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FIGURES

Electron cloud description for dynamics.

Typical domains in the t_ -t plane for non-stationary
sheet behavior as determined by Eqgs. (3.28)-(3.30).

The extension of Fig. 2b to three dimensions to show
some representative points on the surface Z( t_ ;t),
(t, :0eD[T,G); t, isatypical valueof t .

Electron cloud description for electrodynamics. The
symbol t may be interpreted as present or retarded time,
as needed. The vector x is taken to lie in the first
quadrant of the x-z plane and outside the cloud

(hence x *1 > a).

Various possibilities for t — |x}/c (where (t - |x|/c), ,
i=1,..5, indicates five specific choices for the value of
variable t - |x|/c ); and the ranges of values of t_
forwhich ( t, , €/ (t_ ;(x t)) e DIT.G)
according to Theorem C.3. The time variable is denoted
here by 1 to distinguish it from t.

The function T, (X, t), t € (-, ), for x fixed. Note
that the function plotted here is just the “inverse" of the
(two-valued) relation plotted in Fig. 5, where the upper
curve of that relation is first "fixed up" by removing that
part of its domain where it is not one-to-one. The shape
of the portion of the curve determined by t, can be
inferred from Fig. S or, more formally, from the result
(dfdt)= [d(tz,)/dt] (t) = 1/(dt,,/dt) (¢
forte [tu( T, )+ |xl/c, «)\{t,). Finally, if there

are several, say N, > 1, intervals of constancy of t,, then
there are N, places, t,, »i=1,..N,, where the map
t~= T.(x, t) hasajump discontinuity (if N, =0
then there are no such places).

The function T,'(7), T 2 0, comresponding to the function
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1. INTRODUCTION

In this paper we study analytically the electromagnetic radiation field produced by the cloud of
accelerating, non-relativistic electrons induced at a planar photoelectron emitting surface in vacuum by
a photon pulse of arbitrary time profile and small spatial cross-sectional area incident upon that
surface, deriving scaling relations for the radiated fields (hence radiated power, energy, and spectral
content) explicit in the pulse and surface parameters.

The dynamics of the electron cloud has been of interest in connection with both
electromagnetic pulse (EMP) phenomena [1-5] and laser plasma jets [6-7] and has been studied both
analytically and numerically. Those studies are concerned with either steady-state dynamics (1,3,6] -
applicable when the electron plasma period is much shorter than the characteristic photon pulse width
- or with transient dynamics [2,4,5,7), applicable when the above condition does not hold. Those
authors who obtain complete, strictly analytical results for the transient case (2,7] assume 1-D planar
geometry, monoenergetic emission into vacuum, and a "no-screening” approximation {1,2,4,7]. Under
these assumptions, they solve Maxwell’s equations (simply Gauss’s law in this situation) for the
electric field in the space charge region, coupled to Newton’s law for electron motion as well as to a
continuity equation for the electron density, to obtain a self-consistent solution to the dynamics
problem. This program produces formal expressions for the electron density and velocity fields as a
function of the single space coordinate and time; these expressions could be used in principle to derive
similarly formal expressions for the radiated fields of iisterest to us here, although this has not been
done in the literature as far as we know. Howevez, from our point of view there is a fundamental
difficulty with these formal expressions: They can be made to yield expressions for the radiated fields
explicit in the puise and surface parameters only in the two special cases of photon pulses which are
either constant in time or linearly increasing in time. Indeed, these two special cases are the only ones
offered in [2] and (7] as illustrations of their general formalism. The specific difficulty is this. The
treatment of the particle dynamics is done from a Lagrangian (in the fluid sense) point of view while
the electron density and velocity fields are inherently Eulerian (as is usually the case in the




electrodynamics of extended charge distributions). The formal expressions for the density and velocity
fields require a translation from Eulerian to Lagrangian coordinates in order to be expressed explicitly
in terms of the pulse and surface parameters ({2], Eqgs. (18) and (36); (7], Egs. (16)-(18)) and this
translation can only be done exactly analytically in the two special cases indicated above.

In order then to achieve generality, we abandon the usual technique of using the (Eulerian)
charge and current densities to compute the radiation fields; rather, we compute these fields by the
novel technique of directly summing contributions to the fields over individual electron trajectories,
i.e., we do "Lagrangian (in the fluid sense) electrodynamics”. (We point out that this technique is
novel only because it is being used as a strictly analytical tool -- the technique of summing
contributions over individual particles has been used previously in electromagnetic particle-in-cell
(PIC) codes.) This summing process results in integral expressions for the electric and magnetic fields
at large but finite (i.e., "finitely-remote”) distances. True radiation quantities, however, are obtained
only in the limit of the field point going to infinity; we thus demonstrate the existence of this limit and
obtain asymptotic radiation quantities in which all the integrations have been fully carried out and
which, in addition, are explicit in the pulse and surface parameters. Because we wish to obtain this
limit rigorously, the entire paper of necessity takes on a somewhat mathematical flavor in order to
support from the outset this major goal. We have, however, relegated most of the mathematical detail
-- which involves only elementary techniques —~ to four appendicies so that they may be avoided, for
the most part, by those readers who find them of lesser interest.

In summary then, we derive expressions for the asymptotic radiation fields based upon a 2-D
cylindrical electron cloud of small radius whose dynamics is described by the aforementioned 1-D
planar model employing the monoenergetic emission and no-screening approximations. Since in the
1-D model the magnetic field is strictly absent, then that model yields electrostatic interactions
between the electrons; hence, application of the 1-D dynamical model to our 2-D electron cloud is
tantamount to assuming only electrostatic interactions and so errs in neglecting small magnetic field
and retardation effects in the dynamics. Such effects are not neglected in our radiation treatment




however; indeed, we require a small spatial cross-sectional area for the photon pulse so that we may
adequately represent the retarded time in the radiation integrals.

In Section II we describe the photon pulse more completely. In Section III we discuss
electron cloud dynamics, presenting in detail only those features unique to our treatment. In Section
IV we derive expressions for the finitely-remote fields; these lead, in Section V, to the asymptotic
fields which in turn lead, in Section VI, to all asymptotic radiation quantities of interest. Finally, in
Section VII we preseat illustrations of our general formulation for five specific pulses: constant, linear
ramp, triangular, parabolic, and sin®. Additionally, Appendicies A and B, C, and D contain the
mathematical complements to Sections HI, IV, and V respectively.




II. PHOTON PULSE DESCRIPTION

The photon pulse, normally incident on the emitting surface, is taken to be one of circular
spatial cross-section with spot radius g, and photon frequency v. This restriction to circular cross-
section is not necessary, since we will ignore edge effects in the cylindrical electron cloud, but seems
most natural. We assume that photoelectrons are emitted spatially uniformly cver the extent of the
spot, each with one and the same non-relativistic speed v, > 0 in a direction normal to the locally
planar, smooth emitting surface, with average photoelectron yield (quantum efficiency) over the spot
denoted by Y(V) (electrons/photon). (Here, “locally" means over a region comparable to that of the
spot.) Monoenergetic, normal emission of electrons is certainly not the case physically in general
where, even for a normally incident pulse of monochromatic photons, the shape and width of the
emitted photoelectron kinetic energy distribution function is highly dependent upon, and varies greatly
with, the nature and condition of the emitting surface as well as with the incident photon frequency
{8]; but, as we have previously pointed out, monoenergetic (normal) emission is a standard assumption
in the literature. We also assume that the incident photon intensity is not high enough to produce a
plasma at the surface; and we do not include contributions to the radiation field of induced curreats in
case the emitting surface is a conductor [6].

The full width of the pulse in time is taken as %/Q, where Q > 0 is an angular frequency
(sec’), while the pulse intensity at the emitting surface is given by

fm = AR, 0<stswQ, @.n

where A > 0 is an amplitude (photons/m’-sec {we use MKSA units throughout]) and € is
dimensionless, with 0 < f(t) < 1, f(t) = 1 for at least one t, and £(t) = O for at most t € {0, ~/Q2}. It is
convenient to introduce a dimensionless time variable given by s = Qt; in terms of s, we define
functions 7 and g by




Is) = () 20, g(s) = f(s/Q) 20, 0Sssn,

so that

I(s) = Ag(s), 0sssm

22

(2.3)

] t
The central construct of our model turns out to be fi(t’)dt’ =Aff(t’)dt' in terms of which
] 0

ail physical quantities of interest may be naturally written. It will often be more convenient to use a

dimensionless multiple of this integral: we define
] )
G(s) = fg(s’)ds’ lf gs)ds’, 0<s<nm,
0 []

8o that

G(fx) = fg(s)dsl fg(s)ds = j‘f(t')dt'l Tf(t’)dt’, 0<stswQ.
0 ° ] 0

Also, we define

R

N = [ fehat! = ) [ gexs
0 0

so that

[f(t’)dt’ = NQ)G@L), 0<ts<n;

further, we exclude as trivial the zero pulse so that N(£2) > 0. Therefore

24

(2.5)

2.6)

2.7
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0SG@E)<1for 0<sswand GO) = 0, Gx) = 1. 2.8)

We also require that G’ exists on {0, x] (taking one-sided limits at 0, %); to ensure this we demand
that g be continuous on [0, x] (or f on [0, #/L2]), and so is properly integrable there, and in that case

we have
G'(s) = g(s)/N(Q) = K(sYAQN(Q) 20, O0<ss = (29)

Hence G is non-decreasing on [0, n] and, being continuous there, takes on every value between 0 and
1 (by Eq. (2.8)). In fact, since g vanishes only at most at 0 and x then G’ is strictly positive on
(0, n) and hence G is strictly increasing on [0, x).

We point out that we could easily extend our results to improperly integrable pulses g which
are continuous only on (0, %) but for which lim g(s) = - or lim g(s) = e (or both), so that we could
treat, for example, g(s) = A [(x-s)'?-n'7]; an::o pulses of mﬁ:i:e width which are continuous on
(0, =), 50 that we could treat, for example g(s) = Ae *"%, s 2 0 § > 0); but, on physical grounds,
we see little reason to do so. We could also allow g to have discontinuities in the interior of its
interval of definition so that we could treat, for example, g(s) = A- {"?: B9S2 hisnst
generalization only makes mathematical arguments more cumbersome and provides essentially no

additional physical insight. We choose not to pursue any of these possibilities here.




. ELECTRON CLOUD MOTION

A. Kinematics

At any instant t 2 0, we think of the electron cloud as a circular cylinder of radius a
comprised of a continuum of infinitesimally thin, planar, parallel electron disks (or "sheets"), each
having been emitted at some instant t, e [0, t] from, and each remaining forever paraliel to, the planar
emitting surface, with precisely one such sheet having been emitted for each t, € {0, t]. It follows
that each sheet may be unambiguously labeled by the time, t_, at its emission. Observe that the total
charge contained in the sheet emitted during infinitesimal time interval 8t at t, is (forever)

&l(to) = 'BY(V),(to)Ra 5 . = -CY(V)AQN(Q)G '(Qto)m 2&0 ’ (3. 1)

where e is the magnitude of the electron charge, and that this sheet has infinitesimal thickness
8z = o, so that also

8q(t) = -eYlt )xa’daiv,, (3.2)

Further, if we let a z-axis coincide with the symmetry axis of the cylinder and choose as positive the
direction of electron emission, then we denote the position at time t of the sheet labeled by t_ as
Z(t,; 1) for (t,; 1) € [0, Q) x (0, =); clearly

Z(t; )20 forall t,t, (3.3)

the emitting surface being located at z = 0. Figure 1 depicts the electron cloud and the emitting surface
at any particular instant, t.

We assume that the magnitude of the residual positive charge on the emitting surface is
precisely the same as the magnitude of the totality of negative charge in the electron cloud; that is, we
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Figure 1. Electron cloud description for dynamics.




assume that neutralization of this residual positive charge by the flow towards it of negative charges
originating in the emitting surface -- in case it is metallic -- is negligible during time intervals of
interest here. Further, since the thickness of the positively charged layer is on the order of 10° m (8],
we may safely assume that it forms a surface charge distribution.

B. Dynamics
In general, the net electromagnetic force at time t on the charge sheet labeled by t, is

F(t,;t) = [8q(tVnde)dz J' f (B 98,Z(t,;1),t) + V(t;1) x B(r, 8, Z(t,; t), 1) }dS (34
sheet 1,

(we assume any one cylindrical coordinate system whose positive z-axis is the one previously specified
following Eq. (3.1)) where V(t; t) is the instantaneous sheet velocity, E(r, 9, Z(t_; ¥), t) and

B(r, 9, Z(t,; t), t) are the instantaneous electric and magnetic fields at the area element dS located at
(r, O) on the sheet, and I1 = na’. Equation (3.4) holds since the sheet has uniform charge density

PLt,) = 8q(t,)/ndz = (Limv,){Sq(t, V3¢, ]. (3.5)

As alluded to earlier, we approximate the full electromagnetic field E + (V x B) by the net
electrostatic field, E¥, resulting from the charge in the cloud not on sheet t, plus that in the residual
surface charge distribution. This net electrostatic field is given by

2.0
E=(r, 8,2(t:0,0 = k(lte,) [ alp.0 , (36)
(e,

where k is the unit vector in the +z direction, Z(t), t 2 0, is the z-coordinate of the leading edge of
the charge cloud, and p(§, ) S 0, ({, ¥) € [0, =), is the z-dependent volume charge density




characterizing the charge cloud; hence we have

.0
F(t;0 = -kiSa(t, Ve f aLp(G. 1) = 8qt) - E*(r, 8, Z(t,: t),0). G

26,9
The reader should note that because the z-component of the electrostatic force at any surface element
dS located on charge sheet t_, due to all the other charge in the system not on sheet t,, is independent
of r (the radial coordinate on the sheet), and because, in addition, all the charge on sheet t,, other than
that belonging to dS, exerts no z-directed force on dS, then the z-component of the force on dS due to
all other charges in the system is independent of r; hence, sheet t, remains forever strictly planar in
this approximation. On the other hand, while all the charges not on sheet t, exert no net radial force
on dS in our approximation (Eq. (3.7)), the charges on sheet t, and not belonging to dS do exert a net
radial force on dS and, after some time, significant radial expansion will occur. We assume negligible
radial expansion during the time intervals being considered here.
The equation of motion of the center-of-mass of charge sheet t_ is

dm(t) [((B*Z/at?)(t; 9] = F(t: 1) (38)

where dm(t ) is the mass of the sheet and F(t ; t) given by Eq. (3.7). That is,

zZ.M
@z (0 = eme) [dGpH SO . (39)
20,:09

Of course, this equation is valid only for those times t for which the sheet t, has not previously
returned to the emitting surface, namely for t satisfying

,St<ts, (3.10)

10




where t? is given by

t2=sup (Te (t,) |Z(t,;)>0forall Te (1; D} (3.11)

(possibly t* = «); note t¢ > t, by Eq. (3.12) below. In other words, given t, € [0, ®/Q2], to solve
the equation of motion we must find a function t = Z(t_; t) and a t$ € (t; =] such that
(1) Z(t,; t) satisfies Eq. (3.9) for t € [t , t3) and initial conditions

Z(t;1)=0 and (@ZBKt:t)=v,>0; (3.12)

(2) t2 and Z(t ; ¢) satisfy Eq. (3.11).
Outside the time interval specified by Eq. (3.10) the following must hold:

Z(t; t) = 0= @Z/AXt,; 1) = ZACNL; 1) if te (-, t) U (t2, ). (3.13)

(We will specify values for these functions at (t_; t3), in case t§ < oo, later on.) In particular, it
follows from this and Eq. (3.12) that t = (3Z/3t)t,; t) is discontinuous at t = t, so that (P*Z/AC)t,; 1)
does not exist there; hence the second derivative in Eq. (3.9) should be interpreted to be the
appropriate one-sided quantity at t = t,. The physical interpretation of Eq. (3.9) is that the
instantaneous acceleration of sheet t_ at time t depends only upon the total amount of charge in the
cloud between the sheet itself and the cloud’s leading edge, being proportional to that charge.
Equation (3.9), as an equation for unknown Z(t ; t), is not readily solvable since Z(t; t)
occurs as a limit of integration and since Z__(t) and p({, t) are also unknown. In order to proceed it
is useful to make one additional simplifying assumption, namely, that charge sheets do not pass
through one another. This is the so-called "no-screening” or "no-charge-sheet-crossing” (NCSC)

11




approximation. If such is the case, then the integral in Eq. (3.9) is independent of time and is given
by (using Egs. (3.2), (2.1), and (2.7))

2.0 Y t
n f atp@.0) = faq(:,) - -eYnﬁ(t,)dt,
20,9 [ °

: (3.14)
= ~eYAn [ ftz,)r, = ~eYAINQIG(@)  (NCSC).
Hemnce Eq. (3.9) becomes
@2, 1) = H{EAYN@QYm e, IG(E1,)  (NCSO), (3.15)

valid for t_ S t <t (with t® yet to be determined). This is the required equation of motion of charge
sheet t,. It implies that a given sheet t, experiences a constant (in time) negative acceleration and,
furthermore, if t/ > t_ then sheet t, experiences a more negative acceleration than does sheet t,
(since G is strictly increasing on [0, x]).

We may now integrate Eq. (3.15) twice, subject to initial conditions given by Eq. (3.12), to get

@Z/B0(t,;0) = v, - [e2AYN(QVm £ ]G(Kae, ) (¢ -t,) (3.16)
and
Z(t,;t) = v (t-t,) - (172)[@AYNQVm g 1G(Ex Xt -1, ). 3.17)
Defining
o, = e¥AYNV, Vg, , (3.18)
12




where a, is the plasma frequency corresponding to maximal electron emission density AY/v,, we have

@ZAO,: ) = v,[1 -y NE)G(SA,)(t ~1,)) (3.19)
and

2t 1) = v, -1 - (12) @) NG, )t -,)] ; (3.20)
also

@ZA(@,: ) = ~v o NEDG(AN,) . (3.21)

We reiterate that these equations are valid only for t, St < t? and for NCSC.

To find t$, we observe that the motion of charge sheet t, is clearly that of an object rising and
falling under "gravitational” acceleration of magnitude v ,aN(Q)G(Qt,) and, as such, Z(t,; )
increases monotonically fromz =0 att=t to

z = Z,0) = (112)v, [VINEQ)G(L)] = (1/4)V TIG(Sx) (3.22)

tt) =t + [llm:N(n)G(m,)l =t + (I2)TIG(ExR) > t, (3.23)
and then decreases monotonically to z = 0 at

L) =1, + TIG(EL,) > 1, (3.24)
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T m JoyN@) > 0 (3.25)

is the round-trip duration for the sheet launched at t, = &/Q (assuming no t, cutoff - see the next
subsection). It follows that t¢ given by

te = tu(t,) (3.26)
satisfies Eq. (3.11), with t& = e if t_ = 0, s0 Egs. (3.19) - (3.21) are valid, given t, e [0, /Q], for

te [t,t, +TIGQL,)). (327

In summary, we may combine Egs. (3.19) - (3.21) with Eq. (3.13) to arrive at expressions for

position, velocity, and acceleration of the charge sheet with label t, € {0, ®/€2), for all t € [0, =), as
follows:

[v,(t -t)[1- T G -t)), ifte It)
2,0 =

0, fte I-t) ,
(3.28)
[v,[l -2TG(,)( -1)), if t € It)
v, =
0, fteI(),
(3.29)
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“2(v/NGER,), ift e It)
Ag ) =

0, ifte I(t), (3.30)
where we have used
It) = [t,, t +TGE)] = [t 1) (3.31)
and
I7(t,) = (~e0, ) \ Kt)). (3.32)
We will also denote, for future use,
I%t) = (t,t,+ TIG(QL)) = (¢, 1) . (3.33)

Note that Z(t,; -) is continuous at t, and t$ but neither V(t ; <) nor A(t; <) is at either; further, we
have arbitrarily elected to define these latter two maps at t* so that they are left-continuous there (we
have already arranged that they be right-continuous at t,). Also,

Vi) = (@ZON) ;1) and A(t ;1) = (FZEtH(E ;1) ,  t=r, 1, (3.39)
It follows from above and the previous paragraph that

IVe,:0l sv,, tekt) (3.35)

80 that the motion is always non-relativistic if it is initially so.
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C. The Cutolf

The results expressed in Eqgs. (3.28) - (3.30) are constrained by the NCSC requirement. Since
this constraint was imposed on the already existing equation of motion, Eq. (3.9), which does not a
prioni exclude charge sheet crossing, then we must insure that our compiete model, including NCSC,
is self-consistent. That such self-consistency does not automatically obtain in general may be seen as
follows. First define quantity t, by

T, » T[7,G] = sup {T e (0,0 |(dt, /dt,)(x) S O for all T e (0, T}, (3.36)
where t(t,) is given by Eqg. (3.24); note that

(at/d),) = 1 - QT(G/(Cx VG X(x,)] 33D
exists on [0, =/Q) since G’ does, that i, < x/L2, and that {, satisfies

G'(CE,VG*(SK,) = QT (3.38)

whenever {, < #/Q2. Now consider, in Fig. 2, two typical pictures in the t, - t plane of the set

U Ut} x Kt} of arguments for which sheet motion is, according to Egs. (3.28) - (3.30), non-
:&?mry. The behavior of t., near t, = 0 follows from limt (t) = e which in turn follows from
ImG(Q2t) = -, while the behavior elsewhere follows ﬁ':)::me fact that G is strictly increasing.
'I';e: it is clear that NCSC does not hold in situations represented by Fig. 2b.

To rectify this situation, we have two options: We may either restrict ourselves to considering

only pulses for which the behavior in Fig. 2a is representative, which behavior is characterized by
LHS (3.37) S 0 for t, € [0, x/Q); or we may consider, in addition, pulses represented by Fig. 2b if we

cut off from consideration in the dynamics (and hence subsequently in the electrodynamics) those
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t=1¢ + 7IG() = tu(t)

0 t, = =/0

Figure 2. Typical domains in the t,~t plane for non-stationary sheet behavior as determined by
Eqgs. (3.28)~(3.30).
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charge sheets with t, > {,. (In fact, we could cut off somewhat beyond ¢, (2] but choose not to do so
since we are interested in all t > 0.) Elimination of these late-time charge sheets does not at all
influence the dynamics of the : =tained earlier-time sheets with labels t, S i, since the dynamics of any
particular charge sheet is influenced only by those charge sheets emitted earlier than it (in the NCSC
approximation). Further, when {, does not differ greatly from ®/Q then using this cutoff is not an
unreasonable approximation. In the literature, this issue is addressed only in [7] where the first option
is chosen. We choose the second since it is more general than the first, including the latter as a
special case. Naturally, we call i, the cutoff on t,. Finally, since we have based our strategy on Fig.
2, we should point out that the two possibilities illustrated there are not only typical but in fact general
except for the possible occurence of points of inflection or intervals of constancy in t,(t,), which
features do not affect the above argument. Because such features will, however, have an infiuence on
our radiation considerations, we demonstrate in Appendix A the existence of a class of pulses which
have the interval-of-constancy feature.
While it is clear that elimination of charge sheets with t, > {, is a necessary condition for self-
o consistency (when we wish to consider all t > 0), it is not a priori clear that it is also sufficient. That
is, we may have to further limit those t,’s which we admit to the charge cloud in order to insure
consistency with the NCSC constraint. We now settle this issue, showing that this condition is in fact
also sufficient. To that end, we let label t, be admissible if charge sheet t,, during its entire flight,
never spatially coincides with any other earlier-launched charge sheet; i.e.:

Definition 3.1: t, e [0, W/Q) is admissible if for every t, e [0, t,) and for every t € I°(t)) N
I°(t)) we have Z(t.; t) # Z(t ; 1).

It is clear from this definition that t, = O is always admissible (vacuously); physically this may
also be seen since Z(0; t) = vt for any pulse. In fact, as we demonstrate in Appendix B, the
following is true:
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Theorem 3.2: (1) i,> 0
i) If t, e [0, T_) then t, is admissible; further, [0, t,) is the largest possible

interval of admissible t,’s which contains t, = 0.

In summary, the NCSC requirement has led us to limit (when t, < 7/Q) those charge sheets,
labeled by t , which we admit to the charge cloud. As a consequence, if we define

DIT,.Gl = |J [&) x )] (3.39)

te oY)

as well as denote its complement and interior, respectively, by

D-[T,G] = {[0,T,] x (-e=,%)} \ DT, G] (3.40)

DTGl = U Wt} x I¢)] . (341)
& Q7,)

" then the maps (t,, t) = Z(t ; ), V(1,; 1), A(t,; t) of Egs. (3.28) - (3.30) will henceforth be considered

to have only domain [0, T_] x (e, =) with their values on D[T, G] being given by the respective first

lines of Eqgs. (3.28)-(3.30) and their values on D{7, G] being 0. In particular, they will no longer be

considered to be defined for values of t_ in (_, #/Q2). We will present, in Section VII examples of

pulses with T, = 2/Q and of pulses with T, < WA,

D. Charge and Current Densities
Since, as pointed out in the Introduction, our formulation of electrodynamics is driven by the
inability to translate analytically from the Eulerian to the Lagrangian description of the electron cloud
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charge density, p(z, t), and current density,

Iz O = p(z, )v(z, V) (342)

(where v(z, t) represents the charge cloud velocity at (z, t)), we devote some discussion to this issue.
Consider first the charge density. Given z > 0 and t > 0, we expect that

p(z, 1) = (d1,/dz)(z, t)p, (T (2. 1)) (3.43)
where t, = 1(z, t) is "the" label that satisfies

At )=z 344)
for p (t,) given by Eq. (3.5) and Z(t ; t) given by Eq. (3.28). This expectation is, of course,
basically correct but we must be careful to ensure that the prescription given by Eq. (3.44) is well-
defined, i.e., that such a t, given by a differentiable (wrt z) t,(z, t), exists and is unique. Indeed, Eq.
(3.44) has, in general, many solutions for t, (given z and t) and no valid physical solution for t,
whenever z > vt (since such solutions would be acausal).

It is easy to settle the existence and uniqueness issue for Eq. (3.44). To this end, let D,[T, G]
be the set defined in the z-t plane -- see Fig. 3 - by

D|[T, G] = {({, 7)| there exists t, € [0, T,] such that Z(t,; T) = {}. (3.45)

Clearly D,[T, G) # 9. Then the following, whose proof is provided in Appendix B, is true:
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e

/z=Z(0;t)=v,t,t.=0

{@z,0) | z > vt}
—— D\[7, G] lies within
this (striped) region

—(tw’ tm(t-o), ZM(td))
z2=Z(1to; D), t, =ty

SN~ t=t + 6@, z =0

DIT, G]

Figure 3. The extension of Fig. 2b to three dimensions to show some representative points on the
surface Z(t,; 0), (¢t,; ©) € D[T, GJ; t, is a typical value of t .
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Theorem 3.3: Letz,t> 0. If (z, t) € D,(T, G] then the equation Z(t_; t) = z has a unique
solution in the interval (0, T ]; and if (z, t) ¢ D,[T, G] then p(z, t) = 0. Further,ifz>0andt<0
then p(z, ) = 0.

The existence of 3%,/dz at points (z, t) € D,[T, G) follows from the Implicit Function Theorem: but,
since we will not base our electrodynamics on p(z.t) and J(z,t), we will not give the details here.
(However, the essentials of the argument are contained in a portion of the proof of Theorem C.4.)

Having found the appropriate t, = 7,(z, t) required for charge density in Eq. (3.43), we then
find

vzt = kV(, (2 D), (3.46)

where V(t ; t) is given by Eq. (3.29), and finally find J(z, t) from Eq. (3.42) so that

Iz, 1) = k(@ Bz)(z, Op, (7, (z, DIV(T, (2, 1); 1). (347

In practice one finds t, by solving Eq. (3.44) directly, either analytically or -- necessarily, in
many cases -- numerically and by then judiciously selecting the correct t, from among the in general
many roots (all but one of which, however, lie outside [0, T,]). However, p and J are not generally
explicitly snalytically available via Egs. (3.43) and (3.47) because Eq. (3.44) for t, is not generally
solvable analytically. This state-of-affairs, then, drives our choice of technique for doing, in the next
section, charge cloud radiation electrodynamics.




IV. FINITELY-REMOTE FIELDS
A. Background
‘The usual methods for studying radiation theory for macroscopic charge and current
distributions employ a field-theoretic (Eulerian) description of the distributions. In this approach, one
assumes that p(x, t) and J(x, t) are available and from them calculates the retarded potentials at space-
time points (x, t) of interest according to

d(x,t) = (1/4xE,) f [ f AV )p’, t - ([x -x’ Yoy jx=x’ | @1

Ax,0) = (1/4nec?) f f f AV ) J(x',t = (|x -x' Yo |x =’ | 4.2)

where the integrals extend over any volume containing all the sources (x and x’ are position vectors
with respect to some arbitrary origin); the fields E(x, t) and B(x, ) then follow from

E(x,t) = -V§(x,t) - (JA/Bt)(x,t) and B(x,t) = V x A(x,t). 4.3)

All electrodynamic quantities of interest follow from E and B; in particular, radiation quantities follow
from those parts of E and B failing off with distance as 1/|x|] as opposed to 1/|x}.

As pointed out in detail at the end of the previous section, the above Eulerian description is
not adequate and we must resort to another approach. This other approach is to use a particle-
theoretic (Lagrangian) description of the macroscopic charge and current distributions which give rise
to the radiation fields. This method, while common for studying the fields of a single moving charge,
is not generaily used for analytical treatments of macroscopic, continuously distributed aggregates of
charged particles; but it is the method we use here. This Lagrangian point-of-view will allow us to
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obtain analytical expressions for all the usual radiation quantities of interest without sacrificing the
generality we require. In this approach, a macroscopic charge distribution is considered to be a union
of "infinitesimal” charge clements, 8q(f), with label ¢ in some index set, §2, where 5q(f) has
position, velocity, and acceleration denoted by X(& t), X(& 1), and X (&; 1) respectively. (The *and

* should be regarded here only as distinguishing notation ~ we do not mean to imply that t = X(& t)
is twice differentiable on all of (oo, «),) The potentials corresponding to Egs. (4.1) and (4.2) are then

given by

$(x. 1) = (1dne,) [ dq(Ox - X(& t/(& x, )| "[1-6(t x, O] 44
and

Ax.t) = (1dxe,c?) ‘[ dgOX(E /(6 x, D)|x - X(& /(6 x, )| (1 -6(t x, 1) @.5)
where

et x, 0 = (VOX(Et'(6x,1) -Rix, X(E(6x,0)] , 4.6)

Rix, X(& /6 x, 0)] = [x-X@E /& x,0)] / Ix-X(@& t'(&x, )| @.7)

is the unit vector pointing from X(& t/(& x; 1)) to x, and (& x, t) is the retarded time which is the
solution of

t-t/ = (/o) |x-X(&t)|, t'st, (4.8)

given ¢ x and t. The fields E and B are then once again determined by Eq. (4.3). (It is assumed that
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Eq. (4.8) has a unique, well-behaved solution for t/, given ¢, x, t; we will have more to say about this
later.) In case the distribution is a single point charge q (so that & = {1} and the label ¢ may be
suppressed, and |5q(1)|= q) the potentials ¢, and A, are the Liénard-Wiechert potentials of the point
charge.

Upon performing the operations indicated in Eq. (4.3) for E and B we find

E(x,t) = (1/4xe) [ a0 (Ex,t'(Ex,0) + E(x,t'(Ex, 1)) 4.9)

B(x,1) = (1/dxe,c) ‘( daOR (x, X(& /(6 x,0)] x [EEXt'(EXD) « EEx t'(Ex )

(4.10)
where
E&x t'(tx,0) = [R-VOXE )] / P& t)[1-6x, 0P |x - X&) [, @.11)
CEEx.t'(Ex,0) = (R x {[R-U/OX®t)] x X)) / [1-6(6x, OP|x -X@Et))|,
4.12)
and
wet’) = {1 - [|X@& )Pz, 4.13)

in the above we have abbreviated by R the quantity which is represented more fully in Eq. (4.7), and
by ¢’ the retarded time t/(§; x, t). The subscripts "v" and "a" on E stand for "velocity” and
“acceleration”; the velocity fields fall off as 1/|x - X|* and are essentially static in character, while
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the acceleration fields fall off as 1/|x - X| and are the dynamic radiation fields. In what follows we
will be interested only in the radiation fields

E(x.1) = (1/4xe) [ AQ(OE, (& x, 1/(Ex, 1) 4.14)

Bx,1) = (/dxe0) [ da(0{ Rix, X(&:t/(& x,0)] x E(&x,1/(6x, D). @.15)
The Poynting vector associated with this electromagnetic field is

S(x.t) = € cHE(X, ) x B(x,t) (watts/m?) @.16)
80 that the instantancous radiation energy flux area density at x in the direction £ is S (x,t) -% and
the instantaneous radiation energy flux angular density at x, |x|>0, in the direction £ (also called
instantaneous radiated power per unit solid angle) is

OPEY)(x,1) = S(x,1) *[x]* = ec?t *|x|E(x,0) x [x|B(x,1) (watts/sr) 4.17)

(where solid angle is denoted by ). The total radiated energy angular density at x in the direction £
is

@WIEYXx) = f (P/BY)(x, )t = f GPAY)(x, 00t  (joules/sr) (4.18)
0 -

and the spectral intensity of this radiation is given, with @ 2 0, by




(1/8Y do)(x, ) = 2s°c’|x I’Re (R -E(x. ®) x B:A(X, ®)] (joules/sr~hz) 4.19)
where

E 1 Xt

n'“g.' :) = n™ f & e{pan 1) ‘2"4"[ & e g, t;} (420)

and * denotes complex conjugate; Eq. (4.19) follows from the requirement
@WEY)(x) = f d(FUE¥E0) (x, ®). @21)
[]

B. The Field integrals

Up to this point, everything we have done in this section has been very general. We now
return to the particulars of our problem which are illustrated in Fig. 4. In that figure, each
infinitesimal charge element of the electron cloud is labeled by the label t, of the sheet on which it
(forever) lies and by its plane polar coordinates, (1, 9), on that sheet which also remain constant in
time. (r remains constant because of our assumption of negligible radial expansion while ¥ remains
constant because of the cylindrical symmetry of the charge cloud.) Thus, our set of labels for the
charge elements is

@ ={t,r.0)|t, e 0T).re [0a,Oe [xn)ifr*0,andd =0ifr =0}. (422

Using Egs. (3.1) and (3.18), we have

q(t,, 1. 9) = [3q(t ¥xa’]rdrdd = -eYAQN(Q)G' ()8 rdrdd
= «(m g fe)v NG/ () & rdrdd ;

4.23)
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x(9=0)
4

¢ 09

x-X(t., r, 9; t) = Rix, X(t, r, 4; 1)]

Kt 1, % 1) =1 ker %9 = Vg k
= A Ok

e

y X, 1, 9;1) =ircos & + jrsin 0 + KZ(t; V)

Figure 4. Electron cloud description for electrodynamics. The symbol t may be interpreted as present
or retarded time, as needed. The vector x is taken to lie in the first quadrant of the x-z
plane and outside the cloud (hence x -1 > a).
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X(,r,0:t) =i rcosd + jrsind + k Z(t;0), 4.24)

X, o0 =k V(0 (4.25)
and

X, rn.o:t) = k At 0) (4.26)

where Z, V and A are given by Egs. (3.28)-(3.30) with t € (=, =).

We now write our expressions for the fields E,(x, t) and B,(x, t) based on Egs. (4.14) and
(4.15). Since we have assumed that v, is non-relativistic, it follows from Eq. (3.35) that so is V(¢ ; t)
for all (t,, ) € [0, T,] x (-oo, ); here “ve take in Eq. (4.12)

(1 - 6@, n%x0)° =1 + 3UOX,r1, 9 t/(,r, 9 x.0) ‘Rix, X, r, 8 t'(t, 1. % x, 1))].
“4.27)
Denoting

1, ~ if@,v e DT.G]

L) = (4.28)
0, if 0,9 € D(T,G] <

and noting from Egs. (4.25) and (4.26) that X(t, 1, 9;0) x X(t,,r,8:1) = 0 we find, for t 20,

Y, a ®
E,(x.0=K [ &,G/(@2)G(x) farr fadx 005t HIRWR-KI + Wet,i1) Zix=X ¢, 5. 9; 1))
[ [1] -=
(4.29)
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where t' = t(t, r, 9; x, t) is retarded time (possibly t’ < 0) satisfying

t -t =(l/o)jx - X(t,r,0t)], t'st

also

R = Rix,X(t,1,9;t"),

W(tit!) = UVt YR k)
and

K = (m, /rec?)Qv /TP .
Likewise, for t 2 0,

(4.30)

(4.31)

4.32)

4.33)

1, e x
B,(x, t) = <(K/c) ! o, G /(UG [drr [a0,(t,:tHR x W1 +Wtit)] /x-Xt,. 1, 8]}
/] -«®

(4.34)

Note that the factor yp(t,; t) ensures that sheet t_ contributes to the fields only if it is in flight at the

retarded time t/, i.e., if ' € 1 (t). It is Clear at this point that

E(xt) =0 =B(x,t) for 0 <t < |x|lc

although we will re-derive this result in a more systematic way later.

4.35)

To proceed further, we concentrate upon the integrands in the above expressions. We remark
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that by symmetry we may, without loss of generality, take x to lie in the first quadrant of the x-z
plane so that

x-j = 0. (4.36)

Also, the observation point x is assumed to lie outside the cloud; hence

Emxi>a>0. 4.37)

With a viéw towards addressing the components of E, and B, we compute, using

{ =xk, (4.38)

the components of the integrands to be (abbreviating X = X(t_, 1, 9; t))

[ROR-1] - KD = (V/|x-X]) [(x-X) k] [(x-X)1)
= (V|x-X[?) [ELXX D) - EX k) + X-DXK)]

4.39)
= (V|x-X]) [E-Cr cosd - EZ(t:t) + Z(t,; tir cosd]
= (/x-X) {Z(¢,: ) ~ L) cosd - &),
[RWRJ) - & ) = (V|x-XPZ(,: D) ~ LIr sind, (4.40)
[R-WRK] - (kk) = (V/[x-XP)Z(t,:0) - P -1, 441)
R x k)i = -(1/|x-XX-J) = ~V/|x-X|)r sind, 4.42)
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@R x k)J = (V|x-XPIXD - &) = (V|x=X|)r cosd - &) , (4.43)
and
R x k)k =0, (4.44)
where
Ix-XP = [x[? + X[ - 20X = x[* 12 + Z%(t;0) - 206r cosd + {2, 0]
= |x|? - § +r? + [20,:1) - [P - 2&r cosd
=& +r? - 28r cos® + [Z(t,;0)~CP.
(4.45)
Denoting
2. =mZ(s) - § (4.46)
so that
Wt t’) = =3(1/c)V(t: tDZ (t:t'Vix-X| 447
we then have
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e

T, a x
E(x.t)i =K f dt G '(Qt )G(Qt) f drr f a0t tHZ (t: t)H1+W(; 1)) cosd-E)/ |x-X |, (4.48)
0 [} -«

T, a x
E(x ) =K f 3t G/ (1 )G(Sx,) f or f Byt tHZ (t; O 14W(; t))r sind/ [x-X P, (4.49)
[ 1} -=

T P =
E,(x.0k = K [6t,G/Qt)G(E) [ar r [a0,00,; tNIZ205 'V Ix-XF1-[1/[x-X[1); 1+W(t 1],
0 0 -
(4.50)

T e =
B,(x, 0 = (Kic) [01,G/ (@G [dr £ [a0,(t,itM1+WItit ) simd/|x-X [, @4.51)
0 0 -
Y, a =
B.(x, 0 = ~(K/c) | 41,G(Or)G(@) [ar 1 [adytN1+Wtit)(r cosd-EV [x—X, (4.52)
[] [ -
and
B,(x,t)k = 0. 4.53)

We next want to perform the r-0 integrations, but we are hindered by the fact that t’ is a
function of r and 9. Indeed, we have from Egs. (4.30), (4.24), and (3.28) that ¢’ satisfies, for
t,e [0 ]

(UC){E? +12-2Er cosd +[v,(t' - 1) - (v/DIGERIC’ - P -LP}?,  if t'e It)

t-t' =
(/c)E? +12-2Er cosd + (3", if t’e I(t)

4.54)

(the non-negative square root is assumed). Defining

A;t)=Z@;t")E, (4.55)
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we may rewrite Eq. (4.54) as

©/eX(1+AY 2 (1-{2/(1 +AD)/E)cosd + [/ +ADJIERY'2, i t'e 1(t)

t-t/ " (4.56)
(Ix)/e)1-2E/x (/&) cosd + (& |x DY), if t'e T .
If we now restrict our attention only to situations for which
at <1 “4.57
and further demand only zeroth order accuracy in (1/E) then Eq. (4.54) becomes
1+ Nt tH)e, if t'e It
Cetl @Ol + At € I(t) “58)
Ix|/c, if t'e I(t)

with solution T = i'(t,; x. t) (that solutions to Eq. (4.58) exist and are unique for fixed
t,e [0,T), x=(@E>0,0§ 20), and t 2 0 will be demonstrated in Appendix C) which is an
approximation to the exact solution t/ = t/(t ,r, 9; x, t) of Eq. (4.54) but which is independent of r
and 9.

The condition of Eq. (4.57) guarantees that [St|(t,r, 8;x,0) = [t/ 1, . 8:x,0) - T'(;x, )|
is small, but it does not guarantee that this difference is small enough, where “small enough” means,
for example,

I T I (v, 18t 1, 9 X, VZ, ()] < 1, (4.59)
this being a sufficient condition that every sheet moves only a small fraction of its entire trajectory
during the time |/~ §'|. When Eq. (4.59) holds, then |Z(t;t’) ~ Z(t;T')|/Z,() and

IV(t;t’) = V(t;T')| /v, are very small and |x,(t,;t’) - Xo(t,;E)| = 1 for only a very small
fraction of t, € [0, T_], hence the integrals in Egs. (4.48)-(4.52) remain quite accurate when ¢’ is
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replaced with /. That some such additional condition is needed is clear since without it the following
unreasonable argument would be valid: Since we are ultimately interested in § — < for the radiation
limit then, given any a > 0, consider only & so large that a/€ < 1; hence any a > 0 can be
accommodated by the condition a/£ « 1 ! The condition of Eq. (4.59) further restricts a so that the
above unreasonable argument is in fact not valid. Indeed, noting that using T’ is equivalent to
assuming that all charge elements dS on sheet t, have one and the same associated retarded time,
namely that associated with the charge element at r = 0, we see that we may approximate

|8t|(t,, 1, 9; x, t) < a/c; further, from Eq. (3.22) we see that Z,(t ) 2 1/4 v,T for all

t, € [0, T ]. Hence a sufficient condition for Eq. (4.59) to hold is that v (a/c)/(14)v,T < 1, i.e.,

akT < 1, (4.60)

and we require in the sequel that a satisfy this condition as well as that of Eq. (4.57).

Taken together, Egs. (4.57) and (4.60) simply mean that the charge cloud has negligible radial
extent for retardation purposes. (In the language of optics, we are discarding phase differences, which
lead to interference effects, along the cross-section of the spot.) For this reason we refer to ¥ asthe
small spot size retarded time. Note that we have made no assumption about the magnitude of A,
(which is related to the axial extent of the charge cloud).

We may now move ¥y, Z., and the numerator of W in each of Eqs. (4.48) - (4.52) outside the
r-0 integrals, replacing t' by t’. When we do so, and further note that the integrands remaining under
the r-0 integrals in the expressions for E, - j and B, - are odd functions of 9, we get
E(xt)j = 0 = B(x,04,

" L]
E,x, 01 = 2K [61,G/@t)G@0 (T HZ 058 [drr [a0(e cosd-£)/ix-X P
0 0

()

. . (4.61)
- GV, T220,1) [ar £ [adir cos-jx-X|*),
[] [+]
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h

A8 . = . x
E(x 0k = 2K [d1,6/(@)GE@nt: E HZI,: 1) [er £ fancuix-xP)- [om [abcusix-x1)
[+] 0 0 0 0

- @IV ENZ20: 1) far 1 [aB1/1x-X19-Z,0:F") far ¢ [adqusx-X)
[] [] ] [|]

(4.62)

v, P =
B,(x,t)) = -(2K/0) [,/ (@ )GE@N( T ) [ « [t cosd-Eyix-xP?
: ° o 4.63)

- GOV TIZ 0, f dr 1 f ad( cosB-EV[x-X[’}.
[}] [}]

We see that E(x,t) lies in the plane determined by x and k, while B,(x, t) is perpendicular to
that plane; the polarization of the electromagnetic field is thus specified.

We must next address the remaining r-9 integrations. While some of these double integrals
can be evaluated analytically in closed form, the integrated results seem to us to be too complex for
our further use here (i.e., integration over t ) and we will not display them. Rather, we once again
invoke the requirement a/€ < 1 of Eq. (4.57), this time to expand the denominators in Egs. (4.61) -
(4.63). We first write, as in the RHS of Eq. (4.56),

Ix-X| = EQ+AD2(1 - [2(1+AD)(/E)cos® + [1/(1+AD]) (1B} 2 (4.64)

sothat, forn=1,2,3,4,and o€ < 1,

k=X = £ eAD 1 + (1 +AD]c0sB (B ~ [0/2(1+AD] {1-{(n420(1 +AD]cosD) (LY
+ O(@ey). 465

Using these expressions in Eqgs. (4.61) - (4.63) and performing a great deal of algebra, we find the
double integral expressions in braces in those three equations integrate to be, respectively,
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~(R2)E@EA(1+A) 21 -(INAA-1)(1 +N) *(@E))

VI A 1IN0 A @) (4.66)
=2 E@EP{(1+A) (1 «(FX10AL -4AZ+1)(1+A) *(aE))
=3(VIc)A (1+AD (1« ;_ YA -2A +1X1+AD) 2(alEY]} 4.67)
and
~(R2)E@EP{(1+AY)[1 -AX(1 +AD) Y (a/E))
(4.68)

=3(VI)A(1+A) (1 -GHAN - 1)1 +A) H(aB))),

correct to order (a/€)’ inside the braces of these last three equations. In what follows we will take
only the leading term inside each of the brackets (i.e., 1) which, as can be seen, gives results correct to
order (a/f)*; these third order results are more than sufficient for our purpose. The fields then become

'.
E(x.0 = -(aa’K) [6,6'@)GEQt T
[

4.69)
x ([N T2 - IV T MeIA L T A T )AL, T + K)
and
'0
B,(x.0) = Jra?K/ch) [at,G (@t )G )xofty )11+t )1
° 4.70)
=3IV T VeI T +N e T1?)
where
L |G- - vDGEYE - ) - (B, ifi'e It
Ag;t’) = , “4.7)
(4,3 ift'e I(t)
and
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U= f'(to; x, t). 4.72)

To proceed further, we need some additional properties of the retarded time t/. Because we
will need, in addition to these properties, several other results concerning the retarded time 1/ in order
to demonstrate the existence of the asymptotic radiation limit, we systematically treat t’ in a
mathematically careful manner in Appendix C. In order to get on with the current development,
however, we simply note that as a consequence of Theorem C.3 we may rewrite the fields E, and B,
of Egs. (4.69) and (4.70) as

Tixt)
E(xD = KB [ &G Q)o@ 1Ne,;T0;x 0
0

= 30V(L, i x, V] AT x, )L+A T x NP IA (L /(L x, 1) + K]

@.1)
and
Tix 0
B(x.0) = J&K'KE) [ 0t,G/QUIGEAN 1Nt Tt x, )1
o (4.74)
=30V E @ x OVIA (L T @ x, o)1 + Nt x, 0)]%)
where T(x,t) is given by
[ 0, if =< t-ixjc<0
_ t-Ix|/c, if 0< t-fxjlcsT,
TxO=1 o if T, < t-[xfec < 1 @) @75
Lt-ixlfc), ift, @)S t-|xjlc < e
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t,(t-|x}/c) = inf to[t-|x)/c), (4.76)

ta lt-jxj/c) = {t, € (O, T)t ) = t-|x|/c}; 477

K’ = %a’K = x(m/JecXx/Q) av /T = RIQNQ)V2x] (e fe,m,cF(m JeXn/Q)a {AYY .
(4.78)

Figure $ illustrates the determination of T,(x, t), for the various ranges of t - [x|/c on the RHS of
Eq. (4.75), as implied by Thecvem C.3, while Fig. 6 illustrates a generic T,(x,t) as a function of t €
(-e=, =) for a fixed x. Appendix C contains the background required to more fully appreciate these
figures. Note that if t; (t - |x|/c) < t(t - [x|/c) (in case t — [x|/c 2 t,(T,)), where

t4(t-|x}/c) = sup t2[t-|x|/c), 4.79)
then we must add [t;, tg] to the ranges of integration in Egs. (4.73) and (4.74) (for elaboration of this
last point, see both the paragraph following Eq. (C.30) and the beginning of the next section). Also
note that, as expected (see Eq. (4.35)), we have from Eq. (4.75) that

E(x,t) =0 =B(x,0)if t < |x|ic. (4.35)

The final impediment to the evaluation of these integrals appears to be this: we do not yet
have an explicit expression for T’ (t,; x, t) when t, > 0 (T’ (0; x, 1) is given explicitly by Eq. (C.3)).
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7=t (V)

ta(t) < - [x}/e)s < o

T=()
ta(td < (t- [x]/c) < @ /
it 1 \

< (- |xl/o)y < 1o(td

t, o=

N\

/

0<(t-ix|lk) <f,

0 / :
(t- |x}/c), | t, x/Q

(¢t - [x{/e)) t(Ct - |x]/c))
= tx((‘ - lXVC),) t.«t - ""0)‘)

- < (t-|x|/c), <0

Figure S. Various possibilities for t - |x|/c (where (t - [x|/); , i = 1,....5, indicates five specific
choices for the value of variable t - |x|/c ); and the ranges of values of t, for which
(t,. T (t,; (x, 1))) € D7, G] according to Theorem C.3. The time variable is denoted here

by < to distinguish it from t.




Tix, ) (x fixed)

i, +
t(t) 4-
W T t ‘
-» - i 4 +- —

Ix|/e t,+ |x|lc ta(td + Ixllc ¢,

Figure 6. The function T,(x, t), t € (-, =), for x fixed. Note that the function plotted here is just the
"inverse” of the (two-valued) relation plotted in Fig. 5, where the upper curve of that
relation is first "fixed up” by removing that part of its domain where it is not one-to-one.
The shape of the portion of the curve determined by t, can be inferred from Fig. 5 or, more
formally, from the result (dt/At)(O)=[A(La VaKD) = 13t /Ot)tm (D)) for
te [ta(f,) + [x)/c, =)\{t,}). Finally, if there are several, say N, > 1, intervals of
constancy of 4, then there are N, places, t,, i = 1,..N,, where the map t = T,(x,t) has a
jump discontinuity (if N, = O then there are no such places).
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Such an expression is given by the unique solution of Eq. (4.58); however, as discussed in Appendix
C, we choose not obtain this solution explicitly since it is not needed to proceed to the radiation limit,
indeed, the expressions for E, and B, of Egs. (4.73) and (4.74) suffice for that purpose. Equations
(4.73) and (4.74) thus give, adequately for our purposes, the final representation of the finitely-remote
electromagnetic fields in terms of only the given input parameters of the pulse and surface and the
spacetime point (x, t) of interest. The only approximations we have made are (1) small spot size:
a/t, a/cT < 1; and (2) v/c < 1, which allowed us to neglect terms of order (v/c)’ in the radiated
fields. Expressions for the customary finitely-remote radiation quantitites may be formed at this point
from these fields according to Egs. (4.16)+(4.20), but they suffer from the same deficiency as the field
expressions themselves, namely, the lack of an explicit expression for the small-spot retarded time
(1, x, ). For this reason, we defer treatment of the radiation quantities until after we obtain, in the
next section, the radiation limit for the fields.
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V. ASYMPTOTIC FIELDS

‘The finitely-remote fields, given at spacetime point (x, t) by Egs. (4.73) and (4.74) in case t >
[x|/c and, more explicitly, by Eq. (4.35) in case t < |x}/c, depend upon x = |x|£ in two different
ways; hence, so do the finitely-remote radiation quantities calculated fi @ them via Eqs.(4.17)-(4.19).
The first dependence on x is solely through |x| and is embodied in the circumstance indicated above
that the expressions for the fields depend upon the sign of t - |x|/c; this dependence is a causal one
and cannot be dispensed with. The second dependence is manifested by first rewriting Egs. (4.73) and
(4.74) respectively as

IX|E,(x, ) = K/ (Usi®)fi], 1, (%, 1) + k], ,,(x, D) 5.1)

x[B(x,t) = (K'Io)(V/sing)], ,(x, V), (5.2)
where ¢ € (0, w/2] is the angle between x = (€, 0,{) and k (see Fig. 4) and

Ta0
L= [ a6 @)6@t) AT x o) + KT x o)
: (53)

- VT G VA GG T i x O + AT x o esa);

and by secondly noting that in general I, (x.?) indeed depends upon x through both |x| and &. This
situation is unsatisfactory since the angular density of a (conceptually idealized) radiation field ought
to depend in this second sense only upon direction & and not additionally upon |x|; this second
dependence upon x, insofar as it involves |x|, should be eliminated. We accomplish this by defining,
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for
£ = (sing, 0, cosg), ¢ € (O,n2) (5.4)
and
T € (=oo, ), (5.5)
the functions
x’®,7) = lim (|x|[E(|x[g, |xl/c + D) (5.6)
e
and
2@®,7 = lim [x[B(xg, |x|/c + D), (5.7
[

provided the limits exist. If they do, then we define the asymprotic instantaneous radiated power
angular density at x, |x| » 0, in the direction &, as

(GPI8Y ) (x, 1) = ec®-xAR, ¢t - [x|/c) x n2R, t - |x|/c), (5.8

as suggested by Eq. (4.17); other asymptotic radiation quantities easily follow. Of course when Tt <0
then, by Eq. (4.35), the limits in Egs. (5.6) and (5.7) are trivial:

) =0=x2g1 ift<0; (5.9




hence we restrict ourselves in the sequel to

©>0 (5.10)

unless otherwise indicated.

Before presenting the main result, we address the issue, alluded to briefly after Eq. (4.78), of
those special pulses -- examples of which were given in Appendix A -- for which the integration range
in Eq. (5.3) must be extended, for special values of x and t, beyond T,(x,t) to t,(t - |x}/c). For such
pulses and such (x, t) we have, for all t, e [T,(x,t), t(t - |x}/c)], that Z(t ; t - |x|/c) = O so that
T x =t~ |x|fc; hence Z(t,; T'(t,; x, ) = 0 as well so that A (t;T'(t;x,0)) = -{/E = —cotd
and 1 + A’.(to; i(t; x,t)) = lsin’¢. Since also V(t; t~ |x}/c) = -v_ then V(t; i'(t,,; X t)=-v,
as well, hence the additional integral that must be appended for these special cases is simply

14 = kb

I}4(x.0) = comylsi?p + 3(v/oxcopsi™ 9] | atG@IG@. (5.11)
Tz 0
Denoting
1, ifostsy,
T () =T, T <t<t @) (5.12)

(1), ift, () <T<o
so that T,(x, t) = T,°(t - |x|/c) whenever t - [x}/c 2 0, we then have, using Eq. (4.75),

150
L(xI8, Ixlc + 1) = f dtG'(Qt)GE) = (12)Q[GH Q1) - GHAT ()]  (5.13)
Tro

so L (|x|®, |x|/c + 7) is independent of |x|; hence
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:ilfl R(x|%, |x|/c + 7) = (1/2)Q" cot[sin™9 + 3(v fc)cotp sin™ *'¢)

x [GEy(v) - GAQT, (T)] (5.14)

and the existence of the limit is demonstrated for this additional piece. For this reason, we will
dispense with further consideration of these special pulses; i.e., in the sequel we will only consider

t, € [0, T,(x, ). (5.15)
For such t, we have from Theorem C.3 that, whenever T =t - |x|/c 2 0, then

74 x 1) € It,t, + TIG(EN)) (5.16)

t - |xlic e [t,t, + T/GE)]. (5.17)
Also, for future use, we plot in Fig. 7 the function T, (t), t© 2 0, corresponding to the function
T,(x, 1), t 2 |x|/c of Fig. 6 except that, in consonance with the previous discussion in this paragraph,
we take N, = O in the latter figure.

The next result establishes the existence of the limits in Egs. (5.6) and (5.7) when Equations
. (5.4) and (5.10) govern ¢ and T. The proof of this theorem is given in Appendix D.




T

Figure 7. The function T.(t), T 2 0, corresponding to the function T,(x,t), t 2 |x|/c, of Fig.6,
except that here N, = 0.
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Theorem 5.1: Let & = (sing, 0, cosp) with0 < ¢ S /2 and T > 0. Then

o

im (|x|E,(Jx[g, fxlic + 0] = @ - Ktang)K'sing cosd JEXLCR N
[]

x {1 + 3Vt Tt 9, DYclcosd) (5.18)
and
T
lm ({x(B(lx[2, [xlic + 1] = KK/clsind f dt,G /(1 )G(n)
0
x {1 + 3[V(t; T(t,; 6, D)clcosd), (5.19)
where, if t, # O, then
(
v JOll - 2TGE ) - 1)), if ¢ = n2

i

Vet (9, ))c =

(Weosh{1 ~ C@(1 + RCOVCIOIGENT - 1))7). 10<d< 2

(5.20)

with
C@®) =1 - (vJc)cosd (5.21)

and
C,®) = 2T (v /c)cos. (5.22)
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It is shown in Appendix D that Eq. (5.20) may be approximated, to first order in v/c, by

Vit T 0.0V = (VO - 2TG@ Xt -1)], 0 < ¢ S ®2. (5.23)

We may then use this result to write our final expressions for the asymptotic values of nt and ®Z,

namely,

x5, 7) = K'sip K_®, 0] x %) (5.24)
and

a2, 1) = (K'/c)sind K_(R, T)} (5.25)
where

K ®1 =J(1,0;7) + 3(v/fc)cosd [J(1,0;7) - 2J (2,1;7)] (5.26)
for

iy

J(1,0;7) = of dt G/(Qt)GQL) = 2r) (WDGAQT, (1)) (5.27)

and

E )
12159 =T [ a6'@)G )t -t)
0 (5.28)

= G W{T - T, (IGHQT, () + G_ (T, W)
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with
G. ()= T [dtﬁ"(ﬂt,). peN, 5206

here t> 0, 0< ¢ S 772, and x/Q2 is the pulse width.
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VI. RADIATION QUANTITIES
Having obtained Egs. (5.24) and (5.25) as characterizing the asymptotic electric and magnetic
fields, we are now prepared to obtain the (asymptotic) radiation quantities delineated in Egs. (4.16) -
(4.19), as well as some additional ones. We reiterate that, as per Eq. (54), 0 < ¢ < /2.

A. Poynting Vector
Guided by Eq. (4.16), we define the asymptotic Poynting vector by

S, .x.1) = ec?|x|?xi®, t - x|/c) x =K, t - [x[/c). (6.1)

From Eqgs. (5.9), (5.24), and (5.25) we then have, to first order in v /c,

ecK? x| sin9 K, (R, t - [x}/O)R, if t > |xjfc
S, .(x.t) = (6.2)
0, ift < |x|fc

where K, _(&, 1) is in fact K2(%,t) minus its term containing (v,/c)*; namely
K _ R1v= JX1,0:71) + 6(v/c)cosd J (1,0, 0/ (1,0:v) -2 J (2, 1;1)], (6.3)
and neglect of the (v,/c)’ term in K is justified as follows. From Egs. (5.28) and (5.17) we have
'w

0<J@2L9)sST! f dt.G/ (@GR ITIGER)] = J(1,0;7); (6.4)

[

gince © > O then, by Eq. (5.12), T.,(t) > O hence J_(1,0;1) > O and
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J2. 1t (,0;7) s 1. (6.5)
Therefore
9cos’§(v /) |/ (1,0:7) ~ 2 J (2,1;7) Pl.l.f(l.();t) < 81(v/c) (6.6)

50 that the term in X which is second order in v/c may be negiected relative to J(1, 0; 7).

B. Radiated Power

1. Angular Density
From Eqgs. (5.8), (5.9), (5.24), and (5.25) or, equivalently, from (see Eq (4.17))

GPI6Y).(x.1) = [x[% - S, _(x,1), X))

we find the asymptotic instantaneous radiated power per unit solid angle (‘¥) in the direction

£ = ising + kcos¢ = k, (6.8)

for [x| » 0, to be

ecK?sing K, (&,t - [x|/c), ift> |xj/c
GP/AY) (x,t) = 6.9)
0, ift < |xj/c
(to first order in v,/c). We also find using Fig. S and Egs. (6.3) and (5.27) that the peak (in time)
radiated power per steradian at any ¢ € (0, »/2] is given approximately (neglecting the term of order

vJ/c) by
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(GPIBY )= (8) = e cK' sin'g(2K) (W/QYGHSH ) (6.10)

sttimet= |xjic+T,.

2. Angularly Integrated Power
Noting that ¢ is in fact the polar angle measured from the (positive) z-axis, we compute the

integral of (SP/8YW )_(x, ) over the forward hemisphere &2 + n? + {> = |x|* » 0, { 2 0, as (since
(5P/8Y)_ is only defined for ¢ > 0)

2
P(x|,0) = im(2x [d¢' sind/(BP/B¥)_(x, ). 6.11)
$=0* r4
We find
e,cKK, _(t - |x|/c), if t> |xlic
P (Ix].0) = (6.12)
0, ift< |xj/c
(to first order in v,/c) where
K,{.(t) = x{(43)J2(1,0;7) + (v /e (1,0, DI (1,0 7) ~ 27.((2, 1; 1)}}. (6.13)
C. Radiated Eaergy
1. Angular Density

From Egs. (4.18) and (6.9), the asymptotic total radiated energy per unit solid angle (to first
order in v/c) is given by
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m

@WBY)_(®) = e K" si'y [deK, (2.7)
[4]

= £,cK” sin{[1 + 6(v Jc)cosd] [du(1.6;) (6.14)
[]

- 12(v fc)cos$ [ du(1,0; 2, 1; D).

The first integral in the above equation may be evaluated by writing
- - T o
{ dul(1,0:0) = [ ! ¢ G'@s)0@) [ aC'@yow) (6.15)
0 [/]
and then observing that the integration domain for the above triple integral is that jllustrated in Fig. 8,

8o that a change of integration order gives (using Eq. (3.24) for t(9)

- v, v, minft ). L0))
Jerla. 0 = [ds,G'@s)0@s) (a6 @)G@t) d
0 [ [']

max(s, t.}
Y, T,
~ [65,6'(@8)6(0,) [o,6"( )G Nmin(t, 5, 1)} - maxs, t,}
0 ]
T, s,
= { [4s,G'(Qs)G(s) [dt,G' (UG NTIGEs )]
[ 2008, [61,6/()CERNCEs) 16
'. ‘.
+ [as,G @5 )G(@s,) [ 01,6 /U )G TG
[} s,
= (IPQTGYGHL).

Similarly,

{ & 11,0002, 1;9) = .5 QUTGYEE) + L QMNGEHIG_() - G 4))  (6.17)

where G (1,) is given by Eq. (5.29) with s = T,. Hence we have




t= L)
/1 t=1q
)"“I‘
t=s / t

0 s

"\ ¢

\ |/

L=3, / .“-\ .»"!
270 N/

Figure 8. The integration domain for the triple integrals of Egs.(6.15) and (6.16), corresponding to the T, (x),
of Fig. 7. Given (s, t,) € [0, T,}?, the lower limit for the t integration is s, ift, < 5, oritis t,
if s, < t,; ie., it is max(s, t_}. Likewise, the upper limit is min {t_(s,), t_(t,)}.
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@AWY ) () = Ix2e cK T(vQ)sin'd (G (CH,) + (v /c)cosh(G (&)
(6.18)

- 12IG(EE )G (1) - 6., L))

2. T4 Energy
The asymptotic total radiated energy is just the angularly integrated asymptotic (energy)
angular density, namely

"2
W_ = limp2e j a4’ sing’ SW/SY )_(®))
-» 0 4

- .;.x*e,cx"ﬂﬂn)’(.}e YEE) + v /G (R - 12(G(EE )G () - Gq.(f.)l}).
(6.19)

3. Efficiency
Noting that the photon pulse input energy for photons of frequency v is (using Eq. (2.7))

T
W, = hvxa’A [ A6t = hv(v/Q)a 2AQNQ)G(E,), (6.20)

which will be less than the total energy in the photon pulse if T, < */Q, we may calculate an
asymptotic radiation efficiency, using K’ from Eq. (4.78) and T from Egq. (3.25), as

e m W_W,, = (124%Xv Jo)m (e e m cF (V) {(RQPIQN(Q)Fa {AYYY
(6.21)
x [.;a ASE) + Mv/olGHEE) - 12(G_ () -G, .(tyc(m,)]})].

Note that (eAY) is the square of the emission current density and, from Eg. (2.6),
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aQN@Q) = f g(s)ds. (6.22)
0
Also, since for y/ 2 p 2 0 we have

'0 t‘
|G.. ,A)VGHEE)| < T ! & [GHQLYGHAIIGY *) < T+ [at, = /T
0
(6.23)

then (noting G(QT,) > O since T, > 0 by Theorem 3.2(i))

F1GA @) - 12{G_ () - [G. AYGEH)} / 5 GHEH) S {1 +24(t/T))
(6.24)

so that the v./c term inside the large brackets in Eq. (6.21) may be ignored whenever
vjc « (V8)1 + 24T /1] < 0.05 (0.05 is arbitrary but about right), i.e., whenever T/T < 1/2. A
sufficient condition for this is

122(/Q)T! = QN (QXm/sl)’ (6.25)
and in that case we have

e = (1/1873X(v Jc)m (e Ve m c)(hv)  (WQQN(E) Pa *(AYYYG XX ). (6.26)
D. Spectral Intensity

1. Angular Density
We may calculate the asymptotic spectral intensity angular density (5*1/8' 8w)_(R, @),
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specified unambiguously by (see Eq. (4.21))

@WIEY) (8) = { do (FUSY 80)_(8, ). 627)
from (see Eq. (4.19))
(FUSY 30)_(£, 0) = 2e,c*Reff * xUR, ) x (x2)'®, W) (6.28)

(where A denotes Fourier transform and * denotes complex conjugate). That this specification of the
asymptotic of spectral density is indeed the correct one follows from

@WREY) @) = f du(8P/BY )_(8, 7)
-gc -fdt 5. 1) x x°@®, 1)
=gck - f at{ (2x) 2 f o K2R, 0 x (2x)2 f daYx2\®, @')e 7] (6.29)
=gci fda) KER, @) x (x2)°R, ©)

- [dwpecrri® 0 x x2@ o).
[}]

To compute the spectral intensity via Eq. (6.28) we first supplement the definition of K_(&, 1)
for © > 0 in Eq. (5.26) with

K@®tD)=0ift<0 (6.30)

50 that Eqs. (5.24) and (5.25) hold even when t < 0 and are in agreement with Eq. (5.9). Now
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A% 0) = (xDK'sngK R 0) (6.31)
and

xU(®, ©) = JK'IC)sing K_\(&, o) (6.32)
with

K & 0) = 2™ f dt e =K ®,1) = @0 [dr e=K 2. D)
- [/]

= (27)12{[1+3(v /c)cosd) f dt e"J_(1,0;7) - 6(v/c)cosd f dt e*J_(2,1; 7).
0 4]

(6.33)
Using & from Eq. (6.8) we then have
(FUBY Sw)_(R, w) = 2¢ cK’si’g |K_ (%, 0) [ 6.34)
The integrals in K_, may be performed as earlier (see Egs. (6.15) - (6.17)):
- - e
[ 1,00 = [aw [ac@c@)
’ :. ’ 0y
~ [a6'@)c@) [de=
’ h (6.35)

T-
= o™ [6,G @)@t )e e *™™-1],
1]

where this integral is proper since both
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lim Gt )e" ™™ =0 (6.36)

1, =0

and G/(2t) = g(Cx VQN(Q) hold; and, similarly,

- ,.

{ e (2, 1;9) = 40T [d1,6/(@IGEUY, e ™ -11 (6.37)
0

Hence we finally have
(FUSY S0)_(%, ) = % K (WQP(QVw)’sin’¢
"
x | fdt,G (€2 )G Je e T -1){1 + 3(v c)cosd(1 - 2¢t/D} X
0

(6.38)
2. Angularly Integrated Spectral Intensity
The general expression for
=2
(BUBa)_(@) = lim [2n [ oo'sinty v soxs, o), (6.39)
- ]

while straightforward to compute, is cumbersome since cos ¢ occurs inside |K_,(®, ®)[*; we will not
display it here.




VII. EXAMPLES
In this final section, we present illustrations of our general formalism for the following pulses:
constant, linear ramp, triangular, parabolic, and sin’. While we have complete, detailed results for all
these pulses, we present such detail here only for the constant pulse; for the others, we discuss merely
those of their features which differ significantly from those of the constant pulse.

A. Constant
A constant (or "flattop”) pulse is given by

ity =A, te [0, wQ] a.n

for arbitrary A > 0. We then have, for s = Q/t € [0, n),

ge) =1, GO =v@wQ), G'()=1x, QNEQ) =m (1.2)
and

T = (W, = 2x7 (v JcV (DAY (1.3)
where

x = efemgc. (74)

Now for t, € [0, w/Q],

61




(1) = (UO{[tJQ)] + (TARDI/WDI™} = t, + (1.5
$0 t,, has unique local minimum at
t, (D = W2 = 2/, = V2 x5(v J0)HAY)™. (7.6)

Wethenseethat t (1 < WQIf T < /2 so

ta ifS
= .m

/0, fw

where, observing that T, depends upon @, (or T) which in turn varies directly as A'? (or inversely as
A), we have distinguished "strong pulse” (S) and "weak pulse” (W) cases as follows:

S: m/ﬂ>ﬁluor1‘<1t/ﬂ

(7.8)
W: 0/Q<y2/morT2wA.

The situation is illustrated in Fig. 9. Continuing, we find
2t (D, if
() = (19)
wQ + T, fw

and, for t 2 (%),

ta® = A2t - [t? - 4WATI} = 1) = Q). (1.10)
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tut) = & + [T(=x/D))t"

STRONG WEAK L
PULSE PULSE
x/@+ T
20,
2® o=t ifT< 2/0(S)
/ t,= /2 ifT27/QW)
0 ® W) -
bumia 7/0  tomin

Figure 9. The strong (S) and weak (W) pulse cases for the flattop pulse of Section VILA.
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Then T, is explicitly specified for the strong and weak cases by using Egs. (7.7) and (7.10) in Eq.

(5.12); further
J.(1,6:%) = @m) (W, (YWY, (7.11)
J2. 1,9 = GR) ' @I, V@APT [t - 1), (112)
and

K, .8.7) = oy QT a1 + 6 ccos(1 - HTRDITx - ST

(7.13)
also,
K' = (1/4)nc*(m JeXR/Q)a (AY) (7.14)
and
ecK”? = (1/16)7*°m (WQ)Y'a {AY)*. (7.15)
We are now prepared to display the radiation quantities. If t > |x|/c andt =t — [x|/c then
the radiated power angular density is

@PBY) (x,0) = Lxm sin'd a AT N1 + 60y /oXcosd(1 - $E7 e - 2T @VeuaT))
= k°m sin’d a {AYY[T, (D11 - 4xcoshAVIT, (W)t - 2T,7(¥)] + 6(v /c)cosd)

(7.16)




where we have used Eq. (7.3) to obtain the second equality in Eq. (7.16). The approximate peak (in
time) power (gotten by neglecting the v./c term in the first line of Eq. (7.16)) is

[T, if S
BP/Y T (®) = (1/64)x°m sin’$ a{AY)'(R/Q)* x (7.17)
1, if w;

note that in the strong case this may be rewritten, using Eq. (7.3), as
(P8 2™ (®) = (1/16)xmsin’ (v /cPa*(AY)?  (S). (7.18)
The angularly integrated power and approximate peak power are, respectively,

P(Ix].0) = (Uetyocm a AT @M} + /o1 - LT VT e - 3T )

(7.19)
and
[IW)P,  ifS
P2™(Ix]) = (1/48)xm a {AY) (W/Q2)* x (7.20)
1, it W
where, in the strong case, the last may be rewritten as
P2™(Ix)) = (112)rxm (v /cPa*AY?  (S). (7.21)

The total radiated energy angular density is
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@WAY).(®) = Lxmsin'd a AV T (1 + (v/c)cosd(1 -3 T/

= £ Xm SNV /O (AY) T;(1 - ZXCOSMAYI + (v /c)cosd]

= sirea’ 1.22)
[ 2 Jorrany it + 2vgoostl, if S

KV JONAYY(WR)[1 - Zxcosp(W/EIPAY + (v fc)cosh), if W

and the total radiated energy is

W_ = oxm (V/Oa {AYP T[3 - ZKAY T + (v /O)]

2% (v SO HAY) 3 + (v JO)l, ifs (7.23)

= Xmat x
WV JONAYY (WYL - (RQPAY + (v /o)), if W

To compute the radiation efficiency we note that

W, = mhva’Al, (1.24)

el = S¢m (v /OHOV) 'a HAYPY T[S - 2XAY T, + LV /0))
2x(vjc)’(AY)Y[% +1'.(v°/c)], if S

KV JONAYPY(UQY (S - 2 x(WQYAY + (v/o)), ifwW.
(7.25)

= m,mv)"a* x

Finally, the spectral intensity is given by




FUSY Sa)_®, 0) = (V16)x"cm sin'd a {AY) ' [M(wYo’)

Mo) = [C,(m) - (coswl + of sinoi - 1)
@, @,
. 3(v,/c)oos¢(c,(m) - s o, + 0T, tinof, - 1) - A LU_DHCw)
2
- 201 cosof, - (0T ) - 2]slnm't’,})]
+ [s,(m) - (sinof, - of, coswl)

+ 3 (v/oosqs,) - Ginwf, - of,cosal) - ﬂ%x%){s,(m)

- 201 sinof, - (@) - 210 - cos(ofo)})r

for

C(m)-(ﬁ“’r"w}:'y yloos2 205+ @=12

! o [T '
and

S(w) = «/i'“’)“wﬁ;'y yrsiny2 2yl @=12

! z’: K @, Y o
Note that in the strong case,

“'t°'ﬁi?‘, and (@A), =1 ©®
while in the weak case,
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(1.27)

(7.28)

(7.29)

(7.30)




-g® =% b
of, =xz  and @/2X, =7 w).
B. Linear Ramp
The linear ramp
) =Alv@®Q)], te[0wQ), A>0

(7.31)

(1.32)

yields results very similar to those for the constant pulse, with the strong pulse regime resulting when

T < (1/2) (»/QQ) and the weak pulse resulting when T 2 (1/2)(n/02).

C. Triangular
For the triangular pulse
t(n/), if ¢ <t < (12XxQ)
fv) = 2A x _
1-[/(w), if ()W) Sts
(A > 0) we find

T = 4(NQ);, = 4KV /CV(RQ)AY

[(t/(x/QQ)] + (12Tt J(r/ED)]2,
1.(t) = (W) x
{t/(w/Q2)] + [17(1:/9)1(1 =2{1 - [t J(x/Q)] }’)".

(1.33)

(7.34)

if 0 <1, S 12)NQ)

if (1) ®Q) < t, < WA,

(2.35)




Additionally,
1 - [T/ D], 0 st <(1R) W)
(a /o)) = ;
1 - 4DWN1 - (L1 -2(1 - (/WD) if 172) () S ¢, < v

~(1.36)

and it I8 easy to check that (d%,_/dt?Xt) > O, unless t, = (1/2) (x/£2) where this second desivative
does not exist; since

@ /RN =150 (137

then t_(t) has exactly one local minimum in (0, ®/%2), say at t, = t___(7). Now since the expression
for the derivative in the first line of Eq. (7.36) is zero iff t, is equal to

UL = T, (7.38)

and 7LD € [0, (12Xn/Q)] iff TI(x/Q) < 1/8, then t, (T = is given by t/1.(T) whenever
T/(x/A) < 1/8:

L = (D) = WITWD)® if (WD) S 1/8. (7.39)

On the other hand, if 7/(x/Q2) > 1/8 then (dt, /dt X (1/2)(»/Q2)) < O so, using Eq. (7.37), we conclude
that




t. (D) € (12)Xx/Q), %/C2) (7.40)
and is given by the appropriate root, ta.(T), of the quartic equation

AT - [t} = (1 - 201 - (), (7.41)

namely,
Lo = oD if TIW/Q) > 1/8. (1.42)

We will display t”,¢T) shortly, but we now wish to make an important point: for our
triangular pulse, Eq. (7.40) tells us that T < #/Q, always; i.e., in our model with cutoff we may never
encompass the full triangular pulse but only some proper initial portion of it. On the other hand, we
see from Eq. (7.41) (or from Egs. (7.46) - (7.48) below) that

lim 7LD =m0 (7.43)
Ny =

8o we can in principle get as close as we please to the full pulse by taking T/(w/Q)

[= 2x(v /cV(R/Q’AY] large enough. In analogy with the constant pulse, we call the case

T s (1/8Xn/QQ) the "superstrong” (SS) case (because here the cutoff occurs during the rising portion
of the pulse) and the case T > (1/8) (W/Q) the strong (S) case (here the cutoff occurs during the falling
portion of the pulse); there is no weak case but we also distinguish the case of the "weak limit" (WL),
where T/(x/Q) — . We then have, in analogy with Egs. (7.7) - (7.9),
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(

LD, I TS (1/8XwQ) (SS)
L lemm HTsamw @)
| %Q, if TIWE) — oo (WL)
and
2L, if SS

Wl = oM« T - 20 - VP, s

(wQ) + T, if WL

andwemayp'oceedbycasestotheradiauonquamiﬁes. Finally, as promised, we have

CanTV(D) = 1 = UR - {2 - R? + 2[TIWA)R ) ")

R = +{3 + 27°R, + R)J*
for
R, = ((z + (TWQF)  MWRNE + (TP}

D. Panbolic
The parabolic pulse

k) = sAV(w){1 - [Y(WQ)), te [0O,wQ), A>O0,

)

(7.44)

(7.45)

(7.46)

(747)

(7.48)

(7.49)




yields results very similar to those for the triangular pulse. Once again no weak pulse is possible;
further, since the parabolic pulse is defined as one piece, it is not as natural here to distinguish
between a superstrong and strong pulse (although this of course may be done) as in the triangular case;
we may thus consider only a strong pulse and the weak limit. Also, we have

@it )e) = 1 - SII@RN1 - /wa) / il « 201 - wa)) 750
with

T = 3(/Q)w) (1.51)
and (d%,/dt?Xt,) > O on [0, =/2) so determination of unique t__ (7) involves solving the quintic in
t,/(x/QQ) derived from Eq. (7.50) and this cannot be done analytically in general - it must be done

numerically.

E. Sine-squared
The pulse

i) = Asi?{n{V(n/Q)]) = Asin?(), te [O,Q], A>O, (1.52)

yields results similar to those for the parabolic pulse, exhibiting only a strong pulse and a weak limit.

To find t_ . (7) we must solve

sin Qt /2, - sin2Qt] = 172y/2 a[T/(W/Q))> (7.53)
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(x-sinx=0atx =0 and (d/dx)x - sin x) = 1 ~ cos x > 0 on (0, x) s0 x ~ sin x > O there); this
has unique solution since sin £t /260 - sin 203t ] strictly decreases from « to 0 on [0, ¥/Q2] > t,
but of course it must be found numerically in general.
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APPENDIX A: A SPECIAL CLASS OF PULSES
In this appendix we exhibit a class of pulses each member of which has the property that its
associated map t, = t,(t), t € [0, T ], possesses a positive-length interval of constancy and,
furthermore, T, = ®/Q (the full pulse width). Classes with these properties other than the one we will
exhibit also exist but we will present only one such class. In particular, we will prove the following.

Theorem A.1: Fix £2, v, Y > 0.
() T2, 0< a, < 2/3, and a, < o, < QT then the pulse

Io(8) = 2Q{Ule*(YNYmel}p,,(5) . s € [0,m], (A.1)
where
f
(/QTY( - o), ){-2((1 - 20}/ T)s + [2-3a,]}, if s € [0, QT]
Peo(®) =) QT -9y, if s e [QT, 0,QT] (A2)
aTy’a -o)ols , if s € [0,QT, w],
has the property
lmag, = T forall t, € [T, o,T]. (A3)

(i) If, in addition, T 2 3(W/Q) and 0, < WQT (< 1/3) then there exists a; € (o, WIT) such
that if o, € (0z, M/QT) then (a) T, =T (T, G, ] = W/Q, where T = 2N
(3.36)); and (®) 1, o, () < T.

Proof. (i) It is easy to check that Pue, is continuous on [0, %] and also (strictly) positive

2 (E) (see Eqgs. (3.25) and
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there (since o, < 2/3). Next, denoting

AT TR
we rewrite l,ﬁ as

I, (5) = A{2Q[e 2(AY/V°)/m.8°]}p¢ﬁ(s) = Ag,.(8)
and, noting that

.m] "(S) =L

we then have
8o (8 = 2AL/QP, . (5).
Noticing from Eq. (3.25) that
2¥lay) = QN (Q) - QT
and from Egs. (2.4) and (2.6) that
QN, ()G, (6) = bfs.ﬁ(s s/, s e [0,x],

we find from Egs. (A.1) and (A.7) that
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(A5)

(A.6)

(A7)

(A8)

(A9)




(

(LAQTY(1 -, Yo, ] (1 - 20, ¥ QTls? + 2 -3a)s), if s € [0,@,QT)

Gon VAT =1 11QT -5), if s € [0, QT, 0, QT)
| DATA - N Ve@TFIs? + R-30]) . if s € [a0QTx).
(A.10)
Hence, using
Qi (1) = Qt, + [QTGEx], (A.11)
we find

1, + @D - o Yo/ (120 Ve QTIQLY + [2-30)@)), ift, € [0,0,T)

Qe et =1 Qr, if t, e [o,T, a,T]
at, + 2QTX1 - W[V QIFIQLY + [2-3,]} , ift, e [T, Q]
(A.12)

50 Eq. (A.3) holds. (Note that t,, . (0) = =, as required, but that the denominators in the first and
third lines of Eq. (A.12) are never 0 since a,, ¢, € (0,2/3).)

(i) Let T 2 3(WK). To prove (a), we will show that if 0 < &, < WKIT then there
exists & € (@, M/QT) such that if &, € (c;, M/QT) then (A, ,./dt)) S O for all t, € (0, WA so
that T, = /R, by Eq. (3.36); note that for such o, &, the conditions of (i) hold so that t,, ., enjoys
the property given by Eq. (A.3).

We begin by noting that, for 0 < o, < 2/3 and @, < @, < WAQT, tm%(to) is differentiable
on (0, »/Q] since g,, is continuous there. The stationary points of t,, o are thus found from
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(Aly 0o /8t)E) = 1 = QTG (8)/Gao(s) =0, K, =5 € (O,7), (A.13)

where, from Eq. (A.10),

[ (QT(1-0,Yex,{ -2((1 -20, Vo, QT]s + [2 -301,])

+ s -[(1-2 Qt 2 -3 ]}, if s € (0, 0, 2T
QTG,, (sV/Ggy (8) = ‘ 4~ -2 Vo fhls + (2 - 3a,]} € G5
1, if s € [0, QT, a,QT]
| 4101 - VIS [V, (ATY)s? + 2-30,)),  if 5 € [0 QT, ).
(A.14)
If s € (0, a, QT] then Eq. (A.13) becomes, using
cwsgaQT (0sSos)), (A.15)
o) = (1 -2a,Y0* ~ 2(1 -20,)2 - 3a,)0° + 2 -30,0° + Qo X1 - o)1 -20,)0
- (Mey)(1 -0’2 -3a;) = 0 = (0 - 1)FH(0)
(A.16)
for
o) = (1 -2a,Y¢* - (1 -20,)3 -4a )6’ + (1 - Y6 + (Mo X1 ~a)Y’(2 - 3a,).
(A.17)

Hence ¢ = 1,ie, t, = o, T, gives a stationary point of tm%(to). Further, as we demonstrate in
Lemma A.2 below, (o) has no roots in [0, 1] when 0 < @, < 1/3 so that ¢ = 1 is the only root of
S%0) in [0, 1]; i.e., 1, = &, T is the only stationary point of t,,,,, in [0, ©/Q]. Since dt,, ., /dt, is
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continuous on (0, o, T) and, from Egs. (A.13) and (A.14), &ﬁ?‘d"’“ aa/dt)() = —== then we have

(At oo /dtXt) < O for t, € (0, ,T) 0 <o, < 173). (A.18)
Next, if s e [0, QT, o, ST} then Eq. (A.13) becomes 1 = 1, which is satisfied for all s € [, 1T,
a,QT), ie, forall t, € [o, T, o, T); of course this also follows directly from Eq. (A.12). So we
have

(At o /dXE) = O for t, € [a,T, 0,T]. (A.19)
Lastly, if s € [, 1T, x] then, using

6 =g0QT  (1S6SmWeQT), (A20)
Eq. (A.13) becomes

H(0) = 056" + 20,2 ~30)0% - 4(1 - ,)%6 + 2 -3) = 0 = (6 - NH,(©O) (A21)

for

H(O) = 6° + ;6 + (4 -5a,)6 - (2 - 3o,)%. (A22)

Hence 8 = 1,ie, t, = o, T, gives a stationary point of tm%(t,), in agreement with Eq. (A.19).
" Further, since

(dH/d6) (1) = -12{(1/3) - &)1 - @) (A23)
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then 6 = 1 gives a local maximum iff a, € (0, 1/3). We now rewrite Hy(8), using
Zmf-1 [0 < X< ®eQT) - 1), (A24)
to get

(VeI (6) = (6-1)° + 46 -1) + (Ha)(6-1) - 4[(Ve) ~ 1]{(Ve) - 3]
=3 + 437 + (40T - 4[(1oy) - 1][(Vay,) -3] = 3, () (A25)

and seek the zeros of ;. Using standard technigues for cubic equations we find for Eq. (A.25) the
discriminant

M) = @37[(ay) - (43)P + 4{[(Va) - 43} + I2T)F >0, (A-26)

where the last inequality holds for a < 2/3. Hence H,, has only one real zero in (-e, =) and we
denote the value of X that makes 3, (T) = 0 by Z(a,). In fact,

I(@) = (z{[(.,‘j) -GF G} + A‘”(a,)]w . (2{[(;,.) -G} - A"*(a,))w- &
(A27)

but we do not need this explicit expression for our proof. (However, it is of practical use - see later.)
We will demonstrate in Lemma A.3 below that

I(a) >0 for 0 <o, S ®QT; (A.28)




we then have

a + (o) > a for 0 < o, S QT (A.29)
80 that, in particular,

®QT + (WA /AT > VAT, (A.30)

Since o, ~ o, + a,T (0,) is continuous on [0, &/QIT] then there exists a; € (o, K/CIT) such that

o, + RE (o) > WAT for o, € (o, 1QT) , (A31)
0 that

() > "o QT -1 for a, € (0y, MQAT); (A32)
hence

6 (a) = I (@) + 1> MaQT for o, € (0, KQT) (A.33)

and 50 6 = 1 is the only root of 3, in [1, »/a, QT). Thus t, = o, T is the only stationary point of
tmua () in [0, T, %/Q2]. Further, since 6 = 1 gives a local max for 3, (when o, < 1/3) and H,(1) =
0, then

H(6) <O for 6 € (1, W/o, T (A.34)

81




since 3, is continuous on (1, /o, QT]. But

(B o0 fOE) = Mt/ TV (t, /o TF ~ (30, -2)F, t, € [T, wAQ]
s0 finally we have, using Eq. (A.34),

(g o0 fALXEL) < 0 for t, € (T, 0Q] (0 <o, <®QT).

Taken together, Egs. (A.18), (A.19), and (A.36) show T_ = ®/Q2, 50 (a) is proved.
To show (b), we first note that since, by the above, T, =r/Q, and since

lnese (WD) = WQ + T = 1Q + YN,  (Q)
then we must show that

nQ + 2oiN, (@) < T.
Computing

N, Q) = (VD) of Boo (85 = [1IT(1 - @, P][2 - 3, + (Voo XmQTY],
Eq. (A.37) becomes, for a, < 2/3,

-} + (12)[1 + 3(”WAM)e: - (WA, + (2XRATF(1 - (/QT)) > 0.
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(A.35)

(A.36)

(A.37)

(A.38)

(A39)

(A40)




We will demonstrate below in Lemma A .4 that this last equation indeed holds if &/QT < 1/3 and o, <

*/QT 5o that (b) is proved. B

We now present the three lemmas referred to in the proof of the theorem.

Lemma A.2: Let0< o < 1/3 and for 0 € R define

F,(0) = (1 -2a)’c® - (1 ~20)3 -4a)0’ + (1 ~ayo + (I/a)1 - a)(2 - 3a).

Thea F (o) > 0 for ¢ € [0, 1}.
Proof. From (1/3)a(4 - 5a) > 0 it follows that

(1-0) = 1-2a+a? > 1-(103)x + (8/3)a® = (8/3)[(3/8) - (5/4)a + ]
= (83)[(172) - o) [(3/4) - a};

noting (2/3 - a) > a we then have
2 -30)1 -a) > ol -20)3 -4a0).
Hence,foroc e [ 0, 1),

(VaX2 -30X1 - > (1 -2a)3 ~4a) 2 (1 -20)3 -40)0

(1 -2a)c® + (1 -a)’c + (o)1 -0’2 - 3a) 2 (I/a)X1 - a)*2 - 3m)
>(1-200(3 -40)0 2 (1 -20)(3 ~4a)0* ,
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(A4l)

(A42)

(A43)

(A44)

(A45)




from which it follows immediately that F.(¢)>0. B
Lemma A.3: Let 0 < a < 1/3 and for X € R define
HE) =2 + 42 + W) - 4(Vo) - 1][(1/ar) -3]. (A.46)

Let X (o) denote the unique zero of H, (as per Eq. (A.26) fI.). Then Z(a)>0.
Proof- 1t is sufficient to show that H.(E) < 0 for all £ S 0. To this end, we let £ = -I and

A = -o*H,E) = 0T’ - 40T + 40T + 4(1-0)(1-3a), T e R (A4T)
and show
AGE)>0focal T 20. (A48)

If T = 0 then Eq. (A.48) clearly holds, so suppose T > 0. Now it is clear that

oS -403 +4>0forallT € R (A.49)

(conslduedasapambolainf)somat

T’ + 40T > 40T fr T > 0; (A50)




oL’ + 40X + 4(1-0)1-30) - 4a°E2 >0 for T >0

and this is precisely Eq. (A. 48). B

Lemma A.4: Let #/QT < 1/3 and for o € R define

Jon(0) = & + (12)[1 + 3(wQD)? - (WQAT)o + (12XQTH(1 - (WQT)).

Then J (o) > 0 for & € (0, ¥/Q2T).
Proof: This follows immediately from

Joer(0) = (12X®AQTY[1 -(WQT)] > O,

Joen(R/QT) = 0,

(d) o/doXa) = -3[(1/3) - o] [W/2T) - a)

since the derivative is negative for o < min {1/3, #/QT}. W

(A.S1)

(A52)

(A53)

(AS4)

(A55)

As a concrete example of a pulse in the class of the theorem, we choose T = 4(/Q0), o, =

1/32, and @, = 1/8; that such an «, is adequate can be verified by the fact that it satisfies Eq. (A.31),
with X (o) given by Eq. (A.27). We leave Q, Y, v,, hence A and w;, nonspecific. We then find
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(8/31)Y[480(s/x) + 61}, if s € [0, x/8)

Bim () = 20 )X (1/x%) x | 1/[4 - (s/m), if s € [0/8, 2] (A.56)
(8/49)(s/m), if s & [/2,x),
QN 4(Q) = (34/497) (W ), (AS7)

(8/31)(-240(s/x)* + 61(s/r)), if s € [0, /8]

G 1a(8) = U1T) x| 1[4 - (s/m)], if s € (w8, n2) (A58)
(1/49)[4(s/x)* + 13), if s e [7/2,%),
and
x((s/r) + (31/8Y(-240(s/n)* + 61(s/m)]™'}, if s € {0, /8]
Q. () =) 4x, if s € [w8,n2] (AS59)
x{(s/x) + 49[4(s/n) +13]), if s e [x/2,%].

We illustrate g and 2t in Fig. 10.
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Figure 10. The pulse /,, ;5 0f Appendix A. Notice that g is not smooth at s = n/2, but L2, is
smooth everywhere in [0, x].




APPENDIX B: MATHEMATICAL COMPLEMENTS TO SECTION 1II
Proof of Theorem 3.2. (i) First note from Eq. (3.37) that

(@t /at),) = 1 - (DG, G(Ex,)Y ; 8.1
since lim [7/G(£t))] = = = lim [ta G(Qt,)) then
1,40° 1-0°

lm (dt /dt )(t) = —~= . (B.2)
1,~0°

Also, since G’ and G are continuous on (0, /) and G never vanishes there then G/G?, hence
dt./dt,, is also continuous there. Therefore, there exists 8 > 0 such that (dt,/dt_ )(t,) < O for all
t, € (0, 8]. So 8 is a member of the set on the RHS of Eq. (3.36) and {, 2 8 > 0, as required.

(i) Since T, >0then [0, T)#D. Lett e [0, T J; if t, = O then t_ is admissible, so
suppose t, > 0. If t, < t, then from Fig. 2 we see that @ # I(t.) < I’(t, ), so suppose t & I’(t,)
and note that 9Z/dt and FZ/3¢ exist at (t, ; t) and (t ; ). Now from Eq. (3.9) we have

@10, ) (@PZR) (Y ;1) = ~(e/m g )P(ZUL; 1), tNIZ/BL,)(t, 5 1) (B.3)
and from Eq. (3.21) and the fact that g(s) = O only for at most s = 0, =, it follows that, for
0<t, <t,LHS of Eq. (B.3) < 0; but p(Z(t, ;t).t) < O (since charge sheet T_ is at Z(t, ; t) at time 1).
Hence

@Z/& )(t, ;1) < 0. (B.4)

In other words, Z(t ; ) is a strictly decreasing function of t_ at each t, & (0, t_) so that for such t_,
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Z4 it > 2,30 . (B.5)

But also Z(0;t) = vt > Z(t;t) so Eq. (B.S) holds as well for t, = 0. Hence t, is admissible by
Definition 3.1. Next, if T, < ®/Q then there exists € > O such that if {, € (f,, {, + €) then t, is not
admissible; indeed, if € > 0 is small enough (so that, at least, T, + € < #/Q) it is clear from Fig. 2b (or
from the definition of T_ in Eq. (3.36)) that, for T, € (T, T +€), sheet T, leaves after and returns after
sheet T, so there exists t € I°(t) N I(T,) such that Z(t,; t) = Z(T ; t); hence [, is not admissible.
Finally, if T, = /Q then [0,T ] = [0, #/C2] which is clearly the largest possible interval of t,’s. W

We have also shown (and will use later on):

Corollary B.1: If t, € [0, T,] and t € I°(t ) then the map t, = Z(t_; t) is strictly decreasing

att.

We next prove Theorem 3.3.

Proof of Theorem 3.3. If (z, t) € D|[T, G], z, t > 0, the existence of a solution, say t, in
[0, T,] follows immediately from the definitions of D,[T, G] and D[T, G). If t_, is another solution
in [0, t,] then Z(t,;; ©) = z = Z(t,; t). Butt, and t, are both admissible and if z > O then t,, € I%(t,,)
and t,; € I°(t,): hence t,, =t, Next, if p(z, t) # 0 then there exists t, € [0, {,] such that
Z(t, t) = z 50 (Z(t, 1), t) € D|[T, G), i.e., (z, t) € D,[T, GJ; hence (z, t) ¢ D,[T, G) implies
p(z, t) = 0. Finally, if z > 0 and t < O then it is clear that p(z, ) = 0. W

89




APPENDIX C: RETARDED TIME
In this Appendix, we establish the existence and uniqueness of solutions i'(t,; x, t) to Eq.
(4.58) as well as derive smoothness properties of these solutions. Although our results may appear to
be physically obvious, we eschew proof based on "obvious physical grounds”. We fix

x=¢00, £>0, {20, t20, and t, € [01] (C.1)

throughout unless otherwise noted. (We do not require § > a in this Appendix C only.)
It is convenient to first consider the case t, = 0. Eq. (4.58) then becomes

(VO)E + (vt/-CP12,  ift’ 20

-t/ (t, =0)
Ix|/c, ift’'<0
(C.2)
and this has unique solution
(1-COT AN (-CFOVIT - NP~V if 2 [xlie
tfoxt =
t - |xitkc, if t <|x|/c
(C.3)
where the first line may be rewritten as
(-CFT{-CRAQVY - OGP + 00 itz i (C38)

see Fig. 11.
We next consider the case t, # 0. Rewriting Eq. (4.58) in detail we have
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’i/c = t/e
(Ve)E* + ypapn

ooooooooooooooooooooooooooooooooooooooooo

/\

@ =9
t
_’x’/c 2%c <.
f/c P
0 i (/o)pe? +
— v’ - Py y o
(V./c)(i - ﬂc

S 1__.“ -
VAR '
t-¢/
- v=L40) zf;v, ~ '
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) E v (t' 1) ~(v/DGER XL -t P-LP)2,  ift! e It)

0 C4
Ix)/c, ift' e It) t=0 4

t-t/ =
where we have used Eq. (4.71). Unfortunately, in contrast to solving Eq. (C.2), which involves as an
intermediary only a quadratic in t/, solving Eq. (C.4) involves as an intermediary a quartic in ¢/, the
solution of which - despite the availability of a general solution - is extremely tedious to obtain;
furthermore, we would still have to sort through these four solutions to determine which, if any, are
solutions to Eq. (C.4). (These considerations are not unwarranted. For example, consider solving
(*): ca-x = [a?~(x-2)’]'?, a > 0, a € R The associated quadratic has real solutions iff
@ € [1-/2, 1+/2]. Further, if a e [2, 1+/2] then both of them solve (*); if o € [0, 2) then only
one of them solves (); and if & € [1y/2,0) then neither solves (+).) Additionally, this t_ # 0
solution -- if Eq. (C.3) is any indicator - is too complex to be integrated analytically in Egs. (4.69)
and (4.70). We will adopt the approach of not solving the intermediary quartic but rather of
employing geometric reasoning (as in the solution of Eq. (C.2)) to establish the existence and
uniqueness of solutions to Eq. (C.4); further, we will establish the smoothness properties that we
require of the solution without ever actually obtaining it explicitly. In adopting this approach, we are
abandoning the quest for expressions explicit in the inital pulse and surface parameters for the finitely-
remote fields, E, and B,, We are willing to do so because that will allow us to further progress
towards our ultimate goal, namely, obtaining explicit expressions for the fields in the radiation limit;
indeed, it will turn out that the explicit solution for i’ when t, = 0 is not needed to obtain the explicit
expressions for the limit fields.

As a first step, we graph the RHS of Eq. (C.4); the curves of Fig. 12 include all generic
possibilities. The curves are intentionally drawn to be "flat”; indeed, denoting the function on the
RHS of Eq. (C.4) by STt'), we have, for t' & I(t,),
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(LeXE® + 2D 4
@ (=0,
Z) >t x|l = ¢

‘l

0 L 4l = ¢+ (FTIG@) @ =t + TGO
()€ + @u- 712 T
®) >0, |x)/c / \
L) =228 el A
¢
0 a(t) + At tin(t) tn(t) + At

at = (A)TIG@IN1 - Zu ()

Ixj/e

©¢>0, - S
FEz0sa 1 /\r_/

e + 2, -

0 WA o)t - At
@ >0, Ixj/e
Zu St —
(l’C)[fz + (2- . mm _+ /
f’c L o
L t'
0 4 D w®

Figure 12. All generic possibilities for the RHS for Eq. (C4). Z,(t,) is the maximum z value
attained by sheet t, and is given by Eq. (3.22) as Z,(1,) = (1/4)v,T/G(f2t,).
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|arae’| = CXUO|vyt! - 1) - (v/DIGErX - 1) = {I-|1-2AGEANTI - )/ Ft')

211 - 2[G(Ex t/-t > <l
< (DI -2AGEAHM(' - )| < = < C5)

since |1 -2{G(QYVTIt’'-1)| < 1 for t’-t € (0, TIG(Q)). The reader should note, however,
that this figure, while enlightening, will not be the basis of our existence and uniqueness arguments;,
rather, they will be independent of this figure and based solely on Eq. (C.4).

We are now ready to prove the existence result.

Theorem C.1: Fix x, t according to Eq. (C.1) and t, € (0, t,). Then solutions to Eq. (C.4)
Proof. First define, for t' < t,
L(t') =t-t/ (C.6)

and suppose first that 0 S t < |x|/c; then (ST~ L)(0) > 0. On the other hand, }im L(t') = = s0
there exists t* < 0 such that L(t") > [x|/c = Ft"); hence (&~ L)(t) < 0. s;;c:.g'-z.,is
continuous on (-, =) then there exists T € (t°,0) such that (&~ L)t) = 0, so that t <t solves
Eq. (C.2). Similarly,lft>|x|lcthen(.?.’-L,)(0)<0;andL'(t) =0, .?.(t)zglc>0so

(& - L)(®) > 0. Hence there is a solution in (0, t). Finallyift= |x|//cthent/ =0<tisa

solution. B

While existence is clear geometrically, simply by drawing straight lines with (any) negative
slopes and vertical axis intercept (0, t) in Fig. 12, uniqueness, on the other hand, is a bit more delicate.
For there are some straight lines with negative slopes, which slopes may possibly be ~1 since we
cannot infer much from the figure about the horizontal (t) and vertical scales, that intersect the curves
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more than once; and for such lines the solutions to Eq. (C.4) are not unique. We now show that in
fact multiple intersections do not occur.

Theorem C.2: Fix x, t according to Eq. (C.1). Then the solution to Eq. (C.4) is unique.
Proof. Suppose that L, intersects & at two distinct points whose ' coordinates are t; < t; .
Clearly both t, and t, cannot be exterior to I(t,), for then L, would have slope 0. Suppose
t/, 4 e Kt,). Since S7 is continuous on [t,', 1, ] and differentiable on (1, t, ) then by the Mean
Value Theorem there exists t° € (t/,t,) < It) such that

@FTat')t) = [F4) - FUOVY 4] = (L) - LE)VIL 4] = siope of I= -1. (C)

But we have already seen from Eq. (C.5) that |[d.#7dt’| < 1 on 1%(t) so Eg. (C.7) yields a
contradiction. Hence one of t, , t, must be exterior to I(t,) and the other must be in I(t,). Suppose
t <t and ; e K(t,); then, since df7dt’ is continuous on I(t,) (see Eq. (C.5) and note that St’)
is never O since € > 0 ), we have

’

4

&) = Ixlic + [(agracra’ )
80
d
) - Ixlfe] < f ldgrar’ |’ < v -, (C9)
But
L&D -LE)] =t/ -t/ > ¢/ -, (C.10)
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L() = |xlc, and Lt;) = FT;) so from Egs. (C.9) and (C.10) we have
) - Ixle] < |9T) - xlc] (C.11)

which again is a contradiction. Similarly, supposing t) € It) and y > t.(t,) also leads to a
contradiction. Hence L, cannot intersect .{attwodisﬂnctpointsandmeuniqusspmofis

complete. B

We now have a precise enough description of the behavior of lines L(t/) = t - t’ relative to
the curves of Fig. 12 to use this figure in subsequent proofs, and we do so freely.

The next result in this section will be crucial in evaluating the integrals for E, and B, in Egs.
(4.69) and (4.70), giving us a simple description of the set of all t, € [0, T,] such that, for given x, t,
we have xp (t,; T/ (t,; x, 1)) = 1, thus allowing us to write Egs. (4.73) and (4.74) for these fields. For
simplicity of notation we suppress the x and t dependence of T’ and write simply i'(to). Also, we
introduce the following notation for the various boundaries of D[T, G}:

9,DIT.Gl = U {¢.t)), (C.12)
te(0.T)
ADIT.Gl = U (@t | (C.13)
relor)
3,DIT, G] = {0} x [0, =), (C.14)
and
3,DIT.G] = {T,} x IA):; (C.15)




additionally, for future use we denote
9,,D(T. G] = 3,D(T. G] U 9,D(T, GI]. (C.16)

Theorem C.3: Fix x, t according to Eq. (C.1).

@ fw<t-|xj/cSOthenforall t e [0,T ), T'(t)=t- |x|/c:s0
(t,. T'(t,)) € DT, Gl unless t - |x)/c=0=t, in which case (t,, ' (t,)) € D[ T, G). ;

(i) fO<t- |x|//c<T, then (t - |x|/c, t - |x|/c) € &DIT, G},
(t,. T (t,)) € DT, G] whenever t_ € (0, t ~ |x|/c), and (t_, T’ (t,)) € D'[T, G] whenever
t,e(t-|xc T ) At =t-|x|/ctheni’(t)=1t- |x|ic so(t, T (t))e &HIT. Gl

(i) IfT, <t- |x|/c <ty(T ) then (T ,t- |x|/c) e d; DIT, G] and
(t,. ¥ (t,)) € D(T, G] whenever ¢, € (0, T,); also (T,, T'(T,)) € {T,} x I"(f,)  DIT, G] but it is
never true that i/(t) =t - |x/c.

(iv) M t(T)) St - |x|/c < == then [t(t—]x|/c), ts(t-|x|/c)] x {t~|x|/c} < 3;D[T. G] where

t(t-|x|/c) = inf t[t-|x)/c], (.17

t,(t-[x/c) = sup t,[t-|x|/c], (C.18)
and

talt-Ixi/c] = {t, € O.Tlit, ) = t-|x|/c}; (C.19)

also t,[t~|x|/c) # @ and 4(t - |x|/c) > 0. In addition, (t,, T’(1,)) € D°[T, G] whenever
t, € (0, t(t - |x|/c)) and (t,, T (t,)) € D[T, G] whenever t, € (1t — |x|/c), T,).
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art, € 4 (=|xlo), ts (- |xic)) then /(1) = t - |x}fc s0 (1, T(1,)) € 3 DIT. G))

(v) In cases (i) - (iv), (0, ¥’ (0)) € 3, DIT. Gl.

Proof. (1) Itis clear from Figs. 11 and 12 (the latter augmented with the line
Lh=t-t)that i'(t,) =t —-|x|/c whenever t — |x}/c < 0 and t, 2 O; further, unless
t- |x{/c=0=t, then f'(t,) < 0 so from Fig. 2 we have (t, i'(t,)) € DT, G}, while if
t- |xlfc=0=t, then (t,, i’(t))) = (0,0) € 3,DIT, Gl.

(i) Let 0 <t - |x}/c S T ; then from Fig. 2 we have (t - |x|/c, t - [x|/c) € ,DIT, G].
Lett, € (0, t - |x[/c), ie.. t— |x)/c > t,; then supposing T'(t,) < t, gives

LE'a)) =t-t'q) 2 t-1>[x|c (C.20)

while, from Eq. (C.4) or Fig. 12, #T'(t)) = |x}/c 50 that T’ (1,) cannot be the retarded time for t,,
which is a contradiction; and supposing i'(t) 2t.(t) = t +TIG(E) gives

LGE'@)) =t-T'@) St-t, + TGE)) < t-[T, + TIGEK ) t-T, < |xl/c
(C.21)

while again FTE'(1)) = |xl/c, a contradiction. So ¥'(t) € (t,t,(t)) = I°¢) and so0
(t,, 't"(t.,)) € DT, G]. (Alternatively, one may argue using Fig. 12 that, when 0 < t, <t - |x|/c S
T,, the line L(t)) = t - ¢/ intersects any of the curves at some t’ € (t,, T,] C (t,, tu(t,)), since T, <
tu(t,) forall t, € [0, T,], 50 that T'(t)) € (1,, tu (1,))) Nowlet t, € (t - [x|fc, T,), ie., t -
[x{/c < t,; then it is clear from Fig. 12 that T'(t,) = t - |x|/c so (t,, T’ (t.)) € DT, Gl.

(fi) Let T, < t - [x|/c < t,(T,); then from Fig. 2 we have
(. t - |x|/c) € 3DIT, G]. Let t, € (0, T,); then supposing T’ (t,) < t_ gives, similarly to Eq.
(C.20),
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LE‘e) 2t-t,>t-T,> |xlc = G, (C.22)
a contradiction; and supposing T’ (t,) 2 t.(t,) gives, similarly to Eq. (C.21),
LE' () < t-t, @) < t-(t-|xl) = xlic = FE' ), (C.23)

also a contradiction. So (t_, T'(t,)) € DT, G]. Also, that (T,, T'(T,)) e {T,} x P(,) may be seen
from Fig. 12 by taking t_ = T, there; note also that T’ (T,) <t - |x|/c or T’ (1,) > t - |x|/c so that
it is pever true that T'(1,) = t - x|/c.

(v) Letty (T,) St- |x}/c < o; then from Fig. 2, allowing for the possibility that t,(t ) has
subintervals of constancy in (0, T, ], we have [t;, t] x {t - |x|/c} < 3;DI7, G] where we have
suppressed the argument t - [x]/c of t; and t;. Since t,(t,) increases from (T ) to = as t,
decreases from T, to 0, then t, [t - |x}/c] # @ for t(F,) St - |x|/c < =; 50> 0. Let
t, € (0, ty); then supposing T’ (t,) < t, gives, similarly to Eq. (C.20),

LE'@) 2 t-t, 2 t-T, > t-1,0) 2 |xlic = ST'e)), (C.24)

a contradiction; and supposing ©'(t,) 2 t(t,) and denoting by t* any member of [t,, t], S0 that
ta(t® =t - x|/, gives

LE'@) <t -1 ) <t-t (1) S t-t_(t) = t-(t=|x)/c) = |x}ic = .Z.(f'(to)), (C.25)
a contradiction. So (t,, /() € D[T, Gl. Now let t, € (t, T,]; then with t* as above,

Lt (t) =t =t (t) > t-t (t) 2 t-t () =t-(t-|x|/c) = |x|/c (C.26)
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while L(t) = 0. But, from Eq. (C.4) we have

F (1) = Ixlic = IO, (C27)
the second equality holding because
t>t-|x|fc = t,(t) 2 t (1) >t (). (C.28)

So L(t) and t’) must have their unique intersection, which occurs for t' = t/(t,), at a value of
Ve (tw (1), 1 ie., T (1) > tu(t,) and so (1, T/ (1)) € DT, G).
(v) Follows from Fig. 11 by noting that T’ (1,) > 0 whenever t — |x|/c > 0. 1

The results are represented diagrammatically in Fig. 5, which we referred to earlier in Section

The above mathematical result has, of course, physical interpretation. For example, (i) says
that if the required retarded time, namely t — |x|/c, for a charge sheet located at z = 0 is negative
then no sheet can satisfy that requirement; this is of course clear since no sheet is in flight at any
negative time. The other parts have similar interpretations; we leave their explicit elucidation to the
reader.

We remark here that the accommodation in the last theorem of the possibility of intervals of
constancy of t,, is not unwarranted generalization -- we presented in Appendix A a class of pulses for
which t, has such an interval of constancy.

Theorem C.3 tells us that the map t, = Xp (1,; ' (t,: x, 1)), for fixed x, t, is piecewise
continuous on [0, T ], being given by
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[

. ift, e [0, T (x,1)
X T Cx ) - (€29
0, ift e (T(x.0,7],

where T, (x, 1) is given by

0, if w< t-|xjc<0
t-|x|/c, if 0< t-|x|lcsT,
T C.30
Tx0 =1 T, if T < t-|xjc <t @) (€30
L t(t-|x)/c), ift (@) < t-|xllc <o .

Hence the X, factors in Egs. (4.69) and (4.70) can be accounted for simply by choosing O for the
integration lower limit and T (x, t) for the upper limit and setting X, = 1. In Fig. 6 we plot T (x, t)
as a function of t for fixed x, with one jump corresponding to one interval of constancy for t,(t,), as
in Fig. §; recall that we also referred to Fig. 6 earlier, in Section IV.

Strictly speaking, the upper limit for the last case of Eq. (C.30) should be ti(t - |x|/c) (see
Theorem C.3(iv)). We have chosen t; rather than t; because the choice of t; allows a more unified
(i.e., caseless) treatment in the sequel than does the choice of t;. This point is almost always moot
since in almost all non-contrived cases we have t; = t5 (the pulses of Appendix A are examples of
“contrived” pulses). Nevertheless, we will be careful to point out and include those modifications to
our formulation that are necessary in case t; > t;. As a point of interest, note that the choice of tg
rather than ¢, for the definition of T, would make the map t = T, (x, t) lefi-continuous rather than
right-continuous at the jump in Fig. 6.

The last two results of this Appendix establish the continuity and differentiability properties of
the map t, ~ T'(t,; x, t), with x, t fixed and t, variable according to Eq. (C.1), that we will need in
Appendix D. Consistent with our aforementioned convention of suppressing x and t in the argument
list of T/, we also write (df '/dt X(t)) to mean (9 '/t )1, x.t). We denote
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D,[T, Gl = [0, T,] x (-e, =), (C.31)
with interior given by

D[, Gl = (0, T,) X (o, *); (C.32)
and we also denote

(DY),[T. G) = DJIT,G] \ 3,,;D[T,G] = DT, G] U DT, G] (C.33)
(see Eq. (C.16)).

Theorem C.4. Fix x, t according to Eq. (C.1).
(@) If-eo <t~ |x)/c < O then T’(t,) is continuously differentiable (C*) on [0, T,].
) HO<t-|x)/c<T, thenf(t)is C' on(0,t- |x}c) u(t-Ixlc, T) .
(i) IfT, <t |xlc <ty (T, )theni(t) isC'on (0, T) .
(iv) 1 (f) St- |xJc <o then T'(t) is C' on
O, t(t-[x|/c)) U ¢ t-|x|/c), tt-|x|/c)) U t(t-|x|/c),T).
Further, for those t, at which f’(t,) is C* we have in each case
-(1/C)At)(dB/dt )(t), if t, € FI [a first interval of (i)~(iv)]

(1ot )xt) =
0, ift e FI [not a first interval of (i)(iv) ]

(C.34)
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~1/0)AM) @ZA ), T (V1 /A YIZ/N,; T a)),  ift e FI

@l - . ift, ¢ FI
(C.35)

where

8) = 24T, (C.36)
or, more precisely,

8, x.0 = Z(t; ' ¢ x. 1), (€37
and

Alt) = [8(t) - QI/{E + [B)-Lr)"? (C.38)

(and the arguments of Z are denoted (t,, ).

Proof. The proof of (i) here follows immediately from (i) of Theorem C.3, for we have
dt'/at, = 0 on [0, T,]. To prove (ii)-(iv) we appeal to the Implicit Function Theorem which says that
if real-valued function H(t,, ©) has continuous first partial derivatives 33/dt, and 9H/0’ in some open
subset of R? which contains interior point (t,, t, ) satisfying H(t,, t.) = 0 and @HRTX,, t/) %0,
then there is some nonvoid neighborhood (t, - 8, t, + 8) of t, and a unique function h defined on
(t, - 8, t, + §) such that t; = h(t,) and H{(x,, h(t,)) = O whenever T, € (t, - §, t, + 8); further, h is
C'on (t, - 8, t, + 8). To apply this to our present situation we first define, for
(t,, t') € DIT, G},

103




H,t)=t/-t + .V'_(t’). (C.39)

We next note, using a rewritten version of the RHS of Eq. (C.4), that

()& + [zt ;) -LP)2, ift’ e It)

Y = (C.40)
0 [ x|/, ift’ e It)

and, from the differentiability properties of Z(t ; t) on D[T, G] (see Eq. (3.34)), that dH/0t_ and
030t’ exist and are continuous on (D;),[T, G] with

1 + (F7at'Xt"), ift/ e 1°(t)

@MYL, t)) = (C41)
1, ift’ e I(t)

there; and we then use Eq. (C.5) to conclude that 9HUdt’ # O there. Now if t, € (0, T ) then our
previous existence and uniqueness results imply that (t_, ‘t"(to))e D.IT, G) is such that

M, (1) =0fcall t, € 0, T,) (C42)

(not just t,~locally) so i’ must be the unique h guaranteed by the Implicit Function Theorem
whenever

¢,t'e) e @), IT.G] ; (C.43)

hence ¥’ must be C' at such t,. But items (ii)-(iv) of Theorem C.3 indicate that Eq. (C.43) is
satisfied precisely for those t, specified in cases (ii)-(iii) here, and, in case (iv) here, for
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t, € (0, V(L T). Since, in case (iv), i’ is in fact constant on [t ts) (being t — |x|/c there) then
we may include the interval (, t5) so that (iv) is also proved. Lastly, the first expression for di ' /dt,
results from differentiating

He, T'6)) =) -t + FE' @) (C.44)
(see Eq. (C.39)) with respect to t,, using Eq. (C.42); and the second expression for df'/dto results
from noting that

@8/81)(t) = EZBXLT 1) + @ZAD(,; T/ ()X /at) (t). (C45)

In both cases, the continuous differentiability of Z on (D), [T, G] and of i’ on the intervals specified
in ()-(iv) guarantee the existence of (continuous) d8/dt_ on those same intervals.

'Ibeabovetheoremindicatwthattlmemaybeexcepﬁonal points in [0, T,] where i/ fails ©
be C'. The following is true however,

Theorem C.5: Fix x, t according to Eqg. (C.1). Then i’ is continuous on [0.t,).
Proof. If - <t - |x|/c < O then the result follows immediately from Theorem C.4(i). So
let 0 < t ~ |x|/c < = and consider first continuity at t, = 0.

Define

= min {t-|x/c, t,(t-|x|/),T }; (C.46)
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by items (ii)(iv) of Theorem C.3, it follows that T'(t,) € P(t,) for all t, e (0, 1) and 5o for such
t,» SXE'(t) is given by the first line of Eq. (C.40). We claim — and show below — that im ')

exists; then lim F(i'(t)) exists and is given by

0

lim ') = WO{E + [v, im E'@) - {PP2, (C47)
-0 ° 1,40

since lim G(t) = 0 and the square and square root are continuous on non-negative reals. Hence

-0t

from Eq. (C.44) we have, using (from Eq. (C.42)) lim 3{(t,, ©'(t,)) = 0, that

-0

t - lim ©'@) = (UOE + [v, lim § ‘@) - {Pa, (C.48)
=0 -

whucf'(t°)>t°20. But this last equation is the same as that of (the first line of ) Eq. (C.2) and

we know the latter has unique solution T/ (0) given by Eg. (C.3). So we must have
1im ©'¢) ='0), (C.49)
t=0°

ie., T'(1,) is continuous at t_ = 0.
To show that lim i'(t,) indeed exists we proceed as follows, still requiring t, € (0, ;). In
=0

Eq. (C.45) for d8/dt, we substitute the first line of Eq. (C.34) for di'/dt, to get
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@8/at X)) = OZB(:T (1)) / [1+(/)ARYEZA,: T ¢ ) (C.50)
D

where we can be sure that the denominator on the RHS is strictly positive since, by Egs. (C.38) and

(3.39),

lAC)| <1 and |@ZRD;E'Q)] S v,. (C.51)

But (@Z/3t)(t,:t) < O for (1, t) € D°[T,G], as per Corollary B.1, so that 3Z/t)(t; T't)) < 0;

hence

(dg/at )xt) < 0, t, e (0., (C.52)
i.e., 8 is strictly decreasing on (0, t;°). And by Eq. (C.34),

(@ 1)) = (0@ )t)AL), ¢ e (0.1). (C.53)
Now if s -'.mﬁa(t,) < § then At) <0 on (0,t)) so that

(E'10)t) <0, S t, e (0,1 (C.54)

while if s > { then, because § is strictly decreasing on (0, ), there exists t°° € (0,t) such that
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At) > 0 on (0,t,”) so that
(1)) >0, s> t e (0. (C.55)

Further, since 0 < t, < I'(t,) <t on (0,1.), then in either case i'(t,) is bounded and monotonic on

0, t%) 30 that lim T'(t) exists and our claim is proved.

=0

Lastly, we show continuity at the other exceptional points. To that end, let t; be defined by

(
t - x|/, ifo<t-|xjcsST,

U=, T, < t-xlfc < 1,0) (C.56)

| 4t-Ixl/), if L @) S t-|xlfc < =;

then, for t, € (0,1,), Egs. (C.52) and (C.53) still hold. Now if i = inf §(t) 2 { then
te@1)

At) 2 0 on (0,t,)) so that

(' )t) 20, i2f t e O ' (C.5T)

while if i < { then there exists t,~ € (0,t.) such that A(t,) <O on (1, ",t;) so that

(7)) <0, i<l t e @<t (C.58)
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Hence i’ (t,) is bounded and monotonic on ()%, t)) so Lim i'@) exists. Then from Eq. (C.44) we
10

have

t -im /@) = o8+ (v [ im T') - ) - (v/DGED im ') -t,’]’—(}*)"‘ (C.59)
) -0y 100"

so by uniqueness of solution to this equation (which is the first line of Eq. (C.4)) we have

imi'e) =t'wW). (C.60)
L0 e

This is the continuity result in case t, = T_; otherwise, we have from Theorem C.3 that

im ') =t-|xjc =1’ (C.61)
1-00)

80
im @) =T'@) =t~ ixjic (C.62)
-

which is the continuity result for the other two values of t. (as well as for t, = tg(t — |x|/c)).
Finally, continuity at t, = T, incases t ~ |x|/c S T, and t - |x|/c 2 t,(T,) follows from the fact

ﬂntf'(t,)st- Ix|/c in some (one-sided) non-punctured neighborhood of T,. I
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Corollary C.6: Fix x, t according to Eq. (C.1). Then the map t - B(t; x, 1) is strictly

decreasing on (0, T,(x, t)].
Proof. From Eq. (C.52)ff, d§/dt, < Oon (0, T,,(X. t)); and from Eq. (C.37) and Theorem C.S,

the indicated map is continuous on [0, T,(x, t)). W
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APPENDIX D: PROOF OF THEOREM 5.1
We present our work as a sequence of five results culminating in existence Theorem 5.1. We

will use in the sequel A, rewritten in the form

A1) = (Using)x]™ Z(t,; ) - cow. ®.1)

Lemma D.I: Leta,b,cy, ¢, 0,0, c'€e Ra<h, ¢<d(i=1,2),c >0 and
M, = max{|c,|, |[d,|} > 0. Let functions h: [a, b] x [c,, d,] = Rand k: [a, b] x [C’, =) =
(¢, dy] be such that
@) h is continuous, with¥hl_ w M < =;
i) VY, o @3 Y) = k(t;y) is continuous, i = 1, 2; and
@) v, . m k(gy) = k@) e [c,d). i = 1,2, uniformly on (a, b].
Further, for y € [a, b} define

[ ]
HY) = [ &, kA, k). ©2)

b
m 3y) = [at, k& (DA, k). D.3)

b A dd

Proof: Let € > 0. Since h is uniformly continuous on {a, b] x [c,, d,], there exists
5>O0suchthat V, .y |k -k| <8 |ht, D) - h(t, k)| < &2M,(b -a). Since the
convergence of k(t,; y) to k(t) is uniform, then 3y,, V, .,y ¥ > Y |k(t:y) - & ()] <8

and |k(t:y) - k,_t)| < &2(M +1)(b -a); further, k_(t) is continuous, hence integrable, on [a, b).
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Now if y > Y then V'.‘M,

Ly (O, k, _(8) = k(L Y) At K, (1)) |
S [k ) 1k @) = k] + i) 1Ak, (1)) - A, k(i y) |

SM+1)e2M+1)(b-2) + Mje2M,(b -3a) = e/(b -a) (D4)
and so
[
f dt |k, _(h(t, k, _(t)) - ky(t; YA, k(i) | <€ (D.5)

whenever y>Y. B

Proposition D.2: Let & = (sing, 0, cos) with 0 < ¢ < w2, ©> 0, and t, € [0, T, (V).

im x| Z¢;T'e;|xi®, xjc + ) =0 D.6)
.

t,-uniformly on [0, T,'(¥)].
Proof: From the first line of Equation (C.3), which applies here since |x)/c + Tt > |x|/c, we

compute

Jion 7(0; x|, |xlc + ©) = V1 - (v,/c) cosd)]. D.7)
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Since

ZO;T©; x|g. [x)c + 1) = vI'©; |xI& [x|/c + 1) (D.8)
then

:1.21. Ix|"Z(©; ¥ (©; |x|&, [x}/c+1) = 0. (D.9)
But by Corollary C.6,

0SZ@;T(; |xIt, |xlc + 1) S Z0; T(©; |x|g, |xlc + ) (D.10)

for all t, € [0, T,(v)], since T,(|x|g, |x|/c + 7) = T,(x). Hence, we are done. W
Proposition D.3: Let & = (sing,0,cosd) with 0 < ¢ S /2, T> 0, and t_ e [0, T, (D).
(i) we have
hlligl-'t"(to; Ix|g, Ix)ic + ) =T (3 X9 (D.11)

t,-pointwise on {0, T, ()], where
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¢

UC, @),
t!
(0.0 = { T - [IIC,GEHC,@)

+ COGE)® - t)

| - [C/@) + 2C@GE@) - LI},

for

C,@# =1-(v/c)cosdp and C,(9) = 2T (v /c)cosd;

(i) t, = ¥_(t,;¢,7) is continuous on [0, T, (v)];

ift, =0

ift,#0and ¢ = 2

ift, #0and 0 < ¢ < W2

(D.12)

(D.13)

(iii) the convergence in (i) is actually t;-uniform on [0, T."()]; and

Gv) lim T(,:9,7) = forall t, e [0, T (x)].
—(w12)"

Proof: (i) If t, = 0, then the result follows immediately from Equations (D.7) and (D.13). so

suppose t, > 0. Since t > 0, then Equation (5.16) holds for all [x| > O so that, from Equation (C.4)

with x = |x|& and t = |x|/c + %, we have for all |x|>0

Ixjlc + t ~ 't"(to; Ix|&, x|/c +©)

(D.14)

= (|x|/c){sin’$ + [|x|"Z(; 't"(t°; [x|®, [x|/c + 7)) - cos’$p)*}~.

Squaring both sides of this equation and using ¥ -t, = (i'-1) + (1 -t ) yields
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CGEAIE' ¢ x|t xl/c+17) -1

+ 2[C,(9) + C,@GEUNT - VIT (L x|g, |xVec +1) - 1]
- (t-)2 - 2C,(®) - CHGEQXT -]

= Dy (t;Ix]) + Dt IxDIE @, x|, [xl/c + ©) -2

+ Dt IxDE @ Ixig, [xlc + 1) - 11 + Dt,; Ix)

where C,(¢) and C,(¢) are given by Eq. (D.13) and

D, (t;:Ix]) = ~(Ix[/e) (v JoPT "G @; [x[%, [x)c + 7) - TP

x {TIGEE ¢ [x|f, |x)c + 1) - 1) + 22TG@ )z -1) - 1]},

D,t,iIx]) = (Ixle)* (1 - (v/e)? {1 -6TIGEAXT -1) + 6[T *G(E )z ~1)F}),

Dyt [x]) = -2(|x|/c) (v /el (t -t ){1 -3T G )t -t) + 2[T Gt Xt -t )1},

Dyt Ix]) = =(|x|/c) (v fe)*(x ~t )1 - TG )z - )} ;

(D.15)

(D.16)

®.17)

(D.18)

(D.19)

note that we have supressed the T-dependence of D, D,, D,, and D,, and the £-dependence of D, in

their argument lists. In the above we have introduced extraneous roots for T in the squaring process
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but, by Theorems C.1 and C.2, Eq. (D.14) has unique solution for all |x| >0 and t 2 0. Now

since t, € [0, ’i‘,’ (t)) then t € [t,t, +T/G(f2t)]; combining this with Eq. (5.16) we then have for

al x| >0

Fa,; [xIg, jx)ic + 1) -1] < TIG(E®,). (D.20)
Thus

ID,(.: IxD| S T(Ix V) (v Je) TG, (D21)

ID,; IxD) -1 Tt [xIR, IxMe + ©) =T < (Jx)o) 1 +13(v R ITUGHQL), (D22)

D, XD Tt IxIR, Ixlc + 1) -] S 12(Ix}/c) (v /P THGHQL, (D.23)
and

IDyt,: Ix1)| S 4(Ix}e) (v/cP ITHG HQ) (D24)
50 that

IRHS of Eq. (D.15)[ < [1 +36(v/cR)(|x|/c)'THG () < 2(|x[/c)'T¥G*(Qt).  (D.25)

If ¢ = %x/2 then from Egs. (D.15) and (D.25) we have

116




@, IxIg, |xlc + v -1 | < (x|©)* TYG @ t,) (D.26)

lim 7@ IxIg, Ixlc+t) =1 @ =n2) D27)
t-pointwise on (0, T.(1)]. Since this result must hold for all roots of Eq. (D.15), it also holds in
particular for the unique root of Eq. (D.14), so the result stated for ¢ = n/2 in Eq. (D.12) follows.

Suppose then that 0 < ¢ < n/2 and consider the quadratic equation LHS of Eq. (D.15) = 0, i.e.,
COGE)IW? + 2[C/@) + C,@IGE )T - t)Iw - (T -t)[2 -2C,(@) - CGEQ )T ~1)) = 0

(D.28)
with solutions
wi(t,:9,0) = -{1/C,()G(QI){C,(¢) + C,GQt )T -t) 5 [CI@) + 2C(H)GE Xt -1)]'2). (D.29)
Subtracting Eq. (D.28), with w there replaced by w(t ;¢.), from Eq. (D.15), with notation

w(t; [x],,7) = i’(to; Ix|®, Ixl/c +1) -1 (D.30)

in the latter equation, we find, using Eq. (D.25), that for all |x| > 0
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et Ix].0.0) + Q4. DF - [Wi(t,:¢.9) + Qt, 9. DF| S 2(x|/c) ' [MCHGERIT/G (€2

(D.31)

where

Q(t,.9,7) = [C,(®) + C,GEN Xt - 1)IC,($)G(). (D.32)
Hence there are four possibilities:

lim w(t; [x{.9,7) = w2(t;9.7), (D.33)

I

lim w(t; |x|.9,7) = w_(t,;:9,7), (D.34)

Ri-

hli'_lp w(t,; |x].9,7) = -w(t,:4,7) +2Q(t,.9. )], (D.35)
and

hlllgl_W(t.; ix|.9,0) = wI(t :9,7) +2Q(t,.9.7)], (D.36)

corresponding to the four roots of Eq. (D.15). The comrect choice is easily determined by noting that

T + im wl(t;4,7) = ~t/C,§) =T + lin;.{ -{wi(t,:9.7) +2Q(t,.9,0)]) D.37)
(.-D

=0
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50 that these three choices for the limit yield (for T > 0)
im Hm TG [xig, xlc+t) =t « lim wit; |x[.0.7) = ~/C,4) < O (D.38)
=0 Rifse 1,0
yet, by Eq. (5.16), the iterated limit must be 2 t, 2 0. On the other hand,
T + lim wl(t,:4,7) = UC,@); (D.39)
10
hence the correct choice is Eq. (D.33) and so
lim T, it Ixlfc + ) = T + wit,:0.0) (D.40)
as claimed in Eq. (D.12).
(ii) The continuity of the map t, f'_(t°;¢,1) at t, = 0, hence on [0, T.(t)], follows from
Egs. (D.39) and (D.40), to wit,
lim 7(t,:0,%) = T+ lim w_'(t,:0,7) = UC,$) = T.(0:4,7). (D41)
-0 1,-0°
(iti) Since 't"(t,; x|%, |xj/c + 1) > 't'i(to;¢,t) to-pointwise on compact [0, T.°(z)) and

to"f.'.(t.,w,t)lsconﬂmmxsﬂue,ﬂ:enbybini'sﬂworemitissufﬂciemwshowmmemap

Ix{ = T (t.; Ix|2, |xifc + ©) is monotonic for each t, € [0, T, (®); in fact, we show that there
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exists X > O such that V, _ o 5 [x| > X — the aforementioned map is increasing. To that end,

we apply — as in Theorem C.4 - the Implicit Function theorem to

H([x|, w) = w ~ [x|ic + (Ix[/c){sin’® + [|x|"Z(t,; W +7) - cosdl’}"? (D42)

to conclude via Eq. (D.14) that x| = w(t ; |x|,4,0) = T(t,; x|, jx}ic + ©) -t is C'

at £ € (0,) whenever = and t, € [0, T, ()] satisfy

0 = (sip + [E'Z(;Tt, E8, x/c + 1) - cos§)’})'” = R(t,, =) (D43)

(where the ¢ and t dependence of R have been supressed); and further, for such & and t, that

©@wRix|Xt,:=.9,7) = (1) {1 - Rt, x) + [R(t, E)]"[R(t, =) - cosdIR (¢, =)}
£ {1 + (MO)R(,, E)'R (L, ) - cospl@ZANN; T'(t,; =8, x/c + 1))

(D44)

R(t, =)= x="20;T¢, =8 2/ + 1) (D45)

and the denominator of dw/d|x| is strictly positive whenever the condition of Eq. (D.43) obtains since
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(1/0)|[R, - cospVR|-jdZ/Bt| S 1/c -1 *v, = v/c « L. (D.46)

We now claim that there exists X > Osuch that V, _ 3. ¥ € (X =) = R(t,, ) > 0 so that the
condition of Eq. (D.43) obtains and the map x| = w(t,;|x|.9,7) is C' on (X, =) and Eq. (D.44) is
valid there; indeed, this positivity follows immediately from the definition of R in Eq. (D.43) by using
Proposition D.2. Further, when |x| > X then the numerator of dw/d|x| is positive, as follows. We
first note that if cos$ = O then R (t,, [x|)cos$ = 0 < 1, while if cos¢ > O then, again by Proposition
D.2, there exists X' > 0 such that ¥, _ . 5~ Ix| > ¥ = R(t,|x|)cos¢ < 1 and, WLOG, we may
take X'= X. Thus in either case we have, gince ¢ > 0, that R: > R’ cos¢ 50

{R? - 2R cosp + 1}12 > 1 - R cos; hence, noting from Egs. (D.43) and (D.45) that

R = (R} - 2R cosp + 1)'7, (DA47)
we then have
R - R[R, - cosd]R, = R'[R - R, - cosp)R,] = [1 - R cos¢)R < 1 (D.48)

$0 that the numerator of 3w/d|x| is positive for all t, € [ 0, T, (x)] whenever [x| > X. Thus if
|x] > X then @w|x|Xt,; |x].#.7) > O for all t, € [ 0, T,(¥)) so the map
x| = T/(t,; |x|&, [xVc + ) is increasing for such t,.

(iv) This is straightforward to verify using Eq. (D.12). B
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Proposition D.4: Let & = (sing, 0, cos¢) with 0 < ¢ S %/2, t> 0, and 1, € [0, T (1)]). Then
lim v 7@ IxIg, Ixie + ) = V(i T(,:0.0) (D-49)
t,-uniformly on [0, T, '(%)].

Proof. That the limit is as stated follows from Proposition D.3(i) and continuity of the map
t=V(t,; ) att= T (1,;|x|R, |xl/c + 1), which continuity follows from Eq. (5.16) since t > 0.
Further, since

Vit T, :000) = v (1 - 2T GEa T, ;4.9 - 1)) (D.50)

then, since |G(t)| S 1 for all t_ € [0, T.°(¥)], we have for all such t,

V@, T, :0.0) - VAT [xIg [xbe + )] s 27 q 0.0 - T'a; IxIg, xlc « )|
(Ds1)

so by Proposition D.3(iii) the convergence in Eq. (D.49) is t;-uniform on [0, T,(0). &

It is easy to compute, using Eqgs. (D.12) and (D.50), that, when t_ 0,
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[ v/t - 271G@a X - ), if ¢ = x2

V(i 700,00 =

(Veos{1 - C1 + REWTIWIGEXT - 1)),  i0<e<

(D.52)
and of course

V(©; T(0:4.0)Vc = v/c. (DS3)

[2C,OVC@IGE )T 1) S 4v/OT ' GA)TIGER )1 - (v /c)cosp] < 4V /) < 1
(D.54)

then the second line of Eq. (D.52) is given, comrect to first order in v/c, by
Vit TV = (v/Oll - 277G )T -1)] O < ¢ < ®2); (D-55)
in fact, this last expression is exactly true for ¢ = ®/2, as Eq. (D.52) shows, and for t, = 0 as well, as

Eq. (D.53) shows. In Section V and beyond, we take Eq. (D.5S) (Eq. (5.23)) to be our expression for

vt i',(t,;’.t))lc in all cases.
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Proof of Theorem 5.1: By Proposition D.2, there exists X > 0 such that

V.« nivg X 2 X |x]7Z0; T IxIf, Ixlc + 1) < 1. Define functions &, &;, and A as

follows:

® k0. T,(9)] x (X =) = [-Vsing, sing] by

k@, IxD) = A T'a; [x(g, [xpc + 1)
= (1/sing) |x|™ t,;f'(to; IxIg, Ix|/c + 1)) ~ cowp
with|k,(t,; [x]) |< (1/sind) + cotp < 2/sing;

® kIO T (V) x [X =) = [~v/c, v /] by

bt [x) = Ve Te,; xig, ki + Dy

() fopqe Qp20 4 :[0,T7(0) x [-Using, sing] — R by

h (6, B) = G/(Q)IGEREX1 + )<

with A, (&, )] < Qusiogp(® ST < o

By Eq. (5.16), the maps t, =~ Z (t ; ) ana t, = V(t,; i) are continuous at t,» hence so are
k(t,: [x|), 1 = 1,2; further since G and G’ are continuous on [0, ‘T.”(1)), then 0 is h on its domain_

Finally, by Propositions D.3 and D.4 and Eq. (D.55), k(t,; Ix]) converges uniformly to —cot¢ on

124




[0, T (¥)] as x| — = and ky(t,; |x]) converges uniformly to (v/O)(1 - 2T G Xt - 1)] (0
first order in v,/c) on [0, T. (%)} as |x| = «. The results of this theorem then follow by applying

Lemma D.1to E(|x|g, x|/c + 7) and B (|x!f, |x|/c + T) as specified by Egs. (5.1) - (5.3). W
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