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OVERVIEW OF RESEARCH

1. Introduction

The research conducted under this contact has been concerned principally with the
development of numerical models of the Earth's low-latitude boundary layer (LLBL), a thin layer
of antisunward flowing plasma, located immediately Earthward of the equatorial magnetopause
current layer which marks the outer boundary of the Earth's magnetic field. The work has been
concentrated in five areas:

1. Development of a self-consistent steady-state numerical model of the equatorial

portion of the LLBL on closed field lines, including coupling to the ionosphere via

field-aligned currents.

2. Development of a self-consistent numerical model of the force-free boundary

layer that provides the link between the equatorial LLBL and the dayside auroral

ionosphere.

3. Examination, by use of numerical simulation, of the stability of laminar flow in

the equatorial LLBL in the presence of coupling to the ionosphere and associated

nonuniform bending of the magnetic field lines in the LLBL.

4. Examination of resistive tearing-mode instability in a current sheet with

equilibrium viscous stagnation-point flow.

5. Examination of magnetic-ficld maxima observed in the low-latitude boundary

layer.

In the following sections of the report, a brief summary and discussion of the results
obtained in each area is provided. Details of the research are provided in five papers, three that
have been published and two more that have been submitted for publication. Also provided are
appropriate extracts from E. Drakou's Ph.D. thesis which is concerned with the LLBL model and
was developed with principal support from the present contract. All of these documents are
appended to, and form an integral part of, this final report. The research described in the five
papers has also received partial support from other sources, as indicated in their acknowledgment
sections.




2. Numerical Model of the Equatorial Low-Latitude Boundary Layer on Closed
Field Lines

The low-latitude boundary layer (LLBL) is & narrow region, located in the low latitude
region immediately inside the outer boundary of the magnetosphere, the magnetopause. The LLBL
contains plasma, mostly of magnetosheath origin, that flows along the layer in the antisolar
direction at a speed comparable to the magnetosheath flow speed. This plasma flow is at an angle
— in the simplest model at a 90° angle — to the geomagnetic field in the vicinity of the equatorial
plane and thus it has an associated convection electric field, Ee, which is projected, in part at least,
into the ionosphere at the footpoints of the geomagnetic field lines threading the LLBL. This
impressed electric field, E;, drives a horizontal Pedersen current, Jj, in the ionosphere; the
divergence in E; gives rise to a corresponding divergence in this horizontal current, i.e., it gives
rise to a corresponding magnetic-field-aligned current into or out of the ionosphere. This field-
aligned current connects the ionosphere to the LLBL, where it is again deflected to form a current
Je that flows across the equatorial geomagnetic field. In the ionosphere, the product E;-J; > 0,
whereas in the LLBL the product E¢-J < 0; thus the former region acts as an electrical load and
the latter region as an electrical generator, connected to the ionospheric load via the field-aligned
currents. In the simplest conceptual model, the projection of the equatorial electric field into the
ionosphere occurs by assuming the geomagnetic field lines to be equipotentials. In more realistic
modeling, a potential drop, A®y, along the field lines is incorporated via a field-aligned
conductance K, so that Jy = KA®y. In the post-noon LLBL, the field-aligned current, J, flows
out of the post-noon ionosphere so that the potential drop A®y can accelerate electrons precipitating
into the ionosphere to energies comparable to those needed to explain auroral emissions. On the
pre-noon side, a potential drop A®y will accelerate electrons upwards and ions downwards instead.
A schematic drawing of the dawnside LLBL configuration and its coupling to the ionosphere is
shown in Figure 1. The equatorial portion of the LLBL, in which plasma inertia, pressure and
viscosity are important, is located in the region izl < H. The force-free coupling region, where the
currents are entirely field aligned, connects to the LLBL at Izl = H and then extends along magnetic
field lines into the northern and southern ionospheres. Note that the main field-aligned current
associated with the LLBL provides the portion of the so-called Region 1 current that is observed to
flow into the pre-noon (8 - 12 LT, say) and out of the post-noon (12 - 16 LT, say) sides of the
dayside auroral oval. Any field-aligned return current, at the outer edge of the LLBL, i.c., at the
magnetopause itself, could correspond to the so-called NBZ currents, observed at low altitudes
during conditions of northward interplanetary magnetic field (IMF). Note also that the actual local
time extent of the LLBL projection into the ionosphere is unknown a priori and must be calculated
in a self-consistent manner from the currents in the LLBL and in the coupling region.
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Figure 1. View from the sun of the dawnside low-latitude boundary layer and its coupling
to the dayside auroral oval. Coordinates (x,y,z) are the usual GSM coordinates.

Finally, it is emphasized that the boundary layer is assumed to be located on closed
geomagnetic field lines, i.c., field lines that have both ends rooted in the Earth. There is
observational evidence that, at least during periods of southward interplanctary magnetic field
(IMF), the portion of the LLBL immediately adjoining the subsolar magnetopause is on open field
lines as a result of reconnection. The model developed under this contract does not apply to this
portion but it would apply to any remaining part of the subsolar LLBL, which is on closed field
lines: in such a situation, the outer edge of the LLBL described by the model would be located at
the first closed field line (i.e., the inner separatrix of the reconnection configuration) rather than at
the magnetopause itself. For northward IMF it is expected that most or ail of the LLBL will be on
closed field lines; this may also be the case on the magnetospheric flanks, regardless of IMF
direction.

The model of the equatorial portion of the LLBL that has been developed under the present
contract is an outgrowth of earlier one-dimensional analytic descriptions of the LLBL on closed
field lines, developed by Sonnerup [1980], Lotko et al. [(1987] and, in particular, Phan et al.
[1989]). The new model is numerical rather than analytic. It represents the simplest pbssible
extension of the Phan et al. model to include evolution of boundary layer structure and thickness in
the main flow direction (-x) along the magnetopause. From a computational viewpoint the model
is two dimensional in the sense that the equations describe behavior in the equatorial (xy) plane.
However, variations with the third coordinate (z) are described to lowest order, including a self-
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consistently calculated bending of the magnetic field lines in the xz plane as well as diamagnetic
changes of the field component B;. This ficld deformation results from currents flowing in the y
direction across the boundary layer and being gradually deflected to field-aligned currents that flow
into the ionosphere; diamagnetic cusrents also flow in the x direction. The height, H, (in the z
direction) of the boundary layer above and below the equatorial plane should also be allowed to be
a function of x and y, rather than being constant as in the Phan et al. model, although this feature
has not yet been incorporated. The condition that should be used to determine H is that, at z = +H,
the boundary-layer plasma pressure has dropped off to its ambient magnetospheric value.

The model, which is described in detail in Appendix 1, is based on four important
simplifications of the full 3D MHD equations: (1) steady flow; (2) the boundary layer
approximation d/dy>>d/dx which leads to kinematic treatment of the transverse (y) motion and to
neglect of magnetopause curvature effects; (3) kinematic treatment of the plasma motion in the +z
direction towards or away from the equatorial plane; (4) division of the model into three modules,
namely the equatorial LLBL module (the current generator), the force-free coupling module, and
the ionospheric module (the resistive load). At present, each module contains only the simplest
description of the most important physics. As mentioned already, self-consistent variations of
pressure, density and magnetic field with the coordinate z are included but the main computation is
in effect two-dimensional, dealing only with quantities evaluated at z=0. The equations governing
the complete model are

Povo-Vvx = - dPus(x)/dx + B;0Bx1/poHr + (0/dy)(Movyx/3y), (1
Po + B/210 = Pw(x), @)
H(x,y)/Hy = {20[po(x.y) - p=(x)VB3(x,y)} 12, 3)
V-(poHvp) = 0, V-(B,ovo) = 0, vo-V(po/po") = 0. @)

The quantities pg, pp and B0, along with the velocity vg = (vx,Vy,0) are evaluated in the equatorial
plane; p.(x) is the magnetospheric plasma pressure, 1 is the viscosity (which may be of either
microscopic or turbulent origin), and Bx(x,y,z) = Bx1(x,y)(z/H;), H; being a constant reference
value of H. This z dependence of By leads to approximately parabolic field lines in the model,
with field-line curvature that varies with the coordinate y, being a maximum at the magnetopause
and then decreasing as one moves further Earthward. In order, the above equations express:
momentum/force balance in the x, y, and z directions (the expression for H(x,y) given in the third
equation is derived from p + Bx2/2)0 = po(x,y)); mass conservation; flux conservation; and
isentropic compression/expansion, respectively. To these equations are added jxB = 0 in the
coupling module, and the ionospheric laws jij = K(®e - @) = KA®y, and 9/dy(Zp0®i/dy) = - jyi,
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where ®(x,y,H) and ®;(x;,y;) are the potential distributions in the LLLBL and in the ionosphere,
respectively. In the simplified version of the model produced under this contract, the LLBL height
H is constant, the conductance, K, along field lines is infinite, and the ionospheric conductivity,
Z,, is constant. Relations between the coordinates (x,y) and (x;,y;), expressed via mapping
factors, can be calculated self-consistently in the coupling region, although in the current version of
the model the mapping factors are taken to be constant. In other words, the magnetic field
configuration in the LLBL itself, as well as in the force-free coupling region, would ultimately be
computed self consistently (albeit in the boundary layer approximation). Thus, a complete version
of the model would provide an accurate mapping along B from the ionosphere to the equatorial
plane. The field from a realistic model of the inner magnetospheric B field (e.g., one of the
Tsyganenko models) would then be used as a boundary condition at the magnetospheric edge of
the LLBL computational box. The mapping in the coupling region and the interface with a suitable
magnetospheric field model are described in Section 3 and in Appendix 5.

The boundary layer equations are parabolic and are therefore integrated by use of a
marching procedure (in the -x direction) that allows one to follow the development of the layer for
as large distances in the flow direction as available computer resources permit. Since the
downstream state obtained from one run can be used as the upstream state for a second run, etc.,
the boundary layer evolution can in principle be followed to arbitrarily large distances along the
magnetospheric flank. One of the difficulties associated with the numerical marching procedure is
that it cannot handle reversals in the main flow direction, i.e., in the velocity component vx. This
difficulty is associated with the inertia term pvxdvx/dx, which does not reverse sign when vy
reverses sign. The situation is similar to the integration of a diffusion equation backwards in time
which is numerically unstable. This problem has been overcome in the present code by neglecting
inertia near the flow reversal and in the entire region of slow sunward flow on the magnetospheric
side of the LLBL. Furthermore, in the present version of the code, the velocity profile, vx(x,y), in
the slow-flow region is obtained analytically by assuming that the plasma properties and the field
component B, have reached their asymptotic magnetospheric values in this region. In other words,
they depend on x but not on y. This procedure decreases the size, along y, of the computational
domain, thus providing for substantial computational economy. Benchmark tests (Appendix 4) in
which solutions from the program are checked against certain exact self-similar solutions indicate
that the procedure adopted provides satisfactory accuracy.

Details of the numerical procedure, along with benchmark tests and a discussion of various
generalizations of the model, are given in Appendices 3, 4 and 2, respectively.

Sample results from a test run of the numerical code (with H = const, A®y = 0 and constant
mapping factors, which represents its current status) are shown in Figure 2. A complete
presentation of results to date is given in the article by Drakou et al. [1994] which is reproduced in
Appendix 1. .
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Figure 2. Results of trial run, using the present boundary layer model.

The boundary conditions used in Figure 2 include an accelerating tailward plasma flow speed,
vx(x,0), at the magnetopause, a small constant sunward convection speed, vxe, in the
magnetosphere, where plasma number density, ne, pressure, pe., and temperature, T, as well as
B, field component, B,., all decrease with increasing distance, -x, down the tail. Viscosity,
assumed in this run to be proportional to p/B, is included. Entrainment by the LLBL of
magnetospheric plasma is illustrated in the top middle panel where the vy velocity component has
been artificially ..ugmented in order to make the effect visible. Viscous widening of the velocity
profile vx(x,y) is scen in the middle left panel, whereas, n, T, and B; (bottom panels) have profile
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widths that decrease as one moves downstream. The field-aligned current shows considerable
structure (middle right panel) and substantial evolution (top right panel) in the flow direction. Note
in particular that a maximum in j; occurs at a particular x value, i.c., at a particular local time; such
a maximum has indeed been reported in the observational study by lijima and Potemra [1978].
These results are shown here for illustrative purposes only; their details are expected to change
considerably when additional features such as field-aligned potential drops are incorporated.

3. Numerical Model of the Force-Free Coupling Module

In the narrow region that connects the equatorial LLBL to the ionosphere, the plasma
density, pressure, and velocity are sufficiently small and the magnetic field intensity sufficiently
high so that the electric currents connecting the LLBL to the ionosphere must be field-aligned to a
high degree of accuracy. Thus the basic governing equations in this region are

B =0, J = (1/u)VxB, VB =0. 5)
These equations lead to
Moj = a(x,y,z)B = VxB 6)

where « is a proportionality factor which has a constant value along any magnetic field line so that
B-Va =0 )

The latter two relations have been simplified by use of the boundary layer approximation
(described in Section 2) and a computer code has been developed for generating self-consistent
current and magnetic field configurations in the connection layer. Boundary conditions for the
code consist of specification of the magnetic field at the Earthward edge of the layer by use of an
empirical magnetospheric field model such as one of the Tsyganenko models and specification of a
field-aligned current distribution and magnetic field at the interface to the LLBL at Izl = H
(alternatively, these quantities can be specified in the ionosphere). Ultimately, this code should be
appended to the main LLBL code described in Section 2 but this step has not yet been taken.
When the two codes have been combined, the resulting code will be able to give accurate
information about the magnetic field mapping in the regions immediately Earthward of the
magnetopause where existing field models such as the various Tsyganenko models fail to provide
reliable information. However, the utility of the force-free boundary layer module is not restricted
to the LLBL: it has independent applications to any field-aligned current sheets in the
magnetosphere.

A detailed description of the force-free boundary layer model is provided in Appendix 5,
along with a benchmark test and a simple application using measured Region 1 currents above the
ionosphere [lijima and Potemra, 1978] in conjunction with a dipolar magnetospheric field. These
results suggest typical azimuthal deflections of dayside magnetic field lines in the range 21-26°.
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4. Kelvin-Helmholtz Instability in the Low-Latitude Boundary Layer

The stability of the plasma flow in the LLBL is of importance for the construction of any
realistic model of this layer. Stable behavior implies that any transport of momentum or mass
across the layer is caused by microscopic plasma processes while unstable behavior implies
transport by eddy viscosity and eddy diffusivity. To date, studies of the Kelvin-Helmholtz (KH)
instability relevant to the LLBL have assumed the unperturbed magnetic field lines to be straight.
However, in a realistic model of this layer, the currents flowing across it and being gradually
deflected into field-aligned currents, as the Earthward edge of the layer is approached, produce
bending of the field lines into approximately parabolic shapes with vertices pointing in the
(antisolar) flow direction (see Figure 5 of Appendix 1). Parabolas close to the magnetopause have
larger curvature than those close to the magnetospheric edge of the LLBL so that one may expect
interchange motions to be impeded.

We have carried out a fully three-dimensional simulation of a velocity shear layer of the
hyperbolic tangent type in the presence of coupling to the northern and southern ionospheres,
represented in the simulation model by two parallel electrically conducting plates. The current
system produced by this coupling leads to parabolic field lines of opposite curvature on the two
sides of the shear layer.

The results of the simulation are reported in detail in Appendix 6. In brief, it is found that
the field line curvature, if substantial, may severely suppress the KH instability. When the
curvature is less strong, as in the dayside LLBL, the instability proceeds albeit at a somewhat
reduced rate compared to the case of straight field lines transverse to the flow, and leads to the
formation of three-dimensional vortex/current structures that may be related to observed auroral
bright spots.

5. Resistive Tearing Mode

The behavior of the resistive tearing mode near the subsolar magnetopause has been
investigated with the objective of finding out how the presence of stagnation point flow and
viscosity influence this instability. The unperturbed equilibrium is an exact solution of the
incompressible MHD equations, including resistivity and viscosity so that the stability properties
can be investigated even for small magnetic and viscous Reynolds numbers where the traditional
tearing mode analysis is invalid. The results indicate stability of the tearing mode for magnetic
Lundquist numbers, S, (based on the Alfvén speed) less than 12.25, regardless of viscous
Reynolds number, Re, and for S < 18.3 when Re = 0. For large values of S and Re, the classical
asymptotic growth rates of Furth, Killeen and Rosenbluth are recovered. It is also found that the
stagnation point flow stabilizes long wavelength perturbations so that the tearing mode has a cut-
off at small as well as at large wave numbers. The main effect of viscosity is to reduce the growth

8




rate of the instability, in particular at short wavelengths. The stabilization at low magnetic
Reynolds numbers is relevant to the subsolar magnetopause where estimates of S are in the range 2
< S <100 [Lee and Fu, 1986).

6. Magnetic Field Maxima in the LLBL

It has been known for a long time that the magnetic ficld often exhibits a maximum
immediately Earthward of the magnetopause instead of the minimum one would expect from the
diamagnetic effect of the dense plasma in the LLBL. We have investigated this effect by use of
plasma and magnetic field data from the AMPTE/IRM spacecraft and find two fundamentally
different causes for the excess field: (i) a depression within the LLBL of the density of medium
energy ions of magnetospheric origin and (ii) field curvature effects associated with undulations of
the magnetopause itself. When case (i) is at hand, medium-energy electron fluxes are also
depressed, suggesting that the field lines in the LLBL may have been open. However, this is not
the only possible explanation for the absence of energetic particles.
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Self-consistent steady state model of the low-latitude boundary
layer

E. Drakou,' B. U. O. Sonnerup, and W. Lotko
Thayer Schoo! of Engineering, Dartmouth Coliege, Hanover, New Hampshire

Resuits are presented from a steady state numerical model of the low-istitude boundary layer (LLBL) on closed
field lines and its coupling to the dayside auroral ionosphere. In the model the boundary layer approximation is
used, the result being that inertial forces are taken into account only in the main flow direction (—z) where they
are balanced by pressure forces, § x B forces, and viscous forces. Motion in the transverse directions (y and z) is
treated kinematically, the force balances in these two directions being purely static. Computationally, the model
uwodlmmbmmmofpmmmnmmmmcequmml(:y)phne
but allowing for lowest-order polynomial variation of some quantities with the coordinate (s) perpeadicular to
that plane. The plasma expands and compresses iscntropically; the magnetic field is calculated self-consistently,
which leads to approximately parabolic field line shape in planes paraliel to the magnetopause (the £z plane),
with maximum field curvature near the magnetopause edge of the LLBL. Coupling to the ionosphere via region |
field-aligned currents is included. The effects of the ionosphere are represeated by two parallel resistive plates &
fixed height above and below the equatorial plane. The model can be used to investigate the influence of various
physical parameters, for example, viscous and magnetic Reynolds numbers, and of boundary conditions at the
magnetopause and in the magnetosphere on the LLBL development in the ~z direction. Special attention is
given to viscous effects which, under suitable circumstances, lead 10 a region | current that first increases and
then reduces with increasing longitude away from local noon. Asymptotic matching of the antisunward motion
of the cool LLBL plasma to sunward convection of hot plasma in the magnetosphere is illustrated along with the
entrainment of magnetospheric plasma by the antisunward LLBL flow.

INTRODUCTION

The low-latitude boundary layer (LLBL) is a narrow region of
tailward flowing plasma located in the magnetosphere, immedi-
ately inside the magnetopause current sheet, at low geomagnetic
latitudes. It was first observed by Hones et al. [1972] and Akasofu
etal [1973] slong the flanks of the geomagnetic tail. Since then, a
numberof authors have discussed observational dats and theoretical
models of the LLBL. From these studies we know the following:
the LLBL is intermittently present at almost all local times along
the entire dayside portion of the magnetopause. It was also recently
found to be extended to evening local times [Woch et al., 1993]. Its
thickness appears to increase, on average, with increasing distance
from the subsolar point [Easonan and Hones, 1979], akthough the
growth may be slow beyond the dawn-dusk meridian plane. A typ-
ical boundary layer thickness at that location is 0.5-1 R 5 [Eastman
and Hones, 1979; Sckopke et al, 1981]. When the interplane-
tary magnetic field is northward, the LLBL appears thicker and is
thought to be Jocated on closed field lines, that is, on magnetic field
lines that have both feet in the ionosphere [Haerendel et al., 1978;
Williams et al, 1985; Mischell et al., 1987; Traver et al, 1991]. It
is this kind of LLBL we are modeling in the present paper. During
periods of southward interplanetary magnetic field the situation is
less clear: reconnection may dominate in which case the LLBL on
closed field lines may be mostly sbsent. The experimental evidence
in this case is not conclusive, bu it indicates that the layer is par-
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tially on open and partiaily on closed field lines: our model applies
only to the part on closed field lines. As one moves inward from
the magnetopause across the LLBL, the density falls from a high
magnetosheath like value to a low magnetospheric value, while the
magnetic field usually rises slightly (aithough a field enhancement
is sometimes seen instead [Sonnersup ef al, 1992]) and the plasma
pressure falls accordingly [Sckopke et al, 1981). The dense plasma
in the LLBL appears to be mainly of magnetosheath origin. How
this plasma enters the LLBL is not yet clear. It may leak diffusively
over portions of the magnetopause surface {Tsurutani and Thorne,
1982] or enter onto closed field lines in the cusps [Puschmann et
al, 1976] or at the edges of a dayside reconnection segment of
the magnetopause. It is also possible that, during northward IMF,
magnetosheath flux wbes reconnect in the north and south beyond
the cusps and then shorten and reorient themselves to eventually
become assimilated with other magnetospheric field lines [Dungey,
1963; Cowley and Owen, 1989; Song and Russell, 1992]. As noted
by Mitchell etal. (1987), Sckopkeet al. [1981}, Eastman and Hones
{1979], and others, the coal, dense magnetosheath like plasma in
the LLBL is usually mixed to some extent with hot tenuous mag-
netospheric plasma.

There are also ionospheric signatures of the LLBL {Eastman et
al, 1976). These signatures are controlled to a great extent by
the plasma flow in the LLBL which is mostly in the antisunward
direction, although a region of relatively siow sunward flow, with
occasional large velocity peaks, appears 10 be present towards the
magnetospheric edge of the layer (Williams er al, 1985; Mitchell
et al, 1987]. The flow is mainly perpendicular to the magnetic
field and therefore creates an electric ficld across the LLBL. The
resulting electric potential differences map, at least approximately,
along the magnetic field lines to the ionosphere where they drive
horizontal ionospheric currents. Where the ionospheric electric
field changes with latitude, the above currents have to be partially
deflected into field-aligned currents, thus forming the dayside part
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of the region | cusrent system [lijima and Potemra, 1976a, b).
These curmrents flow in a narrow layer into (on the eveningside)
and out of (on the momingside) the LLBL, where they are again
deflected to flow across the magnetic field in a direction opposite
to the electric field there. In the connecting region between the
ionosphere and the LLBL, field-aligned potential drops are likely
to occur. In the current system described above, the LLBL acts as
a magnetohydrodynamic generator while the ionosphere plays the
role of a dissipator. Recent observations [Woch eral, 1993) provide
added support for the notion that the LLBL is source of the dayside
region 1 currents. -

Compared to some other interfaces in the solar wind-
magnetospheric system, relatively little theoretical work has been
devoted to the LLBL. Perhaps the first qualitative theoretical model
was proposed by Coleman [1971). Eastman et al. [1976] discussed
the LLBL in detail with emphasis on the role it plays in transferring
mass, momentum, and energy from the solar wind to the magneto-
sphere. In that work, coupling to the auroral ionosphere plays an
important role and the role of the LLBL as a generator is explained.
Kan and Lee {1980) studied imperfect ionosphere-magnetosphere
coupling in a simple evolving boundary layer, using concepts of
field-aligned potential drops developed by Fridman and Lemaire
(1980), Chiu and Cormnwall {1980}, and Lyons [1980]. Their model
is nonviscous, the result being that the ionospheric drag gradually
slows down the boundary layer plasma 4s it moves in the down-
stream direction. The role of viscosity in the layer was studied by
Sonnerup [1980] in a one-dimensional steady state model. Lotko
et al. [1987] reexamined this model by including a simple con-
ductance law to describe the relation between field-aligned currents
and field-aligned potential drops. In those papers, induced magnetic
fields were not included. Wei es al. [1990) examined the formation
of vortices and other turbulent structures in the LLBL caused by
the Kelvin-Helmholtz instability. In their study the plasma flow
was assumed incompressible, two dimensional, and time depen-
dent and the magnetic field was taken to be constant. Their model
included viscosity. Wei and Lee [1993] extended that model to
include coupling to the polar ionosphere. Siscoe et al. {1991) de-
scribed the coupling of the LLBL mode! of Lotko et al. [1987]
to a high-latitude boundary layer model, and Siscoe and Maynard
(1991) also included coupling to the region 2 current system.

Following the ideas of Sonnerup [1980] and Lotko et al
[1987), Phan et al. (1989] developed a fully self-consistent one-
dimensional model of a viscous LLBL in which the magnetic field
deformation in the layer, caused by the currents in it, is included.
The present model, some aspects of which have not yet been nu-
merically implemented, is an extension of the analysis by Phan et
al. 10 allow for slow variations of the layer in the flow direction
(the negative z direction). The boundary layer occupies the region
y 2 0, starting at the magnetopause(y = 0), where the antisunward
flow velocity has a maximum value, and extending earthward into
the magnetosphere, where the velocity first reverses sign and then
asymptotically approaches a low sunward magnetospheric value as
y — oo. The surfaces s = +Ho(z,y) represent the northem
and southern edges of the layer, where the magnetic and plasma
pressures reach their magnetospheric values. The model includes
self-consistent caiculation of the magnetic field in the layer from
the currents via Ampére’s law. The normal component of the cur-
rent is continuous at the surfaces z = + Ho, whereas the j, current
switches abruptly to zero there; for [z} > Ho the cumrent is field-
aligned. As a result of the cross-field currents, the field lines have
approximately parabolic shapes in the boundary layer. This defor-
mation of the magnetic field along with the deformation caused by
field-aligned currents in the coupling regions between z = + Hoand
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the ionosphere are important features of the model because they pro-
vide the mapping along LLBL field lines from the equatorial plane
to the auroral ionosphere. However, in the simplified version of the
model 10 be discussed here the lumped properties of the two iono-
spheres and the low-pressure (low plasma beta) regions between the
ionospheres and the LLBL proper are replaced by resistive parallel .
plates located a fixed distance, 2Hp, apart; as a consequence, the
magnetic mapping is not included in a self-consistent manner and
field-aligned potential drops are excluded.

The paper is organized as follows: The mathematical formulation ~
of the model is presented in section 2 along with the assumptions
and approximations used. Section 3 contains a description of the
numerical procedure. In section 4 we present three runs of the nu-
merical code, and in section 5 we summarize the results and discuss
generalizations of the present mode! that remain to be impiemented.

DEVELOPMENT OF MODEL EQUATIONS

The geometry of the system to be studied is shown qualitatively
in Figure 1. Figure 1a shows the dawnside LLBL, viewed from the
north ecliptic pole. The coordinate system is as follows: the y axis
is across the LLBL and points inward toward the magnetosphere;

Ho

* (b)

Fig. 1. Boundarylayer geometry. (a) Dawnside low-latitude boundary layer
on closed field lines, viewed from above the north ecliptic pole. Velocity
profile across the layer is shown qualitatively, including a region of sunward
flow. Region 1 field-aligned currents flow into the ionosphere. (b) View of
the LLBL from the Sun: the layer extends to height Hg above and below
the equatorial plane. Parabolic magnetic field lines are shown: parabolas
close to the magnetopause have larger curvature.
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the z axis is directed south to north in the equatorial plane; and
the z axis is perpendicular to the previous two axes and points in
the upstream direction. The spanwise width of the LLBL, which
is very small in comparison with the scale of the curvawre of the
magnetopause and geomagnetic field lines and with the scales for
variation in the streamwise direction and for flaring of the magne-
topause boundary, permits a simple mapping of the siab (z,y, 2)
coordinates of the mathematical model described below onto nat-
ural curvilinear coordinates such as (L, M, N) boundary normal
coordinates. In Figure 1 a velocity profile across the layer is shown
qualitatively, the main flow being in the —z direction, with siow
sunward flow in the magnetosphere. Closed magnetic field lines
connect the LLBL to the northemn and southem ionospheres. In the
coupling regions, field-aligned currents occur. Figure 1) offers a
view of the layer from the Sun; it indicates that the LLBL extends
to a height Ho above and below the equatonial plane in the z di-
rection and that the magnetic field lines are bent into approximate
parabolas with increasingly lasge curvature as the magnetopause is
approached. In the current version of the model, electricaily con-
ducting planes at z = + Ho with appropriate conductivity are used
to represent the ionospheric substrate and the low-pressure regions
between it and the effective high-latitude boundaries of the LLBL.

Boundary Layer Approximation

The plasma flow in the equatorial LLBL is governed by the steady
state mass and momentum conservation laws, the isentropic law, the
induction law, and the law of magnetic flux conservation:

Voov=0 (1)

pv-VV=—VP+i(V"B)XB+V'L ()

v-V(p/p")=0 (3)
Vx(vxB)=0 4)
v.B=0. (5)

Here p, p. and v are the plasma density, pressure, and velocity,
respectively. Also, r is the viscous stress tensor, B and uo are the
magnetic field and the vacuum permeability, respectively, and v =
cp/ ¢y is the ratio of specific heats. For simplicity, we have neglected
resistivity as well as heat conduction and viscous dissipation in the
LLBL. These effects may in reality be of some importance and
should ultimately be included.

As mentioned already, the effects of the two ionospheres are
represented by parallel resistive plates at fixed height z = + Ho.
These plates are assumed impenetrable in the present version of the
model so that v, = 0 at z = £ Hp. It will be shown in the next
subsection that, in the approximate equations describing the LLBL.,
this boundary condition implies v, = 0 in the entire fayer, that is,
for —Ho < z < Ho.

The boundary layer or narrow-channel approximation is now
applied to the above equations, taking advantage of the fact that
changes across a narrow layer (in the y direction) occur on a scale
length &, which is much smaller than both the scale length L, for
changes along the main flow direction (z). and the scale length H,
for changes in the third direction (z). From the mass conserva-
tion law it then follows that, if the characteristic velocity in the z
direction is Vp, the velocity in the y direction is of the order of
(6/L)Vy. Similarly, from the flux conservation law it follows that
if the characteristic value of B, and of B, is Bo, then the y compo-
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nent of the magnetic field is of the order of (§/L)Bo or (§/ H) B,.
As mentioned already. another consequence of the boundary layer
approximation is that the magnetopause surface curvature can be
ignored if the characteristic thickness § is much smaller than the ra-
dius of curvature, R, a condition that is wel} satisfied for the LLBL.
Thus, neglecting terms of order §/ R compared to terms of order
unity, one is allowed to use a Cartesian coordinate system and the
fist geometry shown in Figure 15. By neglecting terms of order
82/L% 6*/HL. and §*/ H? compared 1o terms of order unity and
by setting v, = 0, the three components of (2) can be written in the
foliowing approximate form:

9 4
P(Uza + 0,5;)0: o~

o, ip 3B 3B, 1, 0B 0 dv
8z+po8'( az az )+MB" dy +8y "a,) (6)
ap 1 aB; 4B,
0:——-—83—"‘8‘— 7
dy no( dy dy @
~.3 1p38. 1 9B, 4B,
0= 8z+mB’ oy mB’( oz az) ®)

In this approximation. inertia and viscous forces enter only the z
component of the momentum equation; in the y and z directions
the equations express a static balance between the Vp and j x B
forces. The motion in y is treated purely kinematically via the mass
conservation law (1). The viscous term in (6) has been assumed
comparable to the inertia terms, which is true provided the viscous
Reynolds number, Re = pVoL/n, is of the order of L/8*; over
large flow distances, one expects the boundary layer thickness to
adjust itself to satisfy this condition. In the same approximation,
that is, again neglecting 6%/ L2, 6>/ LH . and §*/ H, the currents in

the LLBL are given by Ampere’s law:
Js ™ i%—g—' 9)
ez (GRS (10
1.:--“1—;"8‘:’ (1)
Series Expansion in x

We proceed now to expand all quantities as power series in terms
of the z variable. We assume a boundary layer symmetric with
respect to the equator (the plane z = 0) and express each dependent
variable in terms of even or odd powers of z, according to whether
they are symmetric or antisymmetric with respect to the equatorial
plane:

2

vz = vs0(Z,y) +V=z(z,y)% +...;
‘2

vy = vyo(z,9) + "tz(tvlﬂﬁi +...3

3
v = v.n(z.y)ﬁ + v:s(t.l)% +... (12)
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‘3
B, = B:l(t-v)y + B:J(z-l)m +...3
2 3’
By = B,.(z,y)F + B.s(t.!)m +

2
B. = Bulz,y) + Bulz.¥) 3 + (13)

zl
p=m(=.v)+m(z.y)§;+--. ;

\ ‘
P=mlz.0) +rlz0)iE+ - (14)

In the model we shall keep only the lowest-order terms in the expan-
sions of velocity and magnetic field, that is, terms independent of
z for symmetric quantities and terms proportional to 2 for antisym-
metric quantities. From the boundary conditionv, = Oatz = £ Ho
it then follows that v, = 0, that is, that v, = O throughout the
boundary layer. We emphasize that, in contrast to the nonevolving
model of Phan et al. {1989), the lowest-order terms do not form an
exact solution in the present model. We can nevertheless evaluate
all equations at z = 0; corresponding quantities are denoted by
the subscript zero. It is then found that (5) and (8) are identicaily
satisfied and that (1), (3), (4). (6). and (7) become

2= (o) + 3 (puvyo) = (15)

o L]
po(vsog + "uos;)"so =

S22y BB+ 2

dz ¥ pob 3y 35m (16)

2

B
po+ ﬁ = Poo(z) (17)

(u,oaa +v,uai) =0 (18)

&I?

3(Bsovs0) 8(3:00,0)

9z + e (19)
In (16), no is the viscosity coefficient evaluated in the equatorial
plane, and in (17) the quantity Poo(z) is the sum of the plasma
pressure and the magnetic pressure in the equatorial plane. This
total pressure is independent of y and therefore has the same value
in the boundary layer as in the magnetosphere, where it can be
considered to be known for the purposes of our model. By use
of (15), equation (19), which represents the z component of the
induction law, can also be written in the form

3 4 .Bw _
(v,oa +"'°3y =0

(20)

The z and y components of the induction law are identically satisfied
at z = 0. Finally, note from (18) and (20) that po/p; and B.o/po0
are constant along streamlines.

Equation (8) can be used to estimate the plasma pressure in the
LLBL for z # 0, after the magnetic field is known. This equation
implies that p has a negative quadratic term in z, in addition to the
term po(z, y). which describes the pressure in the equatorial plane.
The variation in pressure described by this term is consistent with the
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expectation that in the LLBL the plasma pressure should fall from
a high value in the equatorial plane toward lower values at the high-
latiude edge (z = + Ho) of the LLBL, aithough the magnetospheric
pressure level is not actually reached in the present model due (o
the assumption of constant Ho. Extension of the model to include a
varisble boundary layer height so that the plasma pressure reaches
its ambient magnetospheric level at : = + Ho(z, y) is planned, as
discussed further in section 5. It is also noted that (8) contains
B,; this field component, which is of the form B, (z/H), can be

calculated from B, by use of (5) and assuming B.i(z,y) =0 :

In general, the density must be assumed to vary with sz as
well, falling toward a lower magnetospheric value at z = £ H,,
which means that, in addition to the term po(z, y). it has a neg-
ative quadratic term in z as well. In the present model, where
all higher-order terms in the z expansions for velocity and mag-
netic field are neglected, the quadratic term in p can be ob-
tained from the mass conservation law, which then takes the form
(v203/3z + vy03/3y)(p2/po) = O, together with the known up-
stream density distribution. Thus the lowest-order truncation of
the z expansion of velocity and magnetic ficld allows us to calcu-
late second-order terms in density and pressure by requiring mass
conservation and exact force balance in the ¢ direction to be main-
tained. If the expansions of v and B are carried to higher order,
the lowest-order terms in these quantities and the terms describing
density and pressure would all change. Therefore the z expansion
used is not exact, in the sense that each term retained is not the same
as the corresponding term in the expansion of the exact solution in
a power series in z; rather it represents a polynomial approximation
to the exact solution.

The system of (15), (16). (17), (18), and (20) contains six un-
known quantities. namely vso, vyo, Bsi, B:o. po. and po. Thus
we need one more equation to form a closed set. This equation
will be provided by coupling to the ionosphere, as discussed in the
following subsection; it will lead to an explicit expression for B;,
in the z momentum (equation (16)).

lonospheric Closure

As mentioned already, in the present simplified model, the
mapped, lumped properties of the ionosphere are represented by
two parallel resistive plates at fixed height z = +Hp, that is, at
the top and bottom of the LLBL. In the remainder of this paper we
choose the characteristic scale height H in (12)-(14) to be the fixed
boundary layer height Ho. The net current flowing on the surface
of the plates at z = 3 Ho may be expressed by

J’ = 2E, » J’ = zE' (2])

where J; , is the surface current density and Z is an effective
height-integrated conductivity representing the lumped response
of the ionosphere and the low-pressure (low plasma beta) regions
between z = +Hop and the ionosphere. The components of the
electric field, E: and E,, imposed on the plate by the boundary
layer dynamo, are given by

El’ = E’ 'l-*H. = -U,B. I:-*Ho ~ (6/[1)5'

(22)

An expression for the conductivity of the resistive plates that repre-
sent the ionosphere in our model was given by Sonnerup [1980]:

EV = Ey lln*ﬂ. = v, B, ll.*”g

Here Zp is the height-integrated ionospheric Pedersenconductivity.
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Also, B, is the ionospheric magnetic ficld; B is a representative
value of the magnetic field s component in the equatorial LLBL;
dz./dz is the ratio of a length element dz, in the ionosphere (0 a
corresponding length element dz in the LLBL, and « is a coupling
factor which is unity whea the magnetic field lines that connect
the LLBL to the ionosphere are equipotentials. In its present form
our mode! allows for field-aligned potential drops in the coupling
region between the LLBL and the ionosphere only in the average
sense obtained by letting the factor x < 1. This restriction will
be eliminated eventually, as explained in section 5. In principie,
the effective conductivity I is a function of r and y. because the
mapping factor dz,/dz, as well as B and Zp vary in space.

We now impose current continuity at the top of the LLBL, that
is, at z = £+ Ho, which leads to

A

. aJ, aJ,
Js I:-t}lo = a—: + F: >~ a (23)

In this expression, J; is smaller than J, by a factor of the order of
§/L; thus 3J, /dz is smaller than 3J, /3y by a factor §2/L? and
can be neglected. Using (11), (21), (22), and (23), we find

B, Ilttﬂo = *“O(z":Bz) |l-*H° + C(I)

where ¢( 1) is a constantof integration, and the negative and positive
signs on the right side of the equation correspond to : = +Hj or
z = —Ho, respectively. In evaluating the left side of the above
equation, B, and all higherterms in B, will be ignored, as before,
so that B, = B;i(z/Ho). Similarly, we use only the lowest-order
terms, vzo and B.o. in evaluating the right-hand side, the result
being

Ba1 = ~poXvsoBeo + ¢(z) (29

The function ¢(z) is given by the boundary conditions at y = oo
(for convenience, the interface between the LLBL and the magneto-
sphere is thought of as located at a large but finite y value: y = yo.):
at that location v,o assumes the low magnetospheric (sunward or an-
tisunward) vaiue vzo0(z), the magnetic field B,o becomes Boo(z),
B\ becomes B;io (z), the conductivity becomes Lo, and the cur-
rent 5, becomes jyoo(z). That the latter quantity can be nonzero
indicates that, as is the case in the geomagnetic tail, a net current
may be flowing across the magnetic field, from the LLBL into the
magnetosphere, or vice versa. Equations (10) and (24), both evalu-
ated at y = oo, can now be combined to eliminate Byoo, the result
being

88.,

c(z) = poZooVscoBoo + I‘OHDJIOO + Ho (25)

Substitution of (24) and (25) into (16) gives the followmg final
form of the z component of the momentum conservation law in the
equatorial plane (z = 0)

a a
Po(vzos; + V.oa)vso =

1 ng.

- dP;;(t) + (Veo”:eoBea

—~ 0B + (ﬂo 3y ). (26)
Note that o, as defined in the equation following (22), can in prin-
ciple depend on z and y, although ¢ = oo = const is used in
the calculations reported here. Note also that all magnetospheric
quantities (denoted by subscript co) are functions of z, in general.
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NUMERICAL PROCEDURE
Finite Difference Scheme and Boundary Conditions

For the solution of the five coupled equations (15), (17), (18),
(20), and (26), of which four are partial differential equations with
independent variables z and y, a Crank-Nicolson implicit finite dif-
ference scheme was implemented, similar to marching procedures
that have been used in the past for fluid mechanical boundary layers
{e.g.. Andersonetal.. 1984)]. The computational domain is a rectan-
gular region in the zy plane. Thelinesy = 0andy = y.. represent
the magnetopause and magnetospheric boundaries respectively. At
those boundaries, appropriate boundary conditions are imposed. as
described below.

At y = O the velocity vyo(z,0) = Vo(z) is specified from an
appropriate model of the magnetosheath flow (located in the region
y < 0), assuming vso to be continuous across the magnetopause.
The model in principle allows for a specified plasma flow normal
to the magnetopause, but in the results reported here we have used
the condition v,o(z, 0) = 0. This means that the cold plasma mass
flux in the LLBL remains constant as one moves downstream from
the computational boundary at z = 0 where velocity, magnetic
field, and plasma properties are specified as functions of y, subject
to centain consistency requirements to be explained presently. The
restriction vyo(z,0) = O also means that the upstream station can-
not be located at local noon in the magnetosphere, unless a delta
function mass source for the LLBL is assumed to be present there.
In principle, the initial conditions at z = 0 could be chosen to
match data from a satellite traversal of the LLBL; the evolution
of the LLBL downstream from the satellite crossing couid then be
determined by the model.

Aty = yoo the z velocity v,g, the magnetic field B.o, the plasma
density and pressure are fixed to their specified equatorial magneto-
spheric values, vzo0(z), Boo(Z). poo(z) and Poo(z). respectively,
and are assumned to approach those values asymptotically so that
(3/9Y)ymye = 0. For reasons of mass conservation the y compo-
nent of the velocity vyeo cannot be specified: it is determined from
the numerical calculations and represents entrainment of magneto-
spheric plasma (vy0 < 0) or mass feeding of the magnetosphere
from the LLBL (vyo0 > 0). Finally, at the downstream boundary,
located at £ = L, say, no conditions are needed as a consequence
of the parabolic nature of the problem.

The finite difference equations comprise a non-linear algebraic
system of equations that involves all quantities to be calculated
across n grid points in the y direction, at two consecutive steps
in the —z (main flow) direction. As mentioned already, initial
conditions for various quantities are imposed. Note that po(0, y) and
B.o(0, y) must be chosen to obey (17). One can also show that the
initial velocity profile vy0(0, ) cannot be chosen independently but
is determined from the other variables. After B,o(0,y). po(0. y).
p0(0, y), and v50(0, y) have beenchosen, vyo(0, y) is obtained from
the equation:

 J dv
vy0(0, ¥) = v40(0,0) + vx0 3
o PO

Vo0
i
[08.0”20 =~ {0o0Pzo0 Boo + Jyoo + dB” ——}Bw
2
s o L) ICy)
T
uo

Equation (27) is derived as follows: The term dvs0/dz on the left
in the £ momentum equation (equation (26)) can be substituted
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from the mass conservation law (equation (15)). The term 3po/dz
will then appear, but the system of (17), (18) and (20) can be
solved for 3po/3z as well as 3B,5/9z and 3po/3z. By further
substitution of 3po/dz into (26), only derivatives with respectto y
will appear. Equation (27) follows by first forming the derivative
(d/dy)(vyo/vso) and then integrating. It is evident that (27) is true,
not just for z = 0, but for any value of z.

After the problem is initiated at z = O the solution is found si-
multaneously at all grid points across the boundary layer at the next
step in the main flow direction (—z), by solving the nonlinear aige-
braic system mentioned above; this solution is then used to march
forward. The system is soived by Newton’s method (Burden and
Faires, 1989}, which is a fixed point (iterative) procedure requiring
an initial guess close to the actual solution. Since the variations of
the boundary layer in the z direction are slow, this guess is provided
by the values at the previous step in z.

Asymprotic Region

It is one of the goals of the model and the numerical scheme
to be able to predict not only the antisunward LLBL flow but also
variations of slow sunward flow observed on the earthward side of
the LLBL. It should be noted here that, partly for instrumental rea-
sons, some ambiguity exists in the data regarding the latter region:
Sckopke et al. [1981] report a halo region adjacent to and earthward
of the LLBL, where the density and temperature are intermediate
between those in the LLBL and in the magnetosphereand where the
velocities are, for the most part, small and have variable direction.
However, sometimes they find time intervals in which the flow
is clearly antiparallel to the magnetosheath flow. Williams er al
(1985] report a stagnation region adjacent to the main antisunward
LLBL flow region, where velocities are small and have variable
direction, and a region of small but steady sunward flow earthward
of it. It is not clear whether the intermediate region contains actual
turbulent flow or whether it is simply a region of gradual transition
in which the small velocities are not well-resolved. As described in
detail below, our model contains an asymptotic flow region earth-
ward of the boundary layer proper which includes a flow reversal
followed by monotonically increasing and then constant sunward
flow as one moves from the boundary layer proper into the magne-
tosphere. Inclusion of field-aligned potential drops in the coupling
region between the LLBL and the ionosphere is expected to change
this asymptotic velocity profile into one that includes an overshoot
in the sunward flow adjacent to the velocity reversal [Lotko et al.,
1987).

An integration procedure that marches forward in the antisun-
ward direction fails within a few steps in a reverse flow region.
a difficulty that can be traced to the term vsodvs0/z in the z
momentum equation. This term retains its sign, while all other
terms in the equation containing vyo reverse their signs, when vyo
reverses sign. In the reverse-flow region the correct marching direc-
tion is therefore reversed. This problem has iong been recognized
in computational fluid dynamics and different solutions have been
proposed. Noticing that the reverse flow is usually slow, Reyhner
and Fliigge-Lotz [1968) suggested neglecting the term ve9dvso/az
or reversing its sign. On the basis of that idea we have proceeded to
neglect the above term in the z momentum equation in the reverse
flow region as well as in a narrow region on the magnetopause side
of the flow reversal point, where vy is negative but sufficiently
small so that v;09dvs0/dz can be justifiably neglected. The reason
for including the latter region is that there is also a second difficulty
at the fiow reversal: when the reversal point falls close to a grid
point, anumerical singularity appears. We emphasize that the above
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approximation is consistent with slow-flow convection models of
the inner magnetosphere (e.g.. the Rice convection model) to which
the LLBL model should eventually be matched.

To implement these approximations, we have terminated our
regular computational box at y = y, but appended to its magne-
tospheric side what we call an asymptotic bOX, yoo 2 ¥ 2 . in
which the inertia term pov,0dv,0/91 is neglected. The location
y = w is different in every step of the calculation along the —z
direction: in the runs presented here it is defined by the require-
ment that vso at that location be 9 ks or less, in the antisunward
direction. Furthermore, in the asymptotic box we take po, po. and
B0 10 be independent of y 0 that po = poo(Z). Po = poc(z). and
B,o = Boo(z) there. With the above assumptions the resulting z
momentum equation becomes

3 ?
l’l‘)"!‘r;—;‘L = —0oo(vs0 ~ ”soo)B:o + Neo a—:;e .

(28)

Equation (28) follows from (26) by setting v;0dv0/dz equalto
zero and by noticing that the third term inside the parenthesis of the
right-hand side of (26) cancels the magnetic pressure part of the term
~dPs(z)/dz. The plasma pressure part of that term is canceled
by jyco Boo if One requires the solution for vxo to be independent of
y asy — oco. Also, the viscosity no in the asymptotic box is taken
10 be 700 ( 7). because it is assumed that no depends in a general way
upon py. po. and B, all of which have become independent of y
in that box. If the y variation of vy is neglected in the asymptotic
box, equation (28) has a simple analytic solution, namely

V20 = V200(Z) + [Vs0(2. ) — Ve (z)]e NI (29)

where

—povyo(z, 1) + \/Pivio(Z. 1) + 4000000 Bl
olz) = 2100

In reality, vyo is a function of y in the asymptotic box; the above
solution is therefore only an approximation to the actual solution.
In the runs presented in this paper, the above solution is close to the
exact solution when vyg has a slow varistion with y as it usually
does away from the upstream location. The exact solution can be
found by integrating equation (28); one may assume that vy is
approximately known from the previous step, so that (28) becomes
an ordinary differential equation for vso.

At the boundary between the asymptotic box and the computa-
tional box, y = ys. We require that v, and vyo be continuous and
that

(30)

a(z)veo(z, ;) + Ql_‘_"a(:_v’)

K1)
which guarantees that dv,q/3y and dvgo/dy will also be contin-
uous at y = ys. Equation (31) is obtained from (29) by differen-
tiation. As can be seen from (29) and (31), only vso and its first
derivative can be made continuousat y = y». A small discontinuity
in the second derivative of v.o remains and leads to a corresponding
discontinuity in the first derivative of the current j,. In the results
presented in this paper we have therefore allowed the exponent
a(z) to differ slightly from the value given by (30), in such a way
that the second derivative of v.g is also continuous at y = y,. By
differentiating (29) twice, the following condition is found at that

boundary:

ly=y = 8(2)v200(2)

82 vxo(t- V)

Gy v = @ ()eemlz)  (32)

a}(z)vso(z, 30) +

Eliminating a(z) between (31) and (32) yields the following modi-
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fied boundary condition at the interface between the computational
box and the asympeotic box:
(Sgemyeyn)’

0’-..!: y)
'd(‘-'l) - 9300(%)

lymm = (33)

We can finally obtain vy in the asympeotic box by integration of

the mass conservation law:
vy, ¥) = vo(z, ) = (¥ = ) pul(:) : ’::“.)4'

1 d
ﬂu(z) ‘7

-Ti')l('-o(z- ) — Va0 (z))(e~HENY=M) _ 1))

Note from (34) that, in general, v,,, does ot reach a constant value
but retains a linear variation with y as y — oo.

Since the nature of the solution in the asymptotic box is such
that vyo decays at a relatively slow exponential rate 0 v (z), the
reduction of the size of the computational box that results from use
of an asymptotic box saves a great deal of computer time.

(34

N lizati

We now explain the normalization of all variables in (15), (17),
(18), (20), and (26), which leads to an important resukt regarding the
role of viscosity in our simplified model. The normalized variables,
denoted by an asterisk, are

=" =z/Ho, y° =yVRe/H,

v; = v50/Va, v, =vyVRe/Vs, B: = T,'%‘:—:

2° = po/pn, r=7 Py = 757.5'

Jooo = .l~_5°./

In the sbove, Hy is the characteristic heigi of the LLBL while V,
and py are refevence values of the flow velocity and density. Also,
Re is the viscous Reynolds number, Re = pa Vo H/ 7w, 7 beinga
reference value for the viscosity, and Rm is the magnetic Reynolds
number, defined by Rm = g0000 Vo Ho.

The dimensionless system of (15), (17), (18), (20), and (26) now
becomes (the asterisks are dropped for convenience):

(33)

52(Pv2) + (o) = 0 (36)
BI

P+ 5 = Po(2) (37

(03'89;+"%);’."=0 (38)
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(93 + o 30) o5 =0 (39)
p(h';; +v.3;)"s
_‘_”%-;(ﬂ + (RMOsce Boo + Jyou + -‘-—")B-
- RmBlv, + 2 (225 ‘,’,’ . (40)

mwaeymldsmmbefmmwoutofmeeqmﬁom
because of our particular normalization of y and v,. This implies
that the reference value of the viscosity affects our system only as
a scaling factor for the width of the LLBL and the magnitude of
vy. In other words, a thin LLBL with low viscosity evolves in the
same way as a proportionately thicker layer with higher viscosity.
However, for one and the same upstream width, boundary layers
with different viscosity evolve differently. Note also that we have
chosen viscosity to depend parametrically on pressure, density and
magnetic field, as indicated by the factor (p”' 0?2/ B2®) in the last
term of (40). For example. the collisional viscosity transverse to a
strong magnetic field has p; = -0.5, p2 = 2.5, ;y = 2 [Spitzer,
1962}); for Bohm diffusionone finds p) = 1. p1 = 0, py = 1. The
reason for using a nonconstant viscosity is that, as discussed later
on, uniform viscosity throughout the LLBL is found to result in
excessive entrainment of magnetospheric plasma and high accel-
eration of this plasma downstream. To avoid this effect, viscosity
must decrease with increasing distance from the magnetopause: this
is accomplished, for example, for positive values of py, p2, and ps.

APPLICATIONS

We now present three examples of LLBL flow obtained from
the numerical code. We first describe the boundary conditions and
initial conditions used in the three nuns; in the remainder of the
section we discuss the results obtained.

All three runs were initisted at z = 0. The initial v;(y) ve-
locity profile is a somewhat arbitrarily chosen, smooth function of
. with continuous first and second derivatives. This profile sat-
isfies (31) at the interface between the computational box and the
asymptotic box; in the latter, it includes & region of reverse flow
5y — Yoo and v; becomes independent of y in that limit. With
known initial profile vs(y) the initial v, is given by (27). We as-
sumed an initial number density decrease of 80% across the LLBL,
from 10 protons/cm’® at the magnetopause to 2 protons/cm’ in the
magnetosphere, a corresponding increase of 10% in the £ compo-
nent of the magnetic field, from 40 to 44 nT, and a constant total
pressure of 1 nPa across the layer. The initial plasma pressure can
then be calculated from (17), the result being that the temperature,
Toly) = po(y)/Roo(y), where R = k/m, is the gas constant,
varies from 230 eV at the magnetopauseto 775 eV in the magneto-
sphere. The parameters chosen for these runs are representative of
typically observed boundary layer crossings (Sckopke et al, 1981;
Eastman and Hones, 1979]. They result in an average electric field
component across the layer of a few mV/m, as measured directly by
Mozer [1984) and as inferred by Mischell et al. [1987), Williams et
al. [1985), and others on the basis of particle measurements. Note
that the magnetic field decrease together with the flow acceleration
lead to an approximately constant value of this electric field as one
moves downstream in the layer.

The values of the characteristic density (pn = 10 m, kg/cm?)
and viscosity n» are such that the kinematic viscosity atz = y =
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0is vn = Mn/pn = 10° m?/s [Sonnerup, 1980; LaBeile and
Treumann, 1988) in the first two runs, while in the third run viscosity
has been reduced by a factorof 3. Also, p1,2,3 = Oin the first run and
p1 = 0, p2y = 1 in the second and third run. The velocity V,, used
for normalization is taken to be 280 km/s and Hy = 10 Rg. All
calculations are performed with the ratio of ipecific heats, y = 2.
The viscous Reynolds number Re used in the first two runs is
1.8 x 10% based on the half height of the LLBL, Ho. and on
the value of the dynamic viscosity at z = 0, y = 0. Note that
the Reynoids number based on the width of the layer is at least
20 times smaller. The magnetic Reynolds number Rm, based
on the effective conductivity oo which embodies the effects of
coupling to the ionosphere, is 0.1; this choice leads to realistic
values for the field-aligned currents at the top of the ionosphere,
of the order of 5 x 10~% A/m®. To achieve that, the value of the
effective conductivity o is reduced by a factor of 10 from the vaiue
5.96 x 10~* mho/m given by Sonnerup [1980] for orange-segment
mapping and perfect coupling to the ionosphere.

The boundary conditions are as follows:

1. At the magnetospheric boundary, that is, at y = yoo, v iS
constant, v:ec = +10 kmv/s in the sunward direction, while the
magnetic field falls exponentially in the downstream (—z) direc-
tion, according to the formula B, = Boo(z) = 44exp(0.03z/Rg)
nT. This simple functional form is not necessarily an accurate rep-
resentation of the actual field variation in the magnetosphere, but
it qualitatively models the variation of B with downstream dis-
tance. For given z the density, plasma pressure, and total pressure
are constant across the asymptotic box and are the same as in the
magnetosphere. They can be calculated from the following three
conditions:

_ B(0)
- Pco(o)

P (0)
P%{(9)

Bl,(z)
2u0

Peo(z) + = Po(z) (41)

These relations follow from the induction law and the isentropic law,
applied along the dividing streamline passing through the point
y = ys at z = 0, and from the y component of the momenum
equation. If there is inflow into the computational box, across
¥ = ¥». this streamline is located in that box; therefore the values
calculated from (41) can be used as boundary conditions at y = y».
If there is outflow from the computational box across y = y», the
dividing streamline is located in the asymptotic box; in that case
the values from (41) can be used as boundary conditions at y = y»
only if plasma leaving the computational box alsc carries with it
those uniform values of B, p and p. In other words, a region
of uniform values must always be present in the computational
box itself, immediately adjacentto y = g. AS y — oo, We
require a balance between the pressure force —3po, /32 and the
force jyco Boo from which the current jy oo () that flows from the
LLBL into the magnetosphere can be calculated; in the simulations
presented here jyoo # 0.

2. At the magnetopause, that is, at y = 0, the plasma is as-
sumed to accelerate in the antisunward direction from 50 knvs, at
z = 0, to 290 km/s at z = —15 Rg, approximately, 150 km/s
being gained within the first 5 Rg, as described by the formula
vs(z,0) = —[308 — 258exp(z/5.75Rg)] knvs. Again, this for-
mula is only a qualitative representation of the actual variation of
v, (z,0) in the magnetosphere. Since we do not allow flow across
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the magnetopause, that is, since vy(z,0) = O, the liney = Oisa
streamline. Thus, B.. p. and p at y = O are defined by relations
similar to (41).

Figure 2 shows results of the first simulstion example. The
bottom row of the figure consists of three plots representing, in
order from left to right, density, temperature and z component
of the magnetic field, all in the equatorial plane, as functions of
y at three different locations along the magnetopause, namely, at
£ =-0.25 Rg,-7.5 Rg and — 15 Rg. The pressure profileis not
shown but can be calculated from pg and To: it has the property that
po + B/ 2u0 is constant across the layer. The £ and y components
of the flow velocity and the z component of the current at the top of
the LLBL are plotted in the middie row as functions of y at the same
locations downstream. The values of the current density in Figure
2, multiplied by B,/ B.o. give the actual field-aligned currents at
the top of the ionosphere; here B, = S x 10* nT is the ionospheric
magnetic field. The top panels consist of two vector plots followed
by one contour plot representing the z component of the current. The
first vector plot represents the actual velocity vectors; in the second
plot. v, was magnified by a factor of 27 in order to mike visible
the inflow from the magnetospheric boundary. The horizontal axis
in all three top panels corresponds to the y direction (across the
LLBL), whereas the vertical axis is the distance downstream (the
-z direction). The width of all panels is 0.85 Rg.y = O atthe left
being the magnetopause boundary.

The dynamic viscosity in this first example is taken to be constant
(i.e.. p1.2.3 = 0in (40)) throughout the LLBL and to be such that the
kinematic viscosity at the magnetopause and st z = 0 is equal to
the reference value, 10° m*/s. The v, profiles in Figure 2 indicate
that the velocity boundary layer is becoming thicker and that its
eanhward ponions accelerate downstream, as plasma enters from
the magnetospheric boundary to become entrained in the boundary
layer flow. This plasma moves into the LLBL carrying with it a
higher magnetic field and lower density. Thus, while the velocity
layer increases in width, the magnetic fieid, the temperature and
density layers all decrease their widths. as shown in the bottom plots
in Figure 2. Notice also the decrease in density and temperature
levels with increasing z, behavior that is in agreement with (41)
and with our choice of the z dependence of the magnetic field in
the magnetosphere.

The plots of current density require special comment. The 2
component of the current at the top of the LLBL is

. _ l 385 _ dvso 1
J:Ia-"g = o _a' = Z(B.o—a' + llao—'a'

(42)
The contour plot as well as the current profile show that the current
evolves in a complicated manner creating a secondary maximum at
some distance away from the magnetopause: the two terms on the
right in (42) have opposite signs and compete in & way that results in
an intervening local minimum. As seen in Figure 2, this effect can
even create a current reversal; this occurs when a relatively large
negative v, makes the magnetic field profile become very steep,
thus increasing the magnitude of the negative term vso 3B8,0/3y in
(42). We draw attention to this point because the observational data
often show a highly structured behavior of the region 1 currents as a
function of latitude. However, field-aligned potential drops A®y; in
the coupling region between the LLBL and the ionosphere, which
were included by Lotko et al. [1987) and Phan et al. [1989], are ex-
pected to modify the current profile significantly. When A®, = 0,
the value of the current, j,. at the magnetopause is specified by the
conductivity X and by the magnetic-field and velocity profiles, as
can be seen from (42): in the runs described here the conductivity
has been adjusted, as discussed by Sonnerup [1980), to produce
realistic values for the average field-aligned currents at the iono-
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Fig. 2. Results from run 1: constant dynamic viscosity. Top panels show two velocity vector plots aad a contour plot of the carrent
density j; 3 = Ho. Magnitude of vy umww-wnmumwmumumu
plasma into the layer. Renﬂnhgmhdmpmﬁleplocofvmqm;awhhyu.: = -0.25 R.,
~7.5 Rg and —15 Ry (marked by 1, 2 and 3, respectively). The boxends sty = 0.18 Rg, 0.47 Ry, and
0.72 Ry ot the locations I, 2 and 3, respectively. The vz (y) profiles indicate large viscous entrainment of magnetospheric plasia
Mcrlpidlymdenm;vclodtyhyu ‘The current density profiles, j;. at z = Ho are double peaked with an intervening current
reversal; j, has an absoluee maximum st a certain = value (nesr r = ~7 Rpg), that is, at a certain local time. The corresponding
ionospheric curreats are given by the currents presented here, multiplied by a factor B; /B = 1667. The thickness of the deasity,
temperature, and magnetic field boundary layers decrease as the plasma moves downstream, even though the thickness of the velocity

layer increases.

sphere (lijima and Potemra, 1976a). On the other hand, when
A®y; # 0 the resulting fourth order differential equation describing
the LLBL [Lotko et al., 1987) allows one to specify j» = O at the
magnetopause in which case the maximum in region 1 current by
necessity appears at some distance away from that surface.

The longitudinal variation of 5, shown in Figure 2 is a conse-
quence of the variation of the flow parameters in the —z direction,
which, unlike the previous models of Lotko et al. [1987) and Phan
et al. [1989), continuously modifies the two terms in (42). An
observed feature [lijima and Potemra, 1976a]) that is predicted by
our model is that the peak intensity in the region 1 current density
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first increases in magnitude with increasing flow distance, reach-
ing s maximum value at some distance |z| downstream, and then
reduces. In our model, two effects compete to produce this result.
First, the flow accelerates downstream, thus increasing the velocity
shear, dv.q/dy, which increases the magnitude of the first term in
(42). Second, the velocity layer increases in thickness downstream
as a result of viscosity, thus decreasing the shear, and consequently
the magnitude of the current. Initially, the first effect dominates and
the current peak increases in magnitude as one moves downstream,
but later on the second effect takes over and causes the maximum
current to decrea.e again.
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In the example presented above, substantisl entrainment of mag-
netospheric plasma into the LLBL occurs. As shownin Figure 2, the
velocity layer becomes thick compared to the density layer and its
earthward portions accelerate rapidly, owing to the assumption that
viscosity remains high also in the ic plasma. Obser-
vations by Sckopke et al. (1981] and Eastman et al. [1979] do not
show such behavior: during passage from the magnetosphere into
the LLBL proper the velocity increase precedes the density increase
by only a small distance so that only a small amount of hot mag-
netospheric plasma is entrained by the tailward flow in the LLBL.
Although inclusion of field-aligned potential drops in the coupling
region can be expected to modify the velocity profile predicted by
the model in a significant way [Lotko et al, 1987), it seems plausi-
ble that this observed weak entrainment of magnetospheric plasma
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is accomplished naturaily because the viscosity varies across the
layer. In the next simulation example the viscosity is assumed to
drop across the layer in proportion to the drop in density and in
inverse proportion to the increase in magnetic field, as one moves
into the magnetospheric plasma. In other words, p1 = 0,92 = |,
and py = 1 in (40). .
Figure 3 represents our second example. The panel arange-
ment here is the same as in Figure 2. Except for the viscosity
model, all parameters, and the initial and boundary conditions are _
the same as in the first example. The v, profiles now indicate a
curvature reversal at the approximate location of maximum slope of
the density and magnetic field profiles, a result of the variable vis-
cosity, that is, of the fact that viscosity drops rapidly as one leaves
the dense boundary layer plasma and enters the tenuous magneto-
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Fig. 3. Results from run 2: dynamic viscosity

proportional 1o p/B,. Format is the same as in Figure 2. The computational box

endsaty = 0.18 Rg,0.22 Rg.and 0.33 R at the locations 1, 2, and 3, respectively. The velocity boundary lsyer is now much
, of the profiles of v, (y) st the location of maximum slope of the

thinner. Notice also the curvature reversal, near the

profiles of o(y) and B,(y). The vy(y) profiles show evidence of the pastial relaxation of the system from its initial conditions. The
secondary current density maximum is now higher than the one at the magnetopause and current densities are higher overall.
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spheric plasma. The field-aligned current again develops a reversal
region followed by a secondary maximum at some distance away
from the magnetopause, which is now higher than the value at the
magnetopause.

The first v, profile, at z = —0.25 Rg, differs in shape from
vy profiles further downstream. This behavior is caused by a rapid
relaxation from the arbitrary initial velocity profile v:(0, y): within
a short distance downstream the flow settles down to a more regular,
slow evolution determined mainly by the boundary conditions. As
an illustration of the fading memory of the system with respect to
the initial velocity distribution, we refer to the analytic solution
given by Sonnerup [1980). With constant values of V5, B,o, and
o, and with dPw/dz = 0, vzeo = 0 and jyoo = 0, (26) has the
asymptotic solution

-y/é ,

vso = —Voe vyo=0 (43)

as £ — —oo, where §, is the viscous length, used by Atkinson
(1967), Sonnerup [1980), and others:

Teo )|/2

b = (erBgo

(44)

This solution also satisfies (15), (17,, (18), and (20) identically.
The density profile can be arbitrary in this solution. Any chosen
initial v-(0, y) profile and its associated vy (0, y) profile evolves
in such a way that, after some relaxation distance along the main
flow direction, vs(z.y) becomes identical to (43) and v, (z,y) =
0. In this case the system loses memory of the initial velocity
state completely, the final state being determined entirely by the
boundary conditions. However, information about the initial density
profile remains. In the general case, memory of nonconstant initial
magnetic field, density, and temperature profiles is retained and a
state that is independent of z is never reached, unless the boundary
conditions at y = 0 and y = yo become independent of z.

In the first example the relatively higher viscosity at the location
of the secondary maximum, reduces the velocity shear, thereby
spreading the velocity boundary layer and decreasing the magnitude
of the first term in (42). The result is relatively lower magnitudes of
the current at that location and overall. In the second example the
velocity boundary layer is narrower, and the shear is larger at the
location of the secondary maximum, as a result of lower viscosity in
the magnetosphere. The secondary current maximum is larger and
lower ju, | values are generated, that is, less magnetospheric plasma
is being entrained into the layer. The total potential difference across
the LLBL, between the magnetopause and the location where the
velocity reverses sign in this run, is 1.65 kV initially, 4.4 kV at
a distance 7.5 Rg downstream, and 5.65 kV at a distance 15 Rg
downstream. These values of the potential drop across the LLBL are
consistent with typically measured potential drops {Mozer, 1984).

In our last simulation, shown in Figure 4, we reduce the reference
viscosity by a factor of 3, from vn = 10° to vn = 3.3 x 10* m?/s
but maintain its dependence on p and B (p13 = 1, p2 = 0).
As a result, the viscous Reynolds number increases by a factor
of 3. We initiate this case with the same upstream conditions as
in example 2 and use the same boundary conditions as well. At
the downstream locations, z = —~7.5 Rg andz = —~15 Rg, the
velocity boundary layer is now thinnerthan in the previous two runs.
There is a relatively large initial outflow of plasma (v, > 0) across
the magnetospheric boundary during which the initial excessive
amount of plasma participating in the downstream motion leaves
the layer. As a result of lower viscosity close to the magnetopause,
no reversal of field-aligned current occurs.

In Figure 5 we plot magnetic field lines from run 2 at z =
~7.5 Rg in three zz planes, namely, at the magnetopause plane,
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y = 0, and two planes parallel to it, located at y = 700 km and
y = 4700 km, respectively. The view is from outside the dawnside
LLBL, looking towards the magnetosphere and with the Sun on the
right. Figure 5 shows that the field lines are bent into approximate
parabolas; their curvature is greatest near the magnetopause and is
least at the magnetospheric boundary; some curvature remains at
y = 4700 km because 3,0, # O; as a resuit of the increasing flow
speed and decreasing magnetic field the curvature increases as one
moves downstream. Notice that the scale in the z direction has
been exaggerated: at z = 10 Rg the lines are in reality displaced
~ 1.5 Rg sunward of their intersection point with the equatorial
plane. We believe that in the real LLBL such a field configuration
may reduce or eliminate turbulence in the layer, because magnetic
flux tubes of different curvature do not easily interchange their
locations. The magnetic field configuration described above and its
suabilizing effect were also noted by Southwood [1979].

DISCUSSION

In this paper we have presented initial results of a steady state
numerical model of the low-latitude boundary layer on closed field
lines. The mode! is experimental: our purpose is to see if it-can
predict certain features, such as spatial distribution of field-aligned
currents flowing into the ionosphere, that are observed in the data
and to examine the effect of different parameters in the model such
as the viscosity formula, viscous and magnetic Reynolds numbers,
upstream conditions and boundary conditions at the magnetopause
and in the magnetosphere. In contrast to the models by Phan et
al. [1989], Lotko et al. [1987], and Sonnerup [1980] the present
model includes variation of boundary layer properties such as flow
velocity, magnetic field, plasma pressure, and density as one moves
in the downstream (—z) direction, thus allowing for evolution of
the LLBL in the flow direction. The variation of all quantities with
distance (z) away from the equatorial plane is parameterized in a
simple way. The flow evolution in the z direction is governed by
a balance between inertia forces, j x B forces, pressure forces,
and viscous forces, whereas in the two perpendicular directions (y
and z) the boundary layer approximation results in static balance of
forces. The currents in the LLBL are calculated in a self-consistent
manner, via Ampére’s law. As a result, the magnetic field com-
ponents B, and B, are allowed to be of comparable magnitude,
the field lines being approximately parabolic, with vertices point-
ing in the antisunward direction and with maximum curvature for
field lines adjacent to the magnetopause. At the magnetospheric
edge of the layer the curvature is smaller but need not be zero as a
consequence of allowing a finite cross-field current j;o0(z) to flow
from the boundary layer into the magnetosphere. We distinguish
here between the Phan et al [1989] model, where the magnetic
field lines are exact parabolas, and the present model where, owing
to the (slow) z variation, they are only approximate parabolas.

We emphasize the following results cbtained from the present
version of the model: (1) The velocity boundary layer increases
in thickness downstream as a result of viscous entrainment leading
to inflow into the boundary layer region of low density magneto-
spheric plasma carrying higher magnetic field. This inflow leads
to thinning and steepening of the density, temperature and mag-
netic field profiles. (2) The velocity profile tends to relax from
an arbitrarily assumed upstream shape to shapes that are mainly
govemed by the boundary conditions. However, the LLBL never
loses memory of the initial magnetic field, density and pressure
profiles. (3) The thickness of the velocity profile is greatly influ-
enced by viscosity which enters the system as a scaling factor (sec
equation (35)), larger viscosity resulting in thicker velocity profiles.
(4) The field-aligned currents that fiow into the ionosphere from the
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Fig. 4. Results from ren 3: dyaamic

proportional t0 o/ B, and three times lower thaa in run 2. The computational box

viscosity
eadsaty = 0.18 Rg,0.15 Rg. 28d 0.21 Ry atthe locations 1, 2 and 3, respectively. The velocity layer is thinaer than in runs |

and 2. No current reversal (5: < 0) is present in this case.

upper and lower edges of the LLBL, at 3 = + Hj, represent the
dayside region 1 current system [/ijima and Potemra, 1976a), or
at least those portions of it that are generated on closed field Lines.
These currents are found to form a secondary maximum awsy from
the magnetopause. Between the magnetopause maximum and the
secondary maximum a current minimum occurs, often including a
reversal of the current. The region 1 field-aligned curment peak is
found to reach a maximum at a certain local time, as observed by
lijima and Potemra [1976a}). However, experience with the Lotko
et al. [1987) model indicates that significant changes in the details
of velocity and field-aligned cumrent distributions will occur when
field-aligned potential drops are incorporated.

In the future the model will be improved in the following two
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major respects. First, the ionosphere will be incorporated in a more
realistic way. The connection region between the LLBL and the
ionosphere is a narrow channel starting at the upper and lower edges
of the boundary layer, that is, at s = +Ho, where the currents
are field-aligned and extending along the magnetic field into the
jonosphere. In this region the magnetic field will be cakulated
self-consistently, rather than by using the constant mapping factor
(dz:/dz) employed here. Also, field-sligned potential drops will
be included as in the works by Lotko et al. [1987] and Phan et al.
[1989]. according to the empirical formula jy; = K(ée~¢.). Here
Jiis is the field-aligned current into the ionosphere, K is an effective
field-aligned conductance density, and ¢, and ¢; are the electric
potential at s = +Hy and in the ionosphere, respectively. The
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Fig. 5. Magnetic-field lines in the dawaside LLBL frommun 2 &t z =
~7.5 Rg. View from outside the layer, looking towards the magnetosphere,
with the Sun on the right. The lines have approximasely parsbolic shape
(exaggerated in the plot by a factor of 3.3 in the horizontal scale) and

maximum curvature near the magnetopause.

ionosphere will continue to be treated as & conductive substrate;
combining Ohm’s law with curment continuity and the boundary
layer approximation, we can show that

The height-integrated Pedersen conductivity I, may have a spatial
dependenceor a dependenceon the electron precipitation associated
with the ficld-aligned potential drops.

The second improvement of the model is to include a variable
height Ho(z, ¥) of the LLBL, to be calculated self-consistently with
the other variables. In this case the veiocity component v, will not
be zero, except at 2 = 0; it will be allowed to have a linear s
dependence. The surface : = +Ho(z, y) will be located where
the plasma pressure in the layer, as determined by the z momentum
equation (equation (8)), has dropped to its magnetosphesic value.
By requiring the velocity to be tangential to that surface it can be
shown that the mass conservation law, at z = 0, becomes

9 9
a(ﬂoﬂovso) + E(Homvw) =0

As a further generalization, this equation may be modified to allow
plasma entry from the upper and lower edges of the LLBL, at
= iHO(zt ')'

Further improvements of the model can be made by permitting
mass diffusion across the magnetic field.
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APPENDIX 2: EXTENSIONS OF THE MODEL

In this chapter, the equations are presented that describe the LLBL with
(a) variable height, 2Ho(z,y), in the z direction and (b) field-aligned potential drops
in the force-free coupling region between the LLBL and the southern and northern
ionospheres.

2.1 Variable Boundary Layer Height

The basic formulation of the low-latitude boundary layer model remains as
described in Appendix 1, but in addition, the half-height, Hy is now a function of z
and y to be calculated self-consistently. It is assumed that, at the location z = +H,,
the plasma pressure has fallen to its corresponding magnetospheric value, poo(z, z),
which is considered to be a known function of z and z only. At the same location, a
force-free (j x B = 0) region begins that connects the LLBL to the two ionospheres.
Equations (1)-(5) describe the plasma flow in the equatorial LLBL. By using the
series expansions (12) and (14), the mass conservation law, equation (1), evaluated

at z = 0, takes the following form

a(POsz) 9(povy) , Povn -
% T e tH - 0 v (45)

Notice that v, is now non-zero everywhere in the LLBL except at z = 0. It is required
that the plasma velocity vector be tangential to the upper and lower boundary surfaces

at z = £ Hp:
{v ° V(Z - HO(‘T’ y))}z:t”o =0

or, by keeping the zeroth and first-order terms only in the series expansion in z,

—v,oaHo _ 'vyoaHo + vﬂHo _
oz oy H

0 (46)
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By substituting v,;/H from (46) into (45), the mass conservation law finally becomes

O(poHovso) , d(poHovyo) _
a:“ + =5, LI (47)

The induction law should now be used in the form of equation (19), instead of

(20), since the latter was derived by use of (15), which is no longer valid.
The z and y components of the momentum conservation law, equation (2),
evaluated at z = 0, are given by equations (16) and (17). In the boundary layer

approximation, described in Appendix 1, the z-momentum equation is given by

O+ BYf2uo) | 1 5 0B p OBy oy,

In the above equation, the magnetic terms on the right are of order (H/L) compared
to the term on the left-hand side, and the inertia and viscous terms are of order
(H/L)?, where H and L are the characteristic scale lengths for changes in the z
direction and the z direction, respectively. At this point, one can proceed to different
levels of approximation: if H/L is of order unity, one would need to solve the full
z-momentum equation; if H/L is much less than unity, one can either neglect the
terms of order (H/L)? and keep the terms of order H/L, or neglect both. In the
following we will neglect terms of order (H/L)?, a choice that is consistent with the
assumption that second order terms in the z expansions could also be neglected.
According to this latter assumption, terms of order H/L should be kept; however,
significant simplifications result from neglecting those terms as well. The two different

options for the z-momentum equation are stated below.

(1) Terms of order H/L and (H/L)? are neglected

In this case, the 2-momentum equation (8) reduces to the simple pressure balance
2

B
p+ e = po(z,y) (49)
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where py(z,y) is the plasma pressure in the equatorial plane. If the left-hand side of
the expression is now evaluated at z = + Ho where the pressure has become equal to
the magnetospheric plasma pressure, p..(z, H,,), evaluated at the top of the boundary

layer, one finds

B HE _
Po — Poo(Z, Hoo) — Zuol? 0 (50)

According to the series expansion in z, the magnetospheric plasma pressure contains

a term proportional to 22, i.e.,

z 2
Peo (25 2) = Peo(2,0) — (7) Pal(2)
At z = H(z) this pressure has reached the value that is assumed to be present

at the top of the LLBL, z = Hj, throughout the layer, as shown in Figure 6. Its

value, p(z, Hy) is considered known so that equation (50) can be used to calculate

HO(x’y)‘

(2) Terms of order (H/L) retained

In this case, the z-momentum equation (8) reduces to the static force balance

BLH}  (B.0Bn By 0B\ H?
Po = Peo(2, Hoo) 2uoH? — (yo oz po Oy ) 2H

(51)

which replaces (50) as the equation for Ho(z,y). In this expression the y component
of the magnetic field can be obtained from equation (5), which simplifies to the form

0B, + 9B,
Oz Oy

provided dB,/0z is zero which is the case if quadratic and higher-order terms in the

=0 (52)

series expansion of B, are neglected.
The system of equations (46), (47), (16), (17), (51), (18), (19) and (52) contains

nine unknown quantities, namely, v,q, vy0, v21, Br1, By, B:o, po, po and Hy. If option
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(1) above is used B,; does not appear, except in equation (52), and equation (50)
replaces (51). To obtain a closed system of equations, coupling to the ionosphere
must be incorporated. We first apply current continuity at z = +Hy. The surface
z = Ho(z,y) is defined by the equation F(z,y,2) = z — Ho(z,y) = 0; the unit vector
normal to this surface is # = VF/|VF|. In what follows, all quantities just below
the surface F' = 0 carry the superscript — while quantities just above F = 0 carry

the superscript +. Current continuity across the surface z = Hy(z,y) implies that
- ha=j3tn (53)

where the current j~ at z = Hg is given by (9)-(11). By use of these equations and
the magnetic field as given by (13) one then finds

1 3B,0OHo , 1 dHo B, 0Bo, . Ho 8B, _ ., 0H,

1 1 _ )+ O0H,
po Oy Oz  po Oy ' H Or poH Oy = 5z

— it
ay JZ

M (54)

The force free condition above the surface F' = 0, namely j* x B* = 0, along with

B~ = B*, which implies that there are no surface currents at z = Hy, result in
e I il Rt (55)

If the magnetic field lines in the coupling region are equipotentials, the relation-
ship between the electric field E, at the top of the LLBL and E; in the ionosphere is,

to lowest order, given by

Here, dy; is the ionospheric counterpart of a length element dy in the equatorial
LLBL; a relation between these lengths is obtained from the conservation of flux in

a magnetic flux tube

& = Bois (57)
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where B; is the ionospheric magnetic field and dz; is the ionospheric counterpart of
an equatorial length element dz. Note that if the equatorial vector elements dz and
dy are orthogonal, the corresponding ionospheric elements dz; and dy; are generally
not orthogonal and vice versa. However, in the boundary layer approximation this
feature of the mapping does not enter the equations explicitly. The ratios dz/dz; and
dy/dy; are known only after the field-line geometry in the coupling region has been
calculated self-consistently, as explained later in this chapter. In the simplest case,
one may assume a known average value for this ratio, as was done in Appendix 1.

In the ionosphere, the height integrated current is
I, = EP(E,' + v, X B.) - SH(E,' + v, X B.) X Z; (58)

In the above equation, X; is the height-integrated Pedersen conductivity, Ly is the
height integrated Hall conductivity, and v, is the ionospheric neutral wind velocity.
By applying current continuity at the top of the ionosphere and by assuming constant

v,, and B; we can use the boundary layer approximation to find

9 dy 0
a!l.' dy; a!l

where j)|. is the field-aligned current leaving the ionosphere. From charge and mag-

W, = Vil = =—(XpE;) = (ZpE;) (59)

netic flux conservation it also follows that

n, _ Bi

By use of (56) and (57) equation (59) becomes

. _B,'tiﬁa B; dz; 61
W= Bodz oy \"PBgdz (61)

Finally, by use of (55) and (60) equation (54) gives

10B0dH,  10Hy Ba 0B Ho 9Ba _
po Oy O o Oy " H Oz poH Oy
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ji ( HoBs1 0o , HoBy 9Ho
B'"H 0z H &

— By} (62)
In the approximation (2) in which terms of order H/L are retained, all terms in (62)
must be used; in the approximation (1) in which both terms of order H/L and (H/L)?
are neglected compared to terms of order unity, it simplifies to

10Bo8Ho 1 8Hy B OBy, Ho8Bn _ . Be
o 8y 8z " pody H 9z’ poH 0Oy oy

In this case, equations (61) and (63) close the system (46), (47), (16), (17), (50), (18),

(63)

)+

(19) and (52) mentioned above, with one more dependent variable, namely j,.. For

convenience, the complete system of equations to lowest order is repeated here:

8(poHovz0) | poHovy) _
+ =0
0z dy
/] dP.(z) + 1 8, Ovxo

a
polvsog- + vw%)vzo =-—0 1 BB + 5;('70"5;)

H3BZ,
Po — Poo(z, Hx) SuaH? = 0

0 d.po _
(V05— + vwgy‘)z =0

a(B,ov,o) + 6(B,ov,o) =0
oz oy

_v,oaHo _ vWaHo + v,;Ho =0
oz Jy H

ale + anl
Oz Oy

=0

2.2 Field-Aligned Potential Drops

In addition to all features of the LLBL, the ionospheric substrate, and the force-

free region connecting the two, described in the previous sections, the field-aligned
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current in the ionosphere, jj , is now assumed to be given by the lumped relation

g = x(%e — ¢3) (64)

where « is an effective field-aligned conductance density and the subscripts e and
i denote quantities evaluated at the top of the boundary layer and the ionosphere,

respectively. The potential distribution in the LLBL region is

v v

The potential distribution in the ionosphere is related to the ionospheric electric field
by E; = —V;¢;. By use of this expression for E;, and by noting that in the boundary
layer approximation E,; <« E,;, equation (59) becomes

= 30y " By

By substituting ¢; from (64) into (66) and by using (57) and (65), one then finds

(66)

. B; dz; ., [10%. . O(v-0B:o)
=Tl Gty )
B; dz. B; dz;

B By g ) (g + teB) &)

Equation (67) instead of (61) now completes the system of equations derived
above. Note that, without field-aligned potential drops, i.e., with k = oo, equation
(67) reduces to equation (61).

2.3 Asymptotic Solution

The system of equations in the previous sections cannot be integrated in the
region of slow sunward flow by a marching procedure in the —z direction, for the
reasons mentioned in Appendix 1. As in the approach taken in that Appendix, the

term v;o0v;0/0z in the z-momentum equation will be neglected in the slow sunward
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flow region. However, it is not possible to derive a simple solution there under the
same assumptions as in Appendix 1, namely, that B, p and p are independent of
y. The reason is that the z-momentum equation, in its simplest form (i.e., equation
(50)), forces the height Hy to be a function of both z and y. The remaining equations
are then inconsistent with those assumptions and without them, we have not found
a simple straightforward method to reduce the equations describing the LLBL in
the asymptotic region to a system of ordinary differential equations. One then has
the option, either to integrate this system, without the above inertia term in the z-
momentum equation, using the same numerical method as in the computational box
in Appendix 1, or to make the assumption that the height of the layer is a function
of z only and does not vary with y. In the latter case, the z-momentum equation
cannot be used to satisfy the condition that the pressure drops to its magnetospheric
value at z = H,. Instead, the pressure above and below the surface z = H, will
be different, except in the magnetosphere where Hy = H(z) is chosen to provide
continuity of pressure across this surface. As explained in the next two sections, one
may account for this pressure difference by including a surface current at z = Hy, as

shown in Figure 6. Note that this pressure difference has been ignored in the earlier

models by Sonnerup [1980] and Lotko et al. {1987].

(1) No Surface Currents at z = Hy

In this approach the resulting pressure at z = Hjp differs from the magnetospheric
pressure; the difference can be considered as the pressure exerted mechanically by
the surface itself on the LLBL; it results in an inconsistent evaluation of the currents
and the magnetic field above the surface z = Hp. This approach, however, leads

to a simple analytic solution in the asymptotic region, under certain assumptions to
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be explained presently. It should be mentioned that the analysis presented below is
essentially the same as that performed by Lotko et al. [1987] and used by Siscoe et
al. (1991}, and Siscoe and Maynard [1991].

As in Appendix 1, we will assume that B,o, p and p are independent of y. This
assumption is not necessary, but it is now allowed by the equations, and it is used
to illustrate the simplest case. With the above assumptions, the current continuity,

equation (63), becomes

Ho ale BzO N
= — . 68
poH @y Bi 7 (68)

and the z-momentum cquation becomes

Pveg _ dPu(z) | 1 dvzo |
05y2 i ”0 g7 BBt = povie—75—= 3y (69)

Equation (67) can be written in the following form if one assumes that £p, B; and

dz;/dz are also independent of y in the asymptotic region.

. Ovzo
(— - 3y 2)Ju = ZpB.o—— 9y (70)
where, using the notation of Lotko et al. [1987]
B; dz; p
€= By dz’ A= 3 (T1)

We now operate on (69) with (1/c?> — A29?/dy?)8/0y and express dB;1/dy in terms
of j). from (68). Furthermore, we neglect the y-dependence of v, in the asymptotic

region. The result is

1 0 0 0%v9 Ovzo B% 1 0? _
L) (1ot - oo ) - (L -2y =0 (72

which, after substitution of the right most term from (70) and one integration, be-

comes
0 (& 1 Y[ povylz,y) ve0 + LpBY% _ _ZeBY (73)
Oy \9y? X2 ) \dy 7o qu7HoB 170/\2HOB
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The above equation has the general solution
Vz0 = Vzoo + €Y (Acos(cay) + Bsin(cay)) (74)

where the growing exponential has been discarded. The constants A and B are to
be determined from the boundary conditions at y = y;. Furthermore, ¢; and c; can
be obtained by requiring the first and second derivative of v, to be continuous at the

interface between the computational and the asymptotic region.

(2) Surface Current at z = Hp

In addition to the assumptions used in case (1), a surface current K is now assumed
to flow in the surface z = H,,. This current exerts a vertical force on the plasma
in the boundary layer which represents the net effect of j, currents flowing in the
“triangular” (shaded) region in Figure 6, and accounts for the difference in pressure
at the edge of the LLBL (at z = Ho = H.(z)) and the magnetospheric pressure.
This requirement is given by the relation

B} + B; _
K,—~——==p*—p (75)

where the superscripts + and — denote quantities evaluated above and below the
surface z = Hy, respectively. In the above equation, the magnetic field in the surface
z = H, is the average between the value above and below this surface. In the
boundary layer approximation, the boundary condition on the magnetic field there
requires that B} — BS = puoK,, where B = (Ho/H)B;,. The plasma pressure below
the surface, p~, which can be taken from the z-momentum equation (49), is equal
to po — B2, Ho/2poH?; the plasma pressure above the surface is the magnetospheric

plasma pressure at z = H,,, i.e., it is poo(z, Hy). With those substitutions, the
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relation (75) gives the surface current K,

Hy [ 23 2 4 oPo = Poo
K, =-— B.1 + | =——B3, + 7
v poH Jp%H 750 +2 Bo (76)

The condition of current continuity at z = Hg should now include this surface current,

i.e.,
joh= e S | ()
which leads to

pwoH 8y B W7 5y

Equations (69), (70) and (78) contain z only as a parameter; they are in effect ordinary

(78)

differential equations which, along with (76), can be used to calculate vz, B;; and

J)), as functions of y at any z location.

2.4 Self-Consistent Coupling Region

It is an important objective of a boundary layer model to provide the actual
mapping of the magnetic field lines from the equatorial LLBL to the ionosphere. In
order to accurately provide this information, the model must include a self-consistent
calculation of the magnetic field deformation in the coupling region, i.e., it must
incorporate the mapping factor dzr/dz; in a self-consistent manner. This can be
accomplished by an iterative procedure, as follows: In the first iteration a constant
value of the above ratio is used, equal to the value given by an internal magnetospheric
model, such as the Tsyganenko model. After the model equations have been solved
numerically, the magnetic field geometry in the LLBL will be known. A force-free
boundary layer model can then be used to calculate the further deformation of the

magnetic field in the connecting region that is caused by field-aligned currents there.
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This calculation will provide the new mapping factor dz/dz; to be used in a second
iteration in the LLBL model, and so on. A self-consistent boundary-layer model
of the connecting region is currently under development by Professor Lotko and his

students [see Appendix 5).
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P=Py(xy)

Fig. 6. A schematic of the LLBL height, Hy, as a function of y at fixed z value. If
Ho(z) is assumed independent of y and equal to H,(z), a surface current K, ca: be

used to account for the difference in pressure above and below the surface z = H,,.
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APPENDIX 3: NUMERICAL METHOD

In Appendix 1, it was explained how the system of equations (15), (17), (18),
(20) and (26), i.e., the mass conservation law, the y component of the momentum
equation, the isentropic law, the induction law, and the z component of the momen-
tum equation, respectively, all evaluated at the equatorial plane, (z = 0), were solved
by a numerical procedure. The reader is reminded that the model represented by
those equations does ﬁot include field-aligned potential drops in the coupling region
between the LLBL and the ionosphere, and assumes that the LLBL has constant
height in the z direction.

As already mentioned, the computational box is a rectangular region in the zy
plane. The lines y = 0 and y = y,, represent the magnetopause and the magneto-
spheric boundaries, respectively; appropriate boundary conditions are applied there.
At the line £ = 0, the upstream conditions across the boundary layer (i.e., in the y
direction) are imposed. The box is divided into two parts: the first part, attached
to the magnetopause, extends from y = 0 to y = ys; in this part, the velocity in the
negative z direction is higher than a chosen small positive value, vmin. In the present
chapter, the finite difference method used in this part of the box is explained in some
detail. The analytical method used in the box attached to it, called the asymptotic
box, and extending from y = y; to y = Yoo, Was explained in Appendix 1. A schematic
of the computational region and the asymptotic region is shown in Figure 7.

The system of equations contains five unknown quantities, namely, v.o(z,y),
vyo(z,¥), Bro(z,y), po(z,y) and po(z,y); we wish to find the £ dependence (along
the main antisunward flow direction) and y dependence (across the layer) of these

variables. The system is written in a finite difference form according to the Crank-
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Nicolson scheme, to be explained presently. There are n+2 grid points in the y
direction, including the two boundary grids, and the calculation can proceed for as
long as needed along the z direction. The equations are expressed in backward differ-
ence form in the z direction; this allows all variables to be calculated (simultanuously
at all n grid points in the y direction) at only one step in the z direction each time,
based on the values of the previous step. The grids are equally spaced in the z and y
directions, but Az # Ay, and also, care is taken so that Az/Ay = v.o/vy. The latter
condition guarantees that information about the velocities in the z and y direction
travel a distance of about one step in the corresponding direction in time At, i.e.,
At = Az [vyo = Ay/vy. This marching procedure in the downstream direction takes
advantage of the slow parabolic evolution of the flow; in fluid mechanics it has been
found to be the most economical method as far as computational time is concerned.

At every step in the z direction, the number of grid points, n, along the y
direction is different in general. Before the calculation at each step in z starts, a simple
check on the magnitude of v, at the right boundary is performed; for computational
convenience this check is applied at the previous step. If the value is lower than
Umin, 88 many grid points as necessary are discarded at the right edge of the box and
the calculation at the present step is performed on the remaining grid points. If the
value is higher than vmn, grid points are added: the values of all variables at those
new points at the previous z-step are taken from the asymptotic (analytic) solution
explained in Appendix 1. It is sufficient to check the value of v, at the very last
grid point on the magnetospheric edge of the numerical box because the velocity is

expected to change with y relatively slowly at that boundary.
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3.1 Finite Difference Method

The finite difference form of the z-momentum equation in non-dimensional form
is given below. The superscript i denotes the grid-point number in the z direction
while the subscript j denotes the grid-point number in the y direction. In the following,
the notation for vz, vy, B0, po, Jy and Po is also changed, for convenience, to u, v,

B, p, j, and p, respectively. The z-momentum equation becomes

[6p5" ui™) + (1 — O)(pjui)l(uy™ — uj)

Az
0(pi*'v "H)(“;i‘l ufth) + (1 = 0)(pivi)(ufyr — uj_y)
2Ay
dP. \"*
=" (F) +
o(R,,.ua,B + joo + idB;“) B-Z+l +(1-9) (R,,.u«,B«, + Joo + %B-;‘i) B;f+

Rn8(uB);*! + Rm(1 — 0)(uB)}+

1 $: t [ [
_A?{a (I‘,-tlx/z(“,fl —uitt) — it /2(“_1'+l ;tll))

(1-6) (p§+l/,(u§+, — uf) — iUl “;-1)) }, t=0,...,00m, j=1,...,n (79)
In the above, the viscosity is assumed to be of the form u = p*'p?2/BP3. Also, the
notation pj41/2 = (Mi+1 + p;5)/2 and pj_12 = (i + pj-1)/2 is used, with 0 < 0 < 1,
where 0 is a weighting factor. For § = 0 the method is explicit; in this case, the von
Neumann stability constraint presents a severe limitation on the marching step size
[e.g., Anderson et al., 1984]. For § = 1 the method is fully implicit with truncation
error O(Az) + O(Ay)®. The value for 0 used here is 1/2, which gives the Crank-
Nicolson implicit scheme with truncation error O(Az)?+0(Ay)?, when all coefficients
and properties are evaluated at the expansion point (i+1/2, j). In this case, no

stability constraint arises from the von Neumann analysis.
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The y-momentum equation is not a differential equation. One could possibly

eliminate one of the variables and not use this equation. However, for the purpose
of keeping the non-linear terms as simple as possible in the code, the equation was
written in a discrete form and was included in the system along with the other four

differential equations. In non-dimensional form, this equation is written as:
: 1 i ;
A+ 5B = (Pe)™ (80)

The mass conservation law is expanded at the point (i+1/2, j-1/2) as follows:

Pt ut? — piuf + ptiut] — pf_ui,
Az
PV — pR it + plvi — pi_yvi,
+ Ay =0 (81)

Notice that the derivative across the layer (in the y direction) is written in a back-
ward difference form here, while the derivatives across the layer in the z-momentum
equation are in a central difference form. As a result, no boundary condition on v, is
required at the right edge of the computational box.

The isentropic law and the induction law are written in a form that contains
convective terms similar to the inertia terms in the z-momentum equation; therefore,
they are expressed in a similar finite difference form. It should be noted, however,
that, in brth equations, the derivative across the layer is not represented exactly by a
central difference, as in the z-momentum equation, but as a combination of backward
and forward differences, with weighting factors 6, and (1 — 6,), respectively. Without
those weighting factors, a numerical oscillation, which grows as the computation
proceeds downstream, appears between alternate grid poins in the values of B, p and

p. Empirically, the value 6; = 0.35 was found to work well.
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The isentropic law and the induction law have the following finite difference

form.
[6ui*' + (1 — O)ui] (/o) - (p/0")})
Az
w0 (0167 = (p6")5)) + (1= 0) (/075 — (21 P7)"")
+0v;
! 2Ay
! "); - "1 - 6, ";‘1‘ ";
o1 = oy (B1F — (/M) ¢ : (@i =0 Ly
o + - 0] ((8)" - (8)))
Az
+1 s+1 B +1 +1
+0pit b ((%)J - (%)J‘—l) +(1-61) ((7),'...1 - (%),' )
? 2Ay
6, E'i_?_': 1-6, 2'..—'5-‘.
(@O ra-w (@) o

2Ay

For a given i value, equations (79)-(83) comprise a system of 5xn algebraic
equations with 5xn unknowns, namely, u{*!, vi*!, Bi*!, pi*1 and pi*!, where j =
1,...,n. Boundary values at the magnetopause, i.e, at j=0, are required by the
numerical procedure for all five quantities. At the grid point n+1, i.e., at the boundary
between the numerical and the asymptotic box, boundary values are also required for
B, p and p. Boundary value for v is not required. Note that B, p and p at both the
magnetospheric boundary and the magnetopause boundary should be consistent with
the relations (41) and relations similar to (41), respectively, as explained in chapter
2. The boundary condition on u at the grid point n+1 is a mixed condition, i.e.,

it contains both the value and the two first derivatives of the quantity, see equation

(33). This equation is implemented numerically as follows [Smith, 1984]: equation
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(33) is written at the grid point n+1, i.e.,at y =y as

R |
Uns2 — 2Unpl + Up = E‘—""—-&)— for all i (84)
Unsl — Yoo

Equation (79) is then written at the grid point n+1, and the value of u,,3 is substi-
tuted from (84). This results in one additional equation with one additional unknown
quantity, namely un41. Therefore, the final algebraic system consists of .xn)+1
equations with (5xn)+1 unknowns. The method used to solve this non-linear system

is described in the next section.

3.2 Newton’s Method

Newton’s (or Newton-Raphson’s) method is one of the most powerful and well-
known numerical methods for solving a root-finding problem f(z) = 0 [Burden and
Faires, 1989]. To indroduce Newton’s method, assume that the function f is twice
continuously differentiable, and z, is an approximation to the root, r, of f(z) = 0
such that f'(z,) # 0, where f’ is the derivative of f. One may then consider the
Taylor expansion of f(z) around the point z,:

(z -

2
1(2) = flza) + (2 = z)f(ea) + ESZL pr(qa)) (85)

where g(z) lies between x and z,. If =, is a close approximation to r, the quadratic

term can be neglected and equation (85), evaluated at z = r, gives

0~ f(za) + (r — 7a)f'(2a) (86)
Solving for r

f(za)
f'(za) (87)

rzzu‘_
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This sets the stage for an iteration procedure, in order to determine the root, r, that
starts with an initial approximation zo and generates the sequence z, defined by

f(zk—l) (88)

F(zh-1)

Newton’s method can be generalized to a system of m non-linear algebraic

Tk = Th-1 —

equations of the form f«(z;) = 0, where x=1,...,m and l=1,...,m, or, in vector form
F(X) = 0, where X is the vector that contains the unknowns. In the present appli-
cation, f. = 0 represent the five equations of our problem, written in finite difference
form at n grids in the y direction across the LLBL, at a particular z location, along
with one equation at the boundary grid n+1; z; represent all the variables, i.e., the
unknown values of u, v, B, p and p at all n grid points, and %n4;. Thus we have m
= (5xn)+1 in the present application.

The functional iteration procedure evolves by first selecting X, and then itera-

tively generating

1
" J(Xe-1)

for £ > 0. Here, J(X) = 0f;/0z; is the Jacobian of F, the detailed expression for

Xi = Xp F(Xy-) (89)

which is given below. One can prove that the sequence generated by this iteration
gives quadratic convergence to the solution, P, of F(X) = 0, provided that the
initial guess, Xp, is a sufficiently close approximation to the actual solution [Burden
and Faires, 1989]. In order to satisfy this condition, we take advantage of the slow
evolution of the LLBL downstream by using the values of all variables in the previous
step as an initial guess for a new step in the downstream direction.

In practice, explicit computation of 1/J(X) is avoided by performing the oper-

ation in a two-step manner. First, a vector Y = X; — X,_, is found which satisfies
J(Xk-1)Y = —F(Xi-1) (90)
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After this has been accomplished, the new approximation, X, is obtained by adding
Y to Xy

The vector X contains the solution ([u1,v1, By, p1, P15 ---) tiny Uny B, Py P u,..H]k)T
after each iteration step, k. The vector F(X) contains the left-hand side of the
(5xn)+1 finite difference equations described earlier. The Jacobian matrix J(X) is

of the form

T

(91)

Since all of the finite difference equations involve the variables at no more than
three neighboring grid points in the y direction, it is possible to arrange the above
matrix in a banded form with bandwidth equal to 15. Notice from equation (89) that,
at every step of the iteration procedure, after the initial guess, X,, both J(X-,)} and
F(X-1) are known, and therefore, a linear algebraic system has to be solved for Xj.
This is done by an IMSL (Mathematical and Statistical Library) Library subroutine,

that performs LU decomposition of the above matrix and includes partial pivoting.
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Fig. 7. A schematic of the computational domain and the asymptotic domain

in the equatorial plane.

49




APPENDIX 4: BENCH MARK TESTS

The system of equations (15), (17), (18), (20) and (26) possesses certain self-
similar solutions. In this Appendix, these solutions are derived and used as bench-
marks for the numerical code described in Appendix 3.

We first examine the mass conservation law. The z and y components of the
velocity, and the plasma density are assumed to have the following varia.tipn with z
and y:

vzo = 2™ f(n), vy = 2P9(n), po=2r(n), n= :—,, (92)

Here, f, g, and r are functions of the independent variable 5 only, and m, p, ¢ and
n are exponents to be determined in such a way that all powers of z are canéelled in
the system of equations mentioned above. A solution derived in this manner has the
following property: one may obtain the solution at every z location from the solution
at any other r location by (a) multiplying by z raised to the appropriate power and
(b) rescaling f.he y axis so that the ratio y/z™ matches the similarity variable, . By

substituting (92) into the mass conservation law, equation (15), we get

(m +q)fr —nn(fr)' +(gr)' =0 (93)

The differentiation, denoted by the prime, is with respect to the only remaining
independent variable, namely, . The requirement that the powers of z cancel results

in the following condition for the exponents:
m-—-1l=p-n (94)

To derive an ordinary differential equation from the z-momentum equation,

we assume that the total pressure in the equatorial plane, Py (z), has the following
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variation:
Po(z) = 2™4C, (95)

where C, is a constant, independent of both z and . From the y-momentum equation,

(17), it then follows that
po = 2*™*x(n), Bio = z™"(n) (96)
and the y-momentum équation takes the form

b
T+-2—“—(;'—Cp (97)

Furthermore, we assume that the conductivity, o, the current, j, and the viscosity,

no have the following variation:

o =zPL(n), j, =2'J(n), 1o =2z"M(n) (98)

With the above assumptions, the z-momentum equation, (26), becomes

mrf? —ngrff' +rgf = —(2m + q)C, — TH f

+ (zo,, fooboo + Joo + ‘—‘l;(m + %)b.,o) b+ M'f + Mf" (99)

The requirements on the exponents are:

2m+q—-1=3m+q+f=s+m+q/2=a—-2n4+m (100)

from which we get

B=-1-m, s=m+%—1, a=m+2n4q—1 (101)
Similarly, the isentropic law, equation (18), becomes

(2m+q—7q)f§.;—nnf (;—:—)’+g(”)l=0 (102)

r

51




and the induction law, equation (20), becomes

' '
m-Ds%-ms (2) +9(2) =0 (10)
No further restrictions on the exponents are imposed by the latter two equations.

The system (93), (97), (99), (102), and (103) consists of five ordinary differential
equations for f, g, r, * and b, with respect to the only independent variable, n; it can
be integrated subject to five boundary conditions (one equation is of second order
and one is algebraic). It contains seven exponents, namely, m, n, p, ¢, 8, s and a,
which are constrained by the four conditions (94) and (101), so that three exponents
can be specified.

If the total pressure in the magnetosphere is a function of z, the z variation of
po, po and B,y is given by (92) and (96). The solution that was used for benchmarking
of the numerical code in the computational box is of this form. The exponents were
chosen as follows: n was chosen to be zero, which represents a “constant thickness”
boundary layer; in this case # = y and no scaling in the y direction is needed in order
to relate the solutions at different z locations; m was chosen equal to 1, and q was
chosen equal to 2 so that the magnetopause boundary is a stream line with g(0) = 0.
Withn = 0, m = 1, and ¢ = 2 it follows from (94) and (101) that p = 0, 8 = -2,
s =1, and a = 2. One can see that with those parameters, equations (97), (102), and
(103) require solutions for 7, r, and b that are independent of 5. The five variables

then take the form
Vo = zf(y)y Vo = g(y)’ Po = zzc‘l‘, Do = z‘Cr Bzo = z’C;, (104)

Notice from (98) that the conductivity, the current flowing into the magnetosphere,
and the viscosity are functions of z. The viscosity function, M, was chosen to be in-

dependent of y. The resulting system of equations was solved subject to the following
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boundary conditions: f(0) = —180 km/sec, f(oo) =0, ¢g(0) = 0, By(0,y) = 44 nT,
and po(0,y) = 0.62 nPa.

The solution was obtained by integrating (93) and (99); an IMSL (Mathematical
and Statistical Library) Ordinary Differential Equation solver routine was used for
that purpose. This solution was then used as the initial step in the code described in
Appendix 3, at z = —10 Rg. Boundary conditions and other parameters were chosen
according to the requirements for the self-similar solution described above. Figure
8 shows the profiles, obtained by the numerical code, of vz, vy, B, Po, and pq,
versus y in the computational box, at two different x locations, namely, after 3 Rg
and after 6 Rg from the beginning of the calculation. At each location, the profile
from the independent integration of the ODE'’s, scaled to the appropriate = location
is superimposed. The difference between the two solutions is of the order of one part
in 104 and is indistinguishable in the plots.

It should be noted that this case is not a complete benchmark of the code because

po, po and B,y were chosen to be functions of z only: those variables are constant
with y. However, it can be argued that this is not a major restriction because (a)
the pressure balance in the y direction, which is explicitly incorporated in the code,
is accurately satisfied at every step in the —z direction, and (b) the validity of the
finite difference form for the convective terms in the induction law (the isentropic law
is expressed similarly), when B,q is non-constant with y, has been verified separately.

It is emphasized that in this benchmark test, an explicit boundary condition
on the value of v at the magnetospheric boundary was used in the numerical code,
instead of the mixed boundary condition derived by matching the solution at the
computational box with an asymptotic solution that extends into the magnetosphere.

This serves the purpose of verifying the finite difference representation of the equations
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described in Appendix 3. It was found that, when a computational solution is matched
to an asymptotic solution at y = y», the overall accuracy of the code is somehow
influenced by the choice of the boundary condition applied at y = y,. The method
we chose was to require a solution that would guarantee continuous first and second
derivatives of the velocity component v at y = y, (in addition to continuity of vz
itself), so that the first derivative of the current at the top of the boundary layer
is also continuous, as explained in Appendix 1. The boundary condition that was
implemented is given by equation (33) and the solution in the asymptotic box is
given by (29), where a(z) has been slightly adjusted from the value given by (30)
to allow for a continuous second derivative of v.. For the benchmark test of the
entire code, including the asymptotic box, a self-similar solution with constant total
pressure along the equatorial LLBL was chosen, as described below.

If the total pressure in the magnetosphere, P,,, is assumed to be independent
of z, then the density, the plasma pressure, and the z component of the magnetic
field should also be independent of both = and y in order to satisfy equations (17),
(18), and (20). The mass conservation law, which is then of the form V-v = 0, i.e.,

it represents an incompressible solution, becomes

mf—-nnf'+¢' =0 (105)
and the z-momentum equation becomes

Co(mf? —nnff' +gf') = =BC{f + (B fooCb + Joo)Cs + M'f' + M f" (106)

Here, C, and C, denote the constant values of pp and B,o. The relation (94) for the

exponents is still valid and the relation (100) becomes

2m—-1=m+pf=3s=a—-2n+m (107)
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The solution of (105) and (106) that was used for benchmarking has an asymp-
totic behavior as y — oo such that jo = 0, vzeo = 0. Also, the values m=1, n=0
were used. Under those assumptions the solution to (105) and (106) can be found

analytically; it is given by
- A _
f=Aec, g=Z(ev-1) (108)

where A is given by the boundary condition on f at y = 0 and c satisfies the relation

G M,

A=EG+5c (109)

Figure 9 shows the profiles of v, and v, versus y, at a distance of 10 Rg downstream
from the beginning of the calculation. The computational box ends at the location
where v = -3 km/s. As in Figure 8, two profiles have been superimposed, one
from the numerical code and the other from the independent ODE calculation. The

difference between the two results is of the order of one part in 102.

4.1 Self-Similar Solutions of the Extended Model

The extended model described in Appendix 2, that includes field-aligned po-
tential drops in the coupling region, possesses self-similar solutions as well.
In the following, v.0, vy, B:o, po, Po, and 1o are assumed to have the functional

behavior described earlier in this Appendix. Furthermore,

. d:z:.- x
B’-'l = zed(n)’ ]“.‘ = xc‘]"(q)’ Bi = xbx Bl'('))v E =T ’d-'t(’?),

Ty = z°5(n), Ho=z"H,(n), By =z'by(n), va =z"2(n) (110)
With the above assumptions the z-momentum equation, (16), becomes

1
mrf? —nnrff' +rgf' = —(2m + q)C, + m—bd+ M'f'+Mf" (111)
0
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where the requirements on the exponents are

2m+q-—1=m+%+e=m--2n+a (112)

The y-momentum equation remains as in (97), and the isentropic law remains as in

(102). The requirements on the exponents from this law are again

m-—l=p—n | (113)
The induction law, equation (19), becomes

(2m + )b — nn(bf)’ + (bg)' = 0 (114)

while equation (67) becomes

B; 2 1 B.‘ B; 71
n=2(Fdz) (Lo + (o) + Jdz (234z) (L9 + 1) (115)
The requirements on the exponents are
o+20h +22;=2m+2n+q, c=2m+n+gq/2 (116)

The current continuity, equation (63), becomes

_Jub

;olﬁ(dﬂ,,)' =5, (117)
along with with the requirement

h—n+e=c—-b+m+gq/2 (118)
The mass conservation law, equation (47), gives

(q+ h +m)rHyf — (ng — 1)(rHyf)' = 0 (119)
and the z-momentum equation, (50), becomes

(oo — ) = (d102) (120)
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along with the requirement
e+h=m+q/2 (121)

Equation (46) becomes

~ f(hH, — nnH;) - g} + 22 = 0 (122)

along with the requirement

m—-—l=p—-n=uv. (123)
Finally, the magnetic flux conservation law, equation (52), becomes

ed —nypd’' + b, = 0 (124)
along with the requirement

t—-n=e-1. (125)
The algebraic system (112), (113), (116), (118), (121), (123), and (125) gives
e=m+gq/2-1

e=m+2n+q-—1

p=m+n-1

c=2m+n+gq/2

b =2m+2n+q/2

h=1




t=2m+q/2-2 (126)

The above nine relations constrain the thirteen parameters that are present in the
system of ordinary differential equations derived in this section. Four of those pa-
rz=meters are free, and one, namely b, is required to have a fixed value. Note that this
results in a somewhat unphysical variation with z of the height Ho; nevertheless, the

solution can be used for the purpose of benchmarking.

4.2 Other Benchmarks

As already mentioned in Appendix 1, the system has been benchmarked against the
one-dimensional solution ( which is independent of z) derived by Sonnerup [1980],
under the appropriate assumptions. First, the solution, which is given by equation
(42), was used as an upstream velocity profile: it was found to remain unchanged,
for as long a distance downstream as desired. Second, a different initial profile was
imposed and it was found that, with increasing |z|, the system eventually relaxed to

Sonnerup’s solution, with v, = 0, as required.
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Fig. 8. Self-similar benchmark solution: plotted are profiles of v.q, v, (top two
panels), po, Bxo (middle two panels), and py (bottom panel), versus y, after a flow
distance of 3 Rg and 6 Rg from the upstream location. Each profile is calculated from
the numerical code and from an ODE solver independently, and the two solutions are

superimposed.
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Fig. 9. Incompressible self-similar solution. The two panels show the profiles
of v;0 and vy, respectively, versus y, at flow distance of 10 Rg from the beginning of
the calculation; B,o, po, and po are constant. The solutions given by the numerical
code and by independent integration of the ODE are superimposed. The computa-
tional box ends at 0.3 Rg, and an asymptotic solution is pasted to the computational

solution at that location.
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Force-Free Boundary Layer Model for Mapping
Field-Aligned Currents

K. Vatan!, W. Lotko, and B. U. O, Sonnerup
Thayer School of Engineering, Dartmouth College, Hanover, NH

ABSTRACT

A mathematical model for a force-free boundary layer (FFBL) has been
developed to calculate the deflection of the earth’s magnetic field due to fuasi-steady
field-aligned currents. The model may be used to determine the magnetic field struc-
ture and mapping between the equatorial magnetosphere and the ionosphere. The
geometrical volume of interest extends between two magnetic flux surfaces, with a low
altitude boundary representing the ionosphere and a high altitude boundary represent-
ing the interface with a model for field-aligned current generation. The mathematical
formulation is general and may be implemented numerically for any magnetic
geometry for which locally orthogonal coordinates can be defined. A numerical imple-
mentation of the model and its application to dayside region 1 currents are described.
The illustrative application in dipole magnetic geometry suggests that typically
observed dayside region 1 currents produce a maximum (upper limit) azimuthal
deflection of dipole field lines of about 26°.

I Now at Hewlett-Packard Company, Workstation Division, Chelmsford, Mas-
sachusetts.

61




1. INTRODUCTION

The description of magnetic field-aligned currents (FAC) presents a difficult problem to
the magnetospheric modeler because the closure paths of the currents are determined funda-
mentally by the local plasma and fluid behavior. In the framework of one-fluid magnetohydro-
dynamics (MHD), FAC closure can be effected by plasma polarization (finite inertia), plasma
diamagnetism (finite thermal energy), and plasma electrical conductivity (finite collision time).
The last effect dominates in the ionosphere while the first two are important in the equatorial
magnetosphere. In the intermediate altitude region, between the ionosphere and the equatorial
magnetosphere, the transverse elements of the plasma conductivity tensor, the ratio of plasma
pressure t0 magnetic pressure, and the Alfvén Mach number are all small. Therefore, the
electrical currents that flow in the intermediate altitude region are force-free to a good approx-
imation and remain field-aligned until reaching the ionosphere or the equatorial magnetos-
pheric region where they are diverted into perpendicular currents.

The purpose of this paper is to describe a new technique for calculating quasi-steady
field-aligned currents in the intermediate altitude region, and the magnetic deflections pro-
duced by them, when the currents flow in a relatively thin, but finite thickness, layer. Stern
[1993] has recently described a technique for calculating the perturbing effects of field-aligned
currents on the magnetic field in regions outside the field-aligned current layer, i.e., in regions
where the field-aligned current is zero. The magnetic field is evaluated by Stern assuming that
the FAC flows along the unperturbed magnetic field lines in a zero thickness (8-function)
sheet or shell. When the current layer has a finite thickness, the FAC must flow along mag-
netic field lines that are determined by solving for the FAC path and the magnetic field lines
simultaneously. Therefore, the model described in this paper effectively resolves the 8-
function sheet currents assumed by Stern. Because the currents are assumed to be entirely
field-aligned in the thin layer of interest here, we refer to the model as a force-free boundary
layer (FFBL).

The utility of the FFBL model described here is twofold. It can be used to map FACs
outward from the ionosphere where statistical synoptic data on their spatial distributions are
available. The model may also be used, in modular form, to connect a high altitude magnetos-
pheric dynamo region to its ionospheric load. For example, we envision (though have not yet
accomplished) connecting the FFBL model with the low-latitude boundary layer model
developed recently by Drakou et al. [1994]. Other applications for connection to nightside or
cusp region dynamos are also possible.

In this brief report, the basic assumptions and mathematical formulation of the FFBL
model are described, along with a particular numerical implementation. Use of the basic tech-
nique is illustrated by mapping the dayside region 1 currents [lijima and Potemra, 1976] out-
ward from the ionosphere in an (oversimplified) approximation where the magnetic field out-
side the FFBL remains dipolar.

For reference, the field outside the FFBL is identified in this paper as the exterior field.
The exterior field occupies regions that are both closer to and further from earth than the
FFBL. We assume throughout the paper that a locally orthogonal, ‘magnetic’ coordinate sys-
tem exists, in which one of the coordinates lies along the exterior magnetic field, a second is
normal to the FFBL surface (also a magnetic flux surface), and the third completes the orthog-
onal set. In fact, one can always identify a system of locally orthogonal unit vectors at any
point on a magnetic flux surface (e.g., the Frenet-Serret set or the LMN set often used in
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magnetopause studies) for the purposes of resolving field vectors into locally orthogonal com-
ponents and performing vector algebra on them. However, representation of vector differential
operators requires specification of the transformation equations that relate appropriate mag-
netic flux coordinates to Cartesian coordinates and which determine the metric tensor for the
transformation. Transformations that remain locally orthogonal in the magnetic flux coordi-
nates are known to exist for plane fields and axisymmetric fields, of which the dipole field is
a familiar example, but locally orthogonal transformations can be difficult, if not impossible,
to find for realistic magnetic field configurations. As a consequence, we are currently in the
process of generalizing the FFBL formulation described here and expect in a future paper to
report on a FFBL model based on non-axisymmetric, non-orthogonal magnetic flux coordi-
nates. :

2. MODEL

2.1 Force-Free Condition

In the region of interest, the ratio of plasma pressure to magnetic pressure, is assumed to
be much smaller than one, as is the ratio of plasma kinetic energy density to magnetic pres-
sure. Therefore the Lorentz force term dominates the pressure gradient and inertial terms in
the MHD equation of motion. The momentum equation then reduces to the so-called force-
free condition [e.g., Priest, 1982] in terms of the plasma current density j and the magnetic
field B:

JxB=0. (N
From the steady-state Ampere’s law,
Mol = VXB 2

where p, is the permeability of free-space. The force-free condition can be alternatively
expressed as

Hoj = 0B 3
where o(r) is a scalar function of the spatial coordinates. Combining (2) and (3) gives
VxB = aB. 4)

The divergence of (4), together with V-B =0, shows that a(r) is constant along magnetic
field lines:

B-Va =0. (5)

2.2 Geometrical Domain

After implementing the approximations described in Section 2.3 below, a solution to (4)
and (5) will be developed in a general curvilinear coordinate system with the proviso that the
coordinates be locally orthogonal. The curvilinear coordinates are as follows: x; is the gen-
eralized ‘azimuthal’ coordinate; x, is the flux surface label and decreases in value when going
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from inner flus surfaces to outer flus surfaces; x3 varies along the exterior magnetic field. The
unit vectors f,, &; and &; form a mutually orthogonal set. As mentioned above, the term
‘exterior’ is used to indicate the magnetic field outside and at the edge of the FFBL where the
FAC is zero. In general, the exterior field is also influenced by the force-free current; these
effects can be modeled in the region outside the force-free boundary magnetic by calculating
the magnetic field perturbations produced by a zero thickness, force-free current sheet (or
shell), i.e., a d-function current sheet. This current sheet can then be resolved into a finite
width, force-free current layer using the procedures described below. The geometrical region
of interest is therefore a thin, but finite thickness layer where the force-free current is nonzero.

This geometrical volume is illustrated in Figure 1. It extends between two magnetic flux
surfaces (to which the exterior field is everywhere tangential), with a low altitude boundary
representing the ionosphere and a high altitude boundary representing the interface with a
model for field-aligned current diversion or generation in the magnetosphere. The inner and
outer magnetic shells correspond, respectively, to the maximum and minimum values of the
coordinate x,. For applications of the model to portions of the dayside magnetospheric boun-
dary layer region on closed field lines, the outer magnetic shell might be taken as the magne-
topause surface and its projection along field lines from the equatorial plane to the ionosphere.
Although the numerical calculations described later in this paper are based on dipole magnetic
geometry, the mathematical formulation is general and may be implemented numerically for
any magnetic geometry for which locally orthogonal coordinates can be defined.

2.3 Boundary Layer Approximation

The method of solution to (4) and (5) makes use of a narrow-channel or boundary-layer
approximation for which spatial changes across the thin layer in the x, direction occur on a
scale length d that is much less than the scale length L for changes in the x, direction or the
scale length H in the x; direction. The x; and x; coordinates vary on surfaces that are
tangential to the thin layer. The boundary layer approximation implies that

3/ax|~l/L, 3/312"'1/8, 8/313"1/” (6)

where 8 « L ~ H. Assigning a characteristic value B, for the field components B, and B,
in the &, and &, directions, the solenoidal condition V-B = 0 implies the following scaling
relations:

B|~B3"Bo; Bz"%Bo(Bo. (7)

B, is the component of B in the x, direction.

Expressing the curl in Ampere’s law in a locally orthogonal coordinate system with
metric scale factors, h; = |dr/dx;|, provides the following three equations:

ji=—1 [3(h3B3) _ 9(h3B)) . ®
' ooy | ox, ory |

.1 d(h\B,) 9(h3B3) ©)

727 Uhihy | Ox;3 ox, |

. -a(thz) d(h\B,) .

J3= ',l.ohlhz i axl - aX2 ) (10)
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Using the boundary layer scaling relations defined by (6) and (7), and neglecting terms
of O(8%/L?) in Ampere’s law, equations (8) and (10) become:

: 1 d(hiB3y)
= , 11
/1 Mohah;  Ox, ab
1 o(h,B)
ja = . 12
/3 Hohih,  Ox, (12)

Comparison of the second equation (9) of Ampere’s law with first (8) and third (10) equations
shows that

B2 12 8 13)
J1 j3 L

The current flow normal to the boundary layer is therefore small.
Combining (11) and (12), and using the force-free condition, pyj = 0B, yields the fol-
lowing equation for B:

h, dh
13 [ 1 (383)}+B3=0. (14

hlhza axz h2h3a 3x2

An analogous equation can be derived for B;. We now further assume the layer is
sufficiently thin so that the metric scale factors h; and h; are very nearly constant on the
scale size for variations in B across the layer: |d,Inh | 3] « |9;InB, ;]. With this approxima-

tion (14) becomes
1 9 | 1 9B
ahz aX2 [wlz 3x2 ] B3 =0 (15)

2.4 Boundary Layer Solution

To solve (15) a new variable, dt = ah,dx,, is defined. Equation (15) then becomes
92B+4(1)+B5(1) = 0, (16)

and B, is determined from its solution as

B = 2, an

The general solution, with explicit dependence on x, x5, and x retained, is
B, = B (x|, x3)cos[y(x |, x3)+T(x,x2,X3)] (18)
B4 = B _(x,x3)sin[y(x,x3)+T(x,x5,x3)] (19)

where
B (xy,x3) = \lB,z(x,,xz...x3)+832(x,'x2,,,x3) (20)
W(x |, x3) = arctan[B 3(x |, X 900, X 3)/B 1 (X |, X 3005 X 3)] (21)
X2e

X | X X3) = I a(x, x4, x3)ho(x 1, x5, x3)dxy’ (22)

X2
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The constants of integration, B, and v, are determined by boundary conditions on B, and B,
on a reference flux surface identified as x5 = x,,.,. The x," dependence in the metric scale fac-
tor h, appearing inside the integral in (22) has been formally retained, although no accuracy
is actually gained by including this dependence. The approximation used in going from equa-
tion (14) to (15), in fact, allows one to treat h, as constant across the layer so that it is
equally correct to set h,(x),x;’,x3) = hy(X|, X9, X3) in (22) and to take h, outside the
integral.

B, is obtained by substituting B, and B3 from (18)-(22) in V-B = 0. After integration
with respect to x,, and using B,(x |, x5..,x3) = 0, which must be true if x, = x,,, is a flux sur-
face, we find

B _ l x}- a(h2h3B|)+3(h,th3)
27 hyhy ox | x4

X2

dxy’ (23)

Note that the metric scale factors may vary as rapidly (or slowly) as B in the &, and &,
directions, so they may not be passed through the derivatives in the integrand in (23). It is
also noted that A, 5 5 are in general functions of x,, x,, and x3. However, as discussed above,
we gain no accuracy in retaining the x, dependence in the scale factors; they may be
evaluated at x,” = x,,, and treated as constants in performing the integration over x,’. The
distribution of o(x,,x,,x3) throughout the spatial region of interest is not known a priori
except on some bounding surface, say x; = x{® where x{? is a constant value of the coordi-
nate x3. The volume distribution of o can be determined self-consistently along with the
magnetic field by simultaneously solving (5) and (18)-(23).

2.5 Boundary Conditions

The formulation of the force-free boundary layer model given above is general and may
be used when (i) the region of interest can be characterized by the force-free condition (1) and
(ii) the field-aligned current into the region flows in a thin layer so that the boundary layer
approximations (6) and (7) are appropriate. Given these constraints, a unique solution to the
set of equations (5) and (18)-(23) requires two boundary conditions:

(A) specification of the magnetic field B(x,x,.,x3) on a reference magnetic flux surface

X2 = X200 and
(B) specification of 0(x,x2,x{”) = lyj/B on a bounding surface, x4 = x{?, normal to the

magnetic field (a ‘magnetic normal surface’).

Technically, a unique solution also requires specifying the partial derivative d(h h,B3)/dx; in
(23) on the bounding surface x4 = x{?. We have found in practice, however, that the value of
this derivative on the bounding surface has little influence on the accuracy of the boundary
layer solution (cf. discussion in Sec. 2.6).

For applications to the magnetosphere, we will take the reference magnetic flux surface
to be located at the inner edge of the force-free boundary layer. In dipole coordinates, this
surface would correspond to the innermost L-shell of the FFBL. While the magnetic field
earthward of the reference flux surface is presumed to be known, this internal field, in general,
depends on the currents that flow in the FFBL. Because the FFBL is a thin layer, its
influence on the internal field could be calculated, approximately, in the limit where the FFBL
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is represented as a zero thickness (8-function) shell. An intemal field model, including the
perturbing magnetic field due field-aligned currents, approximated as 3-function current sheets,
has been discussed by Stern [1993). The internal ficld, calculated in this way, then provides
boundary condition (A) stated above; the &-function, field-aligned current shell can be
resolved using the FFBL formulation. If better accuracy is desired, an iterative process must
be used. In the illustrative application described in Sec. 4, we do not attempt to construct a
fully self-consistent magnetic ficld model. Instead the basic procedure for obtaining FFBL
solutions is illustrated using the familiar dipole field mode! to specify boundary condition (A)
and to represent the locally orthogonal curvilinear coordinate system required in the formula-
tion. .

Specification of boundary condition (B) requires either a model for the generation of the
field-aligned currents or synoptic observations of the perturbed and background magnetic field
on a magnetic ‘normal’ surface, on which j, B, and therefore o can be inferred. Synoptic
observations of the currents are available only at low altitudes, essentially within the iono-
sphere. For the latter case, the FFBL model, coupled with an appropriate internal magnetic
field model, can be used to follow the observed low altitude currents to their points of origin
in the outer magnetosphere. Alternatively, coupling the FFBL model to a model for current
generation, for example, the low-latitude boundary layer and region 1 current generation
model developed by Drakou et al. [1994], would provide a means of locating the ionospheric
signatures of the magnetospheric current generator.

2.6 Numerical Aigorithm

The numerical algorithm used in our calculations assumes that the mapping between
locally orthogonal curvilinear coordinates (x;,x,,x3) and a geometrical coordinate system, for
example, Cartesian (x,y,z) or spherical polar (r,0,¢) coordinates, is known. In addition, the
metric scale factors 4, h,, k4 for the curvilinear systemn are assumed to be known. The boun-
dary conditions stated above must also be supplied. Although the surfaces on which the
boundary conditions apply may be quite complicated in the physical/geometrical domain,
these surfaces are simple planes in the rectangular computational domain spanned by the three
curvilinear coordinates. The algorithm solves for o(x,x,,x3) and B(x,,x5,x3) throughout the
three-dimensional FFBL on successive computational planes, x; = xj"), where k =0,1,2,....
Special measures must be taken to start the algorithm on the first plane.

On the first plane, where o(x,x,,x{?) is known from boundary condition (B), we use
(18)-(22) to calculate B, and B; at grid points (x{"),x{/)) where (i,j) are integers
corresponding to grid locations for coordinates x, and x,, respectively. To calculate B, we
need to evaluate the partial derivatives and integral in (23). Initially, however, we have no
information on the variation of B in the x; direction, which is required to perform the deriva-
tive d(h,h,B3)/0xy. To start the algorithm, we simply set B, =0 on the starting plane.
Because B3 > B, in the boundary layer approximation, the particular choice for B, on the
first plane does not significantly influence the magnetic field mapping; we have found from
experience with other starting procedures that the accuracy of the resulting magnetic field
mapping differs from the one used here by terms of the order of those neglected in the boun-
dary layer approximation.
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Our particular numerical method for the rest of the domain proceeds as follows:

e Using (22), the metric scale factor h,, and the trapezoidal rule of integration,
Tx ), X2, x§*)) is calculated at every grid point on the current x4 plane, i.e. the x4 = x{*
plane. Using (18)-(22), B, and B, are then calculated at these grid points.

e To calculatc the B, component, we first calculate d(h,h3B,)/dx, using central
differencing and d(h;h,B4)/dxy using forward differencing. Then using the trapezoidal
rule, we integrate (23) to obtain B at grid points on the x{*) plane.

e  The next plane, the x5 = x{*" plane, is chosen so that the linear projection along B
from any node in the x{*) plane to a point in the x{* *! plane stays within a small pre-
specified distance € of the node in the current x{*) plane.

e  Using the property of force-free field lines, i.c. @ is constant along the field lines, we can
now determine values of a at non-grid locations in the x5 = x{**! plane by following
the linearly projected field lines from nodes in the x; = x4(k) plane. We now interpolate
these now nonuniformly spaced values of & onto (x{"),x§) grid points in the x{*+!
plane. To do this, a is first interpolated onto an x, line using a simple 2 point interpola-
tion. Then a cubic spline interpolation scheme is used to interpolate o onto the grid
points.

e  Having calculated o on all grid points, the procedure is repeated until the final x, surface
of interest is reached.

2.7 Numerical Accuracy

The accuracy of the numerical model was tested using a benchmark based on a simple
analytical model of polar line currents feeding an axisymmetric, 8-function current sheet lying
on a magnetic dipole L-shell {Vatan, 1993]. Because the polar line currents are chosen to
flow into the south pole and out of the north pole, it can be shown that the intemnal dipole
field remains exactly dipolar so that an exact analytic solution can be derived for the purpose
of verifying the numerical algorithm. The quantity that was compared is the deflection angle,
i.e., the azimuthal deviation from ‘orange segment’ mapping between two surfaces that are
locally normal to the magnetic field. The accuracy of the above numerical procedures was
found to depend on the following factors:

®  Boundary layer thickness. Since the model is based on a boundary layer approximation,
the metric scale factors should not vary significantly across the layer. From the bench-
mark results, it was determined that the variation in dipole scale factors across a 2 Rg
layer (referenced to the equatorial plane), and straddling L = 10, could be as large as
30 % with a corresponding variation in the deflection angle of 9% or less.

e  Linear projection of magnetic vectors. The maximum (linearly) projected distance
between adjacent magnetic normal grid surfaces is controlled t preselected tolerance
factor € Arbitrarily small errors can be achieved by decre the tolerance factor
which decreases this distance. Continuous field line tracing wouuld be realized in the
limit where the tolerance factor approaches zero.

e  Discretization. The error in the deflection angle is very sensitive to changes in the grid
size in the x; direction (distance between magnetic normal surfaces), which, in tum, is
controlled by the above mentioned tolerance factor €. The grid size in the x, and x,
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directions ideally should be much smaller that the gradient scale lengths of the initial
o(r) distribution.

o  Differencing and integration schemes. The particular choice of differencing and integra-
tion schemes for solving the force-free boundary layer equations seems to have a
minimal effect on the accuracy of the calculated deflection angle. For example, for the a
distributions considered in the benchmark study, there was very little change in the
results when the accuracy of the integration scheme was improved.

3. APPLICATION TO DAYSIDE REGION 1 CURRENTS

Application of the numerical algorithm described in the previous section is illustrated by
considering a simple model for dayside field-aligned currents observed at low altitudes. These
currents will be mapped outward to the magnetospheric equatorial plane under the assumption
that the currents remain approximately force-free over a substantial length along the magnetic
field. For the purpose of illustration and simplicity, a dipole model is used to specify boun-
dary condition (A) in Sec. 2.5, and to represent a locally orthogonal coordinate system based
on the magnetic geometry. The familiar dipole coordinates are specified in terms of the
spherical polar coordinates (r,0,¢): x, = ¢, the ordinary azimuth angle in the x-y plane;
x, =V =sin%@/r, which is constant along a dipole field iine and increases when going to
lower L-shells (note that the L-shell is defined as L =r,, /Rg where r,, is the radial distance
to the point where the field line crosses the dipole equatonal plane); and xy=H=cosd/r?
which varies along a dipole field line and is constant along a magnetic potential orthogonal to
a dipole field line. The metric scale factors for dipole geometry are

2 M
=l - = rsi = = =
h, = ind (1+3cos?0) hg = rsin@ hy=hyhy = B

M is the earth’s magnetic dipole moment, .uni B is the field strength.

According to lijima and Potemra [1976), large-scale field-aligned currents are a statisti-
cally permanent feature of the high latitude ionosphere. These currents are concentrated in two
adjacent annuli surrounding the geomagnetic pole. The higher latitude annulus is referred to as
the region | current system; the lower latitude annulus is called the region 2 current system.
The region 1 currents flow into the ionosphere in the morning sector and away from the iono-
sphere in the evening sector; the region 2 currents flow in the opposite direction at any given
local time. The areas near local noon and midnight are not so simply classified and may be
strongly time-dependent. We consider here the dayside region 1 current system at magnetic
local times (MLT) between dawn and dusk, excluding the region from 1100-1300 MLT. Fig.
2 shows the MLT distribution of currents reported by lijimi and Potemra [1978). The upper
panel shows the statistical distribution during relatively active periods of geomagnetic activity;
the lower panel is for quieter periods.

The statistical local time dependence (i.e. the ¢ dependence) in the postnoon sector in
Fig. 2 ahs been fitted to a simple polynomial function. The polynomial fit for both strongly
and weakly disturbed periods, as well as selected data points from Fig. 2, are shown in Fig.
3. The corresponding curves for the prenoon sector shown in Fig. 3 are mirror reflections of
those in the postnoon sector. (We do not mean to imply that the data in Fig. 2 are also mirror
symmetric about noon!) The figure includes fitted points between 1100-1300 MLT, but these
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currents near noon are not actually considered in the calculations described below. The
region | field-aligned currents flow in opposite directions on either side of noon (as indicated
in Fig. 2) whereas Fig. 3 plots only the magnitude of the current.

For the variation in field-aligned current in the ¢ direction, we model typical current
profiles (actually magnetic deflections), examples of which can be found in the paper by
lijima and Potemra [1976) and in many other papers describing low altitude magnetic field
data. Because satellite trajectories are rarely, if ever, exactly parallel to the ¢ direction, we do
not actually have precise information on the v variation of the currents at low altitudes. As a
consequence, we use the data only as a guide to generate a current profile in v that captures
the basic features of the variation. The current variation in v was modeled by one-half period
of a sine function that is zero at both edges of the region 1 current annulus and maximum
midway though it. The width in v of the annulus is chosen to correspond to 1° in dipole mag-
netic latitude.

The product of the current profiles in v and ¢ defines our model for the field-aligned
current at the ionosphere. The function (¢, v) on the ionospheric ‘surface’ (taken to be, with
a small error, a constant pu surface near 1 R geocentric) is constructed by multiplying the
field-aligned current model by y, (permeability of free space) and dividing the product by the
dipole magnetic intensity at the earth’s surface at the appropriate magnetic latitude. This
function is given to the algorithm described in Sec. 2 as input at the ionosphere, and the map-
ping of selected points on the ionospheric ‘surface’ to the magnetospheric equatorial plane due
to this current is calculated. Note that we are not physically connecting the FFBL to its mag-
netospheric dynamo. The magnetic deflection inferred from the force-free mapping of the
currents all the way to the magnetospheric equator should therefore be regarded only as an
upper limit.

Magnetic field maps at the equatorial plane for weakly disturbed periods and strongly
disturbed periods are shown in Fig. 4 and 5, respectively. The layer thickness is chosen to be
1° in dipole magnetic latitude, and the inner shell has been placed at the magnetic L-shell,
L = 10, which locates the outer shell at L=11.14. These maps are displayed in a format simi-
lar to that use by Fairfield [1991] and are constructed by identifying at the ionosphere (actu-
ally at the earth’s surface) ten different meridians of MLT from 0700-1100 and 1300-1700 in
one hour steps. (Only five of the mapped meridians in Fig. 4 and 5 are distinct due to the
assumed symmetry about 1200 MLT.) Force-free field lines intersecting each selected MLT
meridian at 1 Rz are followed outward until they intersect the dipole equatorial plane. In this
way, the set of points defining a MLT meridian at the earth’s surface is mapped along field
lines to the equatorial plane. The figures show the ten mapped MLT meridians between
L =10 and L = 11.14. Had the field remained purely dipolar in the FFBL, the mapped meri-
dians would appear as segments of radial spokes, rather than curved lines, emanating from the
origin at the indicated MLTs. Note that a nonlinear scale has been used to magnify the FFBL
region between 10 < L < 11.14.

In the moming sector, the force-free current is positive and into the ionosphere, and
therefore, the deflection of the field is toward dawn; in the evening sector, the current is nega-
tive and away from the ionosphere, and the deflection is toward dusk. For a specific example,
consider in Fig. 4 the curve labeled 0700 in the equatorial plane, which has been mapped
through the layer from 1 Ry altitude. The mapped meridian in the equatorial plane lies further
away from local noon than an 0700 MLT radial spoke would lie, at all mapped points, except
on the inner L-shell where boundary condition (A) of Sec. 2.5 requires exact dipole mapping.
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4. CONCLUSIONS

Given a distribution of the ratio of the ficld-aligned current to magnetic field on a surface
whose normal is locally parallel B (a magnetic normal surface), the force-free boundary layer
model and algorithm described here may be used to calculate magnetic field deformations due
to force-free currents that flow in thin boundary layer regions. The model may also be used
to determine the magnetic field mapping between magnetic normal surfaces in such regions.
This model is general and can be applied in any locally orthogonal coordinate system, defined
in terms of the exterior magnetic field (exterior means in the region where the force-free
currents are zero, i.e., outside the FFBL).

An illustrative application of the model in dipole geometry to the statistical distribution
of region 1 field-aligned currents suggests that the average dayside region 1 currents observed
during geomagnetically active periods produce a maximum azimuthal deflection of the mag-
netic field of 26° when a magnetic field line is followed from the ionosphere to its equatorial
crossing point. The corresponding deflection during weakly disturbed periods is about 21°.
The maximum deflections occur on field lines where the field-aligned current density observed
at low altitudes maximizes. These estimates of the deflection angle should be regarded only
as upper limits, however, because the field-aligned current is not actually force-free along the
entire length of the field line from the ionosphere to equatorial plane. To put these estimates
in perspective, the T87 geomagnetic field model [Tsyganenko, 1987] exhibits a deflection
angle of about 10° for a field line that passes through 1000 MLT and 75° invariant latitude in
the ionosphere [Fairfield, 1991). Although the T87 model does include some effects of field-
aligned currents, these effects are introduced through an empirical polynomial fitting function
in the model, so it is not known how much of the deflection is actually due to dayside region
1 currents or other magnetic deformations caused, for example, by the Chapman-Ferraro
currents.

In considering future applications of this model, two improvements are suggested:

o Finding coordinate transformations that generate locally orthogonal, magnetic flux coor-
dinates based on the exterior magnetic geometry may not be practical for realistic mag-
netospheric magnetic fields; the transformations may not even exist in general, especially
for nonaxisymmetric magnetic fields. Formulation of the FFBL model in terms of
nonorthogonal magnetic flux coordinates would allow grafting a FFBL model for field-
aligned currents onto more realistic magnetic field models such as the semiempirical T87
model, semianalytical models [Voigt, 1981; Hilmer and Voigt, 1993; Schulz and McNab,
1987}, or gridded numerical models [Toffoletto et al., 1994]). Applications using a more
realistic field model would allow examination of the effects of a magnetic minimum
region near the magnetic cusps where the magnetic deformations due to field-aligned
currents are likely to be large. We are currently in the process of implementing the FFBL
model in a representation based on nonaxisymmetric, nonorthogonal magnetic flux coor-
dinates.

e  Although the force-free boundary layer model provides a well-defined procedure for
mapping field-aligned currents and field lines between magnetic normal surfaces, it does
not properly model the dynamo region in the outer magnetosphere. A better understand-
ing of the field line mapping, for example, between the low-latitude boundary layer and
the ionosphere, the magnetotail and the ionosphere, or the cusp region and the iono-
sphere will require coupling the force-free boundary layer model to appropriate physical
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dynamo models. A boundary layer model for the generation of the region ! currents,
based on one-fluid magnetohydrodynamics, has been developed by Drakou et al. [1994),
and it is expected that the two models will be coupled in the near future.
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Figure 1. Geometrical domain: (a) noon-midnight projection and (b) equatorial plane
projection.
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Figure 2. Statistical pattern of observed current densities during (a) active periods and
(b) weakly disturbed periods from lijima and Potemra [1978).
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APPENDIX 6:
Dynamics of Shear Velocity Layer with Bent Magnetic Field
Lines

V. L. Galinsky and B. U.O. Sonnerup

Thayer School of Engineering, Dartmouth College
8000 Cummings Hall, Hanover, NH 03755-8000

Abstract. A fully three-dimensional, magnetohydrodynamic simulation of
velocity-sheared plasma flow in an ambient transverse magnetic field with bent
magnetic field lines has been performed. “lonospheric-like” boundary conditions have
been used for closing field-aligned currents, the two ionospheres being represented by
conducting plates with constant resistivity. We have found a significant difference in the
development of the Kelvin-Helmholtz instability, compared to the standard plane 2D
case with a uniform transverse magnetic field: the growth rate of the instability drops
significantly as bending increases. It seems likely that, under conditions representative
of the Earth’s low latitude boundary layer (LLBL), the Kelvin—-Helmholtz instability can
be suppressed completely by the magnetic field-line tension if bending of the magnetic
field lines is sufficiently strong. We have also found that a combination of the tearing
mode instabiiity and the Kelvin-Helmholtz instability leads to the formation of localized
3D current/vortex tubes, the ionospheric foot prints of which can be considered as
possible models of the auroral bright spots observed by the Viking satellite. Quantitative
corhparison of our results with satellite observations of velocity-sheared plasma flow
in the LLBL and its ionospheric foot print indicates good agreement with the chosen

model parameters.

Submitted to Geophys. Res. Lett., April, 1994
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Introduction

The interaction of the supersonic solar-wind flow with the Earth’s magnetosphere
creates interfaces or narrow layers where either a gradual or an abrupt transition in
plasma and magnetic field properties occurs from interplanetary values to those of the
magnetosphere. Several theoretical steady-state models of one of these regions, namely
the magnetospheric low latitude boundary layer (LLBL) on closed field lines, have
been discussed in the literature [Sonnerup, 1980; Lotko et al., 1987; Phan et al., 1989;
Drakou et al., 1994). The steady-state nature of these models may impose restrictions
on their applicability: in particular, shear flows are subject to the Kelvin-Helmholtz
(KH) instability so that the question of the stability of the LLBL needs to be addressed.
Most results of linear stability analyses of velocity shear layers are valid only when the
unperturbed magnetic field lines are straight, and therefore, are not directly applicable
to the above models where the geometry is more complex, having parabolic field lines
with different curvature in different parts of the layer. Qualitatively, such geometries
should have stability properties intermediate between the two cases of magnetic
field perpendicular and parallel to the plane of the unperturbed shear layer. In the
perpendicular case, instability occurs for k6 < 2, k being the wave number and é the
shear width; in the parallel case, the wave modes are stable for velocity jumps less than
twice the Alfvén speed [e.g., Miura and Pritchett, 1982].

Processes taking place in the LLBL are also very important for understanding
of the physics of mass, momentum and energy transfer from the solar wind to the
magnetosphere. Three possible mechanisms have been proposed, namely “viscous
like” interaction, magnetic field reconnection and impulsive plasma penetration. The
discovery of flux transfer events (FTEs) increased the interest in the second mechanism
and stimulated development of new reconnection models. Later a combination of viscous
interaction and reconnection has been proposed as an explation of FTE formation [La

Belle-Hamer et al., 1988; Belmont and Chanteur, 1989].
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In this paper, we investigate the influence of magnetic field-line bending on the
stability of a velocity shear layer by use of full three-dimensional MHD simulations with
ionospheric-like current closure boundary conditions. Several examples of unstable as
well as nearly stable configurations will be shown and the parameter range where the
KH mode is strongly suppressed by the magnetic field-line bending will be identified.
The formation of localized current/vortex tubes, which provides a possible explanation
of FTE-like signatures, will also be shown. Although there are several restrictions on
the applicability of this model, we believe it can be used as a first step in understanding
the properties of the KH instability in a magnetic-field geometry that is more realistic

for the LLBL, than the simple straight—field line model.

Basic Equations and Model

The starting point is the fully three-dimensional, dissipative, compressible

magnetohydrodynamic (MHD) equations, written in dimensionless form:

%9 (pv)

%.—_-(v Vv — ﬂ;zpv_p + Mlzp(v xB) x B+ £ Vv
%_?=VX(V><B)+7;:V2B (1)
%—f:—(v-V)P — PV v

V.B=0

where v(x,y,z,t) = (vr,vy,v,) is the flow velocity; B(z,y,z,t) = (B;, By, B;) is the
magnetic field; R is the Reynolds number; R,, is the magnetic Reynolds number; M is
the sonic Mach number; and M, is the Alfvén Mach number. All lengths are normalized
by a characteristic perpendicular half width of the shear flow, a = é/2; the velocity by
the velocity jump, V5; the magnetic field by the background magnetic field, By. The

sonic and Alfvén Mach numbers are defined as M, = V5/v, and M, = Vu/v,, where
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vs = (YPo/po)'/? and v, = Bo/(47po)'/? are the sound speed and the Alfvén speed,
respectively; the Reynolds number is defined as R = aV,/v and the magnetic Reynolds
number as R,, = 4raVs/(nc?). The pressure, P, and density, p, are normalized by their
values away from the shear layer. Resistive and viscous dissipation terms in the energy
equation are neglected.

The initial configuration used in this study is a velocity shear layer in a nonuniform
magnetic field, the nonuniformity being created by electic currents that connect the
plasma in the layer to two conducting plates which serve to represent the northern
and southern ionospheres. A sketch of the configuration is shown in Figure 1. The

quantitative expressions describing the initial field and plasma flow are:

v(r,y,2,0) = ? tanh(%) z, B.(z,y,2,0)= —a = ta.nh(%),

By(l‘, y,Z,O) = 07 BZ(‘T’ Yy, <, 0) = BO» P(-Tv yazvo) = po, (2)
2

P(z,y,z,0) + B—(%-i/r’z—’()) = const.

The main drawback of this configuration is that it is not a strict equilibrium. The &
component of the j x B force is not balanced by any other force and therefore will result
in a gradual slowing down of the flow and an associated decrease in the velocity jump
across the layer.

In the present study, the simulation domain is a rectangular box with periodic
boundary conditions in the flow direction (£). The boundary conditions in the direction
across the layer () are simply “free-slip” ones. We use mirror and “free-slip” boundary
conditions in the equatorial plane (z = 0) for all variables and in the upper plane
for the velocity components. In order to write boundary conditions for the B; and
B, components of the magnetic field at the upper or lower edge, we assume that our
configuration is confined between two parallel resistive plates at = = +£L,. Using Ohm’s
law and current continuity conditions at the top of our box, it is easy to obtain equations

for the B, and B, components on the upper plane at z = L.. In dimensionless form

80




these equations are

vi( "faB) _Rg aa [a(v,B) 9 (v,B. )] nE &°B.

0z 0 a 0z0%:
(g _1E9By) _p 910 p,_ i nE &5,
VL<B" 0z ) - R”ax ay(”’B’) az(”"B’) + a Oyo?z ®)

where V% = §?/9z? + 8?/0y? and Ry is equal to R,nE/a.

Finally, a boundary condition for the pressure can be determined from the absence
of a normal component of velocity on the upper plane.

For space discretization the Fourier pseudo-spectral representation was used in
the z direction and the Chebyshev tau method in the y and z directions. We solved
the nonlinear equations using an iteration scheme and a time splitting alternating
direction implicit (ADI) method, modified for use with Fourier and Chebyshev spectral

discretizations.

Simulation Results

In order to allow the KH instability to develop, a perturbation was imposed on the
initial configuration (2). The wavelength of this perturbed mode is equal to the entire
length of the system in the & direction and has been chosen to be the wavelength of
the fastest growing mode (FGM). Since we do not intend to address the question of
the inverse cascade, i.e., the formation of structures with longer wavelengths than those
predicted by linear theory [Belmont and Chanteur, 1989], we choose the system length
to be equal to the FGM wavelength: for all our simulation runs the value k,a = 0.45,
and hence L, ~ 14a, was used. The amplitude of the initial perturbation of the g
component of the velocity |v,| was equal to 0.01V,. We also used L, = L, = 20a,

R = 1000, R,, =100, M =0.77 and M, = 1.0 for all runs.

Figure la shows the temporal evolution of the maximum of the § component of the

flow velocity |v,|, normalized by Vo, for three different values of Ry, namely 0.1, 0.2 and

0.4, as well as for the purely two—dimensional transverse case of the KH instability which
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corresponds to Ry = 0. One can see that for all four Reynolds numbers the velocity
perturbation initially grows linearly and then saturates at some level. The linear growth
rate decreases significantly with increasing magnetic Reynolds number Rs. The level
of the nonlinear saturation is almost the same for Rz = 0.1 as for the transverse case,
Rs = 0, but for Rs = 0.4 this level is much lower.

Figure 2 shows streamlines and current distribution, at the end of our simulation,
for the case of strong bending of the magnetic field lines (Rg = 0.4). The term strong
bending is used only in a relative sense; the maximum amplitude of the component of
the magnetic field parallel to the flow (&) is approximately 20% of the perpendicular (3)
component. The KH instability is almost suppressed in this configuration, the level of
nonlinear saturation being only 2.5 times higher than the level of the initial perturbation
(0.025V5). The current sheet is only slightly disturbed and no localized current structures
are formed. We may compensate for the decrease of the velocity jump across the layer
during the simulation, which in this case is rather big (AV,o/AV, = 6), by normalizing
the amplitude of the perturbed § component of the velocity by the magnitude of this
jump. At the end of the simulation, this normalized velocity component is approximately
0.15, which should be compared to a value of 0.33 for the transverse case, Rs = 0, where
no decay of the velocity jump occurs.

In light of this result, it seems likely that strong bending of the magnetic field
lines can suppress or at least significantly slow down the KH instability. Therefore,
previous two—dimensional analyses of the stability of the LLBL [Miura and Pritchett,
1982] and MHD simulations of that layer [Miura, 1992; Wei and Lee, 1993], all of which
were carried out in the equatorial plane and using straight magnetic field lines, may be
strictly valid only in a limited region not too far from the subsolar stagnation point,
where field-line bending is not strong enough to prevent the KH instability. But as the
plasma flow proceeds toward the tail, the curvature of the magnetic field lines increases

and one cannot neglect their tension any more.
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Figures 3 and 4 show current lines in the system for Ry = 0.2 and Ry = 0.1,
respectively. The current distribution is more complicated than in the previous case.
The perturbations introduced by the KH instability on the initially uniform current
sheet are so strong that they result in its destruction and in the creation of localized
vortex/current tubes. This process looks similar to magnetic island formation in
association with the tearing mode instability of a two dimensional current sheet. Our
simulations show the formation of localized 3D current structures aligned with the
magnetic field. However, the processes taking place near the upper and lower ends
of these tubes and the existence of the inverse cascade in the system are probably
important for understanding the long-time development of these tubes.

In order to make geophysical estimates from our simulations, the upper conducting
plate must be given properties that mimic the ionoshere. A relationship between the
conductivity of the plate and the effective height-integrated conductivity, £,;, of the
ionosphere, based on the conservation of magnetic flux and field-aligned current, was

given by Sonnerup [1980]. Using our dimensionless parameter Ry = R,,nX/a it can be

¢ 1B (dz\?
" Ve k B (H) Re (4)

The total field-aligned current in the ionosphere, averaged over one period in the

written as:

direction, is given by

y=0 _<Bt>

z=L,

y=L,,) (5)

z2=L,

c dx
§ T e c— Bl'
< I > 1rdz, (< >

where the subscript ¢ denotes ionospheric quantities and [dz/dz;] is the mapping factor
for distances in the main flow direction. Using typical values for the magnetospheric
parameters [e.g., Sonnerup, *980], B = 3 x 1073, B, = 5 x 1075, V;, = 200km/s,
dr/dz; = 51.3 and taking the coupling factor k = 1, one can estimate the values of X,
and < Ij; > as 6.3Rz mho and 1.2Rz A/m respectively. With Ry = 0.1 — 0.4 these

values are roughly consistent with observed values of 2-3 mho and 0.15 A/m.
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It should be noted that many satellite observations have shown the presence of
spatially periodic bright spots in the postnoon auroral region. Their dimensions usually
range approximately from 50 to 200 km and their separation is about 100-500 km
[e.g., Lui et al., 1989]. Recently Wei and Lee [1993] suggested that these spots can
represent ionospheric signatures of vortices created in the LLBL by the KH instability.
The formation of vortex/current tubes in our simulations indicates that regions of large
field-aligned current density and vorticity, with dimensions comparable to observed

values, will occur in the ionosphere representing the footprints of these tubes.

Conclusion

The real plasma flow and magnetic field configuration in the magnetopause-
boundary layer region is significantly different from, and far more complicated than, the
one we use here. In particular, our use of conducting plates to represent the ionosphere
ignores Alfvén—wave transit time effects. Nevertheless, our model can be used for at
least a qualitative assessment of the role and nature of the Kelvin-Helmholtz instability
in the LLBL and other internal magnetospheric shear layers with current closure in the
ionosphere.

The following main conclusicns can be drawn from our simulations:

1. Magnetic field-line bending leads to a significant decrease of the growth rate of the

Kelvin-Helmbholtz instability. The value of this decrease depends on the amount of

field-line bending and, hence, on the conductivity of the auroral ionosphere to which

the shear layer is magnetically coupled.

o

It seems likely that sufficiently strong bending of the magnetic field lines,
corresponding in our case to the magnetic Reynolds number (based on an equivalent
ionospheric conductivity) Ry > 0.4, can siow down the development of the
Kelvin-Helmholtz instability or suppress it altogether.

3. A combination of the tearing mode instability and the Kelvin-Helmholtz instability
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leads to a formation of localized three-dimensional vortex/current tubes. A
projection of these structures into the ionosphere produces regions of enhanced
field-aligned current density and vorticity which may represent auroral bright spots
observed by for example the Viking satellite [Lui et al., 1989)].

4. We have also carried out simulations with a velocity profile more representative
of the LLBL, namely v, = %Vo(l — tanh(%)), the result being an even stroager
suppression of the KH instability, presumably caused by the presence of field-line

curvature at the point of inflection of the velocity profile.
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Time evolution of amplitudes
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Figure 1. Temporal evolution of |v,|. Insert: sketch of plasma flow and magnetic field

,configuration confined between two conducting plates
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Figure 3. Current lines entering the slab at four different planes for Ry = 0.2 at the end of

the simulation (¢ = 83a/Vy): (a) 2 = 0.02L,; (b) z = L;/4; (c) 2= L,/2; and (d) z = 3L, /4.
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Figure 4. Current lines for Ry = 0.1, plotted at four different times: (a) t = 20a/Vy; (b)

82(1./‘/0.

60a/Vy; and (d) ¢

t =406a/Vp; (c) t
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Resistive tearing-mode instability in a current
sheet with equilibrium viscous stagnation-point
flow
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An analysis is presented of linear stability against tearing modes of a current
sheet formed between two oppositely magnetized plasmas forced towards each
other in two-dimensional steady stagnation-point flow. The velocity vector in
this flow is confined to planes perpendicular to the reversing component of the
magnetic field. The unperturbed state is an exact resistive and viscous
equilibrium in which the resistive diffusion outwards from the current sheet is.
exactly balanced by the inward motion associated with the stagnation-point
flow. Thus the behaviour of the tearing mode can be examined even when the
resistive diffusion time is comparable to or smaller than the growth time of the
instability. The linear ordinary differential equation describing the mode
structure is integrated numerically. For large Lundquist number S and viscous
Reynolds number Re the Furth-Killeen—-Rosenbluth scaling of the growth rate
is recovered with excellent accuracy. The influence of the stagnation-point flow
on the tearing mode is as follows: (i) long-wavelength perturbations are
stabilized so that the unstable regime falls between a short-wavelength and a
long-wavelength marginal state; (ii) for sufficiently low Lundquist number
(S < 12:25) the current sheet is completely stable to tearing-mode perturbations;
(iii) the presence of high viscosity reduces the growth rate of the tearing
instability. This effect is more important at small wavelength. Finally,
application of the results from this study to the problem of solar-wind plasma
flow past the earth’s magnetosphere is briefly discussed.

1. Introduction

Magnetic reconnection is thought to be an important process for the
conversion of magnetic field energy into kinetic and thermal energy in cosmic
as well as laboratory plasmas (for reviews see e.g. Vasyliunas 1975; Sonnerup
1979 ;. Forbes & Priest 1987). Reconnection is initiated in thin current sheets as
a result of the tearing mode (Furth, Killeen & Rosenbluth 1963; Laval, Pellat
& Vuillemin 1966 ; Wesson 1966 ; Cross & Van Hoven 1971 ; Lee & Fu 1986), in
which magnetic islands, produced by non-steady reconnection, grow ultimately
to large amplitudes. But current sheets observed in space plasmas, for example
in association with solar flares or at the earth’s magnetopause, sometimes
remain stable for time periods far exceeding the growth time associated with
the tearing mode. Among the effects that may influence tearing modes in a
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408 T.D. Phan and B. U. 0. Sonnerup

substantial way are flows across the current sheet (Dobrott, Prager & Taylor
1977; Killeen & Shestakov 1978) and flows along it (Bulanov, Syrovatsky &
Sakai 1978 ; Einaudi & Rubini 1986, 1989 ; Chen & Morrison 1990 ; Ofman, Chen
& Morrison 1991). However, a weakness of all previous analyses based on
resistive MHD is that the unperturbed state was not an exact solution of the
resistive MHD equations. Left alone, the unperturbed current sheet would
spread out with increasing time. Most of the previous studies of the resistive
tearing mode neglected this resistive diffusion effect; thus the results reported
are valid only in the limit where the diffusion time is much longer than the
growth time of the instability. In this limit the Lundquist number S = ¢,/t,, is
much greater than unity, where ¢, is the Alfvén transit time across the current
layer and ¢, is the resistive diffusion time of the current sheet. The Lundquist
number of current sheets in magnetic reconnection configurations, however,
may sometimes be of order unity (Lee & Fu (1986) gave 2 < S < 100). The
studies of the tearing mode in this regime have been limited and not entirely
satisfactory : Lee & Fu (1986) investigated the tearing mode in the low-S regime
without taking into account the resistive decay of the unperturbed current
sheet. For a Harris-type current sheet (B oc tanh z), they found that the growth
rate obtained by assuming uniform conductivity and neglecting the resistive
decay is essentially the same as that obtained with a spatially varying
conductivity of the form o oc sech?*z, which allows the unperturbed state to
remain time-independent. However, this kind of conductivity profile, with
lo] -0 as|z| - 00, is usually not relevant to the problem of magnetic reconnection.
In order to investigate the tearing mode in the low S-regime in a satisfactory
way, one would need to either perform a stability ::.1alysis of a non-equilibrium
current sheet, taking into account the resistive spreading of the sheet in a self-
consistent manner, or perform such an analysis on a sheet in which the resistive
diffusion is counterbalanced by an incoming plasma flow. Dobrott et al. (1977)
recognized the importance of resistive decay of the unperturbed current sheet.
However, although their inclusion of an uniform ‘diffusion velocity ’ to describe
the spreading of the layer may give an indication of the effect of diffusion on the
tearing mode, it is in fact inconsistent with the magnetic induction equation. In
the present paper we perform a linear tearing-mode stability analysis of one
member of the family of exact resistive current-sheet equilibria found by
Sonnerup & Priest (1975) for the case of two oppositely magnetized plasmas
pushed towards each other in two-dimensional stagnation-point flow. The
equilibrium structure and thickness of the unperturbed current sheet is such
that the resistive diffusion outwards from the sheet is exactly balanced by the
inward motion associated with the stagnation-point flow. The latter is two-
dimensional, with the flow confined to planes perpendicular to the reversing
component of the magnetic field. This equilibrium allows us to examine the
tearing mode over the entire range of parameter values.

The paper is organized as follows. In §2 the basic equations and the relevant
properties of the equilibrium configuration are reviewed. In §3 we develop the
linear perturbation equations and, by appropriate assumptions concerning the
nature of the perturbations, reduce them to a form suitable for the subsequent
analysis. In §4 the method of solution is described. In §5 numerical solutions of
the linearized equations are presented. In particular, the dependence of the
growth rate of the tearing mode on the Lundquist number, i.e. the magnetic
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Reynolds number based on the Alfvén speed, on the viscous Reynolds number
and on the wavelength of the perturbation is examined. Examples of the
eigenmode structure are also shown. Finally, a discussion of the results is given
in §6.

2. Basic equations and the equilibrium state

The analysis is based on the equations of the incompressible one-fluid
resistive and viscous magnetohydrodynamics, namely

V.v=0, (1)
ov 1
p-a—+p(v.Vv)=—Vp+——(VxB)xB+1)V’v, (2)
¢ Fo
B V:B '
-—a—t-+Vx(va)+ﬂoo_—0, (3)
V.B=0, (4)

where B, v, p and p are the magnetic field, plasma velocity, density and pressure
respectively. # is the dynamic viscosity and o is the electrical conductivity,
both of which are assumed uniform and constant.

Steady-state exact solutions to this system of equations, for symmetric and
asymmetric MHD stagnation-point flows in two and/or three dimensions, have
been given by Sonnerup & Priest (1975), Besser, Biernat & Rijnbeek (1990) and
Phan & Sonnerup (1990). These solutions represent generalizations of the initial
work by Parker (1973) on resistive current layers in the presence of two-
dimensional stagnation-point flow. The general form of Sonnerup and Priest’s
(1975) solutions is . . .

Vo = —C, ¥X+ ¢, Yy + ¢4y 22, (5)
B, = B, (7) § + B,,(2) 2, (6)
where the positive constants c,, ¢, and c, are related by
c, =Cy+c,

to ensure that the flow is divergence-free. It should be noted that the
equilibrium flow, described by (5), is irrotational. Consequently, the viscous
force on the flow is zero. However, in the perturbed state the flow becomes
rotational, and the effect of viscosity may be important.

An early attempt to study the behaviour of the tearing mode in general three-
dimensional stagnation-point flow and field configurations of the type given by
(5) and (6) was made by Sonnerup & Sakai (1981). They used an analytical
approach in which the island stretching caused by the accelerating unperturbed
plasma motion along the current sheet was treated by use of a method
introduced by Bulanov et al. (1978). However, the analysis of Sakai & Sonnerup
remained unsatisfactory in some aspects and was never completed. They did
not consider the special case ¢, = 0, which is much simpler than the general case
on account of the absence of island stretching. It is this special case that will be
studied here. For ¢, = 0 the flow is two-dimensional and confined to the (z, z)-

plane. i.e. ..
Vo = ¢ — X +22), (7)
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Ficure 1. Equilibrium plasma flow and geometry of reversing magnetic field -
component B,,.

and the magnetic field components B,, and B,, obey

2
__l__d_B!l.'.clxd_B_ol = 0

poo dz? dx '
L dB,, __dB,
foo dxt K

Also the pressure is obtained from a Bernoulli-type equation

2
P=Dpo—icip(x*+2%) - 2’2%& (10)
0

(8)

+c¢, By, =0. (9)

where p, is a constant of integration.
The resistive current-sheet structure described by (8) and (9) has a
characteristic width of the order of the resistive length
a = (oc,)H, (11)
which is obtained by equating the convective flow speed c,a to the diffusion
speed (u,0a)~!. A basic property of the current sheet obtained from (8) and (9)
is that the smaller the flow rate, i.e. the smaller the value of c,, the thicker will
be the current sheet. The odd and even solutions of (8) and (9) can be combined
in various ways in order to produce the behaviour of B,, and B,, in the sheet.

For our purpose it will suffice to use only the odd solution for B, , which was
shown by Sonnerup & Priest (1975) to be

By, = Bpayerf (A, 0c, 2], (12)
where +B_,,, is the magnetic field at x = + c0. The analysis will be valid for all

B,, satisfying (9). The general solution for By, has been shown by Sonnerup &
Priest (1975) to be

B,, = By, (0)I(x )+ 03(0)[( )J‘ (13)

where 1(§) = exp (— e, o 0E?).

The resulting equilibrium plasma flow and B,,, the antiparallel part of the
magnetic field, are shown in figure 1. The even and odd solutions of (13) are
shown in figure 8. Note that these B, solutions vanish as |z| - 0.

1¢)’
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3. Linear perturbations

Returning to (1)-(3), we now introduce small perturbations v, and B, in the
velocity and magnetic field so that

v= V°+V,(a:,y,t),
B =B,+B,(z,9,¢).

Note that these perturbations are taken to be independent of the co-ordinate 2.
Thus the wave vector of the tearing mode is assumed to be along the y axis.
Equation (1) is satisfied identically by writing

vl = v'ﬁxi"'i”u(-’l‘,y, ‘)’ (14)

where ¥ is the stream function for the z and y components of v,.
The pressure may be eliminated from the problem by taking the curl of (2),
the result being

%Q——Vx(vxn)=F——Vx[(VxB)xB]+”V’n, (15)

where Q is the vorticity, i.e.
Q=Vxv=Vxv, =Vy, xZ-2Vy. (16)
The last two equalities in (16) follow from the fact that V x v, = 0 and from (14)

respectively.

We now examine the z component of the vorticity equation (15), and the z
component of the induction equation (3). The linearized versions of these
equations are

S ezl Tp\m P_u( s__l_é_";oz)
(0! =0T 5 pV)V:ﬁ /lopv B, & B,, (17)
9 2L gpg —p %Y
and (at+c1 z = mav )B"—B"'ay’ (18)

respectively. It should be noted that the only perturbation quantities contained
in the above equations are y and B, ;. Thus we see that it will suffice to analyse
these two equations to determine the evolution of the perturbations. Once ¥
and B,, are known, the perturbed quantities v,, and B,, may subsequently be
obtained from the z components of (2) and (3), namely

9 5 1 (o 0B, . dBy )

(6t+c‘ rr pw) ﬂ.p(B oy g (19)
L N vy Oy dBy

(at % 5 ,u.o'v )B =Buwy dy 0y dz -’ (20)

It should be noted that B,, does not enter into (17) and (18); thus it does not
play a role in driving the instability. It does, however, entrain v,, and B,, via
(19) and (20). For B,, = 0 the appropriate solutions of these latter equations are
v,,=0and B, =0.
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Solutions to (17)-(20) are now sought in the form

y y(z)

B,, _ | Bi(2) .

o | |ty [PV &
Blz Bu(x)

where k£ and y are the wavenumber and growth rate respectively. Substitution
of these expressions into (17)-(20) gives

me—c.z 3 _n(8° _ s)](ﬂ_ ) ..B_Qr.(_d_’._ :_Li?;!x)
[7 QT T p(d.t’ k dz? )y Mo p \dz* £ B, dz* Bys,

(22)

[7+c,—c,x%-$(§—k‘)]8u = — B, k'Y, (23)
[7+c, -c,x;;—%(;:—;—k‘)] v, = ;:—p(ikB“Bu.}.Bu%)' (24)
[Y—c,—c,zé—’-ﬁ_—(;?:—k’)]Bu - ilc(B,,, v,,-,/,%), (25)

We now non-dimensionalize (22)—(25) by introducing the following dim-
ensionless variables:

i
v ag

Re=1%P_ P

) Ko 0T

-

By
(%o P)‘ '

Here a is the resistive length given by (11), v, is the Alfvén speed based on the
maximum magnetic field B,,,,, and ¢, a is the characteristic diffusion speed.
Thus the quantity S, known as the Lundquist number, is the magnetic
Reynolds number u,cav, based on the Alfvén speed and the diffusion length.
It should also be noted that S = 1/M,, where M, is the Alfvén Mach number
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at the edges of the current sheet (i.e. at r = +a). The quantity Re is the viscous
Reynolds number based on the characteristic diffusion speed and the diffusion
length. Finally. the renormalization of B,, is such that it is phase-shifted by 90°
relative to the other perturbed quantities.

Substitution of the above expressions into (22)-(25) gives

d 1(d? d?
[7‘ —l= dx* —E(dz*’ B k“)] (dx“ - k“) v

d* 1 d*Bg,
2
(y‘+l—x"‘ ‘-i-d—.— dd “+lc“)B‘ = —8Bg, k**y*, (27)
2 *®
[‘y*"‘ [ —z* dd‘—z(zi—;;-k* )]vu = S(kB‘ B' +Brz?iB‘ ), (28)

2 *®
(y —~1- x*dd* dd“+k"’)B‘ -—Slc"'(B" v — ¢‘dB°‘), (29)

while the equilibrium magnetic field profiles, given by (12) and (13), become
B?, = erf(271z*), (30)

B}, = B},(0)exp(—¥x ")+ (O)eXP(—%z")f’ dfexp (3£°). (31)

The coupled equations (26)—(29) describe all small-amplitude MHD wave modes
of the current sheet that have their propagation vector along the y direction.
We shall examine only the tearing mode, for which the amplitudes B}, (z*) and
Y*(x*) are respectively even and odd functions of x*, and for which these
quantities decay rapidly with increasing distance |x*| from the centre of the
current sheet. The parities of v,, and B,,, on the other hand, depend on B,,. In
particular, B,, has the same parity as B,,, whereas v,, has the opposite parity.
The perturbed quantities v,, and B,, are also required to vanish at large
distarce. The procedure for solving (26)-(29) is as follows. Equations (26) and
(27) are not coupled to the other equations, and may be solved for y*, B} (z*)
and y*(x*) first. Solutions for v{,(x*) and B},(z*) are subsequently obtamed
from (28) and (29).

In this paper we determine the largest real growth rates of the tearing mode
by a trial-and-error method of solution. In the case analysed by Furth et al.
(1963) it was determined that no overstable tearing modes occur. Although the
eigenvalue we find is purely real and agrees with the results of Furth et al. for
large S, we have not found a way to prove rigorously that the eigenvalue with
the largest real part is purely real. The existence of overstable modes therefore
remains an open question in the case investigated here.

4. Method of solution

In contrast with the standard boundary-layer approach (Furth et al. 1963),
which involves matching of solutions from an outer and an inner region, we
solve (26)-(29) directly over the entire region. This approach allows us to
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investigate the entire range of Lundquist number S, in particular values of S of
order unity. Since only the odd solutions for {/*(x*) and the even solutions for
B} (x*) are sought, the equations need only be solved over half of the range of
r* for example for x* 2 0. The following boundary conditions are imposed
when solving (26) and (27):

y*=y* =0, B:L =1 at x*=0,1
y*=y* =B >0 as z*—> 0.

The growth rate y* is then determined by requiring the solution for B, (x*)
to be an even function of z*; that is, BY,(x* = 0) = 0. The method for obtaining
the eigenvalue y* is as follows: we start with a trial value of y*; the value of
BY,(x* = 0) is then obtained by solving (26) and (27). In general, B (z* = 0)
does not vanish. The value of y* is subsequently adjusted until Bf,(z* = 0)
becomes zero. The resulting y*, ¥* and B}, are then the eigenvalue and
eigenfunctions of the tearing mode. The method is somewhat similar to that
used by Wesson (1966).

Once y*, B}, (z*) and y*(z*) have been determined, one can then proceed to
obtain solutions for v},(z*) and BY,(z*) from (28) and (29), for a given Bj,(x*)
satisfying (9), subject to the condition that these perturbed quantities vanish
as |z*| - 00. The magnitudes of v{,(z*) and BY,(z*) are then determined uniquely
by the solutions for y*, BY,, y* and Bg,.

The coupled ordinary differential equations (26)—(29) are solved using a
finite-difference method with variable mesh size. A large number of com-
putational meshes are concentrated near z* = 0, where the solutions of y*; B,
v}, and B}, display their steepest gradients. In the actual calculation the outer
boundary z is located at large but finite distance from the origin. The choice
of z_ is such that its location does not affect the resulting y*.

(32)

5. Results

The growth rate and the eigenmode structure described by y*(z*), B}, (z*),
v},(z*) and B},(z*) depend on the parameters S, Re and k*. Figure 2 displays the
dependence of the normalized growth rate y* on the normalized wavenumber
k* for several values of the magnetic Reynolds number S and for large viscous
Reynolds number (Re = 10°). For each S there is a maximum growth rate yg,,,
and a corresponding wavenumber k%,,. This maximum growth rate occurs at
longer wavelength (smaller wavenumber) for larger S. For § < S.rqyca = 12:25
the maximum growth rates are negative, i.e. all perturbations are damped. For
8 > 8, i1ica1 the unstable regime falls between a large-wavenumber k3., (short-
wavelength) marginal state (y* =0) and a small-wavenumber k., (long-
wavelength) marginal state. The dependence of k} er, kiower, and kpyy on S is
shown in figure 3. The existence of a long-wavelength marginal state may also
be deduced by examining the governing equations in the limit £* = 0. In this
limit (27) becomes

d*B* dB*

P +x*a?;—(y‘+l)8‘ =0. (33)
This equation admits solutions that are even functions of 2* and that vanish as
|r*| > o0 if and only if y*+1 is negative, i.e. only if y* <—1. Thus the
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Figure 2. Normalized growth rate y* = y/c, as a function of normalized wavenumber k* =
ka for Lundquist numbers S = 5 (A—A), 75 (O—0), 10 (W—W), 12-25 ( ), 15 (O—O),
20 (O—0Q), 50 (I—W) and 100 ( x — x ) and for viscous Reynolds number Re = 10%. The
growth rates are negative for S < 12:25.

configuration is stable for k* = 0. Since (for sufficiently large S) it is unstable for
some k*. a marginal state must exist at long, but finite wavelength.

Figure 3 shows again that the unstable regime narrows as S decreases and
converges to a point as S reaches S cq;- Below S 4ca the current sheet is
stable to tearing-mode perturbations. For large S, kj,,., and k5., asympto-
tically approach 0733 and zero respectively, while k%,, obeys approxi-
mately the following relation:

ke 091879 (10* < S < 5x10%). (34)

It should be pointed out that the asymptotic value of k},,., may be obtained
by performing standard boundary-layer analysis of the type first performed by
Furth et al. (1963) for a hyperbolic tangent magnetic field profile. In that
analysis the short-wavelength marginal state is found by setting Agyier(k3pper)
= 0, where A}, is the jump in B*"! dB*/0dz* of the outer solution across the
singular layer. Our boundary-layer analysis for an error-function magnetic field
profile gives kJ, ... = 0-733.

Figures 4 (a, b) show the maximum growth rate y%,, a8 a function of S for
S 2 100 and S < 100 respectively. For large S the curve is almost a straight line

on a log-log scale, and may be approximated by
Yioax = 0-398%%% (10 < S < 5x10%). (35)
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for viscous Reynolds number Re = 10°. The unstable k* regime narrows as S decreases.
Below 8,,,,ca ® 12:25 the current sheet is stable to tearing-mode perturbations. For S > 10*
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The exponents in (34) and (35) are very close to the asymptotic values (as
S — o) of } and } respectively, obtained by Furth et al. (1963) in their study of
the tearing mode without equilibrium flow, indicating that the effect of the
equilibrium flow, other than that of determining the current-sheet width, is
negligible when S is large. For small S, however, the relation between yg,,, and
S differs considerably from (35), and also does not agree with Lee & Fu'’s (1986)
result for low 8. In particular, those authors did not find a stable regime for low
S.

The dependence of the growth rate on viscosity is illustrated in figures 5 and
6. Figure 5 shows the normalized growth rate y* as a function of the viscous
Reynolds number Re for S = 50. Jt is seen that the viscosity has a stabilizing
effect. This effect is more important at short wavelength (large k*) and when the
viscous Reynolds number Re is small (Re < 100). It should also be noted that
the fastest-growing wavelength increases with increasing viscosity (decreasing
Re). The stabilizing effect of the viscosity may also be seen in figure 8, where
Seriticar 18 sShown as a function of Re. It should be noted that S, .. decreases
with increasing Re. For Re > 10%, S ;e i8 close to its asymptotic value of
12-25.

In figures 7 (a, b) we show two examples of the eigenmode structure in terms
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Ficure 7. Equilibrium magnetic field Bg,(x*) and perturbed eigenmodes y*(z*) and BY,(r*)
as functions of x* = r/a for Re = 10%, k* = 04, and (a) S = 5 and (b) S = 1000.

of y*(x*) and B?,(x*) for S = 5 and 1000 respectively, and for Re = 10° and
k* = 0-4, illustrating the difference in the behaviour of the eigenmodes
depending on the S regime. In the S = 1000 case the shapes of the eigenmodes
are similar to those obtained in previous studies of the tearing mode with high
S. and where the effect of resistive decay of the current sheet is neglected (see
e.g. Killeen & Shestakov 1978). In particular, an ‘inner region’ appears that is
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Fioure 8. Equilibrium magnetic field Bg(z*) and perturbed eigenmodes v{,(z*) and Bf,(z*)
as functions of z* = z/a for even (a, b) and odd (c, d) magnetic field B, for S = 5 (a, c) and
S = 1000 (b, d). The viscous Reynolds number and wavenumber are Re = 10* and &* = 0-4.

much thinner than the current-sheet width. In the S = 5 case, as expected, the
‘inner region’ is comparable to the resistive length. In this regime the results
of the previous studies, which excluded the diffusion effect of the equilibrium
magnetic field, are not valid. Note in particular that the tearing mode is
damped for 8 =5 even though the curve for Bf,(z*) displays the dimple at
z* = 0 normally associated with unstable behaviour. For convenient com-
parison of length scales the equilibrium magnetic field By, is also shown in
figure 7.

Figures 8 (a—d ) display the eigenmode structures in v{,(z*) and Bf,(z*) for the
same cases as in figure 7, and for a purely even (figures 8a, b) and a purely odd
(figures 8¢, d) equilibrium magnetic field B,,. For an arbitrary B,, satisfying (9)
the resulting eigenmode structures in v3,(z*) and Bf,(z*) are linear combinations
of the even and odd eigenfunctions shown. Note that the even solutions of vf,
display large local curvature, for example z* = 0 in figure 8(c). This behaviour
is a direct consequence of the large Re value. Note also that the spatial scales
are different in figures 7 and 8.
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6. Discussion and conclusion

We have examined the linear stability of a current sheet against the tearing
mode in the presence of equilibrium stagnation-point flow, the latter being
confined to the plane perpendicular to the k vector of the tearing mode. The
entire range of Lundquist numbers S and viscous Reynolds numbers Re, where
S = pyoav, and Re = c,a’p/n, has been explored. Our main findings can be
summarized as follows.

(i) Long-wavelength perturbations are stabilized by the stagnation-point
flow so that the unstable regime, if it exists, falls between a short-wavelength
and a long-wavelength marginal state.

(ii) For large S (> 10*) the Furth et al. (1963) scaling of the growth rate,
y2.x ¢ S, and of the wavenumber at maximum growth rate, k%, oc S, are
approximately recovered, indicating that the effect of the equilibrium flow,
other than that of determining the current-sheet width, is small when S is large.
In dimensional form the growth rate and the wavenumber can be expressed as
Ymax € Vi ¢f ot and kg, oc v7tcl of respectively. These relationships show that a
faster flow (larger c,) and/or a larger conductivity o reduce the current-sheet
width, and thereby enhance the growth rate of the instability, at the same time
decreasing the wavelength at which maximum growth occurs.

(iii) For small S the stabilizing effect of the equilibrium flow is evident. When
S < Serjuear = 1225, the current sheet is completely stable to all tearing-mode
perturbations, a result not obtained in the absence of the equilibrium flow.

(iv) The viscosity has the effect of reducing the growth rate. This effect is
more noticeable at short wavelengths and in flows with small viscous Reynolds
number Re. As a result, S, ., increases with smaller Re.

(v) The mode structure in the (z,y) plane and the growth rate of the
instability remain unaffected by the presence of a non-zero magnetic field
component B, (x) satisfying (9). But when B,, #+ 0 the mode structure includes
perturbations in the field and flow components in the z direction.

The main difference between our study and previous investigations of the
resistive tearing mode is that we have started from an exact equilibrium
current-sheet configuration in which the resistive widening of the sheet is
exactly counterbalanced by the stagnation-point flow. It is this feature of the
unperturbed current layer that allows us to investigate the entire range of
Lundquist numbers 8, in particular values of S of order unity. Our results for
low S differ significantly from those obtained by Lee & Fu (1986), who did not
use an exact unperturbed equilibrium in their analysis.

It may be thought that the flow geometry studied in this paper has limited
practical applications. However, it has been argued (Pudovkin & Semenov
1977 a, b; Sonnerup 1980) that, in the absence of reconnection, steady-state flow
of a magnetized highly conducting plasma past a diamagnetic object will lead
to the formation of a stagnation line rather than a stagnation point on the
upstream face of the object. This stagnation line is aligned with the magnetic
field embedded in the impinging plasma flow, so that the unperturbed flow
configuration becomes similar to that examined here. One application may be
the flow of solar-wind plasma past the earth’s magnetosphere, where a
stagnation line may be formed near the subsolar point of the magnetopause. To
apply our results to the magnetopause, we must estimate the Lundquist
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number based on the thickness of the magnetopause current layer. If we adopt
the value of (#,0)! = 10° s m~* (see e.g. Sckopke et al. 1981) as an upper limit
for the resistive diffusion coefficient, and use lower limits of 100 km for the
thickness of the current layer and 100 km s~! for the Alfvén speed just outside
the current layer, we obtain a lower limit of § = yy0av, = 10. This value is
consistent with Lee & Fu’s (1986) estimate of 2 < S < 100. The fact that in our
study the current sheet is found to be stable for S < 12:25 therefore suggests
that the magnetopause current layer may at times be stable or only weakly
unstable to tearing-mode perturbations.
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Geophysics Laboratory under Contract F19628-90-K-009 to Dartmouth
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MAGNETIC FIELD MAXIMA IN THE LOW LATITUDE BOUNDARY LAYER

B. Sonnerup! , G. Paschmann? , T.-D. Phan2, and H. Liihr3

Abstract. The magnetic field often exhibits a maximum in
the Earth’s low-latitude boundary layer. We show examples
of this behavior, using data from the AMPTE/IRM spacecraft,
and argue that two fundamentally distinct causes exist for the
excess field: (i) a depression, within the layer, of the
population of medium-energy ions of magnetospheric origin;
(i) field curvature effects associated with undulations of the
magnetopause itself.

1. Introduction

The frequent presence of a magnetic-field strength
maximum near the magnetospheric edge of the magnetopause
(MP) has been noted by Neugebauer et al. [1974), Sonnerup
and Lediey [1979], and Hall et al. [1991]. Sometimes the
region of field enhancement has an inner edge that coincides
with the earthward edge of the low-latitude boundary layer
(LLBL) and beyond which the field magnitude stays nearly
constant at its magnetospheric level; sometimes the field
decays from its maximum to its magnetospheric level in a more
gradual manner, as one moves from the inner edge of the
LLBL into the magnetosphere proper. We shall refer to these
two pure classes of field behavior as Type I and Type II,
respectively, although we stress that they represent an
aversimplification: more commonly, a mixture of the two is
seen. At first, the occurrence of field maxima seems
paradoxical. After all, the region just earthward of the MP is
usually occupied by the LLBL, a narrow region of dense
magnetosheath-like plasma flowing along the MP more or less
in the antisolar direction. One would expect the diamagnetic
effect of this plasma to produce a field depression rather than a
field enhancement within the LLBL, a feature that is in fact
also seen when the LLBL density is high.

Neugebauer et al. [1974] did not dis:uss the LLBL but they
suggested that the field maxima may be caused by loss of
energetic magnetospheric particles, whose gyromotion carry
them up to the MP where they escape to the magnetosheath.
However, they lacked the instrumentation needed to check this
hypothesis. Here, we use data from the AMPTE/IRM
spacecraft to demonstrate that field enhancements of Type I are
in fact colocated with the LLBL and that the densities of
medium-energy magnetospheric ions (9<E<40 keV) and
electrons (2<E<40 keV) are indeed depressed in them. Thus
there is partial agreement with the Neugebauer et al.
explanation: the excess magnetic pressure compensates for the
defect in plasma pressure caused by the absence of energetic
magnetospheric particles. However, in that explanation,
electrons with their much smaller gyroradii should drop out
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very close to the MP rather than eanthward of the inner edge of
the LLBL, as we observe them to do. In Type 1l events, there
is a gradual loss of high energy particles (40<E<400 keV) as
the MP is approached but no significant loss of medium-
energy particles in most of the field-enhancement region.

Using AMPTE/UKS data, Hall et al. [1991] found a
minimum in total electron pressure precisely where the
magnetic field overshoot occurs: they referred to this region as
a “depletion layer” (we reserve this term for the region
immediately outside the MP where plasma depletion and an
associated field overshoot is sometimes seen). This minimum
in electron pressure is a direct result of the coexistence of two
electron populations in the LLBL: cool magnetosheath
clectrons decreasing in density with increasing distance inward
from the MP; and hot (but far more tenuous) magnetospheric
electrons, decreasing in density with increasing distance
outward from the inner edge of the LLBL. We emphasize that
the electrons usually only play a minor role in the overall
pressure balance across the MP/LLBL: the major
contributions to Piot = (PL + B2/21o) come from
magnetosheath ions, medium-energy magnetospheric ions and
the magnetic field. The importza  iifference between Type |
and Type II events is that Pyoq is approximately constant from
the magnetosheath through the MP/LLBL into the
magnetosphere in Type I whereas a sometimes large maximum
in Pyot occurs earthward of the MP in Type II. This maximum
is caused by excess magnetic pressure.

2. Type l Event

Figure 1 shows a Type I crossing, i.e., a case where the
magnetic field overshoot is confined to the LLBL. This
inbound pass through the MP/LLBL region on July 3, 1985,
took place on the dusk flank of the magnetosphere (1930h LT)
near the equatorial plane (-6.9° GSE latitude) at a geocentric
distance of 17 RE. The motion of the MP relative to the
spacecraft was complicated. We go through the event
backwards, i.e., starting at the right-hand edge of the figure, at
1625 UT, where the spacecraft was in the magnetosphere, in a
more or less uniform field of 8 = 15 nT (PR = 0.09 nPa,
panel 6), with total ion density, Np, (E<40 keV, which is
mainly low energy ions) as well as densities of medium-
energy ions, N2p (9<E<40 keV), and electrons, N2¢
(2<E<40 keV), (panel 1) at their magnetospheric levels. The
bulk speed, Vp, of the magnetospheric plasma was modest
(panel 2), its temperatures, Tp and Te,were high (panel 3).
Going backwards in time, the first indication of the LLBL
being approached occurred around 1621:50 UT where N2¢
and T started 10 drop. At 1621:10 UT, the LLBL proper was
entered: Np increased abruptly, while Tp and Te dropped
equally abruptly to intermediate levels characterizing the
LLBL. The medium-energy ion density, N2p, dropped more
gradually. The field magnitude. B, rose, also gradually at
first, and then more rapidly until a plateau was reached at B =
25 nT (Pg = 0.25 nPa, panel 6). The MP encounter occurred
at 1619:55 UT. Here B dropped abruptly to less than 5 nT
(P < 0.01 nPa); simultaneously, the field direction changed
(panels 4 and 5), Tp and T¢ decreased while Vp and Np, both
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Fig. 1. AMPTE/IRM data during inbound pass through the
MP/LLBL region on July 3, 1985. Panel 1: proton number
density, Np (cm™3; E<40 keV); medium-energy proton and
electron number densities, N2p (cm'3; 9<E<40 keV) and
N2e(cm™3; 2<E<40 keV). Panel 2: plasma bulk flow speed,
Vp (kny/s). Panel 3: proton and electron temperatures, Tp and
Tg, (106°K:; E<40K keV). Panels 4 and 5: magnetic field
azimuth angle, @ B, and elevation angle, A B, (degrees).
Angles refer to boundary-normal coordinates, LMN, with A =
0 in the MP tangent plane and A>0 for an outward field; also,
¢pB = 0 along +L and ¢ g = 90° along +M. Panel 6: total
perpendicular pressure Pror = Pp + Pe + PB and magnetic
pressure Pg = 82/2;10 (nPa). Panel 7: proton and electron
perpendicular pressures, Pp and Pe, (nPa; E<40 keV).

increased abruptly to their values in the magnetosheath.
Continuing backward in time, several additional full or partial
MP crossings occurred: we do not discuss these in detail,
except to note the similarity between the MP/LLBL encounter
just discussed and that between 1600:50 and 1603:00 UT.

The most remarkable feature in Figure 1 is the approximate
constancy, over a 30 minute period, of the total pressure,
Piot. (panel 6, upper curve), in spite of large temporal
variations in the magnetic pressure (panel 6, lower curve).
The large ion (E<40 keV) and electron (E<40 keV)
perpendicular pressure variations, Pp and P, that compensate
for the changes in magnetic pressure are shown explicitly in
puiel /. Note the deep minimum in Pg during the LLBL

Sonnerup et al.: Magnetic Field Maxima in the LLBL

encounters (at ~1601 UT and ~1620 UT): this is the effect
discussed by Hall et al. {1991]. But it is also seen that the
dominant effect is the minimum in Pp in the LLBL: the
electrons make only a minor contribution to the overall
pressure balance. Also, the pressure comtribution from high-
energy particles (40<E<4(0) ke V), measured by the SULEICA
instrument onboard AMPTE/IRM. was negligible {L. Kistler,
private communication]. The occasional spikes in the Pyo,
curve (panel 6) are believed to be the result of aliasing
associated with different sampling of field and plasma.

In summary, items to note in this event are: (1) colocation
of field enhancement region and LLBL; (2) gradually
decreasing density of medium-energy ions moving outward
from the inner edge of the LLBL; (3) dropout of medium-
energy magnetospheric electrons at. or earthward of the inner
edge of the LLBL, a dropout that is more pronounced than the
decrease in medium-energy magnetospheric ion densitv: (4)
near constancy of total pressure.

3. Type Il Event

Figure 2 shows Type II behavior, i.e., magnetic ficld
enhancement in the magnetosphere proper, for the outbound
pass of AMPTE/IRM on October 8, 1985. This traversa! of
the LLBL/MP region occurred near local noon (1120 local
time) at -10.8° GSE latitude and at a geocentric distance of
about 11 RE. At the left edge of the diagram (0850 UT). the
spacecraft was in the magnetosphere, proceeding outward
toward the LLBL. An early gradual drop in electron
temperature preceded the LLBL proper but other plasma
parameters remained nearly constant there. However, a
gradual increase of field magnitude occurred, from 60 nT (Pg
= 1.43 nPa) at 0853 UT to about 70 nT (P = 1.95 nPa) when
the LLBL plasma was first encountered, at about 0857:10 UT.
At this latter time, Np started to increase rapidly, while N3¢
dropped abruptly and N2p more gradually to lower levels,
characteristic of the LLBL. There was an associated abrupt
drop in Te whereas Tp decreased more gradually as Np
ramped up from the magnetospheric to the LLBL level. Atthe
end of this ramp, around 0857:45 UT, the field magnitude
dropped abruptly; there was little change in the azimuth angle,
©®B. but the elevation angle, A8, changed from essentially zero
1o about +20°.

One may ask whether the spacecraft entered the
magnetosheath already at 0857:45 UT, in which case the
LLBL would have been traversed in only about 30 seconds.
For a low-shear MP the possibility of misinterpreting
magnetosheath magnetic discontinuities as MP crossings must
be kept in mind. However, in the present case there is
evidence to indicate that the spacecraft remained in the LLBL
for a long time, namely until about 0923:40 UT when a
sudden and substantial change in ficld angle, @B, occurred: in
the interval 0857:45-0923:40 UT, N2p and N2e, as well as Tp
and Te remained at levels intermediate between the
magnetospheric and the magnetosheath levels, a feature that is
commoniy seen in the LLBL. Within 10 seconds after
0923:40 UT, N2p and N2¢ dropped from those intermediate
levels to levels characteristic of the magnetosheath with the
electron fluxes falling below the detection threshold: there
were associated decreases in T and T as well as changes in
the temperature anisotropies of the kind often seen at the MP.
If, as we believe, the MP was traversed at 0923:40 UT, it was
marked by a substantial velocity peak of nearly 400 km/s
compared to a typical magnetosheath level of about 100 knv/s
and a magnetospheric level of 50 knmy/s. In fact, throughout a
good part of what would then be the LLBL interval, from
0857:45 to 0923:40 UT, Vp exceeded the flow speed in the
magnetosheath. Such a long-duration LLBL need not, and
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Fig. 2. AMPTE/IRM data during outbound pass through the
MP/LLBL region on October 8, 1985; format as in Fig. 1.

probably should not, be interpreted as an indication of a thick
layer: there are signs that the MP may have reversed its radial
motion soon after 0857:45 UT causing the spacecraft to
approach the inner edge of the LLBL around 0901:30 UT.
There are also indications of a pair of MP encounters around
0914 UT when a large change in field angle, @B, took place.
Following that change, a huge field maximum of about 85 nT
is seen. It would be difficult to incorporate this feature as a
semipermanent part of the LLBL; it seems more likely to have
been a temporal effect. Except for this particular structure, it is
clear from the figure that there was a substantial diagmagnetic
field magnitude depression, relative to the magnetospheric
field, over most of the LLBL(0857:45 to 0923:40 UT), but
with a pronounced field maximum near its inner edge. This
field maximum and the slow rise of the field, starting about
0853 UT, and continuing until the maximum was reached at
0857:45 UT is of principal interest to us.

During the interval 0853-0857:45 UT, the total pressure
(panel 6) gradually rose as a direct consequence of the rising
magnetic pressure. In this case, there is no indication that
decreases in the thermal plasma pressure were present to
counterbalance the increasing magnetic pressure: in fact, near
the end of this interval, right at the field maximum, the plasma
perpendicular pressure started to increase instead. The
pressure contribution from high-energy particles (40<E<400

1729

keV), measured by SULEICA, was not negligible for this
event: it dropped from about 0.1 nPa prior to 0850 UT to
0.05 nPa at 0855 UT and then to zero at approximately
0856:30 UT. However, this decrease cannot compensate for
the increase in Pyor. shown in panel 6 of Figure 2, from about
1.6 nPa a1 0853 UT to 2.4 nPa at 0857:45 UT. In the regions
of depressed magnetic field following after the latter time, the
thermal plasma pressure increased a great deal (while the high-
energy particle pressure remained zero) but did not fully
compensate for the depressed magnetic pressure. An
exceptionally large maximum in Py was associated with the
aforementioned large field maximum at 0919:20 UT. This is
an indication of two or three-dimensional structure and/or
temporal evolution associated with this field structure.

The most significant features of this traversal are: (1)
gradual field enhancement in the magnetosphere prior to the
spacecraft entering the LLBL, with the field maximum located
at the inner edge of that layer; (2) nearly constant level of the
medium-energy ion density, N2p, in the magnetospheric part
of the field enhancement region; (3) partial dropout of
medium-energy magnetospheric electrons and an associated
abrupt drop in electron temperature near the inner edge of the
LLBL; (4) a smaller drop in N2p at the inner edge of the
LLBL; (5) absence of total pressure balance in the interval
0853-0857:45 UT.

4. Discussion

The near constancy of total pressure in Type I MP/LLBL
crossings indicates that field curvature effects and temporal
effects play little role in them. The principal item that needs to
be examined is the cause of the depressed densities, N2p and
N2e, of medium-energy magnetospheric ions and electrons in
the LLBL. It is the depression in N2p that produces the main
defect in total plasma pressure in the LLBL, a defect that is in
turn compensated for by excess magnetic pressure in that
layer. Although we agree with Neugebauer et al. [1974] that
particles whose guiding centers are brought within one
gyroradius of the magnetopause may get lost to the
magnetosheath, and although the LLBL could perhaps at times
be as thin as a typical medium-energy ion gyroradius, we do
not see how the depression in the medium-energy electron
density, N2¢, which started substantially earthward of the
LLBL in the July 3 event but which more typically marks its
inner edge, can be accounted for in this manner. Possible
explanations for this behavior of N2, are:

(a) Energetic particle diffusion from the magnetosphere
towards the MP could be an important effect. From the
considerably steeper Np profiles it would appear that inward
diffusion of magnetosheath protons is a much less effective
process than outward diffusion of more energetic particles.

(b) Pitch-angle scattering with associated particle
precipitation could be responsible for the depletion of N2¢ and
N2p in the LLBL and perhaps for the depressed (relative to the
magnetosheath) thermal plasma density, Np, there.

(c) The LLBL could be on open field hines, i.c., ficld lines
with only one end in the ionosphere.

{d) Magnetosheath plasma could have entered onto field
lines in the LLBL at some upstream location where those field
lines were temporarily opened by reconnection, allowing
magnetosheath plasma to enter onto them and energetic
magnetospheric ions and electrons to be drained from them.
Subsequently, the field lines closed again, through a second
reconnection process [Kan, 1988], and were then transported
tailward along the magnetopause to the observation site. In an
alternate scenario [Cowley, 1981], the entire LLBL is
incorporated into the magnetosphere by cusp reconnection
during periods of northward interplanetary magnetic field; if
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formed in this manner the LLBL would be devoid, or partially
devoid of energetic magnetospheric particles.

{¢) Magnetosheath piasma could have moved onto closed
magnetospheric ficld fines by E < B dnft in some localized
region where the magnetosheath field was aligned with the
magnetosphernic field.  In such a process, the energetic
magnetospheric particle population would be pushed out of the
way. also as a result of E x B drift.

Without additional information, we cannot eliminate any of
these possibilities. However, if (c), (d) or (e) were applicable
in their purest form, i.e.. without the presence of particle
diffusion, then the density profiles N2p and N2¢ at the inner
edge of the LLBL would be much steeper than they are
observed to be. For this reason, we believe that diffusion
must play a significant role, although it seems likely to occur
in combination with one of the other effects. Also, the
steepness of the Np profiles suggests that the diffusion is by
microscopic rather than macroscopic turbulence, since the
latter would operate equally as effectively on the low energy
LLBL plasma as on the more energetic particles.

Characteristic features of Type II traversals of the
MP/LLBL region are that the magnetic-field magnitude is
enhanced well within the magnetosphere proper and that the
total pressure, Pior, is not constant in this region. We argue
that these effects are caused by field-line curvature,
presumably associated with waves or bulges on the
magnetopause moving past the spacecraft. It is well known
that short-duration overshoots in Pyotr occur during flux
transfer events (FTEs). The explanation for this effect is the
draping of ambient magnetic-field lines around an elongated
MP structure such as a flux tube (along with twisting of the
field within the tube). Farrugia et al. [1987] modeled the
draping effect in terms of a vacuum field, generated by the
superposition of the uniform ambient field component, By,
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Fig. 3. Field-line aspect ratio, #/[, and maximum deflection
angle, AA, as a function of maximum increase in transverse
field. ABy. for Farrugia et al. [1987] model. Field maximum
occurs at A,

transverse to the flux tube, a constant field, By, along the
tube. and a two-dimensional dipole field, representing the field
perturbation caused by the tube. This configuration has a field
maximum immediately above the tube. Using this simple
model, we can estimate the field-line deformation needed to
increase the transverse field by an observed amount. The
result is shown in Figure 3 in which the ratio of height to
length, h/l, of a draped field-line surface through the field-
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maximum point, A, is shown as a function of. AB /B, the
ratio of the enhancement of the transverse field component to
the ambient value of that component. Also shown is the
maximum transverse field-angle change. AA, observed by a
spacecraft as it travels parallel to the magnetopause towards the
field maximum. [t is seen that even gentle bending of the
field-line surfaces may lead to a substantial field increase. In
the October 8, 1985, event, a field increase from 60 nT to 70
nT is observed. Minimum-variance analysis of the magnetic-
field data in the interval 0853:00-0856:48 UT indicates that
most of this field was in the transverse (x) direction. Figure 3
shows that such an increase could be produced by a curved

field-line surface having aspect ratio i/l = 1/33. with a

maximum observed field deflection of AA = 6° occurring well
before the field maximum is reached. A negative deflection in
Ag of this order of magnitude is in fact seen to precede the
field maximum (panel 4 of Figure 2).

Even near local noon, it is not surprising to find the MP to
experience frequent undulations of this magnitude: multiple
encounters of a spacecraft with the LLBL/MP would be a
natural consequence. Thus Type II behavior should, and
indeed frequently is observed to, accompany such multiple
encounters (e.g., Figure 9 of Neugebauer et al. [1974)).
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