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region just Earthward of the magnetopause where current magnetic field models are
unreliable; (3) A three-dimensional time-dependent simulation model of Kelvin-Helmholtz
(KH) instability in the LLBL, including the effects of parabolic field lines with
different curvature in different parts of the layer. The simulations indicate that the KH
instability can be severely suppressed by this curved field geometry. When the instability
does develop, it leads to three-dimensional vortex/current structures that may be related
to auroral bright spots. In addition, the properties of the resistive tearing mode
instability at the subsolar magnetopause have been investigated theoretically, the principal
new element being the presence of stagnation point flow in the unperturbed equilibrium
and also viscosity. It is estimated that the subsolar region may sometimes be stable or
only weakly unstable. Finally, spacecraft data from AMPTE/IRM have been studied in an
effort to explain the occasional occurrence of magnetic field maxima in the LLBL. It is
found that two distinct effects may lead to such maxima: (i) a depression within the
layer of medium-energy ions of magnetospheric origin; (ii) field curvature effects
associated with undulations of the magnetopause itself.
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OVERVIEW OF RESEARCH

1. Introduction

The research conducted under this contact has been concerned principally with the
development of numerical models of the Earth's low-latitude boundary layer (LLBL), a thin layer

of antisunward flowing plasma, located immediately Earthward of the equatorial magnetopause
current layer which marks the outer boundary of the Earth's magnetic field. The work has been

concentrated in five areas:
1. Development of a self-consistent steady-state numerical model of the equatorial

portion of the LLBL on closed field lines, including coupling to the ionosphere via

field-aligned currents.
2. Development of a self-consistent numerical model of the force-free boundary

layer that provides the link between the equatorial LLBL and the dayside auroral

ionosphere.
3. Examination, by use of numerical simulation, of the stability of laminar flow in

the equatorial LLBL in the presence of coupling to the ionosphere and associated

nonuniform bending of the magnetic field lines in the LLBL.

4. Examination of resistive tearing-mode instability in a current sheet with
equilibrium viscous stagnation-point flow.
5. Examination of magnetic-field maxima observed in the low-latitude boundary

layer.

In the following sections of the report, a brief summary and discussion of the results

obtained in each area is provided. Details of the research are provided in five papers, three that
have been published and two more that have been submitted for publication. Also provided are

appropriate extracts from E. Drakou's Ph.D. thesis which is concerned with the LLBL model and
was developed with principal support from the present contract. All of these documents are

appended to, and form an integral part of, this final report. The research described in the five

papers has also received partial support from other sources, as indicated in their acknowledgment

sections.
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2. Numerical Model of the Equatorial Low-Latitude Boundary Layer on Closed

Field Lines

The low-latitude boundary layer (LLBL) is a narrow region, located in the low latitude

region immediately inside the outer boundary of the magnetosphere, the magnetopause. The LLBL
contains plasma, mostly of magnetosheath origin, that flows along the layer in the antisolar

direction at a speed comparable to the magnetosheath flow speed. This plasma flow is at an angle
- in the simplest model at a 90" angle - to the geomagnetic field in the vicinity of the equatorial
plane and thus it has an associated convection electric field, E&, which is projected, in part at least,
into the ionosphere at the footpoints of the geomagnetic field lines threading the LLBL. This

impressed electric field, Ei, drives a horizontal Pedersen current, Ji, in the ionosphere; the
divergence in Ei gives rise to a corresponding divergence in this horizontal current, i.e., it gives
rise to a corresponding magnetic-field-aligned current into or out of the ionosphere. This field-

aligned current connects the ionosphere to the LLBL, where it is again deflected to form a current
Je that flows across the equatorial geomagnetic field. In the ionosphere, the product EiJi > 0,
whereas in the LLBL the product Ee'Je < 0; thus the former region acts as an electrical load and

the latter region as an electrical generator, connected to the ionospheric load via the field-aligned
currents. In the simplest conceptual model, the projection of the equatorial electric field into the
ionosphere occurs by assuming the geomagnetic field lines to be equipotentials. In more realistic
modeling, a potential drop, A4'jl, along the field lines is incorporated via a field-aligned

conductance K, so that JH = KA011. In the post-noon LLBL, the field-aligned current, J11, flows
out of the post-noon ionosphere so that the potential drop A42'1 can accelerate electrons precipitating

into the ionosphere to energies comparable to those needed to explain auroral emissions. On the
pre-noon side, a potential drop A411 will accelerate electrons upwards and ions downwards instead.

A schematic drawing of the dawnside LLBL configuration and its coupling to the ionosphere is
shown in Figure 1. The equatorial portion of the LLBL, in which plasma inertia, pressure and
viscosity are important, is located in the region 1z1 : H. The force-free coupling region, where the

currents are entirely field aligned, connects to the LLBL at izi = H and then extends along magnetic

field lines into the northern and southern ionospheres. Note that the main field-aligned current
associated with the LLBL provides the portion of the so-called Region 1 current that is observed to
flow into the pre-noon (8 - 12 LT, say) and out of the post-noon (12 - 16 LT, say) sides of the
dayside auroral oval. Any field-aligned return current, at the outer edge of the LLBL, i.e., at the
magnetopause itself, could correspond to the so-called NBZ currents, observed at low altitudes
during conditions of northward interplanetary magnetic field (IMF). Note also that the actual local
time extent of the LLBL projection into the ionosphere is unknown a priori and must be calculated

in a self-consistent manner from the currents in the LLBL and in the coupling region.
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Figure 1. View from the sun of the dawnside low-latitude boundary layer and its coupling

to the dayside auroral oval. Coordinates (x,yz) are the usual GSM coordinates.

Finally, it is emphasized that the boundary layer is assumed to be located on closed

geomagnetic field lines, i.e., field lines that have both ends rooted in the Earth. There is
observational evidence that, at least during periods of southward interplanetary magnetic field
(IMF), the portion of the LLBL immediately adjoining the subsolar magnetopause is on open field
lines as a result of reconnection. The model developed under this contract does not apply to this
portion but it would apply to any remaining part of the subsolar LLBL, which is on closed field
lines: in such a situation, the outer edge of the LLBL described by the model would be located at
the first closed field line (i.e., the inner separatrix of the reconnection configuration) rather than at
the magnetopause itself. For northward IMF it is expected that most or all of the LLBL will be on
closed field lines; this may also be the case on the magnetospheric flanks, regardless of IMF
direction.

The model of the equatorial portion of the LLBL that has been developed under the present
contract is an outgrowth of earlier one-dimensional analytic descriptions of the LLBL on closed
field lines, developed by Sonnerup [1980], Lotko et al. (1987] and, in particular, Phan et al.
[1989]. The new model is numerical rather than analytic. It represents the simplest possible
extension of the Phan et al. model to include evolution of boundary layer structure and thickness in
the main flow direction (-x) along the magnetopause. From a computational viewpoint the model

is two dimensional in the sense that the equations describe behavior in the equatorial (xy) plane.
However, variations with the third coordinate (z) are described to lowest order, including a self-
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consistently calculated bending of the magnetic field lines in the xz plane as well as diamagnetic

changes of the field component Bz. This field deformation results from currents flowing in the y
direction across the boundary layer and being gradually deflected to field-aligned currents that flow
into the ionosphere; diamagnetic currents also flow in the x direction. The height, H, (in the z

direction) of the boundary layer above and below the equatorial plane should also be allowed to be

a function of x and y, rather than being constant as in the Phan et al. model, although this feature
has not yet been incorporated. The condition that should be used to determine H is that, at z =

the boundary-layer plasma pressure has dropped off to its ambient magnetospheric value.
The model, which is described in detail in Appendix 1, is based on four important

simplifications of the full 3D MHD equations: (1) steady flow; (2) the boundary layer
approximation a/d)y>>»I/x which leads to kinematic treatment of the transverse (y) motion and to
neglect of magnetopause curvature effects; (3) kinematic treatment of the plasma motion in the ±z

direction towards or away from the equatorial plane; (4) division of the model into three modules,
namely the equatorial LLBL module (the current generator), the force-free coupling module, and

the ionospheric module (the resistive load). At present, each module contains only the simplest
description of the most important physics. As mentioned already, self-consistent variations of
pressure, density and magnetic field with the coordinate z are included but the main computation is
in effect two-dimensional, dealing only with quantities evaluated at z=O. The equations governing

the complete model are

povo.Vvx = - dP.(x)/dx + Bz0Bxi/pOHr + (a/ay)(qavxf/ay), (1)

po + BzV2pi = P.(x), (2)

H(x,y)/Hr = {2pjO[pO(xy) - p.,(x)]/B 21(x,y)) '/, (3)

V.(p0Hvo) = 0, V'(Bzovo) = 0, vO0V(pO/Poy) = 0. (4)

The quantities po, po and Bz0, along with the velocity vo = (Vx,vy,O) are evaluated in the equatorial
plane; p..(x) is the magnetospheric plasma pressure, il is the viscosity (which may be of either

microscopic or turbulent origin), and Bx(x,y,z) = BxI(x,y)(z/Hr), Hr being a constant reference
value of H. This z dependence of Bx leads to approximately parabolic field lines in the model,

with field-line curvature that varies with the coordinate y, being a maximum at the magnetopause
and then decreasing as one moves further Earthward. In order, the above equations express:

momentum/force balance in the x, y, and z directions (the expression for H(x,y) given in the third
equation is derived from p + B%2/2pgo = po(x,y)); mass conservation; flux conservation; and
isentropic compression/expansion, respectively. To these equations are added jxB = 0 in the

coupling module, and the ionospheric laws jiii = K(Oe - Oi) m KAOg!, and a/iy(Ip4i/ay) = - jili,
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where 4e(xyH) and 0i(xi,Yi) are the potential distributions in the LLBL and in the ionosphere,

respectively. In the simplified version of the model produced under this contract, the LLBL height

H is constant, the conductance, K, along field lines is infinite, and the ionospheric conductivity,
.,,p, is constant. Relations between the coordinates (x,y) and (xi,yi), expressed via mapping

factors, can be calculated self-consistently in the coupling region, although in the current version of

the model the mapping factors are taken to be constant. In other words, the magnetic field

configuration in the LLBL itself, as well as in the force-free coupling region, would ultimately be

computed self consistently (albeit in the boundary layer approximation). Thus, a complete version

of the model would provide an accurate mapping along B from the ionosphere to the equatorial
plane. The field from a realistic model of the inner magnetospheric B field (e.g., one of the
Tsyganenko models) would then be used as a boundary condition at the magnetospheric edge of

the LLBL computational box. The mapping in the coupling region and the interface with a suitable

magnetospheric field model are described in Section 3 and in Appendix 5.
The boundary layer equations are parabolic and are therefore integrated by use of a

marching procedure (in the -x direction) that allows one to follow the development of the layer for
as large distances in the flow direction as available computer resources permit. Since the
downstream state obtained from one run can be used as the upstream state for a second run, etc.,

the boundary layer evolution can in principle be followed to arbitrarily large distances along the
magnetospheric flank. One of the difficulties associated with the numerical marching procedure is
that it cannot handle reversals in the main flow direction, i.e., in the velocity component vx. This
difficulty is associated with the inertia term pvxc)vx/a)x, which does not reverse sign when vx
reverses sign. The situation is similar to the integration of a diffusion equation backwards in time
which is numerically unstable. This problem has been overcome in the present code by neglecting

inertia near the flow reversal and in the entire region of slow sunward flow on the magnetospheric

side of the LLBL. Furthermore, in the present version of the code, the velocity profile, vx(x,y), in
the slow-flow region is obtained analytically by assuming that the plasma properties and the field
component Bz have reached their asymptotic magnetospheric values in this region. In other words,
they depend on x but not on y. This procedure decreases the size, along y, of the computational

domain, thus providing for substantial computational economy. Benchmark tests (Appendix 4) in
which solutions from the program are checked against certain exact self-similar solutions indicate

that the procedure adopted provides satisfactory accuracy.
Details of the numerical procedure, along with benchmark tests and a discussion of various

generalizations of the model, are given in Appendices 3, 4 and 2, respectively.
Sample results from a test run of the numerical code (with H = const, A4)% = 0 and constant

mapping factors, which represents its current status) are shown in Figure 2. A complete

presentation of results to date is given in the article by Drakou et al. F11994] which is reproduced in

Appendix 1.
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Figure 2. Results of trial run, using the present boundary layer model.

The boundary conditions used in Figure 2 include an accelerating tailward plasma flow speed,

vx(x,O), at the magnetopause, a small constant sunward convection speed, vx.., in the

magnetosphere, where plasma number density, n.., pressure, p., and temperature, T., as well as

Bz field component, Bz.., all decrease with increasing distance, -x, down the tail. Viscosity,

assumed in this run to be proportional to p/B, is included. Entrainment by the LLBL of

magnetospheric plasma is illustrated in the top middle panel where the Vy velocity component has

been artificially .-ugmented in order to make the effect visible. Viscous widening of the velocity

profile vx(x,y) is scen in the middle left panel, whereas, n, T, and Bz (bottom panels) have profile
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widths that decrease as one moves downstream. The field-aligned current shows considerable

structure (middle right panel) and substantial evolution (top right panel) in the flow direction. Note
in particular that a maximum in jz occurs at a particular x value, i.e., at a particular local time; such

a maximum has indeed been reported in the observational study by Iijima and Potemra [1978].
These results are shown here for illustrative purposes only; their details are expected to change

considerably when additional features such as field-aligned potential drops are incorporated.

3. Numerical Model of the Force-Free Coupling Module

In the narrow region that connects the equatorial LLBL to the ionosphere, the plasma

density, pressure, and velocity are sufficiently small and the magnetic field intensity sufficiently
high so that the electric currents connecting the LLBL to the ionosphere must be field-aligned to a

high degree of accuracy. Thus the basic governing equations in this region are

jxB = 0, j = (l/1io)VxB, V.B = 0. (5)
These equations lead to

S= ct(x,y,z)B = VxB (6)

where a is a proportionality factor which has a constant value along any magnetic field line so that

B.Va = 0 (7)

The latter two relations have been simplified by use of the boundary layer approximation

(described in Section 2) and a computer code has been developed for generating self-consistent

current and magnetic field configurations in the connection layer. Boundary conditions for the
code consist of specification of the magnetic field at the Earthward edge of the layer by use of an
empirical magnetospheric field model such as one of the Tsyganenko models and specification of a

field-aligned current distribution and magnetic field at the interface to the LLBL at IzI = H
(alternatively, these quantities can be specified in the ionosphere). Ultimately, this code should be

appended to the main LLBL code described in Section 2 but this step has not yet been taken.
When the two codes have been combined, the resulting code will be able to give accurate

information about the magnetic field mapping in the regions immediately Earthward of the

magnetopause where existing field models such as the various Tsyganenko models fail to provide
reliable information. However, the utility of the force-free boundary layer module is not restricted

to the LLBL: it has independent applications to any field-aligned current sheets in the

magnetosphere.
A detailed description of the force-free boundary layer model is provided in Appendix 5,

along with a benchmark test and a simple application using measured Region 1 currents above the
ionosphere [Iijima and Potemra, 19781 in conjunction with a dipolar magnetospheric field. These
results suggest typical azimuthal deflections of dayside magnetic field lines in the range 21-26'.
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4. Kelvin-Helmholtz Instability in the Low-Latitude Boundary Layer

The stability of the plasma flow in the LLBL is of importance for the construction of any
realistic model of this layer. Stable behavior implies that any transport of momentum or mass

across the layer is caused by microscopic plasma processes while unstable behavior implies
transport by eddy viscosity and eddy diffusivity. To date, studies of the Klvin-Helmholtz (KH)
instability relevant to the LLBL have assumed the unperturbed magnetic field lines to be straight.
However, in a realistic model of this layer, the currents flowing across it and being gradually

deflected into field-aligned currents, as the Earthward edge of the layer is approached, produce
bending of the field lines into approximately parabolic shapes with vertices pointing in the

(antisolar) flow direction (see Figure 5 of Appendix I). Parabolas close to the magnetopause have
larger curvature than those close to the magnetospheric edge of the LLBL so that one may expect

interchange motions to be impeded.
We have carried out a fully three-dimensional simulation of a velocity shear layer of the

hyperbolic tangent type in the presence of coupling to the northern and southern ionospheres,

represented in the simulation model by two parallel electrically conducting plates. The current
system produced by this coupling leads to parabolic field lines of opposite curvature on the two

sides of the shear layer.
The results of the simulation are reported in detail in Appendix 6. In brief, it is found that

the field line curvature, if substantial, may severely suppress the KH instability. When the

curvature is less strong, as in the dayside LLBL, the instability proceeds albeit at a somewhat
reduced rate compared to the case of straight field lines transverse to the flow, and leads to the
formation of three-dimensional vortex/current structures that may be related to observed auroral

bright spots.

S. Resistive Tearing Mode

The behavior of the resistive tearing mode near the subsolar magnetopause has been
investigated with the objective of finding out how the presence of stagnation point flow and

viscosity influence this instability. The unperturbed equilibrium is an exact solution of the
incompressible MHD equations, including resistivity and viscosity so that the stability properties

can be investigated even for small magnetic and viscous Reynolds numbers where the traditional
tearing mode analysis is invalid. The results indicate stability of the tearing mode for magnetic
Lundquist numbers, S, (based on the Alfvdn speed) less than 12.25, regardless of viscous
Reynolds number, Re, and for S < 18.3 when Re = 0. For large values of S and Re, the classical

asymptotic growth rates of Furth, Killeen and Rosenbluth are recovered. It is also found that the
stagnation point flow stabilizes long wavelength perturbations so that the tearing mode has a cut-
off at small as well as at large wave numbers. The main effect of viscosity is to reduce the growth
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rate of the instability, in particular at short wavelengths. The stabilization at low magnetic

Reynolds numbers is relevant to the subsolar magnetpause where estimates of S are in the rang 2

< S < 100 [Lee and Fu, 1986].

6. Magnetic Field Maxima in the LLBL

It has been known for a long time that the magnetic field often exhibits a maximum

immediately Earthward of the magnetopause instead of the minimum one would expect from the

diamagnetic effect of the dense plasma in the LLBL We have investigated this effect by use of
plasma and magnetic field data from the AMPTE/IRM spacecraft and find two fundamentally

different causes for the excess field: (i) a depression within the LLBL of the density of medium

energy ions of magnetospheric origin and (ii) field curvature effects associated with undulations of

the magnetopause itself. When case (i) is at hand, medium-energy electron fluxes are also
depressed, suggesting that the field lines in the LLBL may have been open. However, this is not

the only possible explanation for the absence of energetic particles.
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Self-consistent steady state model of the low-latiude boundary
layer

E. Drakou,' B. U. 0. Sonnerup, and W. Lotko
Thywr~ohool of Engineering, Dartmouth College, Hanover, Now Hampshire

Results are presented from a steady sane numerical model of the low-latitude boundary layer (LJLBL) on closed
field lines and its coupling to the dayside aurorul ionosphere. In die model die boundary laye approximation is
used, die result being that inertial forces ane take n ato account only in fth main flm direction (-z) where they
are balanced by pressu= forces, J x 3 foirces anid viscous force. Motion in the transverse directions (V andl a) is
treatd kinematically. the force balances in these two directions being purely staic. Compurationaaly. die model
is two dimenisional, describing the motion of plasmas and f mroen-in maneti fiel in die equatorial (xp) plane
bat allowing for lowest-order polynomial variation of some quantities with die coordinat (s) perpendicular to
that plane. The plasma expands and compresses isentropicaily; the magnetic field is calculated self-coosistendly,
which leads to approximatly parabolic fieldl line shape in planes; Parallel to dhe magnetopause (the za plan).
with maximum field curvature near the mageompaus edge of the LLBL Coupling to the ionosphere via region I
field-aligned currents is included. Thle effects of the ionosphere are represented by two parllel resistive plantes at
fixed height above and below the equatorial plane. The model can be used to investigate dhe inifluence of various
physical parameters. for example, viscous and magnetic Reynolds onumber.sand of boundary conditions at the
mag*netopause and in the magnetosphere on the LLBL development in the -x direction. Special attention is
given to viscous effects which. under suitable circumistances, lead to a region I current dhat first increases and
then reduces with increasing longitude away fromt local noon. Asymptotic imatcing of the antisunward motion
of the cool LLDL plasma to sunward convection of hot plasma, in the rmagnetosphere is illustrate along with the
entrainment of magnectospheuic plasma by the antisunward LLBL flow.

INTRODUCrloN tinlly on open and partially on closed field lines: our moidel applies

The low-latitudle boundary layer (LLBL) is a narrow region of 0only to the pu on closed ield lines. As one moves inward from
tailward flowing plasma located in th antshee mei the magnetpopuse across the LLBL. the density faills; from a high
ately inside the mag~nesopause current sheet, at lo geommgetic mag etoseah like value to a low magnelospheric value, while the

latitudes. t wasfirst bservd by omes e aL [9721 nd Arisesti slightsuyly(althoughy ( alh field f enhancementen
lattuds.It asfirt osevedbyHeuer t L (971 ad kaofu bs sometimes seeni inseand (Sommevrap at aL. I99D and the plasma

et aL (19731 along the flanks of the geomagnetic tail. Sincethena pressure falls accordingly [Sckapkeet aL. 1981 ]. Tile dense plasma
numberof atitho ban iscu sedbeainaldaft OW theoretical in the LL18L appears to be mainly of maignetosheath origin. How
models of the LLDL From them studies we know the following: this plasma enters the LLBL is not yet clear. It may leak diffusively
the LLBL is intermutteady present at almost all local dimes along over portions of the magnesopause surace 17Tairuamui and Theome,
the entire dayside portion of the magrietopairse. It was also recently 1982] or elawer onto closed field lines in the cusps [Paschnmnu et
founld to be extended to evening local times (%och er aL, 1993]. Its al., 1976] or at the edges of a dayside recoamectIonI segment of
thickness appears to increase, on average, with increasing distance th fgetpu t is als possible that, during northward 110.
from the subsolar pon [Ekanounu and Mows.r 1979], although dhe nigeohahflux tie eonc ntenrhudsuhbyn
growth may he slow beyond the dawn-dusk meridia plane. A WP "h cup an thbenshte androrient ind othem dselesth beventudl

ical boundary layer thlickness at thtlcaini b0.-1 Ra [Eksa becom assimilated with other nagneop i fieAM linies [Dumpey,
and Hones. 1979; Scopke et aL. 19811. When the interplane- 193fl" y.dwem,18;SugmdRssl 92.A oe
tary magnetic field is northward, the LLDL appears tikrand is by63 iCoel* eamd(1917. I ;ScopkeeaLdw I191) Asm u n dHotes

thought to be located on closed fieldlins thamdt is, on magnetic field (171,si otes th coo de-s maneshead lie plasma in
lines that have both fess in the ionosphere (Hoe nreut et aL. 1978; the LLBL is usually mixed to some extent with hot ltenous Iag-
Mimlias et aL. 1985; MirchetleaL. 1987. 1Tuver et aL 1"91]. It nwpei lsra

is this kind of LLBL wie are modelings in the present paper. During There are also ionospheric signiatures of the LLBL [EAsuamm er
periods of southward interplanetary maignetic field the situation is azL. 1976]. These sipaures are controlled to a grea extent by
less clear reconnection may dominate in which case the LLBL on the plasma flow in die LLDL which is mostly in the antisunward
closed field lines may be mDostlyibShL The experimerital evidence directi although a region of relatively slow suiward flow, with
in this case is not conclusive, bul it indicates that the layer is par- occasions, larg velocity peaks appears lo he present towards; dhe

_agetospheric edge of the layer (Williams et *L. 1985; Mitchell

'Now at Herzberg histitue of Asirophyhics. National Research Council et aL, 19871. The flow is mainly perpendicular to the magnetic
of Canada, Onews. Ountario. field and therefore creats an electric field across the LLBL Tile

resulting electric potential differences amap, at least Approximately.

CapytW~ 199 by doe Amuricas Gesphy"ia Union. along die mnagnetic field lines to the ionosphere where they drive
horimotal ionospheric currents. Where the ionospheric electric

Fhoper wmnw M9SA02004. field changes with latitude, the above currents have to he partially
OI411-1227/949MIA-00)9MS.0 deflected into field-aligned currents, thus fonuing the day"id parn
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of the region I current system [ijimna and Potentr, 1976a. b]. the ionosphere ar important features of the model because they pro-
These currents flow in a narrow layer into (on the eveningside) vide the mapping along LLBL field lines from the equatorial plane
and out of (on the momingside) the LLBL. where they are again to the auroral ionosphere. However, in the simplified version of the
deflected to flow across the magnetic field in a direction opposite model to be discussed here the lumped properties of the two iono-
to the electic field there. In the connecting region between the spheres and the low-pressure (low plamn beta) regions between the
ionosphere and the LLBL. field-aligned potential drops ae likely ionospheres and the LLBL proper ae replaced by resistive parallel
to occur. In the curren system described above, the LLBL acts as plates located a fixed distance. 2Ho. apart; as a consequence, the
a magnetohydrodynamic generator while the ionosphere plays the magnetic mapping is not included in a self-consistent manner and
role of a dissipator. Recent observations [Woch et aL, 1993] provide field-aligned potential drops em excluded.
added support for the notion that the LLBL is source of the dayside The paper is organized as follows: The mathematical formulation
region I currents. of the model is lpesented in section 2 along with the assumptions

Compared to some other interfaces in the solar wind- and approximations used. Section 3 contains a description of the
magnetosphefic system, relatively little theoretical work has been numerical procedure. In section 4 we present three runs of the nu-
devoted to the LLBL Perhaps the first qualitadve theoretical model merical code. and in section 5 we summarize the results and discuss
was proposed by Coeman [19711. Easoman et aL [19761 discussed generalizations ofthe present model that remain to be implemented.
the LLBL in detail with emphasis on the role it plays in transferring
mass, momentum, and energy from the solar wind to the magneto- DEVELOPMENr OF MODEL EQUATIONS
sphere. In that work. coupling to the auroral ionosphere plays an The geometry of the system to be studied is shown qualitatively
important role and the role of the LLBL as a generator is explained. ihe g ure of the st obstde i ewn fromtthe
Kan and Lee (19801 studied imperfect ionosphere-magnetosphere in Figure e . Figure la shows the odawnase LLBL, viewed fo m the
coupling in a simple evolving boundary layer, using concepts of north ecliptic pole. The coordinate system is as follows: the p axis
field-aligned potential drops developed by Fridman and a s a s the LLBL and points inward toward the magnetosphere
[19801. Chiu and Cornwall [ 1980]. and Lyons [ 19801. Their model
is nonviscous, the result being that the ionospheric drag gradually
slows down the boundary layer plasma as it moves in the down-
stream direction. The role of viscosity in the layer was studied by
Sonnerup [19801 in a one-dimensional steady state model. Louko
et a. [19871 reexamined this model by including a simple con-
ductance law to describe the relation between field-aligned currents Deum" UAL
and field-aligned potential drops. In those papers, induced magnetic
fields were not included. Weietaa. [1990J examined the formation %@Sim 1 0 n
of vortices and other turbulent smtctures in the LLBL caused by
the Kelvin-Helmholtz instability. In their study the plasma flow
was assumed incompressible, two dimensional, and time depen-
dent and the magnetic field was taken to be constanL Their model
included viscosity. Wei and Lee [19931 extended that model to
include coupling to the polar ionosphere. Siscoe et aL [19911 de- .a.
scribed the coupling of the LLBL model of Lorko et aL (1987] (a) V
to a high-latitude boundary layer model, and Siscoe and Maynard
[1991] also included coupling to the region 2 current system.

Following the ideas of Sonnerup (1980] and Loiko et aL
[1987]. Phan et aL [1989] developed a fully self-consistent one- z WyA)
dimensional model of a viscous LLBL in which the magnetic field
deformation in the layer, caused by the currents in it, is included.
The present model, some aspects of which have not yet been nu- Ho
merically implemented, is an extension of the analysis by Phan et
al. to allow for slow variations of the layer in the flow direction
(the negative z direction). The boundary layer occupies the region
V _0, starting at the magnetopause(g = 0), where the antisunwardflow velocity has a maximum value, and extending earthward into•

the magnetosphere, where the velocity first reverses sign and then
asymptotically approaches a low sunward magnetospheric value as
v - 0o. The surfaces x = i-Ho(z,p) represent the northern
and southern edges of the layer, where the magnetic and plasma
pressures reach their magnetospheric values. The model includes x
self-consistent calculation of the magnetic field in the layer from (b)
the currents via Amplre's law. The normal component of the cur-
rent is continuous at the surfaces z = *Ho, whereas the j, current Fig. I. Boundarylayer geometry. (a) Dawnsidelow-latitude boundary layer
switches abruptly to zero there; for Izj > Ho the current is field- on closed field lines, viewed from above the north ecliptic pole. Velocity

aligned. As a result of the cross-field currents, the field lines have profile across the layer is shown qualitatively. including a tegion of sunward

approximately parabolic shapes in the boundary layer. This defor- flow. Region I field-aligned currents flow into the ionosphere. (b) View of
the LLBL from the Sun: the layer extends to height Ho above and below

mation of the magnetic field along with the deformation caused by the equatorial plane. Pamrbolic magnetic field lines arm shown; parabolas
field-aligned currents in the coupling regions between z = *1Ho and close to the magnetopause have Ilrer curvatume.
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the x axis is directed south to north in the equatorial plane; and nentof the magnetic field is of the orderof (61L)Bo or (6/H)Bo.
the x axis is perpendicular to the previous two axes and points in As mentioned already. another consequence of the boundary layer
the upstenam direction. The spanwise width of the LLBL, which approximation is that the magnetopause surface curvature can be
is very small in comparison with the scale of the curvatur of the ignored if the charatristic thickness 6 is much smaller than the ra-
magnetopause and geomagneic field lines and with the scales for dius of curvature, R. a condition that is well satisfied for the LLBL.
variation in the streamwise direction and for laring of the magne- Thus, neglecting terms of order 6/A compared to terms of order
topause boundary. permits a simple mapping of the slab (z, a. z) unity, one is allowed to use a Cartesian coordinate system and the
coordinates of the mathematical model described below onto nat- flat geometry shown in Figure lb. By neglecting terms of order
uml curvilinear coordinates such as (L, M, N) boundary normal 62/L 2, 6I/HL. and 621fH2 compared to terms of order unity and
coordinates. In Figure I a velocity profile across the layer is shown by setting us = 0, the three components of(2) can be written in the
qualitatively, the main flow being in the -z direction, with slow following approximate form:
sunward flow in the magnetosphere. Closed magnetic field lines
connect the LLBL to the northern and southern ionospheres. In the a
coupling regions, fieid-aligned currents occur. Figure lb offers a p(v, ' + vy•)vz -
view of the layer form the Sun; it indicates that the LLBL extends a

to a height Ho above and below the equatorial plane in the z di- ap I BB. BB. I _B . Ba .
rection and that the magnetic field lines am bent into appmximme - + -B (W - +B-) B + y-(it- (6)
parabolas with increasingly large curvature as the magnetopause is IS Yr (6)

approached. in the current version of the model, electrcally con- .I BB BE
ducting planes at a = :Ho with appropriate conductivity meused 0 57V - -. (B B - + Bs )7)

to represent the ionospheric subsaMe and the low-pressure regions po a,
between it and the effective high-latitude boundaries of the LLBL 0 p +I B - I OB. B- M

Boundary Layer Approzimbaiofm PC I P0 8: Ol

The plasma flow in the equatorial LLBL is governed by the steady
state mass and momentum conservation laws. the isentropic law. the In this approximation. inertia and viscous forces enter only the z

induction law, and the law of magnetic flux conservation: component of the momentum equation. in the I and z directions
the equations express a static balance between the Vp and j x B

V-pv = 0 (1) forces. The motion in I is treated purely kinematicaly via the mass
conservation law (1). The viscous term in (6) has been assumed

pV • Vv -p + -(V x B) x B + V • r (2) comparable to the inertia terms, which is ae provided the viscous
-0 Reynolds number, Re = pVoL/i7 , is of the order of L2162: over

lge flow distances, one expects the boundary layer thickness to
V V (PIP') = 0 (3) adjust itself to satisfy this condition. In the same approximation.

that is, again neglecting "/V, 6L21LH. and 6v/H2 , the currents in
V x (v x B) = 0 (4) the LLBL are given by Amp•re's law:

V.B O. (5) I aB, (9)

Here p. p. and v ame the plasma density, pressure, and velocity, 00 011
respectively. Also. r is the viscous stress tensor. B and Po are the
magnetic field and the vacuum permeability, respectively, and -= r = 8. 8_ 8(
c,/c,, is the ratio of specific heat. For simplicity, we have neglected ' a a(
resistivity as well as beat conduction and viscous dissipation in the B,
LLBL These effects may in realt be of some importance and i, = (11)
should ultimately be included. gao al

As mentioned already, the effects of the two ionospheres are
represented by parallel resistive plates at fixed height z = +Ho.
These plates ae assumed impenetrable in the present version of the We proceed now to expand all quantities as power series in terms
model so that u, = 0 at z = +Ho. It will be shown in the next of the z variable. We assume a boundary layer symmetric with
subsection that, in the appioximate equations describing the LLBL. respect to the equator (the plane z = 0) and express each dependent
this boundary condition implies ,u = 0 in the entire layer, that is. variable in terms of even or odd powers of z. according to whether
for -Ho :5 a :5 Ho. they ae symmetric or antisymmetrc with respect to the equatorial

The boundary layer or narrow-channel approximation is now plane:
applied to the above equations, taking advantage of the fact that
changes across a narrow layer (in the y direction) occur on a scale :2 = 10(0, Y) + V.24, Y) -T + "
length 6. which is much smaller than both the scale length L, for )2
changes along the main flow direction (t), and the scale length H,
for changes in the third direction (z). From the mass consem- V, = Vyo(Z,1) + v92(Z,v) -Z +...;
tion law it then follows that, if the characteristic velocity in thez H2

direction is Vo. the velocity in the I direction is of the order of
(6/L)Vo. Similarly, from the flux conservation law it follows that (12)
if the characteristic value of B. and of B, is Bo, then the I €ompo- H H2
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B, 5 (:,Y) 8 + B3 expectation tha in the LLD.L the plasma pressure should fall from

M H3 ~ a high value in the equatorial phricetoward Iowarvalisesa die high-
latitudeedge(z = *Ho)oftheLLBLalthoughthem ag pberic

B i + pressure level is not actmuly reached in the present model due to
H= H3 B z) B ,) + .the assumptionofconstant H. Exzension of the modeltoincludea

variable boundary layer height so that the plasm pressure reaches
2its ambient magnetospberic level at x = *eH(:, y) is planned, as

B. = Ba i) +Rz(zi)•3H+... (13) discussed fuihe in section 5. It is also noted that (8) contains
B,; this field component. which is of the form Byi(z/H), can be

S=2 calculated from B., by use of(S) and assuming B.2(z, 1) = 0.
p p(z)+ (.) +...; al. the density must be assumed to vry with as

well. falling toward a lower magnotospheric value at z = *Nlo.
)_2 which means that. in addition to the eum Po(z, Y). it has a neg-

p Fo(zv) + p2(z, ).-H... (14) ative quadratic term in z as well. In the present model. where

In the model we shall keep only the lowest-der temintheexpan- all higher-ordr em in the x expansions for velocity and mag-

sions of velocity and magnetic field, that is. terms independent of netic field am neglected. the quadratic term in p can be oh-

x for symmetric quantities and terms proportional to z for antisym- tained from the mass conservaion law. which then takes the form

metric quantifies. Fromthe boundarycondition v. = Oat: = :kHo (vuo8/lz + woa/Oly)(p2/po) = 0. together with the known up-

it then follows that v,, = 0. that is. thatvs = 0 throughout the stream density distribution. Thus the lowest-onder truncation of
boundary layer. We emphasize that. in contrast to the nonevolving the s expansion of velocity and magnetic field allows us to calcu-

model of Phan et aL (1989]. the lowest-order terms do not form an late second-order turms in density and pressure by requiring mass

exact solution in the present model. We can nevertheless evaluate conservation and exact force balance in the x direction to be main-

all equations at x = 0; corresponding quantities are denoted by rained. If the expansions of v and B ae carried to higher order.

the subscript zero. It is then found that (5) and (8) am identically the iowest-order terms in these quantities and the terms describing
satisfied and that (1). (3), (4). (6), and (7) become density and pressure would all change. Therefore the x expansion

used is not exact, in the sense that each term retained is not the same
a(os) + -0 (15) as the corresponding term in the expansion of the exact solution in

ay 8P~"~' ~ a power series in z; rather it represents a polynomial approximation

to the exact solution.

po(Vo -- + Vo-),,o = The system of (15). (16). (17). (18). and (20) contains six un-
8z al known quantities. namely zo. tyo, B2,1 B,.. pe. and po. Thus

we need one more equation to form a closed set This equation4P0 (:) 1 -(q to-)
dz +-BB,+ -a •(o16) will be provided by coupling to the ionosphere.as discussedin the

H a3' (16) following subsection; it will lead to an explicit expression for B,,
in the x momentum (equation (16)).

BO + = P.(Z) (17)

2juo Ionospheric Closure

= 0 (18) As mentioned already, in the present simplified model, the

8Z~~ + l mapped, lumped properties of the ionosphere am represented by

two parallel resistive plates at fixed height z = :k4g, that is. at
the top and bottom of the LLBL. In the remainder of this paper we

8(Bovo) + (Bovo) = 0 (19) choose the characteristic scale height H in (12)-(14) to be the fixed
ax + l boundary layer height Ho. The net current flowing on the surface

In (16), qo is the viscosity coefficient evaluated in the equatorial of the plates at z = *IHo may be expressed by

plane. and in (17) the quantity P..(z) is the sum of the plasma J. = ZEZ, J, = ZE, (21)
pressr and the magnetic pressure in the equatorial plane. This
total pressure is independentof Y and therefore has the same value where J,., is the surface current density and X is an effective
in the boundary layer as in the magnetophere, where it can be height-integrated conductivity representing the lumped response
considered to be known for the purposes of our model. By use of the ionosphere and the low-presum (low plasma beta) regions
of (15), equation (19), which represents the z component of the between z = *-/o and the ionosphere. The components of the
induction law, can also be written in the form electric field, E, and Ey, imposed on the plate by the boundary

S. B, 0  layer dynamo, am given by
(V.0 +voC- O (20) Es = E, I,-*,- = -v,,B I,-.*o - (6/L)E,

The z and V components of the induction law ae identically satisfied
at • = 0. Finally, note from (18) and (20) that po/po and BOlpo E, = Ey I.-m,. = f,,B. I,-.*,- (22)

ame constant along streamlines. An expression for the conductivity of the resistive plates that repre-
Equation (8) can be used to estimate the plasma pressure in the sent the ionosphere in our model was given by Sonnerup (19801:

LLBL for - 0, after the magnetic field is known. This equation BA dz, 2
implies that p has a negative quadratic term in s. in addition to the Z =- Hoop =z p -§(=) x
term po(z, j3). which describes the pressure in the equatorial plane. dz
The variation in pressure described by this term is consistent with the Here Ip is the height-integrated ionospheric Pedersenconductivity.
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Also, B. is the ionospherc magnetic field; B is a representative NUMeRCAL PRocEDuRE
value of the magnetic field z component in the equatorial LLBL; Fim• Dierene Schme and Boundary Conitho•
dz,/dz is the ratio of a length element ds. in the ionosphere to a
corresponding length element d: in the LLBL and x is a coupling For the solution of the five coupled equations (15). (17). (18).
factor which is unity when the magnetic field lines that connect (20). and (26), of which four ae partial differential equations with
the LLBL to the ionosphere am equipotentials. In its present form independent variables z and 1. a Ciunk-Nicolson implicit finite dif.
our model allows for field-aligned potential drops in the coupling ference scheme was implemented, similar to marching procedures
region between the LLBL and the ionosphere only in the average that have been used in the past for fluid mechanical boundary layen
sense obtained by letting the factor x < I. This restiction will [e.g..AndersonetaL, 19841. Tbecomputationaldomainisarectan-
be eliminated eventually, as explained in section 5. In principle. gular region in the zy plane. The lines I = 0 and yt= .. represent
the effective conductivity I is a function of z and Y. because the the magnetopause and magnetospheric boundaries respectively. At
mapping factor dz,/dz, as wel as B and Zp vary in space. those boundaries, appropriate boundary conditions are imposed. as

We now impose current continuity at the top of the LLBL. that described below.
is, at: z = *o,. which leads to At I = 0 the velocity zo(z, 0) =- Vo(z) is specified from an

appropriate model of the magnetosheath flow (located in the region
t: I HO = i. + -ail a, i (23) p < 0). assuming vzo to be continuous across the magnetopause.The model in principle allows for a specified plasma flow normal

In this expression. J. is smaller than J, by a factor of the order of to the magnetopause. but in the results reported here we have used
6/L; thus 8J./1z is smaller than /Jait by a factor 62/ 2 and the condition vso(z, 0) = 0. This means that the cold plasma mass
can be neglected. Using (11), (21). (22). and (23). we find flux in the LLBL remains constant as one moves downstream from

B, J,.H.o = :Fpo(ZXvB.) I,=i*-o + c(z) the computational boundary at z = 0 where velocity, magnetic
field, and plasma properties are specified as functions of y. subject

where c(z) is a constantof integration, and the negative and positive to certain consistency requirements to be explained presently. The

signs on the right side of the equation correspond to z = +Ho or restriction v1o(z, 0) = 0 also means that the upstream station can-
z = -Ho, respectively. In evaluating the left side of the above not be located at local noon in the magnetosphere, unless a delta
equation. B. 3 and all higher terms in B. wil be ignored, as before, function mass source for the LLBL is assumed to be present there.
so that B. =- B2 (zfHo). Similarly. we use only the lowest-order In principle, the initial conditions at z = 0 could be chosen to
terms.•o and B~o. in evaluating the right-hand side. the result match data from a satellite traversal of the LLBL. the evolution
being of the LLBL downstream from the satellite crossing could then be

B. 1 = -poZlvsoBo + c(z) (24) determined by the model.
At y = V. the z velocity vo,. the mapitic field Bo. the plasma

The function c(z) is given by the boundary conditions at I = oo density and pressure are fixed to their specified equatorial magneto-
(forconvenience, the interface betweenthe LLBL andthe magneto- spheric values, ,..(:), B 4.(z), p..(z) and p4.(z). respectively.
sphere is thoughtofas located at large but finite I value: I = jr.): and are assumed to approach those values asymptotically so that
at that location vo assumesthe lowmagnetospheric(sunwardloran- (=/8p)5 .. =0. For reasons of mass conservation the r compo-
tisunward) value vz. (z), the magnetic field Bo. becomes Boo (z). nent of the velocity vy.0 cannot be specified: it is determined from
B., becomes B.,0. (z), the conductivity becomes ZL. and the cur- the numerical calculations and represents entrainment of magneto-
rent j, becomes jy.o(z). That the latter quantity can be nonzero spheric plasma (vyo < 0) or mass feeding of the magnetosphere
indicates that. as is the case in the geomagnetic tail, a net current from the LLBL (vo > 0). Finally. at the downstream boundary.
may be flowing across the magnetic field, from the LLBL into the located at z = L. say, no conditions are needed as a consequence
magnetosphere, or vice veusa. Equations (10) and (24). both evalu- of the parabolic nature of the problem.
ated at y = co, can now be combined to eliminate Bwa., the result The finite difference equations comprise a non-linear algebraic
being system of equations that involves all quantities to be calculated

across n grid points in the I direction, at two consecutive steps

c(z) = p@B.o.o.B + pHoj,. + H in the -z (main flow) direction. As mentioned already, initial

), (25) conditions for various quantities are imposed. Note thatpo(0, W) and

Substitution of (24) and (25) into (16) gives the foolowing final B~o(0, 1) must bechosentoobey(17). Onecanalso showthat the

form of the z component of the momentum conservation law in the initial velocity profile vo(0, jr) cannot be chosen independently but

equatorial plane (z = 0) is determined from the other variables. After Bao(0, g), po(0, N),
po(O, V), and vo(0, y) have been chosen, vuo(O, 1) is obtained from

po(vo- + V•,O.)t,.O = the equation:

+V0o(0, Y) = VO(0, 0) + ,- I
dP..(z) + (c..uzsB.. + . + B- )Bo

-dzV8 pVf (26 ucB2cv~o - {o~r.e 2 Bc. + ji,co + Iý _)B
Io dxo ,

- cB&'ouz + ±(9 ý!-•-) • (26) od

a++_(a 'at '°O)] (27)

Note that c, as defined in the equation following (22), can in prin- d+ 7 *+ (a j7,
ciple depend on z and N, although oa oo = const is used in 00

the calculations reported here. Note also that all magnetospheric Equation (27) is derived as follows: The term av•o/az on the left
quantities (denoted by subscript co) are functions of z. in general. in the z momentum equation (equation (26)) can be substituted
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from the mass conservation law (equation (15)). The term aplalz approxinmation is consistent with slow-Sow convection models of
will then appear, but the system of (17), (18) and (20) can be theinnernmagnelophere(e.g..theRiceconvectionmodel)towhich
solved for apel/z as well as aBBo/8z and opo/8z. By further the LLBL model should eventually be mached.
substitution of 8 po/O: into (26). only derivatives with respect to y To implement these approximations, we have terminated our
will appear. Equation (27) follows by first forming the derivative regular computational box at V = yb but appended tO its magne-
(d/dV)(vyo/vzo) and then integrating. It is evident that (27) is true. tospheric side what we call an asymptotic box. oo _ p > ?W.. in
not just for z = 0. but for any value ofx. which the inertia term psvoavo/asz is neglected. The location

After the problem is initiated at z = 0 the solution is found si- y = I6 is different in every step of the calculation along the -z
multaneously at all grid points across the boundary layer at the next direction: in the runs presented here it is defined by the require-
step in the main flow direction (- x). by solving the nonlinear alpe- ment that vro at dta location be 9 kmns or less. in the antsunward
braic system mentioned above; this solution is then used to march direction. Furthermore. in the asymptotic box we take po. po. and
forward. The system is solved by Newton's method (Bwudn and Bo to be independentof r so that po = p(z).po = p(z). and
Faires. 19891. which is a fixed point (iteative) procedure requiring Bo = Bo(z) there. With the above assumptions the resulting z
an initial guess close to the actual solution. Since the variations of momentum equation becomes
the boundary layer in the: direction are slow. this guess is provided av.0 2 v-o
by the values at the previous step in z. povpo-•-- = -ooo(VSO - Voo)B•O + goo -ty- (28)

Asymptonc Region Equation (28) follows from (26) by setting vsoavo/Bz equal to

It is one of the goals of the model and the numerical scheme zero and by noticing that the third term inside the parenthesis of the

to be able to predict not only the antisunward LLBL flow but also right-hand side of (26) cancels the magnetic pressure par of the term

variations of slow sunward flow observed on the earthward side of -dPo(z)/dz. Ti e plasma pressout pan of that term is canceled

the LLBL. It should be noted here that. partly for instrumental ea- byp joB if onequires the solution for va to be independentof

sons. some ambiguity exists in the data regarding the latter region: yo be Ice (z). because it is assumed that e depends in a general way

SckopkeetaL [(198 11 reporta haloremoon adjacent to and earthward tobq.()beasitsasu d atgdpnsinaeedwy

of the LLBL. where the density and temperature ar intermediate upon po, po. and Bo, all of which have become independent of y
betweenthosen the LLBL and in the magnetosphere anderedte in that box. If the y variation of v~o is neglected in the asymptoticbetween those in the LLLadi h aetshradwhere the box, equation (28) has a simple analytic solution, namely

velocities are, for the most part. small and have variable direction.

However, sometimes they find time intervals in which the flow t = v'.s(z) + [v(.(z, pt,) - vz..(z)]e-1(cXV-Vb) (29)
is clearly antiparallel to the magnetosheath flow. Wd/iams et aL/
[19851 report a stagnation region adjacent to the main antisunward
LLBL flow region, where velocities are small and have variable -pov,,.o(z, Y,) + •VTV'(Z, NYb) + 4i11ce K_ (30
direction, and a region of small but steady sunward flow earthward a(:) = 

2 17ea (30)
of it. It is not clear whether the intermediate region contains actual
turbulent flow or whether it is simply a region of gradual transition In reality. vu o isafunction of p in the asymptotic box; the above
in which the small velocities are not well-resolved. As described in solution is theree only an approximation to the actual solution.detail below, our model contains an asymptotic flow region eath In the runs presented in this paper, the above solution is close to the
ward of the boundary layer proper which includes a flow reversal exact solution when vo has a slow variation with I as it usually
fwerd of the by ounotorycallyer which incladten constan flo rsu al does away from the upstream location. The exact solution can be
followed by monotonically increasing and then constant sunward found by integrating equation (28); one may assume that vvo isflow as one moves from the boundary layer proper into the malie- approximately known from the previous step. so that (28) becomes

tosphere. Inclusion of field-aligned potential drops in the coupling approimaty konfre m t io u fo p so t
region between the LLBL and the ionospbere is expected to change an ordinary differntial equation for e~o

At the boundary between the asymptotic box and the computae-this asymptotic velocity profile into one that includes an oesottional box. It = lb, we require that vxo and vvo be continuous and
in the sunward flow adjacent to the velocity reversal (Loso et aL. that
1987].

An integration procedure that marches forward in the antisun- a(z) :,O(Z, 1,) + .o(" ' , u-P& - a(:)vsce(z) (31)
ward direction fails within a few steps in a reverse flow region, =)
a difficulty that can be traced to the term vxo8uvo/8z in the z which guarantees that 8ave/8l and av/olap will also be contin-
momentum equation. This term retains its sign, while all other uous at I = p.. Equation (3 1) is obtained from (29) by differen-
terms in the equation containing uxo reverse their signs, when vso tiation. As can be seen from (29) and (31), only ve and its first
reverses sign. In the reverse-flow region the correct marching direc- derivative can be made continuous at p = pb,. A small discontinuity
tion is therefore reversed. This problem has long been recognized in the second derivative of .0 remains and leads to a coresponding
in computational fluid dynamics and different solutions have been discontinuity in the first derivative of the current j.. In the results
proposed. Noticing that the reverse flow is usually slow. Reyhner presented in this paper we have tberefor allowed the exponent
and Flagge-Loiz [ 1968] suggested neglecting the term vuoavxo/az a(z) to differ slightly from the value given by (30), in such a way
or reversing its sign. On the basis of that idea we have proceeded to that the second derivative of vxo is also continuous at I = pb. By
neglect the above term in the z momentum equation in the reverse differentiating (29) twice. the following condition is found at that
flow region as well as in a narrow region on the magnetopause side boundary:
of the flow reversal point, where v•o is negative but sufficiently
small so that v~oOv.,ofO can be justifiably neglected. The reason 22(z)ug0(z, p) + = a 2(z)v.oo(z) (32)
for including the latter region is that there is also a second difficulty ' - 1+

at the flow reversal: when the reversal point falls close to a grid
point, a numerical singularity appears. We emphasize that the above Eliminating a(z) between (3 1) and (32) yields the following modi-
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Bed bounary conditio A the' fa between the compuion al B
box and de asymptotic box: ('. + .+ 0 (39)

a3V , 1) (-.3 - (S,) - a.-() (

We can finally obuain wwindie asymptoticbox by integration of - dp-() + (Rfiii,oBee+ ,+ "B-)B.

dhe ms conservation law:
da (..v'. ) .ww =" )-V(""-No) - (F-1)+- Rm~.+ 2-P'4a-)(0

P..(:) dx L91 ar3- (W
! d The viscous Re'nolds number has been scaled out of the equations

because of our particul normalization ofI and wy. This implies
that the mrfemce vaJue of the viscosity affects our system only as

a scaling factor for the Wdth of the LLBL and die magnitude of
A(z) (9-0(z4-1)) - 9 ())(.-.(.X-3)- I)] (34) vi. In odorwads, a thin LLBL with low viscosity evolves in the

same way as a propoionasely thicker layer with higher viscosity.

However, for one and the same upstnam w•dh. boundary layers
Noft hum (34) that. ma geneal . does notreacha onstant value with diffemr vicoqy evolve differently. Note also that we bave
bet retains a linear variation with VasV - co. chosen viscosity to depend parametrically on pressure. density and

Since de natue of the soluton In the asymptotic box is such magnetic field, as indicated by the factor (,P', /Bp) in the lat
thato decays at a mlatively slow exponential mae to wa.(z),do the of (40). Fr example. the collisional viscosity transverse to a
rnduction of the size of the computational box that results fhm use strong magnetic field has p, = -0.5. p2 = 2.5. p3 2 (Spitter.
of an asymptoticbox savesa peat dalofcom ertime. 19621; for Bohm diffusion one finds, p = 1.P = 0.pP3 I. The

maon for using a nonconstant viscosity is that. as discussed lawe
Notna.izadum on. uniform viscosity thoughout the LLBL is found to result in

We now explain dt normalization of all variables in (15), (17). excessive entrainment of magnetospheric plasma and high accel-

(18). (20).and(26). which leadsman importantmras mdlg "n1the eraion of this plasma downstrai. To avoid this eftect. viscosity

role of viscosity in our simplifled modeL The normalized variales, must decrease with increasing distance from the magnetopause: this

denoted by an asteris. is accomplished, for example, for positive values of ps, p2, and p3.

=" = l: , V" - vrelHo, AL T S

We now present three examples of LLBL flow obtained from
=; : o/V.0 , .; = .,.-1/V,, B: = B8. the numerical code. We first describe the boundary conditions and

.;=B. V. •VO; initial conditions used in the three runs; in the remainder of the
section we discuss the results obtained.

* P* JOB P• =P.M All thee runs were initiated at z = 0. The initial w.(j) ve-
S, "locity profile is a somewhat arbitrarily chosen smooth function of

V. with continuous first and second derivatives. This profile sat-

A11WHOisfies (31) at thk. interlace between the computational box and the
.. (35) asynmpbotic box; in die loate, it includes a region of reverse Rlow

K -V- 1. and . becomesindependentofp in that limit. With
ktnown initial profil v.(p) die in"tialv is giveun by (27). We a%.

In the abow, Ho is the characlelrtic heblg of dhe LL-L while Vs sumed an initial number density decrease of 80% across the LLBL.
and p,, an Pn1mPm-e valos of dh Bow velocity mid density. Aso, from 10 powns/cm at die magnebojpase to 2 prtns/cm3 in the
Re is the viscous Reynolds numbr. Re = pa V.0/ 1 .. pbqing a magnetosphere, a corresponding increase of 10% in the z compo-
A eP ce value fordoe viaoolty, d Rm lathemat netic Reynolds nent of the magnetic field, from 40 to 44 nT. and a constant tota

numier defined by Rm- =p 4weeVHo. pressure of I nPa across the layer. The initial plasma pressure can
MTe dimensionless system of(IS), (17), (18), (20), and (26) now then be calculated hom (17). the result being that the temperature,

becomes (the asterists me d cpPed for convnience): To(j) = po(p)/Rpo(y), where R = k/rn, is the gas constant,
varies from 230 eV at the magnetopause to 775 eV in the magneto-

+ =0 (36) sphem 7e parameters chosen for these rims ar representative of
(* ,)+ a, typically observed boundary layer crossing (Sckepke et aL. 1981;

Euman and Hones, 19791. They result in an average electric field
component across the layer of a few mV/m. as measured directly by
Moz [1984) and a inferred by M&chaU etaL (1987], II4Ui0mm et

B + P-o(:) (37) aL [1985] andodoersonthebasisofparticle measurements. Note
that the magnetic field decrease together with the flow acceleration
lead to an approximately constant value of this electric field as one
moves downstream in the layer.

a a P The values of the characteristic density (p. = 10 mp kg/cm3)
a s )- = 0 (38) and viscosity q. we such that the kinematic viscosity at: z 1=
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0is 9, .il,/P. = 109 m3/s (Son[ up. 1980, LaBe,, and themagnetopaus .thatis. since v(, 0) = 0.theline Oisa
Trewmamn, 1988 in the first twonrns. whilein thethird run viscosity streamline. Thus. B.. p. and p at y = 0 are defined by relations
has been reduced bya factorof3. Also, P1.2.3 = 0inthe first fnand similar to (41).
P=0. p20 3 = I in the second and third run. The velocity V. used Figure 2 shows results of the first simulation example. The
for normalization is taken to be 280 km/s and Ho = 10 Rz. All bottom row of the figure consists of three plots representing. in
calculations we performed with the ratio of specific heats, -r = 2. order from left to right, density, temperature and a component
The viscous Reynolds number Re used in the first two runs is of the magnetic field, all in the equatorial plane, as functions of
1.8 x 104. based on the half height of the LLBL. Ho. and on v at three different locations along the magnetopause, namely, at
the value of the dynamic viscosity at z = 0,y = 0. Note that z = -0.25 R.,-7.S RE and- 15Rg. Thepressureprofileistnot
the Reynolds number based on the width of the layer is at least shown but can be calculated from po and To; it has the property that
20 times smaller. The magnetic Reynolds number Rm, based po + B2o/2,uo is constant across the layer. The z and y components
on the effective conductivity ioo which embodies the effects of of the flow velocity and the z component of the current at the top of
coupling to the ionosphere. is 0.1; this choice leads to realistic theLLBLameploaedinthe middlerowas functionsofVat thesame
values for the field-aligned currents at the top of the ionosphere, locations downstream. The values of the current density in Figure
of the order of 5 x 10-6 A/m2 . To achieve that, the value of the 2. multiplied by B.IB,o. give the actual field-aligned currents at
effective conductivity a,. is reducedby a factorof 10 from the value the top of the ionosphere: here B. = 5 x 10' nT is the ionospheric
5.96 x 10-$ mho/m given by Sonne(p [ 19801 for orange-segment magnetic field. The top panels consist of two vector plots followed
mapping and perfect coupling to the ionosphere. by one contour plot representing the z component of the current. The

The boundary conditions are as follows: first vector plot represents the actual velocity vectors; in the second
1. At the magnetospheric boundary, that is. at I = No*. v, is plot. v, was magnified by a factor of 27 in order to make visible

constant. v.. = + 10 km/s in the sunward direction, while the the inflow from the magnetospheric boundary. The horizontal axis
magnetic field falls exponentially in the downstream (-z) direc- in all three top panels corresponds to the y direction (across the
tion. according to the formula B, = B. (z) = 44exp(0.03z/Rs) LLBL). whereas the vertical axis is the distance downstream (the
nT. This simple functional form is not necessarily an accurate rep- -z direction). The width of all panels is 0.85 Rz. y = 0 at the left
resentation of the actual field variation in the magnetosphere, but being the magnetopause boundary.
it qualitatively models the variation of Bo. with downstream dis- The dynamic viscosity in this first example is taken to be constant
tance. For given z the density, plasma pressure. and total pressure (i.e., p .,.3 = 0in(40))throughouttheLLBL andtobesuchthatthe
are constant across the asymptotic box and am the same as in the kinematic viscosity at the magnetopause and at z = 0 is equal to
magnetosphere. They can be calculated from the following three the reference value. W0' m2/s. The v. profiles in Figure 2 indicate
conditions: that the velocity boundary layer is becoming thicker and that its

eatmhward porion, accelerate downstream, as plasma enters from
B.o (z) B. (0) the magnetospheric boundary to become entrined in the boundary

p.() P..(O) layer flow. This plasma moves into the LLBL carrying with it a
higher magnetic field and lower density. Thus, while the velocity

poo(z) p..(O) layer increases in width, the magnetic fieUl, the temperature and
S (0) density layers all decrease their widths. as shown in the bottom plots

in Figure 2. Notice also the decrease in density and temperature
levels with increasing z, behavior that is in agreement with (41)

(+2z) = P.o(:) (41) and with our choice of the z dependence of the magnetic field in
the magnetosphere.

These relations follow from the induction law and the isentropic law. The plots of current density require special commenL The

applied along the dividing streamline passing through the point component of the current at the top of the LLBL is

S= 1b atZ = 0, and from the V component of the momentum I 8Ba , B a' (42)
equation. If there is inflow into the computational box. across J m,"o= - Z(B -,,-+vo.Z--
I = i&. this streamline is located in that box; therefore the values AO Y 4

calculated from (41) can be used as boundary conditions at 1 = Vb. The contour plot as well as the current profile show that the current
If there is outflow from the computational box across IF = 7b, the evolves in a complicated manner creating a secondary maximum at
dividing streamline is located in the asymptotic box; in that case some distance away from the magnetopause: the two terms on the
the values from (41) can be used as boundary conditions at y1= Sib right in (42) have opposite signs and compete in a way that results in

only if plasma leaving the computational box also carries with it an intervening local minimum. As seen in Figure 2, this effect can
those uniform values of B. p and p. In other words, a region even create a current reversal; this occurs when a relatively large
of uniform values mpst always be present in the computational negative 9, makes the magnetic field profile become very steep.
box itself, immediatgly adjacent to y = pt. As y -. I... we thus increasing the magnitude of the negative term vwo MBo/f in
require a balance between the pressure force -8p.o/8z and the (42). We draw attention to this point because the observational data
force j1 ooB,, from which the current j,ao(t) that flows from the often show a highly structured behavior of the region I currents as a
LLBL into the magnetosphem can be calculated; in the simulations function of latitude. However, field-aligned potential drops A011 in
presented hem reo. $ 0. the coupling region between the LLBL and the ionosphere, which

2. At the magnetopause, that is. at I = 0. the plasma is as- wereincludedbyLookoetal. [19871 and Phan eiaL [1989].areex-
sumed to accelerate in the antisunward direction from 50 km/s. at pected to modify the current profile significantly. When A01I = 0,
z = 0. to 290 km/s at z = -I1 RE. approximately, ISO km/s the valueofthecurrent.j,.atthemagnetopauseisspecifiedby the
being gained within the first 5 Re, as described by the formula conductivity I and by the magnetic-field and velocity profiles. as
v,(z, 0) = -[308 - 258exp(z/5.75Rs)] km/s. Again. this for- can be seen from (42): in the runs described here the conductivity
mula is only a qualitative representation of the actual variation of has been adjusted, as discussed by Sonnerup (19801. to produce
v, (z, 0) in the magnetosphere. Since we do not allow flow across realistic values for the average field-aligned currents at the iono-
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Fig. 2. Results from ron I - cains dYamnic vucOsity. Top pieak show two velocity vecto plots ad a F m - - plot of do cmi
densiayj ins a = Ho. MWagode of iha baben g pe'byfa coor 27 in dosecond vecurplot toshow die entmmeeinof
UpIorw~oplaU nawtOIBhelyer Remnihig paels shw udproieposof vuicusqoaesw arns the lyirm as = -0.2 RB.
-7.5 R and -1S RtB (mIteI by 1, 2 ad3.trspectively). Mle cotoputataonal box ends at V = 0.18 RB. 0.47 RB.an~d
0.72 Rs at doe locations 1. 2 and 3. tspectively. The ,',(y) profier indicai lag viscous entahmentof I$ -oshc IIIIpimus
and a rapidly widening velocity layer. The curn density pulmorns. i. at z = Ho we double peskad with -n inoervemixg ,c-- n
reverlJ;. j, las -n absolve. maximum ma crai s value (near z = -7 Rz), Oumas is. aet aaain local ti.. The conespoadla
ionospheric- cu rent given by die comnmn ps ;dheM, Mlhplied bya factorB,/B.L = 1667.1lbThe dchess of ie deasuty.

Ioprae and ngecfield boundary laers dec 1asudreplasa niovdowsasurn.een ioughdas ticknesofdievelocity
laerinrese.

sphere [Ajunm and Posenu, 19764l On the othe hand, when first increases in magnitude with increasing flow distance, reach-
A011 # 0 the resulting fourth order differential equation describing ing a maximum value at some distence 1:1 downstream. and then
the LL.BL (Loiko et aL. 19871 allows one to specify is = 0 at the reduces. In our modl two effects compete to produce this result.
magnezopause in which case the nmaximum in region I current by First the flow accelerates downstream. thus increasing the velocity
necessity appears at some distance away from that surface. shear. 89.o/81. which increases the magnitude of the first term in

Mile longitudinal variation of j, shown in Figure 2 is a canine- (42). Second, the velocity layer increases in thickness downstream
quence of the variation of the flow parameters in the -z direction. as a result of viscosity, thus decreasing the shear, and consequently
which, unlike the previous modlsof oiko:aL (1987]and Phon the magnitude of the Current. Initially. the first effect dominates and
et aL [1989], continuously modifies the two terms in (42). An the current peak increases in magnitude as one moves downstream.
observed feature [lajima and Plotemm, 1976a) that is predicted by but late on the second effect, takes over and causes the maximum
our model is that the pea intensity in the region I current density current to decre..e again.
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In the example presented above. substanatial entrainment of mag- is accomplished naturally because die viscosity varies across die
netospberic plasma into dhe LLOL occurs. As shown in Figure 2. die layer. In die next simulation examl die viscosity is assumed to
velocity layer becomes thick compared to the density layer and its drop across the layer wn proportion to the drop in density and in
earthwardl portions accelerate rapidly, owing to the assunmption that invers Propoution t0 the increase in magnetic fiekld as one mome
viscosity remain high also in die magnerospheric plasma. Obser- into die magnetospheric plasma. In other words.p, =0o. p2 1
vationsbySckopkmetaL [198l)andEasmatiutaL [l979Jdonot andp =P z I in (40).
show such behavior. during passage from the magnetosphere into Figur 3 represents our second example. The panel arnig-
the LLBL proper the velocity increase precedes the density increase ment here is the same as in Figure 2. Except for the viscosity
by only a small distance so that only a small amount of hot mag- model. all parameters, and the initial and boundary conditions am
net~ Osperic plasma is entrained by the tailward Raow in the LLDL. the -am as in tie first example. The w. profiles now indicate a

Although inclusion of field-aligned potential drops in the coupling curvature reversal at the approximate location of maximum slope of
region can be expected to modify the velocity profile predicted by the density and magnetic field profiles, a result of the variable vis-
the model in a significant way (Lotko et aL. 19871, it seems plausi- cosity. that is. of the fatct that viscosity drops rapidly as one leaves
ble that this observed weak entrainment of magnetospheric plasma the dens boundary layer plasma and enters the tenuous magneto-

at azxHo
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F~g. 3. Results from run 2: dynamic viscosity proportional to p/B 8 . FAx. is the saun as in Figure 2. The computational box
ends at V = 0. 18 RE, 0.22 RE. and 0.33 RE at the locations 1. 2. and 3. respectively. The velocity boundary layer is now much
thinner. Notice also the curvature reversal, near the nuigetopause. of the profiles ofu ti(y) at the location of nxmammn slop of the
profilesof p(y)uad B&(). The vs(v) profiles show evidence of the puddtiaelanaton of the system from its initial conditions. The
secondary current density ambaxim is now higher than the one at the usgnetpause and cuiren densities we higher ovensll.
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spheric plasma. The field-aligned current again develops a reversal V = 0. and two planes parallel to it. loated atI = 700 km and
region followed by a secondary maximum at some distance away V = 4700 km. respectively. The view is from outside the dawnside
from the magnetopause, which is now higher than the value at the LLBL, looking towards the magnetosphere and with the Sun on the
magnetopause. right. Figure 5 shows that the field lines are beat into approximate

The first v, profile, at z = -0.25 RE. differs in shape from parabolas; their curvature is greatest near the magnetopauseand is
vi, profiles further downstream. This behavior is caused by a rapid least at the magnetospheric boundary; some curvature remains at

relaxation from the arbitrary initial velocity profile vs(0, V): within V = 4700 km because j,.. # 0; as a result of the increasing flow
a short distance downstream the flow settles down to a more regular, speed and decreasing magnetic field the curvature increases as one
slow evolution determined mainly by the boundary conditions. As moves downstream. Notice that the scale in the z direction has
an illustration of the fading memory of the system with respect to been exaggerated: at z = 10 RE the lines are in reality displaced
the initial velocity distribution, we refer to the analytic solution -,, 1.5 RE sunward of their intersection point with the equatorial
given by Sonnerup f19801. With constant values of Vo. Bo, and plane. We believe that in the real LLBL such a field configuration
a, and with dPoo/dz = 0. v.. = 0 and Is. = 0. (26) has the may reduce or eliminate turbulence in the layer, because magnetic
asymptotic solution flux tubes of different curvature do not easily interchange their

locations. The magnetic field configuration described above and its

vtO = -Voe- 1 ', VY0 = 0 (43) stabilizing effect were also noted by Southwood [1979].

as z - -oo. where 6. is the viscous length, used by Atkinson
[1967]. Sonnerup [ 1980]. and others: DiSCUSSION

6" li. 2 In this paper we have presented initial results of a steady state

SB=• .( numerical model of the low-latitude boundary layer on closed field
lines. The model is experimental: our purpose is to see if it can

This solution also satisfies (15). (171, (18). and (20) identically, predict certain features, such as spatial distribution of field-aligned
The density profile can be arbitrary in this solution. Any chosen currents flowing into the ionosphere, that are observed in the data
initial v,(0, y) profile and its associated v,(0, y) profile evolves and to examine the effect of different parameters in the model such
in such a way that, after some relaxation distance along the main as the viscosity formula, viscous and magnetic Reynolds numbers,
flow direction, v. (z, y) becomes identical to (43) and v, (z, y) = upstream conditions and boundary conditions at the magnetopause
0. In this case the system loses memory of the initial velocity and in the magnetosphere. In contrast to the models by Phan et
state completely. the final state being determined entirely by the aL [1989], Lotko et aL (19871, and Sonnerup [19801 the present
boundary conditions. However, information about the initial density model includes variation of boundary layer properties such as flow
profile remains. In the general case, memory of nonconstant initial velocity, magnetic field, plasma pressure, and density as one moves
magnetic field, density, and temperature profiles is retained and a in the downstream (-z) direction, thus allowing for evolution of
state that is independent of z is never reached, unless the boundary the LLBL in the flow direction. The variation of all quantities with
conditions at V = 0 and y = V.o become independent of z. distance (z) away from the equatorial plane is parameterized in a

In the first example the relatively higher viscosity at the location simple way. The flow evolution in the z direction is governed by
of the secondary maximum, reduces the velocity shear, thereby a balance between inertia forces, j x B forces, pressure forces,
spreadingthe velocity boundary layer and decreasingthe magnitude and viscous forces, whereas in the two perpendiculardirections (y
of the first term in (42). The result is relatively lower magnitudes of and z)the boundary layerapproximation results in static balance of
the current at that location and overall. In the second example the forces. The currents in the LL1L are calculated in a self-consistent
velocity boundary layer is narrower, and the shear is larger at the manner, via Ampbre's law. As a result, the magnetic field com-

locationofthesecondaryrmaximum, as a result oflower viscosity in ponents B, and B, are allowed to be of comparable magnitude.
the magnetosphere. The secondary current maximum is larger and the field lines being approximately parabolic, with vertices point-
lower Iv, I values are generated, that is, less magnetospheric plasma ing in the antisunward direction and with maximum curvature for
is being entrained into the layer. The total potential difference across field lines adjacent to the magnetopause. At the magnetospheric
the LLBL, between the magnetopause and the location where the edge of the layer the curvature is smaller but need not be zero as a
velocity reverses sign in this ran, is 1.65 kV initially, 4.4 kV at consequence of allowing a finite cross-field current j,.4o(z)to flow
a distance 7.5 RE downstream, and 5.65 kV at a distance 15 RE from the boundary layer into the magnetosphere. We distinguish
downstream. These values ofthe potential drop acrossthe LLBLare here between the Phan et aL [19891 model, where the magnetic
consistent with typically measured potential drops [Mozer, 1984]. field lines are exact parabolas, and the present model where, owing

In our last simulation, shown in Figure 4. we reduce the reference to the (slow) z variation, they are only approximate parabolas.
viscosity by a factor of 3, from v._ = 10' to v,, = 3.3 x 10' m2/s We emphasize the following results obtained from the present

but maintain its dependence on p and B (p1,3 = 1, p2 = 0). version of the model: (!) The velocity boundary layer increases
As a result, the viscous Reynolds number increases by a factor in thickness downstream as a result of viscous entrainment leading
of 3. We initiate this case with the same upstream conditions as to inflow into the boundary layer region of low density magneto-
in example 2 and use the same boundary conditions as well. At spheric plasma carrying higher magnetic field. This inflow leads
the downstream locations, z = -7.5 RE and z = - I5 RE, the to thinning and steepening of the density, temperature and mag-
velocity boundary layer is now thinner than in the previous two runs. netic field profiles. (2) The velocity profile tends to relax from

There is a relatively large initial outflow of plasma (vt, > 0) across an arbitrarily assumed upstream shape to shapes that are mainly
the magnetospheric boundary during which the initial excessive governed by the boundary conditions. However. the LLBL never
amount of plasma participating in the downstream motion leaves loses memory of the initial magnetic field, density and pressure
the layer. As a result of lower viscosity close to the magnetopause, profiles. (3) The thickness of the velocity profile is greatly influ-
no reversal of field-aligned current occurs. enced by viscosity which enters the system as a scaling factor (see

In Figure 5 we plot magnetic field lines from run 2 at z = equation (35)), larger viscosity resulting in thicker velocity profiles.
-7.5 RE in three zz planes, namely, at the magnetopause plane. (4)The field-aligned currents that flow into the ionosphere from the
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upper and lower edges of the LLBL. at s = kHo, represet: the major respect. First, dhe ionosphere will be incorporated in a more
dayside iegio 1 current system (4p= and ftuemmu 1976.1. or realistic way. The connection region between the LLBL and the
at least those portions of it that are generated on closed field lines, ionosphere is a narrow channel starting atthie upper and lower edges
These currents ame found to form a secondary maxiumumt away from of dhe boundary layer. that is, at z = :*Mo. where the currents
the magnetopause. Between the magnelopsise maxium. and the are field-aligned and extending along dhe magnetic field into the
secondary mhaximnum a current mimiurm aonr, oblm inclUdin a ionosphere. In this region the magnetic field will be calculated
reversal of the current The region I field-aigned current peak is self-consistendly. rather than by using the constant maipping factor
found to reach a maximum at a certain local time. as observed by (dz,/dz) employed here. Also. field-aljged potential drops will
lijuna and Potaure V1976a). However, experience with the Lotko be included as in the works by Lotko el aL [19871 and Phan el aL
et aL [(19871 model indicates that significant changes in the details [19891. according to the empirical formula ill, = K(#,. i) Here
of velocity and field-aligned current distributions; will occur when ill, is the field-aligned Current into the ionosphere. K is an effective
field-alined potential drops ame incorpoatled. field-aligned conductance density, and #a and #. are the electric

In the future the model will be improved in die following two potential at z = :*Ho and in the ionosphere, respectively. The

24



W.AKOU Wr AL: LOW-L.MTUDI BOUNWDARY LAYER MOiM 2363

10 Roualo
ym4700 kmn Akasofu. SA..L E. Horns. Jr, SJ. Burn JR. Ambridge. sad A.TY. Lai.

Magnowi and boundarybwi g lae plma -6snldiesesee oflIi
Veit 5 sad 6observuarn Ji GsephA. Rsa. 78,7257.1973.

Anderson. DA.. I C Monhenbi and LU. Plaelets (Oft). Cawuaso
MWui Hsecbaics and How 71's*r. p. 329. McCraw-EU. New Yak

1964.
Atklto@,G.. An appeosna. low equas. ofor poempebz utubes id

y--700 km its application to polar I -moe-- A Geophys. isn.. 72.3373.1967.
Bunden. RI.. sad JD. Nowes NatericuI And~y*.a p. 536. FSW-KDIT.

VRIEBOGOR. MuM.. 1939.
Chin. Y.T.. mad i.M. Cornwall. Hleuosuewic model a a quiet umaual me.).

YOOGeophya. Res.. 85.543. 1910.
Calcutta. PJ.. k, A Model of die gemgeccavity. Radio Sd.. 6. 321.

1971.
Cowley, S.W.H.. ndiJ. Owen. A simple illustative model of ape.a Onube

',io over dhe dayside mapeaspasea. Pimae Spice&Sr. 37. 1461.
1919.

Dumgey.J.W.. The smacumaoftheezospbemoradvenamws. vuocityspace.
to Geophysics. The Earsh' Fqinaoainewc. edited by C. DeWIS at aL. p.
526. Goroni and Branch. New Yorkt. 1963.

Entiie, T.E.. and E.W. Hones, Jr,. Chaacueristics of de waassompluic
0 III ISIboundary layer and meatoaeso elayer as Ae byMPAP6. 1 Ge.-

7. xRE 6 Essuna. TX- E.W. Homnes. J, SJ. Seats. mnd. J. LAdeifte. Thee ustetoý-
spheric bouadmy layer. Site of plne, morentum ma -mg ssIe

fig. 5. Magnetic-field lines in the dawaside UABL from ran 2 a x from the .agaetoehenh to the agneoha II GeephyL isa. L&nt. 3.
-7.5 R~r. View from outside the layer. looking towar ds gh -,geosbe 685.1976.

wihteSno th tight. no ban have approziamely parabol.ic shap Fridnusn. M.. and J. LWani'. Relationship between sMornl elcion lues
(exaggertaied in the plot by a factor of 3.3 in die horizontal seale) and aid fleld-lignedeloctric posentialdilhrencesJGeophys Ass- 85.664,

flux mom curvulre HaeudL. G.. G. Paschinaan. N. Scitpite. sad H. Rosenbauem FRowside
boundary layer of die nmntsphereq sad do. Ib of acoaaectiom.
I~ Geophys. Res.. 83.3195,1978.

ionosphere will continue to be treated as a conductive substrat Hones LW.. Jr.. J. R. Asbridge. S. J. Barne. M. D. Monegomeery. S. Singer.
adSA.- Akesof. Measurements of the magastotall plan.s flow mae&combining Ohm's law with current continuity and the boundary by VELA 4B.). Geophyma Res.. 77.5503.1972.

layer approximation. we can show that lajinas, T.. md TA. Powrso. The wuplitaft disuabuion of field-aligned
a !ý*icurrents ai northeP high latitudes observedA by TRLAD. JI Geephys.

8 al . Res.. 81.2165.1976a.
= ali lijima. T.. and T. A. Poleur. Field-algnd cur aI in the dayside cusp

observsed by ThIAD. I Geophys. Res.. 81. 5971. 19M6.
The height-integrated Pedersen conductivity Z, may have a spatial Kan, JR.. and L.C. Laec Theory of inaperfcs eto lhreio s1w
dependenceors dependenceon theelecio precpittion associated coupling. GeV*li. Res. Lair. 7,633.19110Lalelle.sJ.udLRA. Trnana. Plwan.wavesatdieedyie k getpe
with the field-aligned potential drops. Space Sc.. isv.. 47,175,.1968.

The second improvement of dhe model is to include a variable Lotho. W. .DUO0. Sonnerup. and R.L. Lys*. Nomieady boundary lawe
height Ho(z, 1) of the LLDL, to be calclaed self-conaislently with flow includingionoheic drgadpIle",eti ie).Goha
the other variables. In this case the velocity component v, will no Res.. 92.8635.1917.
be zero, except at z = 0; it will be allowed to have a linear Lyons, L R.. Generati. of lure-scale rgiom of aorAl ur..elct

potential. and, p 4cii-o by the divergence of thee oeckineeti
de-pen dence. The surface z = *Zo(z, M) will be kneaed where bl&J1 Geophy,. Ri.. 85.17,19IM.
the plasmna pressutw in the layer. as determined by the z moneentum Mitchell. D.G.. F. Katclaro. DJ. Williaims T.L Esua. LA. Frank. and
equation (equation (8)), has dropped to its magneftospheric value. C.T. Russell. An extended study of die low-leltade boundwkay layeo
By requirng dhe velocity to be tangential to that surface it can be 739ow4. ddsk1917.he g Ik IGepys n. 2
shown that the mass conservation law. at.z = 0. becomes Moze, FS., Electric fiel evidence on the vice im actiom agnon-

topsuse,). Geophys. is... 11. 135. 1984.
8 Paschrnann.G.. G. Havrendel, N. Sckopk& amd H. Roseabmer. Plaum. sad

~-(Hopov.o) + ±OHopowyo) fielAd characteristics of the distan polar cusp war local noon: die easryFX- C91layer,) GeCophys. Res.. 81. 28113.1976.
Phan. T.D.. B.U 0. Sousnerup. mnd W. Loiko. Seif-coeia model of the

As a further generalization, this equation may be modified to allow low Isaiude boundary layer, A. Geephys. iAm .941211.9IM.
plasma entry forom the upper and lower edges of the LLD3L. at Reyber. TA.wd. adLFftg-LoLM~ei Psnedo1 ofa shockwave with a
z = *Ho(z, 1). lamninar boeadmy layer. /at I. N-Liaeur~ech.. 3.173.1968.

Funhr imrovment ofthe ode canbe ade y prmiting Sckopke. N.. G. Puchmaane. G. Hwerede. 3iJ.O. Soaserup. S. J. Beaine.Furherimpoveent ofthemodl cn b moe b pemiting T. 0. Pnbe. H. W. flomes. Jr. mnd C T. Russell. Sureame of the low-
mass diffusion across the magnetic field. Istitu0de boundary layer.). Geophys. isa.. 86.2099.19831.

Siscoe. G.L. and N. Maynsard Disuhumed two-d=iuneasms Region I and
Aclatowlsdgments. mhe research was supported by die Air Forte Region 2 cu-rrents-: Model results and dacta rees J Geephys.

Phillips Leborarofy under Contrat P9628-90.K.009.by di~eNtonal Aeo- Res.. 96.21.071. 1"1.
nautics and Space Administration under grant NAGS-2252. and by the Na- Siscoe. G.L. W. Lolko. and B.U.0. Soamerup. A high-latitade. low-latiftude
tional Science Foundation. Atmospheric Sciences Division. under grants boundary layermodel of dieconvecracrewntsyssen I. Geephys.fisa..
ATM 91124 18and ATM 9113664to Dartmouth college. 96,3487. 1"9.

The Editor thanks D. J. Williams and R. L Lysak for their assistance in Sounner. B.11A.. Theory of the low-latitude boundary layer.). Geophys.
evaluating this Fpale.. Res.. 85. 2017. 193.

25



236 DftANOU Orr AL: ULWLAWTUDE BOU.NDARY LAYE MODEL.

So Brp .U.O.. G3. Pud Lm T.D. Pbwn sed H. Lilt. Megapaic "i %ei. C. Q.. LC. Le.ad A. L LA~eIe-Hame A simudionstodyo.1 de
lauinthe low leftda boundary layer. Geo.,AjL Res. Leaz. 19.1727. varie saucimers ine dalow-ladtnde boundary laye. J. Geoplysm Res.. 95.

1992. 20.793. I99.
Son&. P. said CT. Russell. Model of dhe breesbs of die low-ledilde William. D.J.. DOG. Mihciasl. TI. 1su. wd UL. Pivk. lesuguidc

boundary layer for s~m*anl sd-wa, is- II-p -a magmdc flod. I. pu aobservations in dhe low-huadef bosedey layer. J. GeA..h.
Geoplos. ru&. 97.1411. 19M. its.. go,5097.19"5.

Soudhwood, D.J.. Mapmowpmns Keivin-Heludaolz insabhility. in Malps- Woch. J.. Md. Yanmuchi Rt. Loodi.. TA. Poem said U. ZaneaLi he low-
waphorbc Boundary LAyets edmad by 3. Swatch. ESA Spec. PWbL. lsuiindeboundarylayera mid.-nltivdes: wiljo avla-scale Skkelmd
SP-148. 357.1979. .cI p -toJ.Gecphys. Res.. 20.2251. 1"3.

Spdaee. L. kr. PA~syss of Fulty Ionizd Gaist. p. 146. Isausclence. New ____

York. 1962. 1.Drakou.* H5rux Institute of Anhuphyscs. National Resarchb Coun-
Timme. D.P. DOG. Mitchell, DJ. Williasm LA. PFhwL and CY. Hung. dii of Caada. 100 Sussex D&iv. Ottawa. Ontumulo. CM~da KI A CR6.

Two moc ausrwlth bik low-latitsde boundary, layer ftuerevidcac W. Leko. sad B.U.10. Sonasomp. Thyay Schoo of Eaginveeng Dart-
for closed bild topology and iuvesumngfu of die interal stucture. I. mouth College. Hanover. NH 03755.
Gffphy s.A.t. 96.21.025. l91.

Tsunmui. B.T. ad R.M. Thors.Duffusiomp -ec is dine ugneuopause
boundary layer. Gepylp Re,. Loa. 9. 1247,1982. (eiedMarch 15, 1993;

WeLi C. Q.. and L C. Loa. Coupling of Iame -na-Woadry layer to the revised 1... 29. 1"3;
polar ionosphere. J. Geophys. Res.. 98.5707. 1"3. acpeiJuly 21.1993.)

26



APPENDIX 2: EXTENSIONS OF THE MODEL

In this chapter, the equations are presented that describe the LLBL with

(a) variable height, 2Ho(x, y), in the z direction and (b) field-aligned potential drops

in the force-free coupling region between the LLBL and the southern and northern

ionospheres.

2.1 Variable Boundary Layer Height

The basic formulation of the low-latitude boundary layer model remains as

described in Appendix 1, but in addition, the half-height, H0 is now a function of x

and y to be calculated self-consistently. It is assumed that, at the location z = ±Ho,

the plasma pressure has fallen to its corresponding magnetospheric value, p. (x, z),

which is considered to be a known function of x and z only. At the same location, a

force-free (j x B = 0) region begins that connects the LLBL to the two ionospheres.

Equations (1)-(5) describe the plasma flow in the equatorial LLBL. By using the

series expansions (12) and (14), the mass conservation law, equation (1), evaluated

at z = 0, takes the following form

O(pov o) + O(povY 0 ) + = 0 (45)
Ox Oi H

Notice that v_ is now non-zero everywhere in the LLBL except at z = 0. It is required

that the plasma velocity vector be tangential to the upper and lower boundary surfaces

at z = ±H0:

{v . V(z - Ho(x, y))})f=H. = 0

or, by keeping the zeroth and first-order terms only in the series expansion in z,

v 0o0Ho vyoOHo v~l HoOo Y +---if- =0 (46)
lax 0Y H
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By substituting v, 1/H from (46) into (45), the mass conservation law finally becomes

,O(poHovgo) + =(pouvo) = 0 (47)

The induction law should now be used in the form of equation (19), instead of

(20), since the latter was derived by use of (15), which is no longer valid.

The z and y components of the momentum conservation law, equation (2),

evaluated at z = 0, are given by equations (16) and (17). In the boundary layer

approximation, described in Appendix 1, the z-momentum equation is given by

0(p + B .2/2Uo) 1 B. + B _ z) (48Oz = -(~ +B1  --)pt Vv" + N-(, -) (48)

In the above equation, the magnetic terms on the right are of order (HIL) compared

to the term on the left-hand side, and the inertia and viscous terms are of order

(H/L)2, where H and L are the characteristic scale lengths for changes in the z

direction and the z direction, respectively. At this point, one can proceed to different

levels of approximation: if H/L is of order unity, one would need to solve the full

z-momentum equation; if HIL is much less than unity, one can either neglect the

terms of order (H/L)2 and keep the terms of order H/L, or neglect both. In the

following we will neglect terms of order (H/L)2 , a choice that is consistent with the

assumption that second order terms in the z expansions could also be neglected.

According to this latter assumption, terms of order HIL should be kept; however,

significant simplifications result from neglecting those terms as well. The two different

options for the z-momentum equation are stated below.

(1) Terms of order H/L and (H/L)2 are neglected

In this case, the z-momentum equation (8) reduces to the simple pressure balance

B2

P+ B. = po(Zx,y) (49)
21A2
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where po(z, y) is the plasma pressure in the equatorial plane. If the left-hand side of

the expression is now evaluated at z = -Ho0 where the pressure has become equal to

the magnetospheric plasma pressure, p..(z, H..), evaluated at the top of the boundary

layer, one finds
Po - p.(x,H.) -B,2H = 0 (50)

2poH
2

According to the series expansion in z, the magnetospheric plasma pressure contains

a term proportional to z , i.e.,

Z 2

p. (x,Z) = P.(X,0) - () p2()

At z = H.o(x) this pressure has reached the value that is assumed to be present

at the top of the LLBL, z = Ho, throughout the layer, as shown in Figure 6. Its

value, poo(x, H,,) is considered known so that equation (50) can be used to calculate

Ho(x, y).

(2) Terms of order (HIL) retained

In this case, the z-momentum equation (8) reduces to the static force balance

PO- p.(x, H) - B.,H BB, 2  H+ (51)
2- MoOxuo 0) 2 (51)2p0H = A0 z+po c'y ]2H

which replaces (50) as the equation for Ho(x,y). In this expression the y component

of the magnetic field can be obtained from equation (5), which simplifies to the form

8B .1  + B j = (52)
Ox ODy

provided OB,/Oz is zero which is the case if quadratic and higher-order terms in the

series expansion of B, are neglected.

The system of equations (46), (47), (16), (17), (51), (18), (19) and (52) contains

nine unknown quantities, namely, v0,o, vyo, v,,, B.1 , By1 , B~o, po, po and H0 . If option
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(1) above is used B,,1 does not appear, except in equation (52), and equation (50)

replaces (51). To obtain a closed system of equations, coupling to the ionosphere

must be incorporated. We first apply current continuity at z = ±H0 . The surface

z = Ho(z, y) is defined by the equation F(z, y, z) = z - Ho(z, y) = 0; the unit vector

normal to this surface is n = VF/IVFI. In what follows, all quantities just below

the surface F = 0 carry the superscript - while quantities just above F = 0 carry

the superscript +. Current continuity across the surface z = HO(z, y) implies that

J-.,• = j+-,(53)

where the current j- at z = Hý is given by (9)-(11). By use of these equations and

the magnetic field as given by (13) one then finds

1 OBZo OHo 1 OH.o (1 - ) H+ o",, OHo + j H .-+H . (54)p~o oy Ox + o ay H ax + oH 0y Ox If c l (4

The force free condition above the surface F = 0, namely j+ x B+ = 0, along with

B- = B+, which implies that there are no surface currents at z = Ho, result in

j+ H0Bo j'+ H0B,o (55)

If the magnetic field lines in the coupling region are equipotentials, the relation-

ship between the electric field E. at the top of the LLBL and Ei in the ionosphere is,

to lowest order, given by

dy zo~ady
Ei = Ev L G voBody, (56)

Here, dyi is the ionospheric counterpart of a length element dy in the equatorial

LLBL; a relation between these lengths is obtained from the conservation of flux in

a magnetic flux tube

dy, B .* dx
= dx (57)
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where Bi is the ionospheric magnetic field and dzi is the ionospheric counterpart of

an equatorial length element dz. Note that if the equatorial vector elements dz and

dy are orthogonal, the corresponding ionospheric elements dai and dyi are generally

not orthogonal and vice versa. However, in the boundary layer approximation this

feature of the mapping does not enter the equations explicitly. The ratios dx/dxi and

dy/dyr are known only after the field-line geometry in the coupling region has been

calculated self-consistently, as explained later in this chapter. In the simplest case,

one may assume a known average value for this ratio, as was done in Appendix 1.

In the ionosphere, the height integrated current is

Ii = Ep(E, + v. x BE) - Em (Ei + v, X BE) x ij (58)

In the above equation, EI is the height-integrated Pedersen conductivity, EH is the

height integrated Hall conductivity, and v,, is the ionospheric neutral wind velocity.

By applying current continuity at the top of the ionosphere and by assuming constant

v, and Bi we can use the boundary layer approximation to find

Jii I = , = a (EpE,) = Ly-(EpEj) (59)

where ill, is the field-aligned current leaving the ionosphere. From charge and mag-

netic flux conservation it also follows that

ill, - B, (60)
j+ Bo

By use of (56) and (57) equation (59) becomes

Bi dx 0 (P Bi dxi (
= Bý d•x Oy.kPB,0 -W-vz°B.°) (61)

Finally, by use of (55) and (60) equation (54) gives

1 OB,o, Ho+ 1 Ho(H., B 1  Oo. H+ o OBR1

Uo ay ax Ito Oy H -ax ) •oH o3 y
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HoBl OHo HoBy1 OHoAJIH 57 + HB~o}. (62)
B. H Ox H Oi

In the approximation (2) in which terms of order HiL are retained, all terms in (62)

must be used; in the approximation (1) in which both terms of order HIL and (H/L)2

are neglected compared to terms of order unity, it simplifies to

1 OBe OHo 1 OHo.BL1  OB~o. Ho OB-1 . Bo
00 4 + oJL (63)

In this case, equations (61) and (63) close the system (46), (47), (16), (17), (50), (18),

(19) and (52) mentioned above, with one more dependent variable, namely ill,. For

convenience, the complete system of equations to lowest order is repeated here:

O(poHov~o) + O(poHovvo) = 0
Ox O+

8 a so dP0(x) 1 0 , Ov
po(Vo-'+ vyo-F)vo = dz + Waol BB + (17o"-.0)

BPo+- = P00(x)PO + B •o X
2B2

po - p.o(x, H.) HOB I = 0
2poH 2

-o

(VO + =00P'

Ox + Oy

v.OHo voOHo + v., Ho = 0
Ox 09% H

aB, +-8B- = 0

2.2 Field-Aligned Potential Drops

In addition to all features of the LLBL, the ionospheric substrate, and the force-

free region connecting the two, described in the previous sections, the field-aligned
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current in the ionosphere, ill,, is now assumed to be given by the lumped relation

ill = 10, - Oi) (64)

where K is an effective field-aligned conductance density and the subscripts e and

i denote quantities evaluated at the top of the boundary layer and the ionosphere,

respectively. The potential distribution in the LLBL region is

= -. j' Eydy = - VuoB~ody (65)

The potential distribution in the ionosphere is related to the ionospheric electric field

by Eg = -V•i~.. By use of this expression for E,, and by noting that in the boundary

layer approximation E., < E1 ,, equation (59) becomes

= dy,,y oEP -- ,) (66)

By substituting Oi from (64) into (66) and by using (57) and (65), one then finds
= E , ( 1 a(v.B.)

(Bo) 2 ( l + 2 O )

B dx . .B dx, 10j , + v.B.j) (67)
B1i WT Z B (x - +ooy

Equation (67) instead of (61) now completes the system of equations derived

above. Note that, without field-aligned potential drops, i.e., with 0C = oo, equation

(67) reduces to equation (61).

2.3 Asymptotic Solution

The system of equations in the previous sections cannot be integrated in the

region of slow sunward flow by a marching procedure in the -x direction, for the

reasons mentioned in Appendix 1. As in the approach taken in that Appendix, the

term voo/O&8v x in the x-momentum equation will be neglected in the slow sunward
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flow region. However, it is not possible to derive a simple solution there under the

same assumptions as in Appendix 1, namely, that B3 o, p and p are independent of

y. The reason is that the z-momentum equation, in its simplest form (i.e., equation

(50)), forces the height H0 to be a function of both x and y. The remaining equations

are then inconsistent with those assumptions and without them, we have not found

a simple straightforward method to reduce the equations describing the LLBL in

the asymptotic region to a system of ordinary differential equations. One then has

the option, either to integrate this system, without the above inertia term in the x-

momentum equation, using the same numerical method as in the computational box

in Appendix 1, or to make the assumption that the height of the layer is a function

of z only and does not vary with y. In the latter case, the z-momentum equation

cannot be used to satisfy the condition that the pressure drops to its magnetospheric

value at z = H0 . Instead, the pressure above and below the surface z = Ho will

be different, except in the magnetosphere where Ho = Hoo(x) is chosen to provide

continuity of pressure across this surface. As explained in the next two sections, one

may account for this pressure difference by including a surface current at z = H0 , as

shown in Figure 6. Note that this pressure difference has been ignored in the earlier

models by Sonnerup [1980] and Lotko et al. [1987].

(1) No Surface Currents at z = Ho

In this approach the resulting pressure at z = Ho differs from the magnetospheric

pressure; the difference can be considered as the pressure exerted mechanically by

the surface itself on the LLBL; it results in an inconsistent evaluation of the currents

and the magnetic field above the surface z = Ho. This approach, however, leads

to a simple analytic solution in the asymptotic region, under certain assumptions to
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be explained presently. It should be mentioned that the analysis presented below is

essentially the same as that performed by Lotko et al. [1987] and used by $iscoe et

al. [19911, and Siscoe and Maynard [1991].

As in Appendix 1, we will assume that B,, p and p are independent of y. This

assumption is not necessary, but it is now allowed by the equations, and it is used

to illustrate the simplest case. With the above assumptions, the current continuity,

equation (63), becomes

-Ho &B.1_ Bo. j(68)
poH 0 9ý" 3 iL

and the x-momentum equation becomes

1 2v,,o dPoo (x) 1 9v..o
d1y2 + -•B~oB, = p-- (69)

Equation (67) can be written in the following form if one assumes that Ep, Bi and

dxr/dx are also independent of y in the asymptotic region.

1 02 OV.0(
-_) 2-)jl, 1.pB (70)

where, using the notation of Lotko et al. [1987]

B, dxi A EP (71)c = Bx d F '

We now operate on (69) with (1/c2 - A202/8y 2)8/Oy and express OB, 1/0y in terms

of ill, from (68). Furthermore, we neglect the y-dependence of vvo in the asymptotic

region. The result is

02 022 1 02
2 ) Ovo avxov B 0o (- 1 - 2A =0 (72)

C jOy2 joyPoy )J HoB, (C27

which, after substitution of the right most term from (70) and one integration, be-

comes

a [082 1\0 _POVyO(X, 1/b) ) VpBE% B,3B-y _ c -2 A2 -y -0o / +joA 2HoB o = 0o2HoB 1 V" (73)
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The above equation has the general solution

VZO = vX" + e-CIY (Acos(c 2y) + Bsin(c2y)) (74)

where the growing exponential has been discarded. The constants A and B are to

be determined from the boundary conditions at y = yb. Furthermore, cl and c2 can

be obtained by requiring the first and second derivative of v. to be continuous at the

interface between the computational and the asymptotic region.

(2) Surface Current at z = Ho

In addition to the assumptions used in case (1), a surface current K is now assumed

to flow in the surface z = H0 ,. This current exerts a vertical force on the plasma

in the boundary layer which represents the net effect of j. currents flowing in the

"triangular" (shaded) region in Figure 6, and accounts for the difference in pressure

at the edge of the LLBL (at z = Ho = Ho(z)) and the magnetospheric pressure.

This requirement is given by the relation

K B.+ "+- B; -p P (75)

where the superscripts + and - denote quantities evaluated above and below the

surface z = Ho, respectively. In the above equation, the magnetic field in the surface

z = H. is the average between the value above and below this surface. In the

boundary layer approximation, the boundary condition on the magnetic field there

requires that B+ - B; = poKy,, where B; = (Ho/H)B.1 . The plasma pressure below

the surface, p-, which can be taken from the z-momentum equation (49), is equal

to po - B.1jHo/2poH 2; the plasma pressure above the surface is the magnetospheric

plasma pressure at z = H,,, i.e., it is poo(x, Ho). With those substitutions, the
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relation (75) gives the surface current K,

1+ 2HB2 + -- - POO (76)
K= - ;-H )f, ++H2 Po

The condition of current continuity at z = Ho should now include this surface current,

i.e.,

.A = - +.fi + t (77)

which leads to

H o OB., Bo. 8K,,
polH Oy= -V- -ii +-- (78)

Equations (69), (70) and (78) contain z only as a parameter; they are in effect ordinary

differential equations which, along with (76), can be used to calculate v.0, B,,1, and

ill, as functions of y at any x location.

2.4 Self-Consistent Coupling Region

It is an important objective of a boundary layer model to provide the actual

mapping of the magnetic field lines from the equatorial LLBL to the ionosphere. In

order to accurately provide this information, the model must include a self-consistent

calculation of the magnetic field deformation in the coupling region, i.e., it must

incorporate the mapping factor dx/dxi in a self-consistent manner. This can be

accomplished by an iterative procedure, as follows: In the first iteration a constant

value of the above ratio is used, equal to the value given by an internal magnetospheric

model, such as the Tsyganenko model. After the model equations have been solved

numerically, the magnetic field geometry in the LLBL will be known. A force-free

boundary layer model can then be used to calculate the further deformation of the

magnetic field in the connecting region that is caused by field-aligned currents there.
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This calculation will provide the new mapping factor dz/dzi to be used in a second

iteration in the LLBL model, and so on. A self-consistent boundary-layer model

of the connecting region is currently under development by Professor Lotko and his

students [see Appendix 5].
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Fig. 6. A schematic of the LLBL height, H0, as a function of y at fixed z value. If

Ho(x) is assumed independent of y and equal to H.(x), a surface current K. ca.- be

used to account for the difference in pressure above and below the surface z = H,,.
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APPENDIX 3: NUMERICAL METHOD

In Appendix 1, it was explained how the system of equations (15), (17), (18),

(20) and (26), i.e., the mass conservation law, the y component of the momentum

equation, the isentropic law, the induction law, and the z component of the momen-

tum equation, respectively, all evaluated at the equatorial plane, (z = 0), were solved

by a numerical procedure. The reader is reminded that the model represented by

those equations does not include field-aligned potential drops in the coupling region

between the LLBL and the ionosphere, and assumes that the LLBL has constant

height in the z direction.

As already mentioned, the computational box is a rectangular region in the zy

plane. The lines y = 0 and y = y,, represent the magnetopause and the magneto-

spheric boundaries, respectively; appropriate boundary conditions are applied there.

At the line x = 0, the upstream conditions across the boundary layer (i.e., in the y

direction) are imposed. The box is divided into two parts: the first part, attached

to the magnetopause, extends from y = 0 to y = yb; in this part, the velocity in the

negative x direction is higher than a chosen small positive value, vm.n. In the present

chapter, the finite difference method used in this part of the box is explained in some

detail. The analytical method used in the box attached to it, called the asymptotic

box, and extending from y = Yb to y = y,, was explained in Appendix 1. A schematic

of the computational region and the asymptotic region is shown in Figure 7.

The system of equations contains five unknown quantities, namely, v.0 (x, y),

v•o(z, y), Bo(x, y), p0(x, y) and po(x, y); we wish to find the x dependence (along

the main antisunward flow direction) and y dependence (across the layer) of these

variables. The system is written in a finite difference form according to the Crank-
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Nicilson scheme, to be explained presently. There are n+2 grid points in the y

direction, including the two boundary grids, and the calculation can proceed for as

long as needed along the z direction. The equations are expressed in backward differ-

ence form in the z direction; this allows all variables to be calculated (simultanuously

at all n grid points in the y direction) at only one step in the z direction each time,

based on the values of the previous step. The grids are equally spaced in the z and y

directions, but Ax 6 Ay, and also, care is taken so that Az/Ay ; voe/vVO. The latter

condition guarantees that information about the velocities in the z and y direction

travel a distance of about one step in the corresponding direction in time At, i.e.,

At = Ax/vo = Ay/vvo. This marching procedure in the downstream direction takes

advantage of the slow parabolic evolution of the flow; in fluid mechanics it has been

found to be the most economical method as far as computational time is concerned.

At every step in the z direction, the number of grid points, n, along the y

direction is different in general. Before the calculation at each step in z starts, a simple

check on the magnitude of v1'So at the right boundary is performed; for computational

convenience this check is applied at the previous step. If the value is lower than

v,i,,, as many grid points as necessary are discarded at the right edge of the box and

the calculation at the present step is performed on the remaining grid points. If the

value is higher than vm,,, grid points are added: the values of all variables at those

new points at the previous x-step are taken from the asymptotic (analytic) solution

explained in Appendix 1. It is sufficient to check the value of vo0 at the very last

grid point on the magnetospheric edge of the numerical box because the velocity is

expected to change with y relatively slowly at that boundary.
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3.1 Finite Difference Method

The finite difference form of the x-momentum equation in non-dimensional form

is given below. The superscript i denotes the grid-point number in the z direction

while the subscript j denotes the grid-point number in the y direction. In the following,

the notation for v.o, vyO, Bso, p0, jy and po is also changed, for convenience, to u, v,

B, p, j, and p, respectively. The x-momentum equation becomes

[e(p;+',U,+;) + (1 - 0)(pýU)Jýu' - U)+
AXa{,.+l..i+l)4 -.•+ ,•+1 \V Ui_

S+ (I - 0)(pv*)(uj+1
2Ay

P,, o +

dx) d B

RO(uB)+' + R+/(1 - O)(uB)'+
1 A{e i+1 ? ui+ - u I+L1) _4.+1 i +_)) +

(-(+ 1 (U+1 - 4jS) - P4. 1/ 2(uj - U )} i = ... i , j =1,., n (79)

In the above, the viscosity is assumed to be of the form p = p"'pP2/BP3 . Also, the

notation P,+1/2 = (pj+l + pi)/2 and P,-1/2 = (pi + pi,_)/2 is used, with 0 < 0 < 1,

where 0 is a weighting factor. For 0 = 0 the method is explicit; in this case, the von

Neumann stability constraint presents a severe limitation on the marching step size

[e.g., Anderson et al., 1984]. For 0 = 1 the method is fully implicit with truncation

error O(Ax) + O(AY) 2. The value for 0 used here is 1/2, which gives the Crank-

Nicolson implicit scheme with truncation error O(AZ) 2 +O(AY) 2, when all coefficients

and properties are evaluated at the expansion point (i+1/2, j). In this case, no

stability constraint arises from the von Neumann analysis.
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The y-momentum equation is not a differential equation. One could possibly

eliminate one of the variables and not use this equation. However, for the purpose

of keeping the non-linear terms as simple as possible in the code, the equation was

written in a discrete form and was included in the system along with the other four

differential equations. In non-dimensional form, this equation is written as:
I .+1 41

p + -(B ,) = (P.)' (80)

The mass conservation law is expanded at the point (i+1/2, j-1/2) as follows:

P3 •+ -- p;uJ + - - P-luj-1

AX
+P3 V3 - i-1 r-1 +p -iij-_ =0 (81)

AY

Notice that the derivative across the layer (in the y direction) is written in a back-

ward difference form here, while the derivatives across the layer in the x-momentum

equation are in a central difference form. As a result, no boundary condition on v. is

required at the right edge of the computational box.

The isentropic law and the induction law are written in a form that contains

convective terms similar to the inertia terms in the x-momentum equation; therefore,

they are expressed in a similar finite difference form. It should be noted, however,

that, in both equations, the derivative across the layer is not represented exactly by a

central difference, as in the x-momentum equation, but as a combination of backward

and forward differences, with weighting factors 01 and (1 - 01), respectively. Without

those weighting factors, a numerical oscillation, which grows as the computation

proceeds downstream, appears between alternate grid poins in the values of B, p and

p. Empirically, the value 01 = 0.35 was found to work well.
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The isentropic law and the induction law have the following finite difference

form.

[Ouý+' + (1 - O)ui] ((p/p)9+' - (P/PiO)
Ax

01 ((p/P,,)S+i - (P/,)1t_) + (I - ,1) ((P/lpyi+, - (P/,,)1-+)+0V jl 2Ay

+(1 - O)Vj ; ((P/P)-% (P/)-) + ( 1+) (82)

AX

((.)11_-( ) + c,-D)1 4
i+101P 1+1 'b~i~+10vi j 2Ay

S((Di (Ei-) + (1) ((kP)X

+(2 OV y =-0 (83)

For a given i value, equations (79)-(83) comprise a system of 5xn algebraic

equations with 5xn unknowns, namely, uý+1 , •"+1, Bj+l, P,-+I, and p.+i, where j =

1,... ,n. Boundary values at the magnetopause, i.e, at j=O, are required by the

numerical procedure for all five quantities. At the grid point n+1, i.e., at the boundary

between the numerical and the asymptotic box, boundary values are also required for

B, p and p. Boundary value for v is not required. Note that B, p and p at both the

magnetospheric boundary and the magnetopause boundary should be consistent with

the relations (41) and relations similar to (41), respectively, as explained in chapter

2. The boundary condition on u at the grid point n+l is a mixed condition, i.e.,

it contains both the value and the two first derivatives of the quantity, see equation

(33). This equation is implemented numerically as follows [Smith, 1984]: equation
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(33) is written at the grid point n+l, i.e., at y = y6 as

u%+2 - 2 u.+1 + u. = un+l - u0)a for all i (84)urn..-) -- Uoo

Equation (79) is then written at the grid point n+l, and the value of U.+2 is substi-

tuted from (84). This results in one additional equation with one additional unknown

quantity, namely u,,+,. Therefore, the final algebraic system consists of xn)+l

equations with (Sxn)+l unknowns. The method used to solve this non-linear system

is described in the next section.

3.2 Newton's Method

Newton's (or Newton-Raphson's) method is one of the most powerful and well-

known numerical methods for solving a root-finding problem f(z) = 0 [Burden and

Faires, 1989]. To indroduce Newton's method, assume that the function f is twice

continuously differentiable, and z. is an approximation to the root, r, of f(z) = 0

such that f'(z.) 0 0, where f' is the derivative of f. One may then consider the

Taylor expansion of f(x) around the point zx:

f(X) = f(AX-) + (X - z.)f'(X.) + 2 f,&)) (85)

where q(z) lies between z and z.. If z. is a close approximation to r, the quadratic

term can be neglected and equation (85), evaluated at z = r, gives

0 f(x.) + (r- .)f'(z,) (86)

Solving for r

r Al (87)
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This sets the stage for an iteration procedure, in order to determine the root, r, that

starts with an initial approximation zo and generates the sequence Zk, defined by

Xk = - f(Xk,1) (88)
f'(Xk-.1)

Newton's method can be generalized to a system of m non-linear algebraic

equations of the form f.(xi) = 0, where c=1,...,m and 1=1,...,M, or, in vector form

F(X) = 0, where X is the vector that contains the unknowns. In the present appli-

cation, f, = 0 represent the five equations of our problem, written in finite difference

form at n grids in the y direction across the LLBL, at a particular x location, along

with one equation at the boundary grid n+1; xt represent all the variables, i.e., the

unknown values of u, v, B, p and p at all n grid points, and u.+,. Thus we have m

- (5xn)+l in the present application.

The functional iteration procedure evolves by first selecting X0 and then itera-

tively generating
1

Xk = Xk_• -(I F(Xk-.) (89)
J(Xk...)

for k > 0. Here, J(X) = Ofi/O9x is the Jacobian of F, the detailed expression for

which is given below. One can prove that the sequence generated by this iteration

gives quadratic convergence to the solution, P, of F(X) = 0, provided that the

initial guess, X 0 , is a sufficiently close approximation to the actual solution [Burden

and Faires, 1989]. In order to satisfy this condition, we take advantage of the slow

evolution of the LLBL downstream by using the values of all variables in the previous

step as an initial guess for a new step in the downstream direction.

In practice, explicit computation of 1/J(X) is avoided by performing the oper-

ation in a two-step manner. First, a vector Y - Xk - Xj•- is found which satisfies

J(X,_,)Y = -F(Xk_,) (90)
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After this has been accomplished, the new approximation, X,, is obtained by adding

Y to Xkj.

The vectorXk contains the solution ([ul, vi, B, P1, PI, -.. , U.., vn, B3 , p,, pn,, un+Ik)T

after each iteration step, k. The vector F(X) contains the left-hand side of the

(Sxn)+l finite difference equations described earlier. The Jacobian matrix J(X) is

of the form

S= .. (91)

Since all of the finite difference equations involve the variables at no more than

three neighboring grid points in the y direction, it is possible to arrange the above

matrix in a banded form with bandwidth equal to 15. Notice from equation (89) that,

at every step of the iteration procedure, after the initial guess, X0 , both J(Xk-l) and

F(Xk_.) are known, and therefore, a linear algebraic system has to be solved for Xk.

This is done by an IMSL (Mathematical and Statistical Library) Library subroutine,

that performs LU decomposition of the above matrix and includes partial pivoting.
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APPENDIX 4: BENCH MARK TESTS

The system of equations (15), (17), (18), (20) and (26) possesses certain self-

similar solutions. In this Appendix, these solutions are derived and used as bench-

marks for the numerical code described in Appendix 3.

We first examine the mass conservation law. The z and y components of the

velocity, and the plasma density are assumed to have the following variation with X

and y:

VO = X'"f(i1 ), v0o = zxg(q), po = zxr(i), 1 = (92)

Here, f, g, and r are functions of the independent variable 17 only, and m, p, q and

n are exponents to be determined in such a way that all powers of z are cancelled in

the system of equations mentioned above. A solution derived in this manner has the

following property: one may obtain the solution at every z location from the solution

at any other z location by (a) multiplying by z raised to the appropriate power and

(b) rescaling the y axis so that the ratio y/zX matches the similarity variable, 17. By

substituting (92) into the mass conservation law, equation (15), we get

(m + q)fr - nir(fr)' + (gr)' = 0 (93)

The differentiation, denoted by the prime, is with respect to the only remaining

independent variable, namely, 17. The requirement that the powers of x cancel results

in the following condition for the exponents:

m- = p- n (94)

To derive an ordinary differential equation from the x-momentum equation,

we assume that the total pressure in the equatorial plane, Po(x), has the following
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variation:

P".(z) = X2m+9CP (95)

where Cp is a constant, independent of both z and q/. From the y-momentum equation,

(17), it then follows that

Po = x2 +'m+9(q), B~o = z'_+' 2b(i1 ) (96)

and the y-momentum equation takes the form

+ b2p = CP (97)

Furthermore, we assume that the conductivity, a!, the current, j,, and the viscosity,

r/o have the following variation:

a = X"E(rI), j. = x°J(i1 ), 'go = X*M(i7 ) (98)

With the above assumptions, the x-momentum equation, (26), becomes

mrf 2 -- nrirff' + rgf' = -(2m + q)Cp - EZb 2f

+ E.f.b. + J. + I(M + )b. )b + MT + (99)

The requirements on the exponents are:

2m+q--1=3mr+q+ + -s+m+q/2=a--2n+m (100)

from which we get

/~=--s=--r, =m+ -l, a=m+2n+q-1 (101)
2

Similarly, the isentropic law, equation (18), becomes

(7 ()'+ ( V 0
(2m +q--yq)f --r-njf (102)
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and the induction law, equation (20), becomes

(m - b)f b -- nif + g =0 (103)
2 rrr

No further restrictions on the exponents are imposed by the latter two equations.

The system (93), (97), (99), (102), and (103) consists of five ordinary differential

equations for f, g, r, ir and b, with respect to the only independent variable, 'i; it can

be integrated subject to five boundary conditions (one equation is of second order

and one is algebraic). It contains seven exponents, namely, m, n, p, q, 0, s and a,

which are constrained by the four conditions (94) and (101), so that three exponents

can be specified.

If the total pressure in the magnetosphere is a function of z, the z variation of

p0, po and B2 o is given by (92) and (96). The solution that was used for benchmarking

of the numerical code in the computational box is of this form. The exponents were

chosen as follows: n was chosen to be zero, which represents a "constant thickness"

boundary layer; in this case q = y and no scaling in the y direction is needed in order

to relate the solutions at different x locations; m was chosen equal to 1, and q was

chosen equal to 2 so that the magnetopause boundary is a stream line with g(0) = 0.

With n = 0, m = 1, and q = 2 it follows from (94) and (101) that p = 0, 6 = -2,

s = 1, and a = 2. One can see that with those parameters, equations (97), (102), and

(103) require solutions for 7r, r, and b that are independent of 17. The five variables

then take the form

v 0O = zf(y), VY = g(y), p0 = x2C,, p0 = x4C. B2 o = x2 Cb (104)

Notice from (98) that the conductivity, the current flowing into the magnetosphere,

and the viscosity are functions of x. The viscosity function, M, was chosen to be in-

dependent of y. The resulting system of equations was solved subject to the following
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boundary conditions: f(0) = -180 km/sec, f(oo) = 0, g(0) = 0, B.0(0,y) = 44 nT,

and po(O, y) = 0.62 nPa.

The solution was obtained by integrating (93) and (99); an IMSL (Mathematical

and Statistical Library) Ordinary Differential Equation solver routine was used for

that purpose. This solution was then used as the initial step in the code described in

Appendix 3, at z = -10 RE. Boundary conditions and other parameters were chosen

according to the requirements for the self-similar solution described above. Figure

8 shows the profiles, obtained by the numerical code, of vo, Vo0 , B.0, po, and po,

versus y in the computational box, at two different x locations, namely, after 3 RE

and after 6 RE from the beginning of the calculation. At each location, the profile

from the independent integration of the ODE's, scaled to the appropriate x location

is superimposed. The difference between the two solutions is of the order of one part

in 104 and is indistinguishable in the plots.

It should be noted that this case is not a complete benchmark of the code because

po, p0 and B,0 were chosen to be functions of z only: those variables are constant

with y. However, it can be argued that this is not a major restriction because (a)

the pressure balance in the y direction, which is explicitly incorporated in the code,

is accurately satisfied at every step in the -x direction, and (b) the validity of the

finite difference form for the convective terms in the induction law (the isentropic law

is expressed similarly), when B;o is non-constant with y, has been verified separately.

It is emphasized that in this benchmark test, an explicit boundary condition

on the value of v.0 at the magnetospheric boundary was used in the numerical code,

instead of the mixed boundary condition derived by matching the solution at the

computational box with an asymptotic solution that extends into the magnetosphere.

This serves the purpose of verifying the finite difference representation of the equations
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described in Appendix 3. It was found that, when a computational solution is matched

to an asymptotic solution at y = Yb, the overall accuracy of the code is somehow

influenced by the choice of the boundary condition applied at y = yb. The method

we chose was to require a solution that would guarantee continuous first and second

derivatives of the velocity component vo at y = yb (in addition to continuity of v~o

itself), so that the first derivative of the current at the top of the boundary layer

is also continuous, as explained in Appendix 1. The boundary condition that was

implemented is given by equation (33) and the solution in the asymptotic box is

given by (29), where a(x) has been slightly adjusted from the value given by (30)

to allow for a continuous second derivative of v-o. For the benchmark test of the

entire code, including the asymptotic box, a self-similar solution with constant total

pressure along the equatorial LLBL was chosen, as described below.

If the total pressure in the magnetosphere, P,, is assumed to be independent

of x, then the density, the plasma pressure, and the z component of the magnetic

field should also be independent of both x and y in order to satisfy equations (17),

(18), and (20). The mass conservation law, which is then of the form V.v = 0, i.e.,

it represents an incompressible solution, becomes

mf - n'if' + g' = 0 (105)

and the x-momentum equation becomes

C',.(mf - nilff' + gf') = --ECbf + (E•f.oCb + J00 )Cb + M'f' + Mf" (106)

Here, C,. and Cb denote the constant values of po and B~o. The relation (94) for the

exponents is still valid and the relation (100) becomes

2m- I = m +,8 = s = a- 2n + m (107)
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The solution of (105) and (106) that was used for benchmarking has an asymp-

totic behavior as y --+ oo such that j.. = 0, v,,- = 0. Also, the values m=1, n=O

were used. Under those assumptions the solution to (105) and (106) can be found

analytically; it is given by

f =Ae•', g- A(e- - 1) (108)
c

where A is given by the boundary condition on f at y = 0 and c satisfies the relation

2=E6 + -c2 (109)
cv c

Figure 9 shows the profiles of v.o and vvo versus y, at a distance of 10 RE downstream

from the beginning of the calculation. The computational box ends at the location

where v~o = -3 km/s. As in Figure 8, two profiles have been superimposed, one

from the numerical code and the other from the independent ODE calculation. The

difference between the two results is of the order of one part in 102.

4.1 Self-Similar Solutions of the Extended Model

The extended model described in Appendix 2, that includes field-aligned po-

tential drops in the coupling region, possesses self-similar solutions as well.

In the following, v.o, v, 0 , Bo, p0, po, and tjo are assumed to have the functional

behavior described earlier in this Appendix. Furthermore,

B., -"'xd(q}), Jill, "-x'Jll(r), A -" xb I Bi0q)',dx ... xX'dx(i7)'
dx

EP = X'E(i1 ), Ho = xhHn(vi), B. 1 = x t bt(i7), v,1 = x'z(,?) (110)

With the above assumptions the x-momentum equation, (16), becomes

mrf 2 - nvirff' + rgf' = -(2m + q)Cp + 1-bd + M'f' + Mf" (111)
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where the requirements on the exponents are

2m+q-1 m+ +e=m--2n+a (112)
2

The y-momentum equation remains as in (97), and the isentropic law remains as in

(102). The requirements on the exponents from this law are again

m- 1 = p- n (113)

The induction law, equation (19), becomes

(2m + 2))bf - nq(bf)' + (bg)'= 0 (114)

while equation (67) becomes

A= E (E'dx)' (Jj,' + (f b)') + :!'dx (E:ý'dz) (3IJ(1 + fib) (115)

The requirements on the exponents are

&+2b1 +2z =2m+2n+q, c=2m+n+q/2 (116)

The current continuity, equation (63), becomes

1 -dH" J11b (117)
Wo-H~ B,

along with with the requirement

h - n + e = c -bt + m + q/2 (118)

The mass conservation law, equation (47), gives

(q + h + m)rHlj - (nmi - 1)(rHf)' = 0 (119)

and the z-momentum equation, (50), becomes
(d,2

2po(7roo - 7r) = (dH.l) (120)
H
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along with the requirement

e + h = m + q/2 (121)

Equation (46) becomes

- HH- '-g , + -H (122)

along with the requirement

m - 1 = p- n = v. (123)

Finally, the magnetic flux conservation law, equation (52), becomes

ed - idd' + b'. = 0 (124)

along with the requirement

t - n = e - 1. (125)

The algebraic system (112), (113), (116), (118), (121), (123), and (125) gives

e = m + q/2 - 1

a= m+2n+q- 1

p-m- +n--1

c = 2m + n + q/2

1= 2m + 2n + q/2

h=l

a + 2z, = -2m - 2n

V = m -1
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t 2m + q/2 -2 (126)

The above nine relations constrain the thirteen parameters that are present in the

system of ordinary differential equations derived in this section. Four of those pa-

r=meters are free, and one, namely h, is required to have a fixed value. Note that this

results in a somewhat unphysical variation with x of the height Ho; nevertheless, the

solution can be used for the purpose of benchmarking.

4.2 Other Benchmarks

As already mentioned in Appendix 1, the system has been benchmarked against the

one-dimensional solution ( which is independent of x) derived by Sonnerup [1980],

under the appropriate assumptions. First, the solution, which is given by equation

(42), was used as an upstream velocity profile: it was found to remain unchanged,

for as long a distance downstream as desired. Second, a different initial profile was

imposed and it was found that, with increasing IzI, the system eventually relaxed to

Sonnerup's solution, with v. = 0, as required.
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Fig. 8. Self-similar benchmark solution: plotted are profiles of v.o, vV0 (top two

panels), po, B,0 (middle two panels), and po (bottom panel), versus y, after a flow

distance of 3 RE and 6 RE from the upstream location. Each profile is calculated from

the numerical code and from an ODE solver independently, and the two solutions are

superimposed.
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Fig. 9. Incompressible self-similar solution. The two panels show the profiles

of vo and v1o, respectively, versus y, at flow distance of 10 RE from the beginning of

the calculation; B.o, po, and p0 are constant. The solutions given by the numerical

code and by independent integration of the ODE are superimposed. The computa-

tional box ends at 0.3 RE, and an asymptotic Solution is pasted to the computational

solution at that location.
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Field-Aligned Currents

K. VatanI, W. Lotko, and B. U. O.Sonnerup

Thayer School of Engineering, Dartmouth College, Hanover, NH

ABSTRACT

A mathematical model for a force-free boundary layer (FFBL) has been
developed to calculate the deflection of the earth's magnetic field due to ,uasi-steady
field-aligned currents. The model may be used to determine the magnetic field struc-
ture and mapping between the equatorial magnetosphere and the ionosphere. The
geometrical volume of interest extends between two magnetic flux surfaces, with a low
altitude boundary representing the ionosphere and a high altitude boundary represent-
ing the interface with a model for field-aligned current generation. The mathematical
formulation is general and may be implemented numerically for any magnetic
geometry for which locally orthogonal coordinates can be defined. A numerical imple-
mentation of the model and its application to dayside region 1 currents are described.
The illustrative application in dipole magnetic geometry suggests that typically
observed dayside region I currents produce a maximum (upper limit) azimuthal
deflection of dipole field lines of about 260.

1 Now at Hewlett-Packard Company, Workstation Division, Chelmsford, Mas-
sachusetts.
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1. INTRODUCTION

The description of magnetic field-aligned currents (FAC) presents a difficult problem to
the magnetospheric modeler because the closure paths of the currents are determined funda-
mentally by the local plasma and fluid behavior. In the framework of one-fluid magnetohydro-
dynamics (MHD), FAC closure can be effected by plasma polarization (finite inertia), plasma
diamagnetism (finite thermal energy), and plasma electrical conductivity (finite collision time).
The last effect dominates in the ionosphere while the first two are important in the equatorial
magnetosphere. In the intermediate altitude region, between the ionosphere and the equatorial
magnetosphere, the transverse elements of the plasma conductivity tensor, the ratio of plasma
pressure to magnetic pressure, and the AlfvIn Mach number are all small. Therefore, the
electrical currents that flow in the intermediate altitude region are force-free to a good approx-
imation and remain field-aligned until reaching the ionosphere or the equatorial magnetos-
pheric region where they are diverted into perpendicular currents.

The purpose of this paper is to describe a new technique for calculating quasi-steady
field-aligned currents in the intermediate altitude region, and the magnetic deflections pro-
duced by them, when the currents flow in a relatively thin, but finite thickness, layer. Stern
[1993] has recently described a technique for calculating the perturbing effects of field-aligned
currents on the magnetic field in regions outside the field-aligned current layer, i.e., in regions
where the field-aligned current is zero. The magnetic field is evaluated by Stern assuming that
the FAC flows along the unperturbed magnetic field lines in a zero thickness (8-function)
sheet or shell. When the current layer has a finite thickness, the FAC must flow along mag-
netic field lines that are determined by solving for the FAC path and the magnetic field lines
simultaneously. Therefore, the model described in this paper effectively resolves the 8-
function sheet currents assumed by Stem. Because the currents are assumed to be entirely
field-aligned in the thin layer of interest here, we refer to the model as a force-free boundary
layer (FFBL).

The utility of the FFBL model described here is twofold. It can be used to map FACs
outward from the ionosphere where statistical synoptic data on their spatial distributions are
available. The model may also be used, in modular form, to connect a high altitude magnetos-
pheric dynamo region to its ionospheric load. For example, we envision (though have not yet
accomplished) connecting the FFBL model with the low-latitude boundary layer model
developed recently by Drakou et al. [11994]. Other applications for connection to nightside or
cusp region dynamos are also possible.

In this brief report, the basic assumptions and mathematical formulation of the FFBL
model are described, along with a particular numerical implementation. Use of the basic tech-
nique is illustrated by mapping the dayside region 1 currents [Jijima and Potemra, 1976] out-
ward from the ionosphere in an (oversimplified) approximation where the magnetic field out-
side the FFBL remains dipolar.

For reference, the field outside the FFBL is identified in this paper as the exterior field.
The exterior field occupies regions that are both closer to and further from earth than the
FFBL. We assume throughout the paper that a locally orthogonal, 'magnetic' coordinate sys-
tem exists, in which one of the coordinates lies along the exterior magnetic field, a second is
normal to the FFBL surface (also a magnetic flux surface), and the third completes the orthog-
onal set. In fact, one can always identify a system of locally orthogonal unit vectors at any
point on a magnetic flux surface (e.g., the Frenet-Serret set or the LMN set often used in
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magnetopause studies) for the purposes of resolving field vectors into locally orthogonal com-
ponents and performing vector algebra on them. However, representation of vector differential
operators requires specification of the transformation equations that relate appropriate mag-
netic flux coordinates to Cartesian coordinates and which determine the metric tensor for the
transformation. Transformations that remain locally orthogonal in the magnetic flux coordi-
nates are known to exist for plane fields and axisymmetric fields, of which the dipole field is
a familiar example, but locally orthogonal transformations can be difficult, if not impossible,
to find for realistic magnetic field configurations. As a consequence, we are currently in the
process of generalizing the FFBL formulation described here and expect in a future paper to
report on a FFBL model based on non-axisymmetric, non-orthogonal magnetic flux coordi-
nates.

2. MODEL

2.1 Force-Free Condition

In the region of interest, the ratio of plasma pressure to magnetic pressure, is assumed to
be much smaller than one, as is the ratio of plasma kinetic energy density to magnetic pres-
sure. Therefore the Lorentz force term dominates the pressure gradient and inertial terms in
the MHD equation of motion. The momentum equation then reduces to the so-called force-
free condition [e.g., Priest, 1982] in terms of the plasma current density j and the magnetic
field B:

JxB =0. (1)

From the steady-state Ampere's law,

pj = VxB (2)

where jio is the permeability of free-space. The force-free condition can be alternatively
expressed as

pj= aB (3)

where a(r) is a scalar function of the spatial coordinates. Combining (2) and (3) gives

VxB = aB. (4)

The divergence of (4), together with V. B = 0, shows that a(r) is constant along magnetic
field lines:

B. Va = 0. (5)

2.2 Geometrical Domain

After implementing the approximations described in Section 2.3 below, a solution to (4)
and (5) will be developed in a general curvilinear coordinate system with the proviso that the
coordinates be locally orthogonal. The curvilinear coordinates are as follows: x, is the gen-
eralized 'azimuthal' coordinate; x2 is the flux surface label and decreases in value when going
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from inner flus surfaces to outer flus surfaces; x3 varies along the exterior magnetic field. The
unit vectors ti, t2 and t3 form a mutually orthogonal set. As mentioned above, the term
'exterior' is used to indicate the magnetic field outside and at the edge of the FFBL where the
FAC is zero. In general, the exterior field is also influenced by the force-free current; these
effects can be modeled in the region outside the force-free boundary magnetic by calculating
the magnetic field perturbations produced by a zero thickness, force-free current sheet (or
shell), i.e., a 8-function current sheet. This current sheet can then be resolved into a finite
width, force-free current layer using the procedures described below. The geometrical region
of interest is therefore a thin, but finite thickness layer where the force-free current is nonzero.

This geometrical volume is illustrated in Figure 1. It extends between two magnetic flux
surfaces (to which the exterior field is everywhere tangential), with a low altitude boundary
representing the ionosphere and a high altitude boundary representing the interface with a
model for field-aligned current diversion or generation in the magnetosphere. The inner and
outer magnetic shells correspond, respectively, to the maximum and minimum values of the
coordinate x 2. For applications of the model to portions of the dayside magnetospheric boun-
dary layer region on closed field lines, the outer magnetic shell might be taken as the magne-
topause surface and its projection along field lines from the equatorial plane to the ionosphere.
Although the numerical calculations described later in this paper are based on dipole magnetic
geometry, the mathematical formulation is general and may be implemented numerically for
any magnetic geometry for which locally orthogonal coordinates can be defined.

2.3 Boundary Layer Approximation

The method of solution to (4) and (5) makes use of a narrow-channel or boundary-layer
approximation for which spatial changes across the thin layer in the x2 direction occur on a
scale length 8 that is much less than the scale length L for changes in the xI direction or the
scale length H in the x 3 direction. The x, and x 3 coordinates vary on surfaces that are
tangential to the thin layer. The boundary layer approximation implies that

alaxI - 1/L, l/ax 2 - 1/8, "/x3 - I/H (6)

where 8 c L - H. Assigning a characteristic value B0 for the field components B1 and B 3
in the 2 1 and t3 directions, the solenoidal condition V B = 0 implies the following scaling
relations:

BI-B3-Bo; B2 - A" < B0. (7)

B2 is the component of B in the x 2 direction.
Expressing the curl in Ampere's law in a locally orthogonal coordinate system with

metric scale factors, hi = Jar/&)xJi, provides the following three equations:

1 [a(h38 3) a(h 2B 2) (8)

j' PJh2h3  a X3

j2 1 [(htBt) I (h3B3)1 (9)90h pjlh 3  ax 3  JIX I

1 rh(h2B 2) a(h IB) 1 (10)
pohlh 2 [ x •Jx 2 2
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Using the boundary layer scaling relations defined by (6) and (7), and neglecting terms
of O(82 /L 2) in Ampere's law, equations (8) and (10) become:

1 ()(h3B 3) (11)

POh 2h 3  a)x2

I a(h 1B 1)
h3 P 0 zh 2  ax2  (12)

Comparison of the second equation (9) of Ampere's law with first (8) and third (10) equations
shows that

J2 _ J2 -C. (13)
J1 J3 L

The current flow normal to the boundary layer is therefore small.

Combining (11) and (12), and using the force-free condition, p1oj = ccB, yields the fol-
lowing equation for B3:

S a h (h 3 B 3  0 (14)

hlh 2a ax2 [h 2h 3a ax2  +

An analogous equation can be derived for B 1. We now further assume the layer is
sufficiently thin so that the metric scale factors h, and h3 are very nearly constant on the
scale size for variations in B across the layer: Ia2lnh 1.31 < Ia2lnB 1 31. With this approxima-
tion (14) becomes

1 a) F 1 aB3 1
I a- Ih ]- +B 3 =0 (15)

_2 ax2 1(X aX2

2.4 Boundary Layer Solution

To solve (15) a new variable, dT = cch 2dX2, is defined. Equation (15) then becomes

N2B 3(r) + B 3(0 = 0, (16)

and BI is determined from its solution as

B aB3()) (17)

The general solution, with explicit dependence on x 1, x2, and x3 retained, is

B I = B..(x ,x 3) COS[1V(x 1, x 3 )+ r((x 1 ,x 2 ,x 3 )] (18)

B 3 = B.(x 1,X3) sin[l(x I,x 3)+ r(x 1 ,x 2,x 3)A (19)

where

B .(x 1,X 3 ) = B 12 (X I,X 2 -, X3) +B 3
2 (x 1 x 2 , x 3 ) (20)

W(X 1,x 3) = arctan[B 3 (x 1,x 2 -,x 3 )/B I(X 1,x 2 .,x 3 )] (21)
X2.

T(X 1,X 2 ,X 3 ) f J(X 1, ,x 2 ',x 3 )h 2(x 1,x 2 ',x 3 )dX 2' (22)
X2
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The constants of integration, B. and W, are determined by boundary conditions on B and B 3
on a reference flux surface identified as X2 = x2m. The x2' dependence in the metric scale fac-
tor h 2 appearing inside the integral in (22) has been formally retained, although no accuracy
is actually gained by including this dependence. The approximation used in going from equa-
tion (14) to (15), in fact, allows one to treat h 2 as constant across the layer so that it is
equally correct to set h 2 (x 1 ,x 2 ',x 3 ), h2(xl,X2..,x 3 ) in (22) and to take h 2 outside the

integral.

B2 is obtained by substituting BI and B3 from (18)-(22) in V- B = 0. After integration
with respect to x 2, and using B 2 (x4,X 2 -,x 3) = 0, which must be true if x 2 = x 2 , is a flux sur-
face, we find

1 X2 [a(h2h3 Bi) 8(h h2A 3) 1
B2=hj3 X2 , . aX3  ] (23)

Note that the metric scale factors may vary as rapidly (or slowly) as B in the t1 and 23
directions, so they may not be passed through the derivatives in the integrand in (23). It is
also noted that h 1.2.3 are in general functions of x 1 , x 2, and x 3. However, as discussed above,
we gain no accuracy in retaining the x 2 dependence in the scale factors; they may be
evaluated at x 2' = x 2.. and treated as constants in performing the integration over x 2'. The
distribution of a(x(l,X 2,X3) throughout the spatial region of interest is not known a priori
except on some bounding surface, say x 3 = x40 ) where x?°) is a constant value of the coordi-
nate x 3. The volume distribution of a can be determined self-consistently along with the
magnetic field by simultaneously solving (5) and (18)-(23).

2.5 Boundary Conditions

The formulation of the force-free boundary layer model given above is general and may
be used when (i) the region of interest can be characterized by the force-free condition (1) and
(ii) the field-aligned current into the region flows in a thin layer so that the boundary layer
approximations (6) and (7) are appropriate. Given these constraints, a unique solution to the
set of equations (5) and (18)-(23) requires two boundary conditions:

(A) specification of the magnetic field B(xl,X2,,,x3) on a reference magnetic flux surface
X2 = x 2 ,, and

(B) specification of a(x 1 , x 2, x °)) - t 1j/B on a bounding surface, x3 = x 0), normal to the
magnetic field (a 'magnetic normal surface').

Technically, a unique solution also requires specifying the partial derivative a(h 1h2B 3 )/ x 3 in
(23) on the bounding surface x 3 - X°). We have found in practice, however, that the value of
this derivative on the bounding surface has little influence on the accuracy of the boundary
layer solution (cf. discussion in Sec. 2.6).

For applications to the magnetosphere, we will take the reference magnetic flux surface
to be located at the inner edge of the force-free boundary layer. In dipole coordinates, this
surface would correspond to the innermost L-shell of the FFBL. While the magnetic field
earthward of the reference flux surface is presumed to be known, this internal field, in general,
depends on the currents that flow in the FFBL. Because the FFBL is a thin layer, its
influence on the internal field could be calculated, approximately, in the limit where the FFBL
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is represented as a zero thickness (8-function) shell. An internal field model, including the
perturbing magnetic field due field-aligned currents, approximated as 6-function current sheets,
has been discussed by Stern [1993]. The internal field, calculated in this way, then provides
boundary condition (A) stated above; the 8-function, field-aligned current shell can be
resolved using the FFBL formulation. If better accuracy is desired, an iterative process must
be used. In the illustrative application described in Sec. 4, we do not attempt to construct a
fully self-consistent magnetic field model. Instead the basic procedure for obtaining FFBL
solutions is illustrated using the familiar dipole field model to specify boundary condition (A)
and to represent the locally orthogonal curvilinear coordinate system required in the formula-
tion.

Specification of boundary condition (B) requires either a model for the generation of the
field-aligned currents or synoptic observations of the perturbed and background magnetic field
on a magnetic 'normal' surface, on which J, B, and therefore ca can be inferred. Synoptic
observations of the currents are available only at low altitudes, essentially within the iono-
sphere. For the latter case, the FFBL model, coupled with an appropriate internal magnetic
field model, can be used to follow the observed low altitude currents to their points of origin
in the outer magnetosphere. Alternatively, coupling the FFBL model to a model for current
generation, for example, the low-latitude boundary layer and region 1 current generation
model developed by Drakou et al. [1994], would provide a means of locating the ionospheric
signatures of the magnetospheric current generator.

2.6 Numerical Algorithm

The numerical algorithm used in our calculations assumes that the mapping between
locally orthogonal curvilinear coordinates (x1 , x 2, x 3) and a geometrical coordinate system, for
example, Cartesian (x,y,z) or spherical polar (r,0,*) coordinates, is known. In addition, the
metric scale factors h 1, h2, h 3 for the curvilinear system are assumed to be known. The boun-
dary conditions stated above must also be supplied. Although the surfaces on which the
boundary conditions apply may be quite complicated in the physical/geometrical domain,
these surfaces are simple planes in the rectangular computational domain spanned by the three
curvilinear coordinates. The algorithm solves for a(x 1,X 2 ,X 3) and B(x 1,X2 ,X 3) throughout the
three-dimensional FFBL on successive computational planes, x 3 = xjk), where k = 0,1,2,....
Special measures must be taken to start the algorithm on the first plane.

On the first plane, where a(x ,x 2,x4°)) is known from boundary condition (B), we use
(18)-(22) to calculate B, and B 3 at grid points (x~i),xy)) where (ij) are integers
corresponding to grid locations for coordinates x1 and x 2 , respectively. To calculate B2 we
need to evaluate the partial derivatives and integral in (23). Initially, however, we have no
information on the variation of B in the x3 direction, which is required to perform the deriva-
tive a(hIh 2B 3)/aX 3. To start the algorithm, we simply set B 2 = 0 on the starting plane.
Because B 1,3 :s B 2 in the boundary layer approximation, the particular choice for B 2 on the
first plane does not significantly influence the magnetic field mapping; we have found from
experience with other starting procedures that the accuracy of the resulting magnetic field
mapping differs from the one used here by terms of the order of those neglected in the boun-
dary layer approximation.
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Our particular numerical method for the rest of the domain proceeds as follows:
"* Using (22), the metric scale factor h 2, and the trapezoidal rule of integration,

cT(X1,X 2,X1k)) is calculated at every grid point on the current x3 plane, i.e. the x3 = xtk)

plane. Using (18)-(22), B1 and B3. are then calculated at these grid points.

"* To calculate the B2 component, we first calculate a(h 2h3Bi)x1 I using central
differencing and a(h Ih2 8 3 )/aX 3 using forward differencing. Then using the trapezoidal
rule, we integrate (23) to obtain B2 at grid points on the x4k) plane.

"* The next plane, the x 3 = x4k + 1) plane, is chosen so that the linear projection along B
from any node in the x J) plane to a point in the x ý+ ) plane stays within a small pre-
specified distance e of the node in the current x k) plane.

"* Using the property of force-free field lines, i.e. a is constant along the field lines, we can
now determine values of a at non-grid locations in the x 3 = x+ ) plane by following
the linearly projected field lines from nodes in the x 3 = x 3(k) plane. We now interpolate
these now nonuniformly spaced values of a onto (xfI),x4)) grid points in the xik + 1)

plane. To do this, a is first interpolated onto an x 2 line using a simple 2 point interpola-
tion. Then a cubic spline interpolation scheme is used to interpolate a onto the grid
points.

Having calculated a on all grid points, the procedure is repeated until the final x 3 surface
of interest is reached.

2.7 Numerical Accuracy

The accuracy of the numerical model was tested using a benchmark based on a simple
analytical model of polar line currents feeding an axisymmetric, 8-function current sheet lying
on a magnetic dipole L-shell [Vatan, 1993]. Because the polar line currents are chosen to
flow into the south pole and out of the north pole, it can be shown that the internal dipole
field remains exactly dipolar so that an exact analytic solution can be derived for the purpose
of verifying the numerical algorithm. The quantity that was compared is the deflection angle,
i.e., the azimuthal deviation from 'orange segment' mapping between two surfaces that are
locally normal to the magnetic field. The accuracy of the above numerical procedures was
found to depend on the following factors:

"* Boundary layer thickness. Since the model is based on a boundary layer approximation,
the metric scale factors should not vary significantly across the layer. From the bench-
mark results, it was determined that the variation in dipole scale factors across a 2 RE

layer (referenced to the equatorial plane), and straddling L = 10, could be as large as
30 % with a corresponding variation in the deflection angle of 9 % or less.

"* Linear projection of magnetic vectors. The maximum (linearly) projected distance
between adjacent magnetic normal grid surfaces is controlled I preselected tolerance
factor c. Arbitrarily small errors can be achieved by decrt the tolerance factor
which decreases this distance. Continuous field line tracing Aould be realized in the
limit where the tolerance factor approaches zero.

"* Discretization. The error in the deflection angle is very sensitive to changes in the grid
size in the x 3 direction (distance between magnetic normal surfaces), which, in turn, is
controlled by the above mentioned tolerance factor E. The grid size in the xI and x 2
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directions ideally should be much smaller that the gradient scale lengths of the initial
ot(r) distribution.

0 Differencing and integration schemes. The particular choice of differencing and integra-
tion schemes for solving the force-free boundary layer equations seems to have a
minimal effect on the accuracy of the calculated deflection angle. For example, for the a
distributions considered in the benchmark study, there was very little change in the
results when the accuracy of the integration scheme was improved.

3. APPLICATION TO DAYSIDE REGION 1 CURRENTS

Application of the numerical algorithm described in the previous section is illustrated by
considering a simple model for dayside field-aligned currents observed at low altitudes. These
currents will be mapped outward to the magnetospheric equatorial plane under the assumption
that the currents remain approximately force-free over a substantial length along the magnetic
field. For the purpose of illustration and simplicity, a dipole model is used to specify boun-
dary condition (A) in Sec. 2.5, and to represent a locally orthogonal coordinate system based
on the magnetic geometry. The familiar dipole coordinates are specified in terms of the
spherical polar coordinates (r, e, 0): xI = 0, the ordinary azimuth angle in the x -y plane;
X2 = v = sin29 I r, which is constant along a dipole field line and increases when going to
lower L-shells (note that the L-shell is defined as L = req IRE where req is the radial distance
to the point where the field line crosses the dipole equatorial plane); and x3 = = cosO I r2,
which varies along a dipole field line and is constant along a magnetic potential orthogonal to
a dipole field line. The metric scale factors for dipole geometry are

hV = (1+3COS2) 12 h = rsin9 h = h -h B

M is the earth's magnetic dipole moment, •u t B is the field strength.

According to lijima and Potemra [19761, large-scale field-aligned currents are a statisti-
cally permanent feature of the high latitude ionosphere. These currents are concentrated in two
adjacent annuli surrounding the geomagnetic pole. The higher latitude annulus is referred to as
the region I current system; the lower latitude annulus is called the region 2 current system.
The region I currents flow into the ionosphere in the morning sector and away from the iono-
sphere in the evening sector; the region 2 currents flow in the opposite direction at any given
local time. The areas near local noon and midnight are not so simply classified and may be
strongly time-dependent. We consider here the dayside region 1 current system at magnetic
local times (MLT) between dawn and dusk, excluding the region from 1100-1300 MLT. Fig.
2 shows the MLT distribution of currents reported by lijimi and Potemra [1978]. The upper
panel shows the statistical distribution during relatively active periods of geomagnetic activity;
the lower panel is for quieter periods.

The statistical local time dependence (i.e. the 0 dependence) in the postnoon sector in
Fig. 2 ahs been fitted to a simple polynomial function. The polynomial fit for both strongly
and weakly disturbed periods, as well as selected data points from Fig. 2, are shown in Fig.
3. The corresponding curves for the prenoon sector shown in Fig. 3 are mirror reflections of
those in the postnoon sector. (We do not mean to imply that the data in Fig. 2 are also mirror
symmetric about noon!) The figure includes fitted points between 1100-1300 MLT, but these
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currents near noon are not actually considered in the calculations described below. The
region 1 field-aligned currents flow in opposite directions on either side of noon (as indicated
in Fig. 2) whereas Fig. 3 plots only the magnitude of the current.

For the variation in field-aligned current in the 9 direction, we model typical current
profiles (actually magnetic deflections), examples of which can be found in the paper by
lijima and Potemra [1976] and in many other papers describing low altitude magnetic field
data. Because satellite trajectories are rarely, if ever, exactly parallel to the 9 direction, we do
not actually have precise information on the V variation of the currents at low altitudes. As a
consequence, we use the data only as a guide to generate a current profile in v that captures
the basic features of the variation. The current variation in v was modeled by one-half period
of a sine function that is zero at both edges of the region I current annulus and maximum
midway though it. The width in v of the annulus is chosen to correspond to 10 in dipole mag-
netic latitude.

The product of the current profiles in v and 0 defines our model for the field-aligned
current at the ionosphere. The function a(ý, v) on the ionospheric 'surface' (taken to be, with
a small error, a constant p surface near 1 RE geocentric) is constructed by multiplying the
field-aligned current model by ,io (permeability of free space) and dividing the product by the
dipole magnetic intensity at the earth's surface at the appropriate magnetic latitude. This a
function is given to the algorithm described in Sec. 2 as input at the ionosphere, and the map-
ping of selected points on the ionospheric 'surface' to the magnetospheric equatorial plane due
to this current is calculated. Note that we are not physically connecting the FFBL to its mag-
netospheric dynamo. The magnetic deflection inferred from the force-free mapping of the
currents all the way to the magnetospheric equator should therefore be regarded only as an
upper limit.

Magnetic field maps at the equatorial plane for weakly disturbed periods and strongly
disturbed periods are shown in Fig. 4 and 5, respectively. The layer thickness is chosen to be
1P in dipole magnetic latitude, and the inner shell has been placed at the magnetic L-shell,
L = 10, which locates the outer shell at L=I 1.14. These maps are displayed in a format simi-
lar to that use by Fairfield [1991] and are constructed by identifying at the ionosphere (actu-
ally at the earth's surface) ten different meridians of MLT from 0700-1100 and 1300-1700 in
one hour steps. (Only five of the mapped meridians in Fig. 4 and 5 are distinct due to the
assumed symmetry about 1200 MLT.) Force-free field lines intersecting each selected MLT
meridian at 1 RE are followed outward until they intersect the dipole equatorial plane. In this
way, the set of points defining a MLT meridian at the earth's surface is mapped along field
lines to the equatorial plane. The figures show the ten mapped MLT meridians between
L = 10 and L = 11.14. Had the field remained purely dipolar in the FFBL, the mapped meri-
dians would appear as segments of radial spokes, rather than curved lines, emanating from the
origin at the indicated MLTs. Note that a nonlinear scale has been used to magnify the FFBL
region between 10 < L : 11.14.

In the morning sector, the force-free current is positive and into the ionosphere, and
therefore, the deflection of the field is toward dawn; in the evening sector, the current is nega-
tive and away from the ionosphere, and the deflection is toward dusk. For a specific example,
consider in Fig. 4 the curve labeled 0700 in the equatorial plane, which has been mapped
through the layer from 1 RE altitude. The mapped meridian in the equatorial plane lies further
away from local noon than an 0700 MLT radial spoke would lie, at all mapped points, except
on the inner L-shell where boundary condition (A) of Sec. 2.5 requires exact dipole mapping.
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4. CONCLUSIONS

Given a distribution of the ratio of the field-aligned current to magnetic field on a surface
whose normal is locally parallel B (a magnetic normal surface), the force-free boundary layer
model and algorithm described here may be used to calculate magnetic field deformations due
to force-free currents that flow in thin boundary layer regions. The model may also be used
to determine the magnetic field mapping between magnetic normal surfaces in such regions.
This model is general and can be applied in any locally orthogonal coordinate system, defined
in terms of the exterior magnetic field (exterior means in the region where the force-free
currents are zero, i.e., outside the FFBL).

An illustrative application of the model in dipole geometry to the statistical distribution
of region 1 field-aligned currents suggests that the average dayside region 1 currents observed
during geomagnetically active periods produce a maximum azimuthal deflection of the mag-
netic field of 260 when a magnetic field line is followed from the ionosphere to its equatorial
crossing point. The corresponding deflection during weakly disurbed periods is about 210.
The maximum deflections occur on field lines where the field-aligned current density observed
at low altitudes maximizes. These estimates of the deflection angle should be regarded only
as upper limits, however, because the field-aligned current is not actually force-free along the
entire length of the field line from the ionosphere to equatorial plane. To put these estimates
in perspective, the T87 geomagnetic field model [Tsyganenko, 19871 exhibits a deflection
angle of about 100 for a field fine that passes through 1000 MLT and 750 invariant latitude in
the ionosphere [Fairfield, 1991]. Although the T87 model does include some effects of field-
aligned currents, these effects are introduced through an empirical polynomial fitting function
in the model, so it is not known how much of the deflection is actually due to dayside region
1 currents or other magnetic deformations caused, for example, by the Chapman-Ferraro
currents.

In considering future applications of this model, two improvements are suggested:
Finding coordinate transformations that generate locally orthogonal, magnetic flux coor-
dinates based on the exterior magnetic geometry may not be practical for realistic mag-
netospheric magnetic fields; the transformations may not even exist in general, especially
for nonaxisymmetric magnetic fields. Formulation of the FFBL model in terms of
nonorthogonal magnetic flux coordinates would allow grafting a FFBL model for field-
aligned currents onto more realistic magnetic field models such as the semiempirical T87
model, semianalytical models [Voigt, 1981; Hilmer and Voigt, 1993; Schulz and McNab,
1987], or gridded numerical models [Toffoletto et al., 1994]. Applications using a more
realistic field model would allow examination of the effects of a magnetic minimum
region near the magnetic cusps where the magnetic deformations due to field-aligned
currents are likely to be large. We are currently in the process of implementing the FFBL
model in a representation based on nonaxisymmetric, nonorthogonal magnetic flux coor-
dinates.

* Although the force-free boundary layer model provides a well-defined procedure for
mapping field-aligned currents and field lines between magnetic normal surfaces, it does
not properly model the dynamo region in the outer magnetosphere. A better understand-
ing of the field line mapping, for example, between the low-latitude boundary layer and
the ionosphere, the magnetotail and the ionosphere, or the cusp region and the iono-
sphere will require coupling the force-free boundary layer model to appropriate physical
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dynamo models. A boundary layer model for the generation of the region 1 currents,
based on one-fluid magnetohydrodynamics, has been developed by Drakou et aL [1994],
and it is expected that the two models will be coupled in the near future.
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APPENDIX 6:

Dynamics of Shear Velocity Layer with Bent Magnetic Field

Lines

V. L. Galinsky and B. U. 0. Sonnerup

Thayer School of Engineering, Dartmouth College

8000 Cummings Hall, Hanover, NH 03755-8000

Abstract. A fully three-dimensional, magnetohydrodynamic simulation of

velocity-sheared plasma flow in an ambient transverse magnetic field with bent

magnetic field lines has been performed. "Ionospheric-like" boundary conditions have

been used for closing field-aligned currents, the two ionospheres being represented by

conducting plates with constant resistivity. We have found a significant difference in the

development of the Kelvin-Helmholtz instability, compared to the standard plane 2D

case with a uniform transverse magnetic field: the growth rate of the instability drops

significantly as bending increases. It seems likely that, under conditions representative

of the Earth's low latitude boundary layer (LLBL), the Kelvin-Helmholtz instability can

be suppressed completely by the magnetic field-linp tension if bending of the magnetic

field lines is sufficiently strong. We have also found that a combination of the tearing

mode instability and the Kelvin-Helmholtz instability leads to the formation of localized

3D current/vortex tubes, the ionospheric foot prints of which can be considered as

possible models of the auroral bright spots observed by the Viking satellite. Quantitative

comparison of our results with satellite observations of velocity-sheared plasma flow

in the LLBL and its ionospheric foot print indicates good agreement with the chosen

model parameters.

Submitted to Geophys. Res. Lett., April, 1994
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Introduction

The interaction of the supersonic solar-wind flow with the Earth's magnetosphere

creates interfaces or narrow layers where either a gradual or an abrupt transition in

plasma and magnetic field properties occurs from interplanetary values to those of the

magnetosphere. Several theoretical steady-state models of one of these regions, namely

the magnetospheric low latitude boundary layer (LLBL) on closed field lines, have

been discussed in the literature [Sonnerup, 1980; Lotko et al., 1987; Phan et al., 1989;

Drakou et al., 19941. The steady-state nature of these models may impose restrictions

on their applicability: in particular, shear flows are subject to the Kelvin-Helmholtz

(KH) instability so that the question of the stability of the LLBL needs to be addressed.

Most results of linear stability analyses of velocity shear layers are valid only when the

unperturbed magnetic field lines are straight, and therefore, are not directly applicable

to the above models where the geometry is more complex, having parabolic field lines

with different curvature in different parts of the layer. Qualitatively, such geometries

should have stability properties intermediate between the two cases of magnetic

field perpendicular and parallel to the plane of the unperturbed shear layer. In the

perpendicular case, instability occurs for kb < 2, k being the wave number and 6 the

shear width; in the parallel case, the wave modes are stable for velocity jumps less than

twice the Alfv6n speed [e.g., Miura and Pritchett, 19821.

Processes taking place in the LLBL are also very important for understanding

of the physics of mass, momentum and energy transfer from the solar wind to the

magnetosphere. Three possible mechanisms have been proposed, namely "viscous

like" interaction, magnetic field reconnection and impulsive plasma penetration. The

discovery of flux transfer events (FTEs) increased the interest in the second mechanism

and stimulated development of new reconnection models. Later a combination of viscous

interaction and reconnection has been proposed as an explation of FTE formation [La

Belle-Hamer et al., 1988; Belmont and Chanteur, 19891.
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In this paper, we investigate the influence of magnetic field-line bending on the

stability of a velocity shear layer by use of full three-dimensional MHD simulations with

ionospheric-like current closure boundary conditions. Several examples of unstable as

well as nearly stable configurations will be shown and the parameter range where the

KH mode is strongly suppressed by the magnetic field-line bending will be identified.

The formation of localized current/vortex tubes, which provides a possible explanation

of FTE-like signatures, will also be shown. Although there are several restrictions on

the applicability of this model, we believe it can be used as a first step in understanding

the properties of the KH instability in a magnetic-field geometry that is more realistic

for the LLBL, than the simple straight-field line model.

Basic Equations and Model

The starting point is the fully three-dimensional, dissipative, compressible

magnetohydrodynamic (MHD) equations, written in dimensionless form:

- =-V (Pv)at 1 ,1 1 1&=--(V V)V MpV.P+ I-(V x B) x B + -V 2 V
a yM 2p M.2p R

x-= ×(v x B) + V 2B (1)

-=-(v- V)P - YPV vat
V.B=0

where v(x,y,z,t) = (Vrvy,Vz) is the flow velocity; B(x,y,z,t) = (B, ,By, BZ) is the

magnetic field; R is the Reynolds number; R, is the magnetic Reynolds number; M is

the sonic Mach number; and Ma is the Alfv~n Mach number. All lengths are normalized

by a characteristic perpendicular half width of the shear flow, a = 6/2; the velocity by

the velocity jump, VjO; the magnetic field by the background magnetic field, Be. The

sonic and Alfv~n Mach numbers are defined as MX = Vo/v, and Ma = V0/va, where
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= (yPo/po)1 12 and v. = Bo/(4rpo)1/2 are the sound speed and the Alfv~n speed,

respectively; the Reynolds number is defined as R = aVo/v and the magnetic Reynolds

number as R,,, = 47raVo/(r7c 2 ). The pressure, P, and density, p, are normalized by their

values away from the shear layer. Resistive and viscous dissipation terms in the energy

equation are neglected.

The initial configuration used in this study is a velocity shear layer in a nonuniform

magnetic field, the nonuniformity being created by electic currents that connect the

plasma in the layer to two conducting plates which serve to represent the northern

and southern ionospheres. A sketch of the configuration is shown in Figure 1. The

quantitative expressions describing the initial field and plasma flow are:

v(x,y, z, O) = V tanh(Y_) i, B,(x,y,z,O) = -a z tanh(y-),
2 a a

B,(x, y, z, 0) = 0, B,(x, y, z, 0) = B0, p(x, y, z, 0) = pa, (2)
Bxy, z,O0)

P(x,y,z,0)+ = const.

The main drawback of this configuration is that it is not a strict equilibrium. The i"

component of the j x B force is not balanced by any other force and therefore will result

in a gradual slowing down of the flow and an associated decrease in the velocity jump

across the layer.

In the present study, the simulation domain is a rectangular box with periodic

boundary conditions in the flow direction (f). The boundary conditions in the direction

across the layer (ý) are simply. "free-slip" ones. We use mirror and "free-slip" boundary

conditions in the equatorial plane (z = 0) for all variables and in the upper plane

for the velocity components. In order to write boundary conditions for the B, and

B, components of the magnetic field at the upper or lower edge, we assume that our

configuration is confined between two parallel resistive plates at z = ±L,. Using Ohm's

law and current continuity conditions at the top of our box, it is easy to obtain equations

for the B1 and B. components on the upper plane at z = L,. In dimensionless form
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these equations are

V2B., -7E =--(v B)l +
.1 . a _ ) -T a a aX,2'BZ

V2 B, -a "_z = RE-[' (vB.) - a (vYB') + La 83Bz (3)

-( ~~xz a9 ]~ 9XT 7 a 49y49 2 Z

where V2 = 092 /rX2 + a 2 /Cjy 2 and RE is equal to RmIE/a.

Finally, a boundary condition for the pressure can be determined from the absence

of a normal component of velocity on the upper plane.

For space discretization the Fourier pseudo-spectral representation was used in

the x direction and the Chebyshev tau method in the y and z directions. We solved

the nonlinear equations using an iteration scheme and a time splitting alternating

direction implicit (ADI) method, modified for use with Fourier and Chebyshev spectral

discretizations.

Simulation Results

In order to allow the KH instability to develop, a perturbation was imposed on the

initial configuration (2). The wavelength of this perturbed mode is equal to the entire

length of the system in the i direction and has been chosen to be the wavelength of

the fastest growing mode (FGM). Since we do not intend to address the question of

the inverse cascade, i.e., the formation of structures with longer wavelengths than those

predicted by linear theory [Belmont and Chanteur, 1989], we choose the system length

to be equal to the FGM wavelength: for all our simulation runs the value k.a = 0.45,

and hence L, ý_ 14a, was used. The amplitude of the initial perturbation of the j

component of the velocity Ivyl was equal to 0.01Vo. We also used Ly = L, = 20a,

R = 1000, Rm = 100, M = 0.77 and Ma = 1.0 for all runs.

Figure la shows the temporal evolution of the maximum of the j component of the

flow velocity Ivyl, normalized by V0 , for three different values of RE, namely 0.1, 0.2 and

0.4, as well as for the purely two-dimensional transverse case of the KH instability which
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corresponds to RE = 0. One can see that for all four Reynolds numbers the velocity

perturbation initially grows linearly and then saturates at some level. The linear growth

rate decreases significantly with increasing magnetic Reynolds number RE. The level

of the nonlinear saturation is almost the same for RE = 0.1 as for the transverse case,

RE = 0, but for RE = 0.4 this level is much lower.

Figure 2 shows streamlines and current distribution, at the end of our simulation,

for the case of strong bending of the magnetic field lines (RE = 0.4). The term strong

bending is used only in a relative sense; the maximum amplitude of the component of

the magnetic field parallel to the flow (i) is approximately 20% of the perpendicular (i)

component. The KH instability is almost suppressed in this configuration, the level of

nonlinear saturation being only 2.5 times higher than the level of the initial perturbation

(0.025V0 ). The current sheet is only slightly disturbed and no localized current structures

are formed. We may compensate for the decrease of the velocity jump across the layer

during the simulation, which in this case is rather big (AV 0o/AV, = 6), by normalizing

the amplitude of the perturbed j component of the velocity by the magnitude of this

jump. At the end of the simulation, this normalized velocity component is approximately

0.15, which should be compared to a value of 0.33 for the transverse case, RE = 0, where

no decay of the velocity jump occurs.

In light of this result, it seems likely that strong bending of the magnetic field

lines can suppress or at least significantly slow down the KH instability. Therefore,

previous two-dimensional analyses of the stability of the LLBL [Miura and Pritchett,

1982] and MHD simulations of that layer [Miura, 1992; Wei and Lee, 1993], all of which

were carried out in the equatorial plane and using straight magnetic field lines, may be

strictly valid only in a limited region not too far from the subsolar stagnation point,

where field-line bending is not strong enough to prevent the KH instability. But as the

plasma flow proceeds toward the tail, the curvature of the magnetic field lines increases

and one cannot neglect their tension any more.
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Figures 3 and 4 show current lines in the system for RE = 0.2 and REr = 0.1,

respectively. The current distribution is more complicated than in the previous case.

The perturbations introduced by the KH instability on the initially uniform current

sheet are so strong that they result in its destruction and in the creation of localized

vortex/current tubes. This process looks similar to magnetic island formation in

association with the tearing mode instability of a two dimensional current sheet. Our

simulations show the formation of localized 3D current structures aligned with the

magnetic field. However, the processes taking place near the upper and lower ends

of these tubes and the existence of the inverse cascade in the system are probably

important for understanding the long-time development of these tubes.

In order to make geophysical estimates from our simulations, the upper conducting

plate must be given properties that mimic the ionoshere. A relationship between the

conductivity of the plate and the effective height-integrated conductivity, Epi, of the

ionosphere, based on the conservation of magnetic flux and field-aligned current, was

given by Sonnerup [1980]. Using our dimensionless parameter RE = Rmt2E/a it can be

written as:
c2 1lB (dx \2

Ep4 = --- d- RE (4)

The total field-aligned current in the ionosphere, averaged over one period in the i

direction, is given by

< >- 4"-dx < B, > j=0 - < Br > y=Lq (5)4 x z=L. IZ=Lz

where the subscript i denotes ionospheric quantities and [dx/dxi] is the mapping factor

for distances in the main flow direction. Using typical values for the magnetospheric

parameters [e.g., Sonnerup, '980], B = 3 x 10-t, BA = 5 x 10-'t, Vo = 200km/s,

dx/dxi = 51.3 and taking the coupling factor k = 1, one can estimate the values of Epi

and < 111i > as 6.3RE mho and 1.2RF A/m respectively. With RE. = 0.1 - 0.4 these

values are roughly consistent with observed values of 2-3 mho and 0.15 A/m.
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It should be noted that many satellite observations have shown the presence of

spatially periodic bright spots in the postnoon auroral region. Their dimensions usually

range approximately from 50 to 200 km and their separation is about 100-500 km

[e.g., Lui et al., 1989]. Recently Wei and Lee [1993] suggested that these spots can

represent ionospheric signatures of vortices created in the LLBL by the KH instability.

The formation of vortex/current tubes in our simulations indicates that regions of large

field-aligned current density and vorticity, with dimensions comparable to observed

values, will occur in the ionosphere representing the footprints of these tubes.

Conclusion

The real plasma flow and magnetic field configuration in the magnetopause-

boundary layer region is significantly different from, and far more complicated than, the

one we use here. In particular, our use of conducting plates to represent the ionosphere

ignores Alfv6n-wave transit time effects. Nevertheless, our model can be used for at

least a qualitative assessment of the role and nature of the Kelvin-Helmholtz instability

in the LLBL and other internal magnetospheric shear layers with current closure in the

ionosphere.

The following main conclusions can be drawn from our simulations:

1. Magnetic field-line bending leads to a significant decrease of the growth rate of the

Kelvin-Helmholtz instability. The value of this decrease depends on the amount of

field-line bending and, hence, on the conductivity of the auroral ionosphere to which

the shear layer is magnetically coupled.

2. It seems likely that sufficiently strong bending of the magnetic field lines,

corresponding in our case to the magnetic Reynolds number (based on an equivalent

ionospheric conductivity) RE > 0.4, can slow down the development of the

Kelvin-Helmholtz instability or suppress it altogether.

3. A combination of the tearing mode instability and the Kelvin-Helmholtz instability
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leads to a formation of localized three-dimensional vortex/current tubes. A

projection of these structures into the ionosphere produces regions of enhanced

field-aligned current density and vorticity which may represent auroral bright spots

observed by for example the Viking satellite [Lui et al., 19891.

4. We have also carried out simulations with a velocity profile more representative

of the LLBL, namely v., = !V0(1 - tanh(y)), the result being an even stro.ger

suppression of the KH instability, presumably caused by the presence of field-line

curvature at the point of inflection of the velocity profile.
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Figure 1. Temporal evolution of Ivy. Insert: sketch of plasma flow and magnetic field

configuration confined between two conducting plates
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Figure 2. Current lines (a) and streamlines (b) at the end of the simulation, t -86a/Vo, for

RE. = 0.4. 88
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Figure 3. Current lines entering the slab at four different planes for Rr = 0.2 at the end of

the simulation (t = 83a/Vo): (a) z = 0.02L2 ; (b) z = L,/4; (c) z = L,/2; and (d) z = 3L,/4.
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Figure 4. Current lines for RE = 0.1, plotted at four different times: (a) t = 20a/Vo; (b)

t = 40a/Vo; (c) t = 60a/Vo; and (d) t = 82a/V o.
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sheet with equilibrium viscous stagnation-point

flow
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An analysis is presented of linear stability against tearing modes of a current
sheet formed between two oppositely magnetized plasmas forced towards each
other in two-dimensional steady stagnation-point flow. The velocity vector in
this flow is confined to planes perpendicular to the reversing component of the
magnetic field. The unperturbed state is an exact resistive and viscous
equilibrium in which the resistive diffusion outwards from the current sheet is.
exactly balanced by the inward motion associated with the stagnation-point
flow. Thus the behaviour of the tearing mode can be examined even when the
resistive diffusion time is comparable to or smaller than the growth time of the
instability. The linear ordinary differential equation describing the mode
structure is integrated numerically. For large Lundquist number S and viscous
Reynolds number Re the Furth-Killeen-Rosenbluth scaling of the growth rate
is recovered with excellent accuracy. The influence of the stagnation-point flow
on the tearing mode is as follows: (i) long-wavelength perturbations are
stabilized so that the unstable regime falls between a short-wavelength and a
long-wavelength marginal state; (ii) for sufficiently low Lundquist number
(S < 12"25) the current sheet is completely stable to tearing-mode perturbations;
(iii) the presence of high viscosity reduces the growth rate of the tearing
instability. This effect is more important at small wavelength. Finally,
application of the results from this study to the problem of solar-wind plasma
flow past the earth's magnetosphere is briefly discussed.

1. Introduction
Magnetic reconnection is thought to be an important process for the

conversion of magnetic field energy into kinetic and thermal energy in cosmic
as well as laboratory plasmas (for reviews see e.g. Vasyliunas 1975; Sonnerup
1979; Forbes & Priest 1987). Reconnection is initiated in thin current sheets as
a result of the tearing mode (Furth, Killeen & Rosenbluth 1963; Laval, Pellat
& Vuillemin 1966; Wesson 1966; Cross & Van Hoven 1971; Lee & Fu 1986), in
which magnetic islands, produced by non-steady reconnection, grow ultimately
to large amplitudes. But current sheets observed in space plasmas, for example
in association with solar flares or at the earth's magnetopause, sometimes
remain stable for time periods far exceeding the growth time associated with
the tearing mode. Among the effects that may influence tearing modes in a

* Now at Max-Planck-1notitut fUr Extraterrestrische Physik. 8046 Garching, Germany.
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408 T. D. Phan and B. U. 0. Sonnerup

substantial way are flows across the current sheet (Dobrott, Prager & Taylor
1977; Killeen & Shestakov 1978) and flows along it (Bulanov, Syrovatsky &
Sakai 1978; Einaudi & Rubini 1986, 1989; Chen & Morrison 1990; Ofman, Chen
& Morrison 1991). However, a weakness of all previous analyses based on
resistive MHD is that the unperturbed state was not an exact solution of the
resistive MHD equations. Left alone, the unperturbed current sheet would
spread out with increasing time. Most of the previous studies of the resistive
tearing mode neglected this resistive diffusion effect; thus the results reported
are valid only in the limit where the diffusion time is much longer than the
growth time of the instability. In this limit the Lundquist number S = tID/A is
much greater than unity, where tA is the Alfven transit time across the current
layer and tD is the resistive diffusion time of the current sheet. The Lundquist
number of current sheets in magnetic reconnection configurations, however,
may sometimes be of order unity (Lee & Fu (1986) gave 2 < S < 100). The
studies of the tearing mode in this regime have been limited and not entirely
satisfactory: Lee & Fu (1986) investigated the tearing mode in the low-S regime
without taking into account the resistive decay of the unperturbed current
sheet. For a Harris-type current sheet (B c tanh x), they found that the growth
rate obtained by assuming uniform conductivity and neglecting the resistive
decay is essentially the same as that obtained with a spatially varying
conductivity of the form or oc sech2 x, which allows the unperturbed state to
remain time-independent. However, this kind of conductivity profile, with
Iari -- 0 as lxi --> 0o, is usually not relevant to the problem of magnetic reconnection.
In order to investigate the tearing mode in the low S-regime in a satisfactory
way, one would need to either perform a stability .-ialysis of a non-equilibrium
current sheet, taking into account the resistive spreading of the sheet in a self-
consistent manner, or perform such an analysis on a sheet in which the resistive
diffusion is counterbalanced by an incoming plasma flow. Dobrott et al. (1977)
recognized the importance of resistive decay of the unperturbed current sheet.
However, although their inclusion of an uniform 'diffusion velocity' to describe
the spreading of the layer may give an indication of the effect of diffusion on the
tearing mode, it is in fact inconsistent with the magnetic induction equation. In
the present paper we perform a linear tearing-mode stability analysis of one
member of the family of exact resistive current-sheet equilibria found by
Sonnerup & Priest (1975) for the case of two oppositely magnetized plasmas
pushed towards each other in two-dimensional stagnation-point flow. The
equilibrium structure and thickness of the unperturbed current sheet is such
that the resistive diffusion outwards from the sheet is exactly balanced by the
inward motion associated with the stagnation-point flow. The latter is two-
dimensional, with the flow confined to planes perpendicular to the reversing
component of the magnetic field. This equilibrium allows us to examine the
tearing mode over the entire range of parameter values.

The paper is organized as follows. In §2 the basic equations and the relevant
properties of the equilibrium configuration are reviewed. In §3 we develop the
linear perturbation equations and, by appropriate assumptions concerning the
nature of the perturbations, reduce them to a form suitable for the subsequent
analysis. In §4 the method of solution is described. In §5 numerical solutions of
the linearized equations are presented. In particular, the dependence of the
growth rate of the tearing mode on the Lundquist number, i.e. the magnetic
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Reynolds number based on the Alfvin speed, on the viscous Reynolds number
and on the wavelength of the perturbation is examined. Examples of the
eigenmode structure are also shown. Finally, a discussion of the results is given
in §6.

2. Basic equations and the equilibrium state

The analysis is based on the equations of the incompressible one-fluid
resistive and viscous magnetohydrodynamics, namely

V.v = 0, (1)
Ov

p-+p(v.Vv) = -Vp+ I (V x B) x B+ V'v, (2)
at #

aB 1VB-•+V x (v x B) fi 0, (3)

V.B = 0, (4)

where B, v, p and p are the magnetic field, plasma velocity, density and pressure
respectively. -1 is the dynamic viscosity and a is the electrical conductivity,
both of which are assumed uniform and constant.

Steady-state exact solutions to this system of equations, for symmetric and
asymmetric MHD stagnation-point flows in two and/or three dimensions, have
been given by Sonnerup & Priest (1975), Besser, Biernat & Rijnbeek (1990) and
Phan & Sonnerup (1990). These solutions represent generalizations of the initial
work by Parker (1973) on resistive current layers in the presence of two-
dimensional stagnation-point flow. The general form of Sonnerup and Priest's
(1975) solutions is

Vo -- A-c+•c2 y+c 3zi, (5)
B9 = Bo,(x) ^ +Bo,(x) i, (6)

where the positive constants c,, c. and c3 are related by

C= = C2÷C3

to ensure that the flow is divergence-free. It should be noted that the
equilibrium flow, described by (5), is irrotational. Consequently, the viscous
force on the flow is zero. However, in the perturbed state the flow becomes
rotational, and the effect of viscosity may be important.

An early attempt to study the behaviour of the tearing mode in general three-
dimensional stagnation-point flow and field configurations of the type given by
(5) and (6) was made by Sonnerup & Sakai (1981). They used an analytical
approach in which the island stretching caused by the accelerating unperturbed
plasma motion along the current sheet was treated by use of a method
introduced by Bulanov et al. (1978). However, the analysis of Sakai & Sonnerup
remained unsatisfactory in some aspects and was never completed. They did
not consider the special case c2 = 0, which is much simpler than the general case
on account of the absence of island stretching. It is this special case that will be
studied here. For c. = 0 the flow is two-dimensional and confined to the (x, z)-
plane, i.e.

v0 fi c(-xi+z9), (7)

93



410 T. D. Phan and B. U. 6. Sonnerup

FIoURE 1. Equilibrium plasma flow and geometry of reversing magnetic field
component B,,.

and the magnetic field components B,,, and Bo, obey
I d'B_ vC~ dBo.fO 8Ss•.cda- x =0, (8)1p0a dx2 d

Ic d xz-dB + cBo = 0.(9
goo dxB+1 dxo9

Also the pressure is obtained from a Bernoulli-type equation

p = p0-jjp(x2 + z2 )- B+Bo:, (10)
2 ,2

where Po is a constant of integration.
The resistive current-sheet structure described by (8) and (9) has a

characteristic width of the order of the resistive length

a = (0#Oc)- 4 , (11)
which is obtained by equating the convective flow speed c, a to the diffusion
speed (p owa)-'. A basic property of the current sheet obtained from (8) and (9)
is that the smaller the flow rate, i.e. the smaller the value of c1, the thicker will
be the current sheet. The odd and even solutions of (8) and (9) can be combined
in various ways in order to produce the behaviour of B,, and B., in the sheet.
For our purpose it will suffice to use only the odd solution for Bo., which was
shown by Sonnerup & Priest (1975) to be

Boy = Bm" erf [(Ju0 oa, )I x], (12)

where _+ Bma is the magnetic field at x = + oo. The analysis will be valid for all
B,1 satisfying (9). The general solution for Bo, has been shown by Sonnerup &
Priest (1975) to be

dBo, (Zd6Bo. = Bo,(O) l(x) +-d•o (0) l(x) 1 fl (13)

where I(f) = exp( -1c 1 o6 o 2).

The resulting equilibrium plasma flow and Bo., the antiparallel part of the
magnetic field, are shown in figure 1. The even and odd solutions of (13) are
shown in figure 8. Note that these Bo, solutions vanish as lxi --. o.
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3. Linear perturbations

Returning to (1)-(3), we now introduce small perturbations vY and B, in the
velocity and magnetic field so that

v = Vo + v(z,y, ,

B = B,+B , (x,y,t).

Note that these perturbations are taken to be independent of the co-ordinate z.
Thus the wave vector of the tearing mode is assumed to be along the y axis.

Equation (1) is satisfied identically by writing

v1 = VoX i + i•-v(Xy, t), (14)

where O is the stream function for the x and y components of vj.
The pressure may be eliminated from the problem by taking the curl of (2),

the result being

an - Vx(vx =) Vx[(VxB)xB]+-V-'VM, (15)aT PzOP p

where S1 is the vorticity, i.e.

f M Vxv= Vxv = Vv1 ,x i-!V't(. (16)

The last two equalities in (16) follow from the fact that V x v. = 0 and from (14)
respectively.

We now examine the z component of the vorticity equation (15), and the x
component of the induction equation (3). The linearized versions of these
equations are

)!- -=-Boy V2_ d2B) B (17)

and (+cCiX -2 B1 =" /, B e, at* (18)

respectively. It should be noted that the only perturbation quantities contained
in the above equations are * and B,_. Thus we see that it will suffice to analyse
these two equations to determine the evolution of the perturbations. Once Or
and BIZ are known, the perturbed quantities v,, and B1, may subsequently be
obtained from the z components of (2) and (3), namely

+jCXa VVI)v, ( B,1, -' +B1 2dA) (19)

ll- ax.4 IV)B # y i
a I 2 1. =B0 a)S a d(

-ct- c ax 140, ay ay/ dx

It should be noted that B,. does not enter into (17) and (18); thus it does not
play a role in driving the instability. It does, however, entrain v,, and B1, via
(19) and (20). For B., = 0 the appropriate solutions of these latter equations are
vZ- 0 and B. ,= 0.
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Solutions to (17)-(20) are now sought in the form

B,. = B1AX) Iep (iky+yt), (21)

Bi 1&(X)•,B181 \Bl(x)l

where k and y are the wavenumber and growth rate respectively. Substitution
of these expressions into (17)-(20) gives

dx ,p d' ,_, 2#o1 =_•dzl T,± 'O; B,,

(22)

d 1 d' \[y+c,-CjX--- - k"]B 1 .(23)

Y+,d V= ' (ikB.,B 1 ,+B1 .d&) (24)
dx p dx2 dB) t

We now non-dimensionalize (22)-(25) by introducing the following dim-
ensionless variables:

a' k*= ka, y*fi l
a CI

B m= "*-Bm,

01 Viz = via
VA a VA

Blz iB,,
Bj~z Bim, Bj* Bm

Re fficlasp _ p
Bm,, C,

VA =

Here a is the resistive length given by (11), vA is the Alfven speed based on the
maximum magnetic field B.m, and c, a is the characteristic diffusion speed.
Thus the quantity S, known as the Lundquist number, is the magnetic
Reynolds number #e raVA based on the Alfven speed and the diffusion length.
It should also be noted that 8 = I1MA, where MA is the Alfvgn Mach number
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at the edges of the current sheet (i.e. at x = ±a). The quantity Re is the viscous
Reynolds number based on the characteristic diffusion speed and the diffusion
length. Finally. the renormalization of Bl, is such that it is phase-shifted by 900
relative to the other perturbed quantities.

Substitution of the above expressions into (22)-(25) gives
d' __1__

[YW* edx*d dx*2

( d' 1dB
=SB* d- _-k*2- I d . B*, (26)O aBO*Y dx*' 1J~iz (6

Y dkx dB*' dz 1z

d Id2f
ReI X k*dx 2 = S(BY z+B&de (28)

d d dB*,
(Y._ _.x* 1.__ +k*2)B* 1 -Sk*(B•V-• - ), (29)

while the equilibrium magnetic field profiles, given by (12) and (13), become

BOO = erf(2-4 x*), (30)

B*.f= B*.(0) exp (- ix*2, +4d_'.' (0) exp (- ix") dfexp (Ij). (31)

The coupled equations (26)-(29) describe all small-amplitude MHD wave modes
of the current sheet that have their propagation vector along the y direction.
We shall examine only the tearing mode, for which the amplitudes B*(x*) and
0 *(x*) are respectively even and odd functions of x*, and for which these
quantities decay rapidly with increasing distance Ix*1 from the centre of the
current sheet. The parities of v1, and B,,, on the other hand, depend on B0o. In
particular, B1, has the same parity as B*, whereas v1, has the opposite parity.
The perturbed quantities v,, and B,, are also required to vanish at large
distarce. The procedure for solving (26)-(29) is as follows. Equations (26) and
(27) are not coupled to the other equations, and may be solved for y*, B*,(x*)
and y*(x*) first. Solutions for v*z(x*) and B*'(x*) are subsequently obtained
from (28) and (29).

In this paper we determine the largest real growth rates of the tearing mode
by a trial-and-error method of solution. In the case analysed by Furth et al.
(1963) it was determined that no overstable tearing modes occur. Although the
eigenvalue we find is purely real and agrees with the results of Furth el al. for
large S, we have not found a way to prove rigorously that the eigenvalue with
the largest real part is purely real. The existence of overstable modes therefore
remains an open question in the case investigated here.

4. Method of solution

In contrast with the standard boundary-layer approach (Furth et al. 1963),
which involves matching of solutions from an outer and an inner region, we
solve (26)-(29) directly over the entire region. This approach allows us to
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investigate the entire range of Lundquist number S, in particular values of S of
order unity. Since only the odd solutions for #*(x*) and the even solutions for
B,*(x*) are sought, the equations need only be solved over half of the range of
x*. for example for x* >, 0. The following boundary conditions are imposed
when solving (26) and (27):

0"-*•=.(0, Bl*= 1 at x*=0, (2

" * B&x -+0 as x* oo. (32)

The growth rate y* is then determined by requiring the solution for Blx(x*)
to be an even function of x*; that is, B*(x* = 0) = 0. The method for obtaining
the eigenvalue y* is as follows: we start with a trial value of ,*; the value of
B*'(x* = 0) is then obtained by solving (26) and (27). In general, B*'(x* = 0)
does not vanish. The value of y* is subrequently adjusted until B*(x* = 0)
becomes zero. The resulting y*, O" and B,* are then the eigenvalue and
eigenfunctions of the tearing mode. The method is somewhat similar to that
used by Wesson (1966).

Once y*, B*(x*) and Or*(x*) have been determined, one can then proceed to
obtain solutions for v*'(x*) and B*(x*) from (28) and (29), for a given B,*(x*)
satisfying (9), subject to the condition that these perturbed quantities vanish
as Ix*I -. oo. The magnitudes of v*(x*) and B*(x*) are then determined uniquely
by the solutions for V", B*, y* and B*,.

The coupled ordinary differential equations (26)-(29) are solved using a
finite-difference method with variable mesh size. A large number of com-
putational meshes are concentrated near x* = 0, where the solutions of V1*; BJz,
v*1 and B•, display their steepest gradients. In the actual calculation the outer
boundary x. is located at large but finite distance from the origin. The choice
of x3 is such that its location does not affect the resulting y*.

5. Results
The growth rate and the eigenmode structure described by O1*(x*), B*I(x*),

v*(x*) and B~,(x*) depend on the parameters 8, Re and V*. Figure 2 displays the
dependence of the normalized growth rate y* on the normalized wavenumber
k* for several values of the magnetic Reynolds number 8 and for large viscous
Reynolds number (Re = 10'). For each S there is a maximum growth rate y*v
and a corresponding wavenumber k*.. This maximum growth rate occurs at
longer wavelength (smaller wavenumber) for larger S. For 8 < Septi,,l - 12-25
the maximum growth rates are negative, i.e. all perturbations are damped. For

Scriticai the unstable regime falls between a large-wavenumber k (short-
wavelength) marginal state (*- = 0) and a small-wavenumber k* r (long-
wavelength) marginal state. The dependence of k 1pper, k*ower, and k* on S is
shown in figure 3. The existence of a long-wavelength marginal state may also
be deduced by examining the governing equations in the limit k* = 0. In this
limit (27) becomes

d2B* X ~dB*
dx .2 x* -(33)

This equation admits solutions that are even functions of x* and that vanish as
Ix* --. oo if and only if /*+ 1 is negative, i.e. only if y* <- 1. Thus the
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FIoURz 2. Normalized growth rate y* - y/ci as a function of normalized wavenumber k*
ka for Lundquist numbers S = 5 (-A), 7"5 (0- ), 10 (*-Wi), 12"25 (- ), 15 (0-0'),
20 (0-0), 50 (M-M) and 100 (x - x) and for viscous Reynolds number Re - 1W0. The
growth rates are negative for 8 < 12-25.

configuration is stable for k* = 0. Since (for sufficiently large 8) it is unstable for
some k*. a marginal state must exist at long, but finite wavelength.

Figure 3 shows again that the unstable regime narrows as S decreases and
converges to a point as S reaches . Below S,1tmcs, the current sheet is
stable to tearing-mode perturbations. For large S, k*p.r and k~,wer asympto-
tically approach 0-733 and zero respectively, while k*. obeys approxi-
mately the following relation:

k*u ; 0.91S-" (104 < 8 < 5 x 106). (34)

It should be pointed out that the asymptotic value of kup,.r may be obtained
by performing standard boundary-layer analysis of the type first performed by
Furth et at. (1963) for a byperbolic tangent magnetic field profile. In that
analysis the short-wavelength marginal state is found by setting Ao4ut.r(kupper)

- 0, where A'uter is the jump in B*l aB*/ax* of the outer solution across the
singular layer. Our boundary-layer analysis for an error-function magnetic field
profile gives kupper = 0-733.

Figures 4(a, b) show the maximum growth rate y*. as a function of S for
, >, 100 and 8 4 100 respectively. For large S the curve is almost a straight line
on a log-log scale, and may be approximated by

' O*x 5% 39gS'" (104 < S < 5 x 106). (35)
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F•oURE 3. Wavenumbers k.*. of fastest growth, k,* f of short-wavelength marginal state
and k%.., of long-wavelength marginal state as functions of Lundquist number S =#, aoav4for viscous Reynolds number Re = 10'. The unstable k* regime narrows as S decreases.
Below m • 12.25 the current sheet is stable to tearing-mode perturbations. For 8 > 104
the k.*. curve may be approximated by k,*= m 0-918-&24.
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FIGURE 4. Maximum growth rate y*v as a function of Lundquist number 8 for Re = 10' and
S I> 100 (a) and S •< 100 (b). For 8 > 104 the curve may be approximated by y*, m 0-395•*".
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FIGURo 5. Normalized growth rate y* y/c, as a function of normalized wavenumber k*
ka for viscous Reynolds numbers Re = 1 (1--), 10 (0-0), 100 (0-0). 10'
(0-0) and 10W ( x - x ) and for Lundquist number S = 50.

The exponents in (34) and (35) are very close to the asymptotic values (as
S-, oo) of I and 1 respectively, obtained by Furth et al. (1963) in their study of
the tearing mode without equilibrium flow, indicating that the effect of the
equilibrium flow, other than that of determining the current-sheet width, is
negligible when 8 is large. For small 8, however, the relation between y*m and
S differs considerably from (35), and also does not agree with Lee & Fu's (1986)
result for low S. In particular, those authors did not find a stable regime for low
S.

The dependence of the growth rate on viscosity is illustrated in figures 5 and
6. Figure 5 shows the normalized growth rate y* as a function of the viscous
Reynolds number Re for S = 50. Jt is seen that the viscosity has a stabilizing
effect. This effect is more important at short wavelength (large k*) and when the
viscous Reynolds number Re is small (Re < 100). It should also be noted that
the fastest-growing wavelength increases with increasing viscosity (decreasing
Re). The stabilizing effect of the viscosity may also be seen in figure 6, where
Scritical is shown as a function of Re. It should be noted that 8 eriUca! decreases
with increasing Re. For Re > 103, 8 cesltloa is close to its asymptotic value of
12"25.

In figuares 7 (a, b) we show two examples of the eigenmode structure in terms
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FIGURE 6. 8Ci.* as a function of viscous Reynolds number Re.
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FIGURE 7. Equilibrium magnetic field B,(x*) and perturbed eigenmodes 0,*(x*) and B*(x*)
as functions of x* = x/a for Re = 10', k* = 0-4, and (a) 8 = 5 and (b) S = 1000.

of Or*(x*) and Bl*(x*) for S = 5 and 1000 respectively, and for Re = 10i and
k*= 0"4, illustrating the difference in the behaviour of the eigenmodes
depending on the 8 regime. In the S = 1000 case the shapes of the eigenmodes
are similar to those obtained in previous studies of the tearing mode with high
S. and where the effect of resistive decay of the current sheet is neglected (see
e.g. Killeen & Shestakov 1978). In particular, an 'inner region' appears that is
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FIGURE 8. Equilibrium magnetic field Bh(x*) and perturbed eigenmodeu v•(x*) and Bjý(x*)
as functions of z* = x/a for even (a, b) and odd (c, d) magnetic field B.0, for S = 5 (a, c) and
8 = 1000 (b, d). The viscous Reynolds number and wavenumber are Re - 10' and k* - 04.

much thinner than the current-sheet width. In the S = 5 case, as expected, the
'inner region' is comparable to the resistive length. In this regime the results
of the previous studies, which excluded the diffusion effect of the equilibrium
magnetic field, are not valid. Note in particular that the tearing mode is
damped for S = 5 even though the curve for Blz(x*) displays the dimple at
x* = 0 normally associated with unstable behaviour. For convenient com-
parison of length scales the equilibrium magnetic field Bv is also shown in
figure 7.

Figures 8 (a-d) display the eigenmode structures in v*(x*) and B*'(x*) for the
same cases as in figure 7, and for a purely even (figures 8a, b) and a purely odd
(figures 8c, d) equilibrium magnetic field B.. For an arbitrary B., satisfying (9)
the resulting eigenmode structures in v*(x*) and B*(x*) are linear combinations
of the even and odd eigenfunctions shown. Note that the even solutions of v*i
display large local curvature, for example x* = 0 in figure 8 (c). This behaviour
is a direct consequence of the large Re value. Note also that the spatial scales
are different in figures 7 and 8.
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6. Discussion and conclusion
We have examined the linear stability of a current sheet against the tearing

mode in the presence of equilibrium stagnation-point flow, the latter being
confined to the plane perpendicular to the k vector of the tearing mode. The
entire range of Lundquist numbers S and viscous Reynolds numbers Re, where
S = #0 aavA and Re = c, a~p/,, has been explored. Our main findings can be
summarized as follows.

(i) Long-wavelength perturbations are stabilized by the stagnation-point
flow so that the unstable regime, if it exists, falls between a short-wavelength
and a long-wavelength marginal state.

(ii) For large 8 (> 10') the Furth et al. (1963) scaling of the growth rate,
Ym Sc 8i, and of the wavenumber at maximum growth rate, k* oc 8-1, are
approximately recovered, indicating that the effect of the equilibrium flow,
other than that of determining the current-sheet width, is small when S is large.
In dimensional form the growth rate and the wavenumber can be expressed as
7M.x or 4 cl al and km.. oc vAcj ar respectively. These relationships show that a
faster flow (larger cl) and/or a larger conductivity a' reduce the current-sheet
width, and thereby enhance the growth rate of the instability, at the same time
decreasing the wavelength at which maximum growth occurs.

(iii) For small S the stabilizing effect of the equilibrium flow is evident. When
S < 8 crUcal - 12"25, the current sheet is completely stable to all tearing-mode
perturbations, a result not obtained in the absence of the equilibrium flow.

(iv) The viscosity has the effect of reducing the growth rate. This effect is
more noticeable at short wavelengths and in flows with small viscous Reynolds
number Re. As a result, s increases with smaller Re.

(v) The mode structure in the (x, y) plane and the growth rate of the
instability remain unaffected by the presence of a non-zero magnetic field
component Bo,(x) satisfying (9). But when B.. * 0 the mode structure includes
perturbations in the field and flow components in the z direction.

The main difference between our study and previous investigations of the
resistive tearing mode is that we have started from an exact equilibrium
current-sheet configuration in which the resistive widening of the sheet is
exactly counterbalanced by the stagnation-point flow. It is this feature of the
unperturbed current layer that allows us to investigate the entire range of
Lundquist numbers S, in particular values of S of order unity. Our results for
low S differ significantly from those obtained by Lee & Fu (1986), who did not
use an exact unperturbed equilibrium in their analysis.

It may be thought that the flow geometry studied in this paper has limited
practical applications. However, it has been argued (Pudovkin & Semenov
1977 a, b; Sonnerup 1980) that, in the absence of reconnection, steady-state flow
of a magnetized highly conducting plasma past a diamagnetic object will lead
to the formation of a stagnation line rather than a stagnation point on the
upstream face of the object. This stagnation line is aligned with the magnetic
field embedded in the impinging plasma flow, so that the unperturbed flow
configuration becomes similar to that examined here. One application may be
the flow of solar-wind plasma past the earth's magnetosphere, where a
stagnation line may be formed near the subsolar point of the magnetopause. To
apply our results to the magnetopause, we must estimate the Lundquist
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number based on the thickness of the magnetopause current layer. If we adopt
the value of (#0a)-` = 109 s m-2 (see e.g. Sckopke et al. 1981) as an upper limit
for the resistive diffusion coefficient, and use lower limits of 100 km for the
thickness of the current layer and 100 km s' for the Alfvdn speed just outside
the current layer, we obtain a lower limit of S -- PoavA _ 10. This value is
consistent with Lee & Fu's (1986) estimate of 2 < 8 < 100. The fact that in our
study the current sheet is found to be stable for 8 < 12"25 therefore suggests
that the magnetopause current layer may at times be stable or only weakly
unstable to tearing-mode perturbations.

This research was supported by the National Science Foundation, Atmo-
spheric Sciences Division under Grant ATM-8807645 and by the Air Force
Geophysics Laboratory under Contract F19628-90-K-009 to Dartmouth
College. The study was inspired by research into the problem of tearing modes
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Professor J.-I. Sakai during an extended stay at Dartmouth College in
1980-1981. The authors are grateful to Dr R. Richard, L. N. Hau and W.
Lotko for helpful discussions.
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GEOPHYSICAL RESEARCH LETTERS, VOL. 19, NO. 17, PAGES 1727-1730, SEPTEMBER 4, 1992

MAGNETIC FIELD MAXIMA IN THE LOW LATITUDE BOUNDARY LAYER

B. Sonnerupl , G. Paschmann 2 , T.-D. Phan 2 , and H. LOhr3

Abstract. The magnetic field often exhibits a maximum in very close to the MP rather than earthward of the inner edge of
the Earth's low-latitude boundary layer. We show examples the LLBL, as we observe them to do. In Type 11 events, there
of this behavior, using data from the AMPTE/IRM spacecraft, is a gradual loss of high energy particles (40c<E<400 keV) as
and argue that two fundamentally distinct causes exist for the the MP is approached but no significant loss of medium-
excess field: (i) a depression, within the layer, of the energy particles in most of the field-enhancement region.
population of medium-energy ions of magnetospheric origin; Using AMPTE/UKS data, Hall et al. 119911 found a
(ii) field curvature effects associated with undulations of the minimum in total electron pressure precisely where the
magnetopause itself. magnetic field overshoot occurs: they referred to this region as

a "depletion layer" (we reserve this term for the region
1. Introduction immediately outside the MP where plasma depletion and an

associated field overshoot is sometimes seen). This minimum
The frequent presence of a magnetic-field strength in electron pressure is a direct result of the coexistence of two

maximum near the magnetospheric edge of the magnetopause electron populations in the LLBL: cool magnetosheath
(MP) has been noted by Neugebauer et al. [19741, Sonnerup electrons decreasing in density with increasing distance inward
and Ledley [19791, and Hall et al. (19911. Sometimes the from the MP; and hot (but far more tenuous) magnetospheric
region of field enhancement has an inner edge that coincides electrons, decreasing in density with increasing distance
with the earthward edge of the low-latitude boundary layer outward from the inner edge of the LLBL. We emphasize that
(LLBL) and beyond which the field magnitude stays nearly the electrons usually only play a minor role in the overall
constant at its magnetospheric level; sometimes the field pressure balance across the MP/LLBL: the major
decays from its maximum to its magnetospheric level in a more contributions to Ptot = (P.L + B2 /2go) come from
gradual manner, as one moves from the inner edge of the magnetosheath ions, medium-ene-gy magnetospheric ions and
LLBL into the magnetosphere proper. We shall refer to these the magnetic field. The importa .ifference between Type I
two pure classes of field behavior as Type I and Type II, and Type II events is that Ptot is apmximately constant from
respectively, although we stress that they represent an the magnetosheath through the MP/LLBL into the
oversimplification: mort commonly, a mixture of the two is magnetosphere in Type I whereas a sometimes large maximum
seen. At first, the occurrence of field maxima seems in Ptot occurs earthward of the MP in Type II. This maximum
paradoxical. After all, the region just earthward of the MP is is caused by excess magnetic pressure.
usually occupied by the LLBL, a narrow region of dense
magnetosheath-like plasma flowing along the MP more or less 2. Type I Event
in the antisolar direction. One would expect the diamagnetic
effect of this plasma to produce a field depression rather than a Figure 1 shows a Type I crossing, i.e., a case where the
field enhancement within the LLBL, a feature that is in fact magnetic field overshoot is confined to the LLBL. This
also seen when the LLBL density is high. inbound pass through the MP/LLBL region on July 3, 1985.

Neugebauer et al. [1974] did not disr:uss the LLBL but they took place on the dusk flank of the magnetosphere (1930h LT)
suggested that the field maxima may be caused by loss of near the equatorial plane (-6.90 GSE latitude) at a geocentric
energetic magnetospheric particles, whose gyromotion carry distance of 17 RE. The motion of the MP relative to the
them up to the MP where they escape to the magnetosheath. spacecraft was complicated. We go through the event
However, they lacked the instrumentation needed to check this backwards. i.e., starting at the right-hand edge of the figure, at
hypothesis. Here, we use data from the AMPTE/IRM 1625 UT, where the spacecraft was in the magnetosphere, in a
spacecraft to demonstrate that field enhancements of Type I are more or less uniform field of B Z 15 nT (PB 0.09 nPa,
in fact colocated with the LLBL and that the densities of panel 6), with total ion density, Np, (E<40 keV, which is
medium-energy magnetospheric ions (9<E<40 keV) and mainly low energy ions) as well as densities of medium-
electrons (2<E<40 keV) are indeed depressed in them. Thus energy ions, N2p (9<E<40 keV), and electrons, N2e
there is partial agreement with the Neugebauer et al. (2<E<40 keV), (panel i) at their magnetospheric levels. The
explanation: the excess magnetic pressure compensates for the bulk speed, Vp, of the magnetospheric plasma was modest
defect in plasma pressure caused by the absence of energetic (panel 2), its temperatures, Tp and Te,were high (panel 3).
magnetospheric particles. However, in that explanation, Going backwards in time, the first indication of the LLBL
electrons with their much smaller gyroradii should drop out being approached occurred around 1621:50 UT where N2e

and Te started to drop. At 1621:10 UT, the LLBL proper was
entered: Np increased abruptly, while Tp and Te dropped

IDannmouih College. Hanover. NH equally abruptly to intermediate levels characterizing the
2M.ax-Planck-Institut far cxiraterrcstrishc Physik, Garching LLBL. The medium-energy ion density, N2p, dropped more
3Tcchnische Universitat, Braunschweig gradually. The field magnitude. B, rose, also gradually at

first, and then more rapidly until a plateau was reached at B =
Copyright 1992 by the American Geophysical Union. 25 nT (PB a 0.25 nPa, panel 6). The MP encounter occurred

at 1619:55 UT. Here B dropped abruptly to less than 5 nT
Paper number 92GL01809 (PB < 0.01 nPa); simultaneously, the field direction changed
0094-8534/92/92GL-01809503.00 (panels 4 and 5), Tp and Te decreased while Vp and Np both
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10 ll1 111l119911 '9| encounters (at -1601 UT and -1620 UT): this is the effect
,,: 5• discussed by Hall et al. 119911. But it is also seen that the

N) dominant effect is the minimum in Pp in the LLBL: the

Nzp 10=1 •electrons make only a minor contribution to the overall
~ pressure balance. Also, the pressure contribution from high-

S0_3 .energy particles (40<E<400 keV). measured by the SULEICA
instrument onboard AMPTE/IRM. was negligible IL. Kistler,
private communicationJ. The occasional spikes in the Ptot

V 300 -curve (panel 6) are believed to be the result of aliasingP 150, - ,-associated with different sampling of field and plasma.
In summary, items to note in this event are: (1) colocation

T P 101 -of field enhancement region and LLBL: (2) gradually
decreasing density of medium-energy ions moving outward

T. 1OO from the inner edge of the LLBL; (3) dropout of medium-
energy magnetospheric electrons at. or earthward of the inner
edge of the LLBL, a dropout that is more pronounced than the

0 -decrease in medium-energy magnetospheric ion density: (4)
VIu -90 UN near constancy of total pressure.-180

45 - _3. Type II Event
AB a

-45 l Figure 2 shows Type II behavior, i.e., magnetic field
enhancement in the magnetosphere proper, for the outbound

. tot IV: 5 pass of AMPTE/IRM on October 8, 1985. This traversal of
the LLBL/MP region occurred near local noon (1120 local
time) at -10.80 GSE latitude and at a geocentric distance of

02 l- about 11 RE. At the left edge of the diagram (0850 UT). thespacecraft was in the magnetosphere, proceeding outward
toward the LLBL. An early gradual drop in electron
temperature preceded the LLBL proper but other plasma

Pp parameters remained nearly constant there. However, a
S10-1- - gradual increase of field magnitude occurred, from 60 nT (P8

a 1.43 nPa) at 0853 UT to about 70 nT (P8 = 1.95 nPa) when
P. 10-2 the LLBL plasma was first encountered, at about 0857:10 UT.

At this latter time, Np started to increase rapidly, while N2e
dropped abruptly and N2p more gradually to lower levels.

UT 15:55 16:00 05 10 15 20 1625 characteristic of the LLBL. There was an associated abrupt
R 17.08 16.V7 drop in Te whereas Tp decreased more gradually as NpIAT -14.14 GSM ns:0.388 n =0.914 a :-.120 -12.55
LT 19:31 G 19:33 ramped up from the magnetospheric to the LLBL level. At theend of this ramp, around 0857:45 UT, the field magnitude

Fig. 1. AMPTE/IRM data during inbound pass through the dropped abruptly; there was little change in the azimuth angle,
MP/LLBL region on July 3, 1985. Panel 1: proton number qpB, but the elevation angle, XB, changed from essentially zero
density, Np (cm- 3 ; E<40 keV); medium-energy proton and to about +200.
electron number densities, N2p (cm- 3 ; 9<E<40 keV) and One may ask whether the spacecraft entered the
N2e(cm- 3 ; 2<E<40 keV). Panel 2: plasma bulk flow speed, magnetosheath already at 0857:45 UT, in which case the
V•P (kn/s). Panel 3: proton and electron temperatures, Tp and LLBL would have been traversed in only about 30 seconds.

e, (10 6 °K; E<40K keV). Panels 4 and 5: magnetic field For a low-shear MP the possibility of misinterpreting
azimuth angle, (PB, and elevation angle, .B, (degrees). magnetosheath magnetic discontinuities as MP crossings must
Angles refer to boundary-normal coordinates, LMN, with X = be kept in mind. However, in the present case there is
0 in the MP tangent plane and X>O for an outward field; also, evidence to indicate that the spacecraft remained in the LLBL
(pB = 0 along +L and CpB = 900 along +M. Panel 6: total for a long time, namely until about 0923:40 UT when a
perpendicular pressure Ptot = Pp + Pe + PB and magnetic sudden and substantial change in field angle, 98, occurred: in
pressure PB = B 2/2.o (nPa). Panel 7: proton and electron the interval 0857:45-0923:40 UT, N2p and N2e, as well as Tp
perpendicular pressures. Pp and Pe, (nPa; E<40 keV). and Te remained at levels intermediate between the

magnetospheric and the magnetosheath levels, a feature that is
increased abruptly to their values in the magnetosheath. commonly seen in the LLBL. Within 10 seconds after
Continuing backward in time, several additional full or partial 0923:40 UT, N2p and N2e dropped from those intermediate
MP crossings occurred: we do not discuss these in detail, levels to levels characteristic of the magnetosheath with the
except to note the similarity between the MP/LLBL encounter electron fluxes falling below the detection threshold: there
just discussed and that between 1600:50 and 1603:00 UT. were associated decreases in T and Te as well as changes in

The most remarkable feature in Figure 1 is the approximate the temperature anisotropies ofthe kind often seen at the MP.
constancy, over a 30 minute period, of the total pressure, If. as we believe, the MP was traversed at 0923:40 UT. it was
Ptot. (panel 6, upper curve), in spite of large temporal marked by a substantial velocity peak of nearly 4X00 km/s
variations in the magnetic pressure (panel 6, lower curve), compared to a typical magnetosheath level of about 1(X) km/s
The large ion (E<40 keV) and electron (E<40 keV) and a magnetospheric level of 50 km/s. In fact, throughout a
perpendicular pressure variations. Pp and Pe. that compensate good part of what would then be the LLBL interval, from
for tne changes in magnetic pressure are shown explicitly in 0857:45 to 0923:40 UT. Vp exceeded the flow speed in the
p..;,el /. Note the deep minimum in Pe during the LLBL magnetosheath. Such a long-duration LLBL need not, and
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keV), measured by SULEICA. was not negligible for this
to I event: it dropped from about 0. 1 nPa prior to 0850 UT to

Np-A: 6 0.05 nPa at 0855 UT and then to zero at approximately
N to-I 0856:30 UT. However, this decrease cannot compensate for

Ne -3 the increase in Ptot, shown in panel 6 of Figure 2. from about
S0-3  1.6 nPa at 0853 UT to 2.4 nPa at 0857:45 UT. In the regions

of depressed magnetic field following after the latter time, the
V 300 thermal plasma pressure increased a great deal (while the high-

15 00 -energy particle pressure remained zero) but did not fully
compensate for the depressed magnetic pressure. An
exceptionally large maximum in Ptot was associated with the

TP 0aforementioned large field maximum at 0919:20 UT. This is
an indication of two or three-dimensional structure and/or

. 100[ -- temporal evolution associated with this field structure.
The most significant features of this traversal are: (1)

LIMN gradual field enhancement in the magnetosphere prior to the
0 "spacecraft entering the LLBL, with the field maximum located

o "90, .at the inner edge of that layer. (2) nearly constant level of the
-18 -medium-energy ion density, N2p, in the magnetospheric part

45 - I" of the field enhancement region; (3) partial dropout of
AD I medium-energy magnetospheric electrons and an associated

-45 - abrupt drop in electron temperature near the inner edge of the

30AV: 6 LLBL; (4) a smaller drop in N2p at the inner edge of the
LLBL; (5) absence of total pressure balance in the interval

t2.01 -0853-0857:45 UT.
Pe .0 4. Discussion

The near constancy of total pressure in Type I MP/LLBL
crossings indicates that field curvature effects and temporal

P ,effects play little role in them. The principal item that needs to
10"1 be examined is the cause of the depressed densities, N2p and

N2e, of medium-energy magnetospheric ions and electrons in
S10- the LLBL. It is the depression in N2p that produces the main

_._.___,________._________.____.n,,___.,__ defect in total plasma pressure in the LLBL, a defect that is in
turn compensated for by excess magnetic pressure in that

UT 150 9:00 10 20 9:30 layer. Although we agree with Neugebauer et al. [ 19741 that
RT -3.62 GSN n 0.977 n1:-.144 * 435 particles whose guiding centers are brought within one
LT 11:02 1 11.09 gyroradius of the magnetopause may get lost to the

magnetosheath, and although the LLBL could perhaps at times
Fig. 2. AMPTE/RM data during outbound pass through the be as thin as a typical medium-energy ion gyroradius. we do
MP/LLBL region on October 8, 1985; format as in Fig. 1. not see how the depression in the medium-energy electron

density, N2e, which started substantially earthward of the
probably should not, be interpreted as an indication of a thick LLBL in the July 3 event but which more typically marks its
layer: there are signs that the MP may have reversed its radial inner edge, can be accounted for in this manner. Possible
motion soon after 0857:45 UT causing the spacecraft to explanations for this behavior of N2e are:
approach the inner edge of the LLBL around 0901:30 UT. (a) Energetic particle diffusion from the magnetosphere
There are also indications of a pair of MP encounters around towards the MP could be an important effect. From the
0914 UT when a large change in field angle, (pB, took place. considerably steeper Np profiles it would appear that inward
Following that change, a huge field maximum of about 85 nT diffusion of magnetosheath protons is a much less effective
is seen. It would be difficult to incorporate this feature as a process than outward diffusion of more energetic particles.
semipermanent part of the LLBL; it seems more likely to have (b) Pitch-angle scattering with associated particle
been a temporal effect. Except for this particular structure, it is precipitation could be responsible for the depletion of N2e and
clear from the figure that there was a substantial diagmagnetic N2p in the LLBL and perhaps for the depressed (relative to the
field magnitude depression, relative to the magnetospheric magnetosheath) thermal plasma density, Np, there.
field, over most of the LLBL(0857:45 to 0923:40 UT), but (c) The LLBL could be on open field lines, i.e., field lines
with a pronounced field maximum near its inner edge. This with only one end in the ionosphere.
field maximum and the slow rise of the field, starting about (d) Magnetosheath plasma could have entered onto field
0853 UT, and continuing until the maximum was reached at lines in the LLBL at some upstream location where those field
0857:45 UT is of principal interest to us. lines were temporarily opened by reconnection, allowing

During the interval 0853-0857:45 UT, the total pressure magnetosheath plasma to enter onto them and energetic
(panel 6) gradually rose as a direct consequence of the rising magnetospheric ions and electrons to be drained from them.
magnetic pressure. In this case, there is no indication that Subsequently, the field lines closed again, through a second
decreases in the thermal plasma pressure were present to reconnection process [Kan, 19881. and were then transported
counterbalance the increasing magnetic pressure: in fact, near tailward along the magnetopause to the observation site. In an
the end of this interval, right at the field maximum, the plasma alternate scenario [Cowley, 1981], the entire LLBL is
perpendicular pressure started to increase instead. The incorporated into the magnetosphere by cusp reconnection
pressure contribution from high-energy particles (40<E<400 during periods of northward interplanetary magnetic field; if

108



1730 Sonnerup et al.: Magnetic Field Maxima in the LLBL

formed in this manner the LLBL would be devoid, or partially maximum point, A. is shown as a function of. ABt/Bo.t, the
devoid of energetic maigtctospheric particles, ratio of the enhancement of the transverse field component to

(e) .MNanetosheath plasma could have moved onto closed the ambient value of that component. Also shown is the
magnetospheric tield lines by E < B drift in sonic localized maximum transverse field-angle change. AX, observed by a
region %%here the magnctoheaih field was aligned with the spacecraft as it travels parallel to the magnetopause towards the
matgnetospheric field. In such a process, the energetic field maximum. It is seen that even gentle bending of the
magnetospheric particle population would be pushed out of the field-line surfaces may lead to a substantial field increase. In
way. also as a result of E x B drift, the October 8, 1985, event, a field increase from 60 nT to 70

Without additional information, we cannot eliminate any of nT is observed. Minimum-variance analysis of the magnetic-
these possibilities. However, if (c), (d) or (e) were applicable field data in the interval 0853:00-0856:48 UT indicates that
in their purest form. i.e.. without the presence of particle most of this field was in the transverse (x) direction. Figure 3
diffusion, then the density profiles N2p and N2e at the inner shows that such an increase could be produced by a curved
edge of the LLBL would be much steeper than they are field-line surface having aspect ratio h/I = 1/33. with a
observed to be. For this reason, we believe that diffusion maximum observed field deflection of AX = 6* occurring well
must play a significant role, although it seems likely to occur before the field maximum is reached. A negative deflection in
in combination with one of the other effects. Also, the XB of this order of magnitude is in fact seen to precede the
steepness of the Np profiles suggests that the diffusion is by field maximum (panel 4 of Figure 2).
microscopic rather than macroscopic turbulence, since the Even near local noon. it is not surprising to find the MP to
latter would operate equally as effectively on the low energy experience frequent undulations of this magnitude: multiple
LLBL plasma as on the more energetic particles, encounters of a spacecraft with the LLBL/MP would be a

Characteristic features of Type 11 traversals of the natural consequence. Thus Type II behavior should, and
MP/LLBL region are that the magnetic-field magnitude is indeed frequently is observed to, accompany such multiple
enhanced well within the magnetosphere proper and that the encounters (e.g., Figure 9 of Neugebauer et al. [ 19741).
total pressure, Ptot, is not constant in this region. We argue
that these effects are caused by field-line curvature, Acknowledgements. Research at Dartmouth was supported
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