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1. INTRODUCTION

This second semi-annual report summarizes the progress made in the last six months. The overall
objectives of this research are to develop new methods to evaluate subgrid models and then to uti-
lize these methods to improve the chosen subgnd models. The subgrid models investigated in this
research are chosen primarily for application in high Reynolds number complex flows. Prelimi-
nary studies of these models have been completed. A priori analysis wng data from direct numer-
ical simulations (DNS) homogeneous isotropic flows was carried out, and then the models were
implemented in large-eddy simulation (LES) codes and further evaluated. Two types of analysis
methods have been developed so far. The first method uses information in Fourier (spectral) space
and evaluates the interscale energy transfer as a function of the wavenumbers resolved in the LES.
"The second, uses information in the physical space and uses cross correlation analysis to investi-
gate the behavior of subgrid models. The physical space analysis method will be the primary anal-
ysis tool for the next year's study, since the next phase of research will focus on complex flows
such as flows past rearward facing steps and swirling flows.

In the following, we discuss recent developments of the last six months. Some of the results have
been described in more detail in the papers (Menon and Yeung, 1994a, 1994b; Kim et al., 1994)
and, therefore, will not be repeated here. These papers (or the extended abstracts) are included as
appendices to this report.

2. ANALYSIS OF SUBGRID MODELS USING DNS AND LES OF ISOTROPIC TURBU-
LENCE

In this phase of research, homogeneous isotropic turbulence was used as a test flow field to
develop analysis methods. This was motivated by the fact that isotropic turbulence has been stud-
ied extensively in the past and detailed DNS data is available. In addition, the computational
domain is very simple and therefore, methods using spectral techniques can be used to identify
feares of the flow which are not possible using physical space methods and vice versa. Both
inc mnpressible and compressible isotropic fields have been studied using two different finite dif-
ference codes. These codes have been validated by comparing the DNS predictions by these codes
with the results obtained using the well know spectral code of Rogallo.



2.1 Analysis of Incompressible Isotropic Turbulence

Various subgrid models were evaluated in both spectral and physical space using high resolution
DNS dama Subsequently, these models were implemented in coarse grid LES. The spectral space
method was used primarily for a priori analysis while the physical space method was used for
both a priori and posteriori analysis. For a priori analysis, very high resolution data (using 1283
grid) was used. All the posteriori analysis were carried out using LES data and without using any
DNS information. This approach is essential for future application to high Reynolds number flows
since DNS data for such flows will not be available.

For the physical space analysis of the subgrid models, LES using different grid resolutions is first
carried out. Then, using top hat filtering, the modeled subgrid stresses and the energy transfer are
correlated between the two LBS data fields. For example, LS was carried out using 323 grid
and 163 grid using identical initial flow field and using the same subgrid model. Then, at a chosen
instant, the resolved field in the 323 grid is filtered to compute the subgrid stresses and energy
transfer in the 163 grid. This field is considered 'exact', as far as the coarser grid is concerned,
since the length scales that are unresolved (and hence modeled) in the coarser grid are supposed to
be resolved in the finer grid LES. Therefore, if the model is working properly this 'exact' field
must be reproduced by the subgrid model in the 16x16xl6 grid. Cross correlation analysis
between the modeled and 'exact subgrid stresses and the energy transfer was carried out. If the
correlation is high, it would suggest that the subgrid model behaves consistently for different grid
resolutions and that the subgrid energy transfer is modeled correctly in the 16x16x16 LES. With
this approach, model validation does not require DNS data and, more importantly, since the same
flow field is being investigated, the model can be investigated directly in the flow field and geom-
etry of interest. Furthermore, this approach allows an immediate assessment of the capability of
the subgrid models in the coarsest grid.

Note that, the results of the above analysis methods do not provide any information on the accu-
racy of the results. Comparison with experimental data (or DNS data, where ever possible) is
essential to demonstrate the accuracy of the LES. So far, for isotropic flows, DNS data have been
used to evaluate the accuracy of the LES results, but future studies will be directed to more com-
plex flows for which no DNS data is available. Comparison with experimental data will have to
be carried out in such cases. It is expected that the analysis methods for model validation will also
have to be further developed for complex flows, for example, to handle the near wall effects.

Various subgrid models have been implemented and evaluated using the techniques described
above. More details of the analysis methods are given in Menon and Yeung (1994a, 1994b). The
aubgrid models studied so far are:

(a) the classical Smagorinsky's eddy viscosity model
(b) the dynamic (Germano's) eddy viscosity model
(c) a spectral eddy viscosity model
(d) a new scale similarity model
(e) a one-equation model for the subgrid kinetic energy with and without stochastic backacatter
(f) a dynamic one-equation model for the subgrid kinetic energy
(g) a two-equation model for the subgrid kinetic energy and subgrid helicity (k-h model)



Smagorinaky's model is very popular in literature; however, it has been shown to require signifi-
cant modifications (primarily adjustment of the 'constant') for good agreement with experimental
data. The major 'breakthrough' in subgrid model development is the application of the algebraic
identity of Germano to evaluate dynamically the constant in Smagorinsky's model. In Menon and
Yeung (1994a), we studied the classical model with fixed constant while in Menon and Yeung
(1994b) and Kim et al. (1994), we studied the dynamic eddy viscosity model.

Uhe scale similarity model is a modified version of the original Bardina's model and was pro-
posed by Meneveau (Liu et al., 1993) based on analysis of high Reynolds number experimental
data on turbulent jets. It is based on the idea that the energy transfer at the resolved grid resolution
is self similar to the energy transfer occuring at a resolution twice as coarse. This method, there-
fore, uses a test filter (an approach very similar to Germano's) to compute the scale-similar sub-
grid stresses in terms of the resolved field. Computationally, this model is very simple and easy to
implement. However, as discussed in Menon and Yeung (1994a), there are some inherrant limita-
tions to this model when used in LES. This model can predict backscaner but the amount of back-
scatter may exceed the real backscatter. This can result in numerical instability and, therefore,
some sort of backscatter control is necessary. More details of the analysis of this model are given
below and in Menon and Yeung, (1994a).

The one equation model for the subgrid kinetic energy (k-equation model) was chosen keeping in
mind the requirements for practical high Reynolds number LES. It is expected that for high Rey-
nolds number LES of complex flows, the grid resolution practically possible (due to resource con-
straints) will be limited. Therefore, simple dissipative models (even with dynamic evaluations)
may not be sufficient for practical LES. In addition, the assumption of local equilibrium between
the production and dissipation of the kinetic energy (an assumption implicit in all algebraic eddy
viscosity models) may be violated. The k-equation model with fixed coefficients was investigated
in Menon and Yeung (1994a), while the dynamic k-equation model is investigated in Menon and
Young (1994b) and Kim et al. (1994).

We are also investigating more advanced models for high Reynolds number flows. One such
model is a two-equation model for the subgrid kinetic energy and subgrid helicity (the k-h model).
Helicity is non-zero only if the flow is locally 3D. Thus, if the small scales are anisotropic or non-
homogeneous (which can occur if the grid is coarse, the geometry is complex, and the Reynolds
number is very high) then simple eddy viscosity models or even the one-equation models, may
not be able to take into account this small-scale, local 3D effects. Some preliminary studies of this
model have been completed and results are discussed below.

2.1.1 Summary of the Results

Mbe results of the analysis of these subgrid models have been reported in the papers attached in
the Appendices. Here, we briefly summarize those results and then discuss some new results
recently obtained.

The analysis of the eddy viscosity models (models (a) and (c)), the scale similarity model (model
(d)) and the one-equation model (model (e)) were reported in Menon and Yeung (1994a). The a
priori anlysis showed that for fine grid resolution, the scale similarity model had the highest cor-
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relation with the exact subgrid stresses and energy transfer. However, for a coarse grid LES, this
cotTelation dropped significantly indicating that this model is not appropriate for coarse grid LES.
This result was understandable since the scale similarity concept implies that the energy transer
at two grid levels are self similar. As the grid is coarsened, this similarity begins to breakdown.
For the low Reynolds number flows studied in Menon and Yeung (1994a), there was no clear iner-
dal range resolved in the DNS. This made it difficult to fully evaluate this model. This model was
proposed for high Reynolds number flows (based on experimental data at Re=3 10) where a dis-
dnct inerital range existed. Scale-similarity assumptions hold very well in the inertial range and,
thus, this model would be applicable. However, this implies that to use this model an inertial
range must be resolved in the LES. This may be an unacceptable requirement in high Reynolds
number flows (since, it implies a very high grid resolution) and, thus, at present, this model
(although very elegant) appears to have limited use for LES of complex, high Reynolds number
flows.

Smagorinsky's model (with fixed constant) was quite poor when compared to the other models.
The k-equation model (with fixed coefficients) was better than the eddy viscosity model but had a
correlation lower than the scale similarity model. Interestingly, when the guid was coarsened, the
scale similarity model became poorly correlated; however, the k-equation model did not show
such a behavior. This suggests that the k-equation model has the potential for modeling the sub-
grid stresses and energy transfer in coarse grids.

Subsequent to this a priori analysis, these models were implemented in a LES code and simula-
dions were carried out using different grd resolutions. To compare the results, all simulations
were begun with nearly identical initial conditions. Thus, at t=O, all the flow fields were highly
correlated. The analysis was carried out at an instant when the flow had evolved to realistic turbu-
lence. The correlation analysis using just the LES data showed a completely different picture. All
models showed very poor correlation (compared to a priori tests). Both the eddy viscosity model
and the scale similarity model appeared to model the subgrid stresses quite poorly compared to
the one-equation model.

These results clearly highlight the fact that subgrid models that appear to be quite good in a priori
analysis may not be as good when implemented in actual LES. Furthermore, it appeared that the
k-equation model had the best capability to model the subgrid stresses in coarse grid LES.

iTh study in Menon and Yeung (1994a), employed the models with fixed coefficients. Since it had
been shown by other researchers that the dynamic eddy viscosity model is quite superior to Sma-
gorinsky's classical model, it was decided to revisit these models but by allowing for dynamic
evalutation of the coefficients. The dynamic eddy viscosity model and a dynamic version of the k-
equation model was then analyzed using the methods developed above. Some of these results will
be reported in details in Menon and Yeung (1994b) and Kim et al (1994). It has been shown that
the dynamic procedure significanly improves the correlations, An interesting observation was
that, compared to the dynamic Germano's model, the dynamic k-equation model showed a much
better improvement and was clearly superior for coarse grid LES. This has given confidence that
for coarse grid LES for high Reynolds number flows, the use of such higher order models may be
beneficial. This is an issue that will be revisited using more complex flows in the second year of
this research.



We are now investigating a new two-equation model. The governing equations are shown in the
Appendix and the subgrid model is essentially the model proposed by Yoshizawa (1993). We
expect that in the course of our study, this model (if useful) will undergo some changes. For
example, so far, results have been obtained using fixed coefficients. We expect the dynamic pro-
cedure will improve this model and, therefore, we are now in the process of including a dynamic
procedure to solve this model.

We simulated a simple periodic flow field for the Taylor-Green Vortex. This field is primarily 2D
and will not contain any helicity. This was confirmed by carrying out LES using the k-h model
and showing that the subguid helicity was negligible. Next, the spanwise velocity field was
changed by adding a cosx term. This allows the large-scales to become 3D while still satisfying
continuity. We were interested in determining if this flow field would generate small-scale 3D
Structures and, if so, would the new k-h model be able to predict the helicity in the unresolved
scales.

We looked at three quantities: (I) the correlation between subgrid helicity and large-scale vortic-
ity, (2) the accuracy with which subgrid helicity is being modeled, and (3) the relevance of helic-
ity to the subgrid stresses (that is, the effect of non-eddy viscosity terms in the stress model that
appears explicitly due to helicity).

In Fig. la and I b, we show 3D visualization of the vortex tubes (constant vorticity isosurfaces)
along with contours of subgrid helicity as predicted by the model. The subgrid helicity is only
shown on a certain plane. Figure lI shows the field as seen in a 32x32x32 LBS, while in Fig. lb,
the results are shown for aIt 16x16x16 LES. It can be seen that regions of intense vorticity are sur-
rounded by regions of high-magnitude subgrid helicity. This indicates significant production of
mUl-scale helicity by the breakdown of the large scale Structures. This result also implies that the
unresolved scales may be locally anisotropic.

Correlation between the large-scale helicity (due to the resolved fields) and the subgrid helicity
was also computed. This correlation should be very low, in fact, it should ideally be zero, since
the model is supposed to compute the subgrid helicity only due to the anisotropy or non-homoge-
neity in the small-scales and, therefore, should not correlate with the large-scale helicity. The
computed correlations were also very small with the 32x32x32 LES predicting a value of 1.03E-4
and the 16x16x16 LES predicting a value of 5.6E-4. These results showed that the k-h model has
been implemented correctly and appears to be predicting the correct physics.

Coreation between the subgrid helicity modeled in the 16x16x16 LES and the subgrid helicity
prdicted by filtering the 32x32x32 LES data into a 16x16x16 grid was also carried out. If the
model behaves accurately in both grids then this correlation should be high. Our preliminary data
showed a correlation of 0.736 which is reasonably high. Figure 2a shows the subgrid helicity
computed using the 32x32x32 LES data filtered to 16x16x16 grid, and Fig. 2b shows the model
prediaion in the 16x16x16 LES. Clearly, the model is behaving reasonable well in both grids.

This study is not yet completed and there are still some unresolved issues. For example, the inclu-
sion of helicity model did not improve the subgrid energy transfer correlation. However, our pre-
vious study using fixed coefficients for the k-equation model also showed poor correlation(Menon



and Yeung, 1994a), while with dynamic evaluation, the correlation improved significantly (Kim et
al., 1994). Therefore, we are now beginning to evaluate dynamically the constants in this k-h
model

Note that, adding one more equation will increase the computational cost. Therefore, before such
models are proposed for LES application, it must be clearly demonstrated that it is superior to the
conventional eddy viscosity model. The tests using Taylor-Green vortex or isotropic turbulence
may not be appropriate to evaluate this model. Therefore, we are now starting to implement this
model into the code developed to simulate more complex flows such as flows past rearward facing
steps. If this model is superior for such flows, then the additional cost of computation may be bal-
anced by the ability of the new model to handle complex flows using relatively coarser grids
(thereby, decreasing computational cost). This is the primary goal of this research.

2.2 Analysis of Compressible Isotropic Thrbulence

Some studies were also carried out to extend the analysis methods to study compressible flows.
As noted before, the analysis methods are supposed to be independant of the type of flow field
studied and, therefore, with some minor modifications should be applicable in compressible
flows. To compare with the incompressible flow results, we began by simulating low Mach num-
ber (essentially incompressible) isotropic turbulent flow fields. So far, only the compressible ver-
sions of the eddy viscosity model (Edebacher et al., 1987), the dynamic eddy viscosity model,
and the scale similarity model have been implemented and evaluated. Here, we will summarize
some of the more recent results of this study. More details of this work will be included in the
final version of the paper Menon and Yeung (1994b).

Figures 3a and 3b show, respectively, the correlation of the exact subgrid stress - (obtained
from 643 DNS data) with the eddy viscosity model and scale-similarity model predictions as a
function of filter width. Again, as before, box filters have been employed. The results for the ear-
lier incompressible data are also shown. These figures show the characteristic decrease in correla-
tion when the grid is coarsened with the scale similarity model showing most rapid decrease. The
compressible data is quite close to the incompressible data since very low Mach number flow has
been simlated. However, note that, two completely different numerical solvers and subgrid mod-
els were employed for this comparison.

Figures 4a and 4b show, respectively, the correlation between exact energy transfertjij and the
modeled energy transfer for the two models. Again, both models show that with decrease in grid
resolution, the correlation decreases. The scale similarity model again shows a strong dependance
on the grid resolution. However, for relatively fine mesh, the scale similarity model is quite supe-
rior to the eddy viscosity model. This is in agreement with the incompressible flow results dis-
cussed in Menon and Yeung (1994a).

Since the incompressible study showed that the dynamic subgrid models are superior to the mod-
els with fixed coefficients, we are now in the process of evaluating dynamic subgrid models for
ompreible flows. Preliminary results show good agreement with the results of Moin et al.

(1993). More results of this study will be be reported in the near future.



3. LES OF FLOWS PAST REARWARD FACING STEPS

We are now getting ready to simulate more complex flows such as flows past rearward facing
steps. We have completed preliminary validation studies using the simple eddy viscosity model
(with no dynamic evaluation) and have demonstrated the ability of our numerical solver to repro-
fce results consistent with earlier studies. For example, Fig.5 shows the variation of reattache-

meat distance (normalized by step height) as a function of Reynolds number. Also shown are
results obtained by other researchers. Clearly, our LES solver is in good agreement with earlier
staudies. Figures 6a and 6b show, respectively, the vortical structures downstream of the step for
the two Reynolds numbers. As Reynolds number increases, more complex flow patterns are
formed as expected.

The above results were obtained using the classical eddy viscosity model. These earlier calcula-
tions were carried out to determine the accuracy of the code and to resolve all the programming
issues. Therefore, detailed analysis of the data have not been carried ouL Since the analysis of
subgrid models in isotropic turbulence clearly suggest that the dynamic models are superior, we
are now in the process of including the dynamic models into this code. It is expected that all
future calculations in this configuration will be carried out using dynamic models (such as the
dynamic k-equation and dynamic k-h models) and for relatively high Reynolds numbers. The
exact test conditions have not yet been finalized since we want to first make sure that there is suf-
ficient experimental data for model validation in such flows.

4. PLANS FOR THE NEXT YEAR

The research carried out in the first year focussed on simple flows such as isotropic turbulence.
The methods developed for analysis of subgrid models will now be used for more complex flows.
Therefore, from now on, all studies will focus of complex, high Reynolds number flows. Two test
flows have been chosen for subgrid model validation studies. The first configuration is the rear-
ward facins step described above. The second configuration is a co-axial jet shear layer with and
without swirl.. This type of highly 3D swirling flow occurs in many flow situations and has some
interesting features associated with swirl induced mixing. This flow is also sufficiently complex
and there is some experimental data for comparison. Both these configurations will be studied
using the same numerical solver and subgrid models. We are interested in determining if the same
type of subgrid model is capable of simulating accurately these two different types of flows.
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Figure 3. Cross correlation analysis of compressible subgrid models using DNS data of compress-
ible, decaying, homogeneous isotropic turbulence at Re = 10. Subgrid stress correlation obtained
using box filter.
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obtained using box filter.
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EXTENDED ABSTRACT
Mhe -ono saut-cf4bmhaw mIn ,Il Imodels bs numudy vam.of the siml edfy vscosity

model doi iwpoed by Smagwkuky In 1963. ThS s bin qua. of the mdow IMidoms of "i modelsdoth
howe basn bioght Into stiveadan In nowt ausmdW Far exumle, bebcitmm of amesy km the umtoved
to e reslved mssd has bern dised lo ocu In dirct smeulul dIobms (DNS) d (Pam %ulli at
AL, 1991) dmly daimamsumatg doa dhe voesolvud sdbgdd , ,oeP. inomm be =&Wle by a pornl dbsal--av anmim. Ins adio., the 'emamatw (the Somiorlky cousins qeus w vary Wsm Bow to Blow
a4*dws tewhpldmode requited fardher fise-tusig for a nudcfow. Raw st m"i to himprv
s do y af iscosity model involve the alupsive valuation of the mbgdd comiinat (Umurn et AL. 1991)
mola in qctmodeling of the ssabgl bacekcuttw Ioe- (aamov, 1991). Ins qulu of thee deveop-
mosti, It ks m yet dew Kf suc simple models we sufficlent for hempeddy smulatdo O12) of hig Rey-
mole nmuber Sow

The ojecslveof his pmprbstoevadme Oeueffectof *e lbamof hdo uosessupd*Mmodon she
comupued immesle amg transfer piuoem baemr the nesoled mod monuolved scale in LES. The even-
ad! pdat dfths reeId Isb to davelop a su*W smdd m del h witj peffu adopawl In IMS of high Rey-
moib nuber flows 7b lovesiatie the ffeta ofth 69 9 grl od m ondel ba.x Col 1.m ! mip i pro-
amrn we begb the study by ayfng oas both DMS ad LES for Idem"o Saow conditionsmadthu inslyl-
bg theewgy Iase poce . waft a method deeloped remedy byDaomdd at L (199). They hame

p inomsv d sht sihgldb arnie(SOS)- F Igysase qantiddes am be reafil imcied Dam DNIS data
Is INcqrubl Sow, thsgy quedna ELMk of doe resolv miss at wavanumber k evalves by

a ELk- -2vk 2EL(k)+T~kik,)+T(ktIk,), tk (1)

whore v b the kkaeuasic vlscoul, k, bsa cot-off waveoumbe qupwalog fth resolved anml V sac-rdmuls
T(k 1k,) nusaus ierg wuander ham. Iaractioms wit meolved mule only. and 760k 1k) zepmesen
imesactions wit 30S modsIft theo form of the quectu SOS eddy viscosty is cose as



* -2-

C(t , kC16 (2)

6% ft btsvl cim fd ath viscouity as a timala.s ithdo agaft wavig.mer csbe deatiloed, iKZ,
hi halWo s0401 (1) S owu In R - -7owesm pobesam with ths q ýr who. IS is

L.hd bn LNM doe 10 WIN bi NPa (1) is modeled by 60. siiul modd. Thus the aove
an&pnw u.mu do s mff w.~mb wil be afiecoed by trhefas (or choke) ofth Segdd model

ued o~a inet cthS faledu.6u.

ow eddyvbsualymoddels h u is. Ailed ulleby ~inov(1991).6 Oem ataL (1991). b
aii Warn a moospilwam modd fo Oae .bid unbule Mastic iner (lMo.. 199) aid a two-equaio
modi o So. metul d dim katcinde a mid mtgId hilcity (Yodiowa 199) w~l be evalmd.
Now aer .6w pM -od uan id1 - ulmo6i for dhouhohg Nog Repualds amucr Am&e dam
vado- in -al phM sublalo do 0 ns doe ci.~. imlwved ca cornahi a sigmklm snwi
of Ihokc Merv. As WNWa don. uwulved oaks be tPedr~lmlsutre Models that
hiuhide Winspi hinilcy Oawn dft belely dalmd ale, is exastly wo for two,4uumlml meuctwes)
may be ebb ao acot for te asyeuy k d mbe Ingd scales. ThMen models wil be sWile oft both
quoal wi It, ph spinSqe(mwvbn low solves. At v fte medhod of mmy*l I simiilar to
#Wt 1 1 em1 by DomwW at al. (1993); however, we hope, to develop au equivalewm idahd of odmysis
do -a be med dimedy fa dke phy"sical aud vEwil me m re ui smualmf th. Saw lAdd hiwo
was~ apoe. ThU Is partdumly kqpam damu hio Reynods nube lmow f pci ietu Irem

emI hi GIIPls dmhie (04g9- movwed S saps) " d,^ tuIt will Me be possbleI toevdalue the
asog msbh af Fowls -mbm

As Shi pqin, we andder do iergy Iumtera yp lipe of deamyi hicompeumsbl mid compesi
bb 11 c-scic ---6dim c A the kiklolug we show ind comyue iuullmlwoy amolb obtained by four dif-
bow uithadeos DS afmgtheo m 4dek~y Iuedoaeusal abgddim ci RogalI(1961). DN4S using a

W~~ Mw-volum code (Nemo. 19M) at low Mu*h mber, IMS usin a caqausmhe eddy
v tymodd his So lWo-voloe code. mid LES aftg a -i~frM e hI 'Jcoqirulse code The

DIES ad US dftan me uhimu wfth 64' mud 32 gSW polmm respectively. Excpt for diflocie.. In
20.~ lc " rem6o mud mthds, the Pollmn me has tom statistically tksame Bow bi &I

Cmess. bodase d.6b li cih m Im methaside 6th s IphImodel willbe give hi te hi payper.
Degilogt km a Isesqic Oulu andoo lAdd with a qmuelled iniild inerg qec~um. the
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1. INThODUCTION

The dynamic sugM scale (SOS) modling tecnue, lmuikacd by Germma e al. (1991),
has been smocessibly SqWped to vulous types of flow fields (see Main e! al.. 1994 for a reent
ravlew). Thm are dm •tmphotanm feat-res oa, this modei approach. Fit, tm el cgmsant,
die so-aled Smaglariu's Cotantm. Is not prelbed a prior, rather, It Is deurmined a a part
of te soluion. This qVrosch renoved one of dhe major probems associated with te

al eddy viscosity modd which was the det-Pmination (and fi&nunng) of We
causta far different flows. Second, he dynamic model d tws t coarect asymptotic behavior
war walls ad trd, as a resit of th dynamic evaluation, th wmu can become negatve In
crtain reglons of de flow field and daws, oppem to have Ute caspdsh to mimic becaner of
energy Jkon t subgrld sale to the reolved scale Tlhs last fatize Is ptioularly attuactve
sice direct mnmercal simulation (DNS) dat has howl that becaca effect can dominate
over a dpgnfican pardion of the grid polats In th flow OWel (e.g., Piomelli et al., 1991).
Eowever, lmpg-eddy simulations 02S) using this dynamic model has dmon that th backscate
dlect of Oemano's model can be cumssive and can caue mnmerical instability. Some rmomt
efforts (Moi el at., 1994; Pkmel and Llu. 1994) were directed paricuarly to develop better
methods to evaluate Mewcmml. However, these studies Mill assume dth the form of the eddy
vibsosty, as poposedP by Smagaulnsky. Is sil aqn opuate and vald for the enire rnge of flows.
Reemnt DNS sudies of decaying boroc tubulence sggest tht assumption of the local
equillbium between Uth SOS ewy production ad dissipation re (which was used to derive
the Smagarinky model) may not be satisfied ovr a large porion of the gid points. T7is lack a(
local equilibrium can be significant wen tde flow ilWds at dIlf n llgrid resolutions we related
to each other, a is Ut cae In the dynamic model.

In this Ipqlr, these Isue•s addMessed by coomldma two new subgrid modes that do not
Iun A local equMbdum between Ut SOS enery poucon ad dissipaion me. These models

have bee develped using do dynamic modeig mp- mad Uefam therewe nic no wnwus
110 have to be prescibed a plo,. The first mod tht Is studied Is a dynamic version of the
Kmoulm xovs scaling eP., usl or aftw edyisosity and the seodmdlIs a one-equation
model for SOS kineic eneirgy.

Lling LES of decaying isotropic urbuleace at variou Reynolds mumber, Mae behaevior of
dme nw dynamic models have been compared to Ute pndcnm of ft dynamic model based.

8 the Ss edd viscty concptl An evenual goal of this ireA: is to determie



do farm of a dynamic suwbgld model that will provide realistic results over a wide range of
leymods number and grid resolution.

The mumerical simulations were carried out using a i f c code that Is second-order
macy in time and Wb-order (the convective terms) and sixth-order (the viscous terms)
accuracy in space using uwin•ased diffrences (Rai and Mon, 1991). Thie-accurate
selutioms Of the Inpres sible Navier-Stokes equations we obained by the artificial
cog Wssbity approach (Roge r at1.. 1991) which fauires smubiteaton in psadotime to get
ft dKv lec-ftn flow field. Earlier (Menon and Yom& 1994), this code was validated by
Carrying out DNS of decaying IsoUpi nrbulence and comparing the resulting statistics with the
predictions of a well kmnwn psedo qsetal code (Rogallo, 1981).

2. DYNAMIC SUBGRID MODEIUNG

In the fbilowilng, the firms of the dynamic subgrld models studied here me briefly described.
Morn details of the modeling approach will be given In the fnal paper.

2.1 Dynamic Smagormnsky Model

The primary requirement In LES Is the modeling of the SOS resses dat result from the
spatial Altering of the Instantaneous Incompressible Navier-Stokes equations. If an appropriate
filter is employed (here, a top hat filur with a filter width A is used, where, AIs the grid
spacing), then the tue SOS s tenor Is: ' u u, j-911. ITis euss tensor must be modeled
to close the LES eqations of motion. "be Smagodnsky eddy viscosity closure for the SGS stress
tnsor Is of the form:

19 8YT V oVT=C~p1 (I)

where C is the model coefficient, is the resolved scale strain rate tensor

'WD O (2)

and 1-( )".Her, the owrba on the flow variables indicates the result of filtering at

en grid scle 1. In the dynamic od Mproach, a mathematical Identity beween the
Mum resolved at the Vid scale filter A and a tt filler A (ticany dcoen to be twice of the
grid filter A) Is used to detrmiue the model coefficient C a a part of the simulation. Thus, If the

oilcatio onfthe mt filer on any variable* Is denoted by j or (t). then It ca be shown that

| f - t (3)



MMre, 7(w r"aa)-At,) Is defined by using the teat fiter. Using the assumption of the self-
ulmilarity of tie subgrid sess, Tw can be modeed in the same way as T, resulting in the

*Mowing expression:

f f *=-2V VTrWCAI& (4)

Soboatuti•g (1) and (4) Into (3), one can obtain an equation for C

LW -1 La = 2CMf (5)

N -k11Y -P 1 Y) (6)
Equation (5) Is a set of Mi WvmWed equations for one unknown C. To minimize the error
*om solving this overew••nd system, Ully (1992) proposed a least square method which
yields

=I (7)2M, M,

Past studies (e.g., Zang et at., 1992; Yang and ferzlpgr, 1993) using this approach have shown
ta the value of C obtained ftom Equadon (7) can vary widely In the flow field. Ths can couse
numedcal instability. To relieve this problem, spatial averaging is typically performed for both
the numerat and the denomnaho on the RHS of (7) (Plomelli, 1993). Usually, this averaging is
done only in the directions of flow homogeneity (e.g., Mon et aL, 1991). In the present study of
homogneou Isotroprc ulence, aveaging is implemented over the entire computational
domain, hence C is a function of time only.

2.2 Dynamic Kolmogorov Scaling Model

Recently, Wong and Lilly (1994) revaluated the Iotmogarov•s scaling expression for the
eddy viscosity. The rpqPremadve vatdabes M - -e- __ SOS fluctuations are the SGS enerjy
dissipaion rate a ad the SOS lenth scale which can be apprmg m&W by the giid interval A.
Using dimensional argumen de subgMd eddy viscosity can be writen as,

nlm, ft model coeficient C. as the dimension rad to C (precistly, C. -= ). This simple
ujeuto lfor V.r can be robust became It does not eqloy the usumption of local epWbrum
bewee SOS engy producton rate and dissipation me which was adopted to derive the
S I model (and which is implicit in the dynamic model described in Section 2.1).
A i advata of this model is that, due to the simplicity of the model, the total



computationAl Ime can be signifcantly reduced. However, this model can be valid only by
amlyoYing a dynamic modeling method to determine the model ceffclienL Otherwise, there may
be no way to pIescrlbe this no1..nmensionless coefficient by a fixed value. The resulting
aOatim for C. Is expesed as follows,

It - i ,8# =- 2 C9

2.3 Dyamic k-equation Model

A higher order model Is also cornired in this study. This is a one equation model for the

SOS kinetic eergy k ( j - ?) /2). This model was recently evaluated by Menon and
YMng (1994) through a priori tests using DNS of decaying and forced Isotropic turbulence. In
this model, an evolution equation for k can be written in Uthe following form

8k + 1 k _T# s C+ a..8k(10

where

T -2vTY, + 80k V --C,kV2& (11)

MAlo, one can model Uth dissipation rate c (a v [~/~) - (aria)2]) using k, as

c k V2  (12)

Menon md Yeung (1994) chose the model coefficients, based on an earlier study (Yoshizawa,
1993), to be C,=0.0854 and C,=0.916. However, these values were found to cause excessive
dissipation of large-scale energy for Isorouc turbulence. In the present study, we apply the
dynamic modeling technique to obtain apropriate values of the coefficients. To implement the
dynamic approach, the bgrdd kinetic eergy K at th test fiter level Is required. This Is obtained
by unt the trace of(3), K = L, / 2+k. Thususing the pocduredesibed earlier, equations
for both C, and C can be derved:

L,- -2 C, (a K41 A,()

W\• cVI-• a,,} c , -u



Her, equation (14) is a scalar equation for a scalar unknown and thus, we can obtain Uth exact
value for C. wIthoult applying Me least square mefthd.

Orne May Othn that Uit merit of the LES approach les In the simplicity of the model used for
fte sImulatdons sad that this merit may be lost by using ft hihe-order models such as the one
'equation model. However, the Increased cost of this type of model is compensated by Uth

I~ovemu0 I6eU accuracy resulting by not assuming local balance between Uth SOS energy
prouctonand diaipalo rafte Accordin to our a prior test using reltvely high reisolution

DS, (using 128x128xI28 uvJ 64z64z64 grid riesolutIons), over a large portion of th grid points
Ina rIa r;Iic turbulent flow, local equilibrium assumption is violated, This Imple that models
doa do not require local equilibium such as Ut one-equation model has Uth potential to produce
bette reslt than Uth Smagorinsky-type model. lTb ealier sxtude using the: one-equation model
with fixed values of Uth cod~effcets (Meoon and YeMng 1994) Improved Uth results when
coMpaed to Uthe amrak' model with fixed value of coefficient. However, Ute results were
poom than the results Obtained usin Uth dynamic Smagorluhkys model. Analysis of Uth
simulation data showed tha this was due to a poor prediction of both Uth production and
dissipation tens in (10) using fixed coefficents. Especially, Uth prediction of Uth dissipation
terms was very poor. In Uth present study, the use of Uth dynamic p irocedurm, to evaluate Uth

coeficin results In a much btrprediction of both Uth production and dissipation terms in Uth
k-equation model. This in turn Improves significantly Uth results of Uth LES using Uth dynamic k-
eqation sbrdmodel

3. PRELIMINARY RESULTS AND DISCUSSION

To evaluate UtthreeO different dynamic SOS models (described In Sec. 2). LES of decaying
Wom-g--ou Isocropic turbulence were conducted. Starting from an initially divergent free

Adctyfed with a prescribed energy spectumur, Uth flow Is allowed to develop Into realistic
decaying turbulence. The flow under consideration is modeled in a culc box with periodic
boundarvy conditions and two grid resolutions, 32x32x32 and 16x16x1 6, were employed for Uth
simulations. The simulations were prformed for Wree differen Initial Taylor Reynolds numbers
Rex. =30, 100 and 1000. In ft following. preliminary results we discussed to highlght Uth
behavior of the new dynamic subgrld models. The results discussed here we obtained by using
Uth flow fied at an instant in time where Uth flow field has relaxed to a realistic decaying
turbulence and Uth Reynolds number of the flow fied Is decreasing very slowly.

To evaluate Uth self consistency of Utb dynamic models, Uth LES results obtained on the
32x32x32 grid resolution were compared to Uth LES results obtained on Uth 16x16x16 grid. To
ensre tha both grid resolution simulations wre being performed using newrly identical initial
conditions, Uth Initial flow field for Uth 16x16xl6 grid simulation is obtained by filtering Ut
32xWx2 grid resolved flow fied, ltb resulting flow fieds from thes two differet resolution
simulatons can be areatd using die mathmatical Identity, (3). By this approach, Uth modeled

quantiy (uv,u can be obtained fro Ute two data acts which should be Identical or at least

highy correlate if Uth subgrid model performed correctly at Uth two grid levels. To quantify ft
behaio of Uth subpl model, correlation coefficients (define In the u=9a manne) are

comptedusing the anisotropc parts of expressions for Mua,. Tevraino taeae

cor-eltion coefficients of thesethree anisotropic components wre dmon in Fig. I as a function of
Mhe Taylo Reynolds mune at Me Instant of the comarwison. The correation coefficient is very
hog for all Ut models ow er Utntre: rang of Taylor Reynolds numbers. However, Ut



cwieatlon coefficient for fth dynamic Smagorinsky model decreases with increase: in the
Reynolds mmnbers. Although the correlation coefficient for the dynamic KolnMoorov scaling
mocdel Is always blogw thanf th othe it was fOWW using spectra space anailysis that this model
has som problems In predicting the dissipation rate of the SOS turbulent energy. This model is
wore dissipative in the earlie ransitlonal stage and less dissipative in the fully developed
butulent stage WTis Vroblem may be cauased by the lack of direct modeling of the dissipation
rate when the Kolmogorovik scaling for the eddy viscosity Is used. In any event, the results
Shown In Fig. I clearly suggest that the models diet do not mae- fth MUMption Of local
eipllbrium between, the production ad! dissipation fate produmebte results than the dynamic

~agodzmka model. ibis is important since Uth eventual goal of LES methodology is to
devielop subgrld models tha will allow simulation of high Reynolds nume flows using
seatvely coarse grids (grid resolution testriction we typically Imposed due to computer
reouc limitations).

Fig. 2a shows the variation In the dynamically evaluated constants with time: during the
simulation for Re. =lOO and Fig. 21b shows the variation of the model constant with the Taylor
Reynolds numbers. Obviously, the model coefficients go though changes In the earlier
transitional stage. However, after some time, all coefficients reach an asymptotic state with the
exception of Cc In Kolmogarov's scaling expression which keeps decreasing as the kinetic
energy decreatses. MAlo, Uth values of Uth coefficients at this asymptotic stat me almost
Ideedn on Reynolds number except for C, in k-equation model because E, and hence Cc
which is generated ftom direct modeling of C. is very sensitive to the grid resolution and
Reynolds amnber. Mhe resulting constants wre similar to the values obtained in earlier studies.
For e~xample, In fth presen study, the dynamic Smagrnsky model predicts that the
Smagoulnsiky model coefficient C. (which Is the square-root of dynamic mdlcoefficien 0)
should be about 0.165. ihis Is very close to the value of 0.17 suggested by Lilly (1966) for
homoeeu Isotropic turbulence with cutoff in fth Inerial subrange. It Is noteworthy that
denterming temodel coefficient usin the dynamic Smagorlnsiy model may have some
limitations. Tbis model predicts Its model coefflcient to be negative for a long period of time in
the earlier transitional stage. Even this period of time Incre=e with Increasing Initial Reynolds
number. Obviously It leads to numerical instability. To prevent this problem from happening, we
Impose the constraints that C should be always larger than 0.01. Tbis kind of numerical
Instability was not brought about by the other models.

Fig 3h show contours of the SOS kinettic energy on 32x32x32 grid directly obtained by LES
using the dynamic k-equation model. Tbis result Is compared to the prediction by the LES using
the same model but dlffernt resolution, 16xl6x16 grid, (Fig. 6b) at an hatbtary (but same) slice
of the 3D flelcL Mbe comparison sOws tha fthr is significant: similarity between two LES
results of " fIp 1t grid widfth and thus confirme the self consistency of the dynamic k-equation
model. The peak values of the coarser grid (16x16x 16) results me approximately twice of those
ftom the finer gri (32x32x32). This is reasonable becwse the coma grid which has the lower
catoff wmavenmber should contain the larger SOS knetic energy inside of Its subgrld regons for
the samne Reynolds number.

4. FUTUVRE WORK TO BE INCLUDED IN THE FINAL PAPER



The remas obtained so fur show that the dynamic moes that do not assume local
* ~~~quilibrium between fth SOS energy prowduco and dissipation rate perform significantly bte

than Uth dnamic model based on the classical Smagoulnsky's eddy viscosy model. Further
simulations =e underway to confirm this result using fime grid resolution and for highuer
Reynolds numbers. Comparison of the LES results with Ute DNS results for representative
(relatively low Reynolds numbers) caes will also be carried out. Finally, Utme models will be
evalumatd for Mfeant flow cuas. For example, ft Taylor-Came vorte flow, which has been
used by Dmemradzk es al. (1993), is considered a good test problem. Ibis Is. due to flow
symmetry, a flow at a relatively high Reynolds number can be simulated using relatively comse
mahatimn The results; ofthewsetuadies will be described In amo details In die Anal paper.
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