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ABSTRACT 

The problem of reconstructing an image from its Radon transform profiles 

is outlined. This problem has medical, industrial and military applications. Using 

the computer assited tomography (CAT) scan as an example, a discretization of the 

problem based on natural pixels is described, leading to a symmetric linear system 

that is in general smaller than that resulting from the conventional discretization. The 

liuear algebraic properties of the system matrix are examined, and the convergence 

of the Gauss-Seidel iteration applied to the linear system is established. Multilevel 

technology is successfully incorporated through a multilevel projection method (PML) 

formulation of the problem .. This results in a \'-cycle algorithm, the convergence of 

which is established. Finally, the problem of spotlight computed tomography, where 

high quality reconstructions for only a portion of the image are required, is outlined. 

\\"t• establish the formalism necessary to apply fast adaptive composite (FAC) grids 

in this setting, and formulate the problem in a block Gauss-Seidel form. Numerical 

results and reconstructed images are presented which demonstrate the usefulness of 

these two multilevel approaches. 
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I. INTRODUCTION 

The problem of determining the nature or properties of some object though 

a non-invasive procedure has many real-world applications. In the medical field, 

a doctor might want to determine whether or not a patient exhibiting symptoms 

associated with a brain tumor actually has such a tumor without opening the patient's 

skull to look inside. In industry, an inspector might need to verify the integrity of 

a pump encased in a pipe, without opening the pipe to do so. Many other similar 

situations exist. In all of these cases, it is often possible to determine the nature of 

the object's interior by measuring its density or some other physical property, and 

then using this measured data to reconstruct the object in question in terms of the 

measured property. 

The example we use throughout this study is Computer Assisted Tomography 

(CAT), the well-known CAT scan. In addition to the obvious medical use, CAT has 

important military applications as well, such as jet aircraft engine manufacturing. 

Here, the density of unknown object, say a jet engine, is measured by passing x-rays 

of known intensity through it and recording the emergent intensities. Given this 

collection of x-ray intensity data, the density of the engine is then reconstructed for 

quality control. 

Other medical tomographic applications include Positron Emission Tomogra-

1 



phy (PET) and Single Photon Emission Tomography (SPECT), where the patient is 

administered a dose of a radioactive drug, which collects in the region of interest and 

then emits radiation which can be detected outside the patient. 

Yet another application is Ionospheric Tomography, in which the electromag­

netic density of the ionosphere is reconstructed. Data is collected by transmitting 

radio waves from beacons on the earth's surface through the ionosphere, where they 

are detected by an orbiting satellite. 

A. GOALS OF THE RESEARCH 

Our research has as its primary objective the expansion of the collection of 

problem types that can be approached with a multilevel method. We use the image 

reconstruction problem as the vehicle in this study. Currently, there are several es­

tablished methods for reconstructing the density, or image . They include Fourier 

methods, backprojection methods, and algebraic methods - all of which have advan­

tages and disadvantages in terms speed, accuracy and scope. We restrict ourselves to 

the algebraic methods, whose major limitation is that they are slow, and attempt to 

accelerate them by incorporating multilevel technology. We accomplish this by ap­

plying the principles of multilevel projection methods (PML) to the algebraic image 

reconstruction problem. A secondary goal of our research is the improved performance 

of an algebraic method. Finally, we develop a multilevel based method for solving 

the problem of Spotlight Computed Tomography (CT),in which a high-resolution re­

construction is desired for only a small portion of the image. We accomplish this by 
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applying the principles of PML to a composite grid image space, developing a fast 

adaptive composite grid (FAC) method. 

Our work is new in that the natural pixel discretization, to a large extent, has 

never been analyzed in depth. This is the first rigorous application of (PML) to a 

problem outside of partial differential equations, as well as the first application of FAC 

to the Spotlight CT problem, or of natural pixels to a composite grid discretization. 

This study will generally follow the course we now outline. The image reconstruction 

problem is formally posed, and its relation to the Radon transform established. Some 

of the properties of the Radon transform are summarized, as are several inversion 

techniques. Formally, inverting the Radon transform solves the image reconstruction 

problem. 

B. STANDARD APPROACH 

We look at one particular inversion method, the Algebraic Reconstruction 

Technique (ART), in greater detail. In the standard approach to ART, the space 

containing the image is discretized into small elements called pixels,and the image 

density is assumed to be constant throughout each pixel. This approach yields a 

large, sparse, underdetermined system of linear equations, the solution of which ap­

proximates the image. The system is normally solved with the method of Kaczmarz, 

which is examined and analyzed. 

3 



C. NATURAL PIXEL DISCRETIZATION 

Next, we adopt an alternative discretization based on natural pixels . This 

discretization was originally proposed by Buonocore [Ref. 1), but a careful analysis 

of the properties of the resulting system has not previously been performed. This 

approach produces a linear system that is square, symmetric and in general smaller 

than that generated using square pixels. The system matrix is analyzed, revealing 

a rich collection of linear algebraic properties. The rank of the matrix is shown 

to be determined by the x-ray geometry used to generate it, and its null space is 

characterized. The square pixel and natural pixel discretizations are compared. 

D. GAUSS-SEIDEL ITERATION 

We consider the Gauss-Seidel iterative method for solving the natural pixel 

discretized problem, and convergence properties of Gauss-Seidel iteration when ap­

plied to this problem are established. A spectral analysis of a typical Gauss-Seidel 

iteration matrix for this problem is examined and serves to illuminate the numerical 

performance. The behavior of Gauss-Seidel applied to several test systems is ana­

lyzed, and numerical results are presented, along with several reconstructed images. 

This behavior, which can be characterized by rapid initial convergence followed by 

stalling, makes the problem a candidate for a multilevel approach. 
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E. MULTILEVEL METHODS 

A review of the traditional multilevel methodology is presented. As the im­

age reconstruction problem is not traditional, in that it shares few characteristics 

with problems arising from elliptic PDEs, we consider more general multilevel pro­

jection methods (PML). In PML [Ref. 2], the problem is discretized by orthogonal 

projections, and the projections themselves implicitly define the other multilevel com­

ponents that make up the method. We show that the natural pixel discretization is a 

discretization by orthogonal projections, and formally cast the image reconstruction 

problem in a PML setting. Convergence of the method is established, and its behavior 

applied to several test systems is analyzed. 

F. SPOTLIGHT COMPUTED TOMOGRAPHY 

Finally, we consider the problem of Spotlight CT,where a portion of the image 

is desired at a high resolution. Reconstructing the entire image at high resolution is 

expensive, so a composite natural pixel discretization at different levels of resolution 

is developed. The resulting system matrix is again analyzed for its linear algebraic 

properties. As in the case of uniform discretization, the rank of the matrix can be 

determined by the geometry used to produce it, and the null space of the matrix is 

characterized. The composite linear system of equations can be solved using a block 

Gauss-Seidel method. This approach is formally shown to be equivalent to the Fast 

Adaptive Composite (FAC) multilevel method, for which rigorous theory has been 
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previously developed [Ref. 3]. Numerical results are presented, and composite grid 

images are reconstructed. 
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II. THE RADON TRANSFORM 

Consider the problem of determining the internal structure of an object with­

out having to cut or otherwise damage the object. We refer to such a problem as 

a reconstruction problem, and it will be the basis for the work that follows. An im­

portant category of reconstruction problems is medical imagery, where the object of 

interest is the human body, or some particular organ inside the body. The profile is 

then used to reconstruct the object. In the medical field, probes includes such things 

as x-rays, sound waves, and nuclear magnetic resonance signals. We will focus on the 

x-ray, and the resulting computer assisted tomography problem. For foundational 

reading see [Ref. 4, 5, 6, 7, 8, 9, 10]. 

A. COMPUTER ASSISTED TOMOGRAPHY (CAT) 

If a mono-energetic x-ray is passed along a straight line through some homo­

geneous object, then the intensity of the x-ray is observed to decrease according to 

the equation 

where Io is the initial intensity, I is the emergent intensity, and fl is the linear atten­

uation coefficient, which depends on the material making up the object [Ref. 11]. If 

the x-ray passes through two different materials, traveling a distance x1 through the 

first and a distance x2 through the second, then the emerging x-ray will be attenuated 
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by 

where p 1 and p 2 are the attenuation coefficients of the two materials. For several 

materials the relation is 

For a non-homogeneous object, we may formally let the number of materials go to 

infinity while the distances traveled through each material become infinitesimally 

small. Then f-l = p(x ), the linear attenuation function, and the summation becomes 

an integral over the x-ray path L, yielding 

I _ I - JL J.L(x)dx - oe . 

Now, consider passing many x-rays, along many paths, through an object, with 

the x-ray paths directed so that they are all coplanar. Then we may write the linear 

attenuation function as a function of two variables p(x, y). The attenuation of one 

x-ray is then given by 

(2.1) 

where the line integral is along the x-ray path L. As the linear attenuation func-

tion characterizes the object of interest, we will often refer to it as the image to be 

reconstructed. Equation (2.1) can be rewritten as 

Figure 1 illustrates the path of one such x-ray through an object. 
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Figure 1. An x-ray through an object. 

If the x-ray source and detector are moved along parallel straight lines past 

the object as indicated in Figure 2, then it is possible to collect a set of attenuated 

intensities, or a profile, for the object at some fixed angle </J, as 

P(p,</J) = [p(x,y)ds. (2.2) 

Figure 2. A profile for a fixed angle </J. 
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The basic problem of computer assisted tomography is to reconstruct the image 

f-t( x,y) from a collection of profiles measured at various angles. Solving this problem 

is equivalent to finding the inverse of the Radon transform. 

B. THE RADON TRANSFORM 

Let u(x,y) be an arbitrary function defined on some region D E R 2
. If L is 

any line in R 2
' then the mapping defined by the line integral of u along all possible 

lines L, also a function of two variables, is the Radon Transform of u, provided the 

integral exists. Formally, 

R(L) = [ u(x,y)ds, (2.3) 

where the domain D may be all of R 2
, or some portion thereof. The mapping (2.3) 

was first studied in 191 i by Johann Radon, who also discovered an inversion formula 

by which u can be obtairwd from R( L) [Ref. 12]. 

Consider a param('terization of the line L according to 

p = x cos <P + y sin¢, (2.4) 

where p is a real number and <P is an angle measured from the positive x-axis. Then 

(2.4) determines the equation of a line through the xy-plane, normal to the unit vector 

[ (cos¢, sin <P )T, and a distance p from the origin, measured along [ Defining 

x (x,y)r, then (2.4) can also be written as 

P x. {. 
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1: 

Using either (p, cp) or (p, [) as the variables of the Radon transform, (2.3) can be 

written as 

[Ru](p, cp) = i u(x, y)ds or [Ru](p, [) = i u(x)ds. 

Figure 3 shows the geometry of the Radon transform of a function u(x,y) in terms of 

p and cp, where cp is the angle defining a line normal to L, the path of the x-ray, and 

is measured counterclockwise from the positive x-axis. The parameter p is the signed 

distance from the origin to the line L. 

y 

X 

Figure 3. The geometry of the Radon transform. 

It is sometimes useful to express the Radon transform, in terms of the Dirac 

delta function 0, as 

[ Ru](p, cp) { u(x, y)O(p- X COS cp- y sin cp)dxdy, 1n2 

11 



or 

[Ru](p, [) = f u(x)J(p- x. [)dx. 1n2 

For some objects, the Radon transform can be computed analytically. Consider 

a constant density disk of radius R centered at the origin. Explicitly 

( 

1' x2 + y2 :::; R2 
u(x,y) = 

0, otherwise. 

(2.5) 

Since this object is symmetric with respect to the angle ¢, only one profile is required 

to determine the Radon transform. Let</> = 0, so that the line integrals are computed 

along lines parallel to they-axis, at a distance p from the origin. For values of IPI > R, 

the lines do not intersect the disk and the profile is zero. For values of IPI _:::; R, the 

transform is 

[Ru](p, 0) J
VR2-p2 

- dy = 
-JR2-p2 

The symmetry of u(x,y) yields 

otherwise. 

A graphical representation of the Radon transform of this disk is given in Figure 4 

[Ref. 13]. 

The Radon transform can be extended to higher dimensions. Integrating u( x), 

for x E nn, over all subspaces of dimension n-1 is also a Radon transform. For 

example, if n = 3, then the Radon transform is the set of all integrals of u over all 

planes in R 3 . We will restrict ourselves exclusively to functions of two variables. 
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Radon Transform of a Disk 

phi 0 · 1 
rho 

Figure 4. The Radon transform of the function of a constant density disk. 

C. PROPERTIES OF THE RADON TRANSFORM 

The Radon transform operator has many properties that are needed when 

developing inversion techniqu<•s. We will outline several of the more important prop-

erties. A detailed examination can be found in [Ref. 12]. 

1. Linearity 

Given two functions f and g, and two scalars a and {3, consider 

R{af + {3g} - f [of(x, y) + {3g(x, y)]o(p- x cos <P- y sin ¢)dxdy 
}R2 

- a f f(x,y)o(p-xcos<f>-ysin</>)dxdy ln2 

+!3 f g(x, y)o(p- x cos¢- y sin <f>)dxdy ln2 

- a[Rf] + {3[Rg]. 

Thus, the Radon transform is a linear operator. This property is important in that 

fairly complex objects can be modeled with relative ease by contructing the transforms 

of a collection of simple objects and then combining the results. For example, to 
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analytically compute the Radon transform of an annulus centered at the origin, one 

would compute the Radon transforms of two disks of different radii, and subtract the 

smaller from the larger. So if 

u(x,y) = 

1
1 r2 < x2 + y2 < r2 

' 2- - 1 

0, otherwise, 

then the Radon transform of u(x,y),by applying linearity, would be 

[Ru](p, </>) 

l 

2Jr;- p2 , 

2 ( Jr; - p2- Jri - p2) . 

0. otherwise. 

Figure 5 shows the graphical represent at iou oft lw Hadou t rausform of the annulus. 

~,- ... -

. ' -
Figure 5. The Radon transform of tilt function of a constant density annulus. 
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2. The Shifting Property 

Given a function u(x), we consider the effect of shifting the argument 

of u by a vector a. The Radon transform is 

[Ru(x- a)](p, ¢) = { u(x- a)o(p- x · [)dx. Jn.2 

Letting y = x- a results in 

[Ru(y)](p, ¢) r u(y)o(p- (y +a) . [)dy ln2 

r u ('Y) o (p - a . [- g . [) dg ln2 

[Ru](p- a·[,[). 

Thus, shifting the argument of u by a vector a has the effect of shifting the resulting 

Radon transform a distance a· [along the p-axis . The shifting property allows for 

simplified computation of transforms of objects not centered at the origin. 

Consider a disk of radius r centered at the point (a, b). We desire the 

transform of u(x-a,y-b) , where u is given by (2.5). Applying the shifting property 

results in 

1
2jr2 - (p- a cos¢- bsin ¢)2 , 

[Ru](p, </>) = 
0, 

IP - a cos¢- b sin ¢1 ::; r 

otherwise. 

A plot of the Radon transform of the shifted disk is shown in Figure 6. 

3. The Scaling Property 

Consider 

[ Ru ]( ap, a[) f u(x)o(ap- x · a[)dx ln2 
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Radon Transform of an Shifted Disk 

phi rho 

Figure 6. Th e Radon transform of the function of a constant density disk shifted away 
from th e origin. 

-1
1

1 { u(x)o(p- X. {)dx 
0' IR2 
1 -
~[Ru](p,o. 

This is the scaling property. 

As a special case where o = -1, we have 

[Ru]( -p, -{) = [Ru](p, [), 

so that the Radon transform is an even function of (p, {). This eveness is significant 

in a practical sense, in that when on object is x-rayed, only the angular range from 0 

to 7r need be considered. 

The Radon transform can be viewed as a projection operator. For a 

fixed value of </>, the set of all line integrals as p varies is a projection of u into n. 

This projection is identical to that defined by the reconstruction problem, as the 

right-hand-sides of (2.2) and (2.3) are the same, hence the relationship between the 
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Radon transform and the reconstruction problem. If we define 

u(p,¢) = [Ru](p,¢>) = [ u(x,y)ds, 

and view u(p, cjJ) as measured data obtained from x-raying the object , then u can be 

reconstructed by inverting the Radon transform. We do not use Radon's inversion 

formula directly, as it has been shown to be numerically sensitive to inaccuracies in 

the data [Ref. 5), which in practice are present since the data is measured. Practical 

inversion techniques have been developed, a few of which will now be overviewed. 

D. STANDARD INVERSION TECHNIQUES 

There are several categories of inVt·rsiou tt•chuitJIIC~ for the Radon transform, 

and many variations within each category. Tlw mai11 catq~uric!-> are Fourier methods, 

backprojection methods, and· iteratiVt· 11wt hod~ . TI.i~ work will corJcentrate on the 

latter category, but we briefly discuss t lw ot lwr rrwt hod~ lwrc. 

1. Fourier Methods 

The Fourier methods an· ba .... ·d uu t lw relat iuuship between the Fourier 

transform and the Radon transform. Tlw n ·lat i uu~hip is formalized in the Central 

Slice Theorem. Consider the 2-dimeusioual Fuuric.·r t rausform, F2{/}, of a function 

of two variables, f{x,y). We have 
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Next, consider the one-dimensional Fourier transform of a profile, that is, the trans-

form of [Ru](p, [) taken with respect top, for [fixed. This can be expressed as 

FI{Ru} ~ 1oo [Ru](p, [)e-iwpdp 
2v 27r -oo 

~ 1oo ( f ux)c5(p- x. [dx)) e-iwpdp 
2v 21r - oo ln2 

~ { u(x) (loo c5(p- x · [)e-iwpdp) dx 
2v 27r ln2 -oo 

1 l ( _,) -iwx·td _, -- uxe x 
2..J2; 1(_2 

1 l ( _,) -iw·xd .... -- uxe x 
2v& 1(_2 

y/2;u(w), 

where w = w[ ranges over all of 'R2 • The Central Slice Theorem, in two dimensions, 

says that the Fourier transform of a projection u(p, [) is equal to a constant multiple 

of the two-dimensional Fourier transform u(w). Explicitly [Ref. 12] 

Theorem 2.1: Let the image u(x,y) have a two- dimensional Fourier trans­
form, u(wx, wy), and a Radon transform, u(p, ¢) = [Ru](p, ¢). If FI{ Ru} = 
it(w, ¢) is the one-dimensional Fourier transform (with respect to p) of the 
profile [Ru](p, ¢), then 

where w2 = w;+w; and¢ = tan- 1 (wx,wy)· That is, the Fourier transform of 
the projection of u(x,y) onto the line in the direction of the vector (cos¢, sin ¢)T 
is exactly a slice through the two-dimensional Fourier transform of u(x,y) along 
that direction. 

The essence of Theorem 2.1 is 

FI{Ru} F1 { u(p, ¢)}, (2.6) 
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where F2 and F1 indicate the two and one-dimensional Fourier transforms, respec-

tively. Figure 7 gives a schematic diagram of the Central Slice Theorem in two 

dimensions. The interpolation step arises from numerical implementation using the 

Fast Fourier Transfrom (FFT). 

20 Fourier 
Transform 

Radon Transform ~ 
-------~~ 

10 Fourier 
Transform 

- 'Interpolation 1-1 F11Ru) (m) 

Figure 7. Relationship between Fourier and Radon transforms. 

To invert the Radon transform, consider 

which says that given the Radon transform of some image, we first take the one-

dimesional Fourier transform of each profile. This gives data in polar coordinates. 

Fast implementation occurs through the use of the FFT, which requires data in Carte-

sian coordinates. Therefore, these results are interpolated to Cartesian coordinates 

and then an inverse 2-dimensional Fourier transform is taken to recover the image. A 

family of such Fourier methods exists, based on how the interpolation is carried out 

[Ref. 5, 14, 13, 15]. 
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2. Backprojection Methods 

Let '1/J(p, {) be an arbitrary function, where p 

as before. The backprojection operator B is defined as 

x·{ = xcos</>+ysin</>, 

[B'lj;](x,y) = 2 ion '1/J(xcos<f>+ysin</>,{)d</>. 

The action of the backprojection operator can be interpreted as follows. Fix a point 

( x, y ). Then for every angle </>, u( x, y) is a value contributing to the line integral 

along the line p = x cos</>+ y sin</>. That is, u( x, y) is part of [ Ru](p, </>) for every 

</> E [0, 21r). Backprojection assembles at (x, y) the sum (integral) of all values to 

which it could have contributt>d, i.e. 

which by the eveness of tilt• Hado11 transform becomes 

B{lfu}(:r,y) = 2 fon[Ru](p,</>)d</>. 

Geometrically, backprojection is a form of image reconstruction. For each profile, the 

values corresponding to a point (x, y) are spread over the image region. The linear 

superposition of values that results is an approximation of the image. Figure 8 shows 

the backprojection operation for two profiles taken of a rectangular object. 

Backprojection by itself is not a satisfactory reconstruction technique, 

as is evident in Figure 8 by the areas surrounding the rectangle that have been shaded. 

Normally, backprojection is used as an intermediate step in other inversion techniques 
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(a) X 

(b) X 

Figure 8. (a) Two profiles of a rectangle. (b} Backprojection. 

that are very effective. One of these techniques, known as backprojection of filtered 

projections, is the most widely used reconstruction method [Ref. 16]. This method 

can be formulated as 

u(x,y) = BF}1{Iwl FI{Ru}}. 

The method can be summarized follows. Given the Radon transform of some image, 

take the one-dimensional Fourier transform of each projection and then weight the 

results with a factor lwl. This weight factor is the filter. Next, take the inverse Fourier 

transform of the weighted projections and then backproject the results to recover the 

image. Figure 9 gives a schematic diagram of the backprojection of filtered projections 

method. It should be pointed out that this method can be performed entirely in 

image/projection space without the use of Fourier transforms, by using convolutions 

instead. 
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Radon Transronn -------..;.1 Ru(Ml 

Backprojedion / 
/ 

ID Fourier 

Transronn 

~~ {lwiF)_{Ru} (m) -llwi~{Ru} (Ol) 
Filler I 
--- F1 {Ru) (m) 

lnnne ID 
Fourier Transronn 

Figure 9. Relationships in backprojection of filtered projections. 

This alternate path to the image is also shown in Figure 9. For ease of 

development, we only describe the frequency domain implementation. 

Another closely related technique involves backprojecting the projec-

tions first, and then filtering the backprojection. This method is known as the filter 

of backprojected projections, and can be expressed as 

u(x,y) 

Given the Radon transform of some image, backproject it and then take the 2-

dimensional Fourier transform of the result. This quantity is then filtered by multipli-

cation by lwl and then the inverse 2-dimensional Fourier transform is taken, recovering 

the image. Figure 10 illustrates schematically the implementation of this method. 

The final category of inversion techniques are iterative. They involve discretiz-

ing the problem into a linear system of equations, which is subsequently solved to 

recover the image. We wish to concentrate exclusively on this category of meth-
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Inverse 2D 
Fourier 

Transform 

Radon Tran<>form ~ 
--------~ 

Filter 2D Fourier 

Tran<>form 

Backprojection 

Figure 10. Relationships in filter of backprojected projections. 

ods, first discussing the standard techniques, and then developing a more efficient 

method. In the next chapter we will develop and analyze the standard technique of 

discretization by squar·c JJ iit /-' . as well as the iterative method of f(aczmarz to solve 

the resulting linear system . 
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III. ALGEBRAIC RECONSTRUCTION 
TECHNIQUES (ART) 

A. DISCRETIZATION BY SQUARE PIXELS 

The algebraic reconstruction technique involves discret izing the Radon trans-

form problem Ru = f into a system of linear equations, whose solution approximates 

u. A family of ART methods can be developed based upou laow one discretizes the 

problem and solves the resulting linear system. 

The standard approach is to discretize tlw prohlt·ua hy squar<' pixels. Let u be 

the density function of the image to I)(' rt'coaa~t ructt·cl. awl ctssunw it is defined in a 

square region of unit area. This unit ~quan· i~ ~uiHiividt·cl i11tu a grid of smaller ele-

llH'nts, or pixels (from picture elemcut ... ). illlcl u j._ a.'"'uuwtl to ht' constant throughout 

each pixel. Let the image be dividt'tl iuto ,l Mluart· pixt·l"' of t'qual area, so that we 

are approximating the continuous solut iua a 11 \\ it la <ua , > , array of numbers. These 

numbers will be the unknowns in th<' liaw.tr !-Y"-tt·na of t'<luations. 

We define the geometry at wlaida ~ · ray~ an· p«L..,st•J through the image. As-

sume there is an array of N1 detectors pu~it iorat'd to measure the intensity of the 

x-rays after they have passed througla tlae image. and an array of N1 x-ray sources 

positioned parallel to the detectors so that the path of an x-ray through the image 

is perpendicular to the detectors. Assume further that each detector measures the 

intensity of only one x-ray, and that the sources are positioned such that the x-rays 
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cover the entire image. Let the source/ detector arrays be rotated about the image, 

stopping at M angles c/J1 , c/J2 , · · ·, cPM. At each angle the array produces a sampled 

profile, yielding a set of M such profiles. The N 1 detectors on each of the M angles 

determines the geometry of the problem. 

Each x-ray passing through the image defines an equation in the linear system. 

Figure 11 depicts the ith x-ray at angle </Jj passing through the image, which has beeen 

discretized into an n x n array of square pixels. The equation generated by this x-ray 

is given by 

n n 

I: I: W1JX1J = fij, 
1=1 1=1 

where fij is the measured intensity of the x-ray, the X1J are the unknown values for 

the pixels, and the W1J are weight factors which are non-zero only for those pixels 

through which the x-ray passed. Observe that 

n n 

[ u(x, y)ds , I: I: W1JX1J - fij ~ Ru(pi, cPj ) 
1=1 1=1 

i.e., the sum approximates the integral. 

There are N1 x-rays at each of M angles passing through the image, for a 

total of N = N1 x M such equations. We can write the resulting linear system as 

The weight factors W1J, which are the entries of](, can be assigned in several 

ways, depending on assumptions made about the physical nature of x-rays. First, 

assume an x-ray has no width, so that its path through the image is a line. Then the 
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Figure 11. ART geometry. 

weight factors can be assigned as 

WJJ 
( 

1, x-ray passes through I Jth pixel 

0, otherwise 

We call this approach the zero-one discretization. It is attractive in its simplicity, 

but it has several drawbacks. For example, if an x-ray passes through the center of a 

pixel, or just through the tip of a corner, the weight factor is still assigned a value of 

one, which intuitively seems inaccurate. Also, it is possible for a ray path to coincide 

with the border of two pixels, in which case we must decide to either assign both 

pixels a value of zero or both a value of one. Again, either decision seems inaccurate. 

Some of these inaccuracies can be overcome by letting the weight factors be 

defined as the lengths of the ray paths through the pixels. This approach, which we 

call the thin ray discretization, corrects the problem of assigning equal weights to a 

pixel regardless of whether the x-ray passed through its center or just cut its corner. 
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This approach most accurately represents the line integrals of [Ru] . However, the 

possibility of x-rays coinciding with pixel boundaries still exists. 

Another approach to assigning the weight factors can be developed by altering 

our assu1nption that x-rays have no width. Let the x-rays have width , so that a 

path through the image is a strip. Then the weight factors can be assigned as the 

area of the square pixel contained within the strip. We call this approach the fat 

ray discretization. It has a physical justification in that the detectors are actually 

a photgraphic plate subdivided by baffles into detectiou bius. Each bin will detect 

x-rays across its width, so the rays are modeled as st rip ~. 

No matter which of the discretizatious i!' wwd. it !- la ou ld J,t• clear from Figure 

11 that the number of pixels intersectt'tl by au x- ray i~ ~mall compart'd to the total 

number of pixels. Thus the resulting matrix will iu g,•·rwral lw sparst'. Also, since one 

would desire as high a resolution ima~· · a_ .. po, .. iJ.J,. without ~u bj t·ctiu~ the patient to 

lethal doses of radiation, the number uf x r.l~ .. u .. c•d i .. ll"llally lt·ss tlaau the number of 

pixels, producing a rectangular matrix .tlld cill uudc·rcldt·n uim·d system of equations. 

A typical medical application could i11 \·oh t' '' = .\'1 = .1 12 and A1 = 180. Thus 

the size of the problem is quite large a.~ wc·ll. iu this ca.. ... t' iuvolving a matrix with in 

excess of 2.4 x 1010 entries, of which l(•ss t lla11 oil<' pt'rcent are nonzero. Figure 12 

illustrates the sparsity pattern of such a matrix. 

The size of this problem precludes a direct method of solution, so we look to 

iterative methods to solve the linear system. As the matrix is in general rectangular, 
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Sparsity Pattern of Kaczrnarz Matlix 

-------------------------------._,.,.....,....,....._,,......,....~~~,.....~~,.....,.....,....._,,....._,,.....,....._,.,....,....._,_,,....._,_,_, 

//////////////////////////////. 

////////////////////////////// 
//////////////////////////////. 
'//////////////////////////////. 
'//////////////////////////////. 
'//////////////////////////////. 
'//////////////////////////////. 
'//////////////////////////////. 
'//////////////////////////////. 
////////////////////////////// 

////////////////////////////// 
._,_,_,.,...._,_,.,...._,_,,.....,....._,....,....,....._,,.,...._,,.._,.,........,........,........,....,.........,........,...._,_,.,...., 

100 200 300 400 500 600 700 BOO 900 1000 
nz = 31050 

32 detectors, 16 angles, 32 x 32 J]xels 

Figure 12. ART matrix. 

and we have no guarantee of non-zero elements on the diagonal, the classical relaxation 

methods such as Jacobi and Gauss-Seidel are not appropriate here. The method of 

l~aczmarz [Ref. 17] can be applied to such problems, so we present it here, and then 

later use it for comparison. 

B. THE METHOD OF KACZMARZ 
1. Definition and Properties 

Let ]{ : Rn
2 

-7 RN define the system of equations 1\ i = f Then 

given an initial approximation Xo E Rn
2

' the method of Kaczmarz corrects the ap-

proximation by sequentially adding a multiple of each row of the matrix 1\ to it. The 

desired multiple is that which causes the corresponding component of the residual, 

r = f- I< i, to vanish. One cycle through all N equations is called a sweep.Letting 

Wi be the ith standard basis vector, one sweep of Kaczmarz can be written as 

For i = 1, 2, · · ·, N 
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Solving for s yields 

-uf!' r + suf!' ]{ ]<T W; = 0 
~ ~ l. • ' 

s 

..... 
r· ~ 

where fi is the ith component of the residual vector r. 

We chose the method of Kaczmarz because of its convergence properties , 

which simply stated are that if a solution to the linear system exists, then Kaczmarz 

will converge to it. Formally, we cite the following convergence theorem [Ref. 14]. 

Theorem 3.1: Let H1 and H 2 be real Hilbert spaces, and let R: H1 --+ H 2 be 
a continuous linear operator. Let f E H2 be given. Assume that Ru = f has 
a solution. If u 0 E Range( R*), then the sequence uk generated by the method 
of /{aczmarz converges to the solution of minimum norm ask--+ oo. 

Iff E Range(/\), then the linear system Kx = f satisfies the hypothesis of the 

above theorem. The usual choice for x0 is the zero vector. It is not totally clear if the 

minimum norm solution is the best in terms of how the reconstructed image appears, 

but because we can find this solution and it is unique, this will be the solution we 

seek. 
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Geometrically, Kaczmarz 's method acts by correcting the approxima­

tion in a direction orthogonal to the hyperplane defined by the equation being con­

sidered. Figure 13 shows the action of several iterations on a problem consisting of 

two equations. Observe that convergence will be fast when the hyperplanes defined 

by the equations are nearly orthogonal, and slow if they are nearly parallel. 

y 

X 

Figure 13. Geometric interpretation of 1\·aczmarz 's method. 

It is also interesting to consider a physical interpretation of the action 

of Kaczmarz 's method in terms of the reconstructed image. Starting with the zero 

vector as an initial guess, the image is black. The action of Kaczmarz is to add a 

multiple of each row of I< to the solution, specifically a multiple of the element of 

the residual corresponding to that row. Each row of]{ can be attributed to an x-ray 

passed through the image, so the effect of the iteration is to spread a multiple of that 

row back across the ray path through the image, assigning to each pixel along the 

path that portion of the residual proportional to that pixel's contribution to the ray 
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path integral. That is, the Ph correction is determined by the amount the current 

approximation fails to satisfy the Ph equation, normalized by the area of that strip 

integral. Thus the action of Kaczmarz's method is a form of backprojection, which 

from Chapter II we know to be a primitive technique for image reconstruction in its 

own right. 

One sweep of Kaczmarz's method involves an inner product, one scalar 

multiplication and one vector addition for each of theN equations, so it is an O(N x 

n 2 ) operation. This can be greatly reduced by exploiting the sparseness of ]( . For 

example, using the thin ray discretization the number of non-zero entries in any row 

of the matrix will not exceed 2nv'2. By working only with these nonzero entries, the 

amount of work involved can be reduced to 0( N x n ). 

2. Numerical Performance 

The method of Kaczmarz is applied to several linear systems created 

at different x-ray geometries, and with assorted right sides generated both analyt­

ically and experimentally. Effectiveness is measured in terms of the 2-norm of the 

residual vector. These and all subsequent numerical computations are carried out 

using MATLAB Version 4.1 running on a SUN Spare Station 10. In all cases, initial 

rapid convergence was followed by stalling, with the magnitude of the residual error 

well short of machine precision, which for the SUN is 2.22 x 10-16
• Figure 14 depicts 

graphs of the norm of the residual and the convergence factor plotted against iter­

ations. Here the convergence factor at each iteration k is computed as the ratio of 
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the norm of the residuals after the ( k + 1 )st sweep to the residual norm after the kth 

sweep. Note that after just a few sweeps, the convergence of the method has slowed 

significantly. 

Norm of Residual vs. Iterations Convergence Rate 
0.12r---.,....---.,....---.----.---, 1.05 

32 detectors, 16 angles, 32 x 32 pixels 

0.95 

0.9 
0.08 

0.85 

0.06 0.8 

0.75 

0.04 
0.7 

0.85 
0.02 

0.6 

~L---~-~1~0~===1~5=====2~0====~ 
25 

0.55 
0 10 15 20 25 

.llerabons Iterations 

Figure 14. Convergence of Kaczmarz's method. 

The geometry of the example problem is 32 detectors on each of 16 

angles, with a square pixel discretization using a grid of 32 pixels x 32 pixels. Other 

geometries were examined, and this is a typical example. The image being recon-

structed is a br·ain phantom, constructed by overlaying ellipses and rectangles of 

various sizes and grey levels inside the unit square, to simulate the cross section of 

the skull and brain. The data vector j was then created by projecting the image 

through multiplication by the matrix ]{. Note that while this data generation is ar-

tificial, it certainly assures us that j E Range(K) and that infinitely many solutions 

exist. Figure 15 shows the "exact" and reconstructed images. In the reconstruction, 

all of the features are resolved to some degree. The white skull is quite clear, as are 
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the general shape, intensity and location of all the features contained within . 

Figure 15. Actual and reconstructed brain phantom images. 

In an attempt to explain the performance of the method , a thorough 

analysis of the matrix K is required. We begin that analysis with its singular value 

decomposition. 

C. ANALYSIS OF THE MATRIX K 

The singular value decomposition (SVD) of the matrix /(is 

K (3.1) 

where U and V are orthogonal matrices, and ~ is a diagonal matrix whose diagonal 

entries ai are the singular values of J(. The columns of U and V are known as left 

and right singular vectors, respectively. Singular values are real and non-negative, 
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and we order them so that 

0"1 ~ 0"2 ~ • • • ~ O"r > 0 · · · 0. 

The number of nonzero singular values r :::; N equals the rank of ]( . Figure 16 shows 

the singular values of]( generated at 32 detectors on each of 20 angles, with the image 

decomposed into a 32 x 32 array of square pixels using the fat ray discretization. We 

will refer to this particular geometry as the standard test geometry.Empirical evidence 

indicates that this matrix K is typical. 

Smgular Values of K 
10° .-----.--..,.-----....----r---..-----...---, 

10
_, Reoolvable Regoon 

10 .. 

10_.o~---:1-!:00~~200~----:-:)()()~-~ .. oo~--=so~o-.L.......;e~oo~ 
~v--.. 

Figure 16. Singular tJaluc." of a typical matrix /\. 

This figure contains a characteristic exhibited by the singular value spectrum 

of all such ](matrices examined. That is, the spectrum can be separated into three 

disctinct regions, or bands, as shown in Figure 17. The first of these is the left 

portion of the spectrum, or resolvable region , where the singular values plot nearly 

horizontal. In the center is the second, a narrow region that we will call the near null 

space , shows marked decay of the singular values that ends abruptly as the singular 
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values drop off toward zero in the third region. The zero singular values correspond 

to the null space of](, implying that the matrix is rank deficient. In Figure 16, the 

resolvable region ranges from index 1 to about index 300, the near null space from 

index 301 to index 575, and those singular values with indices larger that 575 are in 

the null space. 

Resolvable Region Near Null Space NuU 
Space 

Figure 17. The three bands of the singular value spectrum. 

Equation (3.1) can be rewritten as 

KV - UL., 

and if the columns are equated in the matrices on each side of this expression, the 

collection of linear systems 

1: N (3.2) 

anses, where Ui and Vi denote the ith columns of U and V , respectively. If Kacz-

marz's method is applied to these linear systems for various values of i, it is possible 
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to determine which singular values (J"i have singular vectors Vi that are slow to be 

reconstructed. The columns of V are linearly independent and form an orthonormal 

basis for nn2
, the space where the images live. Likewise, the columns of U form an 

orthonormal basis for nN' which is projection space. Thus any right side can be 

expressed uniquely as 2:[:1 a(Ui, and any solution in the Range(!<) can be expressed 

(3.3) 

whose solution is vi, for each i , it is possible to determine how well the solution 

component Vi can be recovered. The solutions should be close approximations to the 

corresponding singular vectors Vi. The quality of an approximate solution can be 

analyzed by decomposing it into a linear combination of the singular vector basis as 

v· 1 

The singular vector basis is orthonormal, and the f3j 's can be computed as 

for J 1: N. 

For the exact solution Vi, we have 

1
1, 

{3j = 

0, 

I = J 

otherwise. 

(3.4) 

(3.5) 

A plot of the coefficients for the decomposition of this solution would be a spike of 

magnitude one at index i . The following figures are plots of the absolute values of 
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the coefficients , j,Bjj, of approximate solutions after 1 and 25 sweeps of Kaczmarz 's 

method. Shown are the results for i 

z 450, a Vj in the near null space. 
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0.06 

~ 0.05 
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Figure 18. Plot of the coefficients of the decomposition of an approximate solution 
from the resolvable region after 1 and 25 iterations. The plots are magnified to bring 
out detail. 
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Figure 19. Plot of the coefficients of the decomposition of an approximate solution 
from the near null space after 1 and 25 iterations. 
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A qualitative interpretation of these plots follows. We observe from the ex­

periments the components Vj for indices in the resolvable region are almost totally 

recovered. A spike of magnitude one located at the appropriate index is clearly 

present, along with a small amount of noise. These components do not adversely 

affect the performance of the iteration. On the other hand, Vj for indices associated 

with the near null space the components are only partially recovered. There is no 

easily recognizable spike, and significant noise is present. These components represent 

the unrecoverable , or slow components of the solution, and they cause the iteration 

to stall. It is for these reasons we name the regions resolvable and near null space. Fi­

nally, it should be noted tlaat the iteration mixes modes,that is, introduces additional 

components of the singular ,·aim· spectrum as noise into the approximation J; that 

are not part of the exact ~olution t~. The mode mixing occurs in the near null space. 

This behavior has serious implications, in that we could have an exact solution that is 

defined entirely in the rt'solvablt' region, and the iteration will introduce components 

(through mode mixing) in the near null space that subsequently will be difficult to 

recover. 

From our analysis thus far, if the solution has components in the near null space 

of I< , then Kaczmarz's method will be slow in recovering them. Also, the iteration 

mixes modes, introducing components in the near null space that are not part of the 

actual solution. If the width of the near null space could somehow be controlled, we 

might be able to improve performance. We first considered how the geometry of the 
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problem influences the near null space. It is determined experimentally that, for a 

fixed number of detectors, the width of the near null space increases with the number 

of angles, (as does the dimension of the null space). Figure 20 illustrates the singular 

value spectrum for two matrices contructed from 32 detectors, using both 4 and 16 

angles. The image space is decomposed into a 32 x 32 array of square pixels using 

the fat ray discretization. For the 4 angle geometry, the near null space is defined 

by indices 85 to 109, while for the 16 angle geometry it ranges from indices 300 to 

449. This is an increase in the relative size of the near null space from 21% to 29% 

of the spectrum. Intuitively, one would expect the quality of the reconstruction to 

improve with a larger number of angles (hence more data). Thus a trade-off likely 

exists between accuaracy and performance. 

10, .----r--~--sn-· ~ .... ~ar_va~u_""--.--.--..----..---. 

10' 

t\.. 
10 1 

.. 
t1o' 

r 
10 .• 

1o·• 
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104o~--:20':----'40:---""":eo:---..,.,ao__.< __ 1.....,oo---L-1~20-J 
Index 
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Figure 20. Singular values for two different geometries. 

The nature of the Kaczmarz method itself will allow us to determine the source 

of the near null space components generated during the iteration. Recall that during a 
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sweep of Kaczmarz, we correct the approximation by adding a multiple of each row of 

the matrix]( to the approximation. Since the rows of]( are defined in the same space 

as is the image, that is, nn2
' we can decompose them in terms of the singular vector 

basis and discover where the slow components originate. An investigation along these 

lines reveals that strong near null space components are present in those rows of ]( 

corresponding to x-rays that nearly miss the image region. It should be pointed out 

that the square in which the image lives is the image region. The image may be zero 

throughout most of the image region, but the value of the image is immaterial. We are 

concerned with rays that nearly miss the image region. A ray that misses the image 

entirely produces a row of zeros in the matrix and is not used in the reconstruction. 

The rays adjacent to these are those are of interest to us. It is our conjecture that the 

rows of /\ corresponding to x-rays that nearly miss the image, i.e. adjacent to rows 

of all zeros corresponding to x-rays that entirely miss the image, are the major source 

of the slow components in the near null space. Figure 21 depicts a simple example 

of one angle of a fat ray discretization. Rays 1 and 8 produce rows of zeros as they 

entirely miss the image. Rays 2 and 7 are near misses and most likely correspond to 

rows in the matrix which contain near null space components. The remaining rays 

generate rows that most likely contain only components in the resolvable region. 

We now return to the standard tets geometry of 32 detectors and 20 angles. 

Figure 22 depicts the spectral decomposition of a row corresponding to an x-ray 

passing through the center of the image (row 8), as well as that of a row corresponding 
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Detector 

1 2 3 4 5 6 7 8 

Source 

Figure 21. One angle of a fat ray discretization. 

to a near miss (row 28), taken from a matrix with geometry 32 detectors, 4 angles, 

and 32 x 32 square pixels. RPcall from Figure 20 above that for this geometry the near 

null space ranges from indices 8.5 to 109. The presence of near null space components 

is obvious in the second plot. One solution to this problem is to drop the near miss 

rows from the matrix, but doing so results in a geometry that does not completely 

cover the image. Another approach might be to keep the rows in /{, but not include 

them in the Kaczmarz sweep. Another is to join near-miss strips with their interior 

neighbors. In all cases, inaccuracies might arise if significant parts of the image lie 

along its edges or in its corners. 

Finally, we consider the spectral decomposition of the image we are trying 

to reconstruct. Let u(x, y) be the image to be reconstructed, and assume we have 

discretized it into an n X n array of square pixels X E nn2 
so that the value in 

each square pixel is constant. This array is the exact solution that we are trying 
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Figure 22. Spectral decomposition of an interior a11d 7lWT' miss row of K. 

to approximate. Based on experimental data. if we d(·corupose i in terms of the 

singular vector basis of K,we find that the exact sol11tiou coutains components in 

NS(/{) . Figure 23 shows the spectrum of a pltautom t,rai u irrragt• usiug the SYD of 

a matrix with geometry 32 detectors. ~ et lll! l.-:- aud :t! · :t! pix<'ls. The null space of 

t his matrix is associated with indire~ :!:.!b to :.!·,( ;. It i-. dl·ar from the figure that the 

exact solution has components in the uull 'JM<'« ' oft lw mat rix . \\'c know that the data 

vector J for an image is in the Rangt 1. h. I h~ tlw way it i ~ generated, i.e. projecting 

it with K, so inconsistency is not tlw ~ourn· of t lw problem. These components in 

NS(I\) cannot be recovered by the it N at iuu. ~~ t lwy form a portion of the error in 

the approximation that, essentially, cau 11ot lw n~olved. 

We may summarize our analysis of tire matrix /\. resulting from a square pixel 

discretization of the image reconstruction problem, noting that the analysis has re-

vealed some significant drawbacks. First , the discretization results in a large, rect-

42 



2 

50 

Spectral Decomposition of an Exact Solution 

100 150 
Index 

200 250 300 

Figure 23. Spectral decomposition of an exact solution. 

angular, sparse, singular matrix to which the classical iterative methods cannot be 

applied, so we use the method of Kaczmarz as our solver, which tends to stall after a 

few iterations. Further analysis using the SVD of /(reveals the spectrum of the rna-

trix can be separated into three bands, the resolvable region, near null space, and null 

space. We find that Kacamarz's method cannot easily resolve components in the near 

null space, and that it mixes modes, thereby introducing components in the near null 

space that subsequently cannot be recovered. It is also found that the exact solution 

itself, when decomposed in terms of the singular vector basis, has components in the 

null space that can not be recovered by the iteration. In the next chapter we develop 

a different discretization of the problem that may alleviate some of these problem 

areas. 
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IV. NATURAL P IXEL DISCR ETIZATION 

A. DERIVATION 

Let u(x,y) be the density function of the image to be reconstructed, and assume 

it is defined in a square region of unit area. Assume we have an array of detectors to 

capture the intensity of the x-rays after they have passed through the image. We do 

not require the detectors to be evenly spaced, but in general they are. Further, assume 

thP x-ray sources are arrayed parallel to the detectors, so that the x-ray paths are 

pt>rpendicular to the detectors. The sources are not point sources and the detectors 

arP not point detectors, but have non-zero widths, so that an x-ray passing through 

the image defines a strip and its emerging intensity is entirely detected by the ray's 

corresponding detector. Finally, assume that the sources and detectors are positioned 

so that there is always total x-ray coverage of the image by the strips. Now, let the 

source-detector arrays be rotated through a set of AI angles, and a profile measured 

at each angle. We again hope to reconstruct the image density u from this collection 

of A1 profiles. 

Next, assume that all sources and detectors have a constant width so that 

each x-ray passing through the image defines a strip of constant width from source to 

detector, as depicted in Figure 24. The collection of strips at a given angle completely 

covers the image, and can be thought of as a set of pixels for that angle which are 

uniquely defined by the x-ray paths. For the M angles we have a collection of these 
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pixels that are discrete and overlapping. As they arise naturally as a result of the 

geometry used to x-ray the image, they are often refered to as natural pixels [Ref. 1]. 

Figure 24 . X-ray strips complcitly con rmg tJ, WHl!Jt at a ji.n d angle. 

Discretization of the problem n·quin~ t lw iut rocluct iou of chamcieristic strip 

functions corresponding to the natural pi'-«'1!'\. l>t·firw .\1 ( m ). for· m = 1 : M, to be 

the number of sources/detectors for tlw ,,o. prufilt· who~•· x-rays pass throught the 

image. Then N = 'L~=I N1 ( m) is t lw totdl uurulwr of x-rays passing through the 

image, and hence the total number of uat ural pixt·b. fur a particular geometry. Let 

tPk: 'R2 -r 'R, 1 :::; k:::; N, be the kth daararteri~tir strip function, where 

.fk -l 0 

for (x, y) E Sk 

elsewhere 
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and Sk is the region of the kth strip within the image square. Figure 25 depicts one 

such characteristic strip function for a given angle¢. Note that the strip function 7/Jk 

is nonzero only on the shaded portion, not the entire strip. 

Figure 25. A representative characteristic strip function. 

Define the operator A : H --+ RN by 

Au-

Here, (- , ·) is the standard L2 inner product and His some appropriate Hilbert space 

in which the image u is defined. 
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The detectors measure x-ray intensity after the ray passes through the image, 

producing a data vector /, which can be modeled as 

Au-

The system Au = f is underdetermined, so that if it is consistent then there 

exist infinitely many solutions. We must select one solution for the image, so we 

choose the minimum norm solution. This is given by A*a [Ref. 18], where a E RN 

solves the system 

AA*a = f. 

Once we have found the vector a, then the minimum norm solution is given by 

u(x, y) = A*a. 

It is easy to see that the adjointoperator A* : RN --+ H is given by 

N 

- 'Lak'!f;k(x,y)- u(x,y). 
k=l 

Hence, A* can be viewed as a backprojection operator. It assigns a value Oj to each 

strip function '1/;j in the image. The strips overlap and the Oj values acculumate 

47 



additively in the intersections of the strips, ultimately produci.ng a representation 

of the image. The image density u represented as a linear combination of these 

characteristic functions by 

u(x,y) (4.1) 

defines a grid of polygons, on each of which u is constant. A typical grid of these 

polygons is depicted in Figure 26, which results from a geometry of 20 angles and 32 

detectors per view. 

Polygon Grid 

oe~~~ 06;-
0 4 11~~4::71~ 

·1 _, .05 0 0.5 

Figure 26. A representative grid of polygons. 

Define the operator B = nN --7 nN as 

B - AA*. 

Then finding the minimum norm solution given by A*n is equivalent to solving the 

linear system Ba = f It should be noted that, unlike the case of overdetermined 
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systems, this formulation does not square the condition number of the operator [Ref. 

19]. 

-The entries in B can be calculated by substituting ( 4.1) for u in Au f, 

yielding 

N 

L ak r 2 'ljJ i'I/J k = fj' j = 1' . . . ' N, 
k=I In 

N 

L ak('I/Jj, '1/Jk) = fi, j 1, ··· ,N. 
k=l 

Hence, the (j, k )th entry of B is given by 

The problem of reconstructing an image from samples of its profiles is now discretized 

by Bo = !, where B = AA* and the approximate solution to Ru = f is u = A'"a. 

The following simple example will serve to illustrate the discretization process. 

Assume we have two profiles, one with two detectors and the second with three 

detectors, oriented and numbered as in the figure below. Note the the image space is 

of unit area, so that the areas of 1 and 2 are ! and the areas of 4,5 and 6 are ~· 

The matrix B generated from this geometry will have entries corresponding to 

the areas of intersection of the strips, e.g. element (/323) will be the area of intersection 

of strip 2 with strip 3, which is ~. The complete matrix is 
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1 2 3 

View 1 View2 

Figure 27. Geometry for two profiles. 

! 0 1 1 1 
2 6 6 6 

0 1 1 1 1 
2 6 6 6 

B 1 1 1 0 0 6 6 3 

! ! 0 1 0 6 6 3 

! ! 0 0 ! 
6 6 3 

We must only solve the linear system resulting from this process for a to reconstruct 

the image u. 

Recall that the continuum problem we are trying to solve is Ru = f. In our 

discretization, we first approximate R with A , yielding Au = j. We use a finite 

number of strip integrals taken at a finite number of angles around the image as an 

approximation to the Radon transform. Next, u is expanded as a linear combination 

of characteristic strip functions, yielding AA*a = Ba = j. Thus a linkage exists 

between the continuum problem and our discretization. 
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We examine the strength of this linkage by examining the grid of polygons 

produced by superimposing the strip functions as depicted in Figure 26. Define !1 

as the unit square containing the image, and let g( x, y) be a continuous function 

defined on !1. Let f be the total number of polygons in the partition of !1, generated 

by strips of constant width over equally spaced angles, and let ai be the area of the 

ith polygon, so that I:f=l ai = 1. Finally, let ~i ( x, y) be a characteristic function for 

the ith polygon, so that 

1
1, (x, y) E ith polygon 

~i(x,y) = 
0, otherwise. 

Then we have the followin~ result. partially attributed to Rhoden [Ref. 20]. 

Theorem 4.1: For a11y g( r,y} and any ( > 0 there exists a strip discretization 

using f strips and a fuudum f = L~=I ai~i(x, y) such that II!- giiR < (, 
where 

Proof: Since g(x,y) is continuous, there exists a ~ for every ( such that 
II( xi, yr)- (x2, Y2)11 <~implies lg(xt, yt)- g(x2, Y2)1 < c Let (be given, and 
let ~0 be the ~ that implies the continuity conditiion. Let the strip width used 
in the discretization be ~' which in turn determines the number of polygons, 
which we denote f 0 . Then for two angles (which is the fewest allowable) the 
grid consists of squares with a maximum chord length of ~0 . Adding additional 
angles cannot increase the maximum chord length. Consider 

II! -gil~ 
lo 

~fa IU- g)(;i 2
dxdy 

lo 

L frl!~i- g~il 2 dxdy 
i=t n 
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Since g(x,y) is continuous, it attains a maximum Mi and a minimum mi on 
each polygon. Choose 

Then, by the intermediate value theorem there exists a point (xi, Yi) in each 
polygon so that g( Xi, yi) = ai. Therefore we have 

So 

ll(x,y)- (xi,Yi)ll < bo---+ lg(x,y)- o,l < c 

II! -gil~ 
fo 

= L [ lo,c, - gt. l2dnly 
•=I Jn 
l o 

< L 1 t 2 t,dn/y 
•= I 1l 

1(\ 

= t2 L "· 

I 

Hence we can approximate any continuou-. function arbitrarily closely on a polygon 

grid generated by strip pixels. Since t}J(' nmtinuou!- functions are dense in L2 [Ref. 21], 

this result implies that we can arbitrarily closely approximate any function defined on 

L2 (f2) by any continuous function, which in turn can be approximated by a function 

defined on the polygon grid to arbitrary precision. 

We hope to find that the linear system produced by discretizing the problem 

using natural pixels will have distinct advantages over that produced using a square 
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pixel discretization. Specifically, we seek a system that lends itself to other itera­

tive solvers than Kaczmarz's method, one that requires less work to solve while still 

yielding an image of comparable quality, and one that might be approached with 

a multilevel method. A careful analysis of the matrix B will help us realize these 

advantages. 

B. ANALYSIS OF THE MATRIX B 

The matrix B is N x N with entries (f3ik) given by ('lj;j, 'lj;k), for j, k = 1 : N. 

The quantity ('lj;j, 'lj;k) is just the area of intersection of the Jih and kth x-ray strips. 

Figure 28 illustrates the geometry that would generate entry (f3jk) of the matrix. 

Area= (bjk) 

Figure 28. Intersection of two x-rays inside the image. 

The nature of the non-zero entries of B gives the matrix a rich collection of 

properties that we can exploit, the first of which is symmetry. 

Lemma 4.1: B is symmetric and nonnegative. 
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Proof: B = (/3ii) = ('1/Ji, 'l/Jj ) = ('1/Jj,'l/Ji) = (/3ii) = BT. The non-zero 
entries of B represent areas of polygons, and as such cannot be negative. 1 

If B were positive definite, then any of the classical iterative methods could be 

applied to the linear system, with convergence guaranteed [Ref. 22]. We can show 

that B is positive semidefinite, and later use this fact to show that the Gauss-Seidel 

method when applied to the problem cannot diverge and in fact must converge. 

Theorem 4.2: B is positive semidefinite. 

Proof: Let x ERN be any non-zero vector. Then we can write 

N N N 
XT Bx = Xt L f3tiXi + x2 L f32iXi + ... + XN L f3NiXi 

i=I i=l i=l 

N N N N 

L[Xj L /3jiXi] L L /3jiXjXj . 
j=l i=I j=l i=l 

But /3ii 

N N 

L 2:::('1/Jj, '1/Ji)XjXi 
j=l i=l 

N N 

= L 'L,(xj 'I/J j , Xi 'I/Ji) 
;=I i=I 

Therefore, B is positive semi-definite. I 

B has a special block structure, and can be expressed as 
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B 

where each block results from the intersections of all the rays within two given angles. 

If we define the angles used for the M profiles to be </> 1, d>2. · · · <i>M, then block Bij 

is formed by considering the intersections of the rays at angiP 0, with those at angle 

</>j· The size of the block is the number of detectors at augh· o, by the number of 

detectors at angle </>J, or N1(i) x N 1(j). Figure> :!9 illustrah·~ tbP block structure of a 

typical matrix, resulting from a geomc>try of~ au!-d(~ awl Hi d(•tPctors per view. 

Block Structure lew I' ~ erc1 I """'" 

0 20 40 eo ao 100 120 
rv • 6862 

Figure 29. The block structure of B. N on-=ero elements are highlighted. 

When angle </>i equals angle </>j, the only time that the two rays will intersect 

is when they coincide. Therefore, the blocks Bii are diagonal matrices whose entries 
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are the areas of the natural pixels at angle <Pi· The natural pixels from four detectors 

at a 45 degree angle are shown in Figure 30. 

Four Natural Pixels 

Figure 30. Natural pixels from four detectors at angle <Pi = 45 degrees. 

The resulting diagonal matrix is 

l 0 0 0 
8 

0 ~ 0 0 8 
Bii = 

0 0 ~ 0 8 

0 0 0 l 
8 

Lemma 4.2: The elements of the blocks of B exhibit the following summability 
properties: 

a) The elements of any diagonal block Bii sum to the area of the image. 

b) Let rk = [lh1 f3k2 · · · f3kN] be the kth row of B, and suppose that the kth 

strip pixel occurs within the set of strips at angle <Pi· The elements of 1'k in 
any off-diagonal block Bij sum to bkk, the value of the diagonal element of 

rk. 
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c) Let ck = [,Blk ,B2k · · · ,BNk] be the kth column of B, and suppose that the 
kth strip pixel occurs within the set of strips at angle <Pi· The elements of Ck 
in any off-diagonal block Bii sum to bkk, the value of the diagonal element 
of Ck. 

Proof: At angle </Ji, diagonal block Bii has entries ,Bkk ('1/Jk, '1/Jk) 
fs'I/J~(x,y)dxdy = fsk dxdy. Thus ,Bkk is the area of the strip correspond­
ing to '1/Jk· By definition, the rays for any angle completely cover the image. 
Combining these facts proves part a . To prove part b , consider how the 
elements of row k for the off-diagonal block Bij corresponding to angle </Ji are 
constructed. The entries of row k for this block are the areas of intersection 
of strip k at angle </Ji with all the strips for angle <Pi. We know that for angle 
<Pi the rays must completely cover the image, so they must completely cover 
strip k as well. This geometry is illustrated in Figure 31. Therefore, the sum 
of these intersections, which are the elements of row k , must sum to the area 
of ray k , which is the diagonal element of row k . Since B is symmetric, part 
c follows. I 

Figure 31. Geometric interpretation of summability property. 

We know from Theorem 4.2 that B is positive semidefinite, so it can have zero 

eigenvalues. The summability properties discussed above give us an insight as to the 

number of zero eigenvalues. Consider any row of blocks Bi1 , Bi2 • • • , BiM, of B,and 

sum the indivdual rows into a new composite row. Since the elements of the kth row 
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or column of any off-diagonal block Bij sum to the corresponding diagonal element 

bkk of that row or column, this composite row will consist of the N diagonal elements 

of B . As this property holds for all M rows of blocks, B has at least a rank deficiency 

of M-1 . We will ultimately show that the rank deficiency is exactly M-l,but first 

further analysis of the structure and properties of B is required. 

Let B E nNxN be the block matrix with square diagonal blocks of ditnensions 

Bn B12 Bt3 

B B21 B22 B23 

B3t B32 B33 

and let v E RN be given by 

-OJ 

v = a2 

a-; 

where 

1 1 1 

1 1 1 - - , and -Dt - Dt a2 a2 a3 - a3 

1 1 1 

and dimensions of the vectors ai correspond to the dimensions of the blocks of B,i.e. 
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the length of ai is ni . Then 

Bv-

We wish to define vectors with the properties of v in the above example as 

being constant over each of the M angles used in the generation of the block matrix 

B . Formally: 

Definition 4.1: A vector v E nN is constant by angle with respect to the 
block matrix B E nNxN generated over Mangles if it consists of M subvectors 
of constant value a:1 , a:2 , · · ·, a:M corresponding to the block structure of B . 

Consider a vector v E nN that is constant by angle. If v represents the set 

of coefficients defining a reconstructed image in terms of its natural pixels, then for 

each of the Mangles </>i all of the strips covering the image have the same value O:j. 

Thus for each angle the contribution to the image is constant, and hence the image 

over all the angles is constant, with a value equal to the sum of the a:i 's. 

Writing Bas 

f3IN 

B 

we have the following lemma: 
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Lemma 4.3: If v E RN is constant by angle with respect to the block matrix 
-~T 

B generated over M angles, then bi v = f3ii( o:1 + o:2 + · · · + O:M), where the 
O:i are the constants in the definition of constant by angle. If z E RN is the 

-+T 
vector of all ones, then bi z = (M)f3ii· 

Proof: 

b-~T __. 
i v o:1fJi1 + o:1fJi2 + ... + o:1f3iN1(1) 

+o:2f3iN1(1}+1 + o:2/3iN1(1)+2 + ... + o:2f3iN1 (1)+N1(2) + ... 

+o:Mf3iN-Nl(M)+1 + 0:Mf3iN-Nl(M)+2 + ... + 0:Mf3iN 

N1(1) N1 (2) N 

0:1 "L f3ik + 0:2 "L /3ik + ... + O:M L f3ik 
k=1 k=N1(1}+1 k=N-Nl(M)+1 

which after applying Lemma 4.2b can be written as 

-~T 

bi V - o:1/3ii + · · · + 0:Mf3ii 

f3ii(o:1 + 0:2 + ... + O:M ). 

Since z is constant by angle with all the O:i = 1, the result 

-~T 

bi z = ( M)/3ii 

follows immediately. I 

Armed with Definition 4.1 and Lemma 4.3, we are prepared to characterize 

the null space of B. Indeed, we can show that vectors in the null space NS(B) are 

constant by angle and thus correspond to constant images. We accomplish this with 

the following theorem, a portion of which is due to Limber [Ref. 23]. 

Theorem 4.3: v E N S(B) if and only if vis constant by angle and '2:~ 1 O:j -

0. 

Proof: Let v be constant by angle, and let '2:~ 1 O:j 

4.3, 

Bv 
( 

f3n '2:~1 o:~ l 
/322 2:j=1 o:J 

f3NN '2:~1 O:j 
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Therefore iJ E NS(B). 

Now, let iJ E NS(B). We first show that NS(B) = NS(AA*) = NS(A*). 
So, assume iJ E NS(A*). Then iJ E NS(AA*) and AA*iJ = 0. If iJ E NS(A*), 
then iJ E NS(AA*) since A(A*v) = A(O) = 0. There are no iJ tJ. NS(A*) 
such that AA*iJ = 0, because if AA*v = 0, then A*iJ E Range(A*). We 
know Range(A*) l_ 1VS(A) and therefore A*iJ tJ. NS(A)). Then 

A·v - [,P;(x, y) 1/>2(x, y) · · · 1/>N(x, y)] ( :t l N 

L V(l/Ji( x, y) - 0. 
i=l 

Consider two adjacent strips Sk and Sk+I from the same profile. Now, select 
points (xi, YI) E Sk n 0 and (x2, Y2) E Sk+I n 0, where 0 is the intersection of 
( M - 1) strips, one from each profile and none from the profile containing Sk 
and Sk+I· This selection can always be done. To see why, superimpose all of 
the x-ray path strips over the image at once. They subdivide the image into a 
collection of polygons. Since each profile completely covers the image, a point 
in the interior of any polygon is contained in one strip from each of the M 
profiles. A point on any edge (not a vertex) of any polygon will be contained 
in n, with the edge separating strips sk and sk+I· Moving a distance f to 
either side and perpendicular to the edge will define the points ( x 1 , yt) and 
{x2, Y2)· Figure 32 illustrates this geometrically. 

Figure 32. Geometric representation of the proof of Theorem 4.3. 
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Since v E NS(A*), we have 

N N 

L Vi'lj;i(XI, y!) L vi'lj;i(x2, Y2) = 0. 
i=l i=l 

The 'lj;i(x, y) are characteristic functions, so we can rewrite the above sums as 

L Vj + Vk = L Vj + Vk+l = 0, 
jEn jEn 

which implies Vk = Vk+I· Therfore, vis constant by angle. Further, since 
LjEn Vj + Vk = 0 and there is a Vj from each of the M profiles in the sum, 
the constants from the definition of constant by angle sum to zero. 1 

An immediate consequence of Theorem 4.3 is that we can show the dimension 

of N S( B) is exactly M-1. 

Theorem 4.4: Let B E nNxN be the block matrix generated over M angles 
a.<; discussed above. Then the dimension of N S( B) = M - 1. 

Proof: Let v E NS(B). Then vis constant by angle and '2:::::~ 1 Cti = 0. We 
can select a 1 , a 2 , · • ·, aM-I arbitrarily, and then O:M is determined. Hence 
we have M- 1 degrees of freedom in the selection of the ai's, which is the 
dimension of NS(B). I 

Since we have a matrix operator with a non-trivial null space, it is conceivable 

that in solving Ba = j, any solution o may have components inN S(B). As we are 

ultimately reconstructing an image, u = A·a, the effect such null space components 

have on the appearance of the reconstructed image is of great importance. We will 

completely characterize NS(B) by constructing a basis for it. 

We can construct a basis [qi, q2, · · ·, l/M-1] for NS(B) in the following fashion. 

All of the ifi will be constant by angle, with the constants Ctj for each vector defined 

as follows: 
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qj , where ai E nn, , 

and 

i = 1 

(0 0 ... o)r, otherwise 

Each of these vectors is constant by angle, and "LJ;1 aj = 0 for each , by construction, 

so ifi E N S(B). It is also apparent that the M-1 vectors form a linearly independent 

set. Therefore they form a basis for NS(B),so that any v E NS(B) has such a 

representation. Let v be such a vector. It can be expressed as 

M-1 
v I: /jq-;. 

j=l 

This expression can be further expanded as 

(II+ /2 + · · · + /M-1)51 

-v 

J 
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where ai ERn; is given by 

It is clear that vis constant by angle, and that these constants sum to zero. 

Any vector v E RN that is constant by angle, (and particularly those m 

NS(B)),defines the coefficients of the natural pixel representation of a constant image. 

Such images, when displayed, appear as uniform shades of grey. We define a natural 

pixel with a value of zero to be black , and an image that displays to uniform black 

as invisible.Based on these definitions, we have the following: 

Corollary 4.3: Ifv E NS(B), then the image defined by u(x,y) = A*v is 
invisible. 

Proof: Since v E N S(B), it it constant by angle, and the sum of these 
constants is zero. Now u(x,y) = A*v = I::f:1 vi'0i· Since vis constant 
by angle, for each angle i the natural pixels will all assume the same value to 
form a uniform gray sub-image in the image space. Since the constants that 
define each of these uniform grey sub-images sums to zero, the combination 
of the sub-images into the image u(x, y) will be a uniform image in the image 
space with value zero, which by definition is invisible. I 

These results are significant. Since components of the solution in the N S( B) 

are invisible, we need not concern ourselves with them in the framework of recon-

structing the image. Thus, if the iterative technique chosen to solve the system of 

equations Ba = f excites components in NS(B),as far as the display of the image 

is concerned we do not care. (Such components do not affect the residual calculation 

either). 

Our goal was to develop a discretization that resulted in a linear system that 

could be solved with less work than the standard square pixel discretization, and 
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could produce comparable results. To that end, we now compare the two resulting 

linear systems, and address some other important issues. 

C. NATURAL VS. SQUARE PIXELS 

In general, the matrix B generated by using natural pixels will be smaller than 

that generated using square pixels, for the same source/ detector geometry. If we 

assume Mangles and N1 ( m) detectors, m = 1 : M, then N = 'L~=I N1 ( m) is the 

number of rays passing through the image, and B is an N x N matrix. Recall that 

for the square pixel discretization, we divide the image space into a square grid of n 2 

pixels. The resulting matrix /(is of size N x n 2 . Since smaller square pixels yield a 

higher resolution image, in general n 2 > N and often n 2 >> N. Thus, the matrix B 

for a problem discretized by natural pixels is normally smaller than the matrix /{ for 

a problem discretized by square pixels, and may require less work to solve. 

On the other hand, /(is very sparse when compared to B . Recall that non-zero 

c11tries in a row of /{ correspond to pixels being intersected by a given x-ray. If the 

width of the ray is small, say on the order of the width of a pixel, then each row will 

contain no more than 2n non-zero entries. If this sparseness is exploited, then the 

work needed to solve the system can be greatly reduced. 

Additionally, /(is in general a rectangular matrix, and the only practical itera­

tive method for solving the resulting system of equations is Kaczmarz's method [Ref. 

1 7]. B,however, is square and symmetric and possesses all of the other properties 

discussed above. This gives us more selection when choosing an iterative method to 
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solve the accompanying system of equations. 

One very significant drawback of discretizing by natural pixels is that the 

natural pixels do not map to the square pixel hardware of a computer screen easily. 

One way to display the image is now outlined. We must map the natural pixels to a 

rectangular grid that can then be illuminated on a computer screen. This seems at 

first a difficult task, but it can be easily accomplished through the use of a square 

pixel discretization matrix /( created at the same geometry used to generate B . 

The problem we are attempting to solve is Ru = j, where R is the Radon 

transform operator. Using the square pixel discretization, we discretize both the 

projection and image spaces and arrive at a linear system J{x f When we 

discretize using natural pixt'b, only the projection space is discretized, and the den­

sity function u( x, y) is cxpa11dt>d in terms of strip functions, yielding the system 

Bo = AA*o = f. !\ow. if we view x as an approximation of A*o, and /(as an 

approximation for A , then we can write 

Thus, the natural pixels can be mapped to square pixels just by backprojecting o 

with the /(matrix. 

We only require the geometries on number of detectors and angles to agree 

for both discretizations. The natural pixel problem is independent of the number of 

square pixels to which it is being mapped. Therefore, we can map to any resolution, 

as long as the x-ray geometries agree. 
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The cost involved to display the image is primarly due to building the matrix 

J( , which can be excessive if high resolution is required. Fortunately, this is a one­

time cost, for /(can be repeatedly used to display different images generated at the 

same geometry. Another drawback is that ]( might be too large to fit in memory, 

so storage and file-handling procedures will be required when displaying the image 

that might not be necessary when working with the matrix B . Also, a different /( 

is required for each geometry used to generate B , or for different resolutions at the 

same geometry. 

We have developed the natural pixel discretization for the image reconstruc­

tion problem, and have shown that it produces a linear system whose matrix B is 

symmetric and in general smaller than that produced by the conventional square pixel 

discretization. An analysis of this matrix produced several interesting results. The 

rank of B is a function of the x-ray geometry used to generate it. The N S( B) is 

characterized by vectors that are constant by angle with constants summing to zero, 

and the images they represent are invisible. We now concentrate on solving this linear 

system. 
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V. GAUSS-SEIDEL RELAXATION 

There are two basic strategies for solving a linear system of equations Ax = b, 

either directly or iteratively. The direct approach generally involves a factorization 

of the coefficient matrix A . Iterative methods, on the other hand, generate a se­

quence of approximate solutions x(k) and only involve the matrix A for matrix-vector 

multiplications. If A is large, the direct approach could be impractical because one 

direct solve costs as much as many iteration sweeps, in terms of floating point opera­

tions. The effectiveness of an iterative method is determined by how fast the sequence 

of iterates x(k) converges [Ref. 19]. In this chapter we will apply the Gauss-Seidel 

iterative method and analyze it in the context of our image reconstruction problem. 

A. DERIVATION AND GENERAL PROPERTIES 

We derive the Gauss-Seidel iterative method by considering how to solve the 

linear system of equations 

Qx = t:, 

where Q is anN x N matrix assumed to be nonsingular with nonzero diagonal entries. 

Then the formal solution is 
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Considering a splitting of the matrix Q into an upper triangular part U , a lower 

triangular part L , and a diagonal part D , so that 

Q D -L- U. 

We can now write the system of equations as 

Qx (D-L-U)x b, 

and rearranging, arrive at 

(D-L)x=Ux+b. (5.1) 

We convert (5.1) to an iterative form by introducing a superscript to the vector x 

representing its index in tht' st>quence of approximations, as follows 

( D- L)i<k+l) = Ux(k) + b, k 2: 0. (5.2) 

Hence the (k + l)st approximation is generated from the kth approximation, and the 

process is started by pro\'iding an initial guess £(O). Writing ( 5.2) in terms of the 

elements of the matrix Q produces 

1 :::; i :::; N, (5.3) 

which can be further rearranged to yield 

1 :::; i :::; N, (5.4) 

since the diagonal elements of A are nonzero. Equation (5.4) can be written 1n 

algorithm form as 
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For i = 1, 2, · · · , N 

(k+l) - .2_ (b·-~ .. (k+l) - ~ . . (k)) 
xi - 1 L.....t q1Jxj L.....t q1Jxj , 

qii j=l j=i+l 

which defines one iteration of the Gauss-Seidel method. Recasting (5.4) once again 

in matrix notation, we get 

(5.5) 

Defining Pa ( D - L )- 1 b, the Gauss-Seidel method ( 5.5) 

becomes 

-(k+l) D -(k) + -
X = raX C, 

The matrix Pa is known as the Gauss-St ide/ ilt mlinn matr·u . 

Convergence of the Gauss-Seidel rrwt hod cau lw araalyzt·d iu terms of the error 

vcclor,defi.ned as 

..... (k+ l) ~ • +II -e = r - r . 

where x* is the exact solution of the prul,lc·m. Siun· :I i~ tht' exact solution, then 

;· = Pax· + c, so that 

-::-(&+1 1 -
J -r 

I J ::."'1 AI - ( /) - ~ r;r + t - (; r + c 1 

n -(k) 
rae . 

Thus we arrive at the relationship 

(5.6) 
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Recursive applications of (5.6) yields 

( Pa )2 e (k-t) 

Thus, we get convergence if ( Pa )k+I ---t 0 as k ---t oo , and this convergence is in de-

pendent of the initial guess ;(o). 

Define the spectral radius of Pa = p( Pa) to be the magnitude of the largest 

eigenvalue of Pa. The following well-known theorems [Ref. 22) give conditions under 

which the Gauss-Seidel method is guaranteed to converge: 

Theorem 5.1: (Pa )k+I ---t 0 as k ---too if and .only if p(Pa) < 1. 

Theorem 5.2: If A E nNxN is symmetric and positive definite, and Pa zs 
the Gauss-Seidel iteration matrix formed from A, then p( Pa) < 1. 

Thus, a condition that ensures convergence of the Gauss-Seidel method to 

is that the matrix defining the system of equations to be solved be symmetric and 

positive definite. The matrix B from the natural pixel discretization is symmetric and 

positive semi-definite, so, apparently, Gauss-Seidel applied to it is not guaranteed to 

converge. However, it will be shown that Gauss-Seidel is convergent for the matrix 

B, and why this must be so. 

B. CONVERGENCE ANALYSIS 

First, we show that the Gauss-Seidel method cannot diverge for this problem. 

We introduce the following definitions: 
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Definition 5.1: The energy inner product can be defined as (x, y) = (Gx, y), 
where G is semidefinite. 

Definition 5.2: The energy norm is defined as lllxlll = (x,x) 112
• 

The energy norm is actually a semi-norm, because lllxlll = 0 does not imply 

that x = 0. We will show that when measured with the energy norm, Gauss-Seidel 

cannot diverge. 

Recall that (5.4) is 

~k+l) - _2_ (b·- ~ .. (k+l) - ~ .. (k)) x~ - , L......t q,1 x 1 L......t a,1 x 1 , 

qii j=l j=i+l 
1 ~ i ~ N, 

and after further manipulation we obtain 

(5.7) 

Let 

i-1 N 

ri = bi - L qijXy+l) - q,ix!k) - L qi;I~k), 1 ~ i ~ N 
j=l ;=i+l 

be the ith component of the current residual vector r during the k 1h step of the 

iteration. That is, it is computed using both ;ik+l) and £(k), and changes for each 

value of i. Substituting into ( 5. 7) results in 

(5.8) 

Let Wj to be the ith standard basis vector for nNxN, that is, the vector with a 1 in 

the ith position and zeros in all other positions. Then we can express the diagonal 

elements of Q as 

72 



and ri as 

r; = r:-!I'w- · - (r- w- ·) 
• l - ' l . 

Writing ( 5.8) in terms of these inner products produces 

(k+l) 
X· = l 1 :S i :S N. (5.9 ) 

Only one component, the ith, of the approximation is being changed a t each step , so 

that (5.9) can be written in terms of vectors as 

-(k+l) -(k) (r, wi) _ 
X f--X -(Q- -;)U'i• 

w •• u . 
:S i :S S . (5.10) 

where the arrow indicates replacement. or ovt•rwrit i 11 ~. T he a bove formulations are 

used to yield the following result: 

Theorem 5.3: The Gauss-Seidd ,, tJ,nJ tll'l'/,u/ to l ht = f . u·lnn B is the 
matrix generated via discretizalior• b!J Wlluml put/ .... '·" boulldfd irl the energy 
rwrm. 

Proof: Define the error vector a-. 

._ -l • l = o - o • 

where a* is an exact solution, and rautfo that 

Taking the energy norm of the error vector gi\'es 

and applying (5.10), (5.11) and (5.12 ) to the right side produces 
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Some algebraic manipulations produce the following 

_ < e ,wi>B-· -(k)_ < e ,ei> - . 

\ 

B -(k) - ( B-(k)- )) 

B 
_ _ w,, e _ _ w, , 

< Wi,Wi > < Bwi,Wi > 

which can be expanded as 

B -(k) - B-(k) - 2 < e , Wi > B _ -(k) < e , Wi > 
< Wi, e > + B - - 2 < Bwi, Wi > . < Bwi, Wi > < wi, wi > 

Simplification results in 

B -(k) - 2 B-(k) - 2 

lll -(k+I)III2 = B-(k) -(k) _ 2< e ,wi > < e ,wi > 
e < e ,e > - - + B- -< Bwi, Wi > < Wi, Wi > 

Since B is positive semidefinite and 

we have 

Therefore, the norms remain bounded. 

< Be(k), wi > 2 

< Bwi,wi > 

I 

This useful result assures us that the Gauss-Seidel iteration can be applied to 

Ba = J, and provided we use the energy norm to measure performance we need 

not fear a divergent process. To obtain a stronger (convergent) result, we show that 

under certain conditions Gauss-Seidel is equivalent to Kaczmarz's method, and that 
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the convergence of Kaczmarz established in Theorem 3.1 carries over to Gauss-Seidel 

applied to the natural pixel problem. 

Consider applying Kaczmarz's method to Au = /, where A : H ~ RN, 

u E H, f E RN, H is a real Hilbert space spanned by the constant-valued strip 

functions, and A is defined (see page 47) so that 

Au 

If u(o) E Range(A*), then the sequence u(k) generated by Kaczmarz's method con­

verges to the minimum L2 norm solution as k ~ oo. One sweep of Kaczmarz can be 

expressed as 

Set u = u(k) 

For i = I, 2, · · · , N 

Solve< wi, A(u + sA*wi)- f >= 0 for s 

Set u = u + sA*wi. 

Set u<k+l) = u 

Solving for s in the above algorithm 

0 < wi, A ( u + sA* wi) - f > 

- < wi,Au + sAA*wi- f > 
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-TA -TAA*- -Tf-- Wi U + SWi Wi - Wi 

yielding 

s 

Thus, Kaczmarz's method becomes 

Set u = u(k) 

For i = 1, 2, · · · , N 

Set u(k+I) = u 

fi - ('1/Ji, u) 
< '1/Ji, '1/Ji >. 

~ow, consider applying the Gauss-Seidel method to the natural pixel problem 

/Iii = [, where B = AA* and u = A*o . .i\ote that u E Hange(A*). Gauss-Seidel 

ou this problem can be written as 

Set a = a(k) 

For i = 1, 2, · · ·, N 

Solve< wi, B(a + sw,)- f >= 0 for s 

Set a = a+ swi. 

Set c;(k+t) = a. 

Again, we can solve for s in the above algorithm. Let 
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B 

Then, solving for s , we obtain 

yielding 

But 

so 

..... T 
, where bi 

..... TB..... .....TB..... .....Tf ..... 
Wi a + SWi Wi - Wi 

s 

..... T 
fi- bi Q 

$ -
f3ii 

fi- < u,'I/Ji > 
< '1/Ji, '1/Ji > ' 

and after substituting into the Gauss-Seidel algorithm we can write 

..... 
a 
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Multipliying both sides by A* yields 

A*a 

But A*a u, so we arrive at 

u 

Therefore Gauss-Seidel applied to Bo = f is equivalent to Kaczmarz .-. pplied 

to Au = f [Ref. 2]. This observation yields the following result: 

Theorem 5.4: If (}(O) E Range(BT ), then the sequence (}(k) generated by the 

Gauss-Seidel method converges to J such that J. = A*J is the minimum ! ·2 

norm solution of Au = f as k --7 oo, provided such a solution exists. 

Proof: Assume Bo = f is consistent. If (}(O) E Range(BT), then 

so we can define u(o) = A·a(o) E Range( A•). By Theorem 3.1, we know that 
the sequence u(k) generated by Kaczmarz's method converges to the minimum 
L2 norm solution, u, of Au = f as k --7 oo. But Kaczmarz is equivalent 1 :~ 
Gauss-Seidel under these conditions, so Gauss-Seidel must converge to some o 
such that u = A*&. I 

Next, we show that the problem Au = f can always be made to be consistent 

so that a solution exists, and that we can always produce an inital guess in the 

Range(BT). Consider a projection of the image at a given angle, that is, the collection 

of emergent x-ray intensities measured by the array of detectors. The natural pixel 

discretization assumes complete coverage of the image by x-rays at each angle. Noting 
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that the density of the image remains unchanged from angle to angle, and that the 

initial x-ray intensities are constant from angle to angle, then the total emergent x-ray 

intensities for each projection must be constant as well. This must be the case as the 

image will absorb the same amount of energy independent of the direction of that 

energy. We say that the data f is compatible with the image reconstruction problen1 

when the total emergent x-ray intensities are constant for each angle, that is, the sum 

of the elements in the piece off corresponding to each angle, is constant. Given this 

definition, we have the following 

Theroem 5.5: If the data f is compatible with the image reconstruction prob­
lem, then Au = f is consistent and has a solution. 

Proof: Let f be compatible. Then f rj_ N S( B) because it cannot be constant 
by angle with the L:f~ 1 O'i = 0 and compatible at the same time. Therefore 
f rf_ N S(A*). Assume the sum of the elements in f corresponding to each angle 
sum to the constant C. Let ~ be the ith basis vector for NS(B) as constructed 
in Chapter IV, and consider < [, ~ >. If the inner product is computed by 
angle, the resulting sum is 

< f, q. > = (' + 0 + 0 + ... + 0 - c + 0 + ... + 0 = 0, 

\\'here the negative entry is in the ( i + 1 )st position. Therefore J is orthogonal 
to each basis vector of NS(B) and hence fl.. NS(B) NS(A*). Thus 

f E Range(A). I 

If for some reason the data we are given to reconstruct is not compatible due 

to measurement errors, we can correct the data and enforce compatibility by adding 

some constant f.i to each of the elements of the ith view. Thus we can always ensure 

a consistent system, and theoretically Gauss-Seidel will converge. 

Next, we use the concept of compatibilty to define an initial guess for the 

Gauss-Seidel iteration. Recall that if f is compatible, then the sum of its elements 
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over any angle is constant, call it C. Consider a vector that is constant by angle, 

where the constants are such that 

We define such a vector to be the average grey representation of the image whose 

data vector is [ There is an infinite set of constants O::i that can define an average 

grey representation of a given image. We show that at least one of them defines a 

vector in the Range(BT). 

Lemma 5.1: Let v E nN be an average grey r·cprt.'t Tllalio" of some zmage 
u ( x, y) with constants O::i such that 

(' 
o. = 

.\I 

for all i. Then v E Range(BT). 

Proof: Let Ci be the arithmetic rllt'clll of tlw nm~tarah n, 111 tlw d<>frnition of 
constant by angle. Now v can lw wr it tt-11 ''~ 

where VR E Range(BT) and Vf'; E .\' ., ·( /1 ). \\ '•· d<,illl thi~ dt·cumposition can 
be expressed as 

where the quantities ci'i are constant \'t•clors of length Nt(i) with value O::i. A 
well known theorem from statistics [Ht>f. :!·1) states that L:~ 1 (xi - x) = 0. 
Therefore, by Theorem 4.3 the vector 

-VN ( ~~-~) 0::2 - 0:: 

- = O::M - 0:: 
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is constant by angle and in NS(B). But we have 

- l:i':!l z c 
0:' - - -- M - M. 

Therefore VN 0 and v = VR. Thus v E Range(BT). I 

We have shown that the Gauss-Seidel method applied to the natural pixel 

problem is equivalent to the method of Kaczmarz applied to the square pixel problem, 

and given an appropriate initial guess Gauss-Seidel converges to the same minimum 

L2 norm solution as Kaczmarz. Furthermore, we have sl.owu co11ditions such that the 

problem is consistent and determined specifically what au appropriate initial guess 

should be. Analysis of the spectral properties of t Itt· Gau~~-St·idel it<'ration matrix 

Pc is still required, to gain further iusi~ltt a' to why tlw lllt'tltod converges, and to 

aualyze the rate of convergence. 

C. SPECTRAL ANALYSIS 

t lw linear system derived from tit<' uattH ,,J pi xt·l di~crt•t izat iou. n•mai us bounded 

in the energy semi-norm and that for • t·rtaiu l'>tartiu~ Vt'ctors it converges to the 

minimum L2 norm solution. The matrix H i~ ouly pu~itive semi-definite, so Theorem 

5.2 does not apply and the Gauss-Seidel it<'ratiou matrix Pc is not guaranteed to 

have a spectral radius p( Pa) < 1. Non-divergence has been established by Theorem 

5.3, implying p( Pa) :::; 1. If an appropriate starting vector is given, Theorem 5.4 

guarantees convergence, implying that the eigenvectors corresponding to eigenvalues 
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Ai of Pa with !Ail = 1 do not affect the norm of the residuals. If such components 

affected the measure of the iterates, then the error expression 

would not decrease with k . We use this fact to arrive at the following result: 

Theorem 5.6: If ii is an eigenvector of Pa, and if ii E NS(B ), then the 
corresponding eigenvalue Ai = 1. 

Proof: For the Gauss-Seidel method applied to the linear system 

Ba- f-
- ' 

we have 
B = D- U- L, 

and 
o(k+I) = (D- Lr•ua_(k) + (D- Lr•f 

Let an exact solution to the system be o*. Then the iteration becomes 

\Vriting this expression in terms of the error vector yields 

e(k+tl = Pae(k) 

= (D- L)- 1Uc(k) 

= (D- L)- 1(D- L)e(k)- (D- L)- 1 Be(k) 

- e(k)- (D- L)-1 Be(kl. 

Now, let e(k) - ii E NS(B). Then 

But we know that e(k+I) = Pae(k) as well, so 

Therefore, Ai = 1. 
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We have learned that even though the spectral radius of the Gauss-Seidel 

iteration matrix for this problem may equal unity, the method still converges because 

the eigenvectors of Pa corresponding to eigenvalues of modulus one are in NS(B). 

Therefore, they do not contribute to the approximation. Theoretically, Gauss-Seidel 

should be able to solve the natural pixel problem. What remains to be done is actually 

apply Gauss-Seidel to several linear systems and analyze the resulting behavior. 

D. BEHAVIOR OF GAUSS-SEIDEL APPLIED TO THE 
PROBLEM 

Gauss-Seidel is applied to several linear systems generated at varying geome-

tries, and with right-hand-side data created both analytically, and by projecting 

computer-generated images. In all cases, the overall behavior observed is of rapid 

iuitial convergence that eventually stalls out, just as occurs with the Kaczmarz iter-

ation. Figure 33 depicts plots of both the norm of the residual and the convergence 

factor plotted against iterations for a typical problem. Here, the convergence factor is 

formed as the ratio of successive r<'sidual norms. Th<' magnitude of the residual error 

iu all cases is on the order of I o-3 or 1 o-.c, well short of machine precision. To explain 

why this behavior occurs, the spectrum of the matrix B is analyzed. Even though B 

is square, to parallel the analysis presented in Chapter III we use the singular value 

decomposition. 

Recall the singular value decomposition (SVD) of B 

B = U~VT, 
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Figure 33. Convergence of Gauss-Seidel on a typical problem. 

where U and V are orthogonal matrices, and I: is a diagonal matrix whose diagonal 

entries O'i are the singular values of B . The columns of U and V are known as left 

and right singular vectors , respectively. Singular values are real, nonnegative, and 

ord<'red such that 

The number of non-zero singular values r· ~ N equals the rank of B . The S\'D can 

Le rewritten as 

BV = U'r., 

and if the columns of this expression are compared, we arrive at a collection of linear 

systems 

where ui and Vi denote the ith columns of U and V, respectively. It is possible to 

determine which singular values have singular vectors Vi that are slow to converge. 
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Figure 34. Singular Values for 32 Detectors at 8 and 20 Angles. 

This is accomplished by using Gauss-Seidel to solve, for each i, the problem Ba 

O"(Ui, using zero as the initial guess. The columns of V form an orthonormal basis for 

n[l.'. so any image can be expressed as a linear combination of the vi. If the image 

has components which are slow to converge, then the iteration will stall. Figure 34 

dcpicts the spectrum of singular values for two geometries. One is constructed using 

:t? detectors at each of 8 evenly spaced angles, producing a matrix of size 232 x 2:32 

and of rank 225. The second geometry is 32 detectors at each of 20 evenly spaced 

angles, resulting in a matrix of size 592 x 592 and of rank 573. It should be poiuted 

out that for a geometry of 20 angles and 32 detectors per angle, one would think 

there would be 640 total x-rays producing a matrix B of size 640 x 640. However, 

only 592 x-rays actually pass through the image square, which explains the disparity 

in the size of the matrix. This fact holds for all geometries. 

Notice that in both graphs, the magnitude of the singular values can be divided 
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into three bands.The first of these is the left portion of the plots where the curve is 

nearly horizontal, the second is in the center where the n1agnitude of the singular 

values noticeably decrease, and the third is to the right where the singular values 

drop suddenly to zero - the null space. As before, we will define the center band as 

the near null space,and the left band as the resolvable region.It will be observed that 

singular vectors corresponding to singular values in the near null spa~e are the slow 

components of the image to converge. 

Consider using Gauss-Seidel to solve the SVD system 

BVi 

whose exact solution is tJ:, for various values of i . The resulting solutions Vi should be 

good approximations for the corresponding vi. We can decompose the Vi into linear 

combinations of the siugular vector basis as 

N 

Vi - L {3ivj. 
j=l 

The si11gular vector basis is orthonormal, and the {33 's can be computed as 

(3 :.T- N 
j Vi Vj, l~j~ . 

Hence we can determine the components of t7; in the directions of each of the singular 

vectors vj. For the exact solution Vi, we have 

II, 

0, 

1 = J 

otherwise. 
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Figure 35. Approximations for Singular Values in the Resolvable Region and Near 
Null Space. 

A plot of the /3i for the exact solution will be a spike of magnitude one at index i.The 

following figures are plots of the l/3i I for some indices both in the resolvable region 

and in the near null spact' fur a geometry of 32 detectors at 20 angles. 

A qualitative intt'rpretat ion of these plots follows. Three things are readily 

apparent. First, compollt'llls in the resolvable region are almost totally recovered 

(Figure 35, left). A spike of magnitude one located at the appropriate index is clearly 

present, along with a small amount of noise. These components do not adversely affect 

the performance of the iteration. Next, components in the near null space are not 

recovered well (Figure 35, right). There is a partially recovered spike, and significant 

noise is present. These components represent the unrecoverable,or slow,components 

of the image that cause the iteration to stall. Finally, iterating with Gauss-Seidel, 

just as with Kaczmarz, mixes modes,that is, it introduces additional components of 

the singular vector spectrum as noise into the approximation Ji. The noise includes 
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components m the null space, but is predominantly composed of near null space 

components, that are not part of the actual solution Vi. 

This last observation is significant in that we can have an image that lives 

entirely in the resolvable region, apply Gauss-Seidel to reconstruct it, and excite 

components in the approximation that live in near null space and null space. The 

components in the null space are not a problem, as the images they generate have 

been shown to be invisible, and they do not affect the measurement of the residual. 

However, those in the near null space are a problem, for as seen above, they are slow 

to be recovered and virtually all of the residual error can be attributed to them. 

In spite of these apparent shortcomings, Gauss-Seidel applied to the natural 

pixel discretized problem reconstructs images quite well. The following figures depict 

actual and reconstructed images for a brain phantom, ceated by superimposing a 

collection of ellipses and rectangles of varying grey levels on each other. The data 

vector f was then generated by projecting the image with Kaczmarz matrices of 

assorted geometries. 

The behavior described above is not unique to the Gauss-Seidel method. Under 

the assumption that other types of iterative methods might not exhibit the behavior 

of Gauss-Seidel, several Lanczos-based methods were applied to the problem as well. 

In particular, the algorithms SYMMLQ and MIN RES [Ref. 25] and several incom­

plete orthogonalization methods [Ref. 26] were applied to the image reconstruction 

problem. In all cases, convergence was initially rapid, followed by stalling. The recon-
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Figure 36. Actual and Reconstructed Images - Brain Phantom 

structed images produced by these methods were no better than those produced by 

Gauss-Seidel. As all of these methods require more work per sweep than Gauss-Seidel 

and produce no better results, we will not examine them further. 

We have conducted an analysis of the Gauss-Seidel method as applied to our 

image reconstruction problem. Although convergence has been established, there 

are certain components of the solution that are slow to be recovered. In the next 

chapter, a multilevel method will be developed that accelerates the convergence of 

the Gauss-Seidel iteration. 
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VI. A MULTILEVEL APPROACH 

A. BASIC MULTILEVEL CONCEPTS 

Multilevel methods were developed to overcome the numerical stalling of iter­

ative methods for numerical partial differential equations. A fundamental principle 

of any multilevel methodology is that the amount of computational work should be 

proportional to the amount of real physical changes in the computed system [Ref. 27]. 

If it is not, e.g. if successive sweeps of an iterative method on a linear system produce 

~maller and smaller reductions in the error, then a more efficient method should exist 

to approach the problem. The image reconstruction problem exhibits such behavior. 

Tb(' situation occurs when there exists several solution components with different 

~cales that conflict with each other. The answer could be a multilevel approach, 

wbicb involves interactively employing several scales of discretization to resolve such 

con flicts. avoid stalling of the iteration. aud eliminate computational waste. Before 

such a method can be designed, it is necessary to understand the basic methodology 

behind the approach and why it works. To that end, a coarse grid correction scheme 

as applied to a simple one-dimensional partial differential equation will be developed 

and analyzed. 
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1. Elements of a Multilevel Method 

Consider the second-order differential equation for the steady-state heat 

distribution in a rod of uniform density that has the temperature fixed at both ends 

-u"(x)- cru(x) f(x), O<x<l, cr~O 

subject to the Dirichlet boundary conditions 

u(O) = u(l) - 0. 

The problem is discretized by breaking it~ domaiu into N equal subin-

tervals of width h , which defines the uode points .rJ = jh. j = 0, 1, · · ·, N, 

and forms a grid which will be denoted a-; n'•. If \\'t' Jet r•1 approximate u( X j ), and 

if we approximate u"(xi) with a finitt' :!.''" onlt·r tlifft•rt·un·. then the problem can be 

rewritten as 

-Vj-1 + 2Vj - Vj+I 
h

2 
+ CTV3 = /(I 1 ). t'u = r·.\ = 0. J = I : S - 1. 

llere, we have converted an ordinary d itf('rcut ial t'(luatiuu into a system of N-1 alge-

braic equations in N-1 unknowns, with tlw f•rrur in tllt' approximation being of O(h2 ). 

If we define 

f(.rr) u(xi) 

-X - -v - J = , and i1 

XN-1 VN-1 
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then we can express the problem as the linear system 

Av f ... 
' 

where 

A 

-1 

and whose solution v approximates ii = u(x) at the grid points. It can be determined 

analytically that the eigenvectors of A are 

sin(~) 

sine~?r) 

· ((N-l)h) 
Sill N 

k = I:N-1. 

Graphing z/c, one finds that the graph is smooth for small values of k , and becomes 

increasingly oscillatory as k increases, as shown if Figure 37. Following the analysis of 

the previous chapter, we consider applying an iterative method to this linear system. 

We will use the weighted Jacobi method as a vehicle for this discussion. Letting 

A D-L-U, 
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then the weighted Jacobi iteration matrix is given by 

where w E R is a weighting factor to be chosen. It can be shown that the eigenvectors 

of the matrix PJ are identical to the eigenvectors of the matrix A . The eigenvalues 

of PJ are 

l:N-1. 

k:2 

Figure 37. A mode at k=4 on grids of N= J!J and N=6. 

We define the error vector as 

-e - -v -u, (6.1) 

so that the initial error in the iteration is e(O). This can be expanded in terms of the 

eigenvectors of P1 as 
N-1 

e-<o) 2:: ckzlc, ck E n. 
k=I 
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After n sweeps of the iteration, we have 

N-1 N-1 

L q(PJtz"k - L ck>.k(PJ )z"k. 
k=l k=I 

Thus, after n sweeps the error has been reduced by a factor of >.k( PJ ). This means 

that for large values of k , the error is reduced rapidly, while for small values of k 

it is not. We will call the eigenvectors with index 1 ~ k < ~ the low-frequency or 

smooth modes, and those with index If ~ k ~ N- 1 the high-frequency or oscillatory 

modes. Our analysis shows that error components corresponding to smooth modes 

are slow to be eliminated. This behavior, while not as easily quantified, holds for the 

Gauss-Seidel method as well [Ref. 28]. The aim of a multilevel approach is to devise 

a way to address these slow components. 

To develop tilt' coarse grid correction scheme, we first must define a 

second set of !f grid poiub nn. obtained by selecting every other grid point from 

nh. Note that !12h is coarst·r that nh, meaning that the grid spacing is wider. Now, 

assume the iterative method has beeu applied to the linear system on the original 

grid nh, until only smooth error components remain. If we consider what the smooth 

error components look like on !12 \ as illustrated in the following Figure 38, we see 

that on the coarser grid the error becomes more oscillatory. On nh mode 4 is one 

third of the way up the spectrum. However, on !12h mode 4 is now two thirds of the 

way up the spectrum and, therefore, more oscillatory. 

To be more precise, consider the kth mode on nh evaluated at the even-

numbered grid points, which is exactly !12h. We can write 
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sin( 2~7r) 

sin( 4~7r) 

· ((N-2)k7r) 
Sill N 

• ( k7r ) 
Sill N/2 

sin( 2k1r) 
N/2 

· ( (N/2-l)h) 
sm N/2 

tJ-h 
k ' 

N 
1 < k < - , - 2 (6.2) 

where the superscripts denote the two grids. This implies that the kth mode on nh 

becomes the kth mode on f!2h, as long as 1 :::; k < lf. Thus in moving from the finer 

grid to the coarser grid, a mode becomes more oscillatory, and as such relaxation 

should be more effective. It is equally important to note that the smoothness of e 

after relaxation on nh is what allows us to go to f!2h - only if e is smooth can it be 

accurately represented on a coarser grid. 

Figure 38. A mode at k=-4 on grids of N=-12 and N=-6. 

It can also be shown that if k = lf, the mode becomes the zero vector 

on f22
\ and if lf ~ k ~ N- 1, the kth mode on nh becomes the (N- k)th mode 

on f22h. This last statement says that an oscillatory mode on the fine grid is aliased 
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smooth on a coarser grid, which implies that we do not want to move to the coarse 

grid if any oscillatory components are present in the error. 

Let the residual be defined as 

-r f-Av, (6.3) 

and derive the residual equation 

Ae r 

by subtracting (6.3) from (6.1). It should be noted that relaxing on the original 

equation Au = J with an arbitrary initial guess v is equivalent to relaxing on the 

residual equation Ae = i with an initial guess of the zero vector. 

We can combine the above ideas into a multilevel method by relaxing 

on the fine grid until only smooth error components remain, then solving the residual 

Pquation for [Oil the coarst· grid. and finally correcting the fine grid approximation v 

by that amount. There are two advantages of approaching a problem iu this fashion. 

First, W<' can address tht> troublesome smooth error components Oil the coarse grid, 

and more importantly, by casting the problem on a coarser grid we reduce its size -

in this example by 75%. In general, the reduction factor is 2~ in moving from f!h to 

f!2h, where D is the number of dimensions in the problem. This is the general basis 

of coarse grid correction, which can be expressed as the following procedure: 

• Relax on Au = J for von f!h. 

• Compute i = f- Av 

• Solve Ae = ion f!2h. 
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• Correct v f- v +eon nh. 

Some mechanisms must be developed for transfering vectors between 

the coarse and fine grids, as well as for representing the residual equation on the 

coarse grid. This will require some additional notation. Superscripts indicate the 

grid on which an expression is defined, e.g. j 2h is the right-hand-side represented 

on the coarse grid, while vh is the approxi1nate solution represented on the fine grid. 

In addition, the intergrid transfer operators Jih : nh --+ D2h and I~h : D2h --+ nh 

are defined, which serve to transfer quantities between the grids. The operation of 

transfering information from the coarse to the fine grid is called interpolation , and 

from the fine to the coarse grid is known as restriction . For the coarse grid correction 

procedure, we need to restrict the fine grid residual to the coarse grid, interpolate the 

coarse grid error correction to the fine grid, and represent the residual equation on 

both grids. 

The interpolation operator is denoted by 

Jh --2h --h 
2hv - v ' 

and produces a fine grid vector whose entries are 

h 2h d h 1 ( 2h 2h ) 
V 2J

. - v3· an v · - v · + v · J 2J+l - 2 J J+l ' 

N 
0:2-1. 

The even numbered grid points on nh are exactly the D2h grid points, while the odd 

numbered grid points on nh are computed by averaging adjacent grid points from 

D2
h, that is, by linear interpolation. Figure 39 shows the action of I~h· 
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6 ~n' 024'7 8 10 12 

Figure 39. Interpolation of a vector from !1 2
" to f2h. 

Interpolation acts on coarse grid VPctors to protluc<' fin<' grid vectors . It 

is crit ical to consider the smoothness of tlte vector lH'irt~ iutt·rpolated. as only smooth 

vectors on the coarse grid can be accurately rcprc~t·rtt .-.1 ou t lw frrw grid. Figure 40 

shows the interpolation of a smooth aut! o~cillatory error n·ctor to the fine grid. If 

t lte actual error is oscillatory on tlw firw ~ri•L tlwu iutcrpolat iort will uot accurately 

n·present it. 

The restriction operator t.,\..., ... \t·dor' from tlw fine grid to the coarse 

p;rid as 

l .l ~.~. - .~.l1. 
I. - • 

There are several choices for restriction opt>rators. of which we will use full weight-

ing1 which is defined as 

2h 
V· 

J 
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(a) 

7 ... ~ 
(b) • 

Figure 40. (a) If the error (indicated by o and •) is smooth, an interpolant of the 
coarse grid error (indicated by o) should give a good representation. (b) If the error 
is oscillatory, an interpolant may give a poor representation. 

Values for coarse grid vectors are weighted averages of values at neighboring fine grid 

points. Figure 41 shows the action of lK\ a very good example of why an oscillatory 

vector should not be restricted. 

0 2 4 6 8 10 12 

0 2 3 4 5 6 

Figure 41. Restriction of a fine grid vector to the coarse grid. 

Incorporating this new notation, we formally define the coarse grid cor-

rection scheme as 
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• Relax v times on A huh = f'h on D,h with initial guess iJh. 

• Compute f'2h = J~h(f'h- AhiJh). 

• Correct the fine grid approximation iJh ~ iJh + 1;he 2h. 

Here, superscripts denote the grid where the quantity is defined, and 

the parameter v represents the number of relaxation sweeps performed before moving 

to the coarse grid. 

The quantity A 2h, the coarse grid version of A h, remains to be defined. 

To this end, assume that the fine grid error eh lies entirely in the Range(I;h). This 

IIH'illlS that for some .z72h E D,2h' eh I ;h u2h. Then we can write the residual 

t·quation as 

:\ pplying the restriction operator to both sidPs yields 

/ 211 4''11. -2h -- /211 -h 
h • 2i ' 1 11 r· • 

which has the same form as the residual equation, except that it is on the coarse grid. 

Thus it is reasonable to define 

(6.4) 

which is known as the Galerkin condition . 
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The intergrid transfer operators can be defined as matrices. Specifically 

1 

2 

1 1 

I;h 
1 
- 2 2 

1 1 

2 

1 

a rul 

1 2 

1 2 
J2h - -h 4 

2 

Tlw intergrid transfer operators satisfy the relationship 

(6.5) 

The relationships (6.4) and (6.5) together are known as the variational properties . 

Satisfying the variational properties will further facilitate the analysis of the coarse 

grid correction scheme. 
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Next, consider the action of the intergrid transfer operators on the 

modes of A\ as given by (6.2). Full weighting applied to modes results in 

2( k7r ) .... 2h 1 < k < N' 
cos 2N Zk ' - - 2 

and 

I 2h -h · 2 ( k1r ) .... 2h k N 
h ZN-k = -Sill 2N Zk ' 1 :::; < 2' 

Here modes above If are oscillatory, while those below If are smooth. Thus, full 

weighting acting on the kth mode of Ah produces a multiple of the kth mode of A 2h. 

However, acting on the (N- k)th mode of Ah full weighting also produces a multiple 

of thC' k 1h mode of A 2h [Ref. 28]. So full weighting acting on an oscillatory mode will 

rC't urn a smooth mode. For this reason it is essential that we relax until only smooth 

mod<'s remain before moving to the coarse grid. 

The modes of A 2h are given by 

· ( br ) 
Slll N/4 

sin( 2br) 
N/4 

· ( (N/2-I)br) 
Sill N/4 

N 
I< k < -. - 2 

It can be shown / citebrig87 that the interpolation operator applied to these modes 

results in 
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Thus, interpolation produces both smooth and oscillatory modes on the fine grid. 

Applied to the smoothest modes on f22h, e.g., modes with k ::;::; ~, the magnitude of 

the multiplier of the smooth modes is of 0(1), while that of the oscillatory modes is 

of 0 (~2

2 ). Therfore, the result of interpolation is primarily a smooth mode on nh. 

With the knowledge of the action of the intergrid transfer operators, we 

return to the coase grid correction scheme, whose steps are 

• Relax v times on nh using iterative method P : iJh +-- pviJh, 

• Full weight rh to f22h: / 2h +-- J~h(Jh- AhiJh), 

• Solve the residual equation exactly: iJ2h = (A 2h)- 1/ 2h, 

• Correct the approximation on f2h: iJh +-- iJh + J~hiJ2h. 

The process may be written as a single operation, namely 

The exact solution iJh is unaffected by coarse grid correction, so we have 

Subtracting these two expressions yields 

(6.6) 

Denote the action of coarse grid correction as CG : nh -+ nh, so that (6.6) can be 

rewritten as 

.... h CG .... h e +-- e . 

103 



We wish to determine the action of CG on the modes of Ah. Let sk = 

sin2 (E!._) and c 2N k = cos2
( ;~ ). If we apply CG without relaxation, it can be shown 

that 

and 

1 < k < N. 
- - 2 

Thus when CG is applied to either smooth or oscillatory modes, both smooth and 

oscillatory modes are produced. However, we must again look at the magnitudes of 

the resulting modes. 

For k < < ,'\· we have 

and 

• 

Thus CG without relaxation acting on smooth modes produces both smooth and 

oscillatory modes of small magnitude, while, acting on oscillatory modes, produces 

both smooth and oscillatory modes of 0( 1 ). To prevent using CG on oscillatory 

modes, relaxation is performed first to eliminate them. Then, after the fine grid 

approximation is corrected, more relaxation can be performed to eliminate those 

oscillatory modes excited by interpolation. 

Now, the final version of the coarse grid correction scheme is 
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• Relax v1 times on Ahuh = ]'h on nh with initial guess vh. 

• Compute ]12h = Jih(jh- AhiJh). 

• Correct the fine grid approximation vh ~ vh + I~he 2 h. 

• Relax v2 times on A huh = fh on nh with initial guess vh. 

The only unanswered question is how to solve the residual equation on 

0 2h. The answer is to think recursively. We keep transfering the problem to coarser 

and coarser grids until it is small enough to be solved easily with a direct method. 

The concept is illustrated in the following scheme. 

Relax VJ times Oil A hii" = fh with initial guess vh. 

Compute / 2h = It'·;~". 

Relax v1 times on .·f 21•ii.lh - / 2h with initial guess iJ.lh - 0. 

Compute pth = J1~r 1 ". 

Correct t).lh ~ ru. + !J1~r4 h. 

Relax v2 times on A2htPh = / 2h with initial guess iJ.lh. 

Correct vh ~ vh + I ;h iJ.lh. 

Relax v2 times on A huh = j1· with initial guess vh. 

The scheme telescopes down to the coarsest grid, which may be a single 

point, and works its way back up to the finest grid. Figure 42 shows the schedule of 

grids visited during the execution of the algorithm for six levels, which resembles the 

letter V. For this reason, the multilevel scheme is often referred to as a V-cycle. 
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2h 

4h 

8h 

16h 

32h 

Figure 42. Schedule of grids for a V-cycle. 

To summarize, all frequencies (excepting the smoothest) are eventually 

oscillatory on some grid where they are eliminated by relaxation. The smoothest 

frequencies are eliminated by the direct solve on the coarsest grid. When used these 

schemes are used together in the form of a V-cycle, all error components are elimi­

uated. The intergrid transfer operations that make up CG are chosen to complement 

each other and the relaxation method being used. We want the restriction opera­

tor such that the smooth components of the error on nh appear oscillatory 

transfered to f2 2h, so that relaxation will be effective in eliminating them. Similarly, 

we want the interpolation operator to faithfully represent smooth components of the 

error on f2 2h smooth when they are transfered to f2h. All of these operations must 

complement each other, or the multilevel method may not be as effective as it could 

be. 

The coarse grid correction scheme derived for this model differential 

equation illustrates the workings of all the elements of a multilevel method. Unfor-
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tunately, the image reconstruction problem is nothing like the model problem, and if 

we took the naive approach of applying the elementary multilevel approach outlined 

above numerous difficulties would arise. For example, what are the fine and coarse 

grids in this setting? What do restriction and interpolation represent in terms of 

the physics of the problem? Does restriction make a smooth error component appear 

more oscillatory in this setting? Can the error be accurately represented on the coarse 

grid? These and other questions must be addressed. Clearly, a different approach is 

needed. 

To cast the image reconstruction problem in a multilevel setting, we 

will use the abstract multilevel projection method,or PML,approach. In PML, the 

problem is discretized by projections,and these projection operators in turn define the 

intergrid transfer operators and the appropriate relaxation method. 

2. Multilevel Projection Methods (PML) 

The multil<>v<>l projection methodology, due to McCormick [Ref. 2), was 

developed so that a variety of problem types, not limited to elliptic partial differential 

equations, could be cast in a multilevel setting. PML is useful in that it provides a 

formalism that greatly eases the development of intergrid transfer operators and re­

laxation schemes that complement each other. The designer of the multilevel scheme 

must specify a set of subspaces, and the other components of the scheme are deter­

mined. This is significant, for most of the work involved in designing a multilevel 

scheme is taken up in choosing such components, which is a difficult process and 
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sometimes involves trial and error. If these operators are not matched, the multilevel 

scheme might not be effective. 

In PML the problem is discretized by orthogonal projections, and the 

projection operators themselves lead to the correct choices for intergrid transfer op­

erators and relaxation schemes. We now briefly describe the general principles of 

PML. 

Let H1 and H2 be Hilbert spaces, let L : H1 ~ H2 , and let f E H2 be 

given, and consider a problem defined by 

Lu - j, u E //1. 

Define K(u) = Lu- f = 0, where/\. // 1 ~ 1/1 • Tht'n wt• writt· the problem as 

find u E H 1 such that 

The problem is generally posed in tlJi .. f.L ... t. iou -.(1 th"t it may lw treated in equation 

(strong), variational, or weak form .• ,ltbondl \\t " will only consider equation form 

here. 

One of the basic principlt~ of t lw mult ilt'n·l projection methodology 

is that discretization is accomplislH·d by projt·ct ions. a procedure that relates the 

continuum problem to a discrete probl<'m ou l<'vt>l h . 

Let Sh be a finite-dimensional subspace of H1 , and let ps" : H 1 ~ Sh 

be an orthogonal projection of H 1 onto Sh. Similarly, let pT" : H2 ~ Th be an 

orthogonal projection of H2 onto a finite-dimensional subspace Th. 
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Assume also that mappings Psh and Prh exist from the level h spaces 

to the continuum spaces 

and 

These are generally identity operators, but we carry them for generality. 

Here, Sh and Th are subspaces corresponding to some discretization 

parameter h. That is, they could be the space spamwd by a st't of finite element basis 

functions on a grid with nodal spacing h; thPy could b<' nmt inuum functions sampled 

011 a grid with spacing h, or (for the i rmt~t> reronst rn r t ion problt·m) they could be 

spaces spanned by strips of width h. 

Finally, assume that a ~irnilcH , •. t of ort t.o~onal projt>rtions exist for 

lt·vd !!h subspaces S2h and T 2h. Tht>ll tlw IIJtc·rlt·n·l trara~f«'r~ ht•twt>t'll spaces at levels 

J, and !!hare defined implicitly by find mc oJwrntur!' Jt· a ru l / ~'1, that makP the diagram 

in Figure 43 commute. 

That is, Jih : Sh ---+ S21' and 1 ;·~ : .~· l~. -+ ·"·h are defined implicitly by 

P -- fJ 11
' ~-'2, S " 2h • 

and 

An analogous diagram exists for the H 2 subspaces Th and T 2h. 
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Figure 43. Discretization/Coarsening Diagram for H1 . 

The process described above is known as discretization by projections, 

and it dictates what the coarse grid and intergrid transfer operators should be. Fol-

lowing this approach, the discretized problem becomes 

which we write as 

It is important to note that 1\h is defined by the continuum operator 1\ and the action 

of the projection operators, which is fundamental to PML. That is, /{h = pTh 1\ psh. 

For ease of development, it is usually assumed that the subspaces are 

conforming , with S 2h C Sh and T 2h C Th, and that the so-called variational proper-

ties are satisfied, that is 
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and 

It is important that this discretized problem be realizable,or repre-

sentable in a computational setting. The usual approach is to specify the subspaces 

Sh and Th in terms of finite elements, choose a basis for each, and then rewrite the 

discrete problem in terms of the coefficients of the unknown uh expanded in the basis 

for s·h. 

The two main components of a multilevel method needed to solve this 

problem are relaxation and coarse grid corection. Relaxation will take the form of 

a ~<'IIPralized block Gauss-Seidel method. To develop the relaxation method, define 

t lw block subspaces s;' 1 :S I! :S m, such that 

This is not necessarily a direct sum. although it may be. Therefore any element of 

,'-.'
1
' can be written as a (not necessarily unique) linear combination of the elements of 

C...''l . t' e.g. 
m 

uh - L O[Utt)• where utl) E s;. 
l=l 

Vv'e can define similar block subspaces for Th. Relaxation applied to the discretized 

problem is then given by the steps 

For I! = 1,2, ... , m 
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S t h h h e u ~ u + u(e)· 

Essentially, at each step we are seeking an element from the appropriate block sub-

space such that after adding this element to the current approximation the projection 

of the residual onto the subspace vanishes. If the block subspaces Sf are chosen to 

be the standard basis vectors, the relaxation method as defined here is just point 

Gauss-Seidel. Relaxation will be represented as 

The coarse grid correction procedure is not difficult to define, as it 

involves an exact solution on level 2h . The procedure is represented as 

and i~ given by the steps 

Here we seek an element from the S 2h subspace that solves the residual equation on 

level !!h . This element is then used to correct the level h approximation. \Ve call 

combine coarse grid correction with relaxation to produce a two-level Pl1v1L method 

that will be denoted as 

and is given by the steps 
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As before, the exact solve on level 2h can be approximated by a recursive call u 2
h ~ 

PM L2h(u2h), leading to a PML V-cycle. 

B. PML FORMULATION OF THE IMAGE RECON­
STRUCTION PROBLEM 

We can apply PML methodology to the image reconstruction problem to de-

velop a multilevel method that is more effective than relaxation alone. 

1. Discretization by Projections 

We begin by showing that the natural pixel discretization of Chapter 

IV is in fact a discretization by orthogonal projections. The continuum problem to 

he discretized is Au = f, where A : L2 (n) ~ nN. We take H1 = L2 (n) and 

1/1 = 'R.N. The subspace Sh = Range(A•), the span of the characteristic strip 

fuuct ions. \Ve take Th = nN' which implies that pTh = /r;, the N X .'\· idc>ntity 

matrix. 

The orthogonal projection operator P5
h could be explicitly calculated 

by applying the Gram-Schmidt process to the characteristic strip functions, so that 

N 

pSh U = ""( ~ )~ ~ u,~.,j ~.,j, 

i=l 

where the ~i 's are a set of orthogonal basis functions produced by Gram-Schmidt on 

the 1/Jj's. However, the following result shows that it is not necessary to explicitly 

produce the orthogonal projection operator P5
h. 

113 



Theorem 6.1: For each angle </;j , 1 :::; j :::; M, let n be exactly partitioned 
into N1 (j) parallel, non-overlapping strips, and let N = 'L~1 N 1 (j). Number 
the strips from 1 toN and let '1/Jj(x, y) be the characteristic function of the lh 
strip. Let Sh be the subspace of the Hilbert space H 1 = L 2 (0) spanned by the 
set 

Then the matrix equation 
Ba = l 

is a discretization by orthogonal projection of the problem Au [. 

Proof: Using the various subspaces as defined above, the discrete equation 
will be 

sh ... 
!NAP u = f, 

where P 8 hu is an orthogonal projection of u(x,y) onto Sh, and therefore 

N 

pShu = 'La:j'l/Jj(x,y) 
j=l 

A* ... = a: 

for some Q E nN. Since psh is an orthogonal projection, we must have 
(u- P8hu) .l '1/Jj for every V'j E Sh. Hence for 1 :::; j:::; N, 

0 
sh 

= (u - P u, l/Jj) 

= (u- A*a, l/J;) 

= (u- ta.,P.,,i',) 
k=l 

N 

- (u, l/Jj)- L a:k(l/Jkl 1/Jj). 
k=1 

Therefore if P8 hu = A*a is an orthogonal projection of u(x,y) intoSh, then 

the vector a must satisfy 

< u,'l/Jl > 
< u,'l/J2 > 
< u,'!jJ3 > 

<u,'l/JN> , 
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But the left side of (6. 7) is just equal to Au, hence we conclude that a must 
solve Au = Ba, and the projection- discretized form of Au = f is just 
Ba = f I 

In this way our natural pixel discretization of the problem can formally 

be considered a discretization by projection in the PML sense, and we need not con-

cern ourselves with explicitly forming the projection operator. With this discretiza-

tion in hand, the remaining concepts of PML can be applied in a straightforward 

manner. We continue by defining the coarse subspaces S 2h and T 2
h in a fashion that 

leads to a useful multilevel algorithm. 

2. Intergrid Transfer Operators 

Let Sh bP t ht> span of the N characteristic strip functions t/Jj, where h 

is some parameter that indicates the level of the discretization. For example, h may 

indicate the width of th<' widt>st strip function at that level. Suppose that there is 

an even number of strip functious for each of the M angles, and that we number the 

functions from 1/J~ to t/.'R· in a way so that two adjacent strips on any view are always 

numbered consecutively. Then the subspace S 2h can be constructed as 

{ }
N/2 s2h = span t/J2h 

k k=l 

Each characteristic strip function in the coarse subspace is the union of two adjacent 

fine space strip functions. We define the coarse grid problem by thickening the x-rays. 

Using these coarse subspace strip functions and following the procedures of Chapter 

IV, we can define (A2h)* : RN/2 ---+ S2h by 
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which in turn defines A2h: S 2h -t nN/2 by 

< . J. 2h u > 
If/ 1 ' 

< . J. 2h u > 
11"2 ' 

.J.2h < ~~"N/2'u > 

An application of Theorem 6.1 using these level 2h subspaces leads to the projection 

discretized coarse level problem B2h(;2h = / 2h, where B2h = A 2h(A 2ht is an 

(N/2) x (N/2) matrix with entries (b7jh) = (1/Jf\1/J]h). 

Having found orthogonal projections into the Sh and S 2h subspaces, we 

next must determine intergrid transfer operators Jlh and 1;h as implicitly defined in 

Figure 43. The derivation is centered around the definitions of the coarse subspace 

strip functions 1/JZh. 

Lemma 6.1: Let the coarse subspace strip function 1/JZh be the union of two 
adjacent fine subspace strip functions given by '1/;kh = '1/;~k-l + '1/;~k, for 1 ::; 
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k :::; N /2. Then the operators A h : Sh ---7 Th and A 2h : S 2h ---7 T 2h are related 

by 
A2h = J~h Ah 

where J~h is an ( N /2) x ( N) matrix given by 

1 1 
1 1 

1 1 

1 1 

Furthermore, the adjoint operators (Ah)* : Th ---7 Sh and (A 2h)* : T 2h ---7 S 2h 
are related by 

Proof: The kth component of the vector A2hu E T 2h is related to the (2k-1)st 
and 2kth components of Ahu E Th by 

Now, partition the vector Ahu into blocks consisting of pairs of adjacent entries 
and form the matrix J~h by placing the block ( 1 1) in the (2k- 1 )91 and (2k )th 
positions of the kth row of a (N/2) x (N) matrix of zeros, for 1 ::; k ::; N/2. 
The matrix vector multiplication J~h Ahu produces A2hu and proves the first 
part of the lemma. 

The second part of the lemma is arrived at by observing that 

- ( 1/J;h 1/J;h 

- ( 1/J~ + 1/J; 

~t,2h ) -2h . . . 'PN/2 a 

1/J; + 1/J; . . . l/J~/2-I + l/J~/2) 02h 

1 
1 
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I 

The second part of the lemma verifies that the operator Jlh gives a 

consistent definition to the adjoint of the coarse space operator A 2h, showing that 

Thus we can define I~h ( Jlh) T. Finally, we show that the intergrid transfer 

opPrators as defined satisfy the variational properties. 

Theorem 6.2: The discrete operators satisfy the variational properties 

h ( 2h)T I2h = c Ih ' 

B 2h _ 12hBhlh 
- h 2h' 

Proof: The first property is satisfied with c = 1, as was shown in the proof 
uf Lemma 6.1. For the second property, consider 

3. Relaxation 

8 2h = .42''(A2hr 

= I,~hAh(Ahr 1;h 
= 12hBhlh h 2h' 

I 

A relaxation scheme can be developed, following the principles of PML, 

by partitioning the discrete spaces Sh and Th into block subspaces 

m m 

~s; and Th - ~ Teh· 
l=l l=l 
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One obvious choice of block subspaces is to let 

1: N. 

Here, the w; are the standard unit basis vectors for nN. using these choices, we have 

the following 

Lemma 6.2: The PML relaxation scheme on Au = j, using the above block 
subspaces) is implemented by performing point Gauss-Seidel iteration on the 
matrix equation Ba = j. 
Proof: The gth step of PML relaxation requires findi11g a value s satisfying 

Plh(AP5h(uh+sv,7)-f') = 0 

where uh is the current approximation of tilt' ~olut iou. which is then updated 
by 

h I, + I. 
U f- IJ ·"l't. 

Now l/J; (Ah)*w;, and since P8~ r/· E ,'-.'1• \\'(' mu~t 
for some c;h E Th. Hence we need ... to ~<tt i~fy 

..;~ I 
han· P· u' -

Realizing that the action of the pruj t-c t iuu I,, .. i!' uot hing more than forming 

an inner product with w7, We S('t•k all ·' ~II< h that 

( w;) r ( B1
' ia~ + ... u" rr~ ) = J,". 

The solution is given by 

) '" biT -h s = -b (u - 'o ). 
II 

where bJ is the gth row of Bh. Therefore. the f'h step of PML relaxation is 

c;h ~ c;h + _bi (fl- b{ah), 
u 

which is precisely the correction of the gth step of Gauss-Seidel applied to 
Bhah = f'h. I 
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4. Coarse Grid Correction 

The final component required to complete our PML formulation is the 

-coarse grid correction. For the problem Au = f, it is defined as finding that element 

u 2h E S 2h which satisfies 

0, (6.8) 

where uh is the current approximation of the solution m the fine space Sh. The 

correction is then given by 

We know that 

where (Ah)•ah represents P5 huh. We also know that since u 2h E S2h, there exists a 

:\'oting also that pT2
h f'h = I~"J'', then (G.S) becomes 

This establishes that under the PML methodology, the coarse grid correction scheme 

is equivalent to that used for conventional model problems. In other words, we have 

proved the following result. 

Lemma 6.3: Let Bh£ih = lh be the discretization by projections of Au l 
using the characteristic strip functions t/Jj and 't/J~h. Suppose that (Ah)•ah zs 
the representation of the current approximation uh after relaxation. Then the 
PML coarse grid correction scheme is given by the steps 
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1) Set j2h = fKh(j"h- Bhah). 

2) Solve the equation B 2he 2h = / 2h. 

3) Correct the approximation Q:h +--- Q:h + I~he 2 h. 

The complete PML two-level method is formed by combining relaxation 

and coarse grid correction. 

Two-level PML method: Q:h +--- PM L( Bh, Q:h, /h) 

1) Relax v1 times on Bh Q:h = /'1
• 

2) Set /2h = fKh(j"h- BhQ:h). 

3) Solve the equation B 2he2h = / 2h. 

4) Correct the approximation Q:h +--- Q:h + I~he 2 h. 

5) Relax v2 times on BhQ:h = /h. 

The additional v2 relaxation sweeps at step 5 are optional, but have 

been observed to improve performance in model problems, so are included here for 

generality. As discussed earlier, the exact solve at step 3 can be replaced by a recursive 

application of the entire process, so that the only time an exact solve is required is 

on the coarsest subspace. To realize such a recursion in the PML setting, define the 

coarser subs paces Sih, for j = 1, 2, · · · by taking the characteristic strip functions 

that define the new subspace to be the pairwise joining of strip functions in the current 

subspace, just as was done to form S2h from Sh. The coarsest level in this context is 

one thick x-ray that completely covers the image space at each angle. The resulting 

linear system would be diagonal and of size M x M, and could be solved directly. The 

recursive version of the method, a PML V-cycle, is given by the following algorithm: 
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PML V-cycle: Q:h +--PM LV(Bh, ah, ]f.) 

1) Relax v1 times on BhQ.h = ]'h. 

2) If at the coarsest level, go to 3. Otherwise 

a) /2h = Ilh(j"'h _ Bhah). 

b) Q.2h +-- 0. 

c) Q.2h +-- PM LV ( B 2\ a2\ / 2h). 

d) a.h +-- a.h + I~ha.2h. 

3) Relax v2 times on BhQ.h - f'h. 

5. Convergence 

We next look at the convergence properties of this multilevel method, 

and present a formal proof. It is of limited use as a convergence proof, as it depends 

on some constants that cannot be determined a priori. However, the result has some 

practical applications related to the performance of the multilevel method. 

Consider comparing residual norms before and after a V-cycle is per-

formed. This entails writing t}w algorithm in more detail, so that residuals can be 

examined at various steps within a cycle. It also involves placing side conditions on 

the relaxation scheme to measure its effectiveness. Ultimately, we desire the norm of 

the residual to be reduced by the scheme at each level in the V-cycle. 

Define an artificial level n~. Let 

I~ 
2 

I B~ 
' 

Note that this artificial level is identical to the finest grid in every respect. Then we 

have the following algorithm for k levels: 
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L 

Algorithm MG(j, rt, aJ), where L 2j-l h, J 1 : k. 

• Compute r{J = !zrt 
2 

• Relax v1 times on BL aL = r{J with initial guess a{J 

• Compute rf = r{J- BLaL where lllrflll ~ PLlllrtlll 

• if j < k (not the coarsest grid) then e2L +-MG(j+1,rf,O) 

• Cmnpute rf = r{J - BLaL 

• Relax v 2 times on BL aL = r{J 

• Return aL 

The side conditions occur in steps 3 and 8 of the algorithm , and involve 

the constants pL and f..L. For convergence of the method, we require that these side 

couditions on the relaxation scheme be satisfied. For the first relaxation, on the way 

down into the V-cycle, the factor pL is the amount the norm of the residual is reduced 

after relaxation on level L as compared to the residual before relaxation on level ~. 

For the second (optional) relaxation, on the way up out of the V-cycle, the factor f..L 

measures residual reduction before and after relaxation on level L. If this relaxation is 

not performed, then f..L = 1. Note that these factors are functions of L, and change 

as the algorithm moves from level to level. We also want the restriction operator 

satisfy the condition 
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Our restriction operator JfL is not invertible, so we approximate it with its pseudo-

mverse as 

and require this approximation to satisfy the condition instead. Before we give the 

main theorem, a lemma is required. 

Lemma 6.4: If the variational properties hold with c = 1, then the interpo­
lation operator IfL is norm-preserving in the energy norm. 

Proof: 

lllv2L Ill ( v2L' B2Lv2L) 

(v2L, IfL BL JfLv2L) 

_ ((IfL)T v2L, BL JfLv2L) 

- ((IfLv2L), BL(JfLv2L)) 

IIIIfLv2LIII 

I 

Th(' next theorem follows tht> basic outline given in [Ref. 29], and uses the notation 

of Algorithm MG. 

L 

Theorem 6.3: Let r=f be the initial residual on level !:; at some step, where 
L1 = 21 -

1 h, 1 ~ j ~ k, where k denotes the number of levels of the scheme. 

Let (/f)- 1 : f2L -7 nt be approximated by its pseudoinverse ~IfL· Further, 
2 

assume that there exists a JL E n such that 

Ill(/- (IfL)t/fL)ulll ~ JLIIIulll, u E nL. 
Define E1 = Ehph and Ej = ELpL(JL + Ej_1 ), j > 1, where L 

Then III(If)trrlll ~ Eilllrflll· 
2 

Proof: The proof is by induction on j. For j = 1, we have 
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but since there is only one level, r~ = r~. So 

Now, assume the claim holds for all levels j < k. Then 

L 

since the operator Il is norm preserving. Therefore 

Ill (It) t rr Ill - ~ Ill rr Ill ::; ~ (L Ill r~ Ill 

1 
2tLIIIr~- BL(aL + JfLe2L)III 

- ~tLIIIrf- BL JfLe2LIII 

- ~tLIIIrf- (IfL)t B2Le2LIII 

- ~tLIIIrf- (IfL)t(IfLrf- r~L)III 

- ~eLl II(!- (/fL)t IfL)rr + (/fL)tr~LIII 

< ~tLIII(J- (JfL)t /fL)rrlll + ~tLIII(IfL)tr5LIII 

< ~cLJLIIIrflll + ~tLIII(/fL)tr5LIII 
I 1 

< 2cLJLIIIrrlll + 2tLEi-tlllrflll 
I L L L - 2f. (J + Ei-dlllrt Ill 

< ~tLpL(JL + Ei-dlllrtlll 
1 L 

- 2Eilllr2 lll 

I 

The constants tL, pL, JL and Ej indicate the performance of the multilevel routine. 

As long as Ej < 1, the method is converging. Unfortunately, there is no a priori way 

to determine the values of these constants, as they change from level to level and 
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cycle to cycle as the algorithm is executing. They can, however, be calculated and 

monitored during execution so that some idea of the performance of the method can 

be gained. 

C. ANALYSIS OF PERFORMANCE 

We compare the performance of Gauss-Seidel alone and the PMLV method 

by considering work required to reduce the norm of the residual. Let one sweep of 

Gauss Seidel on the finest level be defined as one work unit (\\'lT), which is an O(N2 ) 

operation. The work required for one V-cycle call lH' computt>d i11 the following 

fashion. At each level, we perform Vt + v2 S\\'t•eps of Gauss-St'itld aud compute a 

residual. Since computing the residual is an 0( .\' 2 ) opc.-rat iou. \\'t• lt~t it be equivalent 

to tlte work of one sweep of Gauss-St'idt·l. :h tlu· problt·m is coarst-ut·d, the size of 

tlw matrix equation to be solved is n·d11n>tl by a factor of ·1 at each lt·vel. So for a 

\ '-cycle, the work required is 

I 
( Lit + V·> + I )( I .. - .. - '1" ••• ) • 

" I I ti 

For these tests we use v1 = 2 itt-ratiuu' ~o1t1~ iuto tlte \'-cycle and v2 

iteration coming out of it, so one V -cyclt· wquin~ approximately t
3
6 \\'U. In all cases 

the problem is coarsened to the coarst·st possihlt• lt•vel, i.e. one ray per view for a 

problem of size M x M at the coarsest level. Figure 44 compares the performance of 

Gauss-Seidel to the PMLV algorithm for a problem of geometry 32 detectors over 20 

angles. This performance is typical of that obtained from numerous experiments. 
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Figure 44. Comparison of the performance of Gauss-Seidel and PMLV. 

It is clear from the figure that PMLV initially performs supenor to Gauss-

Seidel, but then this increase in performance stalls out , so that eventually both rou-

tines perform in about the same manner. However, examination of the slopes of the 

curves indicate that further iteration may favor PMLV. We return to the singular 

value decomposition to analyze this behavior. Consider the problem Ba = f, whose 

exact solution in the least squares sense is 

where Bt is the psuedo-inverse of B . In terms of the SVD, a can be expressed as 

where r = rank( B). If there is measurement noise in the data we are given to recon-

struct, so that instead off we have f + £, then solution components corresponding to 

small singular values will magnify this noise. Problems of this nature are referred to 

as ill-posed. Components in the near null space, i.e., those with small singular values , 
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are those components that are slow to to be recovered. Thus continued iteration after 

the procedure stalls in an attempt to recover these slow components has the potential 

to corrupt the solution with magnified noise [Ref. 30, 31]. 

Such problems require some form of regularization to prevent the ill-posedness 

from completely corrupting the approximation. One way to regularize the problem 

[Ref. 14] is to simply stop iterating when the algorithm begins to stall. An ad 

hoc approach to this is to measure the difference between successive residual norms, 

aud stop iterating when a tolerance is achieved. Perhaps a better stopping criterion 

ex ists. Recall from Theorem 6.3 that the PMLV algorithm reduces the norm of 

tlw res idual at each step by some factor Ej. This number can be computed as the 

algori t hm is executing, and can then be used to monitor its performance. It has 

ht'('Il experimentally observed that when the algorithm begins to stall, Ej becomes 

largt·r than one in magnitude. It could be postulated that a stopping criterion for 

tlw it eration is to monitor the maguitud{' of EJ, and then terminate execution when 

EJ > I. For the above example, EJ b(•canw greater than one in magnitude after the 

thi rd \'-cycle, which coincides with the stalling of convergence in Figure 44. 

The PMLV algorithm applied to the natural pixel discretized problem recon­

structs images quite well. The following series of figures depicts actual and recon­

structed images for two brain phantoms and a woman's face. Note that this last image 

is not the type of image for which the method is developed, but is included so that 

the reader unfa1niliar with radiological imagery has something familiar to observe. 
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PMLV ConvergenCQ Constant 
1 o' .-----.,----,-------;r-------.----,------. 

32 detectors at 20 angles 

tO"'lL-__ ...._2 __ _._3 ___ 4...._ _ _._5 __ ......__~ 

V-cyde 

Figure 45. Plot of the PMLV convergence constant Ej by sweep. 

In the next chapter, a multilevel fast adaptive composite method (FAC) ap-

proach will be investigated and applied to the spotlight CAT problem, which involves 

~d t ing high resolution in one piece of a larger image without discretizing the global 

prohlem to that level of resolution. The natural pixel discretization approach will be 

takt·u throughout this development as well. 

Figure 46. Actual and Reconstructed Images - Brain Phantom 1. 
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Figure 4 7. Actual and Reconstructed Images - Brain Phantom 2. 

Figure 48. Actual and Reconstructed Images - Face. 
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VII. SPOTLIGHT COMPUTED 
TOMOGRAPHY 

The image reconstruction techniques investigated to this point reconstruct the 

entire region of interest over which the data has been collected. In many cases, more 

detailed information may be required over a particular sub-area of the region. For 

example, a tumor might be suspected and the doctor wants a closer look. Collec-

tion of data over only the region containing the possible tumor result in inaccurate 

images, however, as only the sub-area is fully scanned. To overcome this problem, 

a multiresolution technique known as spotlight computed tomography (CT) can be 

employed. [Ref. 32, 33] 

To utilize the spotlight technique, the sub-area is x-rayed at high resolution, 

while the remainder of the image is x-rayed at a lower resolution. The collection 

of high resolution data over only the sub-area reduces the size of the resulting linear 

system dramatically compared to uniform high resolution discretization. This reduced 

size in turn allows the problem to be solved in less time with fewer resources. 

A. NATURAL PIXEL DISCRETIZATION 

We again take the natural pixel approach to discretizing the problem. For 

ease of development, we initially restrict the refinement to two levels, and consider the 

general case later. Let u(x, y) be the density function of the irnage to be reconstructed, 
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defined in a square regwn !1 of unit area. Let the sub-area to be spotlighted be 

defined in a square refinement region, nR, that is contained within n. Assume that, 

following the methodology of Chapter IV, the image is x-rayed at coarse resolution 

over M angles with N1 (j) source/ detector pairs per angle, 1 :=:; j :=:; M, for a total of 

N = ~~1 N1 (j) x-rays that completely cover the image at each angle. 

Refinement is achieved by x-raying nR at a fine resolution. (However, it is 

assumed that all the data is collected at once. The x-ray data for the fine grid is 

not acquired at a later time). We also assume that these fine rays exactly partition 

the coarse rays over nR, and that there are N2(j) such rays per angle, for a total 

of P = ~~~ N2(j) fine rays. Therefore the fine rays completely cover nR at each 

angle. The following simplt· example will serve to illustrate this concept. Assume a 

geometry of three coarst· ray~ over each of two angles, and that the refinement region 

is contained within the illtt'rM·ctiou of the center rays of each view, as shown in Figure 

49 (a). Refinement is accompli~hed by dividing the center rays in half, as shown in 

Figure49 (b). 

Note that the coarse rays are global in nature, completely covering the image, while 

the fine rays are local, completely covering only nR. 

Once again, let the ray paths be thought of as natural pixels, and introduce 

characteristic strip functions corresponding to these pixels. Let 1/;Jh, for J 

1 : N, be the jfh coarse strip function, and 1/;~, k = 1 : P, be the the kth fine 

(refinement) strip function. Here we let the superscripts indicate which resolution is 
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(a) (b) 

Figure 49. An example of grid refinement. 

being considered, i.e. h denotes fine strips, 2h denotes coarse strips, and let h. denote 

a composite combination of both resolutions together. 

Define the operator At!. : H --7 nN +P by 

A~-

< .,p~' u > 

< .,p;' u > 

< 1/J~, u > ) 
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The data vectors are modeled by the integral operators 

and 

It, 1 :::; k :::; P, 

giving the system 

I~ 

fn2 u(x, y)ljJ~dxdy I~ 

fn2 u( x, y )1/J~dxdy I~ 

where the Ijh and It are the coarse and fine ray projection data for the image, 

respectively. Following the course of action outlined in Chapter IV, we seek the least 

squares solution to this system, which is given by (Al!.)*al!., where (Xl!. E nN+P defined 

as 
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solves the system A.b:.(A.b:.)*<il!. j1:.. Once <i.b:. is found, the least squares solution is 

given by 

The operator (Al!.)* : nN+P --7 H is defined by 

_ [(A2h)" (Ah)*] ( :: l 
N p 

- L o.]h1Pih + L o.~l/J~, 
j=l k=l 

Q2h 
1 

where (A2ht : nN --7 H and (Ah)* : nP --7 H are defined in the expected way. 

Thus the image density is represented as a linear combination of the charac-

teristic strip functions by 

N p 

u(x,y) L: o.'tl/JJh + L: o.Zl/J~ · (7.1) 
j=I k=l 
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Define 

where Bfl : nN+P --+ nN+P. The entries in Bfl can be calculated by substituting 

(7.1) for u(x,y) in Aflul!. = jll., yielding 

N p i 2 CI:, a7h~r + L Q~~~)~r - f]h, J - 1 : N 
R i=l f=l 

N p i 2 (2:, a;h~r + L Q~~~)~i Jt, k = 1 : P, 
R i=l f=I 

which can be expanded as 

= fu. 
) . J = 1 .1'\r· 

= ! '' 4 • J.· = 1 P. 

fiually yielding 

N /' 

L a?h < '1/-,fh, '1/-,;h > + L n;· < v:·. l';~· > = !}'·. j = 1 : S 
a=l l=l 

N /' 

L o:7h < '1/-Jr' '1/-Ji > + L ... ~ < v;. l':· > = Jt. J.· = 1 : P. 
i=l 1=1 

This last expression is a block linear sy!'-tt·m. which cau lw written as 

B h-h -Q-

Thus Bl!.iil!. j1. is the natural pixel discretization of the spotlight CT 
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It is possible to refine the fine strip functions again in the same fashion , which 

allows for recursive refinement to as fine a level of discretization as is needed to resolve 

the image. Before investigating how to best solve this linear system, we first analyze 

the matrix Ell, characterize its null space, and discuss some of its other interesting 

properties. 

B. PROPERTIES OF THE SYSTEM MATRIX 

In our analysis of the matrix Ell, much of the theory previously developed in 

Chapter IV will be directly applicable. The followiug is om· such result , the proof of 

which follows directly those of Lemma 4.1 and Theort'lll ·1.:!. 

Lemma 7.1: The matrix Ell is rwr~ - Fitgatu·t .. -. y rrwu In c, ar~d po.-•itive semi­
definite. 

From above, we know that H~ Citll lw \\ rit t t·u iL' 

B!i = ( )· 
and that each of these four blocks ha." a b1<)("k ~t ruct ure uf its own. The matrix B 2

h
2

h 

is formed from the intersections of the coar~e ray~ with themselves, and is exactly 

the matrix B analyzed in Chapter IV . LJ'·'· is formed from the intersection of the fine 

rays with themselves. Like E 2
h

2h, it is block A1 x M with the diagonal blocks being 

diagonal matrices. However, it lacks the summability properties of E 2h 2h. Finally, 

the off-diagonal block matrices E 2hh = ( Eh2h )T are formed by the intersections of 
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Figure 50. Block structure of the Spotlight matrix. 

coarse rays with fine rays. For example, Bhh would have the form 

B hh 
2M 

Bhh Bhh Bhh 
Ml M2 MM 

where Bbh has elements corresponding to the areas of intersection of the fine rays at 

angle ¢i with the fine rays at angle <Pi· The other two blocks have a similar structure 

and similar interpretation. The sizes of the blocks are B[f2h is JV1 ( i) x N1 (j), Bbh is 
I 

the block structure of a typical matrix, in which only the nonzero entries appear in 

black. 
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The off-diagonal block matrices possess summability as given by 

Lemma 7.2: The off-diagonal blocks of Bl! ·exhibit the following summability 
properties: 

a) Let ~ be the kth row of B!!. The elements of rk in any block Bt2h of Bh2h 
sum to the value of the corresponding diagonal element in the kth row of 
Bhh. 

b) Let rk be the kth row of B!!. The sum of the elements of rk in any block 
B[fh of B 2hh is equal to the sum of the elements in rk in block B[jh2h of 
B 2h2h corresponding to the coarse rays from which they were partitioned. 

c) Let rk be the kth row of B!!. The sum of the elements of rk in any block 
Bt2h of Bh2h corresponding to coarse rays that are refined is equal to the 
sum of the elements in rk in block Bth of Bhh. 

d) The above three results hold for the columns as well. 

Proof: To prove part a, consider how the elements of row k for block Bt2
h 

corresponding to angle </>i are formed. The entries of row k for this block are 
the areas of intersection of fine strip k with all of the coarse strips for angle 
Or Since the coarse rays at angle </>j must cover the entire image, they must 
cover fine strip k as well. To prove part b, note that the elements of rk in Blfh 
an~ the areas of intersection of the fine strips at angle </>j with coarse strip k 
from angle </>i. The elements of r~c in B~h2h corresponding to the coarse rays 
at angle </>j which are refined are their areas of intersection with coarse ray k 
at angle ¢i· Since the fine rays are an exact partition of these coarse rays, the 
sums must be equal. This is geometrically illustrated in Figure 51. For part 
c. again note that the elements of r1c in 8~2" corresponding to coarse rays at 
angle ¢J that are refined are their areas of intersection with fine ray k from 
angle ¢i· The elements of r~c in B~h are the areas of intersection of the fine 
strips at angle </>j with fine strip kat angle cp,. Due to exact partitioning, these 
sums must be equal. This is geometrically illustrated in Figure 52. Part d 
follows from symmetry. I 

Another summability property exists, based on how the refined rays are de-

fined, that has a role in determining the rank of B!!. Recall that by assumption the 

fine rays exactly partition the coarse rays. Refinement is carried out by selecting a 
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8
2h2h 2hh 

B 

Figure 51. Geometry of Lemma 7.2(b). 

Figure 52. Geometry of Lemma 7.!!(c). 

coarse ray and dividing it into a number of thinner rays. Now, consider the k'h row 

of the matrix Bfl. The entries in this row are determined by finding the areas of 

intersection of the kth ray path with all N + P ray paths defined in the geometry of 

the problem, taken in sequence. This leads to the following theorem. 

Theorem 7.1: The sum of the rows of B!! corresponding to a set of fine 
rays that were formed by subdividing any one coarse ray equals that row of B!! 
corresponding to the coarse ray in question. 
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Proof: Let '1/J~h be a coarse strip function which is refined into r fine strip 
functions, such that 

j+r 
'1/J~h = 2: '1/Jf. 

i=j+1 

..... h 
Let by; be the kth row of Bll, given by 

< 'ljJ2h 'ljJ2h > T L:j+r '1/Jh 'I/J2h T 

k ' 1 < i=j+1 i' 1 > 
< 'ljJ2h 'ljJ2h > L:j+r '1/Jh 'I/J2h 

k ' 2 < i=j+1 i' 2 > 

< 'ljJ2h 'ljJ2h > L:j+r '1/Jh 'I/J2h ..... h < i:;=j+1 i ' N > lit k' N 
< 'ljJ2h '1/Jh > L:J+r '1/Jh '1/Jh 

k ' 1 < i=j+1 i' 1 > 
< 'ljJ2h '1/Jh > L:J+r '1/Jh '1/Jh 

k ' 2 < i=j+1 i' 2 > 

< 'ljJ2h '1/Jh > 
k ' p L:j+r '1/Jh '1/Jh < i=j+1 i' P > 

Expanding the sums yields 

,./,h ,./,2h + ,./,h ,./,2h < lf-'j+1llf-'1 > < lf-'j+2llf-'] > + 
,./,h ,./,2h ,./,h ,./,2h < lf-'j+I' lf-'2 > + < lf-'j+2' lf-'2 > + 

T 

< '1/Jj+l' '1/J'jj > + < 'I/Jj+2' '1/J'jj > + · · · + < V~+r' V'~h > 
< '1/Jj+ll '1/J~ > + < 'I/Jj+2' '1/J~ > + + < V'j+r' '1/J~ > 
< '1/Jj+I' '1/J; > + < 'I/Jj+2' .,p; > + + < V';+r' .,p; > 

< '1/Jj+ll '1/J'P > + < 'I/Jj+2' v''P > + · · · + < v';+r' v''P > 
-h -h -h 

- lif+I + lif+2 + · · · lif+r• 

I 

An immediate implication of this result is the following 

Corollary 7.1: The rank of Bll can be no greater than N + P less the number 
of coarse rays that are refined. 

Proof: Let m be the number of coarse rays that are refined. Each of these m 
rays leads to a dependent set of rows in the matrix Bll, as per Theorem 7.1. 
Therfore the rank of Bll cannot exceed N + P- m. 1 
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These summability properties and some additional analysis will allow us to 

determine the rank of Bll and characterize its null space. Assume vfl E NS(Bfl). 

Then 

0. 

Matrix multiplication results in 

0 (7.2) 

0 (7.3) 

We now investigate under what conditions (7.2) and (7.3) are satisfied. We 

saw from Theorem 4.3 that a vector is in the null space of the matrix B = B 2h2h 

if aiid only if it is constant by angle with the constants summing to zero. That is, 

tlie image at each view is a shade of grey, and when all views are superimposed the 

result is a black, or invisible, image. The concept of a vector being constant by angle 

holds for the composite matrix Bfl as well, with some modifications. Consider the 

characteristic strip functions for a refined image over one angle, as shown in Figure 

53. 

A vector vll, where 
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= + 

h 

h 2h 

Figure 53. Characteristic strip functions for a refined image over one angle. 

is constant by angle with respect to the matrix Ell. correspnding to this gemnetry if 

where 

o 1 = a2 + /1 = a3 + /2. 

The contribution in tlw rcfirwment region from a coarse strip, together with the 

contributions from its corr~ponding fine strips, equals the contributions from those 

coarse strips not in the rdirwmcnt region. The overall result is that the composite 

collection of strips forms a uniform grey image. 

We can generalize this idea for a geometry of M angles by requiring the com­

posite subimage at each angle to be uniform grey. Define CYj to the constant for the 

unrefined strips from angle </>j, ajk for k = 1 : mj to be the values of the mj coarse 

strips that cover the refinement region from angle </>j, and /jk for k = 1 : mj the 

values of the refinement strips at angle </>j that partition the kth coarse strip in the 

refinement region. 
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Definition 7.1: Let iJll. = (iJ2h iJh)T, where 

-2h v ( - - - )T W1 W2 · · • WM and -h v ( - - - )T YI Y2 ... YM . 

Subvector Wi is of length N1 ( i) and subvector Yi is of length N 2 (j). Let m 
be the total number of coarse strips that are partitioned, and let mj be the 
number of such strips at angle <Pi, so that 'L~ 1 mj = m. Then iJll. is composite 
constant by angle with respect to Bfl. generated over M angles if 

- ( - - - )T w 0 - Q' 0 • • • Q' 0 Q' 01 Q' 02 • • • Q' 0 Q' 0 • • • Q' 0 
J - J J J J Jmj J J 

and 

Yi = ( /jl · · · /jl /j2 · · · /j2 · · · /jmJ · • • /jmJ )T, 

subject to the constraints 

O'j iiji+/ji, z- 1 :mj. 

Obviously, if iJfl. is composite constant by angle, then the image it defines is 

a constant image with a value equal to the sum of the a/s which define the M 

uniform grey subimages. Vectors in the N S( Bfl.) are composite constant by angle 

and correspond to constant images, as will be shown in the following theorem. 

Theorem 7.2: iJl!. E N S( Bll) if and only if it is composite constant by angle 

with L:f~ 1 O'i = 0. 

Proof: Let iJl!. be composite constant by angle with L:~ 1 O'i = 0. We can 
write 

Consider the contribution of BlliJl!. corresponding to angle <Pi toward the ith 
component of Ph. This can be expressed as 

m; 

"" - (32h2h "" (32hh "" (32hh L....t O'jk il(k) + L....t /jl ik1 + ''' + L....t /jmJ ikm l 

kl k J 
mJ 

which after applying Lemma 7.2(b) 
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mj mJ 

a i L !3lkh2h + '"""" - {32h2h LJ O'.jk il(k) + '"""" {32h2h LJ {jk il(k) 
kEf22h 

mJ 

aj 2:: !3lkh
2

h + O'.j 2:: 
kEf22h k=1 

l(k)ED.h 

{3
2h2h 
il(k) 

k=1 
l(k)ED.h 

by Lemma 4.2(b) and the fact that iJll is composite constant by angle. Since 
angle <Pi was arbitrarly chosen, we have 

Since row i was arbitrarily chosen as well, we have 'tlh = 0. 

Now, consider the contribution of BlliJll corresponding to angle <Pi toward the 
kth component of zn. This can be expressed as 

mJ 

O'.j 2:: !3Zlh + 2:: ajif3Zi(~) + 2:: {jtf3Zi~ + 
iEf22h i=1 i 1 

l(i)ED.h 

which after applying Lemma 7.2( c) 

mJ 

- n,J. '"""" {3kh]h + '"""" - {3h2h + \...{ ~ • ~ O'.ji kt(i) 
iEf22h •=1 

t(i)ED.h 

rn1 

- ai I: !3Z?h + ai I: !3Zi(~) 
iEf22h •=1 

l(i)ED.h 

mJ 

'"""" {3 h2 h LJ {ji kt(i) 

by Lemma 7.2(a) and the fact that iJll is composite constant by angle. Since 
angle <Pi was arbitrarly chosen, we have 

Since row k was arbitrarily chosen as well, we have £h 
iJll E NS(Bhh). 

Now, assume iJh. E NS(Bfl). Then iJ!l E NS((Afl)*) and 

N p 

(Afl)*iJll = L v[hl/Jjh + L vjl/Jj 0. 
i=l j=l 
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Figure 54. Geometric illustration of Theorem 7.2. 

Consider three adjacent strips S~h' s~~I and st+2 from the same projection 
angle. Now, select points (x1, yt) E S~hnf1 1 and (x2, y2) E S~~ 1 nf11, where f1 1 

is the intersection of ( M- 1) coarse grid strips, one from each profile and none 
from the profile containing S~h and S~~ 1 , and is not a part of the refinement 
region. This selection can always be made (see Figure 32). Therfore we have 

S P N P 

:~~:>·?hl/,[h( Xt, yt)+ L vj~j( Xt, yt) = L v?htb?h( x2, Y2)+ L vjl/,j( x2, Y2) = 0. 
•=I j=l i=l ;=I 

Siuce the tbr and tbj are characteristic functions. we can write 

:L vr + vzh = :L t'?'' + vz~~ = o, (7.4) 
iEfl1 •Efl1 

which implies that vzh = vz~ 1 . Therefore. outside the refinement region the 
coarse strips are constant across angles. 

Now, select a point (x3, YJ) such that (.r2, Y2) E Sl~ 1 n f12 and (x3, YJ) E 
S~+ 2 n f1 2, where f1 2 is the intersection of ( M - 1) coarse grid strips, one 
from each profile and none from the profile containing Sz~ 1 and St+2. This 
selection can always be made. Superimpose all of the strips over the image 
at once, forming a grid of polygons. Since each coarse grid profile completely 
covers the image, a point in the interior of any polygon is contained in a strip 
from each of the M profiles. A point on the edge (not a vertex) of a polygon 
that separates a coarse grid and fine grid strip will be contained in n2, with 
the edge separating strips Sl~I and st+2· Moving a distance t to either side 
and perpendicular to the edge will locate points ( x2, y2) and ( x3 , y3). This 
geometry is illustrated in Figure 54. 
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Therefore we have 
N p N p 

L vr'I/Jr(x2, Y2)+ L v]'I/Jj(x2, Y2) L v?h'I/J?h(x3, Y3)+ L vj'I/Jj(x3, Y3) 0. 
i=l j=l i=l j=l 

Since the 'l/Jlh and '1/Jj are characteristic functions, we can write 

which implies that v~h - v~~ 1 = v~~2 + v~+2 . We can repeat this argument 
for the next fine strip that is adjacent to s~+2' finding that its value added 
to the value of the coarse strip it partitions must also equal vr. Proceeding 
in this fashion across all fine strips for the selected angle will result in a view 
whose composite strips functions all have the same value of v;". Since the 
angle was arbitrarily selected, ijl:!. is composite constant by angle. From (7.4) 
we have LiE111 v[h + vr = 0. Since there is a 1';" from t'ach of the M profile 
contained in this expression, the constants must sum to Zt'ro. I 

An immediate consequence of this t llt'ort•m i~ that ima!!,t'S in tlw N S( Bl:!.) are 

invisible. Another consequence is the fullowin!!, t lwur<'m. which rt'lates the rank of Bl:!. 

to the geometry used to x-ray the ima~t ·. 

Theorem 7.3: Let Ell E R.J'-"+ 1' IH tl.t rnmpo ... llt ualural Jlii'fl discretized 

matri:r formed at Mangles, aud a ...... ur"' tl.at tlu njirH mt ut rtgiou is covered 
by a total of m coarse strip fuurlum ...... ubJu·,dtel ,,In jint ... trip fuuctions as 
outliued in the above discussion. Tl," 11, nwk of Jl!! '·' .\'+P-(.\/+m-1). 

Proof: Consider the degrees of fn-.-.lom in ~·lt-.·tin~ the values for the strip 
functions. For the views, the first ( .\/ - I) \"ahu~ can be arbitrarily chosen, 
after which the final value is dett'rm iru-.1 !'>u that tht' .\/ values sum to zero. 
The values of the m coarse strip function~ which an· refined are arbitrary as 
well, for a total of M + m - 1 degn•t•s of frt-.·dom. Hence the rank of Bl:!. is 
N+P-(M+m-1). I 

The above results can be used to construct a basis for N S(Bfl). A null space 

vector, in terms of Definition 7.1, must satisfy 

w· J 
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and 

Yi = ( /jl · · · /jl /j2 · · · /j2 · · · /jmJ · · · /jmJT, 

subject to the constraints 

1: ffij 

and 

M 

L:aj o. 
j=l 

Given this form of a null space vector, the basis is constructed as follows. The 

first M - 1 basis vectors are obtained by setting if2h equal to the M - 1 basis vectors 

of B, while maintaining vh = 0. This has the effect of letting all the f3jk = 0 and 

all the Djk = <Xj. To construct the remaining m basis vectors, start with the M- 1 

just constructed and for k = 1 : m let Djk = 0 and let f3Jk = O:j in the appropriate 

places. We illustrate this procedure with a simple example. Consider three coarse 

strips over two angles, with the center strip of each view refined by splitting it in half. 

The basis is 

(1 - I - I - I 0 0 0 O)T 

q2 = ( 1 0 1 - 1 - 1 - 1 1 1 0 0) T 

qj (1 1 1 - 1 0 - 1 0 0 - 1 - I)T 

Let us now consider the matrix Bhh, which represent only the fine strip func-

tions. This region is depicted for four views in the figure below. Note that the refined 
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Figure 55. Refined natural pixels for four angles. 

rays do not cover the whole image. Only the refined region D.R is totally covered by 

fine strip functions at each angle. 

Now, for a vector vh to be in the NS(Bhh), the refined natural pixels when 

overlayed must form a zero image. We know that for this to occur in nR, vh must be 

constant by angle with the constants summing to zero. This fact provides the next 

result. 

Theorem 7.4: Bhh is of full rank. 

Proof: Assume there exists a non-zero vector vh E nP such that Bhhvh = 0. 
Then v must be constant by angle with 2:~ 1 Oi = 0. If all the fine strips are 
superimposed over the image at once, they will divide it into a collection of 
polygons. By assumption, only the refinement region D.R is completely covered 
by strips at each angle. Therefore, there must exist a polygon Pk that borders 
nR, and in particular is adjacent to some polygon pi E nR, but is not formed 
from any of the strips at angle ¢>i. Since vh is constant by angle with constants 
summing to zero, then for these two polygons we must have 

M-1 

L Of 
f=1 

M-1 

L Of+ Oj = 0, 
f=1 
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Figure 56. The strip functions for a two-level refinement 

which implies that O:j 

be zero. Therefore iJh 
full rank. 

0. Since cPi was arbitrarily chosen, all the O:j must 
0, which is a contradiction. Hence Bhh must be of 

I 

An immediate consequence of this theorem, when combined with (7.3) i ~ 

Corollary 7.4: If r 21' E SS(B2h2h), then iJ2h E NS(Bh 2h). 

I 
I 

All of the precediug n-sults are derived from a spotlight CT problem in volv-

ing one level of refinement. ~lost will generalize to multiple refinement levels. For 

example, assume that a portion of the original refinement region is itself refined, pro-

clueing two levels of refinement. The strip functions for two angles of such a two level 

refinement are shown in the Figure 56. 

Letting the global coarse level be denoted as 4h, the first refinement level as 

2h , and the finest level as h, then the composite system matrix Bll will have the form 
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This matrix is also non-negative, symmetric and positive semi-definite. Each of the 

nine blocks comprising it have themselves a M x M block structure, where M is the 

number of angles used in x-raying the image. The same summability properties are 

present as well. That is, the level h rows of the matrix formed from refining a level 2h 

strip function, when summed, will equal that row corrsponding to the level 2h strip 

function in question. Likewise, level 2h rows will sum to equal the level 4h rows they 

are refined from. This allows an extension of Theorem 7.3 , which we believe can be 

proved using identical arguments. 

Conjecture: Let Bll E nN+P+Q be the composite natural pixel discrcti::ed 
matrix formed at M angles, and assume that th e first refinement region is 
covered by a total of m 1 level 4h strip functions subdivided into level !!h strip 
functions, and assume the second refinement region is covered by a total of 
m2 level 2h strip functions subdivided into level h strip functions, as outlin ed 
above. Then the rank of Bll is N + P + Q- (M + m 1 + rn 2 - 1 ). 

This recursive refinement can be expanded to as many levels as required, in the same 

fashion as the second level was added. 

From our analysis, we see that the composite matrix Bll retains many of the 

properties of the unrefined matrix. Additionally, we have determined its rank and 

characterized its null space. In the next section, we propose a multilevel solution 
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technique for Bflafl = jll that will ultimately be equivalent to the well-known Fast 

Adaptive Composite (FAC) method. 

C. MULTILEVEL APPROACH 

The spotlight CT problem is a composite grid problem, in which an operator 

equation Lu = f must be solved on some composite grid f!!l comprised of a global 

coarse grid f!2h and a local fine grid f!h (which itself could be a composite grid, 

allowing for recursive refinement). Fast Adaptive Composite grid methods (FAC) 

were developed to utilize multilevel technology to solve such composite problems in 

an efficient manner [Ref. 34, 3). 

FAC methods are characterized by their use of a composite grid, which is the 

union of regular grids of various sizes. The problem is discretized and solved on the 

non-uniform composite grid, but all of the actual computations occur on the uniform 

subgrids. This provides tl)(• advantage of using existing uniform grid solvers, while 

at the same time allowiug for effective resoltion of local areas of interest. For this 

rcasou, FAC is preferable to just solving the system of composite equations. 

There are three main features that allow FAC to handle grid refinement prob­

lems successfully. First, the composite grid is the union of a sequence of nested 

uniform grids, which simplifies the data structure needed to represent it. Second, 

almost all computation is restricted to these uniform grids. Finally, the use of multi­

level processing to correct coarse grid approximations with fine grid residuals through 

the use of overlapping grids and interpolation at the grid interfaces allows for effective. 
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intergrid communication. 

As with all multilevel methods, it is necessary for quantities to be accurately 

represented on the various grids, and intergrid transfer operators must exist to transfer 

these quantities between grids. FAC is no exception. Letting superscripts denote the 

grid on which a quantity is defined, the composite grid equation becomes 

Likewise, the equations L2hu2h = f 2h and Lhuh = Jh denote the problem restricted 

to the global coarse grid and the local fine grid, respectively. Assume that intergrid 

transfer operators JXh : nn. ---7 f!2h' Ik : nn. ---7 nh' I~h : f!2h ---7 nn., and /~ : nh ---7 nn. 

exist to transfer quantities between grids. The details involved in deriving these 

representations and operators may be very cumbersome. In-depth treatments can be 

found in [Ref. 35, 34, :J). Once all of these components are in place, FAC is given by 

the following steps. 

• Set r 2h = JXh(Jb:. - /)lui!.) 

• Solve e2h = (L2h)-tr2h 

• Correct ub:. ~ ub:. + I~h e2h 

• Set rh = IK(Jb:.- /)lui!.) 

• Solve eh = (Lh)- 1rh 

• Correct uh. ~ ul!. + I~eh 

In general, FAC first solves the restriction of the composite residual equation to the 

global coarse grid, using this solution to correct the composite grid approximation. 

153 



The restriction of the composite residual equation to the local fine grid is then solved 

and the solution is used to correct the composite grid approximation. Although 

formally the procedure calls for exact solvers on both the coarse and fine grids, in 

practice iterative methods or other multilevel solvers are used. 

We now show that FAC applied to the spotlight CT problem is formally equiv-

alent to a block Gauss-Seidel formulation of the same problem. Note that a composite 

grid element u~ E nN+P given by 

can be decomposed as 

(7.5) 

lull' rgrid transfer operators that sat i~ fy 17 .·11 ctrc· ~i n·u by 

d 1ul It = ( ::. ) . 

where IN and I p are identity operator,. uf t lw a ppropriatt' sizes. It is significant to 

note that FAC generally does not have such simple intergrid transfer operators. The 

simplicity in our case is a direct result of the discretization by natural pixels, and the 

fact that we require refinement to be an exact partition of coarse rays. 

Now, consider the FAC scheme applied to B~u~ = f~. Initially, we compute 

the residual of the composite problem restricted to the global coarse grid as 
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which implies that 

Next, the coarse grid residual error is computed as e2h = ( B 2h 2h) -I r 2h . Note that 

this is a formal treatment, as B 2
h

2
h is singular. The current approximation u!!:.. is then 

corrected as 

which after applying (7.5) becomes 

(7.6) 

We now compute the residual of the composite problem restricted to the local fine 

grid as 
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which implies that 

I£ = (0 lp). 

The fine grid residual error is computed as eh = ( Bhh) -I rh, and the current 

approximation uh:.. is again corrected as 

which after applying (7.5) and (7.6) becomes 

(7.7) 

Now, we show that the block Gauss-Seidel formulation of Bh:..uh:.. Jh:.. results 

in (7.7) as well. The spotlight CT problem can be expressed as 

which when solved for u2h and uh yields the one sweep block Gauss-Seidel scheme 

• Set u2h f- (B2h2h)-1(J2h _ B2hhuh) 

• Set uhf- (Bhh)-l(Jh _ Bh2hu21') 

This scheme can be rearranged to produce the desired results in the following fashion. 

For the global coarse grid we have 

(7.8) 

(7.9) 

e2h + u2h (7.10) 

156 



Proceeding in the same manner with the local fine grid yields 

uh ~ (Bhh)-l(f2h _ Bh2hu2h) 

(Bhh)-I(rh + Bhhuh) 

(7.11) 

(7.12) 

(7.13) 

The argument is completed by applying the relationship (7.5) to the expressions in 

(i.lO) and (7.13) above, yielding 

This shows that FAC is formally equivalent to block Gauss-Seidel on the spot­

light CT problem. 

The methods are formally equivalent, because we already know that the block 

matrix B 2h2
h is singular. In practice, to utilize the block Gauss-Seidel approach we 

~olve each block system in turn with an iterative method, or a multilevel method such 

as P~ILV. 

A considerable body of thron.•tica.l rt.•sults exists for two-level FAC [Ref. 3). 

This theory requires that the variational properties be satisfied, that quantities be 

measured using the energy norm, and that the operator Bb:. be positive definite. Hence 

B2h2h and Bhh are non-singular. Under these assumptions, there exist convergence 

factors for FAC, given in terms of the spectral radii of combinations of B2h2h and Bhh 

with the intergrid transfer operators. These convergence factors exist for the case 

when an exact solver is used, and for the case when relaxtion is used to approximate 
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the exact solver. The latter case is also a function of the relaxation scheme being 

used. 

The equivalence of FAC and the block Gauss-Seidel scheme would allow this 

theory to be directly applied, except for the fact that our operator Bfl is not positive 

definite. Even for such problems, FAC theory may apply in certain circumstances. 

McCormick [Ref. 3] states that 

Theorem 7.5: If Bfl is positive semidefinite and 

N S(Bfl) c (IfhN S(B2h2h)) n (I~N S(Bhh)), 

then existing FA C convergence theory is applicable. 

(7.14) 

Unfortunately, (7.14) is not satisfied for the spotlight CT problem, as Bhh is of full 

rauk and we know that Bfl is rank deficient. 

Even without this theory, numerical results are promising. In the reconstruc-

tious that follow, a geometry of 32 detectors over 20 angles is used for the global 

coarse grid. The refinement region is located in the center of the image, as depicted 

in Figure 57 below. 

Sixteen coarse strip functions at each angle are refined by splitting them in 

half. The composite grid image is then reconstructed by using the spotlight (FAC) 

method developed above. 

The first two examples are reconstructions of the two brain phantoms used in 

prior numerical experiments. (See Figures 45 and 46). In each case, the global coarse 

grid representation on the left lacks detail. The geometric objects within the brain 
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Refinement 

Region 

Figure 57. Location of refinement region. 

are difficult to identify. The local fine grid representation on the right, at twice the 

resolution, provides better detail about the center region of each brain. 

In the third example, the real value of spotlight CT is demonstrated . A brain 

phantom containing a small tumor is depicted in Figure 60. Note that the tumor is 

Figure 58. Global and refined reconstructions - example 1. 
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Figure 59. Global and refined reconstructions - example 2. 

sufficiently small that it is not expected that we see it on the global coarse reconstruc­

tion. We reconstruct this image using the spotlight technique, and the reconstruction 

is shown in Figure 61. Iu th<' global coarse reconstruction to the left, the tumor is not 

apparent. However, the higher resolution spotlight image on the right clearly shows 

the presence of the tumor. 

The natural pixel discretization of the spotlight CT problem allows a high 

resolution reconstruction of a portion of an image at a lower cost than that required 

if the entire image is discretized at a fine resolution. When solved in block Gauss­

Seidel form, further savings may be realized by using the PMLV routine as a solver. 
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Figure 60. Actual image - example 3. 

Figure 61. Global and refined reconstructions - example 3. 
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VIII. CONCLUSIONS 

A. GOALS OF THE RESEARCH 

The primary goal of our research was to introduce multilevel technology into 

the solution of this problem. Intermediate objectives included the development of the 

mathematics of natural pixels more fully, development of spotlight CT, and building 

a better mousetrap- development of a multilevel algorithm that is competitive with 

state-of-the-art image reconstruction methods. We achieved all of these goals but the 

last one, and laid some foundations for future research. 

B. STANDARD ART 

We focus our efforts on the algebraic reconstruction technique (ART), one of 

several solution techniques commonly used to solve this problem. For a preliminary 

foundation, the standard ART approach is examined, in which the problem is dis­

cretized using square pixels and the resulting linear system of equations is solved using 

the method of Kaczmarz. We learn why convergence of Kaczmarz stalls after several 

iterations on the large rectangular system produced by this dicretization. Using the 

Singular Value Decompostion (SVD) of the system matrix, it is determined that the 

singular value spectrum can be separated into three bands- a resolvable region, a near 

null space, and a null space. Numerical tests show that solution components in the 

resolvable region of the spectrum can be recovered during the iteration, while those 
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in the near null space cannot. It is also learned that Kaczmarz mixes modes during 

iteration, i.e. singular value modes over the entire spectrum are excited, including 

those modes in the near null space, which cannot be eliminated later. 

C. NATURAL PIXEL DISCRETIZATION 

We adopt the natural pixel discretization, in which the image is discretized 

into strips corresponding to the x-ray paths through it, on each of which the image 

is assumed constant. The resulting system matrix is symmetric and positive semi­

definite, which allows for a wider variety of relaxation methods that can be used 

to solve the linear system. It is also in general smaller than the matrix produced 

through the square pixel discretization. We take advantage of the symmetry and 

reduced matrix size and solve the problem faster, while still reconstructing high­

quality images. A detailed linear algebraic examination of the matrix is conducted, 

producing several useful results. The rank of the matrix is completely determined by 

the geometry used to x-ray the image, and the null space of the matrix is characterized 

by vectors with easily recognized properties. We construct a basis for the null space 

of a general matrix show that images corresponding to such vectors are invisible and 

thus do not affect the quality of the reconstruction. While the idea of natural pixels 

did not originate in this work, the analysis of the matrix properties goes well beyond 

anything previously done, and the spectral analysis is entirely new. 
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D. GAUSS-SEIDEL ITERATION 

The Gauss-Seidel method is considered for solving the linear system. We 

show that when measured with the energy norm Gauss-Seidel cannot diverge on this 

problem, and with the correct initial starting vector must converge to the minimum 

norm solution. We examine this issue further, and learn that the eigenvectors of the 

Gauss-Seidel iteration matrix associated with eigenvalues of modulus one are in the 

null space of the system matrix. This fact explains why convergence is ensured for the 

semidefinite system. We find that Gauss-Seidel applied to this problem stalls after a 

few iteration sweeps. Using the techniques developt>d earlier. the performance of the 

iteration is analyzed. As with the Kaczmarz matrix . tilt' uat ural pixel system matrix 

is found to have a spectrum that separatt~ iutu a rt~olvablt· rt·gion. m·ar null space 

and null space. Gauss-Seidel exhibits twt.a\'ior ~i111il ar to 1-\aczlllarz iu that it cannot 

resolve components in the near null span ·. aud it m i xt~ ruudt~ . Such aualysis has not 

bet.•n done before in this setting. arul lwJp .. lJ' uuc lc·rst aud why tlH' it('ration stalls. 

E. MULTILEVEL METHODS 

This type of behavior is often t•xhi hitc'( l by Ganss-St•idel when applied to sys­

tems resulting from the discretizatiou of PDE\ a.-. well. It is well-known that multi­

level methods improve the performann· uf rdaxation methods such as Gauss-Seidel 

in the PDE setting [Ref. 28]. We seek a similar increase in performance in the image 

reconstruction setting. 

We formally cast the natural pixel discretized image reconstruction problem in 
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a multilevel setting using the Multilevel Projection Methodology (PML). The natural 

pixel discretization is shown to be a discretization by orthogonal projections, which 

subsequently induces interspace transfer operators, a coarse grid correction scheme 

and a relaxation scheme. This is the first time PML is formally applied to a prob­

lem not arising from partial differential equations, and represents an expansion in 

the types of problems that can be approached with multilevel techniques. A PML 

V-cycle algorithm is developed, and its convergence properties established. Numeri­

cal results show that PML initially converges faster than Gauss-Seidel alone on the 

problem, and then it stalls as well. While the bel If r mnu .... f lrap.a fully competetive 

multilevel algorithm, did not emerge, nPvert lwlt>ss t lw P~t L met hod can solve the 

problem cheaper and faster than either Cau~~- St'iclt'l alurw or t lw st audard Kaczmarz 

approach, while producing reconstruct iura' of (·omparahlt· quality. Tlais represents an 

improvement, although not a revolut iura. ira tlw .. talt "-of-tlat"-art of the alg<•braic image 

n·construction problem. 

F. SPOTLIGHT CT 

Finally, we consider the Spotliglat CT prulth·m. wlat'rt' high resolution is desired 

for only a portion of the image. vVe discn·tiz(• tlw problem using natural pixels on 

multiple levels of resolution, which has not previously been attempted. The resulting 

composite grid avoids the high cost of discretizing the whole problem on a fine level. 

We hope to solve the resulting composite linear system efficiently. An analysis of the 

system again reveals a rich collection of properties. As in the one level case, the rank 
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rank of the system matrix is a function of the geometry used to generate it. The null 

space is once again characterized by vectors with easily recognizable properties, and 

these vectors represent invisible images. We cast the composite linear system in a 

block form that can be solved using a block Gauss-Seidel scheme, and this approach 

is formally shown to be equivalent to the multilevel Fast Adaptive Composite (FAC) 

method. This formulation allows us to solve the problem on uniform grids using 

the techniques developed earlier, instead of having to solve the composite sy::.tem. 

Numerical results for two levels yield high quality reconstructions. 

G. FUTURE RESEARCH 

Directions for future research would concentrate in the area of Spotlight CT. 

Because this area is so new and unexplored, we believe that it is here our results 

have the most promise of making a positive contribution. Currently, we construct the 

system matrix in a piecemeal fashion, one block at a time. This process could be au­

tomated, and the discretization could be taken to three or more levels. Theoretically, 

using this approach an image could be resolved to as fine a level as desired. 

Concurrent research on the image reconstruction problem paralleling our own 

work concentrated on a similar discretization, but with the image region defined as 

that region in the intersection of all the views, not restricted to the square. With 

this approach, it is claimed that the resulting system matrix can be represented by 

a small fraction of its elements (Ref. 23]. This discretization could be incorporated 

into the spotlight CT problem as well. 
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Finally, the open question of finding a competitive algorithm based on multi­

level technology remains. This would be a great accomplishment, and warrants con­

tinued investigation. Some possible avenues to pursue include coarsening the problem 

by angles, or a combination of angles and detectors. These are but a few of the areas 

that appear ideal for additional research. 
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APPENDIX. DETAILS ON GENERATING 
THE MATRIX B 

The entries of the matrix B are the areas of intersection of the strips defined 

by the x-rays. There are N such strips, each of which defines a row in the matrix. To 

determine the N entries for the ith row, we must compute the areas of intersection of 

the ith strip with all N strips in turn. We assume the image is contained in the unit 

square, so we are only concerned with the intersections of strips that lie within this 

square. 

The calculations proceed as follows. A coordinate system is imposed on the 

image square, with the origin at the center of the square. There are two cases to 

consider - the strips are parallel so that if they intersect the area is just the area of 

the entire strip, or the strips are not parallel, in which case they intersect in the form 

of a parallelogram. In the former case, the area of the strip is calculated based on how 

it intersects the square. There are six ways this can occur, i.e. it contains a corner of 

the square, it contains two corners, it intersects opposite sides of the square, etc. 

If the strips are not parallel, then we compute the coordinates of the vertices 

of the parallelogram that is formed from their intersection. Next, the number of 

vertices that lie within the image square is determined. If the number is zero or four, 

the calculations to find the area are trivial. If not, then we must determine which 
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vertices are in the square and whether or not the intersection contains the corner of 

the square. The area is then calculated based on these determinations. The number 

of unique ways the parallelogram can intersect the border of the square are far too 

numerous to list here. Symmetry is exploited to reduce the number of calculations 

by half, that is, the area of strip i with strip j is the same as the area of intersection 

of strip j with strip i, so the calculation need only be performed once, 

A brief outline of the algorithm follows: 

Input: m = # of angles 
nl = # of detectors per angle 

Output: B, anN x N matrix, where N = m*nl 

initialize B=O 
for i=l :m 

for j=1:n1 
index=(i-1)*n1+j 
for k=l :m 

for 1=1:n1 
index1=(k-1)*n1+1 
if indexl >= index 

if i=k 
compute area 

else 

{exploit symmetry} 
{rays are parallel} 

{rays intersect} 
compute coordinates of vertices 
determine which vertices are in square 
compute area 

end{else} 
B(index,index1)=B(index1,index)=area 

end{if} 
end{for} 

end{for} 
end{for} 

end{for} 
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