b) all end with the
generic statement Verify test data is output to test result file." Should also
worry about correctness of output.

Test results somewhat confusing and appear inadequate; not mappable to test
procedures.

13

Managina the Extended Prolec Teams

The extended project introduces some new complications in managing projects. First,
since it is a multi-semester project there may be new students joining the project as
well as students leaving the project at its mid-point. The problems of training and
familiarizing the new students with the project are reduced here by having all milestone
information ready for the second semester of the project. There is a virtue to the
second semester. It provides the opportunity to use the information you learned about
the student team's dynamics in the first semester. Using this information, teams can
be restructured to reduce personal conflicts in the second semester, and to maximize
the use of individual student skills..

The extended project introduces a new management problem, intra-team dependency.
There are several techniques to facilitate communications between teams. One tool
we use is to appoint a team liaison to other teams. It is critical to project success that
the teams work together toward a common goal. Sometimes when problems arise
there is a tendency for the teams to compete against each other or blame each other
for problems. In managing an extended project, one must examine the status of the
project at several points to help keep it on track. There should be at least two peer
evaluations; one at the semester break and one at the end of the project. There are
numerous opportunities for product evaluation, e.g., reviews and inspections,
comments on milestone documents, etc. These reviews are directed at individual
teams. Sometimes we have used a composite evaluation document, so that each
team was made aware of the strengths and weaknesses of their own work as well as
others team's work. Because student's function in a variety of roles on a variety of
teams, it helps avoid confusion to place the students names on the form for each
team.

The extended project peer evaluation is more complicated because of the intra-team
communications. A mid-project and end of project peer evaluation form for a student
project called "Third Eye" follow. This was an automated plagiarism detection program.

14

THIRD EYE PROJECT MID-POINT EVALUATION

Responses are confidential and will be seen only by the instructors. Be completely
honest in rating the following from your perspective. In the scale used, UNS
represents unsatisfactory and EXC represents excellent. Use back for additional
comments.

Configuration management plan Configuration manager

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

Requirements Users manual

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I---I-'-I--I'--I--I-I--I'-I1- I"--I'"-I---I---I"-I"--I---I"'-I

COMMENTS: COMMENTS:

Test Plan Preliminary design

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I----I---I-'-I---I----I----I----I---I I-I---I-'-I---I---I----I----I---I1

COMMENTS: COMMENTS:

Overall, the Third Eye team

BELOW ABOVE
UNS AVG AVG AVG EXC
I----I--' -I-"1 "--'--I"-I"'-I

COMMENTS:

15

THIRD EYE PROJECT MD-POINIT EVALUATION

TEAM: REQUIREMENTS * MIMBER:.__________

Complete the following for each member of the team, including yourself.

In COLUMN A, describe his/her contributions to the project.

In COLUMN B, select VS (very satisfied), S (satisfied), D (dissatisfied), or VD
(very dissatisfied) to fill in the blank in the statement below.

"1 am with his/her work on the team."

(A) (B)
TEAM MEMER CONTRIBUTIONWS) SATI8FACTION

A similar form is completed by each member of the other project teams (user
interface, test plan, preliminary design, etc.)

16

THIRD EYE - END OF PROJECT PEER EVALUATION

Responses are confidential and will be seen only by the instructors.

1. Rate the following. UNS represents unsatisfactory and EXC represents excellent.

Configuration management plan Requirements

BELOW ABOVE ELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

Test Plan Users manual

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

Preliminary Design Detailed design

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

Code and unit test Testing

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVO EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

17

Configuration Management Overall, the Third Eye System

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

2. Characterize the interactions between the indicated teams using the following scale
by circling the most the most appropriate descriptor.

VN - Very Njon-productive A- Adeouate VP - Very Productive
N a tlon-productive P - Productive

a) Preliminary design team & Detailed design team ----- VN N A P VP

b) Detailed design team & Code and unit test team ----- VN N A P VP

c) Detailed design team & Testing team -------------------- VN N A P VP

d) Code & unit test team & Testing team ------------------- VN N A P VP

e) Detailed design team & Configuration manager ------- VN N A P VP

f) Code and unit test team & Configuration manager ---- VN N A P VP

g) Testing team & Configuration manager ------------------ VN N A P VP

18

THIRD EYE - END OF PROJECT PEER EVALUATION

TEAM: DETAILED DESIGN * MEMBER:

Complete the following for each member of the team, Including yourself.

In COLUMN A, describe his/her contributions to the project.

In COLUMN B, select VS (very satisfied), 8 (satisfied), D (dissatisfied), or VD (very dissatisfied)
to fill in the blank in the statement below.

"I am with his/her work on the team."

(A) (B)
TEAM MEMBER CONTRIBUTION(S) SATISFACTION

A similar form is completed by each member of the other project teams (code & unit
test, testing, etc.)

19

4. Imagine that $2000 in bonuses is to be distributed among the THIRD EYE Project team
members. Half of it ($1000) is to be distributed based on the intellectual contribution to the
project, i.e., significant ideas and solutions contributed. The other half ($1000) is to be
distributed based on amount of individual effort contributed to the project.

Distribute the bonuses. If you wish justify each of the assignments. Be very specific; list
some especially significant contributions for which the team member should be proud or
where the project was made more or less difficult because of it.

$1000 $1000
ProjeCt Member Name concepts effor JUSTIFICATION

20

iii Reaular Team Meeting

Instead of waiting for students to submit project deliverables to track a project, we
require team meeting reports from each team for every team meeting. This allows us
to keep track of their work without being intrusive at team meetings. The team
meeting report template included on the following page is provided to each team. The
team meeting report form is intended to develop a task oriented structure for the
meetings. After the first meeting, the tasks assigned at the previous meeting constitute
the primary agenda for the next meeting. The status of the work on every task is
reported and discussed at the meeting. The problem is either reported as resolved or
a new approach is decided upon and assigned. This method of documenting meetings
helps to give them a structure and a goal. It also clearly documents individual
responsibility for project tasks. There is also a place to report general problems. This
is especially useful information to the instructor.

21

TEAM MEETING RECOID

TEAM ID:

DATE: LOCATION:

START TIME:

END TIME:

MEMBERS PRESENT: ABSENT:

AGENDA

ITEM PERSON RESPONSIBLE
1.

RESOLUTION:

2.

RESOLUTION:

3.

RESOLUTION:

22

SUMMARY (No w dicubles, em):

TASK UST

TASK DUE RATE PERSON RESPONSIBLE

23

d. Manaoement of Extended Project

i. Scheduling

It is essential to carefully control both inter-team and intra-team activity if the inverted
functional matrix organization is to be effective. Objectives in team management
include disciplined system development and overcoming student tendencies to
procrastinate and become easily distracted from a task. Practical management
techniques for accomplishing these objectives include an effective project start-up, a
software project management plan, preliminary and final in-class reviews of team
deliverables, regular team status reports, and inch pebbles plans when appropriate.

Assigning all students to teams that begin work at once on the project is important
because it sets the tone for the whole project. It is equally important that these teams
be coordinated so that each has specific tasks to be undertaken immediately. Thus,
the configuration manager, the requirements team, the user interface team, the test
plan team, and the tools team are given specific assignments.

The configuration manager is charged immediately with developing a first draft
configuration management plan. The configuration management plan, developed by
the configuration manager and presented to the class for review, must be in place prior
to the development or submission of any other configuration items.

All teams are informed of their specific deliverables. The requirements team
immediately begins the process of eliciting requirements from the customer. Similarly,
the user interface team interacts with the user and the requirements team to begin
establishment of user interface requirements and a format for the preliminary user
manual. The test plan team begins work on a test plan shortly after requirements
analysis is underway. The tools team develops training materials and documentation
for project support. With this start-up strategy, all students are immediately involved
in the project.

All projects were carefully scheduled. We have found that unscheduled software is
vaporware. Each project has a deliverable schedule which drives the project. These
are modified software project management plans.

A software project management plan (SPMP) describes the sequence of activities
needed to successfully develop a particular software product. It minimally includes all
major milestones and their due dates, the dates when teams are scheduled to begin
work, and the list of configuration items (i.e., items to be placed under configuration
control). If more detail is desired, the SPMP can also include intermediate targets
such as walkthroughs and inspections. Below is a sample small project software
project management plan and an extended project SPMP used through preliminary
design. To be effective, the plan should be handed out when the project is introduced.

24

wn d th plan shold be referenced during cams and students asked
how they api progresng and if they need any help meeting their du dates. Just as
the SPMP guides the students through the project, It also helps the instructor In
managing te projeca

25

PROJECT 1: SOFTWARE PMO~r MAL•AGINOr PLAN

Date DueTh 9/2 Customer requirements statement distributed; begin requirements

analysis and specificati

Th 9/9 Draft Cl-1 Narrative description (abstract) and requirements list

Tu 9/14 Draft CI-2 CD, 1 st level DFD, and DD

Th 9/16 Begin design; begin test plan

Tu 9/21 Cl-I, CI-2 Requirements review preentton

Th 9/23 Draft CI-3 Design documents: system architecture - structure chart, external
descriptions of modules & interfaces

Draft CI-4 Test plan: classes of tests for each requirement

Tu 9/28 CI-3, CI-4 Begin design of specific test cases

Th 9/30 Continue modifications based on internal reviews and customer
feedback; continue design of test cases

Tu 10/7 CI-5 Test casee: specific tests, their input and expected output and their
relation to requirements

Tu 10/12 Design review preenttlon
Modify analysis, design, test plan documents based
on review; begin coding

(Internal code reviews, unit testing, system testing)

Tu 10/26 CI-6, CI-7 Documented source code, Executable code

Th 10/28 CI-8 Acceptance Test: documentation of test cases and their relation to the
test plan and documentation of the consistency of the source code
structure with the architectural design;

PIrsnteato o system to customer

CI-9 Deliver "package" of all Cl's

•- See notes on Mtoched pagoe

26

NOTES: Al Configuation Items (Cr's) am due at the BEGINNING of class on the specified
dates.

Al prenti/ w Items are dibue to desigated reviewers 24 hours prior to
the prumentator/review.

All team members are expected to participate in a meaningful role in at least one of
their team's review presentations.

Configuration items:

CM-1 Narrative description (abstract) and requirements list

Ci-1 Context diagram, leveled data flow diagrams, data dictionary

C1-3 Design documents: software system architecture - structure chart,
external descriptions of modules and their interfaces

C1-4 Test plan: classes of tests for each requirement

Cl-S Test cases: specific tests, their input and expected output and their
relation to requirements

C1-6 Documented source code

CI-7 Executable code

C1- Documentation of test cases and their relation to the test plan and
documentation of the consistency of the source code structure with the
architectural design

CI-9 Complete package

Additional details regarding format of Ci's will be provided in class.

27

PHOJCT 2- PROJEC•T SCEULE

DATE CI o
10/28 Customer request presentd.
11/02 Team am s announced and roles defined.

Start deveop-ment of confiqg ation anagement plan (CMP), prelmary
req utremen (PREQ), preliminary es plan (PJP), and preliminary
user's manual (P_.UM).

11/09 Cl-1 CMP delivered and resentao to teams.

11/11 CI-2 PREQ delivered and presentation to tamns and customer.

11/16 CI-3 PTP delivered and presentation to teams.

CI-4 PUM delivered and present to to team.

11/18 Requirements review. Preliminary design begins.

11/23 CI-5 Requirements revised based on review, delivered, baselined.

12/02 Preliminary design review.

12/07 CI-6 Preliminary design delivered and baselined.

12/09 CI-7 Final test plan delivered and baselined.

CI-8 Final user manual delivered and baselined.

Entire project package submitted.

NOTES: All Configuration items (Cl's) are due at the BEGINNING of class on the specified
dates.

All presentatlon/review items are distributed to designated reviewers 24 hours prior to
the presentation/review.

All team members are expected to participate In a meaningful role in at least one of
their team's review presentations.

28

ii. Configuration Management

The SPMP underscores the role and visibility of configuration management. The
configuration management plan establishes the place of the configuration manager in
the development process. Documents submitted for final review, as specified on the
SPMP, are immediately placed under CM and, therefore, configuration control. The first
document placed under configuration control is the configuration management plan. A
minimum form of configuration control can be established by setting up a directory which
holds items placed under configuration control and to which only the configuration
manager has write access and other class members have read access.

A good configuration manager makes the whole development process easier. Both the
instructor and the configuration manager must promote the configuration management
plan. Active and visible support for the configuration manager from the instructor is also
necessary. The instructor acts as the configuration control board in handling change
requests. The turn-around time on change requests must be minimized to avoid the
perception that CM impedes rather than expedites development. Samples of CM plans
and change requests are contained in the case study in section V.

e. PROJECT IDEAS

There are sample projects scattered throughout this document. For example, some
project examples are contained in LabO01. Additional project ideas are listed below.
Many of these were drawn from other software engineering texts.

In selecting projects for a course there are a number of decisions you can make which
will help limit the project selection. Some of the generic questions that can be asked
are: Is the system one that is intended to be used by someone?, Is it an complete
application or is it a piece of a larger one?, What special interfaces are available, and
what type of application is it?

Databases are easily understandable types of projects. These systems are specialized
data storage and retrieval systems. It is interesting when the algorithms involve
concurrency management, retrieval, etc. These projects involve a client server model
where the server manages access to some database. The second group of items
require very specific customer interfaces.

1. lottery manager
student Government Association Voting system
scientific reference library

personal data management systems
e.g., wine cellar, record albums, books, videotapes, etc.

29

"Sytem
lbrary nagement system (books & patns)
store sales activy-n databm
software components catalog
photograph library sales system
student record system
student laboratory management system
course scheduling and management system
university department Information management
draw diagrams
generate relational database scheme

2. slot machine
vending machine - coin slot & dollar bill slot
electronic banking
electronic mail system
student registration system
airline reservation system
electronic town meeting (or other group communication forum)
bulletin board/news system
electronic banking (e.g., ATM system)
group diary and appointment management system

Some faculty have students build software utilities similar to ones done in operating
systems classes. They write: assembles, compilers, linker/loaders, or search/replace
utilities. There are several drawbacks to such projects. They do not make a clear break
between software engineering techniques and the methods they may use in operating
systems classes. These projects still foster thought of development being the
development of a program rather than a system with complex user interaction.

To overcome the later difficulty, it is important to develop systems with user interaction.
There are several user application systems that can be developed. Some of these
systems require extensive domain knowledge. Projects like this include:

economic analysis systems
library tracking systems
graduate tracking systems
Departmental calendar (Jones)
Group diary & appointments system (Sommerville, p 45 of instructor's guide)
Structure extractor (Jones) - extracts from source code: invocation hierarchy, DFD,
object visibility chart, Nmssi-Schneiderman chart, etc. (See Sommerville p 46 of
instructor's guide)
CS1 Karel-Uke Robot

30

Program comparer; plagiarism detector
Room scheduler
Football Rating system
Automobile Rental System
Fire and security alarm monitoring system (Sommerville, p 43 of IG)
Police vehicle command and control system (Sommerville, p 42 of IG)
software metric tool e.g., static structure analysis for a collection of modules
source-code management system (change control, reporting, data collection)
program visualizer (structure, etc.)
satellite tracking program
tax return calculation
hypertext authoring system
spreadsheet calculator
office automation system
expert system software
computer opponent for game playing (e.g., tic-tac-toe, othello)
simple flight simulator
simulate evolution (game of life)
revenue projector for concert administration
document concordance (generating index)
personal calendar
household budget
simulate a scientific, pocket calculator
newspaper typesetter
scoring athletic events
simple diagram editor (any type of diagrams)
interactive, symbolic manipulation of polynomials
computer animation, animated presentation system
diagram editor for electric power distribution systems
police vehicle command and control system
overhead projector transparency preparer

Sources of project ideas are listed in the software engineering bibliography. Texts that
are especially useful in this regard are the books by: Blum, Booch, Frakes, Lamb, von
Mayrhauser, Mynatt, Rakos, Rumbaugh et al., Schach, and Sommerville.

f. Inverted Functional Matrix Team Organization

The inverted Ajnctional matrix organization and management is described in the
attached paper which has been submitted to SIGCSE 95 for presentation and
publication. The figures referred to in the paper appear elsewhere in this report.

31

The inverted Functional Matrix - A New Approach
to Project Intensive Software Engineering Courses

Donald Gotterbam, Robert Riser
East Tennessee State University

Suzanne Smith
Converse College

1. Introduction

The inverted functional matrix provides a new approach to organizing and managing projects
In software engineering courses. It provides realistic experience in the development of large
software products. Kurtz [6] has identified three typical approaches to class project
organization: multiple teams of students independently developing the same project, multiple
teams developing different projects, or one class project divided into programming subtasks
where each subtask is assigned to a team. However, these models do not simulate real-
world development of large projects as accurately as the inverted functional matrix
organization.

This article describes the details of the project organization, the team structure, the
management and assessment issues, and the benefits of this approach beyond other
models.

2. Inverted Functional Matrix Organization

The inverted functional matrix organization incorporates attributes of both the functional and
matrix models identified by Fairley [4]. This approach involves a single significant class
project where the software development process model is used as the basis for project team
organization. Individual teams are responsible for different life cycle phases. The columns
of the matrix are the development teams, and the rows are the students. This matrix
organization is inverted because the students are distributed to multiple functional teams of
a single project rather than to a single functional team which is then distributed across
multiple projects.

The inverted functional matrix organization is independent of process model. It has been
used for both structured development and object-oriented development in classes at East
Tennessee State University.

32

2.1. Team Organization

The partitioning of the class project into teams reflects the division of any software
development project into analysis, design, and implementation phases, and support
functions. The teams which start in the analysis phase are the requirements team, the user
interface team, and the test plan team. The teams which start in the design phase are the
preliminary design team and the detailed design team. The code team and the testing team
begin during implementation. The support teams, configuration management and tools, exist
throughout the project. The Gantt chart (Figure 1) shows this relationship.

The entire class is organized to work on a single project, and all students serve on either
multiple teams or an entire life cycle support team. Figure 2 depicts the inverted functional
matrix organization for a class of size fifteen; this organization has been scaled to other
class sizes. The user interface team operates in both the analysis and design phases. The
support teams, configuration management and tools, operate in all phases. One member
of each analysis and design team is designated to maintain their team's deliverables until
the completion of the project.

The choice of teams to which a given student is assigned is significant both to product
quality and to breadth of experience to be gained by the student. To protect project
integrity, careful attention must be given to the allocation of students to teams. No student
is assigned to two teams which are responsible for validating one another's work; for
example, no one is assigned to both the coding and the testing team. Correctly organized,
teams act as cross checks on each other during development. For example, the user
interface team meets independently with the user, while the requirements team meets with
the customer. During the requirements review, the user interface team can help validate the
requirements. The other consideration in the assignment of students to teams is the breadth
of development experience gained by individual students. Members of the support teams
experience the entire life cycle while on a single team. All other students serve on an
analysis team, a design team and an implementation team. Members of the requirements
team are split between the preliminary design and detailed design teams as the transition
is made from analysis to design. The test plan team is split similarly. The user interface
team remains intact through the design phase. As the transition is made from design to the
implementation phase, each of the teams is distributed among the code and testing teams.
While no student serves on every team, each becomes knowledgeable of the functions and
products of all teams through the review process described in Section 3.4.

2.2. Team Definition

In this section, the teams for the inverted functional matrix organization are described
according team the purpose and tasks, deliverables, and, where applicable, tools used by
a team. Interactions between teams, and between a team and the customer or a team and
the user are also described.

The requirements team meets with the customer in order to elicit, analyze, and specify the
requirements for the software system. They develop the analysis model. For example, if
structured analysis is used, the analysis model includes a narrative description of the

33

proposed system, a list of requirements (acceptance criteria), context diagram, leveled data
flow diagrams (DFDs), data dictionary, and process specifications. A CASE tool is used to
produce the context diagram, leveled DFDs, and data dictionary. Such tools provide
traceability and verifiability between the diagrams and the data dictionary.

The user interface team produces all user documentation for the system, develops user
interface requirements, and designs the user interface of the system. Their deliverables are
the preliminary format of the user manual, the complete user manual, and the detail for all
user interface (e.g., required menus, forms, screens, reports, commands). A prototyping
tool or screen generator is useful here.

The test plan team designs the subsystem and system tests. They develop the test plan
which includes the test schedule, order of integration, checklist of tests to run at each step
of integration, and traceability of tests to the requirement(s) being testing. They also design
black-box test data (i.e., test data based on the requirements).

The preliminary design team creates a preliminary software structure of the system based
on the requirements produced by the requirements team. The preliminary design
deliverables are the system components (including a description of each component's
functionality), the architecture of these components, the interface between the components,
and a traceability matrix which relates a component to the requirement(s) which it satisfies.
CASE tools can be used to create the system architecture, specify component interfaces,
and describe component functionality.

The detailed design team creates the algorithms to implement the system structure produced
by the preliminary design team. Detailed design's deliverables include the algorithms for
each component delineated in the system structure and a traceability matrix which relates
each algorithm to a component in the preliminary design. The algorithms can be specified
by notations such as Nassi-Shneidermann charts, pseudocode, or flow charts.

The code team produces source code for the algorithms created by the detailed design team
and performs unit testing. The tested source code is the deliverable for the code team. The
minimal tools required are a text editor and a compiler for the specified programming
language; however, other useful tools include a language-sensitive editor and debugger.

The testing team implements the tests described in the test plan and executes these tests
in order to verify and validate the software. The deliverables of the testing team are the
white-box tests and test data (i.e., data which exercises the logic of the system) and the
documented test results. Finally they conduct acceptance testing. Any CASE tools which
help automate the testing process are beneficial to this team and the code team.

The tools team provides training and ongoing support for the tools and environments needed
by the other teams. They produce instructional materials (e.g., written tutorials and lectures)
on the tools and environments. These instructional guidelines provide the basics for using
a tool and details on any advanced features of a tool to which a team needs access.

34

The configuration management (CM) team develops and implements a configuration
management plan. This team is in existence throughout the project and is normally a one-
person team. The deliverables are the configuration management plan and all
documentation necessary for its implementation. The configuration management plan
includes documentation standards, configuration item control, and change control.

Some of the interaction between teams is evident in the descriptions above. Throughout the
development process, teams produce deliverables which are needed by other teams to
accomplish their tasks. For example, the preliminary design team works directly from the
deliverables produced by the requirements team, and the detailed design team works
directly from the deliverables of the preliminary design team. Other interactions are also
needed for the teams to accomplish their tasks. The user interface team communicates with
the requirements team in order to define the user interface and develop the user manual.
The test plan team also communicates with the requirements team in order to develop tests
and test data based on the requirements. The configuration management team and the
tools team communicate with all other teams throughout the development process.

The interaction between teams and the customer or the user is also critical for the success
of a project. Teams which have extensive communication with the customer or user are the
requirements team, user interface team, and preliminary design team. This communication
takes the form of interviews and participation in reviews of the deliverables for these teams.

3. Managing the Teams

It is essential to carefully control both inter-team and intra-team activity if the inverted
functional matrix organization is to be effective. Objectives in team management include
disciplined system development and overcoming student tendencies to procrastinate and
become easily distracted from a task. Practical management techniques for accomplishing
these objectives include an effective project start-up, a software project management plan,
preliminary and final in-class reviews of team deliverables, regular team status reports, and
inch pebbles plans.

3.1. Project Start-Up

Assigning all students to teams that begin work at once on the project is important because
it sets the tone for the whole project. It is equally important that these teams be coordinated
so that each has specific tasks to be undertaken immediately. Thus, the configuration
manager, the requirements team, the user interface team, the test plan team, and the tools
team are given specific assignments.

The configuration manager is charged immediately with developing a first draft configuration
management plan. The configuration management plan, developed by the configuration
manager and presented to the class for review, must be in place prior to the development
or submission of any other configuration items.

All teams are informed of their specific deliverables. The requirements team immediately

35

begins the process of eliciting requirements from the customer. Similarly, the user interface
team interacts with the user and the requirements team to begin establishment of user
interface requirements and a format for the preliminary user manual. The test plan team
begins work on a test plan shortly after requirements analysis is underway. The tools team
develops training materials and documentation for project support. With this start-up
strategy, all students are immediately involved in the project.

3.2 Software Project Management Plan

A software project management plan (SPMP) describes the sequence of activities needed
to successfully develop a particular software product. It minimally includes all major
milestones and their due dates, the dates when teams are scheduled to begin work, and the
list of configuration items (i.e., items to be placed under configuration control). If more detail
is desired, the SPMP can also include intermediate targets such as walkthroughs and
inspections. Figure 3 is a SPMP used through preliminary design. To be effective, the plan
should be handed out when the project is introduced. Between deliverables, the plan should
be referenced during class and students asked how they are progressing and if they need
any help meeting their due dates. Just as the SPMP guides the students through the
project, it also helps the instructor in managing the project.

3.3 Configuration Management

The SPMP underscores the role and visibility of configuration management. The
configuration management plan establishes the place of the configuration manager in the
development process. Documents submitted for final review, as specified on the SPMP, are
immediately placed under CM and, therefore, configuration control. The first document
placed under configuration control is the configuration management plan. A minimum form
of configuration control can be established by setting up a directory which holds items
placed under configuration control and to which only the configuration manager has write
access and other class members have read access.

A good configuration manager makes the whole development process easier. Both the
instructor and the configuration manager must promote the configuration management plan.
Active and visible support for the configuration manager from the instructor is also
necessary. The instructor acts as the configuration control board in handling change
requests. The turn-around time on change requests must be minimized to avoid the
perception that CM impedes rather than expedites development.

3.4 Reviews

In-class reviews are used as quality assurance activities for deliverables. Each milestone
on the SPMP has a preliminary and final review. Reviews help students manage their
team's progress in producing deliverables. Preliminary reviews also give teams early
insights into the deliverables they will be receiving.

Before any review is conducted, appropriate review techniques [3, 7, 10] are discussed. It
is important to stress that the function of reviews is the improvement of the delivered product

36

and that problems are identified but not solved during a review.

The pattern for reviews is that the students give a preliminary review presentation in which
each team member takes an active role. The material to be reviewed is distributed prior to
the review. For each type of review, the class is given a review preparation form. These
forms indicate specific items which are to be addressed in the review by the presenting team
and by the student reviewers. Figure 4 is a sample of this form. Each student is expected
to have carefully read the review material and to act as a reviewer. The team responds to
questions or comments from the reviewers. Each team appoints a secretary to record all
issues raised during a review. After the preliminary review, the team revises their
deliverable for a later final review. The final review is conducted in the same manner as the
preliminary review. After the final review, the team makes any remaining adjustments, and
the deliverable is put under configuration management.

Student evaluations have been very favorable to the review process. A difficulty for the
instructor is assuming the distinct roles of instructor and customer during the review. The
customer expertise should be in the problem domain and not in computing. His/her primary
concern is the system requirements be satisfied. However, it is sometimes appropriate
during a review to assume the role of instructor. Balancing these dual roles is difficult and
sometimes causes confusion. Post-project student assessments indicate that when a review
is not going well that students would like to see more of the instructor than the customer.

3.5 Team Status Reports

Having two reviews does not prevent a last minute preparation frenzy just before a review.
One way to encourage regular directed activity is the use of team status reports. A team
status report is submitted for each team meeting. It includes a meeting agenda related to
the team's current activities. The report indicates the disposition for each agenda item, the
members present and absent, and the location and time of the meeting.
The team status report helps students direct their own efforts and to have more effective
meetings. The status of each task is recorded. Some tasks are recorded as resolved while
others may be assigned to particular students for resolution or for further study. Completing
the sum of the tasks on the agenda moves the project team closer to their goal. This
management tool does not significantly increase the students' work and enables the
instructor to monitor the progress of all teams without attending all team meetings. They
also help the instructor guide a team's progress. The goal of this process is not to catch a
team or team members doing something wrong, but to guide a team toward the successful
completion of its part of the project.

One of the hardest things in managing project intensive courses is determining the
appropriate degree of instructor management of the project. While an instructor must not
dictate a solution, he/she must provide appropriate and timely direction and coaching.
Steering of a project takes several forms, from a simple question like "Have you handled X
yet?", to attending a team meeting, or to suggesting an alternate solution. Attending a team
meeting should be done sparingly lest the students perceive this as a "negative form of
monitoring".

37

3.6 Inch Pebbles Plan

The best management does not always guarantee on-time delivery. When a project
encounters difficulty, the students may want to "slip the schedule" by changing the due dates
on the SPMP. In such instances, an inch pebbles plan can help students to measure and
control their progress. An inch pebbles plan breaks a milestone into a series of smaller
tasks for reaching that milestone. Such micro-management is only used when absolutely
necessary. When we have had to resort to an inch pebbles plan, it has received universal
praise in post-project assessments. A sample inch pebbles plan is in Figure 5.

As deadlines near, even with an inch pebbles plan, a common tendency is to resort to
undisciplined development and to ignore or relax configuration management. Support for
CM becomes even more important at this point. Scaling back on the required functionality
of the project is preferable to giving up on CM. Abandoning CM conveys the wrong lessons.
One way to scale back is to design the inch pebbles so that the system can be developed
incrementally and at any pebble a functioning system can still be delivered. For example,
the plan in Figure 5 is for a system that passes source code through a series of tests or
filters. Even if the students completed coding only one filter, they would still produce a
working system for an acceptance test.

The management techniques described above are not difficult but require constant attention.
The return for this investment is a more mature development process. It includes productive
team meetings, effective coordination of different teams' efforts, a clear understanding by
the entire class of what each team is doing, reduction in the effects of procrastination, and
a delivered software product.

4. Project Assessment Techniques

Feedback on the project must be provided to students throughout the course. Providing
timely feedback can be difficult for the instructor, particularly in a project-oriented course
because of the time demands associated with project and team management. We
recommend multiple assessment components. As discussed in Section 3.4, properly
conducted reviews are one valuable means of accessing the product being reviewed and
the progress of its development.

Another valuable source of feedback is the assessment of "first drafts" of deliverables (e.g.,
user manual, requirements list, analysis model). These assessments provide early
opportunities to steer teams in the right direction. First drafts are reviewed and returned by
the next class meeting along with a written or oral critique. In either case, a record is kept
and used to assure that the suggestions and/or criticisms are addressed in subsequent
drafts.

An alternative method of providing quick feedback with minimal grading time is holistic
grading. Holistic grading, which views an item as an integrated whole, involves a perusal
of the entire item and the assignment of a single grade based on its entirety. Some student
work is prone to holistic grading; some is not. For example, the first-level data flow diagram

38

of a structured analysis model might be graded holitically on the followng 0 to 4 scae.

4- (a) balanced with conexrt desrm;
(b) htems apropriey describd in deta dictionary;
(c) processes appropriate for tis level;
(d) captures essence of rsequJd flunctlrly;
(e) adheres to procsse and dat flow nami, convean WOns
(fM adheres to notational standards.

3- Meets -4- description except for items (e) and (f), or fails to meet one of Items (a)
through (d).

2- Meets "4" description except for items (e) and (f), ardor falls to meet two of items
(a) through (d).

1 - Meets "4" description except for ierms (e) andM (f), ando fals to meet three of items
(a) through (d).

0- Meets "4" description except for items (e) and (f), and/or falls to meet any of items
(a) through (d).

The scale is distributed with the returned work whlch is markedwth a O, 1,2,3, or4. Itis
also made clear that the Instructor will provide additional explanation for the assessment if
asked. This rarely occurs.

The detailed assessment of deliverables associated with major milestones is also critical.
"Product assessments' of deliverables, including the complete final package, are conducted.
For example, Figure 6 is an excerpt from the evaluation of a strctured analysis model that
included a narrative description of the proposed system, a requirments list, context
diagram, data flow diagrams, and data dictionary.

Peer and self evaluations are used extensively In assessing individual contributions to team
projects. Students are informed that Individual projec grades are based on three factors:
team project grade (determined in the product assssent), peer review, and the Instructors
perceptions of individual contributions. Peer evaluation forms solicit student assment of
the team's products and interactions (Figure 7a) and of the contributions of team
members(Figure To). A peer review is also conducted following preliminary design. While
students find peer review difficult, ptojc seret indicate that thy are generay
areciative of the opportunity to contribute their views.

In addition to the integration of continuous assessment Into all project activities, a closing
em nt has proven very productive. Often final deliver of the course project coincides

with the final dcas meeting. This scheduling does not afford time for feedback or reflecton.
Class time should be provided to appraising the strengths and -- of the process
used and the products developed. To focus students on the ae n dicussiom, the
are required to complete an sme Instrument. "Lsons learned" discuions result
in students learming to be constructive critical of their own work and realistic about their
plans. The discus Include an analysis of possible product "IprovementS.

5. Conclusion

39

Although the inverted functional matrix approach to project intensive software engineering
courses requires considerable effort from both the instructor and the students, its benefits
are numerous and outweigh the difficulties.

In this approach to class project organization, students experience every aspect of software
development. They are assigned to teams throughout the life cycle and receive in-depth
exposure to those phases of the life cycle. Additionally, through participation in formal
reviews and inter-team communication, they receive an understanding of the problems and
tasks of the other phases of the life cycle.

Because student success and project success are dependent on many forms of
communication, students learn to appreciate and practice these forms of communication.
A higher level of precision is required in inter-team communications because teams which
must communicate directly with each other have no common students. Informal speaking
experience includes the communication with the customer or user and the intra-team and
inter-team communications. Written skills are emphasized in the extensive documentation
required in this approach.

Students, having participated in the development of significant deliverables, gain in-depth
experience in at least two software development areas. Additionally, they experience the
positive effects of controlling disciplines on the development of large projects. The inverted
functional matrix organization is a feasible approach to the organization of project-oriented
software engineering courses and provides real-world project experience beyond that
available in other project organizations.

Copies of all the forms mentioned are available via electronic mail from the authors.

40

[1) Doris Carver, "Comparison of Techniques In Project-Based Courses," SGCSE
Bulltn 17:1, March 1985.

[2] James Coflofello, "Monitoring and Evaluating Individual Team Members in a
Software Engineering Course," •IQCSE julltin. 17:1, March 1985.

[3] Lionel Deimel, "Scenes of Software Inspections: Video Dramatizations for the
Classroom,' Carnele Mellon Technical Roort. CMU/SEI-91-EM-5, 1991.

[4] Richard Fairley, Software Engineerin Conceots McGraw Hill, New York, 1985.

[5] Manmahesh Kantipudi, et.al.,'Software Engineering Course Projects: Failures and
Recommendations," in Lecture Notes In Computer Science. Springer Verlag, C.
Sledge, ed., 1992.

[6] Barry Kurtz and Tom Puckett, "Implementing a Single Clmsewide Project in Software
Engineering Using Ada Tasking for Synchronization and Communication," SIGCSE
Bulletin 22:1, 1990.

[7] Barbee Mynatt.Software Engineerno with Student Prolect Guidance. Prentice Hall,

New Jersey, 1990.

[8] M. Rettig, "Software Teams," Communications of the ACM. 33:10, October 1990.

[91 lan Sommerville, Software Enoineedno. 4th edition, Addison-Wesley,
Massachusetts, 1992.

[10] Gerald Weinberg and Daniel Freedman, Handbook of Walkthrouahs. Inspections.
and Technical Reviews Little, Brown and Company, Boston, 1982.

41

Real-World Software Engineering

V Example Cue.

Below is the project management plan and the test plan for an
extended student project. This system examined two samples of
Pascal source code checidng for inappropriate similarities. We
have not included either a requirements document nor a design
document because there are numerous satisfactory examples of
them in the literature.

A. Configuration Management

This is a section of the configuration management plan. The
material on proper Ada coding style is not included here. It is
chapter two of SPC71.

I PROJECT: Third Eye Project
I FILE NAME: CMPLAN.DOC
I DOCUMENT NAME: Configuration Management Plan

I PURPOSE:
I This document describes the responsibilities of
I Configuration Management.

I MODIFICATION HISTORY:
WHO: REV: DATE:
Kellie Price 1.2 8/3/93

* Added CMINCHS.DOC to C.M. files list

Kellie Price 1.1 7/16/93
* Added detailed design requirements

Kellie Price 1.0 7/12/93
* Created initial revision of document.

1

Computer and Information Sciences
Third Zye Project

Configuration Management Plan

Kellie Price

2

Table of Contents

1. PURPOSE 1

2. MANAGEMENT 2
2.1 CONFIGURATION MANAGER RESPONSIBILITIES 2
2.2 ORGANIZATION ... 2

2 • 2 . 1 REQUIREMENTS TEAM 2
2.2 . 2 USER MANUAL TEAM 2
2 . 2. 3 TEST PLAN TEAM 3
2.2.4 PRELIMINARY DESIGN TEAM 3
2.2.5 DETAILED DESIGN TEAM 3
2.2.6 CODE & UNIT TEST TEAM 3
2.2.7 TESTING TEAM 4

3. CONFIGURATION MANAGEMENT ACTIVITIES 5
3.1 C.M. REQUIREMENTS DOCUMENTS 5
3.2 C.M. CONTROL .. 5

4. CONFIGURATION MANAGEMENT RECORDS 6
4.1 C.M. FILES ... 6

3

Configuration Management Plan 1

1. PURPOSE

The Configuration Management Plan defines the Configuration
Management (CM) policies which are to be used in the Third
Eye Project. It also defines the responsibilities of the
project configuration manager.

Configuration Management Plan 2

2. MANAGEMENT

2.1 CONFIGURATION MANAGER RESPONSIBILITIES

The first responsibility of the configuration manager
is to develop and implement this Configuration

Management Plan.

Throughout the project, the configuration manager will
report directly to the customer. It is the configuration
manager's responsibility to ensure that the project is
implemented in a straight-forward and well-defined manner
according to the customer's specifications and standards
established by Configuration Management for this project.

2.2 ORGANIZATION

This project will be divided into 7 teams as follows:
(Refer to CMTEAMS.DOC for the specific team assignments)

NOTE: All of the documents required of each team below
are listed in the file CM_DOCS.DOC.

2.2.1 REQUIREMENTS TEAM

The Requirements Team is responsible for
'ommunicating with the customer in order to
determine and well-define the software system
requirements. The documents required of the
Requirements Team are:

* Narrative description of system
* List of requirements (acceptance criteria)
* Context Diagram
* A series of leveled Data Flow Diagrams
* Data Dictionary
* Process Specifications

2.2.2 USER MANUAL TEAM

The User Manual team is responsible for
producing all user documentation for the
system. The documents required of the User
Manual Team are:

"* Preliminary format of user manual
"* User Manual

2

Configuration Management Plan 3

2.2.3 TEST PLAN TEAM

The Test Plan team is responsible for
designing subsystem and system tests. The
documents required of the Test Plan Team are:

* Test plan

2.2.4 PRELIMINARY DESIGN TEAM

The Preliminary Design team is responsible for
creating a preliminary design structure of the
system based on the software system
requirements. The documents required of the
Preliminary Design Team are:

"* An Object Model:
"* Complete object diagram
"* Class dictionary
"* Object-Requirements traceability matrix

"* Ada Specifications for each object class

2.2.5 DETAILED DESIGN TEAM

This team is responsible for creating
algorithms to implement the system structure.
The documents required of the Detailed Design
Team are:

"* Data Structure design
"* Algorithm design
"* Traceability Matrix

2.2.6 CODE & UNIT TEST TEAM

The Code & Unit Test team is responsible for
producing source code for the algorithms
produced by the Detailed Design Team, testing
each module of the system separately, and
integration of the modules to produce a
working system. The documents required of the
Code & Unit Test Team are:

* Source code

3

Configuration Management Plan 4

2.2.7 TESTING TEAM

The Testing team is responsible for
implementing the tests in the test plan and
using them to test the system. The documents
required of the Testing Team are:

"* Test data
"* Documented test results

4

Configuration Management Plan 5

3. CONFIGURATION MANAGEMENT ACTIVITIES

3.1 C.M. REQUIREMENTS DOCUMENTS

The configuration manager has provided documentation to
assist the teams in meeting the C.M. requirements. This
documentation is in a series of files which are available
on the project file server. The C.M. requirements
defined in these files are as follows:

DESCRIPTION FILENAME

"* Documents required by C.M. CM_DOCS.DOC
"* Document header info CM_HEADR.DOC
"* Document naming conventions CM_NAMES.DOC
"* Document format & standards CM_FORMT.DOC
"* Change request form format CM_CHREQ.DOC
"* Configuration item request procedure CMCIREQ.DOC
"* Configuration item access procedure CM_ACESS.DOC
"* Configuration item change process CM_CHPRO.DOC
"* Configuration item baseline process CMBASLN.DOC

3.2 C.M. CONTROL

The configuration manager will provide the teams and team
members controlled access to their respective
configuration items. In order to have access, however,
the teams and/or team members must provide the
configuration manager with a written request for any
desired configuration items as defined in the file
CMCIREQ.DOC.

5

Configuration Management Plan 6

4. CONFIGURATION MANAGEMENT RECORDS

All BASELINED Configuration Items and documents will be
maintained on the project file server in a directory structure
as defined in the file CM_FILES.DOC.

4.1 C.M. FILES
All Configuration Management files (including the
requirements files listed in section 3.1) are listed
below:

DESCRIPTION FILENAME

"* Configuration item access procedure CM_ACESS.DOC
"* Configuration item baseline process CMBASLN.DOC
"* Configuration item change process CMCHPRO.DOC
"* Change request form format CMCHREQ.DOC
"* Configuration item request procedure CMCIREQ.DOC
"* Original customer request CM_CRQST.DOC
"* Documents required by C.M. CM_DOCS.DOC
"* C.M. file directory structure CM_FILES.DOC
"* Change request form CM_FORM.DOC
"* Document format & standards CM_FORMT.DOC
"* Document header info CM_HEADR.DOC
"* Project Inch Pebbles CM_INCHS.DOC
"* Document naming conventions CMNAMES.DOC
"* Document page header CMPGHDR.DOC
"* Configuration Management Plan CM_PLAN.DOC
"* Software Project Management Plan CMSPMP.DOC
"* Project team organization CM_TEAMS.DOC

6

Configuration Management Plan 7

7

Configuration Management Plan 8

+ -

I PROJECT: Third Eye Project
I FILE NAME: CM_CRQST.DOC
I DOCUMENT NAME: Customer Request
+---
I PURPOSE:
I This document is the actual customer request for the
I software system
+---
I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Dr. Riser(customer) 1.0 6/22/93

* Created initial revision of document

CSCI-4910 SOFTWARE SYSTEMS DEVELOPMENT WORKSHOP
SUMMER 1993 - GOTTERBARN/RISER/SMITH

PROJECT 2 - CUSTOMER REQUEST

As Dean, I often have to make the final decision, or make
recommendations to a university hearing committee, in academic
misconduct cases involving suspected plagiarism of student
programs in computer science courses. I would like a system
that can compare student programs and determine, with a high
degree of credibility, whether plagiarism has occurred. I
need an analysis report that is clear and understandable and
could be presented as evidence to a university hearing
committee.

The program will be used by faculty to screen student programs
for possible plagiarism and to provide an objective analysis
to support or negate their subjective opinions.

8

Configuration Management Plan 9

÷--
I PROJECT: Third Eye Project
I FILE NAME: C)LSPMP.DOC
I DOCUMENT NAME: Software Project Management Plan

I PURPOSE:
I This document defines the plan to be followed during
I the production of this system.

I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Gotterbarn/Riser/Smith 1.0 6/22/93
I * Created initial version of this document

9

Configuration Manageent Plan 10

Software Project at Plan
Extended Project Suimer 1993

z C Idlft
6/22 Customer Request presented.

6/28 Team assignments announced and roles defined.

6/29 Start Development of Configuration Management
Plan (CMP), Preliminary Requirements (PREQ),
Preliminary Test Plan(PTP), and Preliminary
User's Manual (P-UH).

7/6 CI-1 CMP delivered and presented to teams.

7/6 CI-2 PREQ delivered and presented to teams and
customers.

7/8 CI-3 P_TP delivered and presented to teams.

7/8 CI-4 P_UM delivered and presented to teams.

7/12 Requirements review. Preliminary design
begins.

7/13 CI-5 Final revised requirements is delivered and
baselined by CM.

7/19 Preliminary design review.

7/20 CI-6 Final Preliminary Design is delivered and
baselined by CM.

CI-7 Final test plan is delivered and baselined by
CM.

CI-8 Final User Manual is delivered and baselined
by CM.

7/26 Detailed Design Review.

7/27 CI-9 Detailed design delivered and baselined by CM.

8/6 Completed code goes to integration testing

8/9 CI-10 Source and Object Code Delivered.

8/10 System acceptance test is conducted and the
complete system and all associated documents
are delivered to the customer.

Items in bold denote student presentations.
All CI's are due at the beginning of class on the specified dates!

10

Configuration Nanagment Plan 11

I PROJECT- Third Eye Project
I FILE NAME: CNLINCHS.DOC
I DOCUMENT NAME: Third Eye Project Inch Pebbles

PURPOSE:
I This document divides the remaining project 'milestones'
I into 'inch-pebbles' so that the deadlines will be easier
I met and progress may be made on several different teams at
I the same time.
+--
I MODIFICATION HISTORY:
I WHO: REV: DATE:

Gotterbarn/Riser 1.0 7/29/93
--

Configuration Management Plan 12

INCH PEBBLES, July 29-August 10th
Dae TESTING CODING DETAILED DESIGN
4:00 PM
7/30 Nassi-S Charts,

Data Structure
Dictionary to CM,
TEST, CODE

7/30- Develop Tests Write FILE, DRIVER, Develop trace
8/2 for FILE, DRIVER SUMMARY REPORT, matrix, help

SUMMARY REPORT, MENU, FILTER 1, screens, Summary
FILTER 1 SOURCEPROGRAM-F1 Report Format

8/2 Run tests on Deliver 7/30 unit Deliver 7/30
delivered code tested code to CM, items to CM, CODE
and Build tests and TEST. and TEST
for FILTER2 Code all FILTER2

applications

8/3 Discrepancy report Deliver FILTER 2 CODE
on 8/2 tests to CM to CM and TEST
Write test for Write code for FILTER 3
FILTERS 3 and 4 and FILTER 4. Respond to

discrepancy reports.

8/4 Discrepancy report Deliver FILTERS 3 & 4 to CM
on 8/3 tests to C0 and TEST. Write code for
Write tests for FILTERS 5 & 6. Write Help screens.
FILTERS 5 & 6 and Respond to discrepancy reports.
Help screens.

8/5 Discrepancy report Deliver FILTERS 5 & 6 to CM
on 8/4 tests to CM and TEST. Write code for
Write tests for FILTERS 7.
FILTERS 7. Respond to discrepancy reports.

8/6 Discrepancy report Deliver FILTERS 7 to CM
on 8/5 tests to CM and TEST. Write code for
Write tests for FILTERS 8.
FILTER 8. Respond to discrepancy reports.

8/9 Discrepancy report Deliver FILTERS 8 to CM and
on 8/6 tests to CM and TEST. Respond to discrepancy
Write accept.test reports.

8/10 Conduct acceptance test.
All test data to CM

NOTES: Deliverables are in bold and both electronic & hard copies
are provided. All delivered code is to be unit tested.
Discrepancy reports (DRs) are the results of testing by test
team on baselined code. The CM passes DRs to CODE. When DR
is fixed, a CR and modified code is given to CM. CM
baselines new code and delivers it to testing.

12

Configuration Management Plan 13

+
I PROJECT: Third Eye Project
I FILE NAME: CMFILES.DOC
I DOCUMENT NAME: C.M. File Directory Structure
+---
I PURPOSE:
I This document defines file directory structure which

will be used by configuration management to file I
configuration items.
+ ---
I MDDIFICATION HISTORY:

WHO: REV: DATE:
Kellie Price 1.1 8/9/93

* Added Detail and Prelim subdirectories
Kellie Price 1.0 7/12/93

* Created initial revision of document
--

The file directory structure is as follows:

GROUPS -- > CFGMGMT---------------+---- > DOCUMENT -+---- >MGMTDOCS
I +----> REQMENTS
I ÷---> DESIGN -+--> PRELIM
I +--> DETAIL
I +---> TESTDOCS
I +---> USERMNUL
+....> SOURCECD
+-....> TESTDATA

13

Configuration Management Plan 14

I PROJECT: Third Eye Project
I FILE NAME: CM_ACESS.DOC
I DOCUMENT NAME: Configuration Item Access Procedure

I PURPOSE:
I This document describes the procedure to be followed
I when accessing a configuration item.

I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Kellie Price 1.0 7/12/93

* Created initial revision of document
+ ---

In order to access the configuration items under configuration
management control, the following steps may be taken:

NOTE: The project files are located on the network which can be
accessed in Gilbreath Lab 105.

NOTE: The project files are available for READ access ONLY.

1. Pull up the main menu on the network
2. Press the 'ESCAPE' key
3. You should now be at the U:\> prompt
4. Type LOGIN CSCISERV/SECMUSER at the U:\> prompt
5. Enter your password. The password is CMUSER.
6. You will now be at the F:\> prompt
7. Type CD GROUPS\CFGMGMT at the F:\> prompt
8. You are now in the CFGMGMT directory.
9. Type DIR for a list of the subdirectories.
10. Choose the subdirectory you wish to access.
11. When you are finished, you MUST LOGOUT! To logout you

must:
-- > Type CD\ (return to the F:\> prompt)
-- > Type CD LOGIN
-- > Type LOGOUT

PLEASE, DO NOT FORGET TO LOGOUT!!!!!!

14

Configuration Management Plan 15

+---

I PROJECT: Third Eye Project
I FILE NAME: CMDOCS.DOC
I DOCUMENT NAME: Configuration Management Items

I PURPOSE:
I This document defines the documents that will be placed
I under configuration management control.
+---
I MODIFICATION HISTORY:

WHO: REV: DATE:
Kellie Price 1.1 7/16/93

* Added Detailed Design documents

Kellie Price 1.0 7/12/93
* Created initial revision of document

The following documents will be placed under configuration management
control:

Requirements Documents:
* Narrative description of system
* List of requirements (acceptance criteria)
* Context diagram
* A series of leveled Data Flow Diagrams
* Data Dictionary
* Process specifications

User Manual Documents:
"* Preliminary format
"* User Manual

Test Plan Documents:
* Test plan

Preliminary Design Documents:
* Object Model:

"* Complete object diagram
"* Class dictionary
"* Object-Requirements traceability matrix

* Ada specifications for each object class

Detailed Design Documents:
"* Data Structure design
"* Algorithm design
* Traceability Matrix

Code Documents:
* Source code

Testing Documents:
"* Test data
"* Documented test results

15

Configuration Management Plan 16

+---
I PROJECT: Third Eye Project
I FILE NAME: CM_HEADR.DOC
I DOCUMENT NAME: Document Header Definition
+---
I PURPOSE:
I This document defines the document header that will be
I at the top of all documents placed under configuration
I management control.
+---
I MODIFICATION HISTORY:

WHO: REV: DATE:
I Kellie Price 1.0 7/12/93
I * Created initial revision of document
+---
The format for the header is as follows:

NOTE: The text enclosed in '< > must be replaced with the
appropriate information by the document author.

+---
I PROJECT: <project name here>
I FILE NAME: <file name here defined in CM_NAMES.DOC>
I DOCUMENT NAME: <document name here..(document description)>
+---
I PURPOSE:
I <purpose of this document>
+---
I MODIFICATION HISTORY:

WHO: REV: DATE:
<person's name> <new rev.#> <date revised>

* <description of modification made>

<person's name> 1.0 <initial date>
* Created initial revision of document

16

Configuration Management Plan 17

+---
I PROJECT: Third Eye Project
I FILE NAME: CM_NAMES.DOC
I DOCUMENT NAME: Configuration Item Naming Conventions
+---
I PURPOSE:
I This document defines the naming conventions to be used
I for all items placed under configuration management
I control.
+---

MODIFICATION HISTORY:
WHO: REV: DATE:
Kellie Price 1.2 8/2/93

* Added .PMD extension for PMDRAW files
Kellie Price 1.1 7/22/93

* Added .OMT extension for OMTOOL files
Kellie Price 1.0 7/12/93

* Created initial revision of document
+---

The valid file name prefixes are as follows:

Prefix Team name

CM- Configuration Manager
RQ_ Requirements Team
UM- User Manual Team
TP_ Test Plan Team
PD_ Preliminary Design Team
DD_ Detailed Design Team
SC_ Coding Team (Source Code)
TD_ Testing Team (Test Data)
TR_ Testing Team (Test Results)

The remaining 5 characters are entirely up to the documents
author. It is his/her responsibility to ensure that names
are not duplicated within a team.

The valid file extensions are as follows:

Extension Type

.DOC WordPerfect file
.TST System test file
.DFD Case tool files (all leveled DFD's)
.DBF Case tool file (Data dictionary)
.NDX Case tool file (Data dict. index)
.OMT Case tool file (OMTOOL)
.PMD Case tool file (PMDRAW)
.ADA Main program (driver) source file
.ADS Package specification source file
.ADB Package body source file

NOTE: The case tool files will have no prefix due to the fact
that the case tools name the files automatically.

17

Configuration Management Plan 18

+---
I PROJECT: Third Eye Project
I FILE NAME: CM_FORMT.DOC
I DOCUMENT NAME: Document Format & Standards
+---
I PURPOSE:
I This document defines the document format standards
+---

MODIFICATION HISTORY:
WHO: REV: DATE:
Kellie Price 1.1 7/16/93

* Added detailed design notation.

Kellie Price 1.0 7/12/93
* Created initial revision of document

1. GENERAL INFORMATION

1.1 MEDIA
All documents (files) will be subnitted to configuration
management as WordPerfect files (with the exception of
source code, test data, and case tool files) on a 3.50
diskette.

1.2 NAMING
All documents (files) will follow the naming conventions
defined in CM_NAMES.DOC.

1.3 VERSIONS
All versions of documents will begin at 1.0. Subsequent
versions will be assigned a number of 1.X, where X is the
next sequential number. The version number is not
changed until the document has been baselined and a
significant change has been requested, approved, and
made.

1.4 HEADERS
All documents will contain a document header 4s defined
in CM_HEADR.DOC.

2. STYLE

2.1 DOCUMENTS
All documents should adhere to the document •'andards
presented in class.

2.2 SOURCE CODE
All source code should adhere to the coding standards
of Ada which can be found in the Appendix of the
Configuration Management Plan.

2.3 PRELIMINARY DESIGN
The Object Model will consist of:
1) A complete object diagram using Rumbaugh

18

Configuration Management Plan 19

notation as presented in class,
2) A class dictionary entry using notation

presented in class,

3) An Object-Requirements traceability matrix
using notation presented in class. Ada
specifications should adhere to the coding
standards of Ada which can be found in the
Appendix of the Configuration Management Plan.

2.4 DETAILED DESIGN
The Data Structure Design will consist of a Data
dictionary with both object entries and attribute
entries.
The Algorithm design will consist of Nassi-Shneiderman
models for each operation. The traceability matrix will
be made up of two things: 1) Data Structures are related
to ObjectAttribute, and 2) NS-Models are related to
ObjectOperations. The specific notation for these
documents are according to that which was presented in
class.

3. FORMAT
The following sections describe a format which will be used
for all appropriate configuration items (such as the User
Manual and the Test Plan). Reference should be made to the
Configuration Management Plan as an example of this format.

3.1 TITLE PAGE
All documents will have a title page which will

include the following:
* Project name
* Document name
* Team (or author's) name

3.2 TABLE OF CONTENTS
All documents will have a table of contents which will
look like the following:

Table Of Contents

1. MAJOR IDEA 1
1.1 SUPPORTING IDEA 1
1.2 SUPPORTING IDEA 2

2. MAJOR IDEA 3
2.1 SUPPORTING IDEA 4
2.2 SUPPORTING IDEA 4

2.2.1 SUPPORTING IDEA 5

3.3 PAGE HEADER
All documents will have a page header on each page of

19

Configuration Management Plan 20

text (not including Title page, Table of Contents, Index,
or Appendix) which will include the document name and the
page number. It is available in the file CM_PGHDR.DOC.
(Refer to CM_ACESS.DOC for details in accessing the
document.) It's format is similar to the following:

Document Name

3.4 SECTION NUMBERING AND HEADERS
All documents will have the same numbering scheme. This
numbering scheme is like that in the Table of Contents
example above. Section headers will be ALL CAPS and
indented as in the example also.

3.5 INDEX,APPENDIX
All documents are not required to have an Index or an
Appendix, but these are optional and should be used when
appropriate.

3.6 FONT,JUSTIFICATION
All documents should use the default fonts and
justification values of WordPerfect 5.1.

20

Configuration Management Plan 21

+-

I PROJECT: Third Eye Project
i FILE NAME: CM_CHREQ.DOC
I DOCUMENT NAME: Change Request Form Definition
+---
I PURPOSE:
I This document defines the format for the change request
I form.

I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Kellie Price 1.0 7/12/93

* Created initial revision of document

CHANGE REQUEST FORM

Date:

Project:

Configuration Item to be changed:

Change requestor:

Requested change:

Improvement or repair:

Change request #:

Review date:

Reviewer:

Affected components:

Requirements Modification?:

Priority:

Estimated time:

Will be implemented?:

Change description:

Comments:

SIGN OFF LIST
Change implementor: Date:
Configuration Manager: Date:
Customer: Date:

21

Configuration Management Plan 22

+ -

I PROJECT: Third Eye Project
I FILE NAME: CM_CHPRO.DOC
I DOCUMENT NAME: Configuration Item Change Process
+---
I PURPOSE:
I This document describes the process to be followed when
I changing a configuration item.
I MODIFICATION HISTORY:

I WHO: REV: DATE:
I Kellie Price 1.0 7/12/93

* Created initial revision of document
+---

1. When a change to the system or a configuration item is
desired, a change request form must be submitted to the
configuration manager.

1.1 The change request form will be available in the file
CM_FORM.DOC .Refer to CM_ACESS.DOC for details in
accessing the documents.

1.2 Th- ..hange request form must follow the format
described in the file CM_CHREQ.DOC.

1.3 The change request form must be filled out as
completely as possible by the person requesting the
change.

2. The change request is reviewed by the configuration manager
and appropriate project team members.

2.1 A decision will be made as to whether or not the change
is necessary and/or feasible. Requests in by 4 P.M.
will be returned by 10 A.M. the following day.

3. The change is made and reviewed by the configuration manager
and appropriate team members.

4. If the change modifies any customer requirements, the
customer must also agree to it.

5. The change request form must be signed by the appropriate
project team members.

22

Configuration Management Plan 23

+-

I PROJECT: Third Eye Project
I FILE NAME: CMSCIREQ.DOC
I DOCUMENT NAME: Configuration Item Request Process
+---
I PURPOSE:
I This document describes the process to be followed when
I requesting a configuration item from configuration
I management for modification.

I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Kellie Price 1.0 7/12/93

* Created initial revision of document

1. A written request is made to the configuration manager in
the form of an approved change request. The request should
include the following:

1.1 The name(s) of the desired file(s) and the change
request form number(s) if applicable.

1.2 The name of the person responsible to see that the
modified document(s) is re-submitted to the
configuration manager.

1.3 A BLANK FORMATTED 3.5" diskette.

1.4 Any additional information the configuration manager
may need.

NOTE: Once a baselined configuration item has been checked out,
it will be locked and will not be available for
additional changes until the updated version has been
re-submitted and approved.

23

Configuration Management Plan 24

4.-
I PROJECT: Third Eye Project
I FILE NAME: CM_BASLN.DOC
I DOCUMENT NAME: Baseline Process Description
+---
I PURPOSE:
I This document describes the process which will take
I place when a configuration item is baselined.
+---
I MODIFICATION HISTORY:
I WHO: REV: DATE:
I Kellie Price 1.0 7/12/93

* Created initial revision of document
+---

When a baseline or release is to be made, the following steps
must be performed:

1. All appropriate configuration items will be submitted.
The following conditions are required of each document:

1.1 The document must be one of the documents listed
in the file CM_DOCS.DOC.

1.2 The document must represent the most up-to-date
version in the configuration management files.

2. In the event that a baselined Configuration Item is
changed, the Configuration Manager will notify the
customer, if necessary, and each project team. Any
necessary explanations will be provided at that time
regarding the nature of the change.

24

TEST PLAN

This part of the test plan for the plagarism project. The system did multiple comparisons
on two Pascal programs. Each type of comparison was called a FILTER. There is a
complete set of test documentation for a filter, but since the documents are similar for each
filter, not every test is included.

I PROJECT: Third Eye Project
FILE NAME: TP_TSTPL.DOC

I DOCUMENT NAME: Test Plan

I PURPOSE:
This document describes the testing strategy for the

I Third Eye Project.
+---
I MODIFICATION HISTORY:

WHO: REV: DATE:
Woodrow Beverley 1.2 8/08/93

* Changed expected results for name too long in
* test A3 from rejected to truncated. Also
* corrected the input data in these cases to
* exceed 32 characters. Added new case of (file
* already exists) to test A3.

* Changed test case of CONST type of FILE to SET.

* Corrected test data required section in tests
* B2b and B2c.

* Corrected test header in B2d.

WHO: REV: DATE:
Woodrow Beverley 1.1 8/03/93

* 1) Changed all filter percentage test to have a
* tolerance of + or - 4%
* 2) Deleted the expected physical line count and
* Pascal line count from all test matrices.
* 3) Added Pascal line count and physical line

data for filter one.

WHO: REV: DATE:
Woodrow Beverley 1.0 7/28/93

* Created initial revision of document

25

Computer and Information Sciences

Third Eye Project

Test Plan

Woodrow Beverley
Mitch Moses

Drew Picklesimer

26

Table of Contents

1. INTRODUCTION .. 1

2. REFERENCED DOCUMENTS 1

3. TEST METHODOLOGY .. 1
3 . 1 TEST GROUP INVOLVEMENT 1
3.2 REQUIREMENTS TRACEABILITY 1
3.3 TEST SCHEDULE .. 4
3.4 TESTS TO BE PERFORMED 5
3.5 TEST PROCEDURES / RESULTS FORMS 11
3.6 TEST CHECKLIST FORM 13
3.7 PROBLEM REPORT / PROBLEM TRACKING FORMS 14
3.8 SEQUENCE OF TEST EXECUTION FORM 17

4. TEST PROCEDURES ... 18

27

Ia

Test Plan I

1. INTRODUCTION

The Test Plan is presented in sections 3 and 4 of this
document. Section 3 describes the methods to be used for the
testing process. Section 4 contains the test procedures to be
executed. These procedures are derived from the requirements
specification document for the Third Eye Plagiarism Detection
System. Blank copies of the forms presented in section 3 will
be included in the Appendix.

2. REFERENCED DOCUMENTS

Client Request Version 1.0.
Configuration Management Plan Version 1.0.
Process Specifications Version 1.0.
Project Narrative Version 1.0.
Requirements Specification Version 1.0.

3. TEST METHODOLOGY

The following paragraphs will describe the items to be
considered in the planning of the tests for the Third Eye
Plagiarism Detection System.

3.1 TEST GROUP INVOLVEMENT

The Test Group will perform the integration tests, report
any test failures to the Code Team, and ensure that all
problems have been fixed at the end of the project. Also,
the Test Group will be responsible for demonstrating the
acceptance test to the customer.

3.2 REQUIREMENTS TRACEABILITY

The methodology for showing traceability of the
requirements to the tests will be accomplished through a
Test/Requirements Traceability Matrix shown on the
following page. Each requirement will be represented in
the matrix by its number in the requirements list. Each
requirement will then be matched with a test or group of
tests from the integration test list (see section 3.4).

The methods for verifying the requirements are as follows:

1) test and analysis of test results and
2) demonstration of the system.

Test Plan 2

Test/Requirements Testability Matrix

Reguirement # Tests
Functional

1 Al
2 Al
3 Bla - B8d, F
4 A2, Bla - B8d
5 D
6 D
7 Bla - B8d
8 Bla - B8d
9 Blc,B2f,B3b,B4c,B5f,B6b,B7c,B8c,E
10 A3
11 A3
12 A3
13 A3
14 A3
15 A3
16 A3
17 A3
18 Bla - B8d
19 Bla - B8d, E
20 Bib
21 Bla
22 Bla
23 Bib
24 Bla
25 Bla
26 Bla -Bid

27 Bic
28 B2e
29 B2a
30 B2b
31 B2d
32 B2c
33 B2a - B2g
34 B2f
35 B3a - B3c
36 B3a - B3c
37 B3b
38 B4a - B5g
39 B4a - B5g
40 B4d, B5g
41 B4b
42 B4a
43 B4a
44 B4a - B4d
45 B4b, B5a
46 B4c

Test Plan 3

Reauirement # Teat*s)
runctional

47 B5a - B5g
48 B5a
49 B5b
50 B5d
51 B5c
52 B5a - B5g
53 B5a, B6a
54 B5f
55 B6a
56 B6b
57 B7a, B7d
58 B7b, B7d
59 B7a - B7d
60 B7c
61 B8a - B8d
62 B8a - B8d
63 B8c

Non-functional
3 C

Test Plan 4

3.3 TEST SCHEDULE

The planning schedule shown below outlines the plan for
completing the Test Plan, developing procedures, and test
execution.

Test Schedule

a Complete Date

June 28 July 20 Complete Test
Plan

July 6 July 20 Develop
Procedures

July 26 August 5 Generate Test
Data

August 6 August 10 Complete Test
/ Bug Fix
Cycles

Test Plan 5

3.4 TESTS TO BE PERFORMED

The test list shown below shows test categories, any successful
prerequisites needed by the test and the order in which the tests
will be executed.

Tests to be Performed

Order of Successful
Intearation Tests Tests Prereauisite

A. Prompts
1. Pascal source programs 1 --

2. Exit Test 2 Al
3. Report Information

* Report name 4 Bla
* Course name
* Professor's name
* Students' names

B. Filters
1. Filter 1

a. Physical lines / comments 3 Al
b. Constructs 5

"* Assignments
"* Procedure calls
"* Simple IF statements
"* Compound IF statements
"* Simple IF / ELSE statements
* Compound If / ELSE statements
"* CASE statements
* REPEAT UNTIL statements
* WHILE statements
* FOR statements

c. Percentage 6 Al
* Two identical programs 100%
* 79% test
* 80% test
* 10% test

d. Torture 7 Al
"* Comments and code on same line
"* All code commented out
"* Comment syntax in literal string
"* Pascal declarations

Tent Plan 6

Order of Successful
Intearation Tests Testa Prereaui ste

2. Filter 2 B1
a. Global VARiable declarations 8

* Array types
* Boolean types
* Char types
* File types
* Integer types
* Real types
* String types
* User defined types

b. Global CONSTant declarations 9
* Array types
* Boolean types
* Char types
* File types
* Integer types
* Real types
* String types
* User defined types

c. Global TYPE declarations 10
"* Record types
"* User defined

d. Global function/Procedure declarations 11
e. Total number of global declarations 12
f. Percentage 13

* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

g. Torture 14
"* Comments and code on same line
"* All code commented out
"* Multiple variables separated

by commas
"* Functions declared in procedures
"* Procedures declared in procedures

Test Plan 7

Order of Successful
Intearation Tests Tests Prereauisite

3. Filter 3 B2
a. Function/Procedure interfaces 15

"* Functions (Same number of parameters,
same types, same order)

"* Procedures (Same number of parameters,
same types, same order)

"* Mix of Functions/Procedures
"* Same number of parameters different

types
"* Same number of parameters same type

different order
"* Same number of parameters same type

different parameters VARed
b. Percentage 16

* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

c. Torture 17
* Functions in procedures
* Procedures in procedures
* No functions or procedures
* 99 procedures

4. Filter 4 B3
a. Physical lines / comments 18
b. Constructs 19

"* Assignments
"* Procedure calls
"* Simple If statements
"* Compound If statements
"* Simple If / Else statements
"* Compound If / Else statements
"* Case statements
"* Repeat Until statements
"* While statements
* For statements

c. Percentage 20
* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

d. Torture 21
"* Comments and code on same line
"* Empty procedure (Begin End;)
"* Comment syntax in literal string
"* Run repeatedly on two identical

functions

Teat Plan B

Order of Successful
Intearation Tests Tests Prereauisite

5. Filter 5 B4
a. VARiable declarations 12

* Array types
* Boolean types
* Char types
* File types
* Integer types
* Real types
* String types
* User defined types

b. CONSTant declarations 23
* Array types
* Boolean types
* Char types
* User defined types
* File types
* Integer types
* Real types
* String types

c. TYPE declarations 24
"* Record types
"* User defined

d. Function/Procedure declarations 25
e. Total number of global declarations 26
f. Percentage 27

* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

g. Torture 28
"* Comments and code on same line
"* All code commented out
"* Multiple variables separated

by commas
"* Run repeatedly on two identical

functions

Test Plan

Order of Successful
Intearation Tests Tests Prereouisite

6. Filter 6 B5
a. Keyword and control statements 29

"* Assignments
"* BEGIN/END pairs
"* ASSIGN
"* RESET
* REWRITE

*READ
* READLN
* WRITE
* WRITELN
* IF statements
* CASE statements
* REPEAT UNTIL statements
* WHILE statements
* FOR statements

b. Percentage 30
* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

7. Filter 7 B6
a. Identifier names 31

* Array types
* Boolean types
* Char types
* File types
* Integer types
* Real types
* String types
* User defined types

b. Functions/Procedures 32
c. Percentage 33

* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

d. Torture 34
* Same names different case

Test Plan 10

Order of Successful
Intearation Tests Prereauisitpe

8. Filter 8 B7
a. Functions 35
b. Procedures 36
c. Percentage 37

* Two identical programs 100%
* 79% test
* 80% test
* 10% test
* 0% test

d. Torture 38
"* Call functions declared

in procedures
"* Call procedures declared in

procedures
"* Procedure/Function calls

in procedures
"* Same named function in both

sources, but local in one and
global in the other

C. 30 seconds per response 41 B8
D. Help test 39 B8

"* Main menu
"* Filter 1
"* Filter 2
"* Filter 3
"* Filter 4
"* Filter 5
"* Filter 6
"* Filter 7
"* Filter 8

E. Total percentage test 40 B8
F. Menu Key torture test 42

Test Plan 11

3.5 TEST PROCEDURES / RESULTS FORMS

A Test Procedure Form will be used to describe test
procedures. A Test Results Form will be used to

describe the process for recording test results. The
forms to be used are shown in Figures 3.5-1 and 3.5-2.

NOTE: The text enclosed in '< >' will be replaced with
the appropriate information for each test pro-
cedure.

TEST PROCEDURE FORM

Test: < Name of test (example: Bla) >

Test Version: < Version of test procedure >

Description: < Describes what the test covers >

Requirements: < These are numbers of the requirements from
the Requirements Specification the test
covers >

Prerequisites: < The names of any test that must be run
before running this test >

Test Data Required: < DOS file names of Pascal source
programs needed as test data by test >

Test Steps: < These are the actual test steps that the tester
will follow when performing the test. The steps
will also contain the expected result and a
place for the tester to record the actual
result of each step >

Figure 3.5-1

Test Plan 12

TEST RESULTS FORM

Test: < Name of test (example: Bla) >

Test Version: < Version of test procedure >

Executed By: < Name of tester >

Date Test Executed: < Date test was executed >

Version Number Tested: < Version of software tested, be sure
to include beta number (example:
1.0 Beta 1 >

Test Results Passed__ Failed __ < Usa a X to mark the
correct result >

Problems Identified: < Describe any problems found >

Test Steps: < These are the actual test steps that the tester
followed while performing the test. The steps
also contain the expected result and the actual
result as recorded by the tester for each step >

Figure 3.5-2

Test Plan 13

3.6 TEST CHECKLIST FORM

A test checklist will be maintained for each test
cycle. The checklist will be used to track the status
of all tests that have been executed during a test
cycle. An example of a test checklist is shown in
Figure 3.6-1. Also, a complete checklist form can be
found in the Appendix.

Third Eye Plagiarism Detection System Ver 1.0 Beta 1.0

Result
Problem P=Pass

Test Run Report F=Fail
Test Name Description Ver By Numbers N=Not Run

Al Prompt for Pascal
source programs

A2 Exit Test

Figure 3.6-1

Test Plan 14

3.7 PROBLEM REPORT FORM

A Problem Report Form will be used to notify the Code
Team of any problems found in the product during the
test cycle. The Test Team will use the top half of the
form and the Code Team will use the bottom half of the
form. Each Problem Report will be assigned a unique
number by a designated member of the Test Team. This
designated member will also be responsible for tracking
Problem Reports to ensure that all Problem Reports have
been closed at the end of the project. A Problem Report
will be considered closed after it has been dis-
positioned by the Code Team and verified by the Test
Team. In order to aid in the tracking of the Problem
Reports a Problem Report Tracking Form will be used. A
Problem Report Form is shown in Figure 3.7-1 and a
Problem Report Tracking Form is shown in Figure 3.7-2.
Also, blank forms of the two forms can be found in the
Appendix.

Test Plan 1S

Problem Report Form

PROBLEM SUBMISSION: PROBLEM

Originator: < Name of tester who found problem > REPORT #__

Date: < Date problem report is submitted >

Version Number Tested: < Version of software tested, be sure
include the beta number (example:
1.0 Beta 1) >

Problem Description: < A good description of the problem >

Was the problem found by a test? Yes__ No__ < Mark with a X >
If yes, give test name:

Input: < Steps leading up to the error >

Expected Result: < What should have happened >

Actual Result: < What actually happened >

Additional Comments: < Any other information that may be
useful •

PROBLEM RESOLUTION:

Name: < Name of coder who addresses problem >

Date: < Date problem dispositioned >

Disposition: < Mark with a X >

Problem Fixed - Not a Problem Duplicate Problem__

If this is a duplicate problem then give the number of the
report on which this problem was previously identified -

Comments: < Information about where the problem was found
(such as which subsystem) if the disposition was
Problem Fixed. If the disposition was Not a
Problem then explain why >

Figure 3.7-1

Test Plan 16

Problem Report Tracking Form

Disposition:
Fixed, Not a

Report Ver Date Date Problem,
Number Tested Reported Returned Duplicate Closed

1

2

3

4

5

6

7

8

Figure 3.7-2

Test Plan 17

3.8 SEQUENCE OF TEST EXECUTION FORM

Since the sequence that tests are executed can have an
affect on weather a test fails or not a Sequence Of
Test Execution Form will be maintained by each tester
each test cycle. The form is shown in Figure 3.8-1 and
a blank copy of this form can be found in the Appendix.

Sequence Of Test Execution Form

Tester Name

Version Tested

Test Test
Order Name Date Time Comments

1

2

3

4

5

6

7

8

Figure 3.8-1

Test Plan 18

4. TEST PROCEDURES

The following pages contain the actual test procedures that
are to be executed by the Test Team.

19

TEST POFORM

Test: Al (Pascal source programs)

Test Version: 1.0

Description: This test is performed to check the validity of
two source program names.

Requirements: 1, 2

Prerequisites: None

Test Data Required: TD_1A.TST, TD_1B.TST

Test Steps:

1. Verify system asks for program name for first program.

2. Enter test data 1 through 5 from matrix for first Pascal
name.

Note: In order to continue with the test, the system must accept
the valid file name for first program in test data matrix
number 5.

3. Verify system asks for program name for second program.

4. Enter test data 6 through 11 from matrix for second Pascal
name.

5. Exit system.

20

TEST DATA MATRIX (Al)

MWa TwaadZist Repeted Remit Pictual Resmit Veeel
Oencrition Fell

1 (checka if name is too long) Hellca.ynanwistester.tot Rejected

2 (checks if no name entered) Press <IlTER> key Rejected

3 (checks if bad characters entered) bad°?/.tat Rejected

4 (checks if two periods entered) Td1la..tSt Rejected

5 (valid file name in lower case) Td la.tst Accepted

6 (checks if name is too long) Hellomynamisteater.tst Rejected

7 (checks if no name entered) Press <ENTlt> key Rejected

S (checks if bed characters entered) badd?/.tst Rejected

9 (checks if two periods entered) Tdrlb..tat i Rejected

10 (checks if name same as first) TDIA.TST Rejected Custoner says this is Olt do not run.

11 (valid file name in CAPS) ¶lTDB.TST -Accepted

21

TEST PROCEDURE FORM

Test: A2 (Exit test)

Test Version: 1.0

Description: This test is performed to check whether one can
exit the system before filter one is run.

Requirements: 4

Prerequisites: Al

Test Data Required: None

Test Steps:

1. Verify system will allow you to exit prior to invoking filter
one.

22

TEST PROCHWREFORK

Test: A3 (Report information)

Test Version: 2.0

Description: This test is performed to check the validity of
the data for the report file to be generated.

Requirements: 10 through 17

Prerequisites: Bla

Test Data Required: TD_1A.TST and TD_1B.TST

Test Steps:

Note: In order to continue with the test, the system must accept
the valid data in test data matrix, numbers 5, 9, 13, and
17.

1. Enter TD_1A.TST for first program.

2. Enter TD_1B.TST for second program.

3. Run filter one.

4. Exit system.

5. Verify system asks for report name.
Enter test data 1 through 5 from matrix for report name.

6. Verify system asks for course name.
Enter test data 6 through 9 from matrix for course name.

7. Verify system asks for Professor's name.
Enter test data 10 and 13 from matrix for Professor name.

8. Verify system asks for Student's name.
Enter test data 14 through 17 for first Student's name.
Enter test data 18 through 21 for second Student's name.

9. Verify report information in report file is same as
information given in 9, 13, 17, and 21.

23

ITES MIu W EIMJO)

nut e f and ZqAt etd Actual Reu0 Commts
aocri j~ion __ RAmlt Result Fail

I (checks if report name is too lone) Helloeneameistester.rot Truncated

2 Ichucks if no name entered) Press -'DlU ke Reected_

3 (checks if bed characters entered) Bad-?/.r t Rejected

4 (checks if two periods entered) IdRe. . Ft __ed

5 (checks if file already exists) td-ol.tat Rejected

6 (valid report name in lower cose) Td-3.rpt Sd

7 (checks if course name is too long) This name is much too long for Truncated
course none___________________________

a (checks if no nae entered) Press .EDfI3R key Rejected

9 (checks if bad characters entered) Badcharecters Rojected Customer says not a problem do not
run.

10 (valid course name entered) Software engineering Accepted

11 1professor's name too long) Donald Gotterberns name is much Truncated
too long n__

12 (checks if no name entered) Press 'D(TrrM= ke Rejected

13 (checks if bad characters entered) Bed-?characters Rejected Customer says not a problem do not
run.

14 (valid professor's name) Donald Gotterbarn Accepted

15 (Student one's name too long) This name is much too long for Truncated
student.

16 (checks if no name entered) Press -Dft1- key Pejected

17 (checks if bad characters entered) Bad-?characters Rejected

18 (valid student's name) Student Name Accepted

19 (Student two's neme too This name is much too long for Truncated
long) student.

20 (checks if no name entered) Press ENfTI.R, key Rejected Customer says not a problem do not
run.

21 (checks if bad characters entered) Bad*?characters Rejected

22 (valid student's name) John Doe Accepted

24

TEST PROCEDURE FORK

Test: B3c (Torture)

Test Version: 1.0

Description: This test is a stress test for filter three.

Requirements: 3, 4, 7, 8, 18, 19, 35, 36

Prerequisites: B2

Test Data Required: TD_52A.TST through TD_53B.TST

Test Steps: (Tests are to be iterative)

For each iteration of tests, do one through seven.

1. Enter program names given in the test data matrix.

2. Run filter one.

3. Run filter two.

4. Run filter three and record the results in test data matrix.

5. Exit after filter three.

6. Give report name as TD_B3C.RPT.

7. Verify report information in report file is same as actual
results.

25

BOD meeced Otput Actual ea

IptFls List of functions/ List of functions/ List of functions/ List of functions/Plnv~tFls rocedures for file A___ Drocedures for file 5 vrocedures for f ile A procedures for f ile a3 alCmot

Not not not not
"NAme VA VAM Nam. VA VAR Nam VA VAR Name VA VAR

__________R_ I______ a - at I a

?372ATS Procedurel 0 0 Procedi 0 0
TD_52B.TST procedure? 0 1 Proved? 0 1
tFunctions in Procedure3 0 2 Proced3 0 2
Procedures) Procedure4 1 3 Proced4 1 3

__ _ _ _ _ procedureS 2 4 ProcedS 2 14--

?0V.S3A.TST Procedural 0 0 Procedi 0 0
TD_539.TST Procedure2 0 1 Proved? 0 1
(Procedures in Procedurel 0 2 Proced3 0 2
Procedures) Procedur*4 1 3 Proced4 1 3

__ _ _ _ _ procedureS 2 4 ProcedS 2 4--

1D..S83 TST
(No functions
or procedures) ________-- -- --

TPS89A.TST Procedural 0 0 Provedi 0 0
Th...99.TsT thru 0 0 thru 0 0
(99 Procedures) Proctdure99 0 10 ProvedP9 0 0 T - I - I - -

26

TEST PROCEDURE FORM

Test: B5a (VARiable declarations)

Test Version: 1.0

Description: This test is performed to check all the different
Pascal variable types. The test checks to see if
the number of Pascal types are counted correctly
in the VARiable section of selected procedures and
functions. The test will check all of the
following Pascal types: Array, Boolean, Char,
File, Integer, Real, String, and enumerated (user
defined types).

Requirements: 3, 4, 7, 8, 18, 19,47, 48, 52, 53

Prerequisites: B4

Test Data Required: TD_61A.TST and TD_61B.TST

Test Steps: (Tests are to be iterative)

1. Enter program names TD_61A.TST and TD_61B.TST.

2. Run filter one.

3. Run filter two.

4. Run filter three.

5. Run filter four. Choose any procedure names.

For each iteration of tests, do six and seven.

6. Run filter five.

7. Enter procedure names from test data matrix
and record the results in test data matrix.

8. Exit after filter five.

9. Give report name as TDB5A.RPT.

10. Verify report information in report file is same as actual
results.

Note: Output for first and second program represented in form of
first, second (ex. 10, 10).

27

TEST DATA MATRIX MBa)

Function asm Reacted "tWmi NOeS/

From A. From a =4 e of pt fi
(Varial ye detined in VAR)

ialratoeedsure3 _____________________________________

"Proerl Procedl S. 5

Procedure2. Proced2 S. 5
Boolean types ________ ____________________________

Prcdrl*PrOCe3 S. s

PrOcedure4. Proecd S. s
Wpiftrate6 types Wear
defined) ________ _____________

ProcedureS. ProcedS S. S
File types _______

Prcdr*G, Proced6 S. s

ProcedureS. Procedi S. S

28

TEST PROCEDURE FORK

Test: D (Help test)

Test Version: 1.0

Description: This test verifies that the user will receive
context sensitive at each menu level.

Requirements: 5, 6

Prerequisites: B8

Test Data Required: None

Test Steps:

1. Start system and request HELP.

2. Verify help screen appears and is meaningful for this level.

3. Exit out of HELP.

4. Verify system returns you to prior screen before help
request.

5. Record results in test matrix.

6. Enter program names given in the test data matrix.

7. Run filter one.

8. Request HELP.

9. Verify help screen appears and is meaningful for this level.

10. Exit out of HELP.

11. Verify system returns you to prior screen before help
request.

12. Record results in test matrix.

13. Run filter two.

14. Request HELP.

15. Verify help screen appears and is meaningful for this level.

16. Exit out of HELP.

17. Verify system returns you to prior screen before help
request.

18. Record results in test matrix.

29

19. Run filter three.

20. Request HELP.

21. Verify help screen appears and is meaningful for this level.

22. Exit out of HELP.

23. Verify system returns you to prior screen before help
request.

24. Record results in test matrix.

25. Pick any procedure from first program and any procedure
from second program and run filter four.

26. Request HELP.

27. Verify help screen appears and is meaningful for this level.

28. Exit out of HELP.

29. Verify system returns you to prior screen before help
request.

30. Record results in test matrix.

31. Pick any procedure from first program and any procedure
from second program and run filter five.

32. Request HELP.

33. Verify help screen appears and is meaningful for this level.

34. Exit out of HELP.

35. Verify system returns you to prior screen before help
request.

36. Record results in test matrix.

37. Run filter six.

38. Request HELP.

39. Verify help screen appears and is meaningful for this level.

40. Exit out of HELP.

41. Verify system returns you to prior screen before help
request.

42. Record results in test matrix.

43. Run filter seven.

30

44. Request HELP.

45. Verify help screen appears and is meaningful for this level.

46. Exit out of HELP.

47. Verify system returns you to prior screen before help
request.

48. Record results in test matrix.

49. Run filter eight.

50. Request HELP.

51. Verify help screen appears and is meaningful for this level.

52. Exit out of HELP.

53. Verify system returns you to prior screen before help
request.

54. Record results in test matrix.

55. Exit after filter eight.

31

TEST DATA MATRIX (D)

Encte utputAta

Hiel Revet 1elp 3etrurned form Help Heturned 961. o s
Info help OR Info tgm help
Ok op Olt

TDLevel YES YES

Filter ame YES YES_

Filter two YES YES-

Filter three YES YES

Filter four YES YES

Filter five YES YES

Filter six YES YES

Filter seven YES YES

Filter eight YES YES

LMNME: 011

TOPIC(S) FOR LAB:
Presentation of customer request for extended project.

INSTRUCTIONAL OBJECTIVEMS:

1. Introduce class to the customer for project 2 (the extended project).
2. Familiarize class with project 2.

ASSOCIATED LECTURE NUMBER:
Lecture 013

SET UP. WARM-UP:

The requirements for the your first (small) projects were better defined than is
often the case. Quite often, the customer has nothing more than a general idea
of the type of system he/she wants. In such cases, the extraction of requirements
is even more critical and challenging.

PRCDUR;EI :

1. Introduce the "real" customer to the class in order to explain the system that
he/she would like developed. If the instructor is acting as the customer, it
is important that he/she role play and resist the urge to switch roles during
the lab. The customer request goes something like the following:

"As Dean, I often have to make the final decision, or make
recommendations to a university hearing committee, in academic
misconduct cases involving suspected plagiarism of student
programs in computer science courses. I would like a system that
can compare student programs and determine, with a high degree
of credibility, whether plagiarism has occurred. I need an analysis
report that is clear and understandable and could be presented as
evidence to a university hearing committee.

The program will be used by faculty to screen student
programs for possible plagiarism and to provide an objective analysis
to support or negate their subjective opinions."

The customer responds to questions.

2. Distinguish between the customer and user. For the extended project, the
dean Is the customer and user(s) will be faculty members and the dean.

3. Give teams the remainder of the time to work on the project.

ASSOCIATED HANDOUTS:

Lab 011

LECTURE NUMBER*012

TOPIC(S) FOR LECTURE:
The Importance of controlling disciplines In software dvelopm
Configuration management
Ways to implement configuration management

INSTRUCTIONAL OBJECTIV :

1. Recognize the role of configuration management over the entire life
cycle.

2. Develop and evaluate a configuration management plan.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

L11OH4
We have just talked about maintenance. Maintenance Is change to software
that occurs after a system is developed. As we have seen, some errors are
introduced into the software during the maintenance process. The
development of software is a continuous process of change and affords
developers a continuous opportunity to introduce errors into the system.
Some would consider this opportunity for the introduction of error
unacceptable. We cannot alter the nature of the development process, but
if we manage and control the process of change we can restrict the
opportunities for introducing error.

(Learning Label- Today we are going to learn ...)
In software engineering, the principles for controlling and managing change
are called configuration management. Today we are going to look at the
principles of configuration management and ways in which configuration
management can be implemented.

1. Motivate the need for configUration management(CM) by discussing
the simultaneous update problem and version control. CM is not just
an issue about software. You have revised your small project
requirements list several times. Ask the students what changes were
made to the requirements list and whether they all were certain that
all would have been approved by the customer? Did you check with
the customer?

a. Multiple people working on a large project can have different
understandings of what the system is supposed to do or may
make small changes which do not work well with other parts of
the system. Using the test plan L90H6 remind the student
that the test planner made a change which required the KoFF

1 Lecture 012

system to track expired cards. Was this information
communicated to the designers, coders or even to the
customer? What Is the likelihood of this change made by the
test planner ever getting Implemented? What can be done to
assure that these kinds of changes are acceptable and will get
Implemented? There is a need for control management and
communication of change.

b. There are multiple sources and reasons for change requests.
These occur throughout the development process as well as
after system development. Talk about change requests as
desired improvements in the system. As the customer better
understands the system he/she sees new and improved ways
that the system could be developed. Changes also come from
the developers' improved understanding of the requirements,
and changes in the environment while a system is being
developed. This can lead to chaos unless carefully managed.

c. Sometimes systems are developed in different versions, e.g.,
DOS 2.2 - DOS 6.0. Each version of each system has to be
tracked and maintained. Versions are not always sequentially
developed, as was DOS 4, DOS 5, and DOS 6. Sometimes
multiple versions of the same system are developed
concurrently to fit on different hardware platforms, e.g., UNIX
for DEC and IBM can be developed at the same time. The
requirements for these systems are different, and one must
track and maintain multiple versions of the "same" product.

d. Talk about baselining as a technique for limiting or controlling
this chaos. How is baselining done? Be sure to emphasize
that this involves formal review and agreement by all concerned
parties. Once an item is baselined it is under change control
and can only be changed by formal change control procedures.
What is it that gets baselined. Proposed changes to baselines
are called Chanoe Reauests(CR).

2. Methods of CM require a plan, a well defined process, and a manager
to carry out the plan.

a. Ask the class what things they need to keep constant to
develop a system. List these on the board. Discuss them as
Configuration Items (CI. Display overhead of standard
configuration items L12OH1. Work through each item talking
about those items which are new to them. Be sure to
emphasize that any change requires approval and
communication of the change as well as updating the affected
documents. Another function of CM is to maintain consistency

2 Lecture 012

between the documentation of a system and the system itself.

b. CM is complex and requires a plan to be sure it is executed.
Display overhead Li 20H2. Go over the contents of the IEEE
CM Plan. Briefly go over the management issues, such as how
configuration management relates to other organizations.
Discuss overhead item 2.d which includes naming conventions
for components and how CRs will get processed. Distribute
handout L12HD1 as an example of a portion of a student-
produced CM plan.

c. To maintain control, baselined configurations items are
sometimes placed in a special electronic library. Permission to
change or modify CIs Is gained through a CR approval process.
CRs are generally approved by groups called C
Control Boards (CCB). Discuss some standards used to
decide the approval of CRs; e.g, functional need, cost versus
benefit analysis, impact on other modules, politics (the
president of the company "just wants it").

d. There are several virtues of CM which include reducing the
number of errors generated, minimizing the use of storage,
giving visibility to system development progress each time a
new Cl is baselined and reducing the time and effort costs
associated with uncontrolled change.

PROCEDURE:

teaching method and media:

At this point in the course students have likely experienced
uncontrolled changes within their small projects. Some of these have
also likely caused problems. Their own "war stories" can serve to
enhance their interest and appreciation of the necessity for
configuration management. The primary teaching technique consists
of using lecture and overheads with frequent reference to problems
they have encountered in their small project teams.

vocabulary introduced:
configuration management (CM)
configuration item (CI)
baseline
discrepancies versus changes
configuration control board (CCB)
change request (CR)

3 Lecture 012

INSTRUICTIONAL MATERIALS:

L120H1 Confgraon Items
L1201-12 IEEE Model for a configuration maa plan

h~a.om:
L12HD1 Student cordiguration management plan

RELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab 010- Foedback on CI-5, test plans, and test cases.Small project
team preparation for team acceptance test presentations

READING ASSIGNMENTS:
Sommerville Chapter 29 (pp. 551-564)
Mynatt Chapter 8 (pp. 336-340)

RELATED READINGS:
Ghezzi Chapter 7 (pp. 403-408)
Pressman Chapter 21 (pp. 693-708)
Schach Chapter 4 (pp. 87-93)
James Tomayko, *Support Materials for Software Configuration
Management," Support materials, SEI_SM_4_1.0
IEEE Standard for Software Configuration Management Plans, IE Sd828

4 Lecture 012

Configuration Item

Requirements Documents
C'ient Request
Requirements Ust
Analysis Documents
Revision History
Revision requests and approvals

Design Documents
Preliminary Design Documents
Preliminary Design Review Documents
Detailed Design Documents
Detailed Design Review Documents
Revision History
Revision requests and approvals

Code Documents
Source code modules
Object code modules
Compiler used
System build plan

Other Documents
Test Plan
Test Cases
Test Results
User Manual
Referenced Documents

5 L12OHI

IEEE Mode for a
CONFIGURATION MANAGEMENT PLAN

1. Introduction
a. Purpose
b. Scope
c. Definitions and acronyms
d. References

2. Management
a. Organization
b. Configtiatk-.i management responsibilities
c. Interfac. control
d. Implementation of plan
e. Applicable policies, directives and

procedures

3. Configuration management activities
a. Configuration identification
b. configuration control
c. Configuration status accounting
d. Audits and reviews

4. Tools, techniques, and methodologies

5. Supplies Control

6. Records collection and retention

6 L12OH2

Confguratioanqe Pio

I PROJECT: Third Eye Project
I FILE NAME: CMPLAN.DOC
I DOCUMENT NAME: Configuration Management Plan

J PURPOSE:
I This document describes the responsibilites of
I Configuration Management.

I MODIFICATION HISTORY:
WHO: REV: DATE:

I Kelfie Price
I * Created initial revision of document.

Computer and Information Sciences

Third Eye Projet

Configuration Management Plan

Kelle Price

Table of Contents

1. PURPOSE
1

2. MANAGEMENT
2

2.1 CONFIGURATION MANAGER RESPONSIBILITIES 2
2.2 ORGANIZATION

2
2.2.1 REQUIREMENTS TEAM 2

2.2.2 USER MANUAL TEAM 2
2.2.3 TEST PLAN TEAM 3
2.2.4 PRELIMINARY DESIGN TEAM 3
2.2.5 DETAILED DESIGN TEAM 3
2.2.6 CODE & UNIT TEST TEAM 3
2.2.7 TESTING TEAM 4

3. CONFIGURATION MANAGEMENT ACTIVITIES 5
3.1 C.M. REQUIREMENTS DOCUMENTS 5
3.2 C.M. CONTROL
5

4. CONFIGURATION MANAGEMENT RECORDS 6
4.1 C.M. FILES
6

L12HD1
7

1. PURPOSE

The Configuration Management Plan defines the Configuration Management
(CM) policies which are to be used In the Third Eye Project. It also defines
the responsibilities of the project configuration manager.

2. MANAGEMENT

2.1 CONFIGURATION MANAGER RESPONSIBILITIES

The first responsibility of the configuration manager is to
develop and implement this Configuration Management Plan.

Throughout the project, the configuration manager will report
directly to the customer. It is the configuration manager's
responsibility to ensure that the project is implemented in a
straight-forward and well-defined manner according to the
customer's specifications and standards established by
Confiouration Management for this project.

2.2 ORGANIZATION

This project will be divided into 7 teams as follows:
(Refer to CMTEAMS.DOC for the specific team assignments)

NOTE: All of the documents required of each team below
are listed in the file CMDOCS.DOC.

2.2.1 REQUIREMENTS TEAM

The Requirements Team is responsible for
communicating with the customer in order to determine
and well-define the software system requirements. The
documents required of the Requirements Team are:

"* Narrative description of system
"* List of requirements (acceptance criteria)
"* Context Diagram

"* A series of leveled Data Flow Diagrams
"* Data Dictionary
"* Process Specifications

L12HD1
8

2.2.2 USER MANUAL TEAM

The User Manual team is responsible for producing all
user documentation for the system. The documents
required of the User Manual Team are:

"* Preliminary format of user manual
"* User Manual

2.2.3 TEST PLAN TEAM

The Test Plan team is responsible for de, ,ing
subsystem and system tests. The documents required
of the Test Plan Team are:

* Test plan

2.2.4 PRELIMINARY DESIGN TEAM

The Preliminary Design team is responsible for creating
a preliminary design structure of the system based on
the software system requirements. The documents
required of the Preliminary Design Team are:

"* An Object Model:
"* Complete object diagram
"* Class dictionary

"* Object-Requirements traceability matrix
"* Ada Specifications for each object class

2.2.5 DETAILED DESIGN TEAM

This team is responsible for creating algorithms to
implement the system structure. The documents
required of the Detailed Design Team are:

* Data Structure Design using a data structure

dictionary

"* Algorithm Design using Nassi-Shneiderman models

" An object attributes and object operations traceability
matrix

2.2.6 CODE & UNIT TEST TEAM

L12HD1
9

The Code & Unit Test team Is responsible for producing
source code for the algorithms produced by the Detailed
Design Team, Integration of the modules to produce a

working system. The documents required of the Code
& Unit Test Team are:

* Source code

2.2.7 TESTING TEAM

The Testing team Is responsible for Implementing the
tests in the test plan and using them to test the system.
The documents required of the Testing Team are:

* Test data
* Documented test results

3. CONFIGURATION MANAGEMENT ACTIVITIES

3.1 C.M. REQUIREMENTS DOCUMENTS

The configuration manager has provided documentation to
assist the teams in meeting the C.M. requirements. This
documentation is in a series of files which are available on the
project file server. The C.M. requirements defined In these files
are as follows:

DESCRIPTION FILENAME

"* Documents required by C.M. CMDOCS.DOC
"* Document header info CMHEADR.DOC
"* Document naming conventions CM_NAMES.DOC
"* Document format & standards CM_FORMT.DOC

"* Change request form format CM_CHREQ.DOC
* Configuration item request procedure CMCIREQ.DOC
* Configuration item access procedure CM_ACESS.DOC
* Configuration item change process CMCHPRO.DOC
* Configuration item baseline process CMBASLN.DOC

3.2 C.M. CONTROL

The configuration manager will provide the teams and team
members controlled access to their respective configuration
items. In order to have access, however, the teams and/or
team members must provide the configuration manager with a
written

L12HD1
10

request for any desired configurntion items as defined in the file
CMCIREQ.DOC.

4. CONFIGURATION MANAGEMENT RECORDS

All BASELINED Configuration Items and documents will be maintained on the
project file server In a directory structure as defined in the file
CMFILES.DOC.

4.1 C.M. FILES
All Configuration Management files (Including the requirements
files listed in section 3.1) are listed below:

DESCRIPTION FILENAME

"* Configuration item access procedure CMACESS.DOC

"* Configuration item baseline process CMBASLN.DOC
* Configuration item change process CMCHPRO.DOC
* Change request form format CMCHREQ.DOC
* Configuration item request procedure CMCIREQ.DOC
* Original customer request CMCRQST.DOC
* Documents required by C.M. CMDOCS.DOC
* C.M. file directory structure CMFILES.DOC
* Change request form CMFORM.DOC

* Document format & standards CM_FORMT.DOC
* Document header info CMHEADR.DOC
* Document naming conventions CMNAMES.DOC

* Document page header CMPGHDR.DOC
* Configuration Management Plan CMPLAN.DOC
* Software Project Management Plan CMSPMP.DOC
* Project team organization CMTEAMS.DOC

L12HD111

LA UME: 012

TOPIC(S) FOR LAB:
Organization of extended project

INSTRUCTIONAL OBJECTIVE(SM:
1. Provide project organization to be used for extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 014

SET UP. WARM-UP:
You have already met the customer for the extended project when he/she
presented the project request recently. Today we will discuss the team
organization to be used for the extended project.

PBCEDURBE:

1. HANDOUT - List of teams in extended project organization
Distribute and describe the role and responsibilities of each team.

a. Explain that during this semester the project will be completed
through preliminary design. Thus the teams that will be active during
this semester are configuration management, requirements, user
interface, test plan, and preliminary design (and tools if a tools team
in included in the project organization).

b. During the course of the project each student will serve on more
than one team. In particular, each student will serve on a "high end"
team (encompasses analysis through preliminary design) and a "low-
end" team (encompasses detailed design through implementation).

c. Communication will be more complex in this project than in your
small projects. Both inter-team and intra-team communication will be
necessary, as well as communication with the customer and users.
For example, crucial interactions from the beginning will include:

Configuration management with instructor and all other teams.

Requirements team with customer, user, and other teams.

User interface team with user and requirements team.

Test plan team with requirements team and user interface.

d. Four teams will begin work as soon as the team assignments are
made. Configuration management will begin developing a CM plan,
requirements will begin eliciting and specifying the requirements,

I Lab 012

user interface will begin on the format of the users manual and the
"look and feel" of the user Interface, test plan will begin developing
the format of the test plan.

4. Invite any students with a preference for specific team assignments to let instructor
know as soon as possible. Let students know that they cannot be guaranteed their
preferences but that they will be considered.

ASSOCIATED HANDOUTS:
List of teams
Extended project team organization

2 Lab 012

EXTENDED PROJECT TEAMS

Configuration management

Requirements

Test plan

User Interface

Preliminary design

Detailed design

Code and unit test

Testing

Tools (optional)

3 Lab 012

S. °

1 - - - -- -4"4II

I CP

-ILI

IA Ic!

00

E- 0

x!

c

I 0

C4 Im v4 oWr c 0 0 P% Go 0
4c

.

LANMB: 013

TOPIC(S) FOR LAB:
Peer/self assessment - small projects
Acceptance reviews - small projects

INSTRUCTIONAL OBJECTIVEMS:
I. Provide opportunity for peer/self assessment of small project teams.
2. Simulate acceptance test/review for small projects.

ASSOCIATED LECTURE NUMBER:
Lecture 015

SET UP. WARM-UP:
As discussed in our first class meeting, we want to consider your opinions in
assessing the team projects. We have prepared a peer/self evaluation instrument
and will be administering it today, prior to your acceptance test presentations.
Immediately following that we will conduct the acceptance test presentations.

PRQOEDURBE:
1. HANDOUT - Peer/self evaluation forms for small projects

Ask each student to complete a peer/self evaluation form for his/her team.
Stress that their responses are confidential and will be seen by the
instructor only. While feedback will be provided to individuals, the
confidentiality of responses will remain strictly confidential.

ASSOCIATED HANJDOUTS:
Peer/self evaluation forms for small projects
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 013

KIOSK TEAM: PEER/SELF EVALUATION NAME:

Your responese ae confidentl and will be sen only by the Instuo Be
completely honesL Use back for additlonal comments.

1. Evaluate the performance of each team member, includin0 yurself with respect
to each of the following questions by indicating SA (strongly agree), A (agree), D
(disagree), or SD (strongly disagree).

He/she took a fair shere of the

responsibility and work.

He/she took a leadership role.

He/she kept aware of the project's
problems and progress.

He/she Is knowledgeable of the
tools and techniques used.

He/she attended meetings and
cooperated with rest of team.

He/she gave an honest effort
and completed tasks on time.

I would choose to work with
him/her on another project.

2 Lab 013

2. Complete Columns A and B for each team member, including yourself.

COLUMN A: Enter +, -, or - as follows.

+ means this person made a significant contribution to the team and
should be given a bonus; their individual project grade should be
higher than the team grade.

- means this person did their share; their individual project grade
should be equal to the team grade.

means this person's performance was less than adequate and
his/her individual project grade should be lower than the team
grade.

COLUMN B: Describe his/her major contributions.

(A) (B)
TEAM MEMBER __- MAJOR CONTRIBUTIONS)

1.

2.

3.

4.

5.

6.

3 Lab 013

3. For each item below, rate your tm's M and delu o
UNS represents unsatsfacory and EXC represents excellent.

(a) Interaction with user In undW tndanWdefilnng requirements
BELOW ABOVE

UNL AVG AVG AVG EXC

(b) Configuration Roem I - narrative description (abstract) of project and
requirements list.

BELOW ABOVE
UNS AVG AVG AVG EXC

(c) Configuration item 2 - analysis documents: context diagram, leveled data
flow diagrams, data dictionary.

BELOW ABOVE
UNS AVG AVG AVG EXC

(d) Configuration Item 3 - design documents: system architecture (structure
chart and external description of modules and interfaces).

BELOW ABOVE
UNS AVG AVG AVG EXCI-'---I----I---I---I----I----I-"-I--'

(6) Configuration Items 4 and 5 - test plan (classes of tests for each
requirement); test scenarios (specific tests, input, expected output, etc.)

BELOW ABOVE
UNS AVG AVG AVG EXC

(f) Configuration Items 6 and 7 - documented source code; executable.
BELOW ABOVE

UNS AVG AVG AVG EXC

4 Lab 013

(g) Configuration 11am8 -docwnentlat-o of testin; accepance eting
plans, docuiration, Wt.

BILOW ABOVE
MIS AVG AVG AVG EXC

(h) Configuration Item 7 - Acceptance test review
BELOW ABOVE

UN8 AVG AVG AVG EXC

(i) Overall, rate the your team's performance for the entire project?

BELOW ABOVE
UNS AVG AVG AVG EXCI----I----I---I---I"--I---I---I"--I

(j) Overall, the tools team and the materials they have produced have been
NO LITTLE MUCH
HELP HELP OK HELP HELP

4. If you had to do this project again and were in charge of hiring personnel, in
what order would you rehire the team? In other words, who would be the
person on your team you would rehire first, second, third, etc.? (Be sure to
include yourself).

1.

2.

3.

4.

5.

8.

5 Lab 013

LA13N ER: 014

TOPIC(S) FOR LAB:
Assessment of man projects.
Team signments for extend projects.

INSTRUCTIONAL OBLJECTIVE&B•

1. Provide m nt of products produced by teams.
2. Provide a of individual team members.
3. Organize teams for extended project.
4. Provide software project management plan for extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 016

SET UP. WARM-UP:
Recall that the course policies explained that there were three factors to be
considered in your individual project grades: the product produced by the team,
peer assessment of individual contributions to the team effort, and the instructor(s)'
assessment of individual contributions. Today each of you will receive a copy of
our assessment of your project with a team project grade and with an individual
grade for your contribution to the project. We will then announce the team
assignments for the extended project.

PROCEDRBE:
1. Distribute individual assessment reports containing the product grade, the

individual grade, and extended comments on the product.

2. Invite teams or individuals to make appointments to discuss the
assessments. Stress that we will discuss the peer/self assessments with
individuals but only in composite terms; confidentiality will be maintained.

3. Announce team assignments for extended project. Distribute team rosters.

4. HANDOUT - Software project management plan for extended project
Distribute and discuss the project management plan.

5. Teams are given the remaining time for organizational meetings.

ASSOCIAED HANDOUM:
Small project team evaluations (samples attached)
Rosters for extended project teams
Software project management plan - extended project

1 Lab 014

PROJECT 1 EVALUATION: KIOSK VENDING MACHINE SYSTEM

TEAM MEMBER:

TEAM PRODUCT GRADE: TEAM MEMBERS GRADE:

COMMENTS ON DELVERED PRODUCT

These comments pertain to the delivered software product and we not necessarily
reflective of the time and/or effort expended.

The quality of the delivered document was first rate. There were, however, several
problems which made the system less than perfect. Most of the comments below are
items of clarification. Our major concerns with your product were about the structure
chart, the coded system that was delivered, and the absence of interface descriptions.

There were several concerns about the data dictionary.

Physical money and amount representation still gave you some problems, e.g.,
change and current amount are defined the same, yet one represents physical
money and the other is a representation of money. Refund has a similar problem.

Items needs iteration.

slot number- The iteration is for the number of integers in the slot number and not
for the range of numbers. The numerals 1 to 32 are either integer + integer or
integer with a lower bound of 1 for the numerals 0 to 9 and an upper bound of 2
for the numerals 10 to 32.

In a context diagram you should use nouns, e.g., dispense and cancel are not nouns.

We had some questions about the level 0 DFD. Alarm status is not accessed at all. Its
function is not clear.

Data stores in a DFD should appear only on one level, but running total data and stock
store each appear on two levels.

The structure charts created several problems.

There was no top level structure chart for your system. What is the system you
intend to deliver to the customer? This is a major problem.

There should not be multiple information items on data couples.

The structure chart and the code should agree at least in terms of the number of

2 Lab 014

inputs and outputs. This is not the case. See for example dispense items and
validate selection. The source code and the design should agree. One should
map the other, i.e., logically they should be in the same order even if the code
breaks things down into smaller modules.

The process narratives were well donel

Interface descriptions were missing.

CODE The customer has no codel The customer was given a test scaffold which ties
together several discrete modules to enable an acceptance test. Where is the system
that the customer can run once the test is done?

TESTING There are no results recorded on any of the test result forms. The only
difference from one test result form to the next is the requirements number on the form.
There should have been some major concerns with some of the tests, for example the
dispense test doesn't check to see if the quantity in a slot has been decreased after an
item was dispensed. These forms indicate that version 1.0 was tested and yet the
documents indicate that version 2.0 was submitted.

3 Lab 014

PROJECT 1 EVALUATION: FIRE AND SECURITY ALARM SYSTEM

TEAM MEMBER:

TEAM PRODUCT GRADE: - TEAM MEMBERS GRADE:

COMMENTS ON DELIVERED PRODUCT

Thes comments pertaln to the delivered software product and ae not
necesridly reflective of the time and/or effort expended.

OVERALL PACKAGING - Product gives appearance of having been thrown together
at last minute, including some items being crossed out and others being penciled in.

NARRATIVE DESCRIPTION - In paragraph 7, "same span of time "is still vague
to be tested.

REQUIREMENTS UST
#9 and Footnote are inconsistent with one another.
#13, #15: indentation erratic.
#20: incident reports and frequency reports never fully defined.

CONTEXT DIAGRAM, DFDs, DATA DICTIONARY
Some items missing from data dictionary, including:

Notify
Incident report
Frequency report
Incidents
Signal to Fire Equipment
Signal to Warning Device
Signal to Lock/Unlock
Room Function
Data stores not defined in data dictionary.

Use of "Flag" in data dictionary is still awkward. It would be much more
meaningful to do something like the following:

HazwtI level - High I Normal
Type - Fire I Security
Alarm condition - In-service I Out-of-Service

In places, more meaningful names could be used; e.g., Type Is too vague.

Context diagram and DFD are not balanced; leveling of DFD incomplete.

4 Lab 014

DFD is rough; far from form expected in finished product.

As shown in model, SetUpFile should be an external entity.

DESIGN DOCUMENTS
No external description of modules and interfaces submitted.

Various inconsistencies or omissions in structure chart; for example Get Info
(page 2) doesn't return any Information.

Module (and procedure) names should always be as descriptive as possible
and consist of Verb and Object.

CODE
Design and code are inconsistent.

In places it is tough to distinguish between test modules and product modules;
for example the OurTime procedure.

Programming standards were not followed in several aspects including identifier
dictionaries, input and output descriptions, use of meaningful identifier names
(for example, look at TimeCompare and TimeSubtract).

Inconsistent documentation blocks (for example, none on Init and
CallProcedures).

Comments - look at 11.7 of programming standards.

What is purpose of procedure CallProcedures?

TEST PLAN, TEST RESULTS
Test categories too broad; for example consider Section C (Alarm Responses) -
these need to be broken down further to adequately test system.

Test procedure form: (a) all look like low-level unit tests; (b) all end with the
generic statement "Verify test data is output to test result file." Should also
worry about correctness of output.

Test results somewhat confusing and appear inadequate; not mappable to test
procedures.

5 Lab 014

Software Project IManaement Plan: ExtexWn Project

la Customer request presented.

2b Team assignments announced and roles defined.

Start development of configuration management plan
(CMP), preliminary requirements (P._REQ), preliminary test
plan (PTP), and preliminary user's manual (PUM).

4b Cl-i CMP delivered and presentation to teams.

5a CI-2 PREQ delivered; presentation to teams and customer.

Cl-4 PUM delivered; presentation to teams.

5b CI-3 PTP delivered; presentation to teams.

6a Requirements review. Preliminary design begins.

6b CI-5 Final revised requirements baselined.

8b Preliminary design review.

9a User manual review
Test plan review

9b CI-6 Final preliminary design delivered and baselined
CI-7 Final test plan delivered and baselined
CI-8 Final user manual delivered and baselined

14a Detailed design review

14b Cl-9 Detailed design delivered and baselined

19a Unit tested code goes to integration testing

21a CI-10 Source and object code delivered

21 b Cl-i1 System acceptance test conducted and the complete
system and all associated documents are packaged and
delivered to the customer

NOTE: All presentatlon/review items are distributed to designated
reviewers 24 hours prior to the presentatIon/review.

6 Lab 014

LABMIJEE: 015

TOPIC(S) FOR LAB:
Initial user perspective of extended project

INSTRUCTIONAL OBJECTIVE:
1. Provide perspective of user of system to be developed for extended projecL

ASSOCIATED LECTURE NUMBER:
Lecture 017

SET UP. WARM-UP:
You have already met the customer for the extended project when he/she
presented the project request recently. Today a prospective user of the system
is going to present his/her perspective and answer any questions you might have.
Following your meeting with the user we will discuss the project organization to be
used for the extended project.

1. Remind the students of the difference between the customer and the user.
Then introduce the user to give his/her initial view of the system and to
answer any questions.

NOTE: It is important to plan in advance requirements that are to be
explicitly identified by the user during this discussion and requirements that
will be mentioned only if elicited by student questions. For example,
consider the plagiarism detection system described previously by the dean
(customer). For this system, the items bolded below are to be explicitly
communicated by the user; non-bolded items below will be communicated
during requirements extraction process as appropriate questions arise.

Input Is two Pascal source programs, from CS-1 and CS-2 students.

Want menu-driven Interactive system.

See system as a series of filters with a stop after each filter to show
filter's results and for a Go/No-Go response from the user.

Output report produced at each filter summarizing its results.

First level (filter): # lines of code (Pascal statements)
lines of comments (between)
total # physlcai Ilnes (soin's)

Second level (filter) - considers main (global) declarations

variables # variables by type

1 Lab 015

user-defined types # procedures declared
constants # functions declared

Third level (Sfiter) - considem structure of procedureftunction
interfaces

parameters, type, order

Fourth level (filter) - Filter I applied to selected procedures/functions

Fifth level (filter) - Filter 2 applled to selected procedures/flunctions

Sixth level (filter) - considers statemrent types for main body only

Frequencies for assignments, reads & readins, writes & writetns, IFs,
WHILEs, FORs, REPEAT-UNTILs, CASEs, BEGIN-ENDs

Seventh level (filter) - considers name matching

Eighth level (filter) adherence to standards (?)
unusual structures (BEGIN-END problems, etc)

2. The user answers questions.

ASSOCIATED HANDOUTS:
Extended project team organization

2 Lab 015

LA13..UMBE,: 016

TOPIC(SA FOR LAB:
Immediate tasks for configuration management, requirements, user interface, and
test plan teams.

INISTRUCTIONAl_ OBLJECTIVE(S:

1. Begin work on deilverables for extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 018

SET UP. WARM-UP:
In recent labs the project organization has been explained and team assignments
made. The customer and a user have given their perspectives on what Is needed.
Each of you has been assigned to a team. Today we're going to talk about
immediate tasks and give you time to work on the project.

1. For each team, discuss the work that needs Immediate attention.

a. Configuration management
i Read Sommerville Chapter 29;
ii Begin draft of CM plan

b. Requirements - Begin requirements definition

c. User interface
i Read Mynatt Appendix B
ii Begin developing user manual format
iii Begin considering "look & feel" of system

d. Test plan - Begin developing test plan format

e. Tools (optional)
I Begin identifying development tools to be used and begin

developing expertise in their use
ii Begin planning training and training materials in tools use

2. Stress the importance of communication between teams.

3. Provide each team with a suitable work area and give them this time to
work on their immediate tasks. The Instructor and the user should be
available.

ASSOCIATED HANDOUTS:

1 Lab 016

LAS NUMBER: 017

TOPIC(S) FOR LAB:
Configuration management plan presentation/review

INSTRUCTIONAL OBJECTIVEMS•:
1. Configuration manager presents configuration management plan for review.

ASSOCIATED LECTURE NUMBER:
Lecture 020

SET UP. WARM-UP:
Remind students that the purpose of these reviews are to improve the item under
review. All participants (developers, customers, and other reviewers) have a
common goal: to identify issues that need to be addressed.

Remind them as well of some of the guidelines for reviews that have been
discussed in the past. Include: during the review we want to identify problems, not
attempt to solve them; avoid the tendency to resist change or be defensive;
remember this is a team effort.

Remind them to note any issues identified that require attention and to follow up
on the issues list as soon as possible.

SPGCEDU.E:

1. Introduce the configuration manager and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 017

LAB NUMBER: 018

TOPIC(S) FOR LAB:
Preliminary requirements presentation/review
Preliminary users manual presentation/review

INSTRUCTIONAL OBJEQTIVES:
1. Requirements team presents preliminary requirements for review.
2. User interface team presents format of users manual for review.

ASSOCIATED LECTURE NUMBER:
Lecture 021

SET UP. WARM-UP:
Remind students that the purpose of these reviews are to improve the item under
review. All participants (developers, customers, and other reviewers) have a
common goal: to identify issues that need to be addressed.

Remind them as well of some of the guidelines for reviews that have been
discussed in the past. Include: during the review we want to identify problems, not
attempt to solve them; avoid the tendency to resist change or be defensive;
remember this is a team effort.

Remind them to note any issues identified that require attention and to follow up
on the issues list as soon as possible.

1. Discuss briefly the need for each team to carefully review the work of other
teams. This is particularly important to assure consistency between teams
requirements, user interface, test plan, and configuration management.

2. Introduce the requirements team and begin the review.

3. Introduce the user interface team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form (2)
Material to be reviewed has been provided to reviewers in advance.

Lab 018

LAB NUMBER: 019

TOPIC(S) FOR LAB:
Preliminary test plan presentation/review

INSTRUCTIONAL OBJECTIVEMS:

1. Test plan team presents preliminary test plan for review.

ASSOCIATED LECTURE NUMBER:
Lecture 022

SET UP. WARM-UP:
Remind students that the purpose of these reviews are to improve the item under
review. All participants (developers, customers, and other reviewers) have a
common goal: to identify issues that need to be addressed.

Remind them as well of some of the guidelines for reviews that have been
discussed in the past. Include: during the review we want to identify problems, not
attempt to solve them; avoid the tendency to resist change or be defensive;
remember this is a team effort.

Remind them to note any issues identified that require attention and to follow up
on the issues list as soon as possible.

1. Discuss briefly the need for each team to carefully review the work of other
teams. This is particularly Important to assure consistency between teams
requirements, user interface, test plan, and configuration management.

2. Introduce the test plan team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 019

1

LAS NUMBER: 020

TOPIC(S) FOR LAB:
Final requirements presentation/review

INSTRUCTIONAL OBJECTIVE(S)
1. Requirements presents final requirements for review.

ASSOCIATED LECTURE NUMBER:
Lecture 023

SET UP. WARM-UP:
The work of all of the teams has been carefully reviewed by all of you. This began
with a review of the preliminary requirements followed by user interface and test
plan reviews, respectively. During each review issues have arisen that needed to
be addressed. Some issues Identified involved inconsistencies in the way different
teams were interpreting aspects of the system. We expect that reviewing other
teams' work has caused each of you to examine your own work in an effort to
resolve the inconsistencies.

By this time all issues should have been addressed and should be reflected in
modifications to the appropriate documents. Lkewise they should be reflected in
today's requirements review.

As always, remind students to note any issues identified that require attention and
to follow up on the issues list as soon as possible.

1. Stress the importance of this review. The requirements will be baselined
once issues uncovered in this review have been addressed. Point out the
importance of this baseline to provide a stable base for design.

2. Introduce the requirements team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

LaNUMl•E• : 020

TOPIC(S) FOR LAB:
Final requirements presentabon/review

INSTRUCTIONAL OELJECTIVELM:
1. Requirements presents final requirements for review.

ASSOCIATED LECTURE NUMBER:
Lecture 023

SET UP. WARM-UP:
The work of all of the teams has been carefully reviewed by all of you. This began
with a review of the preliminary requirements followed by user Interface and test
plan reviews, respectively. During each review issues have arisen that needed to
be addressed. Some Issues Identified involved Inconsistendes in the way different
teams were interpreting aspects of the system. We expect that reviewing other
teams' work has caused each of you to examine your own work in an effort to
resolve the inconsistencies.

By this time all issues should have been addressed and should be reflected in
modifications to the appropriate documents. Lkewise they should be reflected in
today's requirements review.

As always, remind students to note any issues identified that require attention and
to follow up on the issues list as soon as possible.

EROED.URE:

1. Stress the importance of this review. The requirements will be baselined
once issues uncovered in this review have been addressed. Point out the
importance of this baseline to provide a stable base for design.

2. Introduce the requirements team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 020

LABNLUMBER: 021

TOPIC(S) FOR LAB:
Preliminary design

INSTRUCTIONAL OBJECTIVE(S&:
1. Steer preliminary design.

At this point the extended project teams are approaching a critical juncture.
The instructor needs to have a thorough understanding of where the teams
are heading. This understanding, of course comes form a variety of
sources: reviews, interactions with those involved in the project (student
teams, customer, user), and "unofficial" comments from individual students
on team progress. Generally a number of different approaches have been
suggested by different students. In order to increase the chances for
successful completion of the project, the instructor may need to steer the
design. Issues the students may not be aware of include hardware
constraints and language capabilities and constraints. Appropriate steering
may involve guiding students towards a particular design approach and/or
away from potential pitfalls.

ASSOCIATED LECTURE NUMBER:

Lecture 026

SET UP. WARM-UP:

Today we want the project teams to continue work on the project. There are
several issues on which we need clarification and which we wunt to ask about as
we visit with teams during the lab.

1. Informally meet with individual teams or entire class, whichever is
appropriate, and provide necessary steering.

ASSOCIATED HANDOUTS:

1 Lab 021

B UME: 022

TOPIC(S) FOR LAB:
Ada laboratory environment

INSTRUCTIONAL OBJECTIVE(Sa:
1. Be acquainted with the Ada environment on the machines in our local lab.
2. Understand how to enter and compile a Ada source program in lab.

ASSOCIATED LECTURE NUMBER:
Lecture 027

SET UP. WARM-UP:

You will be Implementing the extended project In Ada. Today we want to explain
the Ada tools and environment that you will be using and let you begin
experimenting with them.

NOTES: 1. Develop a short handout on your particular Ada environment.
This should include instructions for accessing all tools and for
editing, compiling, linking, and executing Ada programs.

2. If a tools team is used, they should be responsible for all or
part of this laboratory.

1. HANDOUT - Description of Ada laboratory environment
In the lab, walk through the handout with students.

a. The Ada compiler is our lab is a line editor which is not the most
user-friendly environment to work in; therefore, we have set up the
lab so that Turbo Pascal editor is on every machine with the Ada
compiler. You can enter your programs using the Turbo Pascal
editor and then exit to compile the program using the Ada compiler.

b. Before using the Ada compiler, you must set up the Ada environment
on your diskette in the A drive. The command necessary to set of
the Ada environment is newilb which only has to be done once for
each diskette. This command will create an ADA.LIB program and
an ADA.AUX directory on your diskette. This command creates a
local library database that references the standard library database
file provided by the compiler. A link from your diskette back to the
Ada compiler in the C:,ADA directory is also established. All your
work should be done on the A drive. The next commands are
shown using the A drive prompt.

c. In order to compile a program, the Ada compiler must be invoked
with the source code file name. For this example, let's say that the

Lab 022

program just created was in a file named "try.ada" and the name of
the main program (the internal name of the program) was "try". To
compile an Ada programming unit, type the following at the prompt:

A:Wlacl try.ada

You must include the file extension when compiling. This command
will indicate, in its screen output, the line number and type of error
for any compile errors encountered in the program. The Turbo
Pascal editor gives, as you move through a program, the current line
number on the bottom left of the screen; these line numbers are in
agreement with the line numbers given by the compiler on error
messages.

All programming units must be compiled in the order of their
dependency. The final programming unit to be compiled should be
the main program which utilizes other programming units to perform
a task.

d. If the main program required no corrections and recompilations, the
next step is to invoke the Ada linker which produces an executable
program by putting together the separate components of the
program. To link the compiled program, type the following at the
prompt:

A:A>bamp try

The name of the main program (in this case "try") is the only
information needed by the linker. An executable program file (given
the name try.exe) is produced by the linker.

e. To run the executable program, type the name of the file (without the
extension) at the prompt:

A:.>try

2. To practice entering and compiling a program, use the program given in
your Benjamin textbook on page 2. Pages 2-4 explain the actions and
statements in this program.

3. Also included in the Ada environment on the machines in our local lab is an
interactive Shareware Ada tutor. This is a self-paced introduction to Ada.
[John Herro, The Interactive Ada-Tutor, Software Innovations Technology,
1083 Mandarin Drive N.E., Palm Bay FL. 32905-4706]

To access this tutorial software package, type the following sequence of

2 Lab 022

commands starting a the DOS C dive:

C:.3cl adsC:•Idma~c adstubrC:lWdalmdatutoneds~utr

ASSOCIATED HANDOUTS

Description of Ada laboratory environment

3 Lab 022

Working in Ada Environment
In Lab 104

For all these tasks, start at the DOS prompt (if working on OS/2 machine, go to DOS Full
Screen). To prepare your diskette for compiling and running Ada programs:

1 . Put formatted diskette in drive A.

2. Change directory to drive A.

3. Type "newlib" at the prompt.

A:Vnewlib

This command will create an ADALIB program and an ADA.AUX directory on your
diskette. This command creates a local library database that references the
standard library database file provided by the compiler. A link from your diskette
back to the Ada compiler in the C:\,DA directory is also established. This
command has to be done only once for a diskette unless these items are deleted
from the disk.

4. To type in a program, use the Turbo Pascal editor which can be accessed from
the A: drive by simply typing "turbo" at the prompt.

A:\turbo

5. For this example, let's say that the program just created was in a file named
"try.ada" and the name of the main program (the internal name of the program)
was "try". To compile an Ada programming unit, type the following at the prompt:

A:\vada try.ada

You must include the file extension when compiling. This command will indicate,
in its screen output, the line number and type of error for any compile errors
encountered in the program. The Turbo Pascal editor gives, as you move through
a program, the current line number on the bottom left of the screen; these line
numbers are In agreement with the line numbers given by the compiler on error
messages.

All programming units must be compiled in the order of their dependency. The
final programming unit to be compiled should be the main program which utilizes
other programming units to perform a task.

4 Lab 022

---... - ..1. -

6. If the main program required no corrections and recompilations, the next step is
to Invoke the Ada linker which produces an executable program by putting together
the separate components of the program. To link the compiled program, type the
following at the prompt:

A:Wxbmp try

The name of the main program (in this case "try") is the only information needed
by the linker. An executable program file (given the name try.exe) is produced by
the linker.

7. To run the executable program, type the name of the file (without the extension)
at the prompt:

A:\>try

8. Also provided on the computers in room 104 is an interactive Ada tutor. To access
this software package, type the following sequence of commands starting at the
DOS C drive:

C:Acd adf
C:\ada2cd adatutor
C:\adaladatutorxada-tutr

5 Lab 022

lANUMBEB: 023

TOPIC(S) FOR LAB:
Peer reviews - extended project through preliminary design
Preliminary design review presentation

INSTRUCTIONAL OBJECTIVE(SM:
1. Prcide opportunity for mid-point peer review of extended project teams.
2. Students present preliminary design review for extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 028

SET UP. WARM-UP:
This is the mid-point of the extended project. We want to consider your opinions
in assessing the project to this point. We have prepared a peer/self evaluation
instrument and will be administering it today, prior to your preliminary design
review presentation.

1. HANDOUT - Peer/self evaluation forms
Ask each student to complete a peer/self evaluation for the overall project
and one for each team on which he/she was a member.

Stress that their responses are confidential and will be seen by the
instructor only. While feedback will be provided to individuals, the
confidentiality of responses will remain strictly confidential.

2. Introduce the preliminary design team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form (2)
Material to be reviewed has been provided to reviewers in advance.

ASSOCIATED HANDOUTS:
Mid-point peer/self evaluation forms - overall project
Mid-point peer/self evaluation forms - individual teams
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 023

THIRD EYE PROJECT MD-POINT EVALUATION

Responses are confidential and will be seen only by the instructors. Be completely
honest in rating the following from your perspective. In the scale used, UNS represents
unsatisfactory and EXC represents excellent. Use back for additional comments.

Configuration management plan Configuration manager

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I'--I"--I---I'--I'--I'------I---'-I I-I-I'--'-I-'-----I--'I-"-I----I---I

COMMENTS: COMMENTS:

Requirements Users manual

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I-I-I"-- --I"'-I"--I--I-I-""'-I I'-I'-I-I""---I-I--I"-I--'---I

COMMENTS: COMMENTS:

Test Plan Preliminary design

BELOW ABOVE BELOW ABOVE
UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC
I---I"-I-I--I--"i"-'---I-'-" i--I--I"-""'-I--I-I---I-'-I

COMMENTS: COMMENTS:

Overall, the Third Eye team

BELOW ABOVE
UNS AVG AVG AVG EXC
I"-I---I-I--I----I---I---I---I--'I

COMMENTS:

2 Lab 023

THIRD EYE PROJECT MID-POINT EVALUATION

TEAM: MEMBER:

Complete the following for each member of the team, including yourself.

In COLUMN A, describe his/her contributions to the project.

In COLUMN B, select VS (very satisfied), S (satisfied), D (dissatisfied), or VD (very
dissatisfied) to fill in the blank in the statement below.

"I am with his/her work on the team."

(A) (B)
TEAM MEMBER CONTRIBUTION(SATISIFACTION

3 Lab 023

L MBfB: 024

TOPIC(S) FOR LAB:
User interface presentation/review
Test plan presentation/review

INSTRUCTIONAL OEJECTIVEIS):
1. User Interface team presents users manual for final review.
2. Test plan team presents test plans for final review.

ASSOCIATED LECTURE NUMBER:
Lecture 029

SET UP. WARM-UP:
Remind students that the purpose of these reviews are to Improve the item under
review. All participants (developers, customers, and other reviewers) have a
common goal: to identify issues that need to be addressed.

Remind them as well of some of the guidelines for reviews that have been
discussed in the past. Include: during the review we want to identify problems, not
attempt to solve them; avoid the tendency to resist change or be defensive;
remember this is a team effort.

Remind them to note any issues identified that require attention and to follow up
on the issues list as soon as possible.

PROCE DUREt

1. Introduce the user interface team and begin the review.

2. Introduce the test plan team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form (2)
Material to be reviewed has been provided to reviewers in advance.

Lab 024

LAB NUMBER: 025

TOPIC(S) FOR LAB:
Resolution of outstanding Issues from last semester

INSTRUCTIONAL OBLJECTIVEMS:

1. Provide issues ist from last semester assessments of extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 031

SET UP. WARM-UP:
As a part of the final exam last semester, students were asked individually to
carefully review all of the project deliverables and Identify problems or note
questions on issues that they did not understand. A composite issues list has
been compiled based on the student reviews as well as a thorough review by the
instructors. Teams will need to resolve all of these Issues before we can move on
to detailed design and Implementation.

1. HANDOUT - Composite issues list
Discuss the items and emphasize that they need to be addressed and all
necessary modifications made. Students will remain on their teams from
last semester. Any new students will be assigned to work with one of the
teams from last semester.

2. Give teams remainder of time to work on the project.

ASSOCIATED HANDOUTS:
Composite issues list

Lab 025

LAS MBER: 02S

TOP&C8 FMR LaB:
R of extnded project

INSTRUCTIAL (ELJECTLVEwS:
1. RerM zao of Meeded projeo

ASSOCILATE LECTURE NUMBER:
Lecture 032

SET UP. WARM-UP:
Today we are going to reorganize the project to proceed with detailed design.

1. Have configuration management team report on the state of the project
artifacts, including the modifications begun In the preceding lab.

2. HANDOUT- List of project teams
Distribute and discuss the role and responsibilities of each team. Explain
that during this semester the project will be taken through Implementation.
The teams that will be active during this semester are configuration
management, detailed design, code and unit test, and testing (and tools if
a tools team Is included In the project organization).

3. NOTE: Additional discussion on the project o n Is included in the
Projects section of this packe, In the paper on the Inverted functional matrix
organization.

Discuss the immediate responsibilities of the project teams and give them
the remainder of the class to work on the project.

ASSOCIATED HANDOUTS:
List of teams

Lab 026

EXTENDED PROJECT TEAMS

Configuration management

Detailed design

Code and unit test

Testing

Tools (optional)

2 Lab 026

AIJBNUBER: 027

TOPIC(Si FOR LAB:
Nassi-Shnelderman charts
Preparation for detailed design review

INSTRUCTIONAL OBJECTIVEMS:

1. Construct Nassi-Shnelderman charts
2. Prepare detailed design team for upcoming review

ASSOCIATED LECTURE NUMBER:
Lecture 033

SET UP. WARM-UP:
During detailed design algorithms must be designed and represented in order to
be reviewed and then to be coded. We have chosen Nassi-Shneiderman charts
to represent the algorithms of detailed design in the extended project. The
notation was introduced in the previous lecture. Today we are going to give you
practice in developing Nassi-Shneiderman charts. Then we will talk about the
upcoming detailed design review.

POEBD. URE:

1. Walkthrough an example of a Nassi-Shneiderman chart. Select an
algorithm with which students are familiar; e.g., select a sequential or binary
search, a transaction handler for a checkbook (to handle deposits,
withdrawals, or inquiries), or Mynatt exercise 2, page 236.

2. a. Separate students into their current teams and ask each to develop
a Nassi-Shneiderman chart for an exchange sort algorithm (or some
other with which they are familiar). Give the teams 10-15 minutes
to construct a solution, remaining available for questions as they
work.

b. Review the solutions with the whole class.

3. Since the detailed design review is the first major review of the second
semester, the instructor should take a few minutes to discuss reviews.
Recall that the predominant method of design evaluation is the design
review. At a design review, either preliminary design or detailed design,
there are two basic questions to keep In mind.

Does the design fulfill the requirements?
Does the design meet established design standards?

Review the material first presented in Lab 006. This is particularly important
If there are any students in the class who were not in the first semester.

Lab 027

4. HANDOUT - Detailed design review form
Distribute and discuss the detailed design review form. This will be used
by reviewers to provided feedback to the presenters.

Remind the detailed design team that the material to be reviewed must be
provided to reviewers in advance. Make arrangements for the materials to
be provided to the instructors for duplication and then made available to the
reviewers.

ASSOCIATED HANDOUTS:
Detailed design review form
Suggestions for giving and oral presentation

2 Lab 027

Detailed Design Review Form

Project Name :

Reviewer Name :

I. High Level Issues

A: Requirements: any requirements missed, requirements over-worked?

B: Design: suggestions for Improvement of architecture or procedures; other
strategies

C: The Design fits the whole specification including quality standards such as
flexibility, friendliness, efficiency, and cost effective.

II Design Deliverable Details

A: Revised Test Plan: items over tested or under-tested, suggested tests

B: Design Model: good use of notation, clear model, suggested improvements

III Detailed Design

A: Can design be implemented easily: availability of adequate programming
and testing manpower. Adequate hardware facilities-computer, data
storage...

B: Is the design programmable- does not require exotic functions

C: Is there a suggested or obvious order of Implementation or approximate
times for the development of and description of the production relations
between the modules. What is the order of need for equipment required
to implement the design.

D: Comments on other deliverables

3 Lab 027

LAS NUMBER: 028

TOPIC(S) FOR LAB:
Detailed design review presentation

INSTRUCTIONAL OBJECTIVE(S):
1. Students present detailed design review for extended project.

ASSOCIATED LECTURE NUMBER:
Lecture 038

SET UP. WARM-UP:

As was discussed in the last lab, today's detailed design review is very important.
You want to assure that the design fulfills the requirements, meets standards, and
is consistent with the preliminary design. This assurance is critical since the
preliminary design is the base on which your implementation will rest. Problems
uncovered will be much easier to resolve now than they will be during
implementation or system testing.

1. Remind the detailed design team that they should note any issues which
arise during the review. Each item on this "issues list" must be addressed
and appropriate modifications made where needed. The issues list thus
serves as action item checklist for the team as they address the issues.

The instructor should maintain his/her own issues list as a means of
establishing a follow-up procedure to assure that the items are addressed.

Instructors should maintain their role as customer as much as possible,
reverting to role of instructor only when necessary for such things as
maintaining the schedule, reminding participants of the purpose and/or
ground rules, and maintaining order. Critiques should be saved until the
next lecture or lab.

2. Introduce the detailed design team and begin the review.

ASSOCIATED HANDOUTS:
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

Lab 028

LB : 029

TOPIC(S) FOR LAB:
Feedback on detailed design review presentation.

INSTRUCTIONAL OBJECTIVE(S):
1. Provide feedback on detailed design review presentations.

ASSOCIATED LECTURE NUMBER:
Lecture 040

SET UP. WARM-UP:

At the last lab the detailed design was reviewed. We want to provide you with our
reactions to the review and make sure all issues have been identified and are
being addressed.

1. Provide specific feedback on the detailed design. Specifically ask about the
"issues list" which the detailed design team should have compiled during
the review. (Use your own issues Ist as a check.) Ask how each item was
addressed and the disposition of each.

This meeting is critical to baseline the detailed design. Teams are about to
begin implementation and agreement must be reached on what is to be
implemented.

ASSOCIATED HANDOUTS:

Lab 029

LA&B Nibd3,B: 030

TOPICfSa FOR LAB:
Code Inspections

INSTRUCTIONAL O&JECTIVES:
1. Understand haw to conduct a code Inspection.

ASSOCIATED LECTURE NUMBER:
Lecture 041

SET UP. WARM-UP:

Reviews have been used throughout the software development phases up to this
point as a software quality assurance activity. Reviews will continue to be used
in the implementation phase. Today we want to consider code reviews, or code
inspections.

1. Introduce the video-tape provided In the educational materials package from
the Software Engineering Institute [L.E. Delmel, "Scenes from Software
Inspections," CMU/SEI-91-5J. The package Includes a video-tape "Scenes
of Software Inspections" and discussion aids. In less than 20 minutes,
students see several dramatizations of common pitfalls In formal reviews.
The presentation makes the pitfalls and the problems they generate obvious
to the students. Each dramatization is Intended to be followed by a
discussion of how to avoid these pitfalls. This discussion reduces anxiety
about reviews and develops an appreciation of appropriate review roles and
behavior.

2. The code and unit test team will be required to conduct code inspections
of their work at the appropriate time.

ASSOCIATED HANDOUTS:

Lab 030

ABUMBER: 031

TOPIC(S) FOR LAB:
Introduction to maintenance project
Team organization for maintenance project
Maintenance assignment 1

INSTRUCTIONAL OBJECTIVE(S):
1. Introduce maintenance project and project organization.
2. Assign maintenance exercise 2.

ASSOCIATED LECTURE NUMBER:
Lecture 045

SET UP. WARM-UP:
In practice software engineers often work on multiple projects simultaneously. It
is not unusual that while a development project is underway, maintenance must
be performed on an existing system. Today we are going to begin on a
maintenance project which will overlap the extended project.

PE D.UE

1. Discuss the organization of the maintenance project.

a. For the duration of the maintenance project all class meetings,
including both lecture and lab time, will be devoted to an in-class
maintenance project. We want to prevent you from working on this
maintenance project outside of class. Of course you will continue
working on the extended project outside of class time.

b. HANDOUT - Maintenance project teams
Discuss the chief programmer organization. The project organization
for the maintenance project will be chief-programmer teams. We
have identified the chief programmers.

2. Handout - The DASC Software System
Introduce the DASC system. Give an overview of what it does and the
documents that are available.

3. Explain that the DASC system works, but not in our environment. The
maintenance assignments will involve:

a. porting it to our environment;

b. testing it according to the DASC test plan and test data provided,
and completing Discrepancy Reports as necessary;

c. performing some maintenance (enhancement) tasks based on

II ab 031

Change Requests to be provided.

4. HANDOUT - DASC Maintenance exercise 1
Distribute and discuss maintenance exercise 1. Also make available to
each team DASC documentation including the users manual, requirements
document, test cases, expected results for test cases, and discrepancy
report forms.

ASSOCIATED HANDOUTS:
Rosters for maintenance project teams (with Chief Programmers identified)
DASC Maintenance exercise 1 and associated materials

2 Lab 031

DASC Maintenance Exercise 1

The DASC system has recently been installed in our lab. The purpose of this
maintenance exercise is to run DASC on a test suite and record any discrepancies for
consideration by a Change Control Board. The test suite and discrepancy report forms
are provided. Specific directions for completing the exercise follow.

1. Use the disks provided. Each contains:

a. DASC executable, STYLECH, in root directory.

b. test suite, in subdirectory TEST. (The test suite consists of a collection of
Ada programs to be used as input to DASC.)

c. COMMANDL.TXT file, in root directory.

d. DASC source code, in root directory. (The DASC source code is not
needed for this exercise.)

2. Execute STYLECH on each program in the test suite:

a. Prior to executing STYLECH, edit COMMANDL.TXT so that it contains the
complete path name of the test program.

b. run STYLECH. WARNING: DASC always gives an "unable to open"
error message. Ignore it.

3. For each test, STYLECH creates two output report files, a flaw report
(testprogname.FLW) and a style report (testprogname.STY). Compare the results
of these reports with the expected results distributed and file a discrepancy report
for each discrepancy found.

3 Lab 031

.LA, UM B: 032

TOPIC(S) FOR LAB:
Code inspections

INSTRUCTIONAL MJLECTIVJE(SI:

1. Code and unit test teem conducts code Inspections.

ASSOCIATED LECTURE NUMBER:
Lecture 046

SET UP. WARM-UP:

In todays lab the code and unit test team Is going to conduct code Inspections of
their work. We will simply be observers during this.

I. The code and unit test team conducts code Inspections. The other teams
are given this time to work on their parts of the project. The Instructors
function primarily as observers and Intervene in the code Inspections only
if necessary.

ASSOCIATED HANDOUTS:

Lab 032

LAM NUMBER: 033

TOPIC(S• FOR LAB:
Feedback on Maintenance exercise I
Maintenance exercise 2

INSTRUCTIONAL OBJECTIVES:
1. Provide feedback on maintenance exercise 1.
2. Assign maintenance exercise 2.

SET UP. WARM-UP:
The first maintenance exercise should have given you an external (user) view of
the DASC system; specifically, the system's output (flaw and style reports), the
user interface, and the types of *style factors" the system Is assessing. It should
serve as a nice lead-in to the next DASC maintenance exercise that you will be
given today.

PROEDUQRE

1. Discuss results of maintenance exercise 1.

2. HANDOUT - DASC maintenance exercise 2
HANDOUT - DASC source code

Discuss the exercise. We are providing you with some internal
documentation of the system and asking you, as maintenance teams, to
plan needed changes due to the attached discrepancy reports and change
requests.

ASSOCIATED HANDOUTS:
DASC Maintenance exercise 2 and attachments

Lab 033

DASC Maintenance ExercIe 2

Attached are two DASC Discrepancy Reports and one DASC Change Request. Each of
the three has been approved by the Configuration Control Board.

Provide a detailed description of the modifications necessary to correct the problems.

Specifically, submit:

a) changes to the design documents provided with this exercise; and

b) changes to the source code provided with this exercise.

At this point you are not required to submit plans for testing the system after the
modifications are made.

Attachments: DASC Discrepancy Report 37
DASC Discrepancy Report 42
DASC Change Request 11

2 Lab 033

DASC TEST DISCREPANCY REPORT Report No.: _M

Originator (Team): 3 Date: 8&7/93

Test Case/Program: All

Description of Expected Result:

Description of Actual Result:

During execution, the message "file cannot be opened" is always displayed
to the screen.

Additional Comments:

The extraneous message has no apparent significance, and presently users
have been instructed to Ignore It

RESOLUTION (to be completed by CCB)

Change Required

Waived - Describe reasons waived:

JL Approved For Analysis

- Duplicate Problem - Associated Test Discrepancy Report No(s):

CM Signature: Date:

3 Lab 033

DASC TEST DISCREPANCY REPORT Report No.: _4L

Originator (Team): 3 Date: 9/7/93

Test Case/Program: Test 223

Description of Expected Result:

If the COMMANDL.TXT Input file Is empty or contains the name of a non-
existent Ads source program, DASC should detect this and respond to the
user In some appropriate manner.

Description of Actual Result:

If the COMMANDL.TXT Input file Is empty or contains the name of a non-
existent Ads source program, several exceptions are raised and the DASC
system fails to perform properly. See attached print-screen of DASC display
whenever this situation occurs.

Additional Comments:

RESOLUTION (to be completed by CCB)

Change Required

Waived - Describe reasons waived:

K. Approved For Analysis

- Duplicate Problem - Associated Test Discrepancy Report No(s):

CM Signature: Date:

4 Lab 033

DASC CHANGE REQUEST Change Request No.: _.1

Originator: Bob Dorsey, User Support (Dept 3287) Date: 8/8/93

Change Type: X New Feature _ Cost Reduction ._ Other (describe)

Change description:

Currently DASC expects the name of the Ads source program that is to be
processed to be In the file COMMANDLTXT. Add an option that allows the
user to enter, directly from the keyboard at execution time, the filenarme of
the Ads source program that Is to be processed.

The system should continue to support the use of the COMMANDL.TXT file.

CCB Decision (to be completed by CCB)

X& Approved As Is

Approved With Modification

Waived

Describe reasons waived or modification:

CM Signature: Date:

5 Lab 033

LAS NUMBER: 034

TOPIC(S) FOR LAB:
Feedback on Maintenance exercise 2
Maintenance exercise 3

INSTRUCTIONAL OBJECTIVE(S):
1. Provide feedback on maintenance exercise 2.
2. Assign maintenance exercise 3.

SET UP. WARM-UP:
In the last maintenance exercise you responded to discrepancy reports and a
change request for DASC. Today we want you to respond to plan some
modifications to enhance the system. Again, these will be provided in the form of
change requests.

PROCEDURE

1. Discuss results of maintenance exercise 2.

2. HANDOUT - DASC maintenance exercise 3

Discuss the exercise.

ASSOCIATED HANDOUTS:
DASC Maintenance exercise 3 and attachments

Lab 034

DASC Midntenanoe Exerald 3

Plan the modifications necessary to enhance the system as called for in DASC Change
Requests 23 and 39.

Submit the following for each change request.

a) Give a narrative high-level description of two distinct solutions to the problem.

b) For each of the solutions, give arguments for and against.

c) For the solution you choose as best, show:

(1) the changes to the design documents provided; and

(2) the screen layouts for any user interface (Change Request 23), and input
file specifications (Change Request 39); and

(3) indicate what sections of the source code have to be changed and how.

Aft: DASC Change Request 23
DASC Change Request 39

2 Lab 034

DASC CHANGE REQUEST Change Request No.: 2

Originator: Bob Dorsey, User Support (Dept 3287) Date: 8/10/93

Change Type: X. New Feature _ Cost Reduction - Other (describe)

Change description:

Modify DASC to allow screen display of flaw and style reports. The system
should ask the user If he/she wants to eea display of the flaw report. f so,
the flaw report should be displayed on the screen one "screen-full" at a time
(like the DOS more command). Aftrr each screen-full, the user should be able
to request the next screen-full or exit. Similarly, a display of the style, report
should be allowed.

CCB Decision (to be completed by CCB)

X1 Approved As Is

Approved With Modification

Waived

Describe reasons waived or modification:

CM Signature: Date:

3 Lab 034

DASC CHANGE REQUEST Change Request No.: 39

Originator: Jodle Milosovich, User Support (Dept 3287) Date: 8/10/93

Change Type: XL New Feature ._ Cost Reduction _ Other (describe)

Change description:

Modify DASC so that the threshold values of the quantifiable style parmetors
are read from am Input file rather than being hI wdoode Into the system. This
will allow different organizations to customize the system more easily.

CCB Decision (to be completed by CCB)

..L Approved As Is

Approved With Modification

Waived

Describe reasons waived or modification:

CM Signature: Date:

4 Lab 034

LABL IMBE•l: 035

TOPIC(S) FOR LAB:
Final peer/self assessment - extended project
System acceptance test/review - extended project

INSTRUCTIONAL OBJECTIVE(S):
1. Administer final peer/self assessment of extended project teams.
2. Conduct system acceptance test/review for extended small project.

ASSOCIATED LECTURE NUMBER:

SET UP. WARM-UP:
As we have been doing throughout the team projects, we want to consider your
opinions in assessing the extended project teams. All of the project deliverables
are due today and all that remains is the acceptance test and addressing any
issues that arise out of this review. Today you will be completing a peer/self
assessment instrument for the extended project and for the teams you have been
working on in the latter stages of the proje* Immediately following that we will
conduct the acceptance test presentations.

1. HANDOUT - Final peer/self evaluation forms for extended project.

Ask each student to complete a peer/sew evaluation form for the teams on
which he/she participated and for the overall project. Stress that their
responses are confidential and will be seen by the instructor only. While
composite feedback will be provided to individuals, the confidentiality of
responses will be strictly maintained.

ASSOCIATED HANDOUTS:
Peer/self evaluation forms for extended project
Oral presentation evaluation form
Material to be reviewed has been provided to reviewers in advance.

I Lab 035

THIRD EYE - END OF PROJECT PEER EVALUATION

Responses are confidential and will be seen only by the instructors.

1. Rate the following. UNS represents unsatisfactory and EXC represents excellent.

Configuration management plan Requirements
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXC

COMMENTS: COMMENTS:

Test Plan Users manual
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXCI----l---I-----I---i---I----I---I--'-I I----I--I---I---I---I----I I

COMMENTS: COMMENTS:

Preliminary Design Detailed design
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXCI-I--I---I---'---I--I-I---I----I----I I---I----I---I----I---I---I---I----I

COMMENTS: COMMENTS:

Code and unit test Testing
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXCI-I---I----I---I---I---I---I--1---I --- I------- ----- I

COMMENTS: COMMENTS:

Configuration Management Overall, the Third Eye System
BELOW ABOVE BELOW ABOVE

UNS AVG AVG AVG EXC UNS AVG AVG AVG EXCI---I----I---I---I---I---I--I---I i'-"-I----'--I-----'I--I-- -l----I---

COMMENTS: COMMENTS:

2 Lab 035

2. Characterize the interactions between the indicated teams using the following scale
by circling the most the most appropriate descriptor.

VN = Very Non-productive A - Aaaauate VP - Very Productive
N - Non-productive P - Productive

a) Preliminary design team & Detailed design team ---- VN N A P VP

b) Detailed design team & Code and unit test team ----- VN N A P VP

c) Detailed design team & Testing team --....-------.---- VN N A P VP

d) Code & unit test team & Testing team ------------- VN N A P VP

e) Detailed design team & Configuration manager VN N A P VP

f) Code and unit test team & Configuration manager --- VN N A P VP

g) Testing team & Configuration manager ------------ VN N A P VP

3 Lab 035

THIRD EYE - END OF PROJECT PEER EVALUATION

TEAM: MEMBER:

Complete the following for each member of the team, including yourself.

In COLUMN A, describe his/her contributions to the project.

In COLUMN B, select VS (very satisfied), 8 (satisfied), D (dissatisfied), or VD (very
dissatisfied) to fill in the blank in the statement below.

"I am with his/her work on the team."

(A) (B)
TEAM MEMBER CONTRIBUTION(S SATISFACTI N

4 Lab 035

4. Imagine that $2000 in bonuses is to be distributed among the THIRD EYE PrOject team
members. Half of it ($1000) is to be distributed based on the intellectual contribution to the
project, i.e., significant ideas and solutions contributed. The other half ($1000) is to be
distributed based on amount of individual effort contributed to the project.

Distribute the bonuses. ILfy.QILwish, justify each of the assignments. Be very specific; list
some especially significant contributions for which the team member should be proud or where
the project was made more or less difficult because of it.

$1000 $1000
Prolect Member Name cngMs eftf[JUSTIFICATION

5 Lab 035

LAB3 NUMBER: 06

TOPIC(S) FOR LAB:

Instor' aeement of extended project.
INSTUCTIONAL OBJECTIVEWS

I. Provideass ent of extended project.
2. Provide assessment of Individual team members.

ASSOCIATED LECTURE NUMBER:

SET UP. WARM-UP:
Recall that the course policies explained that there were three factors to be
considered in your individual project grades: the product produced by the team,
peer assessment of Individual contributions to the team effort, and the Instructs)'
assessment of individual contrubtions. Today each of you will receive a copy of
our assessment of your project with a team project grade and with an individual
grade for your contribution to the project.

PROCED.URE:
1. HANDOUT - Extended project evaluation

Distribute individual assessment reports containing the product grade, the
individual grade, and extended comments on the product.

2. Invite teams or individuals to make appointments to discuss the
assessments. Stress that we will discuss the peerlself assessments with
individuals but only in composite terms; confidentiality will be maintained.

ASSOCIATED HANDOUTS:
Extended project evaluations

Lob 036

EXTENDED PROJECT EVALUATION: THIRD EYE PROJECT

TEAM MEMBER:

TEAM PRODUCT GRADE: 95 TEAM MEMBER'S GRADE: -

COMMENTS ON DEUVERED PRODUCT

Most of the following comments pertain to the delivered and demonstrated
software product and are not necessarily reflective of the time and/or effort
expended. Them is no question the time and effort expanded by the project team
was superlative. Overall, we am extremely pleased with the amount and quality of
the work of the Third Eye project team. The comments below are suggestions for
Improvement and are not Intended to detract from our overall s istion with your
work.

OVERALL

Problems observed with the delivered product include the following.

1. User interface - The user interface appeared to have "fallen between the cracks"
throughout the entire project and, subsequently, was very crude in the final
product.

2. Inconsistencies exist both between and amonog the requirements, preliminary
design, detailed design, and code documents. These fall into two categories:
first, decisions documented by one team not being followed by another, and
second, changes made by one team not being reflected (updated) in earlier
documents.

3. Problems with filters 3 and 4 were evident in the acceptance test. In filter 3, the
user selection of specific procedures/functions for further evaluation was
cumbersome. Similarly the results of filter 4 needed improvement (e.g. results
unclear, "phantom* functions/procedures, ...).

CONFIGURATION MANAGEMENT

The configuration management plan was feasible and complete. Its implementation
was visible and worked well under the circumstances. Good control mechanisms
("manilla envelope system" In lab, and memos summarizing approved changes and

2 Lab 036

new baselines) were developed and well-managed, but unfortunately are not
documented in the configuration management plan. The final build (packaging) of
the Third Eye project was excellent. One suggestion for improvement would be a
better method for the reader to access documents in the configuration management
plan (perhaps global page numbering or labeling and numbering within appendices).
The modification history was inconsistent in documents (e.g. chronologically forward
in some documents, backward in others).

REQUIREMENTS

The requirements for this project were difficult to pin down and overall a pretty good
job was done and the requirements were complete and appropriate. As the project
progressed and requirements changed, the changes were not always made in the
requirements documents. For example the data dictionary was not updated; nor was
the narrative description (also has a couple of typos). Important changes to the non-
functional requirements were made in the requirements list but the modifications are
not clearly traceable through the modification history (e.g. references to RQ1, RO
2, etc). The process specifications of the structured analysis model were helpful to
subsequent life-cycle teams.

TEST PLAN

The test plan was complete and well organized, and appropriate detail was provided.
It provided a solid framework for the testing team to later use. It is cumbersome to
integrate all of the filled-out forms (hard to trace what is done).

USER MANUAL

The user manual format and first draft were excellent, but the final manual does not
reflect the current system.

PRELIMINARY DESIGN

Overall a good job was done though there are some inconsistencies in the
preliminary design as well as between preliminary design and detailed design. The
object diagram of the object model shows inheritance from the class Filter to the
subclasses Filter 1, ..., Filter 8, yet it doesn't exist (the relationship should be shown
as an aggregation); attributes were removed from the filters and we asked that they

3 Lab 036

continue to be shown; without attributes there is no information to be found when the
filters are called by the summary report. The Ada specifications are inconsistent
with the object dictionary (e.g. Summary Report depicted as reading filters but the
filters don't hold the values; also confusion with Print Report File).

DETAILED DESIGN

As with preliminary design, overall a good job was done though there are some
inconsistencies in the detailed design as well as between detailed design and
preliminary design (e.g. Summary report output file) and between detailed design
and coding. The output file for summary report file structure is missing; Filter PD-4
will not work as specified; there needs to be two subprograms named to be
compared.

CODING

Overall a good job was done, particularly considering the time constraints and
resource problems. There are inconsistencies between detailed design and the
source code (e.g. summary report). The Ada standards were not adhered to
consistently.

4 Lab 036

LAB NUMBER: 037

TOPIC(S) FOR LAB:
Function points

INSTRUCTIONAL OBJECTIVE(SM:
1. Be able to estimate resources for a project based on function points

analysis.

ASSOCIATED LECTURE NUMBER:
Lecture 049

SET UP. WARM-UP:
During the earlier lecture we discussed COCOMO and function points analysis as
methods to estimate resources (time to develop, personnel needed at various
phases) needed for a project. The COCOMO model relies on a single
independent variable, estimated lines of code, to derive its estimates. Function
points analysis provides a means of estimating the lines of code based on the
requirements of the system and the complexity of its development. Today we're
going to have you estimate lines of code for the extended project using function
points analysis.

1. Begin by considering only the user inputs for the extended project. Lead
the class through the completion of function points worksheets. Identify the
number of user inputs and then discuss modifying these using the technical
complexity factors.

2. HANDOUT - Function points work sheets (see lecture 049).
Divide the class into groups of 3-5 students each. Ask each group to
repeat the exercise above with each group assigned one of the following:
a. user outputs;
b. user inquiries;
c. files;
d. external interfaces.

NOTE: This is probably best done as a group exercise outside of class.

3. Collect the group results and compute the total number of function points
for the extended project. Us this to derive the estimated number of lines of
source code.

4. Consider how this estimate compares with the actual lines of code for the
extended project. Discuss reasons for the discrepancy between the
estimated and actual lines of code.

ASSOCIATED HANDOUTS:
Function points work sheets (see lecture 049).

1 Lab 037

LAB NUMBER: 038

TOPIC(S) FOR LAB:
Ethical issues and professionalism

INSTRUCTIONAL OBJECTIVE(SI:
1. Be able to identify ethical issues in software engineering
2. Understand professional responsibilities of software developers
3. Be able to analyze ethical scenarios to identify the ethical issues, discover

applicable ethical principles, and make ethical decisions.

ASSOCIATED LECTURE NUMBER:
Lecture 050

SET UP. WARM-UP:

NOTES TO INSTRUCTOR:

1. Several laboratories concerning ethical issues are described. These labs,
as well as lectures on ethical issues and professionalism, are appropriate
at various times during the two-semester course. Placing them in the last
several weeks of the second semester takes advantage of the accumulated
student project experience and serves as a capstone. Students are less
likely to be preoccupied with project work at this point and may be more
attentive to the topic. Introducing this material immediately after completion
of the small projects or at the end of preliminary design of the extended
project (either at the end of first semester or the beginning of the second
semester) also has merit. At these points students have had meaningful
project experience but plenty of project work remains. Introducing the topic
here with followup throughout the second semester will cause students to
think about ethical issues and professionalism during their subsequent
project work. Yet another option is to introduce this material during the
second semester coincident with the extended project reorganization as
detailed design completes and implementation activities begin.

2. Ethical Decision Making and Information Technology by Kallman and Grillo
(McGraw-Hill, 1993) and the accompanying instructor's manual are excellent
resources for analyzing ethical issues. They present a four-step analysis
process and a worksheet for making appropriate decisions. We highly
recommend this as a supplementary textbook. If adopted then the
worksheets and other supporting materials may be reproduced for use with
the textbook. Several of the laboratory exercises described below assume
that the Kallman/Grillo textbook has been adopted.

PROCEDURE and ASSOCIATED HANDOUTS:
Attached are Procedure and Associated Handouts sections for a number of
suggested laboratories. These are referred to as 038-1, 038-2, etc.

Lab 038

PE DURE : 038-1

NOTE: This can be done as an individual exercise or a group exercise
involving the current project teams.

It is assumed that the associated handouts listed below have already
been assigned as outside reading.

1. Describe the following. Some software development companies have been
known to develop a first version of a software package and begin selling it
even though they are aware that it still has some "bugs". They expect that
users will find and report bugs as well as make other suggestions for
improving the product. The software development company plans to use
these bug reports (complaints) and other suggestions to improve the
product for "version 1.1".

2. Ask whether any of the Cases in the article Using the New ACM Code of
Ethics in Decision Making address this issue? Expect that students will
recognize the similarities with Case 6.

3. Ask students to analyze the scenario (as in done in the article) and cite
specific imperatives in the ACM Code of Ethics and Professional Conduct
that are applicable.

4. If this was done by teams, have each team report on its analysis.

ASSOCIATED HANDOUTS:
ACM Code of Ethics and Professional Conduct
Article: "Using the New Acm Code of Ethics in Decision Making", by

Anderson, Johnson, Gotterbam, and Perrolle. Communications of
the ACM, Feb 1993

2 Lab 038

PRQCEDURE: 038-2

NOTE: This can be done as an individual exercise or a group exercise
involving the current project teams.

It is assumed that the associated handouts listed below have already
been assigned as outside reading.

1. Describe the following scenario adapted from Ethical Conflicts in Information
and Comouter Science. Technolovy. and Business by Parker, D., Swope,
S., and Baker, B. (Wellesley, MA: QED Information Sciences, 1990).

The ETSU Software Corporation is developing the hardware and software
for a computerized voting machine under a contract with the Freedom
Tabulating Company (FTC), which is marketing the system. FTC has
persuaded several cities and states to purchase the system for use in the
next elections. Sandy Smith, a software engineer with ETSU, is aware of
problems in the hardware/software interface that are likely to cause the
machine to miscount approximately one-half of one percent (0.5%) of the
time. Sandy reports this back to the software project director, who
responds "that's a hardware problem".

2. Ask whether any of the Cases in the article Using the New ACM Code of
Ethics in Decision Making address this issue?

3. a. Ask students to analyze the scenario (as is in done in the article)
and cite specific imperatives in the ACM Code of Ethics and
Professional Conduct that are applicable.

b. What responsibility, if any, does Sandy have for the ultimate use of
the system? Cite the specific aspects of the code that apply.

4. If this was done by teams, have each team report on its analysis.

ASSOCIATED HANDOUTS:
ACM Code of Ethics and Professional Conduct
Article: "Using the New Acm Code of Ethics in Decision Making", by

Anderson, Johnson, Gotterbarn, and Perrolle. Communications of
the ACM, Feb 1993

3 Lab 038

PROCEDURE: 038-3

NOTE: This can be done as an Individual exercise or a group exercise
involving the current project teams.

It is assumed that the amocated handouts listed below have already
been assigned as outside reading.

1. Describe the following. K. Kuhn is a software engineer for SECURE
Software. SECURE has developed a software system that has been
successfully tested and Is now being used in several states. The system
enables the criminal justice system to monitor low-risk prisoners and has
helped solve the "overcrowded prison" problem (by releasing low-risk
offenders but monitoring their movements and the people they associate
with, and by enforcing curfews). SECURE has now been approached by
the government of a foreign country and asked to design a system based
on that used in the United States but with a number of changes. K. Kuhn
has raised concerns with SECURE that the foreign government intends to
use the requested system to more effectively and efficiently manage and
preserve their oppressive practices towards their citizens. Kuhn's
management takes the position that it Is none of their business how the
foreign government uses the system.

2. Ask whether any of the Cases in the article Using the New ACM Code of
Ethics in Decision Making address this issue?

3. a. Ask students to analyze the scenario (as in done in the article) and
cite specific imperatives in the ACM Code of Ethics and Professional
Conduct that are applicable.

b. Kuhn is considering many actions: doing nothing; refusing to work on
the project; resigning; expressing the concerns to higher
management; informing the press of the foreign government's plans
for the system and SECURE's role in it; and contacting the
Congressional representative for the district. What guidance, if any,
does the proposed ACM Code of Ethics and Professional Conduct
provide Kuhn? In your answer, cite the specific sections of the code
that apply.

c. What responsibility, if any, does Kuhn have for the ultimate use of the
system? Cite the specific aspects of the code that apply.

4. If this was done by teams, have each team report on its analysis.

ASSOCIATED HANDOUITS:
ACM Code of Ethics and Professional Conduct
Article: "Using the New Acm Code of Ethics in Decision Making", by Anderson,

Johnson, Gotterbarn, and Perrolle. Communications of the ACM, Feb 1993

4 Lab 038

PBRQEWIBE: 038-4

NOTE: This can be done as an individual exercise or a group exercise involving the
current project teams.

It is assumed that the associated handouts listed below have already been
assigned as outside reading.

1. Describe the following. According to the Compliance with Code section, each
ACM member agrees to personally uphold the principles of the code. In your
opinion, does the code place any responsibility on members regarding violations
of the code by other members? If so, what is the responsibility? If not, do you
think this is a serious omission in the code?

2. If this was done by teams, have each team report on its analysis.

ASSOCIATED HANDOUTS:

ACM Code of Ethics and Professional Conduct
Article: "Using the New Acm Code of Ethics in Decision Making", by Anderson,

Johnson, Gotterbam, and Perrolle. Communications of the ACM, Feb 1993

5 Lab 038

PROCEDURE: 038-5

ASSOCIATED HANDOUTS:
ACM Code of Ethics and Professional Conduct
Article: Using the New Acm Code of Ethics in Decision Making by Anderson,

Johnson, Gotterbam, and Perrolle. Communications of the ACM, Feb 1993
Kallman's Four Step Analysis Process
Case Worksheets for analysis of ethical scenarios (Kallman)

1. HANDOUT - Kallman's Four Step Analysis Process
Discuss Kallman's process to analyze an ethical situation. Lead the class
through the analysis of a scenario as an example.

2. HANDOUT - Case Worksheets for analysis of ethical scenarios (Kallman)
Describe an ethical scenario (e.g. any of those used in Procedures 038-1, 038-2,
038-3, 038-4, or one of your own.)

3. Ask students individually to follow Kallman's four-step analysis process to
complete a worksheet for the scenario. While this can be done in class, we
prefer to provide the worksheet and scenario to the class in advance and
students are expected to come to the lab with the worksheet completed.

4. Divide students into groups consisting of the current project teams. Give the
group 20-30 minutes to analyze the scenario as a group and complete a group
(consensus) worksheet. (Note - Kallman's textbook, Ethical Decision Making and
Information Technoloav and the accompanying instructor's manual has
suggestions for conducting such exercises.)

5. Have each team report on its analysis.

ASSOCIATED HANDOUTS:
ACM Code of Ethics and Professional Conduct
Article: Using the New Acm Code of Ethics in Decision Making by Anderson,

Johnson, Gotterbam, and Perrolle. Communications of the ACM, Feb 1993
*o Kallman/Grillo Four Step Analysis Process
* Kallman/Grillo Case Worksheets for analysis of ethical scenarios

- see Note 2 In Lab SET UP. WARM-UP section

6 Lab 038

ACM Code of Ethics and Professional Conduct *

Preamble. Commitment to ethical professional conduct is expected of every member
(voting members, associate members, and student members) of the Association for
Computing Machinery (ACM).

This Code, consisting of 24 imperatives formulated as statements of personal
responsibility, identifies the elements of such a commitment. It contains many, but not all,
issues professionals are likely to face. Section 1 outlines fundamental ethical
considerations, while Section 2 addresses additional, more specific considerations of
professional conduct. Statements in Section 3 pertain more specifically to individuals who
have a leadership role, whether in the workplace or in a volunteer capacity such as with
organizations like ACM. Principles involving compliance with this Code are given in
Section 4.

The Code shall be supplemented by a set of Guidelines, which provide explanation
to assist members in dealing with the various issues contained in the Code. It is
expected that the Guidelines will be changed more frequently than the Code.

The Code and its supplemented Guidelines are intended to serve as a basis for
ethical decision making in the conduct of professional work. Secondarily, they may serve
as a basis for judging the merit of a formal complaint pertaining to violation of professional
ethical standards.

It should be noted that although computing is not mentioned in the imperatives of
section 1.0, the Code is concerned with how these fundamental imperatives apply to
one's conduct as a computing professional. These imperatives are expressed in a
general form to emphasize that ethical principles which apply to computer ethics are
derivsd from more general ethical principles.

It is understood that some words and phrases in a code of ethics are subject to
varying interpretations, and that any ethical principle may conflict with other ethical
principles in specific situations. Questions related to ethical conflicts can best be
answered by thoughtful consideration of fundamental principles, rather than reliance on
detailed regulations.

1. GENERAL MORAL IMPERATIVES. As an ACM member I will...

1.1 Contribute to society and human well-being.
1.2 Avoid harm to others.
1.3 Be honest and trustworthy.
1.4 Be fair and take action not to discriminate.
1.5 Honor property rights including copyrights and patents.
1.6 Give proper credit for intellectual property.
1.7 Respect the privacy of others.
1.8 Honor confidentiality.

• Adopted by ACM Council 10/16/92.

7 Lab 038

2. MORE SPECIFIC PROFESSIONAL RESPONSIBILITIES. As an ACM computing
professional I will...

2.1 Strive to achieve the highest quality, effeatvenes and dignity In both the process and
products of professional work.

2.2 Acquire and maintain professional competence.
2.3 Know and respect existing laws pertaining to professional work.
2.4 Accept and provide appropriate professional review.
2.5 Give comprehensive and thorough evaluations of computer systems and their

impacts, Including analysis of possible risks.
2.6 Honor contracts, agreements, and assigned responsibilities.
2.7 Improve public understanding of computing and its consequences
2.8 Access computing and communication resources only when authorized to do so.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES. As an ACM member and an
organizational leader, I will

3.1 Articulate social responsibilities of members of an organizational unit and encourage
full acceptance of those responsibilities.

3.2 Manage personnel and resources to design and build information systems that
enhance the quality of working life.

3.3 Acknowledge and support proper and authorized uses of an organization's computing
and communication resources.

3.4 Ensure that users and those who will be affected by a system have their needs
clearly articulated during the assessment and design of requirements; later the
system must be validated to meet requirements.

3.5 Articulate and support policies that protect the dignity of users and others affected by
a computing system.

3.6 Create opportunities for members of the organization to learn the principles and
limitations of computer systems.

4. COMPLIANCE WITH THE CODE. As an ACM member, I will

4.1 Uphold and promote the principles of this Code.
4.2 Treat violations of this code as inconsistent with membership in the ACM.

8 Lab O38

GWtDELINES

1. GENERAL MORAL IMPERATIVES. As an ACM member I will

1.1 Contribute to society and human well-being.

This principle concerning the quality of life of all people affirms an obligation to protect
fundamental human rights and to respect the diversity of all cultures. An essential aim of
computing professionals is to minimize negative consequences of computing systems,
Including threats to health and safety. When designing or implementing systems,
computing professionals must attempt to ensure that the products of their efforts will be
used in socially responsible ways, will meet social needs, and will avoid harmful
effects to health and welfare.

In addition to a safe social environment, human well-being inciudes a safe natural
environment. Therefore, computing professionals who design and develop systems must
be alert to, and make others aware of, any potential damage to the local or global
environment.

1.2 Avoid harm to others.

"Harm" means injury or negative consequences, such as undesirable loss of information,

loss of property, property damage, or unwanted environmental impacts. This principle
prohibits use of computing technology in ways that result in harm to any of the following:
users, the general public, employees, employers. Harmful actions include intentional
destruction or modification of files and programs leading to serious loss of resources or
unnecessary expenditure of human resources such as the time and effort required to
purge systems of "computer viruses."

Well-intended actions, including those that accomplish assigned duties, may lead to
harm unexpectedly. In such an event the responsible person or persons are obligated to
undo or mitigate the negative consequences as much as possible. One way to avoid
unintentional harm is to carefully consider potential impacts on all those affected by
decisions made during design and implementation.

To minimize the possibility of indirectly harming others, computing professionals must
minimize malfunctions by following generally accepted standards for system design and
testing. Furthermore, it is often necessary to assess the social consequences of systems
to project the likelihood of any serious harm to others. If system features are
misrepresented to users, coworkers, or supervisors, the individual computing professional
is responsible for any resulting injury.

In the work environment the computing professional has the additional obligation to
report any signs of system dangers that might result in serious personal or social
damage. If one's superiors do not act to curtail or mitigate such dangers, it may be
necessary to "blow the whistle" to help correct the problem or reduce the risk. However,
capricious or misguided reporting of violations can, Itself, be harmful. Before reporting
violations, all relevant aspects of the incident must be thoroughly assessed. In particular,
the assessment of risk and responsibility must be credible. It is suggested that advice be
sought from other computing professionals. See principle 2.5 regarding thorough
evaluations.

9 Lab 038

1.3 Be honest and trustworthy.

Honesty is an essential component of trust. Without trust an organization cannot function
effectively. The honest computing professional will not make deliberately false or
deceptive claims about a system or system design, but will instead provide full disclosure
of all pertinent system limitations and problems.

A computer professional has a duty to be honest about his or her own qualifications,
and about any circumstances that might lead to conflicts of interest.

Membership in volunteer organizations such as ACM may at times place individuals
in situations where their statements or actions could be interpreted as carrying the
"weight" of a larger group of professionals. An ACM member will exercise care to not
misrepresent ACM or positions and policies of ACM or any ACM units.

1.4 Be fair and take action not to discriminate.

The values of equality, tolerance, respect for others, and the principles of equal justice
govern this imperative. Discrimination on the basis of race, sex, religion, age, disability,
national origin, or other such factors is an explicit violation of ACM policy and will not be
tolerated.

Inequities between different groups of people may result from the use or misuse of
information and technology. In a fair society,all individuals would have equal opportunity
to participate in, or benefit from, the use of computer resources regardless of race, sex,
religion, age, disability, national origin or other such similar factors. However, these ideals
do not justify unauthorized use of computer resources nor do they provide an adequate
basis for violation of any other ethical imperatives of this code.

1.5 Honor property rights including copyrights and patents.

Violation of copyrights, patents, trade secrets and the terms of license agreements is
prohibited by law in most circumstances. Even when software is not so protected, such
violations are contrary to professional behavior. Copies of software should be made only
with proper authorization. Unauthorized duplication of materials must not be condoned.

1.6 Give proper credit for intellectual property.

Computing professionals are obligated to protect the integrity of intellectual property.
Specifically, one must not take credit for other's ideas or work, even in cases where the
work has not been explicitly protected by copyright, patent, etc.

1.7 Respect the privacy of others.

Computing and communication technology enables the collection and exchange of
personal information on a scale unprecedented in the history of civilization. Thus there
Is increased potential for violating the privacy of individuals and groups. It is the
responsibility of professionals to maintain the privacy and integrity of data describing
Individuals. This includes taking precautions to ensure the accuracy of data, as well as
protecting it from unauthorized access or accidental disclosure to inappropriate

10 Lab 038

individuals. Furthermore, procedures must be established to allow individuals to review
their records and correct inaccuracies.

This imperative implies that only the necessary amount of personal information be
collected in a system, that retention and disposal periods for that information be clearly
defined and enforced, and that personal information gathered for a specific purpose not
be used for other purposes without consent of the individual(s). These principles apply
to electronic communications, including electronic mail, and prohibit procedures that
capture or monitor electronic user data, including messages,without the permission of
users or bona fide authorization related to system operation and maintenance. User data
observed during the normal duties of system operation and maintenance must be treated
with strictest confidentiality, except in cases where it is evidence for the violation of law,
organizational regulations, or this Code. In these cases, the nature or contents of that
information must be disclosed only to proper authorities. (See 1.9)

1.8 Honor confidentiality.

The principle of honesty extends to issues of confidentiality of information whenever one
has made an explicit promise to honor confidentiality or, implicitly, when private
information not directly related to the performance of one's duties becomes available. The
ethical concern is to respect all obligations of confidentiality to employers, clients, and
users unless discharged from such obligations by requirements of the law or other
principles of this Code.

2. MORE SPECIFIC PROFESSIONAL RESPONSIBILITIES.
As an ACM computing professional I will...

2.1 Strive to achieve the highest quality, effectiveness and dignity in both the
process and products of professional work.

Excellence is perhaps the most important obligation of a professional. The computing
professional must strive to achieve quality and to be cognizant of the serious negative
consequences that may result from poor quality in a system.

2.2 Acquire and maintain professional competence.

Excellence depends on individuals who take responsibility for acquiring and maintaining
professional competence. A professional must participate in setting standards for
appropriate levels of competence, and strive to achieve those standards. Upgrading
technical knowledge and competence can be achieved in several ways:doing independent
study; attending seminars, conferences, or courses; and being involved in professional
organizations.

2.3 Know and respect existing laws pertaining to professional work.

ACM members must obey existing local, state,province, national, and international laws
unless there is a compelling ethical basis not to do so. Policies and procedures of the
organizations in which one participates must also be obeyed.But compliance must be
balanced with the recognition that sometimes existing laws and rules may be immoral or

11 Lab 038

Inappropriate andtherefore, must be challenged. Violation of a law or regulation may be
ethical when that law or rule has Inadequate moral basis or when it conficts with another
law judged to be more important. If one decides to violate a law or rule because it is
viewed as unethical, or for any other reason, one must fully accept resmnbit for one's
actions and for the consequences.

2.4 Accept and provide appropriate professional review.

Quality professional work, especially in the computing profession, depends on
professional reviewing and critiquing. Whenever approprlate,individual members should
seek and utilize peer review as well as provide critical review of the work of others.

2.5 Give comprehensive and thorough evaluations of computer systems and their
impacts, including analysis of possible risks.

Computer professionals must strive to be perceptive, thorough, and objective when
evaluating, recommending, and presenting system descriptions and alternatives.
Computer professionals are in a position of special trust, and therefore have a special
responsibility to provide objective, credible evaluations to employers, clients, users, and
the public. When providing evaluations the professional must also identify any relevant
conflicts of interest, as stated in imperative 1.3.

As noted in the discussion of principle 1.2 on avoiding harm, any signs of danger from
systems must be reported to those who have opportunity and/or responsibility to resolve
them. See the guidelines for imperative 1.2 for more details concerning harm,including
the reporting of professional violations.

2.6 Honor contracts, agreements, and assigned responsibilities.

Honoring one's commitments is a matter of integrity and honesty.For the computer
professional this includes ensuring that system elements perform as intended. Also, when
one contracts for work with another party, one has an obligation to keep that party
properly informed about progress toward completing that work.

A computing professional has a responsibility to request a change in any assignment
that he or she feels cannot be completed as defined. Only after serious consideration and
with full disclosure of risks and concerns to the employer or client, should one accept the
assignment. The major underlying principle here is the obligation to accept personal
accountability for professional work. On some occasions other ethical principles may take
greater priority.

A judgment that a specific assignment should not be performed may not be accepted.
Having clearly identified one's concerns and reasons for that judgment, but failing to
procure a chango In that assignment, one may yet be obligated, by contract or by law,
to proceed as directed. The computing professionars ethical judgment should be the final
guide in deciding whether or not to proceed. Pegardless of the decision, one must acc~st
the responsibility for the consequences.

However, performing assignments "against one's own judgment" does not relieve the
professional of responsibility for any negative consequences.

12 Lab 038

2.7 Improve public understanding of computing and its consequences.

Computing professionals have a responsibility to share technical knowledge with the
public by encouraging understanding of computing, including the impacts of computer
systems and their limitations. This Imperative implies an obligation to counter any false
views related to computing.

2.8 Access computing and communication resources only when authorized to do so.

Theft or destruction of tangible and electronic property is prohibited by imperative 1.2 -
"Avoid harm to others." Trespassing and unauthorized use of a computer or
communication system is addressed by this imperative. Trespassing includes accessing
communication networks and computer systems, or accounts and/or files associated with
those systems, without explicit authorization to do so. Individuals and organizations have
the right to restrict access to their systems so long as they do not violate the
discrimination principle (see 1.4). No one should enter or use another's computer system,
software, or data files without permission. One must always have appropriate approval
before using system resources, including communication ports, file space, other system
peripherals, and computer time.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES.
As an ACM member and an organizational leader, I will

BACKGROUND NOTE:This section draws extensively from the draft IFIP Code of
Ethics,especially its sections on organizational ethics and international concerns. The
ethical obligations of organizations tend to be neglected in most codes of professional
conduct, perhaps because these codes are written from the perspective of the individual
member. This dilemma is addressed by stating these imperatives from the perspective
of the organizational leader. In this context"leader" is viewed as any organizational
member who has leadership or educational responsibilities. These imperatives generally
may apply to organizations as well as their leaders. In this context"organizations" are
corporations, government agencies,and other "employers," as well as volunteer
professional organizations.

3.1 Articulate social responsibilities of members of an organizational unit and
encourage full acceptance of those responsibilities.

Because organizations of all kinds have impacts on the public, they must accept
responsibilities to society. Organizational procedures and attitudes oriented toward quality
and the welfare of society will reduce harm to members of the public, thereby serving
public interest and fulfilling social responsibility. Thereforeorganizational leaders must
encourage full participation in meeting social responsibilities as well as quality
performance.

3.2 Manage personnel and resources to design and build information systems that
enhance the quality of working life.

Organizational leaders are responsible for ensuring that computer systems enhance, not

13 Lab 038

degrade, the quality of working life. When implementing a computer system,
organizations must consider the personal and professional development, physical safety,
and human dignity of all workers. Appropriate human-computer ergonomic standards
should be considered in system design and in the workplace.

3.3 Acknowledge and support proper and authorized uses of an organization's
computing and communication resources.

Because computer systems can become tools to harm as well as to benefit an
organization, the leadership has the responsibility to clearly define appropriate and
inappropriate uses of organizational computing resources. While the number and scope
of such rules should be minimal, they should be fully enforced when established.

3.4 Ensure that users and those who will be affected by a system have their needs
clearly articulated during the assessment and design of requirements; later the system
must be validated to meet requirements.

Current system users, potential users and other persons whose lives may be affected by
a system must have their needs assessed and incorporated in the statement of
requirements. System validation should ensure compliance with those requirements.

3.5 Articulate and support policies that protect the dignity of users and others effected by
a computing system.

Designing or implementing systems that deliberately or inadvertently demean individuals
or groups is ethically unacceptable. Computer professionals who are in decision making
positions should verify that systems are designed and implemented to protect personal
privacy and enhance personal dignity.

3.6 Create opportunities for members of the organization to learn the principles
and limitations of computer systems.

This complements the imperative on public understanding (2.7). Educational opportunities
are essential to facilitate optimal participation of all organizational members. Opportunities
must be available to all members to help them improve their knowledge and skills in
computing, including courses that familiarize them with the consequences and limitations
of particular types of systems.In particular, professionals must be made aware of the
dangers of building systems around oversimplified models, the improbability of anticipating
and designing for every possible operating condition, and other issues related to the
complexity of this profession.

4. COMPLIANCE WITH THE CODE. As an ACM member I will ...

4.1 Uphold and promote the principles of this Code.

The future of the computing profession depends on both technical and ethical excellence.
Not only is it important for ACM computing professionals to adhere to the principles
expressed in this Code, each member should encourage and support adherence by other

14 Lab 038

members.

4.2 Treat violations of this code as inconsistent with membership in the ACM.

Adherence of professionals to a code of ethics is largely a voluntary matter. However,
if a member does not follow this code by engaging in gross misconduct, membership in
ACM may be terminated.

This Code and the supplemental Guidelines were developed by the Task Force for the
Revision of the ACM Code of Ethics and Professional Conduct: Ronald E. Anderson,
Chair, Gerald Engel, Donald Gotterbam, Grace C. Hertlein, Alex Hoffman, Bruce Jawer,
Deborah G. Johnson, Dods K. Udtke, Joyce Currie Little, Dianne Martin, Donn B. Parker,
Judith A. Perrolle, and Richard S. Rosenberg. The Task Force was organized by
ACM/SIGCAS and funding was provided by the ACM SIG Discretionary Fund. This Code
and the supplemental Guidelines were adopted by the ACM Council on October 16, 1992.

15 Lab 038

The Four Step Analysis Process

Step I. Analyze the situation. What Is the subject of the case; what Is it all about?
A. What are the relevant facts?
B. Who are the stakeholders, that is, who has an interest, or stake, in the outcome?

Step II. Make a defensible ethical decision? (Refer to Chapter 1 for details.)
A. Isolate the ethical issues.

1. Should someone have done or not done something?
2. Does it matter that ...? (reasons and excuses)

B. Examine the legal issues.
C. Consult guidelines.

1. Do corporate policies apply?
2. What codes of conduct apply?
3. Does the action violate the Golden Rule?
4. Who benefits? Who is harmed?
5. Does the action pass tests for right and wrong?

D Discover the applicable ethical principles.
1. Explore ways to minimize harm.
2. Analyze pertinent rights and duties.
3. Define professional responsibilities.
4. Examine the situation in terms of egoism and utilitarianism.
5. Apply concepts of consistency and respect.

E. Make a defensible choice.

STEP Ill. Describe steps to resolve the current situation.
A. What are the options at this time?
B. WMiich option(s) do you recommend?
C. Defend the legality and ethicality of your recommendation.
D. How would you implement your recommendation?
E. Recommend short-term corrective measures.

1. Analyze the pivot points.
2. Alter the parameters.

STEP IV. Prepare policies and strategies to prevent recurrence.
A. What organizational, political, legal, technological, societal changes are needed?
B. What are the consequences of your suggested changes?

1. What happens when this resolution is invoked?
2. What obstacles might prevent your plan from working?
3. Why should the organization implement the changes?
4. How do the changes benefit the organization? Are they marketable, or do

they further public relations? (Perhaps perform a cost/benefit analysis.)
5. Do the changes increase the net good for those concerned? Does anyone

get hurt?
6. Do the changes reflect human rights and reflect common duties?

Source: Ethical Decision Making and Information Technology by Kallman and Grillo
(Mitchell McGraw-Hill, 1993)

16 Lab 038

CASE WORKSHEET (m Chapter 3 for detalls on how to carry out each atep)

1. Find the facts
A. List the relevant facts-

B. List the stakeholders-

II. Make a defensible ethical decision.
A. Isolate ethical issues (Should someone have/have not done something?)

B. Examine the legal issues-

C. Consult guidelines

Corporate policies, codes of Conduct_

Golden Rule

Who benefits? Who is harmed?

Tests for right and wrong"

17 Lab 038

D. Discover the applicable ethical principles

Least harm-

Rights and duties

Professional responsibilities

Self interest and utilitarianism

Consistency and respect

E. Make a defensible choice

III. Describe steps to resolve the current situation.
A. Options

B. Recommendation

C. Defense

D. Implementation

E. Short-term corrective measures

IV. Prepare policies and strategies to prevent recurrence
A. Describe the organizational, political, legal, technological, or societal changes

needed:

B. Describe the consequences of your suggested changes:

18 Lab 038

Real-World Software Engineering
IV PROJECTS

This section is divided into five parts. Part a provides an overview of the three types
of projects (small, extended, maintenance) around which thecourse is organized. This
is followed by a discussion about significant issues to consider when selecting projects
for a project oriented class (part b). Once a project is chosen it must be carefully
managed and evaluated. Project management techniques and tools are presented
in part c. Sample projects are included In part d. Part e consists of an extended
discussion of our approach to the management of a large project.

a. Introduction to Projects.

The course is organized around three types of project. A brief description of each of
the three projects follows.

1. Small Droiect - The requirements are provided to the students who are
expected to specify, design, code, and test a solution. The small project is
scheduled for weeks 2 through 6 of the first semester. Since work must begin
quickly, controlling disciplines are imposed upon the teams with minimum
justification at this point. For example, students are immediately introduced
to estimation, scheduling, project organization, configuration management,
quality assurance, and verification and validation techniques by "living them"
but only later are these topics formally addressed in lectures. While the
project is implemented in a language with which the students are already
proficient, Ada specifications are used in high-level design.

2. Extended oroiect - Beginning with an initial request from a "real customer",
students are expected to complete all aspects of a solution, from requirements
engineering (elicitation, analysis, and specification) through implementation.
This project begins in week 5 of the first semester and continues through week
11 of the second semester. Analysis and design, through Ada specifications,
are to be completed by the end of the first semester with detailed design,
coding, and testing to follow in the second semester. Ada is used as the
notation for requirements specification and design. Structured analysis and
design techniques are applied to this project. DOD-STD-2167a [2167A] is
used as the standard for the required documents and procedures. Internal
project reviews are emphasized [Bruegge 91].

3. Maintenance Drolect - Students perform major maintenance (including
corrective, enhancement, and adaptive activities) on an existing software
system. A complete and sound set of system documents, which adhere to
accepted software engineering standards, is provided. The maintenance

project is scheduled for weeks 6 through 11 of the second semester. The
project chosen is one that has been previously implemented in Ada with
object-oriented techniques. A variety of maintenance tasks, including those
described by Engle, Ford, and Korson [Engle 89], are assigned. The students
are required to perform multiple concurrent maintenance tasks on this large
Ada artifact [Callis 91]. These maintenance activities require the use of
disciplined change control and the ability to work with a large unfamiliar
artifact.

We specifically recommend that students work in project teams, assigned to
developing a software product for a customer. The customer may be a real customer
who has a genuine software need, or the customer may be role-played by the
instructor or a colleague with a simulated software need. In either case, the customer
makes a request to initiate the project. The request may be given orally or in writing
and consists of a brief statement intended to convey, in the customer's language, the
essence of the desired product. At this point the students are charged with developing
a problem definition. It is emphasized that defining the problem requires a real
understanding of the problem domain. The specific form of the problem definition to
be developed will vary depending on the particular course and instructor preference
but should be clearly stated and demonstrated by the instructor. Students should also
be provided with techniques for eliciting requirements as well as for working in groups.
Techniques include interviewing, observation, context-free questions, brainstorming,
scenarios, reviews, and effective meetings (Gause & Weinberg, 1989, Pressman,
1988, Weinberg, 1982, Metzger, 1987).

b. Selecting a project

The success of our approach is dependent on the selection of appropriate software
projects. The selected software project must accomplish something more than a mere
calculation and represent a real world problem of sufficient complexity so that the
requirements gathering challenges the students. Other factors in project selection
include required domain knowledge, non-functional requirements, and incremental
development.

In the real world, the customer has significantly more domain knowledge than the
software developer, who must acquire some of that knowledge to successfully develop
the system. There is rarely sufficient time within the duration of a class to gain this
knowledge. Consequently, both the instructor and the students must already be
familiar with the knowledge domain of the selected project. Undertaking a project
which requires exotic domain knowledge by the instructor or the students merely adds
distracting complications to the project as either struggles to understand the domain.
While the choice of an exotic application might excite the students, the instructor may
be unable to comfortably portray a knowledgeable customer. Even with familiar tasks,
students still have difficulty capturing the customer's needs and designing a solution.

This experience helps them understand the essential difficulty of requirements
gathering. Familiarity with the project domain also reduces the need for the instructor
to correct unnecessarily complicated design assumptions.

Most students are familiar with common mechanical devices. Computerizing simple
mechanical devices is a useful source of project ideas. From one model of a device,
many projects can be developed. For example, students understand the model of a
machine which accepts money and dispenses products. Variations on this model
which we have used on recent projects include the computerization of a snack vending
machine and a videotape vending machine. The model can also be reversed to that
of a machine which accepts products and dispenses money. A variation on this is a
recycling machine which accepts empty cans and bottles and dispenses money in
exchange for these items. The similarity of these variations is useful if multiple student
projects need to be developed concurrently. Even though students notice this
similarity, they quickly learn that each project is very different because of the
customer's needs. For example, the snack vending machine is continually replenished
by the owner while the videotape vending machine is restocked by a user returning a
videotape.

Another factor in project selection is the presence of non-functional requirements.
Non-functional requirements are requirements that do not relate directly to the
functions or operations to be performed by the system. Students must learn to
recognize non-functional requirements such as the need for rapid responses to
customer requests and appropriate user interfaces. Again, familiarity with the selected
model helps the students to easily identify the non-functional requirements.

The ability to provide incremental development is another factor in project selection.
For student satisfaction with the learning experience, it is important for them to deliver
a functioning system. If a project has several distinct functional components, it is more
likely that at least some of those components can be delivered. For example, a video-
tape vending machine keeps track of its tapes, records charges to user's charge cards,
accepts money, and accepts and dispenses tapes. Each of these functions can be
developed and tested separately, giving the student some sense of accomplishment.
Selecting a project conducive to incremental development models the real world in that
customers sometimes have to cut back on their expectations. Also, software reuse
and integration testing are more easily demonstrated in systems that can be
incrementally developed.

In project selection, two strong motivating factors for students have been their
familiarity with the problem domain and the possibility of others using their software.
We have found that school-related projects are well received by students. Automating
aspects of a departmental library or advisement system, tracking the distribution of
athletic equipment, automating a dormitory assignment lottery, and detecting program
plagiarism are examples of such projects. An additional virtue of school-related

3

32

PROCEDURE

Test: E (Total Percentage)

Teat Version: 1.0

Description: This test is performed to ensure that the system
will advise the user to continue on with the next
filter-even if the last filter's percentage was
not 80% or greater if the total percentage is
greater than 80%.

Requirements: 19

Prerequisites: B8

Test Data Required: TD...102A.TST and TD...102B.TST

Test Steps:

1. Enter program names TD_.TST and TD_.TST.

2. Run filter one (should contribute 10% to Total).

3. Run filter two (should contribute 15% to-Total).

4. Run filter three (should contribute 20% to Total).

5. Pick each procedure from first program and run with every
other procedure from second program in filter four
(should contribute 10% to Total).

6. Pick each procedure from first program and run with every
other procedure from second program in filter five.
(should contribute 10% to Total).

7. Run filter six (should contribute 11.85% to Total because
of possible 15% is 11.85%).

8. Run filter seven (should contribute 7.9%).

9. Total shoud be (84.75%) verify system advises you to continue
on with filter eight even though filter seven's percentage
was only 79%.

33

RESULTS OF TROT 3

EXPECTED ACT"UAL

System Advises to
continue withFilter Eight.

TEST PROCEDURE FORM

Test: F (Menu Key torture test)

Test Version: 1.0

Description: This test is performed to check that Menus do not
take incorrect actions when meaningless keys are
pressed.

Requirements: 3

Prerequisites: Al

Test Data Required: TD_1A.TST and TD_1B.TST

Test steps:

1. Enter TDIA.TST for first program.

2. Enter TD_1B.TST for second program.

3. When menu for Filter 1 is displayed press the key indicated
in the matrix below and record the results.

4. Exit system.

TEST DATA MATRIX (F)

Prmo" lev's gl ed Actual comm ntus
Result lrnault Nall

.Right Arrow. Rojected

.Down Arrow. Ra3octad Customer says this is not a problem do not
'RITURI. * run.

.71. Rejected

:Gray .. Rejactad
.RETURN:

4RtURNm . RPejcted Customer says this is not a problem do not
run.

1. .•MR3UU?, Rejected

.X• PRXTURI, Pejected

cSPACE IAR> Rejected Customer says this is not a problem do not
3<79M, run.

49. sRU¶IPeteted r

APPIDXX

Third Eye Plagiarism Detection System Ver 1.0 Beta

Result
Problem P=Pass

Test Test Run Report F=Fail
Name Description Ver by Numbers N=Not Run

Al Prompt for source Pgms

A2 Exit test

A3 Report information

Bla Filter 1 Physical lines
/ comments

Blb Filter 1 constructs

Blc Filter 1 percentage

Bld Filter 1 torture

B2a Filter 2 Globa VAR4

B2b Filter 2 Global .ONSTs

B2c Filter 2 Global TYPEs

B2d Filter 2 Global
functions/procedures

B2e Filter 2 Total # of
Globals

B2f Filter 2 percentage

B2g Filter 2 torture

B3a Filter 3 function /
procedure interfaces

B3b Filter 3 percentage

B3c Filter 3 torture

B4a Filter 4 physical lines
/ comments

B4b Filter 4 constructs

B4c Filter 4 percentage

B4d Filter 4 torture

Third Eye Plagiarism Detection System Ver 1.0 Beta

Result
Problem P=Pass

Test Test Run Report F=Fail
Name Description Ver by Numbers N=Not Run

B5a Filter 5 Global VARs

B5b Filter 5 Global CONSTs

B5c Filter 5 Global TYPEs

B5d Filter 5 function /
procedures

B5e Filter 5 total # of

Globals

B5f Filter 5 percentage

B5g Filter 5 torture

B6a Filter 6 keywords

B6b Filter 6 percentage

B7a Filter 7 Identifiers

B7b Filter 7 functions /
procedures

B7c Filter 7 percentage

B7d Filter 7 torture

B8a Filter 8 functions

B8b Filter 8 procedures

B8c Filter 8 percentage

B8d Filter 8 torture

C 30 seconds/response

D Help test

E Total percentage test

F Menu Key torture test

Problem Report Form

PROBLEM SUBMISSION: Problem
Originator: Report #.__
Date:
Version Number Tested:

Problem Description:

Was the problem found by a test? Yes_ No_
If yes, give test name:

Input:

Expected Result:

Actual Result:

Additional Comments:

PROBLEM RESOLUTION:
Name:
Date:
Disposition

Problem Fixed __ Not a Problem__ Duplicate Problem__

If this is a duplicate problem then give the number of the
report on which this problem was previously identified__

Comments:

Problem Report Tracking Form

Disposition:
Fixed, Not a

Report Ver Date Date Problem,
Number Tested Reported Returned Duplicate Closed

Sequence Of Test Execution Form

Tester Name

Version Tested

Test Test
Order Name Date Time Comments

VI Student assessment

We use tests and quizzes for two reasons; to encourage students to keep up on their
reading assignments and to evaluate their understanding of fundamental software
engineering concepts. Students are encouraged to keep up with the reading assignments
by the use of frequent quizzes. Students who have completed their reading assignments
before the quiz, will generally do well on them. An in-class review of the quiz enables the
instructor to locate confusions about the reading material in real-time. The discovery of
confusion is not delayed until a major test has been given and graded. Concepts are
both learned and lived. The major written examinations go over the details of the
readings. By the time a major examination is given, students have read the material, had
a quiz on it, and started to apply the principles in a project.

Below are several sample quizzes and the answers we would accept. There are also
some sample tests. We give several types of tests. Some tests have both a take home
and an in-class part. The take-home portion is used for questions which require careful
application of concepts learned in class and questions on professional issues.ake home
portion of the exam. We also have students review deliverables as take home portions
of the exam. This motivates them to carefully synthesize and apply concepts learned in
class. A composite of their criticisms of the first semester deliverables is used when
introducing the extended project at the beginning of the second semester. The in-class
portion of each test is preceded by a study guide. The study guide is included here
along with each test.

QUIZZER

CSCI 3250 QUIZ/EXERCISE 1 NAME:

1. The qualities looked for in software depend on one's point of view. Mynatt
describes three different categories of people to whom good software quality is
important. Each views a software system from a different perspective.

Name the three categories of people and, for each, list one software quality that
is important to them.

a. Sponsor - Any of following qualities
Low costs
Increased productivity
Flexibility
Efficec

Relbability

b. User - Any of following qualities
Functionality
Ease of learning
Ease of remembering
Ease of use
ELfficincy
Reliability

c. Maintainer/modifier - Any of following qualities
Minimum errors
Good documentation
Readable code
Good design
Reliability

2

CSCI 3250 QUIZ/EXERCISE 2 NAME:

Choose one, but notma lb o fth questlons below and snmr IL

I According to Mynatt, the mi01b phase actually has two components. Name and
briefly describe these two parts of the analysis phase.

(1) Requirements aaulyal Involves defining the problm
and the requirements that must be met.

(2) Specifigtlo describes the technical requirements
for the system; e.g. specifying what the system Is to
do and any operational constraints. Specification is
a refinement of requirements analysis and Involves
the creation of testable requirements.

2. Structured analysis is a widely used approach to analysis. Name and briefly

describe the components, according to Mynath, of a structured analysis model.

Context diagram

Data flow diagrams

Data dictionary

Activity specifications

3

CSCI 3250 QUIZ/EXERCISE 3 NAME:

Answer onlytone of the three questions that follow.

1. There are two software design strategies that have been widely adopted. Name
and briefly describe each.

2. According to Sommerville, "the most important design quality attribute is
maintainability." Coupling and cohesion affect the maintainability of a system.
Briefly define and distinguish between coupling and cohesion.

3. Are structure charts analysis or design documents? What does a structure chart

show?

4

CSCI 3250 QUIZ/EXERCISE 4 NAME: Answe Key

Answer only on of the two questions that follow.

1. (a) What is black-box testing? (b) What is white-box testing? (c) For black-box
testing, from what are the tests derived (i.e. what must you have knowledge of in
order to construct black-box tests)? (d) Repeat part (c) for white-box testing.

(a) Black-box testing, or functional testing, tests the system from an
external standpoint; I.e. the system is viewed as a black-box whose
behavior is examined solely from its Inputs and related outputs..

(b) White-box testing, or structural testing, considers the internals of the
system; i.e. the internal structure (the code) is examined to consider
what tests to run. Tests are constructed so as to "cover" (to exerclse)
all of the code.

(c) Black-box tests are derived from the system's specifications.
(d) White-box tests are derived from the internal program structure; i.e.

the code.

2. Name and describe the three categories of software maintenance. (b) Which
type is the most prevalent (i.e., in practice, which category comprises the highest
percentage of software maintenance efforts)?

(a) Corrective - maintenance to correct defects

Perfective (or enhancement) - maintenance to add new features and
functionality; i.e. due to a change In requirements

Adaptive - maintenance due to a change in the operational
ervironment

(b) Perfective is the most prevalent; approximately 65% of all malntenance
is perfective.

5

CMCI 3250 QUIZ/EXERCISE 5 NAME:

1. Distinguish between gmcs documenation and luct docummntation and give
an example of each.

Process documentation deals with the software
development procum. Process documentation Includes
such things as project management plans, schedules,
development standards, and meeting notes/reports. Its
primary purpose Is to assist In the management of
software development.

Product documentation deals with the software
that Is being developed. It Includes such things as users
manuals, Installation guides, requirements documents,
design documents, source code, and test plans.

6

CSCI 3250 QUIZ/EXERCISE 6 NAME: Answer Key

(a) Distinguish between functional reauirements and non-functional requirements.
(b) For your team's project, give a specific example of a functional ruirement and

of a non-functional requirement.

(a) Functional reauirements are requirements that relate directly to the system's
functionality; i.e., they describe how the system should behave.

Non-functional requirements do not relate to functions of the system. They are
requirements or constraints (restrictions) under which the system must operater
and standards that must be met.

(b) See Mynatt, pages 70-74, and Sommerville, pages 92-95, for ideas.

7

CSCI 3250 QUIZIEXERCISE 7 NAME:

Ansaw oniLynam of the two questons that follow.

I (a) According to Sommerville, the reliability of a software system is a measure
of:

how well the software prvdes the serime expectd of it

by its user.

(b) Sommerville discusses four different metrics which have been used to

assess software reliability. Name two of these reliability metrics.

Any two of the following:

(1) Probability of failure on denmand (3) Mean time to failure

(2) Rate of failure occurrence (4) Availability

2. Mynatt describes five general factors that are related to user interface quality.

Identify four of them.

Any four of the following:

(1) Eae of leMrning (4) User satisfaction

(2) Speed of us (5) Knowledge retention

(3) Frequency of user errors

8

C"40 3250 QUIZ/EXERCISE 8 NAME: s of studen rs

All serlous reepone will be consldered oe'corr!

There has been a lot of discussion about ethics and computing. List what you think are

three ethical issues in computing.

Security of data being transmitted electronically (encryption/decryption)

Software ownership; licensing; piracy; plagiarism; pricing

Accessing information without authorization

Computer crime

Software quality:
- released without adequate testing or with known deficiencies
- providing quality product at reasonable cost
- safety critical systems

Support policies (on outside of package)

Viruses

Privacy: - on systems such as Compuserve

Issue of employee developing software for one employer and not be allowed to

take it to anouther employer

Al - trying to duplicate human brain, human thoughts

Monitoring: - e-mail

Abuse of resources on Internet

Copying processor architecture

9

CSCI 32s0 OUMAEXERCISE S NAME: Answer Key

I Complete the following sentence In 5 words or less:

Configuration management Is concerned with ohin0 aontrol

2. What does it mean when something is bmuuimd?

It Is placed under configuration management control (I.e. It becomes a
configuration Item) and thereafter changes can only be made by going
through the established change control process.

3. One of the most important roles of quality assurance (QA) is the development of

rduct standards and pax= standards.

(a) Give a specific example of a process standard-

Any of the following: Design review conduct
Submission of documents to CM
Version release process
Project plan approval process
Change control process
Test recording process

(b) Give a specific example of a product standard.

Any of the following: Design review form
Document naming standard
Procedure header format
Programming standards
Project plan format
Change request form

10

EXAMIATIONS

TEST 1 STUDY GUIDE

Note: 1. Test 1 covers lectures and reading through week 7 of the syllabus.
2. Understand the concepts AW be able to apply them.
3. If a topic Is not on review sheet, it is not on the tst.

1. Name the phases of the software life cycle. For each, describe the purpose,
activities carried out in the phase, inputs, outputs, and documents produced.

2. Understand the components of the structured analysis and design models being
used in your team project, including the notation used. This includes:
a) statement of scope (narrative overview); b) context diagram;
c) data flow diagrams (leveling, balancing); d) data dictionary;
e) structure chart; f) module descriptions

3. Sommerville says that a major difficulty is establishing large software system
requirements is that the problems are usually "wicked problems." What is a
wicked problem and what is the major difficulty? Give some examples?

4. Distinguish between a requirements definition and a requirements specification?
Why is it useful to draw a distinction, as Sommerville does, between a
requirements definition and a requirements specification?

5. a) Distinguish between functional requirements and non-functional
requirements? Give examples.

b) Describe the three principal classes of non-functional requirements.

6. Consider Exercises 5.2 and 5.8 (page 100) of Sommerville.

7. Regarding software reviews, or walkthroughs:
a) What is the purpose?
b) Who participates and what are the different roles?
c) What are some standard guidelines for effective reviews?

8. Define and distinguish between coupling and cohesion? Explain why maximizing
cohesion and minimizing coupling leads to more maintainable systems.

9. In evaluating a design, two major issues need to be considered. First, does the
design fulfill the requirements; second, does it meet established design

11

Test I Study Gud - Pa 12

standards? What types of standards are being referred to?

10. What are the three key design goals?

11. Describe these process models and give the strengths and weaknesses of each.
a) waterfall model; b) prototyping; c) spiral model.
d) Consider Exercise 6.7, page 119, of Sommerville.

12. Qualities looked for in software depend on one's point of view. Mynatt describes
three categories of people to whom good software quality is important. Each
views a software system from a different perspective. Name the three categories
of people and, for each, list the software qualities that are Important to them.

13. According to Sommerville, what are the key attributes of a well-engineered
software system, assuming it provides the required functionality?

14. According to Mynatt, the mana phase actually has two components. Name
and briefly describe these two parts of the analysis phase.

15. Name and describe the two widely adopted software design strategies.

16. a) What is black-box testing? Describe some black-box testing techniques.
b) What is white-box testing? Describe some white-box testing techniques.
c) For black-box testing, from what are the tests derived (i.e. what must you

have knowledge of in order to construct black-box tests)?
d) For white-box testing, from what are the tests derived (i.e. what must you

have knowledge of in order to construct white-box tests)?

17. Name,describe, and give specific examples of the three types of software
maintenance. Which is the most prevalent? Which would you expect to be most
prevalent in the first six months after a new product is released. Why?

18. Distinguish between procs documentation and product documnrtation and give
examples of each. For each type, for whom is it intended, what is the purpose,
and how long will the documentation likely be ume?

19. Discuss factors which affect group communication. Give suggestions that an
organization could consider In improving group effectiveness.

20. What is meant by kacakIRX of requirements throughout the software

12

TeOM Study Guide - Page 13

development process. Describe specifically how this could be provided in
design? in testing?

13

Tet I tdy GuidSe Pgp 14

CSCI 3250 TEST 1, NAME: Answer Key

1. (32 points) Write the letter of the correct answer in the space provided to the left of
each question.

_L A. The phase in which the software architecture is established is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

A B. The phase in which test plans and test cases are developed is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

_. C. The phase in which documentation is produced is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

8 D. The phase in which the client's problem is defined and recorded is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

jE. The phase in which the structure chart is developed is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

A.8_ F. The phase in which the leveled set of data flow diagrams is developed is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

�.. G. The phase in which module testing occurs is
(a) requirements analysis & specification (d) maintenance
(b) design (e) all of these
(c) implementation

14

CSCI 3250 Test 1, Fall 1993 - Page 15

C H. The components of a well designed software system will have a _ level
of cohesion and a - level of coupling.
(a) low, low (b) low, high (c) high, low (d) high, high

I. A structure chart does not show
(a) interfaces between modulps (d) functions of modules
(b) the modules in the system (e) execution order
(c) module hierarchy (who calls who) (f) al these are shown

" J. Black box testing often reveals errors in the interfaces between modules.
(a) true (b) false

.K. Traditionally, software maintenance activities consume more resources than
software development activities.
(a) True (b) False

SL. A structured analysis model of a software system (context diagram, data flow
diagrams, process specifications, data dictionary) is an example of
(a) process documentation (c) both (a) and (b)
(b) product documentation (d) neither (a) nor (b)

._ M. The users manual for a system is an example of
(a) process documentation (c) both (a) and (b)
(b) product documentation (d) neither (a) nor (b)

aN. The purpose of a review is to identify and correct errors in the reviewed item.

(a) True (b) False

" A.8 0. In order to determine whether a child data flow diagram is balanced with

respect to its parent data flow diagram, one would need to look in the data
dictionary.
(a) True (b) False

IL P. Are the Gazebo Lottery, Kiosk Vending Machine, and Pavilion Recycling
Systems "wicked problems"?
(a) Yes (b) No

15

CSCI 3250 Test 1, Fall 1993 - Page 16

2. (4 points) Sommerville says *assuming the software provides the required
functionality, there are four key attributes which a well-engineered software system
should possess". What are they?

1) Maintainable 3) Efficient
2) Reliable 4) Appropriate user Interface

3. (8 points) (a) Name and distinguish between the three categories of software
maintenance. Use examples to make sure the distinction is very clear.

1) Corrective - correcting defects (EXAMPLES)
2) Perfective (Enhancement) - adding new feature (change In requirements),

usually at users request
3) Adaptive - modification due to change In operational environment of system

(b) Which type of maintenance would you expect to be most prevalent in the first few
months following the release of a system? Corrective

(c) Which type of maintenance would you expect to be most prevalent after the
system has been in operation for a couple of years? Perfectlve (enhancement)

4. (6 points) (a) Name the three key software design goals.
Maintainability, testability, reusmablity

(b) Explain how coupling and cohesion relates to each of these design goals.
Design consisting of highly cohesive, loosely coupled components Is more
maintainable, more easily tested, with greater potential for reuse. Why?

Cohesive modules perform a single task; loosely coupled modules have
minimal dependencies with other modules. Therefore when maintenance Is
needed, the number of modules affected Is minimized and thus the chance
of an error/change in one module affecting other modules Is lowered.
Cohesive modules tend to be more general and perform a single task and
thus have a higher probability for reuse.

5. (5 points) Regarding software life cycle models:
(a) The spiral model is sometimes characterized as a "risk-driven" model. Explain.

A key characteristic Is the masessment of risk at regular stages In the project
and the initiation of actions to address the risks.

Risk analysis (Identifying and addressing them) Is done before each
cycle; review procedures to smess the risk Is done at the end of each cycle.

16

CsC3 ao0 Test 1, Fell 1M - Page 17

(b) In general, for what type of system would the waterfall model be most
appropriate? the spiral model?

WaterlinE - requirements stable, well defined; iLe. pecancation risk Is low,
little/no need for risk reoluol•L; data piooeeng appmatlo-g

Spiral- high risk syshte; requirmen-t as dMicult to pin down; unstable
(Schoch) Inenal proects; large projects

6. (8 points) (a) Classify each of the following as F (functional) or N (non-functional)
requirements. For any non-functional requirement, indicate which of the three types
of non-functional requirement it Is.

N All requirements specifications documents must conform to DOD-2167A.
Process

IF The system must retrieve any customer account given customer id or
name.

IF The system must display any customer account on demand.

(b) Improve the following requirements statements so that they are testable.

The HVAC monitoring system must significantly reduce electrical consumption
throughout the organization.

The HVAC monitodng system must reduce electrical consumption by a
minimum of 15% throughout the organiation.

The system should be easy for experienced controllers to use and should be
organized so that user errors are minimized.

Experienced controllers should be able to use all of the systemn functions
after a total of two hours training.

After this training, the average number of errors made by expeienced
useres should not exceed two per day. user errors are minimized.

17

CSCI 3250 Test 1, Fall 1993 - Page 18

7. (6 points) (a) Distinguish between white box and black box testing, Including the
purpose of each and the relationship between the two.

Black-box - functiona testin; looks at system extrrnally (how does It behave
to given Inputs); tests derved from spgeclt cttons

White-box- structural testing; tests rely on knowledge of intnal structure

Relationship - Both are necessary; neither sufficient

(b) Briefly name and describe one black box method.

Equivalence partitioning - Classes (partitions) of Input data with common
properties (system should respond In same way for afl members of the class)
are Identified and used to derive test cases. System tested with a test from
each partition.

8. (5 points) it is desirable in a software development project to provide t of
requirements throughout the development process.
(a) In the deliverables required of the Gazebo, Kiosk, and Pavilion project teams, was

traceability between requirements and test plan documents required? Explain.

Yes - refer to required deliverables

(b) In the deliverables required of the Gazebo, KIiosk, and Pavilion project teams, was
traceability between reouirements and desion documents required? Explain.

No - refer to required deliwvables; while thla Is desirable it was not required
In your deliverables.

9. (6 points) Explain the meaning of the following data dictionary entries.
(a) digit - 1121314151617181910

payment- '$' + {digit) 4
0 [+ '.' + digit + digit]

Payment of any of following forms: ($, 0-4 digits, xx optional)

$900.90 $900

$0.90 $9
$.99 $

18

CSC 3250 Test 1, Fall 10 - Page 19

(b) payment_method = cashlchecklmoneyorderlcharge_card

Payment method Is cash or check or money order or charge card

(c) CourseRequestForm - Name + Semester + (Course ID + Hrs)
+ [Dean signature * overload']

Semester - Fall I Spring I Summer

Course request form: name
semester (Fall or Spring or Summer)
Iteration of Course ID and Hrs
optional Dean's signature

Show picture of it

10. (20 points) Consider the following problem specification for a car registration system.

A taxpayer in the Hawaii must register his/her car in order to obtain a license plate.
To register a car, the owner must present a proof of ownership, proof of insurance,
and payment for the license plate. After registration mateflal is completed, the owner
is provided with a car registration and a license plate.

The Hawaii highway patrol (HHP) also makes requests to the car registration
system. The HHP can request the owner of a particular registration number or the
registration number(s) belonging to a particular owner.
(a) Draw the context diagram. P
(b) Draw the first-level data flow diagram.

See attached diagrams

(a) Consider notation & general guidellnes

(b) Consider notation & general guidelines
Consider balancing with context diagram
Separate registration and HHP services
Separate validation of registration Info & producing it
Separate HHP determining owner given registration & vice versa

19

COURSE REQUEST FOK

NAME: SEMESTER: ___ Fall
- Spring__Suemer

COURSE ID HRS

Dean's Signature (for course overload)

20

CSCI 3250-201: SOFTWARE EIGINEERING

TEST 1, PART 1 - TAKE-HOKE

The following questions comprise one-half of Test 1. Your
answers are due at the start of class on Thursday, March 4.

Use a word processor where appropriate. Answer in complete
sentences and paragraphs, double-spaced. 25% of your grade for
this portion of the test will be based on your writing.

The questions cover both assigned reading and in-class lectures
and discussion. Answer in your own words. Use direct auotes
sparinaly and always indicate when you are auotina another source
and cite the source. When in doubt, refer to the AS&T LagW=
Skills Handbook for clarification.

You are to work on this test individually. While discussing the
questions with others to clarify them is permissible, solutions
are to be done individually.

1. Explain how both the waterfall model of the software process
and the prototyping model can be accovuodated in the spiral
process model.

2. Describe what is meant by the terms cohesion, coupling, and
adaptability as design criteria. Explain why maximizing
cohesion and minimizing coupling leads to more maintainable
systems.

3. Develop a class object model, using the notation described in
class, for the Recyclina Project Description attached.

4. The design of a spelling checker is discussed in Appendix A of
Sommerville (section 4, pages 617-619) to illustrate design
description languages. Document this design by producing:
(a) a context diagram;
(b) a leveled and balanced set of data flow diagrams;
(c) a data dictionary; and
(d) a structure chart.

21

RECYCLI'l PROJECT D..CRIPTICH

A system is needed to control a recycling machine for returnable
glass bottles, plastic bottles and metal cans. The machine can
be used by up to three customers at the same time and each
customer can return all three types of items. These items come
in various types and sizes. The machine must check which type of
item was turned in so that it can print a receipt. A receipt,
which can be taken to a cashier, will be printed out. The total
value of the items turned in will be printed on one line and the
value of each item type will be printed on separate types for
each line.

The machine has to be maintained so there is information for the
maintenance operator which consists of the total quantity of each
item type that has been turned in since the last time the totals
were cleared. This information should be able to be printed out.
In addition to these totals, the maintenance operator should be
able to change the values assigned to individual item types. The
machine has numerous mechanical functions which can go awry. The
machine has an alarm which indicates that an item is stuck or
that the receipt roll is out of paper.

To return items the customer first presses the receipt button to
clear all totals. The system then places the items into the
correct item type slots. With each item deposited the machine
increases the daily totals and the customer totals for that item
type. The customer presses the receipt button again to indicate
the end of his transaction. The action prints the receipt and
updates the daily totals.

The operator needs the ability to turn the alarm off, print the
daily reports, and clear the report totals. Not only can the
value of the items be changed, but because manufacturers
regularly change their packaging, the operator must be able to
change the allowable sizes for each item type. When items are
stuck the customer is prevented from inserting more items but
that customers totals are not lost. After the stuck item is
cleared from the machine, the customer can continue to insert
items which are added to his/her previous totals.

22

CSCI 3250-201: SOFTWARE ENGINEERING
STUDY GUIDE FOR TEST 1, PART 2 - IN-CLASS

1. Sommerville says "assuming the software provides the required
functionality, there are four key attributes which a well-
engineered software system should possess". What are they?

2. Name and briefly describe/compare the three types of software
maintenance activities.

3. Familiarize yourself with the requirements of the attached
Client Reauest: Small Colleae Reaistration System.

4. What are the fundamental differences between object-oriented
and function-oriented design?

5. Regarding verification and validation:
(a) What is the difference between verification and validation

and why is validation a particularly difficult process?
(b) What is the difference between testing and debugging?
(c) Define the following types of testing: unit, module, sub-

system, system, acceptance, alpha, beta, regression.
(d) Understand these testing strategies: top-down, bottom-up,

thread, stress.
(e) Are V&V and Software Quality Assurance synonyms? Explain.

6. Understand these object-oriented terms: class, object (state,
behavior, identity), abstraction, encapsulation, modularity,
hierarchy (2 types), inheritance, polymorphism.

7. Transform analysis is a strategy for obtaining a first-cut
structure chart from a data flow diagram. One step in
transform analysis is identifying the central transform. What
is the central transform and how can it be identified?

8. Regarding configuration management (CM):
(a) What is CM and what are the four major CM activities?
(b) What happens when something is placed under configuration

control (i.e. becomes a configuration item)?
(c) What are the configuration items in a well-engineered

software project?

9. According to Sommerville, would a good software development
organization have a Software Quality Assurance (SQA) Group
responsible for SQA throughout the organization or various SQA
teams, one associated with each software project? Do you
agree with Sommerville? Can you think of an advantage and
disadvantage of each type of SQA organization?

23

CTIENT REUEST: TMALL COLLEGE REGISTRATION ASCTE=

The Dean of the Faculty at a small college wants to automate
their student registration system. Following is her request.

We want to retain many of the features of our current manual
registration system while automating some of the paperwork.
Specifically, we want to retain the interaction between
faculty and students during the registration process. We
visualize the following process.

Each faculty member will continue to participate in
registration. Each will sit at a table in the student center
with a set of "slot cards" for each course they teach.
They'll have one slot card for each position in a class (i.e.
if the maximum enrollment for a class is 12, then there will
be 12 slot cards for that class). A slot card contains the
course number, location, time, and space for student name and
instructor's signature. Each faculty member also has a blank
class roster for each course containing course number,
location, time, and spaces for names of students in the class.

A schedule booklet is sent to each student approximately two
weeks prior to registration. At the same time each student is
sent an up-to-date transcript.

On registration day, students go to the student center and
pick up a slot card for each course they want to take. Before
giving them a slot card, the faculty member looks at their
transcript (to check prerequisites, etc) and takes one of the
following actions:
(a) completes a slot card for the course (adds student name

and faculty signature), adds the students name to the
class roster, and gives the slot card to the student; or

(b) tells the student they can't take the course.

When finished, students turn in their slot cards and
instructors turn in their class rosters. The (new) automated
system is then used to officially register students. The
system generates a schedule and bill for each student, an
official class roster for each instructor, and a "discrepancy
report" for each student or instructor, as appropriate.
Discrepancies occur in two ways: first, whenever a slot card
exists for a given student but that student does not appear on
the class roster submitted by the instructor; and second,
whenever a student does appear on the class roster submitted
by an instructor but a corresponding slot card is not
submitted.

24

CSCI 3250-201: SOFWARE EMGINEERING

TEST 1. PART 1 - TAKE-HOME

The following questions comprise one-half of Test 1. Your
answers are due at the start of class on Thursday, March 4.

Use a word processor where appropriate. Answer in complete
sentences and paragraphs, double-spaced. 25% of your grade for
this portion of the test will be based on your writing.

The questions cover both assigned reading and in-class lectures
and discussion. Answer in your own words. Use direct auotes
s•arinalv and always indicate when you are auotina another source
and cite the source. When in doubt, refer to the AS&T Lanaua
Skills Handbook for clarification.

You are to work on this test individually. While discussing the
questions with others to clarify them is permissible, solutions
are to be done individually.

1. Explain how both the waterfall model of the software process
and the prototyping model can be accommodated in the spiral
process model.

2. Describe what is meant by the terms cohesion, coupling, and
adaptability as design criteria. Explain why maximizing
cohesion and minimizing coupling leads to more maintainable
systems.

3. Develop a class object model, using the notation described in
class, for the Recyclino Proiect Description attached.

4. The design of a spelling checker is discussed in Appendix A of
Sommerville (section 4, pages 617-619) to illustrate design
description languages. Document this design by producing:
(a) a context diagram;
(b) a leveled and balanced set of data flow diagrams;
(c) a data dictionary; and
(d) a structure chart.

25

RECYCLING PROJECT DESCRIPTION

A system is needed to control a recycling machine for returnable
glass bottles, plastic bottles and metal cans. The machine can
be used by up to three customers at the same time and each
customer can return all three types of items. These items come
in various types and sizes. The machine must check which type of
item was turned in so that it can print a receipt. A receipt,
which can be taken to a cashier, will be printed out. The total
value of the items turned in will be printed on one line and the
value of each item type will be printed on separate types for
each line.

The machine has to be maintained so there is information for the
maintenance operator which consists of the total quantity of each
item type that has been turned in since the last time the totals
were cleared. This information should be able to be printed out.
In addition to these totals, the maintenance operator should be
able to change the values assigned to individual item types. The
machine has numerous mechanical functions which can go awry. The
machine has an alarm which indicates that an item is stuck or
that the receipt roll is out of paper.

To return items the customer first presses the receipt button to
clear all totals. The system then places the items into the
correct item type slots. With each item deposited the machine
increases the daily totals and the customer totals for that item
type. The customer presses the receipt button again to indicate
the end of his transaction. The action prints the receipt and
updates the daily totals.

The operator needs the ability to turn the alarm off, print the
daily reports, and clear the report totals. Not only can the
value of the items be changed, but because manufacturers
regularly change their packaging, the operator must be able to
change the allowable sizes for each item type. When items are
stuck the customer is prevented from inserting more items but
that customers totals are not lost. After the stuck item is
cleared from the machine, the customer can continue to insert
items which are added to his/her previous totals.

26

CSCI 3250-201: SOFTWARE ENGINEERING

STUDY GUIDE FOR TEST 1, PART 2 - IN-CLASS

1. Sommerville says "assuming the software provides the required
functionality, there are four key attributes which a well-
engineered software system should possess". What are they?

2. Name and briefly describe/compare the three types of software
maintenance activities.

3. Familiarize yourself with the requirements of the attached
Client Reauest: Small College Registration System.

4. What are the fundamental differences between object-oriented
and function-oriented design?

5. Regarding verification and validation:
(a) What is the difference between verification and validation

and why is validation a particularly difficult process?
(b) What is the difference between testing and debugging?
(c) Define the following types of testing: unit, module, sub-

system, system, acceptance, alpha, beta, regression.
(d) Understand these testing strategies: top-down, bottom-up,

thread, stress.
(e) Are V&V and Software Quality Assurance-synonyms? Explain.

6. Understand these object-oriented terms: class, object (state,
behavior, identity), abstraction, encapsulation, modularity,
hierarchy (2 types), inheritance, polymorphism.

7. Transform analysis is a strategy for obtaining a first-cut
structure chart from a data flow diagram. One step in
transform analysis is identifying the central transform. What
is the central transform and how can it be identified?

8. Regarding configuration management (CM):
(a) What is CM and what are the four major CM activities?
(b) What happens when something is placed under configuration

control (i.e. becomes a configuration item)?
(c) What are the configuration items in a well-engineered

software project?

9. According to Sommerville, would a good software development
organization have a Software Quality Assurance (SQA) Group
responsible for SQA throughout the organization or various SQA
teams, one associated with each software project? Do you
agree with Sommerville? Can you think of an advantage and
disadvantage of each type of SQA organization?

27

CLIENT REOUEST: SLLCOLLMME REISTRATION SYSTEM

The Dean of the Faculty at a small college wants to automate
their student registration system. Following is her request.

We want to retain many of the features of our current manual
registration system while automating some of the paperwork.
Specifically, we want to retain the interaction between
faculty and students during the registration process. We
visualize the following process.

Each faculty member will continue to participate in
registration. Each will sit at a table in the student center
with a set of "slot cards" for each course they teach.
They'll have one slot card for each position in a class (i.e.
if the maximum enrollment for a class is 12, then there will
be 12 slot cards for that class). A slot card contains the
course number, location, time, and space for student name and
instructor's signature. Each faculty member also has a blank
class roster for each course containing course number,
location, time, and spaces for names of students in the class.

A schedule booklet is sent to each student approximately two
weeks prior to registration. At the same time each student is
sent an up-to-date transcript.

On registration day, students go to the student center and
pick up a slot card for each course they want to take. Before
giving them a slot card, the faculty member looks at their
transcript (to check prerequisites, etc) and takes one of the
following actions:
(a) completes a slot card for the course (adds student name

and faculty signature), adds the students name to the
class roster, and gives the slot card to the student; or

(b) tells the student they can't take the course.

When finished, students turn in their slot cards and
instructors turn in their class rosters. The (new) automated
system is then used to officially register students. The
system generates a schedule and bill for each student, an
official class roster for each instructor, and a "discrepancy
report" for each student or instructor, as appropriate.
Discrepancies occur in two ways: first, whenever a slot card
exists for a given student but that student does not appear on
the class roster submitted by the instructor; and second,
whenever a student does appear on the class roster submitted
by an instructor but a corresponding slot card is not
submitted.

28

CSCI-3250, TEST 1 PART II NAME:

1. (5 points) (a) Describe the four key attributes of well-
engineered software according to Sommerville.

(b) In addition, a well-engineered software system must

2. (6 points) A software organization has successfully developed
and marketed a word-processing package. Though this may seem
impossible, imagine that they have done such a thorough job
that the specifications have been completely met and tested
and there are absolutely zero defects in the released
software. Under these conditions, will any maintenance
activity be expected? If so, what type? Explain thoroughly
and use examples to illustrate your points.

29

3. (5 points) (a) Define coupling. What is the major design goal
for coupling?

(b) Define cohesion. What is the major design goal for
cohesion?

(c) What is relationship, if any, between coupling and
cohesion; i.e. do they have any effect-on one another?

4. (8 points) There are two types of hierarchical relationships
between classes; Generalization-Specialization (*is a") and
Whole-Part ("has an).
(a) Using Rumbaugh's notation (as on the take-home test), show

an example of each type of hierarchy.

(b) What is the key difference between these two types of
hierarchical relationships?

30

5. (9 points) (a) Distinguish between verification and validation
(V&V). Illustrate by giving an example of a verification
activity and an example of a validation activity.

(b) Distinguish between V&V and software quality assurance.

(c) Distinguish between testing and debugging.

(d) Consider this statement: One of the goals of software
testing is to prove that a program works correctly.
(1) Is the statement true or false?

(2) If true, what are the other goals of software testing?
If false, what are the goals of software testing.

31

6. (17 points) For each item, write the letter of the correct
answer in the space provided.

A. The modules of a well designed system will have a
level of coupling and a _ level of cohesion.
(a) high, high (c) low, high (e) none of these
(b) high, low (d) low, low

B. Stamp and control coupling should always be avoided.
(a) True (b) False

C. Factors in the level of coupling between modules include
(a) amount of information passed (d) a & b, not c
(b) complexity of interface (e) a & c, not b
(c) amount of control of one Mf) b & c, not a

module over another (g) a & b & c

D. The most desirable form of coupling is
(a) control (b) content (c) data (d) stamp (e) common

E. The most desirable form of cohesion is
(a) coincidental (d) communicational (g) temporal
(b) logical (e) functional
(c) procedural (f) sequential

F. If a module performs several different, but related,
activities then its cohesion is not ideal. The
different activities could be related due to "the data
of the problem", "due to time", or "due to falling in
some general category." Which is most preferable?
(a) related by general category (c) related by time
(b) related by data (d) all equally bad

G. By itself, a structure chart can give one a pretty good
idea of the coupling and cohesion of the system.
(a) True (b) False

H. DFD's are documents; structure charts are
___documents.

(a) analysis, analysis (c) analysis, design (e) none of
(b) design, design (d) design, analysis these

I. Which is not shown by a structure chart?
(a) modules within system (d) module hierarchy
(b) interfaces between modules (e) function of modules
(c) execution order of modules Mf) all are shown

J. The detection of errors associated with the interfaces
between modules is a goal of which type of testing?

32

(a) module (c) validation (d) system
(b) integration (d) regression

K. A final set of tests to ensure that the software meets
all requirements is called testing.
(a) module (c) validation (d) system
(b) integration (d) regression

L. Errors are often it c while performing perfective
maintenance. The type of testing designed to detect
such errors is
(a) module (c) validation (d) system
(b) integration (d) regression

M. Advantages of top-down testing include
(a) allows early verification of overall control logic
(b) makes providing of test cases easier
(c) allows early verification of major module interfaces
(d) a and b only (f) b and c only (h) none of
(e) a and c only (g) a, b, and c the above

N. is the ability of two or more classes to
respond to the same message, but each in its own way.
(a) abstraction (e) hierarchy - (i) polymorphism
(b) behavior (f) identity (j) state
(c) class (g) inheritance (k) none of these
(d) encapsulation (h) object

0. _ is a set of objects with a common structure
and a common behavior.
(a) abstraction (e) hierarchy (i) polymorphism
(b) behavior (f) identity (j) state
(c) class (g) inheritance (k) none of these
(d) encapsulation (h) object

- P. _ is ignoring certain details of a subject
that are not relevant to the current purpose in order to
focus on other aspects that are.
(a) abstraction (e) hierarchy (i) polymorphism
(b) behavior (f) identity (j) state
(c) class (g) inheritance (k) none of these
(d) encapsulation (h) object

Q 0. __ _ is the act of grouping into one object both
data and the operations that affect that data.
(a) abstraction (e) hierarchy (i) polymorphism
(b) behavior (f) identity (j) state
(c) class (g) inheritance (k) none of these
(d) encapsulation (h) object

33

CSCI-3250 SOFTWARE ENGINEERING
TEST 2 STUDY GUIDE

The following is a guide to review material covered in class and/or
in assigned reading. You are n=L to turn in answers but rather use
the guide in preparing for the 4/20/93 test.

1. Sommerville says that a major difficulty is establishing large
software system requirements is that the problems are usually
"wicked problems."

a) What does he mean by the term wicked problem?

b) What are some examples?

2. Distinguish between a requirements definition and a
requirements specification? Why is it useful to draw a
distinction, as Sommerville does, between a requirements
definition and a requirements specification?

3. Distinguish between functional requirements and non-functional
requirements?

4. Distinguish between a logical (or essential) model and a
physical model of a system?

5. Regarding a Software Project Management Plan (SPMP):

a) What sorts of things go into d SPMP?

b) Is it a managerial document or a technical document?

c) What is the relationship between the deliverables of your
teams (on the class project) and a SPMP?

6. Consider examples such as that described on page 58 (and
Figures 3.6, 3.7, in writing/improving requirement definitions.

7. Consider Exercises 5.2 and 5.8 (as discussed in class).
< OVER >

34

8. Regarding software reviews, or walkthroughs:

a) What is the purpose?

b) Who participates?

c) What are the different roles?

d) What are some standard guidelines?

9. Regarding software reliability:

a) What is it?

b) What are some of the problems with specifying reliability;
why is it difficult?

c) What is the relationship, if any, between rocess and
roduct reliability?

d) What metrics exist for assessing software reliability?

10. Describe the purpose and the steps of statistical testing.

11. Consider Exercise 20.4 (as discussed in class).

12. Everyone should be g familiar with the purps.-
responsibilities, and deliverables of each of these teams on
the class project:

a) configuration management;

b) requirements;

c) users manual;

d) test plan;

e) preliminary design.

In addition everyone should have d knowledge of the
DurDose. responsibilities. and deliverables of the team(s) of
which you are a member.

35

CSCI-3250. TEST 2 NAMe:

1. (15 points) Concerning walkthroughs or reviews:

(a) React to this statement: The purpose of a
review/walkthrough is to review a work product in order to
identify and correct errors.

(b) Who are the participants?

(c) When is it appropriate, during a project, to hold a
structured walkthrough?

(d) Assume you're the leader of a project team and you're
preparing a "Guide to Structured Walkthroughs" for your
project team. List 5 key guidelines that you would
include on DreDarino and conductina a structured
walkthrough.

1.

2.

3.

4.

5.

36

CSCI 3250 Spring 1993, Test 2, Page 37

2. (10 points) (a) Is your project in this class (the Computer
and Information Sciences Student Records System) a "wicked
problem" according to Sommerville's definition? Answer yes or
no and then justify your answer.

(b) Give an example of a wicked problem. (NOTE: the example
cannot be one discussed in the textbook.)

3. (10 points) (a) Distinguish between requ1-rements and
specifications.

(b) Consider the requirements phase and the specification
phase of a software development project. Would it make
more sense to combine these activities into one phase,
rather than treating them as two separate phases? Justify
your answer.

37

CSCI 3250 Spring 1993, Test 2, Page 38

4. (10 points) (a) What is the difference between functional
requirements and non-functional requirements?

(b) Give an example of a functional requirement and of a non-
functional requirement from the class project (the
Computer and Information Sciences Student Records System).

5. (12 points) Rewrite each requirements so that it may be
objectively validated. Make any reasonable assumptions.

(a) An on-line "HELP" function will provide users of the
Computer and Information Sciences Student Records System
with appropriate help.

(b) The HVAC monitoring system must significantly reduce

electrical consumption throughout the organization.

(c) The network must be set up at a reasonable cost.

(d) The system should be easy for experienced controllers to
use and should be organized so that user errors are
minimized.

38

CSCI 3250 Spring 1993, Test 2, Page 39

6. (6 points) Briefly explain the difference between a logical
and a physical model of a system.

7. (14 points) Answer each of the following True or False.

_ A Software Project Management Plan (SPMP) is a managerial
document rather than a technical document.

A SPMP for the class project (Computer and Information
Sciences Student Records System) would include a
description of the team organization and the
responsibilities of each team.

A SPMP for the class project (Computer and Information
Sciences Student Records System) would include a
description of the design strategy to be used (for
example, structured design or object-oriented design).

A SPMP for the class project (Computer and Information
Sciences Student Records System) would include a
description of the configuration management procedures.

-_ A good software process cannot guarantee cannot guarantee
a reliable software product.

According to Sommerville, a good software process is
essential to the development of reliable software.

___The purpose of statistical testing is to estimate software
reliability.

39

CSCI 3250 Spring 1993, Test 2, Page 40

8. (15 points) Regarding software reliability:
(a) Define it.

(b) Distinguish between process reliability and product
reliability.

(c) Name and briefly describe four metrics used to assess
software reliability.

1.

2.

3.

4.

(d) For each of the metrics described in part (c), to what
type of software system is it most relevant?

40

CSCI 3250 Spring 1993, Test 2, Page 41

CSCI-3250 SOFTWARE ENGINEERING
STUDY GUIDE FOR TEST 3

1. Review material from both parts of Test 1 (take-home part and

in-class part) and the study-guide for Test 1.

2. Review material from Test 2 and the study guide for Test 2.

3. Questions regarding your second project, the Computer and
Information Sciences Student Records System, will be included.

4. **

The following question will definitely be on the test. Prepare
your answer in advance, using a word processor, and submit it
when the test is given. It will count 15 points on the test.

Write a client request for a project that you think would be
suitable to serve as the first project for a future offering of
this course (e.g. comparable to the EMS-911 and the Recycling
System projects used in this class). The client request must
be between one-half page and one-full page (single spaced) in
length. Your solution will be graded on writing,
appropriateness of the project, and originality.

The following are review questions for material covered since
the second test.

5. Regarding software safety: a) Define these terms:

software safety mishap hazard

damage risk hazard analysis

primary safety-critical software

secondary safety-critical software

b) Distinguish between software safety and software
reliability?

c) Could a software system be reliable but not safe? Explain
and give an example. Could a software system be safe but

41

CSCI 3250 TEST 3 STUDY GUIDE, Page 42

not reliable? Explain and give an example.

d) One method of analyzing safety requirements is through
Fault-Tree-Analysis (FTA). What is the purpose of FTA and
what steps are involved?

6. Regarding ethical issues:

a) What are the defining characteristics of a software
professional?

b) Define professional computer ethics.

c) Describe one case, not discussed in class, which involves an
issue in computer ethics and state what you think the
ethical issue is.

42

CSCI 3250 TEST 3 STUDY GUIDE, Page 43

CBCI-3250. TEBT 3 NAME!

1. (7 points) (a) Define configuration management.

(b) What does it mean to make something a configuration item?

(c) Name four configuration items from CISSRS.

2. (10 points) (a) Name and describe the three categories of
software maintenance. In your description, make sure that
the distinction between them is made clear.

(b) Which type of maintenance would you expect to be most
prevalent in the first six months following the release
of CISSRS? Explain.

43

CSCI 3250 Spring 1993, Test 3 - Page 44

(c) Which type of maintenance would you expect to be most
prevalent after CISSRS has been in operation for a year?
Explain.

3. (6 points) We have discussed several software life cycle
models, including the waterfall model and the spiral model.
(a) What are the major differences between the waterfall

model and the spiral model?

(b) For what type of system would the waterfall model be
appropriate? Give an example.

(c) For what type of system would the spiral model be
appropriate? Give an example.

4. (6 points) In object-oriented analysis and design, there are
two types of hierarchical class relationships; Whole-Part
("has a") and Generalization-Specialization ("is a").

(a) What is the major difference between the two?

(b) Using Rumbaugh's notation, show the relationship between
students, advisor-mentors, clerical staff, and super
advisor-mentors in CISSRS.

V.

CSCI 3250 Spring 1993, Test 3 - Page 45

5. (16 points) Briefly distinguish between:
(a) preliminary design and detailed design (relative to

CISSRS)

(b) software safety and software reliability

(c) abstraction and encapsulation

(d) acceptance testing and beta testing

6. (4 points) Classify the following as a Verification activity,

a Validation activity, or neither.

prototyping

defect testing

the Users Manual Review for CISSRS

the Test Plan Review for CISSRS

45

CSCI 3250 Spring 1993, Test 3 - Page 46

7. (7 points) (a) You've been asked to prepare specifications
for structured walkthroughs. Write 4 specifications that you
would include.

(b) A standard guideline is that identified problems are not
to be corrected during the walkthrough. Why?

8. (4 points) (a) What is a hazard?

(b) What is the output of hazard analysis?

(c) When is hazard analysis undertaken?

9. (5 points) (a) What are the defining characteristics of a
software professional?

(b) Define professional computer ethics.

(c) Describe a case, not discussed in class, which involves
an issue in computer ethics and state what you think the
ethical issue is.

46

CSCI 3250 Spring 1993, Test 3 - Page 47

10. (10 points) The following describes how a small college
bookstore orders (buys) and sells textbooks.

On a separate sheet of paper:

(a) Construct the context diagram;
(b) Construct the first level DFD;
(c) Circle the central transform.

The Bookstore maintains an inventory card for each course in
the catalog. An inventory card contains the title, author,
and publisher of the textbook currently used as well as the
number currently in stock.

In April the Bookstore asks each department to provide them
with the following information for each course they teach:

(a) title, author, publisher of book to be used next
year;

(b) expected enrollment in the course next year.

In June, the Bookstore creates a Books Needed File and a &a
BacFll. The Books Needed File contains the title, author,
publisher, and "number needed" for each book. The "number
needed" is expected enrollment minus the number in stock.
The Buy Back File contains title, author, publisher, and
number needed for each book for which the expected enrollment
exceeds the number in stock.

During June the Bookstore will buy books from students as
long as a book is in the Buy Back File. Of course each time
a book is bought from a student the number of copies (of that
particular book) is reduced by one and the book is removed
from the Buy Back File when/if the number needed becomes
zero.

In July the Bookstore prepares an Order List containing the
title, author, publisher, and number to be ordered for each
book that is still needed. The Order List is then used to
create an individual Book Order Form for each publisher.
These Book Order Forms are sent to the publishers.

47

CSCI 3250 Spring 1993, Test 3 - Page 49

SECOND SEMESTER EXAMINATION

REVIEW SHEET FOR TEST

Ada
classes of subsystems resulting from the analysis phase
as a design tool, support for reuse
language features and constructs

packages, package specifications
named association
overloading
compilation units
context clauses
I/O, files (text, sequential, direct access)
program structure
data types
statements (loops, selection, null, block, etc)
program units (procedures & functions, packages, tasks, generics)
exceptions, exception handlers

Requirements
distinction between requirements and specifications
ways to evaluate a requirements specification (context analysis, walkthroughs,

inspections, requirements validation table)
steps in developing requirements
validation of requirements, requirements validation table, formal specifications
2167a as a standard (2167a language: CSCI, CSC, HWCI, CSU, IRS)

Structured analysis and design
transforms, data flows, leveling, balancing
control flows
process specifications (what? where used? methods, notations)
transform analysis and transaction analysis (purpose, technique, input, output)

Design
interface design
criteria for good design
coupling (definition, design goals, levels)
cohesion (definition, design goals, levels)
distinction between preliminary design and detail design (goals,

methods,deliverables of each)

49

CSCI 3250 Spring 1993, Test 3 - Page 50

object-oriented design (OOD)
Distinguish between functional design and OOD.
goals, terminology, characteristics (classes, sub-classes, objects, inheritance,
information hiding, abstraction, encapsulation, methods, aggregation)
methods of identifying objects
Rumbaugh notation

Configuration management (CM)
CM activities
configuration items, baselining
implementation of CM, change control boards

Verification and validation (V&V)
objectives
distinction between verification and validation
verification - static and dynamic
validation - static and dynamic
V&V activities at each development phase
testing

relationship to V&V
levels of testing (unit, integration, acceptance)
black-box, white-box methods
test plans
test oracle, test harness
reliability - faults and failure

Software Quality Assurance (SQA)
definition; SQA activities
relationship between SQA, V&V, CM
software quality: what is it? components of
reviews (walkthroughs, inspections)

purpose
what is reviewed
participants, roles
guidelines, standards

Project 2
Responsibilities, functions, roles, and deliverables of all teams.
Application of lecture and reading material to project.

50

CSCI 3250 Spring 1993, Test 3 - Page 51

Test
1. (14 points) For each definition, write the leoter corresponding to the term (from the

list below) which the statement describes. A term cannot be used more than once.

1. organizational unit within company that reviews each request for a change
S2. type of analysis technique used in V&V which is the manual or automated

examination of the product
_3. process of evaluating software at the end of the software development

process to ensure compliance with software requirements
_4. strategy for developing test cases where the test cases focus on

requirements (functionality, input, output)
_5. set of objects with a common structure and behavior
_6. relationship among classes by which one class shares the structure or

behavior defined in another class
7. principle that each program unit should only be allowed access to data or

procedures that are required for the unit to perform its function
8. the only way objects communicate and request services from other objects

_9. a measure of the dependency between components
10. first level of testing; involving individual components
11. testing designed to push a system beyond its limits in order to observe the

system's failure behavior
12. a graphical notation for representing algorithms in detailed design
13. predicted results for a set of test cases
14. a strategy (to create a structure chart from data flow diagrams) based on

the idea that most systems have a transform center

TERMS FOR MATCHING QUESTION 1
A. black box testing 0. object
B. Change Control Board (CCB) testing P. static analysis
C. class 0. stress testing
D. cohesion R. system testing
E. coupling S. test oracle
F. dynamic analysis T. thread testing
G. exhaustive testing U. transaction analysis
H. formal analysis V. transform analysis
I. information hiding W. unit testing
J. inheritance X. validation
K. integration testing Y. verification
L. message Z. white-box testing
M. method
N. Nassi-Shnelderman chart

51

CSCI 3250 Spring 1993, Test 3 - Page 52

2. (16 points) Matching. The answers at the right may be used more than once.

__ 1. only programming unit in which A. constrained array
private data types may be B. context clause
declared C. derived type

__ 2. programming unit which is used D. Direct_10
as the main program or driver E. elaboration
of a software system F. exception

__ 3. programming unit that operates G. exception handler
in parallel with other H. function
programming units I. instantiation

__ 4. data type which provides a new J. overloading
name for another (potentially K. package
constrained) data type L. procedure

_5. data type which defines a distinct M. raising exception
data type and inherits all properties N. separate
of its base type compilation

__ 6. processing of declarations at 0. SequentialO10
execution time P. subtype

_7. type of array where lower and upper bounds 0. task
are known at type declaration time R. Text_10

_8. when an entity in Ada has more than one S. unconstrained array
meaning

__ 9. the process of detecting an exception and alerting calling subprogram
10. predefined Ada package which provides input-output of values of any

nonlimited type in a binary format where elements are read and written
using an index

11. predefined Ada package which provides input-output for enumeration types
12. the ability to compile a program in pieces with full compiler checking
13. predefined Ada package which provides input-output of values in human-

readable form
14. only programming unit whose body is optional
15. control construct that promotes flexible response to run-time events such

as hardware overflow
16. new program unit tailored to a particular application of a generic

52

CSCI 3250 Spring 1993, Test 3 - Page 53

3. (13 points) Short answer - Ada.

A. (3 points) Based on the following configuration, list the order that the programming
units must be compiled. Distinguish between the specification and body of the
packages when listing the compilation order. If the following configuration is illegal
in Ada, indicate "illegal" and specify why it is a problem.

package BROWN uses packages GREEN and YELLOW
package GREEN uses package RED
package YELLOW uses packages GREEN and BLUE
package RED uses package BLUE

B. (4 points) Indicate the possible data types of the actual parameter which matches
the formal parameter for the following generic. Also list the operations and
attributes which are available inside the generic body for this formal parameter.

generic
type ELEMENT is (<);

package EXAMPLE is
-- rest of generic package

end EXAMPLE;

53

CSCI 3250 Spring 1993, Test 3 - Page 54

C. (2 points) How many exception handlers are executed If MAIN is called?

procedure MAIN is
ERROR1, ERROR2, ERROR3: exception;

procedure B is
X : Integer;
begin

X:. 1;
if X - 1 then

raise ERROR2;
else

raise ERROR3;
exception

when ERROR2 => raise;
end B;

procedure C is
begin

B;
exception

when ERROR2 => raise ERRORI;
when ERRORI n> null;
when others .> raise ERROR2;

end C;

procedure D is
begin

C;
exception

when ERROR3 => raise;
when ERROR1 ,> raise ERROR3;

end D;

begin
D;

exception
when ERROR3 => null;
when ERROR2 => PUTLINE("ERROR IN PROCEDURE C");
when ERRORI => PUTLINE('ERROR IN PROCEDURE B);

end MAIN;

54

CSCI 3250 Spring 1993, Test 3 - Page 55

D. (4 points) Discuss the tradeoffs of the two alternative specifications of
ORDERMAKER below:

generic
type ITEM is private;
with function "<" (LEFT, RIGHT : ITEM) return Boolean

is <>;
procedure ORDERMAKER (I,J : in out ITEM);

generic
type ITEM is (<);

procedure ORDERMAKER (I,J : in out ITEM);

55

CSCI 3250 Spring 1993, Test 3 - Page 56

IV. Short discussion

A. (6 points) (a) Describe the r1ationshii between coupling and cohesion. (Do not
simply define coupling and cohesion).

(b) Distinguish between data coupling, stamp coupling, and control coupling?

(c) What is the most desirable type of cohesion, and why?

56

CSCI 3250 Spring 1993, Test 3 - Page 57

B. (12 points) (a) Distinguish between preliminari design and detailed design. Your
answer must include the general goals and the general deliverables of each.

(b) Name and briefly describe the preliminary desion deliverables for project 2
(Third Eye).

or

(b) Name and briefly describe the detailed design deliverables for project 2 (Third
Eye).

(c) Describe verification and validation techniques used during design.

57

CSCI 3250 Spring 1993, Test 3 - Page 58

C. (15 points) (a) Explain the relationship between testing, software quality assurance
(SQA), and V&V, including the distinction between them.

(b) Distinguish between white-box and black-box testing, including the purpose of
each and the relationship between them.

(c) Briefly describe two white-box methods and two black-box methods.

58

CSCI 3250 Spring 1993, Test 3 - Page 59

D. (5 points) (a) React to this statement: The purpose of a review/walkthrough is to
review a work product in order to identify and correct errors.

(b) Who are the participants in a review/walkthrough and what are their roles?

E. (5 points) Describe (a) the purpose of 2167a, (b) its relationship to requirements
and specifications, and (c) a description of three of its major components.

59

L

CSCI 3250 Spring 1993, Test 3 - Page 60

F. (3 points) Context analysis is one technique used to elicit complete and accurate
requirements. Describe the process of context analysis and explain what it adds to
the process of abstracting requirements from the customer request into a
requirements list.

G. (4 points) Name and describe two ways of identifying objects that were discussed
in class.

60

CSCI 3250 Spring 1993, Test 3 - Page 61

Test KEY

1. (14 points) For each definition, write the letter corresponding to the term (from the
list below) which the statement describes. A term cannot be used more than once.

_B11 1. organizational unit within company that reviews each request for a change
P 2. type of analysis technique used in V&V which is the manual or automated

examination of the product
X 3. process of evaluating software at the end of the software development

process to ensure compliance with software requirements
A,F 4. strategy for developing test cases where the test cases focus on

requirements (functionality, input, output)
C 5. set of objects with a common structure and behavior
J 6. relationship among classes by which one class shares the structure or

behavior defined in another class
1 7. principle that each program unit should only be allowed access to data or

procedures that are required for the unit to perform its function
L 8. the only way objects communicate and request services from other objects

E. 9. a measure of the dependency between components
_W_10. first level of testing; involving individual components
Q_I 1. testing designed to push a system beyond its limits in order to observe

the system's failure behavior
_N_12. a graphical notation for representing algorithms in detailed design
$:13. predicted results for a set of test cases

_V_14. a strategy (to create a structure chart from data flow diagrams) based on
the idea that most systems have a transform center

TERMS FOR MATCHING QUESTION I
A. black box testing 0. object
B. Change Control Board (CCB) testing P. static analysis
C. class 0. stress testing
D. cohesion R. system testing
E. coupling S. test oracle
F. dynamic analysis T. thread testing
G. exhaustive testing U. transaction analysis
H. formal analysis V. transform analysis
I. information hiding W. unit testing
J. inheritance X. validation
K. integration testing Y. verification
L. message Z. white-box testing
M. method
N. Nassi-Shneiderman chart

61

CSCI 3250 Spring 1993, Test 3 - Page 62

2. (16 points) Matching. The answers at the right may be used more than once.

K 1. only programming unit in which A. constrained array
private data types may be B. context clause
declared C. derived type

L 2. programming unit which is used D. DlrectlO
as the main program or driver E. elaboration
of a software system F. exception

0 3. programming unit that operates G. exception handler
in parallel with other H. function
programming units I. instantiation

P 4. data type which provides a new J. overloading
name for another (potentially K. package
constrained) data type L. procedure

C 5. data type which defines a distinct M. raising exception
data type and inherits all properties N. separate
of its base type compilation

E 6. processing of declarations at 0. Sequential O
execution time P. subtype

-A_ 7. type of array where lower and upper bounds 0. task
are known at type declaration time R. TextK1

J_ 8. when an entity in Ada has more than one S. unconstrained array
meaning

M_ 9. the process of detecting an exception and alerting calling subprogram
D 10. predefined Ada package which provides input-output of values of any

nonlimited type in a binary format where elements are read and written
using an index

R 11. predefined Ada package which provides Input-output for enumeration types
N 12. the ability to compile a program in pieces with full compiler checking
R 13. predefined Ada package which provides Input-output of values in human-

readable form
K 14. only programming unit whose body is optional
F 15. control construct that promotes flexible response to run-time events such

as hardware overflow
116. new program unit tailored to a particular application of a generic

62

CSCI 3250 Spring 1993, Test 3 - Page 63

3. (13 points) Short answer - Ada.

A. (3 points) Based on the following configurton, ist the ords the programming
units must be compiled. Distinguish between the specification and body of the
packages when listing the compilation order. If the following configuration is illegal
in Ada, indicate "illegar and specify why it is a problem.

package BROWN uses packages GREEN and YELLOW
package GREEN uses package RED
package YELLOW uses packages GREEN and BLUE
package RED uses package BLUE

1. Blue s"ec Red - Blue
2. Red spec A A3. Greenspec I I
4. Yellow seoc I I
S. Brown spec Green c-. Yellow
6. bodies In any order A A

I I
I I

- Brown -

B. (4 points) Indicate the possible data types of the actual parameter which matches
the formal parameter for the following generic. Also list the operations and
attributes which are available Inside the generic body for this formal parameter.

generic
type ELEMENT is (<>);

package EXAMPLE is
-- rest of generic package

end EXAMPLE;

DIscrete daa type

Anfributs 'Firet 'Last, 'Suce, 'Prod, 'Range

Operations :n, /,/a

63

CSCI 3250 Spring 1993, Test 3 - Page 64

C. (2 points) How many exception handlers are executed if MAIN is called? 4

procedure MAIN is
ERRORI, ERROR2, ERROR3 : exception;

procedure B is
X :Integer;
begin

X:= 1;
if X - 1 then

raise ERROR2;
else

raise ERROR3;
exception

when ERROR2 -> raise; 1 1 'a*

end B;

procedure C is
begin

B;
exception 2

when ERROR2 -m raise ERRORI;
when ERROR1 -> null;
when others -.> raise ERROR2;

end C;

procedure D is
begin

C;
exception 3

when ERROR3 - raise;
when ERROR1 -> raise ERROR3;

end D;

begin
D;

exception 4
when ERROR3 => null;
when ERROR2 => PUTLINE("ERROR IN PROCEDURE C");
when ERRORI => PUTLINE("ERROR IN PROCEDURE B");

end MAIN;

64

CSCI 3250 Spring 1993, Test 3 - Page 65

D. (4 points) Discuss the tradeoffs of the two alternative specifications of
ORDER-MAKER below:

generic
type ITEM is private;
with function "-e (LEFT, RIGHT: ITEM) return Boolean

is <>;
procedure ORDER_MAKER (I,J :in out ITEM);

generic
type ITEM is (<>);

procedure ORDERMAKER (1,J : in out ITEM);

As a generic (template):

First Is broader, more flexible:
(a) allows any data type, Including user defined, In Insantlation
(b) provides "c"

Second Is more limited In that It only works on discrete types
(integer, enumeration)

65

CSCI 3250 Spring 1993, Test 3 - Page 66

IV. Short discussion

A. (6 points) (a) Describe the relabiQ between coupling and cohesion. (Do not
simply define coupling and cohesion).

Cohesion Is measure of Internal strength of a component; determined by
how well the parts of a component contribute to single purpose. Goal Is to
maximize cohesion. Coupling Is a measure of dependency bMtw 2
components; of strength of Interconnections. Goal Is to minimize coupling.

Strong cohesion, Ioose coupling, and are complementary criteria; go hand.
in-hand. increasing cohesion decreases coupling & vice-versa. Strongly
cohesive components are highly independent; loosely coupled components
have minimal dependency. Thus by maximizing cohesion and minimizing
coupling, we reduce the number of components Impacted by a change or
defect; thereby simplifying maintenance. Stated another way, we reduce the
chance that a change to one component will require a change to others; and
we reduce "side-affects."

(b) Distinguish between data coupling, stamp coupling, and control coupling?

Data coupling - most desirable; only parameters communicated

Stamp coupling - communicates at least one data structure (and the called
component operates on some but notal of the data structure's components

Control coupling - communicate at least one element of control

(c) What is the most desirable type of cohesion, and why?

Functional - module performs single task and each part of the module is
necessary to perform that took.

Desirable because such modules are easier to maintain (les chance of
change impacting other modules), and better chance of reuse.

66

CSCI 3250 Spring 1993, Test 3 - Page 67

B. (12 points) (a) Distinguish between preliminary design and detailed design. Your
answer must include the general goals and the general deliverables of each.

Preliminary_
Move from problem space of requirements Expand solution space details

to solution space sufficiently to be easily
Implementable on computer

general SW architecture to meet specs expand on architecture
components & their interfaces algorithms for components
data structures data structures refined
user Interface [Mynatt]

OOD: class design OOD: Internal object structure
objects and Interfaces data structure dictionary
object relations algorithms for methods

(b) Name and briefly describe the preliminary design deliverables for project.
Preliminary Detailed

Rumbaugh object model Nassi-Shneidermann charts
objects, associations
attributes, operations

Object dictionary Traceability matrix
Object name, attributes, ds to object attribute
Method description, other objects NS to object operations

Object requirements traceability matrix Data structure dictionary
Ada specifications Object class, Ada package,
User interface (menus, reports) ds name - attr covered

ds description (a Ia DD)
(c) Describe verification and validation techniques used during design.
Reviews: design documents (PDR, DDR)

project V&V plan
test plans

Testing: generation of test plans for unit, design unit, and system
testing; generation of design-based test cases; generation of
test plan for acceptance testing

Traceability of design (to requirements; to acceptance)

1. Detailed design 1. Use Nasal-Sh to trace PD
2. Use object model to trace scenarios 2. All objects in PD used?
3. Check matrix correctness/completeness; 3. Trace matrix

all objects related to at least one other 4. No Interface modification
4. Verify with end user

67

CSCI 3250 Spring 1993, Test 3 - Page 68

C. (15 points) (a) Explain the relationship between testing, software quality assurance
(SQA), and V&V, including the distinction between them.
All are concerned with quality.
SQA encompams V&V; V&V encompasses testing.

Verification - does system meets specifications (build product right?);
validation - does Implemented system meet customer expectations (build
right product?).

(b) Distinguish between white-box and black-box testing, including the purpose of
each and the relationship between them.

White-box (structural)
tests derived using knowledge of program's implementation; focuses on
the logic of the module to determine what tests to run.

Black-box (functional)
tests derived from program's specification; designed to test the functions
of the module. For a given Input, does it produce the expected output.

Are not aiternative approaches, but are complementary, designed to uncover
different types of defects. Both are necessary; neither white-box nor black-
box is sufficient by itself. White-box testing examines the existing code and
thus cannot discover extra fuctions Included in code but not included In
requirements. Black-box can't be complete.

(c) Briefly describe two white-box methods and two black-box methods.

White-box (structural)
- Statement coverage - every statement executed at least once
- Decision coverage - every branch traversed at least once
- Condition coverage - each condition In a decision takes on all possible
values at least once
- Path coverage - every path traversed at least once

Black-box (functional)
Equivalence partitioning - Involves determining which Input classes have

common properties (are similar on some relevant dimension); then
dividing Inputs and outputs Into equivalence partitions; and testing
one item from each partition.

Cause-effect strategy - tests combinations of Inputs; causes (inputs) and
effects (outputs) are identified.

Boundary values strategy - Involves Identifying and testing conditions
directly on, above, and below the edges of Input equivalence classes.

68

CSCI 3250 Spring 1993, Test 3 - Page 69

D. (5 points) (a) React to this statement: The purpose of a review/walkthrough is to
review a work product in order to identify and correct errors.

Statement Inaccurate; purpose Is to identify but not to correct errors.
Reviews are QA activities; Intended to Identify problems; to collectively
review a work product to assure that it meets requirements and standards.

(b) Who are the participants in a review/walkthrough and what are their roles?

Review leader/ evaluate items for readiness
moderator: distribute materials In advance

review material prior to meeting
schedule review, prepare agenda

Recorder: record Important Issues raised In review
Producer: walks through product
Reviewers review material prior to meeting; prepare list of items

reader: misunderstood and item3 Incorrect

E. (5 points) Describe (a) the purpose of 2167a, (b) its relationship to requirements
and specifications, and (c) a description of three of its major components.

(a) Purpose - 2167a Is DoD's software development process standard.
Treats software development as a milestone driven project. Milestones
are generally documents or clearly specified events. 2167a characterizes
several processes separated by the completion of milestones.

(b) SRS - distinguish between requirements & specifications
- requirements; classify (mandatory, desirable, unessential, stability)
- specifications - default conditions, handle errors

(c) SRS - sostwore requirements specification
IRS - interface requirements specification
CSCI - computer software Cl
HWCI - hardware Cl
CSC - computer software component
CSU - computer software unit

Systems contain segments, segments contain configuration items,
configuration items contain configuration components and components
contain units.

69

CSCI 3250 Spring 1993, Test 3 - Page 70

F. (3 points) Context analysis is one technique used to elicit complete and accurate
requirements. Describe the process of context analysis and explain what it adds to
the process of abstracting requirements from the customer request into a
requirements list.

a) Interview customer/user to understand domain; questions such as:
Why develop or want this system?
Where will it be used?
Who will use it?
What are the economic and operational boundary conditions of Its
use?

This results in software needs.

b) Adds items to requirements list which were not explicitly stated in the
abstract; i.e. it reveals constraints and unstated requirements.

G. (4 points) Name and describe two ways of identifying objects that were discussed

in class.

Linguistic analysis: nouns are potential objects and/or attributes.

verbs are potential opreatlons

abverbs are potential constraints on operators

Use cases (scenarios; sequence of events in interacting with system)

Requirements documents (CD, DFDs, DD)

70

VII Ada

I INTRODUCTION

We used Ada as an entire life-cycle tool throughout the two-semesters. Our approach
of a coordinated blending of lectures and projects and the use of three techniques in
teaching Ada - a spiral approach, program reading, and a detailed examination of
language features - enabled students to see Ada's support for software engineering in
and beyond implementation.

Our approach uses three distinct teaching techniques: a spiral approach, program
reading, and a detailed examination of language features. The spiral approach to
teaching involves the gradual introduction and application of concepts and the revisiting
of them in increasing depth throughout the remainder of the course in both lectures and
project activities. Applying this spiral approach, Ada is introduced as software
engineering concepts (e.g., abstraction, information hiding, reusability, and maintainability)
are introduced. With each concept, the language features of Ada which support that
concept are also introduced. For example, during the discussion of maintainability
students are shown language features such as named association of parameters,
overloading, packages, and separation of interface specifications. These language
features are presented initially thn.,ugh program reading utilizing small examples and are
discussed only in relation to their support of maintainability. Only after students have
experienced Ada as a software development tool do they examine in detail the language
features of Ada. Ada's role in the course projects is described in the following section.

II THE PROJECTS

The three projects provide the focus for the two semesters and, collectively, provide
students with a variety of experiences and ro!es. The first project, referred to as the small
Wrject, begins in week two and extends through week seven of the first semester. The
second project, referred to as the extended projec, is introduced in week six of the first
semester and extends through week eleven of the second semester. Finally, the third
project, referred to as the maintenance Droiect, occupies weeks six through twelve of the
second semester. Note that the projects overlap and all are completed prior to the end
of the second semester.

In order to provide both varied and realistic experiences, the three projects differ in a
number of significant ways: size and complexity, project team organization, information
provided to the teams at the start of the project, deliverables produced by the student
teams, development methodology, tools, controlling disciplines, and the use of reviews.
A brief description of the three projects follows.

The small project provides an early and quick immersion into the software development

process. Ada is introduced, not as an implementation language, but as a specification
tool used in high level design. During this project students used Ada-TUTR [1] for an
initial familiarization with Ada. Ada-TUTR provides interactive instruction in the Ada
programming language,- allowing the student to learn at his own pace. On a PC, it
requires a hard-disk or a 3.5-inch disk. Access to an Ada compiler is helpful, but not
necessary. This was the students first look at Ada. We did not discuss the details of
Ada programming style until the extended project.

During the last week of the small project, the students are introduced, via a customer
request, to the extended project in which Ada has an expanded role. The project is
developed using Ada in the high-level design and as the implementation language. This
project serves as a vehicle both to revisit concepts in depth that were briefly introduced
in the small project and to introduce and utilize new concepts including detailed design,
configuration management, and verification and validation. We adopted the Software
Productivity Consortium's, Ada Quality and Style: Guideline for Professional
Programmers, as the programming standard for the course. In our labs we use Meridian
Ada for the PC.

During the first semester, the extended project is taken through the preliminary design
review. Deliverables, specified in Ada, become baseline documents for detailed design
beginning in the second semester. Tools which we have developed to facilitate Ada
implementation (e.g., modified Nassi-Shneiderman diagrams and object traceability
matrix) are introduced during the extended project. These are discussed in detail in
lecture and lab materials.

The maintenance project overlaps the last five weeks of the extended project and
continues one week beyond it. A large Ada artifact is provided and students must
implement the change, including modification of all appropriate documents. Previous
semester's extended projects could be used for the maintenance exercise. We have also
used Software Maintenance Exercises for a Software Engineering Proiect Course, by
Engle, Ford, and Korson. The maintenance project constitutes yet another circuit in the
spiral from which to revisit and reinforce significant software engineering concepts, but
this time from the maintenance perspective.

Thus Ada is integrated into the project experiences as well as into the lectures. Early in
the first semester it is introduced through program reading techniques [2], and program
reading continues throughout (see Section IV). Other activities include the writing of Ada
high-level design specifications, the implementation of a system in Ada, and maintenance
on an existing Ada system. This approach to teaching and learning Ada enables students
to see Ada as more than an implementation language.

III THE SPIRAL APPROACH

2

Placing a small project at the beginning of the course permits us to start the spiral
approach immediately. Lectures include a rapid overview of the elements of a software
development life cycle. We emphasize design and introduce Ada as a specification
language through program reading. These concepts are also emphasized in project
deliverables through Ada specifications and a preliminary design review.

An extended project provides an opportunity for another pass through the lecture-project
spiral. During this phase of the course all of the concepts from the first pass through the
spiral are revisited and expanded upon in both lecture and project deliverables. While
Ada was used only in the high-level specification of the small project, it is now used as
a requirements specification and design tool as well as an implementation language.

Object-oriented design is used in the extended project. The required preliminary design
deliverables include:
1. An object diagram using Rumbaugh notation,
2. A class dictionary,
3. An object-requirements traceability matrix,
4. Ada specifications for each object class, and
5. Descriptions of all major user interfaces.

Traceability is extended into detailed design by means of a detailed design traceability
matrix (see Lecture 31 and associated handouts). We created this matrix to provide
traceability between preliminary design, detailed design and implementation. The detailed
design matrix first provides traceability between an object's attributes and its data
structures and between those data structures and their Ada package representation. The
matrix also provides traceability between the object's operations, the detailed design
model of those operations and the Ada package embodying those operations.

We used Nassi-Shneiderman diagrams as the detailed design model for these operations.
Nassi-Shneiderman diagrams provide a code independent notation for the development
of algorithms which allows the students to think through the solution without considering
language details. We created Nassi-Shneiderman extensions to include language
features of Ada which are unique and which have no associated notation.

During the extended project, program reading is continued as examples and classroom
exercises provided go into greater depth. Carefully organized use of self-paced Ada
tutorial materials, laboratory experiences, and the Ada Language Reference Manual
makes it possible to minimize in-class discussion of Ada syntax. In lectures, Ada's role
in specification and design is emphasized. The use of accepted controlling techniques
and standards introduced in the small project is also reinforced.

The maintenance project helps students see the utility of controlling techniques during
original development. Ada's impact on the development of maintainable artifacts is

3

emphasized. By equating maintenance and development, the students revisit most of the
concepts previously discussed. This third trip through the spiral makes it easier for them
to work with a large unfamiliar artifact. Many students find this somewhat surprising and
rewarding.

IV PROGRAM READING

Program reading is an effective technique in teaching Ada because it allows the students
to see software systems developed in Ada before they worry about the implementation
details of the language. In program reading, students become familiar with a
programming language through first reading programs rather than writing programs.
Relatively large, well-designed software artifacts written in Ada are examined by the
students. The students see not only the source code but also supporting documentation
(e.g., analysis model, design model). Program reading emphasizes the design of the
system so that the students get the "big picture" of how effective it is to build software
using Ada. Language features are pointed out but discussed only in relation to effective
software design. For example, as the software engineering concept of abstraction is
discussed, its support in Ada is examined through program reading. Program reading is
also consistent with the spiral approach since it allows the software to be examined in
increasing detail as the students' knowledge increases.

V DETAILED EXAMINATION OF LANGUAGE

The detailed examination of language features is the last technique used to teach Ada.
Only after students have experienced Ada as an analysis and design tool are they
introduced to Ada as an implementation tool. This approach is particularly applicable to
Ada because of its support throughout the life cycle while most other programming
languages are merely implementation tools. Most of the language features examined at
this time have already been demonstrated to the students through the program reading
or examples which supported the software engineering concepts and topics discussed in
the lectures. Because of this familiarity with the language, the students move very quickly
through the implementation details. Because the details were covered so quickly, one
of the students, Mitchell Moses, developed an Ada reference card to help his team
members remember the language. He has graciously consented to allow us to include
the reference card for your use.

4

Ada Language
Programmer's Quick Reference Card

Scalar Data Types - Boolean Operators' Operator Precedence
Tyne Attributes Operation Operator highest precedence *.absnot
boolean and a multiplying mod, rem
character Succ.PredPosVal or or unary adding
enumeration exclusive or xor binary adding -,
First , LastSucc,red, Pos Val not not relational/membership
float Digits, Small, Large in,not in
integer FirstLast *When different Boolean operators are logical andorxor.and

mixed in the same expression, then, or else
parentheses are required for clarity.

Use of Scalar TWoes Thus the expression: Type Conversions
Found boolean;
Flag : boolean := True; (i = j) or (k a 1) and (k = i) The data type names integer and float

can be used as function names to
Letterl character is invalid and must be written: convert numeric values of one type to
Letter2 : character := A; the other. Float values are rounded

(Mi = j) or (k = M)) and (k = i) to the nearest integer when converted
TextIS contains a generic package to integer. For example:
called EnumerationIO, which can be When using the binary operators and,
instantiated to provide IS routines or, and xor, both operands are always integer(2.4) has value 2
for enumeration types. evaluated. Short circuiting an eval- integer(2.5) has value 3

uation must be done explicitly using float(32/5) has value 6.0
the and then and or else operators.

with TextIO; use Text_IO; For example:
procedure Enum is Structured Data Types

type Days is (MonTueWed.Thu,Fri, N: integer :- 0;
Sat,Sun); 1,J: integer := ;e Attributes

subtype WeekEnd is Days array
range Sat..Sun; if'I = J or else J / N - 0 then ... First,LastRangeLengthFirst(n)',

package Days_IO is new Last(n),Range(n), Length(n)
EnumerationIO(Days); short circuits before J / N can be

package WeekEndIO is new evaluated thus preventing a divide by n = the nth array in a
Enumeration-IO(WeekEnd); 0 run-time error multidimensional array.

Today • Days;
Tomorrow : WeekEnd; if (TestCount > 0) and then record

begin (TestTotal/TestCount > 65) then Constrained,FirstBit.Last_Bit,
Today := Fri; Position
Tomorrow := Sat; Put_Line[*Passing grade*);
Put(Today); -- write current else Use ofassinlgradesday eleUse of Structured TvnES
Put(Tomorrow); -- write next day

end Enums; Putline('Failing grade,); Arrays

TaxRate : float := 0.12; end if;Constraie
Pi : constant float := 3.14 short circuits before type Line is array(l. .80) of
Count : inteer; TestTotal/TestCount can be evaluated character;
Ctaan : integer and cause a run-time error. type List is array(l..5) of integer;StartNum : integer :=1;

A,B : Line;

n- Relational Operators Matrix array(l..4.1..6) of float;Unary Operators Operation OPerator Vector List;
- Arithmetic Operators equality
Operation Operator inequality ,* : 4.7;
absolute value abs less than < A(4) :: 8(7); single
unary plus + less than or equal ca elements
unary minus greater than > A :- B; whole arrays

greater than or equal >- A(30..39) := B(50..59); 10 element
- Boolean Operators slicesOperators-ers ' TestA .= (1.-.80 ');Operation Operator - Membership Test B (l..5 W> ,A others-> I ;
not not Operators inc9ntor iae

in. not in are used to determine if ts array(integer range <>)
the value of an expression falls of integer;
within a given range or subtype. For type Char-Count is array(character

Binary Operators example: range <>) of integer;
subtype : Thousand is integer range-Arithmetic Operators Num : integer; l..1000;

Oneration Operator if (sum in 1..100) then
exponentiation .. Ten : Vector(l..10);
multiplication Kilo Vector(Thousand):
division / given the subtype declaration:
modulus mod Ten(5) :a Ten(2) * Kilo(900);
remainder rem subtype SmallNums is integer range
addition r 1..100; Use of Structured Types continues on
suddiation -bc ie-=-
subtraction - the condition above could be expressed back side ans>

as:

if (fum in SmallNums) then ...

Sntype Matrix is array(integer range <>,
7iJie : string(l..20); integer range <2) of float;
ErrMsg : constant string = error Control Statements

file not found'; type SqMatrlx (n : integer) is
Line stringsl..80); record

Mat : Matrix(l..nl..n);
Ada does not have variable length end record; if (Score > 60) then
strings, necessitating extensive use status to passing;
of array slices. For example: NewACct : CreditLine(2000); else

Interview : Meeting; status to failing;
Put(,Please type your name: "); Lunch : Meeting(1200,Wed); end if;
GetLine(LineLength); Line : Buffer;
Line(l..Length+6) := 'Hello • & ShortLine : Buffer(40); case Score is
Line(l..Length); LongLine : Buffer(256); cahen 90..100-> Grade S 'Ae;
Put(Line(l..Length+6)); New-Line; Grid : SqMatrix(5); when 90..89-> Grade to 'B';

when SO..79=> Grade :t 'C';
when 60..69.> Grade :- ID';

when 0..59-> Grade to 'F';Records : when otbers=> null;

!on-Disdi W "iiat ecodsfo (PayType integer) end case;
ge itring rray(1..9) ofcharacter range '0.. 9; record

Name : string(l..30); Loop Statements
type PartInfo is Address : string(l..40); loop

record case PayType is Count to Count + 1;
PartNum : OigitString; wn 1 1 2 > Put(Count,3);
Description : string(l. .50); wages : float; exit when (Count - 10);SHours :float; end loop;
Price : float; OTime : float;
InStock : integer := 0; when 3..10 -> while (Count 10) loop

drecord; Rate % float; Count to Count + 1;
Sales : float; Put(Count,3);

type Daylnto is when 11 =2> end loop;
record Salary: float;

Month: integer range l..12; Salary:hersat;
Day: integer range 1..31; when others for Count in 1..10 loop

Year: integer range 0..3000; null; Put(Count,3);
end record; end record; and loop;*

type EmployeeData is Empll : EMployeeInfo(l); *The loop control variable must not be

record Empl_2 : EmployeeInfo(7); declared as a program variable. It is

Name: string(l..20); Empl_3 : Employee(ll); implicitly declared by its use in the

BirthDate: DayInfo; loop construct, and its scope is

Address: stringil. .30); restricted to the loop construct.

and record; Thus it redefines any identifier of
the same name within its scope.

Partl, Part2 : PartInfo; Access Data Type (Pointers)
EmployeeList: array(l..200) of

EmployeeData; Tvye Attribute The Block Statement

Manager: EmployeeData; access StorageSize declare
Tamp : integer :t NMuml;

Partl :- Part2; Use of Access Tvoes begin

Employee(3) to Manager; type CharPtr is access Character; Num-1 :t Num_2;

if (Employee(i) - Employee(i+l) then Num_2 := Temp;

Duplicate := True; type Vector is array(l..4) of integer; end;'

end if; type VectorPtr is access Vector; 'the declarative part may be
referenced only within the block.

Partl.PartNumber :- "000045005"; Cpt : CharPtr;

Part2.PartNumber(4) to 15'; Vpt : VecPtr;"
EmployeeList(3).Name :- 'John Doe Procedures/Functions

"Access variables are, by default,

Manager.BirthDate.Month to 9; initialized to the access value null.
procedure Swap(a.b: in out integer) is

- allocating memory Temp : integer to a;
DsriMln eo Cpt to new character; begin
type CreditLine (Limit : integer) is vpt : new Vector; a to b;

record b to Temp;
Ceiling : integer to Limit; - referencing access types end Swap;
Balance : float := 0; Cpt.all to 1xI;

end record; Vpt.all(3 = 4;' function Is_Digit(Char : in character)

type Days is (MonTueWed, 'For arrays and records, selected com- boolean is return

ThuFri,Sat.Sun); ponents may be referenced without the begin
.all notation. For example: Vpt(3) return (Char in '0'..19');

type Meeting (Hour: integer :- 1300, to 4; end Is-Digit;
Day: Days to Fri) is

record
I,_time : integer to Hour;
IDay : Days to Day;
M._Place : string(l..30);

end record;

type Buffer (Size : integer to 80) is
record

Contents a string(1..Size);
Location : integer to 0;

end record;

VIII RESOURCES

a. Software Engineering Bibliography

BOOKS

This bibliography consists of a list of several software engineering text books which we
have found useful. Also Included are some books related to particular software
engineering issues discussed in the course. Recently, Wiley Interacirence has published
the Enmwmia of Software Enuinedna, edited by John Marchlniak. It is a very useful
resource for most topics discussed in the course. Following the list of texts, is a list of
articles arranged by subject.

Abdel-Hamid, Tarek, et al,
Software Project Dynamics: An Integrated Aoproach, Prentice Hall, Inc., 1991.

Arthur, Lowell J.,
Software Evolution: The Software Maintenance Challenoe John Wiley
& Sons, 1988.

Bell, Doug, et al,
Software Enogineednog: A Programming Appmroach Prentice/Hall
International, 1987.

Berzins, Valdis, et al.
wre Engineedn0 with Abstractons Addison-Wesley Publishing Co., 1991.

Boehm, Barry W.,
Software Enoinesdno Economics, Prentice-Hall, Inc., 1981.

Booch, Grady,
Object Oriented Design with Applications, The BenjaminrCummings
Publishing Company, Inc., 1991.

Brooks, Jr., Frederick P.,
The Mythical Man-Month: EssaMs on Software Engineedna,
Addison-Wesley Publishing Co., 1975.

Burch, John G.,
Syms Anlysis. Design. and Imphmentation. Boyd & Fraser Publishing
Co., 1992.

Conger, Sue,
The New SotaeEngIneering Wadsworth Publishing Companry, 1994.

Fairley, Richard,
SoftwaeELogilneedoLgDDoQI McGraw-Hill Book Co., 1985.

Fertuck, Len,
SytMsM Analysis and Desin with Case Tool. Win. C. Brown Publishers,
1992.

Gehani, N., et al,
SotaeS~cto ehius Addison-Wesley Publishing Co.,
1986.

Gheuzi, Carlo, et al.
Fundamentals of Software Engineering Prentice Hall, Inc., 1991.

Glib, Tom, et al.
Principles of Software Engineering Mansoement, Addison-Wesley
Publishing Co., 1988.

Higgins, David A.,
Data Structured Software Maintenance: The Warnier/Orr Approach,
Dorset House Publishing Co., 1986.

lnce, D. C.,
SoftareEagneeogVan Nostrand Reinhold (International), 1989.

Jacobson, Ivar,
Obiect-Oriented Software Engineerin~g: A Use Case Driven Approach,
Addison-Wesley Publishing Co., 1992.

Jones, Gregory W.,
Software Engineering John Wiley & Sons, 1990.

Keller, Robert
The Practice of Structured An~alis: Exploding Myfth, Vourdon Press, 1983.

Keyes, Jessica,
SoftareEogieedg Prducift andookWindcrest/McGraw-Hill,

Kowal, James A.,
bail~ %MmsPrentice Hail, 1988.

Lamb, David Alex,
Software Engineering: Planning for Changek, Prentice Hall, 1988.

Londeix, Bernard,
Cost Estimation for Software Development, Addison-Wesley Publishing
Co., 1987.

Macro, Allen,
Software Enaineerina: Co " ard Marmernnt Prentice Hall
International, 1990.

Martin, James, et al,
Software Maintenance: The Problem and Its Solutions, Prentice-Hall,
Inc., 1983.

Mynatt, Barbee Teasley,
Software Engineeriog with Student Project Guidance. Prentice
Hall, Inc. 1990.

Pfleeger, Shari Lawrence,
Software Engineedng: The Production of Quality Software,
Second Edition, Macmillan Publishing Co., 1991.

Pfleeger, Shari Lawrence,
Software Enogineering: The Production of Quality Software
Macmillan Publishing Co., 1987.

Powers, Michael J., et al,
Structured Systems Development: Analysis. Design. Implementation, 2d Edition,
Boyd & Fraser Publishing, 1990.

Pressman, Roger S.,
Software Enoineering: A Beainners Guide McGraw-Hill Book Co.,
1988.

Pressman, Roger S.,
Software Engineering: A Practitioner's AMroach, Third Edition,
McGraw-Hill, Inc., 1992.

Price, Jonathan, et al,
How to Communicate Technical Information: A Handbook of Software and
Hardware Documentation, The Benjamin/Cummings Publishing Co.,
Inc., 1993.

Schach, Stephen R.,
Software Engineering, Second Edition, Richard D. Irwin, Inc., and Aksen
Associates, Inc., 1993.

Shooman, Martin L.,

Software Engineering: DesOn. Reliabilit and I•OM2M Mc-Graw
Hill Book Co., 1983.

Sigwart, Charles D., et al,
Software Engineering: A PMoect Oriented Approach. Franklin, Beedle &
Associates, Inc., 1990.

Sommerville, Ian,
Software Engineemrng_ Fourth Edition, Addison-Wesley Publishing Co., 1992.

Turner, Ray,
Sotwhare Eoineerin Ilethgdolggy, Reston Publishing Co., Inc., 1984.

van Vliet, Hans,
Software Engineednog: rincipnes and Practice, John Wiley & Sons Ltd.,
1993.

von Mayrhauser, Anneliese,
Software Engineering: Methods and Manaoement Academic Press, Inc., 1990.

Weinberg, Gerald M.,
Quality Software Manaaement: Volume 1 Systems Thinkin,, Dorset
House Publishing, 1992.

Wiener, Richard, et al,
Software Engineering with Modula-2 and Ada, John Wiley & Sons, 1984.

Woodcock, Jim, et al,
Software Engineering Mathematics, Addison-Wesley Publishing Co., 1988.

ARTICLES

Background material section

Software Development Process subsection

Hall, A. "is software engineering?' Software EngineerIng Education 1992, pp. 5.7.

Davis, A., E. Bersoff, et al. "A strategy for comparing alternative software development
life cycle model." IEEE Transactions on Software Engineerng, SE-14:10, October 1988,
pp. 1453-1461.

Myers, W. "Allow plenty of time for larger-scale software." IEEE SotiWare, July 1989,

pp.92-99.

Brooks, F. "No silver bullet." IEEE Computer, April 1987, pp. 10-19.

Lewis, T., and P. Oman. "The challenge of software development." IEEE Computer,
November 1990, pp. 9-12.

Software Engineering Environment subsection

Dart, S., R. Ellison, at al. "Software development environments." IEEE Computer,
November 1987, pp. 18-28.

Kemighan B., and J. Mashey. "The UNIX programming environment." IEEE Computer,
April 1981, pp. 12-22.

Software Engineering Techniques section

Bergland, G. "A guided tour of program design methodologies." IEEE Software, October
1981, pp. 13-37.

Schonber, E., M. Gerhardt, et al. "A Technical Tour of Ada." Communiafto of the ACM,
35:11, November 1992, pp. 43-52.

Object-Oriented Design Section

Nerson, J-M. "Applying object-oriented analysis and design." Communications of the

ACM. 35:9, September 1992, pp. 63-74.

Berard, E. "Understanding object-oriented technology." Essays on Object-Oriented

Software Engineering, Vol. I, pp. 1-10, Prentice-Hall, 1993.

Berard, E. "Motivations for an object-oriented approach to software engineering." Essays
on Object-Oriented Software Engineering, Vol. I, pp. 13-28, Prentice-Hall, 1993.

Tsichritzis, D. "Object-oriented development for open systems." Information Processing
89, Elsevier Science Publishers, 1989, pp. 1033-1040.

Object-oriented analysis, design and implementations. An example. (Lecture Notes)

Formal Methods of Software Development Section

Gerhart, S. "Application of formal methods: Developing virtuoso software." IEEE Software,
7:5, September 1990, pp. 7-10.

Cooke, J. "Formal methods --- mathematics, theory, recipes, or what?" The Computer,
35:5, 1992.

Hall, A. "Seven myths of formal methods. IEEE Software, September 1990, pp. 11-18.

Galton, A. "Classical Logic: A crash course for beginners. The Computer, 35:5, pp.424-
430.

Spivey, J. "An introduction to Z and formal specifications." Software Engineering Journal,
January 1989, pp. 40-50.

Future Directions section

Musa, J. "Software engineering: The future of a profession." IEEE Software, January
1985, pp. 55-62.

Shaw, M. "Prospects for an engineering discipline of software." IEEE Software, November
1990, pp. 15-24.

Cox, B. "Planning the software industrial revolution." IEEE Software, 7:6, November 1990,
pp. 25-32.

Tsichritzis, D., and S. Gibbs. "From Custom-made to Pre-a-Porter software." Object
Management, University of Geneva, 1990.

Nierstrasz, 0., S. Gibbs, et al. "Component-oriented software development."
Communications of the ACM, 35:9, September 1992, pp. 160-165.

Korson, T., and V. Vaishnavi. "Managing emerging software technologies: A technology
transfer framework." Communications of the ACM, 35:9, September 1992, pp. 101-111.

Humphrey, W. "Contracting for software." Managing the Software Process, Addison-
Wesley, 1989.

Berztiss, A. 'Engineering principles and software engineering." Software Engineering
Education, 1992, pp. 437.
END OF LIST

Berzins, V., and Luqi. Software Engineering with Abstractions. Addison-Wesley, 1991.

Byme, W.E. Software Design Techniques for Large Ada Systems. Digital Press, 1991.
314p.

VII RESOURCES

b. Ada Bibliography

There are two sources of the annotations for the Ada books below. One source is the
Ada Books list published by the Ada Information Clearinghouse. These entries are
indicated by an '*' after the entry. The other source is from a list compiled by Mike
Feldman, education director of SIGAda.

Andrews, E., editors. Concurrent Programming with Ada. Benjamin-Cummings, 1993.

Atkinson, C., et al. Ada for Distributed Systems. (Ada Companion Series) Cambridge
University Press, 1988. 147p.

Describes the final report of the Distributed Ada Demonstrated (DIADEM) project,
which studied the problems and developed solutions for using Ada to program real-
time, distributed control systems. Demonstrates new techniques for controlling
such systems from a distributed Ada program. *

Ausnit, C.N., et al. Ada in Practice. (Professional Computing Series) Springer-Vedag,
1985. 195p.

Identifies and resolves issues related to Ada usage and promotes effective use of
Ada in general programming, design practice, and in embedded computer systems.
Contains 15 case studies that cover five general areas of the Ada language:
naming conventions, types, coding paradigms, exceptions, and program structure.*

Barnes, J.G.P. Programming in Ada Plus an Overview of Ada 9X. 4th edition. Addison-
Wesley, 1994. 622p.

The fourth edition, while remaining focused on the current ANSI 83 standard,
reflects the imminent Ada 9X standard in three ways: all features of Ada that will
be affected by the Ada 9X standard are highlighted with icons and their design
rationale described in detail; a full chapter on Ada 9X provides a tutorial and
summary of the most important changes, including the increased support for
object-oriented programming, the introduction of a hierarchical library structure and
the inclusion of protected objects; full details of the syntax changes are provided
in the appendices for easy reference. *

Barnes, J. Programming in Ada. 3rd edition. Addison-Wesley, 1989. 494p.
Discusses Ada using a tutorial style with numerous examples and exercises.
Assumes readers have some knowledge of the principles of programming. Covers
the following: Ada concepts, lexical style, scaler types, control structures,
composite type, subprogram, overall structures, private types, exceptions,
advanced types, numerics types, generics, tasking, external interfaces. *

Barnes' work has been one of the most popular *Ada books." Some students find

it hard to see how the pieces fit together from Barnes' often fragmentary examples;
it is difficult to find complete, fully-worked out, compilable programs. A version is
available with the entire Ada Language Reference Manual bound in as an
appendix.

Barnes, J. Programming in Ada. 2nd edition. Addison-Wesley, 1983.V

Ben-Ari, M. Principles of Concurrent and Distributed Programming. Prentice-Hall 1990.
(OS/concurrency)

In my opinion, this is the best introduction to concurrency on the market. Ada
notation is used for everything, but the focus is on concurrency and not on Ada
constructs per se. I liked the CoPascal notation of the first edition better, but this
book is still great. A software disk is promised in the preface; I had to work quite
hard to get it from the publisher, which finally had to express-ship it from England.
The software comes with a tiny Ada-ish interpreter, complete with Pascal source
code, adapted from Wirth's Pascal/S via CoPascal. There are also some real Ada
programs, most of which I've tested and found correct and portable.

Booch, G. Software Engineering with Ada. 3rd ed. Benjamin-Cummings, 1994.
Introduces Ada from a software engineering vantage. Addresses the issues of
building complex systems. Includes new features in this second version: a more
thorough introduction to Ada syntax and semantics, an updated section on object-
oriented techniques to reflect the current state of knowledge and improved
examples that illustrate good Ada style for production systems development.'

Booch, G. Software Engineering with Ada. (2nd edition) Benjamin Cummings 1987.
Another of the classical "Ada books." Introduces Booch's OOD ideas. Not for use
to introduce Ada to novices, in my opinion; there are some nice fully-worked case
studies but they begin too far into the book, after long sections on design,
philosophy, and language elements. The earlier chapters contain too much
fragmentary code, a common flaw in books that follow the LRM order.

Booch, G. Object-Oriented Design, with Applications. Benjamin Cummings, 1991.
This is a good comparative introduction to the "object-oriented (00)" concept. The
first half gives a balanced presentation of the issues in 00 Design; the second half
gives nontrivial examples from Ada, Smalltalk, C++, CLOS, and Object Pascal.
The author tries to sort out the difference between object-based (weak inheritance,
like Ada) and object-oriented (like C++) languages. My only real complaint is that
Booch should have worked out at least some of his case studies using several
different languages, to highlight the similarities and differences in the language
structures. As it is, each case study is done in only a single language. The good
news is that the book is remarkably free of the hyperbolic claims one sometimes
finds in the 00 literature. I think this book could be used successfully in a
second-level comparative languages course.

Booch, Grady. Software Components With Ada Structures, Tools, and Subsystems.

Benjamin-Cummings, 1987. 635p.
Catalogs reusable software components and provides examples of Ada
programming style. Presents a study of data structures and algorithms using Ada.

This work is an encyclopedic presentation of data structure packages from Booch's OOD
point of view. It is great for those who love taxonomies. Ifs not for the faint-hearted,
because the volume of material can be overwhelming. It could serve as a text for an
advanced data structures course, but its thin in "big O" analysis and other
algorithm-theory matters. The book is keyed to the (purchasable) Booch Components.

BoverD. Introduction to Ada. Addison-Wesley, 1991. *

Bover, D.C.C., K.J. Maciunas, and M.J. Oudshoom. Ada: A First Course in Programming
and Software Engineering. Addison-Wesley, 1992.

This work is, to our knowledge, the first Ada book to emerge from Australia, from
a group of authors with much collective experience in teaching Ada to first-year
students. A number of interesting examples are presented, for example, an
Othello game. The book is full of gentle humor, a definite advantage in a world
of dry and serious texts. In the book's favor is the large number of complete
programs. On the other hand, it is rather "European" in its terseness; American
teachers may miss the pedagogical apparatus and "hand-holding" typically found
in today's CS1 books. Generic units are hardly mentioned.

Bryan, D.L., and G. Mendal. Exploring Ada. Volume 1. Prentice-Hall, 1990. 411 p.
Describes Ada's type model, statements, packages and subprograms. Includes
programming features such as information hiding, facilities to model parallel tasks,
data abstraction, and software reuse. *

This is an excellent study of some of the interesting nooks and crannies of Ada;
it sometimes gets tricky and "language-lawyerly." Volume 2 takes up tasking,
generics, exceptions, derived types, scope and visibility; Volume 1 covers
everything else. The programs are short and narrowly focused on specific
language issues. If you like Bryan's "Dear Ada" column in Ada Letters, you'll like
this book. It is certainly not a book for beginners, but great fun for those who
know Ada already and wish to explore.

Burns, A. Concurrent Programming in Ada. (Ada Companion Series) Cambridge
University Press, 1985. 241p.

Reports on Ada tasking offering a detailed description and an assessment of the
Ada language concerned with concurrent programming. *

I used this book for years in my concurrency course. It's roughly equivalent to
Gehani's book, but its age is showing. Cambridge Press is not always easy to get
books from, especially in the US.

Burns, A., and A. Wellings. Real-Time Systems and Their Programming Languages.
Addison-Wesley, 1990. 575p.

Provides a study of real-time systems engineering, and describes and evaluates
the programming languages used in this domain. Considers three programming
languages in detail: Ada, Modula-2 and Occam2. *

Bums, A. A Review of Ada Tasking. (Lecture Notes in Computer Science Series, Volume
262) Springer-Verlag, 1987. *

Caverly, P., and P. Goldstein. Introduction to Ada: A Top Down Approach for
Programmers. Brooks-Cole, 1986. 237p.

Organizes and emphasizes those features that distinguish Ada from other
programming languages. Uses a cyclical approach to the treatment of many
topics. Gives a brief history of the development of the Ada language. Introduces
the I/O capabilities, procedures, character and numeric data types and subtypes,
and the concept of an Ada program library. Discusses enumeration, array, record,
and derived types and demonstrates how the package can be used to encapsulate
data types. Explains access types and applications and the encapsulation of data
objects in packages. Illustrates how finite-state machines can be represented by
packages. Describes the essentials of tasking and deals with blocks and
exceptions. Introduces the reader to private types, types with discriminates, and
generic units. *

Chirlian, Paul M. Introduction to Ada. Weber Systems, 1985. 291 p.
Provides a basic course in the Ada programming language. (Ada courses and/or
self-study) *

Clark, Robert G. Programming in Ada: A First Course. Cambridge University Press, 1985.
215p.

Introduces the Ada programming language. Targets persons without previous
experience in programming. Details how to design solutions on a computer.
Concentrates on solving simple problems in the early sections: the later sections
explore how packages can be used in constructing large reliable programs.
Emphasizes central features such as data types, subprograms, packages,
separate compilation, exceptions and files. ANSI/MIL-STD-1815A-1983 is
referenced throughout the book. *

Cohen, N.C. Ada as a Second Language. McGraw-Hill, 1986. 838p.
Explains Ada to those who wish to acquire a reading and writing knowledge of the
Ada language. Also a programming reference source. *

This book is a quite comprehensive exploration of Ada which follows the LRM in
its presentation order. My graduate students like it because it is more detailed and
complete than alternative texts. Its an excellent book for students who know their
languages and want to study all of Ada. There are good discussions of "why's and
wherefore's" and many long, fully-worked examples.

Cooling, J.E., Introduction to Ada. Chapman and Hall, 1993. 576p.
Introduction to Ada gives a comprehensive introduction to the subject, covering all
"the basic aspects of the language with reference to the particular strengths of Ada
in real-time systems. It is written primarily for the novice programmer who lacks
experience of modem high-level languages. *

Culwin. Ada: A Developmental Approach. Prentice-Hall, 1992.
Intended for use on courses which teach Ada as the first programming language.
The book is designed to take the reader from the basic principles of programming
to advanced techniques. This books provides a complete introduction to software
development using the programming language, Ada. It is not only concerned with
the production of Ada programs, but it is also an introduction to the process of
implementation and testing. Features include: a carefully structured tutorial which
includes software developments, design, testing, and production. *

This work introduces Ada along with a good first-year approach to software
development methodology. Much attention is paid to program design,
documentation, and testing. Enough material is present in data structures and
algorithm analysis is present to carry a CS2 course. A drawback of the book is
that the first third is quite "Pascal-like" in its presentation order: procedures,
including nested ones, are presented rather early, and packages are deferred until
nearly the middle of the book. This is certainly not a fatal flaw, but it will frustrate
teachers wishing a more package-oriented presentation. The programs and
solutions are apparently available from the author.

Dawes, J. The Professional Programmers Guide to Ada. Pittman Publishing, 1988.'

Delillo, N.J. A First Course in Computer Science with Ada. Richard D. Irwin, Inc., 1993.
0

This book is a first in the Ada literature: a version comes with an Ada compiler, the
AETech-IntegrAda version of Janus Ada. Author, publisher, and software supplier
are to be commended for their courage in this. The book itself covers all the usual
CS1 topics. In my opinion, the order of presentation is a bit too Pascal-like, with
functions and procedures introduced in Chapter 5 (of 15) and no sign of packages
(other than TextUlO) until Chapter 10. Unconstrained arrays and generics are,
however, done nicely for this level, and Chapter 13 is entirely devoted to a single
nontrivial case study, a statistical package. I wish there were more complete
programs in the early chapters, to put the (otherwise good) discussion of control
and data structures in better context.

Dorchak, S.F., and P.B. Rice. Writing Readable Ada: A Case Study Approach. Heath,
1989. 244p.

Contains a style guide, which gives suggestions for enhancing code readability;
devotes a chapter to the discussion of concurrency, and advanced feature of
modem programming languages; a fully coded Ada program, along with a sample
run; a bibliography, which lists books and articles about Ada and software

engineering principles; two indexes, one devoted exclusively to references of case
study modules and the other listing important topics and concepts. *

Elbert, T.F. Embedded Programming in Ada. Van Nostrand Reinhold, 1989. 523p.
Clarifies Ada for the practicing programmer and for the advanced engineering or
computer science student. Assumes the reader has acquired a certain level of
sophistication, general concepts normally found in introductory programming texts
are not covered. Also, presumes the reader is familiar with operating systems and
has a basic knowledge of some block-structured languages such as PMI and
Pascal. *

Feldman, M.B. Data Structures with Ada. Prentice Hall, 1985 (now distributed by
Addison-Wesley). (CS2/data structures)

This book is a reasonable approximation to a modem CS2 book: "big 0" analysis,
linked lists, queues and stacks, graphs, trees, hash methods, and sorting, are all
covered. The Ada is a bit old-fashioned, especially the lack of generics; the book
was published before compilers could handle generics. The packages and other
programs are available free from the author. The book is currently under revision
with Addison-Wesley and should appear in 1993.

Feldman, M.B., and E.B. Koffman. Ada Problem Solving & Program Design. Addison-
Wesley, 1991.

Designed to introduce the novice to a number of Ada features, such as
subprograms, packages, operator overloading, enumeration types, and array-
handling operations. Emphasizes throughout the book the principles of data
abstraction, software engineering, problem solving, and program design. *

This work combines the successful material from Koffman's CS1 pedagogy with
a software-engineering-oriented Ada presentation order. Packages are introduced
early and emphasized heavily; chapters on abstract data types, unconstrained
arrays, generics, recursion, and dynamic data structures appear later. The last
five chapters, combined with some language-independent algorithm theory, can
serve as the basis of a CS2 course. A diskette with all the fully-worked packages
and examples (about 180) is included; the instructor's manual contains a diskette
with project solutions.

Feuer, A.R., and N. Gehani. Comparing & Assessing Programming Languages: Ada, C
& Pascal. (Software Series) Prentice-Hall, 1984. *

Fischer, C., and R. LeBlanc. Crafting a Compiler. Benjamin Cummings, 1988. (compilers)
This book uses Ada as its language of discourse and Ada/CS, a usefully large Ada
subset, as the language being compiled. If you can get the "plain Pascal" tool
software by ftp from the authors, you'll have a good translator-writing toolset. Skip
the Turbo Pascal diskette version, which is missing too many pieces to be useful.
I've used the book since it came out with both undergrad and graduate compiler
courses; it embodies a good blend of theory and "how it's really done" coding.

Students like it. The authors have recently published a second version, which

uses C as its coding language but retains Ada/CS as the language being complied.

Fisher, D.A., editor. Ada Language Reference Manual. Gensoft Corp., 1986.'

Gauthier, M. Ada: Un Apprentissage. (in French). Dunod, 1989.
I found this an especially interesting, almost philosophical approach to Ada. The
first section presents Ada in the context of more general language principles:
types, genericity, reusability. The second section introduces testing and
documentation concerns, as well as tasking; the third considers generics and
variant records in the more general context of polymorphism. For mature Ada
students in the French-speaking world, and others who can follow technical
French, this book can serve as a different slant on the conventional presentations
of the language. An English translation would be a real contribution to the Ada
literature.

Gehani, N. Ada: Concurrent Programming. (2nd edition). Silicon Press, 1991.
This is a less formal, more Ada-oriented presentation of concurrency than the
Ben-Ari work. I use both books in my concurrency course; its real strength is the
large number of nontrivial, fully worked examples. Gehani offers a nice critique of
the tasking model from the point of view of an OS person. The preface promises
the availability of a software disk from the publisher.

Gehani, N. Ada: An Advanced Introduction. 2nd edition. Prentice-Hall, 1989. 280p.
Introduces advanced problem-solving in Ada. Emphasizes modular programming
as good programming practice. *

I've always liked Gehani's literate writing style; he knows his languages and treats
Ada in an interesting, mature, and balanced fashion. This book comes with a
diskette sealed in the back of the book, which is advantageous because the book
has numerous nontrivial, fully-worked examples.

Gehani, N. Unix Ada Programming. Prentice-Hall, 1987. 31 Op.
Focuses on the novel aspects of the Ada language and explains them by many
examples written out in full. Examines the interesting differences between the Ada
language and other programming languages. Also, notes the similarities between
Ada, Pascal, C, PIJI, and Fortran. *

Gonzalez, D. Ada Programmer's Handbook. Benjamin-Cummings, 1991.'

Gonzalez, Dean W. Ada Programmer's Handbook and Language Reference Manual.
Benjamin-Cummings, 1991. 200p. *

Habermann, A., and Dwayne E. Perry. Ada for Experienced Programmers. (Computer
Science Series) Addison-Wesley, 1983. 480p.

Offers a comparative review of Ada and Pascal, using dual program examples to

illustrate software engineering techniques. *

Hibbard, Peter, et al. Studies in Ada Style. 2nd edition. Springer-Verlag, 1983. 101p.
Presents concepts of the abstractions embodied in Ada with five examples: a
queue, a graph structure, a console driver, a table handler and a solution to
Laplace's equation using multiple tasks. *

Jones, Do-While. Ada in Action with Practical Programming Examples. John Wiley &
Sons, 1989.

Helps Ada programmers avoid common pitfalls and provides them with many
reusable Ada routines. Discusses a variety of numeric considerations, user
interfaces, utility routines, and software engineering and testing. Provides
examples of Ada code. *

Katzan, H., Jr. Invitation to Ada & the Ada Reference Manual. Petrocelli, 1982. 4 29p.
Calls for the scientific computing community to adopt the Ada programming
language. Part II is the Ada Reference Manual, 1980 version. *

Krieg-Brueckner, B., et al, editors. Anna : A Language for Annotating Ada Programs.
(Lecture Notes in Computer Science Series, Volume 260) Springer-Verlag, 1987. *

Ledgard, Henry. Ada: A First Introduction. 2nd edition. Springer-Verlag, 1983. 130p.
Assumes that the reader has experience with some other higher order
programming language. Outlines several key features of Ada; a treatment of the
facilities-concept of data types, the basic statements in the language,
subprograms, packages, and general program structure. *

Lomuto, N. Problem-Solving Methods with Examples in Ada. Prentice-Hall,
1987.(algorithms)

Inspired by Polya's classic How to Solve It, this book can make a nice addition to
an Ada-oriented algorithms course. It makes too many assumptions about
students' programming background to use as a CS1 book, and doesn't teach
enough Ada to be an "Ada book." But it makes nice reading for students
sophisticated enough to handle it. I'd classify it as similar to Bentley's
Programming Pearls.

Luckham, David C., et al. Programming with Specifications: An Introduction to Anna, a
Language for Specifying Ada Programs. (Texts and Monographs in Computer Science)
Springer-Verlag, 1990. 416p.

Offers an in-depth look at ANNA, a form of the Ada language in which specially
marked comments act as formal annotations about the program to which they are
attached. *

Lyons, T.G. Selecting an Ada Environment. (Ada Companion Series) Cambridge
University Press, 1986. 239p.

Provides an overview of the Ada Programming Support Environment (APSE).
Covers six main issues in selecting an environment. Contains summaries of
current approaches to likely problems, indications of deficiencies in existing
knowledge, and checklists of questions to ask when considering a particular
environment. *

Mayoh, B. Problem Solving with Ada. (Wiley Series in Computing.) Reproduction of 1982
edition '

Mendal, G., and D.L. Bryan, Exploring Ada. Volume 2. Prentice-Hall, 1992.
A method of presentation based on the Socratic method, provides coverage and
the semantics of Ada. Discusses focused problems individually. The second
volume expands on the larger issues dealing with Ada's more advanced features.*

Miller, N.E. and C.G. Petersen. File Structures with Ada. Benjamin/Cummings, 1990. (file
structures)

Designed for a straightforward ACM-curriculum file structures course, this book
succeeds at what it does. There are good discussions of ISAM and B-tree
organizations. The software can be purchased a low cost from the authors; it
seems to approximate in Ada all those C-based file packages advertised in
programmer-oriented trade publications.

Nyberg, K.A., editor. Annotated Ada Reference Manual. 2nd edition. Grebyn Corp., 1991.
Contains the full text of ANSI/MIL-STD-1815A with inline annotations derived from
the Ada Rapporteur Group of the International Organization for Standards
responsible for maintaining the Ada language. *

This is the definitive work on Ada legalities, because it presents not only the full
text of the LRM but also the official Ada Interpretations as prepared by the Ada
Rapporteur Group of Working Group 9 of the International Organization for
Standardization (ISO) and approved by that organization. These commentaries,
interleaved with the LRM text, are promulgated by the Ada Joint Program Office,
the American National Standards Institute (ANSI) agent for Ada, in the Ada
Compiler Validation Suite (ACVC). They are thus binding upon compiler
developers. I recommend this book as an essential volume in the library of every
serious Ada enthusiast.

Pokrass, D., and G. Bray. Understanding Ada: A Software Engineering Approach. John
Wiley and Sons, 1985. *

Saib, S., and R.E. Fritz. Introduction to Programming in Ada. HR&W, 1985'

Saib, Sabina H., and R.E. Fritz. Tutorial: The Ada Programming Language. IEEE
Computer Society, 1983. 538p.

Covers such topics as the history and current status of Ada; basic language;
schedule for industry and DoD; preventing error; readable, maintainable, modular

systems; real-time features, portability; and environments for Ada."

Savitch, W.J., et al. Ada: An Introduction to the Art and Science of Programming.
Benjamin-Cummings, 1992.

Written specifically for the first programming course. It starts with variable
declarations, simple arithmetic expressions, simplified input-output, and builds
upward toward subprograms and packages. A chapter-by-chapter instructor's
guide is also available, as is a program disk with more that 140 completed
programs from the text. *

This is a straightforward adaptation of the well-known Savitch Pascal books. Ada
is introduced in a Pascal-like order, with subtypes and packages introduced
halfway through the book. This is purely a CS1 book. The final chapter covers
dynamic data structures. There is minimal coverage of unconstrained array types;
generics are introduced at tUý haif, ..y point to explain TextjlO, then continued
only in the final chapter. Th luthors intended this book to provide a painless
transition to Ada for teachers ot Pascal; one wishes they had taken advantage of
the chance to show some of the interesting Ada concepts as well. Program
examples from the text are available on disk, but only as part of the instructor's
manual; a solutions disk is available for a fee from the authors.

Schneider, G.M., and S.C. Bruell. Concepts in Data Structures and Software
Development. (with Ada Supplement by P. Texel). West, 1991. (CS2/data structures)

This work is not, strictly speaking, an Ada book; rather, it is a solid,
language-independent approach to modem CS2. The language of discourse in the
book is a Pascal-like ADT language rather like Modula-2 in style; some examples
are coded in legal Pascal. The Ada supplement makes it usable in an Ada-based
course, but the supplement is rather too terse (100 pages of large type) for my
taste, and insufficiently well keyed to the book chapters. The supplement's
effectiveness would be greatly enhanced by full translations to Ada of a large
number of the book's examples.

Sebesta, R.W. Concepts of Programming Languages. (2nd ed.). Benjamin Cummings,
1993. (comparative languages)

If you've been around for a while, you might remember the late Mark Elson's 1975
book by the same title. This is similar: a concept-by-concept presentation, with --
in each chapter -- examples taken from several languages. I include this work in
an "Ada list" because I like its nice, impartial coverage of Ada. I especially like the
chapters on abstraction and exception handling. The book covers --
comparatively, of course -- most of the languages you'd like to see, including C,
C++, Usp, Smalltalk, etc., with nice historical chapters as well. The book is
readable; my students like it. Our undergraduate and graduate courses both use
it as a base text.

Shumate, K. Understanding Ada. 2nd edition, John Wiley & Sons.

This would make a CS1 book if it included more overall pedagogy, independent
of language constructs. Otherwise it is a nice introduction to Ada in fairly gentle
steps. Lots of completely worked examples, right from the start. Doesn't follow
the LRM order, which is great.

Shumate, K.C. Understanding Ada: Wtrh Abstract Data Types. 2nd edition. John Wiley
& Sons, 1989. *

Skansholm, J. Ada from the Beginning. Addison-Wesley, 1988. 617p.
Describes the principles and concepts of programming in a logical and easy-to-
understand sequence and discusses the important features of Ada (except parallel
programming). Teaches the basic of writing computer programs. Emphasizes the
fundamentals of good programming. Provides a grounding in the programming
language Ada. Covers the following: programming designs, the basics of Ada,
control statements, types, subprograms, data structures, packages, input/ouput,
exceptions, dynamic data structures, files, and generic units. *

This book was one of the first to use Ada with CSI -style pedagogy. There are
excellent sections on the idiosyncracies of interactive V/O (a problem in all
languages), and a sufficient number of fully-worked examples to satisfy students.
Generics, linked lists and recursion are covered at the end; there is no tasking
coverage, but one would not expect this at CSl -level.

Smith. Introduction to Programming Concepts and Methtds with Ada. McGraw-Hill, 1993.

Stratford-Collins, M.J. Ada: A Programmer's Conversion Course. (Ellis Horwood Series
in Computers & Their Applications) John Wiley & Sons, 1982. *

Tremblay, J., et al. Programming in Ada. McGraw-Hill, 1990. PG 486p.
Explains computer science concepts in an algorithmic framework, with a strong
emphasis on problem solving and solution development.'

Volper, D., and M.D. Katz. Introduction to Programming Using Ada. Prentice-Hall, 1990.
650p.

Uses the spiral approach as the presentation methodology in this introductory
course in Ada programming. *

This book uses a heavily "spiraled" approach to Ada, and is designed for a
2-semester course, covering nearly all of Ada eventually. There are lots of
fully-coded examples, and good pedagogical sections on testing, coding style, etc.
If you like spiraling, you'll like this. The down side is that you can't find all you
need on a given subject in one place. It's at the other end of the scale from the
"Ada books" that follow the Ada Language Reference Manual (LRM) order.

Wallace, Robert H. Practitioner's Guide to Ada. McGraw-Hill, 1986 373p.

Discusses the issues to be considered when making the transition to Ada, on
selecting toolsets, and on using the language effectively. Covers the following:
Ada as a language; Ada Oriented Development Environments; Ada oriented design
methodologies; Ada policies and standards; Ada products and vendors; sources
of Ada-related information; making the transition to Ada and other uses of Ada. *

Watt, D.A., B.A. Wichmann, et al. Ada Language and Methodology. Prentice-Hall, 1987.
This work presents some interesting programming projects, and the coverage of
design and testing--at the level of a first-year student--is quite good. The first third
of the book concentrates heavily on classical control and data structures, leaving
exceptions, packages and even procedures until the "programming in the large"
material in the second third. CS2 teachers will find too little concentration on
algorithm analysis. On the other hand, tasking and machine-dependent
programming are covered. Uke the Shumate work, this book would make a
suitable introduction to Ada for students with a semester or so of programming
experience; it "jumps in" too quickly to satisfy the needs of neophytes and is not
well-tailored to CS1 or CS2 needs.

Weiss, M.A. Data Structures and Algorithms in Ada. Benjamin/Cummings, 1993.
I'm taking a gamble here in reviewing a book I haven't seen, but I have perused
the C version of this book and think it reaches its intended market -- data
structures courses (CS7) -- raher well. There's a good mixture of theory and
practice (ADT design, for example), and coverage of new topics like amortized
algorithm analysis and splay trees. A book at this level should not pay too much
attention to teaching a language; rather it should make good use of its language
of discourse. The Ada version has not appeared yet at this writing; if it uses Ada
as well as the C version uses C, the book is a winner at its level, and sorely
needed in the Ada literature.

c. CASE Tools

There is a wide range of CASE tools available. ,"he low end CASE tools are primarily
drawing tools for a particular development notation. As the utility of the tools increase,
they add functions such as data dictionaries, code generators and traceability.

Students like the tools which are code generators, but they are disappointed when they
find out that most of them only generate the specification and not the bodies of packages.

In our class we used 3 tools: EasyCASE for structured development, OMTool for
Rumbaugh's approach, and ObjectMaker to generate Ada.

The list of tools below gives the source of the tool, its functionality, its cost in 1994, ar
the hardware/software environemt it in which it operates.

AD/Method
Structured Solutions
functions -

data and process modeling
business object/event modeling
technology modeling
project templates
enhancement & maintenance

OpenSELECT
Meridian Software Systems, Inc.

Irvine, Calif.
functions

Yourdon/Demarco methodologies
Ward Mellor and Hatley extensions
Jackson structured program charts
Chen ERD's
Constantine
State Transition

DOS/Windows
$795

EasyCASE Plus
Evergreen CASE Tools

8522 150 4th Avenue NE
Redmond Wash 98052

functions
methodologies

Gane & Sarson
Yourdon/DeMarco

Ward-Mellor/Hadey
SSADM
Yourdon/Constantine
Marting
Chen
Bachman
IDEFIX

diagram types
data flow
stat transition
structure
entity relationshop
data model
entity life history
logical data structure

$495/$649/$795

MacAnalyst and MacDesigner
Excel Software
functions

structured analysis & design
real-time extensions
data modeling & screen prototyping
obje•t-odented analysis & design
data dictionary & requirement database

Macintosh

SILVERRUN
Computer Systems Advisers, Inc.

50 Tice Blvd.
Woodcliff Lake, NJ 07675

functions
reverse data engineering to ER models
graphical relation models from ER models
foreign keys, indexes and SQL schemas

Windows / OS/2 / Macintosh

McCabe Tools
McCabe Associates
functions

generates unit and integration tests
verify executed test path on the flow graph
reverse engineering by abstracting system design

UNIX / VMS / DOS

21

ForeSight
Computer & Engineering Consultants
$12500

PC-METRIC
SET Laboratories
PO Box 868
Mulino, OR 97042
Academic version $25.00

Teamwork
Cadre Technologies Inc.
222 Richmond Street
Providence, RI 02903
Sparcstations, HP 300/400 workstations, IBM AIX,

Ultrix, Apollo Domain, HP 700, and VMS

Paradigm Plus
Protosoft, Inc.
functions

open architecture
diagram editor
matrix editor
script language
automatic diagram generation
automatic digram leveling
Rumbaugh's OMT
Booch/Buhr OOD
HOOD method
EVB method
Yourdor/DeMarco/Gane/Sarson SASD
Chen/Bachman Entity relation
Customizable report/code generation
Code generation for C++, C, Ada, and others

DOS/Windows, UNIX/Motif, OS/2, Sun, HP, RS6000

Corvision
Cortex Corporation

Daisys
S/Cubed, Inc.

Design/IDF & CPN
Meta Software Corp.

22

EasyCase Professional
Evergreen CASE Tools
8522 150th 4th Ave NE
Redmond Washington, 98052

ObjecTool
Object International
8140 N. MoPac 4-200
Austin, TX 78759

OOA-OOD
Windows

ObjectMaker
Mark V Systems

Encino CA
functions

C code generator
Ada code generator
structured methods
20 00 methods

Windows / WindowsNT

OMT Tool
General Electric Advanced Concepts Center

640 Freedom Business Center
PO Box 1561
King of Prussia, PA 19406

POSE
Computer Systems Advisers, Inc.

50 Tice Boulevard
Woodcliff Lake, NJ 07675

functions
DFD
drawings of the diagrams

23

