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Abstract

Elevated-temperature calorimetric measurements were performed using a cell: Al
6061 alloy I LiH(saturated), LiCI-KCI eutectic I Ni with a charging current of about 600
mA. An anomalous positive temperature excursion was observed, which was
difficult to explain based on our understanding of the electrochemical reactions
occurring in the cell and the associated enthalpies. The potential between the
working and counter electrodes fell in two peculiar ranges: in the initial stage, 0.7-
1.2 V, and in a later stage, 2.3-2.6 V - a range of great interest - due to its
similarity to the condition of an excess heat event that we reported in the Pd-D
system in which significant excess heat was measured.

Introduction

Excess power and heat accompanied with nuclear products have been measured in
many recent experiments (1-12) using a variety of techniques to enhance deuterium
or hydrogen absorption into metal matrices. Originally proposed by Fleischmann
and Pons (13) was the electrolysis of heavy water with Pd cathode and Pt anode, in
which reproducible "boiled-off" episodes and significant amount of excess heat of
the order of over 200 eV per Pd atom were recently demonstrated (14). They have
attributed this phenomenon to some unknown nuclear processes yet to be
identified. Mills and his co-workers (15) independently reported excess heat using
light water electrolysis with Ni cathode and Pt anode in potassium carbonate
solutions. Mills and his co-workers (16,17) further proposed a theory attributing the
excess heat to be originated from sub-ground-state energy levels of hydrogen.
Similar excess heat results using light-water electrolysis have been reported by
several other laboratories, including Bush (1) who proposed an "alkali-hydrogen
fusion" model to claim his team's finding of enriched nuclear transformation. The
origin of both excess heat phenomena are still an open question.

These reports, although difficult to explain, draw our interest to verify excess heat
generation in Ni anode using hydride-based melt. This paper reports an instance in
which apparent excess power was measured. Two previous experiments using a
similar cell configuration but at different charging currents, 350 and 400 mA, also



exhibited anomalous temperature excursions at different magnitudes. The origin of
this excess power was not clear, nor was the detail of reactions involved in the
electrolysis. This preliminary experiment was not intended to detect any nuclear
products, nor will any nuclear aspects be discussed. From thermodynamic point of
view, it is very difficult to explain the thermal behavior exhibited by the cell.

Experimental Aspects

The cell configuration was similar to what we previously reported. Figure 1 shows
the schematic of this particular experimental setup. Ni electrode was made of a Ni
thin-wall tubing obtained from Small Parts, Inc., Florida. The Al alloy electrode was
a typical commercial 6061 tubing with a wall thickness of 1/8". Two thermocouples
were used: One is an E-type (chromel-constantan couple) and the other is a K-type
(chromel-alumel couple) probe, both made by Omega Engineering, Inc. Each probe
was protected with a thin-wall ungrounded 304 stainless steel sheath and connected
to an ice-point junction compensator to obtain correct temperature readings.
Although the E-type probe is more sensitive to small temperature change than the
K-type, both probes behaved consistently during the experiment. The K-type probe
was placed inside the cathode holder, which was made of brass, about half an inch
above the melt surface. The E-type probe was placed in the melt approximately half
way between the cathode and the anode. A relatively constant temperature
difference of about 10*C between the two probes was found throughout the
experiment, almost independent of any electrolysis process.

The charging process was conducted under a galvanostatic mode with a constant
current of 600 mA. We used a PARC 173 galvanostat for the electrolysis. Cell
potential and temperature readings were collected by a data acquisition board and
controlled by a Macintosh program written in LabVIEW. The board has a 16-bit
resolution, which allows up to ±10 V input and a gain of 100 to give the temperature
reading a precision of about 0.035*C. We also intermittently monitored the cell
current and the voltage and current of the furnace dc power supply through external
digital multimeters to assure a constant cell current and furnace power input during
the electrolysis. The dc furnace input power has been controlled at 24.1±0.1 W
throughout the experiment, therefore the possible drift in the cell temperature was
about ±1 *C. The calorimeter was calibrated at the end of the run by varying the
furnace power in a step fashion and recording the steady temperature variation at
intervals of at least 6 hours. A linear calibration curve from each temperature probe
was shown in Figure 2 with a cell constant of about 10.30C W-1.

Results and Discussions

Figure 3 displays the temperature variations measured by the two probes and the
cell potential excursion during the run. There are several interesting features from
this result:



1. The cell potential exhibits two distinct ranges: one begins at about 0.7 V and rises
to about 1.2 V gradually in three disparate intervals (named as the first charging
stage), and another fluctuates between 2.3 V and 2.6 V and sometimes exceeds 3
V in two intervals (named as the second charging stage) during the electrolysis.
The two distinct potential ranges indicate that the cell has been operated under
two different reactions (stages). The one between 0.7 and 1.2 V is considered to be
associated with hydrogen evolution, according to our recent cyclic voltammetry
results (18). The overpotential increase with time is likely due to the decreasing
LiH content in the melt. There is a possibility of a two-electron hydride-to-
proton charge transfer reaction involved at this stage, which may lead to a
"shuttle mechanism" that results in a prolonged anodic charging process and
loss in Coulombic efficiency. The potential range between 2.3 and 2.6 V is
presumably due to nickel or iron chloride formation, which corrodes the Ni
metal electrode or the steel lead. According to the values in Table 1, the potential
for both reactions are very similar. The fluctuation between two potential ranges
was often observed in the molten salt electrolysis, but the mechanism is not
characterized at this time. This fluctuation makes the interpretation of the
calorimetric results complicated.

2. The temperature probes show different sensitivity of thermal response toward
electrode reactions. The E-type probe in the melt was more sensitive to potential
excursions than the K-type probe in the cathode holder, as shown in Figure 3.
This difference was probably due to a combination of

- a less effective heat transfer in the melt/anode region than in the metal
holder/cathode region, resulting in a larger temperature excursion in the
vacinity of the anode and indicating some degree of local heating, and

- a closer proximity of the E-type probe to the anode than the K-type probe.
This difference causes some precautions to our interpretation of the calorimetry
data. However, the results from the K-type probe should give us a lower-bound
of the overall thermal behavior, despite that some characteristics of the potential
excursion was sacrificed. In this way we will underestimate the excess heat in the
cell. On the other hand, the location of the probe still influences the detection of
thermal behavior, which is a cause for concern. Nonetheless, the consistency of
the two probes in reflecting the relative change of power, as described below,
indicates that the thermal response measured by both probes is independent of
the probe location.

3. The temperature probes show a consistent baseline temperature rise during the
electrolysis. Despite the different response to the potential excursion, the two
probes consistently reflect a steady increase of baseline temperature in their
respective temperature profiles, suggesting that there may be a heat source in the
cell induced by the anodic charging process.

Unfortunately, the cell failed after about 3.4 hours of operation, prohibiting a final
temperature plateau, if any, to be measured. There was a scattered thermal response
region for E-type probe after 3 hours of operation, and the reason is not clear. The
cell potential was very unstable at that time, signifying the working electrode was
not functioning properly and eventually resulted in a cell failure, destroyed the A/D



board and the E-type probe. The working electrode lead was found broken when the
cell was disassembled.

Figure 4 shows the input and output power profiles of the experiment. The input
electrochemical power is the product of the current and cell potential. The output
power measured from both probes are interpreted from the post-calibration curves
shown in Figure 2. The two output curves are similar except for the regions of high
potential excursion. Excess power was observed in both probes after about 1.7 hours
of operation. However, because the input power decreased from 1.5 W to 0.5 W at
that time, the interpretation of excess power was obscured between 1.7 and 2.4 hours.
After 2.4 hours, the excess power over the large 1.5 W input power was apparent. At
2.9 hours the excess power was about 0.5 W over the 1.5 W input, or about 33%. It
should be noted that the scattering of the thermal response in the curves shows the
overall noise level of the temperature and power measurements, which is
significantly lower than the magnitudes of the temperature rise and excess power
measured in the experiment; therefore, random errors can not explain the excess
power result.

In summary, the K-type probe in the cathode holder gave a more conservative and
less potential-dependent measurement of the cell thermal behavior during the
anodic charging process. A consistent yet "unknown" heat source caused a
temperature rise in the cell and resulted in excess power measured of the order of
0.5 W over the input power of 1.5 W. This phenomenon cannot be explained by
random error in the measurement nor any storage mechanism.

A more detailed heat balance and estimation of the anomalous thermal behavior of
the cell can be obtained by examining the electrochemical reactions involved in the
electrolysis. The enthalpy of these reactions can be used for comparison with the
calorimetry data. The possible reactions under consideration are listed in Table 1.
During the initial electrolysis the half-cell reactions are:

Dissociation of LiH in the electrolyte:

LiH = Li+ + I- [1]

13-LiAl formation at the cathode:

Li÷ + Al + e = p-LiAl [2]

Hydrogen evolution at the anode:

E" -- 1/2 H2 + e, [3]

and the total cell reaction is:

LiH + Al = 0-LiAI + 1/2 H2. = 9.92 kcal mo1-1 [4]



The enthalpy of the total reaction [41 is endothermic. Accordingly, there should be a
power decrease of 0.26 W at 600 mA from this reaction. The initial power input of
this reaction was about 0.42 W (0.6 A x 0.7 V) and gradually increased to 0.72 W (0.6
A x 1.2 V). The difference between the input power and the power consumption
from the endothermic reaction enthalpy will be treated as total IR loss that turned
into waste heat, which should be about 0.16 W initially and increase to 0.46 W
eventually. This waste heat should raise the cell temperature only by 1.61C to 4.60C,
respectively, in contrast to the measured baseline temperature rise of about 20°C at
3.2 hours. The cell temperature rise was about an order of magnitude larger than
what we expected from this reaction.

Another possibility of heat release could come from the two-electron charge-transfer
hydride-to-proton reaction and speculated "shuttle mechanism" possibly involved
at the end of the first charging stage according to:

LiCl + LiH + 2 Al = 2 p-LiAl + HC1. M-II0 = 78.10 kcal mol-1  (10)

The substantial positive enthalpy will reduce the input power by 1.02 W, which will
adversely decrease the cell temperature by 3-6*C. Even if the reaction also occurred
at the second stage with a high input power of 1.56 W (0.6 A x 2.6 V), the IR-loss heat
rate is still only about 0.54 W or contributes to only 5.4*C increase. The measured
excess power value is much larger than what we expected from this effect.

We further consider the heat balance in the second charging stage in which metal
chloride formations, such as [11] and [12] in Table 1, occur. The enthalpies for NiC12
and FeCI2 formations are 97.97 and 89.61 kcal mol- 1, respectively. These reactions
will subtract the input power by 1.27 and 1.17 W, respectively. With the associated
input power of 1.56 W (0.6 A x 2.6 V), we found the IR-loss heat rate only accounts
for 0.29-0.39 W or 2.9-3.9*C in cell temperature rise, still considerably less than what
was measured. Besides, the excess power seems to occur from the beginning of the
electrolysis, in which the chloride reaction should not involve.

More recently, we have conducted some electrolysis experiments using steel leads as
the anode. The results, which will be discussed elsewhere, showed no excess power
even though the cell potential reached above 2.2 V, a distinct range of interest for
the second charging stage and as a contrast to the Ni-based experiments. We can
treat the steel-based system as blank or control experiments. The result indicates
that the excess power seems to be associated with the presence of Ni. In the future,
we need to distinguish the Ni-based system that produces excess power from the one
that doesn't. We should also characterize the parameters that cause the difference.

It should be cautioned, however, that although the excess power and temperature
excursions were significantly greater than the values expected from the enthalpy of
reactions and the IR-loss heat, the magnitude of the excess power (-0.5 W) is still
small compared to the dc power to the external furnace (24.1±0.1 W).



Conclusion

We found a relatively consistent anomalous thermal excursion in the electrolysis of
an Al 6061 alloy I LiH(saturated), LiCI-KCl eutectic I Ni cell. The temperature increase
was significantly larger than what we would expect from various possible reaction
enthalpies. The cell potential exhibited a similar pattern to what we have measured
in previous Pd-D experiments. The consistent behavior reflected by different probes
indicates that the anomalous thermal excursion seems to be real and not attributed
to any systematic error or storage process.
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Table 1. Enthalpy and Free Energy of Reactions Involved in the Electrolysis at 700 K.

(1 kcal = 4.186 kJ)

Reaction AGO, kcai moll AHO, kcal mool E', V Ref

[5] LiH = Li + 1/2 H2 8.53 22-64 0.370 Li+/Li

[6) Li + Al = Oi-LiAl -6.85 -12.72 0.297 AI/p3-LiAl

(7] LiH + Al = P-LiAI + 1/2 H 2  1.68 9.92 0.073 A1/p-LiAI

(8] LicI = Li + 1/2 C12  83.87 97.66 3.637 Li+/iU

(9] 1/2 H2 + 1/2 C12 = HCI -23.60 -22.36 1.023 H+/H 2

[10] LiH + LiC1 + 2 Al = 55.10 78.10 1.195 Al/0-LiAl
2 p-LiAl + HCl

(111 2 LiCI + 2 Al + Ni = 106.46 97.97 2.308 Al/0-LiAl
2 p3-LiAl + NiCI2

[12] 2 LiCI + 2 Al + Fe = 93.24 89.61 2.022 Al/0-LiAl
2 p-LiAl + FeCI2
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