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1 Introduction

In laboratory exercises for courses such as Statistical Mechanics and Thermodynamics, it is
highly likely that undergraduate students will be required to write or use computer programs
which utilize random number generators, ie to model the behavior of a particle undergoing
Brownian motion. Although the idea that deterministic operations can produce sequences
of numbers with random properties is paradoxical, it forms the theoretical foundation for all
algorithmic random number generators. Most system-supplied random number generators
are based on the linear congruential sequence (LCS) method[l][2]. This popular approach is
limited, however, by the fact that the algorithm has a finite period, ie a cycle of numbers will
eventually repeat. In this article, we present a simple, aperiodic, nonlinear random number
generator which is based on the logistic equation. We describe a well-known transformation of
the logistic variable for producing a sequence of random numbers with a uniform distribution,
and propose a new method for generating a sequence with a near-Gaussian distribution.

2 The Logistic Equation

The logistic equation or map is given by the expression

x,+l = 4AX,(1 - X,), (1)

where 0 < A < 1. This nonlinear difference equation, which maps the unit interval into
itself, is the simplest example of a system capable of exhibiting chaotic behavior. It has
been used to model such diverse phenomena as fluid turbulence, the evolution of biological
populations, and the fluctuation of economic prices[4]. An excellent review on this subject
was offered by May[5J.

Ulam and von Neumann[6] studied the logistic equation with A = 1. They demonstrated
that iterates of the function generated a sequence of random numbers on the interval (0,1)
with a continuous probability density P. given by:

P1 = I - (2)

Theoretical and computer-generated results for the probability density of the logistic map
are given in figure 1. Ulam and von Neumann also noted that by defining a new variable yn
as:

Yn = (2/7r)sin-1(V/r") (3)

one could generate from the logistic variable a sequence of random numbers {yn} which is
uniformly distributed on the interval (0,1)[7], Figure lb.
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FIG. 1, (a) Histogram with 1000 intervals of" 10s iterates of the logistic
equation with xo - 0. 1. (b) Histogram with 1000 intervals of I OP iterates
of y., the Ulam-von Neumann uniformly distributed random number
generator given by Eq. (3), with A, = 0. 1. The theoretical probability
density for the logistic equation is superimposed as a dashed line.
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3 The Logit Transformation

Given a sequence of uniformly distributed random numbers, it is possible to utilize a number
of well-established transformations or techniques, i.e. the Box-Muller method, to produce a
sequenct of random numbers with a normal or Gaussian distribution. Detailed discussions

on this topic can be found in Knuth[8] and Devroye[9]. In the present paper, we describe
a transformation which operates directly on the logistic variable and generates a sequence
of random numbers with near-gaussian distribution. The transformation, which is known in
statistics as the logit, is given by the expression:

z = In (1 -X). (4)

For the sake of completeness, it is important to point out that this transformation leads to
the standard logistic density, Q. = e5/(i + ez)', when it is applied to a uniformly distributed
sequence of random numbers[9J.

The probability density P. for the logit transform of the logistic variable can be deter-
mined from the following relation:

Pzdx = P..dz, (5)

which can be rewritten as:
dx

P P, z I.6)

It can be shown from (4) that:
dxSX= (1 - X). (7)

Thus, combining (2), (6), and (7), one obtains:

P. (1-x ) - •"i = ! (o- x). (8)

Again, proceeding from (4), it can be shown that:

ez X (9)(1x)01 - X)-- ' 9

and therefore: ezex 
(10)

Substitution of (10) into (8) thus leads to the desired probability density P,:

= 1 e(/2 ) 1 (11)
1+. wez/2+ e-z/2

The density PZ is remarkably similar to a Gaussian probability density (Figure 2).
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4 Discussion

The present uniform and near-gaussian random number generators, which were developed
from a priori theoretical consideration and based on simple non-linear deterministic equation,
can be easily incorporated into software written for stochastic modelling purposes and Monte
Carlo simulations. The associated algorithm has, in theory, and infinite period[10]-[12] and a
correlation function which resembles a delta function[10][11]. It also has the advantage that it
gives the nth number directly without iteration. From a practical standpoint, it is important
to point out, however, that the logistic equation has a number of unstable stationary points
on the unit interval, i.e. z. = 0, 0.25,0.5,0.75,1. Thus, a small number of initial values
(zo) for the algorithm, i.e. those corresponding to or leading to the unstable stationary
points, must be avoided when implementing the aforementioned random number generators.
Nonetheless, from a pedagogical standpoint, these straight-forward exercises can be used
in the classroom and laboratory to demonstrate the intimate relationships between many
of the fundamental concepts underlying random-number generators, probability theory, and
chaotic dynamics. We observe that, since z, is a random number with a quasi-gaussian
distribution, it can be represented by a very simple recursive model i.e.: z, = f. where _. is
quasi-gaussian subject to the distribution given by equation 11.
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Appendix

100 Years of Turbulence, an Overview, updated edition of invited paper, presented by
Dr. G. v.H. Sandri at the MIT symposium on Computational Fluid Mechanics, 1984 (M.
Murman and L. Morino, Ed.).'
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1 Introduction

Atmospheric flows have played a fundamental role in furthering our understanding of tur-
bulence from the very beginning of the subject. Boussinesq introduced the famous concept
of effective viscosity at the end of last century in analysing transport of mass, momentum
and energy in turbulent atmospheres. In 1914 G.I. Taylor, widely recognised as the founder
of modern turbulence science, built and used extensively a two-jointed vane to measure tur-
bulent velocity fluctuations in the atmosphere. This occured long before hot-wire and laser
anemometry became known. Fifteen years later, he published his famous series of papers in
the Proceedings of the Royal Society on the statistical approach to turbulence.

The next major advance in our understanding of turbulence again has come from me-
teorology with the discovery of chaotic behavior in the Benard problem ( motivated by
the atmospheric surface layer) by Ed Lorenz at MIT in 1960. This work opened the field
now known as "chaos dynamics" which has found fruitful applications in innumerable areas
of research. In a nutshell, chaos dynamics starts with rigorously deterministic governing
equations and yields as output stochastic solutions. However, in spite of the very exten-
sive literature in the late seventies and eighties, chaos dynamics has not been applied to
understanding the free atmosphere.

Our understanding of turbulence has been based on extensive research carried out over
the last 100 years along two presumed distinct lines of thinking : the deterministic approach
geared to the solution of the Navier-Stokes equations of fluid mechanics and the statisti-
cal approach geared to the analysis of averaged fluid equations supplemented by plausible
statistical hypotheses. The deterministic approach and the statistical approach are now
finding a unification through chaos dynamics in a spectacular development that in our opin-
ion is a veritable scientific revolution. In chaos dynamics, purely deterministic equations
yield stochastic solutions. In the overview of turbulence research we retrace briefly the two
classical lines of thinking as well as outline the contemporary chaos dynamics approach.

2 Deterministic Approach

The classical deterministic theory was initiated by the analysis of linear stability of the fluid
equations. The early work of Rayleigh was brought to full mathematical form in the Orr-
Sommerfeld (Ref. 5) theory which has been perfected by Tollmein and Schlichting, and later
by C.C. Lin and Chandrasekhar (Ref. 5) among other. Linear stability theory is by no
means a closed chapter of fluid mechanics largely because the linear equations are of high
order (e.g. third) and have non-constant coefficients (Ref. 63). Considerable efforts have
been made in developing post-linear analysis and nonlinear stability. The results of this
extremely difficult theory are very far from complete. In brief outline the stability theory
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consists in separating the fluid variables into two parts

U = a7&+ ap (12)

the base flow variables describe a given flow, usually a steady flow (Ref. 3). The perturbation
variables describe the departure from the base flow which are taken to be small compared to
the base values in the linear stability theory. Subsitution of the decomposition given in (1)
into the Navier-Stokes equations, and, neglect of the second order (quadratic) terms in the
perturbation variables, leads to the linear form of stability theory. Fourier model analysis in
the unbounded direction is the standard procedure for solving the resulting linear equations.
This analysis leads to a dispersion relation linking the wave vector of the disturbance added
to the base flow and its frequency which is taken to be complex:

W = WQ ( = Re(w) + i Im(w) (13)

Highly dispersive waves arise in this way. The unstable waves are identical to those with
positive !a(w) (in the standard convention for the imaginary part of the frequency, e-iOt).
In boundary layer flow these waves are called Tollmien-Schlichting waves after the two the-
oreticians that calculated their properties (Ref. 63).

A major gap remains in understanding the a, tual onset of turbulence even when the
stability boundary is known. In particular, the Reynolds numbers at which instabilities
appear is much smaller than the Reynolds number at which turbulence (as measured for
example through the skin friction coefficient) appears. The fact that the linear stability
theory does not give a correct prediction of the critical Reynolds number for the onset of
turbulence is responsible for the disrepute in which linear stability theory has been in the last
half century. This explains, in part, why two world wars separate the theoretical prediction of
incompressible waves in boundary layers from the experimental verification of the properties
of these waves. The experiments were performed with great care and ingenuity by Schubauer
and Skramstadt at a NACA facility that had a sufficiently clean wind tunnel not to mask
the results with background turbulence. In order to bridge the gap mentioned in the previous
paragraph, the theoretician Landau conjectured that new instabilities occur with increasing
Reynolds number and that the accumulation of these instabilities would eventually lead to
the onset of turbulence (Ref. 26). The conjecture led to many fruitful researches both
theoretical and experimental. On the theoretical side, postlinear theory strove to determine
the stability of the first perturbed flows. Such secondary flows are well known experimentally
since the discovery by G. I. Taylor of the "rolls" in cylindrical Couette flow and they have
been the subject of important and beautiful investigations by Gollub and Swiney, among
others (Ref. 5). At present the state of the fluid past the second steady state (the wavy
Taylor rolls) in cylindrical Couette flow is still unknown in spite of much effort. The theory
is very challenging but very difficult also. The stability of the wavy Taylor rolls seems to
be sensitively dependent on the aspect ratio of the Couette annulus. Chaos dynamics has
however thrown a clear light on Landau's conjective by giving a precise mathematical model
of the cascade of instabilities. The logistic map, in particular, provides such a rigorous
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model. In the choice of coordinates that gives the logistic equation in the form

Zn+ = )x,,(1 - z,) (14)

the onset of instability occurs at A = 1 while the onset of turbulence, which is defined as
the accumlation point of the bifurcations occurs at about 3.5. The logistic map has been
shown by Ed Lorenz to arise, at least approximately, in the Benard problem and therefore
we now possess both a sound mathematical model for the Landau conjecture and a physical
basis for it (Ref. 33). It should be emphasized that there is no reason at present to believe
that infinite cascading of instabilities (bifurcations in particular) is the only mechanism for
the onset of turbulence. For example Ruelle and Takens proposed that only two successive
instabilities occur in nature prior to the onset of turbulence. The theoretical status of their
work is not very clear at present (Ref. 10). Also, explosive instabilities have been found in
complex valued maps (Ref. 8).

3 Statistical Approach

The statistical approach to turbulence is now believed very widely to be valid, largely because
measurements of fluid variables in a recognizably turbulent flow (e.g. a well developed one)
show definite stochastic behavior (Refs. 2, 3, 38, 65, 68, 69, 72). The idea of a statistical
approach started at the end of the last century with fundamental investigations of Reynolds,
Poiseuille and Hagen on the flow of water in pipes. Reynolds recognized that when the ratio

UL
Re=U (15)

exceeds a critical value, the fluid flow is turbulent. Reynolds called such flows "sinuous" and
the statement Re > Re. he called "the criterion". G. I. Taylor formalized this approach very
successfully (Ref. 66). The statistical theory of turbulence recieved great impulse during
World War II when simultaneously and independently Kolmogoroff in Russia, Onsager in
the USA and Heisenberg (Ref. 19) and von Weizaker in Germany reached the theoretical
conclusion that a universal inertial range occurs in all turbulent flows with a power spectrum
of velocity fluctuations satisfying a power law with exponent -5/3. Such a spectrum has been
found in an important oceanographic experiment by Stewart and coworkers in the Discovery
Channel in Canada. Atmospheric spectra have also been found to satisfy the inertial range
and many laboratory experiments have exhibited inertial ranges.

3.1 Inertial Range Analysis

The tool behind Kolmogoroff's derivation of the 5/3 law (as it is now known) is dimensional
analysis. The physical intuition is that in the inertial range of the turbulent spectrum (of

11



isotropic turbulence) only two parameters are relevant: the viscosity and the dissipation.
The viscosity is a property of the material while the dissipation is a property of a specific
flow. The dissipation is defined as the non-diffusive part of the viscous rate of change of
the kinetic energy in the flow. It is, as a consequence of its definition, a non-negative
quantity and measures precisely the rate at which fluid kinetic energy is transformed into
heat energy by viscosity. The dimensional analysis of the energy spectrum, which is given
in full detail in Batchelor's (Ref. 2) or Hinze's (Ref. 20) excellent books on turbulence,
leads to the conclusion that, under the assumptions stated 1)the power spectrum has a 5/3
decay law and 2) that the autocorrelation (of the longitudinal) velocity has a spatial decay
which is a power law with index 2/3. (This second result is discussed at some length in
C.C. Lin's book (Ref. 31., also Ref. 68).) Landau pointed out, after the second world
war, that the dissipation being a flow property rather then a material property, is subject
to statistical fluctuations. The objection of Landau was followed up by simultaneous and
independent work by Obukhov and Kolmogoroff with two papers in the Journal of Fluid
Mechanics (Ref. 22, also Ref. 68). In these two papers the assumption is introduced that
the turbulent fluctuations are log normal. A consequence of this and similar assumptions
are still being investigated. Several (gentle) modifications of the 5/3 !aw have been studied
in the intervening years. Recent work at Cornell in this direction is very promising (Ref.
40). Experimental verifications of Kolmogoroff's law are numerous (Refs. 15-18, 47, 72).

3.2 Heisenberg and Related Energy Spectrum Models

A very important model of the evolution of the power spectrum was proposed by Heisenberg
and von Weizsacker (Refs. 2, 19, 31). In this model a plausible mechanism is proposed
to build the triple velocity correlation T (in wave number space) in terms of the energy
spectrum alone. Since the energy spectrum is the Fourier transform of the two point velocity
correlation, the Heisenberg model reduces the triple to the double velocity correlation by a
(strong) physical assumption. The model was given an exact analytic solution by Bass
and others (the solution of the Obukhov model was found in a paper by Milsaps). The
results of major interest are two: 1) the Heisenberg model has an inertial range with the
5/3 power law 2) the very tiny eddies decay with a precise stronger law. Experimental
support for the Heisenberg tail has been found, although there is no substantial evidence
for universality of the tail. The model of Heisenberg has influenced in a deep way the
further evolution of analysis of turbulent flows since not only it generated many interesting
alternative closures of the spectral equation (like that due to Obukhov mentioned above and
a very general one due to von Karman (Refs. 2, 34) but also and more importantly it is
the germ of the second order closure techniques of the sixties which are briefly summarized
below. It is worth mentioning that important models that followed after Heisenberg's, were
spearheaded by the "quasinormal" approximation suggested by Millionshcikov who reduced
the fourth order correlation to the second, assuming that the relation be the same as if
the underlying statics were gaussian (Refs. 42, 43). Substantial differences were found
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between the quasinormal two point and the quasinormal two point and two time assumptions
by both Heisenberg and Chandrasekhar. The direct interaction approximation (in several
successive improvements) developed by Kraichnan and others can be considered a cousin to
the Heisenberg and quasinormal models (Refs. 24, 25). While very interesting results have
been obtained along the lines described above, it has been very difficult to extend the energy
spectral models to non-homogeous turbulence.

3.3 Second Order Closure

A different line for the analysis of turbulent transport was initiated by work carried out
first at Cal Tech in the thirties by Chou (who is now the culture minister of the People's
Republic of China). Chou's main idea was to obtain turbulent transport laws, analogous to
the Fick, Navier-Stokes and Fourier laws for molecular transport. The idea was improved by
a student of Heisenberg's, Rotta, in the fifties. This program finally received full attention
when large scale computational solutions of many coupled non-linear partial differential
equations became possible in the sixties as a consequence of the advent of fast computers.
The two major variants of turbulent models (with space and time variables contrasted to
wave number variables) that are in substantial use today are the so called k - e model and
several variations of the Reynold's stress closure (Refs. 6, 7, 15, 28, 30, 36, 39, 51-61). These
models are of interest because on the basis of their governing equations, with appropriate
boundary and initial conditions, it has been possible to ubtain quantitative prediction on
important examples of real flows such as boundary layer flows, jets and wakes where isotropy
and homogeneity do not apply even approximately (Refs. 9, 12, 21, 23, 2T •5, 46, 49, 50,
64, 70, 71, 73).

In the k - c models, fluid equations are assumed simultaneously for the turbulent kinetic
energy and for the dissipation, triple and higher correlations being modeled along the Chou-
Rotta line of reasoning. The physical intuition underlying the modeling is made clear when
one thinks of kinetic energy and scale (typical eddy size) rather than in terms of kinetic
energy and dissipation. The relations among quantities is given by the equations

k = q2/2, q2 =u2 + ;2 + i,2 (16)

S=(2u-, ýi u-) = bt(17)

The first two relations are definitions relating turbulent velocity fluctuations to the turbu-
lent kinetic energy; the third equation is an empirical transport law of great importance. Its
origin is attributed to Reynolds but no specific reference seems to exist. By the time Batch-
elor wrote his book(1950), the law was well known to all scientists that studied turbulence.
The precise value of the proportionally constant differs in different models and probably the
"proportionality constant" is not a true constant but a quantity which is flow-dependent.
Since the level of the turbulence and the dominant scale of the fluctuations are parameters of

13



immediate interest in characterizing a turbulent flow, it is quite natural to develop dynami-
cal equations for these two quantities in terms of the fundamental Navier-Stokes equations
themselves. The Reynolds stress closure extends the k - e idea in the direction of including
anisotropy in the stresses. The equation for the two-fold velocity correlation function is

a a _u o ui o,
8 + uk + k .- + R-kR3  + (18)

Ox ,, ax,,

+ a (UUt,;4) + a - U(p,,) + b-'- e,,) + ((19 - )',

vV2'R, - 2 (20)
Ox,, axk

The derivations of this equation is carried out in detail in Hinze. Reynolds stress closure
brings the ideas of Kolmogoroff on dissipation, Chou on triple velocity correlations an(
Rotta on the pressure-rate of strain correlation, to bear on the terms in the dynamica.
equation for the velocity correlation that require closure. With an additional assumption
on the behavior of the turbulent scales it is then possible to close the equation for the
Reynolds stress. Analogies with the kinetic theory of gases (e.g. with the thirteen moment
approximation) are very suggestive although such analogies cannot be based on rigorous
statistical reasoning. Reynolds stress models are used very extensively in various aspects of
fluid dynamics, in particular in meteorology (Mellor at Princeton).

The frontier of research in spatial turbulent transport lies in efforts made to obtain a
closure approximation for the two point velocity correlation tensor. The governing definition
and the equations for this tensor are

Ii = (,,(.) (T)) (21)

+ ( Ox,, ) -+ +,O-,, +x,, + (22)

+-;(u'(x-)uj(Y)u',(Yi)) + +7 (23)U

+ ~-(p'(Y)U!(x)) = V (M, + Vy) 3?, 24

A detailed derivation is found in Hinze. Closing this dynamical equation is the simplest
systematic closure for the turbulence dynamics because both the intensity and the scale of
the turbulence are directly related to the two point correlation tensor. The mathematical
relations are:

q = (U,(x)u,,(X)) = Rij,(xZ) (25)4q2 A (Z + ,)ý=I d(•._,, Y) 1 • 2(62  (x'-)_')i (26)
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)= R(27)

By inspection of these relations, it is clear that the k - e and the Reynolds stress models
are special cases of the two point Reynolds stress model. Furthermore the spectral density
is the Fourier transform of the two point velocity correlation so that the spectral model of
the two point Reynolds stress closure. Progress in this direction is slow. One reason is that
it is difficult to test turbulent transport assumptions for the two point correlations because
the tests usually depend on determining the whole flow field (and then comparing with
experiments). However, in order to determine the entire flow field, the equations governing
the two point correlation tensor must be solved. This task requires solution of the coupled
non-linear partial differential equations in 6+1 dimensions. Such equations have not yet
found efficient techniques for integration on computers. The contemporary approach of
chaos dynamics modeling that is described below offers a very promising alternate line of
attack on turbulent flows.

4 Chaos Dynamics Approach

The underlying ideas of modeling turbulent flows via chaos dynamics are best visualised
by refering schematically to Lorenz' seminal paper in the Journal of Atmospheric Sciences
(Ref. 33). In this work, three major steps are taken to simplify the fluid equations, with-
out distorting the features relevant to onset of instabilities, transition to, and behavior of
turbulence. This approach originates with Rayleigh's analysis of a thin layer of fluid heated
from below, and his discovery of the parameter relevant for the onset of convective motion
(rolls and Benard cells). Rayleigh also correctly determined the critical value of the param-
eter for the onset of thermal instabilities which generate convection. The first step consists
in introducing Fourier analysis of the fluid variables the second step consists in retaining
three models (in the Lorenz formulation of the Benard problem). With his step, the partial
differential equations governing the fluid are replaced by a finite set of ordinary differential
equations governing the dominant modes of the fluid motion. The third step consists in
analyzing the motion of the state point (in the finite dimensional state space obtained from
the second step) on a Poincari surface of section. The section is a cut in the state space on
which it is possible to keep track of the successive returns of the state point. Lorenz found
that the behavior of the turbulent fluid on the surface of section is governed by a map ap-
proximated by the logistic map. We do not expect Lorenz' results for the Benard problem to
be completed universal, i.e. applicable to arbitrary flows. It is therefore the major purpose
of our effort to find the appropriate analogues for the free atmosphere. The three steps of
the Lorenz formalism are shown in the following useful diagram, which essentially outlines
very concisely the calculations.
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Lorenz Model O.D.E.

Surface of Section

Logistic Map Iteration
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