
AD-A282 324

Report No. NAWCADWAR-94109-70 (

POSIX Delta Document for the Next-Generation
C-mputer Resources (NGCR) Operating Systems
In erface Standard Baseline (Version 4)

Operating Systems Standards Working Group (OSSWG)
Compiled by F. Prindle (NAWC-AD Warminster) T CDTIC

S ELECTE
JUL 9 5 1"9 4

F
1 June 1994

94-23229

Approved for Public Release; Distribution is Unlimited D Q INSPECTED 5

Prepared for
Space and Naval Warfare Systems Command (SPAWAR 331-2)
Next Generation Computer Resources (NGCR) Program Office
2451 Crystal Drive
Arlington, VA 22245

94 7 22 128

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the
Naval Air Warfare Center, Aircraft Division, Warminster Is arranged for specific identification
purposes. Each number consists of the Center acronym, the calendar year in which the
number was assigned, the sequence number of the report within the specific calendar year,
and the official 2-digit correspondence code of the Functional Department responsible for
the report. For example: Report No. NAWCADWAR-92001-60 indicates the first Center
report for the year 1992 and prepared by the Air Vehicle and Crew Systems Technology
Department. The numerical codes are as follows:

CODE OFFICE OR DEPARTMENT

00 Commanding Officer, NAWCADWAR

01 Technical Director, NAWCADWAR

05 Computer Department

10 AntiSubmarine Warfare Systems Department

20 Tactical Air Systems Department

30 Warfare Systems Analysis Department

50 Mission Avionics Technology Department

60 Air Vehicle & Crew Systems Technology Department

70 Systems & Software Technology Department

80 Engineering Support Group

90 Test & Evaluation Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey
or Imply the license or right to use such produicts.

Reviewed By: • Date:
Branch Head

Reviewed By:_ _ _ _ _ _ _ _ _ _ Date:. __ _

Division Head

Reviewed By: Date: 6ircto

ll ,a •For'm Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-1
Pude replorting burden for this collestion of information is estimated to average I hour Per relponse, including the time for rqvtwinIcructi , searching existin data sources,

!r_9'?wew.= I ing bnsruto. rcnqeutndtasresgatring andl~ maintaining the data needed, and comp*etung and revewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of informatiOn, including s<gestions for reducing this burden, to washington Headquarters Services. Directorate for Information Operations and Reports. 12 IS Jefferson
Davis Highway. Suite 1•04. AringtOn. VA 22202-4302. and to the Ottice of Management and Budget. Paperwork Reduction Project (07040.418). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

R June 1994 Interim
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

POSIX Delta Document for the Next-Generation Computer
Resources (NGCR) Operating Systems Interface Standard
Baseline (Version 4)

6. AUTHOR(S)

Operating Systems Standards Working Group (OSSWG)
Compiled by F. Prindle (NAWC-AD Warminster)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Air Warfare Center
Aircraft Division NAWCADWAR-94109-70
Warminster, PA 18974-5000

9. SPONSORING/ IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Space and Naval Warfare Systems Command (SPAWAR 331-2) AGENCY REPORT NUMBER

Next Generation Computer Resources (NGCR) Program Office
2451 Crystal Drive
Arlington, VA 22245

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution is Unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of the Next-Generation Computer Resources (NGCR) Program is to
standardize computer and computer component interfaces for the Navy's next generation of
mission-critical computing systems. The NGCR Operating Systems Standards Working
Group (OSSWG) will either select a set of interface standards from commercial sources or
jointly develop such standards with industry. Previously, the OSSWG established operating
systems interface requirements for these standards. In this document, the OSSWG
evaluates how effectively its established requirements are met by the Portable Operating
System Interface (POSIX) standards, which have been selected as the baseline for the
NGCR Program.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Computer Operating Systems 108
Operating System Interface Standards 16. PRICE COOD

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std 139-16
298-102

NAWCADWAR-94109-70

PREFACE

This report was funded under NAWC-AD Project No. 5109547, "Next
Generation Computer Resources (NGCR)." The sponsoring activity is the Space and
Naval Warfare Systems Command (SPAWAR), through the work of the Operating
Systems Standards Working Group (OSSWG). The OSSWG management structure is
as follows:

NGCR Program Manager, H. Mendenhall (SPAWAR-231)

NGCR OSSWG Cochairman, CDR M. Aaby (SPAWAR-331)

NGCR OSSWG Cochairman, J. Oblinger (NUWC)

Approach Subgroup Chairman, S. Howell (NSWC)

Standards Subgroup Chairman, F. Prindle (NAWC-AD)

Handbook Subgroup Chairman, D. Juttelstad (NUWC)

Accesion For
NTIS CRIA&I
oTIC TAB I
OUianiiiounced
Justification

Distribution I

Availability Codeb

| Avail ijnd-,or
Dist special

A-l[

9 i I I / lI I I

NAWCADWAR-94109-70

Table of Contents

Section Page

1. Introduction ... 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Term inology ... 2
1.4 Docum ent Organization ... 2

2. References ... 5
3. Detailed Analysis of POSIX Deltas by Requirement ... 7

3.1 General Requirements .. 7
3.2 Architecture Dependent Interfaces .. 7

3.2.1 Non-NGCR System Interfaces .. 8
3.3 Capability and Security Interfaces ... 8

3.3.1 Audit Data Storage .. 9
3.3.2 Audit Generation .. 9
3.3.3 Audit Record Contents ... 9
3.3.4 Audit Data Manipulation ... 9
3.3.5 Device Labels .. 9
3.3.6 Basic DAC ... 1 0
3.3.7 DAC Inclusion/Exclusion .. 10
3.3.8 DAC Propagation .. 10
3.3.9 Labeling of Export Channels .. 1 0
3.3.10 Setting Com munication Labels ... 1 0
3.3.11 Identification and Authentication .. 10
3.3.12 Labeling of Hum an Readable Output .. 10
3.3.13 Subject and Object Labeling .. 10
3.3.14 Label Contents .. 10
3.3.15 MAC Policy ... 10
3.3.16 MAC M anipulation .. 11
3.3.17 Object Reuse .. 11
3.3.18 User Notification of Sensitivity Label .. 11
3.3.19 Sensitivity Label Query ... 11
3.3.20 System Integrity .. 11
3.3.21 Identification of Users Based on Roles .. 11
3.3.22 Least Privilege .. 11
3.3.23 Trusted Path .. 11
3.3.24 Trusted Recovery ... 12

3.4 Data Interchange Interfaces .. 13
3.4.1 Data Interchange Services (Data Format Conversion) 13

3.5 Event and Error Interfaces .. 14
3.5.1 Event and Error Receipt .. 16
3.5.2 Event and Error Distribution .. 16
3.5.3 Event and Error Management ... 17
3.5.4 Event Logging .. 18
3.5.5 Enable/Disable Interrupts .. 18
3.5.6 M ask/Unmask Interrupts .. 19

3.6 File Interfaces .. 19
3.6.1 Contiguous Read of a File ... 20
3.6.2 Protect An Area W ithin A file ... 20
3.6.3 File M anagement Scheduling ... 20

* 3.6.4 File Management Suspend/Resume for Processes 21
3.6.5 File Management Block Requests ... 21
3.6.6 Round Robin File M anagement .. 21
3.6.7 Open a File ... 21
3.6.8 Point W ithin a File ... 21

• " I II I

NAWCADWAR-94109-70

Table of Contents (Cont'd)

Setilon Page

3.6.9 Read a File .. 22
3.6.10 Close a File ... 22
3.6.11 Delete a File ... 22
3.6.12 Create a Directory .. 22
3.6.13 Specifying Default Directory .. 22
3.6.14 Delete a Directory .. 22
3.6.15 Shadow Files .. 22
3.6.16 Create a File ... 22
3.6.17 Query File Attributes ... 23
3.6.18 Modify File Attributes ... 23
3.6.19 W rite a File ... 23
3.6.20 W rite Contiguous File ... 23

3.7 Generalized I/O Interfaces ... 24
3.7.1 Device Driver Availability .. 24
3.7.2 Open Device .. 25
3.7.3 Close Device .. 25
3.7.4 Transmit Data ... 25
3.7.5 Receive Data .. 25
3.7.6 Device Event Notification ... 25
3.7.7 Control Device .. 25
3.7.8 I/O Directory Services ... 26
3.7.9 Device Management Suspend/Resume for Processes 26
3.7.10 Mount/Dismount Device .. 26
3.7.11 Initialize/Purge Device ... 26

3.8 Network and Communications Interfaces ... 27
3.8.1 Interlace to NAVY Standard Network 28
3.8.2 Interfaces to Other Network and Communication Entities 28
3.8.3 Acknowledged Connection-Oriented Service .. 28
3.8.4 Unacknowledged Connection-Oriented Service .. 29
3.8.5 Acknowledged Datagram Service ... 29
3.8.6 Datagram Transfer Service .. 29
3.8.7 Request - Reply Service ... 29
3.8.8 Broadcast/Multicast Service .. 30
3.8.9 K-Acknowledged Multicast Service .. 30
3.8.10 Atomic Multicast Service .. 30

3.9 Process Management Interfaces ... 31
3.9.1 Create Process ... 31
3.9.2 Terminate Process .. 32
3.9.3 Start Process ... 32
3.9.4 Stop Process ... 32
3.9.5 Suspend Process .. 32
3.9.6 Resume Process .. 33
3.9.7 Delay process ... 33
3.9.8 Interprocess Communication .. 33
3.9.9 Examine Process Attributes ... 33
3.9.10 Modify Process Attributes .. 33
3.9.11 Examine Process Status ... 33
3.9.12 Process (Thread) Identification .. 35
3.9.13 Save/Restart Process ... 35
3.9.14 Program Management Function ... 35

3.10 Project Support Environment Interfaces .. 36
3.10.1 Debug Support .. 37
3.10.2 Execution History .. 38

3.11 Reliability, Adaptability, and Maintainability Interfaces ... 39

SI• . m •l II

NAWCADWAR-94109-70

Table of Contents (Cont'd)

Section Page

3.11.1 Fault Information Collection .. 39
3.11.2 Fault Information Request .. 40
3.11.3 Diagnostic Tests Request .. 40
3.11.4 Diagnostic Tests Results .. 41
3.11.5 Operational Status ... 41
3.11.6 Fault Detection Thresholds .. 42
3.11.7 Fault Isolation ... 42
3.11.8 Fault Response .. 43
3.11.9 Reconfiguration .. 43
3.11.10 Enable/Disable System Com ponent .. 44
3.11.11 Performance Monitoring .. 44
3.11.12 Set Resource Utilization Limits ... 45
3.11.13 Resource Utilization Limits Violation .. 45
3.11.14 Checkpoint Data Structures ... 45

3.12 Resource Management Interfaces ... 46
3.12.1 Virtual Memory Support .. 46
3.12.2 Virtual Space Locking ... 46
3.12.3 Dynamic Memory Allocation and Deallocation ... 46
3.12.4 Dynamically Protecting Memory .. 47
3.12.5 Shared Memory .. 48
3.12.6 Allocate, Deallocate, Mount, and Dismount Services 48
3.12.7 Designate Control .. 49
3.12.8 Release Control .. 49
3.12.9 Allocate Resource .. 49
3.12.10 Deallocate Resource ... 50
3.12.11 System Resource Requirements Specification 50
3.12.12 System Resource Capacity .. 51

3.13 Synchronization and Scheduling Interfaces ... 52
3.13.1 Process Synchronization .. 52
3.13.2 Mutual Exclusion .. 52
3.13.3 Cumulative Execution Time of a Process ... 52
3.13.4 Attach a Process to an Event ... 52
3.13.5 Services Scheduling Information ... 52
3.13.6 Scheduling Delay .. 53
3.13.7 Periodic Scheduling ... 53
3.13.8 Multiple Scheduling Policies .. 53
3.13.9 Selection of a Scheduling Policy ... 53
3.13.10 Modification of Scheduling Parameters .. 54
3.13.11 Precise Scheduling (Jitter Management) ... 54

3.14 System Initialization and Reinitialization Interfaces ... 54
3.14.1 Image Load ... 54
3.14.2 System Initialization and Reinitialization .. 55
3.14.3 Shutdown ... 56

3.15 Time Services Interfaces ... 56
3.15.1 Read Selected Clock ... 57
3.15.2 Set Selected Clock ... 57
3.15.3 Synchronization of Selected Clocks .. 57
3.15.4 Select a Primary Reference Clock .. 57
3.15.5 Locate the Primary Reference Clock ... 58
3.15.6 Timer Services .. 58
3.15.7 Precision Clock .. 58

3.16 Ada Language Support ... 59
3.16.1 Create Task (Ada) .. 60
3.16.2 Abort Task (Ada) ... 60

ii

NAWCADWAR-94109-70

Table of Contents (Cont'd)

Section Page

3.16.3 Suspend Task (Ada) ... 60
3.16.4 Resume Task (Ada) ... 60
3.16.5 Term inate Task (Ada) .. 60
3.16.6 Restart Task (Ada) ... 61
3.16.7 Task Entry Calls (Ada) ... 61
3.16.8 Task Call Accepting/Selecting .. 61
3.16.9 Access Task Characteristics (Ada) .. 61
3.16.10 Monitor Task's Execution Status (Ada) .. 62
3.16.11 Access to a Precise Real-Tim e Clock (Ada) ... 62
3.16.12 Access to a TOD Clock (Ada) .. 6 2
3.16.13 Dynamic Task Priorities (Ada) ... 62
3.16.14 Scheduling Policy Selection (Ada) .. 6 2
3.16.15 Memory Allocation and Deallocation (Ada) ... 63
3.16.16 Interrupt Binding (Ada) .. 63
3.16.17 Enable/Disable Interrupts (Ada) ... 63
3.16.18 M ask/Unmask Interrupts (Ada) .. 64
3.16.19 Raise Exception (Ada) ... 64
3.16.20 I/O Support (Ada) ... 64

4. Big 6 Discussion .. 67
4.1 Distributed Systems ... 67

4.1.1 Distribution in UNIX ... 67
4.1.2 Distribution in POSIX ... 67
4.1.3 Distribution in NGCR OS ... 68
4.1.4 NGCR/POSIX Distribution Delta .. 68

4.2 Real-Time Systems ... 68
4.2.1 Real Time in POSIX ... 69
4.2.2 Real Time in NGCR OS ... 71
4.2.3 NGCR/POSIX Real-Time Delta ... 71

4.3 Fault-Tolerant System s ... 72
4.3.1 Fault Tolerance in UNIX .. 72
4.3.2 Fault Tolerance in POSIX ... 72
4.3.3 Fault Tolerance in NGCR OS .. 73
4.3.4 NGCR/POSIX Fault Tolerance Delta .. 73

4.4 Security ... 73
4.5 Heterogeneity .. 74

4.5.1 Heterogeneity in UNIX ... 74
4.5.2 Heterogeneity in POSIX .. 74
4.5.3 Heterogeneity in NGCR OS .. 75
4.5.4 NGCR/POSIX Heterogeneity Delta ... 75

4.6 Ada ... 75
4.6.1 Ada in UNIX .. 75
4.6.2 Ada in POSIX ... 76
4.6.3 Ada in NGCR OS .. 76
4.6.4 NGCR/POSIX Ada Delta .. 77

5. Conclusions .. 79
Appendix A .. 81

Delta Summ ary and Cross References ... 81

iv

III I

NAWCADWAR-94109-70

POSIX DELTA DOCUMENT FOR THE
NEXT-GENERATION COMPUTER RESOURCES (NGCR)

OPERATING SYSTEMS INTERFACE STANDARD BASELINE
(VERSION 4)

1. INTRODUCTION

The objective of the Next-Generation Computer Resources (NGCR) Program is to standardize
Navy mission-critical computer interfaces and computer component interfaces. With these standardized
interfaces, industry will be better able to provide computing resources that meet Navy needs. The
interface standards are to be widely available (i.e., non-proprietary) and, if possible, widely used within
industry.

The NGCR Operating Systems Standards (OSS) is one of the sets of standards essential to the
timely and cost effective acquisition of most of the next generation of mission-critical computing systems
for the Navy. NGCR OSS assists the Navy in efficiently providing a wide range of performance, compatible
computing services, and functionality levels.

The primary objective of the NGCR Operating Systems Standards Working Group (OSSWG) will
be the selection, from commercial standards, of a set of interface standards for a family of distributed
operating systems applicable to a complete spectrum of Navy combatant use and other mission-critical
use. If these standards are not available or adequate, a standard will be developed in conjunction with
industry.

1.1 SCOPE

The scope of this document includes the NGCR OSSWG Operational Concept Document (NUWC
Technical Document 10168, February 1993) and all available documents, draft and final, from the family of
the Portable Operating System Interfaces (POSIX) standards, which have been selected as the NGCR
baseline. In addition, the documents from the IEEE working groups 1201, 1224. 1238, 1326, 1327,
1328, 1351, and 1353 were examined.

1.2 PURPOSE

The purpose of this document is to evaluate how effectively each Operating System Interface
(OSIF) requirement, as defined by the Operational Concept Document, is addressed by the POSIX
standards. By evaluating each OSIF requirement, the OSSWG will be able to determine as to how well the
POSIX standards currently meet the Navy's needs.

The findings of this document will form a basis for identifying enhancements to POSIX.
Comparing the POSIX standards and OSIF requirements can lead to one of several findings:

Requirement is fulfilled by POSIX,
Requirement is unnecessary and can be discarded,
Requirement is fulfilled by SAFENET,
Requirement was previously considered and discarded by POSIX,
Requirement is nice to have, but not really needed or worth working toward,
Requirement is "too far out" and it would be premature to standardize at this time,
Requirement is a must ("got to have") and must be included even if POSIX does not include it,
POSIX includes this useful feature but it is not a requirement.

From the list of requirements being pursued, an approach to take them into POSIX must be
determined, explaining the concepts, rationale, and interfaces required.

" " " = I n I I I I I

NAWCADWAR-94109-70

If a necessary requirement conflicts with POSIX, then the OSSWG will develop a strategy for
meeting this requirement. This document will eventually become a primary input into a Military Handbook
for an OSIF. All requirements not fulfilled by POSIX standards or some other open standard will be
addressed in the Military Handbook.

1.3 TERMINOLOGY

Precise and consistent use of terms has been attempted throughout the document. The
following verb phrases are used in all NGCR documents to indicate where and to what degree individual
constraints apply:

"SHALL PROVIDE" indicates a requirement for the operating system interface to provide
interface(s) with prescribed capabilities.

"SHALL SUPPORT" indicates a requirement for the operating system interface to provide
interface(s) with prescribed capabilities or for the operating system interface definers to demonstrate that
the capability can be constructed from operating system interfaces.

1.4 DOCUMENT ORGANIZATION

This document was originally organized to reflect the evolutionary analysis process utilized by the
OSSWG to determine, for each OSSWG requirement, the extent to which POSIX fulfilled that
requirement, the overall importance of the requirement being fulfilled by standard interfaces, and the
OSSWG approach to defining standard interfaces to fulfill all critical requirements. However, this
organization was considered awkward, at best, for document maintenance and reader comprehension.
Since the original analysis process is long since completed, it is no longer necessary for the document to
retain this structure. Therefore, starting with version 4, the document has been reorganized more along
the lines of a reference guide. The historical information on the analysis process can always be found in
earlier document versions.

The current structure of the document is centered around section 3, where each operating
system interface requirement from the Operational Concept Document (OCD) is presented, grouped into
the same service classes and in the same order as defined in the OCD. For a requirement which is
completely fulfilled by POSIX, this section indicates which POSIX interfaces fulfill the requirement, ald
provides an explanation of how this is accomplished where it isn't completely obvious. For a requirement
which is either partially or totally unfulfilled by POSIX, this section describes: the extent of the delta (partial
or no POSIX coverage) ; the extent of change necessary for POSIX to fulfill the requirement (modification
or insertion); and the importance of ultimately standardizing interfaces which meet the requirement
(essential, highly desirable, may be deferred, should be reevaluated). Furthermore, for those unfulfilled
requirements classified essential or highly desirable, altematives for achieving standardization (if more
than one), and OSSWG recommendations are presented. This section combines all delta information
related to each requirement in one centralized place.

Because of the rapidly evolving nature of POSIX, especially the continuous reorganization of
unapproved drafts, section 3 does not attempt to cite references to specific chapters, paragraphs, pages,
or lines in POSIX documents. Instead, POSIX interfaces are described here using the names commonly
used to refer to such interfaces and associated POSIX document (PAR) numbers. Because this
document serves not only as an OSSWG working document, but as a reference document for potential
NGCR Operating System users, Appendix A lists for each OSSWG requirement, in tabular form, detailed
paragraph references to the versions of POSIX documents baselined in section 2, as well as selected
tabular information from section 3.

Each unfulfilled OSSWG requirement is coded, both in section 3 and Appendix A, with a rating
indicating its significance to the overall NGCR OS interface standardization effort: A rating of "a" indicates
that standardization of interfaces which meet the requirement is essential; a rating of "b" indicates that
standardization of interfaces which meet the requirement is highly desirable; a rating of "c" indicates that
fulfilling this interface requirement can be deferred to a later date; a rating of "d" indicates that the OSSWG

2

NAWCADWAR-94109-70

should re-evaluate the need for standardized interfaces fulfilling this requirement. All requirements with a
rating of "a" or b" are termed "significant unfulfilled requirements", a status which triggers an OSSWG
recommendation for fuffilling the requirement as soon as possible.

Section 4, the Big 6 Discussion, offers an overview of the POSIX/OSSWG delta with respect to six
major technology areas considered important to the NGCR program in general. This provides an Insightful
alternative viewpoint on the nature of the delta and how POSIX can be expected to support these
technology areas.

In conclusion, Section 5 summarizes the findings of this document.

3

NAWCADWAR-94109-70

2. REFERENCES

The following references were used in the preparation of this document:

Ada LRM; "Reference Manual for the Ada Programming Language," ANSI/MIL-STD-1815-A, January
1983.

ISO 9899; "Information Processing System - Programming Languages - C," Published, 1990.

DOD 5200.28-STD; "Department of Defense Trusted Computer System Evaluation Criteria (TCSEC),"
December 1985

SECNAV Instruction 5239.2; "Department of the Navy Automated Information Systems (AIS) Security
Program," 15 November 1989

OSSWG OCD; "Operational Concept Document for the Next-Generation Computer Resources (NGCR)
Operating System Interface Standard Baseline," NUWC Technical Document 10168, February 1993.

IEEE 1003.1; "Information Technology - Portable Operating System Interfaces (POSIX) - Part 1: System
Application Program Interface (API) [C language]," Published, December 1990.

IEEE P1003.1a; "Draft Revision to Information Technology - POSIX Part 1 System Applicatio:., Program
Interface (API) [C Language]," Draft 11, February 1994.

IEEE P1003.1e; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API) - Amendment #: Protection, Audit, and
Control Interfaces [C Language]," Draft 14, March 1994.

IEEE 1003.2; "IEEE Standard for Information Technology - Portable Operating System Interfaces (POSIX)
- Part 2: Shell and Utilities," Volume 1 and 2, Published June 1993.

IEEE 1003.2a; "IEEE Standard for Information Technology - Portable Operating System Interfaces
(POSIX) - Part 2: Shell and Utilities, User Portability Extension (UPE)," Bundled with IEEE 1003.2
Volume 1 and 2, Published June 1993.

IEEE P1003.2c; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 2: Shell and Utilities - Amendment #: Protection and Control Interfaces," Draft 14,
March 1994.

IEEE 1003.4; "Draft Standard for Information Technology - Portable Operating System Interface (POSIX) -
Part 1: System Application Program Interface (API) - Amendment 1: Realtime Extension [C
Language]," Draft 14.1, May 1993.

IEEE P1003.4a; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API) - Amendment 2: Threads Extension,"
Draft 8, October 1993.

IEEE P1003.4b; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API) - Amendment x: Realtime System API
Extension," IEEE P1003.4b, Draft 8, September 1993.

IEEE 1003.5; "IEEE Standard for Information Technology - POSIX Ada Language Interfaces - Part 1:
Binding for System Application Program Interface (API), Published, December 1992.

IEEE P1003.7; "IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX) - System Administration Interface," Draft 8, February 1992.

5

NAWCADWAR-94109-70

IEEE P1003.7.1: "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - System Administration Interface/Prnting," Draft 6, October 1992.

IEEE P1003.7.2; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 7.2: Software Administration," Draft 10, September 1993.

IEEE P1003.7.3; "Draft Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 7.3: Software Management: User and Group Account Management," Draft 2, October
1993.

IEEE P1003.8; "Draft Transparent File Access Revision to Portable Operating System Interface for
Computer Environment," IEEE P1003.8, Draft 6, January 1992.

IEEE P1003.12; "Information Technology - Portable Operating System Interface (POSIX) - Part xx:
Protocol Independent Interfaces (PII)," Draft 4.1, February 1994.

IEEE P1003.20; "Draft Standard for Information Technology - POSIX Ada Language Interfaces - Part 2:
Binding for Realtime Extensions," Draft 2, April 1993

IEEE 1224; "IEEE Standard for Information Technology - Open Systems Interconnection (OSI) Abstract
Data Lianipulation - Application Programming Interfaces (API) [Language Independent]."

IEEE 1224.1; "IEEE Standard for Information Technology - X.400 Based Electronic Messaging
Application Programming Interfaces (API) [Language Independent]."

IEEE 1224.2; "IEEE Standard for Information Technology - Directory Services Application Programming
Interface (API) [Language Independent]."

IEEE P1238.1; "Draft File Transfer, Access and Management [FTAM] Application Interface," Draft 1, May
1992

IEEE P1351; "Draft Standard for Information Technology - OSI Application Program Interfaces - ACSE and
Presentation Layer Services - Application Programming Interface [Language Independent]," Draft 3,
December 1993

IEEE P1353;" Draft Standard for Information Technology - OSI Application Program Interfaces - ACSE
and Presentation Layer Services - C Language Binding," Draft 3, December 1993

The following references are relevant to the Delta document but do not at this time directly
contribute to its contents:

IEEE P1 003.0; "Draft Guide for Information Technology - Portable Operating System Interface (POSIX) -
The Open Systems Environment," Draft 16, August 1993.

IEEE 1003.3; "IEEE Standard for Information Technology - Test Methods for Measuring Conformance to
POSIX," Published April 1991.

IEEE P1003.13; "Draft Standard for Information Technology - Standardized Application Environment
Profile, POSIX Realtime Application Support (AEP)." IEEE P1 003.13, Draft 5, February 1992.

6

NAWCADWAR-94109-70

3. DETAILED ANALYSIS OF POSIX DELTAS BY REQUIREMENT

This section presents each operating system interface requirement from the OSSWG Operational
Concept Document (OCD), grouped according to the same service classes and in the same order as
defined in the OCD. For a requirement which is completely fulfilled by POSIX, this section indicates which
POSIX interfaces fulfill the requirement, and provides an explanation of how this is accomplished where it
isnl completely obvious. For a requirement which is either partially or totally unfulfilled by POSIX, this
section describes: the extent of the delta (partial or no POSIX coverage); the extent of change necessary
for POSIX to fulfill the requirement (modification or insertion); and the importance of ultimately
standardizing interfaces which meet the requirement (essential, highly desirable, may be deferred, should
be reevaluated). Furthermore, for those unfulfilled requirements classified essential or highly desirable
(the so-called "significant unfulfilled requirements'), altematives for achieving standardization (if more than
one), and OSSWG recommendations are presented.

This section contains frequent references to interfaces and capabilities from the POSIX 1003.1
and 1003.4 standards, as well as the POSIX P1003.4a draft standard. Each of these documents provides
a C language binding to the referenced interfaces and capabilities. OSSWG understands that the POSIX
1003.5 standard, the POSIX P1003.20 draft standard, and the Ada LRM provide an Ada language binding
to exactly the same set of interfaces and capabilities; however, due to the nature of the bindings and the
Ada language itself, identical interfaces and capabilities do not typically have the same nomenclature in
the Ada language bindings as in the C language bindings. A further complication is that P1003.20 is
currently undergoing a change from "thin" to 'thick" binding format. Therefore, this version of the Delta
Document will not attempt, in this section, to consistently mention 1003.5 or P1003.20 interfaces
whenever 1003.1, 1003.4, or 1003.4a interfaces are cited as fulfilling or partially fulfilling a requirement;
this will be undertaken in the next version once P1003.20 has stabilized in its "thick" binding format.
Appendix A lists the applicable interfaces and capabilities in both the C language binding documents and
the Ada language binding documents.

There is a table presented at the end of each service class with columns marked "Requirement",
"Covered", "POSIX Delta", and "Unfulfilled Requirements Rating." The first column contains the OSSWG
requirement number. The second column assesses coverage as "Yes", "No", or "Partially." The third
column indicates the extent of the POSIX Delta and contains one of the following assessments: "None",
"Modification", or "Insertion." "Modification" means that a modification to existing POSIX interfaces would
fulfill the OSSWG requirement; "Insertion" means that a modification is not sufficient and that a larger
change such as insertion of new interfaces would probably be needed to fulfill the OSSWG requirement.
All OSSWG requirements marked as partially or not covered are referred to as "unfulfilled requirements."
The fourth column can contain a dash or one of the letters a, b, c, or d. A rating of "a" indicates that
standardization of interfaces which meet the requirement is essential; a rating of "b" indicates that
standardization of interfaces which meet the requirement is highly desirable; a rating of "c" indicates that
fulfilling this interface requirement can be deferred to a later date; a rating of "d" indicates that the OSSWG
should reevaluate the need for standardized interfaces fulfilling this requirement. All OSSWG
requirements with a rating of "a" or "b" are referred to as "significant unfulfilled requirements", a status
which triggers an OSSWG recommendation for fulfilling the requirement as soon as possible.

3.1 GENERAL REQUIREMENTS

These requirements are considered too high level to be covered in this document.

3.2 ARCHITECTURE DEPENDENT INTERFACES

There are no unfulfilled requirements for service class 2. In general, POSIX 1003.1 and 1003.4
support service class 2.

7

NAWCADWAR-94109-70

3.2.1 Non-NGCR System Interfaces

Non-NGCR System Interfaces are met by:

1003.1 Process Primitives
1003.1 Input and Output Primitives
1003.4 Process Primitives
1003.4 Input and Output Primitives
1003.4 Shared Memory
1003.4 Message Passing
P1003.12 Network Interface

The OSIF shall support non-NGCR based systems by providing a subset of its services to those
systems. The subset of service requests from non-NGCR based systems includes download, initialize,
start, resource sharing, process to process message communication, and ability to pass operational status
information.

The non-NGCR system may issue service requests over non-NGCR or NGCR network interfaces.
The NGCR network Interfaces include FUTUREBUS+, SAFENET, (see the operational concept
document (OCD), Paragraph 20.8.1.1). The non-NGCR network interfaces include (but are not limited to)
VME, MULTIBUS, TCP/IP, RS232, RS422 and 1553B (see OCD paragraph 20.8.2.3).

POSIX does not provide explicit interfacing to non-NGCR networks. However, POSIX can support
interfacing to non-NGCR networks given that the term "support" allows for hardware to be added to the
non-NGCR network interface, and software to be added to both NGCR and non-NGCR systems. The
application implementation of the additional hardware and software will allow the ability to service non-
NGCR system service requests.

Requirements Coverage Summary
Requirement Covered POSIX Delta Unfulfilled

Requirements

. Rating
2.1 Yes None

3.3 CAPABILITY AND SECURITY INTERFACES

Computer security requirements permeate the engineering process and development
environment of a system. The level of security depends on the criticality of the system application and
total environment (e.g., physical, procedural, operational, communication, and computer controls). With
this In mind, the challenge for the OSSWG and POSIX security working groups has been to create an
interface standard that does not preclude meeting the trusted computer systems evaluation criteria
(TCSEC) (DoD-STD-5200.28) B3 or Al class requirements. The approach used to develop the POSIX
security standards (P1003.1e and P1003.2c) is similar to the OSSWG security approach where the locus
is only on the application program interfaces and commands of the operating system with respect to
security, not implementation or assurance details. However, in addressing some of the non interface
security concepts, the POSIX subcommittee has tailored these concepts into a POSIX philosophy for
uniformity and portability, and documented them in the appropriate P1003.1e and P1003.2c appendixes.
The POSIX subcommittee has been very effective, thus far, in addressing the nonsupported, security-
related concepts without mandating a specific design or architecture. Those areas that are not supported
by P1003.1e are discussed in its appendix B, the unsupported security section. This allows a contractor
design and development flexibility, while still providing the basic conformity and interface consistency
found in standards. The POSIX Distributed Security Study Group (1003.22), was convened In early 1992
to examine security standardization issues which fall outside the domain of P1003.1e and P1003.2c.

8

NAWCADWAR-94109-70

They will be assessing existing work in this area and analyzing the potential for standardization of
distributed security work, and will draft a Guide similar to PI003.0 to this effect.

As stated, some requirements are not interface-specific security issues but, rather, system-
unique security issues. In this case, the interpretation of the TCSEC requirements In conjunction with the
system security policy would take precedence over any aspects of the P1 003.1e and P1003.2c interface
standards. Unfulfilled requirements will need to be analyzed by the system engineering office within the
context of the system being developed. Each requirement should be studied to determine its
applicability to the system and, if required, the suitability of the contractor's design in context of the
system's security policy. Therefore, the capability to fulfill these requirements should be deferred until a
need Is determined and how they may be best implemented to satisfy the system's security policy.

Of the 24 OSSWG requirements, 21 are addressed by the P1003.1e and P1003.2c standards
(see Requirements Coverage Summary). [Note: The P1003.1e standard addresses all 24 OSSWG
security requirements in different ways. Some of the requirements are in the interface section, while
others are addressed in appendix B as non interface, nonsupported security mechanisms. The OSSWG
agrees with the P1003.6 standards committee on this format; thus, OSSWG feels the committee has
sufficiently addressed the OSSWG requirements.]

In assessing the OSSWG security requirements, it was determined that the following
requirements are not addressed by the P1003.1e or P1003.2c standards: Object Reuse (3.17), Trusted
Path (3.23), and Trusted Recovery (3.24). However, some of these requirements are within the scope of
P1003.22, and while they constitute implementation concerns, they could receive attent' in the
P1003.22 Guide to the POSIX Security Framework. However, the 1003.22 working group, will not
produce a standard, per se, but rather a guide to distributed security issues. Therefore, it is
recommended that these requirements be dropped from consideration of any API standard approved by
the NGCR OSSWG.

3.3.1 Audit Data Storage

The capability and security interfaces service class requirements are addressed in the P1003.1e
document. This OSSWG requirement is covered in the interface portion of the standard.

3.3.2 Audit Generation

Refer to 3.3.1.

3.3.3 Audit Record Contents

Refer to 3.3.1.

3.3.4 Audit Data Manipulation

Refer to 3.3.1.

3.3.5 Device Labels

Refer to 3.3.1.

9

NAWCADWAR-94109-70

3.3.6 Basic DAC

Refer to 3.3.1.

3.3.7 DAC Inclusion/Exclusion

The requirement for DAC Inclusion/Exclusion (3.7) is met by studying the functionality of the
interface, but the document does not provide a clear discussion of exclusion.

3.3.8 DAC Propagation

Refer to 3.3.1.

3.3.9 Labeling of Export Channels

Refer to 3.3.1.

3.3.10 Setting Communication Labels

Refer to 3.3.1.

3.3.11 Identification and Authentication

This OSSWG requirement is addressed by the P1003.1e standard in appendix B. Even though it
specifies this requirement as an unsupported security mechanism, the standard does not preclude
satisfying this requirement; this requirement is addressed in DoD Standard 5200.28.

Note that 1003.1 also provides interfaces to identify and to inquire about the identity of users.

3.3.12 Labeling of Human Readable Output

Refer to 3.3.1.

3.3.13 Subject and Object Labeling

For Subject and Object Labeling (3.13), the POSIX definition of subjects and objects is very broad
and may not provide sufficient detail to meet B2 requirements and above. However, for the purpose of an
interface standard this should be acceptable because significant depth in this area will be provided by
either the vendor or the contractor as the system architecture and design that incorporate the interface
standard are developed.

3.3.14 Label Contents

Refer to 3.3.1.

3.3.15 MAC Policy

Refer to 3.3.1.

10

NAWCADWAR-94109-70

3.3.16 MAC Manipulation

MAC Manipulation has been addressed in P1003.1e and P1003.2c, while the manipulation of
labels remains a non-programmatic, non-interface issue dictated by the security policy.

3.3.17 Object Reuse

This unfulfilled requirement is classified as "d" (re-evaluate).

e The OSIF shall provide that all objects are sanitized prior to allocation to a user.

Description of the Delta: Object Reuse is not a programmatic interface-related requirement. It is a
requirement between a user terminal, peripheral hardware elements, and the operating system's trusted
computing base. A conforming implementation may implement a strong object reuse policy without
Impacting the API specified by the standard.

.Recommendation: The requirement will be levied on the developers through the TCSEC when
required; thus, no further action is recommended.

3.3.18 User Notification of Sensitivity Label

Refer to 3.3.11.

3.3.19 Sensitivity Label Query

Refer to 3.3.11.

3.3.20 System Integrity

Refer to 3.3.11.

3.3.21 Identification of Users Based on Roles

Refer to 3.3.11.

3.3.22 Least Privilege

Refer to 3.3.1.

3.3.23 Trusted Path

This unfulfilled requirement is classified as "d" (re-evaluate).

Requirmet: The OSIF shall support a trusted communication path between the user and the
system, activated exclusively by the user.

Descriotlion of the Delta: The trusted path requirement is not a programmatic interface-related
requirement. It is a requirement between a user terminal and the operating system's trusted computing

11

NAWCADWAR-94109-70

base. It will be addressed in the P1003.22 Guide to the POSIX Security Framework, which will
complement the work being done in both the 1003.0 and 1003.6 committees.

Recommendation: The requirement will be levied on the developers through the TCSEC when
required; thus, no further action is recommended.

3.3.24 Trusted Recovery

This unfuffilled requirement is classified as "d" (re-evaluate).

Requireet The OSIF shall provide procedures or mechanisms or both to assure that, after a
discontinuity, recovery without a protection compromise is obtained.

Description of the Delta: This is not an programmatic interface related requirement but a
requirement internal to the trusted computing base (TCB) concerned with trusted recovery to a secure
state of the TCB when non recoverable failure occurs. It will be addressed in the P1003.22 Guide to the
POSIX Security Framework, which will complement the work being done In both the 1003.0 and 1003.6
committees.

Recommendatione The requirement will be levied on the developers through the TCSEC when
required; thus, no further action is recommended.

Requirements Coverage Summary

Requirement Covered POSIX Deita Unfulfilled
Requirements

Rating
3.1 Yes None
3.2 Yes None
3.3 Yes None -
3.4 Yes None -
3.5 Yes None
3.6 Yes None
3.7 Yes None -
3.8 Yes None -
3.9 Yes None -

3.10 Yes None -
3.11 Yes None
3.12 Yes None
3.13 Yes None
3.14 Yes None -
3.15 Yes None -
3.16 Yes None -
3.17 No Insertion d
3.18 Yes None -
3.19 Yes None -
3.20 Yes None -
3.21 Yes None -
3.22 Yes None -
3.23 No Insertion d
3.24 No Insertion d

12

NAWCADWAR-94109-70

3.4 DATA INTERCHANGE INTERFACES

Appendix B, Rationale and Notes, of the 1003.1 indicates that the POSIX groups felt the Issue of
data format should be addressed in 1003.1. 1003.1/1003.5 does not yet provide a standard data
Interchange Interface, nor does it define a standard format for the data. 1224 is developing an ASN.1
(Abstract Syntax Notation One) API. A notable hole in the 1224 work is a result of the working group
decision not to provide interfaces for floating-point data.

A non-POSIX alternative for meeting the data interchange requirement is XDR (External Data
Representation), an Internet standard (see RFC1014). XDR is well-established, provides a relatively
straight-forward binding to P1003.12, is capable of supporting realtime communication, is canonical, has
no explicit typing, and represents arbitrary data structures in a consistent, well-documented manner.
However, XDR at this tine does not have POSIX or ISO support.

Data Interchange Interfaces are necessary to support the Big 6 requirement for heterogeneity.

One aspect of the Data Interchange issue arises from the fact that the various hardware and
software platforms used in Navy systems represent various uncoordinated data types being passed
between many systems. These systems were developed on essentially the same computer hardware, at
different times, by different vendors, and for different sponsors, with incremental funding. Most of these
systems were developed long ago, prior to any formal standardization process, and were designed to
perform specific tasks that were not always integrated. The cost of ownership of this wide spectrum of
systems Is Inconsequential compared with the replacement cost of upgrading to systems that have a
standardized data interchange. Therefore, an interface is needed to support the required "normalized"
representations of data interchanged between these different systems. This interface would provide
standards for upgrading these older systems with a more effective approach.

Likewise, the interface would provide standards for combining COTS products effectively,
whether or not the products originate in older systems.

3.4.1 Data Interchange Services (Data Format Conversion)

This unfulfilled requirement is classified as "a" (essential).

Reuirment The OSIF shall support an access to services that perform data conversion.

Descriotion of Delta: P1351 and P1353 have developed an ASN.1 API. However, this API will
not support floating-point data. ASN.1 is already an ISO standard. It is canonical, supports explicit typing,
and represents arbitrary data structures in a consistent, well-documented manner. A potential
disadvantage of ASN.1 is thai it may nrt be capable of supporting realtime systems-

Resolution Alternatives:

1. Pursue adding floating-point data support to P1351 and P1353.
2. Pursue standardizing XDR within POSIX.
3. Adopt XDR as another OSSWG-recommended standard (in addition to POSIX).

Recommendation: Investigate 1. and 2.; should 2. fail, pursue 3. to meet realtime requirements.

13

NAWCADWAR-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
4.1 Partially Modification a

3.5 EVENT AND ERROR INTERFACES

In general, the POSIX standards support service class 5 (Event and Error Interfaces) in a
rudimentary way. There are three areas that are not complete:

1. Basically, POSIX provides reactive error management while OSSWG requires proactive
behavior. Attempting to support proactive requirements on top of a reactive interface will result in
performance penalties. The existing (proactive) services are highly-oriented toward providing event
services (via the "signal concept) while downplaying error reporting.

2. POSIX currently does not have a consistent error handling strategy. The POSIX working
groups covering distribution are beginning to develop such a strategy.

3. POSIX does not provide adequate coordination and recording services.

While none of the requirements in servce class 5 are completely satisfied by POSIX interfaces, aH
the associated OSSWG requirements remain necessary for Navy systems. Given that the OSSWG wig
now deal only with APIs for the OSIF, requirement 5.1 becomes deferred for errors, since the error
Information comes from sources other than applications; it is fulfilled in the case of events other than
errors.

POSIX signals provide a useful abstraction for managing asynchronous events and can be used
to coordinate the activities of processes. In particular, signals unify the following:

- synchronous exceptions, such as floating point overflow, division by zero, and invalid addresses
or instructions

- abortion of a process or thread of control
- suspension of a process
- time-outs such as an alarm or timer expiration
- asynchronous notification from one process or another of an application-specific event that

demands attention

However, precisely because they are so all-encompassing, signals also:

- confuse synchronous traps with asynchronous events
- can be aliased in confusing ways
- can be lost
- are unique resources which cause problems when various independent application components

are Integrated

Conflicts over the right to handle a signal are a problem for the Ada runtime, since it requires the use of
certain specific signals, and it is not something a user can ordinarily be expected to patch up. The POSIX
Ada bindings address this situation by denying an Ada application the ability to handle certain signals
which are expected to be used by the Ada runtime system. This still leaves the need for intervention if an
Ada application wants to use a C language library that depends on catching the same signals used by the
Ada runtime system.

14

NAWCADWAR-94109-70

The OSSWG requirements could be met by adding new interfaces to POSIX. Existing interfaces
do not need to be modified or deleted. However, some philosophical views and assumptions of the
POSIX community differ considerably from the OSSWG conceptual model.

Examples are access to hardware interrupt masks and error logging. Both were cited as 'out of
scope" by the POSIX community.

1003.4b has developed interrupt control interfac?s which fulfill Requirement 5.5 and contribute
to the fulfillment of Requirement 5.2. Due to hardware dependencies, it may not be appropriate to
attempt to standardize interfaces for masking/unmasking interrupts.

Executive Summary: The following paragraphs serve as an explanation and summary of
section 3.5, Event and Error Interfaces, and section 3.11, Reliability, Adaptability, and Maintainability
Interfaces. While these two service classes are closely related, note that service class 5 goes beyond
strictly error interfaces, which also apply to service class 11. and deals more broadly with events, which
may or may not be related to errors. The thrust of this summary is system fault and error management.
which is concerned with the error aspects of service class 5 and with service class 11. Section 3.5 does,
however, also discuss events in detail.

In addition, while some of the requirements from service classes 5 and 11 deal with interfaces
between an operating system and entities other than application software, this summary and sections 3.5
and 3.11 consider satisfying requirements only through an API. The discussion of other types of
operating system interfaces is deferred at this time.

In general, the OSSWG discovered that POSIX provides or supports little in the way of interfaces
for service classes 5 and 11 as they relate to system fault and error management. (Sections 3.5 and 3.11
discuss the deltas between what the OSIF requires and what POSIX supplies for each OSIF requirement
in detail.) Consequently, the OSSWG considered the following alternatives to resolve the deltas between
the OSIF requirements and POSIX:

1. Enhance existing POSIX interfaces to include this capability. System fault and error
management is not generally a natural extension to existing POSIX interfaces. it may fit as new work under
POSIX 1003.7, system administration.

2. Submit a new POSIX PAR to do this work. POSIX may require a new PAR even should this
work be done under 1003.7. A substantial body of existing practice is available for system fault and error
management in current military tactical systems and may also be available in such commercial applications
as telephone, medical, and banking systems. The availability of people to do this work may well be the
deciding factor in providing this capability in POSIX. People would probably have to come largely from
OSSWG as general interest in the POSIX community for this kind of activity seems to be low. However,
the OSSWG should also contact commercial parties where interest may be growing.

3. Mature a standard outside of POSIX. UNIX International (High Availability Investigative Team),
Open Software Foundation (OSF), and X3T8 (Fault Isolation) have efforts that might fill a large number of
the current deltas. OSSWG could use these as the vehicles to mature a industry standard outside of
POSIX. At the appropriate time a new PAR could be pursued in POSIX.

4. Develop a new military standard. This is a less acceptable alternative than 2, although
comparable in effort, because it is external to the OSIF baseline.

5. Levy the requirements and the OSIF general requirements (e.g., modularity, extensibility,
uniformity) on vendors but do not provide a standard as such. This alternative relies on vendors to
develop some commercial existing practice in this area on which to potentially standardize at a later date.

The OSSWG recommends at this time that a standard be matured outside of POSIX, through UNIX
International, OSF, and X3T8 as appropriate. Unfulfilled OSIF requirements which could be satisfied by
other efforts include:

15

NAWCADWAR-94109-70

3.5.1 Event and Error Receipt
3.5.2 Event and error distribution
3.5.3 Event and error management
3.5.4 Event logging
3.11.1 Fault information collection
3.11.2 Fault information request
3.11.3 Diagnostic tests request
3.11.4 Diagnostic tests results
3.11.5 Operational status
3.11.6 Fault detection thresholds
3.11.7 Fault isolation
3.11.8 Fault response
3.11.9 Reconfiguration
3.11.10 Enable/disable system component
3.11.11 Performance monitoring
3.11.12 Set resource utilization limits
3.11.13 Resource utilization limits violation

The OSSWG recommends satisfying 3.5.6, Mask/Unmask Interrupts in P1003.4b where this work
has already been undertaken. Mask/Unmask Interrupts Is not provided by P1 003.4b because of hardware
dependencies (classification as a significant unfulfilled requirement should be reconsidered.)
Additionally, some minimal functionality can be achieved for requirements 3.11.3, Diagnostic Test
Requests, 3.11.4, Diagnostic Test Results, 3.11.5, Operational Status, 3.11.8, Fault Response, 3.11.9,
Reconfiguration, and 3.11.10, Enable/Disable System Component through interface service devctl() in
P1 003.4b. Devctl() allows standard access to 'non standardized' hardware devices.

3.5.1 Event and Error Receipt

This unfulfilled requirement is classified as "c" (may be deferred).

OSSWG requirement 5.1 is partially covered by POSIX. While the event interfaces exist, and error
interfaces are provided for individual processes, there are no error coordination or distnrbution interfaces.

Requirmet The OSIF shall support the receipt and coordination of event and error information.

Description of Delta: This requirement refers to error information coming into the OS across the
OSIF other than through an API for subsequent distribution according to requirement 3.5.2. The event
receipt part of this requirement is met by the POSIX Signals interface and the Interrupt Control interfaces
In P1003.4b.

Recommendatione For error receipt, because OSSWG is only concerned with the API portion of

the OSIF at this time and for most applications this requirement deals with parts of the OSIF other than
APIs, this requirement delta Is a low priority. Monitor and participate in related standards efforts at UNIX
International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate portions of
standards into POSIX.

3.5.2 Event and Error Distribution

This unfulfilled requirement Is classified as "a" (essential).

P1003.4b Interrupt Control specifies that, upon occurrence of a designated interrupt, a
designated process or thread is to be notified, or a designated user-written Interrupt Service Routine (ISR)
is to be executed (or both). This Interrupt control capability, in conjunction with 1003.1/1003.4/1003.4a
signals, would provide some coverage of requirement 5.2 (distribution of event and error information). In

16

NAWCADWAR-94109-70

particular, the interrupt control mechanism could be used for the distribution of information on events and
errors resulting in hardware interrupts (such as hardware device errors). However, this distribution
mechanism would not be applicable to certain operating system errors (such as those in which kernel data
structures become faulty).

Another possible deficiency in the coverage of requirement 5.2 is the fact that functions return
indication of only a single error, instead of all errors that occur during function processing.

B•3irernen: The OSIF shall provide for the selective distribution of event and error information.

Descriotion of Delta: POSIX 1003.1 provides for the distribution of events through signals. Table
3-1 (1003.1) lists the signals that all POSIX implementations must support and Table 3-2 (1003.1) lists
those signals that a system implementing job control must support. However, "an implementation may
define additional signals that may occur in the system" (1003.1). For particular systems, it may be
significant that the signals defined by 1003.1 and 1003.5 do not allow for any user-defined information,
such as a pointer to an error report, to be passod with the signal and do not queue multiple occurrences of
a signal. The Signals interface is enhanced in 1003.4 with the addition of Queued Signals, and all signal
types are extended to threads in P1003.4a. The 1003.4 and P1003.20 specifications allow an application
to reserve a range of signal numbers as real-time signals. These signals may pass a user-defined value or
pointer to the signal-catching function. In addition multiple occurrences of real-time signals are queued for
the application in FIFO order.

POSIX provides for the distribution of errors to the requesters of individual functions. Each
function specifies which errors all POSIX implementations must detect and which are optional. 1003.1
lists the possible errors. However, "implementations may support additional errors not included in this
clause, may generate errors included in this clause under circumstances other than those described in
this clause, or may contain extensions or limitations that prevent some errors from occurring" (paragraph
2.4, 1003.1). "If more than one error occurs in processing a function call, this part of ISO/IEC 9945 does
not define in what order the errors are detected; therefore, any one of the possible errors may be
returned" (paragraph 2.4, 1003.1). (CAN THIS APPROACH BE TOLERATED?] In addition, realtime
extensions in POSIX 1003.4b provide for handling of interrupts. In 1003.4b the occurrence of an
interrupt can be made to notify a process or thread, or start the execution of a user-written ISR (or both).

The OSIF requires that all possible errors be available, not just one of those possible. [AGAIN,
CAN THIS BE TOLERATED?) It also requires that there be a means for coordinating the distribution of
errors, as for example to a single process responsible for error analysis. The 1003.4b interrupt control
interface enables distribution of certain errors, namely those resulting in hardware interrupts. Besides the
fact that the P1:003.4b Interrupt Control interface can deliver only hardware interrupts and the Signals
interface can deliver any event or error defined by the system, it may be important for particular systems to
note another difference between the two interfaces: Interrupt Control has distinct
registration/deregistration functions for each interrupt whereas the Signals interface relies on signals be
sent to or retrieved by the proper application software.

Recommendations The OSSWG recommends continued support for approval of the P1003.4b
Interrupt Control interfaces via the balloting process.

And, to completely satisfy this requirement, OSSWG recommends monitoring and participating in
related standards efforts at UNIX International; Open Software Foundation; POSIX Services for Reliable,
Available, and Serviceable Systems group; and X3T8. The POSIX Services for Reliable, Available, and
Serviceable Systems group, in addition to proposing new interfaces, may suggest modifications to
existing interfaces, such as reserving a set of real-time signal numbers for error reporting. When these
groups develop mature standards, move appropriate standards into POSIX.

3.5.3 Event and Error Management

This unfulfilled requirement is classified as "a" (essential).

17

NAWCADWAR-94109-70

e The OSIF shall support the timely delivery of interrupt and asynchronous events to
system components and shall support the implementation of user-selectable error processing
altematives. Alternatives shall include, as a minimum, filtering, retry, ignore, and accumulate occurrences.

Desc(rion of Delta: POSIX does make special provisions for the timely delivery of Interrupts and
asynchronous events which generate interrupts to system components; P1003.4b Interrupt Control
interfaces provide for process or thread notification on occurrence of an interrupt and/or for handling the
interrupt via an Interrupt Service Routine (ISR). For asynchronous events which generate signals,
"Implementations should deliver unblocked signals as soon after they are generated as possible.
However, it is difficult for POSIX.1 to make specific requirements about this, beyond those in kill() and
sigprocmask(. Even on systems with prompt delivery, scheduling of higher priority processes is always
likely to cause delays" (paragraph B.3.3.1.2. 1003.1).

Within the limits discussed under requirement 3.5.2 (i.e., POSIX does not provide for
coordination in the distribution of events and errors), some user-selectable error processing alternatives
are available. Processes can mask signals (paragraph 3.3.1.2, 1003.1). Processes can also choose
among three types of actions that they can associate with a signal: a default action, ignore, and a signal
catching function (paragraph 3.3.1.3, 1003.1). Retries and accumulation of occurrences would then be
the responsibility of the individual processes. In particular, occurrences of a particular event or error could
not be collected or action taken on behalf of several processes or on behalf of the system as a whole
through the interface.

Recommendation: OSSWG recommends continued support for approval of the P1003.4b
Interrupt Control interfaces via the balloting process. i necessary, OSSWG recommends monitoring and
participating in related standards efforts at UNIX International; Open Software Foundation; the POSIX
Services for Reliable, Available, and Serviceable Systems group; and X3T8. When these groups develop
mature standards, move appropriate standards into POSIX.

3.5.4 Event Logging

This unfulfilled requirement is classified as "a" (essential).

Requirement 5.4, event logging, is not currently supported by POSIX.

BeglukaWeDL The OSIF shall support logging events to application-defined storage. The types
of events and event sources shall be dynamically selectable/deselectable.

Description of Delta: POSIX does not support logging events. The 1003.4 working group
considers this to be a system administration issue.

Recommendation: OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; the POSIX Services for Reliable, Available, and
Serviceable Systems group; and X3T8. When these groups develop mature standards, move appropriate
standards into POSIX.

3.5.5 Enable/Disable Interrupts

This requirement is directly met by the Interrupt Control interfaces in P1003.4b. These interfaces
provide for mutual exclusion between application code and Interrupt Service Routine (ISR) code,
effectively providing the functionality of Enable/Disable Interrupts in a generalized interface which permits
Implementations for both uni-processor and multi-processor systems.

18

NAWCADWAR-94109-70

3.5.6 Mask/Unmask Interrupts

This unfulfilled requirement is classified as "c" (may be deferred).

Ra.uiremenL The OSIF shall provide the ability to mask and unmask interrupts. Note that this
requirement has particular relevance for Ada applications, as specified in paragraph 3.16.18. Changes to
the recommendations should take that fact into account.

Description of Delta: Within the limits discussed under requirement 3.5.2 (i.e., POSIX does not
provide for the collection and coordination of all events and errors), POSIX provides the ability to mask and
unmask events through its signal processing (1003.1). Therefore, complete resolution of the deltas for
this requirement depend on the resolution of requirement 3.5.2.

While POSIX does currently provide the capability to handle interrupts in P1003.4b, the interfaces
therein do not provide the capability to mask and unmask interrupts. Hardware dependencies make it
inappropriate to standardize such interfaces.

Recommendation: We recommend that the OSSWG view the masking and unmasking of
interrupts as inappropriate for standardization.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
5.1 Partially Insertion -/c
5.2 Partially insertion a
5.3 Partially Insertion a
5.4 No Insertion a
5.5 Yes None
5.6 Partially Insertion c

3.6 FILE INTERFACES

In general, the POSIX standards support service class 6 in a substantially complete way. The
information that follows was primarily derived from 1003.1, 1003.4, P1003.4a, and P1003.4b
documentation.

If you use Ada Direct_LO over POSIX files, then the 1003.5 ChangeiWorkingDirectory operation
in package POSIXProcessEnvironment should be done at system initialization to establish the default
working directory.

The requirements for: Contiguous Read of a File (6.1), Protect an Area Within a File (6.2), File
Management Suspend/Resume for Process (6.4), File Management Block Requests (6.5), Create (6.16),
Open (6.7), Point within a file (6.8), Read (6.9), Write (6.19), Write Contiguous (6.20), Close (6.10), Delete
a file (6.11), Create (6.12), Specify Default (6.13), Delete directories (6.14), and Query or Modify File
attributes (6.17 - 6.18) are directly met by a combination of 1003.1, 1003.4, and P1003.4b. Shadow Files
(6.15) is met by the interfaces listed above in combination with resource locking and/or mutual exclusion
interfaces provided by 1003.4 and P1003.4a.

19

NAWCADWAR-94109-70

The requirement for: File Management Scheduling (6.3) is not met or insufficiently met by
POSIX. File Management Scheduling requires a method to specify a response time for file requests.
POSIX does not Include this as part of the file interface.

Note that both Ada and POSIX define file operations. The two I/O systems are not based on
identical file models. The POSIX 1/O system has the objective of making the POSIX I/O model available to
the user. With both sets of I/O operations available, it is possible that a given collection of application
programs will use both sets of operations. For this reason, it is desirable to permit the interchange of
external files so that they can be read and updated by the use of either set of I/O operations after being
created and written by a different set of I/O operations. Thus, POSIX extends the Ada file model in several
useful ways, Including:

- a hierarchical, persistent file name-space
- file/device control
- memory mapping (of files)
- standard error-output file
- appending to a sequential file
- files with records of mixed types and sizes

The POSIX I/O system does not have the objective of incorporating all the functionality of the Ada
I/O model. Instead, it interprets relevant portions of the Ada LRM and constrains and details some of the
implementation dependencies permitted by the Ada LRM so that Ada I/O is more rompletely defined in a
POSIX environment. Thus, the POSIX I/O model fits the Ada I/O model fairly well.

Unfortunately, a complete mapping between the POSIX and Ada I/O operations is quite difficult,
primarily because of the lack of underlying standardization concerning external representations of data.
On a POSIX system, Ada external files are implemented as POSIX files, but the view of a file via the Ada I/O
packages is different from the view via the POSIX interfaces. There is also a difference between portable
character sets, though this is likely to be reduced in Ada 9X. Furthermore, the combination of POSIX and
Ada files does create the possibility of some new errors. In general, the effects of interleaved Ada and
POSIX operations on the same open file are unpredictable. The POSIX Ada binding provides a way to
open an Ada file object with a specified POSIX file descriptor, but states that the effect is Implementation-
defined.

3.6.1 Contiguous Read of a File

This requirement is directly met by a 1003.1 Input/Output Primitives; 1003.4 Asynchronous or
List Directed I/O and Memory Mapped Files; and P1003.4b Advisory Information.

3.6.2 Protect An Area Within A file

This requirement is directly met by 1003.1 openo and File Control; and 1003.4 Memory Mapped
Files.

3.6.3 File Management Scheduling

This unfulfilled requirement is classified as "c" (may be deferred).

fluirmenL The OSIF shall support a capability to specify a response requirement for the
service being requested for file management.

Requirement Rationale: For hard deadline real-time systems, the file manager must schedule
service processing based on the response requirements of the requests submitted by the users. FIFO
scheduling Is unacceptable for real-time applications. The file manager must also support the notion of
preemption.

20

NAWCADWAR-94109-70

Descriotion of Delta- POSIX does not require a method for specifying a response time for
scheduling I/0.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. The 1003.4 working
group Is unable to Identify existing practice for such interfaces, and thus does not consider this
appropriate for standardization under the 1003.4 charter.

2. Submit a new POSIX PAR to do this work. The availability of people to do this work is
questionable. People would probably have to come largely from OSSWG as general interest in
the POSIX community for this kind of activity seems to be low.

3. Assume a standard outside POSIX. No standards that answer this kind of requirement
are apparent at this time.

4. Develop a new military standard. This is a less acceptable alternative than 2 because it
is external to the OSIF baseline. At the same time, it suffers from the same handicaps as 2, lack of
people to do the work

5. Levy the requirements on vendors without a standard imposed. This alternative relies
on vendors to develop some commercial existing practice in this area on which to potentially
standardize at a later date.

Recommendation: Based on alternative 1, we recommend that the OSSWG view File
Management Scheduling as inappropriate for standardization.

3.6.4 File Management Suspend/Resume for Processes

This requirement is directly met by 1003.1 blocking and non-blocking open(and writeo; 1003.4
Asynchronous I/O; and P1003.4b Device Control.

3.6.5 File Management Block Requests

This requirement is directly met by 1003.1 reado, writeo, and Iseek0; 1003.4 Memory Mapped
Files; and P1003.4b Advisory Information.

3.6.6 Round Robin File Management

This requirement has been deleted.

3.6.7 Open a File

This requirement Is directly met by 1003.1 openo; 1003.4 openo; and P1003.4b Advisory
Information.

3.6.8 Point Within a File

This requirement is directly met by 1003.1 Iseeko; and 1003.4 Memory Mapped Files.

21

NAWCADWAR-94109-70

3.6.9 Read a File

This requirement is directly met by 1003.1 reado; and 1003.4 Asynchronous or List Directed
Read and Memory Mapped Files.

The Ada standard DirectlO package will be provided as part of standard Ada. This package
contains two READ file operations. The input parameters for the first read operation include the FILE
Identifier and the index to read FROM the file. The second read operation is an overloaded version of the
first without the parameter identifying the index to read FROM. The only output parameter for both read
operations contains the ITEM to be read.

3.6.10 Close a File

This requirement is directly met by 1003.1 closeo.

The Ada standard DirectjO package will be provided as part of standard Ada. This package
contains a CLOSE file operation. The only parameter is both input and output and is the FILE identifier.

3.6.11 Delete a File

This requirement is directly met by 1003.1 unlinko; and 1003.2 "rm."

The Ada standard DirectjO package will be provided as part of standard Ada. This package
contains a DELETE file operation. The only parameter is both input and output and is the FILE identifier.

3.6.12 Create a Directory

This requirement is directly met by 1003.1 mkdiro; and 1003.2 "mkdir."

3.6.13 Specifying Default Directory

This requirement is directly met by 1003.1 chdiro; and 1003.2 "cd."

3.6.14 Delete a Directory

This requirement is directly met by 1003.1 rmdiro; and 1003.2 "rmdir."

3.6.15 Shadow Files

This requirement is "shall support" and is thus met by the interfaces listed above in combination
with resource locking and/or mutual exclusion interfaces provided by 1003.4 and P1003.4a. However,
because these interfaces do not necessarily provide sufficient support to maintain shadow files at several
nodes of a distributed system, this delta must be carefully re-evaluated if this requirement is modified to
explicitly call out distributed shadow file support.

3.6.16 Create a File

This requirement is directly met by 1003.1 open() and creato.

22

NAWCADWAR-94109-70

The Ada standard DirectI0 package will be provided as part of standard Ada. This package
contains a CREATE file operation. The only input output parameter is the FILE identifier. The input
parameters Include the MODE, file NAME, and a FORM parameter. The MODE parameter identifies the
file as read only, write only, or both read and write. The file NAME is a string identifying the name of the
file. The FORM parameter is a string which is user defined. The POSIX_- SupplementToAda_10
defined in 1003.5/8.2 will be used to build a POSIX-compliant FORM parameter.

3.6.17 Query File Attributes

This requirement is directly met by 1003.1 stato, fstato, accesso, and Iseeko.

3.6.18 Modify File Attributes

This requirement is directly met by 1003.1 chmod0, chowno, utimeo, and Iseeko; 1003.4
ftruncateo; and P1003.4b Advisory Information. Also, P1003.2 provides the "chmod" shell command to
meet this requirement.

3.6.19 Write a File

This requirement is directly met by 1003.1 writeo; and 1003.4 Asynchronous or Ust Directed
Write and Memory Mapped Files.

The Ada standard Direct_lO package will be provided as part of standard Ada. This package
contains two WRITE file operations. The input parameters for the first write operation include the FILE
identifier and the index to write TO the file. The second write operation is an overloaded version of the
first without the parameter identifying the index to write TO. The only output parameter for both write
operations contains the ITEM to be written.

3.6.20 Write Contiguous File

This requirement is directly met by 1003.1 writeo; 1003.4 Asynchronous or List Directed Write
and Memory Mapped Files; and P1 003.4b Advisory Information.

23

NAWCADWAR-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
6.1 Yes None
6.2 Yes None
6.3 No Insertion c
6.4 Yes None
6.5 Yes None
6.6 Deleted None Deleted
6.7 Yes None
6.8 Yes None
6.9 Yes None

6.10 Yes None
6.11 Yes None
6.12 Yes None
6.13 Yes None
6.14 Yes None -
6.15 Yes None -
6.16 Yes None -
6.17 Yes None -
6.18 Yes None -
6.19 Yes None -
6.20 Yes None -

3.7 GENERALIZED I/O INTERFACES

In general, the POSIX standards support service class 7, generalized I/O, in a substantially
complete way. This is assuming the definition of a "file" found in 1003.1 section 2.3, includes any and all
devices. This means that any device can be represented by a file.

3.7.1 Device Driver Availability

This unfulfilled requirement is classified as "a" (essential).

This requirement for device driver availability (7.1) is not met by POSIX and is considered by
POSIX to be implementation dependent.

BRguiemftritJ The OSIF shall provide the interfaces necessary to support the addition of device
drivers.

Description of Deflta: P1003.4b Interrupt Control allows application servicing of device interrupts.
1003.4 mmap0 allows devices to be memory mapped, but only for devices currently known to the system
as special files. Not all operating system services typically required by a device driver are shown at the
POSIX interface (e.g. mapping a user buffer to a DMA address).

Resolution Altematives:

1. Enhance existing POSIX interfaces to include this capability. This requirement could
be inserted into P1003.7 system administration. In the P1003.7 document, place holders exist
for interfaces which would be the same type of interfaces needed for device drivers.

24

NAWCADWAR-94109-70

2. Assume a standard outside of POSIX. The IEEE P1256 OBIOS group is presently
woddng on standardizing device driver interfaces. The applicability of this standard to the OSSWG
operating system standard needs to be investigated.

3. OSSWG defined based on existing practice.

Recommendatione Alternative I should be pursued.

3.7.2 Open Device

This requirement is met directly by 1003.1 General File Creation, and 1003.5 Creating and
Removing Files.

3.7.3 Close Device

This requirement is met directly by 1003.1 File Descriptor Deassignment, and 1003.5 Close.

3.7.4 Transmit Data

This requirement is met directly by 1003.1 Write, 1003.4 Asynchronous Write, 1003.4 List
Directed I/O, and 1003.4 Memory Mapping of special files (devices). The Ada interfaces appropriate for
transmitting data Include 1003.5 Write and Generic Write. The Ada generic write allows the user to identify
a data type appropriate for the data which is sent.

3.7.5 Receive Data

This requirement is met directly by 1003.1 Read, 1003.4 Asynchronous Read, 1003.4 List
Directed 1/O, and 1003.4 Memory Mapping of special files (devices). The Ada interfaces appropriate for
receiving data include Read and Generic Read. The Ada generic read allows the user to identify a data
type appropriate for the data which is received.

3.7.6 Device Event Notification

This unfulfilled requirement is classified as "a" (essential).

Device Event Notification is a compound requirement comprising requirements 5.1 (Event and
Error Receipt), 5.2 (Event and Error Distribution), 5.3 (Event and Error Management), 5.4 (Event
Logging), 5.5 (Enable/Disable Interrupts), and 5.6 (Mask/Unmask Interrupts) applied specifically to events,
errors, and Interrupts originating at a peripheral device. It remains unfulfilled to the extent that any of its
dependent requirements remains unfulfilled for devices. Refer to section 3.5, Event and Error Interfaces
for specific information on those requirements.

3.7.7 Control Device

This requirement Is directly met by 1003.1 Control Operations on Files, 1003.1 General Terminal
Interface, 1003.5 File Control, and 1003.4b Device Control.

25

NAWCADWAR-94109-70

3.7.8 I/O Directory Services

The requirement for 1/0 directory services is met directly by 1003.1 Files and Directories,
P1003.1a File Hierarchy Streams, and 1003.5 Packages POSIXFiles and POSIXFileStatus.

3.7.9 Device Management Suspend/Resume for Processes

This requirement is fully met by 1003.1 Open a File, 1003.1 Read from a File (device), 1003.1
Write to a File (device), 1003.4 Asynchronous Input and Output, P1003.4b Device Control, and 1003.5
Read, Write, Generic Read, Generic Write.

3.7.10 Mount/Dismount Device

This unfulfilled requirement is classified as "a" (essential).

This requirement is not met by POSIX and is considered by POSIX to be implementation
dependent.

BRftgmren± The OSIF shall support the capability to mount and dismount a logical or physical
device.

Description of Delta: Not presently shown at POSIX Interface

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. This requirement could
be inserted into P1003.7 system administration. In the P1003.7 document, place holders exist
for Interfaces which would be the same type of interfaces needed for mounting and dismounting a
device. This was deferred to P1003.7.5 for which no draft has yet been generated.

2. OSSWG defined based on existing practice.

Recommendation: Insert into a P1003.7 system administration document.

3.7.11 Initialize/Purge Device

This requirement is directly met by 1003.1 General Terminal Interface, and P1003.4b Device
Control.

26

NAWCADWAR-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
7.1 Partially Insertion a
7.2 Yes None
7.3 Yes None
7.4 Yes None
7.5 Yes None
7.6 Partially Insertion a
7.7 Yes None
7.8 Yes None -
7.9 Yes None

7.10 No Insertion a
7.11 Yes None

3.8 NETWORK AND COMMUNICATIONS INTERFACES

In general, the POSIX Standards partially support Service Class 8, Network and Communication
Interfaces. Most of the input to the evaluation of this service class is derived from the 1003.12 protocol
independent interfaces working group, the 1238 ACSE and Presentation API working group, the 1238.1
FTAM API working group, the 1224.2 directory services API working group, and the Realtime Distributed
Systems Communication API (1003.21) project. The Realtime Distributed Systems Communication study
group first met in July, 1992, as a 1003.12 splinter group; it submitted a PAR as a separate POSIX working
group In fall, 1992. The PAR was subsequently approved as 1003.21.

The 1003.12 working group is developing two levels of networking interfaces. One is the Simple
Network Interface (SNI). The other is the Detailed Network Interface (DNI). DNI will have two C bindings,
Berkeley sockets and XIOpen's XTI (the standardized version of AT&T's Transport Layer Interface (TLI)).
The two C bindings position is a compromise resulting from the controversy over whether to choose
sockets, XTI, or a third Interface made up of elements from both sockets and XTI as the DNI.

1003.21 plans to develop protocol independent interfaces that are complementary to realtime
systems. They plan to use the work done by SEI as an Ada binding to the SAFENET Lightweight protocol
suite as a base document for their work.

In light of the nature of the 1003.21 work as well as the P1003.12, 1238, 1238.1 and 1224.2 work
and their close association with the Network and Communications Interfaces service class, the OSSWG
needs to monitor progress in these groups closely.

In a system using components based on NGCR standards, there will frequently be a hierarchy of
networked communication, data storage, and processing functions. At the base of this hierarchy may be a
number of processing or storage units on a single board connected by an onboard bus. At the next level
will be FUTUREBUS+ or non-NGCR backplane busses (e.g., VME). At the next level there may be
SAFENET, MIL-STD-1553B data busses, or non-NGCR-defined LANs. At the highest level, but outside
the scope of this set of requirements, there may be communications among systems on different Navy
platforms. In some application domains and for some application functions, the OSIF must provide explicit
access to networked communication, data storage, and processing functions for both NGCR-defined
communication components and similar non-NGCR-defined components. This is in addition to the use of
these capabilities implied in many other requirements. Two processes make up a communications
transaction regardless of their location. This includes either two processes across a communications link
or two processes residing on the same processor.

27

NAWCADWAR-94109-70

OSSWG has expressed some concern that requirements 8.3 (Acknowledged Connection-
Oriented Service) and 8.4 (Unacknowledged Connection-Orlented Service) actually dictate two protocol-
specific iplementations of Connection-Oriented Service Intended to exploit a trade-off between highly
reliable delivery and high performance. The same can be said of requirements 8.5 (Acknowledged
Datagram Service) and 8.6 (Datagram Service). It has been suggested that these requirements be re-
worded to state true requirements; that is, Connection-Oriented Service or Datagram Service with
specified levels of reliability and performance. This is more in keeping with the P1003.12 concept of
Quality of Service parameters, and isolates the requirements from dependency on current network
protocol Implementations. However, since the Acknowledged/Unacknowledged paradigm is so pervasive
throughout current networking technology, OSSWG Is reluctant to change these requirements without
further study. OSSWG recommends that this issue be addressed as part of an overall review of all the
OCD requirements.

3.8.1 Interface to NAVY Standard Network

This unfulfilled requirement is classified as "a" (essential).

This requirement is partially covered by the work of 1238 and 1238.1 which provide Interfaces to
the SAFENET OSI suite; 1224.2 which provides an interface to directory services; and P1003.12 and
1003.21 which provide interfaces to the SAFENET lightweight suite. 1003.21 is attempting to make their
interface also applicable to backplane buses such as Futurebus+. Only 1003.21 plans to provide an Ada
binding to its Interface. Additionally, the POSIX 12XX series of standards does not currently include
interfaces for ROSE or network management which are needed to support the SAFENET OSI suite.

BReuiremet:n The operating system shall provide explicit interfaces to and control of NGCR
standard communications implementations. These implementations shall include but not be limited to
implementations of Futurebus+ and SAFENET.

DeQr2tnMn of Delta: POSIX/12XX provide no interfaces for ROSE or network management, both
of which are needed to provide a complete interface to SAFENET.

Recommendatione Pursue/support PARs for interfaces to ROSE and network management.

3.8.2 Interfaces to Other Network and Communication Entities

This requirement Is met in various ways. Explicit interfaces exist in P1003.12 for interfacing to
networks (Ethemet and FDDl), usually using additional protocols (TCP/IP and ISO). interfaces also exist to
access devices via 1003.1 Input and Output Primitives. Although device drivers are needed to access
devices such as MIL-STD-1553B, these interfaces can be used in a portable manner. Finally, it is
generally accepted that access to backplane busses (VME, MULTIBUS, and P1-Bus) is not explicitly given
to applications and the details of backplane communication are regarded as an implementation issue.

3.8.3 Acknowledged Connection-Oriented Service

There is no delta for this requirement. The work of the 1351, 1003.12, and 1003.21 groups will
satisfy this requirement. Only the 1003.21 group plans to provide an Ada binding.

There is some concern within the OSSWG that 1003.21 will "overtulfill" this requirement; that is, if
1003.21 develops alternative interfaces to Acknowledged Connection-Oriented Service (as opposed to
simply Ada bindings for those already developed by the 1238 and 1003.12 groups), it is not clear that
having two sets of interfaces will be advantageous.

28

NAWCADWAR-94109-70

3.8.8 Broadcast/Multicast Service

This ulnhtled requirment Is classified as -a- (essential).

There will be no delta for this requirement If the 1003.21 work proceeds as planned. Broadcast
and multicast requirements appear in the 1003.21 requirements document and broadcast and mufticast
services appear in the 1003.21 Ada binding base document.

ROQUirenetn:L The OSIF shall provide for the selection of broadcast/mufticast communication

services.

DescrgMion of Delta: No delta/dependent on 1003.21 group work.

Recommendation: Monitor/influence 1003.21 group work. OSSWG is concerned that the
1003.21 group is not making adequate progress in defining this interface and may not provide a C-
Language binding to this interlace; therefore the 1003.12 group should be considered as a backup.

3.8.9 K-Acknowledged Multicast Service

This unfulfilled requirement is classified as "a" (essential).

There will be no delta for this requirement if the 1003.21 work proceeds as planned. The
1003.21 requirements document discusses a k-acknowledged multicast service and the 1003.21 Ada
binding base document specifies an active-group-integrity qualifty-of-service parameter on multicast
services which also implies k-acknowledgment.

ftuiremaiL The OSIF shall provide for the selection of mulficast communication services that

ensure reliable delivery to at least k of n multicast group members.

Descdopion of Delta: No delta/dependent on 1003.21 group work.

Recommendation: Monitor/influence 1003.21 group work. OSSWG is concerned that the
1003.21 group Is not making adequate progress in defining this interface and may not provide a C-
Language binding to this Interface; therefore the 1003.12 group should be considered as a backup.

3.8.10 Atomic Multicast Service

This unfulfilled requirement is classified as *a" (essential).

There will be no delta for this requirement if the 1003.21 work proceeds as planned. A multicast
transaction requirement appears in the 1003.21 requirements document and a multicast transaction
service appears in the 1003.21 Ada binding base document.

Reguirema~o The OSIF shall provide for the selection of reliable, atomic multicast

communications services.

Descrition of Delta: No delta/dependent on 1003.21 group work.

Recommendation: Monitor/influence 1003.21 group work. OSSWG is concerned that the
1003.21 group Is not making adequate progress in defining this interface and may not provide a C-
Language binding to this interface; therefore the 1003.12 group should be considered as a backup.

30

A6,

NAWCADWAFI-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
RequirementsRating

8.1 Partialy Modification a
8.2 Yes None
8.3 Yes None
8.4 Yes None
8.5 Yes None
8.6 Yes None
8.7 Probably Insertion a
8.8 Probably Insertion a
8.9 Probably Insertion a

8.10 Probably Insertion a

3.9 PROCESS MANAGEMENT INTERFACES

In general, the POSIX Standards support Service Class 9. Process Management, in a substantially
complete way for both the Pthread Model ar' i the POSIX process model.

OSSWG requires a single uni, of concurrency, namely the "process." 1003.1 and 1003.4 support
this requirement via the POSIX process model, while P1003.4a adds a second level of concurrency
(within a POSIX process) calleo POSIX threads. Depending on the application, an OSSWG "process" may
be either a POSIX process or a POSIX thread. Furthermore, some applications (particularly in Ada) may
require simultaneous use of both concurrency models. Therefore, this analysis separately considers each
requirement as it is met by POSIX processes and by POSIX threads (Pthreads).

The ability to create processes is an essential part of the POSIX interface and an Ada binding to
POSIX without processes would be incomplete. Nevertheless, it is possible that the POSIX process
model is at odds with the Ada multitasking model, particularly since a standard mapping between these
two models does not exist. Therefore, Ada programmers should be aware of potential conflicts that can
occur when creating POSIX processes.

In an attempt to reconcile the Ada and POSIX models of concurrency there seems to be three
potential mappings: 1) each Ada task is a POSIX process, 2) each Ada program is a POSIX process, or 3)
there is not a simple relationship between POSIX processes and Ada tasks. The choice that causes the
least conflict between Ada and POSIX is to require that the POSIX Ada standard Interface to POSIX
impose a virtual one-to-one correspondence between processes and program executions. That is, an
Ada program execution should act, feel, and look as if it is running as a single POSIX process. This
equivalence between a POSIX process and an Ada program means that one cannot differentiate between
the two POSIX calls. This choice has the virtue of raising the fewest problems and resolving many Issues
cleanly. The P1003.5 standard accommodates this idea by isolating those features of POSIX that deal
with process creation within the packages POSIXProcessPrimitives, POSIX-
Unsafe_ProcessPrimitives, and POSIXProcess_Identification.

3.9.1 Create Process

The requirement for Create Process (9.1) is directly met for Pthreads by P1003.4a plus the
interprocess communication facilities of 1003.4. The Create Process (9.1) requirement is met for
processes by the fork and exec interfaces of 1003.1, the spawn interface of P1003.4b, the scheduling
interface of 1003.4, plus the communication and synchronization interfaces of 1003.4. The use of these

31

" • = ; i i iA I I I I I

NAWCADWAR-94109-70

interfaces In combination to meet the requirement is adequate since the requirement is stated as "shall
support." P1003.1a provides a system() interface to 1003.2 shell commands to meet this requirement.

3.9.2 Terminate Process

This unfulfilled requirement is classified as "a" (essential).

The requirement for Terminate Process (9.2) is almost met for Pthreads by P1003.4a plus the
interprocess communication facilities of 1003.4. The requirement for Terminate Process (9.2) is directly
met for POSIX processes by 1003.1 process interfaces plus 1003.4 process attributes and interprocess
communication facilities. Also, for processes only, 1003.2 provides the "kir" shell command to meet this
requirement.

ReqJJrement: The OSIF shall support the ability to terminate a process and recover all resources

associated with that process.

Description of Defta: Pthreadkill() cannot unconditionally terminate another thread (it will
terminate the entire process instead), and pthreadcancelo also cannot unconditionally terminate another
thread (that thread may have disabled cancellation). Therefore, there is no interface to unconditionally
terminate another thread.

Recommendation* OSSWG should influence the 1003.4 working group to provide an interface
by which one thread may unconditionally terminate another thread. This appears to be a technical
correction (or addition) to P1003.4a, and can possibly be achieved through the P1003.4d project.

3.9.3 Start Process

The requirement for Start Process (9.3) was purposely rejected as a separate interface by
P1003Aa In favor of use of the Pthread synchronization primitives to achieve the same effect whenever
process creation and startup must be separately managed. This alternative capability is adequate to meet
this *shad supporr requirement. The requirement for Start Process (9.3) is also not separately addressed
for POSIX processes. The requirement is met by the 1003.1 forko, execl), and execve0 interfaces and
by the P1003.1a system() interface to 1003.2 shell commands. It is indirectly supported via the 1003.1
and 1003.4 process synchronization interfaces, much as in the case of Pthreads. Since this is a "shall
support" requirement, it is met by a combination of POSIX process synchronization primitives.

3.9.4 Stop Process

The requirement for Stop Process (9.4) is not addressed by POSIX for either Pthreads or POSIX
processes. The whole concept of stopping a process for subsequent restart (from a point other than
where it was stopped) Is considered by POSIX as an application dependent variant of a thread or process
becoming blocked and subsequently unblocked. Since POSIX does indirectly support Suspend Process
(q.v.), and standard languages support both local and non-local jumps, this "shall support" requirement is
considered met by POSIX.

3.9.5 Suspend Process

The requirement for Suspend Process (9.5) is met for both Pthreads and POSIX processes by
combinations of interfaces in 1003.1, 1003.4, and P1003.4a. Although no Pthread or POSIX process
interface explicitly provides each of these capabilities, the requirement is met by combining interfaces.
The POSIX community regards asynchronously affecting the state of another process or thread as a
dangerous capability, and suggests that this be accomplished r. y asynchronously or synchronously
requesting the other thread change its own state.

32

NAWCADWAR-94109-70

3.9.6 Resume Process

The requirement for Resume Process (9.6) is met for both Pthreads and POSIX
processes by combinations of interfaces in 1003.1, 1003.4, and P1003.4a. Although no Pthread or
POSIX process interface explicitly provides each of these capabilities, the requirement is met by
combining Interfaces. The POSIX community regards asynchronously affecting the state of another
process or thread as a dangerous capability, and suggests that this be accomplished by asynchronously
or synchronously requesting the other thread change its own state.

3.9.7 Delay process

The requirement for Delay Process (9.7) is met for both Pthreads and POSIX processes by
combinations of Interfaces in 1003.1, 1003.4, and P1003.4a. Although no Pthread or POSIX process
interface explicitly provides each of these capabilities, the requirement is met by combining interfaces.
The POSIX community regards asynchronously affecting the state of another process or thread as a
dangerous capability, and suggests that this be accomplished by asynchronously or synchronously
requesting the other thread change its own state. Also, "delay until" semantics, although not directly
supported for POSIX processes or Pthreads, can be achieved through a combination of the 1003.4
clocks and timers interfaces and 1003.1, 1003.4 and P1003.4a signal interfaces. 1003.2 provides the
"sleep" shell command to meet this requirement.

3.9.8 Interprocess Communication

The requirement for Interprocess Communication (9.8) is directly met for Pthreads by P1003.4a
plus the Interprocess communication facilities of 1003.4. The requirement for Interprocess
Communication (9.8) Is directly met for POSIX processes by 1003.1 process Interfaces, P1003.4
Synchronization plus 1003.4 process attributes and interprocess communication facilities. P1003.12
explicitly provides interprocess communication interfaces for a distributed/networked environment.

3.9.9 Examine Process Attributes

The requirement for Examine Process Attributes (9.9) is directly met for Pthreads by P1 003.4a,
Execution Time Monitoring of P1003.4b, plus the interprocess communication facilities of 1003.4. The
requirement Examine Process Attributes (9.9) is directly met for POSIX processes by 1003.1 process
interfaces, Execution Time Monitoring of P1003.4b, plus 1003.4 process attributes and interprocess
communication facilities. 1003.2 provides the "ps" shell command to meet this requirement.

3.9.10 Modify Process Attributes

The requirement for Modify Process Attributes (9.10) is directly met for Pthreads by P1003.4a,
Execution Scheduling of P1003.4b plus the interprocess communication facilities of 1003.4. The
requirement for Modify Process Attributes(9.10) is directly met for POSIX processes by 1003.1 process
interfaces plus 1003.4 process attributes and interprocess communication facilities.

3.9.11 Examine Process Status

This unfulfilled requirement is classified as "a" (essential).

33

NAWCADWAR-94109-70

The requirement for Examine Process Status (9.11) is not adequately covered either for Pthreads
or POSIX processes. Interfaces to enable one Pthread or POSIX process to obtain the current status of
another must be added.

Examine POSIX Process Status

ReDQUIffment The OSIF shall provide the ability for processes to examine the current status of a
particular process. Note that status here is not intended to include cumulative execution time; the
capability to obtain cumulative execution time is covered as requirement 3 in service class 13
(synchronization and scheduling).

Descriotion of Delta: The wait() and waitpid0 functions provide limited status (terminated, stopped,
and why (e.g., caused by which signal)) on limited processes (child processes). Richer status information
is required. The ability to examine status of general processes (i.e., non-children) is required. 1003.2
provides the "ps" command, but no API (system call version) is provided.

Resolution Alternatives:

1. Enhance existing 1003.1 wait() and waitpido interfaces to include this capability.
Extensions of waft() and waitpido to provide richer status information and to allow status querying
to general processes are discussed in 1003.1 but are not included in the standard. It is unlikely
that a consensus to include the extensions could be achieved.

2. Incorporate an API to 1003.2 "ps" command functionality into a POSIX standard. The
functionality should be incorporated as a system call and also as a command ("ps" is available only
as a command in 1003.2).

Recommendationa The P1003.7 drafts should be reviewed to determine whether a system call
version of "ps" is on the agenda. The 1003.7 group should be approached with a proposal to include the
capability for examining process status in one of their drafts if this is not already on the agenda.

Examine POSIX Thread Status

Requirm•:L The OSIF shall provide the ability for threads to examine the current status of a
particular thread. Note that status here is not intended to include cumulative execution time; the capability
to obtain cumulative execution time is covered as requirement 3 in service class 13 (synchronization and
scheduling). Note also that this requirement has particular relevance for Ada applications, as specified in
paragraph 3.16.10. Changes to the recommendations should take that fact into account.

Description of Delta: The pthreadjoin funrkion provides limited status information: whether a

thread has terminated. Richer status information is required.

Resolution Alternatives:

1. Investigate extending 1003.2 "ps" command functionality to threads and incorporating a
system call version into a POSIX standard. Although threads are addressed in the 1003.4 working group,
that group does not consider such an interface appropriate to standardize at this time due to lack of
existing practice and its lack of relevance to the realtime charter. The 1003.7 group seems to be the likely
place to address this in conjunction with the API for process status discussed above.

Recommendation: Alternative I should be pursued in the 1003.7 working group (for a thread
status API). 1003.2 should be requested to add a thread status command (possibly based on this API at a
later date), but this is less crucial to fulfilling the OSSWG requirement.

34

NAWCADWAR-94109-70

3.9.12 Process (Thread) Identification

The requirement for Process Identification (9.12) is directly met for Pthreads by P1003.4a plus
the Interprocess communication facilities of 1003.4 and for POSIX processes by 1003.1 process
Interfaces, 1003.4 process attributes and interprocess communication facilities, and Process
Management interfaces of P1 003.4b. 1003.2 provides the "ps" shell command to meet this requirement.

3.9.13 Save/Restart Process

This unfulfilled requirement is classified as *a' (essential).

The requirement for Save/Restart Process (9.13) is directly met for POSIX processes by the
P1003.1 a Process Checkpoint and Restart capability. This requirement is not met for Pthreads, however,
sinue P1 003.4a defines no equivalent per-thread capability. This is understandable since this P1 003.4a
capability is relatively new.

BRguireg.mr Tl.i OSIF shall support the ability for processes to be restarted from a saved state.
Note that this requirement has particular relevance for Ada applications, as specified in paragraph 3.16.6.
Changes k tIe recommendat',ns shc',ld take that fact into account.

Description of Delta: At this.-: . ft. -,se interfaces are not provided for Pthreads.

Resolution Alternatives:

1. Investigate checkpointing/restarting of threads, possibly in the context of a broader
OSSWG fault tolerance proposal. Consider 1003.7 as forums for making proposals.

2. Levy the requirements and the OSIF general requirements on vendors but do not
provide a standard as such. This alternative relies on vendors to develop some commercial
existing practice in this area on which to potentially standardize at a later date.

Recommendation: Alternative 1 is recommended, while it is recognized that program managers
can always resort to alternative 2. Checkpointing a thread that is sharing memory with other threads seems
to be difficult and demands further study.

3.9.14 Program Management Function

The requirement for Program Management (9.14) is directly met for Pthreads by P1003.4a plus
the interprocess communication facilities of 1003.4. The requirement for Program Management (9.14) is
directly met for POSIX processes by 1003.1 process interfaces plus 1003.4 process attributes and
interprocess communication facilities.

35

NAWCADWAR-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
9.1 Yes None

9.2 (Process) Yes None
9.2 (Pthread) Partially Modification a

9.3 Yes None
9.4 Yes None
9.5 Yes None _

9.6 Yes None _

9.7 Yes None _

9.8 Yes None _

9.9 Yes None _

9.10 Yes None
9.11 No Insertion a
9.12 Yes None

9.13 (Process) Yes None
9.13 (Pthread) No Insertion a

, 9.14 Yes None

3.10 PROJECT SUPPORT ENVIRONMENT INTERFACES

Two "profile" related architectures are possible for the implementation of the OSSWG
requirements for debug support (see OCD Appendix, 20.10.1) and execution history (OCD Appendix,
20.10.2).

In architecture A, the process being debugged interfaces to the debugger, which in turn
interfaces to the operating system. Conceptually, this is the equivalent to the debugged process
executing in an application debugger "shell" that interfaces to the supplied operating system. (Note: This
architecture appears to be the one assumed by earlier versions of the OSSWG Delta Document.)
Alternatively, it can be thought of as the capability to create an instrumented, self-monitoring copy of the
target process. This architecture has the following characteristics:

1. It is most naturally applied to general-purpose RAM-based development systems. These
systems would support compiling, linking, etc.

2. There is an essential link between the debugger and other process development tools (i.e.,

the compilers, linkers, etc.). The debug capability accesses the process at the source level.

3. The debugger is assumed to reside upon the application platform.

4. The debug functionality is supplied at the application level and not the operating system level.
Execution history can also naturally be maintained at this application level without additional OS
functionality.

5. There is currently (for a given language) a body of practice in place that supports the
Requirements Document with an indirect "virtual" debug capability (if not the direct "physical" capability,
i.e., the direct alteration of the registers of an executing process).

Given the above characteristics, there does not appear to be any delta at the "kemern POSIX level.
Because of the strong relationship between the debugger and the compiler, there might be some

36

NAWCADWAR-94109-70

language (Ada, C, etc.) binding considerations. This would probably be a direct binding between the
language and the debugger (i.e., tool to tool) not involving the OS.

In architecture B, the debugger interfaces to the operating system, which in turn interfaces to the
process being debugged. (Note: This is the architecture that appears to be implied by figure 10.2-2 of the
OCD.) Conceptually, this can be viewed as supplying external access to a "target" system via operating
system services. This architecture has the following characteristics:

1. It is most naturally applied to special-purpose PROM/EPROM-based systems (e.g., flight
control computers).

2. There is not necessarily a link between the debugger and the compiler, linker, etc., of the target
process. The debug capability accesses the system at the code level.

3. There is, in general, a physical/logical separation between the application platform and the
POSIX Standard Environment (PSE) host platform. A communication protocol may be necessary as part
of the debugger/OS interface.

4. The debug functionality would be supplied by the application platform OS but not necessarily
by the Application Program Interface (API.) Execution history would also be maintained within the OS.

5. There is little standard practice with respect to this architecture. It is, in general, dependent on
the Implementation of the test bed hardware.

Given the above characteristics, the current POSIX primitives for process control do not give the
degree of control needed to support the debug requirements. It would be difficult to "single-step" a
process with the current services. In addition, full debug control may require the capability to override
normal operating system functions (i.e., scheduling). It may be required to "idle" a target system so that it
can be "patched." Such actions have an "anti-operating system" viewpoint. New POSIX services (with
syntax, semantics, and protocols) would need to be provided to satisfy the OCD requirements. However,
such services would need to be privileged and not part of the basic API available to every application.
Execution history would need to be added to the OS functionality. Note that in some systems debug
services are part of the operating system (and are removed in the operational system). They may only be
recording debug information that the application accesses runtime. In that case, interfaces such as the
POSIX read-file (paragraph 6.4, 1003.1 and paragraph 6.1, 1003.5) may be adequate.

Based on the above discussion, the debug requirement would currently be supported by POSIX
for a number of profiles (although a considerable effort in generating a debug application would also be
necessary) and not supported by POSIX for other profiles.

3.10.1 Debug Support

This unfulfilled requirement is classified as "c" (may be deferred).

Requimet The OSIF shall support the debugging of applications, specifically supporting the
following capabilities:

1. Examine registers
2. Alter registers
3. Set/clear breakpoint
4. Set/clear watchpoint
5. Single step execution
6. Continue execution
7. Examine memory
8. After memory
9. Query process environment
10. Query call stack

37

NAWCADWAR-94109-70

Description of Delta: Depending on the architecture, there is either no delta or a considerable
delta. POSIX standards do not directly address application debugging. However, vendors who are
marketing POSIX-compliant systems are certain to include debugging support for application developers
as part of their system. POSIX standards should contain debug support to ensure that a common set of
debug capabilities exists across different POSIX-compliant systems. At present, it is unclear where debug
support should be included in the POSIX standards.

Resolution Alternatives:

1. Redefine the requirement so that it is limited to application platform resident debug
tools. This would eliminate the delta. PSESWG would be responsible for standardization of the
resulting debug interface (tool-to-tool, tool-to-OS, etc.). This seems contrary to the intent of the
requirement in section 4.1.10 of the OCD.

2. Insert new service primitives into the POSIX standard. Because there is no standard
practice to support these primitives, both the syntax and semantics for them (in terms of the
UNIX/C environment or the Ada tasking model) would also have to be determined. This alternative
does not fit the NGCR methodology of building on current practice.

3. Declare that the OS/PSE interface is not done through the API and thus is not part of
the MIL-STD-OSIF. Again, PSESWG would be responsible for defining and standardizing an
appropriate OS/PSE interface including potential communication protocols.

4. Wait for the OSSWG/PSESWG boundary paper to determine the scope of the
problem.

Recommendation* OSSWG recommends alternatives 3 and 4.

3.10.2 Execution History

This unfulfilled requirement is classified as "c" (may be deferred).

Ruirmet The OSIF shall support the ability to monitor the execution history of a process,
including such information as

1. Frequency of calls
2. Length of calls
3. Missed deadlines
4. Length of queues
5. Tasking of runtime systems
6. Dynamic paging activity
7. Memory allocation
8. What OS services being used

Descrotion of Delta: An interface to support the collection and reporting of execution statistics of
a process is not addressed in the POSIX standards. Execution statistics are needed to evaluate and tune
process and system performance. 1003.1 would be a logical place to incorporate an interface for the
collection and reporting of execution statistics of a process.

An application platform resident debug program could easily implement this requirement within a
debug application "shell." Even if no debug application is assumed, most of these statistics could be
achieved using POSIX service primitives within an application (except for missed deadlines). This
execution history functionality would become the responsibility of the application layer and not readily
available to an external PSE. A cleaner solution would be to enhance the "ps" command to include some
history status as part of its functionality.

38

NAWCADWAR-94109-70

Resolution Alternatives:

1. Redefine the requirement so that it is limited to application platform resident PSE tools.
This would eliminate the delta. PSESWG would be responsible for standardization of the
resulting execution history tool interface.

2. Modify the current status service primitives in the POSIX standard to include history
Information. This would make history information more readily available to both an application and
an external PSE.

3. Wait for the OSSWG/PSESWG boundary paper to determine the scope of the
problem.
Recommendatione OSSWG recommends alternatives 2 and 3.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
10.1 No Insertion c
10.2 No Insertion c

3.11 RELIABILITY, ADAPTABILITY, AND MAINTAINABILITY INTERFACES

In general, the POSIX standards support service class 11 in a rudimentary way. There are two
areas that are not complete:

1. Basically POSIX provides reactive fault management, while OSSWG requires proactive
behavior. Attempting to support proactive requirements on top of a reactive interface will result in
performance penalties. The existing (proactive) services are highly-oriented toward providing event
services (via the "signal" concept), while downplaying fault reportage.

2. POSIX does not provide adequate monitoring, coordination, and recording services.

For the purposes of this subsection, it is important to differentiate modules of the operating
system Itself from modules that do "generalized input/output." The latter are often called "device drivers."
In the latter case, it is fairly straightforward for an application to provide all the services specified by
OSSWG. For instance, an interface can be added to set a fault threshold for retrying a message
transmitted via a UHF radio. Since the provided functionality is under direct control of the application and
is not required of the general operating system (i.e., POSIX), the potential functionality of application-
developed generalized I/O modules will not be further considered.

Refer to the Executive Summary in section 3.5 (Event and Error Interfaces) for additional
Information pertinent to this section.

3.11.1 Fault Information Collection

This unfulfilled requirement is classified as "a" (essential).

OSSWG requirement Fault Information Collection (11.1) is partially covered by POSIX. While the
event interfaces exist and error interfaces are provided for individual processes, there are no fault

39

NAWCADWAR-94109-70

coordination or distribution interfaces. Furthermore, an event ('signal" in POSIX) can be blocked without
the sender's knowledge or any other reportage.

e The OSIF shall provide for specifying the collection of available fault information.

Descriptlon of Delta: This requirement refers to specifying the collection of fault information
coming Into the OS across the OSIF for subsequent distribution according to requirement 11.2. POSIX
says nothing about such fault information collection.

Recommendationa OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.2 Fault Information Request

This unfulfilled requirement is classified as 'a" (essential).

OSSWG requirement Fault Information Request (11.2) is partially covered by POSIX. While the
event Interfaces exist and error interfaces are provided for individual processes, there are no fault
coordination or distribution interfaces. Furthermore, an event ('signal' in POSIX) can be blocked without
the sender's knowledge or any other reportage.

Refer to section 3.5.2 (Event and Error Distribution) for additional information related to Fault
Information Request.

R20kremelI: The OSIF shall provide for the receipt of fault information on request.

Descriotion of Delta: POSIX provides for the distribution of errors to the requesters of individual
functions. Each function specifies which errors all POSIX implementations must detect and which are
optional. Paragraph 2.4 of 1003.1 lists the possible errors. However, "implementations may support
additional errors not included in this clause, may generate errors included in this clause under
circumstances other than those described in this clause, or may contain extensions or limitations that
prevent some errors from occurring' (paragraph 2.4, 1003.1). 'If more than one error occurs in processing
a function call, this part of ISO/lEC 9945 does not define in what order the errors are detected; therefore,
any one of the possible errors may be returned" (paragraph 2.4, 1003.1).

The OSIF requires that all possible fault information be available, not just one of the errors that
occurred. It also requires that there be a means for coordinating the distribution of fault information, as for
example to a single process responsible for fault analysis.

Recommendation* OSSWG recommends monitoring and participating in related standards efforts

at UNIX Intemartonal; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.3 Diagnostic Tests Request

This unfulfilled requirement is classified as "a" (essential).

This requirement is not supported by POSIX.

Rogirem± The OSIF shall provide for the initiation of diagnostic tests on specific request. The
OSIF shall support initiation of diagnostic tests at specified intervals. This is a necessary OSIF
requirement.

40

NAWCADWAR-941 09-70

Descdipio of Delta: POSIX does not provide for the initiation of diagnostic requests.

Reeomendaion:OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
inoPOSIX.

3.11.4 Diagnostic Tests Results

This unfufflled requirement is classified as "a (essential).

This requirement is not supported by POSIX.

8B]Jft~•J•The OSIF shall provide the ability to determine the results of diagnostic tests.

Doscriotion of Delta: POSIX does not provide for determining the results of diagnostic tests.

Recomendaion:OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.5 Operational Status

This unfulfilled requirement is classified as "a" (essential).

This requirement is barely supported by POSIX.

BaMianJl•[The OSIF shall provide access to the operational status of all system cormponents.

Description of Delta: POSIX essentially does not provide access to the status of system
comiponents. POSIX does inform a requester of the success or failure of a requested function from whichi
the requester may derive some status information. Specifically, [ENXIOJ, no such device or address, and
[ElOl, Input/output error, are possible error returns (paragraph 2.4, 1003.1). However, In the case of
[EIOJ, "any other error-causing operation on the same file descriptor may cause the [EIOJ error indi-cation
to be lost" (paragraph 2.4, 1003.1).

Process termination status is available to an application that has issued a 1003.1 walt() for a child
process termination.

Also, thread termination "makes the value status available to any successful join with the
terminating thread" (P1003.4a).

Some systems, however, may maintain operational status in a file. In that case interfaces such as
the POSIX read-file (paragraph 6.4, 1003.1 and paragraph 6.1, 1003.5) may be adequate to obtain this
Information.

Recomendaion:OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

41

NAWCADWAR-94109-70

3.11.6 Fault Detection Thresholds

This unfullilled requirement is classified as "a* (essential).

An application can choose to retry an operation, as specified by requirement 11.6. but retries are
risky since the state of the operating system is not well-defined subsequent to an error. Furthermore, no
other part of requirement 11.6 (fault detection thresholds), such as classifying the component as suspect,
Is provided.

Reguimma± The OSIF shall provide for specifying fault detection thresholds, which shall
Include, but not be limited to, the following:

1. Number of retry attempts, if applicable, that shall be made before an error Is determined
to be a non recoverable fault.

2. Maximum number of correctable errors that, if detected within a specified time, will
c. ,y the component as suspect or treat the collective errors as a non recoverable fault.

Descridgion of Delta: Within the limits discussed under requirement 5.2 - i.e., POSIX does not
provide for coordination in the distribution of events and errors - some user-selectable error processing
alternatives are available. Processes can mask signals (paragraph 3.3.1.2, 1003.1). Processes can also
choose among three types of actions that they can associate with a signal: a default action, ignore, and a
signal catching function (paragraph 3.3.1.3, 1003.1). Retries and accumulation of occurrences would
then be the responsibility of the individual processes. In particular, occurrences of a particular event or
error could not be collected for several processes or for the system as a whole through the Interface. This
discussion also applies to threads as per P1003.4a signal handling.

Recommendation* OSSWG recommends monitoring and participating in related standards efforts

at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.7 Fault Isolation

This unfulfilled requirement is classified as "a" (essential).

This requirement is barely supported by POSIX.

BRIre.mLen The OSIF shall support the isolation of faults to a particular component.

Descrtotion of Delta: POSIX provides little support for the isolation of faults, either in the sense of
precisely determining the component causing the fault or in the sense of containing the fault to prevent it
from damaging the rest of the system, which assumes determining the source of the fault.

Using error numbers from failed function calls to determine the responsible component Is
unsatisfactory because "if more than one error occurs in processing a function call, this part of ISO/lEC
9945 does not define in what order the errors are detected; therefore, any one of the possible errors may
be returned" (paragraph 2.4, 1003.1). Furthermore, error numbers do not provide enough information as
to the nature of the error. For instance, POSIX may return [ENXIO] when a device does not exist, a
request was made beyond the limits of the device, or a tape drive is not online or a disk pack is not loaded
on a drive (paragraph 2.4, 1003.1). A prerequisite to fulfilling this requirement is to also fulfill requirements
11.3 and 11.4 to determine faulty components and requirement 11.10 to prevent a faulty component
from causing further damage.

Device Control (P1003.4b) may permit device fault isolation, but is not required to do so.

If requirement 5.1 is fully satisfied, mechanisms will be available to support fault isolation.

42

NAWCADWAR-94109-70

Recomnmendation: OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.8 Fault Response

This unfulfilled requirement is classified as "a" (essential).

Týh" requirement is barely supported by POSIX.

BReuirement The OSIF shall specify the actions to be taken on the occurrence of a fault. The
OSIF shall support (at least) the following actions:

1. Restart at a specified point for a specified fault.
2. Use of specified components as backup for faulty components.
3. Stop when a specified minimum set of components is no longer available.
4. Schedule of a specified process.
5. Report to another node.

Description of Delta: Within the limits discussed under requirement 5.2 - i.e., POSIX does not
provide for coordination in the distribution of events and errors - some user-selectable error processing
alternatives are available. Processes can mask signals (paragraph 3.3.1.2, 1003.1). Processes can also
choose between three types of actions that they can associate with a signal: a default action, ignore, and a
signal catching function (paragraph 3.3.1.3, 1003.1). Restart, stop (provided requirement 11.5 is
fulfilled), schedule, and report actions would then be the responsibility of the individual processes.
Directing the use of specific hardware components is not a function of POSIX. Consistent handling of a
particular fault would not be a function of the interface but would have to be a design convention for each
system. This discussion also applies to threads as per P1003.4a signal handling.

Reoommendation: OSSWG recommends monitoring and participating in related standards efforts

at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.9 Reconfiguration

This unfulfilled requirement is classified as "a" (essential).

This requirement is barely supported by POSIX.

B•nuirement The OSIF shall support the dynamic reconfiguration of hardware and software.

Desc[Ution of Delta: POSIX does not support reconfiguration of hardware and does not explicitly
support reconfiguration of software. POSIX does provide ways to create and terminate processes.
1003.1 allows processes to spawn and execute child processes and to effect normal and abnormal
termination of processes. P1003.4a expands this capability to also allow for the creation, termination, and
cancellation of threads, though currently a thread cannot be unconditionally terminated by another thread.
Thus, a mechanism external to the OS and, therefore, not included as such in the OSIF, such as an overall
"parent" process or processes responsible for software configuration, could answer the software
reconfiguration part of this requirement. Again, because POSIX does not provide for the centralization of
such functions within a system, effecting software reconfiguration in this manner may require extensive
management and coordination, particularly between processes, during system development and be
unique to each system developed.

43

I r

NAWCADWAR-94109-70

Some systems may only require a more rudimentary form of reconfiguration whereby the new
configuration Is recorded In a file. Then, either the operating system monitors the file and effects the
reconfiguration and/or the application directs a reboot of the system which effects the reconfiguration. In
such a case reconfiguration, as far as the application is concerned, can be realized through interfaces
such as the POSIX write-file (paragraph 6.4, 1003.1 and paragraph 6.1, 1003.5).

Recommendation: OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
into POSIX.

3.11.10 Enable/Disable System Component

This unfulfilled requirement is classified as a" (essential).

POSIX coverage of requirement 11.10 (Enable/Disable System Component) is also unacceptably
poor, even though it does provide some of the functionality demanded by OSSWG. In particular, POSIX
permits a component to be terminated if (1) the unit to be terminated is a software "process," and (2) the
process correctly receives and handles a "signal kill."

uirement: The OSIF shall provide the ability to enable or disable a specified system
component on request.

Descriotlon of Delta: POSIX does not provide the ability to enable or disable hardware
components, although I/O work in 1003.7 and/or the Device Control interface in P1003.4b may apply.
POSIX does provide ways to create and terminate processes. 1003.1 allows processes to spawn and
execute child processes (paragraph 3.1) and to effect normal and abnormal termination of processes
(paragraphs 3.2 and 3.3). P1003.4a expands this capability to also allow for the creation, termination, and
cancellation of threads, though currently a thread cannot be unconditionally terminated by another thread.

Recommendation: OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable
Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
Into POSIX.

3.11.11 Performance Monitoring

This unfulfilled requirement is classified as "a" (essential).

A few performance statistics are available from POSIX. For instance, a process can measure its
CPU time and some Information about its file utilization. But otherwise POSIX does not meet the
performance monitoring requirement, 11.11.

Rgguimerd: The OSIF shall support queries for snapshots of resource utilization and enabling
or disabling monitoring of each resource.

Descrloion of Delta: POSIX provides limited support for obtaining snapshots. 1003.1 provides
for obtaining process and child process execution and system CPU times and 1003.4b provides
interfaces for obtaining execution times of an arbitrary process or thread. 1003.1 also provides for
obtaining file Information including time of the last access, time of the last data modification, and time of the
last file status change.

Recommpendition: OSSWG recommends monitoring and participating in related standards efforts
at UNIX International; Open Software Foundation; POSIX Services for Reliable, Available, and Serviceable

44

NAWCADWAR-94109-70

Systems group; and X3T8. When these groups develop mature standards, move appropriate interfaces
Into POSIX.

3.11.12 Set Resource Utilization Limits

This requirement Is directly met by P1003.1a Resource Limits, the numerical limits defined by
1003.1 and Its amending documents, and the Sporadic Server and CPU Time Clocks of P1003.4b.

3.11.13 Resource Utilization Limits Violation

This requirement is directly met by P1003.1a Resource Limits and the error returns in 1003.1 and
its amending documents which indicate that one of the numerical limits has been exceeded.

3.11.14 Checkpoint Data Structures

Requirement Checkpoint Data Structure (11.14) is completely met by P1003.1a Checkpoint a
Process or Set of Processes along with Restart Execution of a Process or Process Family.

It should be noted that the Checkpoint function saves all the process state information necessary
to restart a process or family of processes. Particularly if a system needs to checkpoint only data structures
or only certain data structures, other interfaces to consider are the Memory Mapping Interfaces In 1003.4
and P1003.20. Memory Mapping allows an application to establish a mapping between a part of the
process address space and a memory object suci, as a file on a storage medium. If the application
chooses a map-shared option for use with this interface, write references to the specified address space
will also change the file on the storage medium. Alternatively the application may request a Synchronize
function at its own discretion which updates the file to agree with the specified address space.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
11.1 Partially Insertion a
11.2 Partially Insertion a
11.3 No Insertion a
11.4 No Insertion a
11.5 No Insertion a
11.6 No Insertion a
11.7 No Insertion a
11.8 No Insertion a
11.9 No Insertion a
11.90 No Insertion a

11.11 No Insertion a
11.12 Yes None a
11.13 Yes None
11.14 Yes None -

45

NAWCADWAR-94109-70

3.12 RESOURCE MANAGEMENT INTERFACES

This service class is partially supported by 1003.1, 1003.4, and P1003.7.

3.12.1 Virtual Memory Support

This unfulfilled requirement is classified as "a" (essential).

RauimernL The OSIF shall support the selection of the virtual memory utilization parameters.

Desctotion of Delta: This requirement refers to controlling virtual memory utilization such as the
paging algorithm. POSIX P1003.4b provides an Advisory Information interface, madviseo, which advises
the operating system of the application's expected memory access behavior. However, this information is
purely advisory, and may not provide sufficient control over virtual memory parameters for some realtime
applications.

Resolution Allematives:

1. Enhance existing POSIX interfaces to include this capability. There has historically
been much opposition within POSIX to the inclusion of interfaces that place requirements on the
underlying architecture. Opponents argue that applications that presume a particular method of
memory management will not be portable to all architectures. Vendors who do not support virtual
memory architectures would be undesirably forced to provide such a function. The requirement
for such an interface might also inhibit the development of new and better methods of memory
management. Typically, UNIX operating systems from vendors that support virtual memory, do
provide limited control over the use of virtual memory. The HP-UX chatro command is a good
example. A complete virtual memory support interface would best be added to P1003.7. Even
though 1003.2 might also be a logical place for such an interface, OSSWG has chosen to avoid
inclusion of 1003.2 in the OSIF primarily for performance reasons.

2. Assume a standard outside POSIX. Often, the link editor has options that allow for
some control over a process's use of virtual memory. The C or Ada standard might include options
to allow selection of virtual memory characteristics. These would be embedded in the executable
header information similar to the link editor in HP-UX.

3. Develop a new military standard. This is a less acceptable alternative than 1 because it
is external to the OSIF baseline. It is suggested that any new military standard be based on de
facto UNIX or industry standard(s), if any exist.

Recommendation: The P1003.7 group should be approached with the possibility of adding a
virtual memory support interface. A sample interface could be drafted using HP-UX chatr0 command as an
example. If the first approach fails due to lack of support, then the interface should be added to the military
standard. Consideration should be given to making the interface optional based on arguments outlined
under alternative 1 above.

3.12.2 Virtual Space Locking

The requirement for Virtual Space Locking (12.2) is directly met by the 1003.4 Memory Locking
functions.

3.12.3 Dynamic Memory Allocation and Deallocation

This unfulfilled requirement Is classified as "a" (essential).

46

NAWCADWAR-94109-70

BgUlrernetDL The OSIF shall provide for allocation of a block of virtual or physical memory of the
size specified and for deallocation of a previously allocated block. Note that this requirement has particular
relevance for Ada applications, as specified in paragraph 3.16.15. Changes to the recommendations
should take that fact into account.

Descdotion of Delta: Memory management was purposely omitted as a separate 1003.1 function.
Instead, it is Included in Section 8 of 1003.1-1990 as part of the standard by virtue of being embodied in C
language functions such as calloc, malloc, realloc, and free. Thus, 1003.1 relies on the language to
provide memory management. However, it has become standard practice, considering the fact that most
systems support shared memory and memory of several different types, to utilize the 1003.4 facilities of
Memory Mapped Files to support memory allocation. Specifically, the 1003.4 mmap0 function may be
applied to a descriptor obtained by opening a special name associated with an allocator for a given type of
memory; such a call then allocates the requested amount of that type of memory and returns a handle to
that memory. The munmap0 function provides the ability to deallocate memory allocated in this way.
P1003.4d will specify these additional semantics plus additional interfaces necessary for use of 1003.4
mmap0 and munmap0 in this way, including the ability to allocate and share typed memory.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. A chapter for P1003.4d
which will provide this capability has been drafted. Therefore, the obvious approach is to closely
monitor this chapter to ensure that it continues to support the allocation OSSWG requires; when
the chapter becomes stable, it will be entered into the draft, and the requirement will then be met
by P1003.4d.

Recommendation: OSSWG should continue to support the efforts to complete the Typed
Memory interfaces in P1003.4d.

3.12.4 Dynamically Protecting Memory

This unfulfilled requirement is classified as "a" (essential).

uiremwflz The OSIF shall provide the ability to query and set memory-protection attnbutes.

Description of Delta: The POSIX standard provides dynamic memory protection for shared
memory through the open() interface in 1003.4. The protection can be changed at runtime by closing and
reopening the shared memory connection. There is no provision for protection of arbitrary blocks of
memory or when allocating dynamic memory. P1003.4d contains a draft chapter for Typed Memory
allocation implemented via mmap0. Since there is already control of mapped memory protection for all
objects mapped via mmapo, this requirement will be directly met once the Typed Memory chapter of
P1003.4d is approved by the working group.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. POSIX only provides for
the protection of mapped or shared memory. There are no POSIX interface to query or set the
memory protection attributes of other types of memory. The P1003.1a standards group has been
discussing this issue. The 1003.4 group has drafted a chapter for P1003.4d which provides for
Typed Memory allocation and associated protection via mmap0 and mprotecto.

2. Develop a new military standard. It is suggested that the interface be modeled after the
Memory Locking interface in 1003.4 or on de facto UNIX or industry standard(s), if any exist.

Recommendation: Continue to support adoption of the P1003.4d Typed Memory allocation
capabilities.

47

NAWCADWAR-94109-70

3.12.5 Shared Memory

This unfulfilled requirement is classified as "b" (highly desirable).

RaguimenL The OSIF shall support concurrent access, by several processes, to specified
areas of physical memory, whether or not the involved processes exist on a single processor or multiple
processors.

Descriltion of Delta: POSIX 1003.4 provides a set of interfaces for creating, attaching to, and
deleting shared data regions. The requirement, however, specifies that both the data and the code
regions need to be shared. The ability to share code is useful for libraries and certain utilities and could be
a pre-runtime interface. Even though it is not explicitly stated that multi-processor shared memory is
supported, there is nothing in the stand,%:d that precludes it.

POSIX also provides several interface alternatives for resolving contention during access to
shared memory. These include Counting Semaphores in 1003.4 and P1003.20, and Mutexes and
Condition Variables in P1003.4a. Mutexes and Condition Variables were designed particularly for
processes that share memory. The POSIX Standardized Profile for Multiprocessing Systems (1003.14)
has also proposed Reader/Writer Lock and Spin Lock interfaces. Since 1003.14 is a profile, it can not
specify interfaces that are not defined in other standards. However, 1003.4d is considering inclusion of
these interfaces in its specification.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. The POSIX shared data
interfaces are found in the 1003.4 standard. There is no interface to specify shared code. The
HP-UX operating system provides an interface to specify code as sharable. It is the same chatrt
command referenced in 3.12.1. The most logical place for this type of interface seems to be
P1003.7.

2. Develop a new military standard. It is suggested that any new military standard be
based on de facto UNIX or industry standard(s), if any exist.

Recommendation: Recommend that this requirement be linked with requirement 12.1 and
presented to the P1003.7 standards group. The HP-UX chatrt interface could be used as an example.

3.12.6 Allocate, Deallocate, Mount, and Dismount Services

This unfulfilled requirement is classified as "a" (essential).

The requirement for Allocate, Deallocate, Mount, and Dismount Services (12.6) is partially
covered by the 1003.1 Control Operations on Files (file descriptors).

ReguirtimiL The OSIF shall support the allocation of devices to processes and subsequent
deallocation of these devices. For devices with removable media, the OSIF shall also support mounting
and dismounting of media.

Descriotion of Delta: 1003.1 provides allocate and deallocate functionality through the fcntl()
interface. POSIX does not yet provide mount/dismount functionality. Refer to 3.7.10 for further
discussion of this delta.

Resolution Altematives: Same as requirement 7.10.

Recommendation: Same as requirement 7.10.

48

NAWCADWAR-94109-70

3.12.7 Designate Control

This unfulfilled requirement is classified as "b" (highly desirable).

Beguirmet* The OSIF shall provide the means to designate responsibility for maintaining the
status and determining the configuration of a system resource. This requirement was reevaluated by a
small group, which decided that it was b" (highly desirable).

Descriotion of Delta: There is no provision in POSIX for designating control of system resources.

Resolution Alternatives:

1. Change wording of the OCD to read "shall support" instead of "shall provide."
Requirement can then be satisfied by the forko, execo, and kill() interfaces in the 1003.1
standard.

2. Enhance existing POSIX interfaces to include this capability. This requirement is similar
to 7.1 device-driver availability. OSSWG recommended that these requirements be pursued in
the 1003.4 or 1003.7 standards groups. Could combine 12.7 with solution to 7.1. Any solution
needs to be compatible with solution to 12.8 release control.

Recommendation: Recommend this requirement be pursued with 7.1, and 12.8 OSSWG
requirements in 1003.4 or 1003.7 standards groups.

3.12.8 Release Control

This unfulfilled requirement is classified as "b" (highly desirable).

Riment: The OSIF shall provide the means to release a previously assumed system
resource status and configuration responsibility. This requirement was reevaluated by a small group,
which decided that it was "b" (highly desirable).

Description of Delta: See 3.12.7.

Resolution Alternatives: See 3.12.7.

Recommen-iation: See 3.12.7.

3.12.9 Allocate Resource

This unfulfilled requirement is classified as "a" (essential).

Bukneguir.mnI The OSIF shall provide a means to designate particular process resources for use
by a particular process.

Description of Delta: There is no provision in POSIX for allocating resources. Examples of units of
system resources are I/O channel, a block of physical memory, response to specific class of hardware
interrupt, a breakpoint register, a co-processor user identifier, and a connection over a LAN.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. Typically, UNIX resources
such as files, devices, and network connections have been referred to under the general

49

NAWCADWAR-94109-70

description of a file. A logical to physical connection is created and referenced by a file descriptor.
The same concept could be extended to include a number of different resources, particularly the
ones of interest to OSSWG. The new interface(s) could be added to P1003.1a or 1003.4.

2. Develop a new military standard. This is a less acceptable alternative than 1 because it
Is external to the OSIF baseline. It is suggested that any new military standard be based on de
facto UNIX or industry standard(s), if any exist.

Recommendation: Recommend that P1003.1a and 1003.4 be approached about extending
definition of file to include all resources needed by OSSWG and provide interfaces to open, close, and
lock these resources. OSSWG needs to be more specific on the scope of this requirement. The same
resolution should be applied to requirement 12.10.

3.12.10 Deallocate Resource

This unfulfilled requirement is classified as "a" (essential).

BRLquIremnL The OSIF shall provide a means to relinquish particular process resources from a
particular process.

Descriotion of Delta: See 3.12.9.

Resolution Alternatives: See 3.12.9.

Recommendation: See 3.12.9.

3.12.11 System Resource Requirements Specification

This unfulfilled requirement is classified as "b" (highly desirable).

Buir Z The OSIF shall provide the ability to specify system resource requirements. This
requirement was reevaluated by a small group, which decided that it was "b" (highly desirable).

Description of Delta: There is no provision in POSIX for specifying system resource requirements.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. The concept of system
resource requirements specification is not presently in any of the POSIX standards. The P1003.7
group would probably be the most receptive to the addition of an interface of this type.

2. Develop a new military standard. This is a less acceptable aftemative than I because it
is external to the OSIF baseline. It is suggested that any new military standard be based on de
facto UNIX or industry standard(s), if any exist.

3. Submit a new POSIX PAR (System Resource Management) to do this work.

Recommendation: The 1003.7 group should be approached with the possibility of adding a
system resource requirements specification interface. A sample interface could be drafted from examples
from other operating systems that provided this functionality in a more complete manner. A backup
position, should 1003.7 be unable or unwilling to take on this interface, would be alternative 3,
submission of a new PAR for System Resource Management.

50

NAWCADWAR-94109-70

3.12.12 System Resource Capacity

This unfulfilled requirement is classified as b (highly desirable).

BRqIuirernnt: The OSIF shall provide a query of the storage or workload capacities of the system
resources. This requirement was reevaluated by a small group, which decided that it was "b" (highly
desirable).

Descripotion of Delta: There is no provision in POSIX for specifying system resource capacity.
P1003.4d Typed Memory interfaces, when drafted, may allow applications to query a typed memory pool
for the maximum amount of memory which can be allocated; However, this is unique to typed memory
pool resources, not a generalized capability.

Resolution Alternatives:

1. Enhance existing POSIX interfaces to include this capability. The system resource
capacity requirement is provided by the 1003.2 standard in an incomplete way through
commands such as du and df. OSSWG has chosen to avoid inclusion of 1003.2 In the OSIF. The
P1 003.7 group would probably be the most receptive to the addition of an interface of this type.

2. Develop a new military standard. This is a less acceptable alternative than I because it
is external to the OSIF baseline. It is suggested that any new military standard be based on de
facto UNIX or industry standard(s), if any exist.

3. Submit a new POSIX PAR (System Resource Management) to do this work.

Recommendation: The 1003.7 group should be approached with the possibility of adding a
system resource capacity interface. A sample interface could be drafted using 1003.2 examples and
examples from other operating systems that provided this functionality in a more complete manner. A
backup position, should 1003.7 be unable or unwilling to take on this interface, would be alternative 3,
submission of a new PAR for System Resource Management. OSSWG should continue to support the
drafting, refinement, and balloting of the P1003.4d Typed Memory facilities.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
12.1 Partially Insertion a
12.2 Yes None -
12.3 Partially Insertion a
12.4 Partially Insertion a
12.5 Partially Insertion b
12.6 Partially Insertion a
12.7 No Insertion b
12.8 No Insertion b
12.9 No Insertion a

12.10 No Insertion a
12.11 No Insertion b
12.12 No Insertion b

51

NAWCADWAR-94109-70

3.13 SYNCHRONIZATION AND SCHEDULING INTERFACES

In general, the POSIX standards support service class 13 synchronous and scheduling interfaces
In a substantially complete way.

3.13.1 Process Synchronization

The requirements for Process Synchronization (13.1) are directly met by 1003.4, P1003.4a and
P1003.4b. Pthreads appears to fully satisfy this requirement by providing mutex and condition variable
primitives for synchronization among threads within the same process. This includes semaphores,
signals, events, message queues, etc., for synchronization among threads in different processes.

3.13.2 Mutual Exclusion

The requirements for Mutual Exclusion (13.2) are fully met by 1003.1, 1003.4, P1003.4a, and
P1003.4b. Both mutexes and semaphores support mutual exclusion among cooperating processes
and/or cooperating threads, and P1003.4b extends both of these such that the waits may time out. Lock
files are supported by the 1003.1 open() interface.

3.13.3 Cumulative Execution Time of a Process

The requirements for Cumulative Execution Time of a Process (13.3) are directly met by 1003.1
Process Times and P1003.4b CPU Time Clocks.

3.13.4 Attach a Process to an Event

This requirement is directly met by 1003.1 Signals as extended by 1003.4 to Queued Signals and
as further extended by P1003.4a to operate in a multi-threaded process; and by P1003.4b Interrupt
Control interfaces.

3.13.5 Services Scheduling Information

This unfulfilled requirement is classified as "d" (re-evaluate).

The requirement for services scheduling information (13.5) is not supported by the POSIX
standards at all.

Requiment The OSIF shall support the ability for a process to specify its performance
requirements for services.

Description of Delta: This requirement implies that, in order to guarantee timely completion of a
complex service across a distributed system, the application requires an upper bound on time for that
service. This is seen as similar to the "time-value" function associated with a service interface in operating
systems such as Alpha. Such a function serves to define the urgency of a particular request separately
from the CPU scheduling policy for the requesting process. Currently, OSSWG does not perceive this
issue as being addressed by any POSIX working group.

Resolution Aftematives:

1. Enhance existing POSIX interfaces to include this capability. This may already be
possible due to the open nature of the 1003.4 and 1003.4a process/thread scheduling
interfaces; that is, if a new scheduling policy could be defined in which a process could maintain a

52

NAWCADWAR-94109-70

transaction scheduling attribute, and if this policy were included among the selectable policies,
the requirement might be satisfied. Because such a policy may not be well understood by the
industry, POSIX has decided to leave such a policy out of the standards for now, while leaving a
method for its future insertion.

Also, 1003.11 needs to be further queried to determine if this capability conforms to its
charter, since outside of 1003.11, most interfaces do not address the special needs of atomic
transactions, especially over a distributed network. Therefore, it might be more appropriate that
such transactions be addressed by 1003.11 rather than 1003.4. This is the most suitable
alternative because the need for this has already been recognized by VITA and by several other
vendors.

2. Assume a standard outside of POSIX. it is difficult to understand the scope of this
requirement sufficiently to rule out various higher level distributed processing interfaces built on
top of existing operating systems, such as ISIS. However, as stated, it seems to imply a bounded
time that could be achieved only if the POSIX kernel were cooperating.

Recommendation: OSSWG recommends alternative 1. However the 1003.11 working group has

been dissolved and cannot be used to resolve this delta. Furthermore, the 1003.4 working group has
rejected this requirement for inclusion in P1003.4d because of immaturity of existing practice. OSSWG
should pursue this requirement in the Realtime Distributed Systems Communication working group
1003.21 at such time in the future as existing practice can be identified. The 1003.21 working group is
currently evaluating how such information might be applied to network service interfaces. OSSWG should
re-evaluate this requirement based on the 1003.21 findings, both as applied to distributed systems, and if
applicable, non-distributed systems.

3.13.6 Scheduling Delay

This requirement is functionally identical to requirement 9.7 and has no delta.

3.13.7 Periodic Scheduling

The requirement for Periodic Scheduling (13.7) is fully met by 1003.1 Signals, alarmo, and
sleepo; 1003.4 Timers and High Resolution Sleep; P1003.4a Timed Condition Wait; and P1003.4b
Sporadic Server and Interrupt Control. The POSIX approach of specifying performance metrics provides a
mechanism for the jitter to be determined for a particular implementation. However, performance metrics
are currently non-normative text in 1003.4 and P1003.4a; therefore OSSWG should support future
POSIX projects which seek to standardize performance metrics.

3.13.8 Multiple Scheduling Policies

The requirement for Multiple Scheduling Policies (13.8) is covered fully by 1003.4, P1003.4a,
and P1003.4b Execution Scheduling interfaces.

3.13.9 Selection of a Scheduling Policy

The requirement for Selection of a Scheduling Policy (13.9) is covered fully by 1003.4, P1003.4a
and P1003.4b Execution Scheduling interfaces.

53

NAWCADWAR-94109-70

3.13.10 Modification of Scheduling Parameters

The requirement for Modification of Scheduling Parameters (13.10) is covered fully by 1003.4.
P1003.4a, and P1003.4b Execution Scheduling interfaces.

3.13.11 Precise Scheduling (Jitter Management)

The requirement for Precise Scheduling (13.11) is fully met by 1003.4, P1003.4a, and P1003.4b
Execution Scheduling, Timers, and Interrupt Control interfaces. The POSIX approach of specifying
performance metrics provides a mechanism for the latency to be defined for a particular implementation.
However, performance metrics are currently non-normative text in 1003.4 and P1003.4a; therefore
OSSWG should support future POSIX projects which seek to standardize performance metrics.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

,_ _Rating

13.1 Yes None
13.2 Yes None
13.3 Yes None
13.4 Yes None
13.5 No Insertion d
13.6 Yes None
13.7 Yes None
13.8 Yes None
13.9 Yes None

13.10 Yes None
13.11 Yes None

3.14 SYSTEM INITIALIZATION AND REINITIALIZATION INTERFACES

This service class is partially supported by 1003.1, 1003.4, P1 003.7, and P1 003.8.

All three requirements from this service class are classified as "a" (essential). POSIX generally
supports these requirements only as they might apply to a shore-based information processing system
with a system administrator In charge of overall system operation, and time-shared users in charge of
initiating and terminating independent programs. This concept must be extended to support embedded
real-time systems in which individual programs and overall system operation are controlled by software,
hardware, or other nodes on a distributed processing network, rather than by a person. Performance also
is an issue largely ignored by 1003.7; system reinitialization may imply an operation that must be
completed in seconds or milliseconds, rather than minutes.

3.14.1 Image Load

This unfulfilled requirement is classified as "a" (essential).

The Image Load requirement (14.1) can be supported by 1003.1, Process Creation and Execute
a File, but not in the traditional sense of program or boot load. P1003.7, when complete, would fully
support this function in the Machine Class and System Class. File and Directory Services of 1003.1 might
also be required.

54

NAWCADWAR-94109-70

Bbnr[: The OSIF shall provide the capability to perform initial and reinitial executable image
load (Includxin data) both locally and remotely to and for each and all processor(s) throughout a system.

Descriotion of Deha: The POSIX standard is based on the traditional UNIX paradigm where all
processes are ultimately children of the root process. The emerging computing environment is one of
multiple quasi-independent processors on the same backplane, or network, which must communicate and
Interact through OS services. One of the extensions of this multi-processor environment is that the OS
must be able to start and restart each of the computing resources available to it.

In the 1003.1 standard, the ability to spawn a child process and to start a new execution are
described. These services will partially meet the requirements of Image Loading. The issues that are not
addressed by these sections of 1003.1 are:

1. Loading and executing on a remote processor(s).
2. Loading and executing on another local processor(s).
3. Reloading the data area for each (re)initialization.

Recommendation: It is recommended that a new interface be created either by the 1003.1 or
1003.7 group. The interface would be very similar to the various exec0 interfaces that exist in 1003.1.
This would essentially be a remote execution command, sending a "new process image file," including
both executable and data areas, to another processor to be executed.

Note: The 1003.7 standards need to be influenced beyond their current focus
to become true resources manager standards, including management of
both remote and local resources. This change would help meet the OCD
requirements for not only section 20.14.1, but also 20.14.2 and 20.14.3
(and possibly many others).

3.14.2 System Initialization and Reinitlalization

This unfulfilled requirement is classified as "a" (essential).

The System Initialization and Reinitialization requirement (14.2) can be supported by the entire
sections on Process Primitives and Process Environment of 1003.1. 1003.1 File and Directory Services
might also be required.

P1003.7 fully supports this function in the Interoperability Class, Machine Class, System Class,
Network Class, Authentication Class, Authorization Class, Software Class, and Backup Class. P1003.7,
when complete, could become the NGCR resources management standard as a function of system
administration. With some influence and direction, it could be expanded, either as a profile or standard, to
support the necessary NGCR resources management functions. Additional support will be provided by
1003.4, Clocks and Timers, and P1003.8, Process Creation.

Requiremet The OSIF shall support the capability to initialize and reinitialize all system
resources.

Description of Delta: It is important to clarify that "system resources" as mentioned in the OCD are
ALL computing resources including, but not limited to, printers, disk drives, external and shared memory,
co-processors, tape drives, and display systems.

1003.1 allows for process creation and signal generation/reception. These two components
could be made to help in performing system (re)initialization. The ability to start processes on remote
processors (see discussion for OCD section 20.14.1) could cover the need to (re)initlalize some
resources. Other resources may be able to receive POSIX signals that would cause (re)initialization.

55

NAWCADWAFI-94109-70

1003.1 allows for collecting system information and parameters. This would allow the OS to gain
information about system resources so that it would know when and what needed to be (re)intialized.

P1003.7 seems to have the outline to become the NGCR resource management standard, but it
needs to be further developed.

Recomnmendation OSSWG needs to Influence the POSIX standards groups (both 1003.1 and
1003.7) to create the ability for the operating system to (re)inltialize the system resources. This capability
really doesn't exist in the POSIX standards but is an absolute requirement for OSSWG.

3.14.3 Shutdown

This unfulfilled requirement is classified as "ao (essential).

The Shutdown requirement (14.3) can be supported by 1003.1, Wait for Process Termination
and Terminate a Process.

Buinm± The OSIF shall provide the capability to perform planned, orderly shutdown at the
local and remote levels for each and all processor(s) throughout a system.

Descriotlon of Delta: 1003.1 outlines how POSIX processes can stop, but offers no capability for
forcing the termination of one process from another non-related process.

Recommendation: OSSWG should influence the POSIX standards to include the capability to
force a process termination on remote processors. This change can either be implemented in 1003.1, or
added to P1003.7 as part of the resources management standard.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
14.1 Partially Insertion a
14.2 Partially Modification a
14.3 Partially Insertion a

3.15 TIME SERVICES INTERFACES

In general, the POSIX standards substantially support the time services.

The time services requirements selection of a primary reference clock (15.4), and location of the
primary reference clock (15.5) are not specifically supported in POSIX. In the event of the loss of the
primary reference clock the OSIF does not provide a means to locate a new primary reference clock when
needed.

The Ada language calendar package, Calendar, and the 1003.5 Ada package, POSIXCalendar,
are equivalent In their functionality. They have the same provisions for getting the time and performing
operations against that time. The 1003.5 package POSIXCalendar has one advantage in that it has a
procedure to override the system's default time zone through the 1Z environment variable.

56

NAWCADWAR-94109-70

3.15.1 Read Selected Clock

The requirement for Read Selected Clock (15.1) for timer services, and for precision is directly and
completely met by 1003.4 Clocks and Timers. In addition, there are interfaces in 1003.1. 1003.2,
P1003.4b, and potentially P1003.7 that partially meet the requirements to read a clock.

System Time (paragraph 4.5.1, 1003.1 and paragraph 4.4.1, 1003.5) provides access to a time-
of-day clock, with precision to a hundredth of a second. Process Times functions (paragraph 4.5.2.
1003.1 and paragraph 4.2, 1003.5) return the number of clock ticks since the beginning of a particular
process. The Clocks and Timers interface described in 1003.4 and P1003.20 allows multiple clocks to be
defined. Every system that supports this interface must define at least the system real-time clock. The
Interface provides for potential resolution down to a nanosecond.

3.15.2 Set Selected Clock

The requirement for Set Selected Clock (15.2) for timer services, and for precision is directly and
completely met by 1003.4 Clocks and Timers and P1003.4b CPU Time Clocks and Device Control. In
addition, P1 003.7 can address setting a clock.

System Time (paragraph 4.5.1, 1003.1 and paragraph 4.4.1, 1003.5) does not allow for setting
the time-of-day clock. All clocks defined by the Clocks and Timers interf ace in 1003.4 and P1 003.20 may
be set as wel as read.

3.15.3 Synchronization of Selected Clocks

The requirements for Synchronizing Selected Clocks (15.3) for timer services Is directly and
completely met by 1003.4 Clocks and Timers and P1003.4b Device Control.

Synchronization of selected clocks is supported, through the combination of the get and set
functions and the identification of the clocks throughout the system. The Device Control interface in
P1003.4b allows getting and setting clocks located on an extemal device.

3.15.4 Select a Primary Reference Clock

This unfulfilled requirement is classified as "a" (essential).

The Selection of a Primary Reference Clock is not specifically supported in POSIX since the
specific wording of our requirements implies the ability to dynamically reconfigure the system wide clock
and define another system wide clock.

The requirement for Selection of a Primary Reference Clock (15.4) is only partially met by 1003.4
and P1003.4b Clocks and Timers. Selection of a primary can only be done by virtue of an application's
use of a specific clock reference which must be initially defined potentially by 1003.7.

There is no means to set or change the default in a dynamic way.

e The OSIF shall support the ability to select a primary reference clock for the system.

Description of Delta: POSIX working group 1003.21 has identified a requirement for access to
global time In their requirements document. They have requested a new PAR on time management to be
assigned to the 1003.21 working group. Pending approval of this PAR and initiation of a draft standard on
time management, POSIX does not yet address this issue.

Recommendation* The OSSWG should support the 1003.21 working group's time management

proposals through standardization to ensure that this requirement is met.

57

NAWCADWAR-94109-70

3.15.5 Locate the Primary Reference Clock

This unfulfilled requirement is classified as "d" (re-evaluate).

The Location of the Primary Reference Clock is not specifically supported in POSIX since the
specific wording of our requirements implies the ability to dynamically reconfigure the system wide clock
and define another system wide clock.

The requirement for Location of the Primary Reference Clock (15.5) is limited to the predefined
system wide clock. The location of another primary reference clock in the event of a failure of the
predefined system wide clock is not covered in any of the POSIX documents. This failing, as well as the
partial coverage addressed in the previous paragraph, is attributable to the lack of real attention to the
needs of distributed systems and the demands they place on time services.

Rr The OSIF shall support the ability to locate the primary reference clock for a system.

Description of Delta: The Distributed Time Services requirements in the 1003.21 working group
requirements document refer to access to a distributed system clock without reference to its location.
This 1003.21 working group requirement should preclude the need for OSSWG requirement 15.5.

Recommendation: The OSSWG should support the 1003.21 working group through
standardization of it's proposed draft standard. OSSWG should consider changing this requirement to be
more In line with the 1003.21 requirement.

3.15.6 Timer Services

The Timer Services requirement (15.6) is fulfilled by the POSIX standards 1003.1, 1003.4,
P1003.4a, and P1003.4b. The Alarm, Timer, and Interrupt Control interfaces in these standards, plus the
related capabilities to await signals and interrupts satisfy this requirement.

3.15.7 Precision Clock

Precision Clock (15.7) is fully supported by the 1003.4 timespec structure for Clocks and Timers,
which permits resolutions down to 1 nanosecond.

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
15.1 Yes None
15.2 Yes None
15.3 Yes None
15.4 Partially Modification a
15.5 No Insertion d
15.6 Yes None -
15.7 Yes None -

58

NAWCADWAR-94109-70

3.16 ADA LANGUAGE SUPPORT

The POSIX interface reflects fundamental aspects of UNIX and, in turn, the support it offers to Ada
Implementations must be seen in that light. UNIX was designed and bull to support a multiple-user
Interactive environment. Its whole notion and implementation of process reflects the need to supply
resources to users equitably, while protecting them from accidental interference with one another. In
particular, processes are the only objects where concurrency is applicable, and they comprise single
threads of control within unique address spaces. Further, fundamental aspects of the design of the
system reflect the assumption that text processing and I/O would be important aspects of the processes
supported, and that the processes would be running on single-processor computers. (The more general
applicability of many recent implementations has had to deal with this orientation of UNIX.)

The consequence of these design elements of UNIX and POSIX is that the general POSIX
definition, 1003.1, does not offer much positive support for the implementation of Ada systems. In
practice, an Ada runtime on POSIX, as on UNIX, will not be able to use its fundamental services (such as
process management, synchronization, and scheduling) to provide Ada semantics directly.

The fundamental reason for this lack of support is that POSIX processes are unsuitable as a
mapping for Ada tasks. Processes do not share memory, and tasks do. Processes can continue
executing even when their parents have terminated, while this is not possible for Ada tasks. Processes
Inherit their parents' attributes in ways that Ada tasks do not. Switching contexts between processes has
more overhead than would be desirable for tasks.

This does not mean that Ada cannot be implemented in a POSIX system. It simply means that the
Ada runtime will need to do most of its own work to implement Ada semantics. Also, there are some
instances In which POSIX, like UNIX, will get in the way; such as the fact that making a request for I/O
blocks an entire process (read Ada program). This is understandable in a mufti-user interactive
environment, but is unsuitable in many Ada applications.

The real-time extensions (1003.4), however, and particularly the threads extensions (P1003.4a),
are more helpful. First of all, synchronization primitives (semaphores, mutexes, and condition variables)
are made available. Second, threads appear to provide a suitable mapping to Ada tasks, such that it would
be feasible to assume that a POSIX implementation which included the real-time and threads options
could provide task management and scheduling for an Ada runtime environment. Other services could be
used directly to implement Ada semantics as well.

In general, in some instances, Ada semantics will be implementable by inserting calls to POSIX
real-time and thread services directly into the compiled code. On the other hand, in most Instances, the
Ada runtime library will need to carry out extra-POSIX activities; sometimes with the assistance of calls to
POSIX services, and occasionally completely on its own. The threads extensions (P1003.4a) document
outlines how an Ada system might map tasks on the threads primitives.

In this section it is assumed that the Ada binding to POSIX (1003.5) is a reflection of 1003.1,
rather than the provision of additional support for Ada. 1003.5 provides for Ada I/O support in addition to
the POSIX I/O and adds services to relate the two types of I/O.

In general, the POSIX standards support service class 16, Ada language support interface, In a
substantially complete way for the POSIX (P1 003.4a) thread model and in a rudimentary way for the POSIX
process model (1003.1).

The requirements for the Ada task model are met in a fairly direct way by the POSIX thread model.
The support of tasks in isolation (i.e., create (16.1), terminate (16.5), etc.) is quite direct. The support of
Ada rendezvous and selective waiting is complete, but it requires extensive, specialized composition of
POSIX services.

A number of the OSSWG requirements for the support of Ada are requirements for services to be
provided by the run-time system. These requirements include access to task characteristics (16.9),
access to a precise real-time clock (16.11), access to the time-of-day clock (16.12), dynamic task priorities

59

NAWCADWAR-94109-70

(16.13), memory management (16.15), and exception raising (16.19). The POSIX thread model supports
these run-time system requirements with a few exceptions.

The unfulfilled requirements in this section are duplications of requirements in previous sections.
They are requirements that have special relevance for Ada language applications, but if they are fulfilled by
the OSIF in general, they will be fulfilled also for Ada applications. It does not seem wise to duplicate the
exposition of the issues, since it would incur the dangers of duplicate maintenance. These sections will
therefore refer to the sections that define the issues and recommend actions.

Some general recommendations are appropriate, however, to ensure that the solutions derived
for the deltas are appropriate for Ada applications:

1. The OSSWG should remain active in the 1003.5 (Ada Bindings) group to ensure that the Ada
bindings to POSIX Interfaces are adequate to fulfill the requirements of NGCR Ada applications.

2. The discussions of the specified deltas in previous sections should also make reference to the
Ada-specfic section to ensure that the delta is resolved. Even in the unlikely event that it were to be
decided that there is no general need for the functions, there is still a requirement in an Ada context. This
judgment should not be lost.

3. The OSSWG should follow the progress of Ada9X, since there is some indication that language
changes will be made that will have impact on requirements defined in this section.

3.16.1 Create Task (Ada)

The requirement for Create Task (16.1) is met by P1003.4a. Refer to the Pthreads discussion in
3.9.1.

3.16.2 Abort Task (Ada)

This unfulfilled requirement is classified as "a" (essential).

This requirement is unfulfilled for the same reason that requirement 9.2 is unfulfilled; that is, there
is no interface provided in P1003.4a to unconditionally terminate a thread. Refer to section 3.9.2 for
recommendations.

3.16.3 Suspend Task (Ada)

The requirement for Suspend Task (16.3) is met by 1003.4 and P1003.4a. Refer to the Pthreads
discussion in 3.9.5.

3.16.4 Resume Task (Ada)

The requirement Resume Task (16.4) is met by 1003.4 and P1 003.4a. Refer to the Pthreads
discussion in 3.9.6.

3.16.5 Terminate Task (Ada)

The requirement Terminate Task (16.5) is addressed by P1003.4a Thread Cancellation. Ada task
termination semantics imply cooperation form the terminating task; thus thread cancellation provides a
suitable Interface to meet this requirement in spite of its inability to unconditionally terminate an
uncooperative task.

60

NAWCADWAR-94109-70

3.16.6 Restart Task (Ada)

This unfuffilled requirement is classified as "d" (re-evaluate).

The proposed Ada extension to support "Restart Task" (16.6) is not supported by either the
POSIX process or thread model. This requirement is perhaps the most controversial of the proposed Ada
extensions.

Restart Task (Ada) (16.6) is required for OSSWG if seen independently from its connection to
support for Ada; as such it Is dealt with in requirement 9.13 (save/restart process). On the other hand, the
requirement does not relate to the current definition of the Ada language and therefore should be
reevaluated as to whether it should be duplicated in this section. Some people in the Ada community
have suggested that the language should be modified to allow more direct access to these functions, and
it Is possible these functions will be included in the next revision, now called Ada-9X. Thus, this
requirement is classified as "d" (re-evaluate).

Requiremet The OSIF shall support the capability to restart the execution of an Ada task at a
point immediately following its elaboration code.

Description of Delta: This requirement reflects a need to provide extensions to the current Ada
language standard. OSSWG should give careful study to the appropriateness of the requirerne•, monitor
the progress of language modification efforts, and propose further additions to the POSIX standard, either
as changes to P1003.4a or inclusion in P1003.4b.

Recommendation: See section 3.9.13. OSSWG should re-evaluate this requirement this
requirement based on Ada-9X capabilities.

3.16.7 Task Entry Calls (Ada)

Some of the claims found in P1003.4a regarding support of Task Entry Calls (16.7) cannot be fully
accepted without further proof through implementation and validation. The 1003.5 working group has
submitted objections to .4a which, if resolved, will allow Ada tasks to be mapped to .4a threads. If not
resolved, and without mapping Ada tasks to threads, Task Entry Calls can still be achieved via other POSIX
interfaces, but with reduced performance.

3.16.8 Task Call Accepting/Selecting

Some of the claims found in P1003.4a regarding support of accepts (16.8) cannot be fully
accepted without further proof through implementation and validation. The 1003.5 working group has
submitted objections to .4a which, if resolved, will allow Ada tasks to be mapped to .4a threads. If not
resolved, and without mapping Ada tasks to threads, Task Call Accepting/Selecting can still be achieved
via other POSIX interfaces, but with reduced performance.

3.16.9 Access Task Characteristics (Ada)

The requirement to Access Task Characteristics (16.9) is supported by Clock and Timer Functions
of 1003.4, Thread Management and Thread Cancellation of P1003.4a, and also Thread Scheduling
Functions and CPU-Time Clock of P1003.4b.

61

NAWCADWAR-94109-70

3.16.10 Monitor Task's Execution Status (Ada)

This unfulfilled requirement is classified as "a' (essential).

Monitor Task's Execution Status (Ada) (16.10) is required by OSSWG and is dealt with
independently in requirements 9.11 (Examine Process Status) and 13.3 (Cumulative Execution Time of a
Process).

This requirement is important to the spirit of the Ada standard and to real-time applications.
OSSWG should propose further additions to the POSIX standard, either as changes to P1003.4a or
inclusion in P1003.7.

Rglre i The OSIF shall support the ability to monitor a task's execution status, in particular,
the amount of accumulated CPU time that has been used by the task.

Description of Delta: The requirement for Monitor Task's Execution Status (16.10) is not met by
1003.1, 1003.4, or P1003.4a. Since Ada tasks must be mapped onto POSIX threads the standard
process primitives are not available to support this requirement. 1003.2 has not been extended to
address thread status. P1003.4b does allow access to the CPU time used by a thread.

Recommendation: See section 3.9.11.

3.16.11 Access to a Precise Real-Time Clock (Ada)

The requirement to Access a Precise Real-Time Clock (16.11) is covered in sections 3.15.1,
3.15.2, and 3.15.7. There is no additional requirement peculiar to Ada.

3.16.12 Access to a TOD Clock (Ada)

The requirement to Access a Time of Day Clock (16.12) is covered in sections 3.15.1, 3.15.2, and
3.15.7. There is no additional requirement peculiar to Ada.

3.16.13 Dynamic Task Priorities (Ada)

The Dynamic Task Priorities requirement (16.13) is provided by both P1003.4a and P1003.4b,
with interfaces to get and set thread scheduling parameters.

3.16.14 Scheduling Policy Selection (Ada)

Scheduling Policy Selection (16.14) is also required by OSSWG and is dealt with independently
in requirement 13.9 (Selection of a Scheduling Policy). While not directly visible to Ada applications, this
interface may be critical to the implementation of an Ada run-time.

This requirement reflects a need to provide extensions to the current Ada language standard.
OSSWG should give careful study to the appropriateness of the requirement and monitor the progress of
language modification efforts.

The Scheduling Policy Selection (16.14) requirement is fully supported by 1003.4 and P1003.4a
(1003.1 provides no support for scheduling policy selection). Reference P1003.4a, "Thread Creation
Scheduling Attributes," "Thread Scheduling;" 1003.4, "Execution Scheduling;", and P1003.4b,
"Process and Thread Scheduling Functions."

62

NAWCADWAR-94109-70

A number of the OSSWG requirements for Ada language support are actually requirements for
Ada extensions that may or may not become a part of the language standard in the future. In the case of
scheduling policy selection (16.14), the 1003.4, P1003.4a , and P1003.4b interfaces provide extensive
support.

Requirement The OSIF shall support the capability to get and set the policy that is to be used to
schedule Ada tasks.

Recommendatione There is no longer an OSSWG delta per-se, but rather only an Ada delta. It is

recommended that OSSWG address this issue as a whole.

3.16.15 Memory Allocation and Deallocation (Ada)

This unfulfilled requirement is classified as "a* (essential).

Memory Allocation and Deallocation (Ada) (16.15) is required by OSSWG and is dealt with
independently in requirement 12.3 (Dynamic Memory Allocation and Deallocation). It is particularly
important to the implementation of Ada systems.

This requirement is unfulfilled for the same reason that requirement 12.3 is unfulfilled; that is,
there are no sufficiently flexible interfaces provided in POSIX for dynamic memory allocation and
deallocation, but the Typed Memory interfaces in P1003.4d will satisfy this requirement once a draft is
produced. There is no additional requirement peculiar to Ada. Refer to section 3.12.3 for
recommendations.

3.16.16 Interrupt Binding (Ada)

This requirement is directly met by P1 003.4b Interrupt Control.

3.16.17 Enable/Disable Interrupts (Ada)

Enable/Disable Interrupts (Ada) (16.17) is required for OSSWG if seen independently from its
connection to support for Ada; as such it is dealt with in requirement 5.5 (Enable/Disable Interrupts).
There is no longer a delta for requirement 5.5 because P1003.4b includes interfaces which provide
mutual exclusion between an application and its interrupt handler. On the other hand, the requirement
does not relate to the current definition of the Ada language and therefore should be reevaluated as to
whether it should be duplicated in this section. Some people in the Ada community have suggested that
the language should be modified to allow more direct access to these functions, and it is possible these
functions will be included in the next revision, now called Ada-9X. Thus, this requirement is classified as
"dr (reevaluate).

This requirement reflects a need to provide extensions to the current Ada language standard.
OSSWG should give careful study to the appropriateness of the requirement and monitor the progress of
language modification efforts.

A number of the OSSWG requirements for Ada language support are actually requirements for
Ada extensions that may or may not become a part of the language standard in the future. In the support
of Enable/Disable Interrupts (16.17), as described in the OSSWG requirements, 3 marginally satisfactory
masking capability is provided in 1003.1, 1003.4, and P1003.4a as related to signals; but P1003.4b
Interrupt Control provides a much more generic capability.

ea uirement The OSIF shall support the capability to enable and disable interrupts.

63

NAWCADWAR-94109-70

Recommendation: OSSWG should re-evaluate this requirement based on Ada-9X capabilities.
There is no OSSWG delta per-se, but rather only an Ada delta.

3.16.18 Mask/Unmask Interrupts (Ada)

This unfulfilled requirement is classified as "c! (may be deferred).

Mask/Unmask Interrupts (Ada) (16.18) is required for OSSWG if seen independently from its
coainection to support for Ada; as such it is dealt with in requirement 5.6 (Mask/Unmask Interrupts). On
the other hand, the requirement does not relate to the current definition of the Ada language and
therefore should be reevaluated as to whether it should be duplicated in this section. Some people in the
Ada community have suggested that the language should be modified to allow more direct access to
these functions, and it is possible these functions will be included in the next revision, now called Ada-9X.
Thus this requirement is classified as "d" (reevaluate).

This requirement reflects a need to provide extensions to the current Ada language standard.
OSSWG should give careful study to the appropriateness of the requirement and monitor the progress of
language modification efforts.

A number of the OSSWG requirements for Ada language support are actually requirements for
Ada extensions that may or may not become a part of the language standard in the future. In the support
of Mask/Upmask Interrupts (16.18), as described in the OSSWG requirements, only a marginally
satisfactory masking capability is provided in 1003.1, 1003.4, and P1003.4a as related to signals. The
P1003.4b Device Control interface may be interpreted as a standard way to request a device to mask or
unmask its interrupts.

flqUir.ment: The OSIF shall support the capability to mask and unmask device interrupts.

Recommendation: Same as in section 3.5.6. There is no additional requirement peculiar to Ada.

3.16.19 Raise Exception (Ada)

Support for the Raise Exceptions requirement (16.19) is believed to be provided by a
combination of services for signals within 1003.1, 1003.4 and P1003.4a, but this support has not yet
been proven.

3.16.20 I/O Support (Ada)

The requirement for Ada Input/Output Support (16.20) is partially covered by 1003.1, 1003.4,
P1003.4a, 1003.5, and P1003.20. 1003.1, 1003.4, and P1003.4a define the POSIX file support and I/O
primitives. 1003.5 and P1003.20 provide the Ada binding to those POSIX features, as well as services to
convert between the two versions. Support for Ada LowLevel_10 is provided by the P1 003.4b Device
Control interface.

64

NAWCADWAR-94109-70

Requirements Coverage Summary

Requirement Covered POSIX Delta Unfulfilled
Requirements

Rating
16.1 Yes None (13 3)*
16.2 Partially Insertion (1,3) a
16.3 Yes None (1,3)
16.4 Yes None (1,3)
16.5 Yes None (1,3)
16.6 No Insertion (2) d
16.7 Yes None (1,3)
16.8 Yes None (1,3)
16.9 Yes None (1,3)

16.10 No Insertion a
16.11 Yes None
16.12 Yes None
16.13 Yes None
16.14 Yes None (2)
16.15 No Modification a
16.16 Yes None
16.17 Yes None(2)
16.18 No Modification (2) c
16.19 Yes None (1,3)
16.20 Yes None

"1 Requires a solid commitment to 1003.4 and P1003.4a by the POSIX standards effort.

2 Requires coordination between the Ada language standard and the POSIX standard.

3 Awaiting proof of adequacy of POSIX interfaces.

65

NAWCADWAR-94109-70

4. BIG 6 DISCUSSION

This section analyzes of the extent to which the POSIX standards meet what the NGCR OSSWG
has termed the "Big Six." This refers to six technology areas that the Navy's NGCR Program Office has
stated as being of prime importance to future Navy systems. These areas as related to computer systems
are Distribution, Real-Time, Fault-Tolerance, Security, Heterogeneity, and Ada.

4.1 DISTRIBUTED SYSTEMS

It was always a primary goal of NGCR in general, and the NGCR OS in particular, to support the
wide variety of distributed architectures found in Navy systems. Such systems include anywhere from two
to hundreds of homogeneous and/or heterogeneous processing and I/O nodes communicating either
point-to-point or via a multi-level bus or network interconnection. Ideally, the operating system interface
should provide distributed services in a portable manner, masking the actual method of interconnection
and its associated protocols.

Operating system services related to distributed processing can be broadly classified as either
explicit or implicit distribution. Explicit distribution implies that the application directs a request to a specific
logically Identified node; an example of explicit distribution is sending a message to a specified node or 1/O
subsystem and awaiting a reply. Implicit distribution, conversely, implies that the application is unaware of
where in the distributed system a requested service is provided; examples of implicit distribution include
file servers, name servers, and the like.

4.1.1 Distribution in UNIX

Traditionally, UNIX systems have been primarily implemented on single node, uniprocessor
systems. When the need for operation in a networked environment became obvious (stimulated by the
ARPANET research in the late 1970s and early 1980s), explicit distributed services first began to appear
as shell and utility add-ons to the basic UNIX systems; such facilities as electronic mail and file transfer
services were built on OS and vendor-specific implementations of Defense Advanced Research Projects
Administration's (DARPA) TCP/IP networking protocol. Researchers at the University of California
Berkeley developed a portable API suitable for interprocess communication within a single node or across
nodes via networking protocols; this interface, called Sockets, became a de-facto standard API for
networking applications, thereby allowing portable versions of these explicit services to be built as utility
applications. AT&T developed a similar interface, XTI, for its System V variant of UNIX.

In recent years, additional utility level explicit distributed services have become standard in most
UNIX systems. These include remote shell, remote login, remote talk, and finger services, all implemented
using a client-server model at the UNIX application level, and utilizing the Sockets or XTI API to send and
receive service-specific messages via service-specific sockets across distributed nodes. Even more
recently, implicit distributed services have been integrated into some UNIX systems, such as network file
system and domain name server capabilities. These achieve a level of application transparency by
embedding the remote node identification in configurable operating system tables that are maintained by
a system administrator but are otherwise of no concern to portable applications.

Very recent developments in transparent distributed database and information retrieval include
the WAIS (Wide Area Information Server) and Internet Gopher systems which both provide a seamless
local user interface to widely distributed information.

4.1.2 Distribution In POSIX

The POSIX working groups seek to standardize current practice in the UNIX community. The
current working groups therefore focus on a protocol independent interface (P1003.12), transparent file

67

NAWCADWAR-94109-70

access (P1003.8), directory services (1224.2), object management (1224), X.400 message handling
(1224.1), and common 0SI API & FTAM API (P1238) for distributed systems.

The protocol Independent interface is currently based on the Berkeley Sockets and XTI de-facto
standards. A new PAR (Real Time Distributed Systems Communication - 1003.21) has proposed
extending these capabilities for realtime systems. Likewise, the other APIs are based on de-facto industry
standards. While 1224 and P1238 are not strictly part of POSIX (1003), they are part of the IEEE PASC
(Portable Applications Standards Committee), and meet, distribute documents, and generally coordinate
with POSIX.

4.1.3 Distribution In NGCR OS

All NGCR OS distribution requirements are not called out explicitly as OSSWG requirements.
While the network and communications interfaces service class specifies the lowest level requirements for
Internode communication over LAN, bus, and point-to-point hardware interconnects, distribution is
implicitly required by a number of APIs in other service classes. Each and every OSSWG requirement
must be interpreted In the following manner: If this requirement makes sense in a distributed context, then
the NGCR OS must support it in that distnrbuted context.

For example, Navy embedded systems traditionally support some form of interprocess
communication among processes at separate nodes; thus, OSSWG requirement 9.8 (interprocess
communication) requires distribution support. In this case, the OSSWG requirement is general enough to
cover both explicit distribution (i.e., the application sets up the logical pathway between the processes)
and implicit distribution (i.e., the application interface is no different whether the communication Is
intemode or intranode).

As a counterexample, the OSSWG requirement for mutual exclusion (13.2) is typically not
Implemented across nodes in Navy embedded systems, at least not at the operating system level. The
reason for this is that mutual exclusion primitives are intended to be a high performance, low contention
method for guarding shared resources against inappropriate simultaneous access; this model becomes
virtually useless over high latency intemode communication paths. Resources sharable across multiple
loosely coupled nodes occur quite infrequently and are typically guarded with other mechanisms such as
monitors (server processes).

4.1.4 NGCR/POSIX Distribution Delta

During the OSSWG evaluations that led to the selection of POSIX as the baseline for the NGCR
MIL-STD OSIF, evaluators were constantly aware that each OSSWG requirement might have different
implications in a loosely or tightly coupled distributed system than in a simple uniprocessor system.
Although there is no OSSWG service class dealing specifically with distribution, service classes 2, 4, 8, 12,
and 14 contain requirements that deal specifically with the explicit nature of distributed systems. Most
other service classes contain one or more requirements for which some NGCR distributed systems will
undoubtedly need transparent (implicit) distribution. The OSSWG has not reached a consensus on
exactly which POSIX Interfaces should be transparently distributed. However, since POSIX is currently
providing very little transparent distribution of services, the delta is likely to widen when such transparent
service interlaces are identified.

4.2 REAL-TIME SYSTEMS

The primary application of the NGCR OS is in support of Navy air, surface, subsurface, and shore-
based mission computer systems. The secondary application is in all other Navy computer systems,
including software development, laboratory, and non-military functions. Virtually all of the primary
applications and some of the secondary applications have real-time constraints ranging from "soft" to
"hard" real time. UNIX operating systems have traditionally offered very poor support for users with real-

68

NAWCADWAR-94109-70

time requirements. Faced with this dismal reputation, various UNIX vendors have offered a variety of
nonstandard. nonportable real-time extensions to the UNIX kernel.

4.2.1 Real Time In POSIX

POSIX working group 1003.4 is attempting to standardize the various real-time extensions. Prior
to participation In 1003.4 by the NGCR OSSWG and the VITA (ORKID standard) members, the working
group activities were focused primarily on *soft" real-time issues. Now, these participants have joined with
the real-time system vendors in ensuring that "hard" real-time is given its due. It is POSIX 1003.4 policy
that its work will also address usability of the extensions for other than real-time systems whenever
possible. The following enhancement categories are in progress:

1. Semaphores provide a facility for synchronization among multiple processes contending for
access to a shared resource. The traditional UNIX approach (lock files) is too time consuming and disk
Intensive to be useful in high performance real-time systems, especially when expected contention for
the resource is very low, as is typically the case.

2. Process memory locking provides an application API allowing the user to designate certain
program and/or data memory to be excluded from the normal UNIX virtual memory management
paging/swapping algorithms. This allows critical memory regions to be guaranteed prompt accessibility
and minimizes nondeterministic behavior due to mass storage latency.

3. Shared memory interfaces enable a high bandwidth and high performance form of interprocess
communication when the hardware supports this, the real-time constraints require this, and the protection
afforded by more structured forms of IPC can be sacrificed.

4. Priority scheduling interfaces permit real-time applications to override the de-facto *time-
sharing* UNIX style process scheduling policy with various priority based scheduling policies more
appropriate to real-time multitasking. Only by doing this can hard real-time deadlines be guaranteed.

5. RealtIme Signals extends the classic UNIX signal concept by allowing arbitrary user defined
signals to be attached to user initiated actions and external events, and subsequently notifying the user
process (synchronously or asynchronously) when the event is triggered.

6. Clocks and timers provide APIs to various resolukion clocks and Interval timers that provide
better granularity and more flexibility than the traditional UNIX 1/Hz-second clock (time) and 1-second
interval timer (alarm, sleep). Real-time systems usually have tight timing tolerances that are best met by
millisecond or better-resolution low-jitter clocks and timers.

7. IPC Message passing addresses the need for a form of interprocess communication interface
that is not inexorably tied to any specific implementation but that supports loosely coupled LAN-based
communications typical among component subsystems of a large combat systems, as well as high
performance shared memory based communications between cooperating processes in a uniprocessor
or multiprocessor. The traditional UNIX IPC mechanisms (pipes, signals, and files) are often too restrictive
or heavyweight for use in real-time systems.

8. Synchronized input and output provides interfaces whereby an application can guarantee that
a set of data recorded in mass storage is current and self consistent. Traditional UNIX I/O assumes that the
"OS knows best" but fails to address the need for embedded real-time systems to more closely control the
reading and writing of data that might be needed for recovery purposes or might be written and read by
different components of the system.

9. Asynchronous input and output provides alternative I/O interfaces that ali igle process to
initiate I/O to one or several devices simultaneously and continue processing w .. awaiting I/O to
complete. The traditional UNIX approach to this is to create separate processes to perform each I/O
operation as well as queuing and notification functions. While this approach can actually yield more

69

NAWCADWAR-94109-70

structured programs, real-time systems often cannot tolerate the extra process context switching
overhead.

10. Advisory information interfaces provide additional information to the OS file system so that the
OS can optimize file access (reduce latency, prevent fragmentation, speed addressability) for real-time
applications. This serves to improve performance and eliminate the non-determinism typically associated
with UNIX file access.

11. POSIX threads provide a complete API set for lightweight processes that can coexist with the
heavier POSIX process model. Threads within a single POSIX process share a considerable amount of
state information (including memory); thus, context switching among threads experiences lower
overhead, and interthread IPC can take advantage of the inherent shared memory. Additionally, threads
provide a second level of concurrency model that matches quite nicely with the two levels Implicit in the
Ada programming language (several tightly coupled Ada tasks per Ada program, several loosely coupled
Ada programs per system).

12. The Spawn process creation primitive provides an enhancement over the traditional 1003.1
fork() and exec() APIs for real-time systems. The 1003.1 interfaces imply not only the existence of a file
system, but also a two step method of starting a new process which forces an often unnecessary
duplication of an existing process. Spawn provides the more or less conventional real-time practice of
"create process" with a single Interface.

13. Timeouts for Blocking Services adds the conventional real-time capability of attaching an
upper bound to the amount of time which several critical real-time interfaces may block a requesting
process or thread. This capability is used primarily to increase the robustness of real-time applications In
fault situations.

14. Execution Time Monitoring provides the ability for a process or thread to check the cumulative
execution time of itself or another process or thread, and to establish CPU time limits. Such interfaces are
essential In deadline driven real-time systems to ensure that all processes and/or threads are given fair
opportunity to meet their deadlines.

15. Sporadic Server interfaces complement Priority Scheduling interfaces in real-time systems
driven by external aperiodic requests. These simplify the s~twedulability analysis (as in rate monotonic
scheduling theory) of such a real-time system because the. a.;I' aperiodic processes or threads to be
treated as If they were periodic.

16. Device Control standardizes the format of interfaces to device drivers which go beyond the
1003.1 open/close/read/write/seek Interfaces. Real-time systems typically utilize unique devices with
unique "out-of-band" control requirements. UNIX has always provided an ioctl() interface to invoke such
control actions as unloading a magnetic tape or setting the baud rate of a communication port. Device
Control is a natural extension of these capabilities to general control requirements for arbitrary devices
(such as radar or analog-to-digital converters). It does not attempt to define actual control requirements,
only the Interfaces necessary to pass control information.

17. Interrupt Control provides standard interfaces for connecting architecture and hardware
dependent Interrupts to application code. Real-time applications frequently need asynchronous
notification of the occurrence of some hardware generated event. Performance is often an issue, so
Interrupt Control addresses performance and other tradeoffs associated with different methods of
asynchronous notification (Note that POSIX otherwise supports only a single method of asynchronous
event notification, the Signal).

18. Typed Memory Allocation adds interfaces to POSIX which support dynamic memory allocation.
POSIX had previously deferred all memory allocation interfaces to the ANSI C standard. Given the
evolution of other languages which require dynamic memory allocation, and the proliferation of real-time
systems which utilize several types or partitions of memory from which such allocation is possible, the
ANSI C malloc0 Interface is no longer adequate.

70

NAWCADWAR-94109-70

4.2.2 Real Time in NGCR OS

Although POSIX interfaces differ substantially from most conventional real-time operating systems
used heretofore in Navy systems, the substantial progress achieved by 1003.4 coupled with increased
industry Impetus toward real-time UNIX implementations would indicate that POSIX will eventually be an
acceptable OS interface for all but the smallest and most time critcal Navy applications.

Real-time profiles being developed by P1003.13 will stress the need for high performance OS
Implementations for real-time systems. The interfaces themselves cannot generally be evaluated with
respect to performance because performance is a characteristic of an implementation, not an Interface.
However, performance metrics are being developed as part of the standards, and substantial effort has
been expended to ensure that the real-time interfaces do not preclude efficient implementations. Thus, it
Is reasonable to expect that the Navy will be able to purchase good real-time operating system
Implementations compliant with the POSIX interface standards. This means that, in spite of the fact that
POSIX Interfaces are quite unlike those found in conventional real-time operating systems, NGCR OS
based on POSIX will support real-time applications once real-time programmers understand and accept
the POSIX-like interfaces.

4.2.3 NGCR/POSIX Real-Time Delta

The following unfulfilled requirements are especially significant to real-time applications because
missing capabilities prevent a fine degree of control over the performance of the system in functions
common to most real-time applications:

1.21 Bounded OS Service Times and Context Switching
6.3 File Management Scheduling
7.1 Device Driver Availability
16.10 Monitor Task's Execution Status (Ada)
16.17 Enable/Disable Interrupts (Ada)

The following unfulfilled requirements are especially significant to multiprocessor and distributed
real-time systems because of the lack of a standardized approach to handling global time:

15.4 Selection of primary reference clock
15.5 Locate primary reference clock.

The following unfulfilled requirements are also significant to real-time systems but reflect
capabilities which are not common to all real-time systems or are typically out of the mainstream of real-time
processing.

1.17 Error conditions
1.23 Transaction scheduling information
5.1 Event and error receipt
5.2 Event and error distnrbution
5.3 Event and error management
5.4 Event and error logging
10.2 Execution history
11.* Reliability, adaptability, and maintainability (all)
13.5 Transaction scheduling information.

The following unfulfilled requirements may have some bearing on the performance of some real-
time systems, although the relationship is a secondary one:

4.1 Data interchange services
9.2 Terminate Process

71

NAWCADWAR-94109-70

9.11 Examine process status
9.13 Save/restart process
12.3 Dynamic memory alocation and deallocation
12.4 Dynamic memory protection
12.5 Shared memory (as unfulfilled - tor code segments)
16.6 Restart task (Ada)
16.15 Memory allocation and deallocation (Ada).

4.3 FAULT-TOLERANT SYSTEMS

Because many of the Navy systems to utilize NGCR OS will be mission critical, the OS must
support the ability to detect, report, isolate, and recover from any foreseen hardware or software failure,
thereby ensuring that the effects of such a failure on the mission are minimal. Fault tolerance
requirements are explicitly seen in service classes 5 (event and error management) and 11 (reliability,
adaptability, and maintainability), while some other requirements also have implications in this area.

4.3.1 Fault Tolerance in UNIX

Unfortunately, UNIX systems have traditionally had poor fault tolerance. Generally, software errors
generated by an application and some hardware errors related to a device in use by an application are
reported back to the application either synchronously (via error return codes and the germo" system
variable) or asynchronously (via a signal). The OS assumes no further role in the processing or logging of
such errors, nor are there any services that assist in the recovery from errors. Furthermore, software errors
detected within the UNIX kernel, and many hardware errors, cause the OS to simply give up. For example,
many UNIX systems will not configure themselves around failed memory but instead inform an operator
and halt, awaiting reboot of the system or they reboot themselves automatically (a process that takes from
one to many minutes). In these cases, all user applications die in their tracks with no potential to recover
anything unless the application has generated its own checkpoints. Curiously, in these circumstances,
the error is frequently logged in a file accessible to the system administrator.

UNIX behaves this way because its typical users have been running applications in a time-sharing
environment where centralized error handling and dynamic recovery are not the rule, but where having a
system administrator In the loop is.

4.3.2 Fault Tolerance in POSIX

There had previously been little effort in the POSIX community to standardize fault tolerance
related Interfaces. This issue was generally considered out of scope. For example, a significant portion of
the 1003.4 working group membership had been opposed to providing timeouts on blocking services
because they can't imagine that software bugs end up in fielded systems. Recently, the hard real-time
contingent of that working group has pushed for the kinds of fault tolerant capabilities that provide the
characteristic robustness of mission-critical real-time systems.

OSSWG has led a Fault Management and Administration study group within POSIX over the past
two years. While this group had initially confirmed that existing practice in fault tolerant operating systems
is not mature enough to begin a standardization effort immediately, they have nonetheless brought this
concern to the forefront. The group continues to work toward standardized Fault Management and
Administration Interfaces based on proposals by several industry groups including UNIX International and
the Open Software Foundation.

72

NAWCADWAR-94109-70

4.3.3 Fault Tolerance In NGCR OS

NGCR OS requirements specify centralized facilities for receipt, coordination, distribution,
delivery, and logging of error events, whether those events are detected by hardware or software,
whether they indicate a hardware or software fault, and whether the fault occurs within the application or
the operating system. The OS is expected to collect and retain as much information as possible about a
fault that has occurred and provide access to this information to an application (not just a system
administrator). This applies to faults detected asynchronously, as well as to faults discovered by
application initiated hardware diagnostic tests. For transient faults, the OS must be configurable with
thresholds that establish the tolerance level for errors. Isolation of faults to a system component must be
supported, and the OS must be able to take predetermined actions based on fault severity. Ultimately,
the OS must support reconfiguration of its own and application resources when one or several
components of the system have failed, or upon application request.

4.3.4 NGCR/POSIX Fault Tolerance Delta

POSIX and UNIX compliant systems today provide virtually none of the required support.
Although it is not required for many Navy systems, the NGCR OS interface will have to augment POSIX
substantially to achieve a fault tolerance level acceptable to some mission critical Navy profiles. The most
likely route to this goal is by closely following the activities of UNIX International, OSF, and X3T8 in these
areas. As the concepts being explored by these groups become more well defined, either de-facto
industry standards will emerge or it will become appropriate to reconsider introduction of a POSIX PAR to
bring such de-facto fault tolerance interfaces into POSIX scope.

4.4 SECURITY

As stated in section 3.3, although P1003.1e and P1003.2c meet or support most of the OSSWG
security requirements, further guidance is provided and required by the TCSEC and SECNAV Instruction
5239.2 "Information Security Instruction." The subject of the TCSEC and its interrelationship with the
NGCR standards for security raises several issues:

1. The relationship between the P1003.1e/P1003.2c and the TCSEC standard.

2. The integration of common security-related features between various standards (e.g.,
NGCR, DoD, ISO) and which standard takes precedence.

3. The integration of common functions and features as the result of using two or more
standards-based trusted commercial-off-the-shelf (COTS) products when they become available.
This must also consider the integration of different TCSEC class COTS products or systems.

Navy acquisition programs must comply with DoD directives and the SECNAV instruction. Both
recommend the TCSEC standard to develop security requirements for acquisition programs. The TCSEC
Is a collection of security criteria organized into classes. In most acquisitions, requirements may be
specified from different TCSEC classes based on the criticality of the mission and the level of physical,
procedural, operational, and communication security at the operational sites. For some specific
acquisition programs or missions, the requirements cited for a particular TCSEC class may not all apply.
NGCR OSSWG has reviewed P1003.1e and P1003.2c and found them compatible with the TCSEC
criteria. [Note: In annex B of P1003.1 e, the POSIX security subcommittee gives its reasons for choosing
the TCSEC as the main source of security criteria.] As it defines each of the functions within each
category of the interface standard (i.e., DAC, MAC, Privileges, Audit, Information Labels), P1003.1e and
P1003.2c attempt to ensure that the security portion of the standards does not preclude meeting the
higher class TCSEC systems. Although it is not explicitly cited in P1003.1e or P1003.2c, it is implied that
to qualify as a TCSEC class system the P1003.1e and P1003.2c interface requirements must be
developed in conjunction with the corresponding criteria stated in the TCSEC.

73

NAWCADWAR-94109-70

The integration of common security-related features between the various standards is non-trivial.
Likewise, the use of trusted portable application software between systems buil on different hardware
platforms having a similar POSIX interface may require further examination of the application software. In
either case when combinations of NGCR standards or standards-based COTS products are used, further
system level analysis is required to identify, address, and resolve the significant integration Issues.

An example which illustrates both issues addressed above is labeling. POSIX treats a label as an
unstructured, undefined opaque object for portability purposes. This allows each vendor or developer of
trusted application software who uses the P1003.1e and P1003.2c standards to define the Internal
structure of the label. From a standalone, homogeneous system perspective, this may not cause
significant problems for Navy system engineers. However in a distributed, heterogeneous system when
several NGCR standards and/or standards-based trusted application products are integrated, additional
requirements may be necessary to define a common label format. This may be especially the case when
trusted application programs are created to perform label transformations for mission-critical systems and
such software must be totally correct. Such trusted application programs in general may not be
transferable among heterogeneous POSIX-based systems.

The security requirements and the implementation of these requirements should always be
viewed in terms of the TCSEC. P1003.1e and P1003.2c are interlace standards that do not preclude
meeting the TCSEC class requirements. However, P1003.1e and P1003.2c in themselves, being
interface-related standards, cannot address all the operating system security requirements. The design
and Implementation of the P1003.1e and P1003.2c standards must be used In conjunction with
requirements from the TCSEC classes to provide a well-defined system and a potentially certifiable secure
product.

4.5 HETEROGENEITY

It has been a goal of the NGCR OS to support heterogeneous systems; that is, the same OS
interface must not only support a variety of processor architectures, but it must allow dissimilar processors
to cooperate as part of a larger system. This can take the form of heterogeneous processors on the same
backplane (Futurebus+) or more commonly, heterogeneous processor types at different nodes of a
distributed system.

4.5.1 Heterogeneity In UNIX

Today's UNIX systems support heterogeneity largely through the use of network services that
provide commonality of function and Information representation among different processor types (some
running different vendors' UNIX) that share a common network medium and protocol (e.g., ethernet).
Examples are network file system (NFS) and remote shell (rsh) capabilities. Such services typically do not
attempt to solve data Interchange format problems (word size, floating point format, endian-ness), leaving
that as an exercise for the user; however, they do allow applications to work together fairly well in a
heterogeneous distributed environment.

Few UNIX systems today support heterogeneity on the same backplane, simply because that is
not a typical configuration. Notable exceptions such as Wind Rivers VxWorks do allow host (e.g., Sun
workstation) and target (e.g., Mizar SPARCNME-based real-time subsystem) to share a common
backplane and memory.

4.5.2 Heterogeneity In POSIX

The POSIX standards effort is a giant step forward in supporting heterogeneity, since it attempts
to standardize not only the basic interfaces (thus ensuring source code portability), but also the
distributed services (thus allowing for universal interoperability, at least across a network). The issue of

74

NAWCADWAR-94109-70

heterogeneity in a multiprocessor (dissimilar processors sharing memory) is not addressed by POSIX
except in the distributed context.

4.5.3 Heterogeneity In NGCR OS

Heterogeneity is not called out in any specific NGCR OS requirement (though service class 4, data
interchange interfaces, certainly hints at it). This is because the ability of one implementation of an
operating system to work harmoniously with another implementation is largely an implementation issue.
For example, If two implementations of a file system namespace use the standardized interface but two
different character sets, then the ability to share namespace information between these implementations
is severely hampered. The OSSWG should (1) attempt to identify those POSIX implementation
dependencies that are detrimental to heterogeneity and (2) create an "implementor's guide" to promote
increased interoperability.

4.5.4 NGCR/POSIX Heterogeneity Delta

Although the POSIX standardization effort and POSIX distribution standards are a strong positive
step for heterogeneous systems, the POSIX motive is source code portability, not interoperability. Thus,
it is unlikely that initial implementations of POSIX-compliant systems will work trouble-free in a
heterogeneous environment. The POSIX (and thus, the NGCR OSSWG) focus on APIs simply does not
address standardization of certain system interfaces (particularly OS-to-OS interfaces and global resource
management).

4.6 ADA

The Ada programming language is not only the mandated DoD standard (and thus Navy standard)
programming language, but is an international standard for large scale, long-lived, reliable applications.
The Ada language is somewhat unique in that it defines within the language a number of operations that
heretofore were considered to be in the domain of the target operating system, but that ultimately must be
supported by an operating system component. Some Ada compilers are targeted to the bare machine;
that is, the compiler vendor supplies the full underlying operating system. Other Ada compilers are
targeted to a machine already running particular operating systems; in this case, the Ada vendor's run-time
support package and/or the generated code itself interfaces with an operating system supplied by
another vendor (typically, the computer vendor) whenever operating system services are required.

The Ada language also, like other language standards, specifies certain required library packages
that must rely on operating system services for support.

Examples of operating system services implicit in the Ada language are the Ada tasking model
(entry call, accept, select, etc.), the delay statement, the "new" allocator, and various Ada exceptions that
may originate as machine-specific hardware interrupts (Numeric_- Error, for example). Examples of Ada
library packages that require operating system support are TextjlO, LowLevel10, 10_Exceptions,
UncheckedDeallocation, and Calendar.

4.6.1 Ada In UNIX

UNIX-based systems have been popular platforms for Ada language implementations, but there
has been a great deal of misunderstanding and controversy surrounding such implementations. UNIX
implementations have typically been a poor fit for the services required by the Ada language. For
example, UNIX kernels have no schedulable entity that maps to an Ada task, so UNIX-based Ada
implementations have usually provided a library level scheduler for Ada tasks. This approach has two
drawbacks. First, whenever such an Ada task must invoke an operating system service that blocks, all the
Ada tasks in the Ada program are blocked instead of only the one requiring the blocking service; second,

75

NAWCADWAR-94109-70

the timely execution of the Ada tasks cannot be guaranteed because the UNIX process in which the Ada
tasks live Itself competes for the CPU via a different scheduler (the UNIX process scheduler). Another
example of a poor fit Is the various Ada timing services. Because UNIX provides timing services only at 1-
second resolution, Ada implementations have been forced to use some fairly inaccurate and inefficient
polling methods of timing. Even the Ada line and record-oriented I/O models are poorly supported by the
UNIX byte-stream I/O model.

Generally, the outcome of this poor fit is that portable Ada programs don't work exactly as might be
expected, either from the Ada perspective or from the UNIX perspective. Vendors, realizing this, typically
provide additional nonstandard libraries to allow Ada programs to be more 'UNIX like." Unfortunately, this
does very little for portability, even from one Ada compiler implementation to another on the same UNIX
operating system.

4.6.2 Ada In POSIX

POSIX has been supporting Ada through the 1003.5 working group, the product of which is to be
a standard that makes the functionality of ISO/IEC 9945-1:1990 (1003.1) available to the Ada programmer.
The P1 003.20 working group is doing the same for the evolving real-time extensions (1003.4, 1003.4a,
and 1003.4b).

It is important to note what 1003.5 does and does not attempt to do. In particular, 1003.5
provides an Ada language binding to POSIX interfaces; i.e., an Ada-like way to invoke POSIX services. It
does NOT attempt to define POSIX interfaces suitable for supporting all the Ada run-time capabilities.
Generally speaking, the POSIX community seems to feel that the latter is not in its scope. Nonetheless,
recent activity in 1003.4 (i.e., concern that Pthreads be usable as Ada tasks) indicates that there is
increasing sentiment toward supporting POSIX in the Ada run-time environment. The 1003.5 working
group is currently debating the inclusion or exclusion of Ada bindings to real-time interfaces that would
conflict with capabilities of the Ada run-time, or that would allow an Ada run-time environment to be written
in Ada.

4.6.3 Ada In NGCR OS

It is essential that NGCR OS support not only an Ada language binding to all defined OS
interfaces, but also the implicit interfaces required by the Ada run-time and the standard Ada library
packages. These latter requirements are pretty much detailed in OSSWG requirements for service class
16, while the language binding requirements appear in service class 1.

In cases where an OSSWG requirement is satisfied directly within the language or from a standard
Ada library package, and an explicit binding to the underlying service interface adds no functionality, the
explicit binding is not necessary. For example, the POSIX "sleep" interface adds no functionality over and
above the Ada "delay" statement and it is therefore unnecessary to have an Ada binding to the OS
"sleep." Also, where an OS interface exists wholly to support a different language binding, an Ada
binding makes no sense (e.g., the 1003.4a C interface "pthreadcequal" exists because comparison of
opaque types using the C operator .= is invalid for pointer implementations of such types).

In support of the goals of application portability and reusability, NGCR applications must avoid the
practice of substituting nonstandard language constructs and library packages for standard Ada
capabilities. Toward this goal, it is essential that the NGCR OS implementations support standard Ada
capabilities with very high performance, since performance requirements of real-time systems often take
precedence over software engineering goals. Hopefully, as Ada matures into Ada-9X, new standard
capabilities will be added to compensate for some of the architecture and OS dependent problems that
have previously forced use of nonstandard interfaces.

76

NAWCADWAR-94109-70

4.6.4 NGCRIPOSIX Ada Delta

The 1003.5 woridng group, in its process of drafting P1003.20, has started debating, and will
continue to debate, such issues as providing Ada bindings to POSIX Interfaces that duplicate or conflict
with Ada run-time features, and providing support for Ada run-time environments written in Ada. Once
such decisions have been made, the exact relationship between POSIX and Ada will be more well
defined. POSIX 1003.1, 1003.4, P1003.4a, and P1003.4b certainly appear at this time to support Ada-
83 fairly completely and, assuming no highly unusual policy is forthcoming from the 1003.5 woddng
group, the delta appears small.

77

NAWCADWAR-94109-70

5. CONCLUSIONS

This document has carefully analyzed each NGCR OSSWG interface requirement (except for the
very general requirements in Service Class 1) as it relates to the POSIX standardization effort. Of the 155
OSSWG requirements analyzed, 99 are directly met by the existing POSIX interfaces; Section 3
documents this mapping. Of the 56 remaining requirements, 44 have been classified as significant
unfulfilled requirements. The remaining 12 have been, or are being re-evaluated or re-formulated in a
manner more in keeping with a POSIX philosophy; these will ultimately either become met requirements,
or be dropped entirely as OSSWG requirements.

The 44 significant unfulfilled requirements generally fall into one of three classifications: those
that are nearly met by POSIX with the exception of minor details (13), those that clearly belong within the
POSIX framework but have not yet b6en addressed by POSIX (14), and those which are outside the
scope of the existing POSIX working groups (17). This "magnitude of delta" for each requirement is more
significant than the actual count of unfulfilled requirements. When analyzed by service class, there are
only a few trends (primarily the lack of POSIX support for service classes 5 and 11); but when the
requirements are classified by importance to the "Big 6" technology areas, as is done in Section 4, the
relative magnitudes of delta becomes clear: POSIX is moving in a positive direction in the areas of Real-
Time Systems, Security, and Ada, with only follow-up work required to satisfy most related OSSWG
requirements; while the POSIX framework currently addresses areas of Distributed Systems and
Heterogeneity, there is substantial additional work required to bring these up to OSSWG standards; and
finally the Fault Tolerance area has only recently been broached by POSIX through the OSSWG initiated
Fault Management and Administration study group and its pending POSIX Services for Reliable, Available,
and Serviceable Systems project.

In the strategy analyses of Section 3, it was found that many OSSWG requirements would be
best met by working within the POSIX working groups and balloting groups to ensure that existing
capabilities are extended or tuned, and that the necessary new capabilities are added; indeed this method
has been in use since NGCR OSSWG became active in the POSIX activities, and substantial progress has
already been observed, especially in the real time and networking areas. Over half of the significant
unfulfilled requirements suggest this approach, and if the POSIX Services for Reliable, Available, and
Serviceable Systems PAR is approved, virtually all of these requirements can be ultimately realized within
the POSIX framework. Since it has always been an OSSWG goal for the OSIF to be fully under the purview
of a single standards body, this is very encouraging progress indeed.

It was not always the case that this many requirements had a "home" within POSIX. First, OSSWG
initiated the Real Time Distributed Systems Communication (1003,21) project which has completed its
requirements analysis process and has begun drafting a standard ich will meet most of the unfulfilled
OSSWG networking requirements. Second, a Distributed Security (1003.22) project was approved to
address the unfulfilled security requirements and how the POSIX security interfaces will support
distributed systems. Third, although the Fault Management and Administration Study Group had
concluded that it was inappropriate for POSIX to standardize on Fault Tolerance interfaces a year ago, that
OSSWG initiated group continues to gather industry support, has closely followed the evolution of various
non-POSIX efforts in the Fault Tolerance arena (e.g. UNIX International, OSF, X3T8), and expects to
become a fully recognized POSIX project in the near future. These three relatively new efforts have
provided the foundation for many of the most difficult delta resolutions. Finally, recommendations have
been made to attach to other existing and evolving standards outside the POSIX framework where
appropriate (e.g. P1256/OBIOS, ANSI/RPS, ASN.1, Network Time Protocol, and the Dwight Wilcox
Distributed Realtime Clock Synchronization approach), but only if and when OSSWG has exhausted all
POSIX resolution alternatives.

This document defines much of the remaining work ahead for the NGCR OSSWG, especially as
ss rmbe,s debate and ballot the various existing POSIX draft standards and contribute to new ones. It

.ý!so srves as an important basis for the ultimate product of the NGCR OSSWG, a military handbook or
technical specification for the NGGR OSl.

79

NAWCADWAR-94109-70

This document recommends a number of OSSWG requirements be re-evaluated. Changes to
the requirements in the OCD may result from this re-evaluation process, which in turn may cause some
change of deltas in the next Delta Document revision. In addition to specifically recommended re-
evaluations, OSSWG has two general concerns about the requirements: First, OSSWG had purposely
avoided addressing the semantics of each requirement in a distributed computing environment because
of the relative Immaturity of distributed services within POSIX; that area has matured substantially, and the
time has come to explicitly split each requirement (where it makes sense) into its non-distributed and its
distributed context. Second, certain requirements have been perceived as dictating an implementation to
meet a requirement rather than stating the true requirement and giving the operating system the freedom
to meet it in the best way possible in a given implementation; requirements such as Write Contiguous File
(6.20) and Unacknowledged Connection Oriented Service (8.4) are examples. Therefore, OSSWG
recommends a thorough review of the OCD requirements, addressing these two overall concerns, prior to
the next Delta Document revision.

This Version 4 of the Delta Document is not the final version. This is a living document and will
change as (1) POSIX evolves, and (2) the OSSWG is able to develop new methods of satisfying the
remaining deltas. We intend to update this document yearly, at least until completion of the military
handbook or technical specification.

80

NAWCADWAR-94109-70

APPENDIX A

DELTA SUMMARY AND CROSS REFERENCES

The table on the following pages lists, for each OSSWG requirement (except the general
requirements of service class 1) references to all POSIX interfaces which OSSWG believes fully or partially
fulfill the requirement. The POSIX document number, paragraph number(s), and a brief description of the
pertinent interfaces and/or capabilities is provided.

In addition, each unfulfilled requirement is coded with a rating indicating its significance to the
overall NGCR OS Interface standardization effort: A rating of "a" indicates that standardization of interfaces
which meet the requirement is essential; a rating of 'b" indicates that standardization of interfaces which
meet the requirement is highly desirable; a rating of "c" indicates that fulfilling the requirement can be
deferred to a later date; a rating of "d" indicates that the OSSWG should re-evaluate the need for
standardized interfaces fulfilling the requirement.

Finally, for each unfulfilled requirement, the OSSWG recommendations are summarized.

81

NAWCADWAR-941 09-70

io C5_alc_1 v o
__ __ __ __ __ g If __

LU

z-
0wt

wI
I

u!. 11A -W'o I0'PUmom

U) cm E,: Z 26

vie _6 (4. Vi . . .

o~ w ~ 0 C4 w____:04

LL, aV 00~ 01 0 0

9L I- C- M - I (- - -M M- _ -M (L M M-L

-Jc

121

Uq IRt
- U

NAWCADWAR-941 09-70

E~~4 - wo U) Ctc~tC

Im 0

c -

om m 5- 2 -< L -o <o 0L -

w C= - z cc=_0 c

U, a 0 0 0

CC c~ CC CC 0 C Ch0

wL Cc CLto

5u e .!E *
co -: o 2 E -0- !SS E -6 Z -I

0 C 0 cc. :01!W>hi~f~i
C& co -62 ; .

CO 0 S, s 2C s !ý-

0 0 0 0 0 (0

. 'am -2 - t- 1.0V~ 0 co 0. a

0 .5 'srf C.i.J 0.0~ 0 - 0 000 C C 0'sC

,0,s se CL no * 2 OM ma O a' 6.0 -- a

!- 0rc-as , 9;3 0, O 0 2 0S !05t 00ooe 0 00 aoo tai 0 0000- l 00 0~a s
I00 s00 a.: a 2883

~~.' §. 0..0 0. 0. 0g.0. .-. . s.. -00. 0.. :- . 0.:

0.-p l 0 0

I!: II Dc- ,,I
40 W

vi .r.a 7-ic C)

*Y CY ,
0 0(' '0 ' LOIn0 O

NAWCADWAR-941 09-70

0

-0

00

w0

C.. IF- 4.5-

C1 0
LL.&§ ID 2' u

.2 CL c -0z
C2~ 0

Ill~~ CL22
0so C c c

f f3 06H ~ V' M- CLW

()~~~ TL~5 ~ .

. I Ej I § I. c

:3-2:3 U - &* 0ccg .d 0 U

Ci C
In V

~~V -o C o .ýx-_ _

0 .0

IS - 0

*2 2
.~~ 03

UU

t, uo to fa fo

NAWCADWAR-94109-70

10 't O

Lu O0 &ZO

c r.

-.. • - (. 4 4

-S-1. a I , - ui0

000) (9, u 04 ((1 L
cc MS -9ce Mu 00 C~ * ,71m2 4)0(3

V! -' q _ _ _ C. C t y y . C!40.

Ch. iu 6 0'2 , 4q- 0C

%1 0 0000 02 000 QdQ 2t dm im ui' iw im 6

800080000000
0

.00

00 c -4 3 4 0 co 40)

NAWCADWAR-941 09-70

C-)i

LU

LU
z U

LU e

ot S 0 0 ~ 0 (

cc I.~ s . 0 F (00-0

so 10= a:=W Or a 0 ZMC.SC = Grb 0:a

-1
c

C4.. .n .5 .-~ ~

. 0 0 0 .04 04 0N W 0 M.0 w 0 164 6 0 64

CY N cm - N mC
so. 'I ci n) 'It) Iq U1 q6 't4 7k n' t

a)
.3 .x. 0 01

II I I CI

NAWCADWAR-941 09-70

.2w
00Ic E

c0

100

0w

§UV

0L - 2-

el 0,L 0
C)ý

cccc p a
.5(=-0

SO -at -8 -I8 ' 'a I E0
% 00S

LL3 a *~ *E f~

Cog 1 0 § .15"sn s 'I

z it :6 1 a

-. N N 1c ' C4a 4

Co -C4 to _ _ _ _ f- -

a. 4 00 4 0 t 4 .Z .Yt :W 1 t o4 0CA0 0 to to rC Nvt *I'r I dt

z 0 .0 2
-j v.0. ClM. 0fv0. - V .---. ~...

'5x A

00

Sf e

i. 00,- CR) ii
Go Go

NAWCADWAR-941 09-70

0U6

000

z A_ _A VO(L

w

Cl)
888- Go8 t

IL.2 U a2 ca
5- 0.0.0 c

0~C 0 0* C .,

4z In FL ~

o ~ C ccoO m~o r _____

4* LVLV 9 a
'CV Oi LV)olCO) FMi 4000 0 *

IL 1*1 Vv)c(mwiiwiwi bn*i*v*

0V LV

0U a.
08

8 1-co0docAc

NAWCADWAR-941 09-70

0

o E' E

UA
ILl

Z~ iE

U) I_ I w

I '' Ia-- t !0 _00 a ~ 08 64oo 00~ 0 -a'

0' 2 4o E 0 ~ E

O _8 E Ea o o0. O0~ . 0 2L

a- . CO V w-) a V.) .. i

OM~ 0) 88
.j00 0-a - a .

ul c IL L CLI L

II I0C0

NAWCADWAR-941 09-70

cr :

(0

z
Ir 0

wU t=F I c j-

IL 102 La Z

0 I Q
oa a C

60 g~ewjj1e§S

(00

4 U 4 V

g I _ _ _ _ _
I- ~ 0..- 0. __ __8

LU ccCL CLCL (

Cl1

NAWCADWAR-94109-70

LU

m a!

LL

cc Will I55
0 ai as; Hal to

!E -e ' -4 4 -a3 61c og ____J92______

Um . -4- seap
9. 1509.1

Z Z.§ASCoii Nowt10

(0MWlogl l
cc

"e t - jf':C mt 4 v C iC iC -: C4a ' C i .C '-ItN' 4C
M- a. 0)C O4) C 0C a)C)04)Mt

W.u~

03
Uia

0 - 1

NAWCADWAR-941 09-70

'0

o a:

0
-V

(i % .
W r_ (A

iv =0 so-
L(S

*U 8.wx -- ,O--o
So S

#A((; 0.a

.?- .o .C L

C-.00 0) 005 crC
s -EElj FIG E IE *c

-4 . r- I. E0

oE 4.0 '0 (5 .0 0E

4 c4

1~ v: q -R 0.0. I

4" 40W 0 oC

0 0

01 I.Ii__ __ _ __ __ _

NAWCADWAR-941 09-70

cJ

0 8r

cc 00eC
LU 5

SU W
A= cc c0

z Z 0 Ot0soa; a;v;Ia; r. iwe M = owis 0.2 o owm i A 1o 2 64-C-a' s4
ccEc

(U 0, 0 Wt
i em01 0 r V

z. 0..Mf CLC
we Oo .5a" 0.r D c0

SoEDOr,215 8 0 ow 78 0e o 8t- xC m>0:cr M5c C c 0.

i j'5 a1o5 -0.0

oo I t
Q. CLCL- - w- C106 5S to~Ž2 ~ 0 . C0L

00 oO 0c.'O o& OOdc 00000000 CDOU)CO Cco(CcoU)Cco U)CO 0 rccm

R4 'It 0R 9 -0 04 g

r, § 2 § CO m 828 0
0 0000

LIU IL I- IL IL0 (- 0- '- .. 0 ..- L .

0

I* 0

0o S
* £ - E

3.9 x

0u -a-I _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

NAWCADWAR-941 09-70

~0

c CO

b -Z

4-. 4
00

C-)0

cc

w

w 0. c £0
m 0 0 0£c

a Q ~ .5 Cc c

u. *d 5. C
--L 2. t a 8E 6Z '0 S

3: v~I 00 CF*~
oo Z

IV ;3 a 0 e

r 06 el 0L0)

SQ cc I .ý. 'Dc"6,o -6 & 00 cca0Siw~~0 0 ________ 8 0 ~0 0 ~
a 0 0.06 0

A. H. Il0 0 sO'I II ___3 _

NAWCADWAR-94109-70

LIII 2s IIsN
(0 ra

0 0 00

W x 2s ia HN L

g 0

4 22 0 0

E. IC .- t I .S
4.0. 00. .' .4 .-

U) C900 C II)w0

Co0 -- __ __ -

U. It0 0. .0 'a . U4 - 4.. 4. 4.U4 ~ .es..
CD 4.IN .to 45(x

3.j 00a8gggg8

E o- w cc l- l-

IMF~~ 81lbi U1

.0 A.I 't_ lot$
M4. 99gi

AL IL IL IL9L IL--

NAWCADWAR-.941 09.70

C

z E M322

w E .E E E E

**LU0 ?.!I

LLm c ia

cc D

0 .1 &0 6 .

HlA_ _aa_ .0 -E it' Si - 'CL-

w- I - 0.. .- 0.. 0y00

C4C

Iq i)

0.. C4

NAWCADWAR-94109-70

anr
c

CC

o 1z- - - -

Co: K C CL L C

Iul f

o
Z-

L L. 2
o, 1 1 E 5.62

0 c c~

El 19 a II II

U. at.. C

CY N cmN
C4 C.) c)~ U - @-- '

cj' - C m cmiN Nm ci C4 C N c
ý1 V- - - c -- tor

A - -sa

NAWCADWAR-941 09-70

CC
es0

LU

U.)

w I

I co
0,:m CI

cc fF4 w 8

o io -. 3.
' c cd.J W* c

4l C4V C4 I

wo - 40 C

CL vici4646ci40 cq0 0 4 wv;46- - - -

a ccm,(Y

~00

00
uj I 9L L ILCL C

ii i)Il Id
I *

NAWCADWAR-94109-70

*1 0.
3

* 0p

Cm1

Ci) a

Lu

IL 0.00 C
Lo~~~ 0 scl-koLu & . 02 .Cr ! !:c2gg 'Er

(f c I , !tW
**O Lf g.C)1--1110 -I~ 1-0 -4-

46 1_ _ _ _ - -8 T -5 r- . c

49i n-S= rý-
cc 6 0) Gr E 6 !1

s LA -

4! 0.o 0o CO 0o 6, 0 4 - N o mC

4 It
*~o §8.~ .

W ICLII I C I I
Co (

0 0

NAWCADWAR-941 09-70

'AA

0 ccc

w w

fail 0. S
T.2

I~l l
?I 0 0 0 0 0 m s e 3

HI t tI 9-U 0Ii~ 8 ______WEC

(00

r: C ! 0 .019 r- CI to) It0 V woo V'4j4 ic.cj!qc4 4
c!~ It vr v 0 4 q- I *t

C.) 1

00 .cc

CLa 0 LE

NAWCADWAR-94109-70

& & &
3x CD(

0 ir

LL. j;

CC*

W c

L? 111111 a -aI

z -p1 g
2.) i I aC

3)L 25b0b 2 -0* I - it((a, ,

o4 V OR 0

ZU ix L tL cLCCL L -

0 X~~~O~5~~Q) cc~ LDQC~I(

C4 o

NAWCADWAR-941 09-70

C

3 *

C,

LU (

z 0

CU
19oO 'E'.

LU .~ a D13
E- Er C.E

0 . -2- __ ~

01 .

011~' 11~~.* 1 H

ai (00) a) 00 o a0z 20iO

Cia od

W, (%44f b C c c C q cq g C4
;I I Iq4 C c;ý: 4 4 qq ' 'tq 44 qq C

LU 0* -- 0-O~-ma

(0 crE

Io (i IIA

V? Ve q %0 %

NAWCADWAR-941 09-70

C4

E M to0 0t 0t 0 M c
E

cc :2 a. 0 2 .0 * *

0 -r - - - - - --

w -. x X -Y

z E-u0uU'
to E) E a~ E E ~

cc E -E a

U. -Mr C EC' .

0o CL .0-C "1 ~ -0

o ~ ~ cC~ 0=. .g ooo~o 0 -. . 0 0
o 2- aee 1-Eo;a a

U) g~ 0,- -o
cc E .,

2~ 00 0 Icc
-- 0i --- 0OU 00CO0

dCDC F0F-FF D C7 C CC c a

Co1 - s I -I- -a - i s__v__

0~~~~~~~ 0D 00 00 0 0 0 0 . . 0 0l

to - N0 0 l 0Y 0 0 00 0 0
- - 06 0 00 00 0

-- C4 F, FF0 F 4 F! F4 -4 04 C40 C

0. 0.0 N 00 -0.0 1.... 0. 0. 0. "nC4 m
cc .)(aCO wco0~ OD_ _ c ItIt 0.0 w n V .i-: .

~~Ss Iwo

't C*) It It cu r- CY It F V-- * I I I, tN q

(CWt co CD C Moo 200 CIO
- , F F - - a- -

NAWCADWAR-941 09-70

S-0

t ! 'a
S fib

CLU 1

0 cc

0
z,
ILl 0v
w. k I -~ -~ s

0 we~a

8.9i .E'

CL rl5m I pg 1
!_ c ww oo mS,

to -o

ce -a' 70 1 < .O

-4* is vO s s s 0. 'a0 0 MO M 20.0 00 .210

N S) - CO _ _ _

0.00 M 0m 0 0i vi0. 0i 0- vi 0ý c j !v!c !'t

cc m
V ~ 000 V 01 V cm

w K CL CL Q-- M M- 0 -L M- C- 00 00 (-L

2 1i
-rf f- . c o a

4d 0 6 to 40 c to
~~5ra I I. - -

Addressee No. of Copies

Commanding Officer .* * * • *• . * • . * . . .* . . .• * * * • * * * * * * * • * • •............ 2
NAWCWPNS
1 Adminstration Circle
China Lake, CA 93555

(1 for Code C21C; Lee Lucas)
(1 for Code C026; John Zenor)

4

Addressee No. of Copies

Commanding Officer *,,0o,***.** * *... .. **.,,. , 1
NAWC-AD Pax River
Kevin Dodson
Computer Sciences Directorate
Pax River, MD 20670

Dr. Karen Gordon * *.oo.,°°eeo..... o,*...*,,,o*
Institute for Defense Analyses
905 S. Lane Ct.
Brentwood, TN 37027

JoeGwinn -e**e-.oo.....,.,,e o,,,,,....,. o ..

Raytheon Co.
MS 5-2-505
528 Boston Post Rd.
Sudbury, MA 01776

MaryHermann o* o,- ,°°,,o 0o,,°°°°oo°,,°o°°°,,o.,,° *o,,ooe 1
Raytheon
MS P3SU10
50 Apple Hill Dr.
Tewksbury, MA 01876

Commanding Officer .**......,....**.*** *. * * ... *. .. *.* 6
NSWC-White Oak
10901 New Hampshire Ave.
Silver Spring, MD 20903

(5 for Code U33; Steve Howell)
(1 for Code B44; Helmut Roth, Rm 2-151)

Commanding Officer .* -- ***,e**°.,** **,**,,,..****, 2
NAWC, AD Indianapolis,
6000 E 21st. Street
Indianapolis, IN 46219

(1 for Code DP301 N/MS-31; Diane Kohalmi)
(1 for Code DP304N/MS-26; Greg Vantreese)

J.F. Leathrum .,,*....................oo, ,, o1..* .. ,,.,*,,, 1
Clemson University
ECE Department
Riggs Hall, Box 340915
Clemson, SC 29673-0915

CraigMeyers ,,,o,,,,°, ,,,e,-ee*e*e,*e,,*.,,, ,,,,, .,.°,,°°o * * 1
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15123

Addressee No. of Copies

V. RajAvula ********** *****.**** ********* ********** *** 0****1

PEO (SD) D2
2531 Jefferson Davis Hwy.
Arlington, VA 22242-5170

NUWC, Newport ****...... .**.........** o* O*O@ 14
Code 2221, Bldg. 1171/3
Newport, RI 02841-5047

(1 for John Brennan)
(1 for Greg Bussiere)
(1 for Dan Juttlestad)
(10 for Jim Oblinger)
(1 for Bruce Stevens)

Unisys Corporation * • • * • * ** **• * . 4
P.O. Box 64525
St. Paul, MN 55164-0525

(1 for Steve Case)
(1 for Dale Georgen; MS UIM30)
(1 for Kar Kruempel; MS Ul M30)
(1 for Dr. Del Swanson; MS U1M30)

Elizabeth Czul ** • • * ****•*•*• •** ***** *....*.***.*... .* 1
Booz, Allen & Hamilton
Suite 711
2231 Crystal Drive
Arlington, VA 22202

Jim Johnston ... o..**............. **.........*...** ..0**
Booz, Allen & Hamilton
8283 Greensboro Drive, 8th Floor
McLean, VA 22102-3838

NCCOSC RTD&E Div.......-.--...-.-..... e.-*.--*** 11
Code 4122
49180 Transmitter Rd., Rm. 2
San Diego, CA 92152-7341

(1 for Shane Deichman)
(10 for Donna Fisher)

NCCOSCRTD&E Div. **• • • •• • • •*** • • • * * ••** • • 1
Gil Myers, Code 4103
53140 Gatchell Rd., Rm 355
San Diego, CA 92152-7440

NCCOSC RTD&E Div.................•...• * • *.• •.•.•• .•.•••. 1
Dr. Mike Shapiro, Code 4123
271 Catalina
San Diego, CA 92152

Addressee No. of Copies

Air Combat Commandm.....................°°*o,,°***,°....°**... 1
HO ACC/SCP
Attn: Capt. Steven Muhssm
Langley AFB, VA 32663-6343

Director, Defense LogisticsAgencyge°, *,° **,, °, °° ° •... 1
Attn: ACQOA
Cameron Station
Alexandria, VA 22304-6100

Director, JIEO °°.°.° , , ** ° , °° .° °.. . 1
Center for Standards
Attn: TBBD (Richard McLane)
Fort Monmouth, NJ 07703-5613

Director, JIEO°°,,,-°°,°,°°o °o °................. °o°.°,°**
Center for Standards
Attn: TBE (Capt. Petersen, USN)
11440 Isaac Newton Square, North
Reston VA 22090-5006

Director, National Security Agency ,° °. ° •.° °.• °. °•..°. 1
Attn: Code K642 (Paul Minnigh)
Fort George G. Meade, MD 20755-6000

Director, Defense Mapping Agency (DepSo) a.°°ng.genc..e.... . . °°°° I
Attn: PRS, POC: Billy J. Love
Mail Stop A-1 3
8613 Lee Highway
Fairfax, VA 22031-2137

Director, Defense Intelligence Agency *.••....•.........•.. •... 1
Attn: James C. Moore, DAP-DMO
P.O. Box 46563
Washington, DC 20050-6563

OSSWG Members

Reed Adams......... o
VITRO
5001 N. SR 37-BUS
Bloomington, IN 47404-1626
Dr. CharlesArnold ° -.-.o.. °... °... ° . °. ° .•°°°.° ° .
Arnold Associates
P.O. Box 1990
Marina, CA 93933

Addressee No. of Copies

U.S. Army Information Systems Engineering Command -*........ I*'• 1
Attn: ASQB-OSI-S
Fort Huachuca, AZ 85613-5300

Director, U.S. Army Industrial Engineering Activity • • • *• ***•*..*• * • 1
Attn: AMXIB-PA (Tom Schneider)
Rock Island, IL 61299-7260

Simulation, Training and Instrumentation Command *...*.*...•** •• ••• • 1
Attn: SMSTI-SI (Chris Catotti)
12350 Research Parkway
Orlando, FL 32826-3276

Commandant, U.S. CoastGuard Headquarters-*•• • •*** '•• •• • •• 1
Attn: G-ELM-4
Washington, DC 20593-0001

HQUSAF/SCXS **.**..***.*.-***.o.,°,-°**°°°-****°°° 1
Attn: Standards (Fred Virtue)
1250 AF Pentagon
Washington, DC 20330-1250

HQAFMC/ENSR*,-.°-, , ...*.° °,,° 1
Attn: Major George Newberry
4375 Chidlaw Road, Suite 6
Wright-Patterson AFB, OH 45433-5006

A SC/SM A ,* , , * * , , , * * * * , , , * , , * * * * , * - , .. .

Attn: Dave Bond
Building 46
1895 5th Street
Wright-Patterson AFB, OH 45433-7200

Computer Architecture and Standards Division • *•°°• *** **ee*'e • ° • 1
615 SMSQ/CITA
Attn: Denzel Henderson
4225 Logistics Ave., Suite 15
Wright-Patterson AFB, OH 45433-5754

HQ Air Force C4 Agency **-°*°--,--*°°,-°-°°-°*,,-°,°°,°,*, 1
HO AFCUA/TNABF
Antn: Rex McKinnon
607 Pierce Street, Room 303
Scott AFB, IL 62225-5421

HQ Air Force Communications Command* ° **•• °° *' *° 1
SSC/XPT
Gunter AFB, AL 36114-6343

DISTRIBUTION LIST

Report No. NADCADWAR-94109-70

Addressee No. of Copies

Space and Naval Warfare Systems Command ••...... 6
2451 Crystal Drive
Arlington, VA 22245

(5 for SPAWAR 331-2)
(1 for SPAWAR 10-224)

Naval Air Warfare Center •* •* *** * * ***• *• •• * • • *** • • • • * • * • • • • • • • • • •• 13
Aircraft Division Warminster
P.O. Box 5152
Warminster, PA 18974-0591

(2 for Code 0471)
(10 for Code 7032; F. Prindle)
(1 for Code 7033; D. Hsu)

Defense Technical Information Center o o o o o ...°° 2
ATTN: DTIC-FDAB
Cameron Station BG5
Alexandria, VA 22304-6145

Center for Naval Analysis • • * ° ° * °. * ° ** ,, *** .°.• • ° * ° • ° • • •°*o •. • • * 1
4401 Fort Avenue
P.O. Box 16268
Alexandria, VA 22302-2068

SD-1

Weapons Systems Improvements and Analysis Group o • o -° o - o• o 9 o o ° a e o o 1
Attn: George Desidero
5109 Leesburg Pike
Suite 306
Falls Church, VA 22041-3466

CALS Evaluation and Integration Office ••° •• • •° ••**** •**'* • • 1
Department of Defense
Attn: Ms. Marianne Pietras
Room 3D833, Pentagon
Washington, DC 20301-8000

Director of Defense Information ° #00 • • • ° • .• • .• ° ° • ° ° • ° * • ° • ° ° 1
OSAD (C31) Information Technology Directorate
Attn: Bert Newlin
Crystal Gateway 2, Suite 910
1225 Jefferson Davis Hwy.
Arlington, VA 22202

