
AD-A282 329

RL-TR-94-77
Final Technical Report
May 1994

PARALLEL SOFTWARE BENCHMARKS
FOR HIGH PERFORMANCE BMC31IS
SYSTEMS

Syracuse University

Salim Hariri, Geoffrey C. Fox, Balaji Thiagarajan,
Manish Parashar OT 1. C

ELECTE
JUL 2 0199 4

SG,

APPROVED R PUILVC REL•5"Se DISTR.TIVN UNLIMITED.

94-22641

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

94 7 19 140

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-77 has been reviewed and is approved for publication.

APPROVED:pa m
PAUL N. ENGELHART
Project Engineer

FOR THE COMMANDER 'R

Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Forrni AprovedREPORT DOCUMENTATION PAGE OM No.0MB No. 0704-0188
PtL.t",nh = Oftm 't d ft.r fo ieWa• . W•h mm p I has ;e 'pwm i f U Y t@mWdnv EwA ,Wv SbaUi m g meswcas-
goo~ MU0lWd- tW MU _W=P~f aMU 'in tu0 0VGhknd b#1NW SwU rwmni qpwh t buadw =am= ar u', aw aipea of tris
- fa aq wato WO NQ= H8N*AftMubm0&ewwufa r*uwinmera wgURmqmiat 215 jdffwson

OMwwc S VW IVA ZIMOM W"A d M. q r w Mw muWtu U Patmzuti P• Pm• R P (PM004• •q. Wrwm OC 205M

1. AGENCY USE ONLY 6AS 8100 2. REPORT DATE i. REPORT TYPE AND DATES COVERED
May 1994 Final Apr 92 - May 93

4. TrTLE AND Saj9TfLE .FUNDING NUMBERS
PARALLEL SOFTWARE BENCHMARKS FOR HIGH PERFORMANCE C - F30602-92-C-0063
BMC3/IS SYSTEMS PE - 63728F

PR - 25276.AUTHORl(S) TA - 03

Salim Hariri, Geoffrey C. Fox, Balaji Thiagarajan, TA - 03

Manish Parashar

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PE FORMING ORGANIZATION

Syracuse University REPORT NUMBER

Northeast Parallel Architectures Center
Illi College Place N/A
Syracuse NY 13244-4100

9. SPON eR1NG/MS. WORING AGENCY NAME(S) AND ADORESS(ES) I SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Laboratory (C3CB)
525 Brooks Rd RL-TR-94-77
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: 'Paul M. Engelhart/C3CB/(315) 330-4477

12a. DISTRIUTIONIAVALABI1TY STATEMENT 12b. DISTFABUTION CODE

Approved for public release; distribution unlimited.

a.' ABSRACT(uanum•

This final technical report summarizes research accomplished under the Expert Science
and Engineering (ES&E) program by the Northeast Parallel Architectures Center at
Syracuse University. This 13-month research endeavor, entitled "Parallel Software
Benchmarks for BMC3/IS Systems," examined issues in developing parallel software and
tools that can be used in a parallel/distributed computing environment. These issues
were evaluated via the development and application of benchmarks over a wide range of
applications. Moreover, a hierarchical set of tool criteria to evaluate and benchmark
different tools for parallel/distributed computing was also developed. This report
gives a description of the process, benchmarks, criteria and a multi-target tracker
implementation using various parallel software tools.

14. SUBLECT TERMS t1 LMER OF PAWS

Parallel Processing, High Performance Computers, Software 124
Benchmarks, Parallel Software Development ia MICECOo•E

17. SECUR1TY CLASSIFICATION 18. SECURIlY CLASSWICATION 19. SECURIWTY CLASSIFICATION 20. LUMATION OF ABSTRACT
OF REPORT OF THIS PAGE OFUABSRCT

UNCLASSIFIED UNCLASSIFIED UN SIFIED UL
NSN 7540.01 m4I Stu uw- Fm298 Pv 2-P?

Pr W I hy ANSI 3d Z66.-

2W- 02

Executive Summary

We believe that the future of parallel computing lies in the integration of the plethora of architec-
tures into a single Heterogeneous High Performance Computing (HHPC) environment that allows
them to cooperate in solving complex problems. Such an environment can capitalize on existing
architectures and on current advances in computing, networking and communication technology to
provide efficient, cost-effective, scalable, high-performance distributed computing. Software devel-
opment in any parallel/distributed environment is a non-trivial process and requires a thorough
understanding of the application and architecture. This is apparent from the fact that applications
are currently able to achieve only a fraction of peak available performance. The problem further
intensifies as systems evolve into HHPC environments. This calls for a need to develop a software
development process and tools that can be used in parallel/distributed computing and a systematic
approach to evaluate and benchmark these tools for a wide range of applications. The research
carried out in this project has been motivated by these requirements. The results of our research
can be summarized as follows:

1. A software development process for parallel/distributed software development environment
has been identified.

2. The Concurrent Multi-Target Tracking software has been implemented using four software
tools. These tools include Express, Parallel Virtual Machine (PVM), Portable Instrumented
Communication Library (PICL) and Portable Programming for Parallel Processors (p4).

3. Performance benchmarks of the Concurrent Multi-Target Tracker on the Intel iPSC(860),
nCUBE, cluster of SUN and IBM workstations have been developed.

4. We developed a hierarchical set of tool criteria to evaluate and benchmark different tools used
for Parallel/Distributed Computing. The set of tool criteria has the following levels:

* Level 0: Hardware/Software requirements

* Level 1: Tool Capability

• Level 2: User Capability

* Level 3: Software Development Capability

5. An approach to evaluate and select a tool for parallel/distributed software development is
proposed. The approach is validated using the Multi-Target Tracker as a running example.

Contents

1 A Model for Software Development in a Heterogeneous High Performance Computing Envi-
ronment 1

1.1 Introduction 1

1.2 A Model for HHPC Software Development 4

1.3 Parallel Modeling of Stock Option Pricing 4

1.4 M odel Inputs 4

1.5 Application Analysis Stage .. 6

1.6 Application Development Stage .. 9

1.6.1 Algorithm Development Module 9

1.6.2 System Level Mapping Module 10

1.6.3 Machine Level Mapping Module 11

1.6.4 Implementation/Coding Module 11

1.6.5 Design Evaluator Module 12

1.7 Compile-Time & Run-Time Stage 12

1.8 Evaluation Stage 12

1.9 Maintenance/Evolution Stage ... 13

2 Tracker Description 14

2.1 Introduction . 14

2.2 Description of Concurrent Multi-Target Tracking Scenario 17

2.3 Single Target Tracking 17

CONTENTS

2.3.1 Track System Initialization 17

2.3.2 Focal Plane Tracking 18

2.4 Multiple Target Tracking/3D Tracking 20

2.5 Concurrent Aspects of Multi-Target Tracker .. 21

2.6 Initial Implementation of the Tracker 22

2.6.1 Communication Primitives in the Concurrent tracker 23

2.6.2 Standard I/O in the Concurrent Tracker 25

2.6.3 Node Environment Information .. 25

2.6.4 Mapping a Decomposition Topology to the Concurrent Tracker 28

3 Tracker Implementation 29

3.1 Porting the tracker on different tools ... 29

3.2 Performance of Concurrent Tracker ... 34

3.3 Express : Parallel Processing Toolkit ... 38

3.3.1 Express Implementation of Multi-Target Tracker 39

3.3.2 Performance of the Multi-Target Tracker implemented using Express 39

3.4 PVM (Parallel Virtual Machine) 41

3.4.1 PVM Implementation of the Multi-Target Tracker 43

3.4.2 Performance of the Concurrent Tracker implemented using PVM 43

3.5 PICL : Portable Instrumented Communication Library 48

3.5.1 PICL Implementation of Multi-Target Tracker 49

3.5.2 Performance of the Concurrent Tracker implemented using PICL 49

3.6 p4 : Portable Programs for Parallel Processors 51

3.6.1 Implementation of Multi-Target Tracker using p4 53

3.6.2 Performance of the Concurrent Tracker implemented using p4 54

3.7 Performance Comparison 56

4 Tool Evaluation Methodology 58

CONTENTS

4.1 M otivation 58

4.2 Proposed Approach for Tool Evaluation 59

4.3 Tool Evaluation Criteria .. 61

4.3.1 Level 0: Hardware/Software Requirements 61

4.3.2 Level 1: Tool Capability 62

4.3.3 Level 2: User Capability 64

4.3.4 Level 3: Application Development Capability 67

4.4 Methodology for Tool Evaluation 69

4.4.1 Tool Evaluation Algorithm 70

4.4.2 Step-by-Step Explanation of Tool Evaluation Process 72

5 Tool Evaluation Benchmarks 74

5.1 Mapping the HHPC software development model to the Multi-Target Macker porting process 75

5.2 Tool Evaluation Benchmarks ... 79

5.2.1 Tool Evaluation Benchmarks for PVM 79

5.2.2 Tool Evaluation Benchmarks for Express 84

5.2.3 Tool Evaluation Benchmarks for PICL 88

5.2.4 Tool Evaluation Benchmarks for p4 92

6 Summary and Conclusions 99

A Glossary 106

List of Figures

1.1 The Heterogeneous High Performance Computing Environment (HHPC) 2

1.2 A Model for HHPC Software Development 5

1.3 Stock Option Pricing Model: Application Specifications 7

1.4 Stock Option Pricing Model: Parallelization Specifications 8

2.1 Battle Management Command Control and Communication 15

2.2 Format of Input Data for Internal Generation of Threats 18

2.3 Cros III Prim itives 23

2.4 Communication and Topology Mapping calls 24

2.5 Implementation of Global Communication Routines in the Tracker 26

2.6 Cube environment Structure Templates 27

3.1 Host Program Structure Template 32

3.2 Node Program Structure Template .. 33

3.3 Cshift Implementation 35

3.4 Hardware Environment for Multi-Target Concurrent Tracker 37

3.5 Changes to Host Program and Node Program Templates for Express Implementation39

3.6 Plot of Main Tracking Tasks in Express .. 41

3.7 Changes to Host Program and Node Program Templates for PVM Implementation 44

3.8 Plot of Main Tracking Task in PVM 45

3.9 Plot of Main Tracking Task in PVM in a Heterogeneous Environment 47

iv

LIST OF FIGURES

3.10 Changes to Host Program and Node Program Templates for PICL Implementation 50

3.11 PMot of Main Tracking Task in PICL 52

3.12 Changes to Host Program and Node Program Templates for p4 Implementation 53

3.13 Plot of Main Tracking Tasks in p4 56

4.1 Grading Scheme and Tool Hierarchy 60

4.2 Tool Algorithm and Implementation Example 71

5.1 PVM Host M akeflie ... 77

5.2 PVM Node M akefile .. 78

V

List of Tables

1.1 Current utilization of parallel/distributed systems 3

3.1 Performance of Main Tracking Tasks on iPSC/860 using Express (8 Sites, 640 targets) 40

3.2 Speedup and Efficiency of Main Tracking Task on iPSC/860 using Express (8 Sites, 640 targets) . . . 40

3.3 Performance of Main Tracking Tasks on IBM RS/6000 using PVM (8 Sites, 640 targets) 45

3.4 Speedup and Efficency of Main Tracking Task on IBM RS/6000 (8 Sites, 640 targets) using PVM . . . 46

3.5 Performance of Main Tracking Task using PVM on Heterogeneous Nodes: SUN4 and IBM RS/6000
(8 Sites, 640 targets) 47

3.6 Multiple Tracking Task on Heterogeneous Nodes: SUN4 and IBM RS/6000 (8 Sites, 640 targets) using
PVM 48

3.7 Performance of Main Tracking Task on iPSC/860 using PICL (8 Sites, 640 targetq) 51

3.8 Multiple Tracking Task on iPSC/860 using PICL (8 Sites, 640 targets) 51

3.9 Performance of Main Tracking Task using p4 on IBM RS/6000 (8 Sites, 640 targets) 55

3.10 Performance of Main Tracking Task using p4 on IBM RS/6000 (8 Sites, 640 targets) 55

5.1 Example Evaluation of PVM 80

5.2 Example Evaluation of PVM (cont..) .. 81

5.3 Example Evaluation of PVM (cont..) .. 82

5.4 Example Evaluation of Express .. 85

5.5 Example Evaluation of Express (cont..) 86

5.6 Example Evaluation of Express (cont..) 87

5.7 Example Evaluation of PICL 89

vi

LIST OF TABLES

5.8 Example Evaluation of PICL (cont..) 90

5.9 Example Evaluation of PICL (cont..) 91

5.10 Example Evaluation of p44 ... 93

5.11 Example Evaluation of p4 (cont .,)...... 94

5.12 Example Evaluation of p4 (cont ..).... 95

5.13 Process Evaluation Benchmarks for PVM, Express, p4 and PICL 98

5.14 Tool Evaluation Benchmarks for PVM, PICL, p4 and Express 98

vii

Chapter 1

A Model for Software Development in a.
Heterogeneous High Performance
Computing Environment

1.1 Introduction

The last few decades have seer an impressive development in every aspect of parallel computing technol-
ogy; viz. processing and storage technology, interconnect technology and software technology. Advances in
processing and storage technology can be characterized by advances in device and concurrency technology.
Developments in device technology have resulted in faster, more powerful processors with larger storage
support and increased functionality, while research in concurrency technology has explored new concur-
rency paradigms designed to exploit parallelism at different levels and in different ways (e.g. SIMD, shared
memory MIMD (SM-MIMD), distributed memory MIMD (DM-MIMD), Dataflow, Vector, Pipelined, etc.).
Advances in interconnect technology have introduced (a) high speed, reliable networks capable of providing
high transfer rates (e.g. FDDI, DQDB, HIPPI, SONET, ATM, etc.), (b) new, more efficient communi-
cation protocols (e.g. NETBLT, VMTP, XTP, Ultranet, etc.) and (c) exotic interconnection topologies
(e.g. FAT Tree, Hypercube, Mesh, Torus, etc.). Advances in software technology have explored new
approaches to assist the user in developing parallel software and application. This has included the de-
velopment of automatic parallelizing/vectorizing compilers, parallel programming languages and language
extensions, parallel software development environments, etc. along with support tools such as performance
analysis/monitoring tools, problem decomposition/mapping tools, parallel debugging tools, etc.

High performance computer systems today, include SIMD architectures like CM2 and DECmpp, shared
memory MIMD, vector and pipelined architectures like the CRAY C90, NEC SX3, and IBM POWER/4,
distributed memory MIMD machines like the Paragon XP/S and iPSC/860 from Intel, the CM-5 from
TMC, and the KSR1, transputer based machines like the Parsytec GC, special purpose architectures like
the BBN MP2000, etc. Each of the above architectures can be thought of as points in the state space of
possible alternatives in the design of parallel computers and result from a unique set of trade-off's in system

1

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

parameters and design decisions. These design trade-off's cause specific architectures to favor certain com-
putational models and thereby deliver maximum performance only to a specific set of applications which
lend themselves to one of those computation models. Further, this narrow applicability of current architec-
tures has prevented them from being cost-effective. As a result, although these architectures incorporate
large amount of computing power, they are not general enough to efficiently support today's computation-
intensive problems, that warrant multiple computational models and levels of parallelism. The U.S. Office
of Science and Technology Policy's Committee on Physical, Mathematical, and Engineering Sciences has
outlined a set of desired applications and their computing requirements in its report "Grand Challenges:
High Performance Computing and Communication" (1991) [27]. The Grand Challenge applications in-
clude climate modeling, fluid turbulence, pollutior dispersion, human genome, ocean circulation, quantum
chormodynamics, semiconductor modeling, superconductor modeling, combustion systems and vision and
cognition among others, and are estimated to requires Teraflops (1012 flops) of computing power. Tackling
applications of this magnitude and diversity would require a general, cost-effective, scalable, yet powerful
computing model which will be able to efficiently support its varied computational and communication re-
quirement. It is this realization that has spurred intense research in heterogeneous computing environments
[2, 1, 28, 29, 30, 27, 31, 321.

We believe that the future of parallel computing lies in the integration of the plethora of "specialized"
architectures into a single Heterogeneous High Performance Computing (HHPC) environment that allows
them to cooperate in solving complex problems (Figure 1.1). The HHPC environment will capitalize on

W.cwr SM.bA~hD

Vanm DWM]D

44 HHPC Environment

Stmagsytmm Waikitanam

S~p&"%oa Am'hkdaam

Figure 1.1: The Heterogeneous High Performance Computing Environment (HHPC)

existing architectures and on current advances in computing, networking and communication technology
to provide efficient, cost-effective, scalable, high-performance distributed computing.

Software development in any Parallel/Distributed environment is a non-trivial process and requires a
thorough understanding of the application and the architecture. This is apparent from the fact that, appli-
cations are currently able to achieve only a fraction of peak available performance [31, 27]. The percentage
of the peak performance achieved by standard parallel benchmarks on current parallel/distributed systems

2

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

oSystem Configuration Peak Speed if NAS Parallel Benchmark Efficiency(% B
NameI(# Processors) (Gigailops) HEP (j2') 1 FFT (256" x 128) CG (2 x 10)
Cray C90 16 16 50% 30% 16%
Intel iPSC/860 128 2.6 15% 20% 3%
TMC CM-200 64 K 20 12% - -

TMC CM-2 64 K 14 4%
TMC CM-2 16 K 3.5 3%

Note:

NAS = Numerical Aerodynamic Simulation

EP = Highly -parallel Monte Carlo Simulation

FFT = 3-D Poisson PDE solver using FFT

CG = Conjugate Gradient linear equation solver for a banded system of equation

Table 1.1: Current utilization of parallel/distributed systems

is shown in Table 1.1 [27]. The software development problem further intensifies as systems evolve into
HHPC environments. The HHPC environment, while increasing the computing power and design flexi-
bility available to the user, provides increased degrees of freedom and therefore requires the developer to
make a larger number of design choices. During the course of software development in an HHPC environ-
ment, the developer is required to select the optimal hardware configuration for a particular application,
the best decomposition and mapping of the problem onto the selected hardware configuration, the best
communication and synchronization strategy to be used, etc. Using conventional techniques, this would
require extensive experimentation and data collection before these parameters can be resolved. The pro-
cess is not always feasible since parallel/distributed systems are expensive resources and usually not freely
available for such experimentation. Further, programming, running and data collection on most paral-
lel/distributed systems is a tedious process and exhaustively evaluating the possible alternatives is usually
not practical. Most existing evaluation tools post-process traces generated during an execution run. This
implies instrumenting source code, executing the application on the actual hardware to generate trace files,
post-processing these trace files to gain insight into the execution and overheads in the implementation,
refining the implementation and then repeating the process. The process is repeated until all possibilities
have been evaluated and the best options for the problem have been identified. Clearly, this development
overhead explains the poor exploitation of existing parallel/distributed platforms.

Consequently, there is a need for a software development environment which can assist the developer in
uncovering the inherent parallelism in the application, to make efficient use of the underlying computing
resources and to exploit the heterogeneity in both, application and hardware. Such an environment should
outline the stages involved in the software development process and incorporate tools to support the devel-
oper during each stage of application development starting from the specification and design formulation
stages through the programming, mapping , distribution, scheduling phases, tuning and debugging stages
upto the evaluation and maintenance stages.

3

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

1.2 A Model for HHPC Software Development

The HHPC software development model described in this chapter is defined as a set of stages which
correspond to phases typically encountered in the software development process. At each stage, a set of
support tools which can assist the developer are identified. The stages can be viewed as a set of filters in
cascade (see Figure 1.2). The input to this system of filters is the application description and specification
which is generated from the application itself (if it is a new problem) or from existing sequential code
(porting of dusty decks). The final output of the model is a running application. All intermediate stages
are managed within the environment, with user inteiaction. Feedback loops are present at some stages
to enable step-wise refinement and tuning. Descriptions of models for traditional parallel computing
environments spanning parts of the software development process can be found in [33, 36, 37]. The stages
in the HHPC software development model are described in the following sections. To illustrate the validity
of the proposed model and the application of the various stages of the model, we use the Modeling of Stock
Option Pricing [39] as a running example through the discussion below.

1.3 Parallel Modeling of Stock Option Pricing

Stock options are contracts that give the holder of the contract the right to buy or sell the underlying stock
at some time in the future for an agreed upon striking or exercise price. Option contracts are traded just
as stocks and models that quickly and accurately predict their prices are valuable to the traders. Stock
option pricing models estimate the price for an option contract based on historical market trends and
current market information. The model required three classes of inputs: (1) Market Variables which
include the current stock price, call price, exercise price and time to maturity. (2) Model Parameters
which include the volatility of the asset (variance of the asset price over time), variance of the volatility and

the correlation between asset price and volatility. These parameters cannot be be directly observed and
must be estimated from historical data (using optimization techniques). (3) User Inputs which specify
the nature of the required estimation; e.g. American/European call, constant/stochastic volatility, time
of dividend payoff, and other constraints regarding acceptable accuracy and running times. A number of
option pricing models have been developed using varied approaches, e.g. non-stochastic analytic models,
Monte Carlo simulation models, binomial models, binomial models with forced recombination, etc. Each
of these models involve a set of tradeoff's in the nature and accuracy of the estimation and suit different

user requirements. In addition, these models make varied demands in terms of programming models and
computing resources.

1.4 Model Inputs

The HHPC software development model presented in this chapter addresses two classes of applications:

1. "New" Application Development: This class of applications involves solving new problems using

the resources of a HHPC environment. Developers of this class of applications have to start from
scratch using a textual description of the problem.

4

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

Applicationn Speciflesuon

Applcahtio Aaahysis Smag

Modelsatk

Application DevetopokaaiStage

Par.UIizd rur

Ev.Iuetion Stagelau

Mainwasceffivolution Stage

Figure 1.2: A Model for HHPC Software Development

5

CHAPTER I. A SOFTWARE DEVELOPMENT MODEL

2. Porting of Exiting Applications (Dusty-Decks): This class includes developers attempting
to port existing codes written for single processor or closely-coupled multiprocessor systems, to a
HHPC environment. Developer of this class applications start off with huge listings of (hopefully)
commented source code.

The input to the HHPC software development model is an application specification in ti. in of a
functional flow description of the application and its requirements. The functional flow description is
a very high-level flow diagram of the application outlining the sequence of functions that have to be
performed. Each node (termed as functional module) in the functional flow diagram is a black-box and
contains information about (1) its input(s), (2) the function to be performed, (3) the desired output(s)
and (4) the requirements at each node. Implementation issues like the approach or algorithm to be used
to realize a function or the nature of data representation to be used, are not included in this specificat in.
The application specification can be thought of as corresponding to the "user requirement document" in a
traditional life-cycle models.

In the case of new applications, the inputs are generated from the textual description of the problem
and its requirements. In the case of dusty decks code porting, the developer is required to analyze the
existing source code. In either case, expert system based tools and intelligent editors, both equipped with
a knowledge base to assist in analyzing the application, are required. In Figure 1.2, these tools are included
in the "Application Specification Filter" module.

The stock price modeling application comes under the first class of applications. The application specifi-
cations based on the textual description presented in Section 1.3, is shown in Figure 1.3.

It consists of three functional modules: (1) The input module which accepts user specification, market
information and historical data and generates the three classes of inputs required by the model. (2) The
estimation module consists of the actual model and generates the stock option pricing estimates. (3) The
output module provides a graphical display of the estimation to the user. The feedback from the output
module to the input module represents tuning of the user specification based on the output displayed.

1.5 Application Analysis Stage

The first stage of the HHPC software development model is the application analysis stage. The input to this
stage is the application specification as described in Section 1.4. The function of this stage is to thoroughly
analyze the application with the sole objective of achieving the most efficient implementation. An attempt
is made, in this stage, to uncover any parallelism inherent in the application. Functional modules which
can be executed concurrently are identified and the dependencies between these modules are analyzed.
In addition, the application analysis stage attempts to identify standard computational modules which
can later be matched with a database of optimized templates in the application development stage (for
example, nodes in the application specification performing a Fast Fourier Transform can be clustered and
tagged so that they can be matched with an appropriate FFT template in the application development
stage). The output of this stage is a detailed process flow graph called the "Parallelization Specification"
where the nodes represent functional components and the edges represent interdependencies. Thus, the

6

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

Ip." I

-Um tPl ld=

WIN" 3mufo..

Iq Ltbg. (10),d:K

Imonlo hs~iswob.m

V.

0 lhkftb

Row hOpFOR&O-Om

Figure 1.3: Stock Option Pricing Model: Application Specifications

problems dealt with in this stage can be summarized as: (1) module creation problem, i.e. identification
of tasks which can be executed in parallel; (2) module classification problem i.e. identification of standard
modules; and (3) module synchronization problem, i.e. analysis of mutual interdependencies. This stage
corresponds to the "design phase" in standard software life-cycle models and its output corresponds to the
"design document".

The tools which can assist the user at this stage of software development are: (1) smart editors which
can interactively generate directed graph models from the application specifications; (2) intelligent tools
with learning capabilities which can use the directed graphs to analyze dependencies, identify potentially
parallelizable modules and attempt to classify the functional modules into standard modules; and (3)
problem specific tools equipped with a database of transformations and strategies applicable to the specific
problem.

7up k

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

Input Compoemt-A Input Cempemast-3

tnpuus Usr Specificsaiui Jnpis Hitorical Dam
Mae Infortion Famet Gemssm Modd Inpue

Fumst CGee Modd nputs otuts ModmParmeers
Oupws Marke Vauiables P up High Speed Disk 1./0

Reqs Grapbical Usr Inuufam

Eatsdimom ctmpewo

in-oA Mruket VaialeMs;

Reqs Hih Speed High E soimtiio n SpciqcsionSpedDs

FFu Ea.4:is Stn in c Option Prices
Tio unning Pricing Information
Reqs Compute Fngine (SIMD)

Output C cmponntt)A Output Cdgepomig od

Inpaue Estinged Pricing Infoataon Ind esdinputs Pto gnetg Infovil d on
idnie Visuatation of EndediDu reFned Dt a Stompgl ont Disk
Outputs Graphical Display Omutpmuts Disk Skl
Reqs High Speed High Resolution Raqa High Speed Disk 1/0

Grap1ics I_ _ _ __ _ _ _I__ _

Figure 1.4: Stock Option Pricing Model: Parallelization Specifications

The parallelization specification for the running example is shown in Figure 1.4. The Input functional
module is subdivided into two functional components: (1) analyzing historical data and generating model
parameters; and (2) accepting market information and user inputs to generate market variables and es-
timation specifications. The two components can be executed concurrently. The Estimation module is
identified as a standard computational module and is retained as a single functional component (to avoid
getting into the details of financial modeling in this paper). The Output functional module consists of two
independent functional components: (1) rendering the estimated information onto a graphical display; and
(2) writing it onto disk for subsequent analysis.

8

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

1.6 Application Development Stage

The application development stage receives as its input the Parallelization Specifications and produces the
Parallelized Structure which can then be compiled and executed. This stage is made up of 5 modules: (1)
Algorithm Development Module; (2) System Level Mapping Module; (3) Machine Level Mapping Module;
(4) Implementation/Coding Module; and (5) Design Evaluator Module. It should be noted, however, that
these modules are not executed in any fixed sequence or a fixed number of times. There exists instead, a
feedback system from each module to the other modules through the design evaluator module. This allows
the development as well as the tuning to proceed in an iterative manner using step-wise refinement. A
typical sequence of events in the application development stage can be outlined as follows:

" The Algorithm Development Module uses an initial system level mapping (possibly specified via user
directives) to select appropriate algorithms for the functional components.

" The Algorithm Development Module then uses the services of the Design Evaluator Module to eval-
uate applicable algorithms and to tune the selection of the algorithmic implementations.

"* The System Level Mapping Module uses feedback provided by the Design Evaluator Module and the
Algorithm Development Module to tune the initial mapping.

"* The Machine Level Mapping Module selects an appropriate machine level distribution and mapping
for the particular algorithmic implementation and system level mapping. Once again, feedback from
the Design Evaluator Module is used to select between alternate mappings.

" This process of step-wise refinement and tuning is continued until some termination criterion is met
(e.g. until some acceptable performance is achieved or up to a maximum time limit).

" The selected algorithm, system level mapping and machine level mapping are realized by the Imple-
mentation/Coding Module which generates the parallelized structure.

1.6.1 Algorithm Development Module

The function of the algorithm development module is to assist the developer in identifying functional
components in the parallelization specification and selecting appropriate algorithmic implementations.
The input information to this module includes: (1) the classification and requirements of the components
specified in the parallelization specification; (2) hardware configuration information; and (3) mapping
information generated by the system level mapping module. It then uses this information to select the best
algorithmic implementation and the corresponding implementation template from its database. It also
analyzes the requirements of the selected algorithm (e.g. communication requirements, synchronization
requirements, storage requirements, etc.). The algorithm development module uses the services of the
design evaluator module to select between possible algorithmic implementations. Tools needed during
this phase include an intelligent algorithm development environment (ADE) equipped with a database of
optimized templates for different algorithmic implementations, an evaluation of the requirements of these
templates and an estimation of their performance on different platforms.

9

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

The algorithm chosen to implement the Estimation Component of the stock option pricing model (shown
in Figure 1.4), depends on the nature of the estimation (constant/stochastic volatility, American/European
calls/puts, dividend payoff time, etc) to be performed and the accuracy/time constraints. For example,
models based on Monte Carlo simulation provide high accuracy. However, these models are computation-
ally intensive and slow and thereby cannot be used in real-time systems. Further they are not suitable
for American calls/puts when early dividend payoff is possible. Binomial models are less accurate than
Monte Carlo models but are more tractable and can handle early exercise. Models using constant volatil-
ity (as opposed to treating volatility as a stochastic process) lack accuracy but are simplistic and easy
to compute. Modeling American calls where in the option can be exercised anytime during the life of
the contract (as opposed to European calls which can only be exercised at maturity) is more involved
and requires sophisticated and computationally efficient model (e.g. binomial approximation with forced
recombination).

The algorithmic implementations of the input and output functional components must be capable of
handling terminal and disk I/O at rates specified by the time constraint parameters. Further, the output
display must provide all information required by the user.

For an illustration of the operation of this module for a predefined mapping, consider a functional compo-
nent which requires the solution ot a system of linear equations. If it is mapped onto an SIMD architecture,
a direct parallelization of the Gauss-Jordan algorithm is applicable. However, if the target machine has a
MIMD architecture, the blocked Gauss-Seidel algorithm will be more efficient.

1.6.2 System Level Mapping Module

The function of the system level mapping module is to use the information provided by the algorithm
development module to appropriately map the functional components of the application to the appropriate
computing elements of the HHPC environment. The objective is to map each functional component to the
computing element that maximizes the performance of the application. Some data and load distribution
issues may have to be resolved in this module. In addition, this module may also cluster functional
component nodes specified in the parallelization specifications to obtain a better mapping. The system
level mapping module uses feedback from the evaluation module to select between different mapping
candidates.

System level mapping can be accomplished in an interactive mapping environment equipped with intelli-
gent tools for analyzing the requirements of the functional components, and a knowledge base consisting
of analytic benchmarks for the different computing elements and interconnection media in the HHPC en-
vironment. The tools use this information to interactively select an appropriate mapping of algorithmic
implementations to the computing elements.

The algorithms for stock option pricing have been efficiently implemented on architectures like the CM2
and the DECmpp-12000 [391. Thus, an appropriate mapping for the estimation functional component in
the parallelization specification in Figure 1.4 is an SIMD architecture. The input and output interfaces
(Input/Output Component-A) require graphics capability with support for high speed rendering (output
display) and must be mapped to an appropriate graphics stations. Finally, Input/Output Component-B

10

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

requires high speed disk I/O and must be mapped to an I/O server with such capabilities.

1.6.3 Machine Level Mapping Module

The machine level mapping module performs the mapping of the functional component(s) onto the pro-
cessor(s) of the computing elements. This stage resolves issues like data partitioning, load distribution,
control distribution, etc. and makes transformations specific to that computing element. It uses the feed-
back from the design evaluator module to select between possible alternatives. Machine level mapping
can be accomplished in an interactive mapping environment similar to that described for the system level
mapping module, but equipped with information pertaining individual computing elements of a specific
computer architecture.

The performance of the stock option pricing models is very sensitive to the layout of data onto the processing
elements. The optimal layout is dictated by the input parameters (e.g. time of dividend payoff, terminal
time, etc.) and by the specification of the architecture onto which the component is mapped. For example,
in the binomial model, the continuous time processes for stock price and volatility are represented as discrete
up/down movements forming a binary lattice. Such lattice is generally implemented as asymmetric arrays
which are distributed onto the processing elements. It has been found that the default mapping of these
arrays (i.e. in two dimensions) on architectures like the DECmpp-12000, lead to poor load balancing and
performance, specially for extreme values of the dividend payoff time [40]. Further the performance in case
of such a mapping, is very sensitive to this value and has to be modified for each set of inputs. Hence, in
this case it is favorable to explicitly map them as one dimensional arrays. This is done by the machine
level mapping module. As another example of the mapping performed by this module, consider the case
of a functional component performing linear algebra which is allocated to a hypercube architecture. The
function of the machine level mapping module would be to decide whether to distribute the matrix in a
block or cyclic fashion and whether to perform this distribution in a column or row major fashion.

1.6.4 Implementation/Coding Module

The function of the implementation/coding module is to handle all code generation and perform the code
filling of selected templates so as to produce parallel code which can then be compiled and executed on the
target computer architecture. This module incorporates all machine specific codes, handles the introduction
of calls to communication and synchronization routines and takes care of the distribution of data among
the processing elements. It also handles any input/output redirection that may be required. Machine
specific transformations and calls to optimized machine specific libraries are inserted by this module.

With regard to the pricing model application, the implementation/coding module is responsible for intro-
ducing the machine specific communication routines. For example, the binary estimation model makes use
of the "end-of-shift" function for its nearest-neighbor communication. The corresponding function call in
C* (CM2) or MPL (DECmpp-12000) are introduced by this module. A possible machine specific opti-
mization that can be introduced by this module is to reduce communication by making use of in-processor
arrays. This optimization can improve performance by about two orders of magnitude [391.

11

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

1.6.5 Design Evaluator Module

The design evaluator module is a critical component of the application development stage. Its function is
to assist the developer in evaluating different options (e.g. algorithms, implementations, system level map-
pings, machine level mappings including data partitionings, etc.), available to each of the other modules,
and identifying the option that provides the best performance. It receives information about the hardware
configuration, the application structure, the requirements of the selected algorithms and the mappings.
This input information is then used to estimate the performance of the application on the target computer.
Further, it provides insight into the computation and communication costs, the existing idle times and the
overheads. This information can be used by the other modules to identify regions where further refinement
or tuning is required. The module can evaluate the correctness of the implementation using performance
debugging as a criterion and can detect synchronization error like deadlocks. Finally, many runtime sce-
narios can be evaluated (e.g. system load, network contention). The keys features of this module are:
(1) the ability to provide evaluations with the desired accuracy, with minimum resource requirements and
within a reasonable amount of time; (2) the ability to automate the evaluation process; and (3) the ability
to perform the evaluation within an integrated workstation environment without running the application
on the target computers. Support applicable to this module consists primarily of performance prediction
and estimation tools. Simulation approaches can also be used to achieve some of the required functionality.

1.7 Compile-Time & Run-Time Stage

The compile-time/run-time stage handles the task of executing the parallelized application generated by
the development stage to produce the required output. The input to this stage is the parallelized source
code (parallelized structure). The compile-time portion of this stage consists of set of cross compilers for the
computing elements and tools for scheduling and allocation. These compilers have appropriate optimization
capabilities and can introduce machine-specific optimizing transformation into the parallelized structure.
The compile-time software also handles the loading of the executables onto appropriate computing elements.
The run-time portion of this stage handles run-time functions like debugging, scheduling, dynamic load
balancing, migration, irregular communications, etc. It also enables the user to (non-intrusively) instrument
the code for profiling and debugging and allows checkpointing for fault-tolerance. During the execution
of the application, it accepts outputs from the different computing elements and directs them for proper
visualization. It intercepts error messages generated and provides proper interpretation.

1.8 Evaluation Stage

In the evaluation stage, the developer, retrospectively evaluates the design choices made during the de-
sign process and looks for ways to improve the performance. The evaluation stage performs a thorough
evaluation of the execution of the entire application, detailing communication and computation times,
communication and synchronization overheads and existing idle times at every execution level (applica-
tion level, node level, process level, procedure level, etc.). It uses this evaluation to identify regions in
the implementation where performance improvement is possible. The evaluation procedure is accurate,

12

CHAPTER 1. A SOFTWARE DEVELOPMENT MODEL

non-intrusive and does not alter the execution order of the application. Further, it allows a cost-effective
evaluation (in terms of time and resources) of the application for a representative inputs set as well as the
effect of various run-time parameters like system load, network contention, on performance. The scalability
of the application with machine and problem size is also evaluated. The key features of this stage are: (1)
the ability to provide desired accuracy and granularity of evaluation while maintaining tractability and
non-intrusiveness; and (2) the ability to perform the evaluation within a friendly workstation environment
without requiring the actual hardware. Support applicable to the evaluation stage include different analytic
tools, monitoring tools, simulation tools and prediction/estimation tools.

1.9 Maintenance/Evolution Stage

In addition to the above described stages encountered during the development and execution of HHPC
* applications, there is an additional stage in the life-cycle of this software which involves its maintenance
and evolution. Software maintenance is an important part of the software life-cycle and is known to span
around 70% of this cycle. Maintenance includes monitoring the operation of the software and ensuring
that it continues to meet its specifications. It involves detecting and correcting bugs as they surface. The
maintenance stage also handles modifications needed to incorporate changes in the system configuration.
Software evolution deals with improving the software, adding additional functionality, incorporating new
optimizations, etc. Another aspect of evolution is the development of more efficient algorithms and cor-
responding algorithmic templates and the incorporation of new hardware architectures. To support such
a development, the maintenance/evolution stage provides tools for the rapid prototyping of hardware and
software and for evaluating the new configuration and designs without having to implement them. Other
support required during this stage includes tools for monitoring the performance and execution of the
software, fault detection and recovery tools, system configuration and configuration evaluation tools and
prototyping tools.

13

Chapter 2

Tracker Description

2.1 Introduction

In this section we present an overview of the Multi-Target Tracker. The concurrent multi-target tracker [3,
?] provides a non-trivial CPU and memory-intensive application (34,000 lines of code). It is one of the
modules that fits into the Battle Management Command Control and Communication system. This system
consists of a set of components which interact with each other by exchanging information for data process-
ing. The important components of the overall system include an Environment Generator and Synthesizer,
the Tracker System, Decision Control System and an External Graphics Communication Module, as shown
in Figure 2.1.a.

The Multi-Target Tracker gets information from the Environment Generator and Synthesizer. It processes
this data and generates the parameters required by the Decision Control System. The Decision Control
System uses this information along with data from the Environment Generator and Synthesizer to make
decisions on how to manage the existing battle management command and control scenario. This informa-
tion is fed to an External Graphics Communication module. This module acts as an extension or front-end
to the Decision Control Module. For example in a Missile Tracking system the front-end can serve as a
visualization tool or data interpreter which shows the trajectory and position of launched missiles. The
Fire Control Module performs the actions directed by the Decision Control System.

The Multi-Target Tracker shown in Figure 2.1.b is designed to provide estimation of launch vehicle param-
eters for individual targets/missiles in multi-target scenarios. The system deals with a mass raid scenario
and is designed to process situations with varying number of targets and launch sites. The tracker receives
input from the Environment Generator and Synthesizer module (see Figure 2.1.a) in terms of sensor scans
and target information. The Multiple Target Tracking system has two geostationary sensors which scar
specific launch sites for missiles or targets launched from the surface of earth. The launch sites are specified
in terms of latitudes and longitudes. The data from these two geostationary sensors are fed to two Focal
Plane Tracking modules at 5 second intervals. The Focal Plane Tracking modules process this data using

14

CHAPTER 2. TRACKER DESCRIPTION

Muld.ataget Mn Envirmnment Generator

Tracker and Synthesizer

Graphics C

Communication

Decision

Multi-target Control

Tracker system

Fig 2.1.a Battle Management Command Control Communication Scenario

Sensor] Sr Sensor 2{;.1

Fig 2. 1.b Concurrent Multi-target Tracker Scenario

Figure 2.1: Battle Management Command Control and Communication

CHAPTER 2. TRACKER DESCRIPTION

kinematic filtering algorithms, track pruning and prediction algorithms. The output of this module is an
initial prediction of trajectories of launched missiles. This data is then fed to a 3D Tracking System which
uses the data from the two Focal Plane Tracking modules to prune duplicate tracks (if any), extend exist-
ing tracks, prune bad tracks and initiate new tracks. The output of the system is a list of target trajectories.

While processing the input data, the tracker builds a database which is used by different algorithms
implemented in the Multiple Target Tracking system. The system has various data pruning features to
prevent explosion of the track file database. Information processing in the tracker is a complex issue.
This issue has been handled by concurrently decomposing the database which is distributed for concurrent
processing to various nodes. The processed data is then collected to update the database for further pro-
cessing. This in effect can be viewed as a distributed database information processing environment.

There are a number of algorithm implementations which impact the performance of this code on different
architectures. A Newton-Raphson iteration involving sxiiall matrices is done for every track; straightfor-
ward vectorization of this task is ineffective. TraLk splitting and merging give low efficiencies on vector
processor architectures. The Hypercube code requires two steps which are unnecessary in the sequential
code: aggregation of a global table of track data and redistribution of the tracks to ensure load balanc-
ing and minimal data transfer. Global table construction and track redistribution are accomplished with
general routing software built on communication primitives. Additionally, on message-passing machines,
a time-consuming global communication phase is necessary in order to sort the tracks. This co '-led with
the unusual memory requirement of the code, leads to a rapid loss in performance when the grain size
(number of tracks per processor) becomes small.

The tracker system has been developed in a parallel/distributed environment to tackle the infe.mation
processing problem. The system is a scalable solution and has been implemented on various architectures
which include iPSC/860, nCUBE, and a cluster of Sun and IBM workstations. The software we used

include Express [16], PVM [14], PICL [15] and p4 [17].

The biggest single problem in running the tracker program on the iPSC/860, nCUBE and cluster of
workstations was found to be the rather limited node memory on these machines. The track extension
formalism used in the code is such that intermediate track files can have perhaps four times as many entries
as there are real targets. This is particularly true at early times of the track exercise. The operating system
requirement on the nodes reduces the availabilty of memory. As a result, the number of targets that are
processed has been reduced substantially.

The tracking module will help in the development of specific benchmarks for different platforms like
nCUBE, iPSC/860 and cluster of Sun and IBM worstations. It demonstrates the utility of benchmarks in
parallel software development methodology. Additionally, the tracker will be used to examine the behav-
ior and performance of various tools that have been used to implement the tracker program on different
architectures mentioned above.

16

CHAPTER 2. TRACKER DESCRIPTION

2.2 Description of Concurrent Multi-Target Tracking Scenario

In the following sections we describe Single Target Tracking, Multiple Target Tracking and the concurrent
aspects of the Tracker. The tracker deals with the boost, post-boost and midcourse phases of a "mass raid
scenario" and is designed to process a few thousand targets. The nominal task for the tracking program is
to provide state information on individual targets given two dimensional line-of-sight data from the sensors
at regular time intervals. A Single Target Tracking system is formed from two elementary Focal Plane
Tracking subsystems. Each Focal Plane Tracking sub-system processes individual data from its associated
sensor, forming lists of mono tracks. These mono tracks are shared between the two Focal Plane Tracking
sub-systems, and a single set of 3D tracks is formed.

The targets of interest for the tracking program are thrusting rocket boosters. In an appropriate iner-
tial time frame, the time dependence of the boost acceleration vector, abt, is assumed to be known. An
individual target is then completely specified by a four component launch parameter vector

p = (01, ti, 11., ti) (2.1)

where the components 01 and 61 specify the latitude and longitude of the launch site, It, specifies the initial
launch azimuth relative to due north, and t, specifies the time of launch. For arbitrary threat scenarios,
the objective of the tracking program is to determine, in real time, parameter vectors for each target. The
measurements available to the tracking program are projections of booster position vectors onto a two-
dimensional orthogonal grid. The sensor for the tracking model provides two dimensional measurements
for all targets at fixed time intervals (A T) (typically 5 seconds). For each such scan of data, the activities
of the tracking program can be divided into two major components: [3,?, ?].

1. Single Target Tracking

2. Multiple Target Tracking.

2.3 Single Target Tracking

The tasks accomplished by Single Target Tracking tasks are

"* Track System Initialization and

"* Focal Plane Tracking.

2.3.1 Track System Initialization

The Track System Initialization [3, ?, ?I manages the initialization of various tracking modules which are
as follows:

17

CHAPTER 2. TRACKER DESCRIPTION

Number of Sites
Site I Description

Site N Description

Site Description ->

Number of Objects, Latitude, Longitude
Parameters, First Target

Parameters, Last Target

Parameter Description ->

Target type (Primary or Secondary)
Latitude, Longitude
Aim, thetal, theta2

Figure 2.2: Format of Input Data for Internal Generation of Threats

"* Focal Plane Tracking Filter,

"* Global Focal Plane Tracking Parameter Module,

"* Track Extension Module,

"* Maneuver Processing Parameter Module,

"* Focal Plane Report Module, and

"* 3D ECI Filter

2.3.2 Focal Plane Tracking

Focal Plane Tracking consists of the Generation of Focal Plane Data Set and a 3-stage filter which consists of
Focal Plane kinematic filtering, Estimation of Booster Launch Parameters from Focal Plane State Vectors
and a Combination of Individual Parameter Estimates using a Second Filter.

o Generation of Focal Plane Data sets
The tasks involved in generating the focal plane data set aims at generating threats internally. The

18

CHAPTER 2. TRACKER DESCRIPTION

inputs for generating threats include (a) Number of Sites and (b) Description of each site. The
Description of each site specifies parameters of all targets in that site. The parameters for each
target include the Target type, Latitude, Longitude, Aim, 01 and 02 (see Figure 2.2). The tasks
involved in the generation of focal plane data sets can be itemized as follows:

1. Set sensor specification list for a given scan. Fill the x and y entries of sensor definition for the
requested time.

2. Initialize a structure for all the objects that have been launched. All these objects are visible
objects. The size of the object list is known globally.

3. Generate data for visible objects.
4. Decompose data blocks and distribute them among nodes such that each node is assigned to

different parts of the object list.
5. Calculate true focal plane track projections of the target vector of each object onto the sensor

focal plane. The true focal plane projections are the focal projections, velocities and acceleration
at time 't'.

6. Sort data items and store data count.

" Focal Plane Kinematic Filtering
This filter processes the 2-dimensional measurements from the sensor to form estimates of projected
kinematic quantities as seen in a sensor focal plane. Positions, velocities, acceleration and jerks (j
= da/dt) along with each of two orthogonal axes are used for the state variables in the filter, with
stochastic contributions to the jerk introduced to allow the filter to respond to targets traveling along
largely unconstrained trajectories. The size of this dynamic uncertainty is the only free parameter of
the kinematic filter, and the determination of an appropriate value is discussed in detail in Ref [9].
Since the focal plane filter is linear, all gain and covariance matrices can be computed and tabulated
during initialization of the tracking program. The primary output of the focal plane kinematic filter
is an estimate for the reduced state vector,

XFP[k] = (zx, z., dzo/dt, dz./dt)T (2.2)

consisting of projected positions and velocities at time step tk.

"• Estimation of Booster Launch Parameters from Focal Plane State Vectors
In this step the equation stated above is used to provide an estimate of the launch parameters of
the target. For the specific trajectory model an individual trajectory is specified by a 4 component
parameter vector

p = (0t, ,,•t, to) (2.3)

The parameters of this equation have been discussed in the previous section. For the given threat
scenario the four components of Eq. 2.2 are sufficient for determining the the four launch parameters
in Eq. 2.3.

"* Combination of the Individual Parameters using a Second Filter
This step of the 3 stage filter simply inverts the relation

XOBS[kI = f(p). (2.4)

19

CHAPTER 2. TRACKER DESCRIPTION

As justified in Ref [9], the launch parameter and covariance estimates at each scan are (essentially)
independent, and the last step of the 3-stage filter simply combines these estimates to form a cumu-
lative paxameter/covariance estimate, using completely standard techniques.

Focal Plane Tracking has the following concurrent tasks

- Focal Plane Track Extensions,

- Track Redistribution

- Focal Plane Report Construction

- Focal Plane Track Initiations.

Refer to [3, ?, ?] for details. The timings for these concurrent tasks on 2,4,8 and 16 nodes are used
to estimate the performance of the Multi-Target Tracker.

2.4 Multiple Target Tracking/3D Tracking

The essential problem of Multiple Target Tracking is that of associating individual sensor reports with
distinct underlying tracks. If two tracks in the system are found to be equivalent then one of the tracks is
simply deleted. The task of identifying equivalent tracks in the Focal Plane track file dictates the manner
in which the Focal Plane tracking problem is decomposed for concurrent execution. The Multiple Target
Tracker also often referred to as the 3D tracker, maintains one track per sensor data point, representing
the best global interpretation of tracks through the data. In place of the multiple hypothesis model used
for Focal Plane tracking, the Multiple Target Tracker is based on optimal associations. The optimal
associations are of two distinct forms [8]:

1. A track-split extension mechanism which extends tracks already in a global track file with sensor
reports fo•, new data scans.

2. A track initiator which generates new entries in the global track file from previously unused
data points.

The adoption of an optimal association [6] formalism essentially trivializes the concurrent decomposition
of the 3D tracker. The 3D tracks are distributed among the nodes in such a way that the number of tracks
per node is constant. The challenge of concurrent 3D tracking comes entirely in performing the two types

of optimal associations. A general concurrent algorithm for optimal association (Munkres Algorithm) is
used [4]. The resource requirement for the general optimal association problem is such that a straightfor-
ward use of the general association formalism is completely inappropriate. Instead the concurrent algorithm
proceeds as follows:

1. Each node computes a list of association keys (i.e., projections onto an appropriate reference
axis), for all items in its local track list.

2. The distributed lists of association are globally sorted.

20

CHAPTER 2. TRACKER DESCRIPTION

3. The sorted lists are divided into a number of sub-blocks determined by appropriately large gaps
in the list of keys.

4. The sub-blocks are assigned to individual nodes and the assignment problems for sub-blocks are
solved using a modified formalism of the general assignment problem.

The number of sepaxate sub-blocks found should be large as compared to the number of nodes in the
tracking system. This is always the case for the concurrent tracker problem. The 3D tracker also evaluates
the trajectory fit for all 3D tracks in the system. All tracking is done using kinematic system models. The
3D track file str-ctures are huge (more than 100 floating point numbers per track). Once the tracks are
distributed to each node, the estimation of track parameters is performed concurrently with each node
independently performing this task for its own subset of the global track file. Multiple Target Tracking
tracking is accomplished through the following tasks:

"* Track File Redistribution

"• Data Prediction and Associations

"* Identification and Deletion of Poor Tracks

"• Focal Plane Report Associations and

"* 3D Initializations

2.5 Concurrent Aspects of Multi-Target Tracker

Due to the large number of track candidates, the main tracking task is the processing of a global track
file. The global track file contains all the details of processed data obtained from the two geostationary
sensors and threat description file. The Focal Plane Tracking module uses this track file for coarse track
predictions. After each scan of data, this track file is updated by the Focal Plane Tracking modules. The
3D tracking system uses this track file to do all the necessary processing. The size of this global track file
depends on the number of sweeps/scans of sensor observations and the total number of targets that are
launched. The size of data to be processed here offers opportunities for concurrent processing. Each node
has access to the global file. Concurrency is obtained by assigning parts of the global track file to each
node. Each node performs the sequential Multiple Target Tracking algorithm for its subset of data in the
global track file. This file is then redistributed to all the nodes in preparation for the next scan of data.
Redistribution is done such that all tracks ending at a given data point must be assigned to the same node
in the next scan. The underlying assumption is that tracks ending at a given datum, if grouped together,
will give the maximum number of track-hit associations.

The concurrent tasks that are done by the Focal Plane Tracking Module are as follows:

* Focal Plane Track Extension
In this task the track extension algorithm uses the global track file to extend already existing or

21

CHAPTER 2. TRACKER DESCRIPTION

identified tracks. It is assumed that if a track appears in three consecutive scans then this is an
authentic track.

" Track file Redistribution
Data processed after each scan is redistributed as discussed above.

" Focal Plane Report Construction
The sensor reports of processed data is created concurrently by each node.

" Focal Plane Track Initiation
The track initiation algorithm uses the global track file to identify any new tracks.

The various concurrent tasks associated with the 3D Tracking Module are as follows:

" 3D track extension
In this task the track extension algorithm uses the tracks generated by the Focal Plane Tracker and

extends existing tracks using the same techniques used by the Focal Plane Tracker. For further details
refer [6, ?].

"* 3D report association
The Focal Plane reports generated by the Focal Plane Trackers are combined to produce a single
report. Additionally the report file for the present scan is correlated with the previous two scans so
that consistent track identifiers are maintained throughout the lifetime of the threat.

" 3D track initiation
The 3D track initiator investigates all three-hit candidate segments from the present and previous
scans of data attempting to find potential tracks which satisfy simple kinematic cuts for the estimated
velocities and accelerations of the 3-hit segment. Any new tracks produced as a result of report
associations are initiated.

"* Trajectory estimation.
This tasks generates a global report file containing parameter estimates, covariance matrices and
uniqueness tags with precisely one entry for each sensor report association. This file is then sorted
according to the estimated launch longitudes of the individual threats.

For more details regarding the tasks mentioned above, refer to [3, ?, ?]. The next section describes the
initial implementation of the tracker which will be used to describe our implementation of the tracker on
different tools.

2.6 Initial Implementation of the Tracker

The initial version of the tracker was implemented using the C programming language and CUBIX program-
ming model (see Appendix I; Introduction to Express). All communication in the tracker was implemented
using CrOS III primitives. Since CrOS III primitives [7] are supported by Express, the first step was to

22

CHAPTER 2. TRACKER DESCRIPTION

1. Communication call: Implements a read and write simultaneously
* cshift(inbuf, sizeof(inbuf), source, outbuf, sizeof(outbuf), destination)

where: inbuf is the buffer for incoming message and
: outbuf is the buffer for outgoing message

2. Global Communication calls: These calls implement global sum,
global maximum and global minimum.

* glob.sum(value),
* glob.max(value),
* glob.min(value).

3. Topology Mapping calls:
"C gridinit(dimension, no.of.processors),
", gridcoord(processor.number, &position.in.grid),
"* prevynode - grid.chan(processor.number, dimension, -1),

"* nexzt-node u grid-chan(processor-number. dimension, 1).

Figure 2.3: Cros III Primitives

port it to Express which was known to be stable and had some history of support and maintenance. This

task involved porting the tracker to Express by developing a CUBIX version using universal primitives.

Universal primitives refer to those primitives that are supported by most message passing tools (eg., send
and receive primitives). While these primitives may not have the same syntax, their semantics remain the

same for all the tools. On the other hand primitives like ezparam in Express [16] are specifically aimed at

grabbing the cube environment. Such primtivies are not provided by all tools. In what follows we discuss

the features of the original implementation of the concurrent tracker and our approach to implement it

using universal primitives.

2.6.1 Communication Primitives in the Concurrent tracker

The communication primitive cshift [7] is used for all communications in the original implementation of

the concurrent tracker. The purpose of cshift is to allow a group of nodes to both write and read messages

among themselves without the application program specifying which nodes write first and which nodes

read first. For instance, a pair of nodes can exchange messages and a group of nodes can pass messages in

one step around a ring using cshift. The essential feature is that cshift is complemented on the other'side

of a channel by itself, rather than by a different routine. It must do both a write and read, but the order

in which it calls them must be different for different nodes.

23

CHAPTER 2. TRACKER DESCRIPTION

001 1Oi

Control Processor 0

Labelling of processor n•mabers
2 and channlsi tlW f

dimensional kypercube

2 2

0 101
1

100 110

End to End ring topology used in the tracker

0 . 11 3 12 6 7 5 4

Figure 2.4: Communication and Topology Mapping calls

The tracker was originally implemented on a Mark IIH Hypercube. Since the only available means of
distinguishing the nodes is their processor numbers, the order of reading and writing must be based on
only a node's processor number and the h ypercube topology. The original implementation of the tracker
utilizes the following communication primitives cshifto, gridinitO, gridcoordO, gridchano, glob.sumO,
glob-mazO, glob-min and glob.ando. Syntax of some of these primitives is shown in figure 2.3. Ref [7]
discusses in detail all Cros III primitives.

Nodes in a hypercube that are connected by a communication channel differ by a single bit in their processor
numbers. Figure 2.4.a shows the placement of nodes in a three dimensional architecture. It can be seen
that all nodes with an even number of one bits in their processor numbers are adjacent only to nodes
with an odd number of one bits in their processor numbers, and vice versa. Thus, the number of ones
in a node's processor number can be used to determine whether the processor/node reads or writes first
in cshift. In this implementation of cshift the buffers provided by the application for the incoming and
outgoing messages must not overlap.

24

CHAPTER 2. TRACKER DESCRIPTION

The tracker code uses cshift to implement global communications. The different global communication
routines are:

1. glob-sum: Return cube-wide sum of integer arguments.

2. glob-max: Return cube-wide maximum of integer arguments.

3. glob-and: Return cube-wide logical and of integer argumentb.

4. glob-rmax: Return cube-wide maximum of float arguments.

5. glob.rsum: Return cube-wide sum of float arguments.

Implementation of some of these routines in the concurrent tracker is shown in figure 2.5

2.6.2 Standard I/O in the Concurrent Tracker

The CUBIX programming model has two I/O modes. These two modes are termed as singular and multiple
I/O modes. The use of singular mode is subject to a few important restrictions. First it should be clear
that each node of the ensemble must concurrently execute identical I/O operations. When an input or
output stream is operating in multiple mode, the individual processes may invoke CUBIX library routines
with different arguments or data. The distinct data in this case is routed sequentially to or from the I/O
device in an increasing order. CUBIX handles the switching of a stream between singular and multiple
modes through a pair of loosely synchronous subroutines calls. An I/O stream can be switched between
multiple and singular modes with the functions fmulti and fsingl [7]. The concurrent tracker has numerous
printf statements in the code which are used for printing tracker statistics on standard output. Since the
tracker works on a scan by scan basis these statistics are printed for every scan. The main timings of
interest are the cumulative timings of concurrent tasks in the tracker. These timings can only be obtained
at the end of the last scan. Therefore it was a good idea to inhibit the output to stdout for all scans except
the last scan. The tracker code was modified in order to achieve this functionality. We have restricted our
discussion only to screen I/O in the concurrent tracker. We have not addressed the problem of disk I/O
in this project.

2.6.3 Node Environment Information

The environment grabbing function (cparam(in CrOS, exparam0 in Express (71) supplies important
information about the node environment, some of which is specific to the hypercube topology. This
function initializes the structure shown in Figure 2.6

The information needed by the tracker is:

1. The processor number of the node,

2. The total number of processors/nodes, and

25

CHAPTER 2. TRACKER DESCRIPTION

/* Calculate the global sum using cshift *
/* val-.glob ->value in my node *
/* val..coin:- value received from node *

/* on other side of the channel *

glob..sum (myval)
mnt myval;

int chan~lchan;
static mnt only-.once n 0;

val-giob a myval;
f or (lchan=O ; lchan~do..c ; +.lchan)

chan - 1<<lchan;
cahift (&val..coim,chan, INTYZ .&val..glob, chan ,INTYZ);
val..glob += val..comim;

return(val..glob);

glob..max (myval)
int myval;

int chani chan;

val-.glob = myval;
for~ichan=O ;lchan<dosc ;++lchan)

chan = 1C<lchan;
cshift(&val..comm~chanINTSYZ ,&val-.glob,chan,INTSYZ);
if(val..comm,>val..glob) val-giob = val..comm;

I
return(val-.glob);

Figure 2.5: Implementation of Global Communication Routines in the Tracker

26

CHAPTER 2. TRACKER DESCRIPTION

/* User level structure defining the cube environment in CrOS III */

struct cubenv {
int doc; /* Dimension of subcube ./
int procnum; /* Processor number */
int nproc; /* Number of processors: 1<<doc */
int cpmask; /* Mask for host communication, NULL if not node 0

*/

int cubemask; /* Mask for node communication, NULL if not host */

A pointer to this structure is passed to the function cparamo. This
function initializes all the elements of the structure. This call is
specific to CrOS III. This facility is not available on all
the tools.

Declaration : struct cubenv CU-env;
Invocation : cparam(&CU-env);

I
*****XXXX******

/* User level structure defining the cube environment in Express */

struct nodenv (
int procnum; /* Processor number of calling program */
int nprocs; /* Number of nodes in this processor group */
int host; /* Processor number for "HOST" processor */
int taskid; /* Identifies particular task on a node */

Declaration : struct nodenv NU-env;
Invocation : exparam(&NU-env);

Figure 2.6: Cube environment Structure Templates

27

CHAPTER 2. TRACKER DESCRIPTION

3. The dimension of the cube.

These details are specific to a hypercube environment and are used by the topology decomposition routines
discussed below. This information is not needed when the tracker runs on a duster of computers. The
tracker has been modified so that it can obtain this information independent of the environment on which
the tracker runs.

2.6.4 Mapping a Decomposition Topology to the Concurrent Tracker

The communication routines presented in section 2.6.1 require either a source or a destination processor
except when the source or destination is implied (e.g., routines that implement collective communications
between the nodes and the control process). However, when an actual application is programmed on a
concurrent machine, the problem is decomposed into sub-problems that are connected by a communication
topology without explicitly assigning a particular node to each region of that topology.

For example, in a problem involving a large matrix, the matrix might be decomposed into square sub-
matrices, so that each submatrix could be assigned to a node. Such a decomposition results in a decom-
position topology that is a two-dimensional grid of submatrices. While the algorithm can easily specify
the necessary communications in terms of the decomposition topology, the communication routines require
that processor numbers be used to refer to the source and destination nodes. In order for a concurrent
algorithm to specify the source and destination processor numbers conveniently, it needs a mapping of the
processing nodes onto the regions of the decomposition topology. Although the mapping routines are not
communication routines, they provide a convenient utility for effectively using the communication routines.

While many types of mappings are possible, we focus on decomposition topologies that are based on
Cartesian grids. The topology mapping routines used in the concurrent tracker axe gridinitO, gridchan(
and gridcoord((see Figure 2.4.b). The gridinit(function takes the dimensionality of the grid and the num-
ber of nodes in each dimension as arguments and maps the nodes of the ensemble onto a dim-dimensional
Cartesian grid. It basically performs the necessary initializations for the other two routines. The gridco-
ord(stores the cartesian coordinates of the nodes whose processor number is proc in the array. Figure 2.4.b
shows the topology mapping of 8 nodes on a cartesian grid and the co-ordinates of the processor number in
the grid. The routine gridchan(takes a processor number, a grid dimension and a direction, and returns
the channel mask of the channel connecting the specified node to its neighbor in the indicated direction.
Thus an application can use gridchan(to determine the mask of the channel on which to send the message
so that it arrives at the neighboring nodes in any of the particular decomposition grid directions. This
important is information because cshifto uses the channel number to communicate with any other node.

28

Chapter 3

Tracker Implementation

3.1 Porting the tracker on different tools

One objective of the tracker implementation was to have versions of Express, PVM, PICL and p4 with
minimal changes to the existing tracker code. The main problem that is normially encountered in the
process of porting any application is the presence of environment or tool-specific implementations in the
source code. An application which has minimal functions specific to a tool will be relatively easy to port.
At the same time having an application totally independent of any tool or environment is very difficult.
The only solution is to write an interface library and implement this interface using the primitives of each
tool.

In the Multi-Target Tracker implementation, communication primitives are tool or environment depen-
dent. The original implementation assumes a grid decomposition topology which is not supported by all
tools. See Section 2.6 for more details on this topology. This makes the porting process more difficult.
We solved this problem by identifying all the communication primitives that are commonly available on
the tools we considered (Expres' j16], PVM [14], PICL [15] and p4 [17]). We also made sure that these
primitives were general enough to be supported by other software tools. It can be seen that the standard
message passing primitives that are supported by most parallel/distributed software tool are facilities for
send, receive, and global communication.

We selected a set of few message passing primitives from this set which were necessary to implement
all the communication primitives used in the original implementation of the tracker. We then implemented
the same functionality of the communication primitives in the original implementation of the tracker using
this set. This ensured that the overall functionality of the tracker was not affected. This process had
to be repeated for each message passing tool we used in this project. For example the standard send
primitive in Express is ezwrite(and the standard receive primitive in Express is exreadO. These were the
standard send and receive primitives we used to implement all communication facilities in Express. An
implementation of the communication primitive cshift for Express is shown in Figure 3.3. It can be seen
that the the Express primitive exwrite is used to send a message and exread is used to receive a message.

29

CHAPTER 3. TRACKER IMPLEMENTATION

Implementations of cshift on other tools vary only in these send and receive primitives.

The host-node programming model was chosen to develop a universal version of the tracker because this
model is supported by all tools we have used in this project. By a universal version we mean a version
of the tracker which has the same structure and functionality on all the hardware architectures and tools.
The only difference between them are the communication primitives that vt specific to the tool under
consideration. We now discuss the overall approach to develop this universal version of the tracker. The
details below aim at giving the reader an overview of our implementation approach.

1 Tool Installation (Express, PVM, PICL, p4)

The first -,tep in the process of porting an application to a tool is to install the tool if it does not
alreaAiy exist. We have discussed this process because in the course of this project we had to install
all the to.-ON, excol-', Express. All the tools that have been mentioned above, except Express, are
public domain tools. The installation procedure for each tool is different and the documentation
was not sufficient. However, the process of installing the tool helped us to understand the general
organizational structure of the tool, the requirements of the tool and also the procedure to build the
tool environment. Each tool also has specific configuration/set up procedures. These include creating
and editing configuration files and starting background processes or daemons (ezinit in Express and
pvmd in PVM). For example, in Express three files confile, netfile and ezpress.cst together specify
the complete configuration set up. PVM has a hostfile which specifies all the machines that can be
used by pvmd for starting node daemons.

2. Understand the tool under consideration (Express, PVM, PICL and p4)
The following issues normally arise in the process of working with new software tools:

(a) The structure of a normal host-node program in the tool. We were specifically interested
in this structure because it is supported by all the tools.

(b) The standard build/make procedure for the tool. This is an important aspect because it
helps the user/programmer understand the type of compiler and compiler options that have to
be used for compiling application programs.

(c) The function calls and communication primitives that are provided by the tool. We
identified a subset of these calls for our use and tested their functionality by writing test stubs.

(d) Sample programs that exhibit various features of the tool. This is a very helpful feature
because it gives the user/programmer the capability to comprehend the tool. In this project we
modified the sample programs to include the communication primitives we wanted to use in the
tracker to verify our implementation.

At the end of this process we had developed a sample program which used all the function calls that
we wished to use in the tracker implementation.

3. Develop a standard methodology
We used the sample program that we developed [10], to test the various features and primitives that
we planned to use in the tracker. Since we preferred minimal changes to the existing tracker code, our

30

CHAPTER 3. TRACKER IMPLEMENTATION

approach was to front-end all the specific CrOS Ill primitives. The specific CrOS III primitives that
we implemented using standard primitives are cshiftO , gridinit(, gridcoord(, gridchan(, and all
global communication routines. The standard testbench that we developed used all the primitives we
had decided to front-end. We also had a testbench version which used the original primitives. The
procedure we developed was fool-proof because the standard testbench version had to tally with the
version we developed using the original primitives. This ensured that the front-ended primitives had
exactly the same functionality as the original primitives.

4. A host-node structure template
The process of building a standard testbench helped in defining a host-node structure for the tracker.
The host-node structure that has been developed remains the same for all the tools. A template of
a typical host program and a node program is shown in Figure 3.1 and Figure 3.2 respectively.

It can be seen in Figure 3.1 that the host program prompts the user to enter the number of nodes that
will be used by the application. It checks if the number of nodes is a power of two and then starts the host
process. On successful instantiation of the host process (statement (1) in the host template the program
initiates node processes commensurate with the number of nodes specified by the user (statement (2) in
the host template). The host program then sends the number of nodes that the application will use to each
node (statement (3) in the host template.) This information is required by the nodes for communicating
with each other. This is done by using a standard send() call. The procedure of sending a message is
different in each tool. We discuss the specific implementations of each tool in a later section. The host
program then waits for all the node processes to end (statement (5) in the host template). This has been
implemented by using a dummy receive call in the host program and a dummy send call in the node program.

From Figure 3.2 it can be seen that each node gets an identification number for itself by using the appropri-
ate tool-specific call (for example, enroll in PVM) (statement (1) in node template). It then receives the
number of nodes that will be used by the host program (statement (2) in node template). This information
is sent to each node by the host program. It then calculates the dimension of the cube which is used by the
tracker for specific implementation details. The node program then has a set of topology decomposition
routines (statement (3) in node template). These routines are function calls supported by Express and
CrOS III. For the sake of uniformity we have re-written these routines so that they can be used by all the
tools. The different routines that have been used in the tracker implementation are gridinitO, gridcoord(
and gridchan((discussed in Section 2.6.4).

The remaining part of the code in the node program is the implementation of the tracker. This re-
mains the same for all the tools and is totally independent of the tool except for communication calls. At
the end the node program sends a dummy message to the host (statement (4) in node template) to signal
the termination of node processes.

The main communication routine used in the initial implementation of the tracker is cshift. Since this
was specific to CrOS III We have implemented our own cshift function call using standard communica-
tion primitives. Figure 3.3 shows a generic implementation of cshift which implements a read and write
functionality together. This is equivalent to the exchange() function call in Express. The original cshift()
function uses the concept of channels to establish communication between any two nodes. A channel
number between any two nodes is the "exclusive or" of the source and destination node. From Figure

31

CHAPTER 3. TRACKER IMPLEMENTATION

main(argc, argv)
int argc;
char *argv 0;

int my.process.number, number.of.processors;
int return.log.value;

/* Prompt the user for number of nodes/processors */
printf("Enter the number of nodes: \n");
scanf("Ud", \&number.of.processors);

/* Include check to ensure that the number of processors / instances */
/* is a power of 2. This is not required if the program is being run */
/* on a network of workstations. However, for the sake of uniformity */
/* we have continued to use this checking. */

return-log.value = log2(number.of.processors);

/* Exit if condition not satisfied */

/* Start the host process */ (1)

/* Initiate node processes for "number.of.processors" */ (2)

/* Send total number of processors/instances to node processes */ (3)
/* In environments like PVM there is a specific set up procedure ,/
/* before sending a message. Check section on PVM implementation for */
/* more details. */

/* Wait for all the node processes to end. */ (4)
/* This has been implemented by using a dummy receive in the host. */
/* This is complemented by a send in the node process */

/* Exit / Leave */ (S)

Figure 3.1: Host Program Structure Template

32

CHAPTER 3. TRACKER IMPLEMENTATION

main()
{

int number.of.processors, my.node.no, my-position, previous.node,next.node;

/" Enroll Node process I instance *I ------------------ (1)
This returns my node number (my.node.no);

/* Initialize the environment variables */

number-of.processors - receive this value from the host process;
- ----------------- (2)

Dimension of cube - log2(number-of.processors);

/* The statement above is required because the dimension of the cube */
/* is used by the tracker in various places. Therefore even if the */
/* tracker is running in a netvork environment this variable is
/* initialized although this is specific to hypercubes */

/* Determine if Concurrent processing is required. This is a feature of */
/* the tracker because it is can operate as a sequential code as well as */
/* a concurrent piece of code. This is determined by the dimension */
/* of the cube (the variable initialized above). */

/* Topology Decomposition routines */

/* Initialize a grid */
grid.init(1, \knumber.of.processors)-; ---------------- (3)

/* Get my co-ordinate position in the grid */
grid.coord(my.node.no, \&my-position);

/* What is my left neighbors node number in the grid */
previous.node = grid-chan(my-node.no, 0 -1);

/* What is my right neighbors node number in the grid */

next-node = grid-chan(mynode, 0, 1);

Sequential / Concurrent Tracking code

/* Send dummy message to the host because it is waiting */
------------------ (4)

/* Exit / Leave */

Figure 3.2: Node Program Structure Template
33

CHAPTER 3. TRACKER IMPLEMENTATION

3.3 it can be seen that the destination node number is first calculated by using the source node number
(pc.corn) and the out channel outchan. The type number is then set which identifies the type of message
being sent. The flag bit is used to identify if the node has an even number or odd number of ones in its
binary representation. For example, the binary representation of node number three is '011'.

The number of one bits in this case is two. The flag bit is set if the number of ones is even in a node
number and reset otherwise. This is the key feature in communication between any two nodes, because
in a hypercube architecture any two adjacent nodes differ by one bit. We have used the same concept for
communication when we used a network of workstations. Depending on the value of the bit flag a node
first writes to a destination and then reads from a destination or viceversa. Figure 3.3 shows the Express
implementation of cshift where we have used eswrite and ezread for writing and reading a message. The
only things that will change for different tool implementations are the communication primitives. The
function call cshiftO is also used to implement all global communications in the tracker as discussed in
Section 2.6.

3.2 Performance of Concurrent Tracker

In this section we discuss the performance results of the Multi-Target Tracker [11, ?, ?]. We present
the performance results of the Multi-Target Tracker using four tools (Express, PVM, PICL and p4). The
memory requirement of the tracker increases with an increase in the number of objects/threats. The tracker
reads in threat descriptions from files and generates data using kinematic algorithms. However, each node
has a copy of this generated data which is stored in an array of structures. Work load distribution for
concurrent processing is achieved by indexing where each node works on a section of the array of structures
present in each node. This mechanism of data distribution degrades the performance of the tracker because
of excessive memory usage.

The parallel version of the tracker has been implemented by extracting parallelism from an existing se-
quential version. As a result the tracker is not a purely parallel code. The difference between concurrent
and sequential versions is the way the global track file is processed. In the sequential algorithm each
track is extended by all possible data associations. Duplicate tracks are merged to form initial tracks for

processing during the next scan of data. In the concurrent version tracks are assigned to nodes such that
tracks ending in a given sensor datum are assigned to the same node. Each node performs extend/merge
tasks independently for each time step and then these tracks are redistributed.

In this project we have identified the main concurrent tasks of the tracker and measured their perfor-
mance. The timings for these concurrent tasks are obtained from timing statements embedded in the
tracker program. The parameter varied in the benchmarking process is number of processors. Another
parameter that can be varied is the number of threats. This can be done by increasing the number of
launch sites in the file "threat.dat". The number of sites is the first field in this file. See the threat file
description discussed in Chapter 2 for more detail. The only point to note here is that each site should
have an associated object list/threat description in the file "threat.dat".

34

CHAPTER 3. TRACKER IMPLEMENTATION

in. cuhift (inbut, inchan, inbytes, outbuf, outchan, outbytes)
char *inbuf;
unsigned int inchan;
int inbytes;
char *outbuf;
unsigned int outchan;
int outbytes;

int rstatus, wstatus;

int dest;
int type;

dest = pc-corn outchan;

type = 5;

if (bit-_flag) {
/* Send a message to destination node ''dest'' */

exvrite(outbuf,outbytes, \&dest, \&type); /* Express Implementation */
/* Receive a message from destination "dest '' */

exread(inbuf,inbytes, \&dest, \ftype); /* Express Implementation */

else {
/* Receive a message from destination "dest" */

exread(inbuf,inbytes, \&dest, \&type); /* Express Implementation */
/* Send a message to destination "dest'' */

exwrite(outbufoutbytes, \&dest, \&type); /* Express Implementation */
}
if (wstatus =-1) return(wstatus);
else return(rstatus);

}

Figure 3.3: Cshift Implementation

35

CHAFTER 3. TRACKER IMPLEMENTATION

The two main concurrent tasks in the Multi-Target Tracker are Focal Plane Tracking and 3D Track-
ing. These tasks are further divided into concurrent sub-tasks as listed below (previously discussed in
sections 2.3 and 2.4):

1. Focal Plane Tracking
The concurrent tasks in this module are

(a) Focal Plane Track Extension

(b) Track Redistribution

(c) Focal Plane Report Construction

(d) Focal Plane Track Initiation

2. 3D Tracking

The concurrent tasks in this module are

(a) 3D Track extensions

(b) Report Associations

(c) 3D Track Initiations

(d) Trajectory Estimation

The tracker program has been tested for 1, 2, 4 8 and 16 nodes on the iPSC/860, nCUBE and on a cluster
of workstations. The data sets that we used for performance measurement are as follows:

1. Thirty sweeps/scans of data at 5 second intervals.

2. 8 launch sites with 80 targets per site (i.e., the number of targets is 640).

The number of targets has been limited to 640 because it is directly dependent on the memory available in
the nodes of these machines. The cluster of workstations could not handle more than 640 targets, although
we have tested the tracker for 1100 targets on the iPSC and nCUBE. The tracker has been implemented
using different parallel/distributed software engineering tools. The hardware environment used for porting
and evaluating the tracker environment is shown in Figure 3.4. In this report we have included the perfor-
mance benchmarks of the tracker for all the tools we used. However we present only one set of benchmarks
for each tool which represents the best machine-tool combination.

Speedup and efficiency measures are used to analyze the performance of each of the tasks mentioned above.
The timings for these tasks on different number of nodes is compared with the timings when they run se-
quentially on one node.

Speedup (S(n)) is given by the following equation

S(n) = Time taken by a task on one node (3.1)
Time taken by a task on n nodes

36

CHAPTER 3. TRACKER IMPLEMENTATION

Sun Cluster S Clust

Wl W2 Wl W2

EiEernetenet

HP Cluster

Figure 3.4: Hardware Environment for Multi-Target Concurrent Tracker

37

CHAPTER 3. TRACKER IMPLEMENTATION

where n -- 2, 4, 8, 16, ... nodes.

Efficiency of the concurrent tasks is given by

Efficiency = Speedup (3.2)
N umber of Processors

This measures the efficiency of running the tracker on n processors.

We will now discuss the salient features of each tool we used to implement the tracker. Each tool de-
"scription will be followed by a brief explanation of the modifications we did to port the tracker on that
tool. We will then present the performance of the tracker using that tool on different parallel/distributed
architectures.

3.3 Express : Parallel Processing Toolkit

Express [16] is a software package developed by ParaSoft Corporation. It is designed to meet the needs of
parallel/distributed applications. It is conceptually a multi-layered system. At the lowest level it provides
support for allocating processors, loading programs and asynchronous message passing. At a higher level
it provides the utilities designed to automatically decompose problems with regular structure. Each of the
levels are logically distinct, building only on those below it. As a result it is possible to port the system
to a wide variety of hardware/software systems. The Express communication environment offers a wide
range of implementation strategies to both system and application designers. In particular it has been
motivated by application requirements rather than any intrinsic operating system concepts. It provides a
reasonable set of tools and utilities designed for parallel processing.

The salient features of Express include:

" Low level communication primitives for sending messages between processors, peripherals and other
system components.

" High level message passing routines which perform a variety of parallel processing and communication
tasks such as broadcasts, global averaging, global minimum/maximum computation and data re-
distribution.

" A domain decomposition library which can map problems from the physical domain in which they
are naturally expressed to the underlying topology of the parallel computer hardware.

"* A transparent I/O system for node processors.

"* A parallel graphics system.

"* PM - a graphical system for evaluating and enhancing the performance of parallel programs.

38

CHAPTER 3. TRACKER IMPLEMENTATION

Changes to the Host Template
Statement 1 : pgind=exopen("dev/intel",nprocs,DONTCARE);
Statement 2 : exload(pgind, "node");
Statement 3 : This objective of this statement is to pass the total number of nodes that the application is
using to each nodes. However Express uses the call exparam in the node program to do this. The function
of this call is to provide each node information about the node environment.
Statement 4 : for (dest=0; dest<nprocs; dest++) exread(&mesg.no, sizeof(int), &dest, &type);
Statement 5 : exit(l);

Changes to Node Template
Statement I : This statement is not required in Express.
Statement 2 : The number of processors in the node environment is obtained by the call ezparam(
Statement 3 : Remains the same as in node template.
Statement 4 : exwrite (&mesg.no, sizeof(int), &env.host, &type);

Figure 3.5: Changes to Host Program and Node Program Templates for Express Implementation

3.3.1 Express Implementation of Multi-Target Tracker

We have explained the generic host and node templates in section 3.1. To port the tracker to any tool
we have to change statements 1 through 5 of the host template and statements 1 through 4 of the node

template. The changes needed to implement the tracker on the Intel iPSC/860 in the Express environment
are shown in Figure 3.5. Statement 1 in the Host Template allocates nodes for the program where nprocs
specifies the total number of nodes. Statement 2 in the Host Template loads the node program on all the
allocated nodes. This statement is complemented by Statement 1 in the Node Template which enrolls the

node program and returns the instance of the node to the host program. The objective of Statement 3 in
the Host Template is to broadcast the total number of nodes being used by the program to all the nodes.
This statement is not used in Express because the function call ezparam(can be used in the node program
to get this information. Statement 2 in the Node template gets information of the node environment for the

program. The key information required by the node program is the number of node instances and its own
node identification number. Statement 3 in the Node Template initializes a grid for topology mapping.

This grid information is used for communicating between nodes. Statement 4 in the Host Template is
a dummy read (exrreadO)implemented in the host program. The host program essentially waits at this
point. This call is complemented by a dummy write(ezwriteo) implemented in the node program. This
is represented by Statement 4 in the Node Template. This statement is the last statement in the node
program. Once the host program receives a message from all the nodes it exits which is represent by
statement 5 in the Host Template.

3.3.2 Performance of the Multi-Target Tracker implemented using Express

39

CHAPTER 3. TRACKER IMPLEMENTATION

Table 3.1: Performance of Main Tracking Tasks on iPSC/860 using Express (8 Sites, 640 targets)

Tracking Task 1 Node 2 Node 4 Node 8 Node

FP Tracking Summary
FP Track Extension 181.98 130.58 63.78 40.74
Track Redistribution 6.31 17.44 30.17
FP Report Construction 10.57 6.95 8.35 9.95
FP Track Initiation 2.59 1.84 3.90 2.75
FP Tracking Total 195.14 145.68 93.47 83.61

3D Tracking Summary
3D Track Extension 0.61 0.39 0.27 0.22
Report Association 21.53 31.23 26.05 21.92
3D track Initiations 2.02 1.11 0.59 0.38
Trajectory Estimation 5.16 3.05 1.78 1.09
Total 3D Tracking Task 29.32 35.78 28.69 24.27

Grand Total II 224.46 181.461 122.161 107.8811

Table 3.1 shows the timing for all concurrent tasks of the Multi-Target Tracker implemented using Express
on iPSC/860. Table 3.2 shows the speedup and efficiency of running these tasks. While there are some
tasks that speed up as we increase the number of nodes, there are others which do not speed up or fluctuate
with the increase in the number of nodes. For example, Track Eztension in Focal Plane Tracking as well
as 3D Tracking show speedups (see Table 3.2) with the increase in number of nodes. However, Track File
Redistribution and Report Association do not show increase in speedup. We observe that the tasks that
do not show speedup do not consume a large percentage of the total tracking execution time for smaller
numbers of nodes. Consequently, the current implementation of the tracker can show significant speedup
for larger number of nodes only when the number of tasks to be processed is very large.

Table 3.2: Speedup and Efficiency of Main Tracking Task on iPSC/860 using Express (8 Sites, 640 targets)

Tracking Task 2 Node 4 Node 8 Node
speedup efficiency speedup efficiency speedup efficiency

FP Tracking Summary
FP Tracking Extension 1.39 69.50% 2.85 71.25% 4.47 55.84%
FP Report Construction 1.52 76.00% 1.27 23.91% 1.06 13.28%
FP Report Initiation 1.41 70.50% 0.66 16.50% 0.94 11.77%
FP Tracking Total 1.34 67.00% 2.09 52.25% 2.33 29.17%

3D Tracking Summary
3D Track Extension 1.56 78.00% 2.26 56.50% 2.77 34.66%
Report Association 0.69 34.50% 0.83 20.75% 0.98 12.28%
3D track Initiations 1.82 91.00% 3.42 85.50% 5.32 66.45%
Trajectory Estimation 1.69 84.50% 2.89 72.25% 4.73 59.17%
Total 3D Tracking Task 0.82 41.00% 1.02 25.50% 1.21 15.10%

Grand Total 1.24 62.00% 1.84 46.00% 2.08 26.00%

.10

CHAPTER 3. TRACKER IMPLEMENTATION

iPSC/860 8 sites, 640 Targets

2 3 4 5 6 78
number of processors

Figure 3.6: Plot of Main Tracking Tasks in Express

However with an increase in the number of nodes these tasks make up an appreciable percentage of the
total time because the execution time for other tasks reduces (see Table 3.1).

This can be easily observed in the speedup curve shown in Figure 3.3.2. It can be seen that the tracker
shows a speedup of more than '1' for upto 4 nodes. However after 4 nodes the performance of the tracker
degrades. The main factors which affect the performance of the tracker are Track File Redistribution
and Report Association. As discussed above we observe that speedup of concurrent tasks reduces with an
increase in number of nodes because these two tasks consume an appreciable percentage in the total timing.
Referring back to Table 3.1 we see that for 8 nodes the total execution time for Track File Redistribution
and Report Association is 52.09 millisecs which is 48.2% of the total time. This is due to the fact that
percentage of concurrent processing in each node reduces with the increase in the number of nodes. We also
show a plot for the Grand Total time taken for concurrent tasks without Track file Redistributon. In this

case there is an increase in speedup even after 4 nodes. This implies that this section of the code (Track
File Redistribution) is not very efficient and should be improved for overall performance enhancement.

3.4 PVM (Parallel Virtual Machine)

PVM [14] has been developed at Oak Ridge National Laboratory and the Department oi Math and Com-
puter Science at Emory University. It is a software package that enables concurrent computing on loosely
coupled networks of processing elements. The PVM computing model is based on the notion of a virtual

machine. A virtual machine is a collection of networked computers, abstracted into a concurrent comput-
ing environment by the PVM system.

41

CHAPTER 3. TRACKER IMPLEMENTATION

The salient features of PVM are multilanguage and heterogeneity support, scalability, provisions for fault
tolerance, the use of multiprocessors and scalar machines, an interactive graphical front end, and support
for profiling, tracing and visual analysis. PVM may be implemented on a hardware base consisting of dif-
ferent machine architectures, including single CPU systems, vector machines and multiprocessors. These
computing elements may be interconnected by one or more networks, which may themselves be different
(e.g., one implementation of PVM operates on Ethernet, the Internet, and a fiber-optic network). These
computing elements are accessed by applications via a standard interface library that supports common
concurrent processing paradigms in the form of well-defined primitives that are embedded in procedural
host languages.

PVM is composed of two parts: a daemon that runs on each computer in a virtual machine and the
user interface library mentioned above. When the user starts up the PVM daemon on a machine, he/she
specifies an input file. This file contains a list of machines that will make up his/her virtual machine. The
daemon starts up similar daemons on each of these computers. Sockets are set up between each of the
daemons. All inter-daemon control and data traffic is conveyed over these sockets, and reliable delivery is
guaranteed by the daemon software. Application programs are composed of components that are subtasks
at a moderately large level of granularity. During execution, multiple instances of each component may
be initiated. To become a part of the virtual machine each component must enroll. This interface routine
establishes a socket between the component and the local daemon.

Application programs view the PVM system as a general and specific parallel computing resource. This
resource may be accessed at three different levels: the Transparent mode in which component instances are
automatically located at the most appropriate sites, the Architecture-dependent mode in which the user
may indicate specific architectures to execute particular components, and the Low-level mode in which a
particular machine may be specified.

Such layering permits flexibility while retaining the ability to exploit particular strengths of individual ma-
chines on the network. The PVM user interface is strongly typed; support for operating in a heterogeneous
environment is provided in the form of special constructs that selectively perform machine-dependent data
conversions where necessary. Inter-instance communication constructs include those for the exchange of
data structures as well as high-level primitives providing the functionality of broadcast, barrier synchro-
nization, mutual exclusion and rendezvous.

Application programs under PVM may possess arbitrary control and dependency structures. Any specific
control and dependency structure may be implemented under the PVM system by appropriate use of PVM
constructs and host language control-flow statements.
PVM supports C and Fortran by providing a separate library of communication primitives for each lan-
guage. PVM also provides an X-window based software environment for parallel programs intended for
unsophisticated programmers called HeNCE [14J (for Heterogeneous Networking Computing Environ-
ment). It is based on a parallel programming paradigm where an application program can be described by

42

CT 'APTER 3. TRACKER IMPLEMENTATION

a directed acyclic graph (DAG). HeNCE is composed of graphical tools for creating, compiling, executing,

and analyzing HeNCE programs. HeNCE relies on PVM for process initialization and communication, but
the HeNCE programmer will never explicitly write PVM code, thus providing the user with a high level
of abstraction for exploiting the parallelism of a collection of machines without delving into the details of
parallel programming.

3.4.1 PVM Implementation of the Multi-Target Tracker

For this implementation of the tracker we list the calls corresponding to statements for the host program
structure and node program structure. These statements are shown in Figure 3.7. The PVM code was
implemented on a cluster of SUN worstations and IBM/RS6000 workstations separately. A version was
also tested in a heterogeneous environment of 4 SUN and 4 IBM/RS6000 workstations.

In Figure 3.7 Statement 1 in the Host Template enrolls the host program "pvm.host". Statement 2 in
the Host Template initiates all the node processes "pvm.node". The number of node processes initiated is
equal to nprocs. Statement 1 in the Node Template enrolls the node processes in each node. Statement 3
in the Host Template broadcasts a message to all nodes about the total number of node instances being
used by the program. The corresponding Statement 2 in the Node Template receives this message from
the kost program. Statement 3 in the Node Template initializes a grid for topology mapping. This is used
*by the nodes for communicating between themselves. Statement 4 in the node template is at the end of
the node program. Each node sends (sndO) a dummy message to the host program. This complemented
by a receive (rcvO) in Statement 4 of the Host Template. Once the Host program receives this message
from all the nodes the host program exits which is illustrated in Statement 5.

3.4.2 Performance of the Concurrent Tracker implemented using PVM

43

CHAPTER 3. TRACKER IMPLEMENTATION

Changes to the Host Template
Statement 1 : me ;- enroll("pvmihost");
Statement 2 : for (i = O;i< nprocs;i++) initiate("pvm.node", (char*)O);
Statement 3 :

initsendo;
putnint(&nprocs, 1);
if (snd("pvm.node",-1,3) < 0) {
printf("HOST: Broadcast of 3 failed");
leave);
exit(1);
I

Statement4 :
for (i = 0; i < nprocs; i++)
tmrp icv(i);
getstring(&mesg.no,1);

Statement 5 : leave(;

Changes to Node Template
Statement 1 : procnum = enroll("pvm -node");
Statement 2 :

nsproc = rcv(3);
getnint(&nsproc, 1);

StLatement 3 : Remains the same as in the node template.
Statement 4 :

initsend();
putstring(&mesg-no, 1);
snd("pvmihost", -1, pc-corn);
leave); exit(1);

Figure 3.7: Changes to Host Program and Node Program Templates for PVM Implementation

44

CHAPTER 3. TRACKER IMPLEMENTATION

IBM 8 sites, 640 Targets
3

FP Tracking..'--

2.5 ... 3D Tracking ---
Grand Total -E-

G&•hd Total (Without Redistribution) x-
2

speedup.-

1.5

0.5 ,

2 3 4 5 6 7 8
number of processors

Figure 3.8: Plot of Main Tracking Task in PVM

Table 3.3: Performance of Main Tracking Tasks on IBM RS/6000 using PVM (8 Sites, 640 targets)

Tracking Task 1 Node 2 Node 4 Node 8 Node

FP Tracking Summary
FP Track Extension 137.80 100.64 36.62 25.58
Track Redistribution 19.96 83.1 125.56
FP Report Construction 10.3 5.46 5.30 7.74
FP Track Initiation 3.62 2.28 3.72 3.58
FP Tracking Total 151.72 128.341 128.74 162.16

3D Tracking Summary
3D Track Extension 0.28 0.24 0.25 0.33
Report Association 24.04 38.44 32.04 26.89
3D track Initiations 1.18 1.00 0.35 0.23
Trajectory Estimation 2.23 1.47 0.87 0.73
Total 3D Tracking Task 27.73 41.15 33.51 28.18

Grand Total 179.45 169.49 162.25 190.34

Table 3.3 shows the timing for the concurrent tasks of the Multi-Target Tracker implemented using PVM
on a cluster of IBM RTS/6000 workstations. Table 3.4 shows the speedup and efficiency of these tasks on
this cluster. Figure 3.4.2 shows the plot for Speedup versus number of processors for these tasks. Referring
to Table 3.3 we can see that the total time taken for Track File Redistribution and Report Association
for 8 nodes is 152.45 millisecs. This contributes to 80% of the total time for FP Tracking. We attribute
this increase from 48.2% in the previous case to 80% (see Tables 3.3 and 3.4) to the network latency

45

CHAPTER 3. TRACKER IMPLEMENTATION

associated with Ethernet.

Table 3.4: Speedup and Efficency of Main Tracking Task on IBM RS/6000 (8 Sites, 640 targets) using
PVM

Tracking Task 2 Node 4 Node 8 Node
speedup efficiency speedup efficiency speedup efficiency

FP Tracking Summary
FP Tracking Extension 1.36 68.00% 3.76 94.00% 5.38 67.25%
FP Report Construction 1.88 89.00% 1.94 48.50% 1.38 17.25%
FP Track Initiation 1.58 79.00% 0.97 24.25% 1.01 22.38%
FP Tracking Total 1.18 59.50% 9 1.18 29.50% 0.94 11.75%

3D Tracking Summary
3D Track Extension 1.16 58.00% 1.12 28.00% 0.85 10.63%
Report Association 0.63 31.50% 0.75 18.75% 0.89 11.13%
3D track Initiations 1.00 50.00% 3.37 84.25% 5.13 64.13%
Trajectory Estimation 1.52 76.00% 2.56 64.00% 3.05 38.13%
Total 3D Tracking Task 0.67 33.50% 0.83 20.75% 0.98 12.25%

1 Grand Total 1.05 52.50% 1 1.11 1 27.65% 1 0.94 1 11.78% 1

46

CHAPTER 3. TRACKER IMPLEMENTATION

IBM & SUN4 8 sites, 640 Targets
3.5

FP Tracking .--
3 3D Tra.skinj -+--

Grsand Total ,E-
2.5 Grand Total (Witho.tkt. Rcdistribution) .x -

speedup 2 ."

1.

0.5 1

2 3 4 5 6 7 8
number of processors

Figure 3.9: Plot of Main Tracking Task in PVM in a Heterogeneous Environment

Table 3.5: Performance of Main Tracking Task using PVM on Heterogeneous Nodes: SUN4 and IBM
RS/6000 (8 Sites, 640 targets)

jJ Tracking Task 111 Node 2 Node 4 Node 8 Node

FP Tracking Summary
FP Track Extension 281.70 242.38 105.44 61.62
Track Redistribution 33.80 88.64 142.60
FP Report Construction 14.44 13.54 11.04 10.18
FP Track Initiation 3.48 2.00 4.04 3.32
FP Tracking Total 299.62 291.72 219.16 217.72

3D Tracking Summary
3D Track Extension 1.27 1.48 0.82 0.63
Report Association 39.53 55.41 48.51 27.66
3D track Initiations 3.56 3.23 1.50 0.82
Trajectory Estimation 6.23 5.93 2.97 1.75
Total 3D Tracking Task 50.59 66.05 58.80 30.86

Grand Total 350.21 357.77 277.96 1 248.58

We used SUN4 and IBM RS/6000 workstations to test the tracker on a heterogeneous environment. Table
3.5 shows the timing for all concurrent tasks of the Multi-Target Tracker implemented using PVM on a
cluster of 4 SUN4 and 4 IBM RS/6000 workstations. Table 3.6 shows the speedup and efficiency of main
tracking tasks on this cluster. Figure 3.4.2 shows the plot for Speedup versus Number of Processors for

47

CHAPTER 3. TRACKER IMPLEMENTATION

these tasks.

Table 3.6: Multiple Tracking Task on Heterogeneous Nodes: SUN4 and IBM RS/6000 (8 Sites, 640 targets)
using PVM

Tracking Task 2 Node 4 Node 8 Node
11 speedup efficiency speedup efficiency ' speedup efficiency

FP Tracking Summary
FP Tracking Extension 1.16 58% 2.67 66.75% 4.57 57.13%
FP Report Construction 1.07 53.50% 1.31 32.75% 1.42 17.75%
FP Report Initiation 1.74 87.00% 0.86 21.50% 1.05 13.10%
F FP Tracking Total if 1.03 51.50% 1.37 34.25% 1.38 17.20%

3D Tracking Summary
3D Track Extension 0.86 43.00% 1.55 38.75% 2.02 25.20%
Report Association 0.70 35.50% 0.81 20.25% 1.43 17.86%
3D track Initiations 1.10 55.00% 2.37 59.25% 4.34 54.27%
Trajectory Estimation 1.05 52.50% 2.10 52.50% 3.56 44.50%
Total 3D Tracking Task 0.77 38.50% 0.86 21.50% 1.64 20.50%

Grand Total 11 0.98] 49.00% 1 1.26 26.00 % 1.41 17.63 %

It can be seen from Figure 3.4.2 that 3D Tracking Task and Grand Total (without Redistribution) show
appreciable speedups. We have ignored Track Redistribution because of network latency problems in the
ethernet environment.

3.5 PICL : Portable Instrumented Communication Library

PICL [15] is a portable instrumented communication library developed by Oak Ridge National Laboratory.
It is designed to provide portability, ease of programming, and execution tracing in parallel programs. It
provides portability between many machines and multiprocessors environments. It is fully implemented
on the Intel iPSC/860, in the nCUBE/3200 families of hypercube multiprocessors and on the Cogent mul-
tiprocessor workstations.

In addition to supplying low-level communication primitives such as send and receive, PICL simplifies
parallel programming by providing a set of high-level communication routines for global broadcast, global
maximum, and barrier synchronization. These routines can help the novice user avoid common synchro-
nization and programming errors and save programming time even for the veteran user. These high-level
routines also facilitate experimentation and performance optimization by supporting a variety of intercon-
nection topologies. Execution tracing has been built into the PICL routines, and routines are provided to
control the type and amount of tracing. A separate package called ParaGraph (15] is available to display
the tracing output graphically. The tracing facility is useful for performance modeling, performance tuning
and debugging. The PICL library is made up of three distinct sets of routines: a set of low level commu-
nication and system primitives, a set of high-level global communication routines and a set of routines for

48

CHAPTER 3. TRACKER IMPLEMENTATION

invoking and controlling the execution tracing facility.

PICL assumes a host-node programming model where the user has to use the processor designated as the
host to access the other processors (nodes). The high-level routines, which are built on top of the low-level
routines, are global communication functions that are useful in the development of parallel algorithms and
application programs. The high-level routines are designed to run on various network topologies so the
user can take advantage of the physical interconnection network and algorithm characteristics.

When the user requests execution tracing, code is activated within PICL routines in order to produce
time-stamped records detailing the course of the computation on each processor. There are three distinct
types of trace records generated: event, computation statistics, and trace message. With this data the user
can evaluate the performance of the code and locate possible performance bottlenecks.

3.5.1 PICL Implementation of Multi-Target Tracker

For this implementation of the tracker we list the calls corresponding to these statements for the host
and node templates. The changes needed for the PICL implementation are shown in Figure 3.10. We
tested the PICL implementation of the Tracker on cluster of workstations(SUN4) and the Intel iPSC/860.
Referring to Figure 3.10, Statement 1 in the Host Template initiates the host program. Statement 2 in the
Host Template loads all the node programs. The number of node programs loaded is specified by nprocs.
This is complemented by Statement 1 in the Node Template. Statement 2 in the Node Template gets the
node environment information with the help of the call setarcOO. Statement 3 in the Host Template is
not required because this statement is used to broadcast node information to the nodes. However in this
case Statement 2 of the Node Template can access this information directly. Statement 3 in the Node
Template is at the end of the node program. This is a dummy send message (sendO(and is complemented
by a receive message recvO() in the Host Template. After the host program receives this message from all
the nodes, it terminates as shown in Statement 5 in the Host Template. Similarly the node program also
terminates after sending this message as shown in Statement 4 in the Node Template.

3.5.2 Performance of the Concurrent Tracker implemented using PICL

49

CHAPTER 3. TRACKER IMPLEMENTATION

Changes to the Host Template
Statement 1 : openO(&nprocs, &me, &host);
Statement 2 :

loadO("picl-node", -1);
setarcO(&nprocs, &top, &ord, &dir);

Statement 3 : This statement is not required in PICL. The node program gets the node environment using
the setarcO() call in the node program.
Statement 4 :

for (i=O; i<nprocs; i++)
recvo(mesg.no, sizeof(int), i);

Statement 5 : closeO(1);

Changes to Node Template
Statement I : openO(&nsproc, &procnum, &host);
Statement 2 : setarcO(&nsproc, &top, &ord, &dir);
Statement 3 : sendO(&mesg.no, sizeof(int), pc-corn, host);

Statement 4 : closeO();

Figure 3.10: Changes to Host Program and Node Program Templates for PICL Implementation

50

CHAPTER 3. TRACKER IMPLEMENTATION

Table 3.7: Performance of Main Tracking Task on iPSC/860 using PICL (8 Sites, 640 targets)11T ck. ~k ,f 1 Nod* 1 2 Node i MaNde 6 Node 18 Node i1

P T;rk ma 170.81 10.0.3 110i0 6013 24.37
"Track Redistrbution .38 11.63 3,.75 37.51
FP R~epo~rt Conistlruction 11.88 :-$1' 11-64 9.94 8.38

PP Track IJti"sioma 11 1.0 5.12 4.13 7.74 3.3
FF Tracking Total 1 ".25 160-87 146.42 113.56 74.01

3D! Tr" 9 a -ruiasy -1y

30.0 0.31 0.62 0.50 0.62
Report A"sotie. 30.62 $7.66 41.75 37.-& 2628.2'
3D track laitiatio1s 1.62 1.62 1.12 1.42 1.25

TR aetr 7Estimation 6.62 4.00 2.38 2.12 2.00
T 3RIa k 47.36 63.118 45.87 41.74 32.12

U Gad Tosai 243.i1 244.75T 195S. I lSS.o3I 10Is2.11U

Table 3.7 &bows the tintig for the concurrent tasks of %he ldultiTsrgot Tracker implemesated using PICL en an iPSC/O60. Table 3.6 shows the epeedup sad
enciernd y of main trackiang asks.

Table 3.8: Multiple Tracking Task on iPSC/860 using PICL (8 Sites, 640 targets)
__ _2 Node f Node _ N__ode_ _ Ife Nodeo

__________ I__ *r*ac I opmu I_____c LiJp vpJ mceayIT !peu -amiuc pe""u I- °mclency I speedup I 0mcency 11

sck.g Exeaeo 1.10 $5.00% 1.49 37.27% 2.94 1 3.75% 7.26 4.36 %
PP Report Comstructioa 1.34 67.00% 1.37 34.25% 1.19 14.94% 1.42 6.66% %
FP Report laitiatiom 1.46 73.00% 1.52 45.50% 0.97 12.11% 2.14 13.39%
FP Trackinm Total 54.50% 1.31 32.TS% 1.3 1 21.60% 1 1.12 1 10.8

S1.32 66.00% 0.81 20.25% 1.00 12.50% 0.81 5.04 %

Report Association 0.69 34.50% 0.94 23.75% 1.06 13.21% 1.40 6.76 %
3D track l,,tiations, 1.00 "5.00% J.41S MASS0 3.00 12.50% 1.30 8.1%
Trajectorg Betimatioa 1.41 70.50% 2.36 39.00% 2.65 33.14% 2.81 17.56
Toa 3I Tr.acig sea 0.1. 30.00% 1.45 26.16% 1.13 12.5% 1.0AT 1. 2 .1

Grand Total 11 0.9 I 49.60% 1 1.24 1 31.n%• I 1.S t 19.63% 1 2.9 1 14.n W

Figure 3.5.2 shows the Speedup versus Number of Processors plot for these tasks.

Near-linear speedup for the Multi-Target Tracker was obtained for this machine-tool combination. We
observe in Figure 3.5.2 that the reduction in execution time or speedup is proportional to the in,,, ease in
the number of nodes.

3.6 p 4 : Portable Programs for Parallel Processors

p4 [171 is a library of macros and subroutines developed for programming a variety of parallel machines,
networks of workstations and single shared-memory multiprocessors. It was developed at Argonne National
Laboratory.

It supports the following basic computational models:

"* Shared memory model (monitors).

"* Distributed memory model (message passing).

"* Combination of the above two models.

51

CHAPTER 3. TRACKER IMPLEMENTATION

iPSC/860 8 sites, 640 Targets
3.5 7 -7.

FP Tracking-
3 3D Tracking -1--

*Grand Total 9-
2.5 Grand Total (Without -Redistribution) -x-- -.

speedupl. •2.×"-

0.5
2 4 6 8 10 12 14 16

number of processors

Figure 3.11: Plot of Main Tracking Task in PICL

For the shared memory model of parallel computation, p4 provides a set of primitives from which monitors
can be constructed, as well as a set of useful monitors. 'For the distributed memory model, p4 provides
send and receive operations and creation of processes according to a process group file describing files to
be executed and the machines to execute them.

p4 ensures easy portability to a wide range of architectures/platforms. The p4 functions are simple and
easy to comprehend. p4 does not require presence of daemons on machines before any application can be
run, unlike many other tools. p4 offers features for automatic and user supervised process creation and
message passing. p4 allows creation of multiple processes/nodes on a single machine.

Other features of p4 are summarized below:

"* Support for heterogeneous networks.

"* SYS V IPC for several architecture types.

"* Debugging facility for automatic logging/tracing.

"• Automatic or user-supervised process creation and message passing.

"* High-resolution timing functions for several architectures.

"* Error and interrupt handling.

52

CHAPTER 3. TRACKER IMPLEMENTATION

Changes to the Host Template for p4 implementation
Statement I : p4-initenv(&argc,argv);
Statement 2 : p4_num.totalidso;
Statement 3 :

This statement is not required in p4. The node program
gets the node environment by calling the function
p4_num-totalidso, itself.

Statement 4 : p4_wait-for-endo;
Statement 5 : Not required in p4. p4_wait-for.end0 function takes care of clean up.

Changes to Node Template for p4 implementation
Statement 1 : This is not required in p4. Host program get the

information about nodes from Process Group file
and assign them unique IDs.

Statement 2 : p4_num-total-ids(;
Statement 3 : Remains the same as in the node template.
Statement 4 : p4_waitfor.endo;

Figure 3.12: Changes to Host Program and Node Program Templates for p4 Implementation

p4 supports a set of send and receive procedures for communicating between nodes. These procedures de-
pend on a lower-level set of procedures that handle local and network communication. They are transparent
to the fact that they have to travel through a network or shared memory or any other such mechanism. p4
provides both blocking and non-blocking procedures for sending messages. p4 provides broadcast facility to
all processes. p4 also provides routines for a variety of global operations (add, multiply, global maximum,
global minimum). Since the order in which the nodes apply the operations is not strictly defined, the
operation must be commutative.

3.6.1 Implementation of Multi-Target Tracker using p4

The changes needed for the p4 implementation are shown in Figure 3.12. Statement 1 in the Host Template
initializes the p4 system and allows p4 to extract any command line arguments passed to it. Statement 2
in the Host and Node Templates will get the total number of id's started by p4 in all clusters. Statement
3 in the Host Template is not required for p4 implementation. Statement 3 in the Node Template is the
Topology mapping routine which is used by the nodes for communicating between themselves. Statement
4 in the Host and Node Template wait till the end of program and take care of clean up when the program
terminates.

53

"CHAPTER 3. TRACKER IMPLEMENTATION

3.6.2 Performance of the Concurrent Tracker implemented using p4

Table 3.9 shows the timing for all concurrent tasks of the Multi-Target Tracker implemented on IBM
RS/6000. In Table 3.10 we have been able to test the tracker for upto 8 nodes on this platform. Some
routines have shown speedup with an increase in the number of nodes while others have not. For example
Track Extenwion in Focal Plane Tracking shows a speedup while execution time increases for 3D Track
Extension with an increase in the number of nodes. Track Redistribution shows a significant increase in
execution time. This clearly indicates areas for improvement in tracker code. However, we observed that
other tasks which do not show significant speedup do not takeup a big percentage of total tracking task.

54

CHAPTER 3. TRACKER IMPLEMENTATION

Table 3.9: Performance of Main Tracking Task using p4 on IBM RS/6000 (8 Sites, 640 targets)

Tracking Task I Node [2 Node 4 Node 8 Node

FP Tracking Summary
FP Tracking Extension 116.33 120.39 60.60 34.94
Track Redistribution 33.73 143.06 262.89
FP Report Construction 8.59 6.10 8.87 11.67
FP Report Initiation 1.41 1.86 4.00 3.93
FP Tracking Total 126.33 162.08 216.53 313.43

3D Tracking Summary
3D Track Extension 0.28 0.35 0.35 0.42
Report Association 20.50 30.30 26.91 22.25
3D track Initiations 1.06 0.84 0.45 0.27
Trajectory Estimation 1.64 1.56 1.05 0.95
Total 3D Tracking Task 23.48 33.05 28.76 23.89

Grand Total 11 139.81 1 195.131 255.29] 337.33

Table 3.10: Performance of Main Tracking Task using p4 on IBM RS/6000 (8 Sites, 640 targets)

Tracking Task 2 Node 4 Node 8 Node
IL speedup efficiency jspeedup efficiency speedup efficiency

FP Tracking Summary
FP Track Extension 0.97 48.32% 1.92 48.00% 3.33 41.62%
FP Report Construction 1.41 70.04% 0.97 24.15% 0.74 9.21%
FP Track Initiation 0.76 37.83% 0.58 14.50% 0.36 4.45%
FP Tracking Total 0.77 38.1% 0.58 14.50% 0.40 5.00%

3D Tracking Summary
3D Track Extension 0.80 40.00% 0.80 20.00% 0.67 8.33%
Report Association 0.68 33.82% 0.76 19.05% 0.92 11.51%
3D track Initiations 1.26 63.09% 2.35 58.85% 3.93 49.07%
Trajectory Estimation 1.05 52.88% 1.56 39.04% 1.73 21.57%
Total 3D Tracking Task 0.71 35.55% 0.82 20.43% 0.98 12.30%

Grand Total 0.72 36.00% 0.55 13.69% 0.41 5.18%

Figure 3.6.2 shows the plot for Speedup versus Number of Processors. It is observed that tracker shows
speedup only for FP Track Extension and 3D Track Initiation and Trajectory Estimation tasks. From the
graph it is observed that the performance of Tracker degrades with an increase in number of nodes because
Track Redistribution consumes an appreciable percentage of the total execution time due to communication
overhead. This can be explained by the fact that concurrent processing on the nodes decreases as the
number of nodes is increased. However, when Track Redistribution is not considered in calculating overall
speedup, a speedup is seen. This is shown in Figure 3.6.2. As mentioned earlier, this decrease in speedup
indicates where the tracker code is not very efficient.

.55

CHAPTER 3. TRACKER IMPLEMENTATION

IBM 8 sites, 640 Targets
2

1.8 FP Tracking .$-&-
3D Tracking -4--

1.6 G-and Total a-
1Grand Total (Without "Redistribution) -x. -1.4 ""

speedupl.2 .

1

0.8

0.6

0.4
2 3 4 5 6 7 8

number of processors

Figure 3.13: Plot of Main Tracking Tasks in p4

3.7 Performance Comparison

The current version of the Concurrent Multi-Target tracker which has been implemented by us on different
architectures, with Express, PVM , PICL and p4 is not very efficient. It does not scale well in a distributed
programming environment because the implementation has not been tuned for each concurrent task in this
environment. Some of the tasks which show speedup with the increase in the number of nodes for all the
tools are:-

"* Focal Plane Track Extension

"* Focal Report Construction

"* 3D Track Extension

"* 3D Track Initiation and

"* 3D Trajectory Estimation.

It can however be seen that Track Redistribution does not show any speedup. In fact as the number of
nodes increase the percentage of time required by this task increases. At the same time the percentage of
time required by other tasks decrease. This makes Track Redistribution a major contributor in time taken
by the Tracker, which accounts for a large percentage decrease in the overall speedup. This indicates that
the tracker has to be implement track redistribution more efficiently. For this reason in the plot of Main
Tracking tasks of the tracker (e.g, Figure 3.6, 3.8, 3.9) we have also plotted the the Grand Total of Focal

56

CHAPTER 3. TRACKER IMPLEMENTATION

Plane Tracking Tasks and 3D Tracking Tasks without Track Redistribution. There are also other areas
such screen I/O which effect the performance of the tracker. The initial implementation of the tracker
printed out timing details after each scan. The code was modified to print timing results only at the end of
the last scan. We observed that this increased the performance of the tracker. Comparing the performance
results of the tracker implementation on all the tools we observed that the performance of the Multi-Target
Tracker was better on the nCUBE and Intel iPSC (see Express and PICL Performance results, Tables 3.1
and Table 3.7). The timings on these platforms were faster than the implementations on worstations by a
factor of 2 (obtained by comparing Grand Total entries for 4 nodes on Tables 3.1, 3.5 and 3.7). It can be
seen from Tables 3.3 and 3.5 that the PVM implementation of the tracker on RS/6000 cluster was faster
than the heterogeneous implementation which used Rs/6000 and SUN4 workstations. It can also be seen
that the plots of Grand Total timing for Main Tracking Tasks excluding Track redistribution show almost
a linear speedup for all the tools.

57

Chapter 4

Tool Evaluation Methodology

In this chapter we develop a set of criteria to evaluate and benchmark tools used to develop paral-
lel/distributed software systems and applications. The steps for tool evaluation are quantified and a
tool evaluation methodology is presented.

4.1 Motivation

In parallel processing, a lot of work has been done in hardware development whereas software development
has not been able to keep pace with it. We have different architectures like "shared memory " and "dis-
tributed memory" hardware architectures. However, we do not have a uniform environment for application
development on these architectures. Often the software is tied to the architecture of the machine because
the application typically uses specific communication primitives for thaý particular architecture. This re-
sults in a non-portable application which may have to be rewritten to be ported to any other architecture.
The parallel/distributed software development process is shifting from homogeneous environments to het-
erogeneous environments. This calls for a uniform development environment to write applications that are
completely portable. Such an environment can also provide transparency across different architectures.

All the tools we used seem to have been developed with specific applications in mind and attempts to
generalize the tool were made at a later stage in the software development cycle. In this project we imple-
mented the Multi-Target Tracker on four different tools: Express [161, PVM [14] , PICL [15] and p4 [17].
All the tools which we used to implement the tracker had their own strengths and weaknesses. While
they were suitable for certain application development requirements, they were not suitable for some other
cases. Therefore we had to develop our own methodology for porting the tracker to the different plat-
forms supported by the tools studied. As an example, the tracker was originally written using a hostless
programming model. Some of the tools we considered did not support this model. Therefore, we had to
re-write the tracker using the host-node programming model. We observed, in the course of the project,

that these tools work very well on some architectures and for a certain class of applications. However,

58

CHAPTER 4. TOOL EVALUATION METHODOLOGY

there were some necessary features missing in the tools we used. For example, the tools do not have a
good debugger which is required in any software development process. We believe that a set of tool criteria
listing the necessary features in any tool will help the overall software development process.

We envisage two ways in which the set of tool criteria will help the parallel/distributed software development
process:

e They can be used for:

1. Evaluating a tool with respect to other tools, and

2. Selecting the best tool for a given class of applications.

* They can be used to minimize or remove the deficiencies in available versions of existing software
tools, and also serve as valuable inputs to tool developers.

4.2 Proposed Approach for Tool Evaluation

Currently, there are no general criteria against which a given tool can be evaluated independently of the
applications for which the tool is intended to be used; nor is it easy to lay down such a set. We believe
that the criteria used to evaluate a tool, as well as the importance given to individual criteria, depends
on the perspective of the person evaluating the tool. For instance, a programmer or actual user would
lay more emphasis on the speed of execution of the communication primitives of the tool, because a good
response time is important for the user. Consequently the user may give a grade of 4 (excellent or criti-
cally important, see Figure 4.1) for this criterion. On the other hand, it is likely that a manager would
give more importance to throughput rather than response time in evaluating a tool, as the manager likes
to have utilization close to unity (100 %). However, the response time increases exponentially towards
infinity. This simple example shows that it is difficult to devise a universal set of criteria for evaluating a
tool. Hence, our solution is to adopt a layered approach to the whole process : categorize a set of levels,
and within each level, group related criteria that will be used to evaluate a tool. Each level is analogous
to a perspective.

The levels are sufficiently general purpose so that any person evaluating a tool can identify the level(s)
most important to him/her, and focus on the tools performance with respect to the parameters within
that level(s). Furthermore, the criteria within a level, and the levels themselves, can be prioritized by
the process of assigning weights to them. We will discuss more about assigning weights in the following
sub-section on Methodology of Tool Evaluation. Finally, rather than having a static set of criteria for tool
evaluation, the set of criteria is extensible. This will help the evaluator add/remove criteria depending
on the application and/or his/her preferences. Using this philosophy, we have developed a tool evaluation
template with maximum flexibility across tools, applications and evaluator perspectives.

We have identified four basic levels for tool criteria :

59

CHAPTER 4. TOOL EVALUATION METHODOLOGY

Grading/Scaling:

Bad(l) Fair(2) Goad(3) Execellent(4) Ideal(5)I I I i i

Not Imp(l) Fairly lmp(2) Very lmp(3) Critically lmp(4) ldeal(5)i I I I I

Level 0 Level 1 Level 2 Level 3

riteria

sub-criteria

.....

Tool Evaluation Hierarchy

Figure 4.1: Grading Scheme and Tool Hierarchy

60

CHAPTER 4. TOOL EVALUATION METHODOLOGY

"* Level 0 Hardware/Software Requirements

"* Level 1 : Tool Capability

"* Level 2 : User Capability

"* Level 3: Software Development Capability

Each level has been divided into different criteria and each criteria has been further sub-divided into sub-
criteria (if any). We then define a tool evaluation process which could help in evaluating tools used for
parallel/distributed computing. The tool evaluation process is explained using the Multi-Target Tracker
as a running example. Having explained the overall approach, we now deal with the actual criteria that
will be used for tool evaluation.

4.3 Tool Evaluation Criteria

The tool criteria presented below cover a broad spectrum of requirements. These requirements do not form
an exhaustive list and can be extended by the users according to their own requirements. At the same time
the user can also use a small subset of these requirements. The choice of criteria depends on user needs.
Our intent is to present a frame work for benchmarking different tools used in parallel/distributed software
development. The criteria we have listed below do not have to be in the same levels as shown below. The
discussion below can be most effectively used as a guideline, rather than a hard-and-fast procedure for tool
evaluation.

As we previously discussed, tool criteria can be classified into 4 levels. For each level, we list the important
criteria. A criterion may or may not have sub-criteria. Each criterion and sub-criterion has to be graded
on a linear scale (shown in Figure 4.1). Section 4.4 discusses in detail the tool evaluation process where
different criteria are graded depending on the requirements of an application. In the following discussion
we give a brief explanation alongside most criteria/sub-criteria and the concept of grading a criterion from
different points of view is introduced.

4.3.1 Level 0: Hardware/Software Requirements

1. Tool Cost
Many tools exist as public domain software, and so come free, while commercially available tools
come at a monetary price. For a small organization planning to install a tool, tool cost may override
all other considerations. If a tool does not easily fit into an organization's budget requirements, then
it is likely that this criterion will get a low grade.

2. Integration of the Tool into Existing Environment
Successful use of a tool requires a fit between the tool and the environment in which it will be used.
The tool can be more effective if it is similar to the current environment/setup for an application.

61

CHAPTER 4. TOOL EVALUATION METHODOLOGY

The tool should run on the appropriate hardware and operating system. Tool installation should be
a straight forward process. Data interchange, if required between the tool and other tools used by the
application, should be straight-forward. If a tool is inexpensive but its use necessitates the acquisition
of expensive hardware and/or software, then it is likely to get a poor grade for this criterion.

3. Memory Requirement/Software Overhead
The tool running on the user's hardware should be able to handle a development task of the size
required by the user. For example the Multi-Target Tracker is a very memory intensive application.
The tool should not add extra memory overhead like running huge background processes/daemons
that will slow down the performance of the application. p4 and PICL do not have background pro-
cesses, whereas Express and PVM have background processes which need to be running on each
node to handle host-to-node communication and node-to-node communication. These daemons rep-
resent software overhead because they do not contribute to the useful computations required by an
application. In this case p4 and PICL will receive a higher grade than the other two tools.

4. Portability
Portability is a very important feature that must be addressed by every tool. This helps to transport
an application from one hardware/software environment to another with minimal changes to the
application code. For example, topology mapping is a portability issue because a user should not be
concerned about the underlying topology if the application has to be completely portable. A tool
should support a wide range of topologies to transport the application to any parallel/distributed con-
figuration. Express supports the grid decomposition topology which is not very elegantly supported
by other tools. In this case Express will get a higher score as compared to other tools.

4.3.2 Level 1: Tool Capability

1. Supported Platforms
The tool should be able to support a wide range of computers like shared memory parallel computers,
distributed memory multiprocessors and network-based computers. For example Express, PVM and
PICL do not have versions that run on CM5 presently whereas p4 is supported on CM5. Hence p4
Will receive a higher grade among these tools.

2. Heterogeneous Processing Capability
The tool should be able to support a single instance of an application across different architectures.
This means that an application can be transparently executed on n nodes where all n nodes need not
be of the same hardware architecture/machine. For example we used PVM to run a single instance
of the Multi-Target Tracker on a cluster of SUN, IBM and HP workstations. Tools which do not
support this capability will receive a low grade.

3. Generality of the Tool Interface
The tool should be designed to be used by more than one user at a time. The tool interface should be
compatible with other tools in a tool set or other commercially available tools. There should be no
extra overhead involved in terms of performance and programming when the tool interface is used.
For example, a parallel application may have a user interface module which uses X-Windows or MS
Windows ; at the same time it may use a parallel/distributed tool for parallel processing.

62

CHAPTER 4. TOOL EVALUATION METHODOLOGY

4. Data mapping and Decomposition
Data decomposition is done explicitly for applications implemented using existing parallel/distributed
tools. A tool should be able to do this automatically and optimally for a given application. This
helps to reduce the errors and load balancing problems that arise because of user controlled data
decomposition. At present there are not many tools which provide this capability for the simple fact
that data decomposition differs according to the application requirement and there seems to be no
consensus on a standard methodology for this problem. All the tools we used will receive a very low
grade for this criterion because this feature is not supported.

5. Communication Services
The communication primitives supported by existing libraries in a tool can be characterized as point-
to-point communication and group communication.

(a) Point to Point Communication
This is the basic message passing primitive for any parallel/distributed programming tool. To
provide efficient point-to-point communication most systems provide a set of function calls for
send and receive primitives. These primitives can be synchronous (blocking) or asynchronous
(non-blocking) primitives. All the tools we studied had this type of communication primitive and
so this criteria will get the same grade for all the tools. However, if we measure the performance
of running this communication primitive on each tool, the results will probably vary from tool
to tool according to this measure.

(b) Group Communication
Group communication for many parallel/distributed computing environments can be further
classified into three categories, 1-to-many, many-to-i, and many-to-many, based on the number
of senders and receivers. We now have a situation where we have criteria under the sub-criterion
Group Communication , which then become sub-sub-criteria. This shows the extensibility of
the tool criteria. All the three sub-sub-criteria categories do one form of global communication.

"* 1-to-Many Communication
Broadcasting and multicasting are the most important examples in this category. Some of
the system libraries do not explicitly use a separate broadcast or multicast function call.
Users should choose proper broadcast primitives according to the application.

"* Many-to-1 Communication
In many-to-one communication, one process collects the data distributed across several
processes. Usually such a function is referred to as a reduction operation. A global operation
combine is an example of such a form of communication.

"* Many-to-Many Communication
There are different types of many-to-many communication. The simplest example is the
case where every process needs to receive the result produced by a reduction operation.
From an implementation point of view, such an operation can be implemented by a many-
to-one operation and a one-to-many operation. Communication patterns of many-to-many
operations can be regular or irregular.

(c) Configuration Control and Management
The tasks of configuration control and management are quite different from system to system.
A subset of the configuration control and management primitives supported by the tools that
were used in this project are given below:

63

CHAPTER 4. TOOL EVALUATION METHODOLOGY

"* allocate or deallocate one processor or a group of processors, e.g., ezopen/exclose, getcube/relcube

"* Load, start, terminate, or abort programs, e.g., ezload, ezstart, abort.

"* Dynamic reconfiguration, e.g., ezgrid, gridinit.
"* Process concurrent or asynchronous file I/O, e.g., fmulti/fsingl.
"• Query the status of the environment, e.g., ezparam, pstatus.

4.3.3 Level 2: User Capability

1. Language Support
The number of languages supported or support for a specific language can be important parameters
in selecting and/or evaluating a tool. For example, all the tools we used in this project support C and
Fortran. An application requirement may be such that different parts of an application may have to
be written in different languages. For example, if a tool directly interfaces with device drivers, then
some part of the code may have to be written in a lower-level language. In such a case a tool that
supports a wide range of languages will receive a higher grade.

2. Ease of Programming
One measure of a tools effectiveness is the ease with which the user can interact with it. If the
user spends more time thinking about how to use the tool or making the tool work, then the tool is
hindering and not helping with the task. To justify using a tool, the tools benefit must offset its cost
and the time spent using it. To be more precise, we divide this criteria into the following sub-criteria.

(a) Tailoring the Software
A tool can be utilized for a lo variety of uses. If the tool can be tailored to user needs or to
a particular user style, the !As the potential to be used with more dexterity and at a faster
rate. Some of the issues th, commonly addressed in tailoring the software are :

"* Allowing the user facilities to define new commands and macros and to chain macros to-
gether.

"* Allowing the user to reconfigure the tool to tradeoff between different resource parameters
such as response speed and memory utilization.

"* Redefining the tool input and output format.

(b) Predictability
Unpredicted responses from thf tool usually result in unsatisfied users and unwanted output.
Command names should suggest function, and a user should rarely be surprised by a tools
response. An example of the issues that arise when we consider tool predictability is the ability
to predict or expect the response from the tool in most cases. For example, if a tool is configured
to run on a maximum of 8 nodes and if a user tries to run it on 16 nodes, it is an error. In this
case a predictable response expected from the tool would be an error message which informs
the user that the number of nodes have been exceeded. An unexpected response would be if the
program simply hangs.

(c) Error Handling
The tool should be able to gracefully exit when an unretrievable error occurs. In other cases

64

CHAPTER 4. TOOL EVALUATION METHODOLOGY

the error message should be a pointer to the type of error that has occurred. Protection from
costly errors should be provided. For example, when the application requires more memory than
what is available, it is an error condition. In this case the tool should give an appropriate error
message, delete all allocated memory and exit the program, without causing the terminal to
hang. All the tools that we used in this project do not have a mature error/exception handling
feature and hence, will receive a low grade for this criteria.

3. Programming Models Supported
The different programming models supported by parallel/distributed tools are CUBIX/hostless model
and host-node programming model. Express supports both models. Hence Express will get a higher
grade as compared to other tools we used in this project.

4. Interoperability
An important aspect of a tool that is often overlooked is the ease with which a tool can be incorporated
into any development environment. The development community may have to accept changes that
the tool may inflict upon the environment. We have not used this feature in our application; any
feature that has not been used by the evaluator gets an average grade.

5. Learning Curve
Depending on how complex it is, learning a tool can result in considerable expense, time and frustra-
tion. The tools command set should be consistent and understandable. The complexity of the tool
should be proportional to the complexity of the application; i.e., the tool should be able to simplify
a problem rather than complicate it. Prospective users should have sufficient background to success-
fully use the tool. The user should be able to do something very quickly to see what happens and
evaluate the results without a long set up time. The tool should be based on a small number of easy
to understand/learn concepts that are clearly explained. The number of functions provided should
be small enough to do the work the tool is intended to do. Finally, the time required to understand
and become proficient in using the tool should be acceptable to an average user and a project team.
Grading this criteria is also related to the experience of the user.

6. Run Time Support for Parallel I/O
Since I/O is often the bottleneck in parallel programs, a tool providing run-time support for parallel
I/O would be preferable to one which serializes I/O. For example, Express allows the user to switch
screen I/O modes from multiple to single modes by using fmulti and fsingl function calls. In this
case, tools which support different forms of parallel I/O will get a higher grade.

7. Debugging Capability
The different functionalities that can be used as a basis for evaluating the debugging capabilities of
a tool are :

(a) Tracing : The tool should provide a capability to include function calls in the code which will
help tracing the flow of execution of the application.

(b) Setting break points : A user should be able to stop execution of a program at logical points
by using this facility.

(c) Display values of different data types : A debugger should be able to display values of all

data types. For example some debuggers cannot display values of a user defined data type like
a typedef structure, but can display the value of a string variable or an integer variable.

65

CHAPTER 4. TOOL EVALUATION METHODOLOGY

The tools we used in the project did not have debugging facilities and hence will receive a very low
grade.

8. Application Profiling
An important aid in evaluating the performance of a parallel program is a profile of the program
execution. This includes information, preferably visual, about the distribution of the work load on the

processors, the percentage of time spent doing I/O and computation, and resource utilization. Such
information provides valuable insight that helps in fine tuning an application to optimize application
goals (e.g. : throughput, speedup, utilization). This also helps in identifying the bottlenecks in the
application.

9. Tool Robustness
Robustness of a tool is a combination of such factors as the reliability of the tool, the performance of
the tool under failure conditions, the criticality of the consequences of tool failures, the consistency
of the tool operations and the way in which a tool is integrated into an environment. While the
robustness of individual tools is important, it is secondary to the robustness of the environment in
which the tool operates. Many characteristics of robust operation are dependent on a more global
environment where the tool must have correct interfaces to the environment. For example, most tools
need not be concerned about device interface (inter-networking in a parallel/distributed environment).
These issues should be handled by the environment in which they are embedded. The tool should be
concerned with having correct interfaces to be inserted in the environment and to operate properly
with the environment. A few tool-related robustness issues are discussed below.

(a) Consistency
The tool should have well defined syntax and semantics. The tool should be able to operate
in a system with unique identification of each node in the environment. For example, each
node in an application instantiation should have a unique identification number. Some tools do
not incorporate this feature consistently. For example, we expect that if 8 nodes are used for
an application, they should be numbered from 0 to 7. PVM does not incorporate this feature
consistently after abnormal termination of an application. In such a case the master pvmd
daemon has to be killed and process of starting pvmds has to be done all over again. In this
case PVM will receive a low grade.

(b) Evolution
Tools normally evolve over time to accommodate changing requirements, changes to the envi-
ronment, corrections to detected flaws, and performance enhancements. Some of these issues
can be listed as follows :

"* A tool should be built in such a way that it can evolve and retain compatibility between
versions.

"* The tool should be able to smoothly accommodate changes to the environment in which it
operates.

"* New versions of the tool must be able to interface with old versions of other related tools.

* Separate versions of a tool should be able to coexist on the system.

In the course of our project we tried to implement the Multi-Target Tracker on a newer version

of PVM (from 2.4.2 to 3.0). However PVM (3.0) was not directly downward compatible and it
will need some rework to achieve portability. In this case PVM will receive a lower grade.

66

CHAPTER 4. TOOL EVALUATION METHODOLOGY

(c) Fault Tolerance
There are many ways of defining fault tolerance. We are not concerned with the general problem,
but with fault tolerance that specifically relates to individual tools. The various issues in fault
tolerance are :

"* The tool should have well-defined atomic actions. This means that no intermediate states
should be registered, and that any environmental failures during execution of an application
should not cause irreparable damage once the failure has been repaired and the system has
been restarted.

"* The tool should have the capability of roll-back recovery.

We have not used this feature in our project and hence this criteria will receive an average grade.

10. Support and Maintenance
A tool should have sufficient customer support after it has been installed. Moreover, the amount
of bookkeeping prior to starting, during the execution and after the termination of a program must
be minimal. For example, Express has background daemons which when killed do not release the
semaphores. Sometimes even an explicit ezclean does not do the job. In contrast, although PVM
also maintains background processes called pvmd's , it kills all the slave pvmd's if the master pvmd
is killed. More importantly, Express has better customer support than PVM, probably due to the
fact that Express is available commercially while PVM is a public domain software.

11. Performance of Tool Services
The performance of a tool can greatly affect the ease with which it can be used. Poor tool performance
can create costs that negate many of the benefits realized from tool use. A tool performance should be
acceptable or relative to the complexity of operations. An application must not run for unreasonable
amounts of time. When the tool supports multiple users the response time must be acceptable with
the maximum user load. The tool should be able to dispose of any useless byproducts it generates in
the process of executing an application. As explained earlier, the specific sub-criteria used to evaluate
the performance of a tool depends on the application characteristics, the goals of tool evaluation and
the perspective of the evaluator. Some of the factors that are likely to be considered are

(a) Response time under different load conditions.

(b) Communication Speed if the anticipated applications are communication-intensive.

(c) Throughput if optimal resource utilization is the dominant aim.

(d) Compilation time if large applications consisting of hundreds of programs are to be supported
by the tool.

We have used the performance data of the Multi-Target Tracker for different tools on a single archi-
tecture to grade this criteria.

4.3.4 Level 3: Application Development Capability

Application development capability is divided into a set of stages which correspond to phases typically
encountered in the software development process. These stages can be described as follows

67

CHAPTER 4. TOOL EVALUATION METHODOLOGY

1. Application Specification Stage
This is the input to the software development process. It is generated from the application description
and specification which is generated from the application itself (if it is a new problem) or from existing
sequential code (porting of dusty decks). A tool will be evaluated with respect to its capability to
assist the user in developing an application at this stage. Most of the currently available software
tools do not have support for such an environment.

2. Application Analysis Stage

A tool should assist the user perform the following functions at this stage:

"* Module creation problem. This means identification of tasks which can be executed in parallel.

"* Module classification problem, i.e., identification of standard modules.

"* Module synchronization problem, i.e., analysis of mutual interdependencies. This stage corre-
sponds to the design phase of the software life-cycle models and its output corresponds to the
design document.

3. Parallelization Specification Stage
A tool for developing parallel/distributed software should provide powerful primitives to allow the
developer to easily parallelize the functional modules of an application.

4. Application Development Stage
A tool will be benchmarked against its ability to support the following functions

"• Algorithm Development Module
Assists the developer in identifying the functional components in the parallelization specification
and selecting appropriate algorithmic implementations.

"* System Level Mapping Module
Uses the information provided by the algorithm development module to appropriately map the
functional component to a suitable computing element in the environment.

"* Machine Level Mapping Module
Performs the mapping of the functional components onto the processor(s) of the computing
element to which it has been allotted by the system level mapping module.

"• Implementation/Coding Module
Handles all code generation and performs code filling of selected template so as to produce
parallel code which can then be compiled and executed.

"• Design Evaluator Module
Assists the developer in evaluating different options available to each of the other modules, (e.g.,
algorithms, implementations, system level mappings, machine level mapping)

5. Compile-Time/Run-Time Stage
The tool should support the task of executing parallelized specification generated by the development
stage to produce the required output.

6. Evaluation Stage
A tool should assist the developer to retrospectively evaluate the design choices made during the
design process and look for ways to improve the performance.

68

CHAPTER 4. TOOL EVALUATION METHODOLOGY

7. Maintenance/Evolution Stage
A tool should provide the capability of monitoring the operation of the software and ensuring that
it continues to meet its specifications.

Having presented the general tool criteria, we now propose a methodology for tool evaluation which sys-
tematically grades the tool criteria we discussed above.

4.4 Methodology for Tool Evaluation

The tool evaluation approach follows a five step process which can be categorized as follows:

1. Assign criteria to the each level.
It is important to assign criteria to the appropriate levels. This process depends on the ultimate goal
of tool evaluation. The tool may be evaluated for a specific application, or can be compared with
other tools.

2. Identify sub-criteria (if any) in all criteria that have been listed.
A criteria for a tool may be a very broad based definition for a particular requirement. By classifying
it into sub-criteria it may be possible to convey the actual requirement of that criteria for tool
evaluation.

3. Define a scaling/grading mechanism for sub-criteria, criteria and levels.
We believe that scaling/grading is the most important part of the evaluation process. In this step
we make an attempt to quantify abstraction. Figure 4.2 shows an example of this step. It can
be seen that scaling/grading can be made in only a subjective manner. In order to quantify these
details we assign numerical values (grades) to these subjective details. The values range from 1 to
5 (see Figure 4.1) depending on the degree of importance of that level/criterion/sub-criterion. A
grade of 5 is rarely assigned because this is termed as an ideal situation. This helps us to identify a
normalization mechanism. The grades of sub-criteria are normalized against unity (see Figure 4.2)
and the result is assigned as the grade for the associated criterion.

4. Assign weights to criteria and levels.
After having assigned a grade value to each sub-criteria, we get the effective grade of all criteria for all
levels. However, criteria may not be divided into sub-criteria in which case we directly assign grades
to such criteria. Since criteria are interdependent, their importance in that tool has to be evaluated
using a weighting mechanism which assigns weights ranging from one to five. A higher weight tends to
show the increased importance of the criteria for the tool/application. Having calculated weights for
all criteria we multiply the grades of criteria with their weights and then normalize these value against
one. These normalized values are assigned as grade values to the associated levels (see Figure 4.2).

5. Calculate percentage acceptance of the tool.
Having calculated the grades for each level we again assign weights to different levels as described
in the previous step. The same process of normalization used for criteria values is employed to get

69

CHAPTER 4. TOOL EVALUATION METHODOLOGY

a normalized value of all levels (see Figure 4.2). This normalized value of levels is defined as the
measure of acceptance of the tool for a specific requirement.

The next section shows a mathematical representation of the method. Finally, we explain the algorithm
using a running example.

4.4.1 Tool Evaluation Algorithm

Step 1: Determine the grade G(Ci) for each criterion C,

G(Cj) = r G(ScX) (4.1)

if m > 0 for Cj, where
G(Sci) -- the grade of sub-criteria Sci of criteria Ci,
G(Ci) -- the grade of criteria C3 ,
m -* total number of sub-criteria for criteria Cj, and
p -- maximum (ideal value) for any sub-criteria Sci in criteria C,

This summation is performed only if a criteria cj has any sub-criteria Sci, otherwise, the
criterion grade is assigned a value between 0 and 1, after which the evaluation proceeds to step 2.
For example, in Figure 4.2, the criterion Tool Robustness does not have any sub-criteria, so it is
directly assigned the grade 0.5.

Step 2: Determine the weighted grade (WG(C,)) of a criteria Cj

WG(Ci) = G(Cj) x w(Ci), where (4.2)

w(Cj) -- the weight associated with criteria Cj

Step 3: Determine the normalized grade of each level

NG(Lk) = C ,) here (4.3)fz=ý w(Ci)

Lk -- any level k ,
NG(Lk) - the normalized grade of level k ,
Ci -" any criteria in level k,
WG(Ci) - the weighted grade of Ciin level k,
n -- total number of criteria for level k,
w(Ci) - weight associated with criteria Ci,

70

CHAPTER 4. TOOL EVALUATION METHODOLOGY

Ja

Level =Level + 1

For all critera in b

this level

AnyYE

sub-critera in this
"• • ter ?•,......m..

Grade sub-criteria sea. Weight S&*-T.tal
and normalize d Orrw,•T 1

rResponse niew
' Corn Spd 3 3Assign value to em : upwm 2 2

associated criteria : 4

12 12/1200.6
0.6 4 24

Grade each criteria 0.7 . cn Profi 0.7 3 11
Tool Robustiess 0.5 2 1.0

"Level2 grade 9 51"/9=0.6

Multiply each critera with iwleylcms, gads for al, levels

wleghts and normalize g Levelno Vrde wftht total

Level 0: 0.6 2 1.2
sUb-crifria Level 1: 0.j 3 1.5

Assign normalized value Level2: e.g 4 24

to level (levp1 grade) h] Level3: 0.5 4 3.2

r Me~aWsure .faceptance &.3113=0.639
* Multiply level grade with

weights and normalize ' of accePtitoe 0.635"100=65%
* Note: Maximum Value of scale for sub-cterla Is 5

Maximum value of scale for crteria Is I.

Measure /Percertage Maximum valu ofl or ,,lh s 1.

of acceptance :

Flow Chart

Figure 4.2: Tool Algorithm and Implementation Example

71

CHAPTER 4. TOOL EVALUATION METHODOLOGY

Step 4: Determine the Tool Acceptability Metric (the Measure of Acceptance (MOA)

A = NG(L,) x w(L,)
MOA'= w(=L) , where (4.4)

w(Li) --* weight associated with level Li
k -+ total number of levels
MOA -- Measure of Acceptance of the tool

The Percentage Measure of Acceptance of the tool is 100 times the MOA.
Figure 4.2 shows a flow chart of the tool evaluation algorithm.

4.4.2 Step-by-Step Explanation of Tool Evaluation Process

The flow chart in Figure 4.2 shows a systematic approach to the Tool evaluation methodology we described
in the previous sections. For each level, (block 'a "in the flow chart), consider one criterion at a time. For
each criterion (block 'b' in the flow chart), if there are any sub-criteria (block 'c' in the flow chart), then use
equation (1) which grades each sub-criterion and assigns the normalized value to the associated criterion.
For example Figure 4.2 shows the flowchart of the method and a snapshot during the calculation of the
measure of acceptance.

With reference to the latter, it can be seen that level 2 has a criterion Performance of Tool Services
which has sub-criteria (a) Response time (b) Communication Speed (c) Throughput and (d) Compilation
time. Here Response time is assigned a grade/scale of 3, Communication Speed is assigned a grade/scale
of 3, Throughput is assigned a scale of 2 and Compilation Time is assigned a scale of 4. The scales of all
these sub-criteria have been added together which results in a cumulative grade/scale of 12. This is then
normalized using the maximum attainable grade by each sub-criterion which in this case is 5. The total
maximum attainable grade for all sub-criteria 'dds up to 20. Therefore the normalized value is 12/20 -
0.6. This value is assigned as the grade of th,. ssociated criterion (block 'd' and 'e' in the flow chart)
which in this case is Performance of Tool Services .

Following the flowchart further we can see that if there are no sub-criteria associated with a criterion
then each criterion is graded (block 'f' in the flow chart) in the same way as we graded sub-criteria above.
The only difference is that each such criterion is directly graded on a scale of 0 to 1, i.e., the maximum
attainable value by such a criterion is 1. In addition to this, each criterion is assigned a weighted value
which reflects its relative importance in that level. The maximum attainable weighted value for any criteria
is 5. For example in Figure 4.2 we can see that in Level 2, Application Profiling and Tool Robustness do
not have sub-criteria. Hence, they are directly given a grade of 0.7 and 0.5, respectively. Their relative
weights are 3 and 2 respectively. We then multiply each criterion grade with its associated weight (block
'g' in flow chart) and enter the value in a sub-total column as shown in Figure 4.2. These values are added
together and are normalized against the sum of maximum attainable values by each criterion (block 'g'
in flow chart). The maximum attainable value by any criterion is the weight of the criteria itself. For
example, in Fi•lire 4.2 the maximum attainable value by Application Profiling is 1 x 3 = 3, which is the

72

CHAPTER 4. TOOL EVALUATION METHODOLOGY

weight of the criterion itself. This is equivalent to equation (2) shown in the mathematical representation
of the tool evaluation algorithm. Let us assume for the sake of explanation that Level 2 has only three
criteria : Performance of Tool Services, Application Profiling and Tool Robustness. The normalized value
adds up to 2.4 + 2.1 + 1.0 / (4 + 3 + 2) = 5.5 / 9 = 0.6 (see Figure 4.2). This step is equivalent to
equation (3) in the mathematical representation.

As we follow the flow chart in Figure 4.2 we see that the value 0.6 is the level grade for Level 2 (block 'h'
in flow chart). Each level grade is calculated in the same manner we described above and we have grades
for Level 0, Level 1, Level 2 and Level 3.

The flow chart in Figure 4.2 shows the procedure for each level and the loop back to the block 'a', level =
level + 1, is essential for the next level. The process of assigning weights to each of these of levels is done
in the same manner (block 'i' in the flow chart) as we did it for each criteria in a level. In the example in
Figure 4.2 we can see that the grades and associated weights for each level are multiplied and is assigned
to a total column. These values are then normalized against the maximum attainable value by each level.
The result in the example shown in Figure 4.2 is 8.3 / 13 = 0.638. This step corresponds to equation (4).
This value corresponds to the normalized grade for the entire tool (block 'j' in flow chart) and is the
Measure of Acceptance (MOA) of the tool. The Percentage Measure of Acceptance for any tool is then 100
times the MOA and for the example in Figure 4.2 it corresponds to 0.638 * 100 = 63.8 %.

It can be noticed that our approach follows a top down approach for defining and assigning criterion
and sub-criterion at different levels; whereas it follows a bottom-up approach for assigning grades and
weights to sub-criterion, criterion and levels. Our methodology of combining the top-down and bottoms-
up approach is particularly powerful because it succeeds in quantifying abstraction.

In the absence of discrete metrics, this layered approach of progressively quantifying abstraction can
be used to assess the suitability of a parallel/distributed software development environment for a users
requirement. Using the system of grading and assigning weights to criteria and levels, the user/developer
can tailor the methodology to reflect his/her priorities. This results in a powerful and flexible approach to
tool evaluation, selection and development. In the next chapter we apply this tool evaluation methodology
to develop tool evaluation benchmarks for the tools we used in this project.

7.3

Chapter 5

Tool Evaluation Benchmarks

The chapter on Tool Evaluation Methodology (chapter 4) discusses the different tool criteria that have to
be taken into consideration for evaluating a tool. The HHPC software development model we presented
in chapter 1 is a subset of this Tool Evaluation Methodology. As discussed in the previous chapter, tool
evaluation criteria has 4 levels These levels are:

o Level 0: Hardware/Software Requirements

o Level 1: Tool Capability

* Level 2: User Capability

o Level 3: Application Development Capability

Evaluation of level 3 requirements for each tool shows how each tool is useful in implementing the HHPC
software process development model presented in chapter 1.

In this chapter we present tool evaluation benchmarks for all the tools (Express, PVM, PICL, p4) used in
this project and process evaluation benchmarks (level3) for the HHPC software model.

It is important to notice the benchmark results for the same set of tools can be different for a different
application. The benchmarking process is dependent on the needs of the application. For example in this
project our intention was to have a tracker implementation for every tool and on all architectures that are
available at NPAC. We did not spend time on tuning the performance or enhancing the algorithms used
in the tracker.

In section 5.1 we will apply the HHPC software development process model discussed in chapter 1 to
the implementation of the tracker using the studied software tools. We will discuss the relevance of each
module in this model and its relation to the tracker implementations. This discussion is useful to develop
the process benchmarks or evaluation of level 3 criteria explained section 5.2. We will then develop tool
evaluation benchmarks for each tool which also includes the process evaluation benchmarks(level3).

74

CHAPTER 5. TOOL EVALUATION BENCHMARKS

5.1 Mapping the HHPC software development model to the Multi-
Target Tracker porting process

The main task in this project was to port this software to a combination of different architectures and
tools. Each module in the HHPC software development model is considered in the order shown in Figure
1.2. We explain the different factors taken into consideration while porting the Multi-Target Tracker with
relation to this model. The output of each module acts as an input to the next module.

1. Dusty Decks
We started the project with an existing version of-the concurrent multi-target tracker written using
Cros III primitives, which was developed for the Mark III Hypercube. This is represented by the
Dusty Decks module shown in Figure 1.2.

2. Application Specification Filter
The requirement of the project is represented by this stage (see Figure 1.2). The output of this filter
for our project is as follows:

"* Port the existing Cros III version to Express, PVM, p4 and PICL.

"* Support as many hardware architectures as possible which support the tools mentioned above.

"* Benchmark Performance of the tracker for each machine-tool combination.

"* Evaluate the application development tools used in the project.

3. Application Analysis Stage
This stage involves analyzing the application to satisfy the requirements of the application specifica-
tion filter. The output of the application analysis stage for the project were as follows:

"* A clear picture of the structure of the existing software.

"* Physical requirements (e.g., hardware and software that will be used)

"• Conversion requirements which include

(a) Identification of a programming model that is supported by all application development
tools that we proposed to use. The host-node programming model was used in this project.

(b) Identification of a systematic procedure to port the software to all the tools. This involves
an external design phase which gives shape to the initial design approach to be used. Refer
to the section on porting the tracker on different tools discussed in the chapter 3.

"* Specifications for timing all concurrent tasks implemented in the tracker.

"• Requirements and procedure for tool evaluation.

4. Parallelization Specification
The parallelization specification stage in this project involved only identifying message passing primi-
tives supported by all the tools. For example the primitives identified in express were (a) ezopen() (b)
extoad (c) exwrite and (d) exread The output of this stage did not involve adding any new paralleliza-
tion specification although areas for potential parallelism have been identified which can enhance the

75

CHAPTER 5. TOOL EVALUATION BENCHMARKS

performance of the tracker. For example, the implementation of the tracker requires each node of
the system to maintain a global structure of the track database. Each node of the tracker works on
sections of this database. This requirement of the tracker degrades the overall performance of the
tracker due to increased memory requirements.

5. Application Development Stage
This stage consists of a design evaluation process which would help us to implement the requirements
produced by the application analysis stage. Referring to fig 1.2 we can see that there are 4 stages in
the Design Evaluation Process. We will briefly discuss all these stages.

" Algorithm Development
Existing algorithms were not modified, nor any new algorithms were added in this project. This
is an important stage when a new application is being developed or the existing application needs
to be tuned to improve its performance. Tuning an application for performance improvement
will involve modifying existing algorithms or using new efficient algorithms to replace existing
algorithms when required.

"* System Level Mapping
This stage was not used in this project.

"* Machine Level Mapping
A gridmap interconnection topology onto a cartesian grid was used in this project. The different
primitives that allow such a decomposition are (a) gridinit((b) gridcoord() and (c) gridchan().
This topology is supported by Cros II primitives. In order to port the tracker to different tools
these primitives were re-implemented using the C programming language. See section 3.1 on
Porting the tracker on different tools in chapter 3.

"• Implementation/Coding
This was the key stage where we developed a standard paradigm to enable a simple and general
porting process. A detailed discussion of this process is given in chapter 3 (section 3.1 Porting
the tracker on different tools). This stage was was developed for all the tools we used for porting
the tracker (Express, PVM, PICL and p4).

In addition to these stages header file definitions had to be modified for porting the tracker
to different architectures. For example the Express implementation of the tracker needs the
header file definitions of express.h and cros.h. The PICL implementation of the tracker needs
declaration of a global integer host. These modifications have been incorporated by adding
pre-processor statements in the header file track89.h and basic89.h. The timing/clock routine
had to be changed on the iPSC/860 (changed from clock() to mclocko) for timing concurrent
tasks in the tracker. The code was modified to report timing outputs only for the last scan of
the tracker and cumulative concurrent timings of all previous scans. This reduced screen I/O
and also helped to improve the overall performance.

6. The output of the Application Development Stage is a parallelized structure of the tracker which has
been implemented using standard primitives of the studied tools.

7. Compile-Time/Run-Time Stage
The compile and run time stage involves writing makefiles for each architecture and each tool. There

76

CHAPTER 5. TOOL EVALUATION BENCHMARKS

ARCH = RIOS

PVM - $(HOME)/pvi
PLIB = $(PVmI)/src/$(ARCH)/libpvm.a
EXECDIR = $(PVM)/$(ARCH)
SDIR =

CC f cc
CFLAGS -g
LIBS fi i

.C. o:

$(CC) $(CFLAGS) -c $(PLIB) $(LIBS) $<

OBJS = pvmnhost.o

pvm.host: $(OBJS)
$(CC) $(CFLAGS) -o pvm-host $(OBJS) $(PLIB) $(LIBS)
mv pvm.host $(EXECDIR)

defaxL.t: pvmyrhost
Qecho "Done with host make"

Figure 5.1: PVM Host Makefile

are two makefiles which we identify as a host makefile and a node makefile. For example the make-
file for the PVM implementation of the tracker on a cluster of IBM/RS6000 workstations is as follows:

We require a separate host makefile and node makefile because on implementations of the tracker
like the iPSC/860 the compilers for the host(cc) and node (icc) programs are different.

8. The acceptance test stage
This stage is not explicitly shown in Figure 1.2 and it is assumed to be part of the compile and run time
stage. This stage involves verifying the correctness of our implementation. We ensured correctness
by cross verifying the results of the original implementation and the results of our implementation
of the tracker.

9. Evaluation Stage The evaluation stage consists of verifying the specification requirements with
the functionalities implemented by the software. One requirement of the project was to develop
performance benchmarks. These benchmarks have been developed and explained in detail in Chapter
3. Another requirement was to develop different versions of the Multi-Target Tracker using Express,
PVM, PICL and p4. These versions have been developed and explained in detail in chapter 3.

77

CHAPTER 5. TOOL EVALUATION BENCHMARKS

ARCH uRIOS

PYN $(HOXE)/pvm
PLIB $(PVN)/src/$(ARCH)/libpvu.a
EXECDIR $ $(PVM) /$ (ARCH)
SDIR

cc cc
CFLAGS * -9
LIES -i

.SUFFIXES:
-SUFFIXES :C c0 .e .r .f y yr .ye .1 .s

$(CC) $(CFLAGS) -c -DPVi4 $(PLIB) $(LIBS) $<

OBJS = .

SRCS = .

pvm-.node: $(OBJS) $(PLIB)
$(CC) S(CFLAGS) -o pvm-.node $(OEJS) $(PLIB) $(LIBS)
my pvm..node $(EXECDIR)

default: node
*echo "Done With Node Program"

$COBJS): track89.h basic89.h

Figure 5.2: PVM Node Makefile

78

CHAPTER 5. TOOL EVALUATION BENCHMARKS

10. Evaluation Stage
On successful completion of the evaluation stage we have different versions of the tracker implemen-
tation. This gives rise to evolution specification for future enhancements and hence a evolution stage
in the software development cycle. We have not dealt with this stage in this project. As a result the
end of the Evaluation stage marks the beginning of the Maintenance stage.

5.2 Tool Evaluation Benchmarks

We -will use a tabular representation to explain the tool evaluation process. Here is a brief explanation of
the layout of the Table. The evaluation proceeds from left to right and top to bottom (see Table 5.1- 5.3).
The level number is entered in column 1. Criteria within a level are entered in column 2. If a criterion has
sub-criteria, they are entered in the next column. If there are sub-criteria, each sub-criterion is assigned a
grade from 1 to 5 (as explained earlier) in column 4. The grades of all sub-criteria are summed and entered
in column 5. If there are no sub-criteria for a criterion, the criterion is directly assigned a grade from 0 to
1 in column 5. The values in columns 5 and 6 are used to get the normalized criterion grade in column
7. The weight for each criterion is entered in column 8. The value in column 7 is multiplied with that in
column 8 to get the weighted criterion grade in column 9. The sum of all the weighted criterion grades
for a level gives the level grade in column 10. The maximum level grade in column 11 is just the sum of
the weight assigned to each criterion in column 8 with respect to the level under consideration. The values
in columns 10 and 11 are used to calculate the normalized level grade in column 12 for each level. After
assigning a weight to each level in column 13, the product of columns 12 and 13 gives the weighted level
grade for each level in column 14. Finally, the overall acceptance for the tool in column 15 is calculated by
dividing the sum of the weighted level grades in column 14 by the sum of the level weights in column 13.

5.2.1 Tool Evaluation Benchmarks for PVM

We now explain the evaluation process for PVM. Table 5.1 to 5.3 shows the evaluation. We used PVM
2.4.2 for this work. Also, columns 4, 5, 8 and 13 are most important from the point of view of user-
interaction : the values for the other columns are dependent on these columns and can be automatically
calculated by an interactive evaluation tool. Hence, we focus on columns 4, 5, 8 and 13 in the discussion
below.

1. Level 0 : Hardware/Software Requirements
All the criteria in this level do not have sub-criteria, hence columns 3 and 4 are empty for all of
them. PVM got the ideal grade of 1 for tool cost because it is public domain software, developed by
Oak Ridge National Laboratory. However tool cost was not important to us in our effort and hence
we gave it the low weight of 1. PVM got a high grade of 0.8 for integration of tool into existing
environment because installation was easy and it worked without too many hitches in our hardware
and software environment. This feature was important to us, so we gave this criterion a high weight of
4. PVM got a low grade for overheads since running a program in PVM requires execution of daemon
processes (pvmd) or, all participating sites. Portability was one of the most important concerns in

79

CUAPTER 5. TOOL EVALUATION BENCIIMARKS

SN.4 Ce4m S.5.Cmk.Or-sh C (:lin M..W. C.5-4- Wdtia j... .rIo d5•".

C..d. tt5 4 *.
(I)1 3 () () 1 ((111 (lot (18) (121 413 (141) 15

0 Toal I Cas I

If.fqa ad 0,$ 1 0.a 4 3.2
imimo

O06aad. 06 I 0.6 4 24

poinaday 0.8 I 0.8 5 4.0 lot0 14 073 4 30

1,00M s 0.8 I as S 4.0S"Vead

Ew1 , 0.8 I 05 5 4.0
.P...u

icAmiliy d 0. I 0.8 5 4.0

Daa 0.4 Q 0.4 4 I.A

COmmsAeCýan Poe to FIe 3
learn %go icss C.m..Wisc

dan

= 2u. 3 6.0 to 0.6 4 2.4

QmfdigvinM 0.9 1 0.11 4 3.2 192 3 .4 5 34
QAMWmad

30 0.45d2

2 La ~ 0.5 1 0.5 3 2.4

Fge of Taikabitiy 3Praynm
Piediaahisy 4

Fnw 4 1I 0.73 S 3.65
Ilmdlift

Table 5.1: Example Evaluation of PVM

80

CHAPTER 5. TOOL EVALUATION BIENCHMAARKS

4 rftS. Cre" CVdtMobo (4d W 6h .. N (r". d. l.-6 *I.d w.Ic"I II"4 A-~p

2 Po,0 I 5 3 2.4

metw-0.6 1 A.6 3 is
.h.Iay

Im%0.8 1 0.9 5 40
Cw..

Rwrt., 0.4 I 04 3 1.2

W"Aing1U 0.4 1 M4 3 1.2

Ahcum0.8 1 15s 3 2.4

Towl Quu.-cy 3
Robsoumms

Ro..shoo 3

Pooh 3 9 is 0.60 5 30

S 0.4 1 0L4 4 1.6

Ndofanwom a.6 I 0.6 4 2.4 26.03 41 0.64 5 3.20
c Tool

3 AfkcAu * 016 I 0.6 1 0.6

Sup

Ar~kaoin 06 1 0.6 I 0.6
AnAjysis

Pam"e 0.5 I 0.5 1 0.3

Table 5.2: Example Evaluation of PVM (cont..)

81

t~i(4. ~Cttn fk dSdt~1 N.,m be C.Ui4d 4;r.& 1..4 I .. d tk4d.A

() ((3) (4) () (61 c" () (10) (1I) t2) (93) (14) 435)

3 gb.i 0.6 1 0.6 1 0A

kina

E*kwm 0.5 IL 0. 1 0.8

asp
capmiucs

SWAMagM, 0.8 0.8 1 0.1 . . ,n

82.2

CHAPTER 5. TOOL EVALUATION BENCHMARKS

our effort, hence this criterion was given the highest weight of 5. PVM measured up well in this
respect : we ported the tracker on IBM RS/6000s, SUN 4s and HP Apollo workstations using PVM.
Hence, PVM was assigned a 0.8 grade for this criterion.

2. Level 1: Tool Capability
PVM does support many different types of Hardware Platforms, (weight 5) hence the grade of 0.8.
PVM also did well on heterogeneous computers (weight 5 again) : for example, we executed the
tracker on a heterogeneous combination of SUN 4s and IBM RS/6000s. Generality of tool interface
(weight 5) also got a high grade of 0.8 : PVM's interface is simple and easy to use and multiple
users can use the tool. All tools used in our effort have little or no data mapping and decomposition
capabilities , hence the low grade of 0.4. Both sub-criteria in communication services got relatively
low grades of 3 for PVM because communication in PVM is a multi-instruction process. For example,
to send a message, the send buffer must first be initialized (initsendo, then the message to be sent
must be put in the buffer (putninto), and only then can the message be sent by using the snd(
call. Finally, PVM provides good configuration control and management facilities (weight 4), hence,
a high grade of 4.

3. Level 2 : User Capability
PVM supports C and Fortran, hence, it got a grade of 4 for language support. Extensive language
support was not an issue for us hence, the weight 3. PVM supports two very general programming
models : tree computations and crowd computations, of which most other programming models are
subsets. Hence, the high grade of 0.8 for this criterion. We have not evaluated interoperability
for any of the tools we used : in such a case, we assign an average grade of 0.6. For similar rea-
sons, the weight assigned was also 3. Although the documentation for version 2.4.2 of PVM was
sketchy, we found PVM fairly easy to learn. Hence, it got a good grade of 0.8 for learning curve;
which was assigned a weight of 4, since we had to learn how to use 4 tools in the course of the project.

The next three criteria were not too important for us, hence, they were given (relatively) low weights
of 3. We found PVM to be a fairly robust tool. In version 2.4.2 of PVM, the master daemon has to
be explicitly killed after termination of the master process. Moreover, we tried using PVM version
3 instead of version 2.4.2, but had a hard time using it. For instance, we could not get version 3 to
work on HP Apollo workstations, although version 2.4.2 works fine on them. For these reasons, the
sub-criteria in this criterion received average grades. PVM gave us reasonably good performance for
the tracker, hence the average grade of 0.6 for performance of tool services.

4. Level 3 : Application Development Capability or Process Evaluation
This level is also used for developing process benchmarks. We did not develop the original imple-
mentation of the tracker from scratch. However we have evaluated this level from a portability point
of view using the Multi-Target Tracker as a running example. The benchmarks for this level are also
called process evaluation benchmarks for PVM.

The application specification stage and analysis stage are independent of the tool that we used
in this project. Hence an average grade of 0.6 is assigned to both these criteria. The Parallelization
specifications differ for each tool which essentially is the communication primitives provided by the
tool. The primitives provided by PVM were easy to use and sufficient for our requirements, so we
have given a grade of 0.8. The application development stage capabilities will remain the same for all

83

CHAPTER 5. TOOL EVALUATION BENCHMARKS

the tools because we developed a standardized procedure for porting the tracker to any tool. No extra
work had to be done for any tool after this methodology was developed. Hence we have assigned an

average grade of 0.6 for this criteria. The compile and run time stage capabilities have been assigned

a grade of 0.8. The evaluation stage capabilities have been assi8.Led a grade of 0.8. The maintenance

and evolution stage gets an average grade of 0.6 because we have not used this stage in our project.
It can be seen from column 12 that the normalized level grade is 0.69 which is equivalent to 69%

acceptance for level 3 or process evaluation grade for PVM in this project.

The overall percentage tool acceptance which takes into account level 0-3 for PVM version 2.4.2 using our

tool evaluation methodology is 67.27 % and the process evaluation benchmark for PVM is 60%.

5.2.2 Tool Evaluation Benchmarks for Express

We now briefly explain the evaluation process for Express. Table 5.4- 5.6 shows the evaluation. We used
version 3.0 for this work.

1. Level 0 : Hardware/Software Requirements
All the criteria in this level do not have sub-criteria, hence columns 3 and 4 are empty for all of them.
Express got the ideal grade of 1 for tool cost since we got this tool free. However, since tool cost
was unimportant to us in our effort, we gave it the low weight of 1. Express got an average grade

of 0.6 for integration of tool into existing environment because express has to be configured through
configurations file like express.cst, confile, netfile and plotfil. This is not a straight forward process
and the inconsistent behavior of express (specially on nCUBE) made it more difficult. Express gets
an average grade for overheads because it requires execution of daemon processes (exinitO) on all
participating sites. PGrtability was one of the most important concerns for our effort, hence this
criterion was given the highest weight of 5. We could port the express version of the tracker on SUN
4 workstations and nCUBE. Hence we assigned a grade of 0.6 for express in this criteria.

2. Level 1: Tool Capability
Express did not support many different types of Hardware Platforms, (nCUBE and SUN workstations
when we used Express, weight 5) hence the grade of 0.6. Express also did not do well on heterogeneous

computers (weight 5 again), hence a grade of 0.6. Generality of tool interface (weight 5) also got an
average grade of 0.6. All tools used in our effort have little or no data mapping and decomposition
capabilities , hence the low grade of 0.4. Both sub-criteria in communication services got relatively
grades of 4 for Express. Express does not provide configuration control and management facilities
(weight 4), hence, an average grade of 0.6.

3. Level 2 : User Capability
Express supports C and Fortran, hence, it got a grade of 0.8 for language support. Ease of Program-
ming has been mostly been given an average grade except for error handling in Express which is not
good. The express version of the tracker does not exit gracefully when there is an error. When the

program is aborted by using the UNIX kill command express does not take of releasing semaphores.

Express supports two very general programming models : CUBIX and host-node , of which most

8-4

CHAPTER 5. TOOL EVALUATION BIENCHIMARIKS

owi eraj-b- I ~ a NI W- Itk f

0.6 1 0.6 4 2 4

Pociabdu,' 0.6 1 0.6 5 30 as 14 0.63 4 252

I'5o4w,.. 0.6 1 0.6 5 30
Sua~omd

11ifaaogm. 0A I A. 5 2.0

i's cabsk~idy

Gork-twJfyoI OA Q 6 5 3.0
To~d Statedfc

Dua app. 0.4 I 0A4 4 1
uid Dccmau1.

corwirrimica* Poun toPon 4
law. SVVIM corCnmiurwca.

G." m 4 9.0 10 03 4 3.2
-wic-am

Cunisgurmkw. 0.6 1 0.6 4 2.4 15.2 30 0.55 5 2.55

2 IA"~AUSA4I 0.1 8. 3 2.4

3'se o Ta.loo.Satsy 3

"Pmicabiity 3

i-ad.~ 2 0. C53 5 TO

Table 5.4: Example Evaluation of Express

85

CHAPTER 5. TOOL EVALUATION B3ENCHIMARKS

IA.d Cdisman SwbCl4UoI. 5.1- cria-k M..l... N-1- Crsa W.1b44 I.. Mad- N..~.A.4 1'..q b. (...

(5) (2) (3) (4) () (6) (7) () (0 (I (2 (I (14) (5

2 Irtams0 0.8 2.4

l#Vope- .0.6 CL16 3 .8

IAMU50.8 Q 18 5 4.0

RsM rmc 0.6 I 06A 1.9

Iedaliging . 0.6 1 0.6 3 1.8
Capabdmy

AWpicauca 0.8 1 0.8 3 2.4

Tool Consists" 3
Ralaumms

Hveamcmi 3

rook 3 916 Is5G 3.00

SX= .onfd 0.4 1 114 4 1.6

Pcwfommc 0.6 I 116 4 2.4 Z26S2 41 0.64 5 3.20

3 eafylcatio 11 1 0.6

Application 116 1 (16 I Q16
Analysis
Smile

prmcl~eizMia 016 1 016 I 0.6
Specificatio

Table 5.5: Example Evaluation of Express (contL..)

86

CIIAPTEIL5. TOOL EVALUATION BENCHMARKS

amiw1d DcM-- diow -d a9
CapbGd*@

A~Cmwydn 0.6 0.46 I 0.6

C=aua 0.6 0.6 I 0.6

capehii~a

-ýlut 0.6 1 0.5 1 0. 44 .3 6 033

stage

59-33

Table 5.6: Example Evaluation of Express (cont..)

87

CHAPTER 5. TOOL EVALUATION BENCHMARKS

other programming models are subsets. Hence, the high grade of 0.8 for this criterion. We have not
evaluated interoperability for any tools we used : in such a case, we assign an average grade of 0.6

or 3 (as applicable) . For similar reasons, the weight assigned was also 3. The documentation for
Express was good and we found Express fairly easy to learn. Hence, it got a good grade of 0.8 for
learning curve; which was assigned a weight of 5.

The next three criteria were not too important for us, hence, they were given (relatively) low weights
of 3. We gave a grade of 0.4 for support and maintenance in Express because we did not get any
support from Parasoft Corporation when we wanted to port the Cros III version of Express.

Express did not give very good performance for the tracker, hence the average grade of 0.6 for
performance of tool services.

4. Level 3 : Application Development Capability or Process Evaluation
The application specification stage and analysis stage are independent of the tool that we used in
this project. Hence an average grade of 0.6 is assigned to both these criteria. The Parallelization
specifications differ for each tool which essentially is the communication primitives provided by the
tool. The primitives provided by Express were not very easy to use although quite comprehensive,
hence, a grade of 0.6. The application development stage capabilities will remain the same for all the
tools because we developed a standardized procedure for porting the tracker to any tool. No extra
work had to be done for any tool after this methodology was developed. Hence we have assigned an
average grade of 0.6 for this criteria. The compile and run time stage capabilities have been assigned
a grade of 0.6. The evaluation stage capabilities have been assigned a grade of 0.8. The maintenance
and evolution stage gets an average grade of 0.6 because we have not used this stage in our project.
It can be seen from column 12 that the normalized level grade is 0.63 which is equivalent to 63%
acceptance for level 3 or process evaluation for PVM in this project.

The overall percentage tool acceptance which takes into account level 0-3 for Express version 3.0 using our
tool evaluation methodology is 59.33 % and the process evaluation benchmark for Express is 63%.

5.2.3 Tool Evaluation Benchmarks for PICL

We now briefly explain the evaluation process for PICL. Table 5.7- 5.9 shows the evaluation.

1. Level 0 : Hardware/Software Requirements
All the criteria in this level do not have sub-criteria, hence columns 3 and 4 are empty for all of
them. PICL got the ideal grade of 1 for tool cost because PICL is a public domain tool developed
at Oak Ridge National Laboratory. However, since tool cost was unimportant to us in our effort, we
gave it the low weight of 1. PICL got of grade of 0.8 for integration of tool into existing environment
because PICL is very easy to set up. PICL gets an good grade of 0.8 for overheads because it does
not have any background processes to maintain. Portability was one of the most important concerns
for our effort, hence this criterion was given the highest weight of 5. PICL measured up well in this

respect : we ported the tracker on SUN4 workstations and iPSC/860 without any problems at all.
Hlence, we assigned a grade of 0.8 for PICL in this criteria.

88

CIIAPTER 5. TOOL EVALUATION IBENCHMARKS

(l) (2) (3) (4) (1)) (13 (3) () (9) (10) Il)) (1I) (134 4l44 (I54

0 ToolCot . I I CAW

In.,a.trMAW . . I Q1 4 3-2
tool WA

Owe4eads 0 1 0.8 4 32

Pubeh~y 0.6 1 .6 5 3.0 IU04 14 074 4 296

1 iasm. 0.6 1 0.6 5 3.0

llerqle. 0.4 0.4 3 2.0

ft cbabsdity

Oa~emlsQA 0.6 I # 3.0

Iu .1 0.4 0.4 4 1.6

COsWOunMM NO ito PW 3
son Suwonm Coou"uim

lion

aq, C.rn. 3 6.0 to 0.6 4 2.4

(C.-sgmols".e 016 0.6 4 2.4 14.4 144 448 2 404

2 lln ~u.l 0.6 I 0L. 3 2.4

I'.w (Tailonbdliy 3

P~~dodabdiiy 4

r ., 3 10 15 067 5 3.35

Table 5.7: Example Evaluation of PICL

89

CHAPTER 5. TOOL EVALUATION)3ENC]HMARKfS

1'rd Ci uW.. S.6owbon us. 1* 4 uku. M. k.M N."" Crom4i W.4id I..d K - *1u4 NWkbS"d 4)-.v
Pd. (Nkwk. C-ft tIN"k. C,bub M.4 C,K~b C..f. l..d I~.u4 W is 1..4 Au

2 Pips ,0.6 1 11.6 3 1.6

touorS - 0.6 1 06 3 1.8

R~an mm 0.4 I IA
for

= c"~m 0.4 M 4 1

A= 04 I 0.4 (

ruS
Tool Cmauq 4

Fab6 IQ1 Is 0.47 1 3.3

Sa~uO~ A I 04 4 2.4

Podaffuanco 0.8 P 0.8 4 32 um5 41 0.64 5 320
of Tool

Alcagjoo 0.6 I 0.6 1 0h

I'.mdlehno 0.6 I 0.6 1 0.6

Table 5.8: Example Evaluation of PICL (cont..)

90

CHAPTER 5. TOOL EVALUATION BENCIHMARKS

0Cl* Gre (. CrrmeM d 4 * I1- L.. 4 I*4 A..".

I.d rV.Gw "Is G'.& (~d (;'d' *

(3) (4 ((() (a) (9) tie, (1) ,(13) (141 (I

] Aif14..4. II. I a6 I ID.

5.0Camp • 0.6 I 06 1 0.6

TrWOl
Raw - Time

R-.,avma OA 1 Q6 1 0.6

Mainm"0 OA I C.S 1 0.. 4.2 7 00 I OW.6 0.8107

Tabe 51.7

Table 5.9: Example Evaluation of PICL (cont..)

CHAPTER 5. TOOL EVALUATION BENCHMARKS

2. Level 1: Tool Capability
PICL does not support many different types of Hardware Platforms, (weight 5) hence the grade of
0.6. PICL also did not do well on heterogeneous computers (weight 5 again), hence a grade of 0.4.
Generality of tool interface (weight 5) also got an average grade of 0.6. All tools used in our effort
have little or no data mapping and decomposition capabilities , hence the low grade of 0.4. Both
sub-criteria in communication services got relatively grades of 3 for PICL. PICL does not provide
configuration control and management facilities (weight 4), hence, an average grade of 0.6.

3. Level 2 : User Capability
PICL supports C and Fortran, hence, it got a grade of 0.8 for language support. Ease of Programming
has been mostly been given an average grade except for Predictability in PICL which is good. PICL
only supports the host-node programming model hence, the an average grade of 0.6 for this criterion.
We have not evaluated interoperability for any of the tools we used : in such a case, we assign an
average grade of 0.6. For similar reasons, the weight assigned was also 3. The documentation for
PICL was fairly decent and we found PICL easy to learn. Hence, it got a good grade of 0.8 for
learning curve; which was assigned a weight of 5.

The next three criteria were not too important for us, hence, they were given (relatively) low weights
of 3. We gave an average grade of 0.6 for support and maintenance to PICL because we did not need
any support and maintenance for PICL. PICL did give good performance for the tracker, hence a
high grade of 0.8 for performance of tool services.

4. Level 3 : Application Development Capability or Process Evaluation
The application specification stage and analysis stage are independent of the tool that we used in
this project. Hence an average grade of 0.6 is assigned to both these criteria. The Parallelization
specifications differ for each tool which essentially is the communication primitives provided by the
tool. The primitives provided by PICL were not very extensive and hence we have given a grade of
0.6. The application development stage capabilities will remain the same for all the tools because
we developed a standardized procedure for porting the tracker to any tool. No extra work had to be
done for any tool after this methodology was developed. Hence we have assigned an average grade of
0.6 for this criteria. The compile and run time stage capabilities have been assigned a grade of 0.6.
The evaluation stage capabilities have been assigned a grade of 0.6. The maintenance and evolution
stage gets an average grade of 0.6 because we have not used this stage in our project. It can be seen
from column 12 that the normalized level grade is 0.60 which is equivalent to 60% acceptance for
level 3 or process evaluation for PICL in this project.

The overall percentage tool acceptance which takes into account level 0-3 for PICL using our tool evaluation
methodology is 61.07 % and the process evaluation benchmark for PICL is 60%.

5.2.4 Tool Evaluation Benchmarks for p4

We now briefly explain the evaluation process for p4. We used version 1.2 of p4 for this work. Table 5.10
- 5.12 shows the evaluation.

92

(1) (2) (3) (4 5 4 7 5 9 8) (I I) (3 2) (15)

)Uqf9*MII0ma 0. 1 (it 4 12

Owia,0.8 1 08 4 32

Paiahhoy 0.8 1 0.4 5 4.0 114 14 (Sao 4 124

I Pl1a.em. 0.1 1 0.8 5 4.0

Jlaernugeu. 0.8 I Q.8 5 3A

G~tasmwiya of 1 0.0 5 3.0
Tod Iinsif

Data 0.4 I 0.4 4 IA
and Dn

COMMIni . Pow G po 4
lam Servcs CCuMINuAdas

11am

Oum- m. 3 710 10 0.7 4 2.8

C.118i5Wum OA 1 0.0 4 2L4 8. 30 056 5 280

2 lasuate .L 1. 0.4 3 2.4

-UM

IFMq 3 6 Is 0.53 5 2.81

Table 5.10: Example Evaluation of p4

93

L.4C-46-4- S.&C. S.4. M.lWmw Cal Wd~~ I... i.d.k 1-c4 V4.~gw 4.

2l.. I'.w C.bb GArf I.. 1..4 %I40 I

at&tkf G10(. a. .f

IAL6. 0. I I's 4

RON rhw . . I 06 3 IS4

*A4 I 046 3 3.2

Toad Cms~wY 3
Rabu coiwm

Flak 3 9 is 0.40 5 3.00

Suaaa .04 I 0.A 4 3.6

'uifaunin OA 1. 0.6 4 2.4 25.05 41 0.61 3 3.3)5of Tad

3 ==-4iaam - CI6 1 (16 I 0.6

S~age
Capabidiucs

AMEcu..m 0.6 1 (L6 I 0L6

mm.C6 I 0.6 1 0.6

Table 5.11: Example Evaluation of p4 (cona..

94

C6M1 N-NOW 44S' ".~ W16- WI n I.-d -I.."... I.- %ft-.d db

3 AngK1.*ts- 0.6 I 06 1 0.6

COIC-0.3 0.8 1 0.8
I'me I

F- .im 0.6 Q 6 I 0.6

Ma~ m. 0.6 I 0.2 1 0.6 4.4 7 0.62 06? *A413

Table 5.12: Example Evaluationi of p4 (cout .

95

CHAPTER 5. TOOL EVALUATION BENCHMARKS

The evaluation criteria used are the same as described for PVM. Since p4 is being evaluated for the same
application Tracker, the weights for each criteria and sub-criteria remain the same for p4 also. The grades
for judging the tool varies and this reflect the final acceptance percentage of this tool for the Tracker
application.
The grading process for p4 is explained below briefly.

Level 0 : Hardware/Software Requirements p4 has an ideal grade of 1 for tool cost since it
is a public domain tool. p4 got a high grade of 0.8 for integration of tool into existing environment
because of ease of installation and absence of hitches in integrating into our hardware platforms. p4
requires a remote shell established on each of the remote nodes and hence, it gets a grade of 0.6 for
overheads. The tracker was ported to the IBM RS/6000, SUN 4 workstations and CM-5 using p4,
without any glitches; hence a grade of 0.8 for this criterion.

Level 1 : Tool Capability p4 supports different platforms and heterogeneous capability. Hence,
p4 gets a grade of 0.8 for platforms supported and a grade of 0.6 for heterogeneous processing capability
since it did not perform well for a combination of SUN and IBM workstations. p4 gets a grade of 0.8
for generality of tool interface since it was ported on heterogeneous platforms with little difficulty.
p4 offers very little in the way of data decomposition functions and hence a grade of 0.4 for this
capability. Communication services gets low grades of 3 in each sub-criterion because of overhead
involved in execution of communication routines.

Level 2 : User Capability p4 supports C and FORTRAN and hence the grade of 4 for lan-
guage support. p4 is easy to use and handle, and hence the grades for the sub-criteria in ease of
programming are high. p4 was easy to learn and the debugging facilities offered by p4 were inade-
quate in aiding debugging of programs, hence a low grade of 0.4 for this criterion. Documentation
was good so p4 gets a grade of 0.8 for learning curve. p4 was found to be a fairly robust tool. The
average grades for the sub-criteria indicate this. p4 was found to be easy to support and required
little house-keeping. Reasonable performance of the tracker was achieved using p4, hence the grade
of 0.6 for tools services criterion.

Level 3 : Application Development Capability The application specification stage and analysis
stage are independent of the tool that we used in this project. Hence an average grade of 0.6 is
assigned to both these criteria. The Parallelization specifications differ for each tool which essentially
is the communication primitives provided by the tool. The primitives provided by p4 were not very
extensive and hence we have given a grade of 0.6. The application development stage capabilities
will remain the same for all the tools because we developed a standardized procedurc for porting the
tracker to any tool. No extra work had to be done to any tool after this methodology was developed.
Hence we have assigned an average grade of 0.6 for this criteria. The compile and run time stage
capabilities have been assigned a grade of 0.8. The evaluation stage capabilities have been assigned
a grade of 0.6. The maintenance and evolution stage gets an average grade of 0.6 because we have
not used this stage in our project. It can be seen from column 12 that the normalized level grade for
is 0.62 which is equivalent to 62% acceptance for level 3 or process evaluation for p4 in this project.

96

CHAPTER 5. TOOL EVALUATION BENCHtMARKS

The overall percentage tool acceptance which takes into account level 0-3 for p4 version 1.2 using our tool
evaluation methodology is 64.73 % and the process evaluation benchmark for p4 is 62%.

97

"CHAPTER 5. TOOL EVALUATION BENCHMARKS

Table 5.13 shows the process evaluation benchmarks for the tools we used in this project. This metric
takes into account only the level 3 of tool evaluation criteria. The metric shows how well or easily each
tool could be applied to the HHPC software development process model developed in chapter 1. The tools
are listed in the order of acceptance.

Tool Acceptability Metric

PVM 69%
Express 63 %
p4 62%
PICL 60 %

Table 5.13: Process Evaluation Bencnmarks for PVM, Express, p4 and PICL

Table 5.14 shows the tool evaluation benchmarks for the tools we used in this project. This metric reflects
the over all tool acceptance which takes into account level 0 to level 3 of tool evaluation criteria with the
Concurrent Multi-Target Tracker as a running example.

Tool Acceptability Metric

PVM 67.27 %
PICL 61.07%

p4 64.73 %
Express 59.33 %

Table 5.14: Tool Evaluation Benchmarks for PVM, PICL, p4 and Express

98

Chapter 6

Summary and Conclusions

Current trends in parallel/distributed computing indicate that the future of parallel computing lies with

the integration of existing computers into a single heterogeneous high performance computing environment
that allow them to cooperate in solving complex problems. The HHPC environment will capitalize on ex-
isting architectures and on current advances in computing, networking and communication technology to
provide efficient, cost-effective, scalable, high performance distributed computing. Software development

in any parallel/distributed environment is a non-trivial process and requires a thorough understanding of
the application and the architecture. In this project, we proposed a software development model for an

HHPC environment. This model is defined as a set of stages which correspond to phases encountered in the
software development process. We have ported a complex command and control application, the concurrent
Multi-Target Tracker. to different computer platforms ranging from parallel computers to workstations us-
ing important message passing software tools. The main objective of choosing the tracker application was
to allow us to experiement with its implementation using different tools. This experimentation assisted us

in developing a hierarchical approach to evaluate and benchmark parallel/distributed software tools such
as PVM, EXPRESS, PICL and P4. This hierarchical approach evaluates tools using four levels where each

one represents one perspective. Level 0 evaluates tools from the perspective of cost and its integration to
an existing computing environment. Level 1 evaluates tools from a tool capability perspective. Level 2
evaluates tools from a user capability perspective and Level 3 evaluates the capability of tools to assist in

developing new HHPC applications or in parallelizing existing sequential code and porting it on some of
the HHPC platforms. Furthermore, in this project, we develop a systematic approach to quantify the tool

criteria so that we can eventually produce an overall tool score or tool acceptability metric, that can be
used to compare tools. This algorithm can also be used to select the best set of tools suitable for a given
class of applications and HHPC environment.

Future work can be outlined as follows:

1. Develop a benchmarking suite that covers most application classes needed in BM/C3IS. For each

application class in this suite, identify the best high performance distributed computing environment

to run this application and the tool(s) needed to implement such an application class.

99

CHAPTER 6. SUMMARY AND CONCLUSIONS

2. Investigate the issues and requirements for an integrated software development environment for het-

erogeneous high performance computing.

3. Develop an integrated software development model for HHPC applications.

4. Develop a comprehensive evaluation methodology for parallel/distributed software tools.

5. Apply the software model developed in item 3 to implement a representative set of BM/C3IS appli-

cations using a subset of parallel/distributed software tools.

6. Validate and fine tune the evaluation methodology based on the results and experiences learned from

developing and running the selected BM/C3IS applications.

100

Bibliography

[1] Salim Hariri, Manish Parashar, JongBaek Park, and Fang-Kuo Yu, "An Environment for High-
Performance Distributed Computing", Technical Report SCCS-418, Northeast Parallel Architectures
Center, Syracuse University, 111 College Place Room # 3-201, Syracuse NY 13244-4100, 1992.

[2] Salim Hariri, Manish Parashar, Jong Baek Park, and Fang-Kuo Yu, "A Case for Heterogeneous
Network Computing", Technical Report SCCS-417, Northeast ParaU•.l Architectures Center, 111
College Place, Room # 3-201, Syracuse NY 13244-4100, 1992.

[3] T.D.Gottschalk, "Concurrent multi-target Tracking", The Fifth Distributed Memory Computing Con-
ference, Volume I, pages 52-57, 10662 Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, California
90720-1264, 1990. IEEE Computer Society Press.

[4] T.D.Gottschalk, "Concurrent Implementation of Munkres Algorithm", January 1990, Fifth Dis-
tributed Memory Conference, Caltech Report C3P-921.

[5] T.D.Gottschalk, and P.Burns, "Simulation89 tracking", September 1989. Caltech Report C3P-820.

[6] T.D.Gottschalk, "A New Multi-Target Tracking Model", California Concurrent Computation Project,
California Institute of Technology, Pasadena, California 91125.

[7] Geoffrey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K. Salmon, and David
W. Walker, "Solving Problems on Concurrent Processors", New Jersey : Prentice Hall, 1988.

[8] T.D.Gottschalk, "CALTRAX The Tracking Program for Simulation 87", California Institute of Tech-
nology, Pasadena, California 91125, Caltech Re port C3P-478.

[91 T.D.Gottschalk, "Precision filters for Boost Phase Tracking", California Institute of Technology,
Pasadena, California 91125, Caltech Report C3P-479.

[101 Geoffrey C. Fox, and David W. Walker, "A Portable Programming Environment for Multiprocessors",
California Institute of Technology, Pasadena, CA 91125, Caltech Report C3P-496.

[11] Paul Messina, Arnold Alagar, Clive Ballie, Edward Felten. , Paul Hipes, ANke Kamrath, Robert
Leary, Wayne Pfeiffer, Jack Rogers, David Walk er, and Roy Williams, "Benchmarking Advanced
Architecture Computers", Caltech Supercomputing Facility, San Diego Super Computing Center,
Department of Mathematics, University of South Carolina, Caltech Report, C3P712.

101

BIBLIOGRAPHY

[12] Paul Messina, "Performance Study of Missile Tracking Algorithm on Selected Computer Architec-
tures", California Institute of Technology, Pasadena, California 91125, Caltech Report C3P-668. 87",
California Institute of Technology, Pasadena, California 91125.

[13] Hyt T. Cao, and Clive F. Ballie, "Caltech Missile Tracking Program, A Benchmark Comparison",
California Institue of Technology, Pasadena, CA 91125, October 1988.

[14] Adam Beguelin, Jack Dongara, Al Geist, Robert Manchek , and Vaidy Sunderam, "U Guide to
PVM", Oak Ridge National Laboratory, Oak Ridge TN 378 31-6367 and Department c ematics
and Computer Science, Emory University, February 1993.

[15] G. A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley, "User Guide to PICL", Mathematical
Sciences Section, P.O. Box 2009, Bldg. 9207-A, Oak Ridge National Laboratory, Oak Ridge, TN
37831-8083, August 1990.

[16] Parasoft Corporation, "Express 3.0 Documentation", Parasoft Corporation, 2500, E.Foothill Blvd.
Pasadena, CA 91107.

[17] Ralph Butler, and Ewing Lusk, "User's Guide to the p4 Programming System", Mathematics and
Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL
60439-4801

[18] Erwin Kreyszig "Advanced Engineering Mathematics", Professor of Mathematics, Ohio State Univer-
sity, Columbus, Ohio.

[19] Robert Firth, Vicky Mosley, Richard Plethia, Lauren Roberts, and William Wood, " A guide to the
classfication and assessment of software engineering tools", CMU/SEI-87-TR-10 Technical Report,
August 1987.

[20] Goeffrey C. Fox, "Concurrency Practice and Expereince", Volume 4 Number 6, Wiley Publishers,
Spetember 1992.

[21] R.Olson, "Parallel Processing in a Message Based Operating System", IEEE Software, July 1985.

[221 G. A. Geist, and V.S. Sunderam, "Network Based Concurrent Computing on the PVM System", Oak
Ridge National Laboratory, Oak Ridge, TN 37831 and Department of Mathematics and Computer
Science, Emory University, Atlanta, GA 30322.

[23] D.Reed and D.Grunwald, "The performance of multicomputer interconnection network", IEEE Com-
puter, June 1987.

[24] Oliver A. McBryan, and Eric F. Van de Velde, "Hypercube Algorithms and Implementations", Courant
Institue of Mathematical Sciences, New York University, New York, NY 10012.

[25] Stone, H.S, "High-Performance Computer Architecture", Addision-Wesley, 1987.

[26] Anthony Skjellum, Alvin P.Leung, and Manfred Morati, "A Portable Multicomputer Communication
library atop the reactive kernel", California Institute of Technology, Pasasdena, California 91125.

[27] Glenn Zorpette, "Teraflops Galore", IEEE Spectrum, vol. 29, pp. 26-76, September 1992.

102

BIBLIOGRAPHY

[28] Salim Hariri, Manish Parashar, JongBaek Park, Fang-Kuo Yu, and Geoffrey Fox, "A Message Pass-
ing Interface for Parallel and Distributed Computing", To be presented at the 2 nd International
Symposium on High Performance Distributed Computing, Spokane, Washington, July 1993.

[29] Richard F. Freund and D. Sunny Conwell, "Superconcurrency: A Form of Distributed Heterogeneous
Supercomputing", Supercomputing Review, vol., pp. 47-50, October 1990.

[301 Norris Parker Smith, "The Future of High-Performance Computing: The 1990 Federal Assessment",
Supercomputing Review, vol. , pp. 52-53, oct 1990.

[31] Gordon Bell, "Ultracomputers: A Teraflop Before Its Time", Communications of the ACM, vol. 35,
pp. 27-47, August 1992.

[321 Ashfaq Khokar, Viktor K. Prasanna, Mohammad Shaaban, and Cho-Li Wang, "Heterogeneous Su-
percomputing: Problems and Issues", Heterogeneous Processing Workshop, IPPS '92, vol., 1992.

[33] Victor R. Basili and John D. Musa, "The Future Engineering of Software: A Management Perspec-
tive", IEEE Compute'r, vol. 24, pp. 90-96, September 1991.

[34] Gregor Von Laszewski, Manish Parashar, A. Gaber Mohamed, and Geoffrey C. Fox, "On the Paral-
lelization of Blocked LU Factorization Algorithms for Distributed Memory Architectures", Supercom-
puting '92, Minneapolis, vol., pp. 170-179, November 1992.

[35] Manish Parashar, Salim Haiiri, A. Gaber Moahamed, and Geoffrey C. Fox, "A Requirement Anal-
ysis for High Performance Distributed Computing over LAN's", in Proceedings, First International
Symposium on High Performance Distributed Computing, pp. 142-151, September 1992.

[36] J. E. Boillat, H. Burkhart, K. M. Decker, and P. G. KROPF, "Parallel Computing in the 1990's:
Attacking the Software Problem", Physics Report (Review Section of Physics Letters), vol. 207, pp.
141 - 165, 1991.

[37] Lucian Russell and R. N. C. Lightfoot, "Software Development Issues for Parallel Processing", Pro-
ceedings of the 1 2 th Annual International Computer Software and Applications Conference, vol., pp.
306-307, 1988.

[38] Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox, "An Integrated Software De-
velopment Model for Heterogeneous High Performance Computing", Technical Report SCCS-453,
Northeast Parallel Architectures Center, Syracuse University, 111 College Place Room # 3-201, Syra-
cuse NY 13244-4100, April 1993.

[39] Kim Mills, Gang Cheng, Michael Vinson, Sanjay Ranka, and Geoffrey C. Fox, "Software Issues
and Performance of a Parallel Model for Stock Option Pricing", Proceedings of the 5th Australian
Supercomputing Conference, Melbourne, Australia, vol. , December 1992.

[40] Kim Mills, Gang Cheng, Michael Vinson, and Geoffrey C. Fox, "Expressing Dynamic, Asymmetric,
Two-Dimensional Arrays for Improved Performance on the DECmpp-12000", Technical Report SCCS-
261, Northeast Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY
13244-4100, October 1992.

103

BIBLIOGRAPHY

[41] Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox, "An Interpretive Framework
for Application Piediction", Technical Report SCCS-479, Northeast Parallel Architectures Center,
Syracuse University, 111 College Place Room # 3-201, Syracuse NY 13244-4100, April 1993.

[42] Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas Treml, and Roland Wismiiller,
The Design and Implementation of TOPSYS, Technische Universitit Miinchen, Institut Fiir Infor-
matik, July 1991, Ver 1.0.

[43] D. Gannon, Y. Gaur, V. Guarna, D. Jablonowski, and A. Malony, "FAUST: An Integrated Environ-
ment for Parallel Programming", IEEE Software, vol. , pp. 20-27, July 1989.

[44] Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat, Chia Ling Lee, and
Bruce Leung, "Parafrase-2: An Environment for Parallelizing, Partitioning, Synchronizing and
Scheduling Programs on Multiprocessors", Proceedings of the International Conference on Parallel
Processing, vol. 2, pp. 39-48, Aug. 1989.

[45] J. J. Dongarra and D. C. Sorensen, "SCHEDULE: Tools for Developing and Analyzing Parallel
Fortran Programs", in L. H. Jamieson, D. B. Gannon, and R. J. Douglas, editors, The Characteristics
of Parallel Algorithms, vol. . MIT Press, 1987.

[46] 6zalp Babao~lu, Lorenzo Alvisi, Alessandro Amoroso, Renzo Davoli, and Luigi Alberto Giachini,
"Paralex: An Environment for Parallel Programming in Distributed Systems", Technical report,
Department of Mathematics, University of 9ologna, Piazza Porta S. Donato, 5, 40127 Bologna, Italy,
1991.

[47] Arthur leumwananonthachai, Akiko N. Aizawa, Steven R. Schwartz, Benjamin W. Wah, and Jerry C.
Yan, "Intelligent Mapping of CommunicationProcesses in Distributed Computing Systems", Super-
computing '91, Proceedings, vol. , pp. 512-521, 1991.

[48] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer, "An Interactive Environ-
ment for Data Partitioning and Distribution", Proceedings of the 5 th Distributed Memory Computing
Conference, Charleston, South Carolina, vol. , pp. 1160-1170, Apr. 1990.

[49] Alan Sussman, "Execution Models for Mapping Programs onto Distributed Memory Parallel Com-
puters", Technical Report 189613, Institute for Computer Applications in Science and Engineering,
NASA Langley Research Center, Hampton, Virginia 23665-5225, Mar. 1992.

[50] Manish Gupta and Prithviraj Banerjee, "Compile-Time Estimation of Communication Costs in Mul-
ticomputers", Technical report, Center for Reliable and High-Performance Computing, Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign, 1101 W. Springfield Avenue, Urbana
IL 61801, .

[51] Peter H. Mills, Lars S. Nyland, Jan F. Prins, John H. Reif, and R. W. Wagner, "Prototyping
Parallel and Distributed System in Proteus", Proceedings of the 3 td IEEE Symposium on Parallel and
Distributed Processing, vol. , 1991.

[52] H. Zima, H. Bast, and M. Gerndt, "SUPERB: A Tool for Semi-Automatic SIMD/MIMD Paralleliza-
tion", Parallel Computing, vol. , 1988.

104

BIBLIOGRAPHY

[53] Sandeep Bhatt, Marina Chen, Cheng-Yee Lin, and Pangfeng Liu, "Abstractions for Parallel N-body
Simulations", Technical Report DCS/TR-895, Yale University, 1992.

[54] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, K. McKinley, and J Subhlok, "The ParaScope
Editor: An Interactive Parallel Programming Tool", Supercomputing '89, Reno, Nevada, vol. , Nov.
1989.

[55] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy
Torzewski, "IPS-2: The Second Generation of a Parallel Program Measurement System", IEEE
Transactions on Parallel and Distributed Systems, vol. 1, pp. 206-217, Apr. 1990.

[56] Bernd Mohr, "SIMPLE: A Performance Evaluation Tool Environment for Parallel and Distributed
Systems", Proceedings of the 2 nd European Distributed Memory Computing Conference (EDMCC2),
vol. , pp. 80-89, Apr. 1991.

[57] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, "The Rice Parallel Processing
Testbed", 1988 ACM 0-89791-254-3/88/0005/0004 pp 4-11, 1988.

[58] Daniel Pease, Arif Gafoor, Ishfaq Ahmad, David L. Andrews, Kamal Foudil-Bey, Thomas E. Karpinski,
Mohammad A. Mikki, and Mohammad Zerrouki, "PAWS: A Performance Evaluation Tool for Parallel
Computing Systems", IEEE Computer, vol. , pp. 18-29, Jan. 1991.

(591 F. Andre and A. Joubert, "SiGle: An Evaluation Tool for Distributed Systems", Proceedings of the
International Conference on Distributed Computing Systems, vol. , pp. 466-472, 1987.

105

Appendix A

Glossary

"* Crystal Router Algorithm
An algorithm used to pass messages between arbitrary nodes of a hypercube. It is useful for irregular
problems when the message traffic changes dynamically

"* Express
An product of Parasoft Corporation which is used for developing Parallel/Distributed applications.

"* Grading/Scaling
A process of assigning numerical values called grades for a Tool criterion and Tool sub-criterion in a
Tool level hierarchy

"* HHPC
Heterogeneous High Performance Computing: An environment which capitalizes on existing architec-
tures and on current advances in computing, networking and communication technology to provide
efficient, cost-effective, scalable, high-performance distributed computing.

"* iPSC/860
A hypercube machine developed by Intel Corporation.

"* MIMD
Multiple Instruction Multiple Data. Parallel machine which can process Multiple Instructions with
Multiple Data are called MIMD machines

"* Newton-Raphson Iteration
An iteration method for solving equations f(x) = 0, where f is assumed to have a continuous derivative
f'. This method is commonly used because of its simplicity and great speed.

"* MOA
Measure Of Accpetance which indicates the acceptance of a tool for a given application. MOA is
the result of applying the Tool Evaluation process.

"* Munkres Algorithm
An algorithm used to generate the optimal association solution for modified distance matrix.

106

APPENDIX A. GLOSSARY

"* nCUBE
A hypercube machine developed by nCUBE Corporation.

"* PICL
Portable Instrumented Communication Library designed to provide portability, ease of program-
ming, and execution tracing in parallel programs

" PVM
Parallel Virtual Machine: A software package that allows the utilization of heterogeneous network
of parallel and serial computers as a single computational resource.

" p 4

A library of macros and subroutines developed at Argonne National Laboratory for programming a
variety of parallel machines.

" Report Construction
Process of generating a report file containing parameter estimates, covariance matrices and uniqueness-
tags prepared after each sensor scan.

"* SIMD
Single Instruction Multiple Data. Parallel Machines which can process Single Instructions with
Multiple Data are called SIMD machines.

"* Tool Criterion
A feature, facility or capability that is provided by a tool.

"* Track Extension
A mechanism for extending an existing track in a global track file

"* Trajectory Estimation
A mechanism of predicting the path taken by a target in terms of latitude, longitude, initial launch
relative to due north and time of launch.

"* Tool Hierarchy
A hierarchy of levels which contain tool criteria and sub-criteria used for evaluating a tool.

"* Track Initiation Identifying the existence of a new target.

"• Track Pruning
A mechanism of deleting non-existent tracks. Such entries are created in the global track file because
of inconsistent sensor reports.

"* Track Redistribution
Process of distributing the global track file across the nodes in preparation for processing the next
scan of data.

"* Tool sub-criterion
Sub-set of a Tool criterion

107

MISSION

OF

ROME LABORA TOR Y

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all

applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

