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Summary

This research program iniolves a computational study of the effects of disturbances
generated'from a moving particle on boundary layer transition. The practical importance of
this problem stems from the fact that as an underwater vehicle moves through a particulate
environment, particles enter the boundary layer and produce local disturbances. These
disturbances may act as a bypass mechanism to transition and turbulence by interacting
with boundary layer instabilities. The objective of this research is to study the basic
mechanisms of tiie particle interaction and its effect on transition in the boundary laver.
For this purpose, a direct numerical simulation is undertaken and the spherical particle
is represented by a forcing function in the Navier Stokes equations. Results reveal good
agreement with experimental studies. The report is presented in two parts. The first part
concerns a general overview of the work accomplished and the second part summarizes our
recent efforts on the modeling of steady/unsteady flow over a cylinder.
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Technical Approach:

The full, three-dimensional, time-dependent Navier Stokes equations are integrated
on a nonstaggered mesh by a time splitting method which implements the implicit Crank-
Nicolson scheme on the normal diffusion terms and the Adams-Bashforth method on the
remaining terms. Fourth-order central finite differences are applied in the streamwise di-
rection and the spectral Chebyshev matrix method is employed along the wall-normal
direction. The spanwise direction is assumed periodic enabling the use of Fourier expan-
sions. The procedure allows for nonperiodic inflow/outflow boundary conditions so that
a realistic spatially-evolving simulation can be obtained. The pressure Poisson equation
is solved by the capacitance matrix method and staggered grids were used in the normal
direction.

To simulate the boundary of the sphere in the flow within a Cartesian geometry,
we implement a technique developed by Peskin (1982) and further explored by Goldstein,
Handler, and Sirovich (1993). This technique involves the imposition of a no-slip boundary
in a flow through a feedback forcing function which is added to the momentum equations.
The feedback function effectively brings the fluid velocity to zero at the desired points in
the flow which define the no-slip boundary.

Summary of Work Accomplished

Experimental studies (Blackwelder, Browand, Fisher, and Tanaguichi 1992) using
moving particles with a diameter of roughly 1 the 'loundary layer thickness have observed
the development of turbulent spots due to the effect of a particle wake in the bound-
ary layer. The wake of the particle was found to travel downstream developing essentially
streamwise vortices which then formed a turbulent spot. In an effort to model this scenario
the following tasks have been undertaken.

1. A numerical simulation of the spatial evolution of an isolated disturbance in boundary
layer flow in order to test the capability of the code to capture an event such as a
turbulent spot.

2. The body of the particle itself was introduced into the boundary layer through a
no-slip boundary technique.

3. An investigation, of the effect of a stationary spherical particle on boundary layer
transition.

Significance of These Accomplishments

In this section, we summarize and highlight the main points of the research accomplished
during the past year.
Isolated disturbance 0

This computation involved the prescription of a pair of counter rotating streamwise
vortices as initial conditions. During the course of these simulations, we found good agree-
ment in the development of the disturbance in comparison with the temporal simulations
of Breuer and Landahl (1990). In particular, we obtained what Breuer and Landahl (1990)
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describe as a secondary instability developing in the center of the disturbance which is dom-
inated by high two-dimensional modes. This behavior in our results and those of Breuer
and Landahl (1990) was most noticeable in contours of normal velocity in the centerline
z-y plane shown in Fig. la. We repeated these calculations using a higher mesh resolu-
tion and determined that the secondary instability was in actuality a numerical instability
caused by insufficient resolution in the normal direction. The results shown in Fig. lb
reveal that the secondary instability does not appear, i.e. the main positive cell of normal
velocity upstream does not split into two cells, in agreement with the temporal simulations
of Henningson, Lundbladh, and Johansson (1993).

Figure 2 presents the time evolution of the localized disturbance through contours of
perturbation streamwise velocity contours in a z-z plane at y "t 1.05 for the higher normal
resolution case. The initial disturbance forms a wedge-like shape as spanwise gradients
are formed by high speed streaks surrounding the low speed core of fluid at the centerline.
Similar development was observed in both Breuer and Landahl (1990) and Henningson et
.l. (1993).

Plow over a cylindLer
In this next section we demonstrate the use of the forcing function method in several

test cases. Figure 3 details the time evolution of the streamfunction and spanwise vortic-
ity contours of uniform flow over a cylinder. The vorticity contours reflect the step-like
definition of the boundary of the cylinder with some small upstream effects however, the
downstream development of the flow is smooth. As observed by Bouard and Coutanceau
(1980), a "bulge" of fluid appears half way between the top of the cylinder and the stagna-
tion point, which forms a secondary eddy (Fig. 3b) whose direction of rotation is opposite
that of the main eddy.

The second test case we consider involves a stationary cylinder in boundary layer flow.
A sequence of "snapshots" of streamfunction contours detailing the evolution of the flow
around the cylinder in time is presented in Fig. 4. In the initial stages, the behavior of
the fluid as it passes above the cylinder is similar to that which occurs when a cylinder is
placed in uniform flow. Two vortices are shed from the top of'the cylinder which break
off and are convected downstream. After this transient stage, a steady state is reached
and a recirculation zone appears behind the cylinder. Due to the presence of the wall, a
large bubble of reverse flow develops behind the cylinder; its length at steady state is ;k 55
nondimensional units behind the cylinder. This final state is qualitatively in agreement
with experimental observations (Bearman and Zdravdovich, 1978).

Plow ove a ,,hpere
Next, we applied the external force technique to the simulation of a sphere in boundary

layer flow. In these computations, a stationary sphere was placed in the boundary layer
at a fixed height and the development of the wake of the sphere was investigated and
compared with experimental observations. Two cases with low and high Reynolds numbers
of Re#: = 500 and 750, respectively, are considered. The particle Reynolds numbers for the
two cases are Rej = 322 and Re4 - 494 for the low and high Reynolds cases, respectively.
Here, Rei is defined as Rei = 3., where d is the diameter of the sphere, v is kinematic
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viscosity, and, if yd denotes the height of the top of the sphere above the wall. u is the
velocity of the undisturbed boundary layer flow at yd. An even higher Reynolds number
case (Re6: = 950, Red = 645) was examined, however, as observed in the experiments a
turbulent wedge began to form and we were unable to continue the computation due to
insufficient grid resolution.

Figure 5 presents streamwise vorticity isosurfaces for the low Reynolds number case.
The pattern appearing in these figures is similar to the hairpin vortex shedding stage in
the flow visualization experiments of Vincent and Petrie, (1993). Positive and negative
streamwise vorticity regions form "legs" which lift upward towards the freestream. Further
downstream from the sphere, these vortices are convected away as their strength decays.
This can be observed in a clearer manner in Fig. 6 which shows a z-z cross-section of
streamwise vorticity contours at the top of the sphere near !y' = 1.3. Vortex pairs are shed
in the wake of the sphere; the Strouhal frequency of this shedding is • .2 in good agreement
with experimental measurements. The value of Red for this case falls below (Red)ýHt found
in the results of Hall (1967) and Vincent and Petrie (1993), thus no turbulent wedge should
appear.

In the high Reynolds number case the value of Red = 494 lies near (Red)cnt as
determined by Hall (1967), therefore a turbulent wedge within the wake may form. Vincent
and Petrie (1993) observed the breakdown of the flow into a turbulent wedge through a
series of stages, beginning first with the appearance of hairpin vortices. The heads of the
vortices rise, while their legs descend and theia attach to the wall. Accompanying the
initiation of t!e haiujin vortices is the appearance of a thin layer of fluctuating fluid near
the wall which ultimately breaks down into a turbulent wedge. The initial stages of this
scenario are shown in Figs. 7 and 8. In Fig. 7, isosurfaces of streamwise vorticity suggest
the development of the hairpin vortices. Here, as in the lower Reynolds number case, the
heads of the vortices rise however, in accordance with Vincent and Petrie (1993), the legs
are beginning to descend towards the wall. Below the vortices a thin strip of streamwise
vorticity forms. Figure 8 demonstrates the organization of the the vortices within the wake
of the sphere through streamwise vorticity contours in the z-z plane near the top of the
sphere. In this calculation we found that a larger spanwise length in the computational
domain is needed to capture the full development of the wake. A computation employing
a spanwise length of 47r is currently in progress.
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(a)

Figure 1. Contours of normal pert urbat iou velocit~y in the *r-y plane at z 23. t=163.G:

(a) 3S0 x 71 /' 33: (b) 380 x 101 / 33. The contour initferval is 0.000~3. NoetedspearanIce

of w-oudfiy instab~ility in the high resolution case (1) .



(a)7

(b).
. ..........-

-A

(C)

Figrue 2. Time evolution of perturbation st'eain1wise velocity co,•to,,rs in the .r-: plalIe

ilear y A:1.0.5 : (a) t = S,.OS: (b) t = 137.4: (c) t = 1SO.9. The coutom- inrervil is 0.01.

The streaiwise vortices elongate along .r aud intei.sify to form spw-like structures.
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Figure 4. Evolittion of the flow ora cv, iiidcir in the bounirhiry layer. Each time fraime

coirrt-pouds to t = 3. S. 10. 20. 37. 4G. G4. 01. 100. 127. 134. 10-3. - 271. andI 1019

nCofdimellsi( ual tilue iuiir s. Afrer two ar)Vi es It' 1.ho I and con)lvected(Io(10 ws t 1ea Il. n large

separation b)ubble dlevelop., at ~tc(lay stilt(.
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Figure 3. Isosurfaces (level=t.1) of streamnwise vorticity for flow past a sphere in bound-

ary" l•.yer flow: Reh:. = 430. Rfd = 322. The streamniise extent shown is .r 1 25-3S.3

nondimeusional lengths. Vortex -Iegs lift upwards towards the fi-eestream. resembling

the vortex shedding stage observed in experiments.

Figure 6. Contours of streamnwise vorticity in the .r-: plane at y = 1.3 for flow )past a

sphere in boundary layer flow: Re•.:. = 4.50. Red = 322. The streaniwise extent shown is

x • 23-64 nondimeusional lengths. The contour interval is 0.03. Vortex pairs are shed in

the wake which decay as they move away from the sphere.

OWT AVA•IABLE TO DtIC DO•Es NOT PEMWf FULLY LEGIBLE REPBODUCTION



Figure T. Isosurfaces (level=t.2) of strearnwise vorticity for flow past a sphere in boundary

laver Hlow: Re6:. = 730. Rfd = 494. The streamnwise extent show-n is xr ;ý 23-66 noiidinien-

sional lengths. Vortex -legs** lift towards the freestream and begin to descend towards the

Figure S. Contours of streainwise vorticity in the x.:- plane at y =1.3 for flow past a

sphere in boundary layer flow: R(e&.-. = T30. R~d = 494. The streaniwise extent shmvwn

is xr :t 23-GG nondiniensional lengthis. The coutour initerval is 0.1. In the inital sragePý.

organized vortex pairs dlevelolp in the wake of the sphere.



NUMERICAL SIMULATION OF A CYLINDER

IN UNIFORM FLOW: APPLICATION OF

A VIRTUAL BOUNDARY METHOD

E. M. Saiki and S. Biringen

Department of Aerospace Engineering Sciences

Uni ersity of Colorado

Abstract

In this study, a virtual boundary technique is applied to the numerical simulation

of stati',nary and moving cylinders in uniform flow. This approach readily allows the

imposition of a no-slip boundary within the flow field by a feedback forcing term added

to the momentum equations. In the present work, this technique is used with a high-

order finite difference method effectively eliminating spurious oscillations caused by the

feedback forcing when used with spectrally discretized flow solvers. Very good agreement

is found between the present calculations and previous computational and experimental

results for steady and time dependent flow at low Reynolds numbers.
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Introduction

The fundamental fluid dynamics problem of a circular cylinder in uniform flow has

been examined extensively in both computational and experimental studies and is consid-

ered a stringent test for flow solvers. The difficulty which accompanies the computational

approach to this problem by finite differences or spectral methods lies in the representation

of the cylinder geometry to allow for an accurate application of these numerical integration

methods. The use of coordinate transformations and mapping techniques is possible, but

requires a highly accurate way of calculating the transformation Jacobians. Finite element

methods (Gresho, Chan, Upson, & Lee 1984; Engelman & Jaminia 1990; Karniadakis

TriantafyUou 1992) and conformal transformations (Jordan & Fromm 1972; Braza, Chas-

saing, & Minh 1986; Badr & Dennis 1985) have been used with success for this problem.

As an alternative to the use of generalized coordinates and coordinate transformations

for finite difference and spectral methods, Peskin (1972) developed a method which rep-

resents a body within a flow field via a forcing term added to the governing equations.

When applied at certain points in the flow, this forcing term simulates the effect of the

body on the flow allowing for the modeling of a no-slip boundary of any shape within

a Cartesian computational box without the necessity of mapping. Peskin (1972, 1982)

successfully implemented this method in modeling moving boundaries in heart valve sim-

ulations. Peskin's method (immersed boundary technique) requires an implicit solution

scheme to determine the forcing term and it is partially dependent upon the material

properties, e.g. stiffness and thickness of the heart muscle, and on internal forces which

maintain the definition of the boundary of the body as it moves through the flow field.

Using a similar approach, Goldstein, Handler, & Sirovich (1993) developed a simpler vir-

tual boundary method, which employs a forcing term governed by a feedback loop. Unlike

the approach conceived by Peskin (1972, 1982), this scheme does not rely on an implicit

solution algorithm to determine the forcing term. Goldstein et al. (1993) have applied this

procedure to an investigation on the effects of riblets on turbulent channel flow using a

spectral method. They noted that the forcing function generated constant low amplitude,

high frequency oscillations which they were able to control by numerical low-pass filters.

Their turbulent flow simulations were not noticeably affected by these spurious signals,
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but such numerical oscillations may become of concern when one calculates the evolution

of a forced disturbance wave as in the simulation of flow instability and transition.

In the present study, we use the method developed by Goldstein et aL (1993) to

simulate stationary, rotating, and oscillating cylinders in uniform flow at low Reynolds

numbers (Re < 400) allowing the assessment of the virtual boundary technique to model

a body in an unsteady flow field. In the present solution procedure, high-order finite

differences are implemented in order to suppress the numerical oscillations caused by the

forcing function observed in the Chebyshev spectral method of Goldstein et a.. (1993).

Computational Method

The numerical model integrates the two-dimensional, time-dependent, incompress-

ible, Navier-Stokes and continuity equations nondimensionalized by the diameter of the

cylinder, D, and the free-stream velocity, U,,, on a staggered mesh by a time splitting

method. The normal diffusion terms are advanced implicitly by the Crank-Nicolson

scheme and an explicit third-order compact Runge Kutta method is applied to the re-

maining terms (Streett & Hussaini 1986). The equations are discretized spatially in the

normal (y) and streamwise (x) directions by fourth-order central finite differences. The

pressure Poisson equation is evaluated by the tensor product method (Huser & Biringen

1992).

At the upper and lower boundaries, we impose shear free conditions, i. p. - 0

and v, = 0 and at the inflow boundary, uniform flow conditions are assumed, i.e. u - 1

and v = 0. At the outflow, boundary conditions are prescribed to ensure that wave-like

disturbances (generated by the vortex shedding) in the high Reynolds number cases leave

the computational domain without reflection. This was accomplished by appending a

"buffer domain" to the physical domain (the length of the buffer domain was about 20-

30% of the physical domain) in which the governing equations were modified by reducing

the streamwise viscous terms and the right hand side of the pressure Poisson equation

to zero at the outflow boundary using a smooth coefficient function. Previous numerical

experiments have included rigorous testing of this technique verifying its suitability for use

in both high and low amplitude wave propagation problems (Streett & Macaraeg 1989;
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Danabasoglu, Biringen, & Streett 1991; Danabasoglu 1992; Saiki, Biringen, Danabasoglu,

& Streett 1993).

rIn implementing the method of Goldstein et a!. (1993) to the present calculations

of flow over a cylinder, the no-slip boundary of the cylinder surface was represented by

a feedback forcing function added to the momentum equations. This feedback function

effectively brings the fluid velocity to zero at the desired points in the flow which define

the no-slip boundary and can be expressed as

F(x.,t) = a (U(x.,t) - v(xt))dt + ,3(U(x.,t) - v(x.,t)). (1)

Here, F is the external force imposed at the discrete surface points defined by x., and U

is the fluid velocity at these surface points. The velocity of the body itself is controlled

by specifying v -(ub,vb) at the boundary points. If the body moves, i.e. v # 0, then

the position of the boundary points at each time step is con,-,ted by integration of

V = L The negative constants a and 0 are determined by observing the response of U

once F is applied; a produces the natural oscillation frequency of the response, while (

dampens the oscillation of the response. For unsteady flows, a must produce a response

with a natural frequency greater than the highest frequencies present in the flow so that

F can respond correctly to the changing flow field. The choice of a and # also influences

the maximum time step allowable for each of the computations.

Goldstein et at. (1993) applied the forcing term only at points which coincided with

the computational grid; in the current study, the boundary of the body is defined inde-

pendent of the grid so that a smoother boundary is obtained. The effect of the virtual

boundary points was then interpolated to the grid points via bilinear interpolation follow-

ing Peskin (1972, 1982). Both Peskin (1972, 1982) and Goldstein et al. (1993) imposed the

focing term only at points which defined the boundary, thus allowing fluid motion inside

the body. For Peskin's (1972, 1982) work this behavior is desirable since his calculations

concern blood flow inside and outside of the heart. Goldstein et al. (1993) investigated the

effect of solid bodies placed within a flow field which physically do not permit flow inside

the boundary. Consequently, the flow fields which were numerically allowed to develop in

such boundaries were unphysical and neglected by Goldstein et al. (1993). In the present
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computations, very favorable results were obtained for some cases by imposing the forcing

function not only on the boundary, but also inside the boundary of the body as well,

depending on the conditions of the problem. For example, in the half-cylinder case where

centerline symmetry is assumed (Fig. 4), imposition of the forcing function everywhere

within the body yielded improved results. When the forcing was imposed only on the

boundary, the internal flow field inside the body induced a small secondary vortex outside

of the cylinder near the lower boundary which was independent of the main searation

bubble. As a result, the length of the separation bubble was too long. Thib •hysi-

cal behavior was due to the shear free conditions imposed at the lower boundary of the

computational domain interfering with the virtual boundary defining the cylinder. This

condition was remedied by applying the forcing function everywhere within the cylinder.

For the full cylinder simulations, the lower boundary did not interfere with the virtt i1

boundary and very good results were obtained with the forcing function applied only at

the boundary of the cylinder.

In an earlier work by the authors (Saiki & Biringen 1994), the virtual boundary

technique was used in a different numerical algorithm which implemented Chebyshev

polynomials in the wall-normal direction. As observed by Goldstein et aL (1993), due to

the global nature of the Chebyshev polynomials, nongrowing, spatial oscillations in the

normal and streamwise directions developed in the flow field when the feedback forcing

function was applied, however, the oscillations did not appear to affect the flow field down-

stream of the body. In the present work, the application of the finite differences in the

normal direction drastically reduced these spatial oscillations. The effect of these differ-

ent discretization methods is illustrated in results obtained from computations of startup

flow over a cylinder at Re = 550 (Figs. 1 and 2). Contours of streamwise velocity reveal

the spatial oscillations which arise due to the Chebyshev discretization (Fig. 1a) and the

attenuation of the oscillations with the application of finite differences (Fig. Ib). Com-

parison of the streamwise profiles in the normal direction (Fig. 2) provide clear evidence

that the oscillations are strongly damped.
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Results

StotiOnd Y cylinder in uniform flow

The cases investigating uniform flow over a stationary cylinder examined Reynolds

numbers (Re = S---) ranging from Re = 25 to Re = 400. At Re = 30, we assumed

centerline symmetry and considered the upper half of the cylinder, while for the other

cases, Re = 25, 50, 65, 100, 200, and 400, the entire body of the cylinder was prescribed.

The mesh resolution and computational domain dimensions are given in Table 1 for each

case. For the symmetric case, the mesh was stretched only in the normal direction and for

the full cylinder cases mesh stretching was employed in both directions with grid clustering

near the body. As the Reynolds number increased, the length of the buffer domain at

the outflow boundary was increased in order to accommodate the stronger vortices which

we shed from the cylinder. The feedback forcing coefficients were set to a = -400000

and 0 = -600, and the number of points defining the cylinder ranged from 1441 to 6900.

The velocity components of the boundary points, v, were set to zero.

At low Reynolds numbers, (4.5 < Re :_ 35), experiments reveal an attached, steady,

symmetric, recirculating bubble which develops downstream of the cylinder (Coutanceau

& Defaye 1991). In the present simulations this behavior is clearly observed in the stream-

function and spanwise vorticity contours for Re = 25 and Re - 30, respectively (Figs. 3

and 4). The physical parameters of the separation bubble are compared with previous

experimental and computational studies in Table 2 and show good agreement for both

Reynolds numbers.

As expected, when the Reynolds number was increased to Re = 50 the separation

bubble became asymmetric (Fig. 5) and the two vortices in the bubble began to "pulse"

with a distinct frequency which can be defined in terms of the Strouhal number, St =

where f is the dimensional frequency (Table 3). Furthermore, for this case the tail of the

wake exhibited a "wavy" behavior. These results agree well with experimental observa-

tions in the 35 < Re < 60 range, however, they are contrary to several computational

results: at Re = 50, Gresho et aL (1984) observed vortex shedding from the cylinder and

no attached separation bubble. It is interesting to note, however, that the Strouhal nvm-
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bers for these simulations are very similar (St = 0.135 for the present and St = 0.14 for

Gresho et &1. 1984). In the computational studies of Jordan & Fromm (1972) and Braza

et &1. (1986), no vortex shedding or asymmetry of the separation bubble was observed

for Reynolds numbers up to 1000. Braza et al. (1986) explained this behavior by stating

that the computational scheme was too "clean," i.e. no external perturbations existed (as

would appear in an experiment), therefore there was nothing to trigger any asymmetry

or unsteadiness of the flow field. To induce the vortex shedding in their simulations the

flow field was numerically perturbed. In the present work, as in the other related studies

(Gresho et al. 1984; Karniadakis & Triantafyllou 1992; Engelman & Jaminia 1990), no

such perturbation was needed to obtain unsteady flow.

According to experimental results, increasing the Reynolds number beyond Re = 60

leads to the development of a Kirm•n vortex street forced by vortices which are shed

alternately with a distinct frequency from the top and bottom of the cylinder (Coutanceau

& Defaye 1991). In the present study, the formation of the vortex street is depicted clearly

in spanwise vorticity contours for Re = 65, 100, 200 and 400 (Figs. 6-9). In figure 10,

vertical velocity contours for Re = 400 are plotted indicating a very smooth solution free

of any detectable residual oscillations. As the Reynolds number increases, the frequency

of the shedding increases (Table 3) and the vortices become more concentrated. The

patterns obtained for Re = 65 and Re = 100 show remarkable similarity to the flow

visualizations of Freymuth, Finaish, & Bank (1986). The time spectra and signature of

the streamwise velocity at a point downstream of the cylinder reveals the presence of a

spike at the vortex street Strouhal number; higher harmonics of the Strouhal number are

also present (Fig. 11-14). Experiments predict that the onset of three-dimensionality and

turbulence will occur at Reynolds numbers below Re = 200 (Coutanceau & Defaye 1991).

Because of the two-dimensional nature of the current computations, turbulence and the

effects of three-dimeionality cannot be obtained, however, the vortices shed from the

cylinder at Re = 200 and 400 exhibit some irregularities associated with higher harmonics

which subside as the vortices are convected downstream forming a laminar K&min vortex

street (Figs. 8 and 9).

Tables 3 and 4 summarize the drag coefficient (C,), Strouhal number, the wavelength

7



of the Kirmin vortex street (A), and the vortex speed (StA) observed for the unsteady

solutions and provide comparisons with previous computational and experimental results.

The Strouhal numbers obtained from the present results are slightly higher than the exper-

imental results, however they correspond better than the values obtained by the majority

of the other computational studies. The higher Strouhal number may be attributed to

the size of the computational domain. Karniadakis & Triantafyllou (1992) found that if

the inflow boundary ws too close to the cylinder or if the domain was not wide enough, a

higher Strouhal number was obtained. The distance between the inflow boundary and the

cylinder in the current study (Li = 4) is comparable to the domain length used by Gresho

et al. (1984) and Engelman & Jaminia (1990), but shorter than those used by Karniadakis

& Triantafyllou (1992), Braza et £1. (1986), and Jordan & Fromm (1972). Accordingly, as

shown in Table 4, the Strouhal number obtained in the current computations falls within

the range of Strouhal numbers determined by the previous computational studies.

In the present study the drag coefficient was calculated in a manner similar to Gold-

stein et al. (1993); the drag was found by the considering the loss of fluid momentum in

the domain, i.e.,

Cd = 2JE(1 -.gL) dy (2)

Due to the influence of the inflow boundary on the computation, U. was defined as the

velocity profile measured at a distance & upstream of the cylinder. The influence of the

inflow conditions on the drag coefficient has also been observed by Gresho et al. (1984).

As Tables 3 and 4 reveal, good agreement is found for values of CI in comparison with

experiments and previous computational work.

Rotating cylinder in uniform ftw

The startup flow over a cylinder rotating counter clockwise in uniform flow was com-

puted for Re = 200. The rotation rate of the cylinder was w = 1, resulting in a tangential

velocity of one half the freestream velocity (or = 0.5). The motion of the cylinder was

introduced by setting the components of v in equation (1) to the proper streamwise and

normal velocities arising from the rotation of the cylinder.

The characteristics of the startup flow at this Reynolds number and rotation rate con-
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sist of a primary eddy evolving at the top of the cylinder and a developing second eddy

below the z-axis of symmetry (Figs. 15a-15d). The second eddy moves upward (Figs. 15c-

15d) inducing two secondary vortices which merge to form a single vortex at time, t = 6

(Figs. le-h). The streamfunction contours obtained by the current study (Fig. 15) are

in remarkable agreement with experimental observations (Coutanceau & Minard 1985)

and previous computational results (Badr & Dennis 1985). Figure 16 demonstrates ex-

cellent comparison between profiles of streamwise and normal velocity along the x-axis

behind the cylinder obtained from the current computation and experimental measure-

ments (Coutanceau & M•nard 1985).

Oscillating cylinder in uniform flow

This computation was performed at Re = 200 with the cylinder oscillating parallel to

the free-stream velocity at a frequency, fc = 1.88St, i.e. 1.88 times the Strouhal frequency

for the stationary cylinder. The amplitude of the oscillation resulted in a streamwise dis-

placement of the cylinder of -0.24, and the cylinder motion was prescribed by setting

the horizontal velocities on the boundary points to u6 = A~coo(27rf/t). The computa-

tions started with the cylinder stationary and oscillations were imposed once the solution

reached a quasi-steady state.

For the parameters considered in the current study, the vortex shedding pattern of the

stationary case (Fig. 8) is modified by the oscillation of the cylinder as is clearly depicted

in the time evolution of spanwise vorticity contours over two oscillation periods of the

cylinder (Fig. 17). During this time period an antisymmetrical mode A - III (Ongoren

& Rockwell 1988) appears consisting of two clockwise vortices shed from the top of the

cylinder and the evolution of a single counter clockwise eddy from the bottom. These

vortices then form a vortex street with the weaker of the two clockwise vortices moving

downstream alongside the counterclockwise eddy. These results are in excellent agreement

with experimental observations (Griffin & Ramberg 1976; Ongoren & Rockwell 1988).

Conclusion

In this study, we applied a virtual boundary method to several steady/unsteady flow

problems. The method models a no-slip boundary by an external forcing function added
•,9
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to the momentum equations. The computational results for both stationary and moving

cylinders in uniform flow compare favorably with both experimental and previous com-

putational studies and lend further evidence to the applicability of the virtual boundary

technique for steady and unsteady flow problems. The oscillations caused by the virtual

boundary method when used with a spectral discretization method were attenuated by

the application of high-order finite differences.
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Re NxxNy LXXL Ay

25 267x147 20x10 0.0375 -.0375

30 48lx71 7x2 0.0125 0.001

50" 267x147 20x10 0.0375 0.0375

65 363x147 28x10 0.0375 0.0375

100 363xl47 28x10 0.0375 0.0375

200 436x147 34x10 0.0375 0.0375

400 387x147 30x10 0.0375 0.0375

Table 1: Mesh resolution and computational domain dimensions (buffer
domain is not included).
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Figure 11. Re=65: (a) spectrum and (b) time signature of streamwise velocity measured at

(zd = 0.9445, Yd = -0.325); zd is the streamwise distance downstream from the cylinder

and yd is the normal distance from the symmetry axis of the cylinder.
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