AD-A II3I?? I Q
Real World Software Engineering
Final Report
Donald Gotterbarn, Robert Riser, and Suzanne Smith -
July 15, 1994 DE;};CTE
U.S. Army Research Office i G
ContractGrant DAAL03-92-G-0411
East Tennessee State University
Approved for Public Release;
Distribution Unlimited
DTIE QUALITY INSPECTED 8
\QO¥
7 94-23818

MERIMRRAG 94 7 26 085

REPORT DCC'JMENTATION PAGE

Form Approved
OMB No. 0704-0188

Bubhe reporting Buraen 10¢ this ccilecion of 'formation 1 estimated to varsqe | hOur DEF EIgONIE. 1NCiuding the tme fof
Q the data n+oded, 2nd compieng m mnewmq the cotiection of infor

snd
COHRCL:0N of IN1ON: ATION, INCILGING Sb° gentions fory

1. AGENCY USE ONLY (Leave Dlank)

er3 Services. Oir

Ty —— S
2. REPORT DATE

_6/31/94

P ————————
4, TITLE AND SUBTITLE

Real World Software Engineering

-

&. AUTHOR(S)

Donald Gotterbarn
Robert Riser

Box 70711

P. 0. Box 12211

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES;

East Tennessee State University
Department of Computer and Information Sciences

e for m'oﬂnﬂm Operations
Davit rghway, Suite 1204, Arington, ‘& 122024302, and to mom« o' Muuqmn and sucqﬂ 'twf 3rk Reduction Project (3704-0188), Washington, OC 20%03.

3. REPORT TYPE AND DATES COVERED

—kinal Report- 28 Sep 92-31 May 94 ‘

S. FUNDING NUMBERS

DAALW3-T12-6-04//

2 30urces,
hwm esumate or w other nm of thn
and Regorty, 1213 jetterson

Johnson City, TN 37614-0711

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES)
U. S. Army Research Office

Research Triangle Park, NC 27709-2211

PERFORMING ORGANIZATION
REPORT NUMBER

10.

ALO 30926 .4 -MA

SPONSORING / MONITORING
AGENCY REPORT NUMBER

————

Pren—————————————
11. SUPPLEMENTARY NOTES

[12a. OISTRIBUTION/ AVAILABILITY STATEMENT

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

126. DISTRIBU

00t

. ————— et~
13. ABSTRACT (Maximum 200 words)

The Real World Software Engineering project involved the development and implementation of a
two-semester undergraduate software engineering course which provides thorough coverage of the
software development process along with realisticand varied project experiences. The course is built
around three projects which differ in several significant ways:size, complexity, team structure,
deliverables, and development methodology. The projects are carefully choreographed to provide varied
teem experiences and allow students to function in a variety of roles and responsibilities.

Coordinated lecture, laboratory, and project activities are provided. A layered approach in which
topics are initially introduced and revisited in increasing depth is utilized in lectures and project
work. Ada is used first as a specification and design tool and later as an implementation language.
Continuous assessment with an emphasis on reviews is utilized in the projects.

Deliverables of the project include an overview of the course, detailed syllabus, an integrated schedule
of lecture, laboratory, and project activities, lectures and associated handouts, laboratories and
associated handouts, methods & materials related to managing and assessing projects.

(RS SooeT Towms

17. Sk CLASSIFICA
OF REPORT

UNCLASSIFIED

Software engineering education

18. SECURITY CLASSWFICATION

OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

19, SECURITY CLASSIFICATION |
OF ABSTRACT

13. NUMBER OF PAGES

/oaz
1 coot

20. UMMTATION OF ASSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescrined by ANS) Ste. 239-18
98102

Broad Agency Announcement (BAA) # 92-25

Category 2
SECTION A

Real World Software Engineering

Technical:

Professors Donald Gotterbarn,
and Robert Riser

East Tennessee State University
Department of Computer

and Information Sciences
Box 70,711
Johnson City, Tennessee 37614-0711
(615) 929-6849,5609
101gbarn@etsu, 01 riser@etsu
FAX: (615) 461-7119

Points-of-Contact

Acceslon For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

0 [P

By

Distribution |

Availability Codes

Avail and/or
Dist Special

gl |

Administrative:

Professor Gordon Bailes

East Tennessee State University
Department of Computer

and Information Sciences

Box 70,711

Johnson City, Tennessee
37614-0711

(615) 929-6958
101baile@etsu.bitnet

v

v
\/
Vit
Vil

Structure of the deliverable

Introduction to this document .
a. Purpose and Goals
b. Technical details about the document
c. Structure of the document
d. Course overview and outline
e. Integrated course structure(matrix of course)
t. Acknowiedgements
Lectures
a. Introduction to lecture forms,
b. Lectures and associated handouts
Labs
a. Introduction to labs
b. Introduction to lab forms
(3 Labs
Projects
a. introduction to projects
b. Selecting a project
c. Management of Teams
i. General Guidelines
ii Peer and Project Evaluation
Managing the Small Project Teams
Managing the Extended Project Teams
i Extended Team Meetings
d. Management of Extended Project
i Scheduling
ii Configuration Management
e. Project ideas
f. Inverted Functional Matrix Team Organization
Case study-
Student assessment
Ada environment-
Resources
a. Software engineering bibliography
b. Ada bibliography
c. Case tools list

Real-World Software Engineering

! INTRODUCTION
8. Purpose and Goels

Based on our experience teaching software engineering, we at East Tennessee State
University are convinced that a one-semester software engineering course cannot
adequately cover all aspects of the software development process and still provide
students with meaningful project experience. Current software engineering course

modeis emphasize either the product or the process [Shaw 91]. These modeis rarely
finish a realistic product or do so by marginal treatment of significant aspects of the life
cycle. For example, while concentrating on implementation details, topics such as
detailed design reviews, configuration management, and maintenance are minimized.

To address this problem, East Tennessee State University is expanding and changing
its undergraduate curriculum in software engineering. Integral to this effort, we are
incorporating into the undergraduate curriculum lessons leamed while developing and
teaching software engineering courses at the graduate level. This proposal was to
develop a two-semester undergraduate course which presents real-world software
engineering. The course provides a thorough coverage of the software development
process with realistic project experience.

The course is designed to present software engineering in a layered approach where
“inter-related topics are presented repeatedly in increasing depth" [Ford 87).
Furthermore, the relationship of software engineering principles to software
development is emphasized by the careful coordination of project and lecture stages
[Shaw 91]. For example, in the first four weeks the students are rapidly introduced to
the fundamental principles of software engineering concurrent with a small project.
During the remainder of the first semester, a thorough examination of analysis and
design and their controlling disciplines is presented. The second semester addresses

the remaining principles of a complete, mature softiware development process
[Humphrey 88].

In order to provide an instructional mechanism and realistic project experience, the
course uses both the "small group project” model and the “large project team”™ model
[Shaw 91]. The first project is a "toy project™ which is fully specified by the instructor.
The management organization for this project is a chief programmer team [Brooks 82].
During this four-week project, the students are also introduced to Ada using a "program
reading methodology” [Deimel 80]. Ada is also used as the specification language.
As the toy project nears completion, a large project for an external client is introduced.
A matrix management organization is used for this project. The first semester takes
this project through Preliminary Design Review. Successful deliverables from this
semester will be used in the second semester. Emphasis is placed on validation
techniques for requirements and design. CASE tools are used to document and

validate the designs.

The second semester has thres major project components. First is the completion of
a large project involving a real client. This project begins with a baselined design
document, specified in Ada, and continues through acceptance testing. The second
major component is multiple small maintenance requests applied to an Ada artifact.
This disciplined approach to maintenance gives the students experience needed by
industry, which is rarely achieved in traditional software engineering courses. Finally,
during a four-week assessment period, various formal methods, metrics, and tools are
applied to the three course projects. In this assessment, both the processes and the
products are evaluated to capture their strengths and weaknesses.

innovations include:

* Ada - first introduced through program reading, then as specification and
design notation, later as an implementation language;

* Industrial Setting - working on multiple teams and team organizations,
working on different sizes and types of projects, assuming different roles,
experience with a variety of CASE tools;

Continuous Assessment - integrated into all project activities using
formal reviews with an emphasis on validation and verification throughout
the lite cycle;

* Closing Assessment Period - a period dedicated to appraising the
strengths and weaknesses of the processes and products discussed and
developed during the course; and

Professionalism - integration of professional, ethical, and legal issues in
accordance with the recommendations of the IEEE/ACM Computer
Society Task Force.

b. Technical details relating to this document

All of the materials used in this course have been formatted in WordPerfect 6.0 for
windows. The entire document can be printed using that software. We have provided
it in this format to enable easy modification and adaptation by anyone using these
materials for teaching software engineering. The only restriction is on the material in
section d below which is from a copyrighted paper. This entire package of materials
is also available in postscript format. Both the wordperfect and postscript versions of

2

this material are availabls from the Defense Documentation Center..

c. Structure of the document.

These materials are designed to be used as a complete two semester course in
software engineering. The materials contained herein can be used either in whole of
in part. For example, most of the projects can be adapted to a one semester course
in software engineering, or a course which uses C++, rather than Ada as the language
of choice. The lectures are self contained, all relevant overheads and handouts are
associated with each lecture. The document is divided up by pedagogical tasks
associated with teaching an extended software engineering course. The tasks include
lectures, development and management of software development projects, assessing
the students work in those projects and their understanding of the course materials,
and tutoring them in the additional languages required to do their projects. Although
the work is divided into sections dealing with each of these tasks, the material in each
of these sections is cross referenced to relevant material in other sections. We have
also included a section on resources available in the summer of 1994,

d. Course Overview

in the development of this course, we presented our research in several forums,
including the Seventh Conference on Software Engineering Education. The description
of the course presented there is appended below.

Real-Worild Software Engineering:
A Spiral Approach to a Project Oriented Course

Donald Gotterbarn and Robert Riser

East Tennessee State University
Johnson City, Tennessee 37604-0711

Abstract. A one-semester course cannot adequately cover the software
development process and still provide meaningful project experience. We have
developed and implemented a tightly- coupled two-semester undergraduate course
which presents, in a spiral form, theory and practice, product and process.
Coordinating the increase in depth of the lectures as topics are revisited
repeatedly, with increasingly demanding projects, constitutes our spiral approach.
Three projects differ in size, complexity, team structure, artifacts provided and
delivered, and development methodologies. The projects are carefully
choreographed to provide varied team experiences and allow each student to
function in a variety of roles and responsibilities. The project framework
provides a series of passes through the software development process, each pass
adding to a body of cornmon student experiences to which subsequent passes can
refer. By the middle of the first semester students, individually and in teams,
have begun accumulating their own "war stories”; some positive, some negative.
This personalized knowledge provides a solid base for more advanced concepts
and classroom discussion.

1 Introduction

Based on our experience teaching software engineering, we are convinced that a one-
semester software engineering course cannot adequately cover all aspects of the software
development process and still provide students with meaningful project experience.
Current software engineering course models emphasize either the product or the process
[Shaw 91]. These models rarely finish a realistic product or do so by marginal treatment
of significant aspects of the life cycle and premature immersion in implementation details.
For example, while concentrating on implementation details, topics such as detailed design
reviews, configuration management, and maintenance are not given adequate attention.

! This project was partially funded by DARPA research grant DAALS3-92-G-
0411.

4

To address this problem, we have expanded and changed our undergraduate curriculum
in software engineering. Integral to this effort we have incorporated lessons learned while
developing and teaching software engineering courses at the graduate level. Moreover,
we integrate graduate software engineering milestone reviews into the undergraduate
software engineering classroom. A DARPA grant enabled us to complete development
and implementation of a two-semester undergraduate course which presents, in a spiral
form, theory and practice, product and process, throughout the tightly coupled two-
semesters; mimicking a real-world software engineering process.

Our course differs from other multi-semester courses in two ways. First, rather than
separating theory and practice into different semesters {Adams 93); we blend them
throughout. Second, rather than mistakenly presenting the software development life cycle
as two discrete pieces, analysis and design in one semester and code and test in the other,
we more accurately model the iterative nature of software development. Our approach
combines a thorough coverage of the software development process with realistic project
experience.

This paper describes our course, related experiences, and lessons leamed during its
development and initial offerings.

2 The Approach

The two-course sequence is designed to present software engineering in a layered
approach where "inter-related topics are presented repeatedly in increasing depth" [Ford
87]. Furthermore, the relationship of software engineering principles to software
development is emphasized by the careful coordination of project and lecture stages {Shaw
91]. The combination of these two techniques, coordinating the increase in depth of the
lectures with more demanding project experiences, constitutes our spiral approach.

The course is built around three projects which differ in several significant ways: size,
complexity, team structure, artifacts provided and delivered, and development
methodologies. The projects are carefully choreographed to provide varied team
experiences and allow each student to function in a variety of roles and responsibilities.

In the first five weeks the students are rapidly introduced to the fundamental principles
of software engineering and, while working in teams, they complete a modest
development project. Despite the introduction of sound software engineering principles,
the simplicity of the project allows student teams to concentrate on the end product rather
than the development process and still achieve a modicum of success.

As the first project nears completion, a second, extended project with a real customer is
introduced. It spans both semesters and requires revisiting concepts in depth that were
merely touched upon in the first project. The large project is also a vehicle to introduce

? The syllabus for the course is included as Appendix A.

5

and utilize new concepts, such as detailed design and configuration management. The use
of a real customer provides an opportunity to study more complex requirements and
exposes students to problems which were not apparent in the small project. The added
complexity, introduced by size, real customer, and intricate requirements, demands the use
of more effective controlling disciplines and increased attention to the software process.

The third project requires the students to perform maintenance on an existing large
software system. To mimic the typical industrial situation, these maintenance tasks are
assigned while the students are still working on the large project. Work on the
maintenance tasks and the large project overlap and they have a common due date. These
tasks provide yet another opportunity to revisit and reinforce significant software
engineering concepts, but this time from a maintenance perspective. Maintenance is
treated as a complete software development task. Students can now understand the
benefits of following good software engineering practices.

Finally, during a four-week assessment period, various formal methods, metrics, and tools
are applied to the three course projects. In this assessment, both the processes and the
products are evaluated to capture their strengths and weaknesses.

3 The Projects

In order to provide an instructional mechanism and realistic project experience we
combine two models from [Shaw 91], the "small group project” and the "large project
team” and supplement this with a set of maintenance tasks and a closing assessment
peri.nd.

3.1 Project 1: The Modest/Toy Project

The requirements are provided and students are expected to specify, design, code, and test
a solution. Toy projects recently used included a bottle and can recycling device, an
automated fire and security alarm system, a kiosk vending machine system and an EMS-
911 telephone exchange.’ The toy project is scheduled for weeks 2 through 6 of the first
semester. Since work must begin quickly, controlling disciplines are imposed upon the
teams with minimum justification at this point. For example, students are immediately
introduced to various lifecycle elements (scheduling, project organization, configuration
management, quality assurance, and verification and validation techniques) by "living
them" but only later are these topics formally addressed in lectures. While the project is
implemented in a language familiar to the student, Ada specifications are introduced in
high-level design.

These projects involve minimal logical complexity so that the students might devote their

3 See Appendix B for some examples of such projects.

6

attention to the details of the design and development of the software. Students are asked
to mimic a waterfall lifecycle. Teams are limited to four to six members each and we
have found that instructors can successfully manage up to three different toy projects.
Keeping track of the details of more than three simultaneous projects imposes a
considerable burden without any benefit. Of course this means that for larger classes
multiple teams will be working independently on the same project. There are some
educational benefits to having several teams attempting the same project.

A democratic team organization is used for toy projects. At this point in the course, the
instructor has inadequate knowledge of individual student's project-oriented skills to be
able to place them in other organizational models. Because each project is relatively
small, students approach it as individuals in an ad hoc fashion. Careful professorial
management is required to minimize this mistake. As a means of tracking progress and
focusing their efforts, a software project management plan (SPMP)*, including scheduled
product reviews and deliverables, is provided. This software project management plan
applies equally well to all of the toy projects.

Due to time constraints, we strongly recommend that the professor serve as the user for
these projects. As the user, the instructor must assume a naivete about computing and
only answer questions from the user perspective. We have found that it is helpful to
declare which role --customer or professor-- is being assumed at any given time (e.g.
during requirements clarification and formal reviews of deliverables). This is necessary
to resist "professorial micro management” of projects. This over-management problem
is further minimized by the involvement of other faculty in roles such as user, customer,
staff, and reviewer.

In order to encourage meeting deadlines, we require regular team meetings. To help
students who have not experienced task oriented meetings, we provide a task oriented
team meeting report form®. We use this form to describe how to control and track tasks.
Completed team meeting reports are required at the beginning of each week and any
common problems are disc:ssed with the class. Later this material is revisited in
discussions of project status reports and assessment techniques.

The team meeting reports also serve as an early waming system for a variety of personnel
problems. Even at this early stage, students sometimes shirk their responsibilities. We
recommend team sizes of six students: if one or two students fail to contribute, or leave
the team, it can still successfully function.

During this project, students are introduced to Ada through a "program reading
methodology” [Deimel 90] using several artifacts developed especially for the course. At
this point Ada is used only as a specification language. We have found John Herro's

‘ A sample modest project management plan is contained in Appendix C.

$ A sample team meeting report form is contained in Appendix D.
7

shareware tutorial, The Interactive Ada Tutor®, to be useful as a self-paced introduction
to Ada. As the toy project nears completion, a large project for a real customer is
introduced.

The deliverables from each team's project include a requirements analysis document, a
system design, the outline of a test plan which is traceable to the requirements, test cases,
meeting reports, and an implemented system.

3.2 Project 2: The Extended Project

Beginning with an initial request from a "real customer”, students are expected to
complete all aspects of 2 solution, from requirements engineering (elicitation, analysis, and
specification) through implementation. This project begins in week five of the first
semester and extends through week eleven of the second semester. Analysis and design,
up through Ada specifications, are completed by the end of the first semester with detailed
design, coding, and testing to follow in the second semester.

Several items introduced in project one are revisited and expanded upon here, including
reviews, controlling techniques, software development standards, Ada as a software
development tool, and development team organizations.

Internal project reviews are emphasized [Bruegge 91]. The SPMP for the extended
project’ requires reviews at appropriate places. For example, students experience for the
first time a formal requirements review in the presence of a customer. The schedule
includes time for them to modify their documents based on the reviews. Students are
uncomfortable reviewing the work of their peers and uncomfortable presenting their work
to peers. We address these two problems in several ways. The reviews are highly
structured by providing the students with general guidelines for a review process and
specifications for the content of preliminary and detailed designs®. We have found that
it also helps to have another faculty member, who is carefully coached to assume an
attitude of constructive criticism, participate in the reviews.

In some cases we have multiple reviews on the same day for teams which have an
obvious vested interest in the other team's work. This interest, even if generated out of
self-defense, guarantees careful prior attention to the material being reviewed. For
example, the preliminary user manual review and the preliminary requirements review are
scheduled for the same day. These reviews also provide ample opportunity for "planned
spontaneity” on the part of the instructor. The multiple review approach insures that other
viewpoints are heard and prompts an apparently spontaneous discussion of viewpoint
analysis and resolution.

¢ Useful introductory Ada tools include: [Herro 88), [Benjamin 91), and [Booch93].

7 A sample project management plan for extended projects is in Appendix E.

® The review guidelines and formats for detailed and preliminary design are contained in Appendix F.
8

A tool to help students overcome their concerns with reviews is an educational materials
package from the Software Engineering Institute. The package includes a video-tape
"Scenes of Software Inspections” and discussion aids. [Deimel 91] In less than 20
minutes, students see several dramatizations of common pitfalls in formal reviews. The
presentation makes the pitfalls and the problems they generate obvious to the students.
Each dramatization is intended to be followed by a discussion of how to avoid these
pitfalls. This discussion reduces anxiety about reviews and develops an appreciation of
appropriate review roles and behavior. The students are required to attend at least one
formal review in our graduate software engineering program.

While Ada was introduced in the high level specification of project one, it is now used
as a requirements specification and design tool. It is also the implementation language
for the extended project. Following our spiral approach, the program reading
methodology is continued. The examples and classroom exercises provided go into
greater depth. In-class discussion of Ada syntax is minimized and there is a continued
reliance on self-paced Ada tutorial materials, laboratory experiences, and the Ada
Language Reference Manual [ANSI/MIL-STD-1815a, 1983].

We now justify the controls which were imposed in the toy project. Recognized
standards, such as DOD, NASA, or IEEE models, are formally introduced and are
required for all project documents and procedures. The size and complexity of the current
project helps students appreciate the importance of all aspects of the standards, both
managerial and technical, in controlling both process and product. The use of accepted
controlling tcchniques is also reinforced.

The project team organization changes dramatically for this project. Rather than multiple
projects with democratic teams, the entire class is organized to work on a single project
and students assume roles on various functional teams, e.g., requirements, configuration
management, testing, design, and programming. Several of these teams start work
immediately following the client request.

New concepts are also introduced in project two, including rigorous controlling techniques
such as configuration management, formal test plans, team walkthroughs and inspections,
a matrix organization requiring inter-team and intra-team communication, verification and
validation, software quality assurance, and requirements elicitation.

Configuration management is enforced. A configuration management plan is developed
by a student selected as configuration manager. This plan is developed and presented to
the class for review.” The revised plan is automated and in place prior to the development
or submission of any other configuration items. From this point on, all documents
submitted for formal review are immediately placed under configuration management and
subsequent modifications must follow the configuration management plan.

The careful selection of a configuration manager (CM) greatly improves the chances for
a successful project. The student selected as the CM is placed in a unique position among

* A sample plan developed by a student is attached as Appendix G.

9

peers. The instructor, like other managers, must provide appropriate support and direction
for the CM.

Because students have little exposure to formal test design and testing methods, we
provide them with a sample test plan. Because the sample test plan is keyed to
requirements and design, we use it to introduce traceability. Most students view testing
simply as code verification. To address this narrow view we require that the test team
begin work on its plan shortly after requirements analysis is underway. The degree of
abstraction of the requirements forces the test team to treat testing as a complete lifecycle
issue.

In addition to revisiting formal reviews, we add required team inspections and
walkthroughs of their configuration items. These processes occur during team meetings.
To give the widest possible range of experiences, the students are required to function in
two different review roles on each team during the semester. Since each student is on two
teams, they experience four different roles.

A significant aspect of this project is our employment of a matrix organization. The class
is organized as a project team working on a single project. This resembles a functional
organization. We make it resemble a matrix organization when we divide the class into
several functional teams, as described above. Each student, with the exception of the CM,
serves on at least two teams [Stuckenbruck 81). The correct allocation of students to
functional teams is critical for project integrity. For example, students should not be on
both the coding and the test team. A critical guideline is that no student be assigned to
two teams which are responsible for validating each other's work. Many teams act as
cross checks on each other during development. For example, if at all possible there
should be a user's manual team which meets independently with the user, while the
requirements team meets with the customer. During the requirements review the user's
manual team can be used to help validate the requirements. Appendix H contains a model
of a matrix organization for a class of fifteen students; a model for a class of twenty-five
students has also been developed.

This methodology has the virtue of placing many students in leadership roles. Because
teams which must communicate directly with each other have no common students, a
higher level of precision is required in inter-teartn communications. They cannot rely on
a student who is on both the sending and the receiving team to clarify document
ambiguities. Although most students function as members of only two teams, they leam
about the functions and products of the other teams through the review process.

The first semester takes this project through preliminary design review. Emphasis is
placed on validation techniques for requirements and design. Successful deliverables,
specified in Ada, from this semester become baseline documents for the second semester.
The second semester begins detailed design and continues through acceptance testing.
The deliverables from the class and teams have included: requirements documents from
the requirements team; test plan and testing report from the test team; configuration
management plan, change report log, system build report from the configuration manager;
preliminary and detailed design documents from the respective design teams; meeting

10

reports from all teams, and an implemented and accepted system.

3.3 Project 3: The Maintenance Project

Another major component of the second semester involves multiple maintenance requests
applied to a large Ada artifact. This disciplined approach to maintenance gives the
students experience needed by industry but rarely achieved in traditional software
engineering courses.

Students perform major maintenance (including corrective, enhancement, and adaptive
activities) on an existing software system. A maintenance configuration management plan
which introduces version control techniques, and a maintenance project management plan
is provided. The maintenance project is scheduled for weeks six through eleven of the
second semester, overlapping the extended project. A variety of maintenance tasks, like
those described by Engle, Ford, and Korson [Engle 89], are assigned. Without guidance
students tend to revert to "code and fix" habits.

A new project organization is introduced here. The students are organized into chief-
programmer teams [Brooks 82]. The choice of chief-programmer is based on our
knowledge of the students’ skills and attitudes demonstrated on the other course projects.
Each team is given responsibility for different maintenance tasks [Callis 91]). These tasks,
applied to a single large artifact, require inter-team communication and stronger change
control, and introduce the problem of maintaining conceptual integrity. This new
complexity provides new challenges to the student CM.

The maintenance project helps students see the utility of controlling techniques during
original development. By equating maintenance and development the students revisit
most of the concepts previously discussed. This third trip through the spiral makes it
easier for them to work with a large unfamiliar artifact. Many students find this
somewhat surprising and rewarding.

3.4 Project Assessment Period

Continuous assessment is integrated into all project activities using formal reviews and
an emphasis on validation and verification throughout the life cycle. In addition, an
extended closing assessment period is dedicated to appraising the strengths and
weaknesses of the processes and products discussed and developed during the course.

This assessment period, based on the final phase of the Design Studio course from
Camegie Mellon's Master of Software Engineering curriculum [Tomayko 91), takes place
during the final four weeks of the second semester. It also incorporates aspects of the
lessons learned document of the NASA software development standard [NASA 86).

Students leam to be constructively critical of their own work and to be realistic about
their plans. The major purpose is to determine to what degree the original project plans
were realized and to discover shortcomings of the software product and, perhaps more

1

importantly, the software process. The assessment includes an analysis of possible
product improvements and a discussion of how to revise the product accordingly.

4 Innovations and Advantages of this Approach

This course provides a commercial-like environment where students work on multiple
teams and team organizations, work on multiple projects, and assume different roles. This
interplay of models accurately reflects what the students will encounter in industry. This
setting is also modeled by using a variety of project types, namely, the "real client” and
the "toy project” described by Bruegge, Cheng, and Shaw [Bruegge 91]. Our projects
collectively meet the standards set forth by Shaw and Tomayko. For example, the large
project has a real customer and a target audience. "A project with a real client is the best
motivator” [Shaw 91]. But this project is only pursued after the students have completed
a smiller project and have been exposed to the proper techniques of software
development. Students will gain programming-in-the-large experiences on the extended
project and on the maintenance project. Acquisition of new domain knowledge, another
standard set forth by Shaw and Tomayko, is required to some extent in all three projects.
Finally, configuration management tools appropriate to each type and size of project are
used [Shaw 91]. These projects provide both a teaching mechanism and realistic project
experience for the students.

Multiple modes of communication are experienced. The democratic model gives the
students experience with a small project and intra-team communication. The matrix
organization gives the students experience with inter-team communication. The
maintenance project requires both of these forms of communication. All of these forms
of communication are needed by the successful software engineer.

ETSU's College of Applied Science and Technology has an ongoing emphasis on written
and oral communication skills. In all work for this course, including reviews, formal
presentations and documents, the students are required to adhere to the standards as
specified in the Language Skills Handbook [AST 90]. Reviews and presentations could
be videotaped for review, development and evaluation.

Ada is used throughout all course activities. This is our students’ first exposure to Ada.
It is introduced early in the first semester using program reading techniques [Deimel 90].
For example, students leamn to read Ada specifications as illustrations of simple designs.
At the same time, Ada's complexities are progressively introduced by reading other Ada
examples. In addition to program reading and extensive use of Ada exunples. students
leamn to write high-level design specifications in Ada. A major objective is to have the
studenumoducemdvalndueamplmm»mﬁmmofnhmmpabyﬂnuﬂ
of the first semester. Students come to view Ada as more than an im

language. During the second semester, the large project is implemented in Ada, and
maintenance is performed on an existing Ada software system. We use Ada Quality and
Style: Guidelines for Professional Programmers [SPC 91] as our Ada style guide.

12

Professional, ethical, and legal issues are integrated into both the lecture and laboratory
components of the course. This is consistent with the recommendations of the
IEEE/ACM Computer Society Task Force. Our model of the industrial setting provides
a context in which to discuss a range of ethical situations not normally encountered in
typical software engineering courses.

S5 Conclusion

We have found this spiral approach to be an effective teaching and leaming tool. The
project framework provides a series of passes through the software development process,
each pass adding to a body of common student experiences to which subsequent passes
can refer. By the middle of the first semester students, individually and in teams, have
begun accumulating their own "war stories”; some positive, some negative. This
personalized knowledge provides a solid base for more advanced concepts.

Acknowledgements

We would like to acknowledge Dr. Suzanne Smith's contribution in the development of
the research grant proposal used to support this work. East Tennessee State University
provided institutional support throughout the project. A special debt is owned to the
software engineering students who survived early versions of this course and helped us
develop a better product. We would like to thank the Defense Advanced Research Project
Office and the Ada Joint Program Office for their support of the improvement of software
engineering curricula and the support by the U.S. Army Research Office.

References

[Adams 93] E. Adams. "Expenences in Teachmg a Project-lntenswe Software Dmgn Course,”

{AST 90] Schx D]
State Umvemty. 1990

{Benjamin 1991] G. Benjamin, Ads 3
McGraw-Hill, Inc,New York, N.Y., 1991

[Booch 93] G. Booch, Software Engineering with Ada, Benjamin/Cummings Publishers, Menlo
Park, CA, Forthcoming.

[Brooks 82] F. Brooks, The Mythical Man Month. Addison-Wesley, Reading, MA, 1982.

13

[Bruegge 91] B. Bruegge, J. Cheng, and M. Shaw, "A Software Engineering Project Course with
a Real Client,” CMU/SEI-91-EM4.

[Callis 91) F.W. Callis and D.L. Trantina, "A Controlled Software Maintenance Project,” Software
Engincering Education, SEI Conference 1991, Pittsburgh, PA, October 7-8, 1991, Springer-Verlag,
New York, NY, pp. 25-32.

(Deimel 90] L.E. Deimel and J.F. Neveda, "Reading Computer Programs: Instructor's Guide and
Exercises,” CMU/SEI-90-EM-3.

[Deimel 91] L.E. Deimel, "Scenes from Software Inspections,” CMU/SEI-91-S.

{Engle 89] C.B.Engle, G. Ford, and T. Korson, "Software Maintenance Exercises for a Software
Engineering Project Course," CMU/SEI-89-EM-1.

[Ford 87] G. Ford, N. Gibbs, and J. Tomayko, "Software Engineering Education: An Interim
Report from the Software Engineering Institute,” SEI-87-TR-8.

[Herro 88) John Herro, The Interactive Ada-Tutor, Software Innovations Technology, 1083
Mandarin Drive N.E., Palm Bay FL. 32905-4706

[Humphrey 88] W. S. Humphrey, "Characterizing the Software Process: A Maturity Framework,"
IEEE Software, March 1988, pp. 73-79.

[NASA 86] NASA Sfw-DID-41, "Lessons Learned Document Data Item Description.”

(Shaw 91] M. Shaw and J. Tomayko, "Models for Undergraduate Project Courses in Software
Engineering,” Software Engineering Education, SEI Conference 1991, Pittsburgh, PA, October 7-8,
1991, Springer-Verlag, New York, NY, pp. 25-32.

[SPC 91] Software Productivity Consortium, Ada Quality and Style: Guideline for Professional
Programmers, Software Productivity Consortium, Hemdon, Virginia, 1991.

[Stoecklin 93] S. Stoecklin, Ada Laboratory Exercises. funded by a Darpa Grant 1993.

[Stuckenbruck 81] L.C. Stuckenbruck, A Decade of Project Management. Project Management
Institute, 1981.

[Tomayko 91] J.E.Tomayko, "Teaching Software Development in a Studio Environment,” SIGCSE
Bulletin, volume 23, number 1, March 1991, pp. 300-303.

14

e. Integrated Course Structure

Three elements need to be carefully integrated to make this course a success.
Lectures to the students about the principles and concepts of software engineering must
be coordinated with their project tasks and the labs must illustrate both lecture materiais
and clarify project tasks. Our model for this integration is illustrated in the matrix below.
The Roman numerals in the first column indicate the semester, the numbers in the lecture
column correspond to the lecture numbers in section Il of this document, the lab numbers
correspond to the lab numbers in section Il of this document, and the configuration items
for the various student items correspond to the configuration items for their projects.
These configuration items are described in section IV d.

Lecture
001 - Intro, syllabus,
policies,overview
I-1 002 - Definitions of SE, software
life cycle, quality, process
I-2 003 - Requirements extraction - 001 - Small project customer Begin Ci-1
what & how request, team organization,
project mgmt plan
I-2 004 - Intro to structured analysis, | 002 - CD, DFD exercise Ci-1
context diagram, DFDs, data
dictionary
-3 005 - Quality standards in 003 - Feedback on CI-1, small | Begin Cl-2
requirements,requirements project CD, DFD, DD
extraction, DFDs
-3 006 - Intro to design 04A - Structure charts Cl-2
I-4 007 - DFDs and DD, structure 005 - CI-3 for small project, Begin CI-3
charts, test plans and Feedback on Ci-2
requirements traceability
-4 008 - Design concepts; 006 - Additional Feedback on CI-3
architectural, behavioral, Cl-2, preparation for design
procedural design review
-5 009 - Testing and test plans 007 - Development of classes
of tests for small project
-5 010 - Ada and design; Ada as a 008 - Design review Cl-4
design notation presentation

15

Lecture

Lab

011 - Software maintenance

009 - Feedback on design
review presentation

012 - Controlling disciplines;
configuration management

010 - Feedback on Ci-5,
zpantionbrmm

013 - Ada and maintenance

011 - Extended project
customer request

014 - Software life cycle models

012 - Extended project team
organization, ,

015 - Requirements elicitation,
analysis and specification

013 - Peer review and
acceptance test /review

016 - Ada as a specification and
maintenance tool

014 - Instructors assessment
of small project,team
assssighments, distribute
SPMP

017 - Requirements standards,
2167A

015 - User project perspective

018 - Team organization and
software quality

0186 - Tasks for configuration
manager, requirements, user
interface, and test plan teams

019 - Examination I-1

(Examination -1, cont)

020 - Returrvdiscuss first
examination; from ERD's to Ada

017 - Presentation/review of
configuration management
plan

021 - Verification and validation

018 - Preliminary requirements
review; Preliminary user
manual, user interface review

022 - Testing

019 - Preliminary test plan
review

023 - More on structured
analysis; process specifications

020 - Requirements review

16

Lab

021 - Steer preliminary design

027 - High level OOD, identifying
objects, Rumbaugh notation

022 - Ada laboratory
environment

028 - Ada packages

023 - Peer review of extended
project through preliminary
design; preliminary design
review

029 - Software quality assurance
and reviews

024 - User manualintertace
and test pian reviews

030 - Review standards, review
checklists

Final Examination |-2

031 - High level design vs
detailed design; Detailed design
deliverable and procedures

025 - Review extended project

specifications and preliminary
design completed in semester

032 - Reuse

026 - reorganize project and
teams

033 - Nassi-Shneiderman
diagrams

027 - Nassi-Shneiderman
diagrams; project teams work

034 - Ada: text YO

035 - Ada: data types

036 - Ada: statements, control
structures
037 - Ada: structured data types

-4

038 - Ada: access data types

028 - Detailed design review

-4

039-Ada procedures, functions,
packages.
040- Ada Generics

029 - Feedback on detailed
design

17

Lecture

041 - Ada: exceptions

042 - Ada: sequential and direct
files

043 - Ada: Tasks

* 860 note

044-Examination 1I-1

045-Review Examination II-1

031 - Maintenance project
description, team organization,
team assignments, assignment
of maintenance 1

* see note

* see note

046 - Use cases

032 - Code inspections

*see note

033 - Maintenance project:
review task 1, assignment of
task 2

034 - Maintenance project:
review task 2, assignment of
task 3

035 - Extended project:
system acceptance test

036 - Feedback, instructors
assessment of acceptance test
and extended project

047 - implementation languages

048 - Project scheduling, work
breakdown structures

-14

049 - Project estimation,
COCOMO

037 - Estimation: function
points wrt extended projects

18

Lab

038 - Individual and small
group analysis of ethical
scenarios

050 - Course assessment
Final Examination (I

* NOTE Meetings during these weeks are used to meet the needs of the extended
project. They can be utilized for the various reviews, individual team
meetings, or project meetings with the entire class.

e. Acknowledgements

The Defense Advanced Research Project Agency and the Ada Joint Project Office
provided the opportunity to undertake this project. We appreciate their interest in and
commitment to undergraduate software engineering education and their continued support
throughout the project. Likewise we appreciate the support of the U.S. Army Research
Office.

This course was developed and tested over several semesters at East Tennessee State
University. The students in these classes played vital roles in helping us develop a better
product. In particular a special debt is owed to the following students for their intensive
efforts during the summer of 1993: Woody Beverly, Darlene Fladager, Mitch Moses, Drew
Picklesimer, Kellie Price, Eugene Price, James Stephenson, and Mike Stiliwell.

Bob Tolbert provided technical assistance and brought consistency to the documentation
of the lectures, laboratories, and supporting materials. Luke Pargiter's expertise and
patience in providing hardware and software support was invaluable.

Finally, we appreciate the institutional support provided by East Tennessee State

University in the form of released time, laboratory facilities and support, administrative
support, and commitment to undergraduate software engineering curriculum.

19

Real-World Software Engineering
" LECTURES
a. Lecture format and lecture forms.

The course, covering two semesters, consisted of formal lectures, discussions,
laboratory meetings during scheduled class meetings and team meetings outside of
scheduled class hours. This section contains the lectures in the order in which they are
given to the class. The two semesters are divided up into two class meetings per week.
The amount of time given to formal lecture during these meetings varied depending upon
the project stage and students understanding of and progress on project deliverables.
Because of difficulties in establishing team meeting times, some class time was devoted
to team meetings. Using class meeting time in this way also offers the teacher an
opportunity to participate in the meetings. Because the projects are the major scheduling
factor in this course, it is important to be flexible in terms of trying to cover two lectures
every week. Project reviews, e.g., requirements reviews, design reviews, and test plan
reviews, are most effective when the entire class participates. These reviews consume
class meeting time. We have found that this course must rely on the students doing the
required readings. Because of the other events which use class time, the student can
not depend on the teacher to cover every concept during formal lecture.

The lecture forms provide most of the structure for a lecture and significant detail
for each lecture. The form starts out with the general topics for the lecture. These are
stated in terms of the concepts that are addressed in the lecture. They are followed by
the instructional objectives of that particular lecture. The objectives are generally stated
in terms of behavioral goals. Both the topics and the objectives can be used in test
construction. The topics can be used to construct concept questions and the objectives
can be used to construct performance questions.

We have used the SET UP, WARM-UP section to provide some connection
between the current lecture and a previous lecture or topic. In some cases, e.g. when
there are several lectures on Ada syntax, we have not provided such a connection.

The CONTENTS section contains the main body of the lecture. The topics are
presented in several paragraphs. The overheads used for that lecture follow the
CONTENTS section. As a topic is described in the CONTENTS section, the related
overhead is named by using both the lecture number and an overhead number,
e.g.,.L230H2. This refers to the second overhead used in lecture 23. The overheads are
formatted for easy duplication. Overheads generally contain examples of the concept
being discussed in the CONTENTS section. They can also contain sample exercises to
be done during class in order to reinforce concepts just discussed. The CONTENTS
section contains answers to the exercises on the overheads. In a few cases, such as the
sample test plan overhead, we have included rather lengthy explanations of the overhead
in the form of instructor notes.

The PROCEDURE section contains subsections on teaching method and
vocabulary introduced. The presumption is that the major teaching method is lecture and
discussion using the overheads and handouts included in the lecture forms. In several
cases we have inciuded some hints at additional discussion or aiternative teaching
methods that we have had success with when covering a particular topic. The vocabulary
introduced can be provided to the student as a review tool.

The RELATED LEARNING ACTIVITIES section list the particular labs which we
have associated with a particular lecture. These labs frequently tie the theoretical lecture
material to the practical concerns of their projects.

There are two sections on readings, one is the assigned reading in the textbooks
we use for the course, and the other is a list of reading on the same topic in other
software engineering textbooks. If we cited the work of another software engineer in the
lecture or overhead material, then a reference to that material is included in the reading
list.

On some occasions, the contents refer to an overhead used in a previous lecture,
e.g., lecture five refers to an overhead from lecture 3. When this happens, the earlier
overhead is also included in the current lecture. Lecture 5§ has an overhead from lecture
3init.

These forms should provide you with an adequate foundation for structuring you
lectures and relating them to the significant experiential elements of this course.

b. Lecture Forms

LECTURE NUMBER: 001
TOPIC(S) FOR LECTURE:

Introduction to cours

1. Learn names of instn..vctor(s). and other students.

2. Learn course format, and course policies.

3. Become familiar with detailed course syllabus.

(How to involve the learner: recall, review, relate)
Try to set tone for the rest of the course. In previous courses you have
covered many aspects of software development (mention specific topics such
as programming, design; mention specific courses). We'll be looking at those
as well as others as we consider software as an gngineered product; some
topics will be completely new, some technical, some non-technical.

Realistic team project experiences will be integrated into the course. Since
the instructor(s) and students will be spending a lot of time together in the
classroom and in your team projects, it is important to get to know one
another and to develop a comfortable working atmosphere.

(Learning Label- Today we are going to learn ...)
Today we want to give a sense of the course; specifically an overview
including how class and project activities will be integrated, the course
format, syllabus, and course policies.

CONTENTS:
1. Introductions
a. Professor(s) introduce themselves and others responsible for
the course.
b. Have the students introduce themselves since they will be

working together on projects.

1 Lecture 001

Approach

This is a two-semester undergraduate software engineering
class that presents a thorough coverage of software
engineering while at the same time providing meaningful project
experiences that mimics a real-world software engineering
process. You will each get to work with several people in a
vaariety of roles on several projects.

We are taking a "spiral approach” to the material presented.
Our first pass through some topics will be exactly that - a first
pass. We intend the depth provided to be sufficient for
application to your first project. Gaps will be filled in during
subsequent passes in the spiral. Similarly there are many
techniques and methodologies for analysis and design but we
need to choose specific ones to apply to the first project in a
timely fashion. So, don't worry that we're moving on to design
and you feel that there are many aspects of analysis that have
not been covered.

The understanding that project activities and class activities will
be carefully coordinated is important. It is also important to
make students aware that factors in the success or failure of
software projects include non-technical problems as well as
technical problems.

Distribute and discuss course policies.

L1HD1
a.

b.
c.

d.

Questi

Course description and typical class format.
Prerequisites.
Textbooks.

Grading policies.

ons from students?

Distribute and discuss detailed course syllabus.
L1HD2

Walk through first week of the sylabus in order to explain all
aspects and notation.

2 Lecture 001

6. Questions from students?

PROCEDURE:

Set tone for course; try to ge}\erate enthusiasm, team concept, opportunities
to gain realistic project experience.
Read D. Gotterbarn and Robert Riser, "Real-World Software Engmaenng A
Spnral Approach to a Pro;ect-Onented Course

, ed Jorge L. Diaz-Herrera,

Springer Verlag 1994 pp 119-151 for a complete understanding of the
structure of this course.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:

handouts:
L1HD1 Course policies
L1HD2 Detailed course syllabus

other:

BELATED LEARNING ACTIVITIES:

3 Lecture 001

COURSE POLICIES

COURSE DESCRIPTION: This is a two-semester software engineering course that
covers all aspects of the software development process while providing
participants with realistic project experiences. Each student will function on
multiple project teams in a variety of roles and responsibilities.

Project and lecture activities will be coordinated. Typical class
meetings will consist of a lecture component and a lab component. The lab
component will include both individual activities and project team activities.

PREREQUISITES: File Processing, Data Structures

TEXT: a) Software Engineering 4th edition, Sommerville
b) Software Engineering with Student Project Guidance, Mynatt
c) Ada Minimanual, Benjamin

GRADING: Tests (2, equally weighted) 40%
Team project 1 15%
Team project 2 25%
Participation: 20%

Includes attendance, class discussion,exercises and assignments,
quizzes on assigned reading, presentation responses

A passing average on gach of the f is required to pass

the course.

Individual project grades will be based on 3 factors: team project grade, peer
review, and instructors’ perceptions of individual contributions.

All deliverables are due at the start of class on the specified due date unless
otherwise stated.

GRADING SCALE: 93 -100: A 77-79:C+ 0-54:F
90 - 92: A- 70-76:C
65 - 69: C-
88 - 89: B+
83-87. B 60 - 64: D+
80 - 82: B- 55-59:D

L1HD1

DETAILED COURSE SYLLABUS

Week One

Topics:
Introduction to course, course objectives, workshop format, grading policies,
and team projects
Introduction to software engineering, quality software, requirements from the
viewpoints of the customer and user, development of abstract and
requirements list from problem specification, and the example
project

Readings for class:
Sommerville Chapter 1 (pp. 1-5)
Mynatt Chapter 1 (pp. 1-27)

Week Two

Topics:
requirements extraction
analysis process
context diagrams, data flow diagrams (DFDs), and data dictionary

Readings for class:

Mynatt Chapter 2 (pp. 44-62 and pp. 70-74)
Sommerville Chapter 3 (pp. 47-63)

L1HD2

Week Three

Topics:

quality standards in requirements

requirements extraction

function-oriented design - more on DFDs and data dictionaries, structure
charts

Readings for class:
Sommerville Chapter 3 (pp. 47 -63)
Sommerville Chapter 10 (pp. 171-188)
Sommerville Chapter 12 (pp. 219-237)

Mynatt Chapter 2 (pp. 44-62)
Mynatt Chapter 4 (pp. 143-156)
Week Four
Topics:

data flow diagrams and data dictionaries
structure charts
requirements traceability

Readings for class:
Sommerville Chapter 12 (pp. 219-234)
Sommerville Chapter 10 (pp. 171-188)
Mynatt Chapter 4 (pp. 143-156)

L1HD2

Week Five

Topics:
testing and test plans
Ada and design notation

Readings for class:
Sommerville Chapter 19 and 22 (pp.378-388 and pp.425-441)
Mynatt Chapter 7 (pp.276-315)
Sommerville Appendix A (pp.607-620)

Week Six

Topics:
software maintenance
configuration management and software quality assurance (SQA)

Readings for class:
Sommerville Chapter 28 (pp. 533-541)
Sommerville Chapter 29 (pp. §51-564)
Mynatt Chapter 8 (pp. 334-340)

Week Seven

Topics:
Ada and maintenance
software life cycle models

Readings for class:
Sommerville Chapter 1 (pp. 5-18)
Mynatt Chapter 1 (pp. 12-27)

L1HD2

Week Eight
Topics:

requirements, requirements specification
Ada as a specification tool and a maintenance tool

Readings for class:
Sommerville Chapter 5 (pp. 85-103)
Mynatt Chapter 2 (pp. 62-83)

Week Nine

Topics:
requiraments standards, 2167a
team organization and software quality

Readings for class:
Sommerville Chapter 3 (pp. 45-61)
Sommerville Chapter 5 (pp. 85-103)

Mynatt Chapter 2 (pp. 62-91)
Mynatt Chapter 1 (pp. 31-42)
Week Ten
Topics:
Examination -1
ERDs and Ada
Readings for class:
None

}equiremems analysis and specification - client requests, definition of

L1HD2

Topics:
verification and validation (V&V)
testing

Readings for class:
Sommerville Chapter 19 (pp. 373-386)
Sommerville Chapter 22 (pp. 425-439)
Sommerville Chapter 23 (pp. 441-454)
Sommerville Chapter 24 (pp. 457-473)
Mynatt Chapter 7 (pp. 274-316)

Week Tweive

Topics:
relationship between requirements and preliminary design, more on structure
charts, transform analysis, transaction analysis, designing data structures,
abstraction

Readings for class:
Sommerville Chapter 2 (pp. 71-82)
Sommerville Chapter 12 (pp. 222-228)

Mynatt Chapter 4 (pp. 62-69)
Mynatt Chapter 4 (pp. 143-169)
Week Thirteen
Topics:

introduction to object-oriented development
coupling and cohesion

Readings for class:
Sommerville Chapter 10 (pp. 182-188)
Mynatt Chapter 3 (pp. 94-130)
Mynatt Chapter 4 (pp. 144-150)

L1HD2

T - Y

Week Fourteen

Topics:

high-level object-oriented design
notation for preliminary design
Ada packages

Readings for class:
Benjamin Chapter 8 (pp. 73-78)
Sommerville Chapter 10 (pp. 177-182)
Sommerville Chapter 11 (pp. 194-236)
Sommerville Appendix A (pp. 810 -613)
Mynatt Chapter 8 (pp 364-368)

Week Fifteon

Topics:

Introduction to software quality assurance
Reviews - walkthroughs and inspections
Review standards and checklists

Readings for class:
Sommetrville Chapter 31 (pp. 589-598)
Mynatt Chapter 2 (pp. 77-79)

Week Sixteen
FINAL EXAMINATION |
Week Seventeen

Topics:
reliability and reuse in detailed design
The relation between detailed and high-level design
detailed design procedures
detailed design deliverables

Readings for class:
Sommerville Chapter 16 (pp. 309-328)
Mynatt Chapter 1 (pp. 77-79)
Mynatt Chapter 3 (pp. 94-138)
Mynatt Chapter 4 (pp. 169-183)
Benjamin Chapters 9 and 12 (pp. 79-85 and 111-117)

10

L1HD2

Week Eighteen

Topics:
Nassi-Shneiderman chart notation
Introduction to Ada
/O in Ada

Readings for class:
Mynatt Chapter 5 (pp. 198-202)
Benjamin Chapter 1 (pp. 1-10)

Week Nineteen

Topics:
Ada data types
Ada statements
Ada structured data types

Readings for class:
Benjamin Chapters 2-3 (pp. 11-28)
Benjamin Chapter 4 (pp. 29-37)
Benjamin Chapter 5 (pp. 39-50)

Week Twenty

Topics:
access data types in Ada
Ada procedures, functions, and packages
Ada generics

Readings for class:
Benjamin Chapter 7 (pp. 63-72)
Benjamin Chapters 6 and 8 (pp. 51-62 and 73-78)
Benjamin Chapter 9 (pp. 79-87)

1

L1HD2

Week Twenty-one
Topics

'axceptions and exception handiers in Ada
sequential and direct files in Ada

Readings for class:

Benjamin Chapter 10 (pp. 89-86)
Benjamin Chapter 12 (pp. 111-117)

Week Twenty-two
Topics:
tasks in Ada
Project mestings * see note
Readings for class:
Benjamin Chapter 11 (pp. 97-109)
Week Twenty-three
Topics:

Examination li-1
Handback and review examination il-1

Week Twenty-four

Topics:
project meetings * see note

Readings for class:
none

Week Twenty-five

Topics:
introduction to use cases
project mestings * see note

Readings for class:
none

12

L1HD2

Week Twenty-six

Topics:
project meetings * see note

Readings for class:
none
Week Twenty-seven

Topics:
project meetings °* see note

Readings for class:
none
Week Twenty-eight

Topics:
implementation languages - project driven choices

Readings for next class:

Mynatt Chapter 5§ (pp. 207-235)
Mynatt Chapter 6 (pp. 239-271)
Week Twenty-nine
Topics:

project scheduling
work breakdown structures

software project management (SPM) - planning, scheduling

COCOMO
code estimation techniques

Readings for class:
Sommerville Chapter 25 (pp. 477-492)
Sommerville Chapter 26 (pp. 495-507)
Sommerville Chapter 27 (pp. 511-533)
Mynatt Chapter 1 (pp. 17-27)

13

L1HD2

Week Thirty
Topics:

professionalism, ethical issues
course assessment

Readings for class:
Sommerville Chapter 21 (pp.407-425)

Week Thirty-one
FINAL EXAMINATION i
* NOTE
Meetings during these weeks are used to meet the needs of the

extended project. They can be utilized for the various reviews,
individual team meetings, or project meetings with the entire class.

L1HD2
14

LECTURE NUMBER: 002

Introduction to soﬂwém engineering, quality software, life cycles, and process
models.

1. Understand software crisis, software engineering, quality software, and
process models.

Realize the reasons leading to a software crisis and the emergence
of software engineering.

Understand the attributes of quality software.

Recognize the different viewpoints in the development of software.

SET UP, WARM-UP:

(How to involve the learner: recall, review, relate)

ool = A

The importance of developing quality software is related in this lecture to the
projects. The students begin thinking about the importance and role of
maintenance in the development of large software systems. The concept of
having a good process by which to develop the products is introduced.

(Learning Label- Today we are going to learn ...)

The introduction of software engineering is related to the students' previous
experience with developing software in other classes. The idea of
programming in the small (previous experience) versus programming in the
large (software engineering) is expressed. Emphasis is placed on the fact
that software development in a real-life situation is a team effort.

CONTENTS:
1. Software Crisis
L20H1
a. The phrase "software crisis" was coined in the late 1960's at a
conference which was addressing the problems of software
development. It refers to a series of problems with software

development practices including: the inability to deliver software within
budget, on schedule, and meeting customer needs.

L20H2
b. Factors contributing to the software crisis are described.

1 Lecture 002

Software Engineering

L20H3

a. In defining "software engineering” one must consider what is meant
by software (the products -- the source code and the internal and
external documentation needed for development, installation,
utilization, and maintenance) and what is meant by engineering (the
process -- the application of a systematic and measurable approach).

L20H4

b. Software engineering is needed for the development of large, complex
software systems that are developed by teams rather than individuals,
that require understanding of the technical and nontechnical aspects
of software development, and that require project management and
effective user interface.

Quality Software

L20H5
a. The primary goal of software engineering is the production of quality
software (i.e., well-engineered software).

L20H6

b. The attributes of quality software are not an agreed upon list of
characteristics. The attributes are often dependent on the point of
view of the person involved (e.g., sponsor/customer, user, maintainer).
It is the developers job to satisfy these multiple perspectives.

Software Development Life Cycle

L20H7

a. The activities required throughout the life cycle of a software system
are divided into stages with each stage having its own set of activities.
The manner, in which these stages are organized, is the process
model. Different organizations of these stages lead to different
process models.

L20H8

L20H9

b. The stages of the waterfall model. Use this opportunity to compare
and contrast the different stages of software development.

L20H10
c. The stages of the prototype model

2 Lecture 002

L20H11

5. Difficulties in Software Development

PROCEDURE:

It is important to touci\ on all the stages of the life cycle here to give
a general overview of software developement. The details of these
stages will be presented in later lectures.

yocabuylary introduced:
software crisis
software engineering
quality software
sponsor/customer

user

maintainer/modifier
process models
requirements
waterfall model
analysis

design
testing

maintenance
prototyping

INSTRUCTIONAL MATERIALS:
overheads:

L20H1
L20H2
L20H3
L20H4
L20H5
L20H6
L20H7
L20H8
L20H9
L20H10
L20H11

Software crisis

Factors that contribute to the software crisis
Definitions of Software engineering

The concerns of software engineering
Characteristics of quality software (Sommerville)
Perspectives on Software Quality (Mynatt)
Software development life cycle
Development Models

Waterfall model

Prototyping model

Difficulties in software development

Sommervilie Chapteﬁ (pp. 1-5)
Mynatt Chapter 1 (pp. 1-27)

3 Lecture 002

Berzins Chapter 1 (pp. 1-3)
Booch Chapter 4 (pp. 27-31)
Booch(2) Chapter 2 (pp. 17 -20)
Ghezzi Chapter 2 (pp. 17-40)
Pressman Chapter 1 (pp. 3-36)
Schach Chapter 3 (pp. 47-70)

Lecture 002

Software Crisis

Problems encountered in the development of
large software systems

Over Budget

Behind Schedule

Failure To Meet Customer Needs

Low Quality

L20H1

Factors Contributing To
Software Crisis

Inability to predict time, effort, and cost in
software development
Poor quality of software

Changes in the ratio of hardware to software
cost

Increasingly important role of maintenance
Advances in hardware and software

Demand for larger and more complex software

L20H2

Definitions of Software Engineering

\

IEEE: the systematic approach to the
development, operation, maintenance,
and retirement of software

Pressman: the establishment and use of sound
engineering principles in order to obtain,
economically, software that is reliable and
works efficiently on real machines.

Fairley: the technological and managerial
discipline concerned with the systematic
production and maintenance of software
products that are developed and modified
on time and within cost estimates. The
primary goals are to improve software
quality and to increase productivity.

Gotterbarn/Riser/Smith: the planning,
development, and maintenance of computerized
solutions to real problems. It encompasses
techniques which treat software as an engineered
product requiring planning, analysis, design,
construction, testing, documentation, maintenance,
and management.

7 L20H3

Software engineering concerned with
Technological and managerial aspects of software
development

Systematic production and maintenance of
software

Developing software on time and within budget
Assuring software quality

Assuring software reliability

Reducing costs

Increasing productivity

Increasing benefits

Software as an engineered product; attention to
process as well as product

8 L20H4

Quality Software

Waell-engineered

Attributes:

1. provides required functionality
should be maintainable
should be reliable

should be efficient

should offer appropriate user interface

o o & © D

should be cost effective

9 L20H4

WIRE CHARACTERISTICS OF QUALITY SOFTVARE
(HHNATr

(SRR

/

Ease of Remembering

Funclionally

Low costs

Ease of Learning

hereosed
Productvit

Flxiblty

| by

Minimum Errors
Good Documentation

ot Coce
o Desig

Ense of use

M / MOFER

10 L20H6

Software Development Life Cycle

The activities involved in the production of a
software system

The development, operation, maintenance, and
retirement of software

Development activities include:
requirements analysis and specificatibns
design
implementation
system testing
installation

maintenance

1 L20H7

Development Models

Ways in which the set of steps in software
engineering are applied

Examples of software process models:

waterfall model

prototyping

12 L20H8

Requirements
definition

Waterfall Model

System and
Software Design

A

Implementation

and unit testing

A

Integration
and system
testing
Operation
and
Maintenance

J

L20H9
13

Prototyping

(Bulute ad \

Refine

Requirements

‘>

Eagineer
Product

JJ

14

L20H10

Difficulties in
Software Development

Communications

Sequential nature of system development
Project characteristics

Characteristics of personnel

Management issues

15 L20H11

LECTURE NUMBER: 003

Requirements Analy.sis and Specification
The importance and the difficulty of requirements extraction
A method for doing requirements extraction

1. Understand the difficimy of gathering and specifying requirements
2. Do a preliminary requirements abstraction
3. Develop a requirements list

SET UP. WARM-UP:

(How involve learner: recall, review, relate)
In your other courses, such as data structures, you were given detailed
descriptions of the tasks your program was supposed to perform.
Sometimes the overall structure of the program was also provided for you.
Given such clear descriptions, you were optimistic about your ability to
quickly write programs which fit the guidelines of those program descriptions.
This is not the way most programming tasks really start. Suppose one of
your friends asked you to help her develop a program which she was writing
for a friend. What would be the first thing you would ask about the program?
(List several of the responses on the board. What you are looking for is --
What is the program supposed to do? or What are its functions?) The
answer to this question about functions is often given in what is called a

bl fication of & client I

(Learning Label- Today we are going to learn ...)
Today we are going to look at such a request as it might be made by
someone who wants a computer system developed for them. We shall see
how difficult it is to arrive at those problem descriptions. These problem
descriptions are the basis for the program descriptions which you take for
granted. From this problem description we will start to develop a list of the
desired functions. This list is sometimes called a gsystems requirement list.

CONTENTS:

1. Introduce the concept of a problem specification

a. Give class examples of preliminary problem specifications, e.g.,
"Build a house for me which will hold my children”, "Write a
program which will control the temperature in an incubator for
premature children”, "Build a dream house for your parents --
money is no object", "Describe a centralized college registration
system.”

1 Lecture 003

Discuss the problems with such specificaticns and discuss why each
difficulty occurs.

Vagueness , insufficient detail - the client assumes a familiarity
with the problem domain which you don't have.

Ambiguity - can be caused by 2a, or client is not aware of other
possibilities, or the problem can be described from multiple
perspective. People are not used to communicating at the
required leve! of precision.

Incomplete - functions are missing because they were not
thought of and combinations of conditions were not considered.
Instability of description -problem descriptions vary over time

because of changing conditions.

Discuss the role of a professional software engineer in
attempting to resoive these difficuities.

The goal of requirements extraction is to solve these problems by
completely defining the problem space--WHAT is required. A first step
is to separate out all of the functionality in the original request.

Extracting all of the functions in the client request helps one
identify the problems in the original request. The functions can
be recorded in a system requirements list which later become
part of a Software Requirements Specification (SRS).

This results in a complete description of the gxternal behavior
of the product. This initial list of the external behavior of the
system needs to be refined by removing the difficulties of 2a-
2e. This refinement require communication with and
participation of the client.

Hints for developing a requirements list.

In order to better understand the product, try to visualize it in
action.

List "what a product does" rather than "how it does it.”

Understand the domain in which the product operates.

2 Lecture 003

d. Look for functional requests by analyzing the client request for
verbs.

5. Distribute the Preliminary Client Request for the KoFF System.

L3HD1
a. Read through it with the class.

b. Ask them how they would go about building the system and
direct the discussion toward building a requirements list.

c. Begin to identify functions by working through the first two
paragraphs looking for verbs and other indications of what the
system does. Write some of the requirements for these
identified functions.

L30OH1
d. Show them the preliminary requirements list for KoFF and
discuss its imperative structure.

e. Discuss the adequacy of this list. Sample problems are
contained on the instructor's copy of the preliminary
requirements list. In discussing the requirements, lead the
students toward the need for testable requirements. (One
technique is to divide the class into groups and have each
group review the adequacy of this list and report their findings
to the class as a whole.)

6. Discuss multiple viewpoints of this system.

a. The customer is satisfied with many aspects of the system,
e.g., the customer is pleased that the user is charged for a
tape even before it is dispensed.

b. The user is unsatisfied with many aspects of the system, e.g.,
there is no person the user can talk with about the system.

PROCEDURE:
teaching method:

Lecture/discussion on initial concepts was followed by working through
the Preliminary Client Request for a video rental system. A discussion
of the completeness and consistency of the client request was
followed by a discussion of a Systems Requirement List. This can

3 Lecture 003

also inciude a small group exercise. In discussing the requirements,
lead the students toward the need for testable requirements.

customer(has the money)

problem space

problem specification

requirements

software requirements specification(SRS)
viewpoints (customer, user, etc.)

INSTRUCTIONAL MATERIALS:
overheads:
L3OH1 Preliminary requirements list - KoFF video rental system

handouts:
L3HD1 Preliminary client request-video rental system

(labs and exercises)
LABOO1
Cl 1, for small project requirements list is an exercise on this subject.

The KoFF preliminary client request for a video rental system can be used
as an in-class or take home exercise. Have the students fill in the missing
details in the narrative and discuss the results in class; then have them
develop a complete requirements list from their revised client request.

Sommerville Chapter 3 (pp. 47-63)
Mynatt Chapter 2 (pp. 44-49) and (pp. 70-74)

Berzings Chapter 2 (pp. 23-75)
Ghezzi Chapter 2 (pp. 20-29)
Pressman Chapter 6 (pp. 173-177)
Schach Chapter 8 (pp. 137-153)

4 Lecture 003

-

KoFF Preliminary System Requirements

1 KoFF shall accept membership application
information which includes name,
address, social security number and
charge card information.

2 KoFF shall validate charge cards and
generate unique RRR club numbers, both
of which shall be recorded along with the
membership applications.

3 KoFF shall charge applicants the
membership fee.

4 KoFF shall, upon request from a current
club member, display a list of available
video tapes.

5 KoFF shall verify that member's card has
not expired.

6 KoFF shall dispense the selected video
tape to a valid club member.

7 KoFF shall bill the customer the fee for
the dispensed video tape and retain the
membership card.

5 L30OH]1

]

10

11

12

13

14

KoFF shall accept returned video tapes
and return the membership card after
billing for any late fees.

KoFF shall make automated phone calls
when video tapes are five days late.

KoFF shall void all cards when a tape is
ten days late and make appropriate
charges.

KoFF shall print membership cancellation
letters.

KoFF shall dispense sale tapes and issue
a charge to customer's account.

KoFF shall print rental tracking information
every two weeks.

KoFF shall print membership information
on request.

6 L3OH1

Client Request

Mr. Richard wants a computerized automated video cassette rental system which
will be housed in unstaffed kiosks. These kiosks can be free standing in mall
parking lots or can be placed in enclosed shopping malils. This device, KoFF (Kiosk
of Famous Flicks), will accept applications for membership in Mr. Richard's Rapid
Rental club (RRR), display titles of available tapes, dispense tapes, accept returned
tapes, and take care of billings. It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a
keyboard attached to the kiosk. This information will include a current charge card
number and an approval to automatically charge that card for selected items
including a membership fee of $ 10.00. Customers will be notified of membership
in RRR by mail and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their
charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer
can see a list of the available tapes by category by inserting one of their
membership cards into the kiosk. The customer can select an available tape and
rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk.
When a tape is returned to the tape-in slot, its bar code will be scanned, the
customer will automatically be charged appropriate late fees and the membership
card will be returned. Failure to return the tape within five days of its due date
generates a phone call to the customer which plays a recorded message about the
overdue tape and the accruing late charges. When the 10-day late limit is reached,
the customer is charged for the late days and the cost of the tape. The customer
is also charged a tape restocking fee and all of his’fher membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this
process. Videos which have not been rented for two weeks are listed for removal
and videos which have been rented several times in a week are listed for additional
copies. Every two weeks KoFF sends Mr. Richard's computer a copy of this report.
He decides which tapes to add and which to remove. He updates the list of titles
and records the quantities of those titles along with their identifying bar codes. He
also assigns the rental price for that titie. Sometimes instead of replacing a slow
moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of
the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental
activity of RRR members by tape title and tape category -- Adventure, Comedy,
Children, Restricted, the rental activity of particular titles and copies of that titie, and
detailed and summary financial reports of RRR member accounts.

7 L3HD1

10.

11.
12.
13.
14.

KoFF Preliminary System Requirements List

KoFF shall accept membership application information which includes name,
address, social security number and charge card information.

KoFF shall validate charge cards and generate unique RRR club numbers,
both of which shall be recorded along with the membership applications.

KoFF shall charge applicants the membership fee.

KoFF shall, upon request from a current club member, display a list of
available video tapes.

KoFF shall verify that member's card has not expired.
KoFF shall dispense the selected video tape to a valid club member.

KoFF shall bill the customer the fee for the dispensed video tape and retain
the membership card.

KoFF shall accept returned video tapes and return the membership card after
billing for any late fees.

KoFF shall make automated phone calls when video tapes are five days late.

KoFF shall void ail cards when a tape is ten days late and make appropriate
charges.

KoFF shall print membership cancellation letters.
KoFF znall dispense sale tapes and issue a charge to customer's account.
KoFF shall print rental tracking information every two weeks.

KoFF shall print membership information on request.

8 L3HD1

KoFF Preliminary System Requirements
(instructor's notes)

This exercise is designed to illustrate the difficulty of abstracting requirements. it shows the
importance of iteration. Several of the items in the requirements list above are incomplete.
They do not meet even the explicit conditions of the customer request. Some of the missing
requirements are listed below. A good exercise is to have the students fill in the missing
requirements. Several of the requirements in the list are deliberately ambiguous and others
are vague. Have the students resolve the ambiguities and remove the vagueness. Notice that
none of the requirements talk about response time for example. There are several unstated
requirements of the system. The client request does not even deal with how a customer can
renew their membership. There is some opportunity for a discussion of professionalism,
because the question of exception conditions is not even touched in the client request and not
addressed in the requirements list. A discussion about the professional's responsibility to
produce a quality system is useful here. What is the professional’s responsibility to help design
a more effective system? The requirements do not address non-system problems such as
damaged tapes nor do they address detection of fraud such as the return of empty tape boxes
or the return of tapes boxes with blank tapes in them.

When developing DFDs and Structure charts this exercise can be easily partitioned into
customer management, tape management, financial management and system reporting
segments. The concept of design partitioning can be related to design modularity in later
discussions.

The example also provides an opportunity for the discussion of some ethical issues. RRR
members are having detailed information about their rental habits retained by the system. Is
this a violation of their privacy rights? The system does not need to associate the member's
names with the rental of a video. The management of the system only requires capturing
information about the frequency of rental of a particular video. Is capture of this information
consistent with the ACM Code of Ethics and Professional Conduct section 11?

The requirements list below includes some of the missing requirements.

1. KoFF shall accept membership application information which includes name, address,
social security number and charge card information.

A telephone number is also needed to call delinquent accounts.

2. KoFF shall validate charge cards and generate a unique RRR club numbers, both of
which shall be recorded along with the membership applications.

KoFF shall record the expiration date and other charge card information.
KoFF shall produce three membership cards with membership information and print

letters of acceptance for new members. or KoFF shall print the order to make and mail
the cards and acceptance letter.

9 L3HD1

10.

1.
12.

(How does KoFF process applications from members who have been rejected for not
returning tapes within the ten-day grace period?)

KoFF shall charge applicants the membership fee.

KoFF shall, upon request from a current club member, display a list of available tapes
and their rental price.

KoFF shall verify that member's card has not expired.
KoFF shall do ?what? if the card is expired.

KoFF shall dispense selected tape to a valid club member.
(How are tapes stuck in the dispensing chute handled?)

KoFF shall require the selection of a rental (a charge) duration.
KoFF shali bill the customer the fee for that video and retain the membership card.

KoFF shall accept returned tapes and return the membership card after billing for any
late fees.

provided the card has not expired during the rental.

KoFF shall not dispense tapes to members whose cards are within 10 days of
expiration. (if card expires during rental period then there is no way to charge for an
unreturned tape.)

KoFF shall make automated phone calis when tapes are five days late. (What is the
content of that call?)

KoFF shall void all cards when a tape is ten days late (Is this count based on ten 24
hour units or on ten calendar days?) and make appropriate charges. (Because cards
are voided, no one can access the system to return a tape which is eleven days late.
What happens if they put the tape in the tape-in siot? Does the system keep the tape
it already charged the customer for, or does it retum the tape to the customer?)
KoFF shall capture all voided cards when they are entered.

KoFF shall print membership canceliation letters.

KoFF shall dispense sale tapes and issue a charge to customers account.

KoFF shall return the card with the sale tapes.

KoFF shall display sale tapes when requested by a member.

10 L3HD1

13. KoFF shall print rental tracking information every two weeks.
14. KoFF shall print membership information on request.

11 L3HD1

12

i s 1 TR T TR
<,

L3HD1

LECTURE NUMBER: 004

Introduction to the structured analysis model.
INSTRUCTIONAL OBJECTIVES:
1. Understand the concept, notation, and relationships between:
a) context diagram,
b) data flow diagrams, and

c) data dictionary.
2. Construct a context diagram from a narrative description of a system.

3. Construct a first-level data flow diagram from a narrative description
of a system and a context diagram.

4, Construct data dictionary items for the data flows and data stores in
the context diagram and data flow diagrams.

5. Understand the concepts of leveling and balancing in data fiow
diagrams.

(How involve learner: recall, review, relate)

Recall our earlier discussions of the various activities/phases involved in
software development and your work on developing a requirements list for
your projects. What you've been involved in is defining the problem to be
solved. Requirements analysis and specification (or just analysis) involves
defining the problem. In general, analysts ask "what" type of questions; what
is the problem to be solved; what is needed; what do you want the system
to do. Analysts extract requirements and then they specify them (write them
down). Common sense tells us that we have to define a problem before we
can solve it; that forging ahead without fully understanding the problem isn't
an effective approach, particularly with complex problems. Only when the
problem has been analyzed (defined and specified) does it make sense to
start considering how to solve it, i.e., consider design. Designers ask "how"
type of questions; how are we going to solve the problem.

1 Lecture 004

e - sy e — v wer em s

(Leaming Label- Today we are going to leam ...)
Today we're going to look at some methods for modeling a system in order
to urderstand it and to develop and clarify requirements. Specifically we're
going to look at structured analysis.

CONTENTS:

1. Hand out narrative description of small college book ordering exampile.
L4HD1

b.

Give class a few minutes to read it.

Suggest visualizing system "in action® and imagine what
(physical) inventory cards, department book requests, books
needed file, book order form, and order list might look like.
Show overheads of these to clarify and assure that everyone
understands the system.

i Inventory card L40OH1
i Book request L4OH2
i Books needed file L40OH3
iv Book order form L4OH4
v Order list L4OHS

2. Context diagram (CD)
L4OH6
Use CD for small college book ordering exampile to introduce purpose,
concept, notation, and vocabulary related to CDs.

a.
b.

C.

CD is the first level of the structured analysis model.
CD defines system scope; boundaries.

CD shows pet flows of information into and out of the system.
The notation for a net fiow is a vector pointing in the direction
of the flow.

CD shows external entities (source,sink); things outside the
system with which the system must interact. The notation for
an external entity is a rectangle. Mynatt calls a context
diagram a high-level data flow diagram.

2 Lecture 004

Data dictionary (DD)

L4OH7

Use DD for small college book ordering example to introduce purpose,
concept, notation, and vocabulary related to DDs.

a.

All data flows in CD will be described in the data dictionary. As
with word entries in a normal dictionary, DD items are arranged
in an easily retrievable order (alphabetical) and provide a
detailed definition of the item.

Discuss entries from the example to explain notation and
relationship between the CD and DD.

Review Mynatt's DD conventions. L40OH8

Based on sample CD and DD, recap how CD and integrated DD
convey items above. Note that the CD views the system from the
outside.

Data Flow Diagrams (DFDs)

a. Now that we understand the boundaries of the system and how
it interacts with external entities, we can look inside the system.
That is, we can begin considering what is needed to transform
the net inputs into the net outputs. The next level of modeling
is the first-level DFD.

L4OH9

b. Use DFD for small college book ordering example to introduce

DFD purpose, concept, and notation, and the relationship
between the CD, DD, and DFD.

i Transform (process, function) - transforms input flows
into output flows. Each transform name should describe
the purpose of the transform and consist of an action
verb and object. The notation for a transform is an oval,
circle, or rounded rectangle.

ii Data flow - data in motion. Each data flow must appear
in the data dictionary. Each data flow must be labeled
unless it is going to or from a data store and the label
would be the same as the data store name. Dataflow
names are always nouns.

iii Data store - data at rest. Data repository; place where
data stored; represents a time delay. Each data store
must also appear in the data dictionary. Data store
names are always nouns.

3 Lecture 004

iv Very briefly introduce the concept of leveling by
suggesting that we could focus on a particular transform
of the first-level DFD and draw another DFD (a child
diagram) representing what goes on inside that
transform. Introduce parent-child diagram concept.

v It is important to adopt some consistent naming and
numbering notation in order to easily move between
different levels of DFDs. Describe convention for
numbering diagrams and transforms in diagrams.

vi A transform that cannot to be broken down any further
is called a primitive transform.

There are two methods to get a first draft of a first-level DFD
using a context diagram:

i create an event list (an event is something to which the
system must respond). For each event, construct a
transform representing the system's response to the
event; then connect the transforms adding appropriate
internal data flows and data stores.

ii construct a transform to receive each of its input data
flows and a transform to produce each output data flow.

Note that these are simply ways to get started by identifying
transforms. Use the context diagram L4OH6 to illustrate
method ii. You should derive a DFD with four transtorms: Get
department requests, Buy used books, Receive new books,
and Generate book order form. This model is not yet
complete and does not mode!l the problem. You need to refine
this model in several ways. Possible refinements include
adding some internal data flows and data stores to aliow
transforms to interface properly, combining, adding or
eliminating transform to more accurately reflect the system.
The result will look something like L4OH9.

llustrate the concept of leveling and establishment of a
consistent numbering/naming convention, by decomposing the
replenish books transform. Discuss the parent/child
relationship of CD and different levels of DDs.

llustrate and give a brief introduction to the concept of
balancing between DFD levels, including both data balancing
and functional balancing.

Physical model vs logical model

Physical model - implementation dependent; useful in depicting

4 Lecture 004

existing system. Point out that our model of the small college

book ordering system is a physical modeil.

b. Logical model - implementation independent; useful in
requirements analysis and specification. Point out that during
analysis we want to avoid implementation details and develop
a logical model of the system.

PROCEDURE:
teaching method:

The small college book ordering example is used to introduce the concepts,
notation, and vocabulary of context diagrams, data flow diagrams, and data
dictionary. The class is given a few minutes to familiarize themselves with
the requirements followed by a short discussion to assure that they
understand the system and can visualize it in action. A CD, then a DD, and
finally a first-level DFD for the system are provided and explained.

structured analysis

context diagram

external entities, source, sink
data flows

data dictionary

data flow diagrams
transform, process, activity
data store

leveling

parent/child diagrams
balancing

data balancing

functional balancing

event, event list

physical model, logical model

INSTRUCTIONAL MATERIALS:
L4OH1 Small College book ordering: inventory card
L4OH2 Small College book ordering: Book request
L4OH3 Small college book ordering: Books needed file
L4OH4 Small College book ordering: Book order form
L4OHS5 Small College book ordering. Order list
L4OH6 Context diagram - Book Order System
L4OH7 Data dictionary notation examples
L4OH8 Data dictionary conventions

5

Lecture 004

—_—— o D L e L e - v v v

L4OHS 1st Level DFD - Book Order System

handouts
L4HD1 Small college textbook ordering example

(labs and exercises)
The small college book ordering system can be used for in-class and lab
exercises to reinforce concepts, vocabulary, and notation for CDs, DDs, and
DFDs.

Lab002 is an exercise on CDs and first level DFDs.
Mynatt Chapter 4 (pp. 44-62)

Berzins Chapter 3 (pp. 109-112)
Ghezzi Chapter 5 (p. 161)
Pressman Chapter 7 (pp. 208-211)
Schach Chapter 7 (pp. 162-170)

6 Lecture 004

EXAMPLE - SMALL COLLEGE BOOK ORDERING

The following describes how the bookstore at a small private coliege manages the
ordering of textbooks.

The bookstore maintains an inventory card for each course in the college
catalog. Each inventory card contains the title, author, and publisher of the
textbook currently used. It also contains the number of the textbooks that
are already in stock.

Midway through the spring semester, each academic department provides
the bookstore with textbook information for each course they will be offering
in the next academic year. The information provided is title, author, and
publisher of textbook to be used, and the expected course enroliment, if
known.

The bookstore then creates a Books Needed File containing the title, author,
publisher, and number needed (expected enroliment minus the number in
stock) for each book to be used in the next academic year.

During the last week of the spring semester the bookstore will buy books
from students if the Books-Needed-File indicates a need. Of course, each
time a used book is purchased, appropriate updates are made in the
bookstore's records.

Over the summer the bookstore prepares an Order-List containing the title,
author, publisher, and number to be ordered for each book that is still
needed. The Order List is then used to create an individual Book Order
Form for each publisher. These Book Order Forms are sent to the
publishers.

7 L4HD1

~ Small College Book Ordering System

Inventory Card

Course:
Textbook title:
Author:
Publisher:

Number in Stock:

L4OH1

Small College Book Ordering System
Book Request

Course:

Textbook Title:
Author:
Publisher:

Expected Enroliment:

9 L4OH2

Small College Book Ordering System

BOOKS NEEDED FILE

NUMBER
AUTHOR PUBLISHER NEEDED

{one entry for book to be used next year}

10 L4OH3

Small College Book Ordering System

{one entry for each book to be ordered)

1

L4OH4

Small College Book Ordering System

BOOK ORDER FORM

Publisher:

Book Title

12

cx .y

L4OHS5

Academic
Departments

Context Diagram
Book Order System

13

L4OHe6

Data Dictionary Notation Examples

Book Request = Course + Title + Author +
Publisher + [Expected
Enroliment]

Course = Department + Course Number

Course Number = 1|2|3]| + { digit },

Digit = 1]2|3|4|5|6|7|8|9|0

Department = School Code + Department Number

Inventory Card = Title + Author + Publisher +
InStock

An inventory card is maintained for each
course in the college catalog.

Inventory File = { Inventory Card }

Order List ={Title + Author + Publisher + Quantity}

14 L4OH7

Data Dictionary Conventions

is equivalent to / is comprised of

+ AND / together with

| either-or
[] one or more optional elements
{} iterations of

{ } upper limit

{ } * lower limit

' literals

Comments may be added to a data dictionary.

16 L4OH8

Get

Department

Requests

1st Level DFD

Book Order System

I

Book Request

Establish

Order

16

Book Needs

L40H9

LECTURE NUMBER: 005

Quality standards in requirements

Requirements extraction using the video rental example

Development of DFDs using an analysis of system inputs and outputs
Balancing and data dictionaries

INST \'4
1. Recognize and correct problems in a requirements list.
2. Develop DFDs from a requirements list.
3. Determine if DFDs are balanced.

(How involve Iearner': recall, review, relate)
As you lea®ned in your laboratory requirements project (Lab001) to develop CI-1,
it is not easy to generate a complete and effective requirements statement.
(Display the preliminary client request.) L3HD1
What sort of thing does this request fail to do? (Discuss some of the obvious
failings of the request, such as, the failure to get a client phone number or the
failure to say what should be done when clients insert an expired card into the
system).

(Learning Label- Today we are going to learn ...)
Today we are going to learn how applying some standards of quality requirements

helps to clarify the desired functionality of a system and how we can move from
a requirements list to data flow diagrams.

CONTENTS:
1. Present standards for quality requirements. Refer to failure of the
Preliminary Video Rental (KoFF) Client Request to meet these standards.
a. Requirements should be testable.
b. Requirements should be specific.

c. Requirements should be feasible.

1 Lecture 005

LSHD1

Handout and display the Revised Client Request and work through each of
the changes characterizing why they were made and how they relate to the
above standards.

The addition of a time limit for transactions introduces specificity and
testability. However, the time limit cannot apply to things outside the
system. This presages the use of DFDs and context diagrams to
help clarify what is outside of the system.

The addition of charge card type and date is needed ior the system
to later validate the card.check later.

The inclusion of a requirement for more detailed customer
information leads to a more specific testable requirement.

Because it is not feasible to print reports at the kiosk, report
information must be transmitted outside the kiosk.

This is a good time to consider whether the software developer is
responsible for leaving something out of the system that the user did
not disclose to him. In some cases the developer would not
otherwise have any knowledge that an item would be needed and in
other cases the developed might know of useful additions to the
system. Briefly discuss ethics issues and the developer's
responsibility here.

LSHD2
Display the revised requirements list showing how the changes in the Client
Request are reflected in the requirements list.

A good example of ambiguity is the 10-day late penalty. Until the
word calendar was added to requirement 10 from the preliminary
requirements(L.30H1) (Now requirement 15) it was not clear whether
the requirement referred to calendar dates or 24-hour clock periods.
Note that this problem is pervasive. Refer to additional examples,
e.g. Sommerville reading.

How do you generate DFDs from a requirements list?

LSOH1
Also discuss the inputs and outputs to the system and develop a list
from the students; then show overhead

L50OH2

2 Lecture 005

PROCEDURE:

Using the input-output list show them how to generate a context
diagram(Mynatt). Do only part of the list on the board and then
show the complete context diagram. Relate each of the inputs and
outputs back to the requirements list. Note how some inputs may be
merged under a single label and this is only revealed by use of a
data dictionary. Membership application is a good example of this.

LSOH3

Talk about the major functions of the system -membership control,
tape control, billing, and report generation - as the initial transforms
of the DFD. Show the level one DFD.

L5SOH4
Show the next level of the Manage Membership transform as an
example of leveling.

Revisit the concept of balancing

i Ask why the inputs and outputs for member management in
diagram 1 do not match the inputs and outputs for member
management in diagram 0. This shows that the verification of
balancing depends on the data dictionary.

ii Reintroduce the concept of a data dictionary showing them
the entry for "Application” LSOHS which consists of several
elements.

iii Explain to students that there are several reasons for dividing
up complex data flows. These reasons include reference to
some elements which may be classified or privileged
information, or some other process may only look at one
element

teaching method:

Lecture on initial concepts is followed by working through the Preliminary
Client Request for a video rental system. An interactive discussion of the
completeness and consistency of the client request is followed by a
discussion and development of DFDs.

feasible
leveling
testable

specificity
INSTRUCTIONAL MATERIALS:

overheads:

3 Lecture 005

L3HD1 Preliminary client request-video rental system

L50OH1 System input and output list

LSOH2 Context diagram-video rental system

LSOH3 Level zero DFD-video rental system (Manage Membership)
L5OH4 Level one DFD - video rental system (Manage Membership)
LSOHS Example data dictionary entry from KoFF DD

LSHD1 Revised client request for KoFF automated video rental system
LSHD2 Adjusted requirements list for KoFF video rental system

BELATED LEARNING ACTIVITIES:
(labs and exercises)

Lab003 - Building the CD, DFDs, and DD for the small project is an exercise
on this subject.

Sommerville Chapter 3 (pp. 47-63)
Mynatt Chapter 2 (pp. 44-62)

4 Lecture 005

Client unest

Mr. Richard wants a computerized automated video cassette rental system which will be
housed in unmanned kiosks. These kiosks can be free standing in mall parking lots or
can be placed in enclosed shopping malls. This device, KoFF (Kiosk of Famous Flicks),
will accept applications for membership in Mr. Richard’s Rapid Rental club (RRR), display
tittes of available tapes, dispense tapes, accept returned tapes, and take care of billings.
It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a keyboard
attached to the kiosk. This information will include a current charge card number and an
approval to automatically charge that card for selected items including a membership fee
of $ 10.00. Customers will be notified of membership in RRR by mail and will receive
three RRR movie rental cards and a unique personal identification number. Membership
expires on the expiration date of their charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer can
see a list of the available tapes by category by inserting one of their membership cards
into the kiosk. The customer can select an available tape and rental duration. They will
be charged for it and the tape will be dispensed from the tape out slot. Their card will be
retained until the tape is returned to that kiosk. When a tape is returned to the tape-in
slot, its bar code will be scanned, the customer will automatically be charged appropriate
late fees and the membership card will be returned. Failure to return the tape within five
days of its due date generates a phone call to the customer which plays a recorded
message about the overdue tape and the accruing late charges. When the 10-day late
limit is reached, the customer is charged for the late days and the cost of the tape. The
customer is also charged a tape restocking fee and all of his/her membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this process.
Videos which have not been rented for two weeks are listed for removal and videos which
have been rented several times in a week are listed for additional copies. Every two
weeks KoFF sends Mr. Richard's computer a copy of this report. He decides which tapes
to add and which to remove. He updates the list of tities and records the quantities of
those titles along with their identifying bar codes. He also assigns the rental price for that
titte. Sometimes instead of replacing a slow moving tape, he simply drops its rental price
or tries to sell it. Sale tapes are indicated on a special screen. When a customer selects
a sale tape, a record of the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental activity
of RRR members by tape title and tape category -- Adventure, Comedy, Children,
Restricted, the rental activity of particular titles and copies of that title, and detailed and
summary financial reports of RRR member accounts.

S L3HD1

10.

11.
12.
13.
14.

KoFF Preliminary System Requirements List

KoFF shall accept membership application information which includes name,
address, social security number and charge card information.

KoFF shall validate charge cards and generate unique RRR club numbers, both
of which shall be recorded along with the membership applications.

KoFF shall charge applicants the membership fee.

KoFF shall, upon request from a current club member, display a list of available
video tapes.

KoFF shall verify that member's card has not expired.
KoFF shall dispense the selected video tape to a valid club member.

KoFF shall bill the customer the fee for the dispensed video tape and retain the
membership card.

KoFF shall accept returned video tapes and return the membership card after
billing for any late fees.

KoFF shall make automated phone calls when video tapes are five days late.

KoFF shall void all cards when a tape is ten days late and make appropriate
charges.

KoFF shall print membership cancellation letters.
KoFF shall dispense sale tapes and issue a charge to customers account.
KoFF shall print rental tracking information every two weeks.

KoFF shall print membership information on request.

6 L3HD1

KoFF Preliminary System Requirements
(instructor's notes)

This exercise is designed to illustrate the difficulty of abstracting requirements. It shows the
importance of iteration. Several of the items in the requirements list above are incomplete.
They do not meet even the explicit conditions of the customer request. Some of the missing
requirements are listed below. A good exercise is to have the students fill in the missing
requirements. Several of the requirements in the list are deliberately ambiguous and others
are vague. Have the students resolve the ambiguities and remove the vagueness. Notice that
none of the requirements talk about response time for example. There are several unstated
requirements of the system. The client request does not even deal with how a customer can
renew their membership. There is some opportunity for a discussion of professionalism,
because the question of exception conditions is not even touched in the client request and not
addressed in the requirements list. A discussion about the professional's responsibility to
produce a quality system is useful here. What is the professional’s responsibility to help design
a more effective system? The requirements do not address non-system problems such as
damaged tapes nor do they address detection of fraud such as the return of empty tape boxes
or the return of tapes boxes with blank tapes in them.

When developing DFDs and Structure charts this exercise can be easily partitioned into
customer management, tape management, financial management and system reporting
segments. The concept of design partitioning can be related to design modularity in later
discussions.

The example also provides an opportunity for the discussion of some ethical issues. RRR
members are having detailed information about their rental habits retained by the system. Is
this a violation of their privacy rights? The system does not need to associate the member's
names with the rental of a video. The management of the system only requires capturing
information about the frequency of rental of a particular video. Is capture of this information
consistent with the ACM Code of Ethics and Professional Conduct section 1?

The requirements list below includes some of the missing requirements.

1. KoFF shall accept membership application inforrnation which includes name, address,
social security number and charge card information.

A telephone number is also needed to call delinquent accounts.

2. KoFF shall validate charge cards and generate a unique RRR club numbers, both of
which shall be recorded along with the membership applications.

KoFF shall record the expiration date and other charge card information.
KoFF shall produce three membership cards with membership information and print
letters of acceptance for new members. or KoFF shall print the order to make and mail

the cards and acceptance letter.
(How does KoFF process applications from members who have been rejected for not

7 L3HD1

10.

11.
12.

13.

returning tapes within the ten-day grace period?)
KoFF shall charge applicants the membership fee.

KoFF shall, upon request from a current club member, display a list of available tapes
and their rental price.

KoFF shall verify that member’s card has not expired.
KoFF shall do ?what? if the card is expired.

KoFF shall dispense selected tape to a valid club member.
(How are tapes stuck in the dispensing chute handied?)

KoFF shall require the selection of a rental (a charge) duration.
KoFF shall bill the customer the fee for that video and retain the membership card.

KoFF shall accept returned tapes and return the membership card after billing for any
late iees.

provided the card has not expired during the rental.

KoFF shall not dispense tapes to members whose cards are within 10 days of
expiration. (If card expires during rental period then there is no way to charge for an
unreturned tape.)

KoFF shall make automated phone calls when tapes are five days late. (What is the
content of that call?)

KoFF shall void all cards when a tape is ten days late (Is this count based on ten 24
hour units or on ten calendar days?) and make appropriate charges. (Because cards
are voided, no one can access the system to return a tape which is eleven days late.
What happens if they put the tape in the tape-in slot? Does the system keep the tape
it already charged the customer for, or does it return the tape to the customer?)
KoFF shall capture all voided cards when they are entered.

KoFF shall print membership cancellation letters.

KoFF shall dispense sale tapes and issue a charge to customers account.

KoFF shall return the card with the sale tapes.

KoFF shall display sale tapes when requested by a member.

KoFF shall print rental tracking information every two weeks.

8 L3HD1

14. KoFF shall print membership information on request.

9 L3HD1

DFD Preparation

System inputs:
Member's name and address.
Member's phone number.
Member's charge card data.
Membership card information.
Membership card.
Tape selection.
Rental duration.
Returned Tape

Internal processes:
Generate card numbers.
Validate card. |
Retain expired cards.
Not process cards within 10 days of expiration.
Void all cards of those who transgress the lateness limit.

System outputs:
Membership acceptance information.
Membership billing to charge company.
Available rental videos to the monitor.
Videos for sale to the monitor.
Sale and rental tapes.
Membership card.
Mr. Richard's financial reports.
Dispensed tape
Dunning phone call
New member letter

10 LSOH1

KoFF Automated Video Rental System

Context Diagram
- CHARGE |
estion | |
7ol v” 5 COMPANY
, 0
"Mud.,. » .’@’ J
epeasy ; 7‘) ¢ 4
‘ — M.‘”
Movie request 1ot
IK'.’USTOMER Tatepar> KoFF |
| Returned tape Ny
Nong
eall — “‘g"
)
w"“"'m‘ % MR.
% iRICHARD

" LSOH2

KoFF Automated Video Rental System
Diagram 0

Membership
Applieation

Memborship
Fee Charge

GENERATE

REPORTS
3
MANAGE
MEMBERSHIP
Member
or
Member
MEMBER r T
Invalid card # INFO Chdrges
. PERFORM
é i CUSTOMER
ratd /7 BILLING
] i s 4

Dispensed mombership card MANAGE
€ TAPE Charge
Returned tape lNVENzTORY R T Ceafirmoyen
. ‘\ TAPE
List of reat . INFO
Sales tapes .
MoemBership Movh N
ot >
e b Card Infe Tape

12 L50H3

KoFF Automated Video Rental System
Diagram 1

ENROLL
MEMBER
11
INVALIDATE
MEMBER
13
GENERATE
MEMBERSHIP
NUMBERS
g 12 My,
?‘ b,
e

13

L5OH4

Data Dictionary:

Application = Name + Address + Phone number +
Charge card type + Charge card
number + Card Expiration Date.

Address = Street-address + City-State +
Zipcode.
Name = First Name + Last Name.

14 L50H5

REVISED* Client Request

Mr. Richard wants a computerized automated video cassette rental system which will be
housed in unmanned kiosks. These kiosks can be free standing in mall parking lots or can be
placed in enclosed shopping malls. This device, KoFF (Kiosk of Famous Flicks), will accept
applications for membership in Mr. Richard's Rapid Rental club (RRR), display titles of available
tapes, dispense tapes, accept returned tapes, and take care of billings. It will also maintain
reports of rental transactions. To assure customer satisfaction, all transactions with the
customer should take place Iin less than 80 seconds.

One becomes a member of the club by entering membership information on a keyboard
attached to the kiosk. This information will include a current charge card number type and
expiration date and an approval to automatically charge that card for selected items including
a membership fee of $ 10.00. Customer information will also include customer's name,
mailing address and telephone number. Customers will be notified of membership in RRR
by mail from Mr. Richard’s office and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer can see a
list of the available tapes by category by inserting one of their unexpired membership cards
into the kiosk. Expired cards are captured by KoFF. Customers with more than 10 days
to expiration can continue to interact with KoFF. The customer can select an available
tape and rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk. When a tape
is returned to the tape-in slot, its bar code will be scanned, the customer will automatically be
charged appropriate late fees and the membership card will be returned. There is a hardware
device that determines if the correct tape was returned undamaged. Failure to return the
tape within five days of its due date generates a phone call to the customer which plays a
recorded message about the overdue tape and the accruing late charges. When the 10-day
late limit is reached, the customer is charged for the late days and the cost of the tape. The
customer is also charged a tape restocking fee and all of his/her membership cards are
invalidated. KoFF shall transmit membership cancellation letters to Mr. Richard's
computer. KoFF shall capture all invalidated cards. The customer is notified of this.

The selection of videos must be updated. KoFF keeps information to help in this process.
Videos which have not been rented for two weeks are listed for removal and videos which have
been rented several times in a week are listed for additional copies. Every two weeks KoFF
sends Mr. Richard's computer a copy of this report. He decides which tapes to add and which
to remove. He updates the list of titles and records the quantities of those titles along with their
identifying bar codes. He also assigns the rental price for that title. Sometimes instead of
replacing a slow moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of the sale is
made, the tape is dispensed and the membership card is returned.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental activity of
RRR members by tape title and tape category ,i.e., Adventure, Comedy, Children, Restricted,

15 LSHD1

the rental activity of particular tities and copies of that titie, and detailed and summary financial
reports of RRR member accounts.

* Bold items reflect revisions

16 LSHD1

3.
4,

KoFF Adjusted Requirements list
KoFF shall accept membership application information which includes name,
address, social security number and charge card information. A telephone
number is also needed to call delinquent accounts.

KoFF shall validate charge cards and generate a unique RRR club numbers, both
of which shall be recorded along with the membership applications.

KoFF shalil record the expiration date and other charge card information.

KoFF shall transmit the order to make and mail the cards and acceptance
letter to Mr. Richard's computer.

(How does KoFF process applications from members who have been rejected for not
returning tapes within the ten-day grace period?)

5.
6.

7.
8.
9.

KoFF shall charge applicants the $10 membership fee.

KoFF shall, upon request from a current club member, display a list of available
tapes and their rental price.

KoFF shall verify that a member's card has not expired.
KoFF shall retain the card if the card is expired.

KoFF shall dispense a selected tape to a valid club member.

(How are tapes stuck in the dispensing chute handied?)

10.
1.

12.

13.

14.

15.

KoFF shall require the selection of a rental (a charge) duration.

KoFF shall bill the customer the fee for the selected video and retain the
membership card.

KoFF shall accept returned tapes and retumn the membership card after billing for
any late fees, provided the card has not expired during the rental.

KoFF shall not dispense tapes to members whose cards are within 10 days
of expiration. (If card expires during rental period then there is no way to
charge for an unreturned tape.)

KoFF shall make automated phone calls when tapes are five days late. (What
is the content of that call?)

KoFF shall void all cards and make appropriate charges when a tape is ten
calendar days late. (Because cards are voided, no one can access the system
to return a tape which is eleven days late.)

17 LSHD2

16.
17.
18.

19.
20.
21.

22.

KoFF shall capture all voided cards when they are entered.
KoFF shall transmit membership canceliation letters to Mr. Richard’s computer.

KoFF shall dispense sale tapes and issue a charge to customer's account within
1 minute of the start of the transaction.

KoFF shall return the card with the sale tapes.
KoFF shall display sale tapes when requested by 28 member.

KoFF shall transmit rental tracking information for two-weeks activity when
requested by Mr. Richard.

KoFF shall transmit membership information upon request from Mr. Richard.

Bold items reflect revisions.

Parentheses indicate questions for class discussion on potential weaknesses in the
requirements.

18 LSHD2

Distinguish between analysis and design.

Identify key design goals.

Know the general inputs and outputs of design.

Understand the purpose and notation of structure charts.
Understand fan-in, fan-out, coupling, and cohesion as structured
design criteria.

Lol o

SET UP, WARM-UP:
(How involve learner: recall, review, relate)

During the first class we discussed the different activities in the software kfe
cycle and some modeis of the ife cycle. Some aspects of design hsve been
touched upon in introductory programming classes, and possibly some other
courses. Some areas of the topic will either be covered in more depth and
other areas are new material.

We are taking a "spiral approach” to the material. Our first pass through
some topics will be exactly that - a first pass. We intend the depth provided
to be sufficient for application to your first project. Gaps will be filled in
during subsequent passes in the spiral. Similarly there are many techniques
and methodologies for analysis and design but we need to choose specific
ones to apply to the first project in a timely fashion.

(Learning Label- Today we are going to leam ...)

L20H8 L6OH1 LEOH2
Iin our second lecture we considered various activities of the software kfe
cycie. The waterfall model shows the stages of software development. We
have discussed requirements analysis and you have experienced this in your
small projects. Today we are going to introduce the concept of design and
how it relates to requirements.

CONTENTS:
1. What is design?
a. Whereas analysis defines the problem space,i.e., what needs

are to be met, design considers how 1o soive the problem; how
to meet the requirement.

1 Lecture 008

Design involves establishing the overall system architecture;
the components and the relationship between the components

Identifies how to meet the specified requirements subject to the
stated goals and constraints. Point out how customer goals
(non-functional requirements) can lead to different solutions.

L60OH3
Preliminary design is the identification and selection of major
system components and how they relate. (A black box view.)

L6OH4

Detailed design is a refinement of preliminary design in which
the internal aspects of the components and the interfaces are
detailed. (A white box view.)

in practice, we jterate between requirements analysis and
design. Realistically there is often not the clean break between
these activities that is implied by the life cycle. Typically it is
not possible to completely specify the system and proceed to
design knowing the requirements are stable.

L6OHS

Key design goals. Design is intended to soive the custopmers
needs. Other important aspect of design that are frequently
forgotten relate to both the developer and the customer.
Software should be designed so that it is easily testable and
has components that can potentially be revised. Designing with
future maintenance in mind is also important.

Structure charts

Discuss the analogy of structure charts to architectural
blueprints for a house. These are design documents; produced
after the requiraments have been determined. The blueprints
show the architecture of the house: the components (rooms,
heating system, plumbing, etc) and the relationship between
the components.

Structure chart is one way to depict a software design.

L6OHSE

Note notation and information conveyed:

i Components (modules) represented as rectangles

ii Purpose of each component is conveyed in its name.

ili Interfaces between components (data couples, control
couples) are show as vectors with labels. Data couples

2 Lecture 006

start with an open circle and end with an arrowhead.
Control couples start with a filled-in circle and end with
an arrow head. (Mynatt pg 152)

iv Hierarchy (make analogy with organization chart)
showing who calls who, who reports to whom. As a
familiar analogy, use segments of school's organization
chart depicting President at level-1, and VP's at level-2.
Take VP-Academic Affairs down to Dean level, chair
level, and faculty level. As precursor to fan-in/fan-out,
without using the terms, ask questions such as: What
would you think about the organization if there were 37
vice-presidents reporting to the president? If there was
1 dean reporting to a VP? If there was a lower level
function that was called upon by many different
functions at higher levels?

Design measures/criteria (use L60OH6)

Fan-in - A component's fan-in is the number of higher level
components that call upon it; its bosses. (Caiculate Normal
Deductions has fan-in of 2.)

Fan-out - A component's fan-out is the number of components
that it calls upon its immediate subordinates. (Issue pay checks
for all employees has a fan-out of 4.)

Coupling is a measure of dependency between components.
A design goal is to minimize coupling by eliminating
unnecessary dependencies. Intuitively, loosely coupled
components are desirable because their independence makes
them more maintainable and have a greater chance of being
reusable.

Cohesion is a measure of the internal strength of a component;
of how well the elements within a component contribute a
single well-defined purpose. A design goal is to maximize
cohesion. Intuitively, highly cohesive components are
desirable. Analogies with familiar team and team concepts are
useful here. For example, athletic teams that are cohesive (all
of members work well together; often teams with lesser talent
are more successful than teams with greater talent).

Note that strong cohesion and loose coupling are related; they
have an inverse relationship. Minimizing coupling (the
dependencies between components) will result in more
cohesive components. Conversely, improving (increasing level
of) cohesion will reduce (improve) coupling.

3 Lecture 006

4, There are many different design strategies and methodologies: for
example, structured design methods and object-oriented design
methods. While we will be talking about some general design
principles, we will use structured design in the first project and thus
will be adopting some specific structured design notation and method.

PROCEDURE:

teaching method:

The intent at this point is to briefly introduce design in general and structured
design in particular. A sample structure chart for a familiar type of system
is used as a vehicle to describe the notation to be used and how to use it in
design. Ask the students, near the end of the lecture, how the structured
mode! helps in achieving the design goals identified in 1g above.

yocabulary introduced:
design

preliminary design
detailed design
general design goals (maintainability, reusability, ease of testing)
structured design
object-oriented design
structure chart

fan-in

fan-out

coupling

data couples

control couples
cohesion

INSTRUCTIONAL MATERIALS:
overheads:

L20H8 Waterfall model!

L6OH1 Software requirements analysis
L60OH2 Software specifications

L6OH3 Preliminary design

L60OH4 Detailed design

L6OHS Key design goals

L60OH6 Example structure chart

handouts:

(labs exercises)
Lab004 Discussion questions aimed at verifying understanding of the

content and notation of structure charts are heipful. For
example, provide a structure chart similar to that in OH5 and

4 Lecture 006

ask about the hierarchy, interfaces and coupling between
particular

modules, fan-in and fan-out for specific modules, and
cohesiveness of specific modules.

Sommevilie Chapter 10 (pp. 171-189)
Sommerville Chapter 12 (pp. 219-237)
Mynatt Chapter 4 (pp. 143-156)

Ghezzi Chapter 4 (pp. 61-115)
Pressman Chapter 10 (pp. 315-359)
Schach Chapter 10 (pp. 289-331)

5 Lecture 006

Software Requirements Analysis

Input

Client request

Process

Identify customer needs

Output

Software requirements document

6 L6OH1

Software Specifications

Input
Software requirements documents
Process
Analyze and refine software
requirements into testable
specifications
Output

Software specifications document

Test plan/test procedures

7 LeOH2

Preliminary Design

Input

Software specifications document

Process

Generate a software architecture to
satisfy the specifications

Output

Preliminary design document

8 L60OH3

Detailed Design

Input

Preliminary design document
Process

Refine each module in the preliminary

design into detailed logic

Output

Detailed design representation

9 L6OH4

Key Design Goals

Maintainability

Reusability

Ease of testing

10

L6OHS

Example Structure Chart

SR
PAY CHECKS
JOR ALL
EMPLOYEES Baployes

Wember

CALCULATE
NET PAY
FOR HOURLY
WORKER

GROMS PAY
TOR HOURLY
WORKER

1

L6OHE

LECTURE NUMBER: 007

Data flow diagrams ‘and data dictionaries
Structure charts and data eoupling
Requirements traceability

INSTRUCTIONAL OBJECTIVE(S):

1 Recognize and correct problems in data flow diagrams(DFDs).
2 Develop data dictionaries for DFDs.

3. Develop structure charts.

4 Understand relationship between test plans and requirements.

(How involve learner: recall, review, relate)

(Write "WAYCY" on the board.) In some of your other programming classes
you are given a program specification and are expected to immediately start
coding. This method of software development has unfortunately become a
software development methodology and has led to the acronym WAYCY --
Why aren't you coding yet?. As we have seen with the video rental system,
a clear understanding of the system to be developed requires an iterative
process. Recently we developed a DFD for the video rental system. Are we
ready to code yet? (Display the context diagram for KoFF LSOH2.) There
are still many questions that can be asked about the video rental system we
are using as an exampie. Does this diagram represent the needed detail
to build the video rental system? What is the information needed in
"Membership application"? To determine that information we need to know
the content of this data flow. This requires the development of a data
dictionary and the development of an overall system architecture for the
system.

(Learning Label- Today we are going to learmn ...)
Today we are going to learn how the data dictionary is related to the analysis
of requirements in a data flow diagram and how it is related to the
development of a system structure chart, which is one possible
representation of a system architecture.

CONTENTS:
1. Review the iterative nature of the software development process and
discuss how changes made later in a system are more difficult to
correct and more error prone.

L50H3

2. Digplay the first-level DFD for the video rental system. Ask them if the
diagram is a complete and correct representation of the system.

1 Lecture 007

LSHD2

Select requirements one at a time and trace it through the
DFD. The completeness can be examined by checking the
requirements list and the data dictionary.

L7HD1

Correctness can be evaluated only when the system is clearly
specified. Hand out a complete data dictionary and examine
several entries. Review the format adopted for this class for a
data dictionary L4OH7, L4OHS8)

Another way to see if you clearly understand a system is to design a
structure chart for it.

a.

A structure chart is not tied to a particular type of computer or
programming language. I is a high-level design of the system
showing the system architecture.

There are many methods for deriving structure charts. One is
to divide the system into its major tasks. Show the first level
of the structure chart L7OH1. Be sure to specify that this is
just one version of a structure chart.

Discuss how "Enroll Members" and "Select Tapes" on the
structure chart gather the major inputs to the system. Show
how the major intemal processing, including the dispensing and
accepting of tapes, has been relegated to a single process.

The concentration of internal processing in one component (3.c above)
can be used to introduce some issues about design including
complexity and testing.

Ask the students if having a single component doing all the
internal processing is a good design. You are looking for them
to be concerned about the complexity and the possibility for
error.

Discuss the concept of a central transform and how to reduce
complexity. Redisplay the first-level DFD for the video rental
system (LSOH3) and ask them where most of the information
transformation takes place(Manage Tape inventory). Discuss
how the complexity might be reduced by separating out
functions. Return to the discussion of the structure chart as a
way to determine how to remove some complexity.

2 Lecture 007

5. Work through the lower levels of the structure chart and review the concept
of data coupling.

Work through the "Enroll Members" structure chart. L70H2
Use the data dictionary to determine what information needs to
be passed to each component. Explain how this approach
enables a clear division of labor. The goal of the "Enroll
Members" component is to do one thing; to develop and pass
the "new member letter" to the rest of the system.

Do a high level examination of the "Select Tapes" component.
Show overhead L7OH3 which just lists the sub-components of
"Select Tapes". Use this to reinforce the concept of passing a
data item to the rest of the system by tracing a members
request for a tape into the lower levels of the structure chart.

Carry the concept of passing information to the rest of the
system to the discussion of "Manage Tape Inventory”. Would
the complexity of "Manage Tape Inventory” be reduced if it
didn't really transform anything but was simply a switch for data
going to and from other processes? Display the "Manage Tape
Inventory” overhead L70H4 and work through the Late
Processing component.

6. Introduce the notion of testing at this stage of the life cycle.

PROCEDURE:

Test plans can be developed which are related to the
requirements list. Test plans should contain details on specific
tests to be conducted, tests can then be traced to certain
requirements at any point in the software development life
cycle. This is called requirements traceability. = And
requirements can then be traced to specific tests.

Testing can be designed which is directly related to the
structure chart. Even before any coding is started, tests which
specify the interface requirements between system components
can be specified and added to the test plan.

teaching method :

Discuss the details of video rental DFD by asking questions which
require the use of the data dictionary. Then present a method for
building structure charts by dividing a system into inputs, processes,
and outputs.

3 Lecture 007

TR TR T T T R AR TS AT TN AT O rRT TR e I AT RV IR TR T TR e T .
. A H ! Ay i R ‘

yocabulary introduced:
completeness

cormectness
requirements traceability
data coupling

test plan

INSTRUCTIONAL MATERIALS:

qverheads:

L5SHD2 Revised Requirements List

LSOH4 Context diagram-video rental system
LSOHS Level one DFD-video rental system

L70H1 Top-level structure chart-video rental system
L70H2 Structure chart for enroll members

L70H3 Structure chart for select tapes

L70H4 Structure chart for manage tape inventory

handouts:
L7HD1 video rental system data dictionary

(labs and exercises)
Lab 005 Cl 3, for small project is an exercise on this subject.

Sommerville Chapter 12 (pp.212-234)

Berzing Chapter 3 (pp. 109-114)
Ghezzi Chapter 7 (pp. 394-400)
Pressman Chapter 11 (pp. 367-391)
Schach Chapter 10 (pp. 291-209)

4 Lecture 007

 STRUCTURE CHART

L70H1

TR ki SHERAE 8 b S CUaciy it S S Ay SR TR ST W N > Sl ToWIRLTTN =
fa i 2 F oA k;

ENROLL NEW MEMBERS

ﬁ,f_i-f-"'_'f
{
== === |7
m%%n’ TADATE etd
MEMDEMSER s ’u’:.m
] Sl
T e B & |
I
|
6 L70H2

SELECT TAPES
STRUCTURE CHART

 woom et
| —
Gt I
B . L
= T
| | DEPLAY L
|| men ST fuuw e g
] N
R0
e | | emex | | Sito
CARD m AND
m

L70H3

MANAGE TAPE INVENTORY
STRUCTURE CHART

MANAGR
TARE
INVENTORY

RETURN DISPENSE LATE | UPDATE
TAPES TAPES PROCESSING | DveNToRy |

CANCEL

) % "%m

GINERATE
INVALIDATE
NUMBER CANCELLATION

8 L70H4

Data Dictionary for KoFF Example

access number = digit + digit + digit + digit
bar code = { digit }*°
billing confirmation = not ok | ok + confirmation number

billing data = member card number + unique personal identification number
+ charge amount

blank = ' ' * blank character *
box number = { digit }°,

cancellation letter = customer name + customer address + member card
number

category = Adventure | Comedy | Children | Restricted

cents amount = digit + digit

charge amount = dollar amount + '.' + cents amount

charge card number = { digit }'°,,

charge card # = charge card number

charge card type = American Express | Discover | Master Card | Visa
charge confirmation = not ok | ok + confirmation number
city = { letter }**

confirmation = ok | not ok

confirmation number = { digit }'°,,

customer address = street + city + state code + zip code
customer confirmation = not ok | ok + confirmation number
customer name = { letter }*

customer validation = charge card type + charge card number + expiration

L7HD1

date
day = digit + digit
dispensed membership card = * returned membership card *
dispensed tape = * returned tape *
digit = 0j1]2|3|4|5|6|7(|8]9
dollar amount = {digit}*,
duration = digit + digit
expiration date = month + '/ + day + '/ + year * last two digits only
invalid card # = member card number

letter = A|BIC|D|E|F|G[H|I|JIK|LIMINIO|PIQIRISIT|U|VIWIX|Y|Zlalbicidlelfig|h]
ililklliminiolplqirisitjulviwixly|z|olank

list of rental tapes = { movie info } * display selectable tapes to rent *
list of sales tapes = { movie info } * display selectable tapes to buy *
member card number = digit + digit + digit + digit + digit
member info = charge card type + charge card number + expiration date +
customer name + customer address + telephone number +
unique personal identification number + member card number
+ member status
member number = member card number + unique personal identification number
member status = valid | invalid
membership application = charge card type + charge card number + expiration
date + customer name + customer address + telephone
number
membership card = * physical card in system *
membership fee = charge amount

membership fee charge = charge card type + charge card number + expiration
date + membership fee

L7HD1
10

month = digit + digit

movie info = movie name + bar code + category + movie rating + quantity +
transaction type + price

movie name = { letter }

movie rating = G | PG | PG-13 | R | NC-17 | X

movie request = movie name + transaction type + [duration]

new member letter = customer name + customer address + unique personal
identification number + member card number +
expiration date

prefix = digii + digit + digit

phone call = * call to customer about late tape *

price = charge amount

quantity = digit + digit

rental info = member card number + movie info

reports = * see KoFF description for this information *

returned tape = * tape brought back into KoFF *

sales info = member card number + movie info

state code = letter + letter

status change = member card number + invalid

street = street number + street name | 'P.O. Box' + box number

street name = { letter }*,

street number = { digit)°,

tape charges = charge card type + charge card number + expiration date +
charge amount

tape selected = bar code

telephone number = prefix + access number

L7HD1
11

transaction type = rental | sale

unique personal identification number = { digit)%,

year = digit + digit

zip code = digit + digit + digit + digit + digit [+ digit + digit + digit + digit |

L7HD1
12

LECTURE NUMBER:008

General concepts of design
Architectural design
Behavioral design
Procedural design

INSTRUCTIONAL OBJECTIVE(S):

1. Recognize different classifications of design.
2. Understand different design stages.
3. Recognize different design techniques.

(How to involve learner: recall, review, relate)

Once we have developed a complete set of requirements we have to
transition from the question of what is wanted -- the solution space-- to an
analysis and presentation of how we can achieve what the client wants. This
process is called "Design" and it has several stages, just as requirements
has several stages. Sommerville characterized design as "... a creative
process which requires experience and some flair on the part of the
designer."(page 176) Although there is some creativity required, the
transition from the problem space to the solution space is a major step which
requires some significant preparation and is accomplished in a series of
stages.

(Learning Label- Today we are going to leam ...)
Today we are going to take a broad look at design and divide it into some
manageable stages.

CONTENTS:
1. The design stage of the life-cycle.

a. The product of design shows how a system can meet the
user's needs as specified in the requirements. Whereas
analysis defines the problem, the design shows how to solve
it. The design is the basis for the implementation. Part of this
design product is the user interface.

L8OH1

b. The goals of design have many similarities to the goals of
requirements development: clarity, completeness, correctness,
functionality, and continued usability. The design must be
feasibility from both a technical and a practical perspective.

1 Lecture 008

Design is a multi-staged process in the software development
life cycle. The first stage of design - High Level or Preliminary
Design - identifies the major component of a system and the
relations between them. The second stage of design - Low
Level or Detailed Design describes the internal characteristics
of these components. Low level design also develops utility
components of the system. Explain the ambiguity in "Design".
it is both a process consisting of High level and low level
design and a product of the life cycle which is used for
implementation.

All implemented systems which have any longevity will have to
change. A standard of well-designed software is its ease of
maintainability. Parnas smphasized "Design for change!" as
a mark of quality design.

When we design we should think of potential multiple
applications of software. We add to Parnas' standard for
quality "Design for reuse”.

L8OH2
2. There are three distinct components of software design.

a.

Architectural design - definition of the software structure;
components and their relationships. This step requires a clear
choice of how the system will be decomposed into components,
e.g., modules in structured design, objects in object-oriented
design. When decomposing into components, considerations
include:

i design goals: modularity, low coupling

ii functional considerations: major system tasks

i data storage activities

iv major system objects

Shows the environment and its interfaces, and constraints.

Behavioral design - a description of the way a system responds
to specific inputs. This is a picture of the state a system will
adopt given a description of the system's current state and its
current input. A good example of state transitions is an
elevator. If an elevator is on the floor above you and you press
the up button. The elevator changes to the moving down state.
If the elevator is on a floor below you, then pressing the same
up button causes the elevator to change to the moving-up
state. This shows how the same input can result in two
different outputs.

2 Lecture 008

3.

c. Functional design - a system as a set of entities performing
relevant tasks, and decomposed into relevant components.
This view includes a description of the tasks performed by each
entity and the interaction of the entity with other entities and
with the environment. The architectural view is an elaboration
of functional design, showing interfaces and information flows.

All three types are important for a complete design. The order will

vary depending on the type of system being developed. These
classifications provide a model for ways to partition the design
process. For example the development of a telephone switching
system might start with a behavioral design.

In an effort to achieve clarity of design, each design type has its own
separate language or design notation which can be divided into a
language-like notation and a graphical notation. LBOH3

a. Architectural-structure charts, pseudo-code

L8OH4
b. Behavioral- Harrell state charts, control specifications

c. Functional- data flow diagrams, process specifications,
implementable components

d. Ada as a textual notation can be used for all three components
of software design.
i can be abstractly stated
ii not a large step to implementation

The process of design can also be divided into different stages

a. Preliminary - the first step in a progressive transformation of
the requirements
i audience - customer, developer
ii notation - graphical: structure charts, object diagrams
text: prose descriptions

b. Detailed - each of the components is designed in detail,
algorithms and data structures are selected which are
consistent with the interface established in preliminary design.
i audience - design team, coders, technical staff
il notation - graphical: Nassi Shneidermann charts

text: Formal specifications, pseudo-code,
PDLs, Ada

3 Lecture 008

LSOH1 Goals of requirements

L8OH2 Distinct classifications of design
L8OH3 Examples of design notation
L8OH4 Example of a transition state diagram
handouts

(labs and exercises)
Lab006 Feedback on Cl 2

Sommerville Chapter 10 (pp. 171-188)
Mynatt Chapter 4 (pp. 143-156)

BELATED READINGS:
Berzins Chapter 4 (pp. 207-216)
Booch Chapter 2 (pp. 35-38)
Booch(2) Chapter 2 (pp. 25-28)

i

. TR, SEVCMU-87-TR-41, November 1967

Clear

Complete
Correct
Functional
Testable
Maintainable
Reusable

Feasible

LBOH1

=T

DISTINCT COMPONENTS OF DESIGN

a. Architectural - definition of the software
structure
i Design goals:
Modularity, low coupling
i Functional considerations:
Major system tasks
iii Data storage activities
iv. Major system objects: object oriented

b. Behavioral - a systems as a set of
transitions between states

c. Functional - a system as a set of entities
performing relevant tasks

Examples of Design Notation

Ciassification Graphic Notation I & xt
Notation
Architectural Structure charts Pseudo-Code
Behavioral Harrell state charts Control
specifications
Functional Data Flow Diagrams Process
specifications

7 L8OH3

m MAKE FLOGR SELECTION
ELEVATOR »
ACTION

RESULT

LECTURE NUMBER:009

Testing
Test plans

INSTRUCTIONAL OBJECTIVE(S):
(indicate learner behavior expected or leaming outcome)
1. Understand the different types of code testing.

2. Be able to develop a test pian.

SET UP, WARM-UP:

(How to involve learner: recall, review, relate)
We normally think of testing as only relevant to the coding aspects of a system
and 80 we do not pay much attention to testing until the coding phase has already
started.

As you will see later, testing is a process that can begin very early in the
development life cycle and continues throughout the process.

This is a narrow view of testing. When we employ a broader view of testing we
will develop a better product.

(Learning Label- Today we are going to leam ...)
Today, using the KoFF system, we are going to learn about the elements of a test
plan and how the early development of a test plan improves requirements.

CONTENTS:

1. in the development of a system, we can divide the test into two basic
categories --black box testing, and white box testing. Black box testing
examines the external behavior of software, primarily testing that particular
inputs result in their expected outputs. White box testing examines the
internal structure and behavior of software. These two types of tests are
employed at several testing stages of software development.

2. There are four hierarchically structured stages of testing, that most
students are familiar with:
a. unit: examines individual procedure as a stand alone components
b. module: groups together units so that they can be tested together

c. sub-system: groups together coliections of modules and test both
their internal correctness and their interface with other subsystems

1 Lecture 009

d. systems: groups together sub-systems and test the entire system.
This test for satisfaction of both functional and non-functional
requirements.

There is a different type of testing, called acceptance testing, which occurs
when a software product is delivered to a customer. The function of this
type of testing is to prove that the software meets the needs stated in the
requirements specification. Because this type of testing is tied to the
requirements, a preliminary draft can be developed shortly after the
requirements are finished. The specification of the precise system functions
to be tested helps to clarify the requirements. One of the goals in the
development of a preliminary test plan is to develop a requirements
validation test matrix which related every requirement to a specific test or
set of tests- called a test suite.

Test Plan contents

Using the attached instructors notes, work througn the Preliminary test plan.

LOOH1

a. Preliminary Test Plan- There are many forms of test plans, but they
all have similar goals in common, namely, to test that all
requirements are satisfied and to record testing information in
sufficient detail so that test can be repeated if necessary. To
produce similar results it is necessary to record both the test that to
be done and the order in which they are done, that is to generate a
test schedule.

In the development of a test plan, the test plan designer picks
several categories of function, such as external access, to organize
the test around.

LO9OH2

b. The Test\Requirement Traceability Matrix connects each requirement
from the requirements list to a particular type of test. Some
requirements will have several tests associated with them such as
requirement 2. Later in the design stage, other types of tests such
as inspections and reviews will be included in the test plan. This
matrix can also be used to specify , under demonstration, those tests
which will be part of acceptance testing.

L9OH3

c. The test schedule is important because some test cannot be
conducted until other stages of development have been successfully
completed and tested. The test schedule provides information to the
development team about the order in which they should produce
their products.

2 Lecture 009

LO9OH4

d. The Status Report shows the progress of all testing up to the point
of the report within the categories of testing : access, etc, decided
upon by the test manager.

LO9OHS

e. Test Results Form is used to keep track of the results of individual
tests. Depending on the results of the tests and other information
gathered during testing, the requires further analysis section may be
filled out. Samples of how these forms are filled out are included as
overheads. upon in the design of the test plan.

LO9OH6

f. Tests to be Performed is the schedule of the order of the tes g
within categories and the dependencies needed to be satisfied to
preform any test.

LOOH7
Q. Test Procedure Form spells out the low level structure of the tests
to be preformed within a suite of tests.

3. Building a test plan provides you with a way to validate requirements.

a. Example - in the KoFF system, by designing access tests it was
discovered that a way was not described in the system requirements
for the owner to obtain legal access to the system.

b. The plan also helps avoid incomplete testing. Failure to complete all
stages of testing can have significant consequences. Example of
incomplete testing - Hubbell telescope - all the pieces of the system
were tested but the pieces were not integrated and tested
together. This resulted in an expensive system failure.

PROCEDURE:

teaching method :

(types of activities)

This lecture contains a handout -- KoFF Video Rental System Preliminary Test
Plan-- and a set of instructor notes explaining the plan. The students need to have
a copy of the plan in their hands to follow the lecture and to be able to use it as
a model for the development of their own plans.

unit testing
module testing
subsystem testing
systems testing
test plan

system failure

3 Lecture 009

integration testing

requirements validation matrix
INSTRUCTIONAL MATERIALS:

gverheads:

LSOH1 Preliminary test plan (KoFF system)

LOOH2 Test requirementitraceability matrix

LOOH3 Test schedule

L9OH4 Status report

LOOH5 Test resuits form

LO9OH6 Tests to be performed

LOOH7 Test procedure form

handouts: KoFF test plan

(labs and in class exercises)

Lab007- Have student develop classes of test which would include all of the
requirements for their projects

Sommerville Chapter 19, 22 (pp. 378-88, 425-441)

Mynatt Chapter 7 (pp. 276-315)

Ghezzi Chapter 6 (pp. 260-297)
Pressman Chapter 13 (pp. 631-659)

Lecture 009

1.0

2.0

3.0

KoFF Video Rental System
PRELIMINARY TEST PLAN'

Introduction

The test plan is presented in sections 3.0 and 4.0 of this document. Section 3.0
describes the methodology to be used for the testing process. Section 4.0
contains test procedures to be executed. These procedures are derived from the
requirements specification document for the KoFF Video Rental System. Test data
developed will be included in the Appendix. The test results will also be included
in the Appendix at the completion of the testing.

Referenced Documents

Electronic Fund Transfer and Charging Standards....
KoFF Client Request dated June 11, 1993.

KoFF Data Flow Diagram dated June 14, 1993.

KoFF Preliminary Design documents dated June 15,1993.

Test Methodology

The following paragraphs will describe the items to be considered in the planning
of the tests for the KoFF Video Rental System.

3.1 Test Group Involvement

Considering the size of the test group and the short time period allocated
for the test activity, the test group will participate in the subsystem test,
perform the integration test and then demonstrate the acceptance test. The
participation in subsystem testing is limited to observing the designer's test
so that the test group is familiar with the use of the system.

3.2 Requirements Traceability

The methodology for showing traceability of the requirements to the test is
be that the requirements are identified by line number in the requirements
list, rather than by paragraph number in the client request. The method for
verifying the requirements is identified. The methods used are: 1)
inspection of code, hardware , or execution results; 2) test and analysis of
test results; and 3) demonstration of the system. Similar requirements will
be grouped in the test procedures.? The testrequirements traceability
matrix is figure 3.2-1.

! This plan presumes a test team of four experienced software engineers.

2 Another technique is to group requirements by major system functions.

5 LO9OH1

Test/Requirement Traceabllity Matrix

Requirement Test/Test Method

Inspection Test/Analysis Demonstration
1 D4
2(1) A2
2(2) D4
2(3) D7
2(4) D10
3 D8
4 Cc11
5 Cc7
6 B1
7 A2
8 C3 C3
9 C4 C4
10 B7
11(1) C1 C1
11(2) cé
12(1) A2
12(2) C1
12(3) C3
12(4) cs8
12(5) c12
13
14 C13 C13
15 D9 D9
16 Cc2 Cc2
17 D14
18(1) C5 C5
18(2) Cé
19(1) A1
19(2) A2
19(3) C1
20 B2
21 C15 C1
22 C16

Figure 3.2-1

6 LSOH2

3.3 TEST SCHEDULE

The planning schedule for the tests is in Figure 3.3-1. The schedule identifies the
plan for completing the plan, developing procedures, test data sets, test software,

and test execution.
Test Schedule
Start Date Complete Date Activity
June 10 June 15 Complete Test Plan
June 28 June 30 Order test equipment
June 30 July 12 Develop test procedures
July 12 July 15 Generate Test Data
Test to be performed
July 16 July 18 - ACCESS TO THE SYSTEM
integration order 1-5
July 19 July 23 SELL TAPES
integration order 6-9
July 24 July 27 RENT TAPES
integration order
July 27 July 27 REGULAR CHARGES
integration order
July 27 August 5 LATE CHARGES
integration order
August 5 August 7 MANAGING TAPES
integration order
August 7 August 10 REPORTS
integration order
Figure 3.3-1

3.4 Status Report and Problem Report

A form showing the means for tracking and reporting the testing of the system is
included in Figure 3.4-1. A problem reporting form was not used.

Function Number's of Test Procedures %
Procedures Scheduled/Executed/Successful Success

A. Access

B. Inquiry/Selection

C. Extemnal Responses

D. Add/Delete/Update
Figure 3.4-1

3.5 Test Procedures/ Resuits
Figure 3.5-1 will be used to describe test procedures. Figure 3.5-2 will be used to
describe the process for recording test results, including version tested, date tested,
and results will be described. The forms to be used are in Figure 3.5-1 and 3.5-2.
TEST PROCEDURE FORM
Function:
Procedure:
Requirements:
Prerequisites:
Test Data Required:
Test Steps:
Analysis Required:
Figure 3.5-1

Test Procedure:
Date Test Executed:
Version Number Tested:
Test Resuits:
Problems Identified:
Analysis Results:
Retests Required:

Figure 3.5-2

The test procedures are developed from the requirements and user documentation for
integration testing.

The first procedures will be for a test of the integrated system functionality. It will quickly
answer the question, “Is it worth proceeding to perform the detail tests?”

Then the detailed procedures for each requirement, or group of requirements, will be
developed. These procedures will take into consideration testing the limits as well as the
normal input data cases. Criteria for evaluation of results will be included. The input data
needed will be defined. Any processes that need to be developed to prepare or evaluate
the data will be de ined.

On most projects, the integration and acceptance tests would not be included on the same
test plan. However, it appears that would be appropriate on this project. The acceptance
tests will also be developed from the requirements document and also use to the maximum
extent possible the actual data available. These tests will have the objective of testing the
use of the system in the environment of the user community.

4.0 Test Procedures

Tasia to be Pearformed
Function/Procedure Order of Tests
Immnﬁoh Tests
A. Access

Customer legal card
Customer card expired
Customer card invalid
Owner legal access

Rental inquiry

Sales Inquiry

Tape Rental Report
Sales Report

Customer Rental Report

Tape selection
Duration selection

w
.“99'.‘.“!0.“3 rPON

C. External Responses

Accept/Return Member Card
Capture invalid card
Capture Expired Card
Rental Dispensing

Sales Dispensing

Tape Charges

Membership charges

Late Charges

Restocking Charges

10. Validate charge card

11. Send new member information
12. Accept input tapes

13. Late notice phone call

CEONPNEON =

14. Send member removal information

15. Send membership information

Send rental tracking information
D. Modify/UpdatelAdd
Change video tape tities
Change video tape to sale item
Change Video tape prices
Add new member
Change movie rental information

Add charge card information

IPPNOOSWON -

10

Change customer status to invalid
Create membership number and pin

Invalidate membership card number
Change Sales inventory information
Figure 3.5-1

o W

6, 11
12

14

Y s =

D4
D4
D4, D9

A.1,D4,D5
A.1,D.4,D.10

L9OH®6

Function: A.1
Procedure: Customer legal access
Requirements: 1
Prerequisites: Legal membership
Test Data Required: Valid membership card
number
Test Steps:
a. Insert valid card into system
b. Verify rental sales option screen displayed
c. Select quit
d. Verify card inserted is card returned
e. Insert a card which is not an RRR membership

f.

g.

Analysis Required:

(note: The requirements did not specify what to do if a
non-RRR card was inserted. The test designer made
a design decision here.)

TEST PROCEDURE FORM

card *
Verify display of "Not an RRR card”
Verify card inserted is card returned

LSOH7
11

Function: A.2
Procedure: Process expired card
Requirements: - 8
Prerequisites: Legal membership
Test Data Required: Valid membership card
number with expired date
Test Steps:
a. Insert valid, but expired card into system
b. Verify expired card screen is displayed
c. Verify card is captured
d. Verify membership file is updated *
e. Verify that the "Welcome to KoFF" screen is
displayed after 90 seconds.
Analysis Required:

Check timing for screens

(note: Requirements did not say how to track expired
cards.)

LSOH7
12

TEST PROCEDURE FORM

Function: A3

Procedure: Customer legal access
Requirements: 16

Prerequisites: Iéaeggl membership, invalidated

Test Data Required: Invalid membership card
number

Test Steps:

Insert invalid card into system

Verify invalid card screen is displayed

Verify card is captured

Verify membership file is updated *

Verify that the "Welcome to KoFF" screen is
displayed after 90 seconds.

PQO0W

Analysis Required:
(note: Requirements did not say how to track explred
cards.)

L9OH7
13

TEST PROCEDURE FORM

Function: B.1

Procedure: Process Rental Inquiry
Requirements: 6

Prerequisites: Legal membership

Test Data Required: Valid membership card

number, list of available rental

tapes

Test Steps:

oo

—Ta@~a00o

Insert valid card

Verify that rental/sales selection screen is
displayed

Select Rentals

Verify that rental selection screen is displayed
Verify that all and only available tapes are

splayed

Select quit

verify that "Thank You screen is displayed"”
Insert valid card

Verify that rental/sales selection screen is
displayed

LSOH7
14

®»"QVOB33

=
L]

Select Rentals

Verify that rental selection screen is displayed
Verify that all and only available tapes are
displayed

. Select tape

Select duration

Verify that customer's account is charged
Verify that the correct tape is dispensed
Verify that available tape list is changed
Verify that membership history is changed
Verify that "Thank You" screen is displayed for
30 seconds

Verify that the "Welcome to KoFF" screen is
displayed.

Analysis Required:

LSOH7
15

TEST PROCEDURE FORM

Function: B.1

Procedure: Process Rental inquiry
(no duration selected)

Requirements: 6

Prerequisites: Legal membership

Test Data Required: Valid membership card

number, list of available rental
tapes

Test Steps:

g

® 0o

~> a:m™

Insert valid card

Verify that rental/sales selection screen is
displayed

Select Rentals

Verify that rental selection screen is displayed
Verify that all and only available tapes are
displayed

Select tape

Verify that within 45 seconds "please select
duration is displayed”

Select duration

Verify that customer's account is charged

LOOH7
16

Verify that the correct tape is dispensed
Verify that available tape list is changed
Verify that membership history is changed

. Verify that "Thank You" screen is displayed for
30 seconds

n. Verify that the "Welcome to KoFF" screen is

displayed.

3 .-'.X"'."“

Analysis Required:

LSOH7
17

Preliminary Test Pian instructor Notes

Numerous test plan models exit. This test plan model is designed to show students how to
trace tests to specific requirements. It also can be used to show students how the
development of a test plan can act as a verification technique for requirements.

The plan is divided into four major sections. The introduction outlines the structure of the
plan and how it relates to a particular system. The second section on referenced documents
should mention those system development documents which were used to build the plan.
it should also include reference to documents which specify special constraints for the
system. Because the video rental system automatically charges the customer's accounts,
its processing must conform to the electronic funds transfer act. Knowledge of these
standards is needed to construct adequate tests of the customer charge card functions. The
third section specifies the test methodology and the fourth section lists specific test
procedures. In this plan they are in the form of test scenarios. Other techniques would
include specific code or the results of automatic test generators. They would also include
justification for the choice of particular test cases as effective test cases. This is a
preliminary plan built at an early stage of the life cycle so low level code details are not
included. At this stage of development, the presumption is that detail testing will be
completed separately and the primary function of this plan is to specify integration testing.

The order of the major sections in the report does not reflect the order in which major
decisions are made about the test plan. Section 3 is the major body of the plan. Section
3.2 is the traceability matrix which is used to trace failed tests to particular requirements.
The requirements numbers refer to the KoFF Adjusted Requirements List. The specific tests
or test methods for each requirement are filled in from the test procedures listed in section
4.0. Section 3.3, the test schedule, is also dependent on section 4.0.

The first step in the development of this test plan is to divide the system into its major
functions. The selection of these functions will determine all the other elements in the plan.
in the development of this plan, the major function we selected were: system access, inquiry
and selection, external responses, modify the data-update, add, delete. These are listed
under major functions in the Test Status Report (Figure 3.4-1). The remainder of that report
is filled out as the system is developed. These are the categories used to group integration
tests.

The second step is to subdivide these integration test categories and fill the tests to be
performed (Figure 3.5-1) in section 4.0. The integration tests are listed as sub-functions.
For example, the sub-functions under access include attempts to access the system with all
status of membership card and attempts to access the system by Mr. Richard. The
subfunctions are determined by referring back to the requirements. A general testing
strategy is determined, which is listed in the test schedule (Figure 3.3-1). In this example

LSOH?7
18

it is: test access to the system, test selling tapes, test renting tapes, test regular charges,
test late charges, test membership management, test tape management, and test writing
reports. This is used to determine the order of testing. Before anyone can access the
system they must be a member so the first function to test is D.4. Then A.1 customer legal
access can be tested. The sequence of the test for access are listed. Many integration
tests get repeated as major elements in the testing strategy are visited. The tape selection
B.6 tests are executed in the rental tapes test and in the sales tapes tests. This is a good
way to introduce a discussion of regression testing. After the order of integration testing
is specified, the specific integration test which must be complete in order to begin the current
integration test is listed under "successful prerequisite”.

At least one problem with the requirements surfaces when students try to list the successful
prerequisites for integration test A.4 (Owner legal access) in section 4.0. The requirements
are quite vague about the way Mr. Richard will access the system. If it is unknown whether
he wants to do his updates at the Kiosk by using a special access card or do his updates
remotely, then there is no way to test this requirement. Working through a preliminary test
plan shows an unstated requirement.

The third step is to use the table developed in section 4 under Test to be performed and
return to section 3 to fill in the test matrix. For example, the first requirement in the revised
requirement list is to accept membership. During system integration this is tested by test
set D.4. In the requirements matrix list D.4 in the same row with requirement 1. Follow this
procedure when filling out the rest of the matrix.

The last element is to give complete test procedure or scenarios using Test Procedure
Forms. A complete test plan will have a test procedure form tied by function name to each
integration test. The scenario for "Legal Access" will be tied to integration test A.1. The
scenarios represent the external behavior of the system and can be specified at this stage
of development. They are also useful requirements clarification tools because they are they
can be understood without a technical background and they sometimes reveal missing or
incomplete requirements (see notes to Test Procedure Forms).

The procedures related to particular functions are filled-in during detailed design. The test
plan again functions as a test of a higher life cycle stage. When the test are actually
performed, the test results form is filled out and attached to the test procedure form. When
all testing is complete, the test status form is completed.

LSOH?
19

LECTURE NUMBER: 010
Ada as a Design Notation

INSTRUCTIONAL OBJECTIVE(S):

1. Make students aware of another approach to designing a solution, i.e.,
an object-oriented approach.
2. Introduce Ada package specifications as part of a design notation.

(How to involve learr;er: recall, review, relate)
(Learning Label- Today we are going to leam ...)

In a previous lecture, the concept of design was introduced, using a
functional approach. This lecture looks at a more object-oriented approach
to design where the system is decomposed into subsystems and the
associated information and actions/tasks are delineated.

CONTENTS:
L100OH1
1. Discuss criteria for "good software design”

a. A design should be readily understandable.
b. A design should be readily modifiable.
c. A design should be testable.
d. A design should be reusable.
2. Ada as a design tool

L100OH2

a. Ada notation allows us to perform the necessary design tasks
of high-level or architectural design, interface design,
component specification, algorithmic or low-level design.

L100H3

b. Three classes of subsystems can be used for this type of
decomposition: user utilities e.g., directly involving the user;
resource management utilities managing the data stores; and
service utilities. Design can be begun by decomposing the
system into subsystems or design objects.

1 Lecture 010

L100H4

c. Working from the analysis documents (the requirements list,
context diagram, data flow diagrams, and data dictionary) one
can make a preliminary list of the major subsystems. For
example, consider the dfd for the KoFF video rental system.
The following subsystems are derived from the KoFF
subsystem LSOHS3:

member

tape

rental

charge card

reports

screens
The first draft of the Ada specification for the Member
subsystem was presented to show how Ada provides a design
notation that is understandable, modifiable, and testable.

d. Consider the member subsystem. Identify the major
processes or actions, data and attributes required for this
system. L10OH4 Using this list one can develop an Ada
package specification for the members of the subsystem. The
details of the member subsystem are hidden in the procedures
and functions.

e. Develop similar package specifications for L10OH4,
L100H5,0H6,0H7,0H8,0H9
This Ada specification is not a complete one.

PROCEDURE:
teaching method and media:
subsystems
user utilities
resource management utilities
service utilities
Ada specifications
INSTRUCTIONAL MATERIALS:
gverheads:
L100OH1 Software Design
L10OH2 Ada as a Design Tool - design tasks
L10OH3 Ada as a Design Tool - subsystems
LSOH4 KoFF system - context diagram
LSOH5 KoFF system - level 0 diagram

2 Lecture 010

L100OH4
L10OHS
L10OH6
L100OH7
L10OH8
L10OHS

T R T ITEIET e . e R

KoFF Subsystems - Member

KoFF Subsystems as ADA specifications
KoFF Subsystems - Tape

KoFF Subsystems - Rental

KoFF Subsystiems - Charge Card

KoFF Subsystems - Reports, Screens

(labs and exercises)
Lab 008 - Design review team presentations for small projects

Sommerville Appendix A pg 607-620

Booch Chapter 4 (pp. 28-43)
Booch(2) Chapter 2 (pp. 17-32)

Lecture 010

Software Design

Criteria for "good software design”
Design should be readily understandable
Design should be readily modifiable
Design should be testable

Design should be reusable

4 L100OH1

Gishak o o

Ada as a Design Tool

} Design tasks
High-level or architectural design
Interface design

Component specification

Algorithmic or low-level design

T

Ada as a Design Tool

Three classes of subsystems

User utilities
items specified in the requirements

Resource management utilities
responsible for some resource within
the system

Service utilities
provides services to other subsystems

6 L100OH3

S —

KoFF Subsystems

Member
information:
name
address

telephone number
charge card info
type
number
expiration date
member card number
unique personal identification number
member status

actions on this information:
enroll a member
invalidate a member
modify a member's information
generate membership numbers
check membership status
retrieve charge card number

IV T T T e V;*T

L10OH4

package MemberPkg is
type Member is private;
procedure Enroll (a_member : Member);

procedure Invalidate
(a_member : Member);

procedure Modify (a_member : in out
Member);

procedure Generate (for : Meinber;
card_number : out integer;
id_number : out integer);

out integer;
for_a : Member);

Member) return Status_type;
private

type Member is ...
end MemberPkg;

procedure Retrieve (Charge_card_number :

function Check_membership_status (for_a :

L10OH5

—— Ty A » —

KoFF Subsystems
Tape

information:

movie name

category

movie rating

quantity

transaction type

price

info per tape
bar code number
availability status

actions on this information:
buy a tape
update inventory
add tape
delete tape
modify tape title
modify tape quantity
modify tape transaction type
modify tape price
change availability status
determine available rental tapes
determine available sales tapes

L100OH6

KoFF Subsystems

Rental
(associates MEMBER and TAPE)

information:
member card number
bar code number
check out date
duration length

actions on this information:
rent a tape
return a tape
process 5-day late tape
process 10-day late tape

10

L10OH7

KoFF Subsystems

Charge Card
confirm customer charge card
bill membership fee
bill rental fee
bill sales fee
bill 10-day late fees

11

L100H8

KoFF Subsystems

Reports
generate new customer information report
generate membership cancellation letter
generate tape rental report
generate customer rental report
generate detailed financial report
generate summary financial report

Screens
display list of available rental tapes
display list of available sales tapes
display selection menu
display membership application info
get application information
get rental information
get sales information

12 L100OHS

LECTURE NUMBER: 011

Software maintenanbe

INSTRUCTIONAL ORJECTIVE(S):

Know the relative effort and costs associated with software
maintenance.

2. Distinguish between the three types of maintenance (corrective,
adaptive, perfective).

3. View performance of maintenance as a rerun of the software
development process, involving analysis, design, implementation,
testing, and associated documentation.

4, Understand preventive maintenance and its importance.

5. Appreciate the need to effectively manage and control change.

SET UP. WARM-UP:

(How involve learner: recall, review, relate)

Refer back to early lectures on activities invoived in software development.
Use overhead L110H1 to review phases. This chart depicts the percent
of effort for the various phases in developing a software product. Today
we're going to talk about what happens after the product has been
delivered and is being used.

(Learning Label- Today we are going to learn ...)

CONTENTS:
1.

Discussion - What is maintenance, in genera!? In the context of
hardware (e.g. automobiles) this generally means fixing a mistake.
What is maintenance in the context of software? In the context of
software, maintenance is much broader and includes
enhancements and additional functionality as well as fixing
mistakes. [Note: Pressman's discussion of the differences between
hardware and software is particularly useful here. See item 5
below.] Managing maintenance and controlling maintenance costs
are significant issues in software engineering. Software
maintenance encompasses all of the activities relevant to the

software product that occur gfter it has been delivered and installed.

Discussion - What are these activities; i.e. what are the different
types of maintenance?

a. Corrective - fixing defects that were not discovered during

1 Lecture 011

system development.

Examples - An auto manufacturer recalling vehicles; a
pacemaker manufacturer discovering a software defect after
installation.

Pertfective, or enhancement - adding new features and
functionality to system. Note that Sommerville disagrees
with this definition when he says perfective maintenance
improves system without changing its functionality.

Example - adding a Thesaurus to a word processor.

Adaptive - modification in order to respond to changes in the
environment in which system is operating.

Examples - change in income tax package every year due to
changes in tax laws; adding mouse capability to a program.

Characterize perfective and adaptive as "good” maintenance
in the sense that this activity is not an indicator that the
software is bad; perhaps is an indicator of success, that it is
being used and is capable of being modified. Characterize
corrective as "bad" maintenance in the sense that it does
indicate a defective product.

3. Maintenance costs/effort.

Relative to amount of effort spent on development (up to
time product is delivered and installed), how much effort is
devoted to product maintenance (everything after delivery
and installation)?

L110H2

Note that more than twice as much effort is expended to
maintain product as to develop it. Therefore anything that
can lead to reducing maintenance costs is a significant
contribution.

This should make it clear why maintainability is consistently
listed as a key goal in software development (recall it is one
of Sommerville's key characteristics of well-engineered
software; it is a key consideration during design; writing
maintainable code has been drilled into you in programming
courses).

L110OH3 reports on experiences of several large companies

2 Lecture 011

on the relative costs of fixing a defect at various stages in
the development process. For example if it takes $10 to
detect and correct a fault during the implementation phase,
that same fault could have been corrected for only $2 if
caught during specification. Similarly, it will cost $200 if not
detected until after the system is delivered and in use. The
key point, in either case, is that the earlier errors are
detected and corrected, the less cost and effort is involved.

L110OH4 is based on industry data where identified defects
were classified as requirement definition problems, design
problems, etc. Note that half are requirements problems,
and 75% are pre-implementation errors.

MORAL - It pays to find faults early.

Discussion question - Which of the types of maintenance
(corrective, perfective, adaptive) do you think is most
prevalent? least prevalent?

L110OH5. Point out and discuss the misperception that most
maintenance is corrective.

4, Approach to maintenance

a.

Consider a maintenance scenario. A software product is
developed using a sound software engineering process, is
installed, and is being used successfully by satisfied
customers. Based on use, it becomes apparent that a new
capability would make things even nicer. The customer
requests the new feature (perfective/enhancement
maintenance request). What does the software organization
do? Discuss each of the major software life cycle phases
and let the discussion bring out that maintenance is actually
a rerun of the software development process (requirements
definition, specification, design, implementation, testing).
L110H6

What qualities should the personnel involved in maintenance
possess? Let discussion bring out that they need analysis
skills, design skills, etc.

Unfortunately attitudes towards maintenance tasks are often
inconsistent with the importance of maintenance. It seems to
be undervalued; some organizations may talk about the
importance of maintenance but not put their money where

3 Lecture 011

their mouth is. Some manifestations this mistake include the

following:

i The role of maintenance programmer is an entry-level
position in some organizations. You put the new kid
there and their first promotion is out of maintenance.

i Maintenance is not sufficiently emphasized as an
important criteria for acceptance of the product.

iii Mention specific suggestions by Boehm in
Sommerville.

Iintroduce preventive maintenance by asking if they can think
of another type of maintenance term, outside software, that
they've heard. Extract the term preventive maintenance.
What does the term mean to you in general; what sorts of
things does it entail? While not specifically addressed in
most textbooks, Pressman suggests that preventive
maintenance is a fourth type of maintenance activity. It
occurs when software is changed to improve future
maintainability or reliability, or to provide a better basis for
future enhancements.

Point out that it is normally not difficult for software
developers to anticipate/predict requests for change that are
likely to be made after the product has been in use for some
period of time. Discuss this, give examples, and relate this
to the students current projects. Stress that this knowledge
of likely areas of change can be used by designers and
implementors in assuring that the software is amenable to
change; i.e. is maintainable.

The following discussion of the differences between hardware and
software is optional but, if time permits, is an excellent introduction
to the topic of software maintenance. The discussion is from
Pressman, pages 10-13.

Begin by asking "what are the differences between hardware and
software". Present the following differences given by Pressman.

a.

Software is developed/engineered; not manufactured. E.g.
developing hardware involves analysis, design, etc but it is
ultimately manufactured. What is the manufacturing phase
for software? There is essentially no such phase for
software. Consider automobile; when are defects introduced
into a car? Many occur during manufacturing phase (e.g.
"Monday cars"). We should have little of that with software
since it's a simple replication process. The key point here is
that hardware costs are concentrated in manufacturing and
that is not true for software. Therefore a whole category of

4 Lecture 011

defects that are frequent in hardware should not even exist
in software.

b. Software doesn't wear out. Sketch the failure rate curve,

Pressman Figure 1.2, for hardware. Discuss:

i Why high failure rate early? hardware exhibits high
failure rates early (WHY? - design/mfg defects)

ii Why drop? Defects corrected & failure rate drops to
steady state for some period of time

i Why rise again? After a while failure rate rises as
hardware suffers from cumulative effects of dust,
vibration, abuse, environmental factors; i.i. it begins to

wear out.

Sketch the idealized failure rate curve for software,
Pressman Figure 1.3. Since software is not susceptible to
those things that cause hardware to wear out, we might
expect failure rate curve for SW to look like this.

Show the actual failure rate curve for software, Pressman

Figure 1.4. Discuss:

i High failure rate early

i As changes made to correct defects, new defects are
introduced, causing "spike".

ii Before curve returns to steady state, more changes
made & another spike.

iv Slowly, minimum failure rate rises (look at actual curve
if spikes ignored), the SW is deteriorating due to
change.

6. Configuration management - introduce term as transition to next
lecture.

Maintenance involves dealing with change. Software maintenance
must be dealt with in an effective controlled manner, consistent with
the way we deal with software development. Otherwise errors will
be introduced and costs will unnecessarily increase, and
maintenance efforts and costs would continue to predominate. The
management and control of software change is called configuration
management, the topic of the next lecture.

PROCEDURE:
teaching method and media:
Generate discussion by a series of leading questions. This topic presents

a particularly good opportunity for discussion since analogies with
hardware are familiar and plentiful. Student responses can inevitably lead

5 Lecture 011

into the lecture material and provide an appropriate background for
presenting the charts on maintenance efforts and costs.

maintenance

corrective maintenance .
perfective maintenance (enhancement)
adaptive maintenance

failure rate

configuration management

INSTRUCTIONAL MATERIALS:

overheads:

L110H1 Development Effort

L110H2 . Relative costs of phases of development

L110OH3 Relative maintenance cost by phase of development
detected

L110H4 Defects classified by time of introduction

L110OH5 Maintenance effort distribution

L110H6 Input-Process-Output of maintenance

handouts:

(labs and exercises)

Lab 009 - Feedback on design review presentations
Discussion questions (see procedure above).

Exercise: For the small project give an example of corrective, adaptive,
and perfective maintenance. Make a list of enhancement
requests that might be anticipated in the first year or so of
operation. Categorize these as to type of maintenance.

Sommerville Chapter 28 (pp. 533-541)
Mynatt Chapter 8 (pp. 334-340)

Booch Chapter 23 (pp. 422-423)
Booch(2) Chapter 19 (p. 403)
Ghezzi Chapter 2 (pp. 25-30)
Pressman Chapter 1 (pp. 7-22)
Schach Chapter 1 (pp. 8-12)

6 Lecture 011

*

. A A s O A i~ S S

Development Effort *

Requirements 10%

Specification

Design

Code

Module Test |

Integration Test

does not include maintenance, which
constitutes the largest portion of the
software life cycle

7 L110H1

proximate Relative Costs
Phases of Software Production Process

ource: Schach, Software Engineering

Design 8

Specification 4.0%

Maintenance 67.0%

8 L110H2

Ssjiine4

‘I’llﬂﬂ“’ u .oﬁ.!-l'..

JVGJI0D PUB JOBIe(O] IS0 eAlwIeY

juewdojeneg eaeM}jOS

L110H3

—" Ront

Software Defects Classified
By Time of introduction

Inadequate or incorrect
requirements definition
Inadequate or incorrect design
Errors in detailed design
Coding Errors

Other

10

50%
15%
10%
20%

5%

L110H4

Maintenance Effort Distribution

1" L110OHS

Maintenance

Input

Software specifications
Preliminary design document
Detailed design document
Test plans and procedures
Source code

Proposed changes

Process

Incorporate changes
Retest system

Output

New program
New and/or revised documentation

12 L110H6

LECTURE NUMBER:012

TheimportancooféontroﬂkudWﬁmhsoﬂwamdQWlopmmt
Configuration management
Ways to implement configuration management

INSTRUCTIONAL OBJECTIVE(S):

1. Recognize the role of configuration management over the entire life
cycle.
2. Develop and evaluate a configuration management plan.

SET UP, WARM-UP:

(How involve learner: recall, review, relate)
L110H4
We have just talked about maintenance. Maintenance is change to software
that occurs after a system is developed. As we have seen, some efrors are
introduced into the software during the maintenance process. The
development of software is a continuous process of change and affords
developers a continuous opportunity to introduce errors into the system.
Some would consider this opportunity for the introduction of error
unacceptable. We cannot alter the nature of the development process, but
if we manage and control the process of change we can restrict the
opportunities for introducing error.

(Learning Label- Today we are going to leam ...)
In software engineering, the principles for controlling and managing change
are called configuration management. Today we are going to look at the
principles of configuration management and ways in which configuration
management can be implemented.

CONTENTS:

1. Motivate the need for configuration management(CM) by discussing
the simuitaneous update problem and version control. CM is not just

an issue about software. You have revised your small project
requirements list several times. Ask the students what changes were
made to the requirements list and whether they all were certain that
all would have been approved by the customer? Did you check with
the customer?

a. Multiple people working on a large project can have different
understandings of what the system is supposed to do or may
make small changes which do not work well with other parts of
the system. Using the test plan LSOH6 remind the student
that the test planner made a change which required the KoFF

1 Lecture 012

2.

system to track expired cards. Was this information
communicated to the designers, coders or even to the
customer? What is the likelihood of this change made by the
test planner ever getting implemented? What can be done to
assure that these kinds of changes are acceptable and will get
implemented? There is a need for control management and
communication of change.

There are multiple sources and reasons for change requests.
These occur throughout the development process as well as
after system development. Talk about change requests as
desired improvements in the system. As the customer better
understands the system he/she sees new and improved ways
that the system could be developed. Changes also come from
the developers' improved understanding of the requirements,
and changes in the environment while a system is being
developed. This can lead to chaos unless carefully managed.

Sometimes systems are developed in different versions, e.g.,
DOS 2.2 - DOS 6.0. Each version of each system has to be
tracked and maintained. Versions are not always sequentially
developed, as was DOS 4, DOS 5, and DOS 6. Sometimes
multiple versions of the same system are developed
concurrently to fit on different hardware platforms, e.g., UNIX
for DEC and IBM can be developed at the same time. The
requirements for these systems are different, and one must
track and maintain multiple versions of the "same" product.

Talk about baselining as a technique for limiting or controlling
this chaos. How is baselining done? Be sure to emphasize
that this involves formal review and agreement by all concerned
parties. Once an item is baselined it is under change control
and can only be changed by formal change control procedures.
What is it that gets baselined. Proposed changes to baselines

are called Change Requests(CR).

Methods of CM require a plan, a well defined process, and a manager
to carry out the plan.

a.

Ask the class what things they need to keep constant to
develop a system. List these on the board. Discuss them as

j j . Display overhead of standard
configuration items L120H1. Work through each item talking
about those items which are new to them. Be sure to
emphasize that any change requires approval and
communication of the change as well as updating the affected
documents. Another function of CM is to maintain consistency

2 Lecture 012

between the documentation of a system and the system itself.

b. CM is complex and requires a plan to be sure it is executed.
Display overhead L120H2. Go over the contents of the IEEE
CM Plan. Briefly go over the management issues, such as how
configuration management relates to other organizations.
Discuss overhead item 2.d which includes naming conventions
for components and how CRs will get processed. Distribute
handout L12HD1 as an example of a portion of a student-
produced CM plan.

c. To maintain control, baselined configurations items are
sometimes placed in a special electronic library. Permission to
change or modify Cls is gained through a CR approval process.
CRs are generally approved by groups called
Control Boards (CCB). Discuss some standards used to
decide the approval of CRs; e.g, functional need, cost versus
benefit analysis, impact on other modules, politics (the
president of the company "just wants it").

d. There are several virtues of CM which include reducing the
number of errors generated, minimizing the use of storage,
giving visibility to system development progress each time a
new Cl! is baselined and reducing the time and effort costs
associated with uncontrolied change.

PR RE:
teaching method and media:

At this point in the course students have likely experienced
uncontrolled changes within their small projects. Some of these have
also likely caused problems. Their own "war stories” can serve to
enhance their interest and appreciation of the necessity for
configuration management. The primary teaching technique consists
of using lecture and overheads with frequent reference to problems
they have encountered in their small project teams.

configuration management (CM)
configuration item (Cl)

baseline

discrepancies versus changes
configuration control board (CCB)
change request (CR)

3 Lecture 012

INSTRUCTIONAL MATERIALS:

overheads:
L120H!1 Configuration items
L120H2 IEEE Mode! for a configuration management plan

handouts:
L12HD1 Student configuration management plan

S:
(labs and exercises) '
Lab 010 - Feedback on CI-5, test plans, and test cases.Small project
team preparation for team acceptance test presentations

Sommerville Chapter 29 (pp. 551-564)
Mynatt Chapter 8 (pp. 336-340)

Ghezzi Chapter 7 (pp. 403-408)

Pressman Chapter 21 (pp. 693-708)

Schach Chapter 4 (pp. 87-93)

James Tomayko, "Support Materials for Software Configuration
Management,” Support materials, SEI_SM_4_1.0

IEEE Standard for Software Configuration Management Plans, |EEE Std 828-
1983

4 Lecture 012

- - Ly e —" 4ot

Configuration items

Requirements Documents
Client Request
Requirements List
Analysis Documents
Revision History
Revision requests and approvals

Design Documents
Preliminary Design Documents
Preliminary Design Review Documents
Detailed Design Documents
Detailed Design Review Documents
Revision History
Revision requests and approvals

Code Documents
Source code modules
Object code modules
Compiler used
System build plan

Other Documents
Test Plan
Test Cases
Test Results
User Manual
Referenced Documents

5 L120H1

IEEE Model for a
CONFIGURATION MANAGEMENT PLAN

Introduction
a. Purpose
b. Scope

c. Definitions and acronyms
d. References

Management

a. Organization

b. Configuration management responsibilities
c. Interface control

d. Implementation of plan

e. Applicable policies, directives and

procedures
Configuration management activities
a. Configuration identification
b. configuration control
c. Configuration status accounting
d. Audits and reviews
Tools, techniques, and methodologies
Supplies Control

Records collection and retention

6 L120H2

TR T R T R bt

* Created initial revision of document.

| PROJECT: Third Eye Project

| FILE NAME: CM_PLAN.DOC

| DOCUMENT NAME: Configuration Management Plan

| PURPOSE:

| This document describes the responsibilities of

| Configuration Management.

|T MODIFICATION HISTORY:

| WHO: REV: DATE:
| Kellie Price

|

Computer and Information Sciences
Third Eye Project

Configuration Management Plan

Kellie Price
- Table of Contents
PURPOSE
1
MANAGEMENT
2
21 CONFIGURATION MANAGER RESPONSIBILITIES 2
22 ORGANIZATION
2
2.2.1 REQUIREMENTS TEAM 2
222 USER MANUAL TEAM 2
2.2.3 TEST PLAN TEAM 3
2.2.4 PRELIMINARY DESIGN TEAM 3
2.25 DETAILED DESIGN TEAM 3
2.2.6 CODE & UNIT TEST TEAM 3
227 TESTING TEAM 4
CONFIGURATION MANAGEMENT ACTIVITIES 5
31 C.M. REQUIREMENTS DOCUMENTS 5
32 C.M.CONTROL
5
CONFIGURATION MANAGEMENT RECORDS 6
41 CM.FILES
6
L12HD1

————
e — —

2.

PURPOSE

The Configuration Management Plan defines the Configuration Management
(CM) policies which are to be used in the Third Eye Project. It also defines
the responsibilities of the project configuration manager.

MANAGEMENT
21 CONFIGURATION MANAGER RESPONSIBILITIES

The first responsibility of the configuration manager is to
develop and implement this Configuration Management Plan.

Throughout the project, the configuration manager will report
directly to the customer. It is the configuration manager's
responsibility to ensure that the project is implemented in a
straight-forward and well-defined manner according to the
customer's specifications and standards established by
Configuration Management for this project.

22 ORGANIZATION

This project will be divided into 7 teams as follows:
(Refer to CM_TEAMS.DOC for the specific team assignments)

NOTE: All of the documents required of each team below
are listed in the file CM_DOCS.DOC.

2.2.1 REQUIREMENTS TEAM

The Requirements Team is responsible for
communicating with the customer in order to determine
and well-define the software system requirements. The
documents required of the Requirements Team are:

Narrative description of system

List of requirements (acceptance criteria)
Context Diagram

A series of leveled Data Flow Diagrams
Data Dictionary

Process Specifications

* * * » = »

L12HD1

2.2.2 USER MANUAL TEAM

The User Manual team is responsible for producing all
user documentation for the system. The documents
required of the User Manual Team are:

* Preliminary format of user manual
* User Manual

2.2.3 TEST PLAN TEAM

The Test Plan team is responsible for designing
subsystem and system tests. The documents required
of the Test Plan Team are:

* Test plan
22.4 PRELIMINARY DESIGN TEAM

The Preliminary Design team is responsible for creating
a preliminary design structure of the system based on
the software system requirements. The documents
required of the Preliminary Design Team are:

* An Object Model:

* Complete object diagram

* Class dictionary

* Object-Requirements traceability matrix
* Ada Specifications for each object class

2.2.5 DETAILED DESIGN TEAM

This team is responsible for creating algorithms to
implement the system structure. The documents
required of the Detailed Design Team are:

Data Structure Design using a data structure
dictionary

* Algorithm Design using Nassi-Shneiderman models

* An object attributes and object operations traceability
matrix

2.2.6 CODE & UNIT TEST TEAM

L12HD1

The Code & Unit Test team is responsible for producing
source code for the algorithms produced by the Detailed
Design Team, integration of the modules to produce a

working system. The documents required of the Code
& Unit Test Team are:

* Source code
2.2.7 TESTING TEAM

The Testing team is responsible for implementing the
tests in the test plan and using them to test the system.
The documents required of the Testing Team are:

* Test data
* Documented test results
3. CONFIGURATION MANAGEMENT ACTIVITIES
3.1 C.M. REQUIREMENTS DOCUMENTS

The configuration manager has provided documentation to
assist the teams in meeting the C.M. requirements. This
documentation is in a series of files which are available on the
project file server. The C.M. requirements defined in these files

are as follows:

DESCRIPTION FILENAME
* Documents required by C.M. CM_DOCS.DOC
* Document header info CM_HEADR.DOC
* Document naming conventions CM_NAMES.DOC
* Document format & standards CM_FORMT.DOC
* Change request form format CM_CHREQ.DOC
* Configuration item request procedure CM_CIREQ.DOC
* Configuration item access procedure CM_ACESS.DOC
* Configuration item change process CM_CHPRO.DOC
* Configuration item baseline process CM_BASLN.DOC

32 C.M. CONTROL

The configuration manager will provide the teams and team
members controlled access to their respective configuration
items. In order to have access, however, the teams and/or
team members must provide the configuration manager with a
written

L12HD1

request for any desired configuration items as defined in the file

CM_CIREQ.DOC.

CONFIGURATION MANAGEMENT RECORDS

All BASELINED Configuration Items and documents will be maintained on the
project file server in a directory structure as defined in the file

CM_FILES.DOC.

4.1 C.M. FILES

All Configuration Management files (including the requirements
files listed in section 3.1) are listed below:

* Configuration item access procedure
* Configuration item baseline process
* Configuration item change process

* Change request form format

* Configuration item request procedure

DESCRIPTION

* Original customer request

* Documents required by C.M.

* C.M. file directory structure

* Change request form

* Document format & standards

* Document header info

* Document naming conventions

* Document page header

* Configuration Management Plan

* Software Project Management Plan

* Project team organization

1

FILENAME

CM_ACESS.DOC
CM_BASLN.DOC
CM_CHPRO.DOC
CM_CHREQ.DOC
CM_CIREQ.DOC
CM_CRQST.DOC
CM_DOCS.DOC
CM_FILES.DOC
CM_FORM.DOC
CM_FORMT.DOC
CM_HEADR.DOC
CM_NAMES.DOC
CM_PGHDR.DOC
CM_PLAN.DOC
CM_SPMP.DOC
CM_TEAMS.DOC

L12HD1

LECTURE NUMBER: 013

Ada and maintenanée

INSTRUCTIONAL OBJECTIVE(S):
1. Understand technical aspects of a language which support
maintainability.
2. Recognize the language features of Ada which support maintainability
of a software system.

(How involve Iaarner.: recall, review, relate)
(Learning Label- Today we are going to leam ...)

CONTENTS:

L130H1

1. Consider and discuss three technical factors that affect the
maintainability of a software system: completeness and consistency,
understandability of program and its documentation, and modifiability
of the system.

a. Software systems in industry which have high maintenance
costs are systems which are long lived, are complex, and must
adapt to changing requirements and changing hardware. The
technical factors in L130H1 are needed to make such software
systems more maintainable.

b. Completeness and consistency of system documentation are
independent of the implementation language. | a system is
complete and consistent then any changes made to the
program are reflected in the requirements definition, design
documents, test plans, etc. The implementation of such
completeness and consistency is dependent on project
management.

c. Understandability of a program and its documentation is
important so that changes can be readily made. The
understandability of the program is a language dependent
technical factor.

d. Another language dependent technical factor is the modifiability

1 Lecture 013

of the system. A system is modifiable it a change made to one
part of the system affects that part and that part only. The
language, therefore, needs to provide the language features
which allow a system to be built of stand-alone components
which do not interfere with other system components.

L130H2
2. Discuss specific language features of Ada that support maintainability.

a. Named association, illustrated in overhead L130H3, provides
the ability to assign names to formal parameters and to use
these names in actual parameter association.

b. Overloading provides the ability to define multiple meanings to
individual operators and procedureffunction names.
Overioading allows expressions of user-defined types to be
written using familiar notation. An example is given on
overhead L130H4.

c. Discuss packages and how they promote modifiability in a
system because subsystems can be built which act as stand-
alone components.

d. Discuss the separation of interface specifications and bodies
which allows the details of implementation to be abstracted
away. This feature promotes understandability because only
the essential interface information is shown and the
implementation details are hidden away in the unit's body.
Discuss separate compilation of the specifications.

PROCEDURE:
teaching method and media:

vocabulary introduced: -
named association of parameters
overloading
separate compilation

Ada package specification and body
INSTRUCTIONAL MATERIALS:

gverheads:

L130H1 Maintenance

L130H2 Ada and Maintainability - features

L130H3 Ada and Maintainability - example of named association of
parameters

L130H4 Ada and Maintainability - example of overioading

2 Lecture 013

handouts:

(labs and exercises)
Lab 011 - Presentation of customer request for extended project

READING ASSIGNMENTS:

None

3 Lecture 013

Maintenance

Technical factors that affect the maintainability
of a software system

1. Completeness and consistency of
system documentation

2. Understandability of program and its
documentation

3. Modifiability of the system

4 L130H1

Ada features which support maintainabillity:

Named association of parameters
Overloading
Packages

Separation of interface specifications

5 L130H2

ADA AND MAINTAINABILITY

An example of named association of parameters

procedure definition:

procedure compute_speed

(old_x_coord, old_y_coord, old_z_coord,

new_x_coord, new_y_coord, new_z_coord:in real;
speed : out real);

procedure invocation:

compute_speed
(13.459, -18.634, 28.775,
24.762, -98.628, 45.350,

value);

compute_speed (old_x_coord => 13.459,
old_y_coord => -18.634,
old_z_coord => 28.775,
new_x_coord => 24.762,
new_y_coord => -98.628,
new_z_coord => 45.350,
speed => value);

6 L130H3

AN EXAMPLE OF OVERLOADING

type complex_number is
record

end record;

procedure multiply_compiex
(c_1, ¢c_2 : in complex_number;
c_3 : out complex_number);

multiply_complex (c_stream,
C_pause,
c_dir);

function "*" (c_1,
c_2 : in complex_number)
return complex_number;

c_dir := c_stream * ¢_pause;

7 L130H4

LECTURE NUMBER: 014

Software life cycle n;\odels
INSTRUCTIONAL OBJECTIVE(S):

1. Understand the concept of a software life cycle.

2. Understand that a variety of life cycle models exist.

3. Distinguish between several life cycle models, including watertall,
prototyping, and spiral models, and know the strengths and
weaknesses of each.

(How involve learner: recall, review, relate)

Refer back to the introductory lectures on the various activities in software
development. At that time we briefly described the classic life cycle model
and discussed some of its strengths and weaknesses. We're going to review
those today, with a little more detail, and then discuss some other life cycle
models and look at their strengths and weaknesses.

(Learning Label- Today we are going to learn ...)

We will be looking at process here, as distinguished from product. An
organization that can devote attention to process as well as product has
achieved some measure of maturity.

CONTENTS:

1. Concept of a lite cycle model - a series of phases through which the

software product progresses is a software process model, or a
software life-cycle model.

Fundamental (generic) steps in software development.
Review the fundamental activities: requirements analysis,
specification, design, implementation, testing, maintenance.
Emphasize that in general there are not the sharp boundaries
between the different life cycle activities that are implied when
we differentiate between them in order to discuss them.

An artificial boundary between these activities is indicated by
the development of a milestone document.

Ad hoc methods (e.g. the "build-and-fix modei"), though used

in places and even referred to as models, are not really life
cycie models but instead demonstrate the ghsence of a model.

1 Lecture 014

We are considering here systematic approaches that represent

repeatable processes.

Discussion question: Why is it important for a software

developmem organization to have a well defined process?

i To define activities that are to be carried out and
deliverables and milestones associated with each

ii To introduce consistency among projects

i To provide checkpoints for management control and for
go/no go decisions

iv Increasing software backlog due to increased demand
for software services - Use this to further emphasize the
need for an effactive process for software development.

2. Classic life cycle model (Watertall)

a.

Description - L14OH1 - Fig 1.7 Pressman

This is a systematic, sequential approach similar to traditional

engineering cycles and note that there is feedback between life

cycle phases. There are verification activities included in each
phase.

Consider the phases:

i System engineering - Typically the software is part of

some larger system and this phase invoives establishing
requirements for the entire system and then allocating
some subset of this to software.
Use the small projects as an example. Identifying the
system context (scope) and interfaces with external
entities. This "external" view was necessary before
devoting attention to the software system.

ii Software requirements analysis - This involves the

extraction and clarification of requirements for the
software system.
Requirements and specification of requirements are
documented and reviewed with customer and are
baselined as a software configuration item. A
preliminary test plan, based on the requirements list, is
also developed and baselined hers.

iii Design - The design is documented and reviewed with
customer and becomes part of the software
configuration.

iv Coding and component testing -

The results of component coding and component testing
are documented and checked against the original test
plan and design. Code, test data & test results become
a part of the software configuration.

2 Lecture 014

v Integration and system testing
After successful test results are achieved, the test plans
and results are reviewed with customer and become
part of the software configuration. This testing is called
acceptance testing.

Vi Maintenance - reapplies each of the preceding life-cycle
phases to an existing system.

vii The waterfall model is the oldest and most widely used
software life cycie model. Schach presents a variation
on the waterfall model which includes verification at
every phase. If verification is included as an integral
part of each phase then it is clear that this is not an ad
hoc model. L14OH2 Here a phase is not complete until
the documentation is reviewed and approved and placed
under configuration control.

b. Strengths of waterfall model
i Disciplined - requires documentation and verification at
each phase.
ii Documentation-driven.
iii Widely used.
iv Far better than ad hoc approach.
c. Weaknesses of waterfall model

i Even with feedback, the model is essentially sequential
and, for many projects, that is not realistic. It is often
difficut for the customer to state all requirements
explicitly at the start of a project.

ii Documentation-driven - While listed as an advantage, it
can also be a disadvantage. The documentation is often
not adequate for the customer to understand and even
though he/she is signing off at each phase, he/she may
not really understand the system from that
documentation.

ii A working version of the system is not available until the
later phases. This problem is addressed in the
prototype model.

Prototyping model - Introduce this by discussing how the weaknesses
of the waterfall model might be addressed.

Prototyping is the creation of a functionally- equivalent model of the
system, or a subset of the system, that can be demonstrated to the
customer. This demonstration can take several forms; a paper model
(e.g., showing user screens and reports), an existing system that

3 Lecture 014

provides similar functionality and/or interface, or a skeleton version of
the final system. Note different forms the model can take.
L140H3

Prototyping begins with requirements gathering (involving
developers and customers) followed by a rapidly developed
design and construction of a prototype. The customer
evaluation of this working version, leads to a clarification of the
requirements.

Discuss Brooks' observations, made in 1975, in The Mythical
Man-Month. Read from chapter 11 (Plan to Throw One Away),
p 116. L140H4

Discuss problems associated with prototypes.

i Customer sees working version early and may confuse
the prototype and the final system, thus expecting a
finished product in an unreasonable amount of time.
This may result in pressure to turn the prototype into the
real system and, in turn, would result in an inadequate
(unmaintainable, untested, etc) product.

ii Implementation compromises are made to get a working
prototype early. Developer, for a variety of reasons,
may forget these compromises.

4, Spiral model - The spiral model was developed by Barry Boehm to
incorporate the advantages of prototyping into the waterfall model.

a.

Background - The development of application software for real
customers always involves elements of risk. What are some
risks?

i It may not be clear that some requirements are
attainable (response times, dependency on new
technology, new theory, schedule requirements,
necessary personnel/expertise not available,
requirements not testable, etc)

ii Dependencies on other systems or hardware which are
beyond the developed control (relate to small projects)

Note that one way to reduce risk would be to build a prototype
in order to resolve risks early in the project. Review the
weaknesses of the previously discussed models (waterfall and
prototyping) as an introduction to the spiral model. This gives
an historical perspective and emphasizes the evolution of
process models for large software systems.

4 Lecture 014

L140H5

The intent of the spiral model is to encompass the best
features of the waterfall and prototyping approaches and, at the
same time, \ncorporate risk analysis. in the spiral model, risks
are identifieci and an attempt is made to resolve them through
the use of prototypes and other means ~ - the students how
this relates to the projects they are wo '

b. Major activities represented by the 4 quadrants.

i Top-left quadrant: Planning - determination of objectives,
alternatives, constraints; requirements

ii Top-right quadrant: Risk analysis - analysis of
alternatives and identification/resolution of risks

iii Bottom-right quadrant: Develop this portion of the
system following the most appropriate process model.

iv Bottom-left quadrant: Customer evaluation - assessment
of how the product of this phase relates to the initial
plan and the product of the previous phase. This is
followed by planning the next iteration of the spiral.

With each iteration around the spiral, progressively more
complete versions of the software are built. During the first trip
of the spiral, objectives are established, alternatives for
achieving those objectives and constraints are identified.
Based on the risk evaluation a development model is chosen.
(For example, if risk analysis indicates sufficient uncertainty in
requirements, prototyping may be used). Finally the results are
evaluated and the next trip around the spiral planned. Key
elements of this model are the assessment of risk at regular
intervals and the initiation of actions to address/minimize the
risks. Thus high risks would be addressed early. Risk analysis
is done before each cycle and an assessment is done at end
of each cycle.

Strengths of spiral model

i Emphasis on risk identification, assessment, and
resolution.

ii Considered by many to be the most realistic approach
to development of large scale software systems.

iii Incorporates advantages of waterfall and prototyping
models.

Weaknesses of spiral model

i Applicable for large-scale systems only.
ii Requires risk assessment expertise.

5 Lecture 014

5. There are many life cycle models possible; we've looked at some
representative models and their strengths and weaknesses. Ask the
students what factors might determine the particular life cycle model
an organization chooses for a project.

a. Stability of requirements

b. Problem domain

C. Risk: economic, schedule, feasibility, safety, ethicality
d. Organization and expertise available

PROCEDURE:
teaching method and media:

yocabulary introduced:

software process modellife cycle model
process (vs product)

repeatable process

waterfall model

prototyping model!

spiral model

risk, risk analysis

INSTRUCTIONAL MATERIALS:
overheads:
L140H1 Waterfall model (Fig. 1.7, Pressman)
L140H2 Waterfall model (Schach, p.50)
L140OH3 Prototyping (Pressman, p. 28)
L140H4 Quote from Brooks,
L140HS The spiral model (Sommerville, p. 15)

handouts:

(labs and exercises)
Lab012 Project Team Organization

Sommerville Chapter 1 (pp. 5-18)
Mynatt Chapter 1 (pp. 12-27)

6 Lecture 014

Ghezzi Chapter 7 (pp. 357-383)
Pressman Chapter 1 (pp. 24-36)
Schach Chapter 3 (pp. 47-66)

7 Lecture 014

— — = inisunestieisnusmiiieassitimeinsioennet

Classic Life Cycle (Pressman)
Waterfall Model

8 L140H1

||||||||||||||||||||||||||||||||

lllllllllllllllllll

Operations Mede

<&§--------

||||||

Implemestation "’""

£ _

o “

Q i

£ m

- R

3 HY >
S “rmr“l” > -«
E L [P

m “r.iv MMT

s i

v

Regquivements
Verity

____> Developmesnt

Retiremeat

_____,_____) Maiateasacs

L140H2

PsuedoCode Example

Policy for order ocl

For each New_Stock Request, do the following:

1.

Search for an Authorization_Form with
Reference_Number equal to the
Request_Number on the

New_Stock Request.

If there is no match
Then Discard this New_Stock Request

Else

a.

b.

Write a Purchase_Order for
Ordered_ltem

From Supplier_Catalog, select a
Supplier who carries the
Ordered_Item

Copy Supplier_Name and
Address to Purchase_Order
Copy Purchase_Order_Number to
New_Stock_Request

File New_Stock_Request with
Authorization_Form

8 L230H3

Shelly-Cashman, Figure 4-35

9 L230H4

Sommerville, Figure 5.1

10 L230HS

Translation of Bank Loan Qualification
Policy into a Data Flow Diagram

Automatic
: Loan-Decision
Avg-Sav-Bal Determlrp >
Automatic
Loan
Qualification

Num=Qverdroafts

The customer is approved if he or she has maintained an
average monthly checking balance of at least $1,000 for each of
the last three months and has averaged no more than two
overdrafts per month. Customers meeting only one of these
conditions but maintaining an average savings account balance
of at least $500 for each of the last three months receive
conditional approval with an automatic loan limit of $500.

1 L230H6

Decision Table Covering Policy
For Automatic Loan Qualification

Avg Ck Bal >=
1000

l Num overdrafts <=
2

Avg Sav Bal >= 500

9 Approve

1 Cond. Approve

Reject

12 L230H7

Decision Tree Expressing A Bank's Policy
Concerning Loan Qualifications

Checking Number of Savings Bolonce Resul
Balance Overdrafts Approve

Cond. Appr

Reject

Cond. Appr.

Reject

Rejct

Reject

<300

13 L230H8

Decision Tree Showing the Flow of Control

] Language Menu
Computer Software Menu
Science
eny Har dware Menu
Exit
F o Finonce Menu
Subject B Business Markefing Menu
e Accounting Menu
Exit
Math
Prompt for ey A g Algebra Meny
Title C
0 Calculus Menu
3
Others Menu
rompt for
g Muthor Exit

Exit

Eliason,p. 390

14 L230H9

Finite State Machine Representation
Of Combination Safe

V7774077777277 777,
FPELIEFIPIIIEL 111

SIEP b 077504020770 I L

FPEEPIILIIErsIlI

10 FE 07007807074
A TI I es 1178 A ——-’ B
Y iFss1068079770774

17 s 7 P7ds407077 7474

11 00001117 I80002S

PSS IIIIIITFIIVT
(kAR A LLRLLLALLLLLL,

Safe locked

Any other Any other

, Any other
. dial ent
dial movement 10l mavem dial movement

V//% Initial state

Sofe unlocked

LI APCRERI XL E9¢

» 3 r AN
AERY AKX AXRY Y R
KX KN KM MR RS ANY RN
ORI ENIAIAX AN N
SAPLRIRP NS ROAY ¢
,() < YA Vv((AY‘;\Y X
A MK XOTC YK Y OO YK
> AT AX YRR XA &
A ANF NI AN KA XXX AKX
SAULIIIIOLOUINENSL —
%2 Finl state
KV A Y
Sound Alorm NN

Schach, Figure 7.8

16 L230H10

Petri Nets

Marked Pefri net

t = transition
p = place

Petri net of above
after firing

transition 11 11

p1

Schach, Figures 7.14,7.15

16 L230H11a

Petri Nets

Petri net after 9
firing fransition 2

Schach, Figure 7.16

17 L230H11b

Execution of a Petri Net

Green Yellow

>

18

L230H12

A Warnier Diagram

*Deportment code
Course number Individuol
Se;::)on__< Instructor
TEAM
7 Minimum
Enroliment 4<
\Moximum -
Closs standing
Prerequisites Major (1, N)
Previous courses (1, 4)
/Luboraiory fype
@ Blackboard
Projector
Faciities ——< Lechure hal Lab foble
@ 1 CCTv
\ Seminar room

Jones, p. 198, Figure 4-25

19 L230H13

LECTURE NUMBER: 024

Transform analysis

Transaction analysis
INSTRUCTIONAL OBJECTIVE(S):
1. Understand transform analysis and its application.
2. Understand transaction analysis and its application.
3. Recognize when transform analysis is appropriate and when
transaction analysis is appropriate.
4. Understand the process of refining first-draft structure charts produced

by transform analysis or transaction analysis considering design
criteria such as coupling and cohesion.

(How involve Ieamer': recall, review, relate)

in your first project you had to develop structure charts, without using any
well-defined method.
(Learning Label- Today we are going to learn ...)

Today we're going to look at two methods of developing structure charts from
data flow diagrams.

CONTENTS:
1.

Transform analysis is a set of design steps that can be applied to map
a data flow diagram into a structure chart. Theoretically, transform
analysis can be applied to any system but it is more appropriately
applied to specific types of systems. The input to transform analysis
is the DFD model; the output is a first-draft structure chart.

The first step in transform analysis is to identify the central transform
in a DFD.

a. L240H1 °
For many systems input comes into the system from the
external world (keyed in by user, signals from a sensor), is
transformed by some internal process(es), and results are
output (printed report, graphics display, signal to external
device). The overhead represents this as a function of time as
the system performs its task. Note that information flows from
its external entry into the system (the afferent streams), into
some intemal representation where the essential transformation
takes place, and then flows out (the efferent streams)to the
external world. Tracing the input, at some point the input data

1 Lecture 024

ceases to be input and becomes internal data, i.e. it ceases
being raw data (through verification, editing, filtering, ...
operations). Similarly, at some point the internal data is
transformed into output data. The key to transform analysis is
identifying the part of the system where the "essential
transform” takes place; the boundaries at which raw input data
has been transformed into essential data, and at which
essential data becomes output data but stil has to be
formatted, refined, etc before it can be output from the system.

L240OH2

For example, consider this master file update (briefly review or
explain a traditional master file update). Where does the
essential transformation occur? Points A and B in the
overhead are the beginning of the afferent streams; at these
points Field and Master Record enter the system. Tracing
each of these inward, it is at points E and F where these input
data have been transformed into essential data (Valid
Transaction and Valid Master Record, respectively); up to these
points the raw inputs have been simply validated and edited.
Points C and D are the ends of the efferent streams; at these
points the outputs New Master Record and Applied Transaction
Report Line, exit the system. Tracing each of these back into
the system, it is at points G, H, and | where the most logical
data flows first appear (Applied Transaction, Updated Master
Record, and Unmatched Master Record, respectively); following
these points the data is simply being formatted. The points E,
F, G, H, and | mark the boundaries of the central transform. If
these points are connected, as is shown by the dotted line, the
transforms inside (5 and 6) comprise the central transform.

L240H3
This system inputs a file name and outputs the number of
words in the file. Again, identify the central transform.

Given a DFD, the central transform can be identified as follows:

i Trace each physical input to the point at which the
activities performed are not just editing, verifying, or
otherwise cleansing the data, but are truly transforming
it some way (performing calculations, using it to derive
new information, etc). Mark those points. In so doing
you are marking the data flow that represents the input
in its most essential form.

ii Trace each physical output backward into the system to
the point where the activities are no longer simply
formatting the data for output. Mark those points. In so

2 Lecture 024

doing you are marking the data flow that represents the
output in its most essential form.

i Connect the points marked in steps i and ii above. The
transform(s) enclosed represent the central transform.

The central transform is the part of the DFD that
contains the essential functions of the system and is
independent of the particular implementation of the input
and output. The identification of the central transform
allows the designer to clearly separate interfaces to and
from the system from the essential system processing.

L240H4

Once the central transform has been identified, a first-draft structure
chart can be developed. The second level of the structure chart
consists of a set of controlier modules, one for each of the afferent
streams, one for the central transform, and one for each of the
efferent streams.

Consider the previous example of the system to count the number of
words in a file (L24OH3). The first-draft structure chart resulting from
transform analysis is shown L240OH5. Consider the cohesiveness of
these modules. Read-and-validate-file-name and Format-and-display-
word-count exhibit communicational cohesion. Their cohesion levels
can be improved with the refinement shown in L24OH6. Now, all of
the modules are functionally cohesive. This refinement represents a
good preliminary design.

L240H7

Structure charts produced through transform analysis are balanced
higrarchigs. The central transform is isolated from the input and
output environment by placement at a separate level. The highest
level modules are isolated from low-level I/O details since they see
only the net results of low-level module activity.

The first-draft structure charts produced by transform analysis must be
refined with consideration given to design criteria such as cohesion,
coupling, fan-in, fan-out, and modularity. Other good examples are
given in Mynatt in section 4.3. A more detailed example involving the
SafeHome security system is provided in Pressman, pages 372-381.

While transform analysis is the most widely applied structured design
technique, another method, transaction analysis, is more appropriate
for "transaction centers" within a system. A transaction center occurs
when a single transform in a DFD triggers multiple data streams
flowing out of that activity. Transaction centers are easily
recognizable.

3 Lecture 024

L240H8, L240H9

Consider these examples as well as Mynatt's ATM example in Figure
4.12. A good way to design a transaction center is to separate it into
two pieces; one to analyze the transaction (the afferent to the
transaction center), and one to dispatch the transaction. This
separates the different transactions at a very high level and
discourages the tendency to share common elements.

Discuss the types of structure charts that result. For example,
applying transaction analysis to the DFD in L24OH8S yields the first-
draft structure chart in L24OH10. Other good examples are given in
Mynatt in section 4.4. A more detailed example involving the
SafeHome security system is provided in Pressman, pages 382-389.

L240H11

The structure charts produced by transform analysis and transaction
analysis must be refined with consideration given to design criteria
such as cohesion, coupling, fan-in, fan-out, and modularity. They
must also be reviewed to verify that the final structure chart meets the
requirements represented by the DFDs. Discuss the concordance

example in Mynatt, Section 4.3.4, pages 162-167.

PROCEDURE:

teaching method and media:
vocabulary introduced:

transform analysis
afferent streams
efferent streams
central transform

factoring

balanced hierarchy
transaction analysis
transaction center

INSTRUCTIONAL MATERIALS:
overheads:

L240H1
L240H2
L240H3
L240H4
L240H5
L240H6
L240H7
L240H8
L240HS
L240H10
L240H11

Transform flow

DFD for master file update

DFD for word counter

First-level factoring

First-level structure chart of word counter
Refinement of word counter structure chart
Balanced hierarchies

Transaction center

Ship control system

Ship control system

Refinement and verification of structure chart

Lecture 024

handouts:

(labs and exercises)

Sommerville Chapter 2 (pp. 222-228)
Mynatt Chapter 4 (pp. 143-169)

Ghezzi Chapter 7 (pp. 394-402)
Pressman Chapter 11 (pp. 369-389)
Schach Chapter 10 (pp. 299-302)

5 Lecture 024

Transform Flow

L240H1

DFD For Master File Update

Yourdon Seminar Notes

7 L240H2

DFD For Word Counter

m.b) ---------) mhh

' 1
' '
: :
' '
' '
' '
')
! 1
' l

Pstot Petet

Mghest sboiraciion Nighest sheisaction
oot o et
Schach, Figure 10.3
8 L240H3
shusssssimethonumnitabmsn AH

First Level Factoring

Pressman, Figure 11.9

9 L240H4

First-Level Structure Chart

of Word Counter
PERFORM
womD
COUNT
validated word
file am status unt
flag
validated word
file name comnt
0
READ AND COUNT FORMAT
VALIDATE NUMBIR AND DISPLAY
FILE NAME OF WORDS WORD COUNT
0> dats
——>> contrel information

10 L240HS

Schach, Figure 10.4

11 L240OHS

Refinement of Word Counter Structure Chart

GIT

// AF

PERPORM
won
COUNT

el

7

DRLAY
CODNT

COUNT
NUMBER
0 WORDS
vumn PORMAT
woR
Mll COUNT
O sty
0= catrol inkornation

Schach, Figure 10.5

12

L240H6

Balanced Hierarchies

Structure charts produced through transform

analysis are balanced hierarchjes.

The central transform is isolated from the
input and output environment by
placement at a separate level.

The highest level modules are isolated
from low-level /O details since they see
only the net results of low-level module
activity.

13 L240H7

~ p—— c e

Transaction Center Example

14 L240H8

Ship Control System

Transaction Transaction
Tag Type Transaction Effect
Turn Turn ship. Turn ship from present angle by specified
amount.
Set Set ship
course. Set ship to absolute course.
Fire Fire missile. Fire missile in specified direction.
Scuttle Self-destruct. Blow up ship after specified time.
Yourdon Seminar Notes
15 L240H9

Ship Control System
Structure Chart

OBEY SHIP
CONTROL
COMMAND

GET o3RY oszY oBEY
SYNTACTICALLY sSEIP sET IRE OBEY
VALD TURN COURSE MISSILE SELY-DESTRUCT
COMMAND TAG COMMAND COMMAND COMMAND COMMAND

N T
=1 {12l A B

GET GET
VALID VALID
TURN COURSE GET COMPUTE
PARAMETERS TURN PARAMETERS CURRENT REQUIRED
SErP COURSE TURN

Yourdon Seminar Notes

16 L240H10

Refinement and Verification Of
Structure Chart

The structure charts produced by transform
analysis and transaction analysis must be
refined with consideration given to design
criteria including modularity, cohesion,
coupling, fan-in, and fan-out.

The refined structure charts must also be
reviewed to verify that they meet the

requirements,

17 L240H11

LECTURE NUMBER: 025

Coupling and cohedon
INSTRUCTIONAL OBJECTIVE(S):

Understand the design goals for cohesion.

Understand and distinguish between the various cohesion levels.
Understand the design goals for coupling.

Understand and distinguish between the various coupling levels.
Evaluate a design based on its coupling and cohesion characteristics.

ahON -

(How involve Iaarner.: recall, review, relate)

In earlier lectures we have discussed coupling and cohesion as design
criteria. Recall that cohesion is a measure of internal strength of a
component; a measure of how well the internal elements of a component
work towards the goal of the module. Thus, in design we want to maximize
cohesion; to design highly cohesive components. Recall also that coupling
is a measure of the dependencies between components; a measure of the
relationship between components. Thus, in design we want to minimize
coupling; to restrict the dependencies between components to those that are
necessary.

(Learning Label- Today we are going to learn ...)
Today we are going to discuss various levels of coupling and cohesion and
how to evaluate a design based on its coupling and cohesion.

CONTENTS:

L250H1
1. One attribute of a design is its modularity. What do we mean by that;
exactly what is a module? Consider a module as a black box with
four basic attributes.
i It interface, Input and output - what it gets from its invoker
(input) and what it returns (output)
ii Function - what it does to its input to produce its output
i Mechanics - procedural logic to performs its function
iv Internal data - its own private data or work-space or data
structure

items i and ii comprise the external view of a module. items iii and iv
comprise the internal view. Preliminary design is concerned with the
external view. Functional independence is a key to good design, and
thus, to software quality. Why? Because the design will be
maintainable, testable, and have a higher potential for reuse. Ideally,

1 Lecture 025

this is achieved by developing modules that are single-minded (do a
single, clearly-defined function), avoid interactions with other modules
except where necessary. In those cases, where interaction is
necessary, keeps it as simple as possible.

Cohesion is a design criteria; a measure by which we can evaluate a
design. Cohesion is a measure of a module's internal strength; a
measure of how well a module's internal elements are related to each
other. |deally, a cohesive module does just one thing. A function with
no side-effects is an excellent example of a cohesive module. A
number of levels of cohesion have been identified. L25OH2 As the
overhead indicates, these levels represent a spectrum. The scale in
not linear. The low end (coincidental) is very bad, and should always
be avoided,whereas the middle levels, which are not that far away
from the high end (functional), are sometimes unavoidable. L250H3
The lower levels of cohesion lead to a maintenance problem.

a. Coincidental cohesion - there is little or no meaningful
relationship between the elements of the module. Such
modules perform multiple, unrelated tasks. This is the worst
type of coupling and also easiest to avoid. The problems are
obvious: difficult to maintain and offer little opportunity for
reuse.

b. Logical cohesion - module performs a series of related actions,
one of which is selected by the calling module. This occurs
when elements are grouped into a class of related functions
and placed into a single module. Examples are a module that
handles all output, general purpose error handling, and
modules that perform all input. Problems with logical cohesion
include a complex interface , hard to understand module, and
code for different actions may intertwine, causing maintenance
problems. For example in L250H4, the addition or deletion of
hardware would cause significant modification in the module.

c. Temporal cohesion - module performs a series of actions that
are related by time, actions that must be done at the same time
(or in the same time span). Typical examples are initialization
modules that do a variety of things (like open files, clear
counters, initialize flags); or "wrap-up” modules that close files,
compute final totals and averages, and print final report. CS1
instructors tend to emphasize these types of modules; (e.g.,
initialize all conditions and totals, other housekeeping chores).
This leads to tight coupling.

d. Procedural cohesion - module performs a series of actions that
must be done in a particular order; the elements are related

2 Lecture 025

more to program procedure than to program function. They
often tend to cut across functional boundaries. Not always
bad, in fact from this point upward on the cohesion spectrum,
the levels of cohesion are significantly more maintainable than
the lower levels. An example of procedural cohesion is a
module that reads a part number from a data store and
updates a repair record in a maintenance data store. Although
procedurally cohesive modules are more maintainable than
those with lower levels of cohesion, they are not easily
reusable.

Communicational cohesion and sequential cohesion - perform
a series of actions related by a sequence of steps; an
assembly-line order. If all the actions are preformed on the
same data structure than the cohesion is communicational.

Examples: Determine length and slope of line
Read record and eliminate duplicates.
Format and verify voter profile.

Tasks at this level are directly related to the problem so
maintainability is not bad but, again, decreases potential for
reuse

Functional cohesion - module performs a single task and each
part of the modules is necessary to perform that task.

Examples: Calculate sales commission
Get temperature of furnace
Determine students GPA

Note: the cohesiveness of many of the earlier examples could
be improved to functional by breaking them into multiple
modules.

Discuss why such modules are easier to maintain
Fault isolation
Easy to understand
Less chance of impacting other modules
Easier to extend/replace
Better chance of reuse

Example: Discuss this example with the students. L250OHS

Informational cohesion - This is an additional level of cohesion
identified by Schach. A component exhibits informational
cohesion if it has a number of elements, each preforming an
action on the same data structure, and, gach element has its
own entry point.

3 Lecture 025

Example: L250H6 The difference between this and logical
cohesion is that here the various elements, each performing
one action, are independent whereas in logical cohesion the
elements are intertwined. This lies just below functional on the
cohesion scale.

Summary on cohesion: Iif a module exhibits more than one
type of cohesion, it is labeled as the worst of those types. One
should develop modules that have a single problem-related
function. This increases independence, clarity, maintainability,
and reuse. A functionally cohesive module can be accurately
described with a simple sentence containing an imperative verb
and a specific singular object. Otherwise, the module is less
than functionally cohesive. L250H7, L250H8 is Meilor Page-
Jones' organization of cohesion and its trade-offs. The Y-axis
represents the lifetime cost per amount of functionality provided
and the X-axis is the levels of cohesion. Page-Jones has an
excellent discussion of these trade-offs.

Coupling is another design criteria; a measure by which we can
evaluate a design. Coupling is:

i a measure of the dependence between two modules

ii a measure of interconnection between module

ii it is the degree of interaction between two modules.

A major design goal is to minimize dependencies by, developing
loosely coupled modules. Low coupling is achieved by eliminating
unnecessary relationships and minimizing the number and "tightness"
of necessary relationships. A number of levels of coupling have been
identified. L250OH9 spectrum (p 336 Pressman). As the overhead
indicates, these levels represent a spectrum. As with the cohesion
spectrum, the scale in not linear.

L250H10
a. Content coupling - One module refers to the internals of
another.

Examples (Assume modules A and B) include:
A modifies a statement of B
A refers to local data of B
A branches inside B

These are ¢ easy to avoid, inexcusable, violations of anybody's
programming standards.

0. Common coupling - Two modules have access to same global
data area.

4 Lecture 025

Control coupling - One module passes an element of control to
another module, i.e. gxplicitly controls its logic. Examples of
control are function codes, flags, and switches. If a table
lookup routine passes back a flag "entry not found" there is no
control coupling. |f however, it passes back "entry not found,
add this item" then the table look up module that called it is
control coupled. In the latter case the boss is being told what
to do; in the former case the boss is being apprised of the
situation.

Stamp coupling - One module passes a data structure as a

coupling exposes modules to more data than they need. This
exposes the data structure to corruption.

Data coupling occurs when parameters are passed or g data
structure. all of whose elements are needed by the called
module. The fact that a data structure is passed does not entail
stamp coupling.

Two modules may exhibit more than one type of coupling. In
such cases, the degree of coupling is considered as the worst
of the types exhibited.

L250H11 is an example of different couplings. Discuss this
with the class and go over the answers L250H12.

Considerations in designing modules:

i imagine modules as library functions; how would they be
easiest to understand; how might they be reusable?

ii Assume each module will be implemented by a different
programmer. How independently can the programmers
work? Are there any assumptions, constraints, or
conventions that one module need be aware of and how
likely are they to change? Can the change be isolated
to a single module?

If two modules are highly coupled, there is a higher probability

that a change in one will require a change to the other.

L250H13 is Page-Jones' organization of coupling and its

tradeoffs.

teaching method and media:

5 Lecture 025

cohesion

coincidental cohesion
logical cohesion

temporal cohesion
procedural cohesion
communicational cohesion
sequential cohesion
functional cohesion
informational cohesion

coupling

content coupling
common coupling
control coupling

stamp coupling
data coupling
INSTRUCTIONAL MATERIALS:

overheads:

L250H1 Attributes of a module

L250H2 Cohesion Spectrum (Pressman, p 334)

L250H3 Cohesion level definitions

L250H4 Logical cohesion example (Schach)

L250H5 Structure chart showing cohesion of each module (Schach, Fig
9.7)

L250H6 Module with informational cohesion (Schach, Fig 9.6)

L250H7 Guidelines for determining cohesion level (Pressman, p. 335)

L250H8 Costs as function of cohesion level (Page-Jones, Tabie 6.2, Fig
6.15)

L250H9 Coupling spectrum (Pressman, p 336)

L250H10 Coupling level definitions

L250H11 Coupling example (Schach, Fig 9.11 - 9.12)

L250H12 Coupling example (Schach, Fig 9.13)

L2504H13 Qualities of coupling levels (Page-Jones, Table 5.2)

handouts:

(labs and exercises)

Mynatt Chapter 4 (pp. 144-150)

Ghezzi Chapter 3 (pp. 49-52)
Pressman Chapter 10 (pp. 332-337)
Schach Chapter 9 (pp. 235-253)

6 Lecture 025

Melir Page-Jones,

7 Lecture 025

Attributes of a Module
Interface - Its input and output

Function - What it does to its input to
transform it into output

Mechanics - Internal logic (code)

Internal data

8 L250H1

Coincedental

\

Cohesion

A messare of the relative fanctionsl strength
of 2 moduk

Communieationsl
Sequestial

/

Tea

}

Lew o bhoi Cohesion Spectram
"seatter-brained”

Pressman 334

9

Functional

"giagle-ninded"

T T T

L250H2

Coincidental -

Logical -

Temporal -

Procedural -

COHESION LEVELS

Little or no meaningful
relationship between elements of
the module

Performs series of logically
related functions in module;
functions falling into some general
category

Performs series of actions related
by time (that must all be done at
same time or in same time span)

Performs series of actions that
must be done in a particular
order; elements related more to
procedure than to function

Communicational

Sequential-

Functional -

Performs series of actions related
by sequence (output of step is
input to next) or all of the actions
performed on the same data

Performs a single task and each

element of module is necessary
to perform that task

10 L250H3

Example of Logical Cohesion

Module Performing All input and Output
1. Code for all input and output

Code for input only

Code for output only

Code for disk and tape 1/0

Code for disk 1/10

Code for tape 110

Code for disk input

Code for disk output

Code for tape input

Code for tape output

2.
3.
4,
S.
6.
7.
8.
9.

-k
o

11 L250H4

Fasctiensl
Campate
sverege dally
fmperatares
ot various shies
Fesctisnsl Colacidontal
Cless s
Cresle mew Stere pary
fompersters fempersture peint
femperainres
Ponctional
Sters recerd
olts, time, o
tomperatere ...I

Schach, Figure 9.7

L250HS

- Module with Informational Cohesion

Definition of
sales_region_table

Eatry—>

initializes_sales_region_table

Eatry——>% update_sales_region_table

—>> Exit

Eatry——>

print_sales_region_table

——— 3 Eit

13

L250H6

Guidelines for Determining Cohesion Level

A useful technique in determining whether a
module is functionally bound is writing a sentence
describing the function (purpose) of the module,
and then examining the sentence. The following
tests can be made:

1. If the sentence has to be a compound
sentence, contains a comma, or contains more
than one verb, the module is probably performing
more than one function; therefore, it probably has
sequential or communicational binding.

2. If the sentence contains words relating to
time, such as "first", "next", "then", "after", "when",
"start", etc., then the module probably has
sequential or temporal binding.

3. |f the predicate of the sentence doesn't
contain a single specific object following the verb,
the module is probably logically bound. For
example, Edit All Data has logical binding: Edit
Source Statement may have functional binding.

4. Words such as "initialize", "clean-up", etc.,
imply temporal binding. Functionally bound

14 L250H7

modules can always be described by way of their
elements using a compound sentence. But if the
above language is unavoidable while stiil
completely describing the module's function, then
the module is probably not functionally bound.

Source: Pressman, p 335

15 L250H7

Costs As Function of Cohesion Level

Effect on
Cleanli- overall
ness of Under- system
Cohesion imple- Modifia- standa- maintain-
level Coupling mentation bility bility ability
Functional Good Good Good Good Good
Sequential Good Good Good Good Fairly good
Communi-
cational Medium Medium Medium Medium Medium
Procedural Variable Poor Variable Variable Bad
Temporal Poor Medium Medium Medium Bad
Logical Bad Bad Bad Poor Bad
Coinci-
dental Bad Poor Bad Bad Bad
A
? r
[
L
lf Celacidental
[
t
i
n
[] V
C
[]
s []
t Tomporal
[]
Procodural 'y
Le gk‘.’l Communicational
Pusctional >

Level of Cohesion

Seurse: Page-Jones

16

L250H8

Coupling Spectrum

A Measure of the Interdepeadence
Ameng Seftware Modules

Prossuss, Figers 1012

17 L250H9

Content-

Common -

Control -

Stamp -

Data -

COUPLING LEVELS

One refers to internals of other

Have access to same global data
area

Communicate at least one
element of control

Communicates a data structure
and the called module operates
on some but not all of the
individual components of the data
structure

Only parameters communicated
or a data structure in which all of
the elements are needed by the
called module

18 L250H10

Coupling Examples (Schach)
Module Interconnection Diagram for
Coupling Example

Interfa
ce Description

Number

In

Out

1
2

aircraft type

function code

part number

part number

19

status flag

list of aircraft
parts

list of aircraft
parts

part
manufacturer

part name

L250H12

a. Are we building the right product?

Validation involves checking that the program as implemented
meets the expectations of the customer as specified in the
requirements specification documentation. In other words, we
want to demonstrate through tests whether or not the software
product meets the customer's expectations. The completed
end product is tested.

c. Dynamic analysis is the primary technique used in
accomplishing validation.

Discuss verification and validation activities of each phase of the
traditional process model are examined. L210HS5, L210H6 L210H7
-Review of software products is traced back to its requirements.
L210H8, L210OH9 - Maintenance is a reiteration of the software
development life cycle. Maintenance also re-applies previous test
cases to assure no loss of functionality during maintenance changes.

Acceptance criteria are important in the accomplishment of validation.
Without established, agreed upon criteria by which to judge validation,
certification of customer satisfaction is difficult. The role of acceptance
criteria within the software requirements specification is discussed.
The acceptance tests provide predefined criteria for functionality,
performance, interface quality, and other identified quality attributes.

L210H10

6.

The acceptance criteria described above are often called explicit
requirements because the customer has explicitly stated them in the
software requirements specification. There is another type of
requirements which developers need to be concerned about; these
requirements are called implicit requirements. Implicit requirements
are quality factors which the customer desires or expects in the
software but may not explicitly state. Examples of implicit
requirements include reliability and robustness.

L210H11

7.

The activities of verification and validation should be thoroughly
planned and documented in a Software Verification and Validation
Plan. This document serves as the blueprint for all V&V activities.
Give examples of the major bullets on this overhead.

3 Lecture 021

yocabulary introduced:

verification
validation

acceptance criteria
static analysis
dynamic analysis
formal analysis

INSTRUCTIONAL MATERIALS:
gverheads:
L210H1 Verification and Validation
L210H2 Types of Analysis Used in Verification & Validation
L210H3 Verification
L210H4 Validation
L210H5 Requirements Analysis and Definition Phase
L210H6 Design Phase
L210H7 Iimplementation Phase
L210H8 Testing Phase
L210OH9 Maintenance Phase
L21OH10 Framework for a Software Requirements Specification
L21OH11 Software Verification and Validation Pian
handouts:

(labs and exercises)

Lab 018 -

Preliminary requirements presentation/review
Preliminary users manual presentation and review

Sommeville Chapter 19 (pp. 373-386)
Sommerville Chapter 22 (pp. 425-439)

Ghezzi Chapter 6 (pp. 255-344)
Pressman Chapter 19 (pp. 632-663)

4 Lecture 021

Verification and Validation (V&V)

Major approaches within software engineering
process models for ensuring the productior of
quality software

Complementary but distinct

Continuing process through each stage of
software life cycle

Two objectives:
1. Discovery of defects in any
development product
2. Assessment of whether or not the
system satisfies specified
requirements
Types of analysis:
Static analysis
Dynamic analysis

Formal analysis

L210H1

T -

Types of Analysis Used in V&YV

Static Analysis
No execution involved
Manual or automated examination

examples:
Software reviews
Static program analyzers

Dynamic Analysis
Execution involved

Examines functional, structural, or
computational aspects of software
examples:

Unit testing

integration testing

Acceptance testing

Formal Analysis
Use of mathematical techniques to
evaluate product
examples:
Symbolic execution
Proof of correctness

6 L210H2

Verification

Are we building the product right?

Evaluate the end product of each phase

Look for errors generated within a phase
and/or by the transformation between phases

Tasks are to assume that the products of
each software life cycle phase:
1. Comply with previous life cycle phase
requirements and products

2. Satisfy the standards, practices, and
conventions of the phase

3. Establish the proper basis for initiating
the next life cycle phase activities

7 L210H3

Validation

Are we building the right product?

Checking that the system as implemented
meets the expectations of the software
procurer/customer

Tasks are to validate that the end product
complies with established software and
system requirements

8 L210H4

; Requirements Analysis and Definition Phase

Verification activities:
Formal review of requirements
specification document
Review of project plan document
Review of preliminary user manual

Validation activities:
Delineation of acceptance criteria
Generation of requirements-based test
cases

Development of Project V&V Plan

8 L210H5

—p— - TT—— ——r —ror—rm Fant

Design Phase

Verification activities:
Formal review of design documents
Review of Project V&V Plan
Generation of test plans for unit, design-
unit, and system testing
Generation of design-based test cases
Review of test plans

Validation activities:
Generation of test plan for acceptance
testing
develop a requirements traceability matrix

Completion of Project V&V Plan

10 L210H6

Implementation Phase

Verification activities:
Review of software products
Unit testing
Generation of code-based test cases

Validation activities:

Develop a component to design
traceability matrix

1 L210H7

R b aiaie . asos JEETIL S PR

—p

Testing Phase

Verification activities:
Generation of code-based test cases
Design unit testing
System testing

Validation activities:
System testing
Acceptance testing

12 L210H8

Maintenance Phase

Verification activities:
All previous activities

Validation activities:
All previous activities
Regression testing
Generation of test cases for validating
modifications

13 L210OHS9

Framework for
Software Requirements Specification

Introduction

1.1 System reference

1.2 Business objectives

1.3 Software project constraints

Software description

2.1 Objects and operations

2.2 Flow model

2.3 Data dictionary

2.4 System interface dictionary

Processing narratives

3.n Transform n description
3.n.1 Processing narrative
3.n.2 Restrictions/limitations
3.n.3 Performance requirements
3.n.4 Design constraints
3.n.5 Supporting diagrams

Validation/acceptance criteria

4.1 Testing strategy

4.2 Classes of tests

4.3 Expected software response

4.4 Special considerations

Bibliography

Appendix

14 L210H10

Software Verification and Validation Plan

Plan for the conduct of software verification and
validation

Outline:
1. Purpose
2. Referenced Documents
3. Definitions
4. \Verification and Validation Overview
4.1 Organization
4.2 Master schedule
4.3 Resources summary
4.4 Responsibilities
4.5 Tools, techniques, and methodologies
5. Life Cycle Verification and Validation
5.1 Management of V&V
5.2 Concept Phase V&V
5.3 Requirements Phase V&V
5.4 Design Phase V&V
5.5 Implementation Phase V&V
5.6 Test Phase V&V
5.7 Installation and Checkout Phase V&V
5.8 Operation & Maintenance Phase V&V

15 L210H11

Software Verification and Validation Plan

Outline (cont.):

6. Software Verification and Validation
Reporting

7. Verification and Validation Administrative
Procedures
7.1 Anomaly reporting and resolution
7.2 Task iteration policy
7.3 Deviation policy
7.4 Control procedures
7.5 Standards, practices, and conventions

Source : |IEEE

16 L210H11

LECTURE NUMBER: 022

JOPIC(S) FOR LECTURE:
Testing

INSTRUCTIONAL OBJECTIVE(S):

1. To understand the role of testing within verification and validation and
the software life cycle.
2. To recognize the different types of testing and the purpose of each.

(How involve Iearner.: recall, review, relate)
(Learning Label- Today we are going to learn ...)

In previous classes, we have talked about the production of quality software
and the use of verification and validation. Today we will be examining one
aspect of verification and validation in detail -- testing.

CONTENTS:

L220H1
1. Testing is often confused with verification and validation; however,
testing is only one component of the verification and validation.

Testing, according to the IEEE definition, is "the process of exercising
or evaluating a system by manual or automatic means to verify that
it satisfies specified requirements or to identify differences between
expected and actual results.” Testing is designed to reveal defects.
It shows where a system is correct and where it is wrong. Note that
testing and debugging are different; testing reveals the existence of
defects while debugging locates and corrects them. In the 1960's and
1970's, it is estimated that over 50 percent of development time and
development costs were spent on testing. During this time, people
were attempting to test quality into the software instead of building
quality into software from the beginning of the life cycle as verification
and validation attempts to do now.

L220H2

2. Discuss the principles of testing which were presented by Mynatt.
L220H3 Note the difference of emphasis from the IEEE definition,
Mynatt focuses on error detection while the IEEE definition focuses on
showing correctness. Point out that the first four steps can and

1 Lecture 022

should be done as a part of requirements analysis. If a clear set of
tests cannot be written during analysis, the indicates that the
requirements are not clear.

L220H4

3.

The three primary types of testing are unit or module testing,
integration testing, and acceptance testing. Unit or module testing is
performed during the implementation phase by the programmer who
is building the module.

a. The primary goals of unit/module testing are to ensure that the
module operates correctly and that it carries out its intended
function, and to identify the presence of defects. This is
generally done by the implementor.

b. Integration testing is the testing of groups of integrated
modules (or subsystems) or the entire system. The most
common types of integration testing are design unit and system
testing. Design unit testing first uses design information in
selecting the modules to integrate and test. This is based on
the structure chart. System testing is testing of the whole
system. This is an internal acceptance test in a simulated
environment. The goals of integration testing are to determine
if the subsystem of modules or system meets requirements and
functions properly and to test the interface among the modules
or subsystems.

C. Acceptance testing is performed on the finished product in the
operational environment. This type of testing is carried out by
the sponsor/customer. The goal of acceptance testing is to
demonstrate that the systom is ready to use and that it meets
all the customer's requirements and satisfies all acceptance
criteria.

L220H5
c. Discuss the interaction between the various types of testing.

L220H6

4,

A primary concern in performing testing is the generation of test
cases. You want to generate enough test cases to thoroughly
exercise the software but not so many test cases as to make thorough
analysis of the test results impossible. Exhaustive testing, which tests
every input and exercises every line of the software, is the technique
to use to thoroughly test software, but it is computationally impossible
and time-wise too expensive. Alternatives to exhaustive testing
include functional analysis, structural analysis, and data-structure-
based analysis. These are three complementary approaches to the

2 Lecture 022

generation of test cases.

L220H7

5. Functional testing, black box testing,is based on functionality, inputs,
and outputs of a module with no regard to the internal workings of the
module. Three techniques for deriving test cases for functional testing
are equivalence partitioning, cause-effect strategy, and boundary
values strategy.

Discuss examples for each technique for deriving functional test cases
and work through the exercises with the class. L220H8, L220HS9,
L220H10, L220H11, L220H12,L220H13, L220H14, L220H15,
L220H16. SUggested partitions for L220H11 include: first character
alphabetic and non-alphabetic; length less than 6, greater than 10,
and between 6 and 10 inclusive; valid and invalid characters; and
passwords which are and are not in the dictionary.

6. Structural testing is based on the internal logic of a module. L220H17
The concept of coverage analysis is used in structural testing. The
types of coverage include statement, decision, condition, and path.
Discuss examples L220H18, L220H19, L220H20, L220H21,
L220H22

7. In performing integration testing, common methods of integration are
used in grouping the modules or subsystems for testing. These
methods are top-down testing, bottom-up testing, thread testing, and
stress testing. L220H23

8. Many testing and debugging tools are available in today's
development environments. Some of these tools include static
analysis tools, dynamic analysis tools, test data generators and
oracles, file comparators, and simulators. L220H23

PROCEDURE:
hi h ia:
Lecture and overheads are the chief media for this lecture.
vocabulary introduced:
testing
unit testing/module testing

integration testing
design unit testing

3 Lecture 022

analysis
dynamic analysis tools
test data generators
test oracles
file comparators
simulators

L220H12
L220H13
L220H14
L220H15
L220H16
L220H17
L220H18
L220H19
L220H20
L220H21

INSTRUCTIONAL MATERIALS:
overheads

Testing

Steps of Testing

Principles of Testing

Types of Testing

V&YV Testing Activities

Generation of Test Cases

Functional Testing

Equivalence Partitioning

Examples of Equivalence Partitioning
Test Matrix for Equivalence Partitioning
Exercise on Equivalence Partitioning
Cause-effect Strategy

Example of Cause-effect Strategy
Test Matrix for Cause-effect Strategy
Boundary Value Analysis

Examples of Boundary Value Ar alysis
Structural Testing

Statement Coverage

Example of Statement Coverage
Decision Coverage

Condition Coverage

4

Lecture 022

L220H22 T Strategies
L220H23 Tmmdmn&

handouts:

(labs and exercises)
Lab 019 - Preliminary test plan presentation/review

Sommerville Chapter 23 (pp. 441-454)
Sommerville Chapter 24 (pp. 457-473)
Mynatt Chapter 7 (pp. 274-316)

Booch Chapter 23 (pp. 420-421)
Booch(2) Chapter 19 (p. 402)
Ghezzi Chapter 6 (pp. 260-293)
Pressman Chapter 18 (pp. 595-626)
Schach Chapter 12 (pp. 385-416)

5 Lecture 022

Testing

The process of exercising or evaluating a system
by manual or automatic means to verify that it

satisfies specified requirements or to identify
differences between expected and actual results

An aspect of verification and validation

6 L220H1

Steps of Testing

Select what is to be measured by the test

Decide how whatever is being tested is to
be tested

Develop the test cases

Determine what the expected or correct
result of the test should be and create the
test oracle

Execute the test cases

Compare the results of the test to the test
oracle

7 L220H2

Principles of Testing

Testing is the process of executing a program with
the intention of finding errors.

It is impossible to completely test any non-trivial
module or any system.

Testing takes creativity and hard work.

Testing can prevent errors from occurring.

Testing is best done by several independent
testers.

8 L220H3

Types of Testing

Unit testing/module testing
Integration testing
Design unit testing

System testing

Acceptance testing

L220H4

V &V Testing Activities

SOFTWARE
REQUIREMENTS

MODULE

| ' ACCEPTANCE
g SYSTEM TEST VALIDATED
OPERATIONAL

10 L220HS

Generation of Test Cases l

Exhaustive testing

Alternatives to exhaustive testing:
Functional analysis
Structural analysis
Data-structure-based testing

11 L220H6

Functional Testing

The specification of external behavior is used
to derive test cases

Also called black-box method
Techniques to deriving test cases:
Equivalence patrtitioning

Cause-effect strategy
Boundary values strategy

12 L220H7

Equivalence Partitioning

A equivalence partition consists of a class or
set of data items all of which are similar to
each other on some relevant dimension

Divide input/output into finite number of
equivalence partitions

Take each input/output condition and
divide it into 2 or more groups -- valid
equivalence partitions and invalid
equivalence partitions

Test one item from each partition

13 L220H8

Examples of Equivalence Partitioning

Specifications for Customer Number
Customer numbers must be within the range
1-32700 inclusive without 9 in the unit

positions

Partition into:
non-numeric value and numeric value

test groups

1-32700
<1
> 32700

9 in unit position
< 9 in unit position

14 L220H9

Test Matrix for Equivalence Partitioning

Using the specification of the Customer
Number:
Partitions or equivalence classes

Number value 1 non-numeric
2 numeric
Range 3 1-32700
4 <1
5 > 32700
Unit Position 6 9
7 <9
Equivalenc Test Cases
Class Entries 1 2 3 4 5
1 X
2 X X X
3 X
4 X
5 X
6 X
7 X
Test Cases:
1. 32708 4. 1AB

15

L220H10

2. 0 5. 009
3. 2708

16 L220H10

Exercise of Equivalence Partitioning

Validate_New_Password accepts a password from
a user and validates that it conforms to the
following rules:
1. A password must be between 6-10
characters inclusive
2. The first character must be alphabetic
3. The remaining characters may be any
character except control characters
4. The password must not be in a dictionary

Exercise: Develop the test matrix for
equivalence partitioning. '

17 L220H11

Cause-effect Strategy

Tests combinations of inputs

Causes (inputs) and effects (outputs) are
identified

18 L220H12

Example of Cause-effect Strategy

Determine_Max_Load accepts the GPA for a
student and the level of the student (upperclass or
lowerclass) and calculates and outputs the
maximum class load which the student may take
during one semester. If the student has a GPA of
4.0, he/she has a maximum class load of 20. If
the student has a GPA of 3.5 or better, he/she
has a maximum class load of 18. |f the student
has a GPA of less than 3.5 and is an
upperclassmen, he/she has a maximum class load
of 18. If the student has a GPA of less than 3.5
and is an lowerclassmen, he/she has a maximum
class load of 16.

Causes
GPA 4.0
3.5 or higher
< 3.5
Level upperclass
lowerclass
Effects
20
18
16

19 L220H13

Test Matrix for Cause-effect Strategy

Test Cases
Causes 1 2 3 4 5 6
GPA 4.0 X X
GPA < 3.5 X X
upperclass X X X
lowerclass X X X
Effects
20 X X
18 X X X
16 X
Test Cases:

1. Upperclass with 4.0
2. Lowerclass with 4.0
3. Upperclass with 3.75
4. Lowerclass with 3.4
5. Lowerclass >= 3.5
6. Upperclass >= 3.5

20 L220H14

Boundary Value Analysis

Boundary conditions are the situations directly
on, above, and below the edges of input
equivalence classes

Include:
< Beginning element
Beginning element
Middle element
End element
> end element

21 L220H15

Examples of Boundary Value Analysis

Specifications for Calculating Pay
Compute gross pay including overtime rate for

hours over:
Partitions < 40
= 40
> 40

Boundary values are 0 and 40

Test:
<0
0-40
> 40

Sample of test values:
-1 outside of low boundary,
0 at the low boundary,
20 middle value,
40 at upper boundary,
41 above upper boundary

22 L220H16

Structural Testing

Approach to testing where the internal logic of
a module is used to derive test cases

Also called white-box or glass-box testing

Techniques to derive test cases:
Statement coverage
Decision coverage
Condition coverage
Path coverage

23 L220H17

Statement Coverage
Develop test cases such that every statement
is executed at least once
May be too much test data

Does not test all logic (e.g., combination of
statements

24 L220H18

Example of Decision Coverage

1. if (ORDER >= 20) or (CUSTOMER = 'G')

then DISCOUNT := 10

else if (ORDER >= 10) or (CUSTOMER = 'E')
then DISCOUNT =7

else if (ORDER < 20) and (CUSTOMER = 'V')
then DISCOUNT =5

else

DISCOUNT := 0;

2. if CUSTOMER ="G'
then VIP := true
else
VIP := false;

Test Cases:
1. 20 and 'G' => DISCOUNT = 10 and VIP = true

2. 12 and 'E' => DISCOUNT = 7 and VIP = false
3. 12 and 'V' => DISCOUNT = 5§ and VIP = false
4. 9 and'S' => DISCOUNT = 0 and VIP = false

25 L220H19

m

Decision Coverage

traversed at least once

What are examples of branch statements?

coverage?

Develop test cases such that each branch is

Does decision coverage satisfy statement

L220H20

Condition Coverage

Develop test cases such that all combinations of
truth values in a decision takes are tested at least
once

What are examples of conditions?
Does condition coverage satisfy decision

coverage?

What must be added to decision coverage to
change it to condition coverage?

27 L220H21

r—. '
Testing Strategles

Top-down testing

Bottom-up testing

Thread testing

Stress testing

28

Testing and Debugging Tools

Static analysis tools

Dynamic analysis tools

Test data generators and oracles

File comparators

Simulators

L220H23

LECTURE NUMBER: 023

JOPIC(S) FOR LECTURE:
More on the Structured .Analysis model
INSTRUCTIONAL OBJECTIVE(S):
1. Understand the concept and representation of control flows and control
transforms in DFDs.
2. Understand use of process specifications and control specifications to
describe primitive transforms.

3. Know that a wide range of methods for writing process and control
specifications exist and be familiar with a number of them, including
narrative English, pseudocode, decision tables, decision trees, graphs,
functions, finite state machines, and Petri nets.

SET UP, WARM-LIP: :
(How involve learner: recall, review, relate)

You are familiar with many aspects of the structured analysis model, having used
itin your first project. You produced a CD, a leveled and balanced set of DFDs,
and an integrated data dictionary.

(Learning Label- Today we are going to leam ...)

Today we're going to discuss some additional aspects of that structured analysis
model.

CONTENTS:

1. Review the structured analysis model already presented and discuss
some further agpects.

a. Context diagram shows the net inputs and net outputs of the
gystem. It shows no decomposition of the system. It is the first
level of the model and depicts the relationship between the system
and the sources and destinations of the system's inputs and
outputs.

b. DFDs
i Naming of transforms - the transforms represent actions
(functions) and should be named as meaningful as
possible yet in only a few words. The name consists of an

1 Lecture 023

action verb indicating the function to be performed followed
by an object (noun) or adjective/noun. Generic names
(e.g. Process input, or Handle transaction) that convey little
knowledge of the transform’s function must be avoided.
Naming of data flows - data flows are named vectors
representing "data in motion". They must also be named
concisely but meaningfully. Data flow names are always
nouns.

Control flows - a data flow that represents an element of
control (a flag, switch, command signal, etc.) is called a
control flow. Generally control flows are not shown (for
example, every transform has a "trigger” that invokes it) but
at times, particularly in real-time systems, control flows are
modeled. A control flow is indicated as a dashed vector.
A transform that handles only control flows may be
represented by a dashed circle rather than a solid circle.
Such a transform is called a control transform.

Extensions for real-time systems - There are a number of
extensions to the basic structured analysis notation
intended to better model real-time systems. Discuss these
briefly in order to let students know that these extensions
exist and that, without them, real-time systems cannot be
adequately modeled. Pressman provides an excellent
discussion of these extensions.

Placement of data stores - are they shown on multiple
levels? where are they shown? In general, a data store is
shown on the diagram in which it first appears as an
interface between two transforms.

Review concept of decomposition (leveling), balancing.

2. Discuss how one knows when to stop leveling.

Leveling continues until a transform is identified that cannot be
further decomposed. A transform that cannot be further
decomposed is called a functional primitive, or simply a primitive.
While there are no rules for recognizing a primitive, there are a
number of guidelines. Discuss these:

ii

the transform is a simple, obvious, or well-known function
and further decomposition is clearly unnecessary

the transform has a single input and a single output

the policy governing the transform can be easily and clearly
described on a single page

A process specification is then written for each primitive. Process

2 Lecture 023

specifications are also referred to as process specs, p-specs, or
mini-specs. A process specification provides a detailed
explanation of the internal processing policy of a primitive.
Discuss some forms of process specifications that students are
already familiar with, e.g. pseudocode.

Process specifications (P-specs or mini-specs) - There are many forms
of representing process specifications with varying levels of formality.
Use examples to illustrate a variety of these notations.

Narrative English is perhaps the most common form but is rarely,
if ever, the best form. lllustrate using the verify credit transform
described in narrative form in L230H1.

L230H2

Discuss the pseudocode version of Verify Credit and how it is a
significant improvement. Pseudocode, or structured English,
allows logic to be stated clearly and unambiguously. While
informal, standards should be imposed on pseudocode including
use of the basic control structures, and reference to data
dictionary entries.

L230H3, L230H4, L230H5
Discuss further examples; diiferent styles.

L230HS6, L230H7

Discuss the narrative and data flow diagram description of
(L240OHS6) a transform to decide on approval for a ioan. This is
more formally and more effectively represented in a decision table,
as shown in L21OH7.

L230H8
Discuss the same example represented as a decision tree.

L230H9 Another decision tree example.

Other forms - Discuss following as examples of other forms for
process specifications and stress that for a given transtorm, the
most appropriate form should be chosen.

i L230H10 Finite state machine example

ii L230H11a, L230H11b, L230H12 Petri net examples

il L230H13 Wamnier diagram example (for data store

specification)

3 Lecture 023

PROCEDURE:
teaching method and media:

yocabulary introduced:
Control flows

Control transforms
Petri net

Decision trees
Decision table
Psuedocode
Functional primitive
Finite state machine
Warnier Orr diagram

INSTRUCTIONAL MATERIALS:
overheads:
L230H1 Narrative - Verify credit transform
L230H2 Psuedocode Example - verify credit
L230H3 Another Psuedocode Example -
L230H4 Data Dictionary Example
L230H5 Structured Requirements Specification
L230H6 Transform from DFD with narrative
L230H7 Decision table for loan qualification
L230H8 Decision tree
L230H9 Decision tree showing fiow of control
L230H10 Finite State Machines
L230H11a Petri nets
L230H11b Petri nets
L230H12 Execution of a Petri net
L230H13 Warnier diagram

handaouts:

BELATED LEARNING ACTIVITIES:

(labs and exercises)

Lab020- Final requirements presentation/review
BEADING ASSIGNMENTS:

Sommerville Chapter 4 (pp. 71-82)

Mynatt Chapter 2 (pp. 62-69)

BELATED READINGS:
Ghezzi Chapter 5 (pp. 160-198)

4 Lecture 023

Pressman Chapter 7 (pp. 207-235)
Schach Chapter 7 (pp. 157-193)

5 Lecture 023

Narrative Description of Verify Credit

"| gather together all of the orders that accumulated
the previous day. First | look them all up in customer
payment history file and | pull out whatever histories
| can find. Then | go through all the histories and
add up the overdue balances and mark off the date
of the oldest balance. Then | separate the records
into two piles. The ones that have no overdue
balance or even a balance up to $100 go to Sally.
She also gets the ones that aren't more than 60 days
old regardless of the overdue balance. She ok's
credit for them. All the rest go to Jim who demands

prepayments.”

6 L230H1

Structured English Version of Verify Credit
FOR each Order

Look up Customer_Payment_History for
Customer_Name (on Order)

IF no record found (new customer)
THEN Issue a Prepayment_Request

ELSE (existing customer)
Compute Overdue_Balance

IF Overdue_Balance > 100
THEN IF Age_Of Oldest_Balance > 60
days

THEN Issue
Prepayment_Request

ELSE (overdue less than 61 days)
Issue
Credit_Confirmation

ELSE (overdue balance < $101)
Issue Credit_Confirmation

7 L230H2

Prototyping (Pressman)

10 L140H3

Plan to Throw One Away

In most projects, the first system built is barely
usable. It may be too slow, too big, awkward to use, or
all three. There is no alternative but to start again,
smarting but smarter, and build a redesigned version in
which these problems are solved. The discard and
redesign may be done in one lump, or it may be done
piece-by-piece. But all large-system experience shows
that it be done. Where a new system concept or
technology is used, one has to build a system to throw
away, for even the best planning is not so omniscient
as to get it right the first time.

The management question, therefore, is not
whether to build a pilot system and throw it away. You
will do that. The only question is whether to plan in
advance to build a throwaway, or to promise to deliver
the throwaway to customers. Seen this way, the
answer is much clearer. Delivering that throwaway to
customers buys time, but it does so only at the cost of
agony for the user, distraction for the builders while they
do the redesign, and a bad reputation for the product
that the best redesign will find hard to live down.

Hence plan to throw one away; you will, anyhow.

Source: Brooks: The Mythical Man-Month,
1975, p. 116.

11 L140H4

The Spiral Model (Sommerville)

12 L140H5

LECTURE NUMBER: 015

TOPIC(S) FOR LECTURE:
Requirements analysis & specification structure
An introductory discussion of requirements identification

INSTRUCTIONAL OBJECTIVE(S):
1. Understand the goals of requirements and their position in the life
cycle.

2. Understand the stages in requirements development.
3. Be able to use language syntax, context questions and elicitation to
develop requirements.

(How involve learner: recall, review, relate)
In working on your projects you have no doubt come to realize the
importance of a clear understanding what is to be developed before starting
to build it. In software development, the first step toward such a clear
understanding takes place in the requirements process. The completion of
this process is marked by the development of a requirements document,
sometimes called a software requirements specification.

(Learning Label- Today we are going to learn ...)
Today we are going to learn about the stages of the requirements process
and the structure of a requirement document.

CONTENTS:
1. Understand requirements in terms of its 3 primary goals. The first
goal is paramount during early stages of the life cycle but diminishes
later when the other two goals become more important.

a. To establish agreement about a system between the sponsors,
users and developers of a system.

b. To function as a transition from the problem space into the
solution space by being the basis for software design.

c. To support the verification and validation of the system.

2. The requirements process and document address the goals of
requirements listed above.

1 Lecture 015

c.

|

l

Requirements definition is the process of determining
requirements for a system. The audience here is generally the
user and the contractor.

i Software requirements are distinguished from system
requirements when the software requirements are part
of a larger system.

ii L150OH1
As a formal description of the understanding between
customer and software developer, introduce the
documentation required by the Department of Defense
(DOD) software standard 2167a. This also shows the
standards for formally validating these documents.

The details of the initial requirements are elaborated in a
requirements specification. Sometimes this is divided into high
level requirements specification which talks about systems
details and software specification which is a document
addressed to system designers. Sometimes these are stated
formally, allowing a high degree of testability.

Requirements validation - refer back to L150H1.

There are several distinct tasks which must be accomplished to
identify the requirements. This process is referred to as requirements
definition.

a.

Requirements are generally elicited from people. The more
complex a system is, the more likely it is multiple people are
involved and, thus, multiple viewpoints exist.

L150H2 illustrates the use of syntax as a guide to identify the
actual requirements. Discuss each of these items using Koft
as an example.

Linguistic analysis is only a starting point. Other techniques
are required as well. Ask the class for techniques they would
use to develop the requirements for a medical diagnosis
system. Bring out the need for interviewing experts,
understanding the environment (including the equipment), the
technicians using the equipment, and the user of the output of
the system. Then discuss the techniques below.

i Context analysis as a method of identification asks why
the software is created, what is the environment of the
software, and what are the operationa!, economic
boundary conditions that acceptable software must
satisfy. The result of this is called software needs or
system needs and results in a needs report which

2 Lecture 015

PROCEDURE:

should be included in a software requirements
specification.

Elicitation of requirements related information from end-
users, subject matter experts and customers. This is
both a fact finding and validation effort. Fact finding
includes interviews, questionnaires, and observation of
the environment. Validation involves presenting results,
including documentation and prototypes, to the customer
and resolving open issues.

Using system requirements such as those associated
with embedded software.

Developing user interface requirements. Prototyping
may be useful here. It is important to talk to the user
rather than the customer or sponsor at this point.

Identification of software development constraints: cost,
hardware,fault tolerance.

There are several other tasks in requirements analysis. They
involves relating all of the requirements gathered from diverse
sources. One needs to:

assess potential problems;

classify the requirements into categories, determine a
method to represent the requirements, and select
validation techniques. These will be discussed in later
lectures.

Lecture and overheads

vocabulary introduced:
functional requirements
non-functional requirements
context analysis
requirements elicitation
linguistic analysis

INSTRUCTIONAL MATERIALS:
overheads:
L150H1 Software requirements analysis - DoD standard 2167A
L150H2 Requirements identification through linguistic analysis
handouts:

3 Lecture 015

(labs and exercises)
Lab 013 - Peer/self assessments and acceptance reviews for small

projects.

Sommerville Chapter 5 (pp. 85-103)
Mynatt Chapter 2 (pp. 62-83)

Berzins Chapta} 2 (pp. 23-47)
Pressman Chapter 6 (pp. 173-189)

4 Lecture 015

Software Requirements Analysis

[npatDocuments

System/segment
Specification(885)

System/segment
Design Document(38DD)

Boftware Requirements

Specification (SRE)

"

Interface Requiroments
Specification(TRS)

Software Development

Paa (8DP)

Outpata/Preducts
V & V Fanctions/Processes
Analyze inpat docaments Asalyss Reports
(uunm.m.mﬁn)

Geaerate requirements
Interface requiremeat analysis
Evaluste remeats AnemalyR
e
Quality facter requiremeats
Mission requiremeats of system
ond eperationsl smpport m
Bavieoanest -
Testability
Completencss sad consisteacy
Rvaluate propesed testing plass, ;
fachaiques (qoalification requiremat) Minste, Ausisi of S52 >
Altesd S8R

Deocription/Asalysis >

of allocated bassline

Seftware Specifieation Review
5 L150H1

Requirements Identification Through
Linguistic Analysis

Statements with the verbs "shall", "will", "must", "are", or
"is".

Statements that specify numbers, for example, limits,
ranges of values, or tolerances.

Statements that are pre-defined or declarations of
requirements.

Statements that specify constraints.
Statements that specify size.

Statements that define dependencies, relationships,
sequence, logical flow, or behavior.

Statements that specify interfaces, inputs, outputs, events,
or interrupts.

Statements that define the data.
Statements that define support.
Statements that specify the environment.
Statements that specify human processing.

Statements that imply requirements, for example,
prerequisites.

6 L150H2

LECTURE NUMBER: 016

Ada as a specification tool and a maintenance tool

INSTRUCTIONAL OBJECTIVE(S):
1. Understand the structure of Ada systems from program reading of an
example.

2. Understand the interface between Ada packages.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

In a previous lecture, we discussed some of the language features of Ada
which support design and maintenance activities. We described how to work
from the products of the analysis phase (i.e., requirements list, CD, DFDs,
data dictionary) to derive subsystems which compose the proposed system.
These subsystems contain information and/or tasks to be accomplished in
the system and can usually be classified as user utilities, resource
management utilities, and service utilities. Using this approach to high-level
architecture of the system aliows a high degree of data and functional
abstraction. These subsystems can then be shown in Ada package
specifications. The design of the interface for these packages or the
subprograms within the packages allows you to establish what information
flows to and from these subsystems and how the subsystems interact.

(Learning Label- Today we are going to leam ...)

Today we are going to look at another problem specification, its analysis, and
its design.

CONTENTS:

1. L16HD1
Hand out and discuss the narrative description of the spell checker

problem.

Using the context diagram (L160H1) and the first level DFD
(L160H2), discuss how to determine the subsystems. Possible
subsystems (and their actions) include:

a. Main dictionary (look up a word, keep a counter)

b. Fast dictionary (look up a word, build, keep a counter)

c. Auxiliary dictionary (look up a word, add a word, keep a
counter)

1 Lecture 016

d. Word (get from line, look up in dictionaries, handle unknown
word, keep a counter)

e. Line (get from file, keep a counter)

2. L16HD2
Provide a possible solution -- distribute the Ada package
specifications, the driver, and one example of a package body.

Using L160H3, show the students how these packages and
procedures interact. Discuss the design of the software system as
shown in these packages. Look at the cohesiveness and coupling
provided.

3. Examine the Ada packages for the spell checker, including program
features of Ada and the maintainability aspects of the program.
Generate discussion through questions about making modifications;
e.g. what packages would be affected if changes were made to the
package specification of Counter, Test_ops, and Main_dict or the
package body of Test_ops.

PROCEDURE:
teaching method and media;

yocabulary introduced:
package specification and body
INSTRUCTIONAL MATERIALS:

gverheads:

L160OH1 Context diagram for Spelling checker
L160H2 Level 0 DFD for Spelling checker
L160H3 Structure chart for Spelling checker

handouts:

L16HD1 Spelling checker requirements

L16HD2 Ada package specifications, driver, and example of package
body

(labs and exercises)
Lab014 small project assessment

READING ASSIGNMENTS
None

2 Lecture 016

Context Diagram

Spell Checker
User
Line
put fi .""3
0K on Word -
requ
est
= command + name of input file
word info = word + line
direction = ingnore | add to dictionary | correctly spelied
word
statistics = number of lines processed + number of words

processed + number of words found in main
dictionary + number of words found in fast
dictionary + number of words found in auxiliary
dictionary

3 L160OH1

dictionories

Level 0

Spell Checker

Line
dictionary

Ohock Word
dictionaries
0K on word
Word info
Honde
- wiown word Wrchors

4 L160H2

Structure Chart
Spell Checker

Text_I0 Disk_I0 Direct_I0

l 1

Counters

Test_ops

Main_ Fast_ Aux_

Test. dict dict dict

Word

5 L160H3

Spelling Checker Requirements

Narrative:

Spell is a general-purpose spelling checker that operates on an existing
editor-created text file to produce an output text file that has been checked for
spelling errors. Spell parses out the words from an input file and compares them
with entries in its dictionaries. Whenever a word is not found in its dictionaries, the
checker will indicate the word and the line of text that contains the word and seek
the user's directions regarding the word.

Spell features a large permanent dictionary accessed from disk, as well as
a small "fast" dictionary that is built and loaded into fast memory and contains the
most commanly used words in the English language. In addition, an auxiliary
dictionary that contains words inserted by the user is on line. This auxiliary
dictionary is the only one that may be modified and maintained by the user.
Unknown words that are correctly spelled may be automatically added to the
auxiliary dictionary. '

In addition to the output file, Spell will provide statistical information on the
file which was processed. This information includes the number of lines of text
processed, the number of words processed, the number of words found in the main
dictionary, the number of words found in the fast dictionary, and the number of
words found in the auxiliary dictionary.

Spell is required to run on a microcomputer in an interactive manner. The
microcomputer must have, at a minimum, a video terminal, two disk drives (floppy
or hard), and 128,000 bytes of random access memory. Spell should be able to
process at least 200 words per minute.

6 L16HD1

package COUNTERS is
type COUNTER is limited private;

procedure INITIALIZE (C : out COUNTER);
-- used to initialize an object of type COUNTER to zero

procedure INCREMENT (C : in out COUNTER);
-- used to increment an object of type COUNTER by one

procedure DISPLAY (C : in COUNTER);
-- used to display the value of an object of type COUNTER

private
type COUNTER is new integer;
end Counters;

7 L16HD2

with Direct_io, COUNTERS; use COUNTERS;

package TEXT_OPS is

- from Direct_io import type File_type
-- from COUNTERS import type COUNTER

type LINE is limited private;
type WORD is limited private;

INPUT : Direct_io.File_type:

END_OF_LINE, LONG_WORD : boolean;

- END_OF _LINE is set by GET_LINE to true at the end of a line

-- LONG_WORD is set by GET_NEXT_WORD to true if word is over
- 13 characters

function GET_LINE return LINE;
-- obtains the next line of text for processing

function GET_NEXT_WORD (L : LINE) return WORD;
-- obtains the next word in line for processing

procedure GET_INPUT_TEXT (NAME : in String);
-- fetches an existing text file with Name

procedure CREATE_OUTPUT_TEXT (NAME : in out String);
-- opens a new text file Name

procedure PUT_OUTPUT (L : in LINE);
-- sends line to the output text file

procedure WORD_HANDLER (W : in WORD; L : in out LINE;
W_COUNT, L_COUNT : in COUNTER);
-- handles an unidentified word

function UPPERCASE (W : WORD) return WORD;
-- converts a word to uppercase

function SPECIAL_ENDING_1 (W : WORD) return boolean;
-- returns true if word ends in 'S’ or 'D’

function SPECIAL_ENDING_2 (W : WORD) return boolean;
-- retumns true if word ends in 'ED’, 'ER’, or ‘LY’

function SPECIAL_ENDING_3 (W : WORD) return boolean,;
-- retumns true if word ends in 'EDS', 'ERS', or 'ING'

function STRIP_ENDING_1 (W : WORD) return WORD;
-- removes 'S’ or 'D' ending from word

8 L16HD2

function STRIP_ENDING_2 (W : WORD) retum WORD;
- removes 'ED’, 'ER' or ‘LY’ ending from word

function STRIP_ENDING_3 (W : WORD) return WORD;
-- removes 'EDS', 'ERS' or 'ING' ending from word

function ING_ENDING (W : WORD) retum WORD;
-- retums true if word ends in 'ING'

function ADD_E (W : WORD) retumn WORD;
-- adds 'E' to word

procedure DISPLAY_LINE (L : in LINE);
-- digplays a line on a video terminal

procedure DISPLAY_WORD (W : in WORD);
-- display a word on a video terminal

procedure REMOVE_APOSTROPHES (W : in out WORD);
-- removes first and last apostrophes, if present in
-- gither the first or last character of the word

function LENGTH (W : WORD) return integer;
-- returns the number of nonblank characters in the word

private
LINE_LENGTH : constant := 80;
WORD_LENGTH : constant := 13;

type LINE is array (1..LINE_LENGTH) of character;
type WORD is array (1..WORD_LENGTH) of character;

end TEXT_OPS;

9 L16HD2

with TEXT_OPS; use TEXT_OPS;

package TEST_WORD is
-- from TEXT_OPS import WORD

function IDENTIFY_WORD (W : WORD) return booiean;
-- returns true whenever word is found in one of the
-- available dictionaries

end TEST_WORD;

10 L16HD2

with TEXT_OPS; use TEXT_OPS;

package MAIN_DICT is
-- from TEXT_OPS import WORD

NUM_FOUND_MD : integer;
- NUM_FOUND_MD is incremented by one every time a word
-- is found in the main dictionary

procedure CLOSE_MD;
-- closes the main dictionary file

function LOOKUP_MD (W : WORD) return boolean;
-- returns true if word is found in main dictionary

end MAIN_DICT;

1 L16HD2

m

with TEXT_OPS; use TEXT_OPS;

package FAST_DICT is
-- from TEXT_OPS import WORD

NUM_FOUND_FD : integer;
-- NUM_FOUND_FD is incremented by one every time a word
-- is found in the fast dictionary

procedure CLOSE_FD;
-- closes the fast dictionary file

procedure BUILD_FD;
-- builds fast dictionary file from main dictionary

function LOOKUP_FD (W : WORD) return boolean;
-- returns true if word is found in fast dictionary

end FAST_DICT;

12 Li6HD2

with TEXT_OPS; use TEXT_OPS;]

package AUX_DICT is
-- from TEXT_OPS import WORD

NUM_FOUND_AD : integer;
- NUM_FOUND_AD is incremented by one every time a word
-- is found in the auxiliary dictionary

procedure CLOSE_AD;
-- closes the auxiliary dictionary file

function LOOKUP_AD (W : WORD) return boolean;
- returns true if word is found in auxiliary dictionary

procedure INSERT_AD (W : in WORD);
-- used to insert a word into auxiliary dictionary

procedure INSERT_AD_UNUSED (W : in Word);
-- used to insert a word into the unused portion of
-- the auxiliary dictionary

end AUX_DICT;

13 Li6HD2

-

with TEXT_OPS, MAIN_DICT, FAST_DICT, AUX_DICT;
use TEXT_OPS, MAIN_DICT, FAST_DICT, AUX_DICT;

package body TEST_WORD is
- from TEXT_OPS import WORD, UPPERCASE, LENGTH,
- SPECIAL_ENDING_1, SPECIAL_ENDING_2,
- SPECIAL_ENDING_3, STRIP_ENDING_1,
- STRIP_ENDING_2, STRIP_ENDING_3,
- ING_ENDING, ADD_E,
REMOVE_APOSTROPHES
-- from MAIN_DICT import LOOKUP_MD
- from FAST_DICT import LOOKUP_FD
-- from AUX_DICT import LOOKUP_AD, INSERT_AD_UNUSED

function IDENTIFY_WORD (W : WORD) return boolean is
TEMP_WORD : WORD;

| : integer;

function IS_IN_DICTIONARIES (W : WORD) return boolean is
begin .
it (Length(W) <= 6) and then LOOKUP_FD (W) then
return True;
elsif LOOKUP_AD (W) then
return True;
elsif LOOKUP_MD (W) then
INSERT_AD_UNUSED (W);
return True;
else
return faise;
end if;
end IS_IN_DICTIONARIES;

begin --IDENTIFY_WORD
W := UPPERCASE (W);
-- remove apostrophe if it is first or last symbol
REMOVE_APOSTROPHES (W);
if SPECIAL_ENDING_1 (W) then
TEMP_WORD := STRIP_ENDING_1 (W);
if IS_IN_DICTIONARIES (TEMP_WORD) then
return true;
end if;
elsift SPECIAL_ENDING_2 (W) then
TEMP_WORD := STRIP_ENDING_2 (W);
if IS_IN_DICTIONARIES (TEMP_WORD) then
return true;
end if;

14 Li6HD2

e —

elsif SPECIAL_ENDING_3 (W) then
TEMP_ WORD := STR!P ENDING_3 (W);
if IS_| IN DICTIONARIES ((TEMP_ WORD) then
return true;
end if;
if ING_ENDING (W) then
TEMP WORD := ADD_E (W);
itiS_| IN DICTIONARIES(TEMP WORD) then
return true;
oend if;
end if;
end if;
if IS_IN_DICTIONARIES (W) then
retum True;
eise
return False;
end if;
end IDENTIFY_WORD;

end TEST_WORD;

15

L16HD2

T ———

with TEXT_OPS, COUNTERS, TEST_WORD, MAIN_DICT, FAST_DICT,
AUX_DICT,

TEXT_IO, DISK_IO;
use TEXT_OPS, COUNTERS, TEST_WORD, MAIN_DICT, FAST_DICT,
AUX_DICT,

TEXT_IO, DISK_O;

procedure SPELL is

-- from COUNTERS import INCREMENT and DISPLAY

- from TEXT_OPS import LINE, WORD, GET_LINE, GET_NEXT_WORD,

- END_OF_LINE, LONG_WORD, INPUT,

- GET_INPUT_TEXT, CREATE_OUTPUT_TEXT,

PUT OUTPUT AND WORD_| HANDLER

from TEST_WORD import IDENTIFY_ WORD
-- from MAIN_DICT import NUM_| FOUND MD and CLOSE_MD

-- from FAST_DICT import NUM_FOUND_FD and CLOSE_FD

-- from AUX_DICT import NUM_FOUND_AD and CLOSE_AD

-- from Text_io import put, get, new_line, and put_line

-- from Disk_io import end_of_file

package INT_{O is new Integer_lO (integer);
use INT_IO;

INPUT_LINE : LINE;
A_WORD : WORD;

NAME : String (1..20);
LINE_COUNT,

WORD_COUNT : COUNTER,;

procedure INFORMATION;

begin
put ("What is the name of the text to be checked?");
new_line;
put ("Your must use the " TEXT suffix > ");
get (Name);
GET_INPUT_TEXT (NAME);
new_line (3);
put ("What is the name of the new text?");
new_line;
put ("You must use the ".TEXT" suffix > *);
get (NAME);
CREATE_OUTPUT_TEXT (NAME);

end INFORMATION;

begin
INITIALIZE (LINE_COUNT);
INITIALIZE (WORD_COUNT);
INFORMATION;

18 L16HD2

i -

INPUT_LINE := GET_LINE;
exit when END_OF_LINE (INPUT);
INCREMENT (LINE_COUNT);

17

L16HD2

loop
A_WORD := GET_NEXT_WORD (INPUT_LINE);
exit when END_OF_LINE;
if not LONG_WORD then
INCREMENT (WORD_COUNT);
if not IDENTIFY_WORD (A_WORD) then

put (ASCII.BEL);
WORD_HANDLER (A_WORD, INPUT_LINE,
WORD_COUNT,
LINE_COUNT);
end if;
end if;
end loop;
PUT_OUTPUT (INPUT_LINE);
end loop;
new_line (3);

put ("The number of lines processed is ");

DISPLAY (LINE_COUNT);

new_line;

put ("The number of words processed is ");

DISPLAY (WORD_COUNT);

new_line;

put ("The number of words found in main dictionary: *);
put_line (NUM_FOUND_MD);

new_line;

put ("The number of words found in fast dictionary: *);
put_line (NUM_FOUND_FD);

new_line;

put ("The number of words found in auxiliary dictionary: ");
put_line (NUM_FOUND_AD);

new_line;

end SPELL;

18 Li16HD2

LECTURE NUMBER: 017

1. Roquimmonts.asanondpmductandﬂ\ostandardsappﬁadtothem.

2. The requirements development process.
3. Requirements validation.

INSTRUCTIONAL OBJECTIVE(S):

Use several techniques to extract requirements.

Understand several methods of requirements specification.
Follow the steps in a requirements standard such as 2167a.
Develop a requirements validation pian.

hoON-

(How involve learner: recall, review, relate)
As you recall we have discussed several techniques for identifying
requirements. Once the requirements are identified there are still several
major tasks which have to be accomplished.

(Learning Label- Today we are going to learn ...)
Today we are going to learn about the elements that make up the remaining
stages of the requirements process and how they relate to a requirements
document. We will discuss the elements of a requirements document and
the steps in the process of developing the document.

CONTENTS:
1. Ask the studenis to recall the 3 primary goals of a requirements
document.

a. To establish agreement about a system between the sponsors,
users and developers of a system.

b. To function as a transition from the problem space into the
solution space by being the basis for software design.

c. To support the verification and validation of the system.

2. The development of requirements is quite difficult and several
organizations have formulated complete software development
methodologies which include a discussion of requirements.

a. Requirements definition: as the process of determining
requirements for a system. The software development process
has been formalized by a number of organizations, Private
Companies, NASA, DoD. We will look at one of those
standards DoD_STD 2167A.

i Software requirements are distinguished from system

| Lecture 017

requirements when the software requirements are part
of a larger system.

L170H1

ii Discuss the document structure endorsed by 2167a. The
relation is systems contain segments, segments contain
configuration items, configuration items contain
configuration components(CSCs) and components
contain units(CSUs).

it This standard treats software development as a
milestone-driven project. Milestones are generally
documents or clearly specified events. 2167a
characterizes several processes separated by the
completion of milestones. L170H2
Point out the reviews. Work through the chart showing
the relation to what steps they have experienced in the
small project.

Briefly discuss functional requirements and tasks to be
accomplished. Functional requirements are the external
behavior(the functions) expected by the user of the system.
These tasks must be clearly stated in a precise manner so that
they can be tested. For example a functional requirement of
the KoFF system would be dispense tapes.

Discuss non-functional requirements in terms of restrictions or
constraints on the system. These are elements which the
customer lives with all the time and so they are the hardest to
extract from him/her. They are caused by hardware, laws, the
environment, oolitical preferences. Sometimes these
requirements are very hard to gather. Ask the students why
there might be more difficulty gathering these requirements.
(The sort of answer you are looking for includes "The customer
takes their environment for granted and presumes that you
understand the constraint of their system.) For example - the
customer forgot to tell you that their hardware is a Commodore
64 computer with 64 K RAM.
i Metrics for non-functional requirements include speed,
size, ease of use, reliability, robustness, portability
ii Review the Mynatt list on pages 71 and 72 & give
examples.

Ask the students about non-functional requirements of their
small projects. [E.g., the system is to be implemented in
Pascal, the KoFF system must release tapes within 3 seconds
of selection. Note that the function to be performed -dispense
tapes- has not changed.] Another example is writing a system
for a foreign customer, where the documentation must be in
their language.

2 Lecture 017

Requirements Specification presents the details of the system.
Sometimes this is divided into high-level requirements
specification which talks about systems details and software
specification which is a document addressed to system
designers. There are many ways to express these details.
Natural language has several ambiguities. Sometimes the
same requirements get listed as two tasks because the
developer did not realize it was the same task. Formalism
have been developed to try to reduce ambiguity. Examples of
such formalism are formal-algebraic specification and special
languages such as PSL/PSA and SADT.

Specifications should include all the default conditions and how
to handle error conditions. Often default conditions are
forgotten by the analyst or the customer. In these cases when
the system is executed, it is initialized to a default state no one
considered, which could be unpredictable and or dangerous.
Because the analyst is not completely familiar he/she does not
know how error conditions should be handled. All error
conditions and how to handle them should be specified in the
requirements.

Requirements validation - it is critical to get the requirements

correct because any mistake made here will cost more in effort

and dollars later on.. There are many standards for

requirements. They should be checked for consistency,

rrectn n mpleteness, feasibility, functionality,

testability, easy to change

i Formal review - walk-throughs and inspections

ii Requirements validation matrix-compare this with the
requirements traceability matrix used in the sample test
plan L9HD1.

3. There are several distinct tasks which must be accomplished to
develop a requirements definition.

a.

Remind them of the discussion of requirements identification
and ask them to describe the three methods of requirements
gathering discussed in the last class.

i Context analysis as a method of identification (from
Ross) which asks why the software is created, what is
the environment of the software, and what are the
operational, economic boundary conditions that
acceptable software must satisfy. The result of this is

called software needs.

ii Elicitation of requirements related information from end-

3 Lecture 017

users, subject matter experts and customers. This is
both a fact finding and validation effort. Fact finding
includes interviews, questionnaires, and observation of
the environment. Validation involves presenting
documentation of the results to the customer and
resolving open issues.

There are several other inputs to the process of requirements

gathering.

i Using system requirements such as those associated
with embedded software)

ii Developing user interface requirements (2167a Interface
Requirements Specification IRS)

Identification of software development constraints: cost,
hardware,fault tolerance.

Requirements analysis involves relating all of the requirements

gathered from diverse sources- satisfy the customer

i Assessment of potential problems and determination of
acceptable risk

ii Classification of requirements done in terms of
mandatory, desirable, and inessential. It is also helpful
to classify them in terms of stability- which ones are
likely to change. Ask them how this knowledge would
effect design. They should isolate requirements that are
likely to change.

iii Consider both the technical(can computers do it) and
operational(can the staff use the system in our
environment) feasibility of the system. Also consider the
economic feasibility of the system. What would the
student think of developing a checkbook balancing
program which required input using reverse polish
notation for a computer that weighed 20 pounds and
cost $350.00.

Requirements representation- a step of requirements definition
which portrays the results of requirements identification.

i Use of models

ii Prototyping as a means of clarifying the requirements

Requirements communication involves presenting the
requirements to diverse audiences for review and approval

Requirements validation

i Show 2167a requirements summary evaluation criteria
and go over them. L170H3

ii Show 2167a figure 5 and review the items L170H4

4 Lecture 017

Traceability to system specification and statement
of work. Consistency with IRS and other

specifications for interfacing items. Testability of
requirements. Adequacy of quality factor
requirements.

Traceability to system specification and statement
of work. Consistency with other specifications
for interfacing items. Testability of requirements.
il Discuss verification and validation(V&V) as a separate
process and then show and discuss the V&V standards
for requirements analysis. L170H5
iv Establishment of acceptance criteria
iv Tie this to development organizations which is the
subject of the next class. Some methods of organizing
software development teams improve the quality of the
validation.

PROCEDURE:

in ia:
The class was primarily lecture with some discussion.
vocabulary introduced:

2167a

Requirements validation plan

Computer software configuration item (CSCI)
Computer software components (CSC)
Computer software units (CSU)

Hardware configuration items (HWCI)
Interface requirements specifications (IRS)

INSTRUCTIONAL MATERIALS:

overheads:

L170H1 The language of Standard 2167A

L170H2 Deliverable products

L170H3 Requirements summary evaluation criteria

L170H4 Software requirements analysis

L170H5 Verification and validation standards for requirements analysis

handouts:

5 Lecture 017

(labs and exercises)
Lab 015 - Initial user perspective of extended project

Sommerville Chapter 3 (pp. 45-61)
Sommerville Chapter 5 (pp. 85-91)
Mynatt Chapter 2 (pp. 62-91)

Ghezzi Chapter 5 (pp. 151-160)
John Brackett, Software Requirements, SEI-CM-19-1.2, January 1990.

6 Lecture 017

DoD-STD-2167A
Example of System Breakdown and

CSCIl Decomposition

|

OO®

= [
@@ @

()

L170H1

DoD-STD-2167A
Deliverable Products, Reviews, Audits
and Baselines

TITEM 0rvARE
RRQUIREMENTS SYSTEM MELIMIARY
ANALYSS L] w i sl e

= | &

Requirements Evaluation Criteria

Criterion

Attributes

Language

Concise, quantitative
requirements
Proper use of Shall and Will

Consistency

Standardized format
Technical consistency
Uniform level of detail

Completeness

Acceptable technical level
Timing, accuracy requirements
stated

Capacities specified

Terms and acronyms defined

Lack of
ambiguity

Clear organization

Firmness of requirements
Clear functional traces possible
Requirements not open to
interpretation

Necessity

Requirements needed to fulfill
system objectives
Requirements not superfluous

Testability

All the above criteria satisfied
Capability to develop physical
and functional tests

9 L170H3

Evaluation Criteria for Products of
Software Requirements Analysis

Internal Consistency

Understandability

Traceability to the indicated documents
Consistency with the indicated documents

Appropriate analysis, design, or coding
techiques used

Appropriate allocation of sizing and timing
resources

Adequate test coverage of requirements

10 L170H4

Software Requirements Analysis

Inpat Docaments Outputs/Products
V & V Functions/Processes
Iriabgnst | Aniyzeiapatdocamerts Ansiss Reports
ettt RmSIII)
Interfacs roquirement snslysis
Evalasis sagiseoring reqriremests Asomaly
Irabget | wea hoee >
Dusign Decameat(S8DD) | Qually ackr rouiremnts
Mission requirements of system
sad operational support m
Seftware Roquireneats
Ravirameat >
Specification (SR5) Tutabilly
Completensss sad consiohency
Evaluste proposed tusting plass, Minutes, Anslysia of SSR
fam—) Al 352
Seftware Development Description/Anslysss >
Pha G of allocaiod basoline

Seftware Specification Review

1

L170H5

LECTURE NUMBER:018

1. Team omanizations and software quality.
2. Roles and responsibilities in a matrix organization.

1. UmmmmmomwmwmwcmmMimMOn
quality.
2. Understand the variety of roles in software development.

(How to involve learner: recall, review, relate)

Most software projects today are too large to be completed by a single
individual. Several people have to work together in completing individual
tasks which contribute to the final software product, and several groups of
peopie have to work together organizing the components which constitute the
final complex software artifact. The structure, effective organization, and
management of these teams has a direct impact on the quality and timeliness
of the final software product.

(Learning Label- Today we are going to leam ...)

Today we are going to look at different types of organizations and their
impact on quality.

CONTENTS:

1. Team organization- Software development like any management effort
must organize people so that they can effectively accomplish their
goals. The structure of the team is dictated by its goals. Discuss how
sports teams are organized. Each member of a team has a specific
role and has particular constraints placed on him/her. The third
baseman is encouraged to handie the ball when it is hit or thrown to
him/her. However the third baseman is prohibited from pitching the
ball.

2. Teams can be organized based on control or function.

a. We characterize team organization based on where decision
making control resides. A team can have centralized control
where a recognized leader is responsible for all final decisions
and to resolve all technical issues. One such model is called
a chief programmer team. A team organization can also be
based on a distributed model of control, emphasizing group
consensus. This is illustrated in a democratic team
organization. There can aiso be hybrid combination of these
two types of control.

1 Lecture 018

3.

L180OH2
4.

We can also define an organization in terms of its functions.
Large organizations have a control structure which ia tied to
the major functions of the organization. For example consider
an organization whose primary goal is sales. It will have
departments for marketing sales and publicity but not for
manufacturing. The primary decision making responsibility will
be distributed to each of these departments.

Four basic organizational structures that have been used to model
teams after are:

An application organization is a traditional hierarchical
organization with clearly visible product objectives. The chain
of command and control is vertical. This structure has the
advantages of isolating the lower levels from higher level
decisions.

A functional organization is organized around technical skills of
expertise. A system testing group or an analysis group
represent a functional unit in a functional organization.
Function groups, like application groups, normally work on
many projects. This is a service oriented structure rather than
a product oriented structure. This has the problem that
because a manager directs several projects, which project is
only a part time effort. Reporting in this group is not to the
project manager directing the project but to the functional group
manager.

A project organization is a single group formed to carry out a
single long term project. Because this group is dedicated to a
single project it has significant visibility.

A matrix organization is organized on two axes -- one being
skill groups and the other being projects. The vertical axes
consists of groups such as test, code, requirements, etc. While
the horizontal axes consists of the projects currently under
review or in progress. This model enables the allocation of
human resource to multiple projects. This is useful for
temporary or short lived projects. Personal who are already
familiar with the environment will get assigned to the project.
However this type of organization does not foster devotion to
an individual project.

Several software team organizations can be used within these

2 Lecture 018

business organization.

The democratic team in which there are no predetermined lines
of communication is a common model of team. This is
essential the model followed on your first project. Ask the
students what problems exist for this type of team. You are
looking for things like: no clear decision maker and so work had
to be redone and significant difficulty in communication. For
each additional team member, we reduce the communications
capability. The total number of lines of communication in this
type of team is N(N-1)/2.

The chief programmer model, sometimes called the surgical
model established very clearly defined roles and threads of
control. The team is made up of about six programming
support personnel, one of who is the backup for or assistant to
the chief programmer who could replace the chief programmer
if necessary. The chief programmer designs and implements
the critical parts of the software. The other members of the
team consist of an administrator who takes care of the day to
day non-programming details; a librarian who maintains all the
program listings and can function as project configuration
manager. The team will also have a toolsmith or language
specialist who cal take can of critical language decisions. In
this model communication is minimized through the
administrator. If a new programmer is added then there is only
one new line of communication to the administrator.

There are hybrids of these two teams which minimize
communication using a surgical model and then open the lines
of communication at the more technical level using the
democratic model!.

S. Assessment of team organization

Different teams are appropriate to different projects, no one
team organization is appropriate for all tasks.

i. decentralized control works well when communication at
a low level is needed to achieve the goal.

i, centralized control works well when the problem is well-
understood and rapid development is important.

Discuss the advantages and disadvantages of each type of
team organization.

3 Lecture 018

PROCEDURE: _
teaching method and media:

; vocabulary infroduced:

'{‘ functional organization
chief-programmer team
centralized control
democratic team
matrix organization

INSTRUCTIONAL MATERIALS:
overheads:
L18OHO1
L180OH02

(labs and exercises)

Lab 016 - Immediate tasks for configuration management,
requirements, user interface, and test plan teams.
Mynatt Chapter 1 (pp. 31-42)

Ghezzi Chapter. 8 (pp. 440-446)
Schach Chapter 11 (pp. 357-368)

4 Lecture 018

———

Software Development Teams and
Orqanizat

Team Management Goals:
Clear assignment of responsibility
Facilitate coopeiation for common goals
effective size
clear leadership structure
Control based organization
Centralized control

Distributed control

Hybrid forms of control

Functional Based organization

5 L180OH1

L180H2

Teams and Risks

Software Orgnaizations:

Organizational

Functional

Software Teams

Democratic Team

Surgical/Chief Programmer Team

Hybrid Team

6 L18OH2

LECTURE NUMBER: 020

Moving from entity relationship diagrams (ERDS) to Ada

INSTRUCTIONAL ORJECTIVE(S):

1. Understand the concepts and notations of ERDs
2. To leam how to use ERDs to derive objects and operations to form an
Ada specification.

(How involve Ieamer.: recall, review, relate)

in a recent class, you were introduced to ERDs as an analysis notation for
understanding the problem domain during structured development. These
ERDs can also be used to assist in deriving the objects and operations for
a probiem domain.

(Learning Label- Today we are going to learn ...)

Today we will look at using ERDs to derive objects and operations.

CONTENTS:

1. Entity relationship diagram (ERD)

An ERD graphically depicts the static nature of the major
entities of the system and their respective interrelationships.
An ERD can be derived from an event list. An event list is a
list of the system's actions which affect the system's

~ processing. This list can be stated in a standard sentence

format with a subject, verb, and direct object. An ERD can be
derived from an event list by defining the subjects and direct
objects as entities and the verbs as relationships between the
entities. An entity is some individual item of interest in the
problem domain. An ERD is a network which depicts how
entities of the system are interrelated.

ERDs are well known and understood and provide a good
starting point for the derivation of objects and operations in a
problem domain. The derivation of objects and operations in
a problem domain is not a well understood process, as of yet.

1 Lecture 020

ERDs provide a static view of a system which can be used as
a building block for the data abstraction of object-oriented
design. The usefulness of the ERD is that it provides a frame
of reference for identifying the objects of the object-oriented
design.

2. Entity categories

The entities from the ERD provide a starting place for
determining the objects of a system; however, not all entities
from the ERD will become objects in the final design. The
entities are first categorized before determining which entities
become objects in the design.

The following entity categories have been identified as common

types of entities which exist for a system:

i External entities are the terminators on the context
diagram which do not "own" any data in the problem
domain. These entities do not require data definition
within the scope of the system.

ii Iinternal entities are the terminators on the context
diagram which do "own" data in the problem domain.
These entities require data definition within the scope of
the system.

i User-view entities present a "view" to the user.
Examples are a report or a screen.

iv Dependent entities have little significance to the system
alone and must be associated with another entity for
identification.

v Identifiable entities are independent system elements.

3. Objects and operations from entities

Any entities which are derived from nonautomated events are
eliminated from further consideration.

External entities and dependent entities are eliminated from
consideration as objects. External entities are excluded from
the design since they are not part of the probiem domain.
Dependent entities are excluded from the object list since they
are represented in the design by other objects upon which they
are dependent.

The remaining entities provide a preliminary list of objects for
the system.

2 Lecture 020

d. The operations which remain are associated with the
operations specified in the ERD. The DFDs for the system
may help to identity operations based on events in the ERD.

e. Each object and its associated operations becomes a
subsystem (i.e., Ada package specification) for the system.
These package specifications will be completed giving the
interface for each operation.

PROCEDURE:
ing m n
v lary intr
T Tl MATERI
overheads:
handouts:
T TIVI

(labs and exercises)

Lab 017 - Configuration management plan presentation/review

READING ASSIGNMENTS:

none

BELATED READINGS:
Stoecklin, Adams, and Smith, "Object-oriented Analysis" at Proceedings of
i i ium, June 1988, Tysons Corner,
Virginia, pp. 133-138.

3 Lecture 020

LECTURE NUMBER: 021

Validation

INSTRUCTIONAL OBJECTIVE(S):

1.

To understand the roles of verification and validation in the software
life cycle.

(How involve leamer recall, review, relate)

In previous classes, we have talked about the production of quality software
being a major concern in software engineering. A necessary approach to
achieve quality software is through the use of verification and validation.

(Learning Label- Today we are going to leam ...)

Today we will be examining verification and validation in detail.

CONTENTS:

1.

Introduction to verification and validation (V&V) L210H1

Prior to the use of verification and validation, testing was the
primary means of ensuring the quality of software. However,
testing was performed in an informal, arbitrary manner usually
by the programmer working in isolation. Testing also occurred
only at the end of development after implementation. Quality
products are developed during a quality process. People were
trying to put quality into the software AFTER the software was
developed. They were trying to test quality into the software
but this approach was not working.

Verification and validation are process for ensuring quality
software throughout the life cycle from requirements through
maintenance. V and V are complimentary, yet distinct. The
main objectives of V and V are the discovery of defects in any
of the products (requirements document, design document, efc)
as they are developed; and the assessment of whether or not
the system satisfies the specified requirements. This process
permeates the entire life cycle. Errors should be detected as

1 Lecture 021

early in the development cycle as possible.

L210H2

C.

Three types of analysis are used in V&V. Static analysis
involves no execution; it is the manual or automated
examination of a product (e.g., software requirements
specification document, source code). Examples of static
analysis include software reviews and static program analyzers.

Dynamic analysis involves execution of software where the
functional, structural, or computational aspects of the software
are examined. Examples of dynamic analysis include unit or
module testing and acceptance testing.

Formal analysis is the use of mathematical techniques to
evaluate a product; examples of formal analysis include
symbolic execution and proof of correctness.

Verification

L210H3

Are we building the product right? Verification involves
evaluating the end product of each phase; we are looking for
errors generated within the phase and/or by the transformation
between phases. The product is evaluated for its consistency,
completeness, and correctness according to the previous
phase. This is done during each phase and not at the end of
the life cycle. The most common errors occur between phases.

Although the product is the primary focus, the quality of the
development process is also being evaluated.

The tasks of verification are to assume that the products of

each software life cycle phase:

i Comply with previous life cycle phase requirements and
products,

ii Satisfy the standards, practices, and conventions of the
phase, and

il Establish the proper basis for initiating the next life cycle
phase activities.

Static analysis, dynamic analysis and formal analysis are used
in accomplishing verification.

Validation L210H4

2 Lecture 021

L250H12

Qualities of Coupling Levels (Page-Jones)

Suscepti- Module's

bility Under- Usability

Coupling toripple Modifia- stand- in other

Type effect bility ability systems
Data Variable' Good Good Good
Tramp Poor Medium Medium Poor

Stamp Variablee Medium Medium Medium
Bundling Variable Medium Poor Poor
Control Medium Poor' Poor’ Poor
Hybrid Medium Bad Bad Bad
Common Bad Medium Bad Poor
Content Bad Bad Bad Bad

Depends on the breadth (the number of individual items)
of the interface.

Poor mainly because of concomitant problems in the
interface and the cohesion of one of the modules.

if the convention used in the hybrid data has to be
changed, the ripple effect can be devastating.

21

L250H13

1. Understand functional preliminary design
2. Define basic concepts of object-orientation
3 Understand an object-oriented approach to analysis

SET UP. WARM-UP:

(How invoive learner: recall, review, reiate)
L260H1
We have learned the basic elements of design. The inputs and outputs to
the design process have been defined for us. One of our authors -Mynatt-
describes the preliminary design process and includes in that process
interface design and software design. She and others have described design
as "basically a creative process”. What does she mean?

(Learning Label- Today we are going to learn ...)
L260H2

The problem with preliminary design seems to arise at the transitions from
analysis to an architecture and from an architecture to a documented
solution. Today we will look at some ways to make those transitions easier
and concentrate on a new approach called object orientation.

CONTENTS:

L260H3

1. Discuss where the difficulty lies in design. Define domain analysis as
required knowledge of the system environment. Discuss the
difficulties they just had in moving from data flow diagrams to structure
charts. The transiation process between the problem domain and the
solution domain is difficult and it is made more difficult by using
different notations being used to tak about the problem domain and
the solution domain. For example, data flow diagrams for the problem
space and structure charts for the soition space. domain.

In SA/SD attention shifts from analysis to design, the way you look at
the problem changes. Aflthough there are techniques to help move
from SA to SD, this shift of focus makes the transition more difficult.

L260H4
2. Discuss how object-oriented design is intended to address this

1 Lecture 026

T ——————r

problem by providing a seamless transition between development
stages. The focus of object-oriented design is on the things in the
system and these things tend to be more stable throughout the
development process. One starts with a set of objects which are easily
understood in the analysis stage. Object-oriented design is an
elaboration of the way these object are related to form a solution to
the initial problem.. The details of the design get embodied into the
objects. This encapsulation facilitates maintenance and reusability.

L260HS

3.

Begin an illustration of object oriented development by giving
preliminary definitions of Objects, Classes and Inheritance.

Spend about 10 minutes with an object identification exercise
L260H6. Brainstorm with the students about the objects that are
needed. The objects they identify will include bottle, fill, label, wash,
cap, box, ship List the objects on the board as they describe
them. Pause to show them that they have outlined a system without
being language specific. Discuss some of these candidate objects,
noting that some of them are both nouns and verbs. Label is an
interesting one. A label has data--the type of beverage--, it also has
some properties -- giue on one side-- which enable it to undergo the
Labeling process. Once they are convinced that they have a high
level, language independent, description of a system, develop an Ada
package called LABEL L260H7 to show them how an object can be
specified in Ada. Use the package to explain some of the concepts
of reuse and encapsulation. [f there is time you might want to give
a high level treatment of generics and develop a generic package
called FILL which is passed two parameters, the size of the bottle to
be filled and the type of beverage to be placed in the bottle.

Exceptions could be touched on here as the error conditions for this
package, e.g., overflow of bottle and not_completely_fill the bottle.

L260H8

4.

Discuss Wenger's distinction between Object-oriented languages and
object-based languages. Because Ada does not currently support
inheritance it is useful to spend some time talking about the virtues of
object-orientation and that many of those virtues can be achieved
independent of the implementation language. @ Work done at the
NASA software engineering lab has proven that the use of an object-
oriented methodology, independent of the language environment and
the availability of inheritance, produces significant benefits. Use
L260H9 to discuss some of the elements of object-orientation.
Software engineering starts with real world non-computer objects, e.g.,
cars, or vending machines. These objects are easily identifiable and
are more than just functions or data. Emphasize the black-box
nature of these objects. They present and external interface to the
work and restrict access to their internal implementations. In Object-

2 Lecture 026

orientation, this is called information hiding makes non-essential
information inaccessible. This can be modeled in an Ada package.
The body of a package physically encapsulates both data and
function.

Talk about data and functional abstraction and how they are combined
in object-orientation. Functional abstraction focuses on the interface
to the object, but is does not know how the function is accomplished
within the object. Using a vendor supplied sort package is a good
example of this.

Inheritance can be simply modeled. Tell the students that you have
a Rumbo outside. When they ask what it is, tell them it is a car.
Point out that now they can tell you several things, both attributes and
functions, about a Rumbo because it inherits characteristics from the
class CAR. This is a good point to use a sample of Rumbaugh
notation. Show a class diagram for car and them under it place two
other class diagrams for SEDAN and STATION WAGON. Draw an
inheritance relation between these three showing how sedan and
station wagon inherit all of the characteristics of car. Use the example
of the car and return to the concept of abstraction. The CAR object
can be presented at several levels of abstraction. A high level of
abstraction views a CAR as an object which transports people. At a
lower level we can talk about its structure or the interconnectedness
of its part; and at a lower level we can talk of the functions of its parts.
These levels of abstraction model the stages of object-oriented
development from analysis to preliminary design to detailed design.

L260H10

5. Review the standard problem solving paradigms and how object-
oriented design fits in with these paradigms. The choice of paradigm
directs the entire development life cycle. Paying attention to
paradigms is a shift in focus from "Let's see how | can solve this
problem in 'C' " to "What design technique will best support a solution
to this problem?"

6. Begin a discussion of domain analysis and talk about the different
categories of objects, viz., physical objects, roles, incidents like airline
flights, and interactions between objects like employee works for
company. How these object are related in object-oriented design will
be the subject of the next lecture.

PROCEDURE:
teaching method and media:

3 Lecture 026

yocabulary introduced:
objects
encapsulation
inheritance
object-based
object-oriented
information hiding
procedural abstraction
data abstraction
functional abstraction

INSTRUCTIONAL MATERIALS:
overheads:

L260OH1
L260H2
L260H3
L260H4
L260H5
L260H6
L260H7
L260H8
L260H9
L260H10

handouts:

Design

Preliminary design - The Transitions

Preliminary design - The Transitions, Missing Elements
Object-Oriented Design

Object Orientation

An exercise to identify some objects in a problem specification
Ada package specification for Don's Brewery

Object-oriented vs object-based

General characteristics of object orientation

Object-oriented development

(labs and exercises)

Lab 021 -

Preliminary design

Sommerville Chapter 10 (pp. 182-188)
Mynatt Chapter 3 (pp. 94-130)

Berzins Chapter 4 (pp. 207-214)
Booch Chapter 5 (pp. 44-50)
Booch(2) Chapter 3 (pp. 34-41)
Ghezzi Chapter 4 (pp. 115-121)
Pressman Chapter 8 (pp. 239-262)
Schach Chapter 9 (pp. 262-264)

4 Lecture 026

Design
Preliminary Design
Input Software specifications

Process Generate architecture to meet
specifications
Output Preliminary design document

Detailed Design

5 L260H1

Preliminary Design - The Transitions
Input Problem description in terms of
functions
Determine a solution
Process Preliminary solution in terms of
system architecture, might include
interface design

Record a solution

Output Preliminary design document

6 L260H2

Preliminary Design - The Transitions
Missing Elements
Input Problem description in terms of functions
DOMAIN ANALYSIS: non-functional
requirements, understanding of the
environment

Determine a solution

How ? - “Basically a creative
process"”, "A Flair"

Process Preliminary solution in terms of
system architecture, might include
interface design

Record a solution

What method of notation best reflects
both the problem and the solution?

Output Preliminary design document

7 L260H3

Object-Oriented Design
Goals of Object-Oriented Design

Avoid translation problem between
problem and solution statements.

Establish a seamless transition from
design to implementation.

Make programming simpler, more like
real-life (Alan Kay-Smalltalk)

Facilitate reuse of all system components.

Make all forms of maintenance easier and
more reliable.

8 L260H4

Object Orientation

Objects

Classes

Inheritance

Real world entities (SE) or
modules with constructor and
inspectors, Ada packages
(Programmers)

A template for similar objects
or instances

A _class acquires the
characteristics from one or
more other classes.

9 L260HS5

An Exercise to Identify Some Objects in a
Problem Specification

Don is going to automate one aspect of his
brewery. He wants a computerized system to
control the bottling of the beverages: lager,
ale, stout, and bitters, that he brews. The

returnable bottles come in 3 sizes: one pint,
two pints and three pints.

10 L260H6

Gl g

Ada Package Specification for Don's Brewery

with Text_IO;

uses Text_|O;
with BOTTLE;
uses BOTTLE;

Package LABEL is
Procedure GET_LABEL,;
Procedure WET_LABEL;
Procedure PLACE_LABEL,;
end LABEL;

Package body LABEL is

Type
Records
Functions
Procedures
end LABEL,;

11 L260H7

T

Object-Oriented vs Object-Based

Peter Wenger 1986
The essential elements for object orientation

1. Support for data abstraction

2. Management of data abstraction by
typing

3. Composition of abstract data types
through an inheritance mechanism

"The benefits of object-orientation have been
proven to be dependent on the adoption of
object-oriented methodology rather than on
the implementation details" Mike Stark -
Software Engineering Laboratory

12 L260H8

_Information hiding

Abstraction
Process
Entity
Levels of abstraction
Functional and data

: Rt 0 Yat by .-': S s, s T RS BllE il it
)) L
! ‘ Lt . i
2 \ L om 54

Encapsulation

Inheritance

13 L260OH9

S T———— r—— e

Object-Oriented Development

Problem Solving Paradigms

Procedural
Stream of actions
Data structures are passed
State of system maintained globally

Logical
Access-Oriented
Object-Oriented

Problem domain objects

Control distributed in objects
State maintained by separate objects

Functional

Change of orientation from coding as a foundation
for a solution to the requirements and design as a
foundation for a solution

14 L260H10

LECTURE NUMBER:027

1 High level object-oriented design

2. Steps in preliminary design

3. Validating preliminary design

4 Notation for preliminary design
INSTRUCTIONAL OBJECTIVE(S):

1. Understand the steps in preliminary design and how to test it.
2. Develop a preliminary object-oriented design.
(How involve leamer recall, review, relate)

In our previous discussion, we introduced some of the elements of object-
oriented development.

(Learning Label- Today we are going to learn ...)
L270H1
One can use the preliminary products of structured analysis to aid in the
development of object-oriented design. Today we shall examine the
components of an object-oriented design and look at the detail of a
preliminary object-oriented design.

L270H2

1. Review basic object-oriented concepts, especially message passing
and encapsulation since this will get connected with Ada later on.
lllustrate these using examples consistent with the KoFF system.
Examples of object classes include a video-tape and a VCR. The
particular instances could be a particular video tape and your VCR.
Message passing can be illustrated by : pushing the display button on
the VCR or the end of tape message on the particular video tape
which sends a message to the VCR activating a number of processes.
The VCR is a good model for explaining encapsulation in so far as we
do not know the internal workings of the VCR activated by the PAUSE
or DISPLAY buttons. Inheritance is illustrated by talking about the
classification of the video tape movies. Each movie has many
characteristics in common with other movies but they are separated
by classification into 'G', 'PG', etc. This is modeled in a class
hierarchy. For example we could have a superclass tape, and each
subclass type of type -'G', 'PG', etc -- inherits characteristics from the
super class. Each tape could also be considered s an aggregate of
2 take up reels, one tape, and one case.

L270H3

1 Lecture 027

Give an overview of both preliminary and detailed design. Be sure to
revisit the concept of domain analysis and other information gathering
techniques. Discuss class design as a method to decompose a
system into sub-systems and how this can be done in terms of
external system responsibilities during preliminary design. The
students might find this easier to understand if you talk in terms of
architectural responsibilities. The interfaces that are considered at this
stage are related to the external behavior required by the user to
access the system. Design validation is an important concept to
reinforce. The input documents such as event lists, use cases or
functional requirements lists can be traced to see that the design
meets all of the system requirements. Briefly discuss the outputs of
preliminary design with an emphasis on the traceability matrix and the
information from preliminary design passed to detailed design. Show
the detailed design slide very briefly. Emphasize that this is where
implementation details begin to appear. L270H4

After the overview of design, begin a detailed discussion of object
identification, as the first step in preliminary design. L270HS indicates
the different kinds of things that are candidates for objects for a
system.

Ask the students to think of systems where each of these might be an
object. You might also use the KoFF system, a garage door opener,
or a spell checker. Others have used ATM systems, motor vehicle
registration systems , and air traffic control systems. The goal is to
get them to think of system objects as including more than tangible
things.

L270H6
a. Discuss various object identification techniques.
i Be sure to admit the limitations of the noun
identification technique. Show the KoFF system
L270H7 description and start to list the nouns in
itt. L270H8 Then show a partial noun list and
ask them to identify synonyms, e.g, membership
card and movie rental card. Have them remove
the synonyms. Tell them that objects have
attributes, and one simple way to identify
attributes of objects is to look for things that
cannot exist independently but must be properties
of something else. For example, color cannot
exit alone but must be the property of some
object. Similarly, in the KoFF system, Price
would be an attribute of a TAPE. Look at the list
again for nouns which are attribute candidates,
e.0., due-date must be the property of some

2 Lecture 027

object. Then have them group some the nouns
into major categories, such as billings, member,
and tapes. These categories include most of the
nouns which can be potential objects or can be
major partitions of the design.

ii Discuss use cases as another identification
technique. L270H10 Conversations with the
customer generate descriptions of external
system behavior which can be modeled in mini-
scenarios, called use cases. These scenarios
might reveal some additional system objects.
(This is a recent technique deveioped by
Jacobsen).

b. Return to the Object identification slide and discuss a
method for identifying objects behavior which is based
on finding verbs which indicate an objects responsibility.
L270H6 L270H9 Use the KoFF system description
and look for verbs, associating each verb with some
object identified in the noun identification pass. These
verbs are candidates for object operations. Sometimes
operations have characteristics, such as time
constraints, or the number of times they can be
repeated. These constraints can be indicated by
adverbs. Examine each object in the list for relevancy.
Remove synonymous objects and objects which are not
directly related to the system. Remove nouns which
cannot exist independently.

Present the Rumbaugh object-model notation as a way to describe the
objects that have been identified. Go over the notation. Be sure to
discuss: multiplicity, association, generalization and specialization, and
subclass and superclass. It is helpful to use examples from their small
projects here. L270H11 L270H12 L270H13 For example,
aggregation can be illustrated by talking about a vending machine
consisting of slots and a change maker. A video tape can also be
considered an aggregate of: the tape, two take up reels, and the case.
Derived attributes can be illustrated with KoFF tape due date, since
it is a function of the rental duration and the initial rental date.

L270H14

5.

Clearly discuss the deliverables required for the preliminary design for
the extended project. An object model consisting of an object diagram
using Rumbaugh's notation is required. They use OMTool for this.
The object model also includes an object dictionary and a traceability
matrix. The importance of the object traceability matrix for testing and

3 Lecture 027

further development is emphasized. They are also expected to do
Ada specifications for each object as an interface description. The
preliminary design team should also develop all user interfaces, e.g.,
design major menus for the system. (if you have a user interface
team, instead of a user manual team, then the design of menus
belongs to the user interface team)

L270H15, L270H16
6. The Class dictionary provide significant information needed for design
and implementation. The developer can use this dictionary to cross
check the attributes of this class. The specification of the information
needed from other objects helps in the interface design. The object
traceability matrix is used to verify that every requirement is accounted
for in the object design.

PROCEDURE:
teaching method and media:

traceability matrix
object class
instance
encapsulation
message

method
inheritance

class hierarchy
object mode! notation
class dictionary
subclass
generalization
specialization

INSTRUCTIONAL MATERIALS:

overheads:

L270H1 Outline

L270H2 Definitions

L270H3 Object-oriented design (1)
L270H4 Obiject-oriented design (2)
L270HS Identification of objects

L270H6 Obiject identification techniques
L270H7 KoFF Automated Video Rental System description
L270H8 A KoFF partial noun list

L270H9 A KoFF partial noun and verb list
L270H10 KoFF use cases

4 Lecture 027

e = cantt

L270H11 Examples of Rumbaugh object-oriented design notation
L270H12 More examples of Rumbaugh object-oriented notation
L270H13 Object model notation based on Rumbaugh et al.
L270H14 Preliminary design deliverables

L270H15 Example layout of class dictionary

L270H16 Example object traceability matrix entry

handouts:

(labs and exercises)

Lab 022 - Ada laboratory environment

Mynatt Chapter 8 (pp. 364-368)
Sommerville Chapter 10 (pp. 177-182)
Sommerville Chapter 11 (pp. 194-236)

Ghezzi Chapter 4 (pp. 115-122)

Pressman Chapter 12 (pp. 395-418)

Ivor Jacobson,Qbject-Oriented Software Engineering, ACM Press

James Rumbaugh, et.al, Object-Oriented Modeling and Design, Prentice Hall

5 Lecture 027

OUTLINE
Definitions
Design

High Level Design (Preliminary
Design)

Low Leve! Design (Detailed Design)

Steps in High Level Design

Notation to Express the High Level
Design Model

Preliminary Design Deliverables

6 L270H1

OBJECT CLASS

INSTANCE

ENCAPSULATION

MESSAGE

Definitions

Models "things" in the world:
the model has attributes,
operations, and a precise
interface that receive
messages. (a factory waiting
to create instances)

An actual object waiting to
perform services and having
state. (the object)

An object's state data cannot
be directly accessed, it can
only be asked for a service.

The only way objects
communicate and request
services from other objects.

7 L270H2

Definitions (cont.)

METHOD An object class's service or
behavior in response to a
message.

INHERITANCE The state and services of a
superclass are available to a
subclass.

AGGREGATE An object made up of several
components.

CLASS HIERARCHY

8 L270H2

OBJECT-ORIENTED DESIGN (1)

High Level Design
Input Requirements Documents
Costumer Interviews
Domain Analysis
Process Identify Domain Object
Classes
Class Design
Divide System
Responsibilities
Design Interfaces
Identify Object Relationships
Design Validation

Output Preliminary design
deliverables

) L270H3

OBJECT-ORIENTED DESIGN (2)

Low Level Design

Input Preliminary Design
Deliverables

Process Identify Internal aspects of
Obijects

Data Structure Design

Algorithms for Operations

Identify Object Relationships
Validation

Output Detailed design deliverables

10 L270H4

— ey — g = TR T e

Identification of Objects

Potential Objects are:
Devices the system interacts with
Events
Incidents
Interactions
Locations of things
Organizations
Remembered Events
Roles of People or Things
Systems outside the current application

Tangible things

1 L270HS

Where Have all the Objects Gone?
Object identification Techniques

First phase:

Name Obijects
A noun list from requirements or customer
conversations.

Data Dictionary entries*

Data Flow Diagrams*

Requirements List*

Use cases
Determine Object's Behavior
A verb list (Responsibilities)
Assign Methods to Objects
Eliminate Irrelevant Objects

(* Used later in validation of object identification)

12 L270H8

Object identification Techniques (cont.)
Second phase: (using remaining objects)
Assign attributes

Abstract superclass objects based on common
behaviors and objects

Distinguish Private methods from public
contracts

13 L270H6

Client Request

Mr. Richard wants a computerized automated video cassette rental system which
will be housed in unmanned kiosks. These kiosks can be free standing in mall
parking lots or can be placed in enclosed shopping malls. This device, KoFF (Kiosk
of Famous Flicks), will accept applications for membership in Mr. Richard's Rapid
Rental club (RRR), display titles of available tapes, dispense tapes, accept returned
tapes, and take care of bilings. It will also maintain reports of rental transactions.

One becomes a member of the club by entering membership information on a
keyboard attached to the kiosk. This information will include a current charge card
number and an approval to automatically charge that card for selected items
including a membership fee of $ 10.00. Customers will be notified of membership
in RRR by mail and will receive three RRR movie rental cards and a unique
personal identification number. Membership expires on the expiration date of their
charge card.

The kiosk contains 250 different tape titles and 1380 individual tapes. A customer
can see a list of the available tapes by category by inserting one of their
membership cards into the kiosk. The customer can select an available tape and
rental duration. They will be charged for it and the tape will be dispensed from the
tape out slot. Their card will be retained until the tape is returned to that kiosk.
When a tape is returned to the tape-in slot, its bar code will be scanned, the
customer will automatically be charged appropriate late fees and the membership
card will be returned. Failure to return the tape within five days of its due date
generates a phone call to the customer which plays a recorded message about the
overdue tape and the accruing late charges. When the 10-day late limit is reached,
the customer is charged for the late days and the cost of the tape. The customer
is also charged a tape restocking fee and all of his’her membership cards are
invalidated. The customer is notified of these actions.

The selection of videos must be updated. KoFF keeps information to help in this
process. Videos which have not been rented for two weeks are listed for removal
and videos which have been rented several times in a week are listed for additional
copies. Every two weeks KoFF sends Mr. Richard's computer a copy of this report.
He decides which tapes to add and which to remove. He updates the list of titles
and records the quantities of those tities along with their identifying bar codes. He
also assigns the rental price for that title. Sometimes instead of replacing a slow
moving tape, he simply drops its rental price or tries to sell it. Sale tapes are
indicated on a special screen. When a customer selects a sale tape, a record of
the sale is made and the tape is dispensed.

Mr. Richard gets several reports from KoFF, including lists of sold tapes, the rental
activity of RRR members by tape title and tape category -- Adventure, Comedy,
Children, Restricted, the rental activity of particular titles and copies of that titie, and
detailed and summary financial reports of RRR member accounts.

14 L270H7

A KoFF Partial Noun List

NOUNS Major Categories
Kiosk

tapes tapes
titles

billings billings
rental transactions

member member
membership information
keyboard

charge card number

membership fee

movie rental cards

personal identification number
expiration date

list

membership card (syn)

available tape

rental duration

tape-out slot

tape-in slot

bar-code

due-date

phone-call

late-fees

overdue tape

etc.

15 L270H8

A KoFF Partial Noun and Verb List

Noun Categories Verbs

Kiosk

tapes tapes dispense, accept,
report, list

titles

billings billings

rental transactions
member member
membership information

membership fees

16

enter info, charge
fee,
issue card

L270H9

it Y ISR A e L T v T

KoFF USE CASES

Rent a Tape
Buy a Tape
Return a Tape

Membership Card Rejection

Rent a tape:
Conversation with customer:"How do you
want someone to rent a tape?"

What new information does this reveal?

"What are the desired functions for tape
rental?"

17 L270H10

v

Examples of Rumbaugh Object-Oriented
Design Notation

Assaciation:
Class Ameciation
Name 1 Name 2
Class Name
Qualified Asseciation:
atiribute
attribute: data_type
attribute: data_type= Assecistion
inid_valne Class-1 T.-.—'I__N'.!L——cwz
role-]
operstion role-
operstion(arg_list):
refara_type .
Multiplicity of Association:
Geaeralization(Iaheritanee): — ! Clags | Baactlyome
o e
d Clans Optional(zers or one)
’f"d"'-l Subclass-2

18 L270H11

More Examples of Rumbaugh Object-

Oriented
Design Notation

Orderiag; Derived Attribate:

M_EE Class Name

/ sa

Assembly
Clsss

£

et |
| Partl , Part-2-clans

"

19

Derived Class:

FC‘INIIC :

L270H12

KoFF USE CASES

Rent a Tape
Buy a Tape
Return a Tape

Membership Card Rejection

Rent a tape:
Conversation with customer:"How do you
want someone to rent a tape?"

What new information does this reveal?

"What are the desired functions for tape
rental?"

17 L270H10

Examples of Rumbaugh Object-Oriented

Chn
Name

Class Name

ittribute

attribute: data_type
attribute: data_type =
i init_value

L

| operation

| operation(arg_bist) :
| return_type

Geaeralization(Inheritance):

Supe

H
fs'bﬂm-l Subelans-2

—_J

Design Notation

Qualified Assaciation:

— Asseciation

Multiplicity of Association:

—

|
' Cums

| IE——

—) O

Canl o |—80 ey
role-1 ™

' Exactly one

Many(zere or more)

[—

Optioaak(zere ot one)

18

L270H11

Object Model Notation
Based on Rumbaugh et al.

Aggregation:
A special form of association between a
whole and its parts.

Association:
A relationship among instances of two or
more classes.

Association as a class:
Each link is an instance of a class.

Qualifier: -
Reduces the multiplicity of an association
at the many end.

Role:
Appear as nouns in product description
and uniquely identify one end of an
association.

20 L270H13

Preliminary Design Deliverables

An Object Model:

A complete object diagram using
Rumbaugh notation as presented in class.

A Class Dictionary entry for each object.

An Object-Requirements traceability
matrix.

Ada Specifications for each object class.

Descriptions of all major user interfaces, e.g.,
menu formats and options.

21 L270H14

CLASS DICTIONARY
OBJECT CLASS NAME:
OBJECT DESCRIPTION:
ATTRIBUTE DESCRIPTION:

Method Descriptions:

input information needed from other objects:

22 L270H15

-
Object Traceability Matrix

Functional Object A 'q
Requirement Name age

ID

1 MEMBER MEMBERSHIP_OPS

23 L270H16

LECTURE NUMBER: 028

TOPIC(S) FOR LECTURE:
Ada packages

INSTRUCTIONAL OBJECTIVE(S):

1. To understand the use and usefuiness of Ada packages.
2. To leam the syntax of Ada packages.

(How invoive Iearnar.: recall, review, relate)

Soon the students will be working on the preliminary design of their second
project which is to be implemented in Ada. The preliminary design is also to
be accomplished using Ada package specifications. The students have been
introduced to Ada packages in previous classes.

(Learning Label- Today we are going to learn ...)

In today's lecture, they will have a more detailed look at the syntax of Ada
packages through several examples.

CONTENTS:

L280OH1

1. Give a brief overview of three program units in Ada - procedures and
functions, packages, and tasks. Relate procedure and functions to a
language students are already familiar with. The development of
packages is a primary goal of the preliminary design team. Be sure
to emphasize the correspondence between packages and objects.

2. Detailed look at Ada packages L280H2
a. A package is a collection of related entities available for use by
other program units. A package can include constants,
variables, types, procedures, functions, exceptions, tasks, and
even other packages. Packages are passive. They have to be
invoked by operations of other entities.

b. A package can be used for a collection of declarations, a group
of related program units, or an abstract data type.

C. There are two parts to a package. They are stored as two

1 Lecture 028

different files, each having the same name but a different
extension:

The specification is the public or visible part which
provides the interface information and indicates the
entities which are made available by this package. The
public or vissible part is what you are going to provide
to the system. This corresponds to OMT's method part
of an object. The specification can be created in the
preliminary design phase of the software life cycle.
The body is the hidden part which contains the
implementation details. Knowiedge of the package
details of the package body is not needed in order to
use the package. The package body contains the
bodies of the subprograms which are declared in the
package specification. it also contains local
declarations, and subprograms which are inaccessible
to the user of the package. The package body is
optional. Sometimes it is not needed; for example, a
package may contain only declarations such as shown
in L280OH3.

Discuss/review the software engineering concepts of
abstraction, encapsulation, information hiding, modularity, and
reusability and how these are supported by Ada packages as
in L280H4.

Ada supports various levels of information hiding and
encapsulation. What follows is a series of refinements of an
Ada Queue package, each of which more effectively hides and
encapsulates information.

L280OHS5 Presents a package in which all data and
operations are publicly accessible and the body L280H6
has minimal details. A Procedure X could use a
Queue_type, but it could only Enter and Remove. (E.G.
procedure X is

trans A

QueueA, QueueB:Queue_type;

enter(TransA,QueueA);
L280H7 Declares the Queue type as a private type, and
hides implementation details such as the fact that it is a
linked list.

L280H8 Here a greater degree of encapsulation is
achieved by moving all implementation details to the

2 Lecture 028

PROCEDURE:
hin

package body. L280H9. All that is visible is the
interface transaction type and the two procedures,Enter
and Remove. Data has to be accessed by the method
specified in the package specification.

L280OH11 - If in, out, or jn out, is omitted from a procedure or
function header, the parameter defaults to an jn parameter. In
the formal parameter list for a procedure or function each
parameter is labeled as 'in' (for an input parameter), ‘out’ (for
an output parameter, and 'in out”. The parameter defaults to
in.

n

Lecture and overheads are the chief media for this lecture.

Ada packages

Ada package specification
Ada package body
private data type

limited private data type

NSTR

gverheads:

L280OH1
L280OH2
L280OH3
L280H4
L280OHS
L280OH6
L280OH7

L280OH8
L280OH9

L280OH10
L280OH11

handouts:

Ada program units

Ada packages

Example of package specification - Solar System

Software engineering concepts supported by Ada packages
Example of package specification - Queue

Example of package body - Queue

Example of package specification with data declarations in
private section - Queue

Example of package body to go with overhead 7

Example of package specification with all data inside package
body.

Example of package body to go with overhead 9

Procedure and function headers

(labs and exercises)

3 Lecture 028

Lab 023 Peer reviews and preliminary design review presentaiton

Benjamin Chapter 8 (pp. 73-78)
Sommerville Appendix(pp. 610-613)

Booch Chapter 6 (pp. 53-74)
Booch(2) Chapter 4 (pp. 43-65)

4 Lecture 028

Ada Program Units

Procedures and functions

Packages

Tasks
Provides concurrency

L28OH1

Ada Packages

A program unit that allows a collection of
related entities to be made available for use
by other program units

Two parts to a package:
Specification

The public or visible part
Interface information

Body

The hidden part
Implementation details

6 L280OH2

Software Engineering Concepts
Supported by Ada Packages

Abstraction
A view of a problem that extracts the
essential information relevant to a
particular purpose and ignores the
remainder of the information

Encapsulation
The technique of isolating data and
related procedures/functions within a
module and providing a precise
specification for the module

Information hiding
The technique of forbidding the use of
information about a module that is not in
the module's interface specification

Modularity
The purposeful structuring of the modules
of a system so that a change to one
component has minimal impact on other
components

Reusability
The extent to which a module can be
used in multiple applications

7 L280H4

Example of Package Specification

package SOLAR_SYSTEM is

type PLANET is (MERCURY, VENUS, EARTH,
MARS, JUPITER, SATURN, URANUS,
NEPTUNE, PLUTO);

subtype TERRESTRIAL_PLANET is PLANET
range MERCURY..MARS;

NUMBER_OF_MOONS:constant array (PLANET)
of NATURAL := (MERCURY => 0, VENUS =>
0, EARTH => 1, MARS => 2, JUPITER => 12,
SATURN => 10, URANUS => 5, NEPTUNE
=> 2, PLUTO => 0);

end SOLAR_SYSTEM,;

8 L280H4

—

Example of Package Specification

package QUEUE is
type TRANSACTION is
record
ACCOUNT_ID : integer;
NAME : string;
ADDRESS : string;
end record;
SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1..SIZE;
type SPACE is array (INDEX) of TRANSACTION;
type QUEUE_TYPE is
record
ITEMS : SPACE;
HEAD : INDEX := 1;
TAIL :INDEX := 1;
COUNT : integer range 0..SIZE := 0;
end record;

procedure ENTER (T : in TRANSACTION;
Q : in out QUEUE_TYPE);
procedure REMOVE (T : out TRANSACTION;
Q : in out QUEUE_TYPE);
end QUEUE;

9 L280OH5

Example of Package Body
package body QUEUE is

procedure ENTER (T : in TRANSACTION;
Q :in out QUEUE_TYPE);
begin
end;
procedure REMOVE (T : out TRANSACTION;
Q : in out QUEUE_TYPE);
begin

end;
end QUEUE;

10 L280OH6

Example of Package Specification

package QUEUE is
type TRANSACTION is
record
ACCOUNT_ID : integer;
NAME : string;
ADDRESS : string;
end record;
type QUEUE_TYPE is private;
procedure ENTER (T : in TRANSACTION;
Q : in out QUEUE_TYPE);
procedure REMOVE (T : out TRANSACTION;
Q : in out QUEUE_TYPE);
private

SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1..SIZE;
type SPACE is array (INDEX) of
TRANSACTION;
type QUEUE_TYPE is
record
ITEMS : SPACE;
HEAD : INDEX = 1;
TAIL :INDEX := 1;
COUNT : integer range 0..SIZE := 0;
end record;
end QUEUE;

1 L280H7

Example of Package Body
package body QUEUE is

procedure ENTER (T : in TRANSACTION;
Q : in out QUEUE_TYPE);
begin
end;
procedure REMOVE (T : out TRANSACTION;
Q :in out QUEUE_TYPE);
begin

end;
end QUEUE;

12 L28OH8

Example of Package Specification

package QUEUE is

type TRANSACTION is
record
ACCOUNT_ID : integer;
NAME : string;
ADDRESS : string;
end record;

procedure ENTER (T : in TRANSACTION);
procedure REMOVE (T : out TRANSACTION);
end QUEUE;

13 L28OHS

Example of Package Body

package body QUEUE is
SIZE : constant POSITIVE := 10;
subtype INDEX is integer range 1..SIZE;
type SPACE is array (INDEX) of
TRANSACTION;
type QUEUE_TYPE is
record
ITEMS : SPACE;
HEAD : INDEX := 1;
TAIL : INDEX := 1;
COUNT : integer range 0..SIZE := 0;
end record;

A_QUEUE : QUEUE_TYPE;

procedure ENTER (T : in TRANSACTION) is
begin

end;

procedure REMOVE (T : out TRANSACTION) is
begin

end;
end QUEUE;

14 L280OH10

Procedure and Function Headers

procedure ENTER (T : in TRANSACTION);

procedure REMOVE (T : out TRANSACTION);

procedure MODIFY (T : in out TRANSACTION);

function CUBE (X : integer) return integer;

15 L280H11

LECTURE NUMBER: 029

1. introduction t6 software quality assurance (SQA)
2. Reviews - walkthroughs and inspections

INSTRUCTIONAL OBJECTIVE(S):

1. Understand the scope of quality assurance and the related activities.

2. Understand the purpose of technical reviews, specifically of
walkthroughs and inspections.

3. Understand general guidelines for technical reviews.

(How involve Iearner.: recall, review, relate)

The issue of software quality has come up in a number of earlier lectures,
both directly and indirectly. Recall, for example, verification and validation
(V&V) - see L290H1. V&YV activities were aimed at ensuring two things:

1) verifying that the system meets its specification (Are we building the
product right?); and

2) validating that system as implemented meets the clients'/users’
expectations (Are we building the right product right?).

V&YV are activities undertaken to increase the chances of achieving software
quality. Similarly, recall configuration management deals with controlling and
managing change. CM activities are also undertaken in order to increase the
chances of achieving software quality. Both V&V and CM activities are
software quality assurance (SQA) activities.

(Learning Label- Today we are going to learn ...)
Today we're going to look further at SQA.
CONTENTS:

1. L290H2
Pressman defines SQA as an "umbrella activity" which encompasses
V&V, CM and a number of other types of activities. SQA is concerned
with both product and process quality and it encompasses:

a. Technical methods and tools - These are used throughout the
software life cycle. They include methods and tools to aid in
developing high-quality specifications, to methods and tools for
implementation and testing.

1 Lecture 029

Technical reviews - These are also applied at every stage of
the software life cycle.

Testing - Testing is used to reveal the presence of problems at
any stage of developement.

Configuration management - The control and management of
change applied to all artifacts of software development.

Standards - Both the development of and compliance with
standards.

Measurement and reporting - These activities involve
measurement to track quality and to improve quality by
modifying the process in light of these measurements.

Use L290OH3 and L290H4 to explain the importance of SQA at the
beginning of the development process.

L28OH5 What is software quality?

Pressman defines software quality as "conformance to explicitly stated
functional and performance requirements, explicitly documented
development standards, and implicit characteristics that are expected
of all professionally developed software.

Point out that there are three components of quality:

a.

Meets (explicit) requirements; (This invoives the software
product).

Meets (explicit) standards; (This involves the software
process.) The quality of the process affects the quality of the
product.

Meets (implicit) requirements - these are standards expected
of all professionally developed software; Note that software
could meet all of its explicitly stated requirements yet still be of
questionable quality. These are some things that a customer
should expect even without saying so.

Discuss some of these implicit characteristics that should be
expected of all quality software? (Let short discussion bring out
such things as maintainability, reusability, robustness,
portability, etc).

L290OH6 shows how quality factors are evidenced in the final
product.

2 Lecture 029

Software reviews - Reviews are one of the most important SQA
activities.

L290H7
A review of some component of a software development process
serves to uncover defects so that they can be corrected/removed
before going on. There are many types of reviews, both formal and
informal.

The most common types of reviews are called structured
walkthroughs and inspections. In both, a team of software
professionals carefully reviews an item, thereby increasing the
chances of defects being located.

L290H8

Technical reviews uncover errors in the item under review,
verity that the software under review meets its requirements,
and ensure conformance to standards. Note also that reviews
can serve as training activities to new and/or inexperienced
personnel.

Reviews occur at meetings. Guidelines for review meetings
typically suggest participation of 3-6 appropriate people and
require advance preparation of 1-2 hours. The focus of the
review is the improvement of the product under review.

L290H9

Roles for a review include:

i Review leader - evaluates review item for readiness,
distributes review materials to reviewers, typically a day
before the review. The review leader, like the other
reviewers, is expected to spend 1 to 2 hours reviewing
the material in preparation for the review. The review
leader also schedules the review and prepares the
agenda. ‘

ii Recorder - One of the reviewers is responsible for
recording (in writing) all important issues raised during
the review.

iii Producer - The developer of the item under review
"walks through" the product, explaining the material,
while reviewers raise issues identified in their advance
preparation or during the review itself.

iv Other reviewers - Each has carefully reviewed the
materials and comes prepared with a list of items not
understood and a list of items he/she believes to be
incorrect.

3 Lecture 029

d. There are different methods of conducting the review. One is
"participant-driven”, in which each participant goes through
his/her lists of unclear/incorrect items and the presenter
responds. Another is "document-driven" in which the
presenter(s) walk the reviewers through the item under review,
and the reviewers bring up their concerns as they are
encountered. The document-driven approach is more
thorough. In practice, a majority of faults in document driven
walkthroughs are detected by the presenter during the
walkthrough.

L290OH10 Review reports

The recorder notes all issues raised that need to be addressed.
These are summarized at the end of the review and a "review issues
list" is produced. A "review summary report" is also completed,
containing the item reviewed, names of reviewers, and findings and
conclusions.

Discuss examples in in L290H11 and L290H12 The review issues
list identifies problem areas and serves as action item checklist for the
producer as he/she addresses the issues.

L290H13
Discuss the review guidelines, adapted from Pressman.

a. Review the product, not the producer.

b. Set and maintain an agenda.

c. Limit debate and rebuttal.

d. Focus on identifying problems, not on attempting to solve them.
e. Keep a written record.

f. Limit the number of participants.

g. Insist upon advance preparation of participants.

h. Develop a checklist for likely review items.

i. Allocate resources for reviews.

j- Provide appropriate training for reviewers.

k. Establish a follow-up procedure to assure that items on review
issues list are addressed.

4 Lecture 029

I Do not allow reviews to be used as a means of assessing
participants.

6. Effectiveness of reviews - Evidence has shown that formal technical
reviews are extremely effective in meeting their objectives.

PROCEDURE:
teachi thod and media:

yocabulary introduced:

quality

implicit requirements

explicit requirements

software quality assurance (SQA)
technical reviews

walkthrough

inspections

INST T
overheads:
L290H1 V & V activities
L290H2 Software quality assurance
L290OH3 Source of errors by life cycle phase
L290H4 Relative cost of errors by life cycle phase
L290H5 Software quality
L290H6 McCall's software quality factors
L290H7 Software reviews
L290H8 Purpose of technical reviews
L290OH9 Review roles
L290H10 Review reports
L290H11 Review issues list
L290H12 Technical review summary report
L29OH13 Review guidelines

(labs and exercises)
Lab 024 - User interface presentation/review

Test plan presentation/review

Sommerville Chapter 31 (pp. 589-598)
Mynatt Chapter 2 (pp. 77-79)

Pressman Chapter 17 (pp. 549-568)
Schach Chapter 5 (pp. 101-109)

5 Lecture 029

Relationship of V&V and CM to SQA
V&YV activities aimed at:
Verifying that the systern meets its
specification (Are we building the product
right?); and
Validating that system as implemented

meets the clients'/users' expectations (Are
we building the right product right?).

CM activities aimed at:
Controlling change and

Managing change.

V&V and CM activities are both undertaken in
order to increase the chances of achieving
software quality.

Both are software quality assurance (SQA)
activities.

6 L2SOH1

Software Quality Assurance (SQA)
SQA is an "umbrella activity" which
encompasses V&V, CM and a number of
other types of activities. SQA is concerned
with both product and process quality.

SQA encompasses:

Technical methods and tools

Technical reviews

Testing

Configuration management

Standards

Measurement and reporting

SQA is concerned with "whole-life cycle"
quality.

7 L290H2

Source of Errors by Life Cycle Phase

Errors Found Early are Easier
To Find and Manage

Source of Errors = %'s
50% jcafi ' |

30%

107

\

Requirements Software Coding Testing Deployment
Definition - Design

8 L200OH3

T——

Relative Cost of Errors by Life Cycle Phase

$10
Relative Cost fo Correct Errors - $1000's
55 Source: AT&T Bel Lobs Estimates

NN

$1
T XXX
‘ NN
Requirements Software Coding Testig Deployment

Definition Design

9 L290H4

Software Quality
"conformance to explicitly stated functional
and performance requirements, explicitly
documented development standards, and
implicit characteristics that are expected of all
professionally developed software".

source: Pressman

Three components of software quality
Meets (explicit) requirements
Meets (explicit) standards

Meets (implicit) requirements

10 L290HS

McCall's Software Quality Factors

Maiatainshility (Caa I Fix it?) Portability (Will 1 be able b0 use
it on saother machine?)
Plexibilty (Caa I chaage it?)
Relisbility (Will 1 able to rease
Testability (Can [test it?) sout of the sefiware?)

Interoperabiity (Wil be able to
interfaes it with
sasther sysien?)

Correctaess (Does i do what I wast?)

Relishility (Does it do it sccurately ol of the time?)
Kfficiescy (Wil it run oa my bardware as well il emn?)
Ushlity (Calrmitt)

1 L290OH6

Software Reviews

One of the most important SQA activities.
A review is intended to uncover defects so
that they can be corrected/removed before
going on.
Two common types of reviews:

Walkthroughs

Inspections
Both involve a group of software professionals

carefully reviewing an item, thereby increasing
the chances of defects being located.

12 L290H7

Purpose of Technical Reviews
To uncover errors in the item under review.

To verify that the software under review meets
its requirements.

To ensure conformance to standards.

Reviews can also serve as training activities
to new and/or inexperienced personnel.

13 L290OH8

Review Roles

Review leader
Evaluates item for readiness

Distributes review materials in advance
Reviews the material prior to meeting
Schedules review and prepares agenda

Recorder
Records all important issues raised during
review

Producer
"Walks through" the product, explaining
the material, while reviewers raise issues
based on their advance preparation

Other reviewers
Review materials in advance and come
prepared with a list of items not
understood and a list of items he/she
believes to be incorrect

14 L290OHS

Review Reports

Review issues list

Identifies problem areas raised during
review that need to be addressed

Serves as action item checklist for the
producer as he/she addresses the issues

Review summary report
Item reviewed;
Reviewers;

Findings and conclusions.

15 L290H10

Review Issues List

Review Number : D-004

Date of Review: 07-11-86
Review Leader : R.S. Pressman
Recorder : A.D. Dickerson

Issues List

1.

Purpose of the module should be explicitly
stated (reference is not acceptable) and data item declaration
must be specified.

Fteview team reoommends a
recheck of stepping motor specifications and correction (as
required) of the loop counter STEP.MOTOR.CTR.

XMOTION and ZMOTION, Soe marked PDL for Specifics.

: : xpanded. The psuedo
code statement "Converge on proper oontrol position as in
XMOTION" contained in modules YMOTION and ZMOTION
should be expanded to specifics for Y and Z motion control.

Review team recommends a modification to the "position
comparator" algorithm to improve run time performance.
Necessary modifications are noted in annotated PDL. Designer
has reservations about the modification and will analyze potential
impact before implementing change.

Figure 17.6b - Pressman

16 L290H11

Technical Review Summary Report

Review Identification: ‘
Project: Review Number: |
Date: Location: Time:

Product identification:
Material Reviewed:
Producer: |

Brief Description: /
Material Reviewed: (note each item separately)

Review Team: (indicate leader and controller)
Name Signature

Y

Accepted: asis () with minor modification ()
Not Accepted: major revision () minor revision ()
Review Not Completed: (explanation follows)

Supplementary Material Attached:

Issues List () Annotated Produce Materials ()
Other (describe)

Figure 17.6b - Pressman

17 L290H12

Review guidelines
Review the product, not the producer
Set and maintain an agenda
Limit debate and rebuttal

Focus on identifying problems, not on
attempting to solve them

Keep a written record.
Limit the number of participants.

Insist upon advance preparation of
participants

Develop a checklist for likely review items.
Allocate resources for reviews.
Provide appropriate training for reviewers.

Establish a follow-up procedure to assure that
items on review issues list are addressed.

Do not allow reviews to be used as a means
of assessing participants.

18 L290H13

LECTURE NUMBER: 030 A

Review standards aﬁd checklists
INSTRUCTIONAL QBJECTIVE(S):

Understand that review standards exist for various software life cycle
stages and products.

Become familiar with some review standards.

Become familiar with the concept of review checklists, particularly for
preliminary design reviews and detailed design reviews.

(How involve learner: recall, review, relate)

We recently talked about technical reviews (walkthroughs and inspections)
as a primary SQA activity.

(Learning Label- Today we are going to learn ...)

Today we want to introduce you to some accepted standards for reviews.

CONTENTS:
1.

L3OH1

Many profassional and governmental organizations have developed
standards for SQA. For example, the DOD has an SQA standard
which we have discussed earlier (DOD-STD-2167A) and which covers
the entire software development life cycle. Other government
agencies with unique requirements, such as the Federal Aviation
Administration (FAA), have their own standards.

L300H2

The IEEE has a standards development organization which builds
quality standards for many of the phases of software development.
They have, in fact, developed a general SQA plan. Discuss aspects
of the IEEE SQA Plan.

L300H3

In order to achieve SQA, reviews must be conducted at critical points
in the software development process. Discuss the critical review
points shown.

Checklists have been developed for each of the critical reviews. Such
checklists help to structure the reviews and assure that important

1 Lecture 030

points

PROCEDURE:

are not overlooked. Discuss examples of these checklists.

L300OH4a - Checklist for preliminary design review
L300OH4a - Checklist for detailed design walkthrough
L300OH5a - Checklist for code review - Myers

L30OHS5b - continuation of code review checklist - Myers
L300OH6 - Preliminary design review form

L300OH7a - Detailed design review form

L300OH7b - continuation of detailed design review form

teaching method and media:

vocabulary introduced:

review standards

review check

lists

critical design review
system test review

INST | MATERIALS:
overheads:
L300OH1 IEEE SQA plan - Pressman, p 588

L300OH2 SQA standards - Pressman, p 589
L300H3 Some important review points
L300H4 Design review checklist - Pressman
L300OH5 Code review checklist
L300OH6 Preliminary design review checklist
L300OH7 Detailed design review checklist
handouts:

BELATED LEARNING ACTIVITIES:

(labs and exercises)

BELATED READINGS:
Pressman Chapter 17 (pp. 586-590)
Meyers (The Art of Software Testing)

2 Lecture 030

SQA Standards

DOD-STD-2167A
DOD-STD-2168

FAA-STD-018

IEEE Std. 730-1984
IEEE Std. 983-1986

IEEE Std. 1028-1988

|IEEE Std. 1012-1986

Software engineering

Software quality
evaluation standard

SQA standard for the
FAA

SQA plans

Software quality
assurance planning

Software reviews and
audits

Software verification and
validation plans

3 L300H1

R ek Sl AR 6 S

ANSVIEEE Standards 730-1984 and 983-1986

Software Quality Assurance Plan

Iv.

VL.

VL.

VL.

IX.

Xl
Xil.

Xiil.

R . ™

Purpose of the plan

References

Management

A Organization

B. Tasks

C. Responsibilities

Documentation

A. Purpose

B. Required software engineering documents
C. Other documents

Standards, practices, and conventions
A. Purpose
B. Conventions

Reviews and audits

A. Purpose

B. Review requirements

Software requirements review

Daesign reviews

Software verification and validation reviews
Functional audit

Physical audit

In-process audits

Management reviews

NogsrwN =

Software configuration management
Probiem reporting and corrective action
Tools, techniques, and methodologies
Code control

Media control

Supolier control

Fec: <3 collection, maintenance, and retention

4 L300OH2

Some Important Review Points

Review Purpose
Systems requirements | Understand system and interface
| review specifications. Establish major

functional baseline.
| Software requirements | Assess the functional

| review requirements and initiate
preliminary design.

| Master test plan Assess initial master test plan,

| review particularly the overall test

| strategy.

| Preliminary design Assess the architectural design.

| review Assess the acceptance and
| system test specs. Establish
preliminary design baseline.

| Critical design review | Assess detailed design including
| data base design. Assess final

master test plan, integration and
unit test specs, and acceptance
test procedures. Authorize start

|
|
|
|
|
|

3 of coding.

| Code reviews Assess units of code. Establish
| test baseline.

| System test review Assess systems test results.

Determine readiness for
acceptance testing.

| Acceptance test Assess acceptance test resuits.

| review Accept software package. Create |

| product baseline and approve
operational implementation.

Jesign Review Checklists - Pressman

5 L300H4a

Prelimi osi -

1. Are software requirements reflected in the
software architecture?

2. ls effective modularity achieved? Are
modules functionally independent?

3. Is the program architecture factored?

4. Are interfaces defined for modules and
external system elements?

5. Is the data structure consistent with the
information domain?

6. Is the data structure consistent with
software requirements?

7. Has maintainability been considered?

8. Have quality factors been explicitly
assessed.

6 L300H4a

Design Review Checklists - Pressman

Detailed Desi kihroual

1.

Does the algorithm accomplish the
desired function?

Is the algorithm logically correct?

Is the interface consistent with
architectural design?

Is the logical complexity reasonable?

Have local error handling and
"antibugging" been specified?

Are local data structures properly defined?

7 L300OH4b

L =

Code Review Checklists (Glenford Meyers)

Data reference

1. Unset variables used?

2. Subscripts within bounds?

3. Non-integer subscripts?

4. Dangling references?

5. Correct attributes when aliasing?

6. Record and structure attributes match?

7. Computing addresses of bit-strings?

8. Passing bit-string arguments?

9. Based storage attributes correct?

10. Structure definitions match across
procedures?

11. String limits exceeded?

12. Off-by-one errors in indexing or
subscripting operations?

Data declaration

1. All variables declared?

2. Default attributes understood?

3. Arrays and strings initialized properly?

4. Correct lengths, types, and storage
classes assigned?

5. Initialization consistent with storage class?

6. Any variables with similar names?

8 L300HS5a

Code Review Checklists

Computation

20 ONOO A WM

Computations on non-arithmetic
variables? |
Mixed-mode computations?
Computations on variables of different
lengths?

Target size less than size of assigned
value?

Intermediate result overflow?

Division by zero?

Base-2 inaccuracies?

Variable's value outside of meaningful
range?

Operator precedence understood?

0. Integer divisions correct?

Comparison

1.

ONO OROD

Comparisons between inconsistent
variables?

Mixed-mode comparisons?

Comparison relationships correct?
Boolean expressions correct?
Comparison and boolean expressions
mixed?

Comparisons of base-2 fractional values?
Operator precedence understood?
Compiler evaluation of boolean
expressions understood.

9 L30OHSb

Preliminary Design Review Form

Project Name

Reviewer Name

l. High Level Issues
A. Requirements: any requirements missed,
requirements over-worked?

B. Design : suggestions for improvement of
architecture or procedures; other
strategies

Il. Design Deliverable Details
A. Test Plan: items over-tested or under-

tested, suggested tests

B. DFD: good use of notation, clear model,
suggested improvements

C. Comments on other deliverables

10 L300OH6

Detailed Design Review Form

Project Name

Reviewer Name

l. High Level Issues

A: Requirements: any requirements missed,
requirements over-worked?

B: Design : suggestions for improvement of
architecture or procedures; other
strategies

C: The Design fits the whole specification
including quality standards such as

flexibility, friendliness, efficiency, and cost
effective.

Il Design Deliverable Details
A: Revised Test Plan: items over tested or
under-tested, suggested tests

B: Design Model: good use of notation, clear
model, suggested improvements

11 L30OH7a

Il Detailed Design

A: Can design be implemented easily:
availability of adequate programming and
testing manpower. Adequate hardware
facilities-computer, data storage...

B: Is the design programmable- does not
require exotic functions

C: Is there a suggested or obvious order of
implementation or approximate times for
the development of and description of the
production relations between the modules.

What is the order of need for equipment
required to implement the design.

D: Comments on other deliverables

12 L300OH7b

LECTURE NUMBER: 031

The relation between detailed and high level design.

Detailed design procedures.
Detailed design deliverables.

INSTRUCTIONAL OBJECTIVE(S):

1. Develop a detailed design.
2. Understand different products of detailed design

(How involve leamer.: recall, review, relate)

Last time, when we spoke of design, we looked at the general elements of
object-oriented design and paid particular attention to the elements of
preliminary design. One of the questions we addressed in structured design
was "How does one develop a design from the analysis documents.” Today
we will look at a similar question for object-oriented development.

(Learning Label- Today we are going to learn ...)

How does one move from preliminary object-oriented design to detailed
object-oriented design and what are the products of detailed object-oriented
design?

CONTENTS:
1. Design consists of several steps L310H1

L310H2

2. Briefly remind them of the elements that make up objects. Show them
a sample notation from the KoFF System on the board using
Rumbaugh notation. For example the subclasses of tapes_for_sale
and tapes_to_rent inherit all class attributes from the superclass
TAPE. L310H3 show the notation for inheritance and an association
between the Member object class and the Tape object class.

3. Revisit the stages of preliminary design and discuss some sample
products of preliminary design. L310H4
a. Talk about the Object Traceability Matrix and how it functions
to validate the design. it also helps to show the completeness
of the design. L310H5

Verification matrices tie Ada software components to the

1 Lecture 031

deliverables of the previous development phases (i.e.,
preliminary and detailed design). These verification matrices
provide a means of tracing the transitions between all phases
of the life cycle. For example, by means of a verification matrix
for preliminary design, every Ada package specification can be
traced back to an object in the object model, and that object,
in turn, can be traced back to the requirement(s) which it
satisfies. In this way, verification matrices make visible the
relationship of Ada to software analysis and design.

b. When the preliminary design is complete it should be compared
to the functional requirements list for consistency and
completeness. Each requirement must be satisfied in the
design and each design element must be tied to a requirement.

L310H6

C. Discuss the contents and function of the Class Dictionary and
how it provides traceability to the Ada specification for each
object. It is through the dictionary that an Ada specification is
tied to an object and the object is tied to a requirement through
the traceability matrix.

d Point out that reusability is actually improved because the
Class Dictionary does not include:
i implementation decisions
ii data type specifications
i how operations accomplish their tasks
iv where an object's methods are called from

e. Similarly Ada specifications provide interface information but
they should not provide any of the items in d. above. This
information should be put in the body of the package.

Detailed design is the selection, specification, design and
representation of the internal aspects of objects. Show the detailed
design overhead L310H10. Make clear that detailed design is not
intended to change any object interface and therefore should not alter
the preliminary design. Since implementation details were not shown
in preliminary design's Ada specifications or object model, detailed
design should not impact preliminary design. L31OH7 Visible data
structures are declared in the package specification and hidden data
structures are declared in the body. Visible data structures
characterize the data to be passed to other independent packages
while the hidden data structures characterize variables used in the
formulation of internal operations. This may include defining internal

2 Lecture 031

values of variables. This is a good example of modularization
process.

The design of the data structures at this stage is significant for later
ease and quality of the implementation. Discuss some standards of
data structure design. When discussing coupling and cohesion as a
standard, be sure to point out that there is coupling and cohesion
within an object and between objects.

The data structure design is documented in the data dictionary. Show
the Data Structure Dictionary and discuss how to fill it out. L310H8
The algorithms for each method will also be specified in some pseudo-
code, such as Nassi Shneiderman models.

Show the Detailed Design Traceability Matrix and discuss how to fill
it out. L310H9

To establish traceability between software development phases, we
have also designed an object traceability matrix (Figure 4). This
matrix provides a backward trace from each design object to a specific
requirement (preliminary design traced to requirements) and a forward
trace from each design object to a specific Ada specification
(preliminary design traced to detailed design). The introduction of this
form allows us to revisit the concept of traceability in the software life
cycle.

Traceability is extended into detailed design by means of a detailed
design traceabilty matrix. @We created this matrix to provide
traceability between preliminary design, detailed design and
implementation. The detailed design matrix first provides traceability
between an object's attributes and its data structures and between
those data structures and their Ada package representation. The
matrix also provides traceability between the object's operations, the
detailed design model of those operations and the Ada package
embodying those operations.

Detailed design should aliso expand upon the user interface developed
in preliminary design. Suppose for example the preliminary design
team specified the format for the screen used to call heip. The type
of content needed by each help screen should be determined in
detailed design, e.g., will help screens have an option to do a core
dump or merely an option to abort or continue processing.

3 Lecture 031

L310H10,L310H11

9.

10.

These are the deliverables of preliminary and detailed design. There
may be some continuing problems which need to be addressed.
There is a possibility that this low level design will reveal problems
with the earlier stages of the software development. Problems could
include missing, contradictory or non-feasible requirements. They
could also include requirements which were not satisfied by the
preliminary design. Before any changes can be made, configuration
management is alerted. The traceability matrixes enables
configuration management to determine the relationship between any
element in design and the requirements.

The next lecture will present a method for annotating the algorithm of

an objects methods or operations.

PR RE:

teaching method and media:

yocabulary introduced:

object traceability matrix

class dictionary

Nassi Shneiderman model

Data Structure Design Trace Matrix

INSTRUCTIONAL MATERIALS:

Qverheads:
L310H1
L310H2
L310H3
L310H4
L310H5
L310H6
L310H7
L310H8
L310H9
L310H10
L310OH11

Outline

Definitions

Rumbaugh Model

Object oriented preliminary design
Object Traceability Matrix

Class Dictionary

Object oriented detaiied design
Data structure dictionary

Detailed design traceability matrix
Detailed design deliverables
Preliminary design deliverables

4 Lecture 031

(labs and exercises)

Lab 025 - Resolution of outstanding issues from last semester

Mynatt Chapter 1 (pp. 31-42)
Mynatt Chapter 3 (pp. 94-138)
Mynatt Chapter 4 (pp. 169-183)

Schach Chapter 10 (pp. 321-324)

5 Lecture 031

T TS ST T i v e gy <L = e e

OUTLINE

Design
High Level Design (Preliminary
Design)
Low Level Design (Detailed Design)

Steps in Low Level Design

Notation to Express the Low Level
Design Model

Detailed Design Deliverables

6 L310H1

Definitions

OBJECT CLASS

INSTANCE

ENCAPSULATION

MESSAGE

METHOD

Models "things" in the world:
the model has attributes,
operations, and a precise
interface that receive
messages. (a factory
waiting to create instances)

An actual object waiting to
perform services and having
state. (the object)

An object's state data
cannot be directly accessed,
it can only be asked for a
service.

The only way objects
communicate and request
services from other objects.

An object class's service or

behavior in response to a
message.

7 L310H2

R o e R T TR AT e T e S ey g T e T T T

Rumbaugh Model

MIMBIR e
¢ aamber
pes reated #har code
#persenal identifier resied by freated o
no iate fapes fdue date
+Reat tapes cated late tapes
et charged
cateh late tapes
Tapts Tapes
for for
Sale Reat

8 L310H3

OBJECT-ORIENTED PRELIMINARY DESIGN

High Level Design
Input Requirements Documents
Costumer Interviews
Domain Analysis
Process Identify Domain Object
Classes
Class Design
Divide System
Responsibilities
Design Interfaces
Identify Object Relationships
Design Validation

Output Preliminary design
deliverables

9 L310H4

Object Traceability Matrix

Functional Object Name Ada Package

1 MEMBER MEMBERSHIP_
OPS

10 L310H5

CLASS DICTIONARY
OBJECT CLASS NAME:
OBJECT DESCRIPTION:
ATTRIBUTE DESCRIPTION:

iVIethod Descriptions:

input information needed from other objects:

1 L310H6

OBJECT-ORIENTED DETAILED DESIGN

Low Level Design

input

Process

Output

Preliminary Design
Deliverables

Identify Internal aspects of
Objects

Data Structure Design
Data Structure
Dictionary

Algorithms for

Operations
Nassi-Shneiderman
Models

Identify Object Relationships
((Update the Object
Model with permission
from CM))

Detailed design deliverables

12 L310H7

Data Structure Dictionary
OBJECT CLASS NAME:
Ada PACKAGE NAME:
DATA STRUCTURE NAME:
ATTRIBUTE(S) COVERED:
DESCRIPTION:

use data dictionary notation
suggest a data type

13

L310H8

Detailed Design Traceability Matrix

e ettt ——
— —

DATA STRUCTURES

Data Structure Objects and Ada

Name Attributes Package

Member_Record MEMBER_NAME MEMBERSHIP
MEMBER_FEE _OPS

OPERATIONS

Nassi-Shneiderman Object_ Ada

Model Name Operations Package

ENROLL MEMBER ENROLL MEMBERSHIP_OPS

14 L310H9

DETAILED DESIGN DELIVERABLES

Data Structure Design
Data Structure Dictionary
object entries
attribute entries
Algorithm Design

Nassi-Shneiderman (NS) models for
each operation

Traceability Matrix

Data structures are related to
Object_Attribute

NS models are related to
Object_Operations

Detailed user interfaces
Report Formats

Low level menu content, e.g.,
categories of menu information

18 L310H10

T TTIIeY T

Preliminary Design Deliverables
An Object Model:
An complete object diagram using
Rumbaugh notation as presented in class.
A Class Dictionary entry for each object.

An Object-Requirements traceability matrix.

Descriptions of all major user interfaces,
e.g., menu formats and responses

Ada Specifications for each object class.

16 L310H11

LECTURE NUMBER: 032
IOPIC(S) FOR LECTURE:

Reuse

INSTRUCTIONAL OBJECTIVE(S):

1. To understand the role of reuse in the development of software.
2. To learn the language features of Ada which support reuse.

(How involve learner: recall, review, relate)

One of the primary considerations in design is rese. This can be achieved
by the design and development of reusable modular components. Reuse
supports maintainability, testability, and consequently reduces the amount of
effort needed to develop quality systems.

(Learning Label- Today we are going to learn ...)

In today's lecture we will examine the issue of reuse.

CONTENTS:
1. Introduction to the concept of reuse ~ L320H1

a. Reuse, according to the IEEE definition, is the extent to which
a module can be used in multiple applications. Usually, we are
talking about the reuse of code, but reuse throughout the life
cycle would also increase productivity. Reuse of design, part
of a manual, or set of test data are examples of other types of
reuse which may become more common in the future. In
relation to code, reuse is the use of components of one product
in order to tacilitate the development of a different product with
different or similar functionality.

b. As will be seen later in the Ada examples, components must be
generalized in order to provide for reuse. Components must
also be written so that they are understandable, documented
according to a set of organizational standards, and portable.

L320H2

These attributes are needed if the components are to be
understood and adaptable. Designing for reuse is more time-
consuming than designing for a particular functionality;
therefore, there needs to be an organizational policy decision

1 Lecture 032

2.

for reuse to be successful. Project managers must be willing
to invest extra effort for long-term benefits instead of working
only towards immediate results.

Increased productivity is a primary benefit of reuse. Increased
productivity which equates to savings in time, effort, and cost
during development is a result of having fewer components to
design, implement, and validate. Other benefits are shown on
overhead.

L320H3

d.

However, there are several problems hindering widespread
reuse in industry in the United States (reuse is more common
in Japan and Europe). These problems are shown on
overhead L320H4.

Four main types of reuse of code are application systems,
subsystems, modules or objects, and functions. L320H5
Reuse of application systems is the portability of application
systems over a range of machines. This type of reuse is
commonly dcne already. Reuse of functions is also already
commonly accomplished; for example, a library of mathematical
functions is a common feature for programming environments.

Ada supports reuse in these ways: generics, passing subprograms,
and unconstrained arrays L320H6.

a.

A generic unit, which is a parameterized template, provides for
reuse. The instantiation of a generic tailors that generic to a
specific function. Ada's support generics for procedures,
functions, and packages. There are three aspects to defining
and using generics: generic unit declaration, generic
subprogram or package body, and instantiation of an instance
of the generic unit. L320H7, L320H8, L320HS,

L320H10

L320H7 is an example of a generic procedure to interchange
two items. L320H8-L320H10 is an example of a generic stack
package.

Compilation units can be reused in different contexts based on
the passing of types and subprograms as parameters.
L320H11, L320H12, L320H13 is an insertion sort which
demonstrates this.

2 Lecture 032

C.

The use of unconstrained arrays allows arrays to be
dynamically allocated; instead of having to specify the
dimensions at compile time as in Pascal. L320H14

vocabulary introduced:

reuse

generic
instantiation
unconstrained array

INSTRUCTIONAL MATERIALS:

gverheads:
L320H1
L320H2

Reuse
Factors in implementing reuse

L320H3 Benefits of reuse
L320H4 Problems hindering reuse
L320H5 Types of reuse
L320H6 Ada and reuse
L320H7 Example of generic procedure
L320H8 Example of generic package specification
L320H9 Example of generic package body
L320H10 Example of generic instantiation
L320H11 Example of passing types and subprograms package
specification
L320H12 Example of passing types and subprograms package body
L320H13 Example of passing types and subprograms instantiation
L320H14 Example of Pascal array
handouts:
BELATED LEARNING ACTIVITIES:

(labs and exercises)

Lab 026 -

Reorganization of extended project

3 Lecture 032

Sommerville Chapter 16 (pp. 309-328)
Benjamin Chapter 9 and 12 (pp. 79-85 and 111- 117)

Berzins Chapter 8 (pp. 487-492)
Booch Chapter 14 (pp. 253-254)
Booch(2) Chapter 12 (pp. 252-255)
Ghezzi Chapter 2 (pp. 28-29)
Pressman Chapter 1 (pp. 13-15)
Schach Chapter 15 (pp. 483-484)

Lecture 032

Biae £ il Si0d

The extent to which a module can be used in
multiple applications [IEEE]

Practice of taking portions of previously
developed software and using them in new
software, perhaps with some minor alterations

Accomplished in design -- design for reuse

5 L320H1

Factors in Implementing Reuse

Components must be generalized to satisfy a
wider range of requirements

Requires an organizational policy decision to
increase short-term costs for long-term gain

Components should be understandable,
documented according to a set of
organizational standards, and portable

6 L320H2

Benefits of Reuse

Considerable savings in time, effort, and cost
during development

Increase in system reliability

Reduction in overall risk

Effective use of specialists

Embodiment of organizational standards in
reusable components

7 L320H3

Problems Hindering Reuse

Need for properly catalogued and documented
base of reusable components

Organizations are reluctant until the cost-
effectiveness of reuse is demonstrated

CASE tools do not support reuse

Confidence level among software engineers
for reusable components is still low

Legal issues over ownership of contract
software

8 L320H4

Types of Reuse

Application systems

Subsystems

Modules or objects

Functions

L320H5

Ada and Reuse

Generics

AR anals s S et s

Passing of types and subprograms as

parameters

Unconstrained arrays

10

L320H6

Example of Generic Procedure

--header
generic
type ITEM is private;
procedure INTERCHANGE (FIRST, SECOND :
in out ITEM);
--body
procedure INTERCHANGE (FIRST, SECOND :
in out ITEM) is
TEMP : ITEM;
begin
TEMP := FIRST;

FIRST := SECOND;
SECOND := TEMP;
end;

--instance
procedure INTEGER_INTERCHANGE is new
INTERCHANGE (ITEM => integer);

--instance

procedure BOOLEAN_INTERCHANGE is new
INTERCHANGE (ITEM => boolean);

11 L320H7

- aana P

Example of Generic Package Specification

generic
SIZE : positive;
type ITEM is private;
package STACK is
procedure PUSH (X : in ITEM);
procedure POP (X : out ITEM);

STACK_OVERFLOW,

STACK_UNDERFLOW : exception;
end STACK;

12 L320H8

Example of Generic Package Body

package body STACK is
SPACE : array (1..SIZE) of ITEM;
INDEX : integer range 0..SIZE := 0;

procedure PUSH (X : in ITEM) is
begin
if INDEX = SIZE then
raise STACK_OVERFLOW,;
else
INDEX := INDEX + 1;
SPACE (INDEX) := X;
end if;
end PUSH,;

procedure POP (X : out ITEM) is
begin
if INDEX = 0 then
raise STACK_UNDERFLOW;
else
X := SPACE (INDEX);
INDEX := INDEX - 1;
end if;
end POP;
end STACK;

13

L320H9

Example of Generic Instantiation

package INTEGER_STACK is
new STACK (10, integer);

type EMPLOYEE is
record
NAME : string (1..40);
ID :integer;
end record;

package EMPLOYEE _STACK is

new STACK (SIZE => 25,
ITEM => EMPLOYEE);

14

L320H10

Example of Passing Types and Subprograms
Procedure Specification

generic
pe ITEM is private;
type VECTOR is array (integer range <>) of
ITEM;
with function ">" (A,B : ITEM)
return BOOLEAN is <>;
procedure INSERTION_SORT(A : in out
VECTOR);

15 L320H11

Example of Passing Types and Subprograms
Procedure Body

procedure INSERTION_SORT(A : in out
VECTOR) is
|, J : integer,;
T :ITEM;
L :integer := A'first;
U :integer = A'last;
begin
| :=L;
while | /= U loop
T:=A(l+1);
Ji=1+1;
while J /=L and then A (J - 1) > T loop
Al):=A(J-1);
J=J-1;
end loop;
AW =T,
| =14+ 1;
end loop;
end INSERTION_SORT;

16 L320H12

Example of Passing Types and Subprograms
Instantiation

type EMPLOYEE is
record
NAME : string (1..40);
ID :integer;
end record;

type EMPLOYEE_ARRAY is array (integer
range <>)
of EMPLOYEE;

function ">" (A,B : EMPLOYEE) return boolean is
begin

return A.ID > B.ID;
end;

procedure EMPLOYEE_SORT is new
INSERTION_SORT (ITEM => EMPLOYEE,
VECTOR => EMPLOYEE_ARRAY,
l|>" => ">");
procedure EMPLOYEE_SORT is new
INSERTION_SORT (EMPLOYEE,
EMPLOYEE_ARRAY, ">");

17 L320H13

Example of Pascal Array

const
SIZE = 17;
type
MATRIX = array [1..SIZE, 1..SIZE] of char;

procedure TRANSPOSE_MATRIX
(IN_MATRIX : MATRIX;
var OUT_MATRIX : MATRIX);

Example of Ada Unconstrained Array

type MATRIX is array (integer range <>,
integer range <>) of character;

procedure TRANSPOSE_MATRIX
(IN_MATRIX :in MATRIX;
OUT_MATRIX : out MATRIX);

18 L320H14

LECTURE NUMBER: 033
Nassi-Shneiderman 'Chart notation

INSTRUCTIONAL OBJECTIVE(S):

1. To learn Nassi-Shneiderman Chart notation for representing
algorithms used in detailed design.

(How involve Iaarner': recall, review, relate)

We have begun looking at detailed design. The algorithms developed in
detailed design must be clearly communicated at a high leve! of abstraction
but which can also be easily implemented. One such notation is Nassi
Shneiderman diagrams.

(Learning Label- Today we are going to learn ...)

Today we will look at a notation for representing detailed design.

CONTENTS:

1. There are a number of ways to represent algorithms. Although the
most commonly used is pseudo-code, we chose to use Nassi
Shneiderman diagrams. We chose them in order to discourage
students from writing code during design. Discuss the advantages
and disadvantages of Nassi Shneiderman charts (NSC). L330H1

L330H2
2. Present the students with the notation and rules for creating NSC.

3. The three basic constructs for representing any algorithm are
sequence, selection, and iteration. Discuss the Nassi-Shneiderman
Chart notation for these are shown in overhead L330H3.
4, Discuss the more complicated examples given in overheads L330H4,
L330HS, L330HS6, L330H?7.
PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

1 Lecture 033

— D G ks = T 3 e T R L T T R T T T T T T E I T SR

INSTRUCTIONAL MATERIALS:

overheads:

L330H1 Nassi-Shneiderman Charts

L330H2 Rules for drawing and creating Nassi-Shneiderman charts
L330H3 Notation for sequence, selection, and iteration

L330H4 Example notation for complex IF statements

L330HS More Complex IF statements

L330H6 Example notation for CASE statements

L330H7 Example notation for a procedure

L330H8 Example notation for DO WHILE loop

(labs and exercises)

Lab 027 - Nassi-Shneiderman charts
Preparation for detailed design review

Use Lab to have the students practice NSCs.

Mynatt Chapter 5 (pp. 198-202)

Pressman Cha;;ter 10 (pp. 345-350)

2 Lecture 033

Nassi-Shneiderman Charts
Method for representing structured algorithms

Advantages:
Easy to learn

Easy to read
Easy to convert to source code

Good at encouraging structured design
Flexible in the level of detail shown

Standardized

Disadvantages:
Difficulty in drawing and modifying if

no access to CASE tool that provides
this notation

3 L330H1

- —— - — n e ot N ania T g

Rules for Drawing and Creating
Nassi-Shneiderman Charts

The charts are always rectangular.

The flow of control in a Nassi-Shneiderman chart
always starts at the top.

Flow of control always moves from top to bottom,
except when iteration is involved.

Vertical lines may never be crossed.

A rectangle may be exited in a downward direction
only.

A rectangle may be empty, representing null or
empty action.

A rectangle may represent another Nassi-
Shneiderman chart (for example, a call to another
procedure).

(Mynatt)

4 L330H2

v

Nassi-Shneiderman Notation

s bugueste S Docisisn (5-Bhen-ele)
Adia A Bocke
4
Acin3 Adisa A Actin 3
¢ Decislon (-fhes)
4 Seloethon (cam)
Beckes Selacher
T ! Vool Vot [Volmd [velot |Vl
Action & Adioad |ActioaD [AcHnC | scend |Acteal
¢ Herstisn (Whik) £ Morstisa (repeat matll)
Condiiinn
Adks
Acta A
Condiitien

L330H3

Nassi-Shneiderman Notation
For Complex If Statements

IF statement (maltiple conditions)
student_sttendance = paritime
Yes student sex = female N
]
8dd 1 to fem_parttime_count
NESTED IF STATEMENT
a. Linear nested IF statement
record_code='A'
Yes Ne
record_code ='D’
Yes No
Irnlnt
unter_A record_code ='C'
Yos Ne
crement
cpuater B
increment iscrement
comater C errer_counter
6

- —

L330H4

" o

Nassi-Shneiderman Notation
Another Example of a Complex IF Statement

b, Noa-linear acsted IF statement
stadent_attendance = parttime
Y
“ No
student_sex = female
Yes Ne
add 1
student age> 21 te
fulltime_studeats
Yes No
add1
te
male_pt studeats
addi sl
mature_fem_ ymg_t!.el_pt
pt_studeats stadeats

L330H5

.

Nassi-Shneiderman Notation
for CASE Statements

Calealate_Sales Commission

Read Retail Price, Transaction_Code, Emp_No

Transaction_Code

S M L other

Commission = Commision =
tail price * 0.0§ Retail Price *0.1
e Commissinn = i Connistinn =

Retail_Price * 0.07 ure

Priat Retail Price, Commissioa, Emp_No

L330H6

Nassi-Shneiderman Notation
for Case Statements

record_code

lAl l"
inerement increment increment in
crement
counter A counter B connter C | error_counter

L330H7

Nassi-Shneiderman Notation for
Nested IF Statements

Compute_Employee_Pay

Set All_Fields_Valid to true

Set error_message to blank

Read Emp No, Pay Rate, Hrs Worked

Pay Rate>$25.00
Yes No

Hrs_Worked > 60
Yes

No

rror_message =

ay_Rate exceeds
Lszs,w error_message = 'Hours worked

Il Fields Valid = exceeds limit of 60'
" false AIL_Fields_Vabid = false

All_Fields_Valid = false

Hoars_Worked <=3§

Yo Ne
Priat Emp_No, ’ Overtine_Bra= Brs_ Worked
Pay Rate, Emp_Weekly Pay= s bere s
nu_’w.rked, Pay Rate * Hrs Worked; | 05,':'1'::;';’.;?':?"
error_message | PrintEmp No,Pay Rate, | o wogky Pay= (tay Rae
Hrs Worked, 435) + Overtime_Pay; Priat
Emp_Weekly Pay Emp_No, Pay_Rate, Hrs Worked,

Eap_Weekly Py

10 L330H6

Nassi-Shneiderman Notation
For DOWHILE Loops

Process_Student Enrollments

Set Total_Females_Earelied fo zero
Set Total_Males_Earolled to zere

Set Total Students Earolied to zere
Read Student_Record

WHILE records exist

Print studeat details
Increment Total_Studeats Earolled

IF Student_Sex = Female

Ya No

Increment Increment
Total Females_ Total_ Males_
Earelled Earolled

Read Studeat_Record

Print Total Females Enrelled

| Priat Total Males Earalled
| Print Total Stadeats Karelled

1 L330H8

LECTURE NUMBER: 034
Introduction to Ada .and IO in Ada

INSTRUCTIONAL OBJECTIVE(S):

1. To understand the uniqueness of Ada.
2. To learn the elementary features of the Ada programming language and how
it handles input and output.

SET UP. WARM-UP:
(How involve learner: recall, review, relate)

You will begin the implementation phase of the second project soon. This
project is to be implemented in Ada. In previous classes, we have looked at
Ada software artifacts through program reading.

(Learning Label- Today we are going to learn ...)

Now we will look in detail at Ada in order to prepare for the implementation
phase of the second project.

CONTENTS:

L340H1
1. Discuss the general characteristics of Ada. Although it was built for
embedded systems , it is a general purpose language.

2. It is assumed that students are already proficient in a standard
strongly typed progiamming language. The implementation details of
Ada will be covered quickly to enable students to start work on their
project implementation. This rapid introduction is done by frequent
references/comparisons to the language in which they are already
proficient.

3. Standard input and output with Text_IO L340H2

a. Ada contains no input and output standards; instead, Ada
provides a general-purpose package called Text_IO which
contains a collection of subprograms, types, subtypes, and
exceptions used for file manipulation and input and output to
keyboard and monitor. The Text_lO package provides directly
the routines needed for input and output of character and string
data types. Included in Text_IO are generic packages for input

1 Lecture 034

and output of integers, floating point numbers, fixed point
numbers, and enumeration data type. There are Ada I/O
packages for manipulating other data types as well.

L340OH3 shows the basic routines provided by Ada along with
their equivalent Pascal statement.

i Get is analogous to Pascal's Read. Get_Line however
reads strings only and requires a second parameter into
which the length of the line read is placed.

ii Similarly, Put_Line is available only for the string data
type. Put needs formatting information for integers and
decimal numbers. Point this out in the examples shown.
X (in fourth example) is an integer and Y (in fifth
example) is of type fioat. Point out also that Ada
enables you to specify the base of the number being
printed.

L340H4
Discuss the sample program shown.

i. Note the following: "with" and "use" are parts of the
"context clause"; The "use" clause cause the compile to
look at Text_lO for commands; so that one need only
write PUT("Hello world!"); rather than
Text_IO.PUT("Hello world");

ii. The "with" clause tells the compiler that the procedure
needs the help of another package, and specifies that
package name.

Text_lO also provides standard input and output for text files.
L340HS5 A text file is a collection of characters that are
organized into lines and pages and is terminated with a file
terminator. The data type for a text file, as provided in
Text_lO, is File_Type. There are two file modes for text files:
In_file for reading data from a file and Out_File for writing data
to a file. Every text file must be specified in one of these two
modes.

Text_lO provides several routines for the management of files
including Create, Open, Close, Delete, Reset, End_of_Line,
and End_of File. Discuss these using overheads L340H6,
L340H7, L340H8.

2 Lecture 034

f. Exceptions are abnormal conditions that occur at run time.
Discuss some of the commonly used exceptions shown on
overheads L340H9, L340H10.

g. Discuss the sample program illustrating file usage is shown on
overhead L340H11.

PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

Text_IO
text file
file mode

INSTRUCTIONAL MATERIALS:
overheads:
L340H1 Ada
L340H2 Standard input and output with Text_IO
L340H3 Text_lO Operations
L340H4 Sample program using Text_IO
L340H5 Standard input and output on files
L340H6 File management
L340H7 File management(cont.)
L340H8 File management(cont.)
L340H9 Exceptions provided by Text_|O
L34OH10 Exceptions provided by Text_IO(cont.)
bandouts:

(labs and exercises)
Benjamin Chapters 1' (pp. 1-10)

BELATED READINGS:

3 Lecture 034

Booch Chapter 6 (pp. 69-80)
Booch(2) Chapter 4 (pp. 60-71)

Lecture 034

Ada

General-purpose

Strongly typed

Block-structured

Procedural

Supports concurrency, exception handling, and
low-level, implementation-dependent features

Designed to support software engineering
concepts

Information hiding

Modularity

Reusability

Maintainability

5 L340H1

ey

Standard Input and Output with Text_lO

Text_lO is package of routines provic nput and
output on text files, keyboard, and monitor

Directly provides routines for input and output of
character and string types

Provides generic packages for:
Integer (Integer_lO)
Float (Float_lO)
Fixed-point (Fixed_lO)
Enumeration (Enumeration_IO)

6 L340H2

Text_IO Operations

Ada Routine Pascal Equivalent
Get (A); read (A);
Get_Line (A, Length); readin (A);

Put ("hello"); write (‘hello’);
Put (X,2,10); write (x:2);
Put (Y,3,2,0); write (y:6:2);
Put_Line ("hello"); writeln (‘hello');
Skip_Line; readin;
Skip_Line (2); readin;
readin;
New_Line; writeln;
New_Line (2); writeln;
writeln;

7 L340H3

Sample Program using Text 10

with Text_IO; use Text_IO;
procedure POWER is
package INT_IO is new Integer_IO (integer);
use INT_IO;
BASE, COUNT, EXPONENT, PRODUCT
integer;
begin
Put_Line ("Please enter the base value");
Get (BASE);
Put_Line ("Please enter the exponent value");
Get (EXPONENT);
COUNT := 1;
PRODUCT := BASE;
while COUNT < EXPONENT loop
PRODUCT := PRODUCT * BASE;
COUNT := COUNT + 1;
end loop;
Put ("Base = ");
Put (BASE);
Put (" Exponent =");
Put (EXPONENT);
Put ("Product = ");
New Line;
Put (PRODUCT);
end POWER,;

8 L340H4

Standard Input and Output on Files

Text file
A collection of characters that may be
organized into lines and pages (using line
terminators and page terminators). The end
of a text file is indicated with a file terminator.
Supported in Text_IO

Data type called File_Type

File modes available for text files:
In_File indicates a file is read only

Out_File indicates a file is write only

9 L340HS

File Management

Create

Opens a new external file and associates an
internal file with it; file is initially empty

Default file mode is Out_File

Parameters: 1 - file identifier
2 - access mode
3 - external file name

Example of use:

Create (Report_file, Out_File,
"a:\summary.rep");

Open
Opens an existing file for processing, starting
at the beginning of the file

No default file mode

If the external file specified does not exist, a
Name_Error exception is raised

Open (Source2, In_File,
"a:\prog1ijones.pas");

10 L340H6

File Management (cont.)

Close
Removes the association of the Ada file
identifier with its associated external file

Close (Source);

Delete
Deletes the external file associated with the
given Ada file identifier

Delete (Report_file);

Reset
Moves back to the beginning of the file,
possibly changing the file mode, and allowing
reading or writing operations to resume from
the beginning of the file. The file mode is
changed only if a new mode is specified as
the second parameter.

Reset (Source1);

Reset (Source2, Out_File);

1 L340H7

File Management (cont.)

Boolean functions to test for the current position in

reading input:

End_of Line

End_of Page

End_of _File

Returns true if the next
component is a line terminator or
file terminator; otherwise, returns
false

End_of_Line (Sourcel);

Returns true if the next
component is a page terminator
or file terminator; otherwise,
returns false

End_of_Page (Source1);

Returns true if the next
component is either a file
terminator or the three-component
sequence of line terminator, page
terminator, file terminator;
otherwise, returns false

End_of_File (Source1);

12 L340H8

Exceptions Provided by Text 10

Status_Error

Mode_Error

Name_ Error

Use_Error

Attempt to use a file that has not
been opened or to open a file that
is already open

Attempt to perform an input
operation on a file of mode
Out_File or to perform an output
operation on a file of mode
In_File

Attempt to associate an internal
file with an external file if an
invalid external file name is
specified

Attempt to perform some
input/output operation on an
external file for which
implementation does not allow
that operation

13 L340H9

Exceptions Provided by Text_lO (cont.)

Device Error A problem with the hardware,
software, or media providing
input/output services

End_Error Attempt to read past end of an
input file

Data_Error Input data that is not of expected
form

Layout Error luvalid Text_I0 formatting
operations

14 L340H10

]

Sample Program using Files

with Text_|O;
use Text _IO;

procedure MAIN is

package INT_IO is new Integer_lO (integer);
use INT_IO;

INPUT_FILE : File_Type;
NEXT_ITEM :integer;

begin
open (INPUT_FILE, In_File, "a:\testresults.dat");

while not End_of_File (INPUT_FILE) loop
Get (INPUT_FILE, NEXT_ITEM);
Put ("Test result = ");
Put (NEXT_ITEM);
New_Line;
end loop;

Close (INPUT_FILE);
end MAIN;

15 L340H11

S T T T e L e oy e ey T ey e T TR TEee T wemmm—m—m9

LECTURE NUMBER: 035

Data types in Ada '

1. To introduce the con;':ept of a compilation unit.

1. To learn the features of the Ada programming language concerning
scalar data types.

(How invoive leamer': recall, review, relate)
(Learning Label- Today we are going to learn ...)

CONTENTS:
1. Ada's program structure L350H1

a. Comments in Ada by begin with a double hyphen "-" .
Comments terminate at the end of a line. There is no other
comment terminator.

b. Compilation units are the pieces of a program that can be
compiled separately. Compilation units include package
specifications, package bodies, subprogram declarations, and
subprogram bodies. The Ada compiler maintains a program
library with the needed information about the compilation units
used in a program. These compilation units can be specified
in the context clause. Ada can use this information to provide
consistency checking across the separate compilation units.
The main program does not have any parameters.

2. Ada data types L350H2

a. Ada provides scalar data types (discrete and real), composite
data types (arrays and records), access data types, private
data types, subtypes and derived types. Today we are only
examining the scalar data types of Ada. The discrete data
types to be examined are represented internally as integer (Ada
provides predefined integer types Integer, Natural, Positive)
and enumeration (Ada provides predefined enumeration types
Character and Boolean). The real data types provided by Ada
are floating point (Float) and fixed point. For each of these

1 Lecture 035

data types, we will look at the predefined range of values for
Ada's predefined data types, user-defined data types,
declaration of objects, declaration of constants, operations and
operators, attributes, and input/output. Universal integers and
universal reals are also discussed. Review the overheads.
L350H12 is an exercise to use in class. There will be
constraint errors on Pred(Monday), Succ(Sunday) and Val(7).
L350H3, L350H4, L350H5, L350H6, L350H7, L350HS,
L350H9, L350H10, L350OH11, L350H12, L350H13, L350H14

PROCEDURE:
teaching method and media:

INSTRUCTIONAL MATERIALS:
overheads:
L350H1 Ada's program structure
L350H2 Ada's data types
L350H3 Integer data type
L350H4 Named numbers
L350H5 Real numbers
L350H6 Formatting numeric output
L350H7 Arithmetic operations
L350H8 Numeric attributes
L350H9 Enumeration data type
L350OH10 Enumeration I/0
L350OH11 Attributes for enumeration data type
L350H12 Examples of enumeration attributes
L350OH13 Derived type declarations
L350H*4 Subtype declarations

handouts:

2 Lecture 035

(labs and exercises)
Benjamin Chapters é-a (pp. 11-28)

Booch Ch.apter 8 (pp. 103-115)
Booch(2) Chapter 6 (pp. 93 - 105)

Lecture 035

Ada's Program Structure

Comments
Begins with a double hyphen "--" and extends
to the end of the line

Compilation units
Pieces of a program that can be compiled
separately

May be package specification, package body,
subprogram declaration, or subprogram body

Ada keeps a library ("program library”) with
information about the compilation units used
in a program; thus, Ada can check for
consistency between the compilation units
Context clause

Main programs
Only parameterless procedures

4 Lecture 035

Ada's Data Types

Specify a set of values and a set of operations
applicable to these values

Provided by Ada:
Scalar
Discrete
Integer (Integer, Natural, Positive)
Enumeration
Character (Character)
Boolean (Boolean)
Real
Floating point (Float)
Fixed point
Composite
Arrays
Constrained
Unconstrained
Strings (String)
Records
Access (i.e., pointers)
Subtype and derived types

s L350H2

Integer Data Type

Predefined range of values
Integer'first..Integer’last

Subtypes of integers
Predefined subtypes
Natural integer>=0
subtype NATURAL is integer
range O..integer'last;

Positive integer >= 1
subtype Positive is integer
range 1..integer'last;

User-defined subtypes
type INDEX is range 1..50;

Declaring integers
NUM : Integer;
INCREMENT : Integer := 1;

-- constant must be initialized
DECREMENT : constant integer := 1;

A,B,C :integer :=0;
X,Y,Z :integer := 2,3,4; -- illegal

6 L350H3

Named Numbers

A constant that is declared without assuming a
type and can be used with all numeric types.

TENS : constant := 10;
HUNDREDS : constant := TENS * 10;

7 L350H4

Real Numbers
Floating Point
Relative error

Predefined range of values
Float'first..Float'last

User-defined subtypes
pe CELSIUS is digits 3;
type DISTANCE is digits 3 range -50..50;
Declaring floats

ROOM_RATE : Float;
Pl : constant Float := 3.1456;

Fixed Point
Must define accuracy specification (absolute
error) and range in declaration

type RATE is delta 0.001 range 7.0..12.0;

8 L350H5

Formatting Numeric Output

For integers:
Put (INTEGER_VALUE, width_of_field);
Put (X, 3); -- outputs 3

Fid rt justified
width

For reals:

Put (REAL_VALUE, fore, aft, exp);
fore=number of digits before decimal point
aft=number of digits after decimal point
exp=the base, e.g. O=base 10

Put (2.573, 3, 2, 0); -- output __ 2.57

9 L350H6

Arithmetic Operations

Unary Arithmetic Operations

Operator
absolute value abs
unary plus +
unary minus -

Binary Arithmetic Operations
' Operator
exponentiation ek
multiplication *
division /
modulus mod
remainder rem
addition +
subtraction -
Relational Operators
Operation Operator
equal =
not equal /=
less than <
less than or equal <=
greater than >

greater than or equal »>=

10 L350H7

Numeric Attributes

Attribute
gives information about particular properties of
a type

Attributes for integers:
First first value in integer's range
Last last value in integer's range

put(integer'first); prints the first integer

Attributes for floats:
First first value in float's range
Last last value in float's range
Digits number of significant figures
Small smallest positive float number
Large largest positive float number

11 L350H8

Enumeration Data Type

Subtypes of enumeration data types
Predefined subtypes
Boolean false, true
Character ASCII character set

User-defined subtypes
type DAY is (MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Declaring enumeration data types
TODAY :DAY;
TOMORROW : DAY := TUESDAY;
FIRST_DAY : constant DAY := MONDAY;

Operators
Relational (=, /=, <, <=, », >=)
Membership (in, not in)
Boolean operators (and, or, xor, not)

12 L350H9

Enumeration I/0

Remember that Text IO provides a generic
package for enumeration input and output

package DAY IO is new Enumeration_ IO
(DAY);
use DAY _IO;

package BOOLEAN O is
new ENUMERATION_IO (Boolean);
use BOOLEAN_IO;

13 L350H10

Attributes for Enumeration Data Type
First first value in enumeration data type
Last last value in enumeration data type
Pred predecessor of argument

constraint error on first

Succ successor of argument
constraint error on last

Pos position in list (count starts at 0)

Val value associated with argument which is
the position in the list

14 L350H11

Examples of Enumeration Attributes

pe DAY is
(MONDAY, TUESDAY,WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

DAY'First

DAY'Last

DAY'Pred (TUESDAY)
DAY'Pred (MONDAY)
DAY'Succ (TUESDAY)
DAY'Succ (SUNDAY)
DAY'Pos (TUESDAY)
DAY'Val (2)

DAY'Val (7)

15 L350H12

Derived Type Declarations

defines a new and distinct type which inherits all
the features of the parent type

new type is not compatible with parent type

with Text_lO; use Text_IO;
procedure DERIVED_DEMO is

type LENGTH is new Integer;

type AREA is new Integer;

package AREA _lO is new Integer_IO
(AREA);

use AREA_IO;

L1,L2 : LENGTH := 3;

A : AREA;

function ™" (X, Y : LENGTH) return AREA
is

begin

return AREA (Integer (X) * Integer (Y));
end;

begin
A:==L1*L2;
- The ™' will only work if L1 and L2
-- match the data type
Put (A);
end DERIVED_DEMO;

16 L350H13

Subtype Declarations

Does not define a new (i.e., distinct) type but
promotes readability

Provides a new name for another (potentially
constrained) data type

Inherits all the properties of base type

type DAY is

(MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

subtype WEEKDAY is DAY
range MONDAY..FRIDAY;

17 L350OH14

LECTURE NUMBER: 036
Statements in Ada .

INSTRUCTIONAL OBJECTIVE(S):
1. To learn the features of several Ada statements.

(How invoive Ieamer.: recall, review, relate)
(Learning Label- Today we are going to learn ...)

CONTENTS:
1. Ada statements L360H1

a. A statement is a program construct defining an action to be
performed during execution. There are two types of statements
in Ada: simple (e.g., assignment statement) and compound
(e.g., loop, if, case). A compound statement is a control
structure that surrounds other statements whereas a simple
statement does not. Every statement is terminated by a
semicolon; in fact, the semicolon is considered pant of the
statement and not a statement separator.

L360H2

b. The Ada statements examined are assignment statement, null
statement, block statement, iteration statements (basic loop, for
loop, while loop), and selection statements (if, case) . Discuss
examples of each of these. Discuss only the unique features
of Ada are discussed.

c. The null statement uses the reserved word null to show a
statement that performs no action. This type of statement is
commonly used in case statements and exception handiers.

d. The block statement encapsulates a collection of declarations
and statements that are logically reiated. The scope of the
declarations and exceptions within a block is the block itself.
The block statement is commonly used for several purposes.
It ensures that the declaration(s) within the block are not used
inappropriately by other parts of the program. It documents the
extent of the declaration(s), and it provides an exception
handler environment. The declaration part and exception

1 Lecture 036

handler part are optional.

e. The simplest loop in Ada provides for an infinite loop (i.e., one
that loops forever) L360OH3. This type of loop is useful for
activities such as data-sampling that must continue forever
once initiated. The loop can be constructed to end by including
one or more exit statements within the loop. An unconditional
or conditional exit statement may be used. L360H4, L360HS,
L360HS6, L360H7

f. Discuss the remaining Ada statements, L360H4-L360H7

PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.
vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:
L360H1 Ada statements
L360H2 Ada statements
L360H3 iteration statements - basic loop
L360H4 Iteration statements - for loop
L360H5 Iteration statements - while loop
L360OH6 Selection statements - if statement
L360OH7 Selection statements - case statement

handouts:

BELATED LEARNING ACTIVITIES:
(labs and exercises)

Benjamin Chapters 4 (pp. 29-37)

Booch Chapter 11 (pp. 187-197)
Booch(2) Chapter 9 (pp. 181-190)

2 Lecture 036

- Ada Statements

A program construct defining an action to be
performed during execution

Terminated by semicolon
Two types

Simple

Compound

3 L360H1

L i o y P

Ada Statements
Assignment statement

Null statement
Statement that performs no action

when others => null;

Block statement
Encapsulates a collection of declarations and
statements that are logically related

Scope of identifiers and exceptions for block
is the region of program text that begins with
the declaration and extends to the end of the
block

declare

TEMP : Integer := NUM_1;
begin

NUM_1 := NUM_2;

NUM_2 := TEMP;

- exception handlers can go here
end;

4 L36OH2

lteration Statements
Basic Loop

Structured to loop forever (one entry, no exit)

loop
-- statements
end loop;

To leave such a loop, use the exit statement

loop
-- statements
exit;
-- statements
end loop;

COUNT :=1;
loop
COUNT := COUNT + 1;
-- statements
exit when (COUNT = 10);
end loop;

5 L360H3

lteration Statements
For Loop

(X is implicitly declared with the 'for’)
for X in 1..3 loop

-- gtatements
end loop;

for INDEX in 1..USER_INPUT_LIMIT loop
-- statements
NAME := AN_ARRAY (INDEX);,
-- Statements

end loop;

for CHin 'A'..'"Z' loop
put (CH);
end loop;

for CH in reverse 'A'..'"Z’ loop
put (CH);
end loop;

6 L360H4

Ilteration Statements
While Loop

Sequence of statements is repeated as long as
condition in while condition is true

while not end_of_file (SOURCE2) loop
get (SOURCE2, A);
-- statements

end loop;

COUNT :=1;

while (COUNT /= 10) loop
COUNT := COUNT + 1,
-- gstatements

end loop;

SUM = 0;

Get (A_VALUE);

while (A_VALUE /= 0) loop
SUM := SUM + A_VALUE;
Get (A_VALUE);

end loop;

7 L360OH5

o IR

Selection Statements
If Statement

if VAL_1 > VAL_2 then

MAX := VAL _1;

Put_line ("First value is largest”);
end if;

if BALANCE <= 0.0 then
SERVICE_CHARGE := 10.00;
elsif BALANCE < 300.00 then
SERVICE_CHARGE := 3.00;
else
SERVICE_CHARGE := 1.00;
end if;

if BALANCE > 0.0 then
if BALANCE < 300.00 then
SERVICE_CHARGE := 3.00;
else
SERVICE_CHARGE := 1.00;
end if;
else
SERVICE_CHARGE := 10.00;
end if;

L360H6

Selection Statements
Case Statement

case SCORE is
when 85..100 => GRADE :="'A";
when 75..84 => GRADE :='B’;
when 60..74 => GRADE :='C';
when 0..59 => GRADE :='F';
when others => null;

end case;

case GRADE is
when 'A’ | 'B' | 'C’' => put_line ('pass’);
when 'F' => put_line ('fail’);
when others => put_line (‘invalid score’);
end case;

case SELECTION_CODE is
when 'W' => |
BALANCE := BALANCE - AMOUNT;
Put_Line ("Removing cash");
when 'D’ =>
BALANCE := BALANCE + AMOUNT;
Put_Line ("Adding cash");
when others => Put_Line ("Invalid key");
end case;

) L360H7

LECTURE NUMBER: 037

Structured data typés in Ada

INSTRUCTIONAL OBJECTIVE(S):
1. To leam the features of the Ada's structured data types.

(How involve |earner.: recall, review, relate)
We have already discussed Ada's scalar data types (integers, etc).

(Learning Label- Today we are going to learn ...)
Today we are going to look at Ada's composite data types.

CONTENTS:

1. Ada data structures L370H1

Arrays are composite data structures which contain a coliection
of components of the same data type L370H2. Ada provides
two types of arrays: constrained and unconstrained.
Constrained arrays have their lower and upper bounds for their
indices defined in the type declaration L370H3.
Unconstrained arrays define their index type in the declaration
but do not define their lower and upper bounds for their indices.
These bounds are defined in the object declaration L370H4.
This feature allows objects of different sizes to be created from
the same data type; we have seen in a previous class how this
language feature is helpful in reusability. The operations and
IO for arrays are the same as for Pascal. L370H5. Ada
provides attributes for arrays (First, Last, Range, Length)
Use the definitions of L370H6 and work through the exercise
on L370H7.

String data type is a predefined unconstrained array of type
Character. At object declaration, the size of the string is
specified. The 1/O provided by Text IO was discussed
previously. Ada provides the attributes Value and image for
strings. L370H8, L370H9, L370H10

Record data types are composite data structures which contain
a collection of components of possibly different data types.
Records are the same in Ada as in Pascal except for the ability
to initialize values at type declaration and object declaration.

1 Lecture 037

“

Variant records and discriminants are covered in the textbook
but will not be discussed in class. L370H11, L370H12

PROCEDURE:
teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:

overheads: |
L370H1 Ada data types
L370H2 Array data types |
L370H3 Constrained arrays

L370H4 Unconstrained arrays

L370H5 Arrays

L370H6 Array attributes

L370H7 Examples of array attributes

L370H8 String data type

L370HS String data type - operations and I/0
L370H10 String attributes

L370H11 Record data type

L370H12 Record data type - accessing, operations, I/O

handouts:
(labs and exercises)
Benjamin Chapter 5 kpp. 39-50)

Booch Chapter 8 (pp. 115-124)
Booch(2) Chapter 6 (pp. 105-115)

2 Lecture 037

Ada Data Types

Scalar
Discrete
Integer (Integer, Natural, Positive)
Enumeration
Character (Character)
Boolean (Boolean)
Real
Floating point (Float)
Fixed point

Composite
Arrays
Constrained
Unconstrained
Strings (String)
" Records
Access (i.e., pointers)
Private

Subtype and derived types

3 L370H1

Array Data Types

Data structure consisting of a linear sequence of
components of the same data type

Two types of arrays:
Constrained
The lower and upper bounds for each
array index are defined at type declaration

Unconstrained
The lower and upper bounds for each
array index are not defined at type
declaration but are defined at object
declaration

4 L370H2

Constrained Arrays
Type declarations

type COST is array (1..8) of Float;
type MATRIX is array (1..3, 1..3) of Integer;

Object declarations
COAT_COSTS : COST;

DRESS_COSTS : COST := (90.0, 80.0,
70.0, 60.0, 97.5, 81.0, 72.0, 85.0);

DRESS2_COSTS : constant COST := (90.0,
80.0, 70.0, 60.0, 97.5, 81.0, 72.0, 85.0);

JEAN_COSTS : COST := (1 => 30.0,
2 => 19.0, 3 => 15.50, 4 => 56.0,
5 => 27.50, others => 28.0);

-- called anonymous array object
NEW_COSTS : array (1..8) of Float;

MATRIX_1, MATRIX_2 : MATRIX;

5 L370H3

Bhiian.. ket L

Unconstrained Arrays

Type declarations

type VECTOR_TYPE is array
(Integer range <>) of Integer;

type MATRIX_TYPE is array
(Positive range <>, Positive range <>)
of Integer;

Object declarations |
VECTOR1 : VECTOR_TYPE (1..30);
VECTOR2 : VECTOR_TYPE (1..10);
MATRIX1 : MATRIX_TYPE (1..3, 1..10);

MATRIX2 : MATRIX_TYPE (1..4, 1..6);

6 L370H4

Arrays

Array I/O
By component data type

Accessing arrays
By component
COAT_COSTS (2) := 124.50;
Put (COAT_COSTS (3));

As whole

Can use :=, =, /=
Must be same data type

MATRIX_1 := MATRIX_2;
Relational operators «, <=, >, and >= may

be applied to one dimensional arrays
whose elements are of a discrete type

By slice
Accessing consecutive components of an
array

MATRIX_1 (1..3) := MATRIX_2 (4..6);

7 L370HS

First
First(N)

Last
Last(N)
Range
Range(N)
Length
Length(N)

Array Attributes

returns lower bound of first array
index
returns lower bound of Nth array
index

returns upper bound of last array
index
returns upper bound of Nth array
index

returns range of first array index

returns number of elements in first
index range

8 L370H6

Examples of Array Attributes

type MATRIX_TYPE is array (1.3, 0..30) of

Integer;
MATRIX : MATRIX_TYPE;

MATRIX_TYPE'First (1)
MATRIX_TYPE'First (2)
MATRIX_TYPE'First
MATRIX'Last (1)
MATRIX'Last (2)
MATRIX_TYPE'Range (1)
MATRIX_TYPE'Range (2)
MATRIX'Length

L370H7

String Data Type

pe STRING is array (Positive range <>)
of Character;

Object declarations
FILE_NAME : String (1..30);

ERR_MSG : constant String
:= "error - file not found”);

LINE : String (1..80) := (others => ""');

10 L370H8

String Data Type

String operations
Relational operators (=, /=, <, <=, >, >=)
Assignment (:=)
Concatenation (&)
String /O
Put_Line (item : in String);
Put (Item : in String);

Get_Line (ltem : out String;
Last : out Natural);

Get_Line (item : out String);

11

L370H9

String Attributes

Value function that maps the value of String
into the corresponding value of the
discrete type

X : integer := Integer'Value (*1000");
Image function that maps values of integer

or enumeration type into an
expression of type String

ONE_THOUSAND : String (1..4)
:= Integer'image (X);

12 L370H10

Record Data Type

Data structure consisting of a collection of

components of the possibly different data types

Type declarations

type NAME_TYPE is
record
LAST_NAME : String (1..20);
FIRST_NAME : String (1..20);
MIDDLE_INITIAL : Character;
end record;

Object declarations
MY_NAME : NAME_TYPE;

YOUR_NAME : NAME_TYPE :=
(MIDDLE_INITIAL => ',
others => " ");

HIS_NAME : NAME_TYPE :=
("Appleseediess ",
"Johnny "’ !P');

13 L370H11

Record Data Type

Accessing records

MY_NAME.MIDDLE_INITIAL = 'T';

Operations on records

=, =, /=

Component selection

Record I/0O
By component only

14 L370H12

LECTURE NUMBER: 038
Access(pointer) data types in Ada

INSTRUCTIONAL OBJECTIVE(S):
1. To leamn the features of Ada’'s access data types.

(How involve learner: recall, review, relate)

We have already discussed scalar and composite data types.
(Learning Label- Today we are going to learn ...)

Today we'll discuss access, or pointer data types.

CONTENTS:
1. Ada access data types L380H1

a. The access data type (often called pointer data type) enables
the dynamic creation of objects during the execution of a
program.

L380H2

b. There are three steps to using access data types. First, the
access type and objects of that type must be declared. When
an object of an access data type is created, the object is
automatically initialized to the value null. Here B1, B2, and B3
are initialized to null. This is the only case in which Ada
defines an implicit default value.

Second, objects of the access type are dynamically allocated.
Using the allocator new in an assignment statement
dynamically allocates the objects of an access type. The
allocation process also allows for the initialization of values
either by positional or named notation.

Third, allocated objects can be referenced at execution time.

L38OH3
c. Access data types can be compared using the relational
operators = or /=. This is valid only it they are of the same
type.Ada aiso provides a notation .all which refers to all the
values of an access data type (e.g., all the fields of the record
. type if the access data type pointed to a record).

1 Lecture 038

L380H4
d. lllustrate pointers through the linked list implementation of a
tree as shown in L3BOH4.

PROCEDURE:
feaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads:
L380OHH1 Ada data types
L380OH2 Steps to using access types in Ada
L38OH3 Operations on access types
L380OH4 Example of linked list

handouts:

(labs and exercises)

Lab 028 - Detailed design review presentation

Benjamin Chapter 7 ‘(pp. 63-72)

Booch Chapter 8 (pp. 124-129)
Booch(2) Chapter 6 (pp. 115-121)

2 Lecture 038

Ada Data Types

Scalar
Discrete
Integer (Integer, Natural, Positive)
Enumeration
Character (Character)
Boolean (Boolean)
Real
Floating point (Float)
Fixed point

Composite
Arrays
Constrained
Unconstrained
Strings (String)
Records

Access (i.e., pointers)
Private

Subtype and derived types

L38OH1

Steps to Using Access Types in Ada

1. Declare access type and objects of that type.

type BUFFER is
record
MESSAGE : String (1..10);
PRIORITY : Integer;
end record;
type BUFFER_PTR is access BUFFER;

B1, B2, B3 : BUFFER PTR;

2. Dynamically allocate objects of the access
type.

B1 := new BUFFER;
B2 := new BUFFER'(MESSAGE => "*******++an
PRIORITY => 2);

3. Work with allocated objects.
B1 := null;
B1.MESSAGE := "Error - P1";

B1.PRIORITY := 10;
B2 := B1;

4 L38OH2

e R A L

Operations on Access Types

Relational operators (=, /=)

Assignment (:=)

.all notation

5 L380OH3

Example of Linked List

pe NODE;

pe TREE is access NODE;

type NODE is
record
LEFT : TREE;
VALUE : string (1..5);
RIGHT : TREE;
end record;

ROOT : TREE;
TEMP : TREE;
PTR :TREE;

ROOT := new NODE;
ROOT.VALUE := "NODE1",;
TEMP := new NODE;
TEMP.VALUE := "NODE2",;
ROOT.LEFT := TEMP;

TEMP := new NODE;
TEMP.VALUE := "NODE3";
PTR := ROOT.LEFT,;
PTR.RIGHT := TEMP;

L380OH4

LECTURE NUMBER: 039

Procedures, functioﬁs. and packages in Ada

INSTRUCTIONAL ORJECTIVE(S):

1. To learn the features of the Ada programming language concerning
procedures, functions, and packages.

SET UP, WARM-UP:

(How involve learner: recall, review, relate)
In other lectures we have looked at using Ada specifications in high
level design. The implementation details and the special capabilities
of Ada, such as overioading, were not discussed.

(Learning Label- Today we are going to leam ...)
Today we shall revisit Ada's packages, functions, and procedures
examining the details needed to implement these language structures..

CONTENTS:

1. Ada subprograms L390H1

As in other programming languages, procedures and functions
are provided in Ada as fundamental tools for designing and
building modular programs. Procedures are used to execute
a group of statements, and functions are used to determine
and return a value that is used in an expression.

Ada allows for procedures and functions to have a specification
part and a body or implementation part L390H2. The
specification part is the interface information and may be
compiled in a file separate from the body. This separate
compilation feature aliows the subprogram to be used by other
compilation units without the implementation details in the
subprogram body being completed. Also if changes are later
made to the implementation details, there is no need to
recompile the other compilation units which use this
subprogram.

Ada provides three parameter modes L39OH3. The in mode
allows the parameter to act as a local constant within the
subprogram, the out mode allows the parameter to be
assigned a value by the subprogram, and the in out mode
allows the formal parameter to be initialized to the value of the

1 Lecture 039

actual parameter and then another value to be assigned to the
parameter. The In mode is the default parameter mode.

For In parameters only L390H4, a default value may be
specified in the formal parameter list, and then the
corresponding actual parameter may be omitted. If the default
parameter is not the last parameter in the formal parameter list,
named notation must be used to specify any remaining actual
parameters in the procedure call.

Ada provides two types of parameter association L390HS. In
positional notation, which is the type commonly used in other
programming languages, the order of the actual parameters
must match the order of the formal parameters. In named
notation, the name of the formal parameter is associated with
the actual parameter so that the order of the actual parameters
does not matter. Additionally, once named notation is used in
a list, it must be used for the remaining parameters in the list.

The return statement can be used in both procedures and
functions to terminate the subprogram and transfer control back
to the calling routine L390H6. In a function, the value to be
returned is also indicated in the return statement. L390H8
There can be one or more return statements in any
subprogram, but there must be at least one in a function. A
compiete example showing the declaration, body, and
invocation of a procedure and function are shown on L390OH7
and L390HS.

Overloading is the use of the same name or operation symbol
for different entities whose scope overlap. They are said to be
overloaded provided that there is no ambiguity. Overloading
can be used for subprogram identifiers as well as operators,
task entry identifiers, and enumeration literals L390H9. The
compiler distinguishes the correct intended function by the
parameters passed or by the context of an overloaded name.
Therefore, for all overioaded subprograms, some aspect of the
subprogram profile (the parameter order, number, or type or
the returned data type on a function) must be unique from
other subprograms with the same name. If some ambiguous
reference is made, explicit resolution of the conflict can be
made through named parameter association or a qualified
expression L390H10.

Discuss the scope and visibility rules L390H11

2 Lecture 039

R |

2. Ada packages L390H12

a. Ada packages were introduced in an earlier class. We saw
that packages provide a mechanism for organizing large or
complicated programs.

b. Private and limited private data types can be declared in a
package specification L390H13. These data types allow the
name of the identifier to be visible but the implementation
details of the data types to be hidden. These data types are
used to restrict the operations available for certain data types.
L390H14, L39OH15

PROCEDURE: .
Lecture and overheads are the chief media for this lecture.

vocabulary introduced:
parameter modes
private data type

limited private data type

INSTRUCTIONAL MATERIALS:

overheads:

L330OH1 Ada program units

L380H2 Ada procedures and functions
L390H3 Parameter modes

L3S0OH4 Default parameter values

L390OHS Parameter association

L390H6 Return statement

L390OH7 Procedure

L390H8 Function

L390HS Overloading

L39OH10 Explicit resolution with overlioading
L38OH11 Scope and visibility rules
L390OH12 Packages

L390H13 Private and limited private data types
L390H14 Private data type

L390H15 Limited private data type

handouts:
BELATED LEARNING ACTIVITIES:

(labs and exercises)
Lab 029 - Feedback on detailed design

3 Lecture 039

Benjamin Chapter 6 and 8 (pp. 51-62 and 73-78)

Booch Chapter 13 (pp. 218-241)
Booch(2) Chapter 11 (pp. 216-240)

Lecture 039

Ada Program Units

Procedures and functions

Packages

Tasks

5 L38OH1

Ada Procedures and Functions

Procedure
Used to execute a group of statements

Function

Used to determine and return a value that is
used in an expression

Each has a specification (interface information)
and body (implementation details)
Permits a subprogram name and parameter
requirements to be available to other

compilation units separate from the
subprogram body

6 L330H2

Parameter Modes

Indicates the flow of the data between the caller
and the called unit

3 types of parameter mode:

1. in
Acts as a local constant to the procedure

procedure DRAW_LINE (FROM,
TO : in POINT);

2. out
A variable which may only be assigned a
value by the procedure

procedure FIND_MAX (A, B : in Integer;
MAX : out Integer);

3. in out
A variable which is initialized to the value
of ‘he actual parameter and may be
assigned a value by the procedure

procedure SORT (DATA : in out
NAMES);

7 L390OH3

Default Parameter Values (for IN only)
type DIRECTION is (ASCENDING,
DESCENDING);
procedure SORT (DATA : in out NAMES;

ORDER : in DIRECTION := ASCENDING);
SORT (CLASS, DESCENDING);

SORT (CLASS); -- uses default value

procedure SPACES (COUNT : Integer := 1) is
begin
for I in 1..COUNT loop
Put (" ");
end loop;
end SPACES;

SPACES (4);
SPACES; -- only one space will be output

8 L33OH4

Parameter Association
Positional notation
Order of actual parameters must match order
of formal parameters
Named notation
Name of formal parameter is associated with
actual parameter

procedure SEARCH_FILE (KEY : in NAME;
INDEX: out FILE_INDEX);

Positional
SEARCH_FILE ("SMITH J”, RECORD_ENTRY);

Named Notation
3 variafi ith identical i

SEARCH_FILE (KEY => "SMITH J",
"INDEX => RECORD ENTRY),

SEARCH_FILE (INDEX => RECORD_ENTRY,
KEY => "SMITH J");

SEARCH_FILE ("SMITH J",
INDEX => RECORD_ENTRY);

9 L390H5

Return Statement

Used to terminate a procedure or function and
transfer control back to the calling routine

In a function, the return statement indicates the
value to be returned

procedure MIN (A, B : in Integer;
C : out Integer) is
begin
if (A < B) then
C:=A;
return;
end if;
C := B;
end MIN;

function MIN (A, B : in Integer)
return Integer is

begin

if (A < B) then

return A;

end if;

return B;
end MIN;

10 L33OH6

Procedure

procedure DIVIDE (DIVIDEND,
DIVISOR : in Integer;
QUOTIENT,
REMAINDER : out Integer);

procedure DIVIDE (DIVIDEND,
DIVISOR : in Integer;
QUOTIENT,
REMAINDER : out Integer) is
begin

QUOTIENT := DIVIDEND / DIVISOR,;

REMAINDER := DIVIDEND rem DIVISOR;
end DIVIDE;

DIVIDE (120, 4, A_QUOTIENT,
A_REMAINDER);

11 L390H7

Function

function AVERAGE (A, B, C : in Float)
return Float;

function AVERAGE (A, B, C : in Float)
return Float is
SUM : Float;
begin
SUM:A+B+C;
return SUM / 3.0;
end AVERAGE;

CURRENT_AVERAGE := AVERAGE (TEST1,
TEST2, TEST3);

12 L330OH8

Overloading

The same name or operation symbol is used for
different entities whose scope overlap and there is
no ambiguity.

Allowable for:
Operators
Subprogram identifiers
Task entry identifiers
Enumeration literals

Meaning determined by operand, parameters, or
context of use

13 L390H9

Explicit Resolution with Overloading

2 means of explicit resolution- in meaning for
subprograms:

1. Named parameter association
2. Qualified expression
type BEEF is (STANDARD, GOOD, CHOICE,
PRIME);
type INTEREST is (PRIME, BONDS,
DISCOUNT);
procedure PROCESS (THE_CUT : BEEF);
procedure PROCESS (THE_RATE : INTEREST);
PROCESS (PRIME); -- ambiguous reference
PROCESS (THE_RATE => PRIME);

PROCESS (BEEF'(PRIME));

14 L3%OH10

Scope and Visibility Rules
3 types of visibility possible for an object:
1. Directly visible
2. Visible by selection
3. Hidden

procedure P1 is
X :integer;
Y :linteger;
procedure P2 is
X : integer;
begin
X := 4; -- X of P2 directly visible
P1.X := 3; -- visible by selection
Y :=5; --Y of P1 directly visible
end P2;

begin -- P1
P2; -- directly visible
X := 6; -- X of P1 directly visible
forlin 1..3 loop
forlin 1..10 loop
-- outer | is hidden in inner '.op
end loop;
end loop;
end P1; adapted from Benjamin

15 L390H11

Packages

ngmnmingunﬂthataﬂowsacolbcﬂonmmmamwbommm
use by other program units

STACKS is

type STACK is private;

procedure PUSH (ELEMENT : in integer;
ON : in out STACK);

procedure POP (ELEMENT : out Integer;
ON : in out STACK);

private
- STACK defined
end STACKS;

with STACKS; use STACKS;
procedure MAIN is

A_STACK, B_STACK : STACK;
begin

PUSH (10, A_STACK);

PUSH (20, B_STACK);
ond;

16 L38OH12

Private and Limited Private Data Types

Defined in a package specification

Name is visible to user but implementation details are hidden

Purpose: to restrict operations available outside of package body

17 L3%OH13

Private Data Type
Operations available on private data types:
Assignment (:=)
Relational operators (=, /=)
Subprograms defined in its package

package STACKS is
type STACK is private;
procedure PUSH (ELEMENT : in Integer;
ON : In out STACK);
procedure POP (ELEMENT : out Integer;
ON : in out STACK);
private
MAX_ELEMENTS : constant integer := 100;
type LIST is array (1..MAX_ELEMENTS) of
integer;
type STACK is
record
STRUCTURE : LIST;
TOP : integer range 1..MAX_ELEMENTS;
end record;
end STACKS;

18

L390OH14

Limited Private Data Type

Operations available on limited private data types:
Only subprograms defined in its package

package STACKS is
type STACK is limited private;
procedure PUSH (ELEMENT : in integer;
ON : in out STACK);
procedure POP (ELEMENT : out Integer;
ON : in out STACK);
private
MAX_ELEMENTS : constant integer := 100;
type LIST is array (1..MAX_ELEMENTS) of
integer;
type STACK is
record
STRUCTURE : LIST;
TOP : integer range 1..MAX_ELEMENTS;
end record;
end STACKS;

19 L38OH15

LECTURE NUMBER: 040

Generics in Ada

INSTRUCTIONAL ORJECTIVE(S):

1.

To leam the features of Ada generics.

SET UP, WARM-UP:

(How involve learner: recall, review, relate)

Often we find components of a system that are very similar in the task they perform
(e.g., a sort procedure for an integer array, a sort procedure for a character array,
and a sort procedure for a real array). Separate procedures, each of which uses
the same sort algorithm, are written. A means of creating a template of a
component (e.g., a sort template) that could be tailored at execution time would be
beneficial. Ada generics provide such capability.

(Learning Label- Today we are going to leam ...)
Today we are going to examine the syntax for building generic program units.

CONTENTS:
1.

Suppose you are asked to write a procedure to return the successor
of a given element in a "days of the week" list. Suppose a further
requirement is that the list be treated as a circular list (e.g., the
successor of the last element is the first element). A simple solution
is shown in L40OH1.

L400H2

Three more generalized solutions are shown in this overhead. Each
of these attempts at generality has drawbacks. The first addresses a
logic problem by taking advantage of a runtime error; the second is
not completely general because it "hard codes"” the values of the first
and last elements of the list; the third, while more general, has limited
potential for reuse beyond this particular instance of a list.

L40OH3

Ask how the third solution on L40OH2 could be modified to work for
a list of integers from 1 to 10. Students are likely to quickly realize
that defining a type SIZE as shown and substituting SIZE for DAYS
in the function WRAP will work. Similarly ask how they could make
this function work for the letters of the alphabet.

1 Lecture 040

This method of achieving generality by changing the data type
upon which the function operates is the way generic
subprograms achieve generality.

L40OH4 shows the generic for the WRAP function. Describe
how type ELEMENT can be instantiated as DAYS, SIZE, or any
other discrete data type.

A generic program unit defines a template from which other
kinds of program units can be created, as in L40OH4. For
example, a generic subprogram may be used to create a class
of similar program units whose only differences are based on

the types upon which they operate. A subprogram or package
may be made into a generic in Ada.

L400OHS5

Discuss the three aspects to defining and using a generic unit:
the generic unit declaration, the generic subprogram or
package body, and the generic instantiation L400HS5. The
instantiation is the process of creating a program unit from a
generic program unit. A generic program unit can't be called
directly, but an instantiation of a generic program unit must be
created. An instantiation is a declaration, not a statement and
therefore must appear in the declarative part of a program unit
which uses the function.

L400OH6, L40OH7, L40OHS, L40OOHS, L40OH10
Use these overheads to illustrate generic subprograms,
package bodies, and instantiations.

One possible kind of parameter to a generic program unit is a
data type. Generic formal parameter types determine the type
of parameter with which the generic can be instantiated and the
operations available on objects of that type within the generic
body.

L400H11 shows the eight generic formal parameter types.

Another possible kind of parameter to a generic program unit
is an object and value. Discuss the example of this type of
parameter as shown on overhead L400H12.

The last kind of parameter to a generic program unit is a
subprogram. A generic formal subprogram matches with any
actual subprogram having the same parameter and return-type
profile. Examples are given on overheads L400OH13 and
L40OH14.

2 Lecture 040

yocabulary introduced:

INSTRUCTIONAL MATERIALS:
overheads: . _
L400H1 Moving towards generic units
L40OH2 Moving towards generic units
L40OH3 Moving towards generic units
L400OH4 Moving towards generic units
L40OHS Ada generic unit
L400H6 Generic subprograms
L400OH7 Generic subprograms ‘
L400H8 Specification of generic package
L400OH9 Body of generic package
L400H10 Instantiation of generic package
L40OH11 Generic formal parameter types
L40OH12 Generic formal objects
L400OH13 Generic formal subprograms
L40OH14 Generic formal subprograms (cont.)
handouts:

(labs and exercises)

Lab 029 -

Feedback on detailed design review presentation

Benjamin Chapter 9 (pp. 79-87)

Booch Chapter 14 (pp. 243-257)
Booch(2) Chapter 12 (pp.242-257)

TR e M e R i s

Lecture 040

Moving Towards Generic Units

type DAY Is (MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY, SUNDAY);

function WRAP (D : DAYS) return DAYS is
begin
if D = SUNDAY then
return MONDAY;
elsif D = MONDAY then
return TUESDAY;
elsif D = TUESDAY then
return WEDNESDAY;
elsif D = WEDNESDAY then
return THURSDAY;
elsif D = THURSDAY then
return FRIDAY;
elsif D = FRIDAY then
return SATURDAY;
else
return SUNDAY;
end if;
end WRAP;

4 L400OH1

Moving Towards Generic Units

function WRAP (D : DAYS) return DAYS is
begin
return DAYS'Succ (D);
exception
when Constraint_error =>
return DAYS'First;
end WRAP;

function WRAP (D : DAYS) return DAYS is
begin
if D = SUNDAY then
return MONDAY;
else
return DAYS'Succ (D);
end WRAP;

function WRAP (D : DAYS) return DAYS is
begin
if D = DAYS'Last then
return DAYS'First;
else
return DAYS'succ (D);
end WRAP;

L40OH2

Moving Towards Generic Units

function WRAP (D : DAYS) return DAYS is
begin
if D = DAYS'Last then
return DAYS'First;
else
return DAYS'succ (D);
end WRAP;

What modifications would you make to WRAP in
order to provide a wrap-around successor capability
for the type SIZE?

type SIZE is range 1..10;

6 L400OH3

Moving Towards Generic Units

-- generic specification
generic
pe ELEMENT is (<>);
function WRAP_AROUND (D : ELEMENT)
return ELEMENT,;

-- generic body
function WRAP_AROUND (D : ELEMENT)
return ELEMENT is
begin
if D = ELEMENT Last then
return ELEMENT First;
else
return ELEMENT Succ (D);
end If;
end WRAP_AROUND;

-- generic instantiation
function WRAP is new

WRAP_AROUND (ELEMENT => DAYS);
function WRAP is new

WRAP_AROUND (ELEMENT => SIZE);
function WRAP is new

WRAP_AROUND (Character);

L400H4

Ada Generic Unit

Defines a template from which other kinds of program
units can be created

Subprogram or package can be a generic

Three aspects of defining and using a generic unit:
1. Generic unit declaration

2. Generic subprogram or package body
3. Generic instantiation

8 L40OHS

Generic Subprograms
A subprogram that will handle values of arbitrary type

procedure GENERIC_DEMO is

X, Y :Integer;

generic

- generic specification
type ELEM is private;

procedure EXCHANGE (U, V : in out ELEM);

-- generic body

procedure EXCHANGE (U, V : in out ELEM) is
T : ELEM;

begin
T:=U;
U:=V;
\'' = T;

end EXCHANGE;
- end of generic declaration
-- generic instantiation
- (goes in program that invokes SWAP)
procedure SWAP is new EXCHANGE (Integer);
- generic subprogram call

begin

X :=1;

y = 2;

SWAP (X, Y);
end GENERIC_DEMO;

Generic Subprograms

- -

generic
-- generic speclﬂcatlon
type ELEM is private;
with function ™" (LEFT, RIGHT : ELEM)
return ELEM is <>;
function SQUARING (X : ELEM) return ELEM;

-- generic body
function SQUARING (X : ELEM) return ELEM is
begin
return X * X;
end SQUARING;
-- end of generic declaration

- -- example of use
with SQUARING;

- instantiation of SQUARE

procedure FUNCTION_DEMO is
function SQUARE is new SQUARING (Integer);
X : Integer := 8;

begin
X := SQUARE (X);

end FUNCTION_DEMO;

10 L400OH7

Specification of Generic Package, GENERIC_LIST

generic
type ELEM is private;

package GENERIC_LIST is

pe CELL is private;
type POINTER Is access CELL;

pe ARR Is array (Integer range <>) of ELEM;
function MAKE (A : ARR) return POINTER;
function FRONT (P : POINTER) return ELEM,;
function REST (P : POINTER) return POINTER;
function ADD_ON (E : ELEM;

P : POINTER) return POINTER;

private
type CELL is
record
VALUE : ELEM;
LINK : POINTER;
end record;
end GENERIC_LIST;

11 L400OH8

Body of Generic Package, GENERIC_LIST

package body GENERIC_LIST is

function MAKE (A : ARR) return POINTER is
P : POINTER;
begin
for X in reverse A'Range loop
P := ADD_ON (A(X), P);
end loop;
return P;
end MAKE;

function FRONT (P : POINTER) return ELEM is
begin

return P.Value;
end FRONT;

function REST (P : POINTER) return POINTER is
begin

return P.LINK;
end REST;

function ADD_ON (E : ELEM;
P : POINTER) return POINTER is
begin

return new CELL'(E,P);
end ADD_ON;

end GENERIC_LIST;

12 L400H9

SR it

Instantiation of Generic Package, GENERIC_LIST

type PERSON is
record
LAST_NAME : String (1..10);
SSN : SOC_SEC_NUM;
BIRTHDAY : DATE;
end record;

package PERSON_LIST is
new GENERIC_LIST (PERSON);

with GENERIC_LIST;

procedure LIST_DEMO is
package INT_LIST is
new GENERIC_LIST (ELEM => Integer);
P : INT_LIST.POINTER;

begin
P = INT_LIST.MAKE ((1, 2, 3, 4));
P = INT_LIST.ADD_ON (5, P);
while P /= null loop
Put (INT_LIST.FRONT (P));
P := INT_LIST.REST (P);
end loop;
end LIST_DEMO;

13 L400OH10

Generic Formal Parameter Types

type ITEM Is private;
-- Matches almost any type
-- Matches any type for which assignment and
-- Tests for equality are available

type LIMITED_ITEM is limited private;
-- Matches any type except for unconstrained
-- Array type

type DISCRETE_ITEM is (<>);
-- Matches any discrete type

type ARRAY_ITEM is array (DISCRETE_ITEM)
OF ITEM;

type PTR_ITEM is access ARRAY_ITEM;
type INTEGER_ITEM is range <>;

type FLOAT_ITEM is digits <>;

type FIXED_ITEM is delta <>;

14 L40OH11

LA s il e -

Generic Formal Objects

gomﬂc
SIZE : Integer; -- formal object
type ELEM is private;

package STACK is
procedure PUSH (E : ELEM);
ure POP return ELEM;
end STACK;

package body STACK Is
SPACE : array (1..SIZE) of ELEM,;
INDEX : SPACE'range := 1;
procedure PUSH (E : ELEM) is
begin
SPACE (INDEX) := E;
INDEX := INDEX + 1;
end PUSH;
procedure POP return ELEM Is
begin
INDEX := INDEX - 1;
return SPACE (INDEX);
end;
end STACK;

-- instantiation
package INT_STACK is new STACK (25, Integer);

15 L40OH12

Generic Formal Subprograms

generic
type ELEM is private;
type VECTOR is array (Integer range <>)
of ELEM;
with function ">" (X, Y : ELEM) return Boolean;
procedure SORT (A : in out VECTOR);

with SORT;

procedure GENERIC_DEMO is
type INT_VECTOR is array (Integer range <>)

of Integer;
A : INT_VECTOR (1..10) := (4, 7, 10, 2, 5, 8,
1,2,6,9);
procedure INT_SORT is new SORT (Integer,
INT_VECTOR, ">");

- instantiation
begin
INT_SORT (A);
for X in A'range loop
Put (X, 4);
end loop;
end GENERIC_DEMO;

16 L40OH13

Generic Formal Subprograms

generic
type ELEM is private;
type VECTOR is array (Integer range <>)
of ELEM;
with function ">" (X, Y : ELEM)
return boolean iIs <>;
procedure SORT (A : in out VECTOR);

type EMPLOYEE is
record
NAME : String (1..40);
ID :Integer;
end record,;
type EMPLOYEE_ARRAY Is array (Integer
range <>) of EMPLOYEE;
function GT (A, B : EMPLOYEE) return Boolean is
begin
return A.ID > B.ID;
-end GT;

-- instantiation

procedure EMPLOYEE_SORT is new SORT
(EMPLOYEE, EMPLOYEE_ARRAY, GT);

17 L400H14

LECTURE NUMBER: 041

JOPIC(S) FOR LECTURE:
Exceptions and exception handlers in Ada

INSTRUCTIONAL OBJECTIVE(S):

1.

To leam the features of the Ada capabilities regarding exceptions and
exception handlers.

SET UP, WARM-UP:
(How involve learner: recall, review, relate)
Ada provides a mechanism for responding to and managing errors.

(Learning Label- Today we are going to leam ...)
Today we are going to learn about these capabilities and how to use them.

CONTENTS:

1.

2

Ada exceptions

a.

Exceptions are error conditions that may arise during program
execution and cause the suspension of normal program execution
L410H1. Common examples include division by zero and writing
to a file that is not open. Discuss other types of error conditions.
Real-time systems must have the ability to handle error situations
to be reliable; termination of a program upon encountering an error
is not always desirable and, in some cases, is disastrous. For
example a pacemaker.

Raising an exception brings the exception or error situation to
attention of the programmer and it automatically responds by
transferring control to an exception handler. Predefined exceptions
are automatically raised by Ada; user-defined exceptions are
raised by the raise statement L410H2. The scope of user-
defined exceptions is the same as identifiers.

Ada exception handlers

An exception handler is that portion of code which responds to an
exception L410H3. An exception handier allows a program to
recover from an error or, at a minimum, print a meaningful error

1 Lecture 041

message and terminate the program gracefully.

Exception handlers begin with the word exception and may appear
at the end of a begin..end block or frame. This means that an
exception handler can

appear at the end of the body of a subprogram, package, task and
generic unit.

3. Exception propagation

a.

if no exception handler is included in a unit, raising the exception
causes several things to happen. First, execution of the unit is
terminated and the exception is "propagated” to a unit at the next
highest level that does contain an appropriate handler L410H4.
How the exception is propagated depends on the type of frame in
which it was raised.

Discuss each of the results of an exception being raised in each
of the program units in which an exception can be defined. For
the frames in L410H4, each frame terminates and then: for a
block an exception is re-raised at the point immediately after the
block, for a subprogram the same exception is raised at the point
immediately following the subprogram call;for a package which is
a library unit the main program dies otherwise the exception is
raised in the next highest level; and a task merely terminates
without re-raising the exception. Discuss the example in L410H5

Special form of raise statement can be used inside an exception
handler to re-raise the exception currently being handled to
propagate the exception to the next higher level. See example of
RAISE used to propagate an exception. L410H6

Discuss User defined exceptions L41OH7. Trace the example in
L410OH8

teaching method and media:

2 Lecture 041

INSTRUCTIONAL MATERIALS:
overheads:
L410H1 Ada exceptions
L410H2 Predefined exceptions
L410H3 Exception handlers
L410H4 Exception propagation
L410H5 Example of exception propagation
L410OH6 Special use of Raise statement

L410OH7 User-defined exceptions
L410H8 Example of user-defined exception

handouts:

(labs and exercises)
Lab030- Video on Code inspections

BEADING ASSIGNMENTS:

Benjamin Chapter 12 (pp. 111-117)

BELATED READINGS:
Booch Chapter 17 (pp. 312-322)

Booch(2) Chapter 15 (pp.318-335)

3 Lecture 041

Ada Exceptions

Exception

An error condition which may arise during
program execution and cause suspension of
normal program execution

Exception handler

A portion of program text specifying a response
to an exception

Allows program to recover from an error or, at a
minimum, print a meaningful error message and
terminate the program gracefully

Raising an exception

Brings the exception condition to the
programmer's attention

Causes transfer of control to an exception
handler

raise STACK_OVERFLOW;

4 L410OH1

Predefined Exceptions

Predefined by the language s .cation

Automatically reported or raised in Ada programs

Examples:

Numeric_error Attempt to divide by zero or
occurrence of numeric overflow on
a numeric operation such as
addition

Constraint_error

Storage_error

Attempt to violate some form of
constraint, including range
constraints, index constraints,
or discriminant constraints

Insufficient storage available to

satisfy the run-time
requirements of a program

5 L410H2

Exception Handlers

Specifies the exception to be handled and the action
to be taken for each exception

Only appear at the end of four different program
units:

A begin..end block

Body of a subprogram

Body of a package or generic unit

Body of a task

with Text_IO; use Text_IO;
procedure EXCEPTION_DEMO is
X : Integer range 1..20;
begin
X :=43;
-- other statements

exception
when Constraint_error =>
Put ("Constraint Error Exception ");
when others =>
Put ("Other Exception ");
end EXCEPTION_DEMO;

6 L410H3

Exception Propagation

When an exception is raised in a unit that does not
define an exception handler for that exception,
execution of the unit is terminated and the exception
is propagated to a unit that does contain the
appropriate handler

How exception is propagated depends on where it
was raised

A begin..end block

Body of a subprogram

Body of a package

Body of a task

7 L410H4

Example of Exception Propagation

with Text_IO; use Text_IO;

procedure EXCEPT_DEMO is
procedure RAISE_EXC is
begin
Put (" raise_exc");
raise Constraint_error;
end RAISE_EXC;

procedure HANDLE_EXC Is
begin
Put (" handle_exc");
RAISE_EXC;
exception
when Constraint_error =>
Put (" Constraint error caught”);
end HANDLE_EXC;

begin
Put ("Except_demo: calling handle_exc");
HANDLE_EXC;
Put ("Except_demo: back from handle_exc");

exception
when Constraint_error =>
Put ("Constraint error in Except_demo");

end EXCEPT_DEMO;

8 L410OHS

Special Use of Raise Statement

Special form of raise statement can be used inside
an exception handler to re-raise the exception
currently being handled

begin
-- allocate some resource which shouldn't
-- be permanently allocated; causes exception
exception
when others =>
-- code might clean up resources that were
-- allocated in the enclosing unit
raise;
end;

9 L410H6

User-defined Exceptions

Programmers may define their own exceptions

Examples of exception declarations:
TABLE_FULL :exception;
ILLEGAL_DATA :exception;
STACK_OVERFLOW : exception;

Scope of exception name is same as scope of other
identifiers in a declaration

10 L410H7

Example of User-defined Exception
with Text_lO; use Text_lO;
procedure SCOPE_DEMO is
E : exception;

procedure P is
begin

raise E;
end P;

procedure Q is

E : exception;
begin

P;
exception

when E =>

Put_line ("Handler for Q.E");

end Q;

begin
Q; -- raise exception handler in Q
P; -- raise exception handler below

exception
whenE =>

Put_line ("Handler for Scope_Demo.E");

end SCOPE_DEMO;

1

L410H8

LECTURE NUMBER: 042
Sequential and direct files in Ada

INSTRUCTIONAL OBJECTIVE(S):
1. To learn the Ada features regarding sequential and direct files.

(How involve learner: recall, review, relate)

When we first began looking at the syntax of Ada, we examined the
capabilities for files as provided in Text_IO. Text_IO works on text files
which are treated as a stream of characters including end of line terminators,
end of page terminators, and end of file terminator.

(Learning Label- Today we are going to learn ...)

Today we are examining how Ada supports sequential and direct files.

CONTENTS:
1. Ada files

a. L420H1
Ada provides three packages for file services Text_lO which
supports text files, Sequential_IO which supports sequential
files, and Direct_lO which supports direct access files.

b. Sequential_lO and Direct_IlO are generic packages and, unlike
TEXT_IO, must be instantiated. They provide the same data
type (Flle_Type) as Text_IO and the same file modes.
Direct_lO also provides another file mode Inout_file which
allows for a read-write file. Both files provide the same
procedures as Text_lO for creating, deleting, opening, closing,
and resetting files.

c. L420H2
Sequential_IO creates a sequential binary file of the same
data type. Three additional subprograms are provided by this
package for the support of sequential files: Read, Write, and
End_of_file.

d. L420H3

1 Lecture 042

PR E:

In Direct_lO, files are viewed as a set of elements occupying
consecutive positions. An element in the file can be randomly
accessed and updated by its index which indicates its position
in the file. The index numbering for a file starts at 1. An open
direct access file maintains a current index which is the index
of the component used in the next read or write operation. The
following additional subprograms are provided in Direct_IO:
Read, Write, Set_index, Index, Size, and End_of_Flle

L420H4

The subprograms for reading and writing can work off the
current index or an index can be specified in the parameter list.
It an index is specified it becomes the current index. For both
operations, the current index is incremented by one after the
operation is done.

L420HS
Discuss the example of sequential I/O shown.

teaching method and media:

Lecture and overheads are the chief media for this lecture.

vocabulary introduced:
TRUCTION TERI
overheads:
L420H1 Ada files
L420H2 Sequential files
L420H3 Direct-access files
L420H4 Direct-access files (cont.)
L420H5 Example of usefulness of Sequential_IO
handouts:
BELATED LEARNING ACTIVITIES:

(labs and exercises)

Benjamin Chapter 16 (pp. 89-96)

Booch Chapter 19 (pp. 356-373)

2 Lecture U42

Ada Files

Ada provides three packages for file services:

Text_IO A package providing support for
text files

Sequential_IO A generic package providing
support for sequential files

Direct_IO A generic package providing
support for direct-access files

Uses another file mode
Inout_File

3 L420H1

Sequential Files

Subprograms provided in Sequential_lO:

procedure Read (File : in File_Type;
Iltem : out Element_Type);

procedure Write (File : in File_Type;
Item : in Element_Type);

function End_of_File (File : in File_Type)
return Boolean;

4 L420H2

Direct-Access Files

File is viewed as a set of elements occupying
consecutive positions; an element at arbitrary
position can be randomly accessed and updated
by its index

Numbering of index starts at 1

Subprograms provided in Direct_IO:

procedure Read (File : in File_Type;
Item : out Element_Type);

procedure Read (File : in File_Type;
Item : out Element_Type,
From : in Positive_Count);

procedure Write (File : in File_Type;
Item : in Element_Type);

procedure Write (File : in File_Type;

Item : in Element_Type;
To :in Positive_Count);

5 L420H3

Direct-Access Files (cont.)

More subprograms provided in Direct_lO:

procedure Set_Index (File : in File_Type;
To :in Positive Count);

function Index (File : in File_Type)
return Positive_count;

function Size (File : in File_Type)
return Count;

function End_of_File (File : in File_Type)
return Boolean;

6 L420H4

Lcars i

Example of Usefuiness of Sequential_IO

generic
type ITEM is private;
with function "<" (LEFT, RIGHT : ITEM)
return Boolean is <>;
procedure GENERIC_MERGE_SORT
(INPUT_FILE_NAME,
OUTPUT_FILE_| NAME : in String);

with Sequential_lO;

procedure GENERIC_MERGE_SORT
(INPUT_FILE_NAME,
OUTPUT_FILE_ NAME : in String) is

package ITEM_IO is new Sequential_IO
(ITEM);
use ITEM _IO;
-- rest of program

end GENERIC_MERGE_SORT;

7 L420HS5

T T e T e

LECTURE NUMBER: 043
tasks in Ada

INSTRUCTIONAL OBJECTIVE(S):
1. To leam the features of Ada tasks.

(How involve learner: recall, review, relate)
L430H1 We have discussed several Ada program units. Tasks are another
type of Ada program unit. They provide paralle! processing. We will find that
although they resemble packages, there are several significant differences
between tasks and packages.

(Learning Label- Today we are going to learn ...)

CONTENTS:

1. Ada tasks

L430H2

a. Tasks are the programming unit in Ada which provides paraliei
processing; in other words, a task can be activated and
executed concurrently with other program units. A task is not
itself a compilation unit but must be declared within a
subprogram, package, or generic package. A task has a
specification and a body. A task is declared in the declarative
part of these programming units. A task is activated when the
begin statement of its parent unit is reached. A task may be
called by any other programming unit.

b. A task can perform functions such as mutual exclusion and
synchronization, which had been limited to operating systems.

L430H3

c. The entry declaration in the task specification defines the
functions or services that the task provides. The entry
declaration is similar to a subprogram declaration.

L430H4
d. The task body contains the accept statement which
corresponds to the entry in the specification.

1 Lecture 043

L430H5

- A rendezvous is the meeting of the calling unit and called task.
This is an indivisible action where the calling unit and called

task are iocked together.

L430H6

f. The stages of the calling unit and called task are shown on
overheads L430H7.

g. Use the program in lecture 16 to reinforce what students have
leared about Ada.

PROCEDURE:
teaching method and media:

Lecture and overheads are the chiet media for this lecture.

yocabulary introduced:

INSTRUCTIONAL MATERIALS:

gverheads:

L430H1 Ada program units

L430H2 Ada tasks

L430H3 Task specification

L430H4 Task body

L430H5 Rendezvous

L430H6 Stages of a rendezvous (entry call first)
L430H?7 Stages of a rendezvous (accept first)

handouts:
(labs and exercises)
Benjamin Chapter 11 (pp. 97-108)

Booch Chapter 16 (pp. 276-308)
Booch(2) Chapter 14 (pp.280-315)

Lecture 043

Ada Program Units

Procedures and functions

Packages

Tasks

L430H1

Ada Tasks

Ada program unit that can be activated and
executed concurrently with other program units

Allows certain capabilities previously performed
only by operating system to be performed in
language

Not a compilation unit; declared within a
subprogram, package, or generic package

Has specification and body

Aspects involved in a task:
Task entry
Entry call
Accept statement
Rendezvous

4 L430H2

Task Specification

Defines interface which other (related) program
components use to interact with the task

Interface consists of task entry declarations
Like the subprogram declarations in a
package specification

Define functions or services that the task
provides

task SINGLE_TELLER is
entry DEPOSIT (ID : CUST_ID;
VAL : MONEY;
STAT : out STATUS);
entry WITHDRAW (ID : CUST_ID;
VAL : MONEY;
STAT : out STATUS);
entry BALANCE (ID : CUST_ID;
VAL : out MONEY;
STAT : out STATUS);
end SINGLE_TELLER;

-- entry call to above task
SINGLE_TELLER.DEPOSIT (ID, AMOUNT,
STAT);

5 L430H3

Task Body

task SINGLE_TELLER is
function RANDOM_TRANSACTION_TIME is
begin
loop
select
accept DEPOSIT (ID : CUST_ID;
VAL : MONEY;
STAT : out STATUS) do
BANK_DATABASE.VERIFY_CUST_ID
(ID, VALID);
if not VALID then
STAT := BAD_CUST_ID;
else
BANK_DATABASE.DEPOSIT (ID, VAL);
STAT := SUCCESS;
end if;
end DEPOSIT;
or)
accept WITHDRAW (...) do..end;
or
accept BALANCE (...) do..end;
end select;
end loop;
end SINGLE_TELLER;

6 L430H4

Rendezvous

Meeting of calling and called tasks

Indivisible action

Two tasks locked together; calling task waits while
called task executes; after called task completes,
both tasks proceed independently of each other

Achieves:
Synchronization
Exchange of information
Mutual exclusion

7 L430H5

Stages of a Rendevous
Entry Cali First

Ronsng
P— sepachrencadly
MOI)
Resaing Reseing
syachraonly 2 soyachrencedly
Server .
Acespt
sislmant
)

Time

8 L430H6

Stage of a Rendezvous

Accept First
Rairy
cal
Rassing
—e eyl
Raderons >
Ranaing
seyachroncesly
Server
Aot

i

L430H7

LECTURE NUMBER: 046

introduction to use ceses

INSTRUCTIONAL OBJECTIVE(S):

1. Understand Jacobson's concept of use cases and their use as an
analysis, design, and test tool.
2 Be able to develop use cases.

(How involve learner: recall, review, relate)

We have discussed a number of ways to elicit requirements from the
customer and user. The ability for a software developer to consider multiple
viewpoints of the system and to consider a system from an external (to the
system) is crucial. The requirements for a system describe the desired
external behaviors of the system. A methodology has been developed
recently which emphasizes the external behavior of a system as it relates to
the system users.

(Learning Label- Today we are going to leam ...)
Today we're going to describe this method. It was developed by Jacobson
and is called the use case driven approach.

CONTENTS:

1. Introduce Jacobson's use case concept. Use cases are one part of
Jacobson's requirements model. The other components are a
problem domain object mode! and a user interface model.

Use cases are developed early so that the requirements, user
interface, and test teams can get another view of the system.

2. L460OH1
a. Jacobson's yse cage model involves actors and use cases as
tools to identify/define what exists outside the system (actors)
and what should be performed by the system (use cases). The
actors include the users and user roles. Consider the Koft
sysiem. Who are the actors?

(1) Customer (2) Operator (3) Owner
Contrast how these actors interact with the system. Among

other things, the customer removes tapes and returns tapes;
the

| Lecture 046

operator maintains the machine and stocks tapes; the owner
gets reports and determines rental and sale tapes.

b. Use cases represent what the users should be able to do with
the system. Each use case is a complete course of events
initiated by an actor and it specifies the interaction that takes
place between the actor and the system. Each time a user
uses the system, he/she will perform a behaviorally related
sequence of transactions in a dialogue with the system. Each
of these is a yse case, or a scenarios. A detailed description
is written for each use case.

a. L460H2
Jacobson discusses a recycling system as a first example. The
system consists of a machine that accepts a variety of
recyclable materials deposited by a users. Once a user
deposits items, the machine generates a receipt based on the
items deposited.

b. L460H3
The customer should be able to deposit items. This forms one
use case, Deposit Item. Discuss it.

c. L460OH3
The operator should be able to get a daily report of what items
have been deposited. This is another use case, Generate
Daily Report. Discuss it.

L460H4

As requirements analysis continues and more information is
determined, the use cases will be described in more detail. Discuss
this elaboration of the Deposit ltem use case.

introduce the concept of "extends” with use cases. One use case can
be inserted into another, thus g@xtending the other use case. This is
particularly useful in considering abnormal conditions.

L460H5
Discuss ltem Is Stuck as an example of this. Note that Deposit Item
is described completely independent of this new use case.

Work through a use case, called Withdraw Tape, for a customer
withdrawal of a rental tape in the Koft system. See if anyone notices
that a receipt is never issued to the customer. Discuss this oversight.

2 Lecture 046

BELATED LEARNING ACTIVITIES:
(labs and exercises)
Lab 032 Code Inspections

BEADING ASSIGNMENTS:

Jacobson Chapt'er 7 (pp. 148-195)

Lecture 046

Jacobson's Use Case Model

Uses actors and use cases as tools to identify:
what exists outside the system (actors); and

what should be performed by the system (use
cases).

Each time a user uses the system, he/she will
perform a behaviorally related sequence of
transactions in a dialogue with the system. Each
of these is a use case, or a scenarios. A detailed
description is written for each use case.

4 L460H1

Deposit item Use Case

Deposit Item is started by Customer when he/she
wants to return cans, plastic containers, or glass
containers. With each item that Customer places
in the recycling machine, the system will increase
the received number of items from Customer as
well as the daily total of this particular type. When
Customer has turned in all the items, he/she will
press the receipt button to get a receipt containing
a summary of the deposited items and the amount
due.

5 L460H2

Generate Daily Report Use Case

Generate Daily Report is started by Operator
when he/she wants to print out information about
the items deposited that day. The system will
print out how many of each deposit items have
been received this day, as well as the overall total
for the day. The total number will be reset to zero
to start a new daily report.

6 L460H3

More Detailed Deposit item Use Case

The course of events starts when the customer presses
the "start-button” on the customer panel.

The customer can now deposit items via the customer
panel. The sensors inform the system that an object
has been inserted. They also determine the size and
type of the deposit item and return these results to the
system.

The daily total for the deposited item is incremented, as
is the number of deposited items of that type from this
customer.

When the customer is finished depositing items, he/she
asks for a receipt by pressing the "receipt button" on the
customer panel.

The system compiles the information to be printed on
the receipt. For each type of deposit item, its return
value and the number of deposited items from this
customer is extracted.

The information is printed, with a new line for each
deposit item, by the receipt printer.

Finally, the grand total for all returned deposit items is

extracted by the system and printed out by the receipt
printer.

7 L460H4

Extending a Use Case

Item Is Stuck Use Case

Item Is Stuck is inserted into Deposit Item
when Customer deposits an item that gets
stuck in the recycling machine. Operator is
called and Customer cannot turn in more
items until Operator informs him/her that the
machin» cz:) be used again.

8 L460H5

LECTURE NUMBER: 047

Implementation landuagas
INSTRUCTIONAL OBJECTIVE(S):

1. Understand the factors involved in selecting a programming language.
2. Understand factors that affect the quality of source code.

(How involve Iearner': recall, review, relate)

All of you have experience in several programming languages (Pascal from
CS-1 and CS-2, assembly language, and Ada in this class). Some of you
also know other languages (COBOL, C, FORTRAN).

(Learning Label- Today we are going to learn ...)

Today we're not going to look at any language in particular, but rather ook
at some factors that should be considered in evaluating languages. As we
do this, think of the languages that you know and consider how aspects of
the language are supportive of software engineering principles and how other
aspects are not. You may have thought of a language strictly as an
implementation tool. This was likely the case in CS-1.

At this point, however, you should be able to look beyond that. For example,
Mynatt's detailed design checklist includes "Is the design appropriate for the
target programming language?" Similarly, in our discussions of your project,
the question of language support, i.e. how easily a design is implementable,
has come up.

CONTENTS:

NOTE: This lecture is based on Mynatt's discussion of choosing a
programming language in section 5.7. She offers many good
examples and observations to support the ideas outlined here.

1. Ask students about the impact of language choice. |s the choice of
language important? Why?

Make sure student responses include significant impact the language

will have on such things as:

i Maintainability,

ii Coding and testing,

i The amount of distortion between the implementation model
and the design model,

1 Lecture 047

iv the effectiveness of the personnel.

L470H1

Note that good code can be written in any language, even assembly
language, but it is much easier if the language itself actively supports
the production of efficient, reliable, maintainable software. Point out
that there are trade-offs involved and that no single language can
simultaneously achieve a high degree of success in each of these
areas. For example, Ada is highly maintainable but has low
performance in terms of execution speed until properly tuned. On the
other hand, C is difficult to maintain but has a high level of
performance in terms of execution speed.

Ask what is the "language of choice" currently? In terms of the
number of lines of code in existence and still being maintained, the
answer is COBOL,; the vast majority of software world-wide is written
in COBOL.

L470H2 - Pragmatic factors in choosing a language.

Point out that the question of what language is going to be used to
implement a project does not even arise in many cases. Why?
Because more often than not the choice is dictated by the by the
customer or the organization or some standard, or something else
beyon< tiie particular project. What are some of these pragmatic
factors?

a. Dictated by client. The client wants it written in BASIC, or
COBOL, or Ada, for example. There are many reasons for
such a requirement by the client, including organizational or
sponsor standards that call for a particular language (e.g. DoD
and Ada), availability of compiler (and/or other software
development tools).

b. Existing expertise. Selecting a new language over one in
which the coders are experienced involves training. The
training needs to be sufficient to take advantage of the features
of the new language in order to have the language used
effectively.

Concerning the question of which language is "most suitable”
for a given project, work through Schach's example involving
the QQQ corporation (pages 340-341).

C. Language used in other projects, both previous and concurrent.
Cite DoD problems that led to development of Ada.

d. Concurrency

2 Lecture 047

L470H3
Language characteristics that can support efficient, reliable,
maintainable software. First ask class to list some characteristics.

Modularity - A language should support the partitioning of a
large product into modules. To do so it must support separate
compilation of modules.

Note Ada's compilation units (procedures, functions, packages,
generics, and tasks), each of which consists of two parts (the
specification and the body) which are themssives separately
compiled.

Power and sutability - Power refers to a language's ability to
carry out programming tasks simply an with little ©: qramming
effort. Power also is relative to the type of prouiem being
solved. Different languages are suitable for different purposes.

Simplicity, clarity, orthogonality

i Simplicity refers to the size of its vocabulary. Some
languages are so large that it is difficult to become
familiar with the entire language. This can result in a
tendency for subsets to be adopted which, in tumn, leads
to incompatible subsets. Discuss Pascal as simple, PL/I
and Ada as complex.

ii Clarity refers to how natural, meaningful, and
unambiguous the language is to the programmer. Some
languages are more machine/architecture oriented and
thus less problem oriented (and less clear).

i Orthogonality of a language refers to its consistency in
allowing language features to be combined. It relates to
clarity and simplicity because lack of orthogonality
results in lots of special cases for the programmer to
remember. Examples include Pascal's restrictions on
reading/writing certain types.

Syntax - It is desirable that the syntax be simple, consistent,

and supportive of clear code. Examples include:

i method of indicating blocks (begin-end, etc). Note the
explicit keyword approach of some languages (if-endif)
versus the begin-end approach of others.

ii format of statements - can encourage or discourage use
of white space, indentation.

iii rules for identifier names - can encourage or discourage
use of meaningtful identifiers.

3 Lecture 047

Structured programming and control structures - An accepted

definition of structured programming includes:

i selection and iteration control structures with controlied
goto (forward direction only, heavily restricted, perhaps
to exception handiing);

il one entry, one exit

A language should have a strong effective implementation of
the basic control structures.

Exception handling - Most programming languages do not
include facilities to detect and handle exceptions. This is a
serious defect.

L4A70H4 - Typing

According to Sommerville, "it is essential that a high-level
programming language with strict typing be used for system
development. Achieving fault-free software is virtually
impossible if low-level programming languages with limited type
checking are used.”

Discuss the "need to know" principle. This should be used to
control access to system data. Key to effective information
hiding is a language's typing system. Cite Ada’s use of private
types to ensure that the details of a data structure's
implementation is inaccessible beyond where it is defined.

L470HS - Information hiding

Languages like Ada and C++ offer direct support for
information hiding. Refer to Sommerville section 15.1.2 for an
excellent discussion of data typing.

L470H6 - Procedural and data abstraction
According to Mynatt, a language should include these features

i Mechanisms for high-level encapsulation of procedural
abstractions gnd data abstractions.

ii Distinction between the specification of an abstraction
and the implementation of an abstraction.

iii Mechanisms to protect outside access to encapsulated
information.

iv Methods for importing modules from other sources.

Tools - structure editors, debuggers, programming
environments, package libraries

Maintenance

4 Lecture 047

Reuse (libraries, packages)

The level of a language's support for object-oriented
approaches (e.g., direct support for the definition of classes,
inheritance, encapsulation, and messaging) is becoming
increasingly important.

Note the ongoing debate between proponents of Ada and C++. On
the Ada side, it has strong typing that leads to greater reliability and
maintainability and it is standardized which leads to true portability.
On the C++ side, it is object-oriented and that should lead to ease of
development and reuse.

L470H7
Discuss the following factors affecting the quality of source code.

a.

b.

Use of structured coding techniques.

“Good coding style.

i Shorter is simpler.

ii Fewer decisions is simpler.

il Nested logic should be avoided.
iv Negative logic should be avoided.

Well-chosen local data structures.

L470H3 - Well-written internal comments.
i Program headers.

ii internal module headers.

iii Line comments.

Readable, consistent source code format and identifier naming.
i Vertical white space.

ii Horizontal white space (indentation).

iii Readability of comments (spelling, grammar, clarity)

Summarize the discussion by discussing how critical the
adoption of a written set of programming standards is to
enforcing quality code. Call attention to the Ada Quality and
Style manual.

Point out aiso that well designed modules (highly cohesive,
loosely coupled) are easier to document. Ask why and discuss.

5 Lecture 047

PROCEDURE:
teaching method and media:

vocabulary introduced:
structured programming
syntax

orthogonality

INSTRUCTIONAL MATERIALS:

gverheads:

L470H1 Active support from implementation language
L470H2 Pragmatic factors in language selection

L470H3 Features language should/must support/possess - 1
L470H4 The case for strong typing

L470HS Features language should/must support/possess - 2
L470H6 Mynatt: procedural and data abstraction

L470H7 Factors affecting quality of source code - 1

L470H8 Factors affecting quality of source code - 2
handouyts:

(labs and exercises)

Mynatt Chapter 5 (pp. 207-235)
Mynatt Chapter 6 (pp. 239-271)

Pressman Char'neﬂs (pp. 513-545)
Schach Chapter 11 (pp. 339-356, 369-381)
Schach Chapter 15 (pp. 469-489)

6 Lecture 047

Active Support From
Implementation Language

Good code can be written in any language, even
assembly language.

BUT, it is much easier and more likely if the
language itself actively supports the production of
efficient, reliable, maintainable software.

7 L470H1

e 2

Pragmatic Factors in Language Se

Dictated by client

Existing expertise/experience

Language used in other projects

Concurrency

L470H2

Features Language
Should/MustSupport/Possess - 1

Modularity The partitioning of a large product into
modules

Power and suitability
Simplicity, clarity, orthogonality
Simple, consistent syntax; supportive of clear code

includes:

Method of indicating blocks

Statements format

Rules for identifier names
Stiuctured programming

Exception handling

Strong typing

9 L470H3

The Case For Strong Typing

"... it is essential that a high-level programming
language with strict typing be used for system
development. Achieving fault-free software is
virtually impossible if low-level programming
languages with limited type checking are used."

Sommerville

10 L470H4

Features

Language
Should/Must SUppomPouess -2

Information hiding

Procedural and data abstraction

Tools

~Maintenance

Reuse (libraries, packages)

Support for object-oriented approaches

11 L470H5

Mynatt: Procedural and Data Abstraction

To adequately support procedural and data
abstraction, a language should include:

Mechanisms for high-level encapsulation of
procedural abstractions and data abstractions.

Distinction between the specification of an
abstraction and the implementation of an
abstraction.

Mechanisms to protect outside access to
encapsulated information.

Methods for importing modules from other
sources.

L470H6
12

w

T

b et Jaacakaii

Factors Affecting Quality of Source Code - 1

Use of structured coding techniques

Good coding style.
Shorter is simpler.
Fewer decisions are simpler.

Nested logic should be avoided.

Negative logic should be avoided.

Well-chosen local data structures.

13

L470H7

Factors Affecting Quality of Source Code - 2

Woell-written internal comments.
Program headers.
Iinternal module headers.

Line comments.

Readable, consistent source code format and
identifier naming.

Vertical white space.
Horizontal white space (indentation).

Readability of comments (spelling, grammar,
clarity)

14 L470H8

LECTURE NUMBER: 048

Scheduling software projects
Milestones

Work breakdown structures
Network Scheduling Techniques
introduction to Estimation techniques

INSTRUCTIONAL ORJECTIVE(S):

Understand development milestones

Recognize the elements of a work breakdown structure
Be able to develop a PERT chart
Understand slack time and critical paths

hWON -

SET UP. WARM-UP:
(How invoive learner: recall, review, relate)

At this point, you have all participated in all aspects of the software
development process and have experienced some of the difficulties with it.
You are not alone in this. Show GAO overhead L48OH1. Note that aimost
50% of the contracted software was not used. The goals of software
engineering can be described as delivering the right product, on-time and
within budget. Meeting these goals requires a plan, generally called a
software project management plan (SPMP).

(Learning Label- Today we are going to leam ...)

We have provided a basic SPMP for each of your projects. Today we are
going to look at how to develop and read SPMPs. We will also see a
special notation used for SPMPs.

CONTENTS:

1. There are several unique elements in software that make the
development of software projects more difficult than the development
of hardware objects. Many authors recognize that there are significant
differences between hardware and software that make the
development task for each type of product very different. Review the
differences mentioned on L48OH2.

a. Reuse is aided by common interfaces, many of which have

been legisiated by engineering societies, e.g., the standard
electrical plug.

1 Lecture 048

T

b. The difference in the tangible nature makes it more difficuit to
track the progress of the development of software. Hardware
tends to conform to well know physical laws. Even in those
cases where we do not understand the laws, hardware can be
experientially tested, e.g. a scientist grows cracks in airplane
wings by subjecting them to specific stresses and then recalls
those planes which have undergone similar stress.

c. A significant difference between hardware and software is the
phase in the development process where errors get introduced.
Most hardware errors get introduced in the manufacturing
process, while most software errors get introduced in the
analysis and design process.

Software project management begins with the completion of the
requirements. The task needs to be defined before a plan can be
made. Discuss the basic steps in the development of a plan.
Emphasize that even the SPMP is subject to revision. Requirements
are input to the SPMP. L480H3

L480OH4

3.

Divide up the task- people have used the term milestones to indicate
major points at which a project should be tracked. We know some
major divisions for a software development project. These milestones
have been associated with major project deliverables which are clearly
defined, e.g., 2167a has a series of clearly defined document
deliverables. When dealing with relatively small projects this division
of the system is adequate. However when we are talking about
programming in the large and large projects such as the
environmental control software for the space lab, there is too much
time between these milestones to adequately track a project. There
are years between these milestones. Another way to handle this
problem is to break the major milestones down into smaller, but still
discrete and measurable units of work- sometimes referred to as "inch
pebbles”. The smaller the degree of granularity --the time required to
complete one of these task-- the more accurate the scheduling
estimates tends to be.

The milestones and inch pebbles are discrete events that mark the
completion of events. These are distinguished from activities that take
place over time. Milestones are completions of these project activities.
Activities have beginnings and ends and have duration, while
milestones are points in time.

2 Lecture 048

L48OH5

4,

We can divide the system up into its larger phases and for each
phase that takes longer than our desired granularity we can further
subdivide the task. The results of this process are called work
breakdown structures (WBS) or discrete pieces of work. Within a
computer system work breakdown structures are very detailed and
include such items as:a description of the task, who is responsible for
the task, what resources are needed to accomplish the task, etc.

Let us do a preliminary work breakdown list for building a skyscraper.
Ask the students to name the tasks in building a skyscraper. List
these randomly on the chalkboard. This kind of list does not show
interdependence of WBS tasks. Show L480OH6 overhead as your
preliminary list and explain the need for each item. Return to this
overhead after you have worked through a PERT chart. Ask them to
identify which events have to be done in sequence and which events
can be done concurrently. One way to display these relationships is
to place the WBS activities on an graph called a vertex activity graph-
the activities occur at the vertices. This was formalized as a method
by the Polaris project and the method is called Performance and
Evaluation Review Technique (PERT).

We can impose an ordering on the WBS list in terms of what things
have to be completed before others and what is our estimate of their
duration. Show activity list L480OH7. This shows the dependencies
for each task in the prerequisite column and the duration of each task
in the time column.

L48OH8

6.

PERT charts-There are many ways to develop PERT charts. One
way is to view an activity as a set of parameters consisting of the
WBS #, the earliest possible start date for that activity, the latest
possible start date, and the estimated duration of the task. The lines
entering a graph node or activity represent those task which must be
completed before the activity in that node can be started.

L480H9a is a skeleton PERT chart to use as an example. L48OH9b
is a completed PERT chart for this example.Begin to develop the
PERT chart on the board. Fill in all of the parameters and then point
out those places where there is no difference between the earliest
possible and the latest start time.

L48OH10

7.

Introduce Critical Path Method as an important function of activity
networks. Define the critical path and slack time. Discuss how any
delay in critical path elements will delay the schedule. Describe how

3 Lecture 048

this process indicates how long it will take to complete a project.
L48OH11 Summarize the definitions and discuss this overhead.

8. False safety factor- Sometimes we think that the way to meet the
schedule determined by a PERT chart is to just add some time. For
example, Sommerville pg 503 "increase the estimate to cover
anticipated problems and add a contingency factor to cover
unanticipated problems.” However studies have shown that this is not
an effective technique. Adding time to a schedule actually makes a
project take longer and the same unexpected surprises occur later in
the project.

9. Once a PERT chart and its accompanying schedule are done. The
schedule should immediately be reviewed for those typical items that
impact a schedule but are often forgotten. How will the vacation
schedule impact the availability of personnel? How long will it take to
train the staff on the new system or CASE tools? What other projects
are planned such as migrating to a new operating system in the
middle of your project? These will all negatively impact the project
schedule. What is the budget cycle of the external agency. Many of
those government projects which were not delivered were funded in
September but were not re-funded in October, the beginning of the
federal governments fiscal year.

10. Discuss the two standards for SPMPs on L48HD1 and L48HD2.

PROCEDURE:
teaching method and media:

activity networks

CcPM

risk analysis

PERT

slack time

critical paths

milestones

work breakdown structures

INSTRUCTIONAL MATERIALS:
gverheads:
L480OH1 GAO survey of software contracted for by government
L480OH2 Hardware vs. software development

4 Lecture 048

L48OH3 The software project management life cycle

L480OH4 Milestones vs. inch pebbles

L480OH5 Work breakdown structure

L48OH6 Planning Exercise

L48OH7 Activity dependencies - tasks, time, and prerequisites
L48OH8 Contents of the graph node

L48OH9a Pert chart Outline

L48OHSb Pert chart Completed

L48OH10 Critical path method

L480OH11 Critical path definition

handouts:
L48HD1 IEEE project plan outline
L48HD2 NASA project plan

(labs and exercises)

Sommerville Chapter 25 (pp. 477-492)
Sommerville Chapter 26 (pp. 495-507)

Ghezzi Chapter 8 (pp. 415-440)

5 Lecture 048

GAO Survey of Software
Procured by Government

Category Amount Percent
Smillionsz :

Used as delivered $0.119 1.75%
Used after changes $0.198 2.91%
Used but reworked or
later abandoned $1.3 19.12%
Paid for but not
delivered $1.95 28.68%
Delivered but NEVER
successfully used $3.2 47.05%
Total cost of
software survexed $6.8 100%

6 L48OH1

" " ——

Hardware versus Software Development

Reusable Parts

Tangible
Physical laws

Experiential standards

Source of problems
In development

In maintenance

Testing Standards

7 L480H2

The Software Project Management Life Cycle

|. Prepare the SPMP

1.
2.

~m o o &~ O

Examine the functional and non-
functional requirements

Divide the project up into
understandable units and required
deliverables

Review the items in 2. and add to
them the derived deliverables

Build work breakdown structures for
each major task

Develop an activity network for the
project schedule.

Develop an SPMP

xecute the SPMP

Start activities according to the
schedule
Frequently monitor the project
schedule
Modify the SPMP or internal subplans
as needed.

8 L480OH3

Milestones Versus inch Pebbles

2167a
Requirements Specification Review
Preliminary Design Review
Detailed Design Review
Code and Test
System Test

Acceptance Test
Inch Pebbles

Activities versus Events

9 L48OH4

Work Breakdown Structure

Task name or ID: (critical path ?)
Description of task:
Dependencies:(Predecessors)

Project members:(skills needed)

Duration: Start Date: End Date:

Resources Required:

Entry Criteria:

Completion Criteria:
Responsible Staff member:

Acceptance Criteria:
Exit Criteria:

Sign-off person:
Task deliverables:

validation complete date__
documents complete date__

reviewed date__
CMS date__
Risks:
Risk Plan:

10 L480OHS5

A b ol 4 e v oAanbS AL b i T———

Planning Exercise

Project: Build a skyscraper:
Tasks: (WBSs)

Fence off site

Erect Workshops
Dig foundation

Install on-site concrete plant
Bend reinforcing rod
Fabricate steel work
Paint steel work
Place reinforcements
Pour foundation
Erect steel work
Place a tree

1

L480OH6

Activity Dependencies
Project Build a building:

Tasks Time Prereq.

Fence off site

Erect Workshops
Dig foundation
Install on-site
concrete plant

Bend reinforcing rod
Fabricate steel work
Paint steel work
Place reinforcements
Pour foundation

10 Erect steel work

11 Place a tree

CoONOTOT HhWN-=
' N

O=-001IW~NWHL OHLN
OHLWONN -

10

12 L48OH7

Contents of the Graph node

T

WBS task id number

ID =

EST (earliest start time) = Max{pred(TIME) +
pred(EST)}

Time = anticipated duration
of this activity

LST (latest start time) = Min {succ(LST)-
TIME}

13 L480H8

AN

Critical Path Method (CPM)
Slack time = LST - EST,;
Critical path = path whose slack time = 0.

Time 1 el ioct
= sum of (max of (EST (PRED Time) + TIME)

16 L48OH10

: . ! . . . ; . i *
RPN S JE I S S ROy DT . =) i el ol a NS i b i a2 i i it .i"‘ i '-43“*. F AT e il

Critical Path Definition

The critical path is the longest path through
the network in terms of the total duration of
tasks |

In complicated projects many "near
critical" tasks and paths may exist

Delays in a non-critical path task may
result in a new critical path

Lengthening the critical path lengthens the
project

Questions Answered by Critical Path Analysis

What is the minimum elapsed time to
complete the project?

What tasks determine whether the project
is completed in the minimum time?

What is the latest time we can start a

particular activity without impacting the
overall finish time?

17 L480OH11

IEEE Project Plan Qutline (1):

Title Page
Revision Sheet
Preface

Table of Contents
List of Figures
List of Tables

1. Introduction
1.1 Project Overview
1.2 Project Deliverables
1.3 Evolution of the SPMP
1.4 Reference materials
1.5 Definitions and Acronyms

2. Project Organization
2.1 Process Model
2.2 Organizational Structure
2.3 Organizational Interfaces
2.4 Project Responsibilities

18 L48HD1

IEEE Project Plan Qutline (2):

3. Managerial Process

3.1 Management Objectives
and Priorities

3.2 Assumptions, Dependencies,
and Constraints

3.3 Risk Management

3.4 Monitoring and Controlling
Mechanisms

3.5 Staffing Plan

4. Technical Process

4.1 Methods, Tools, and Techniques
4.2 Software Documentation

4.3 Project Support Functions

5. Work Elements, Schedule, and Budget
5.1 Work Packages

5.2 Dependencies

5.3 Resource Requirements

5.4 Budget and Resource Allocation

5.5 Schedule

Additional Components
Index (optional)
Appendices (optional)

19 L48HD1

— TR T W T

NASA-Sfw-DID-Ada (1):
1.0 Introduction
1.1 Identification
1.2 Scope
1.3 Purpose
1.4 Organization
1.5 Objectives
1.6 Program Constraints
1.7 Program Software Schedules
1.8 Program Controls
2.0 Applicable Documents
2.1 Reference Documents
2.2 Information Documents
2.3 Parent Documentation
3.0 Resources & Organization
3.1 Project Resources
3.1.1 Contractor Facilities
3.1.2 Government Furnished
Equipment, Software & Services
3.1.3 Personnel
3.2 Responsibilities
3.3 Panels
3.3.1 Review Panels
3.3.2 Advisory Panels
3.4 Software Development
3.4.1 Organizational Structure -
Software Development

20 L48HD2

3.4.2
3.4.3
3.4.4
3.4.5

Personnel - Software
Development

Resources - Software
Development

Software Development Tools,
Techniques, Methodologies
Software Environment Section

4.0 Life-Cycle Management
4.1 Concept and Project Definition
4.2 Software initiation
4.3 Software Requirements Definition
4.4 Software Preliminary Design
4.5 Software Detailed Design
4.6 Software Implementation
4.7 Software and System Integration and

Testing

4.8 Software Acceptance Testing
4.9 Sustaining Engineering

21 L48HD2

5.0 Management Controls

5.1 Engineering Master Schedules and Risk
Management |
5.1.1 Activities
5.1.2 Activity Network

5.2 Engineering Master Schedule Reviews
and Reporting Policies

5.3 Risk Management
5.3.1 High Risk Areas
5.3.2 Technology Risks
5.3.3 Disaster Risks and Recovery

5.4 Status and Problem Reports

22 L48HD2

6.0 Software Support Environment
6.1 Software Development
6.2 Software Acquisition
6.3 Software Integration
6.4 Operation and Maintenance
6.5 Software Tools

7.0 Software Product Assurance

7.1 Software Configuration Management

7.2 Software Independent Verification and
Validation

7.3 Software Security

7.4 Software Product Assurance

7.5 Software Interface Definition and Control

7.6 Waivers to SPMP Policies and
Procedures
7.6.1 Permanent Waivers
7.6.2 Temporary Waivers
7.6.3 Tool and Testbed Waivers

8.0 Notes
9.0 Appendices
10.0 Glossary

23 L48HD2

Lines of code estimation techniques
Function Points and lines of code

INSTRUCTIONAL OBJECTIVE(S):

1. Use COCOMO equations
2. Do a function point analysis
3. Develop other function point metrics

SET UP, WARM-UP:
(How involve leamer: recall, review, relate)

We have seen the difficulties that arises in trying to correctly schedule a
software project and the allocation of resources needed for its development.
These resources have to be paid for. Most of us want to know how much
something is going to cost before we order it. Software is no different. We
would like to know how much we are going to pay for software before we
purchase it. This is no problem for packaged software; we simply look at the
price on the box, but how do we determine the cost of software which has
not yet been developed or even been thought of before. What do you say
when the president of the United States tells you she/he wants a system that
will let everyone vote in federal elections from their homes and asks you how
much will it cost to develop a "Home Voting and tabulating system"? How
can you determine what it would cost to develop the project you have just
completed?

(Learning Labei- Today we are going to leam ...)

There are reasonable ways to approach this problem of estimating the cost
of developing software. Today we shall look at two of them - The
Constructive Cost Model (COCOMO) and Function Point Analysis.

CONTENTS:

1. COCOMO is a series of formulae which, using an estimate of the total
number of lines needed for the product, produces: cost estimates,
scheduling estimates and manpower requ