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I. INTRODUCTION

In this paper we study analytically the electromagnetic radiation field produced by the cloud of

accelerating, non-relativistic electrons induced at a planar photoelectron emitting surface in vacuum by

a photon pulse of arbitrary time profile and small spatial cross-sectional area incident upon that

surface, deriving scaling relations for the radiated fields (hence radiated power, energy, and spectral

content) explicit in the pulse and surface parameters.

The dynamncs of the electron cloud has been of interest in connection with both

et nc pulse (EMP) phenomena [1-5] and laser plasma jets [6-7] and has been studied both

analytically and numerically. Tbose studies are concerned with either steady-state dynamics [ 1,3,61 -

applicable when the electron plasma period Is much shorter than the characteristic photon pulse width

- or with transient dynamics [2,4,5,71, applicable when the above condition does not hold. Those

authors who obtain complete, strictly analytical results for the transient case [2,7] assume I-D planar

geomnety, monoeaergetic emission Into vacuum, and a "no-screening" approximation [1,2,4,7]. Under

these assumptions, they solve Maxwell's equations (simply Gauss's law in this situation) for the

electric field in die space charge region, coupled to Newton's law for electron motion as well as to a

continuity equation for the electron density, to obtain a self-consistent solution to the dynamics

problem. This program produces formal expressions for the electron density and velocity fields as a

function of the single space coordinate and time; these expressions could be used in principle to derive

similarly formal expressions for the radiated fields of iuterest to us here, although this has not been

done in the literature as far as we know. However, from our point of view there is a fundamental

difficulty with these formal expressions: They can be made to yield expressions for the radiated fields

e.Vlicit in the pulse and surface parameters only in the two special cases of photon pulses which are

either constant in time or linearly increasing in time. Indeed, these two special cases are the only ones

offered in [21 and (7] as illustrations of their general formalism. The specific difficulty is this. The

treatment of the particle dynamics Is done from a Lagrangian (in the fluid sense) point of view while

the electron density and velocity fields are inherently Eulerian (as is usually the case in the
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electrodynamics of extended charge distributions). The formal expressions for the density and velocity

A" require a translation from Eulerman to Lagrangian coordinates in order to be expressed explicitly

In tms of the pulse and surface parameters ([21, Eqs. (18) and (36); [7). Eqs. (16)-(18)) and this

translation can only be done exactly analytically in the two special cases Indicated above.

In order then to achieve generality, we abandon the usual technique of using the (Eulerian)

charge and current densities to compute the radiation fields; rather, we compute these fields by the

novel tec•nique of directly summing contributions to the fields over individual electron trajectories,

I.e., we do agrmaglan (in the fluid sense) electrodynamics". (We point out that this technique is

novel only because it Is being used as a strictly analytical tool - the technique of summing

contributions over Individual particles has been, used previously in electromagnetic particle-in-cell

(PIC) codes.) This summing process results In integral expressions for the electric and magnetic fields

at Impe but finite (i.e., "finitely-remote) distances. True radiation quantities, however, are obtained

only in the limit of the field point going to infinity; we thus demonstrate the existence of this limit and

obtain asympttic radiation quantities in which all the integrations have been fully carried out and

which, in addition, ae explicit In the pulse and surface parameters. Because we wish to obtain this

limit rigorously, the entire paper of necessity takes on a somewhat mathematical flavor in order to

support from the outset this major goal. We havem however, relegated most of the mathematical detail

- which involves only elementary techniques - to four appendicles so that they may be avoided, for

the most part, by those readers who find them of lesser interest.

In summary then, derive expressions for the asymptotic radiation fields based upon a 2-D

cylindrical electron cloud of small radius whose dynamics is described by the aforementioned l-D

planar model employing the monoenergetic emission and no-screening approximations. Since in the

I-D model the magnetic field is strictly absent, then that model yields electrostatic interactions

between the electrons; hence, application of the 1-D dynamical model to our 2-D electron cloud is

tUmtaount to assuming only electrostatic interactions and so errs in neglecting small magnetic field

and retardation effects in the dynamics. Such effects are not neglected in our radiation treatment

2



however; indeed, we require a small spatial cross-sectional area for the photon pulse so that we may

adequately represent the retarded time in the radiation integrals.

In Section 1n we describe the photon pulse more completely. In Section III we discuss

electron cloud dynamics, presenting in detail only those features unique to our treatment. In Section

IV we derive expressions for the finitely-remote fields; these lead, in Section V, to the asymptotic

fields which in turn lead, in Section VI, to all asymptotic radiation quantities of Interest. Finally, in

Section VUi we present Illustrations of our general formulation for five specific pulses: constant, linear

ramp, triangular, parabolic, and sin2. Additionally, Appendicies A and B, C, and D contain the

mahematical complements to Sections IM. IV, and V respectively.
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I1. PHOTON PULSE DESCRIPTION

The photon pulse, normally Incident on the emitting surface, is taken to be one of circular

spatial cross-section with spot radius a, and photon frequency v. This restriction to circular cross-

section is not necessary, since we will ignore edge effects in the cylindrical electron cloud, but seems

most natural. We assume that photoelectrons are emitted spatially uniformly over the extent of the

spot, each with one and the same non-relativistic speed vo > 0 in a direction normal to the locally

planar, smooth emitting surfxce, with average photoelectron yield (quantum efficiency) over the spot

denoted by Y(v) (electrons/photon). (Here, "locally" means over a region comparable to that of the

spot.) Monoenergetic, normal emission of electrons is ceatainly not the case physically in general

where, even for a normally incident pulse of monochromatic photons, the shape and width of the

emitted photoelectron kinetic energy distribution function is highly dependent upon, and varies greatly

with, the nature and condition of the emitting surface as well as with the incident phot'n frequency

18]; but, as we have pireviously pointed out, monoenergetic (normal) emission is a standard assumption

in the literature. We also assume that the incident photon intensity is not high enough to produce a

plasma at the surface; and we do not include contributions to the radiation field of Induced currents in

case the emitting surface is a conductor [6].

The full width of the pulse in time is taken as z/M, where fl > 0 Is an angular frequency

(sec'), while the pulse Intensity at the emitting surface is given by

f (t) = Afft), 0:< t5 <W"f (2.1)

where A > 0 is an amplitude (photo=/m2-sec (we use MKSA units throughout]) and f is

dimensionless, with 0O <f(t)5 <I, f(t) = I for at least one t, and f(t) = 0 for at most t e {0, i/fl). It is

convenient to Introduce a dimensionless time variable given by s = fit; In terms of s, we define

functions I and g by
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I(s) = t(,)2 O, g(s) = f(s/0) > O, 0 4- S X, (2.2)

so that

l(s) =Ag($), 0:5 s -45 X. (2.3)

ibe central construct of our model turm out to be ffi(t')dt' Aff(t I)dt' in terms of which0 0

all physical quantities of Interest may be naturally written. It will often be more convenient to use a

dimensionless multiple of this integral: we define

G(s) - f g(s')ds' If g(s')ds', 0 5 s < x, (2.4)
00

so that

C-(I•) f g(s)ds I g(s)ds = f(t 1dt• 1/ f fit 1)dt, 0 <5 t 5 NA
o o o 0 (2.5)

Also, we define

Ma x
N(Q) a f f(t')dt' - (lIM)f g(s)ds (2.6)

0 0

so that

tfft)dtl - N(f)G(flt), 0 t - I/fl; (2.7)

further, we exclude as trivial the zero pulse so that N(Q) > 0. Therefore

5



0 < G(s) : 1 for 0 : s < x and G(0) = 0, GC) = 1. (2.8)

We also require that G' exists on [0, x] (taking one-sided limits at 0, x); to ensure this we demand

that g be continuous on [0. x] (or f on [0, xr/0), and so is properly integrable there, and In that case

we have

G'(s) - g(sY)/N(G) - 1(syADN(G) 2 0, 0 : s < Xi. (2.9)

Hence G is non-decreasing on [0, x] and, being continuous there, takes on every value between 0 and

I (by Eq. (2.8)). In fac, since g vanishes only at most at 0 and x then G' is strictly positive on

(0, X) and hence G Is strictly Increasing on [0, x].

We point out that we could easily extend our results to Improperly Integrable pulses g which

are continuous only on (0, x) but for which Um g(s) =aaor lim g(s) =-(or both), so that we could

treat, for example, g(s) = A [(x-sy'-'w%]; and to pulses of infinite width which are contimnous on

(0, -), so that we could treat, for example g(s) - Ae "("v', s > 0 (s- > 0); but, on physical grounds,

we see little reason to do so. We could also allow g to have discontinuities In the interior of its

Interval of definition so that we could treat, for example, g(s) = A- l1/, if 0 ks . This last

generlization only makes mathematical arguments more cumbersome and provides essentially no

additional physical insight. We choose not to pursue any of these possibilities here.
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In. ELECTRON CLOUD MOTION

A. Kamnatics

At any Instant t k 0, we think of the electron cloud as a circular cylinder of radius a

comprised of a continuum of infinitesimally thin, planar, parallel electron disks (or "sheets"), each

having been emitted at some instant to e [0, t] from, and each remaining forever parallel to, the planar

emitting surface, with peclsely one such sheet having been emitted for each to E [0, tQ. It follows

that each sheet may be unambiguously labeled by the time, to, at Its emission. Observe that the total

charge contained In the sheet emitted during Infinitesimal time Interval 8to at to Is (forever)

&q(t) = -eY(v)I(tj)xa &t - -eY(v)A(QN(tQ)Gf'(tQ)=a'&o, (3.1)

where e is the magnitude of the electron charge, and that this sheet has infinitesimal thickness

8z = vok so that also

8q(t) = -eY/(t*da2 &z/vo. (3.2)

Further, if we let a z-axis coincide with the symmetry axis of the cylinder and choose as positive the

direction of electron emission, then we denote the position at time t of the sheet labeled by to as

Z(to; t) for (to; t) c [0, Wil] x (0, -o); clearly

At'; t) 2! 0 for all to, t, (3.3)

the emitting surface being located at z = 0. Figure 1 depicts the electron cloud and the emitting surface

at any particular instant, t.

We assume that the magnitude of the residual positive charge on the emitting surface is

Precisely the same as the magnitude of the totality of negative charge in the electron cloud; that is, we

7
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assume that neutralization of this residual positive charge by the flow towards it of negative charges

originating In the emitting surface -- in case it is metallic - is negligible during time intervals of

interest her Further, since the thickness of the positively charged layer is on the order of 10"9 m (81,

we may safely assume that it forms a surface charge distribution.

B. Dynamics

In general, the net electromagnetic force at time t on the charge sheet labeled by to is

F(to;t) - [fq(tynk]8z ff {E(r. 6,Z(to;t), t) + V(to; t) x B(r, 1, Z(to; t), t)JdS (3.4)

(we assume any one cylindrical coordinate system whose positive z-axis is the one previously specified

following Eq. (3.1)) where V(to; t) is the instantaneous sheet velocity, E(r, 0, Z(to; t), t) and

B(r, 0, Z(t,; t), t) awe the Instantaneous electric and magnetic fields at the area element dS located at

(r, 0) on the sheet, and ,n = xed. Equation (3.4) holds since the sheet has uniform charge density

PL(to) 8q(t)/n8z - (l/[vo)[&q(toY&o1. (3.5)

As alluded to earlier, we approximate the full electromagnetic field E + (V x B) by the net

ele c-sMtatic field, Z", resulting from the charge in the cloud not on sheet t. plus that in the residual

surface charge distribution. This net electrostatic field is given by

z.0)
Ew(r, Z(to;t),t) - -k(lleo) f dtp(t,t), (3.6)

Z(t t)

where k is the unit vector in the +z direction, Z,(t), t > 0, Is the z-coordinate of the leading edge of

the charge cloud, and p(4, t) 5 0, (•, t) e [0, --?, Is the z-dependent volume charge density

9



chuactedzIng the charge cloud; hence we have

z.A)

F(t;,t) - -k(q(t.YJ f- d•rp(,.t) - q(t) • E "(r, 6, Z(to; t), t). (3.7)

The reader should note that because the z-compnment of the electrostatic force at any surface element

dS located on charge sheet t%, due to all the other charge In the system not on shee to, Is independent

of r (the radial coordinate on the sheet), and because, In addition, all the charge on sheet t., other than

that belonging to dS, exmu no z-dlrected force on dS, then the z-coinponent of the force on dS due to

all other charges In the system Is independent of r; hence, sheet t, remains forever strictly planar in

this approximation. On the other hand, while all the charges not on sheet t, exert no net radial force

on dS In our approximation (Eq. (3.7)), the charges on sheet t. and not belonging to dS do exert a net

raal force on dS and, after some time, signifcant radial expansion will occur. We assume negligible

radial expansion during the time intervals being considered here.

The equation of motion of the center-of-mass of charge sheet t. is

&n(t)[(adZ/t 2)(to; t)] - F(t.; t) (3.8)

where 8m(to) is the mass of the sheet and F(to; t) given by Eq. (3.7). That is,

(ZO/ 2)t(t.;t) - (ehneo)f dt p(r, t) S 0 (3.9)

Of course, this equation is valid only for those times t for which the sheet t. has not previously

returned to the emitting surface, namely for t satisfying

to :S t < q, (3.10)

10



where t* is given by

-* sup (T e (to, -) I Z(to; C) > 0 for all T e (to; 1)) (3.11)

(possibly t•= m);note t > t by Eq. (3.12) below. In other words, given t, e [0 , [ l/l, to solve

th equation of motion we must find a function t ,- Z(to; t) and a t* e (to; -] such that

(1) Z(to; t) satisfies Eq. (3.9) for t e [to, t) and Initial conditions

Z(to; t.) = 0 and (atXt; t.) = V > 0; (3.12)

and

(2) t and Z(t.; t) adsfy Eq. (3.11).

Outside the time interval spcified by Eq. (3.10) the following must hold:

Z(to; 0 - 0= (aZatXto; ) = (VZ t); t) if t 6 (--, tQ) u (t*, -). (3.13)

(We will specify values for these luncdons at (t.; t*), in case t* < --, later on.) In particular, it

follows from this and Eq. (3.12) that t ,-, (aZtXto; t) is discontinuous at t = to so that (aZftdXto; t)

does not exist there; hce the second derivative in Eq. (3.9) should be interpreted to be the

apropriate one-sided quantity at t = t.. The physical Interpretation of Eq. (3.9) is that the

acceleration of sheet t. at time t depends only upon the total amount of charge In the

cloud between the sheet Itself and the cloud's leading edge, being proportional to that charge.

Equation (3.9), as an equation for unknown Z(t; t), is not readily solvable since Z(to; t)

occurs as a limit of Integration and since Zma(t) and p(C, t) are also unknown. In order to proceed it

Is useful to make one additional simplifying assumption, namely, that charge sheets do not pass

through one another. This is the so-called "no-screening" or "no-charge-sheet-crossing" (NCSC)

11



qWoxiinatlon. If such Is the case, then the integral in Eq. (3.9) is independent of time and is given

by (using Eqs (3.2), (2.1), and (2.7))

nf dtp(ý,t) eYnf•(g)d.
qo.)a (3.14)

t.

- -eYm f f(o)dt. - -eYAnN(Q)G(ftk) (NCSC).
0

HeCe Eq. (3.9) becomes

Q2Z/)t 2 .to; t) - -[eAYN((Wm.FojG(tk.) (NCSC), (3.15)

valid for t. o t < e (with t yet to be determined). This Is the required equation of motion of charge

sheet to. It Imples that a given sheet t. experiences a constant (in time) negative acceleration and,

urheMo If ýt > to then sleet t experiences a more negative Wccation than does sheet to

(since 0 is strictly increasing on [0, :)).

We may now inegra Eq. (3.15) twice, subject to Initial conditions given by Eq. (3.12), to get

(a7lat)(to; 0 - v. - [e ,AYN()lm/.EJG(lto)(t - t) (3.16)

and

Z(t; t) - vo(t - t) - (1/2)[e 2AYN(Qt))/moo IG(Q.oXt - t.9 (3.17)

Deflubg

Se 2(AY/v.ym~e, (3.18)
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where %• is the plasma frequency corresponding to maximal electron emission density AY/vo, we have

(QMt)(to; t) - vofl -odN(f)G(Lt 0.)(t - tQ)] (3.19)

And

Z(t,; t) - vo(t - tQ)[1 - (1W2)o N(Qt')G(Qlto)(t - tQ)I ; (3.20)

also

(oZ 2) (to; = -Vo,.N())G(ft) . (3.21)

We reiterde that these equations are valid only for t. : t < t*o and for NCSC.

To find t., we observe that the motion of charge sheet t. is clearly that of an object rising and

falling under "gravitational" acceleration of magnitude v~opN(O)G(Mtt) and, as such, Z(to; t)

Increasesonotnicaily fromz=Oat t=t to

z - Zý(to) * (112)vX [l/e•(a)G(fho)J - (l/4)voT/G(Qto) (3.22)

at

tw(t.) a to. (+[l/N(Q)G(flQ)d - to + (I/2)TIG(Mt") > t. (3.23)

and then decreases monotonically to z = 0 at

t.(to) w to + T/G(Qk*) > to (3.24)

13



where

Tm 2/CDtN(Gl) > 0 (3.25)

Is the round-trip duration for the sheet launched at t, - w1Q (assuming no t, cutoff - see the next

subsection). It follows tha t given by

t: - tM(to) (3.26)

satisfies Eq. (3.11), with e = - if t. =0, so Eqs. (3.19) - (3.21) are valid, given to e [0, x0IQ, for

t [te , t. + T/G(2to)). (3.27)

In summary, we may combine Eqs. (3.19) - (3.21) with Eq. (3.13) to arrive at expressions for

position, velocity, and acceleration of the charge sheet with label to e [0, W0]], for all t e [0,-), as

follows:

A vo(t -tQ[I- T'7G(t.)(t -tQ), if t e I(to)

O,. If t e I -(Qo

(3.28)

f 0 v.[l -2T'`G(L•t)(t -Q]. if t e I(t°)

V(t; - 0, If ft 6 1-(tQ),

(3.29)

and

14



-2(v./I)G(fk.). If t e l(t°)
Aft.; 0, if t E l-(t) , 

(3.30)

whae we have used

l(tQ) a [t.. t. + .7G(LQto)] - It[ t:1 (3.31)

and

I -( t. ) • - , - ~ o .( 3 .3 2 )

We wil also denote, for future use,

9(to) (t., t. + 7yG(Qto)) = (te t0). (3.33)

Note that Z(to; -) is contiMn at t. and t but neter V(t.; .) no A(to; -) is at eite, furher, we

have arbitrarily elected to define these latter two maps at t. so that they wr left-contdmn us there (we

have already aanged that they be rght-conti•n at tQ). Also.

V(to;t) - (OMt) (to;t) and A(t.;t) - (2ZTa.2)(t,;t) , t t, t,,t (3.34)

It follows from above and the pevious pararaph that

IV(t.;t)I 1 v., t G 1(t.) (3.35)

so thst the motion Is always non-remlatvistic If it Is Initially so.
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C. MW cutof
Tw results expressed in Eqs. (3.28) - (3.30) are constrained by the NCSC requiremenL Since

this conraint was imposed on the already existing equation of motion, Fq. (3.9), which does not a

prio, exclude charge sheet crossing, then we must insure that our complete model, including NCSC,

Is uelf-constenL That such self-consistency does not automatically obtain in general may be seen as

fMows. First di quantity - by

T. a TJT,0G1 w sup (T E (0,J) I(dtmdtQ)(r) : 0 for all cE (0,T1), (3.36)

where tj(to) Is given by Eq. (3.24); note that

(dt,/dto)(t.) - I - DITG[(CX.yGY(C.)) (3.37)

exists on [0, w/Q] since G' does, thate L S WL and that L satisfies

G1(Cffo)G2(tff.) - 1IfT (3.38)

whenever 4 -< a/J Now consider, in Fg. 2. two typical pictures in the t - t plane of the set

U [tQ x I(to)] of arguments for which sheet motion Is, according to Eqs. (3.28) - (3.30), non-

stationary. The behavior of t. near t. = 0 follows fromt tinto) - -- which in turn follows from
t,-40*

Min G(l t,) - -, while the behavior elsewhere follows from the fact that G is strictly increasing.

7ben It is clear that NCSC does not hold in situations represented by Fig. 2b.

To rectify this situation, we have two options: We may either restrict ourselves to considering

only pulses for which the behavior In Fig. 2a is representative, which behavior is characterized by

LHS (3.37) < 0 for t. e [0, xjrd ; or we may consider, in addition, pulses represented by Fig. 2b If we

cut off from consideration in the dynamics (and hence subsequently in the electrodynamics) those

16
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Rpmur 2. Typial domains in the t*-t plane for non-statonay sheet behavior as detaemined by

Eqs. (3.2g)-(3.30).
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charge sheets with to > L. (In fact, we could cut off somewhat beyond to [2] but choose not to do so

since we are interested in all t > 0.) Elimination of these late-time charge sheets does not at all

influence the dynamics of the Lta!ned earlier-time sheets with labels to , o since the dynamics of any

particular charge sheet Is Influenced only by those charge sheets emitted earlier than it (in the NCSC

approximation). Further, when t does not differ greatly from wQ then using this cutoff is not an

unreasonable approximation. In the literature, this issue Is addressed only in [7] where the first option

is chosen. We choose the second since it is more general than the first, Including the latter as a

special case. Naturally, we call L the cutoff on to. Finally, since we have based our strategy on Fig.

2, we should point out that the two possibilities illustrated there are not only typical but In fact general

except for the possible occurence of points of inflection or intervals of constancy In t.(to), which

features do not affect the above argument Because such features will, however, have an influence on

our radiation considerations, we demonstrate in Appendix A the existence of a class of pulses which

have the interval-of-constancy feature.

While It is clear that elimination of charge sheets with to > L is a necessary condition for self-

.consistency (when we wish to consider all t > 0), it is not a priori clear that it is also sufficient That

is, we may have to further limit those to's which we admit to the charge cloud In order to Insure

consistency with the NCSC constraint. We now settle this issue, showing that this condition Is in fact

also sufficient To that end, we let label to be admis"ble If charge sheet to, during its entire flight,

never spatially coincides with any other earlier-launched charge sheet; i.e.:

Defition 3.1: t. e [0, xtll] is admissible if for every t. r [0, tQ) and for every t r Ir(to) ri

r(t'/) we have Z(t.; t)* Z(to; t).

It Is clear from this definition that t. = 0 Is always admissible (vacuously); physically this may

also be seen since Z(0; t) = vot for any pulse. In fact, as we demonstrate in Appendix B, the

following Is true:
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Theorem 3.2: (1) i > 0

(ii) If t, e [0, To] then t, is admissible; further, [0, Q is the largest possible

interval of admissible to's which contains t. = 0.

In summary, the NCSC requirement has led us to limit (when i. < i,/fl) those charge sheets,

labeled by %, which we admit to the charge cloud. As a consequence, If we define

ID[T, G] U U [{to) x l(t°)] (3.39)
t.• .1o )

as well as denote its complement and interior, respectively, by

D-[T,G] = 1[0,To] x (--,-)) \ D[TG] (3.40)

and

D0[T, G] - U [It.) x l°(to)], (3.41)
ta 0•.?)

then the maps (to, t) - Z(to; t, V(to; t), A(to; t) of Eqs. (3.28) - (3.30) will henceforth be considered

to have only domain [0, T.) x (--, --) with their values on D[T, G] being given by the respective first

lines of Eqs. (3.28)-(3.30) and their values on D-4T, G1 being 0. In particular, they will no longer be

considered to be defined for values of to in (To, WO). We will present, in Section VII examples of

pulses with T. = x/f and of pulses with To < r/at

D. Charge and Current Densities

Since, as pointed out in the Introduction, our formulation of electrodynamics is driven by the

Inability to translate analytically from the Eulerian to the Lagrangian description of the electron cloud
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charge density, p(z, t), and cunent density,

J(z, t) = p(z, t)v(z, t) (3.42)

(where v(z, t) represents the charge cloud velocity at (z, t)), we devote some discussion to this issue.

Consider first the charge density. Given z > 0 and t > 0, we expect that

p(z, t) - (&o/'z)(z, t)pL(,@(z, t)) (3.43)

where t. = ro(z, t) Is "the" label that satisfies

z(to; 0 t z (3.44)

for PL (t.) given by Eq. (3.5) and Z(t.; t) given by Eq. (3.28). This expectation is, of course,

basically correct but we must be careful to ensure that the prescription given by Eq. (3.44) Is wel-

defined, i.e., that such a to, given by a differentiable (wrt z) c,(z, t), exists and Is unique. Indeed, Eq.

(3.44) has, in general, many solutions for t. (given z and t) and no valid physical solution for t,

whenever z > vot (since such solutions would be acausal).

It is easy to settle the existence and uniqueness issue for Eq. (3.44). To this end, let DI[T, G]

be the set defined In the z-t plane - see Fig. 3 - by

DI[T, G] {(•, -v)I there exists to e [0, To] such that Z(to; ,) = •}. (3.45)

Clearly DJ[T, GI] 0. Then the following, whose proof Is provided in Appendix B, is true:
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Theorm 3.3: Let z, t>O0. If (z, t) e D(T, G] then the equation Z(t.;t) =z has aunique

SOAlU ion fthinterval (0, T.;ahd if (z, t) * D11T, GIthen p(z, t)=O0. Further, ifz >O0and t!ýO

dim P(Z' t) -O.

Teasence of &rJ& at points (z, t) e DILT, G) follows from the Implicit Function Theorem; but,

siam we will not base our electroynamics on p(zt) and J(z~t), we will not give the details here

(However. the essentials of the argument are contained In a portion of the proof of Theorem CA4)

Having foun the appopriatm t. = ;.(z, t) required for charge density in Eq. (3.43), we then

find

v(z ,t) -kV(,r,(z. t); t), (3.46)

where V(t,; t) is given by Eq. (3.29), and finally find J(z, t) from Eq. (3.42) so that

A~z- t) -k(aE 0/azx(z. t)PLCC,T(z, t))V(r0.(z, t); t).- (3.47)

In practice one finds t, by solving Eq. (3.44) directly, either analytically or -- necessarily. in

manY cases -- numerically and by then judiciously selecting the correct t. from among the in general

many root (all but one of which, however, lie outside (0, T.1). However, p and J are not generally

explicitly analytically available via Eqs. (3.43) and (3.47) because Eq. (3.44) for t. is not generally

solvable analytically. Tbis state-of-affairs, then drives our choice of technique for doing, in the next

section, charge cloud radiation electrodynamics.
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IV. FI•mY-REMOTE FElt.DS

A. Dcg•~

Tire usual mehd for studying radiation theory for macroscopc charge and curn

distributions employ a filed-thee~tic (Eulelan) description of the distributious. In this approach, one

asumezs that p(x, t) and J(x, t) are available and from them calculates the retarded potentals at space-

time point (x. t) of interes accoriing to

* .t (lI4, offf dx)p' t -(ix -r' i/c))Ix -"I' i"(4.1)

and

A xt) - (ll4uoc2)fff d x)Jxt - (Ix -x I /c))Ix -x' [-s (4.2)

where the integrals extend over any volume containing all the sources (x and I' are position vectors

with respect to some arbitrary origin); the fields E(x, t) and B(x, t) then follow from

E(x, t) =-V~x, t) - (aA/'dt)(x, t) and B(x, t) = V x A(x, t). (4.3)

All deleodynamic quantities of Interest follow from E and B; In particular, radiation quantities follow

from those parts ore and B faling off with distance as llIxi as opposed to I/Ix12.

As pointed out In detail at the end of the previous section, the above Eulerian description is

not adequate and we must resort to another approach. This other approach Is to use a paricle-

theoretic (Laganglan) description of the macroscopic charge and current distributions which give rise

to the radiation fields. This method, while common for studying the fields of a single moving charge,

is not geealily used for analytical treatments of macroscopic, continuously distributed aggregates of

charged particles; but It is the method we use here. This Lagranglan point-of-view will allow us to

23



obtain analytical expressons for al the usual radiation quantities of interest without sacrificing the

geneality we require. In his approach, a macroscopic charge distribution is considered to be a union

of "Infinitesimal" charge elekmes, 8q(), with labe I in some index set, 9, where 8q(f) has

posionm velocity, and acceleration denoted by X(k. 0, X(t t), and i(t t) respectively. (ibe" and

" should be regarded here only as diti ishipng notation - we do not mean to imply that t -. X(1; t)

Is twice differenable on all of (Th e).) The potentials corresponding to Eqs. (4.1) and (42) are then

given by

L(x. t) - (l/4xee.I &i(l) 1x - X(t, t '(1; x, t)) I '[11 -(t x, t)V1  (4.4)

and

AL(xt) - (l/4xeoc 2)f dq()•(Q t'(l; x, t))Ix - X(1; t'(I; x, t)) I-1[1-(1I x, t)]" (4.5)

where

WeI; X, t0 - (O/c)Xio t /(#; X. t)) -ft[x, x(t tR X.t 0,t)] , (4.6)

Als, xRl: t '(# X, ON) - N -x0; t I(t X. ON) / I1 -X(d; t 10. , 0) 1 (4.7)

is the unit vector pointing from X(1; t'(I; x; t)) to x, and t'(I; x, t) is the retarded time which is the

solution of

t -t I - (I/c) I,,-x(I; t ) 1, t' 1 t, (4.8)

given I, x and t. The fields E and B are then once again determined by Eq. (4.3). (It is assumed that
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Eq. (4.8) has a unique, well-behaved solution for te, given L x, t; we will have more to say about this

ISM.) In cue the disibution is a single pointchurgeq (sothat S= (1) and the label Imay be

.phmhedand Ift 1). I= ) fte Potenal #L And A#L awe Mhe Uftard-Wiechert potentials of die point

Upon peroming the operations indicated in Eq. (4.3) for E and B we find

E(z, t) - (lI4xe) I dq(() [E,(#, x. t'(I; x, t)) * E3(I; x. t'(I; x, t))] (4.9)

and

B(x, t) - (1/4xeoc) Idq(I) ([x, X(t t 1(1; x, t))] x [E,(I; x, t '(t, x, t)) + E,(I; x, t '(1; x. t))])

(4.10)

where

Xz, t '(E; x,t)) - [k-(IIc)X(Q; t)J / t2Q I')[1 -e(#; x, t)]3Ix -X(t; t') 12, (4.11)

C 2E,( X,t'(U X,t)) _ (ft x If -(1/c)X(I;t')] x i(U;t'))) I [1 -_O(;x,t)],Ix -X(t;t') ,

(4.12)

and

7(1, t ( 1 - [IX(I;t') Vc])"; (4.13)

In the above we have abbreviated by A the quantity which is rq nted more fully in Eq. (4.7), and

by 'e th ded time t'(e x, t). TeM subsacpts 'v" andm a" on E stand for "velocity" and

"-acceleration; the velocity fields fall off as /lIx - X 2 and are essentially static in character, while
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Mhe acceleratlon fields fall off as I/lIx - X I and are the dynamic radiation fields. In what follows we

wil be Imeresatd only in the radimto fields

E(x. t) -(lI4xe.) ~.dq(f)E.(f; xt '(Imt~x)) (4.14)

and

D*(x. t) -(114x~c) ~dq(IQ{A~x. X(I t'(t x. t))J x E*(I1x. t 1(1;x.t))). (4.15)

The Poynlng vecOr asuoclated with this elclmgec field is

Sa(X 9 t) . (e.c 2)E*(X. t) X B.(x. t) (watulm 2) (4.16)

so tha te lmtnutaeutae radiation energy flux ame density at x in the directon t is S,(x, t) -t and

the btaacmradiation energy flux angular density at x, Ix 1 2., In the direction t (also called

Instantaneous radiated. power per unit sOli angle) is

(WISY) (xZ 0 SA,(0 t) Fxrt - C~c 2 t Ix JEA(,t0 x lx IBA(x Q (waftts&) (4.17)

(Wbee soli angle, Is denoted by "I'. The total radiated energy angular density at x in fth direction t

(BW/S'Xx) f f(&P/&P)(x. t)dt - f (8P/SY)(x. t)dt (oulessr) (4.18)
0

and Me spectral Intemity of this radiation Is given with m 2! 0, by
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(B•lTh'ao)(x. c C) - x0c2 jx' 2Re "E.A(tx. (1) x (X', c)] J(oules/sr-hz) (4.19)

where JEAs(74 W)J " ,E.(x, t)l d .2)LP eh.flE.(x, %t).0

(E4L 00)} - (2x)-vzfdt i:.(X - (2z)-md T" I to

and * denotes complex conjugate; Eq. (4.19) follows from the requirement

(8WIM )(x) fd b(VM &o)(x. cc). (4.21)
0

B. The Field Integrals

Up to this point, everyting we have done in this section has been very general. We now

return to the palulars of our problem which we Illustrated In Fig. 4. In that figure, each

InlinItesimal clarge elment of the electron cloud Is labeled by the label to of the sheet on which it

(forever) lies and by Its plane polar coardinazes, (r, 6), on that sheet which also remain constant In

time. (r remains constant because of our assumption of negligible radial expansion while O remains

conUtt because of the cylindcal symmetry of the charge cloud.) Thus, our set of labels for the

dcae elemnts Is

U- {(tor,8) 1t. E [0,To, r e [0.a], 8 e [-.r,,x) if r * 0, and = 0 if r 0). (4.22)

Using Eqs. (3.1) and (3.18), we have

bq(t*, r, O) - [q(tyxo 2])rdrdO - -eYAfN(Q)G '(f)&ordrd6
(4.23)

S--(m.z/e)v.o N(Q)G'(Lt)&.rdrd6 (

also
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(-0)

(,0, 0

x -~t, r49; t) - li, X(t,, r, 0; Q3)

Zq~t. 6)

y ~~XQ, r. 0; t) Itrcos0+ jr sin10+ kZ(t,,;t)

Figure 4. Elect=. cloud dexcridom for elecuodynamlcs. 113 symbol t may be interpreted as present

or ret wArded tine, a needed. 7he vector x is taken to lie in the JIrs quadrant of the x-z

plain and outside the cloud (hence x -I > a).
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X(t. r, O; t) - I r coso *Jr s + ktZAt; t). (4.24)

Yl(t.r, ;t) - k V(t.;t) (4.25)

and

(tt,r r; 0 - k A(t; t) (4.26)

where Z V and A •e give by Eqs. (3.2g)-(3.30) withte (-t-, e ).

We now write our expressions for the fields F,(x, t) and B,(Z, t) based on Eqs. (4.14) and

(4.15). Since we have assumed that v. is non-relativistic, it follows from Eq. (3.35) that so Is V(to; t)

for 2If (t. t) cm [0. To] x (do m-) -•',me" take In Eq. (4.12)

[1 - e(t, r,.;x,t)t]' - 1 + 3(l/c)(t,, r. ;t'(to r, ,; x, t)) .A[x,X(to, r,6;t'(to, r.6;x,t))].

(4.27)

Dmotin

I. If (t.,t) e D[T. GI
Wdt.; t) ft (4.28)

[0 if(t, t E D-[T,GI

and noting from Eqs. (4.25) and (4.26)that X(t0, r, ;t) x l(to, ro;t) - 0 we find, for t > 0,

F-•(i, t)-K f dto O (fto)G(2to)0fdrr fd6ZD(to; t /){[(l'k)ig-k] [ + W(to; t')] /Ix-X(to, r, O; t')I}

0 0 -x

(4.29)
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whom t' - t'(t, r, 6; x, t) is retarded time (possibly t! < 0) satisfying

t - tI 01 ( Ix) - X(t" r, 1; t ) t, t5 t;, (4.30)

also

i - &NX(t, r, ; t'), (4.31)

W(to; t') - 3(1/c)V(to; t')( -k) (4.32)

and

K - (m./ec 2 )Mvo.7. (4.33)

ikwlue, for t a 0,

B.(x.t)--(K/c) dtoG '(o)G(Ltt) fdrrfdO}ZD(to.;t')((l x k)[1 .W(to;t')]/Ix-X(t.,r.,O;t')I].
0 -

(4.34)

Note that the factor W(to; t') ensures that sheet t. contributes to the fields only If it is In flight at the

retwded timete, Ie.,Ift ee I (Q•. It is clear at this point that

Ea(x, t) - 0 - 35(x, t) for 0 < t < Ix i/c (4.35)

althouh we will re-derive this result in a more systematic way later.

To proceed further, we concentrate upon the Integrands In the above expressions. We remark
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that by symmetry we may, without loss of generality, take x to lie in the first quadrant of the x-z

plan so that

X.J - 0. (4.36)

Also, the observation point x is assumed to lie outside the cloud; hence

a x-i > a > 0. (4.37)

With a view towards addressing the components of E, and B, we compute, using

Sa x'k, (4.38)

the components of the integrands to be (abbreviating X = X(to, r, 1; t))

[(f.k)Rt.i] - (k.i) = (1/Ix-X 2) [(x-X) -k1 [(x-X) -11

= (t/Ix-X12) (-•(xI) - 4(X-k) + (X-i)(X-k)]
(4.39)

(1/Ix-X1 2) [4-Jr cosO - ,(to;t) + Z(to;t)r cos'O]

- (aIjx-X1 2) [Z(t.; t) - U1(r cosO -

[(A.k)RA.J - (k J) = (1/IX-XI2)[Z(to;t) - ýjr sin6, (4.40)

[(ftk)f.k) - (k.k) - (1/Ix-XI2)[Z(to;t) - Q2 - 1 (4.41)

(A x k)-1 = -(/lx-Xl)(X-J) - -(z/Ix-XI)r sint, (4.42)
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(ft x k)*j - (I/Ix-XI)[(X.I) - -(IIlz-X Krf c066 - 4)(4.43)

(ft x k).k - 0, (4.44)

IX-X12' I 111 + * 1X1 - 2X.X . IX 12 + r * Z 2(t.; t) - 2[tr coot +Zt;)

IX 112 -2 V + * [A~t.;t) - ýf- 2rc

V + -r 2tr COS,& + [Z(t 0; t)-_Q 2 .

(4.45)

ZA(t;) 0 Z(t;.t0 - (4.46)

so that

W(t0;.t') - -3(1/c) V(t.; t')Z*(t. t'yjx -XI (4.47)

we dme have
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T. a

E.(x, t)I- K fdt.G '(flt.G(QlO~) fdr r dOXD(t.; t ')Z.(t.; t /)[I7 +W(t t ')1(r CoOS")/IX-X I3, (4.48)

E.(x, t)-j -K fdt~oG'(Ql)G(QOz)fdr rfdOXD(tO; t')Z*(t0 ; t 'MI W(t0 ; t 1)1r slno/jX -X I, (4.49)
0 0 -

E.(x, t)*k K fdt0 G (~1kt)G(Qfl)jdr rfdftxD(tO; t '){[Z.2Q0; t ')/ jx-X I'] -[1/lx-XI11)-I +W(t0; t/)],
0 0

(4.50)

B.xt- (Kfc)fdt.G'(fk)G(Qt0 )fdr rfd-6XD(tO; t'XJ.W(t.;t ')]r sin'3lIX-X j2, (4.51)

B,(x, t)'J -(Kc) jd~t~G'l GQ fd rf*Dt )[I .W(t0 ; t ')(r CoS~-y)jX-X J2, (4.52)
0 0 -E

and

B3 (x, t) -k - 0. (4.53)

We nex want to Perform the r-'d integrations, but we are hindered by the fact that te is a

function of r and 0. Indeed, we have from Eqs. (4.30), (4.24), and (3.28) that e' satisfies, for

. [0 t, 101,{(1Ic)f IV + r 2-24r COSO+[y0 (t/ _-t) - (vdl)G(flt)(t' _ ty _ý]2)w,' if tie I(t)

(Ilc){E + .r 2 -24r cos5D + V)"2, if t' / 1I(t)

(4.54)

(the non-negative square root is assumed). Defining

A*(t0; t') a Z,(t0; t )Ik, (4.55)
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we may rewrite Eq. (4.54) as

i (rcXI A)w{ 1-[2/(1 +)](r1cos6 + [l/(l.IA)](r/V]w, if t'e I(t()t - t' -1 (4.56)

(IxI/c)[l-2(4xI)2(rI4)cos6 + (ElxJ)"(rV], if t /E l(t) .

If we now restrict our attention only to situations for which

A, -c 1 (4.57)

and further demand only zeroth order accuracy in (r/I) then Eq. (4.54) becomes

-/ (Jc)[1 + A÷(to;t')]14, if tle l(t) (4.58)
Ix I/c, if t'e -(t0)

with solution I' , !(to; x, t) (that solutions to Eq. (4.58) exist and are unique for fixed

t.e [0,To], x •> 0, 0, ¼>0), andt 0 wll be demonstratedin Appendix C) whichIsan

approximation to the exact solution t' , t (t, r, 1;x,t) of Eq. (4.54) but which is independent ofr

andS.

The condition of Eq. (4.57) guarantees that 1&l(t, r,O;x, t) = It'(t, r, ,;x,t) - i '(to; x, t)I

is small, but it does not guarantee that this difference Is small enough, where "small enough" means,

for exiaple,

sup sup [vol&l(to,r,*;x, t)IZM(tI - 1, (4.59)
t.E O r ET no)., 4E I-0;a)

this being a sufficient condition that every sheet moves only a small fraction of Its entire trajectory

during the time It- V I. When Eq. (4.59) holds, then IZ.(to; t) - Z.(to; V) I /Z(to) and

IV(to.; t) - V(t; V') I a v r we very small and IXD(to; t') - ZD(to; ')I - 1 for only a very small

fraction of t, e (0, To], hence the Integrals in Eqs. (4.48)-(4.52) remain quite accurate when te Is
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replaced with t . That some such additional condition Is needed Is clear since without It the following

unreasonable argument would be valid: Since we are ultimately interested in 4 -+ - for the radiation

limit th given any a > 0, consider only 4 so large that a/1 c 1; hence any a > 0 can be

accommodated by the condition a/W • I ! The condition of Eq. (4.59) further restricts a so that the

above unreasonable argument is in fact not valid. Indeed, noting that using 11 is equivalent to

assuming that all charge elements dS on sheet t, have one and the same associated retarded time,

namely that associated with the charge element at r = 0, we see that we may approximate

I&l(t 0.r, 6;x, t) S< a/c; further, from Eq. (3.22) we see that Zu(to) k 1/4 voT for all

t. E [0, To]. Hence a sufficient condition for Eq. (4.59) to hold is that vo(o/c)/(1/4)voT C 1, i.e.,

a/cT - 1, (4.60)

and we require in the sequel that a satisfy this condition as well as that of Eq. (4.57).

Taken together, Eqs. (4.57) and (4.60) simply mean that the charge cloud has negligible radial

extent for retardation purposes. (In the language of optics, we are discarding phase differences, which

lead to merftrenfe efects, along the cross-section of the spot.) For this reason we refer to f as the

amaiU * Aw retarded *Mme. Note that we have made no assumption about the magnitude of A.

(which is related to the axial extent of the charge cloud).

We may now move ZO, ZL, and the numerator of W in each of Eqs. (4.48) - (4.52) outside the

r-O integrals, replacing t' by V. When we do so, and further note that the integrands remaining under

the r-O integrals in the expressions for Ek j and B, . I are odd functions of 6, we get

Ea(Xt).j - 0 = B.(x, t) -,
r. ,d X

E,(x,t).I 2KfdtoG '(LtdG(fltD(tO; '){Z*(t0;')fdrrfdo(r os"- )/Ix-x i
0 0 0 (4.61)

-(3/c)V(t 0;V )Z.(t.;!i')fdr r fdt~r cosd-4tY I-X I'),
0 0
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Eo(X. t)'k 2K fo'(. f D(to;)jZ(to: T') fm r cfx(l/ Ix -X J3)-fdrr fd i/jIx-X i)
0 0 0 0 0

-(3/¢)V(to; 1)i,.1o1l) fr rj6l/jx-Xj )-z.(to;t )jd rdlD(/Ix-X2)]),

0 0

(4.62)

and

V.a xI

B,(x.t).j - -(2K/c) fdtoG '(CtGAto)X((tof'){ fdr rfdo(r cosO-X)/Ix-X12

0 0 0 (4.63)

- (3/c)V(to, j')Z.(t,. C')fdr rfdO(r CosC-,jyx-X I'i.

We see that E,(x, t) lies In the plane determined by x and k, while lB(x, t) Is perpendicular to

that plane; the polarization of the electromagnetic field is thus specified.

We must next address the remaining r-O Integrations. While some of these double integrals

can be evaluated analytically in dosed form. the Integrated results seem to us to be too complex for

our further use here (i.e., integration over tQ) and we will not display them. Rather, we once again

involk the requirement at- e 1 of Eq. (457), this time to expand the denominators In Eqs. (4.61) -

(4.63). We first write, as in the RHS of Eq. (4.56),

Ix-XI - 4(1 +A÷!) 1 - [2/(l+A!)](r/•)cos* + [1/(l +A!)] (rIdV)w (4.64)

so that, for n = 1, 2, 3, 4, and a/l c 1,

Ix-X1*0 -•0( +A!)--$l * [+WO +Ab) cos6 (r/4) - [n2(l +A!)] I -[(n+2#(l +A!)]cos2Oi(r/V

* O((rI•9)). (4.65)

Using dtese expressions in Eqs. (4.61) - (4.63) and performing a great deal of algebra, we find the

double integral expressions In braces In those three equations integrate to be, respectively,
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-(rJ2)4(aV~(A6 (1 .A!y -31 -( TX4A!-lX1 .A!y2(alI)2

(4.66)

(4.67)
-3(V/c)A*(1 +A!21 .(4X3A.-2A!.1X1 A!)2 JV

aind

-3(V/c)A*(l +A)3~ -.4*tA!-IXI +A!)-2(a/tf)2]1 (4.68)

Correct, to order (AIV inside the braces of these last three equations. In what follows we will take

only the leading term Inside each of the brackrets (i.e., 1) which, as can be seen, gives results correct to

order (&V~; these third order results are more tan sufficient for our purpose. The fields then become

tr

Ea(X9 t) - -(zaýCIM JdtOG /(Qt)G(Qt4 )X,(t.; i)

x HI.+A!(t i')Vj' - 3[V(t.; i',,*A.t. !'II*!t;!)-)IA(t.; V) + ki

aind

B.(X. t) -jX~a 2K/Ct) dt.G '( kG(at)y,(t 0 ; E'){ (1+A!(t8; t ')p'

0 (4.70)

-3[V(t 0; f/ ycJA*(t.; i ')[I .A!(t.; VI -a

where

Nt.;1 [.(t- Q- (vfl7G(CkXt'- tyk- (~, if t /r I(t)4.1

tf 1e(t)

and
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-1 1t'(t.; Xt. 
(4.72)

To proceed further, we need some addidioal properties of the retaded time tV. Because we

will need. In addition to these properties, several other results concerning the retarded time V in order

to demonstae th existence of the asymptotic radiation limit, we systematically treat V' in a

mathemacally careful manner in Appendix C. In order to get on with the current development,

however, we simply note that as a consequence of Theorem C.3 we may rewrite the fields E. and B.

of Eqs (4.69) and (4.70) as

Y.c.t)

TA0
Eo(x~t) =-(KI//) f dtoG'(•Ito)G(ito)l[I+A!(to;If(to;x~t))]-m

1 c, t))) [IA,(to;I (to; i, t)) + k]

(4.73)

and
TA .)

B,(x. t) - J (K /IW4) fo dt°G/(C'2°G(i'tk.)l[ I At°; !'(t°; z.t))]"l

0 (4.74)

-3 'Vl(t; x, t)yc]A.(to; I '(to;x, t))[ n A•(to; 1 '(to; x, t))]]})

where To(i, t) is given by

0, if -< t-IxI/i50tlx~l/c, If 0< t -IxI/c <To

T.(x.t) am -z/, I O -xk T (4.75)To' If TO< t-IxI/c<t.().
tW-lx0¢), If tm(fo) 5 t - 119/c < -

with
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tt-lxlc) a Inf kRt-IxVc), (4.76)

for

k•[t-lxVc] w it. E (O.•Jljt,(t. - t-jxl/c); (4.77)

and

K' -= 2 jK - x(m/ec 2Xu()'1(avolV - z[QIN(f)l2z]2 (e 2/.om.c) 2(m/eXf/)ao 2(AY9.

(4.78)

Figure 5 lMusrates the e on of T.(. t), for the various ranges of t - Ix l/c on the RHS of

Eq. (4.75), as Implied by Tha-un C.3, while Fig. 6 Mustrates a generic To(x, t) as a function of t e

(---, --) for a fixed x. Appendix C contains the background required to moe fully appeciate these

fw Note tMat ift4 (t -IxlVc) < ts(t -Ixlc0 (in case t- Ix Ic >: tTo)), winee

t,(t-lxl/c) - sup t[t-JxVc], (4.79)

then we must add 14, ts] to the ranges of Integration In Eqs. (4.73) and (4.74) (for elaboration of this

last point, see bothe paragraph following Eq. (C.30) and the beginning of the next section). Also

note that, as expectd (see Eq. (4.35)), we have from Eq. (4.75) that

E,(x,t) - 0 - B(x, 0t) If t < Ixllc. (4.35)

The final Impedmen the evaluation of these Intgrals appears to be this: we do not yet

have an explct expression for i'(t.; x, 0 wheD t, > 0 (!'(O'x, 0 Is given explicitly by Eq. (C.3)).
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"r

taij :S (t - x

t..(j S (t- Ix/C). < a '

t.0.

* S

i. < (t - I x 10 < ,()"L/

*. S

• S
' 1"" S

Si :
* S* S

(t -*I/C), g 0. [ Ia i

by c to distnguish It from t.
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.(z, Q (z fhxed)

"ta)t

1l1/ t. + I/xIc t,.(O.) + I I/c ti

FIpgu6. 6 e function Y*(x, t), t e (-,-), for x ftxed. Note that the functon plotted hee Is just the

"inverse of the (two-vaued) relation plotted in Fg. 5, where the upper curve of ta

raion Is first fixed Wp by removing that part of its domain where It Is not one-to-one

The Rhbpe of the portion of the curve determined by t can be Inferred from Fig. 5 or, more

formialy, frm the result (d^/dtXt)m[d(t:Ydt](t) - l/(dt,/dtXtj(t)) for

t e [tLt.) + Ixl/c, -){(t,}j. Finally, If dre we several, say NA > 1, Intervals of

cousltamcy of I then dtete ie NA places, t., I = l,...N,, where the map t,-. T(x, t) has a

jump discontinuity (If NA = 0 then there we no such places).
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Such an expression Is given by the unique solution of Eq. (4.58); however, as discussed In Appendix

C, we choose not obtain this solution explicitly since it is not needed to proceed to the radiation limit;

Indeed, the expressions for E. and B. of Eqs. (4.73) and (4.74) suffice for that purpose. Equations

(4.73) and (4.74) thus give, adequaty for our purposes, the final representation of the finitely-mmote

ele.romaget fields In tarms of only the give, input parameters of the pulse and surface and the

specetime point (x. t) of interest. "Th only q~poxlmals we have made are (1) small spot size:

4 afcTc 1; and (2) vjc c 1, which allowed us to negle terms of order (vjc9 in the radiated

fields. Expresslons for the customary finitely-remote radiation quantitites may be formed at this point

from these fields according to Eqs. (4.16)-(4.20), but they suffer from the same deficiency as the field

expresons themselves, namely, the lack of an explicit expression for the small-spot retarded time

i (to; x, t). For this reason, we defer treatment of the radiation quantities until after we obtain, In th

next section, the radiation limit for the fields.
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V. ASYbM C FIELDS

The finitely-remote fields, given at spacetime point (x, t) by Eqs. (4.73) and (4.74) in case t >

Ilk/ Xad, more explicitly, by Eq. (4.35) in case t < lxVc, depend upon x = Iltx in two different

way'; hence, so do the finitely-remote radiation quantities calculated fi in them via Eqs.(4.17)-(4.19).

The first dependence on x is solely through IxI and is embodied in the circumstance indicated above

that the expressions for the fields depend upon the sign of t - Ix I/c; this dependence is a causal one

and canot be dispensed with ibe second dependence is manifested by first rewriting Eqs. (4.73) and

(4.74) respectvely as

lxiE.(x, t) - -K'(1/sin,)[II,.•,(x, t) + kO,,2 (x, t)] (5.1)

and

Ix IB,(x. t) - (K'/c(1/slno[ 0 ,(x, t)j, (5.2)

where cc (AzI2] lsthe anglebetween x =(0,0 andk (seeFig. 4) and

Y.UIt)

it. q(XI 0~ f dt.oI '(QG(ft) MA(t.; f (to; x, t)){[1 + A!(to; i '(t.; x, t))]"q
o (5.3)

3[V(to;! (t; x, t)Yc]A.(t.; I'(t; x, t))[1 ÷+ A(to, t (t.; x, t))](q };

and by Secondly noting that in general I q(x, t) Indeed depends upon x thmough both Ix I and R. Ibis

situation is unatisfactory since the angular density of a (conceptually idealized) radiation field ought

to depend in tUs second sense only upon direction t and not additionally upon Ix I; this second

dupon x. Insofar as It Involves Ixl, should be elimnnated. We accomplish this by defining,
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for

t - (811, , oaC), * E (o, AX2 (5.4)

and

' 6 (-,'s), (5.5)

the functions

( ulm [jxlE.(lxljt, It/c + -9)] (5.6)

and

- Jim [IXlB.(Ixlt, Il/c ÷ r)] (5.7)

povided the limits exisL If they do. then we define the asyvptotic instantaneous radiated power

angular denuty at . Ix1 2 0 in f drection t, as

(8P/SY).x, t) - CoC 2t.uX.U,t - Ixt/c) x (t, t - Ixl/c), (5.8)

as suggested by Eq. (4.17); other asymptotic radiation quantities easily follow. Of course when c S 0

htia, by Eq. (4.35), the limits in Eqs. (5.6) and (5.7) are trivial:

0) U. o9 0;o (5.9)
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hence we restrict ourselves in the sequel to

t > 0 (5.10)

unles otherwise Indicated.

Before presenting the main result, we address the issue, alluded to briefly after Eq. (4.78), of

those special pulses - examples of which were given in Appendix A - for which the integration range

in Eq. (5.3) must be extended, for special values of x and t, beyond T,(x, t) to ts(t - x i/c). For such

pulses and such (x, t) we have, for all t. rT ff(x, t), t - Ixl/c)]J that Z(to; t - hhl/c) = 0 so that

F' (to; x. t) = t - Ix 1k; hence Z(to; i'(to; x, t)) = 0 as well so that A.(to; (t; x, t)) - -t/4 = -cot*

and I + A•(t.; i(t.; x,t)) - I/sini*. Since also V(to; t - zxl/c) = -v. then V(to; i'(to; x, t)) -v

as well, hence the additional integral that must be appended for these special cases is simply

tA- W.k)
l~q(Xt) cotW[sinN + 3(vJc)cot sln'*l'*] f dtoG '(GQttG(•tk). (5.11)

T,•z. )

, if 0 : T S T.

'lo')•T., if T. < r < t.(To) (5.12)

so that To(x, t) - Ti(t - lxI/c) whenever t - Ixj/c : 0, we then have, using Eq. (4.75),

r),q(IxIt, Ix I/c + 1) df dtoG /(()G(•o t) = (1i2)0-'[G 2(P•()) - G 2(Q-(x))] (5.13)

so I,.(Ixli, Ixj/c + r) Is independent of xl; hence
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Urn ( Ixt, Ixl/c ÷ +) - (lf)Q-'colns1n• + 3 (v.Ic)wo •it 1,]IEl-.-

x [G I(PQts(z)) - G 2(Do(r))] (5.14)

and the existence of the limit Is demonstrated for this additional piece. For this reason, we will

dispense with Murther consideration of these special pulses; i.e., in the sequel we will only consider

t. E 0o, T.(x. t)]. (5.15)

For such t, we have from Theorem C.3 that, whenever x = t - Ixl/c > 0, then

(to; x, t) [It t 7G(flO)] (5.16)

and

t - IxI/c 6 [%,t, + T/G(fkt)]. (5.17)

Also, for future use, we plot In Fig. 7 the function T""(T), T k 0, corresponding to the function

T%(z, t), t Ilx Vc of Fig. 6 except tdat, in consonance with the previous discussion in this paragraph,

we take NA - 0 In the latter figure.

The next result establishes the existence of the limits in Eqs. (5.6) and (5.7) when Equations

(5.4) and (5.10) govern # and c. The proof of this theorem is given in Appendix D.
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tor

Figure 7. The function "(¶), Z 0, corresponding to the function To(x, t), t Ixl I/c, of Fig.6,

except tat here Nh = 0.
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Thjeorem 5.1: Le W ,0 o# it : 2& c>0 Ten

lim[IxIE.(lxlt, l/l +c i)) - (I - fitar4~)Ksiv4cooi fJdtG'(Q.dG(flt.)
0

x (I + 3[V(t,;Cft.Q; *,,)Yc~jc4 (5.18)

and

lim( li lfl.(tx it, Il/I +c)] - J(K'Ic)sbni fdZG '(tkdG(IX~,)
0

wheMe If t.0 *0, then

(vjc)[1 - 2T-1 G(Lt)(ec - Qd], if* 4 zrd

Vwt0; V(t.; *,'c)yc -

(1/cook)( - C1(#)( I + [2C2(#*yC,"k*)JG tXc - Q)1w), if 0 < <

(5.20)

with

CA I - NO Ccos* (5.21)

and

C2# 2T'I(v,/c~osi. (5.22)
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It is shown in Appendix D that Eq. (5.20) may be approximated, to first order in vr/c, by

V(to; .(to; *,•)Yc - (vjc)[1 - 2'-G(Qf.X( -tQ)], 0 < # w /2. (5.23)

We may then use this result to write our final expressions for the asymptotic values of x!. and x!,

namely,

x!(k,t) K'! sin* K_(t,c)(J x t) (5.24)

and

R!(t, ) ,, tov/csin tut.(, cJ,.(5.25)

where

K.(i=, r) , .(l,0; ,) + 3(vj/c)cos [J(1, 0; T) - 2J_(2, 1; T)] (5.26)

for

J,(l, 0; -t) = fdtoG '(Ltt)G(Qt') = (2x)-'(x/I)G 2(&T:-(V)) (5.27)
0

and

J(2, 1;c) - r' f dtoGI(flo)G 2(L'0X)(t -t.)
0 (5.28)

- (3z)"C•)iT[ - To(•)1G3(to(•)) ÷ .,*(49
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with

G.% ( T Ifdt0 ,G P(a.), e N., s : 0; (5.29)

here'c > 0, 0 < #: W2. and xJu is the pulse width.
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VI. RADIATION QUANTIIES

Having obtained Eqs. (5.24) and (5.25) as characterizing the asymptotic electric and magnetic

fields, we are now prepared to obtain the (asymptotic) radiation quantities delineated in Eqs. (4.16) -

(4.19), as well as some additional ones. We reiterate that, as per Eq. (5.4), 0 < * < xJ2.

A. PNyatlg Vector

Guided by Eq. (4.16), we define the asymptotic Poynting vector by

so.-(, t) UoCl' (t, t - Ixl/c) x ir(t, t - Ixl/c). (6.1)

From Eqs. (5.9), (5.24), and (5.25) we then have, to first order in vjc,

{.l sin2I2 j .(t, t - Ix I/c)I, U t > lI I/cS .(i, t) - (6.2)

10, if t Ixl/c

where K2..(t, c) is in fact /(I, 1) minus its term containing (vjc); namely

Ka..(MT) N J.AI,0;C) + 6(vjc)cos* J(1, 0;'r)[J.(l, 0; T) - 2 J_(2, 1;,r), (6.3)

and neglect of the (vjc)2 term in K.2 is justified as follows. From Eqs. (5.28) and (5.17) we have

0 < J./(2, 1; T) : T1 fdtoG '('.)G 2(tAo)[T/G(jtk)] = J,(l,0; ); (6.4)
0

since C > 0 then, by Eq. (5.12), () > 0 henceL -(1, O; ) > 0 and
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J1(2. 1;,c.(l.0;-) < 1. (6.5)

Iberefore

9cos(vjc);IJ.(lO,; ) - 2 J.(2,C;r)1201,(l.,o0;) < 81(vjc)2  (6.6)

so that the term in Kj which Is second order in vjc may be negleclel relatlve to A2(l, 0; c).

B. Radiated Power

1. Angulr Deny

From Eqs. (5.8), (5.9), (5.24), and (5.25) or, equivalently, from (see Eq (4.17))

(P1la'e(x, t) _ IX 121 S (x, t), (6.7)

we find the asymptoc instantaneous radiated power per unit solid angle (M in the direction

i - Isin4 + kcos# * k, (6.8)

for I1l u0, o be

([• )., s) .cKI Slk_(:,t - IXVc), Ift > Ixl /c
(I'Y)xt)- j(6.9)

1I, it : IxVc

(ID first order in vjc). We also find using Fig. 5 and Eqs. (6.3) and (5.27) hat the peak (in time)

radiated power per steradian at any # e (0, Wt21 is given approximately (neglecting the term of order

v/c) by
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(8P/&SP )P (t) - cLk' 2 sin*2x)-ý)72 G(W.) (6.10)

at ti -t lXVc +t..

2. Angularly Itegrated Power

Noting that is in fact the polar angle measnued from the (positive) z-axis, we compute the

WUeM of (8pM,)_(x. t) over the forward eMphere T12 + Ix 12  . . 0, as (snce

(aP/b)._ Is only defined for" > 0)

P.(I 1,i t) Um 1r 2x f d, l*'(6P/5'P )_(x. t)J. (6.11)

We find

I e .cK r .(t - I x Vc), if t > jxj/k

P..(lzl.t) -(6.12)
0. if t S: IsVC

(to first order in vjc) where

Jq(,c) - x((4/3)J..(0,•,c) + 3(vjc)J_.(1, 0; )[J.(1, 0; r) - 2J_((2,1;•)]). (6.13)

C. Radiated Energy

1. Angular Densty

From Eqs. (4.18) and (6.9), the asymptotic total radiated energy per unit solid angle (to first

order in vjc) is given by
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(8W/VV),(t) e-W *cKU in fda:K2 _(i.,t)

00

- K12(vlc *Ico fdLI./1C)CSJfd.(2. 1;a).0 (.4
00

Tve firt Inegral in the above equation, may be evaluated by writing

fdJ(.O")-fda: f ds0G'(Lk.MS)G .) f dt*G'(Qt)U(Dt4  (6.15)

and then observing that the Integration domain for the above triple integral Is tha Miustratd in Fig. 8,

so tha a chopg of integration order gives (usit Eq. (3.24) f1&t~)

fw.2(l. 0;,t) -fds.G '((Qs~)GfU) f d[0G '(QtdG(.) f da:
0 0 0 t

*fds.Gi'(CkAQ.)G~~) f dtOG (JatMf.Xmln~tr.(sd, t.(tdI - max(s,. tQ)
0 0

T. B

-fds.G ' (OAUd ) t.G '(uQtdfk[T1Gns .j (6.16)

+ fds.o '(OsJG(M.fdst, (nat0)K~k.X[T/G(Lk.)1)

Simlwly,

fdac J..(I,O0-a:)J_(2, 1;,c) - -2. 7U ýI)+.! - 00)0A G..Jr.)] (6.17)

wheire 04T.) is given by Eq. (5.29) with s = T.. Hence we have
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-_-- tt

---- ----

I f.

I I

I

14, I t-14L

t.

/1)

of Fig. 7. Given (s., Q. e [0, T.of , the lower Hlmt for the. t Integration Is %o If%• : s. of It is t.

If s, S %; t Lie., it to maxis,, Qo . L/kewi me die u pa" limit Is m in { tm(86), t,=(t )}.
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(8WW/' ).%i) g*CK'eZ/D)J2 ?s1D 2 (G '(fI) + (v*/c)coufi G 3(ffj)

-12[U(CfI.Gf..gT) -G.%4(f.)1)).

2Z '!tzd Ewa

flw inympeotic tWta radiaed emergy Is )ust tho angulay integrated asymptotc (energy)

ang"ui denity, namely

-ý thu [2 f dVi si*'(8W/I"').(t)J

Uý4MAxIý sc'1W )G((t) + 4(vjCMJG Ic) - 12[G(it)G., (f~) -G.4())

(6.19)

3. Fficienq

Noting that fth p1MtO pulse Inp energy for phto~ns of frecpency v Is (using Eq. (2.7))

Wb- vx A ffrt)dt - hv(WIQ)a 2AllN(Cl)G(LI). (6.20)

wbhid win be les than the tWWa energy in the photon pule IV T. < xlfl we may calculate an

asymptotic radiaton efficiency, usin K' fmm Eq. (4.78) and T from Eq. (3.25), as

0 WJW, - (1/Z4ecXVJC)M.(e 2/t.M.Cv)2V-'(iu/)F[QN(Q)J 2a 2(AY)2

x [G20. 4,-v/c)G 2(fl.) - 12 1G.,3(T.) -[G..4 (TyG(fl.dJ))]. (.1

Nfte tha (eAYt Is the square of the emission curn densdty adi, from Eq. (2.6),
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QN( -) - fg(s)ds. (6.22)
0

Also, sice ft le > p 2t 0 we have

T. T.

.:( 1 T"1 •dto[GO(Q'Y/O(1)]GVv(f < T"f dto = TIT
0 0

(6.23)

then (noting O(To) > 0 since T, > 0 by 7heorem 3.2(i))

'IG2orl 0) - 12(G.,3(rd - G[G-d~ 4G(t, [ 24f)

(6.24)

so that the vjc term Inside the large brackets in Eq. (6.21) may be ignored whenever

vjc * (3/8)[I + 24(,/7)1 c' 0.05 (0.05 is arbitrary but about right), i.e., whenever ToT < 1/2. A

suflient condition for this Is

I 2 2(x/M)T" = xzN(QlX(o/&1 (6.25)

and in that case we have

e." - (I/l B 2XNv/c)m.(e 2/Som.C)) 2(v)-'(x/f) 2[ aN(f•2)J] 2(AY)•YG 2(M.t,). (6.26)

D. Spectral Intensity

1. Angular Density

We may calculate the asymptotic spectral Intensity angular density (82 /8I'P &0)._(, 6)).
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speciida ununbuoualy by (se Eq. (4.21))

(BW/Y ).(t) - fdm (OPJ8'l Uo).(, 0), (6.27)

from (se Eq. (4.19))

(I6r& &n)._(t. (o) - 2e.c 2 Ret• x&(i, ci) x (X.'(t, cO)) (6.28)

(whee A denotes Fourir transform and * denotes complex conjugate). That this specification of the

asymptotic of spectral density is indeed the correct one follows from

(8W0C1 2(* .fcftam 4t,)x4(t, %r)

-E oc 2t .fd- (22)"- fo X&(,t, co)e -i x (2x)'w fd&dA(t, d)e"•') (6.29)

- e0Cc2 .ffdm x•s,w) x (X!.(L emn)

- fdko[2( C 2-.s-(, 0o)) x (X!)'(, 0))].
0

To compute the spectral intensity via Eq. (6.28) we fust supplement the defnition of K.(t, r)

fAm > 0 in Eq. (5.26) with

K_(t,.c) - 0 if r :5 0 (6.30)

so that Eqs. (5.24) and (5.25) hold even when z < 0 and are In agreement with Eq. (5.9). Now
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1IA(x to ( ) K'sln# K-i, (0)) (6.31)

and

x&(t. co) J(K'Ic)slt* K..,AM 0)) (6.32)

with

K-AM(t Q3 (2scy'm fdi e -K(.T (2x)-' f&? e
- 0

-(2xy)' f1.3(vic*cos fcI? eJ.1 0; -t) - 6(v0/c)cos* fdi: e bJ.2 ;1)
0 0

(6.33)

Using t from Eq. (6.8) we thes have

(821/6I &o)..(i, (0) _ 2S0CK'2Slii 24 IK A1, 03)j 2. (6.34)

The Integrals In K-,A may be pierformed as earlier (see Eqs. (6.15) - (6.17)):

Id~e 'J(I 0,t =fdte1 f dt.G'l(n.)Gfk)
0 0 0

W fdt.G '(nz 4 ~Gnz f dre i

T. t.(6.35)

0

where this integrid is proper sine both

59



um G(k)eo'uý - 0 (6.36)
I.-*0'

and 0 '(a) - g(Ot,,MN(D) hold; and. similary,

d .(, ;-= -'T| o' (- (6.37)

Hence we finally have

(yMb• &0)_.0, m))-g3oK2•f)(am•Z

x ifdt0oG '(CJ,)G(ftk0)e 'Ic -)-l( { + 3(v0/c)cosi[l - 2(t7)] 1}2.
0

(6.38)

2. Angularly Integrated Spectral Intensity

The general epsson for

(b1w•o).(m) - um [2x f d#/sinY(61/b•J 6oXI. )], (6.39)

while sraigl wd to compute, is cumbemome since cos # occurs inside J K.,(t, c) 12; we will not

display It here.
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VII. EXAMPLES

In this final section, we present illustrations of our general formalism for the following pulses:

constant, linear ramp, triangular, parabolic, and sin 2. While we have complete, detailed results for all

these pulses, we present such detail here only for the constant pulse; for the others, we discuss merely

those of their features which differ significantly from those of the constant pulse.

A. Constant

A constant (or "flattop") pulse is given by

1(t) = A, t E [0, icfj] (7.1)

for arbitraryA > O. We then have, for s=D/t e [O,i],

g(s) - 1, G(Lk) - tI(rO), G'(Qt) = I/s, QlN(t2) = i; (7.2)

and

T = 2/(x/D) = 2K1-(v.cY/(fc)AY (7.3)

where

1C e2/momeC. (7.4)

Now for t. e [0, itxl],
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y(t.) - (r/fl){[(t](zl)] ÷ [zTI(rl)1(tJ(/ l)]-'} w to ÷ (214)t' (7.5)

so tm has unilue local minium at

t,.,b(7)-/Q)(7(x1Q) 112 - VF2"/op - F2"i'(vjc)m/(AY)w. (7.6)

We then ethat t,,b(7) < X/l 1ff T < I/fD so

if S
To ' (7.7)

S/n, if W

where, observing that t, depends upon %o (or 7) which in turn varies directly as Am (or inversely as

A), we have distinguished "strong pulse" (S) and "weak pulse" (W) cases as follows:

S: 1/f > F2'/x or T < rxl (7.8)

W: wu <9 F2"/x or T >rc! .

The situation is illustrated in Fig. 9. Continuing, we find
k t.a.(M. if S

tm(To) a (7.9)

Ir/a + T, IfW

and, for t a t1 ,(t),

t•(t) _ (1/2)it - [t 2 
- 4(X/Q)TIM"} = q(t) . ts(t). (7.10)
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=( -t, + [7Yr/o),./ 1]-

STRONG WEAK
PULSE PULSE

ri/o + T

2 C = t if T< r/0(S)

/ '

Figure 9. The Wtong (S) aNW weak (W) pulse cases for Uthe flattop paws of Section ViiA.
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Then t,- is explicitly specified for the strong and weak cases by using Eqs. (7.7) and (7.10) in Eq.

(5.12); further

J.1,O r, ) - (2ff)-'(K/d)[To(?y(2r/)] 2, (7.11])

J_(2, 1;) = (3g)"(X(Q)T"(y(z(Q)]Js7"['C - . ,(7.12)

and

K2. -('IT) -(2z)22(IrD) +( 6(v/c)cOs I I- .±It .)(x/y( a)T 'f ' -1t

(7.13)

also,

K' - (I/4)xze(m/eXgr)a 2(AYV (7.14)

and

EoCW2 _ (lll6)jeje.(rX1Q)a'(Ay)4. (7.15)

We are now prepared to display the radiation quantities. If t > ix I/c andc = t - IxIIc then

the radiated power angular density Is

(8P/5 )_(x, t) = .41c~nisin2* a(AY-t[T.(t)]JI + 6(vjc)coso{ I -3.~T(r)(z -

- •..'nmsin2* a'-(AY":(r)]4I I - 4.cosW(AY)t(1)[c - .I()J + 6(voc)cosi)

(7.16)
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where we have used Eq. (7.3) to obtain the second equality in Eq. (7.16). The approximate peak (in

time) power (gotten by neglecting the vjc term in the first line of Eq. (7.16)) is

[7y(X/Q)2)p if S

(8P1'I .)•(i) - (l/64)iems.n2# a'(AY)'(x/) x (7.17)
11, if W;

note that in the strong case this may be rewritten, using Eq. (7.3), as

(6•PI'o ._"(t) = (1/16)imasin2* (vjc)a'(AY) (S). (7.18)

The angularly Integrated power and approximate peak power are, respectively,

P(jIxlt) - (1I64)*iem.a4(AY)(t-(-z)r4 •3(v/c){ 1-( --. 4tCo'(E)] })

(7.19)

and

[T/r~tI)]2, if S

P.!(IxI) - (1148)x'•ma'(AY)(rJ"/)' x 1 (7.20)
1, ifW

where, in the strong case, the last may be rewritten as

P.-*(Ixl) - (l/12)*=m.(vjc)2a'(AY)2 (S). (7.21)

'he total radiated energy angular density is
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(5W/6'Iýiemsie .~KI~f 2 a'(AY-tXwQ)T T.(1 + (vjc)coou I -4Tý(/Qrflj)7

10

and the total ruatmed energy is

Wý- .4.zicm.(vlc)a '(AY9 r[ ~xYT +2

f2=Kw~(v0Ic)s$(Ay)N2[4 + 4(Vlc)], if S (7.23)

[ v.cXAY) 3Y(a9[4 -. Spjcg/QY)AY I .(VJ/c)J, i

To conpMt the radiation efficiency we note Uha

W.- zhva 2 AT. (7.24)

so

4A,- 4LK2m,(vjc)(hVr`a2(AY)2YT[±W -xoIYT +T~ (/

M- .±.m0(hv X 21c(vjc)(AY)Yl + .4(Vjc), if S
x~vXy92y(7r/fl[.? __3 !4r/iQ) 2A 1 (vjc)],IfW

I. vjX f!3 AY 2. i

(7.25)

Finally, the spectral Intensity is given by
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(B~V8mJ5I&)_(I. Q) - (1/16)xsr'K'In2sin a '(Ayt[M(cyo) 3 2  (7.26)

wbem

MQ(o) -[C 1Q(o) - (cos ( T.+( T. Otsin(o T. - 1)

* (vjc~cos# (m)e - (casoT, + mT~sincoT0 - 1) - zx.-ifx5)f2 (co)

-2to!*coscoT* - [(&)TY - 2lsiuwTj))] (7.27)

+ [S,((o) - (sin coY0 - co3!*cos (T.)

+.3 (vjc)cos4(S,(o) - (sinco 0 - wot~coscooTd - *W 0 (2()

-2mo!~sin @3T, - [((o)Tj - 21(l - csiT))

C q(m) a(F237-*)q-1 fdy yq COS[F2 _a~(y + ' - 1.)(7.28)
p~ o '~ Y

S.(co) a fV.~~ fdy yq snF (q 1, 2). (7.29)
Op o m, Y

Note that In the urong case,

coT* - F2t an ((o/F2 )T. - I (S) (7.30)

while In the weak case,
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O~TO - x and (OD/~%* F ..2j .. - (W). (7.31)

B. L.ýIasrRmp

7be lierramp

At) -AffI(z/D)J, t er 10, u/LQJ. A> 0 (7.32)

YlddS remSUS vMY sMilar to thos fbir the consmta pulse, with the strong pulse regime reulftlp when

T < (112) (ziDj) anW fth weak puls resting whe" T k (II2XuIQ).

C. Trianular

For the triangular pulse

(ti~z/Q). f e q t :5 (112xiva)

At) - 2A [x(ll) I f (112Xx/f) :5 t :5x~ (7.33)

(A>0) wefimi

T - 4/(xfl)oe, 41C(vjcy(R/Q)Ay (7.34)

+ (1f[I~)~jJ~J 2  f 0 :5 t. :5 (li2Xu/fl)

-(srILQ) x

(7.35)
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Adclitonafly.

(I - [fl(i/fl)J[q•/(f£)]4 If 0 S t. S (1t2) (tji/)

(dft..Xt.)
I - 4[Tt(i)]( 1- (t/l)]}(1-2(1 - (tj(W3)] 2), if (1H2) (ij/0) S t. : /

(7.36)

and it Is eay to check tha (d" 2)t 2(t) > 0. unless t. = (1/2) (i/fl) where this second derivative

don not exK; since

(dId Xx(I/) - I > 0 (7.37)

them t,(t.) IM exactly ow local minimum in (0, i/fl), say at t. = t,,(7). Now since the exalmn

for the derivative in the first line of Eq. (7.36) is zero iff t. Is equal to

t!%67) - (i/[X77(if)jw, (7.38)

aEd t e1 (1) • [0, (l2XW/U)] Jff ?7(xM) S 1/8, then t,(7) - is given by t!%-b(7) whenever

7/(m) S I/8:

t,,b(7) - te!b(7) - (i/f)[7lrfl)]wn If 77(x/f0) 5 1/8. (7.39)

On the odh hand, If 7/(x/fl) > 1/9 then (dt./dt.X(1/2Xx/fl)) < 0 so, using Eq. (7.37), we conclude

that
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t,6(7) E ((l/2Xw/a), i/fl) (7.40)

and 1s gIM by the qppropriae mt. d.(7), of the quartic equation

4(7T/(z/l){Il - [tj(x/fl)]j - (I - 2(1 - [t./(fL)]}2)I , (7.41)

namely.

-n(t) - .h() if 7/(xi/I) > 1/8. (7.42)

We will display t•(7) shortly, but we now wish to make an important point: for our

triangula pulse, Eq. (7.40) tells us that T, < W/al always; Le., in our model with cutoff we may never

encompas the fuId trianguar pulde but only some proper initial portion of it. On the otter hand, we

see from Eq. (7.41) (or from Eqs. (7.46) - (7.48) below) that

Uim r() ria (7.43)

so we can in principle get as close as we please to the full pulse by taking 7Y(x/f)

[- 2'ic(vJcY(¢/(l•AY] large enough in analogy with the constant pulse, we call the ca

T 5 (lISXXIfl) the "supertrong" (SS) case (because he the cutoff occurs during the rising portion

of the pulse) and the case T > (1/8) (x/f) the strong (S) case (here the cutoff occurs during the failing

portion of tWe pulse); there is no weak case but we also distinguish the case of the "weak limit" (WL),

where TI(rJil) -. a-. We then have, in analogy with Eqs. (7.7) - (7.9),
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t;('7), If T : (1/8Xsr/Q) (SS)

-t .M,1  If T > (1/BXP/L) (S) (7.44)

AI', if TI(rJQ)-*a- (WL)

and

(M)t!rn, if SS

-t&'b(7) + T{1 - 2(l - et'j(7Y(WDQ)12). if s (7.45)

(WIl) + T, If WL

and we may proceed by cases to the radiation quantities. Finally, as promised, we have

t!b(1y(u/) - 1 - •(R - {2 - R * 2 2[T/I(x)]R-1)w) (746)

where

R ,,+[.31 + 2"(A. + AJ_)]' (7.47)

for

A, + [TI(,Q)rI) * [Tl(/r/)](.a + [7y(Q)]J2)1 . (7.48)

D. Parabolic

7be parablic pulse

At) - 4A[t/(/Q)] IfI - [It/(uQ)]), t e [0, wr/0]. A > 0, (7.49)
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yieds results vry smilar to those for tlh triangular pulse. Once again no weak pulse is possible;

fwtbh, sine the parbolic pulse is defined as one piece, it is not as natural here to distinguish

between a mstrong and strong pulse (although this of course may be done) as in the triangular case;

we may thus consider only a song pulse and the weak limiL Also, we have

(dm/dt.)(t) - I - 6[77(uD)J II - ['tj('l)]) I [tj(w/Ql)]ail + 211 - [tj(uJI)])) (7.5)

with

T - 31(xM)om (7.51)

and (d /dt2 Xtd) > 0 on [0, u/12] so determination of unique to,. (T) involves solving the quintic in

t,/(I/Q) derived from Eq. (7.50) and this cannot be done analytically in general - it must be done

numerically.

E. Sine-squared

Te pulse

A0t) = A sim? ([t/(RO)] = Asin•(flt), t e [0, xuMI, A > 0, (7.52)

yields results similar to those for the parabolic pulse, exhibiting only a strong pulse and a weak limiL

To find t...,.(7) we must solve

sin it/[2flo - sin =flo- 1F2•xi4[TI(,/f)]m (7.53)
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(x- sin x= 0 at x = 0 and (d/dxXx - sin x) = I - cos x > 0on (0, X) so x - sin x > 0 tee); this

has unique solution since sin f•o/[2Uo - sin 2o] strictly decreases from - to 0 on [0, z/Q] 3 t.,

but of course It must be found numerically In general.
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APPENDIX A: A SPECIAL CLASS OF PULSES

In this appendix we exhibit a class of pulses each member of which has the property that its

associated map t. - tm(t.), t. e [0, tj, possesses a positive-length interval of constancy and,

furthermore, T. = M2/a (the full pulse width). Classes with these properties other than the one we will

exhibit also exist but we will present only one such class. In particular, we will prove the following.

Theorem A.: Fix (1 v., Y > 0.

(I) If T > x//o , 0 < % < V3, an d a, < c 2 < rx/ T then the pulse

i~~~)=2fY{/[e2(Y/vo)m.E]}p.,.(s) , s r: [0, n], (A.1)

where

[l/(t7T)2(1 - al)'al 1]{-2[(1 -2aj)/I.Xf]s * [2 -3 ]), if s e [0,cxl MT]

p-A(s) I/(QT - s)2 , If s e [aczfT, ;fT] (A.2)

[I/(A2QV( -0.2)o.2s, if s r= [oýQTl, x],

has the property

=t.A . T for all t, e [aT, ;TI. (A.3)

(i) If, In addition, T > 3(x/f0) and oh < ,T' (:5 1/3) then there exists q; E (a,, •fT) such

that if Eý e (a;, WrEfl then (a) To = TJT, G.] = M,1, where T = 2/owN•,.,() (see Eqs. (3.25) and

(3.36)); and (b) tmt~) < T.

Proof. () It is easy to check that p,,,, is continuous on [0, %] and also (strictly) positive
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thee (since 1 < 2/3). Next, denoting

A- max .,(s) (A.4)

we rewrlte I as

l,,,,(s) - A{2fl/[e 2(AY/v)m.ej)p.,.,(s) n Ag,.(s) (A.5)

and, noting that

max g•.(s) -1 (A.6)
& a (0,l

we then have

g•,(s) - 2(flIoNp.(s). (A-7)

Noticing from Eq. (3.25) that

2(WIco4) OTAS

and from Eqs. (2.4) and (2.6) that

t'T•.nGf.s - / s.,(s')d', s E [0, xz],.9

we find from Eqs. (A.1) and (A.7) that
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[l/((lT)2 (l-u) 2cza]-((1-2a)yCzCfls 2 + [2 -3alcs}, if s e [0, l fCrM

G,;(s)/flT= l/(lT - s), If s e [aQlT, cfMT]

(1/2)[l/1T'O - +)2[l/a2(lT)]s2 + [2 -3%].) , If s 6 [cjrrx].

(A.1O)

Hence, using

Qf(t,) - Q.t + [fL7G(Ct)]. (All)

we fid

I X + (Ml)2(1 - OQ9a 1/{ +1 -2cza1 fýT](QlY + [2 -3c1](fLk)), if t.r[0 .e ý

I = iT, if t. e [JT, nT]

Qtt + 2(flT)(1 -l) 2 1{[l;(fYT)21(V(QJt + [2-3U]} , If t. e (coT, WlJ]

(A.12)

so Eq. (A.3) holds. (Note that t•,(O) = -0, as required, but that the denominators in the first and

third lines ofEq. (A.12) are never 0 since c 1, ( t2 e (0,2/3).)

(l1) Let T k 3(r/Q). To prove (a), we will show that if 0 < c4 < •/ITthen there

exists oý e (al, w/1T) such that if % e (o, w/0T) then (dt..,,/dt)(t) < 0 for all t. e (0, w/11] so

that T. = i/Q, by Eq. (3.36); note that for such ;., %• the conditions of (I) hold so that t, enjoys

the property given by Eq. (A.3).

We begin by noting that, for 0 < ox < 2/3 and o; < z < ir/LIT, ti,3 (to) Is differentiable

on (0, /JM] since g,,, is continuous there. The stationary points of t are thus found from
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S 2

(dtI,..,,)/t) = 1 - ( ,34(s)/Gd,(,s) = 0, olt. - s e (0,x), (A.13)

where, from Eq. (A.10),

(lF)N -,ax)N,( -2[(l - 20x)/czOn's + [2 - 3oa]}

÷ s2{-[(1 -2caýycflts + (2- 3ax]}1, if s e (0, aýMrfl7U,•(sYG.,Cs) =

1, If s e [alflT, a2D'11

4[(1 -_ 09Ia t]gsH1[1(l/S(nJs2 + [2 - R32])2 , if s e [xfM',X].
(A.14)

If s e (0, xCMTJ then Eq. (A.13) becomes, using

a M s/c4QTr (o : a< 1), (A.15)

04(d) (1 - 2c) 1 M - 2(1 - 24x)(2 - 3cx)O . (2 - 3ccy)2 + (2/cxX1 -a)y(1 - 242)e'

-(1IIX1 -a9)P(2 -3ax) - o - (a- I).,I(a)
(A.16)

for

,d) (1 -2a1 )?oa - (1 -12zX3-4a 1 )& + -e)2a + (1/cz1X1 - ct)(2 - 3Q).

(A.17)

Hence a = 1, i.e., t, = a1 ", gives a stationary point of t.,,,(o(Q. Further, as we demonstrate in

Lemma A.2 below, 4(a) has no roots in [0, 1] when 0< 4 < 1/3 so that a = I is the only root of

-94(0) in [0, 11; I.e., t, = aiT is the only stationary point of t.,, in [0, rz/J. Since dt.,•,,/dto is
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continuous on (0, a Tm and, from Eqs. (A.13) and (A.14), lim(dt,,.,/dto)(to) = -- then we have

(dtw,,,,/dtoXt) < 0 for t, e (0, cT) (0 <a, < 1/3). (A.18)

Next, fs e ([taLI, oý Lr then Eq. (A.13) becomes 1= 1, which is satisfied for all s E [atIT,

q1" L , i.e., for all t. e [oa,"T, a;T]; of course this also follows directly from Eq. (A.12). So we

have

(dtmvJdto.Xt) = 0 for t. e [aT, aT). (A.19)

Lastly, If s e [atfIT, x] then, using

a aszA2DrT (10 a e < •/cf0lT), (A.20)

Eq. (A.13) becomes

5((0) a o + 2%(2-3o;)& - 4(1 - *2)2a * (2-3.) 2 - 0 = (d - 1)(9(6') (A.21)

for

(0) a 0• + (4& * + 2(4- 5a)8 - (2 - 3(x)2 . (A.22)

Hence 8 = 1, I.e., t, - CT, gives a stationary point of t•(to), in agreement with Eq. (A.19).

Fwutm , since

(cEJ~8) (1) =-12[(1/3) - 1)](1 -;o) (A.23)

79



then =1 gives a local maximum ifft 2 c (0. 1/3). We now rewrite Xs(d). using

1 [0 :9 1; <e (X/(XMl) - I], (A.24)

toget

(1/04)3j (8) - (8 - 1+ ÷ 4(d - 1? + (4/ci)(O - 1) - 4[(/cL,) - 1] [(1/;) - 3]

- V +, 4V' +, (4/cý)Z - 4[(11.=) - 1] [(l.2) - 3] a IKI(E') (A.25)

and seek the zeros of 9,. Using standard techniques for cubic equations we find for Eq. (A.25) the

discrminaat

A(c) - (4/3)[(1I/) - (4/3)]3 + 41[(1/0) - (4/3)f + (1/27)) 2 > 0, (A.26)

where the last inequality holds for a < 2/3. Hence 24,j has only one real zero In (...=, a.) and we

d=t the value ofIthat makes J,() = 0 by 4(%). In fact,

4;) (~2r(..) -(4)1 4 .~y) . ArJ~72)J3 +(,2([(4.) - (4!)f2 +p ~lcL) 4
(A.27)

but we do not need this explicit expression for our proof. (However, it is of practical use - see later.)

We will demontaft In Lemma A.3 below that

Zo(%) > 0 for 0 < % :5 s/QT; (A.28)
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we then have

u2 + o() > u2 for 0 < <c x u /QT (A.29)

so that, in ptldcular,

w/QT +(w/Qrr).(x/LTY> uwflT. (A-30)

Sih eCeZ -,% + %c0(a2) is cominuous on [0, u/ tn tmhtre exists 0 E (0y zIfl such that

+. o% > Z( /.,T for c 2 e (x,x/M , (A.31)

so that

> .(c) 2>WA, T - 1 for % = (4 F/JrM); (A.32)

hence

e.• •.() 1 > W104M for % G Wo. xffm (A.33)

And So 8 a I Is the only root of 94 In [I, TrJ/T). ibus t, = %zT Is the only stationary point of

tm,(to) I,, (O;T, AI. Fftha, since 8 = 1 gives a local max for X( (wben ; < 1/3) and ,(Q) =

0, tMen

534a) <O0for ae (1, ?zJCT (A.34)
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since 24 is continuous on [1, vJo/lJ. But

(diu•.V(dtoXt - 2((tJT 1[c(t 0 /cL2T9 - (3 2 - 2)]2, to e [;T,' zIQ (A.35)

so fBUny we have, using Eq. (A.34),

(0,tm ,dXt.X(t.) < 0 for t. e (0 271,uI] (o;< % < ljrM). (A.36)

Taken together, Eqs. (A.18), (A.19), and (A.36) show T. = Wag/ so (a) is proved.

To show (b), we flrst note that since, by the above, T. --x/" and since

tm,,(u/Li) - WOL + T - zIQ + 2*CN,ý,(Q) (A.37)

then we must shOW that

*I 2/4N(CQ) < T. (A.38)

Computing

N -,,(Q) - (/Q) fg..s(s)ds 1 [1/b1r(1 - ca) 2 ] [2 - 3cr + (1/o1Xx/QflT , (A.39)
0

Eq. (A.37) becomes, for" a < 2/3,

-%c + (1/'2)[1 + .(M)] ?2  (xT)C6 + (1/2XX/~flI[ 1 -(u/)> 0. (A.4)
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We will demonstrate below in Lemma AA that this last equation indeed holds if x/fIT : 1/3 and o• <

xIQT so that (b) is proved. 9

We now present the three lemmas referred to in the proof of the theorem.

LenaA.2: Let 0 < a < 1/3 and for o e R define

F. (a) a (1 -2)Va - (1 -2aX3 -4adW + (1 -c)k + (lIaXl -a)x(2- 3a). (A.41)

Then F,(a) > 0 for a e [0, 1].

ProoJ. From (1/3)a(4 - a) > 0 it follows that

(I - = 1 - 2a + (e > 1 - (10/3)a + (8/3)c 2 - (8/3)[(3/8) - (5/4)a + a 2 ] (A.42)

= (8/3)[(1/2) - a] [(3/4) - a];

noting (2/3- d) > a we then have

(2-3aXl -cd? > oi(l -2aX3 -4a). (A.43)

Hence, for a e [0, 1],

(1/a)X2 -3cxX1 -cr9 > (1 -2crX3 -4a) ! (I -2aX3 -4a)o (A.44)

so

(I -2ctrV + (1 - Q)2 ÷ (l/UXl -a) 2 (2 -3c) k (1/aXl -a) 2(2- 3cr)
(A.45)

> (I -2d)(3 -4~a~ > (1 -2d)(3 -4d)&3
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from which It fotows immediately that F(a) > 0. N

LamnmaA.3: Let0< a < 1/3andfor IeRdefine

mý(E) a V + 4V + (4/a)Z - 4[(Iia) - I][(I/a) - 3]. (A.46)

Let 2o(a) denote the unique zao of H. (as per Eq. (A26) if.). Then Zo(a) > 0.

Proof. IssufficienttoshowthatH.M()<0forallZ:0. Tothis end, welet Fm -Z and

HIE -a2HO15) cOF -4dT + U + 4(1 - )( - 3a),Z~ (A.47)

and show

H(Z)-> 0 for al 2t 0. (A.48)

If - 0 then Eq. (A.48) clearly holds, so suppose 7 > 0. Now ft is clear that

oF -4Z +4>0forall c It (A.49)

(considered as a paraboma in X) so hat

adT + 4oF > 4o2? forf >0o; (A.50)

hence
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+÷ 4OX + 4(1-aX1-3a) - 4Ca " > 0 for I > 0 (A.51)

and dlsis pecisely Eq. (A. 48). U

Lem A.4: Let x/QT'T 1/3 and for a E R define

J.M(I) a -& * (1/2)[1 + 3(Q/aM)]a3 - (xXIT)a + (I/2XW/flT)2[ - (irOlr)J. (A.52)

Then J,,,(a) > 0 fur a e (0. Ot/T).

Proof. This follows immediately from

J,,(O) - (lI2Xxw/rrVl -(wifTr)] > o, (A.53)

0= , (A-54)

and

(dJ,,c/daXa) - -3[(1/3) - a][jr/lT) - a] (A.55)

since the derivative is negative for a < mnn (1/3, ,/IT). U

As a concrete example of a pulse in the class of the theorem, we choose T = 4(rr/Q), a =

1/32, and U2 = 1/8; that such an o2 is adequate can be verified by the fact that It satisfies Eq. (A.31),

with TZ*(0,) given by Eq. (A.27). We leave a Y, v, bence A and 2, non c. we then find
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f(8/31)2L-48O(s/x) +. 611, if s e [0, x/81

gm,2 Is4s) - 2(Mod( 11:2) x j14[4 - (stx)12, if s E [x/8, xr2] (A.56)

I.(S/49Xs/x). if s e [u/2, x],

Qva - (3449x~)(fl/(OP. (A.57)

{(8/319;[-240(s/g)2 + 61(s/zc)J, If s e [0, x/8J

G. ()- (49/17) x 14[4 - (S/x)], if s e [x/S8, x/2J (A.58)

I.(1/49)[4(s/x) + 13], if s e [x/2, x],

and

X((s/:) + (31/8) 2(-240(s/x9ý + 61(s/x)]V'I, if s G [0, iriS]

£Ilm MIXs) - 4x, if s e [N1S, x/1] (A.59)

I.xt(s/x) *49[4(u/x? 131-'), if s e [xt, X1.

We llustrate g and Ot..In Fig. 10.
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-' 
1 - 1 /4 - (2/il]m

0

5(3) f(x)WI')(.4L.

4tit

Figure 10. The pulse I=n tof ApedxA. Notice thatg Isnot smooth at s P,2, but Lk. Is

smooth everywhae in (0, X1.

87

i l I l I I I (3h1) "i . " : . . . ..



APPENDIX B: MATHEMATICAL COMPLEMENTS TO SECTION III

Proof of Theorem 3.2. (1) First note from Eq. (3.37) that

(dL.,dto)(to) - I - [17G(fto)ll(n G(flt)]'; (B.1)

sine tim [TIG(Q.)t)I - U-m [In G(Lto)]' then
I,.-W,+l,.,O

Urm (dt Q•to)(t,) (B.2)
I.-Wo

Also, since G' and G are continuous on (0, WO() and G never vanishes there then G0/G 2, hence

dt.Jdto, is also contiztous there. Therefore, there exists 8 > 0 such that (dt,,/dto)(to) < 0 for all

te (0,6]. So6Is a member of the set on the RHS of Eq. (3.36) and t> 8 >0, as required.

(WI) Since tO > 0 then [0, To] I *0. Let t e [0, t.];if t. = 0 then to is admissible, so

suppose t, >0. Ift <t, then fromFig. 2weseetha 0*°(to) a ;(tr),rsos te r(to)

and note that az/)t and aýZVdt exist at (to•; t) and (t.; t). Now from Eq. (3.9) we have

(a/ato)(C-ZJrt2)(t ; t) - -(e/m.Eo)p(z(tZ ; t), tXa/ato.)(t(. ; t) (B.3)

and from Eq. (3.21) and the fact that g(s) = 0 only for at most s =0, P, It follows that, for

0< tý < t., LHS ofEq. (B.3) < 0; but p(Z(t t),t) < 0 (since charge sheet T. is at Z(t.; t) at time t).

Hence

(ozwto)(tO;) < o. (B.4)

In odte words, Z(to; t)is a strictly decreasing function of t ateach t: e (0, t) so that for such t0 ,
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ZNt ;t0 > W~to; . (B.5)

But also Z(O;t- ,vot>Z(to;t) so Eq. (B.5) holds as well for t 0. Hence t. is admissible by

Definltion 3.1. Next, If To < u/E then there exists e > O such that Ifto (, + e) then [o is not

admissible; Indeed, if e > 0 Is small enough (so that, at least, To + e < wr/0) it is clear from Fig. 2b (or

from the definition of T. in Eq. (3.36)) that, for T, e (To, To+e), sheet r, leaves after and returns after

sheet To so tiere exists t e r(L r% P(To) such that Z(to; t) = Z(To; t); hence %0 is not admissible.

Finally, if T. = tO hen [O.T.] = [0. ilJ/0 which is clearly the largest possible interval of to's. 0

We have also shown (and will use later on):

Corollary B.): If t. e [0, to] and t e I(t) then the map t.o Z(t.; t) Is strictly decreasing

att..

We next prove Theorem 3.3.

Proof of Theorem 3.3. If (z, t) e DI[T, G], z, t > 0, the existence of a solution, say t.1, in

[0, to] follows immediately from the definitions of DJ[T, G) and D[T, 0]. If to2 is another solution

in [0, U then Z(t,; t) = z = Z(t; t). But t,1 and t,2 are both admissible and f z > 0 then tr• r I(to)

and ta 4E r(t2).; hence t, = t,.. Next, if p(z, t) 0 then there exists t.o e [0, U such that

Z(t 0; t) = z so (Z(t.; t), t) e DJT, G1, i.e., (z, t) e DJ[T, G]; hence (z, t) e DIMT, G] implies

p(z,t)=0. Finally, Ufz>0andt90thenitisclearthatp(z,t)=0. U
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APPENDIX C: RETARDED TIME

In this Appendix, we establish the existence and uniqueness of solutions i'(t.; x, t) to Eq.

(4.58) as well as derive smoothness properties of these solutions. Although our results may appear to

be physically obvious, we eschew proof based on "obvious physical grounds". We fix

x -(ý,O,ro,O. o, t2o, and te [o,TJ (C.l)

throughout unless otherwise noted. (We do not require 4 > a in this Appendix C only.)

It is convenient to first consider the case t, = 0. Eq. (4.58) then becomesI(/Ic)02 + (vot'-V)J]m, if t' > 0

t -t !t '= (t o --0 )
IXIIc, if t/ < 0

(C.2)

and this has unique solution

2,t -I[ )2V1(t )2,( [t ;v)] I/CltV..2IIvy)t) If t : Ix Iic1(0; x. 0=

t - Ixl/c, if t <Ixl/c

(C.3)

where the first line may be rewritten as

[1 - ±) [1~(~)2~ 2 + (t.9)if t 2: jx I/c (C.3a)

see Fig. 11.

We next consider the case t. * 0. Rewriting Eq. (4.58) in detail we have
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WOW)($ +

......... eeoe (V./c)t

N1 O;X, t) t- lii/c t -to (

(a) r

(v/ct' - i

t- (t')

P~ gu~ i. Te " nquo 80 ud U 10 Eq. (C.2), given RU na ayd ýby q.(C.3). Po t e ca e( ) wh ave w blU RY~ taken, in ackjl,a, C > 4. The i e 4Q) I k u For the cas (be w
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(t/c)f 2 I v*(t' -t.)-(vJ7)G(tk.Xt'-tj } if t' e (tC)t -tI - Ift ~)(t. o0) (C.4)
Ixl/C if" t' I r(t)

where we have used Eq. (4.71). Unfortunately, in contrast to solving Eq. (C.2), which involves as an

Intrmeedir I only a quadratic in e, solving Eq. (C.4) involves as an Intermediary a quartic in te, the

solution of which - despite the availability of a general solution - is extremely tedious to obtain;

furthemome, we would still have to sort through these four solutions to determine which, ff any, are

soluions to Eq. (C.4). (These consderaion are not unwarranted. For example, consider solving

(*): Ca-x - [a2 -(x-a)]w, a > 0, ac e The associated quadratic has real solutons iff

11 [l-1Z 14+F2]. Further,if a e [2, 142"] thenbothofthem solve (*);ifce [0, 2)thenonly

one of them solves (*); and Uf a. [1 -,,r2, 0) then neither solves (*).) Additionally, this to *0

solution - If Eq. (C.3) is any Indicator - is too complex to be integrated analytically in Eqs. (4.69)

and (4.70). We will adopt the approach of not solving the Intermediary quartic but rather of

employing geometric reasoning (as in the solution of Eq. (C.2)) to establish the existence and

uniqueness of solutions to Eq. (C.4); further, we will establish the smootness properties that we

require of the solution without ever actually obtaining It explicitly. In adopting this approach, we are

abandoning the quest for expressions explicit in the inital pulse and surface parameters for the fnIJ)y-

remote fields, E, and B,. We are willing to do so because that will allow us to further progress

towards our ultimate goal, namely, obtaining explicit expressions for the fields In the ra/ado ,onimi

indeed, It will turn out that the explicit solution for j when to * 0 is not needed to obtain the explicit

expressions for the limit fields.

As a first step, we graph the RHS of Eq. (C.4); the curves of Fig. 12 include all generic

possibilities. The curves are intentionally drawn to be "fiat"; indeed, denoting the function on the

RHS of Eq. (C.4) by .mt'), we have, for t e r(to),
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IdJ.dt'l - (4XI/c)lvo(t/- t) - (vf/7)G(t.(Xt'- to2 - ;1'l1-2[G(Ltt/T(t'- to)I/M.t')

< -•11 - 2[G(Ek)rri(t'- to I < ""<
t (C.5)

since 1l - 2[G(O)7"(t'- tI I < I for t- t. e (0, 7YG(QLt)). Tbe reader should note, however,

dug this figure, while enlightening, will not be the basis of our existence and uniqueness arguments;

rather, they will be independent of this figure and based solely on Eq. (C.4).

We are now ready to prove the existence result.

Theorem C.): Fix x, t according to Eq. (C.1) and to e (0, i*]. Then solutions to Eq. (C.4)

exist

PW. First define, for t'< t,

401(t) = t - t, (C.6)

and msuose firt that 0:5 t < IxI/c; then ( 4- L)(o) > 0. On the other hand, Uim 4(t') - - so

there exsts t* <0 such that Lt') > xl/c- .(t'); hence (.W- Z,)(t') <0. Since r - L is

coninuous on (-,-)then them exists i e (C,0) such that( ,Xi) =0, so that i < t solves

q.(C.2). Similarly, Uit > 1z 1/c thn (4, - O) < 0; and L#t) - 0, Jt.t) 2: 1Vc > 0 so

(.W'-/,t) > 0. Hence there is asolutlonin (0, t). FlnallyIft-- IxVcthen t' -0<tisa

solution. M

While existence is clear geometrically, simply by drawing straight lines with (any) negative

slopes and vertical axis Intercept (0, t) in Fig. 12, uniqueness, on the other hand, Is a bit more delicate.

For there are some straight lines with negative slopes, which slopes may possibly be -1 since we

cannot Infer much from the figure about the horizontal (6 and vertical scales, that Intersect the urves

94



more than once; and for such lines the solutions to Eq. (C.4) are not unique. We now show that In

fact multiple intersections do not occur.

Theorem C.2: Fix x, t according to Eq. (C.1). Then the solution to Eq. (C.4) is unique.

Proo. Suppose that 4 intersects r. at two distinct points whose t coordinates are t, <t 2 .

Cely both t1' and t cannot be exterior to I(t), for then L, would have slope 0. Suppose

t, t{ e i(t). Since .V, Is continuous on [t1 , t21' and differentiable on (t1 , t21) then by the Mean

Vhe Theom there exists t" E (t',t,') -I°(to) such that

(dR.dtXt) - [. At2 ) - .1t)14t,(-t 1
1  [14t) - z.(t,)Yft2 -th1 = slope of .W -1. (C.7)

But we have already seen from Eq. (C.5) that Id. Idt' I< I on (tO) so Eq. (C.7) yields a

conadiction. Hence one of t,, t2' must be exterior to l(Q and theoher must be In l(t). Suppose

t{ < t. and t{ e I(to); then, since d.R7dt' is continuous on r(to) (see Eq. (C.5) and note that .~t')

Is never 0 since • > 0 ), we have

4

.1 -7 xI/c + f(dJldt')dt'< (C.8)

I.

I.(2)-Ixi/c 1 : f Idr& It'Idz < t.' - . (C.9)

But

)- ti9 > 5- to. (C.10)
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4(t1 ) = IlI/c, and L(t2 ) - •.t) so from Eqs. (C.9) and (C.10) we have

I.,)-IxVCl <: I•.* - Izl/Cl (C. 11)

which again is a contradiction. Similarly, supposing t' e 1(t0 ) and h° > t.(t) also leads to a

contradiction. Hence 4 cannot intersect . at two distinct points and the uniqueness pwoof is

complete. U

We now have a precise enough description of the behavior of lines L,(t') = t - t I relative to

the curves of Fig. 12 to use this figure in subsequent proofs, and we do so freely.

7be next result in this section will be crucial in evaluating the integrals for E. and B. in Eqs.

(4.69) and (4.70), giving us a simple description of the set of all t. e [0, T.] such that. for given x, t,

we have XD (t,; !'(t.; x, t)) = 1, thus allowing us to write Eqs. (4.73) and (4.74) for these fields. For

simplicity of notation we suppress the x and t dependence of V' and write simply V '(to). Also, we

Intrduce the following notation for the various boundaries of D[T, G]:

a3)D[TGJ U ((toto)), (C.12)

ýD[T7,G]= U {(tG,)t,(to))), (C.13)

cILD[T. G) (0) x [0,-), (C.14)

and

aD[T, G] (T.) x I(•); (C.15)
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additionally, for future use we denote

8nD[T, G] - aD[T, G] U rD(TG]. (C. 16)

Tteorem C.3: Fix x, t according to Eq. (C.1).
(0) If -- < t- Ix llc <O 0then for all t. e [0, (Q] T• to-- Ix Vc; so

(t.. !'(tQ)) e I-[T. G] unless t - Ixl/c = 0 = t. in which case (t., !'(tQ)) r cD[T, G1.

(11) If 0 < t - Ixt/c < t. then (t - Ixt/c, t - IxI/c) r aD[T, G1,

(t., t°(tQ)) re T G1 whenever t, e (0, t - Ixt/c), and (t., '(to)) e D1[T, G] whenever

t. e (t - Ixt/c. T].1 (If t. = t - Ixl/c then i'(to) = t - Ixt/c so (t., 1'(tQ)) e a[T, GI.)

(Ill) if to < t - Ixt/c < tT1o) then (T., t - Ixl/c) c Z6 D[T, G] and

(t,., i(tQ)) e IY[T. G] whenever t. e (0, T.); also (T., r'(T.)) e {T.) x r(T.) r D[T. G0 but It is

never btue that t'(t.) = t - Ixt/c.

(iv) Hf t,(t.) : t - Ixt/c < - then [t&(t-IxI/c), ts(t-IxlVc)] x it-Ilxl/c) • aD[T, G] where

t(t-hlX/c) a inf tOtt-IxIlc], (C.17)

ts(t-XIl/c) a sup tO[t-lxl/cJ, (C.18)

and

t4[t-lxh/c] m (t. e (0,LJlttd - t-Ixh/c}; (C.19)

also t%[t-Ixl/c] * 0 and tn(t - Ixl/c) > 0. In addition, (t., i'(tQ)) e D*[T, G] whenever

t6 e (0, t#t - Ixt/c)) and (t.. V'(to)) e D[T, GJ whenever t. e (ts(t - Ixt/c), t.].
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f t0 E [t, (t-lxlc), t. (t-lxl/c)] then i'(to) = t - jxi/c so (t., i'(to)) r d. D[T, G].)

(v) In cases (iU) - (Iv), (0, T'(0)) e aL D[T, G].

Proof. () It is clear from Figs. 11 and 12 (the latter augmented with the line

LQ!) - t - t') that 1'(tQ) = t - Ix/c whenever t - Ixl/c - 0 and t. > 0; fuither, unless

t - Ixjlc = 0 = t., then i'(to) < 0 so from Fg. 2 we have (t.,. '(to)) E DiT, G, white if

t - Ix Vc - 0 = t. then (to, i'(tQ)) = (0,0) e ?,D[T, G].

(U) Let 0 < t- Ix I T; then from Fig. 2 we have (t - Ixl/c, t - Ixl/c) e -D[T, G].

Let t. e (0, t - Ix Vc), i.e., t - Ixt/c > t%; then supposing !'(to) < t, gives

L'rt'(to)) M- t - 1 '(t.) -a t - t.> Ix I/c (C.20)

while, from Eq. (C.4) or Fig. 12, ,•t '(tQ) = jlx/c so that I'(to) cannot be the retarded time for to,

which Is a contradiction; and supposing (t1 ) > t,(tQ) t + T77G(Lt) gives

L,((t) -= t-!'(t) < t-[t. + 7YG(tkt)] < t-ff. + TIG(f'1)]< t-T. li tx/c

(C.21)

while again .r.t(tdQ) = Ixt/c, a contradiction. So !'(t) e (to, tQ(t,) = I (t) and so

(t., !'(t*)) e D0[T, G1. (Alternatively, one may argue using Fig. 12 that, when 0 < t. < t - lxI/c <

To, theulne L,( = t- teintersects any ofthe curves at somet ee (t, T] r. (to,t(to), since T, <

t.(to) for all t. e [0, t.], so that i '(to) e (to, tm (tQ)).) Now let t. e (t - Ixt/c, T.], i.e., t -

Ixt/c < t.; then It is dear from Fig. 12 that i'(tQ) = t - Ixl/c so (t., '(t,)) e D'[T, 31.

(Ill) Let T. < t - Ixl/c < t, to); then from Fig. 2 we have

(T.f, t - fxj/c) e i•D[T, G1. Let t. e (0, t.); then supposing 1'(tQ) < t, gives, similarly to Eq.

(C.20),
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LI([t'(to)) 2: t- t. > t - T. > • Il/C -•t() (C.22)

a contradiction; and supposing t'(t.) k t,(to) gives, similarly to Eq. (C.21),

/t' t))< t - tJQTo < t - (t - Ix ]lc) - Ix Ikt.c = /.(to)), (C.23)

also a contradiction. So (t, it(tQ)) E DV[T G]. Also, that (T., !'(T1)) e (TO) x r(To) may be seen

from Fig. 12 by taking t0 = To there; note also that i'(t.) < t - IxI/c or !'(to) > t - IxI/c so that

it Is never true that V'(t) =- t i/c.

(Iv) Let t, (T.) < t - Ix I/c < -; then from Fig. 2, allowing for the possibility that t.(t0 ) has

subintervals of constaney in (0, T.1, we have [t,, tW] x (t - Ix I/c} I cD[T, GJ where we have

e the argument t - IxI/c of t and tý. Since t,,(to) increases from t t() to . as t.

deamsesfrom T to0, thent[t- Ix/c]* 0for t.(To)5t- Ixl/c < -; so tl > 0. Let

to e (0, tj); then supposing i1'(t) < t. gives, similarly to Eq. (C.20),

/.4(6'(tQ) > t -to > t -To > t -t (TO) k Ix I/c = (.Ci'(t)), (C.24)

a contradiction; and supposing t'(tQ) > t.(to) and denoting by t* any member of [t, ts], so that

(t*) = t - Ix I/c, gives

/.N(f/(Qo) < t - ton(t.) < t - tj=t) <5 t -t,.(t:) = t -(t- ix Ilc) = Ix l/c = 9,. ((to), (C.25)

a contradiction. So (t., i/(tQ)) e DI[T, G1. Now let t. e (ts, T.1; then with to* as above,

L•(tm(t)) -=t - t(to) > t- tm(ts) > t -tm(t:) - t - (t-Ixc) - Ixl (C.26)

99



while L(t) =0 . But, from Eq. (C.4) we have

lit/(tc)) - Ix/c (C.27)

the second equality holding because

t > t - jxjlc = tm(t) ? t (ts) > t%(tQ. (C.28)

So 1() and ,.t') must have their unique intersection, which occurs for t== i'(tQ), at a value of

e e (t.(t), t); i.e., t (tQ) > t,(to) and so (t., tV(to)) e D'[T, G].

(v) Follows from Fig. 11 by noting that !'(t,) > 0 whenever t - x I/c > 0. U

The results are represented diagrammatically in Fig. 5, which we referred to earlier in Section

IV.

The above mathematical result has, of course, physical interpretation. For example, (i) says

that if the required retarded time, namely t - Ix I/c, for a charge sheet located at z = 0 is negative

then no sheet can satisfy that requirement; this is of course clear since no sheet is in flight at any

negative time. The other parts have similar interrettions; we leave their explicit elucidation to the

reader.

We remark here that the accommodation in the last theorem of the possibility of intervals of

constancy of t. Is not unwarranted generalization -- we presented in Appendix A a class of pulses for

which t.. has such an interval of constancy.

Theorem C.3 tells us that the map t. - X[(t,; 1' (t.; x, t)), for fixed x, t, is piecewise

continuous on [0, t0], being given by
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I1, if t. E [0, T(x, t)]

x0(to; V 0(t* x. 0) - (C.29)

0, if t. G (T(x, t),] ,

where T,(x. t) is given by

0, if -o< t-Ixjlc O0

t-IxI/c, If 0< t-jIxl/c<5oT(

It , If T. < t - Ix I/c < t. (C.30
qtt-lIxlVC), if tQ o 5 t -Ixl/c < -.

Hence the ZD factors in Eqs. (4.69) and (4.70) can be accounted for simply by choosing 0 for the

integration lower limit and To(x, t) for the upper llmlt and setting XD a 1. In Fig. 6 we plot To(x, t)

as a function of t for fixed x, with one jump corresponding to one interval of constancy fort•(to), as

in Fig. 5; recall that we also referred to Fig. 6 earlier, in Section IV.

Strictly speaking, the upper limit for the last case of Eq. (C.30) should be ts(t - Ix I/c) (see

Theorem C.30v)). We have chosen th rather than ts because the choice of t4 allows a more unified

(I.e., caseless) treatment in the sequel than does the choice of ts. This point is almost always moot

since In almost all non-contrived cases we have It = t. (the pulses of Appendix A are examples of

"contrived" pulses). Nevertheless, we will be careful to point out and include those modifications to

our formulation that are necessary in case ts > t4. As a point of interest, note that the choice of ts

rather than t1 for the definition of TI would make the map t ,-. T, (x, t) left-continuous rather than

right-continuous at the jump In Fig. 6.

Tie last two results of this Appendix establish the continuity and differentiability properties of

the map t. -, T° (t.; x, t), with x, t fixed and t, variable according to Eq. (C.1), that we will need in

Appendix D. Consistent with our aforementioned convention of suppressing x and t In the argument

list of V, we also write (c/dtoXtdo to mean (aI/)Q(to; x, t). We denote
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D1.[T, G] [0, T.o x (-s, -o), (C.31)

with Int•rior given by

D:[T, G] = (0. T.) x(-,); (C.32)

ad we abo denote

(DI),[T, GI m D:[T, G] \ awrD[T. G0 = DO[T, G] U DW T, G] (C.33)

(ee Eq. (C.16)).

Theorem C.4: Fix x, t according to Eq. (C.i).

(i) If-s < t - Ixl/c < 0 then i'(to) is contlinuously diffrentiable (C0) on [0, To].

(Hi) If0<t- IxI/c to then f(t) Is C' on(0, t- IxI/c)"v(t- Il/c, Qd

(iii) If T < t- IxlVc < t.(t. ) then i(%) is C' on (0, Qd

(lv) If t(To) S t - Ixl/c < - then f(to) is C' on

(o,•(t-lxl/c)) u (qt-lxl/c), ts(t-lxlkc)) u (t,(t-lxl/c),To).

Further, for those to at which ?1(to) Is C' we have In each case

-(lkc)A(t)(d81'dct(to), if t. e FI [a first interval of (i)-(lv)]
0t if to 9 F [not a first interval of (J)--(v) ]

(C.34)

and
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- -(l1c)A(to(aZ/ao)(to;t (tto))/[ I(I/c)A(toX)aZkXto; /(to))JQ if t. e FI

0. if FI (C.35)

where

8(t.) - Z(to;V'(t)), (C.36)

or, more precisely,

8(t; x, t) = Z(to; i'(to; x, t)), (C.37)

and

A(t) - (8(t) - 0/11 8(tV)_+] 2P (C.38)

(and the arguments of Z are denoted (t., c)).

Proof. The proof of (i) here follows immediately from (i) of Theorem C.3, for we have

dilidto a 0 on [0, To). To prove (ii)-(lv) we appeal to the Implicit Function Theorem which says that

Hf real-valued function 9A(%, %ý has continuous first partial derivatives 89.0% and d-IW in some open

subset of 2 which contains interor point (t., t ) satisfying 94t., t) = 0 and (Mar)(%, t) * ,

then there Is some nonvold neighborhood (t - 8, to + 8) of t, and a unique function h defined on

(t. - & t. + 8) such that t: = h(t0 ) and , h(-,)) = 0 whenever ; e (t. - 8, to + 8); further, h is

C' on (t. - 8, t. + 8). To apply this to our present situation we first define, for

(D*[T, G]1
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(tot'- t- t +ut°) (C.39)

We next note, using a rewritten version of the RHS of Eq. (C.4), that

WOW/){ +[Z(t.; t ) -M]In. if to I l- to)

Ix 1kc, if t' E G-o)

and, from the dI lity properties of Z(t0 ; t) on D[T, G] (see Eq. (3.34)), that &J{Iato and

(Tht' exist and are continuous on (D:)b[T, GI with

J 1 (d.%dt'Xt%), if tt I (t.)(fJ• t'Xto, t ) - (C.41)
1, if tI C l-0t.)

tlee; and we then use Eq (C.5) to conclude that a' t' 0 0 there. Now if t. e (0, T.) then our

pevious existence and uniqueness results Imply that (t., '(tQ)) e D°[T, 0] is such that

" H(to, t'(t.)) = 0 for all t. G (0, T.) (C.42)

(not just t.*-ocally) so 1' mut be the unique h guaranteed by the Implicit Function Theoem,

(t., i'(t)) e (D)b [T,G] ; (C.43)

hence V' must be C' at such t.. But items (il)-(iv) of Theorem C.3 indicate that Eq. (C.43) is

satisfied precisey for those t, specified in cases ()-i) here, and, in case (iv) here, for
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t (0, t U (ts,,) Since, in case (v), 11 is In fact constant on [t, ts] (being t - Ix I/c there) then

we may Include the interval (t4, ts) so that (iv) is also proved. Lastly, the first expression for dil/dto

results from differentiating

• t,[ (,) V (to) - t + ,•[ '(to)) (C2.44)

(see Eq. (C.39)) with respect to to, using Eq. (C.42); and the second expresslon for di' /dt results

from noting that

(dB/dt.)(t.) - (aZ&at(Xt.; 1'(t)) + (aZf&)(to; 1 '(t))(fd 'Idt0)(td). ((2.45)

In both cases, the continuous differentiability of Z on (D:)b[T', G] and of 1' on the intervals specified

in (l)-(lv) guarantee the existence of (continuous) d8/dt, on those same intervals. U

The above theorem Indicates that there may be exceptional points in [0, T0] where I' falls to

be C'. The following Is true however.

Theorem C.5: Fix z, t according to Eq. (C.1). Then 1' is continuous on [0,To].

Proof. If - < t - Ix I/c : 0 then t result follows immediately from Theorem C.4(l). So

let 0 < t - IxI/c < - and consider first continuity at t. = 0.

Defin

t: - Mnm {t-IxVc, ,(t-xlI/c),To}; (C.46)
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by Item (U)-(Qv) of lbeorem C.3, it follows that !'(to) e ro(t) for all t. e (0, t:) and so for such

t,, ,VI'(tQ) Is given by the first line of Eq. (C.40). We claim - and show below - that lim V(t

exis then Um .'(t)) exists and is given by
t.-..- 0"

um .1 '(tQ) (1/c)(IV + [Vo Um i'(t) - ] (C.47)

since lim G(t) -- 0 and the square and square root are continuous on non-negative reas. He=

from Eq. (C.44) we have, using (from Eq. (C.42)) lrm Xf(to, I(tQ)) = 0, that

t - Um f'(t) - (l/c)(42 + [Vo Jim 1'(t.) -]2}zn, (C.48)
t..*0" tro- 04

where T'(to)> t. k 0. But this last equation is the same as that of(the first line of) Eq. (C.2) and

we know the laW has unique solution 1 ' (0) given by Eq. (C.3). So we must have

im r '(t) T'(0), (C.49)
t.-m.o

Ie., '(t) is continuous at t = 0.

To show tbat lim !'(t.) indeed exists we proceed as follows, still requiring t. r (0, t:). In
t,.Or

Eq. (C.45) for dS/dt. we substitute the first line of Eq. (C.34) for dl'/dto to get
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(d&&.M)(t.) - (aZ,/at)(to; t'(td)) I [P .(I/c)&(t.xazJcxt.; V (tQ)) (C.50)

where we can be mire that the denomnatom on the RHS is strictly positive since, by Eqs. (C.38) and

(3.35),

IA(t.)l < I and I(a(,/')(t.;o'(tQ)I : v. (C.51)

But (&&t.)(to; t) < 0 for (te t) e D[T, G], as per Corollary B.1, so that OM)(t;t'(to)) < ;

(d&*Xt•)t) < 0, t. e (0, t.4), (C.52)

i.e., 8 is strictly dreasn on (0, t:'). And by Eq. (C.34),

(d'/dt).Xt.) - (lk)l(dS/dt.XtdlA(tQ, t. e (0, t•,). (C.53)

Now ifa u ap•(t.) < ý thn A(tQ) < 0 on (0, t,') so that

(duf/dt.Xt.) < 0, s S C, t. e (0, t4) (C.54)

wbie If s> C tOen beca• e 8 Is strily demsing on (0,tC), tde exists t'e. 6 (0, t) sch that
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A(t) > 0 on (0, t,-) so that

(ff I/dt.Q > 0, 3 > C, t. e (0,t!). (C.55)

Furlw, since 0 < t. < (t) < t on (0, t:), thn in ether cue t (t) is bounded and monotonic on

(0. '4) so that aim '(t exists and our claim Is proved.

Iastly, we sbow condimlty at the oth exceptional points. To that enl, let t," be defited by

t - Ix V/¢. ifO0 < t - IzI/c <5 To

t: , To i T. < t - Izl/c < tQo) (C-.56)

tqt-IX Vc), if t.(go) 5 t -Ix Vc < -

thenm,for t. 4 (0,t),q Figs. (C.52) and (C.53)still hoL Now If i - inf &tQ) ktnm
1.41 (0. 4)

Aft.) >: 0 on (0, tý) so dWa

(d['/dt.(t.) k 0, i k • to E (0,t,) (C.57)

While If i < C m tMere mists e (0,t such t A(t < 0 on (t:) so am1

(dff /dt,)(t,) < 0, i < t. 4,E (C.>, t.'). (C.58)
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Henc [I(t() Is bounded and motonic on (t,', t0>) so Um i'(t) exists. Then from Eq. (C.44) we

have

t - aim tV(t.) - (l/ )(Vj'[,. UM I (t.) - t.)] - (V/7)Gqntj[ IiM 1'(t.) _-t.)2-ý)2• (C.59)

so by uniqueness of solution to this equation (which Is the first line of Eq. (C.4)) we have

lm l[(t,) !'ot,). (C.60)

hbis is the contminuty result In came tE: - T.; otherwise, we have from Theorem C.3 that

lir T°(to , t - Ixl/€ - 1'(t:) (C.61)

so

lirn !(t) = !'(t,) -t- /¢c (C.62)

whidh Is the couvruity result for the other two values of t,: (am wel as for t: = t(t - Ix Vc)).

Fnay. continty at t% . In cams t - IxlVc f, < and t - IxlVc > t,.(T.) folows from the fact

that V (t.) , t - Ix/Vc In some (one a-ide nonunctufred of T.. U
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Corollary C.6A Fix x. t aWcOrding to Eq. (C.1). Then the map to -, 8(to; x, t) is suictly

decresg on (0 .T0(x. t)].

Proof. From Eq. (C.52)ff, d/ldto < 0 on (0, To(x, t)); and from Eq. (C.37) And rteorem C.S,

te• ricatd map is cntinuous on [0, o(x. t)]. 1
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APPENDIX D: PROOF OF THEOREM 5.1

We present our work as a sequence of five results culminating in existence Theorem 5.1. We

will use In the sequel A. rewritten In the form

A.(t.;0 - (1/sin•)Ixl- t Z(to;t) - cot*. (D.1)

Lemma D.1: Letab, c,, c.,,dj, d6, c' eLa<b, c 1<di(l= 1, 2), c'> O; and

. mx{Ic, I. •Q) > o. Let functons h: [a, b] x [cl d,j -# and ;: [a, b] x [c,)-*

[ci, dJ be such that

(I) h is continuous, with I h I. M < a;

(H) V,6 . (t.; y) -. k1(to; y) is continuous, 1 = 1, 2; and

(il1) V,.. t.b lim k,(t.;y) - k .(tQ E (cQ, 1] 1, 2. uniformly on (a, b].

Furthe, for y e [a, b] define

"54(y) f dt k 2(t.; y)h(to, k,(t*; y)). (D.2)

Then
b

Jim 2{(y) = fdt. k_(Qh(t., k1..(tQ). (D.3)
7-0- a

Proof. Let e > 0. Since h Is uniformly continuous on [a, b] x [cl, d1t, there exists

> 00such that., NO Ik -k'I < 8-+ jh(t,k) -h(t.,k')I < .e2MpCo-a). Since the

coAvergence of k(t.; y) to .(tL) Is uniform,then d 3, V1. , ,b, y > Y-+ Ik,(t.;y) - k1,.(t)l <5

and k2(t.; y) - k2..(t.)I < FJ2(M + 1)(b -a); further, k.(t.) is continuous, hence lntegrable, on [a, b].
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Now if y > Y then Vt., 1mb,

Sk . (t)h(to, kt. (t)) - M(to; y) h(to, k, (t.; Y))

< Ih(tkA.(td) 1-k2.. t.) - k(to; y) I + lk2(to; y) IIh(tok.(td) - h(to, k1(to; y)) I

: (M + I)-V.2(M + 1) (b -a) + K Mv2.K.2 (b -a) - el(b -a) (D.4)

and so

fdt.tk 2.. (toh(to, k,,.(t)) - k2(t.; y)h(to, kl(to; y)) I < e (D.5)
a

whenever y > Y. E

Proposition D.2: Let It - (sin, 0, cou) with 0 : # <5 W2, c > 0, and t. e [0,T(i)J.

Then

tin Ix"' Z(to; '(to: If IIt, /c ÷ +)) - 0 (D.6)

t0-uniformy on [0, To(c))-

Prom. From the first line of Equation (C.3), which applies here since IxI/c + -t > IxIc. we

compute

Mm 1"(o; IxI t, Ixl/c ÷k = - WI - (v0Ic)cos*]. (D.7)
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Since

Z(O;(o; IxlIt, Ix I/ + v•) - '(O; Ixl1, Ix/c + c) (D.8)

ten

Urm Ixl'Z(O; i'(0; jx1t, lxl/c ÷-)) - 0. (D.9)

But by Corolary C.6,

0 S Z(to;t (to; Ixj1, IxI/c +*)) 5 Z(O; !'(0; IxIiltx I/c + T)) (D.10)

for all t. e [0, t'(-)], since T0(Ix It, Ix/c ÷ +) - '(1). Hence, we ae done. U

Proposo D.3: Let t - (sin*, 0, cosi) with 0 < : Wr/2, r > 0, and t. e [0, t-(t)1.

Then

(I) we have

liUr (to; IxIt, Ixl/c ÷ - tr.(to;,,r) (D.11)

to-poinwise on [0, T")J, where
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T/C1 (W), if t. =0

"T, if t. 0 and =xrt2

t = - [1/C2(*)G(')](C,(*)

+ C2(#)G(fta)( - t)

- [C2(*) + 2C2(A)G(ftt)(C - to)]f), if t, @ 0 and 0 <* < r/2

(D.12)

for

c =(#) I - (vjc) cost and C2(*) = 2T'l(voc)cos4 ; (D.13)

(U) to "- Fj..(to;*,c) Is continuous on [0, o(?)];

(Iii) the convergence in (I) is actually to-uniform on [0, T)1; and

(iv) Ur im,(to;*,') = -C for all to c [ETo(X)].

Proof (I) If t 0=0, then the result follows Immediately from Equations (D.7) and (D. 13). so

suppose t, > O. Since c > O, then Equation (5.16) holds for all IxI > 0 so that, from Equation (C.4)

with x = IxIt and t - Ixl/c ÷ +, we have for all Ixl >0

Ixl/c + r - V'(to; Ix i1, Ix I/c + r)
(D.14)

= (ixi/c){sin 2* + [ixl"Z(to;r'(to; Ixii, Ixi/c + C)) - cos2ý0) 21.

Squaring both sIdes of this equation and using t'-t, - (V'-c) + (,r -t) yields
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q()G(flt 4 )IE'(t.; Ix It, lx I/c +,C) -,C]2

+ 2[C,(+) + 2#* f), - tJ1fg(t; lx It, Ix i/c * -

(C- Q[ - 2C,(*) - C2(4)G(LbX.X - Q0 ) (D. 15)

-D.(t.;l xl1) + D2(t.;lIxlDf I(t.; lX It, IX I/C + T) -T] j2

+ Di(t 0; Ixj)[0(t.; lx It, Ix f/c + - *] D0 (t0 ; lxi1)

wbere CA() and C2(*) are given by Eq. (D.13) and

Du(t0 ; xlx)- -(xlx /c)-'(vj/c)T-IG(atd)rt'(t lxilx. I/j +c -,T]3

x I T 'G(ft)[?t '(t0; Ix It, hix/k+c - r]+ 2[2T -G(fkQ(,c - t.) - 1]),(.6

D2(06;lIX ) - (IX I/cY- 1 (- (vj) 41I -6T 1G(fQt12 XE - t) + 6[T -G(fLt41)@ -t,]2)) (D.17)

Di(t.; lxi1) - -2(lx l/C) 1'(vjc)2( - Q0 { 3T 1G([Q(T0  - t,,) +2[T 1G(QQT0X - td12), (D.18)

and

Do(t.; Ixi1) - -(lx I/c) 1'(vlc)2Cc -td 2[l - T -G(Qlt 0 Xr - Q]2 ; (D.19)

"te that we haRve supresed the rg-dePendence of Do, DI, D~2, and D34 and the ti-dependence of D34 in

their argument lists. In the above we have introduced extaneous roots for f' in the Wqaring process



but, by Theorems C.I and C.2, Eq. (D.14) has unique solution for all IxI > o and t k 0. Now

sine t. e [o0, t()] then 'c E [t, t. + TIG(QtQ)]; combining this with Eq. (5.16) we then have for

aU lil > 0

r'(t.; Ix It, lxI/c + ) -, I < T/G(f.). (D.20)

Tnus

ID,(t.; Ixi) I1 < 7(lx I/c)-1 (vjc)2 TIG2(fit), (Dll)

ID,(to; Ixl)1-I '(t.;Ix 11, Ix/c + r) -,lr 1 (Ixl/c)-1[1 + 13(vjc?]T2/G 2((nt), (D.22)

ID,(t.; Ix1)l' I '(to; IxIt, Ixl/c + T) -r 1 12(IxlIc)(v/c)2 T 2/G2( t'), (D.23)

and

IDo0(t.; l1)1 < 4(IxI/c)'1(vJc9]T2/G2(to) (D2.4)

so that

IRS of Eq. (D.15)I 5 [1 +36(v/c)2 ](Ixl/c)"T 2IG 2(fk) < 2(IxlI/c)-'T 2IG2(flt. (D.25)

If x /2 then from Eqs. (D.15) and (D.25) we have
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l'(t.o Ixlt, Ix I/c + C) -[ I: (IX Ic)-' T21G2(QtQ) (D.26)

so

mn'o:Ixl1:, Ixll/c ÷+'T = 't %+ -D-27)

to-pointwise on (0,":(€)]. Since this result must hold for all roots of Eq. (D.15), it also holds in

pnlaicular for the unique root of Eq. (D.14), so the result stated for ý = -r/2 in Eq. (D.12) follows.

Suppose then that 0 < # < Wi2 and consider the quadratic equation LHS of Eq. (D.15) = 0, i.e.,

C()G(ftk)w 2 + 2[C,(#) + C2(#)G(tft)(X - tQlw - (T - tQ[2 - 2CA(*) - C2(#)G(ktt)(E - tQ) = 0

(D.28)

with solutions

w*-(to; #,C) -['IC 2(*)G(lk-)]fCA() + C2(%)G (C0X -t)Q [CF(W ) + 2C2(%)G(QQft -t)Q]0). (D.29)

Subtracting Eq. (D.28), with w there replaced by w$(to;4,T), from Eq. (D.15), with notation

W(t0 ; IX,1,1) -) a (t.; lxit, Ix I/c + 1) - ' (D.30)

In the atMte equation, we nnd, using Eq. (D.25), that for all Ix I > 0
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I~w(t.; lxi '*'C) + Q(t..*,.T)] - wt;,r 504c1 2(Ix IkcY 1[11C2(*)G(flld]T2IG 2((k,

(D.31)

Q(t09*,'C) * ICA() + C2(#)G(QtaXC t.)Y 2(*)G(at). (D.32)

Hecme: hmr mre four possibilities:

I'mnw(t0; Ix j,*,a - WOt (D.33)

Urn W(t.; Ixl1,*,1) - w -t0;4-10, (D.34)

Urn w(t0; Ixi ~ - -[w-(t0;*,r) + 2Q(t0,#,ct)], (D.35)

Urn w(t0; Ixl*) - [~.*~ 2Q(t.,,), (D.36)

lirep ndig to the four roots of Eq. (D. 15). The correct choice is easily determined by noting tat

+~ . Ur w-(t.;#,-) + -ri 1(m + ~ r -wt;,E 2Q(t.9 ,#'-)J) (D.37)
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om tt s tirese dmoceU for the limit yidd (for v > 0)

Um Urn (to; IlxI, Ix Ic ÷c) - t + Um w(t.; Ixl.*.c) " " ,(*) < 0 (D.38)t.*-b o" i-.- t..o

yet by Eq. (5.16), the iterated limit must be Z t. k 0. On the other band,

t + Urn w.(to;',*) = '/C 1(*); (D.39)

hence the conrect choice is Eq. (D.33) and so

Urn t(to; Ixit, Ixl/c ÷ *) - z + w-.(to;*,c) (D.40)

as claimed in Eq. (D.12).

(Ii) The continuity of the map to , (to;ý,,) at to - 0, hence on [0, T,•(t)), follows from

Eqs. (D.39) and (D.40), to wit,

-I

I'm 1.(to4..C) - 'r + lI'm w (o;,) ,Co) = - 0;,) (D.41)
t.-* 0. t.-4.0€

(Il) Since f'(t.; IxIt, I,,1/c + r) -1 !(t.;*,?) to-polntwlse on compact [0, )] and

to .' .(to;*,') Is continuous ther then by Dinl's Theorem It Is sufficient to show that the map

l -'(t.; xit. x I/c + ) Is monotonic for each t. E [0, A '(t(); In fact, we sow thethere
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exists X > 0 such thatV (ox(eI I > X - the aforementioned map is increasing. To that end,

we apply - as In Theorem C4 - the Impilcit Function theorem to

SAx1l, w) a w - Ixl/c + (Ix lc)(slnt? + [Ixi 'Z(to;w + ) - coSJ)" 2  (D.42)

to conclude via Eq. (D.14) that xi - w(to; Ilx,*,[) - r(t.; Ixi, Ixi/C +) - T is C'

at JE e (0,.-) whenever 3E and t, e (0, •To(T)J satisy

0 0 {sln2 + [3'Z(to, t'(t, 3Et2,3E kc + c)) - cos]2)} M R(to, 3E) (D.43)

(wher die# and c dependence of R have been supreased); and furthe, for such 3E and to, that

(aW/ailxXt.;3E,#,,) - (11c){1 - R(te, 3) + [R(to, E)]'[R.(to,3) - coS]R.(to, 3E))

{1 + (1/c)[R(to, E)]"'[R.(to, 3E) - cosjaZ Xt0 ;tf t0; t, jI k

(D.44)

where

R.(to, 3E) N 3E-'Z(to; (t, 3E t, 3Elc k (D.45)

an the dMominao of aw/a lxi Is strictly positive whenever the condition of Eq. (D.43) obtains since
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(l/c)I[R. - co*.1/RI•Ioatl : /c •l I V. - vjc 1. (D.46)

We now claim that theCeexist X >Osalchthat V,.,, jo.-:'(,*] 3E e (Xg- RtOO, 3) > 0 so that the

condition of Eq. (D.43) obtslm and the map 1xI " w(t.;IxhI,*) is C' on (K, -c) and Eq. (D.44) is

valid thee; indeed, this positivity follows Immediately from the definition of R in Eq. (D.43) by using

Pimp'hlt1o D2. Further, when Iz > X then dhe ,mrato of aw/alxl is positive, as follows. We

firt eow that If cou - 0 then R.(t IzlI)co" - 0 < . while if cos# >0 Omen, again by Proposition

D.2, thea exists'>N 0 sch dwt 1 , V%. f jI > Y -+ R.(t., lx)COS < I and, WLOG, wemay

take X'- K. Thus Ineither cae we have, since 0 > 0, that Rl. > Re.coS2O so

{R• - 2R1coe * 1) 1> I - R~cou; hence, noting from Eqs. (D.43) and (D.45) that

R - JR! - 2R.coN + 1)"'. (D.47)

we ten have

R -R[R. - coeJR -i "I - (R. - co)Rj - [1 - R.cos• YR < I (D.48)

o that the nmermator of aw/alxI is poitive for ail t. c (0 , ) whenever Ixl > . T, us if

Ix I> X then (aw/aIxlXt.; Ixl , )0 for an t. e [ 0, tio(c)] so the map

Ixl-T'(t.; lx, IiVc +C) is incresng for Mc to.

(1v) "nis is uulglhtward to verity using Eq. (D.12). U
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PreopaouAu .4: Let t =(sin#, 0, co.)with0<#-52,v>O0. ad t. e [0,T .(0"( h.en

lim V(t; T'(t.; lxli, Itl/c I +)) - V(to; f.(to ; Or)) (D.49)

to-umcmly on to, ).

Proof. bat the limit is m stated folows from Ptopositon D.30) Ad continuity of the map

t,."V(t,; t) at t- '(t.;IxlIt. Ix Vc +t, which minuity follows from Eq. (5.16) siwce > 0.

Prel', aSbce

V(to;t(to;#,1t)) - v.(l - 2r'3(aofl.(t*;*,T) - tQ) (D.50)

them ne lG(QtdI 1 1 for al t. a [o. 0, (i). we ae fllschi t.

JV~o;•to;.T) -V(to;f(t.; Izpt IxVc ÷ •))l :5 2T-' _(t.;#,,) -T(to; JxIt Ix~c ÷ )I

(D.51)

mo by Pmpoition D.3(lil) the mavergece in Eq. (D.49) Is t-umlform on [0, T()].E

It Is esy to compne ng f qs. (D.12) and (D.50), that when t. s0,
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(vJcX = - - t)- . iff - xt2

v(t.; (•.(t.;*,'c)yc -

(1/cosX1 - c,(,)(I + [2C3(,#YC/()],G(f.Xc - t,)W), If 0 < # < X

(D.52)

and of Cmurse

Va. (o*'.)yc - v/c. (D.53)

since

[2C ()/ o(Dt.X -t.) s 4(vjc)rTG(Ot.)7TG(t.)]-/l -(vjc)coJ] < 4(vjc) < I

(D.54)

then the "eCO line of Eq. (D.52) is igiven, cOtCOt to first order in vJc, by

V(t.;rf(t))kc - (v/c)[ I - 2r1 0G(Qt.Xc -tQ) (0 < # < v/2); (D.55)

in fact, this last expression is exactly tue for # =- P2, as Eq. (D.52) shows, and for to = 0 as well, as

Eq. (D.53) shows. In Section V and beyond, we take Eq. (D.55) (Eq. (5.23)) to be our expression for

WV(t.; =(t.;*,'0)Yc In aD cues.
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Phoof f orum 5.1: By Proposition D.2, thre exists X > 0 such tht

4f. W k X-+ lxl"lZ(t.;'(t0 ; IxsI, Ilx/c + -)) < 1. Define Auconsk,,k2, an• has

fbow~ms:

(a) k: :0.(•)J x [J -) [- 2 /s *]l by

k1(to; Ixl) - Ao(to; '(to; IxIt. Ix Vc + r))

"- (/sin*)lxI'Z(t;t'(t.o lxII lxllc + - coo

with Jk(to; Ixi) I< (1/s11*) + cot < 2/sh*;

(b) k2: [0. .(r)J x [X -) -+ [.-vjc. v/c] by

k(t.; Ill) - V(t%; '(t; llIt. Ixlc + r))k;

(c) for p, q e 0. p k O. h.,,: [0. t.-(c)] x [-2/si*, 2,sin*] -.+ i by

hm(to, k) = G0l(Qt)G(tk)kP(l + 0)-.q

with Ihyq(te k) 1 : (2/s")n?(+in±)1 < 0

By Eq. (5.16), the map t. -. Z (to; t)and t. - V(to; V') ae continuous at to, hence so are

V(t.; IxlD,. = 1.2 ,; fwrtt d=ic 0 And 01 we Contnuus on [0. o, ] then so Is h on Its domain

Finally, by Propositions D.3 and D.4 and Eq. (D..55), k1(t.; Ixi) onverges uniformly to -cot# on
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[o. T(?)] as Ixl - a 8W k2(t.; Ix1) coverges unifonry to (vo/c)[I - 2T-'IG(fkbX - Q)J (to

first irdae In v/c) on [0, "(0)] As IxI -+ -- The results of this theorem then follow by applying

Lemma D.I to E.(IxIt, lI/c ÷ c) and B.(Ix!i, Ixl/c ÷ c) as specified by Eqs. (5.1) - (5.3). U
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