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Limitations of Geometric Hashing in the
Presence of Gaussian Noise

Karen B. Sarachik

Abstract.
This paper presents a detailed error analysis of geometric hashing in the domain of 2D object

recogition. Earlier analysis has shown that these methods are likely to produce false positive
hypotheses when one allows for uniform bounded sensor error and moderate amounts of extraneous
clutter points. These false positives must be removed by a subsequent verification step. Later work
has incorporated an explicit 2D Gaussian instead of a bounded error model to improve performance
of the hashing method.

The contribution of this paper is to analytically derive the probability of false positives and
negatives as a function of the number of model features, image features, and occlusion, under the
assumption of 2D Gaussian noise and a particular method of evidence accumulation. A distinguish-
ing feature of this work is that we make no assumptions about prior distributions on the model
space, nor do we assume even the presence of the model. The results are presented in the form of
ROC (receiver-operating characteristic) curves, from which several results can be extracted; firstly,
they demonstrate that the 2D Gaussian error model performs better for high clutter levels and
degrades more gracefully as compared to the uniform bounded error model for the same conditions.
They also directly indicate the optimal performance that can be achieved for a given clutter and
occlusion rate, and how to choose the thresholds to achieve the desired rates.

Lastly, we verify these ROC curves in the domain of simulated images.
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A 1 Introduction 2 Statement of the Geometric Hashing
Algorithm

Geometric hashing is a technique introduced in [LSW87], We begin by reviewing the original geometric hash-
[HW88], to solve the problem of recognizing objects and ing algorithm assuming exact measurements [LSW87].
their associated poses in cluttered scenes. The main idea [HW88]. The algorithm consists of two stages, a model
behind the technique is that instead of checking every preprocessing stage and a recognition stage. For simplic-
possible correspondence of image to model features to ity, we restrict attention to planar objects in arbitrary
establish a model pose and then checking the image for 3D pose. The model representation consists of a set of
supporting evidence, the recognition process is consid- (z, y) points in what we will call model space, which is
erably sped up by splitting it into two stages. In the simply some fixed coordinate system. The points can be
first stage, a database of all possible views of the model corners, points of high curvature, or points of inflection
are precomputed and stored in a hash table. Recogni- of the 2D model.
tion consists of using 2D image features to index into Assuming orthographic projection, we can repre-
the hash table in order to vote for possible model poses. sent the image location [u,, vi, 1]' of each model point

However, under the assumption of uniform bounded [xi, yi, I1T with a simple linear transformation:
sensor error, performance degrades rap-Idly with even a ri a, 1 [, Z 1rmoderate amount of clutter [GHJ91]. Intuitively, the Vi = d tyreason is that the error causes the point entries in the 0 0 1

hash table to blur into regions, making the table denser
and increasing the chances that a random image point where the upper left of the transformation matrix is a
(i.e., a point not arising from the model) will corroborate 2 x 2 non-singular matrix, and ft", jY]T is the translation
an incorrect hypothesis. vector. This is because the projection onto the z = 0

plane of a rotated, scaled, and translated point (z, y, 0, 1)
In this paper we analyze the effect of a more realis- simplifies to

tic noise model on these techniques. The question we
address in the paper is, what kind of performance can 1001 [T r 2  1 3 ti z1
we expect from the techniques as a function of the num- 0 1 0 .s r2 1  r22  r 23 t
ber of model features and clutter features (i.e., signal to 0 0 0 r31  r32 r33 tJ 0noise ratio)? 000r r r z Lii

To answer the question, first we briefly present the r 1 2r 0 ix Y
original hashing algorithms, then we show how to mod- r21 r22 0 t [
ify them in the presence of sensor error. We model the 0 0 0 0 I 0
error as a 2D Gaussian distributed vector, which is often
a more realistic model than the uniform bounded error where S is a positive scale factor. It is a well known
model used in the earlier analysis [GHJ91]. A voting fact that if a point has coordinates X with respect to
function for accumulating evidence for hypotheses based a given basis, then a linear transformation on the entire
on the error model is presented. (Similar approaches space leaves the coordinates of the point unchanged with
to extending geometric hashing have been explored in respect to the transformed coordinates of the basis. The
[CHS90], [RH91].) This is the background for main ques- coordinates of A9 with respect to the basis are called
tion, which is, how does one determine a reliable point affine coordinates, and it is their invariance under linear
at which to separate correct from incorrect hypotheses? operations which is utilized in geometric hashing.
This question is relevant in the noiseless case as well: as- In the preprocessing stage, the hash table is con-
sume there is a 25% occlusion rate, and we are searching structed as follows: Every ordered triple of model points
for a model of size 20. Do we decide that a hypothesis is is used as a basis, and the afline coordinates (a,/3) of all
true after seeing 15 corroborating features, or 12, or 10? other model points are computed with respect to each
Clearly, the lower the acceptance threshold, the higher basis. Thus, if i1 0o, inV1 and rn2 are basis points, then we
the probability of false positives, and the higher the ac- represent any other feature point by
ceptance threshold, the higher the probability that we
will miss a correct hypothesis, i.e. of false negatives. n7ii --= n 0 + adi(ffi - AO) + fli(in2 - io).

To find the optimal acceptance threshold for a fixed The basis (i.e., the 3 model points) is entered into
occlusion rate and a fixed number of model and clutter the hash table at each (ai, #i) location. Intuitively, the
points, we use the given error model and voting scheme invariance of the affine coordinates of model points with
to derive expressions for the probability density func- respect to 3 of its own points as basis is being used to
tions of weights of positive and negative hypotheses. We "precompute" all possible views of the model in an im-
then vary the acceptance threshold and find the proba- age. The actual algorithm is:
bility of false positives and true positives for that thresh-
old. The results are plotted as ROC curves, which indi-
cate the optimal performance that can be achieved for - for every other model point mi
the given level of occlusion, clutter, and number of model (i) find coordinates mj = (ai, Pj) with respect
points. to basis Bk



(ii) enter basis Bk at location (aj, 0j) in the the image and a single (a, #) location for the same point
hash table. in the hash table. Under the assumption of circular uni-

The running time for this stage is 0(m 4 ), where form bounded error, (GHJ91] showed that a matching
re=number of model points, gives rise to a circular disk of possible image locations

At recognition time, the image is processed to ex- for any projected fourth model point, and that this cir-
tract 2D feature points which are used to index into the cular disk in the image translates to an ellipsoidal range
table. The choice of features used must be determined of afiine coordinates in the hash table. Therefore, in
by what points were used as model feature points, i.e practice, the bases should be stored (weighted by some
if corners were used as model features, then one might function of the error distribution) at all possible affine
take the intersection of all line segments to be the im- locations for the fourth point. However, it is simpler
age feature points. Every image triple is then taken to to analyze the probability that a uniformly distributed
be a basis, and the affine coordinates of all other image random point will fall into a given circle, than to trans-
points is computed with respect to the basis to index late the uniform distribution into a distribution on affine

into the hash table and "vote" for all bases found there. coordinates, and to analyze the probability thse ran-
Intuitively we are searching for any three image points dom point with af.ine coordinates drawn from this dis-
which come from the model, and using the hash table to tribution will fall into a given ellipse. It is clear that
verify hypothesized triples of image points as instances the answer is the same, but that the first space is more
of model points. Such an image triple will yield a large manageable than the second. We will therefore choose
number of votes for its corresponding model basis. In to do the analysis using the simpler space, keeping in
particular: mind that the results found in this fashion are true of

the analysis done in hash table space as well. One con-
. for every unordered image triplet (io, it, i2 ) sequence of this is that the analysis will apply equally

(a) for every other image point ii well to alignment and to geometric hashing.
(i) find coordinates ij = (a,, 1j) with respect In the modified algorithm, instead of incrementing a

to basis (i0 , it, i2) histogram count for every eligible basis by a full vote,
(ii) Index into the hash table at location (aj,, 13) we increment the basis count by a number between 0

and increment a histogram count for all and 1 according to some "goodness" criterion, which in
bases found there. our case is a function of the distance of the point from

(b) If the weight of the vote for any basis Bk is suf- its expected location. Because of this, we must look
ficiently high, stop and output the correspon- at the density function of the accumulated values fordence between triple (ia , il, io ) and basis Bk as correct and incorrect hypotheses, instead of the discrete
dencbetwn tiplhes(is, ,probability of a particular vote. We will use the term
a"weight of a hypothesis" to denote this concept.

In some versions of the algorithm, the hypothesis that
is output subsequently undergoes a verification stage be- 4 Overview of the Analysis
fore being accepted as correct. Note that we need to
order the points either at the preprocessing stage or at The main claim of the paper is supported by the argu-
recognition time, but not both (or there would be a six- ment whose steps are as follows:
fold redundancy of correspondences). We choose to or- (a) A 2D circular Gaussian distribution often a more
der the points at the preprocessing stage and enter every accurate model for sensor error, as opposed to a model
model point with respect to a single unordered basis set assuming bounded uniform distribution [Wel91]. While
6 times, once for every ordering of the basis set. This a bounded model leads to conservative estimates on per-
makes the table 6 times denser, but then at recognition formance, a Gaussian model may lead to more practical
time we need only to choose an unordered image triple estimates.
and impose a single arbitrary ordering upon it. This (b) Using this Gaussian distribution, the following is
way, when we use the remaining image points to index true: given a correspondence b, tween 3 image points and
into the hash table, we vote for the ordering of the model 3 model points (referred to as a hypothesis for the rest of
basis set as well as model basis set itself. The termina- the article), and assuming a fixed standard deviation o,0
tion condition for accepting a correspondence of bases for the sensed error of the image points, the location of
(and hence a pose of the object) and the confidence of a fourth model point with affine coordinates (a, fl) (with
the result are exactly the issues we investigate in this respect to the 3 image basis points) will also have a 2D
paper. circular normal distribution with standard deviation a,:

3 Modifications to the Algorithms in 0'0((1 - _ #)2 +a + #2+

the Presence of Error Note that the possible distance of a fourth model
point from its predicted location is now unbounded. In

We now assume sensor uncertainty, namely, that a model our scheme we will pick a cutoff search distance of 2 ore
feature appears at its projected location, but displaced for possible matching image features, which will imply a
by an error vector drawn from some distribution. With- probability of false negative identification of 13.5% for a
out noise, a correct matching (i.e., a correct pairing of 3 single point.
model basis points and 3 image basis points) yields a sin- (c) As in [GHJ91], we find the density of a,, in one
gle (z, y) location for a projected fourth model point in case when the values of ore come from a model appear-



ing in the image (fH(O'.)), and in the other case, on ae points, the distribution is:
resulting from incorrect hypotheses (f-H(a,)). The two
different density functions are r - 4 t[ -0 O

ri 4  W3 £! 2m~.f <.. <~f~~~Pe)~ lb.e ... [Ce Tv71 V
f f0(. f(V- = v) = [in-- 1 ) - 9 <

where b1 = 0.58, b0 o 0.35. [Uv v -427V] < U < f4
(d) Next, we modify the recognition algorithm so that 0 otherwise

it assigns weights to points found within the error disk, Dropping n points convolves this distribution with itself
as opposed to a single 1/0 vote. We choose to use: - 3 times:

1 -- V_ n--3
v 2 ( = v) =0f(v 1  )

where d =distance from the point's hypothesized to ac-
tual location. This is the value of the 2D Gaussian den- For a model of size m and a correct hypothesis in
sity function whose center is at the hypothesized loca- an image with n points, the weight of the total vote
tion. for this hypothesis is the sum of weights over all m - 3

(e) Define random variables VM = the weight that other projected model points plus the sum of the weights
a model point's projection contributes to its supporting of the n - m clutter points. We will call this random
basis, and V- = the weight that a random image point variable Wi, m-V, + f V7. Though the
contributes to a given basis. To demonstrate what this random variables VH, are not independent, we make the
means, in the simpler bounded uniform error case, the simplifying assumption that they are, and proceed with
distribution of VV is: the analysis. Assuming independence, the sum follows

(I(-c) v=I the distribution:

f(V =V) = c V= 0 m-3 n-rn
0 otherwise fW®, = V) = f f (VH, ) ® < f(Vv,)

i.e., the probability that a fourth model point will i=1 =

contribute a weight of I to a correct hypothesis is 1 - c, The validity of this assumption will be examined in a
where c is the probability of occlusion. A more compli- later section of this paper. We will use the central limit
cated expression holds for VF [GHJ91]. theorem to avoid actually having to compute this distri-

In the Gaussian error scheme with a cutoff distance bution, and will assume that the result of the convolution
of 2a, these distributions are: is Gaussian.

c +e 2 (1 _ C) V=0 (g) Given these two distributions, we can now find the
(r-_)2 __ 1 probability that an incorrect hypothesis will look like a--' (S 2 - e--=tv•i) tl < V < t2 correct one. The problem of deciding whether a sen-

f(VH =V) - ev - 12 < V < 13 sot basis corresponds to a particular model basis is a
(-), 72M- simple binary hypothesis testing problem, for which we

1,r-(72- - Sl) f3 < V < 14 can easily find an optimum decision rule. We postpone
10 otherwise the discussion of this rule until a later section; for now

1- r , - v0we will simply state that the decision rule yields a fixedr tb 4 , s,5J probability of false positive (PF) versus detection (PD)J (e *Vr 11 < V <1 2 as a function of threshold. It is also shown that this
f(VI = 1) = • (- 1)2V• 12 <~ v 13 decision rule performs better for high clutter levels and

( X v- degrades more gracefully as compared to the analogous
i (• -s " 13 < V S 14 optimal decision rule in the uniform bounded error case.

0 otherwise (h) Now let us step back and look at the overall de-

where cision problem. We pick three image points, and accu-
1 1 mulate weights for (-) * 6 bases. Suppose we are willing

""2 = 2 to verify (by alignment or any other verification tech-•rs7C 2 2.S22 nique) all bases that pass the initial test, as long as there
1 1 are < k of them. Then, an overall false positive is the

13 21rsl 2 e2  14 = 2-rs,2 combined event that the three image points being tested
do not arise from the model, yet more than k model

and 81, s2 are the minimum and maximum allowable val- bases "look good". An overall true positive is the com-
ues for ae, respectively. bined event that the three image points do arise from

(f) The probability density function for the weight the model, that < k model bases pass the test, and of
of an incorrect hypothesis is calculated as follows: For a these, one of them is the correct one. We will call these
single random point in an image with m projected model combined events fiF and fPD, and

3r



Multiplying by a scalar yields:

P(nF) = 1 - p')( )-' f ( ,y)) =(- :1--0 l1-

P(fD) = PD*• P.(1 -PF)(3)-'
i=0 _

The following sections show the derivation of these V/•(cay)
distributions, and the results of the analysis both ana- Therefore, assuming i to be 2D Gaussian with 0 co-
lytically and empirically, variance and standard deviations aio, = ary = a, the

distribution of the vector in equation (1) is a 2D Gaus-
5 Deriving the Projected Gaussian sian with covariance 0 and standard deviation:

Distribution o. = u((1 - a -_ ) 2 + a2 +132 + 1)1/ 2  (3)

In (GHJ91g an analytic expression for the case of circular in both the x and y direction. Because the Gaussian
error disks was derived as follows: given 3 model points distribution is not bounded, we choose to terminate the
(with model space coordinates) as basis, and the affine search for points after a radius of 2u,, which means that
coordinates of a fourth model point with respect to this we will find an image feature arising from a model point
basis, the expression for the coordinates of the fourth 86.5% of the time (this is demonstrated in a later sec-
point in model space is tion). Note that this expression is always smaller than

rn4 = Yr1 + a(r42 - rK1) + #(ri3 - a0-), its analogous expression for disk radius in the uniform
bounded error model from equation (2) because of the

Under an arbitrary affine transformation T, each model triangle inequality. In the comparison, r = 2c.
point projects to the location

= Trfi + 4 6 Determining the Distribution for a
where ii is a vector drawn from the error distribution. In the analysis we use two different probability densities
The possible location of the fourth model point is found for oe, one for correct basis matchings and one for incor-
by plugging the first expression into the second equation, rect basis matchings. Intuitively, this is due to the fact
to yield that when an incorrect basis matching is tested, more of-

i4 = Tni 4 + i4 ten than not the projected model points fall outside the

where image range and are thrown away, while when a correct
hypothesis is tested the remaining model points always

44 C1 - #/)il + C142 + 06 + 4. (1) project to within the imaae. In tests we have observed
When the error vector is drawn from a uniform circular that over half of the incorrect hypotheses are rejected for
distribution with radius e, the expression for the pro- this reason, leading to an altered density for ar.
jected error vector is found to be Let us call the two distributions fH(ore) and f--(or).

I 1 - )1 + I1+1 ~1+1] (2) We empirically estimate the former distribution by gen-
erating a random model of size 25, then for each ordered

For this paper, the sensor error vector is drawn from a triple of model points as basis, we increment a histogram
two dimensional circular Gaussian distribution. The 2D for the value of a, as a function of a and 0 for all the
Gaussian probability density of a random variable & with other model points with respect to that basis. For the
0 covariance is denoted as: latter distribution, we generate a random model of size

-2 2 4 and a random image, and histogram the values of ae
f (z, y)) = I eo •- for only those cases in which the initial basis matching

27roY,,Y, causes the remaining model point to fall within the im-

= f(a= z)f(ay = y) age. The distributions for or, found in this manner have

Because the two components are independent, the prob- been observed to be invariant over many different values
ability density of the sum of two random variables with of model and image points.
2D Gaussian distribution and 0 covariance is: The model is constrained such that the maximum dis-

tance between any two model points is not greater than
f(d + b = (z, y)) = f(a: + b. = z, av + bi = y) 10 times the minimum distance, and in the basis selec-

Convolution in each dimension yields: tion, no basis is chosen such that the angle 10 between
the two axes is0 < l< kI7 or i <0< 127r. This is

Ad + 6 (Z, y)) done to avoid unstable bases. 16

I The results were almost identical in every test we ran;
-e two typical normalized histogram are shown in figure 1.

= V/2ir('Y + 'Y:)e For a choice of a = 2.5, the histograms very closely fit

1 - _ the curves fHm(o) = (b~o')-, b1 = 0.58, and f- =
e b (b20Y,)- 4 , b2 = 0.35 between the ranges s, = 2.875 and

2^ •r(o' y + 4",) s2 = 120. Figure 1 shows the estimated density functions



shown superimposed on the empirical distributions. The g-(o)
integral of the analytic expression thus defined = 1.009 -2

and 0.975, respectively. -ff9v tgr))
Sf(v = (r)) -f(

7 Derivation of the Single Point
Distributions = 2rt,--(v) (7;

In this section we show the derivation of the distributions ') rg- ()

f(VH = v), the density function on the values that an = 2wG•
image point contributes to a model basis given that the It may seem counterintuitive that the resulting dis-
point comes from the model, and f(V-ff = v), the density tribution is constant. However, this can be understood
function on the values that an image point contributes if one considers an example in which f(r, 0) is uniformly
to a basis given that it is a random point. We begin with distributed. Integrating over all angles yields a linearly
the former. increasing function in r. Assigning an evaluation func-
7.1 Deriving' (Vf tion g(d) which is inversely proportional to r yields a

constant density function on f(v). The same thing is

Given a correct hypothesis and no occlusion, the location happening here, only quadratically. Since we only search
of a projected model point can be modeled as a vector for a match out to a radius of 2a,, the effective distribu-
d centered at the predicted location with Gaussian dis- tion is:
tribution (expressed in polar coordinates) f (

2 a.) 2wdu

=(r,)) = 1 f(VH) = e- 2  v= 0

where we know a, and its distribution. We now choose 10 otherwise

an evaluation function g(j), which we use to weight i.e., we will miss a good point e 2 = 13.5% of the time.
This expression correctly integrates to 1. Now, note that

aomatch that is offset by d from the predicted match in the expression we have a fixed o,, i.e., we actually
location. We want to find its density, i. e., we want have derived f(v = g(r) I ae). We need to integrate this
f(v = g(d)), where the distribution of d is as stated. expression over all values of o,, that is:
As mentioned, we choose the evaluation function

1 rf(VH = v) = J f(VH = v I , = affi(E = o)do
g(d = (r,0)) = Jv

21ra, =J(2rG2)(blo')2dG

Since the evaluation function g is a really function of r

alone, we need to know the density function of r. To find 2vr d/
this, we integrate f(r, O) over 0: T2

2w r 2 There are two things to take into consideration when
f(r) = r, O)rdO = 7e 2. calculating the limits for this expression: first, the possi-

C ble values of o, range from a lower limit s, to an upper

Next, we want to find the density of the weight func- limit s2, due to limits on the values of the afline coordi-
tion v = g(r). The change of variables formula for a nates. (Earlier, we saw for a = 2.5, that s, = 2.875, S2 =

monotonically decreasing function is: 120). Also, for a given a, it is clear that the maxi-

denMr)= ) =-fg-v) mum value we can achieve is when r = 0 =: v = 2-1-y,
dens(g(r) = v) -and the minimum value we can achieve is at the cutoff1 e-2g'(g-'(v)) point r = 2Ge : v = 2 � . Setting v to each of

Working through the steps, we find these expressions and solving for a, leads to the con-
clusion that for a particular value v, the only values for

g(r) = 1 C0- ' such that g(d I Ge) could equal v are in the range
F712• , 1 y7v). Therefore the lower bound on the inte-

g'(r) = z--g(r) gral is ve = max(s,, •L), and the upper bound is
,= min( s We split this integral into 3 re-

f(r) = 2 •gions, and deal with the case where v = 0 separately.
Integrating, we get:

= 27rrg(r) e-2  v=O

f(g-(v)) = 2irg-'(v)g(g-'(v)) 2z,r. •(52 e<VSe2

= 2rvg-(v) f(VH = V) = i 772 - 2 <"V S1 3

g(g) v)) b( 7 M s v
5) 1.0 otherwise



a d I

Figure 1: The distributions fH(oue) and f-H(ae).

where As before, we calculate the density of (v =g(r)

1j 2 12 = 1 A, a,) with the new distribution for r and get:
2irS2 .e 2T2

2  -f f(g (0))
1 14 u= 1 : h s=ig(rutInA ) = 1 ( 0))

2irsl 2 e2  2rs= V-1

7.1.1 Adding Occlusion 2
It is easy to add occlusion into this distribution by Therefore, the density function of v for a fixed ae is:

considering an independent process whose probability of P(•iA1 •• )
occluding any given point is c. Therefore, the above -r v = 0
distribution is multiplied by another factor: fe(V-f) 1 0") = 6,)P(A o,.)

f(VH = 0)(1 - c) + c v = 0 < V < 2

ff(VH = v)c otherwise 0 otherwise

We will use the distribution f, not f, in the rest of Again, this expression correctly integrates to 1. As be-

the paper, and will reconsider the rate of occlusion only fore, we need to integrate over all values of o,,:

in the context of calculating false negatives in a later f(V. = V) f(VH I =o')da
section. 1
7.2 Deriving f(VV) P= 2(--• )(bo)- o
We do the same derivation for the distribution f(VjT). 2r

Given a hypothesis and a random point, we calculate _ 2 2 T-2 d0
the distribution as follows: let event A = "point falls in 0 1
hypothesized error disk". This is the area of the error Dealing with v = 0 as a separate case, and with the
disk over the size of the image R2 , i.e., same bounds as before, integrating yields:

1 _. 41- [_ _- I I V=0
P(AIo'c) Ra.) = (e4 x ,) VI<Rv <f S

e(A ) = R 2 -R47ru. f(Vi-) = fR2(e-l)2V 12 <v_<3

Now we calculate the probability that a point which 0 otherwise

is uniformly distributed inside a disk of radius 2a. con- where

tributes value v for an incorrect hypothesis, using the 1 1
evaluation function defined in the previous section. As 2rs2 E 2irs2-
before, we must express a uniform distribution in polar 1 1coordinates and then integrate over 0 to get the distri- 13 = 2irsl 2e 2  14= -----

bution in terms of r alone, since the evaluation function We ran an experiment to test the analysis of this sec-
g is a function of r: tion, and the results are shown in Figure 2. Both graphs

1 show a normalized histogram of the results of 15, 000 in-f(,o) _r(207e)2 dependent trials. The first graph indicates the empirical
f2w 1 results corroborating the predictions very closely While

_r) = 10 ---(-o---- rdO the comparison of the second graph is less visually strik-
ing, note that the deviation at any point between the

r empirical and predicted results is generally less than one
2or2 count.

6i
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Figure 2: Distributions, f(v), with and without model

8 Finding the Weight Density of a For an incorrect hypothesis we lo~k at the problem in two

Model in an Image steps. First we derive, as above, the mean and standard
deviation of the process in which n = m= 4, s. e., a single

Having found the single point densities, we use them to random image point drops into a single error circle. From
find the density of the combined weight of points for cor- the distribution of f(V-), we find:
rect and incorrect hypotheses. We start with the density
function on weights of correct hypotheses. For a model (120 /
of size m and an image of size n, a correct hypothesis Effv) ] vf(V-V)dv +II vf(V-)dv
should have weight density

M.-3 .- ,m +f vf(Vj-)dv + vf(V-f)dvf(wH,. = V) = 0 f(Vf.) ® OV, f(V)

assuming that each point contributes weight to its sup- (e 2 -1) 1 I1
porting basis independently of any other. In order to 3 -2R[b I -

avoid convolving the distributions from the previous sec-
tion, we find the expected value and the standard devi- = .2882 x -
ation of the distributions and invoke the central limit bR 2 

$1 82

theorem to claim that the combined weight of a correct
hypothesis of a size m model in a size n image with 20 V2

should roughly follow the distribution: E-(v2 ) } v2 f(V-f)dv + v2 f(V-f)dv
N(mEHf + (n - m)E-if, m ,2 + (n - m)a•f)( I1

in which +I V 2 f(VI)dv + v 2 f(VV)dv10 /2 1
EH(v) j vfb(v)dv + ft vf,(v)dv (e 4  

r

+ vf,(v)dv + vfý(v)dv
= 1.554 x 10-2 x Tb 2L -- 5

C) rb 4  4 H~v = g V)2  
- E (V2 )

1- c) [1 1. Plugging in the values s, = 2.875, 82 = 120,bo =
= 2.604 X 10-2 X [ 0.35, bi = 0.58, c = 0, and R = 500 for the experimental

data of section 6 yields

EH(v 2) = Vf2f(v)dv + [V2f(v)dv EH = 3.26 x 10-3

Sitow = 1.49 x 10-5
13 E-ff= 3.19 x 10-6

+ 2 v 2 f,(v)dv + v32 f(v)dv 2-=3.19 10-sS• ak = 2.08 x 10-8

= lC)e- [6 -.- Ii Note that the value of the limit S2 was determined
( 60r 2 b)e6 1, empirically and is a function of the constraints on the

( C) [± bases that are chosen. Without the basis constraints.
= 1.6845 x H -5 S2 tends to infinity, and in fact the values of these pa-

rameters for S2 = 120 and S2 = oo are not significantly
H = E7(v)2 -EH(v) different.



Now, consider a single random image point (t.e., [t,
n = 4; three for the hypothesis and one left over) +1 T- ,
dropped into an image where a model of size m > 4 = (m - 3) E-,)"

is hypothesized to be. In this case the event that the
random point will contribute weight v to this hypothesis oL-4 (v) = ERj,(()2 - Ej,(ti)
is calculated as follows: Let event A1 = "point drops in
the ith circle." Then, = (m - 3)E-(v) - (m -3)E-H-(r-)

f(V- = V I V 0 0) Dropping n points convolves this distribution with itself
n - 3 times:

= f(v,Ai)+f(v,A 2 )+...+f(v,A,- 3 ) n-3

= (m- 3)f(v, A,) f ) = v )/=f(V77)
Note that because we are assuming the circles are dis- s=1

joint, we are overestimating the probability of the point And therefore the weight that an n-size random im-
falling in any circle. The actual rate of detection will age contributes to an incorrectly hypothesized model of
be lower than our assumption, especially as the m grows size m follows the distribution:
large. N((n - 3)EI7, (n - 3)a27,)

1 2 b f v=0 Note that this is the weight density of a single incorrect
( 1-32,, [ev'2 - e- <v <1 2  hypothesis.

R v) The means for both distributions were tested empir-
(VR- 2 bT' _ )(e-1)V2x7v] 12 < V <a ically from the same experiment as shown in Figures 2.

,[_ _ 2v-7] , < < <, A table of values is given in figure 3.

otherwise 9 Interpreting the Results
As rm grows large, (1 - (m - 3)"-. [s2 s]) < 0 so We have derived expressions for the weight densities of a

this expression is no longer a density function. This is hypothesis given that it is incorrect, and given that it is
the point at which the model covers so much of the im- correct. We are interested in using these distributions to
age that a random point will always contribute to some determine the effectiveness of geometric hashing under
incorrect hypothesis. Therefore, this analysis only ap- different clutter conditions. To do this, we briefly intro-

plies to models for which which m < + 3. For duce the ROC (receiver operating characteristic) curve, a

R = 500, m < 60, and for R = 256, m < 18. concept borrowed from standard hypothesis testing the-

The mean and standard deviation for one random ory, and cast our problem in terms of this framework.

point dropping into m - 3 random circles is: 9.1 ROC: Introduction

/0 + 12 The problem is to decide which one of two hypotheses,
E-(v) = vf(V-y)dv + vf(V-)dv Ho and Hi, is correct. There is a random variable whose

Jo fit distribution is known given one or the other hypothesis,
113 + 14 i.e., we know f(X I Ho) and f(X I H1 ). Let the space of

+f vf(V,)dv + J vf(Vy,,)dv all possible values of the random variable X be divided

1, into two regions, Z0 and Z1 , such that we decide H0 if

0+ v[(m - 3)f(V-)]dv the value of X falls in Z0 and H1 if X falls in Z 1 . Then
it, we can define the quantities

+ / t(m - 3)f(Vff)]dv I
Pr(say Ho Ho is true) = p(X I Ho)dX

fo

+L [(m - 3)f(V-R)]dv PF = Pr(say H, I Ho is true) = p(X j Ho)dX

(m - 3)Ex--(v)

EV_ (V2 ) = j + I v]f(V)dv +PM = Pr(say Ho j HI is true) = 1j p(X I H1 )dX

+ (3 vf)dtj PD = Pr(say H, H1 is true) = . p(7 IHl)dX
+I'V

2 f(V) +2
12 17a vThese quantities are often referred to as PM= "Prob-
f 2[ ability of a miss", PD= "Probability of detection", and

= 0 + v2 [(m - 3)f(Vlr)]dv PF= "Probability of false alarm" for historical reasons.
, One way of constructing a decision rule is to use

+ [13 v
2
[(M - 3)f(V)]dv the likelihood ratio test (LRT) to divide the observation

8 space into decision regions, i.e.,



_____Mean Variance
With M Empirical Predicted Emp/Pred Empirical Predicted Emp/Pred
m-3=l,n-3=l 3.6953E-3 3.2177E-3 1.148 1.5186E-5 1.4625E-5 1.038
m-3=l,n-3=100 3.8383E-3 3.5339E-3 1.086 1.7350E-5 1.6680E-5 1.040
m-3=1,n-3=500 4.8026E-3 4.8115E-3 .9981 2.2274E-5 2.4984E-5 .8915
m-3=5,n-3=5 1.9658E-2 1.6089E-2 1.222 1.4927E-4 7.3124E-5 2.041
m-3=l0,n-3=10 4.1986E-2 3.2177E-2 1.305 5.4130E-4 1.4625E-4 3.701
m-3=10,n-3=100 4.4513E-2 3.5052E-2 1.270 5.3400E-4 1.6485E-4 3.239
m-3=10,n-3=500 5.5476E-2 4.7828E-2 1.160 5.7484E-4 2.4752E-4 2.322

Mean Variance
Without M Eircal Predicted Emp/Pred Emp Predicted Emp/Pred
m-3=l,n-3=1 3.2410E-6 3.1940E-6 1.015 1.8747E-8 2.0760E-8 .8897
m-3=1,n-3=100 3.0681E-4 3.1940E-4 .9606 1.9738E-6 2.0760E-6 .9508
in-3=l,n-3=500 1.6344E-3 1.5970E-3 1.023 1.1163E-5 1.0380E-5 1.075
m-3=5,n-3=5 8.9131E-5 7.9850E-5 1.116 6.4808E-7 5.1797E-7 1.251
m-3=10,n-3=10 3.4949E-4 3.1940E-4 1.094 2.4001E-6 2.0668E-6 1.161
m-3=10,n-3=100 3.5082E-3 3.1940E-3 1.098 2.3277E-5 2.0668E-5 1.126
m-3=10,n-3=500 1.6289E-2 1.5970E-2 1.020 1.0766E-4 1.0334E-4 1.042

Figure 3: A table of predicted versus empirical means and variances of the distribution f(Wflf,. = v), in the top
table, and f(W•y_. = v) in the bottom table, for different values of m and n.

The regions Z0 and Z, are found by solving the above
H, equation for equality,

p(X I Hi) >
p(XH X [(<MIO02 - MO12) - 0o00o1(710? - "2] + (MO - Ml))1/21

That is, if the ratio of the conditional densities is greater 1 0
than a fixed threshold 77, choose H 1, otherwise choose [(ma0'2 -moc?)- coc1 (y1c" - e"oI + (m2)- ru))' 2]
H0 . Note that changing the value of rl changes the de- X2 -92 _ 0

cision regions and thus the values of PFand PD. The

ROC curve is simply the graph of PDversus PFaS a func- The values of PFand PDare found by integrating the
tion of threshold for the LRT. As it turns out, both the tionaluesofaPltydePsare I by and the
Neyman-Pearson test and the optimal Bayes test involve conditiona ro nsite and I H
this LRT, thus the ROC curve encapsulates all infor- H 1) over these regions Z0 and Z,:
mation needed for either test, since any (PF, PD) point
yielded by either test necessarily lies on the ROC curve. X2- 1
If the prior probabilities of HO and H 1 are known, then PF p(X fHo)dX = I - e
the optimal Bayes decision rule picks the ROC point Z I JX 1  rao

which minimizes the expected cost of the decision by us- X2 I

ing the LRT in which the threshold is a function of the PD p(X H1 )dX = 1- e
costs and priors involved: JzI XI 27ra

(CIO - Coo)Po In figure 4 for example, we have plotted the ROC
1 -curve for the distributions f(X I Ho) and f(X I HI)

'7 (CO1 - CI 1 )PI alongside. The axes are x = PF, y = PD. The line
where Cij is the cost associated with choosing hypoth- z = y is a lower bound, since a points on this line indi-
esis i given that hypothesis j is correct. In the absence cate that any decision is as likely to be true as false, so
of such priors, a Neymann Pearson test is often consid- the observed value of X gives us no information. Though
ered optimal, in which one simply picks a point on the an ROC curve is a 3D entity (i.e., a point in (PF, PD, 7)
ROC curve which gives satisfactory performance. Note space), we display its projection onto the q = 0 plane
that this is not the same as minimizing the decision's and can easily find the associated Y1 value for any (PF,
expected cost. PD) pair. When the threshold is high there is a 0 prob-

For example, assume for our problem that Ha - ability of false negative, but a 0 probability of correct
N(mo, a02•) and H, - N(ml, 0,2), and assume that m, > identification as well. As the threshold goes down, the
m0 and or1 > Go. The likelihood ratio test yields: probabilities of both occurences go up until the thresh-

2 2 H, old is so low that both positive and false identification
(X -MU (X -in 1  > 2In are certain. In our problem we assume that we do not

X 0. - < > Yn have priors, so our goal is to pick a threshold such that
HO we have a very high probability of identification and a

I I I :A
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Figure 4: On the left is displayed the conditional probability density functions of a random variable X. On the right
is the associated ROC curve, where PFand PDcorrespond to the x and y axes, respectively.

low probability of false positives, i.e., we are interested the weight of each of these correct hypotheses is found
in picking a point as close to the upper left hand side using the algorithm:
as possible. Note that the larger the separation between (a) '-r a correct hypothesis (m0 : i0 ; mi : il; m2 : i2 )
the two hypothesis distributions, the more the curve ispushed towards that direction, for every other model point m1(i) find coordinates mj = (a,, fli) with respect
9.2 Applying ROC to Geometric Hashing to basis (M0 , MI, M2 ), and from this, oe =

In our problem formulation, H0 = probability that the f(la, flj)"
model is not in the image, and H, = probability that it (ii) For every image point ij, find the mini-
is. In our case, we have a different ROC curve associated mum distance d between i, and any of the
with every fixed (in, n) pair, where in and n are the projected points such that d < 2Ce. Add
number of model and image features, respectively. v = ____ - % to the supporting weight for

The next examples show the predicted comparison this hypothesis.
of the Gaussian model to the bounded uniform model.

Figure 5 shows the ROC curves for the Gaussian and uni- (b) If the weight of the vote for this hypothesis is greater
form models, m - 3 = 10,n - 3 = 10, 50, 100,500, 1000, than some threshold 0, stop and output this as a
occlusion=0.0 and 0.25. We can see that in the case correct instance of the model.
of no occlusion, for small values of n, both models pre- For our experiment, we loop through thresholds from
dict good Ppvs PDcurves, though the bounded uniform 0 to EH(v), and for every threshold we run the above
model will always be better because there is no possi- algorithm enough times to get 100 sample points. To
bility of a false negative for occlusion=0, while in the test the probability of false alarm, we run the same ex-
unbounded Gaussian case there always is. However, as periment exactly, except we use random images which
n increases, the uniform model breaks down more rapidly do not contain the model we are looking for. We loop
than the Gaussian model for both occlusion values. For through the same thresholds as in the previous case to
occlusion=0.25, both models perform about equally for get a set of (PI-,PD) pairs for each threshold. The result-
small values of n (for example, at n = 100), but again as ing PF, PD, and ROC curves are shown in figure 6 for
n increases, the uniform error model fails more dramat- n - 3 = 10, 100,500,500, occlusion c = 0.0, 0.0, 0.0, 0.25.
ically than the Gaussian model (n >_ 500). The ROC curves for the same parameters are shown

Using this technique, we can predict thresholds for alongside.
actual experiments, as shown in the next section. In the cases of no occlusion, the predicted and em-

pirical curves match very nicely. However, for occlu-
10 Experiment sion=0.25, the empirical ROC curve falls below our ex-

pectations. This is due to the fact that the distribution
The predictions of the previous section were te~ted in the of WH has a larger variance than our predicted value
following experiment: to test an ROC curve for model (see table 3 and figure 7). In fact, though we assumed
size m, image size n, we run two sets of trials, one to test at the outset of the analysis that the individual random
the probability of detection and one to test the proba- variables V1, were independent, this is not the case; for
bility of false alarm. For the former, a random model a correct basis matching, the joint distribution of any
of size m consisting of point features was generated and two error vectors ei, Fj, i, j 4 0, 1, 2 can shown to have a
projected into an image, with Gaussian noise (o = 2.5) non-zero covariance:
added to both the x and y positional components of each
point feature. Occlusion (c) is simulated by adding a c A,, = (1 - a, - /3)(1 - - (3d) + a~a3 + l~if*j
probability of not appearing in the resulting image for This leads to a larger variance for the overall distri-
each point. Only correct correspondences are tested, and 10 bution than that predicted using the independence as-
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Figure 6: Comparison of predicted to empirical curves for probability of false alarm, probability of detection, ROC
curves. From top to bottom, n - 3 = 10,100,500,500, occlusion = 0, 0, 0,025.

sumption and hence poorer results. We are currently evaluation function, and deriving the probability density
working on another analysis that takes this dependence of the evaluation function on both correct and incorrect
into account. hypotheses to determine, when given some hypothesis,

which distribution it was drawn from. We showed also
11 Conclusion that the Gaussian error model separates the two distri-

The geometric hashing method was introduced by Lam- butions more than the uniform bounded error model,
dan, Schwartz and Wolfson in 1987. The first error leading to better ROC curves.

analysis of the geometric hashing technique was done The contribution of this work is to cast the geo-

by Grimson, Huttenlocher and Jacobs, who showed that metric hashing technique in terms of standard estima-

with even very small amounts of noise and spurious fea- tion theory, which has several advantages. The ROC

tures, the technique had a very high probability of false curve formulation explicitly demonstrates the perfor-

positives. However, they assumed that the error was uni- mance achievable for a given signal to noise ratio as a

form and bounded, which is a worst-case scenario and function of acceptance threshold. Given a desired detec-
places an upper bound on the error rate. As we have tion rate, the user can determine from the ROC curveshown here, with a Gaussian error assumption we can what acceptance threshold to use in order to minimize
do much better, the probability of false detections. In this formulation

Costa, Haralick, and Shapiro demonstrated another it is also clear when adequate performance cannot be
error analysis for geometric hashing [CHSt0] also based achieved, for if the desired minimum performance point
on a 2D Gaussian noise distribution associated with each (PF, PD) lies above the ROC curve for a particular clut-
point a heiGau siannoise differstfriuthison e a ted y w ith e ter level, then this performance is not possible no matter
point. Their analysis differs from this one technically in what operating parameters are chosen. The ROC for-
many respects, but the main difference is that they a mulation is also a succinct method for comparing voting
sume that the model they are looking for is present in the schemes, as we compared the voting schemes implied by
image and they focus on findinding the pose by deriving an the Gaussian versus uniform error models. We expect to
optimal voting scheme. This is in contrast to the work be able to use such techniques to choose thresholds ana-
presented here, in which given a voting scheme and no

prior information about the presence or absence of the lytically instead of heuristically in recognition systems.

model, we explicitly derived the probability of false de- 12 Acknowledgements
tection as a function of clutter, and characterized the
confidence level of the hypotheses that the method of- I would like to thank David Jacobs and Sandy Wells for
fers as "correct". We did this by choosing a hypothesis I1 helpful discussions on this topic. Particular thanks goes
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