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Abstract
Sheet electron beams are very desirable for coupling to the evanescent waves in small

millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for

operation of the free-electron-laser-like Orotron. This program was a systematic effort to

establish a solid technology base for such a sheet-like electron emitter system that will facilitate

the detailed studies of beam propagation stability. Specifically, the effort involved the design and

test of a novel electron gun using Lanthanum hexaboride (LaB6 ) as the thermionic cathode

material. Three sets of experiments were performed to measure beam propagation as a function

of collector current, beam voltage, and heating power. The design demonstrated its reliability by

delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the

cathode survived two venting and pump down cycles without being poisoned or losing its

emission characteristics. A current density of 10.7 A/cm2 was measured while operating at 50

watts of ohmic heating power. Preliminary results indicate that the nearby presence of a metal

plate can stabilize the beam.
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Summary
Microwave power tubes using sheet-like electron beams can potentially deliver greater

output power than those with conventional solid cylindrical beams. Furthermore, sheet beams can

be thin enough to permit good coupling to the evanescent waves in small millimeter wave slow-

wave circuits. In particular, they are critical for operation of the free-electron-laser-like Orotron.

These advantages justify additional theoretical and experimental studies on the generation and

stable propagation of sheet beams. Unfortunately, nearly all microwave power tubes currently on

the market use electron sources that cannot be subjected to frequent vrnting and pump down

cycles without being poisoned or losing their emission characteristics. This poses a serious

obstacle to the research and development of stable sheet beams. Therefore, rugged cathodes

which can deliver large electron emission over a long life are needed. This program was a

systematic effort to establish a solid technology base for such a sheet-like electron emitter system.

Specifically, the goal was to design and build a reliable high current density sheet-like electron

generator to facilitate detailed studies of the stable propagation of sheet-like electron beams.

This contract involved the design and test of a novel sheet-like electron gun using

Lanthanum hexaboride (LaB 6) as the cathode material. LaB6 was selected as the thermionic

cathode because of its resistance to poisoning in modest vacuum and its ability to produce high

current density and high brightness electron beams. Most of the previous work with LaB6 has

been limited to cathodes with small circular cross sections, whereas our filament is a 10mm x

0.3mm slab. Two pyrolytic graphite bars sandwiched on either side of the filament were

ohmically heated to provide the heat source. Heat was generated by passing a current along the

short direction, taking advantage of the high electrical resistivity and low thermal conductivity

along the c-direction of the pyrolytic graphite. Our design was based on the following key

insights, which may have been lacking in previous investigations: (1) Additional pyrolytic graphite

bars were employed as thermal insulators, which increased heater efficiency. (2) Permanent

magnets were arranged to provide a converging magnetic field to increase current density in the

interaction region. (In the Orotron, close interaction between the beam and the surface of a

grooved metal grating can increase power output.) The magnetic field can be adjusted to

optimize the convergence of the electron beam in the interaction region. The design
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demonstrated its reliability by delivering 386.5 hours of operation for the duration of the

experiment. In addition, the cathode survived two venting and pump down cycles without being

poisoned or losing its emission characteristics. A current density of 10.7 A/cm 2 was measured

while operating on 50 W of ohmic heating power. This novel design led to a rugged high current

density electron emitter that will facilitate detailed studies of the stable propagation of sheet-like

electron beams.

A thin sheet electron beam confined by a magnetic field does not maintain its initial shape,

but eventually breaks up into a series of curved fragments. This occurs bec,,se any initial local

disturbances in the beam, such as a deflection or density variation, give rise to an imbalance in the

space charge field in such a direction as to further increase the disturbance. This indicates a beam

instability. Research and experimentation on the techniques to suppress these instabilities are

necessary for application of these beams in microwave power tubes.

Three sets of experiments were performed. They were devised to measure beam profile as

a function of total current, beam voltage, and heating power. First, the shape of the beam during

propagation was observed on a phosphor screen, which was attached to a linear actuator. The

screen provided a detailed view of the beam profile along the length of the propagation path.

Second, a short metal plate was placed parallel to the electron beam in front of the phosphor

screen. This enabled us to visually verify the stabilizing effect of the beam's interaction with the

plate surface, which simulates the grating configuration in a mm wave source device such as the

Orotron. Finally, a full length (5 cm) metal plate was installed and a special current probe was

used to map out the beam current distribution.

Preliminary results indicate that the nearby presence of a metal plate stabilizes the beam.

The rugged high current density sheet-like electron emitter system enables the systematic study of

beam propagation under various electron device configurations.

2
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Introduction
The purpose of this contract effort was to demonstrate the feasibility of a high current

sheet-like electron beam source using a rugged cathode. There are several important advantages

to be gained from the availability of a reliable sheet-like electron beam generator. Microwave

power tubes employing sheet-like electron beams can potentially deliver greater output power

than those with conventional solid cylindrical beams. Furthermore, sheet beams can be thin

enough to permit good coupling to the evanescent waves in small millimeter wave slow-wave

circuits('). In particular, they are critical for operation of the free-electron-laser-like Orotron.

This is very important for scaling the novel microwave tube concepts to higher frequencies since

the allowed interaction volume is decreased(2). These advantages justify additional theoretical and

experimental studies on the generation and stable propagation of sheet beams. Unfortunately,

nearly all microwave power tubes currently on the market u.e electron sources that cannot be

subjected to frequent venting and pump down cycles without being poisoned or losing their

emission characteristics. This poses a serious obstacle to the research and development of stable

sheet beams. As a result, rugged cathodes that can deliver large electron emission over a long life

aft iteeded.

This program was a systematic effort to establish a solid technology base for such an

electron emitter system. Later, this system can be used to facilitate detailed studies of the

propagation of these beams under various electron device configurations. Specifically, the goal

was to build a reliable high current density (>20A/cm2) sheet-like electron source that optimizes

current density to heating power ratio. This contract effort involved the design, test and

demonstration of a novel sheet-like electron gun using Lanthanum hexaboride (LaB6 ) cathode

material.

Our design was based on the following key insights, which may have been lacking in

previous investigations of high current density cathodes: (1) To increase heater efficiency,

pyrolytic graphite bars were employed as thermal insulators. (2) Permanent magnets were

arranged to provide a converging magnetic field, to increase current density in the desired

interaction region, which is at the surface of a metal plate. (In the Orotron, the interaction region

is the surface of a grooved metal grating.)

3
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A thin sheet electron beam confined by a magnetic field does not maintain its initial shape,

but eventually breaks up into a series of curved fragments(3 ). This occurs because any initial local

disturbances in the beam, such as a deflection or density variation, give rise to an imbalance in the

space charge field in such a direction as to further increase the disturbance. This indicates a beam

instabilitye). Research and experimentation on the techniques to suppress these instabilities are

necessary for application of these beams in microwave power tubes.

Our novel design has led to a rugged high current density electron gun that will facilitate

detailed studies of the stable propagation of sheet-like electron beams. Three sets of experiments

were devised to measure beam profile as a function of collector current, beam voltage, and

heating power. These experiments enabled us to verify the reliable operation of the sheet-like

electron emitter system. The preliminary results suggest techniques for the optimization of the

novel electron gun in the Orotron.

4
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Methods, Assumptions, and Procedures
This program was a systematic effort to establish a solid technology base for a sheet-like

electron emitter system which can be used to facilitate detailed studies of the propagation of these

beams under various electron device configurations. Specifically, the goal was to build a reliable

high current density (>20A/cm2) sheet-like electron source that optimizes current density to

heating power ratio. This contract effort involved the design, test, and optimization of a novel

sheet-like electron gun using Lanthanum hexaboride (LaB6 ) cathode material.

LaB6 was selected as the thermionic cathode material because it delivers high current

density and high brightness electron beams at substantially lower temperatures than other rugged

emitters. It is also better suited to applications requiris.(g electron beams that are pulsed at a high

repetition rate or are continuous wave. Furthermore, other researchers have reported that LaB 6

cathodes at a temperature of 1400 'C are resistant to poisoning in modest vacuum (on the order

of 10s Torr). This resistance to poisoning also increases with increasing temperature. Related

experimental developments have shown that a novel LaB6 cathode design can lead to a rugged

and reliable emitter.

The primary goal was to operate with the lowest ohmic heating power necessary for a

given output current and beam geometry. Since the electrical resistivity of LaB6 is ',ery !ow,

heating it directly would be very inefficient. Instead, the filament was sandwiched between two

pyrolytic graphite bars and heat was generated by passing a current along the short direction.

This took advantage of the high electrical resistivity and low thermal conductivity along the c-

direction of the pyrolytic graphite. In addition, two pyrolytic graphite bars were positioned to

insulate the heater from the clamps. This design led to an increase in the filament temperature and

reduced the heating current. Figure 1 shows the LaB6 emitter assembly.

It is important that both the electron gun and the metal plate are immersed in a uniform

magnetic field with magnetic flux in the same direction as the electron flow. The electron beam

was steered and compressed by the field, increasing current density in the desired interaction

region, as shown in figure 2. For this experiment, a copper plate was used instead of the grating

in an orotron. The electron beam passed just above the plate surface so that close interaction

5
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Figure . High current density sheet-like electron emitter design. Arrow indicates the

direction of current flow.
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Figure 2. Novel vacuum fixture with permanent magnets to provide a converging

magnetic field.
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could be achieved. The fixture supporting eight permanent magnets was designed to cradle the

vacuum chamber such that the magnetic field would surround the electron gun. Measurements

were taken to map the magnetic field inside the vacuum chamber with respect to the test fixture.

The magnetic field inside the chamber can be varied by moving the magnets. At the closest

spacing allowed by the vacuum fixture, the measured magnetic field has a field strength of 2.36

kGauss and i. extremely uniform over the interaction volume. A graph of the measured axial field

as a function of position is shown in figure 3. Moving the magnets farther apart reduces the peak

strength of the center field. Moving them closer together increases the center field strength,

leading to greater convergence of field lines in the center, but reduces uniformity. For the

uniform field case, the cathode can either be placed in the high field or further back where the

field lines are converging. The beam propagation stability and current distribution were studied

for the uniform field case.

1.400

12-

200 -
IL

-am0

.Iwo I

4.00 400 -400 -200 000 2.00 4.00 000 Soo

Distance along Axis of Sheet Beam (inches)

Figure 3. Magnetic field strength along the axis of the sheet beam. The designed interaction

length in a uniform field is 2 inches (5 cm).
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The vacuum chamber was a reducing 6-way cross consisting of three cylinders intersecting

at their mid points at right angles to each other. The two smaller cylinders had a 1.5 inch (3.8 cm)

outer diameter and standard 2.75 inch (7 cm) diameter flanges. The larger cylinder had 3 inch

(7.6 cm) outer diameter and 4.50 inch (11.4 cm) diameter flanges. The test fixture is depicted in

figure 4. A photograph of the test apparatus, including the vacuum chamber, electron gun, and

diagnostics, is provided in figure 5.

The emitter assembly screwed directly onto the ends of four high voltage vacuum

feedthroughs on a standard bulkhead. This enabled the entire gun assembly to be bolted into one

end of a smaller cylinder. The collector was attached to a linear motion vacuum feedthrough and

was installed inside the opposite end of the same cylinder. A viewing port and the pump

connection were located on the opposite ends of the second small cylinder.

It was very important for the electron beam to propagate very close to the surface of the

metal plate for efficient operation. (In the Orotron, the interaction thickness above the grating is

comparable to the grating pitch on the order of 0.5mm.) The metal plate's linear translation

system included a tip/tilt piston stage. This provided full adjustment capability to ensure proper

interaction between the electron beam and the plate surface.

A special current diagnostic, shown in figure 6, was designed to measure the electron

beam current density at various locations above the metal plate. Using a combination of rotary

and linear motion, the probe can be positioned at various locations to measure current density and

beam thickness. The location of the electron beam determined the best place for the metal plate.

The vacuum system was constructed in anticipation of frequent ventilation and pump-

down cycles during this experimental program. It consisted of an oil-less membrane pump

followed by a large ion pump. An ion gauge was used so that the vacuum condition could be

monitored continuously. The oil-less pump took the system down to the middle of the 10' torr

range, then the ion pump was used to take the system down to 10" torr range. Initially, the

system was baked overnight at approximately 100 °C, which is the temperature limit of the rotary-

linear actuator. After all the moisture was removed, the electron gun system was generally

operated with chamber pressure in the 10" torr range during the experiments.

9
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Figure 4. Novel test fixture with diagnostic instrumentation to measure current density.
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Figure 5. Photograph of the complete test apparatus.

CONDUCTORS
TO VACUUM
FEEDTHROUGH

INSULATOR

PROBE PINS

Figure 6. Sheet electron beam current probe assembly.
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A schematic of the electrical system is shown in figure 7. Existing test equipment at

ThentioTrex Corporation(TTC) was made available to us under subcontract. This consisted of a

high voltage power supply, a floating power deck, and a pulse generater circuit. The high voltage

power supply is capable of delivering up to 20kV at 200mA continuously. For this project, the

high voltage was limited to 5kV or less. The power deck consists of a high current AC power

supply for the emitter assembly and a power supply for the focus electrode. The power deck was

isolated from ground through a one to one isolation transformer. The transformer secondary

winding was connected to the high voltage power supply. This determined the cr iode potential,

which was negative.

The electron beam was pulsed to deliver higher current. The anode was pulsed from the

cathode's negative potential to ground for approximately 2ps at 100 Hz. The anode was pulsed

high instead of pulsing the cathode low, because the anode drew only a few milliamp of current.

The anode was connected to the cathode through a charging resistor and then connected to

ground via a current limiting resistor in series with a FET switch. This FET was essentially a

variable resistor, switching between 100MO and a few hundred ohms. The switch pulled the

anode potential up to ground from the cathode potential (-3kV) during the pulse on cycle. The

pulse rise time was determined by the anode electrode capacitance and the series 5kfI resistor.

The anode returned to the cathode potential during the off cycle. The pulse fall time for the

anode was determined by the anode charging resistor (10LO) and the series 5kK resistor and was

therefore three times that of the rise time.

The LaB6 emitter assembly was heated by the AC voltage from a variac combined with a

step down transformer. The heater voltage was filtered by a low inductance energy storage

capacitor (0.1 gF) in paralleled with a 50M.n bleeder resistor. Heater current up to 15A was

applied. The electron beam pulse voltage could vary depending on its relative phase with respect

to the line voltage. The solid state switch had to be pulsed synchronously with the line voltage, so

a special circuit was used to detect every line voltage zero crossing and to generate a trigger

signal for the solid state switch. This circuit also included pulse width, duty cycle, and delay

control. The pulse width was variable from 0.5ps to 2.5ps. Maximum pulse rate was 120 Hz, the

line voltage zero crossing frequency.

12
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Figure 7. Schematic of sheet beam electrical test system.

Electrical performance of the device was monitored by a set of voltage and current

diagnostics. The cathode heating power was calculated from the current and voltage measured at

the power supply. The cathode potential was controlled from the front panel of the regulated

high voltage power supply. The anode pulse voltage was measured by a 1000:1 Tektronix high

voltage probe. The collector was terminated to ground through a 5(! resistor and the metal plate

was terminated to ground through a 50CI resistor. The voltage on the plate and collector outputs

represented the beam currents that each apparatus received. In addition, the beam current was

sampled with the current probe to determine the beam width, beam thickness, and current density

distribution. The probe was designed to intercept a small fraction of the beam current without

13
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disturbing beam stability. Each pia on the probe picked up an amount of current which was

proportional to the beam area it intersects, thus providing good resolution but not interfering with

beam propagation. The probe was attached to a micrometer and was incrementally lowered into

the beam. Each increase in pin current gave the current density for that position. Six cross

sections of the beam were measured along the length of the beam. On the average, current at five

points was measured across the width of each section.

The objective of this effort was to demonstrate the feasibility of a reliable, high current

capable sheet electron gun using LaB6 as the cathode material. Toward this goal, we designed

and conducted experiments to document performance of the sheet electron gun shown previously

in figure 1.

The design characteristics of the sheet electron emitter assembly are as follows:

LaB6 filament 0.3 mm x 10 mm x 1.5 mm
Pyrolytic graphite 1 mm x 11 mm x 1 mm (heater bar)

1.5 mm x 1I mm x I mm (thermal insulator)
Heater leads 5 mils thick x 2 mm x 4 cm
Cathode clamp TZM, a molybdenum alloy
Focus electrode tantalum
Anode tantalum
Base plate 1.375 inch diameter x 0.375 inch thick ceramic

Three sets of experiments were performed. They were devised to measure beam profile as

a function of total current, beam voltage and heating power. First, the shape of the beam during

propagation was observed on a phosphor screen as illustrated in figure 8. The phosphor screen

(collector) was attached to a linear actuator which allowed it to move in order to intersect the

sheet beam at various locations. This provided a detailed view of the beam along a large section

of the propagation path. Second, a short metal plate was placed in front of the collector below

and parallel to the electron beam, and as close as possible to it. The phosphor screen remained

visible from the window. This set up is shown in figure 9. This enabled us to evaluate the

stabilizing effect of the beam's interaction with a metal plate, simulating the grating configuration

in a mm wave source device such as the Orotron. Finally, a full length metal plate was installed

and the current probe was used to map out the beam current distribution as illustrated in figure

10.

14
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Window

Beam Current

Emitter 
m

Phosphor Screen

Figure 8. Schematic of beam stability measurement diagnostic.

Beam Current

Emitter/

/ f Image of Electron Beam

Adjustable Height Phosphor Screen
Metal Plate viewed from window

Figure 9. Schematic of beam stability measurement diagnostic with metal plate.

1s



FR940201

To Micrometer

Current Probe

Sheet Electron Beam

Figure 10. Sheet beam current distribution diagnostic.
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Results and Discussion

The sheet electron gun using a LaB6 cathode demonstrated its reliability by delivering

386.5 hours of reliable operation throughout several weeks of experimentation. Furthermore, the

cathode survived two venting and pump down cycles without being poisoned and losing its

emission characteristics. Electron beam current of 320mA was measured from the 0.03cm 2

emitter area, which corresponds to a current density of 10.7A/cm2. The gun required 50 watts of

ohmic power to produce this emission level during pulsed operation. A graph of the beam current

as a function of the beam voltage and ohmic power is shown in figure 11.

3 50 .4. * 4 4... ...... .........44... ..

SN! .......... ...............................
1. . . .. . .............................

500 44...... . . .... .... --- -- 41 w att... .. .....4 ......... ...

300

1.9 25 3 35 4

Beam Voltage (kV)

Figure 11I. Beam current as a function of beam voltage for different ohmic power level.

This rugged high current sheet electron emitter system enabled a systematic study of beam

propagation under various electron device configurations. In the first experiment, the electron

beam was allowed to propagate freely without the influence of the metal plate and was only

confined by the magnetic field. A thin sheet electron beam confined by a magnetic field does not

maintain its initial shape, but eventually breaks up into a series of curved fragments. This occurs

because any initial local disturbances in the beam, such as a deflection or density variation, give

rise to an imbalance in the space charge field in such a direction as to further increase the

disturbance. This indicates a beam instability. Research and experimentation on the techniques to

17
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suppress these instabilities are necessary for application of these beams in microwave power

tubes.

The first experiment served to visually identify the beam instabilities. The metal plate and

the current probe were fully retracted so that the space charge field would not be distorted by

their presence. The phosphor screen was placed at distances ranging from 2.5 cm to 4.4 cm away

from the emitter. As the phosphor screen moved along the axis of beam propagation, the beam

was intercepted by the screen and a cross section was made visible. At each position, the shape of

the beam was observed visually and photographed from the window. The electron beam was seen

as a blue glow on the phosphor screen. The brightness was proportional to the charge density.

Therefore, a stable beam would appear as a clearly defined thin blue line whereas an unstable

beam would appear as an unfocused blue area.

The sheet-like beam did not maintain the same beam thickness along its propagation path.

The current density distribution changed significantly from one location to the next. Figures 12

(a) through (c) gives an example of these variations. In figures (a) and (c), half of the beam

appears stable while the other half appeared as a diffuse faded glow. The unstable half seemed to

fluctuate above and below the plane of the beam. However, it was not clear how much of this

phenomenon .was time dependent. It is possible that the charges actually did spread out and then

converged again. The imbalance in the space charge field appears localized to 2.5 cm and 4.4 cm

from the emitter, whereas the beam converged nicely at 3.8 cm from the emitter (see figure 12b).

Most of these observations were made at low emission levels (approximately 0.17A/cm2) because

the phosphor screen was easily saturated. The entire screen area glowed blue when the collector

saturated thereby obscuring the beam. Changing the high voltage potential difference between the

cathode and anode did not improve beam stability. The same phenomenon of beam instability was

observed at higher emission levels.

The phosphor coating interfered with making current measurement at the collector.

The collector current trace, shown in figure 13, shows two switching transients instead of the

expected single pulse. The phosphor screen acted like a capacitor instead of a conductive surface.

Current on the order of 0.5 gA was measured from the collector indicating that the phosphor was

basically non-conductive. The beam current could not penetrate the phosphor coating on the

stainless steel collector and the measured current was the result of stray charges. The application

18
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(a) 25mm from emitter

(b) 37.5mm from emitter

S.... •.....,,.....,...,... ,..

(c) 44mm from emitter

Figure 12. Sheet beam current distribution at 3 locations along the axis of propagation.
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of a bias voltage to the phosphor screen failed to increase its conductivity. As a result, the metal

plate was used raised up in front of the phosphor screen to measure beam current by blocking its

path.

Collector
Currenij_

1 gs/div

Figure 13. Collector current measured from the phosphor screen.

During the first 24 hours of operation, there were several dark spots in the beam.

Occasionally, the whole phosphor screen would flash blue due to a sudden discharge from the

gun. Later, as operation continued, the spots became less prevalent and there were fewer gun

discharges. This was a result of the filament conditioning process as contaminants were boiled

away. Throughout the experiments, one half of the beam remained brighter than the other half

There are two probable causes for the beam having higher current density on one side: (1) the

filament was not evenly heated, (2) the filament was not perfectly level with the plane of the focus

electrode or the anode. Unfortunately, the gun was too far recessed from the window and,

consequently, the emitter temperature could not be measured. In addition, the filament may have

changed position due to thermal expension. This problem can be eliminated in the future with

extra alignment procedures during assembly of the emitter. The filament height can be leveled

with respect to the base plate. The focus electrode and anode can be shimmed. The heater leads

can be bent to exert pressure on the filament more evenly.

20
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In the second experiment, a metal plate was placed in front of the phosphor screen to

evaluate the stabilizing effect of the beam's interaction with the plate surface. The plate was

slightly over 1 inch long, and one end terminated at a 45 degree angle. This allowed the phosphor

screen to approach the plate very closely and be visible from the viewing port. The metal plate

simulated the metal grating in a mm wave source device such as the Orotron.

For this experiment, heater power was increased to 47.5 watts thereby increasing beam

instability. The metal plate was gradually moved up toward the beam using the tip/tilt height

adjustment screws. The plate surface was kept as parallel as possible to the beam through careful

visual monitoring of the plate's position. The beam's plane of propagation was verified by

blocking the beam completely with the plate, and then lowering the plate while measuring

percentage of the beam's current being blocked. Once the location of the beam was established,

the plate was moved to just below the beam.

Higher beam voltage caused the beam to move up and away from the plate surface. Also,

the increased emission caused the phosphor screen to saturate. Therefore, this experiment was

performed at 2 kV beam voltage and 55mA beam current instead of 3kV as used in the last

experiment.

The profile of the beam became thinner, sharper, and more stable as the plate was moved

closer to the beam. Figure 14 shows the increase in beam stability with respect to plate distance

from the beam.

In the third experiment, the half length metal plate was replaced with a full length (5 cm)

plate. The phosphor screen was replaced with a piece of bare copper as the collector. The plate's

orientation was adjusted such that it was parallel to the beam. Its height was adjusted such that

the beam interacted with the plate's surface but lost less than 20 percent of its total current. Since

the beam was not visible on the collector, the beam's position was determined using the current

probe. As the plate was brought into contact with the beam, the resulting interaction would

change the beam's location. After repeated adjustments, an optimal setting was established. The

current probe was then lowered into the sheet-like electron beam to map the current density along

the length of the beam.

Typical current waveforms from the experiment are shown in figure 15. The top trace, in

the upper photograph is a current probe output which shows the beam current as a function of
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(a)

::.. .. .......:g

(b)

Figure 14. Sheet-like electron beam profile: (a) with metal plate 1.4mm below the beam, (b) with

beam grazing the plate surface.
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Figure 15. Sheet-like electron beam test data: typical current waveform.

23



FR940201

time. The lower trace in the same photograph shows the beam voltage, which is held at 2kV for

approximately 3 ps during the pulse. The top trace in the lower photograph shows the collector

current waveform with a peak collected current of 200mA. The lowest trace shows the fraction

(<201/6) of current that was intercepted by the metal plate.

Figure 16 shows the coordinate geometry for measurements. (A whole orotron cavity is

shown.) The electron beam moves in the y-direction along the metal plate. Cross-sections of the

beam in the z-direction (through the thickness of the sheet) were measured at six y-locations for

various x. The actual current probe moved in a rotary direction. Its z position and 0 position

were measured. (0 was typically changed in 5P increments, while z was changed in 0.001 inch

(25.4 micron) increments. The x and y position, relative to the metal plate below the sheet

electron beam, were calculated from 0 and the known location of the probe used. Only one of the

three probes intersected the electron beam at a given time.

Figure 17 shows all the positions where measurements were taken with the current probe.

On figure 17, the emitter would be located at -6mm < x < +4mm and y = -35mm. The width of

the sheet-like electron beam along the length of propagation can be determined from these cross

sections. Data from only five of the cross sections is included because the sixth cross section

produced intermittent current readings. At y equal +15mm, the intermittent current readings

made the beam appear to be 50 microns thick when the current probe was probably losing

connection. The other cross sections produced a beam profile consistent with our predictions.

Beam thickness and current density at a given x-y position were measured by moving the

probe in the z-direction increments of 0.001 inch, or 0.025 millimeter. A sample current

measurement is shown in Figure 18. The pin could be lowered from above the beam to below the

beam into a groove in the lower plate. (The plate was not completely parallel to a given probe z-

position, and z = 0 was not accurately calibrated. The variation in z from corner to corner of the

plate was about 1.5mm when it was aligned as carefully as possible with the sheet-beam, which

followed the magnetic field lines.) The thickness of the beam and intercepted current were

measured from the graphed data at each point. The intercepted current maximized when the

probe is all the way through the beam. As the probe is raised through the beam (increasing z), the

current starts to drop when the probe moves past the edge of the beam. The current dropped
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Figure 16. Coordiante geometry for measurements.
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Figure 17. Positions where beam current was measured. X and Y are coordinates on the surface

of the plate. The electron beam moves in the y-direction.
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Figure 18. Measured current vs. probe z-postion for probe #3 at 140 degrees angle,

corresponding to x = 0.32mm, y = -23.37 mm.

until it hit a residual background level above the beam, where it fell off slower. This background

could be due to current scattering off the plate. The thickness of the beam was taken from where

the current fell 0.5mA below the peak value to 0.5mm above the floor. Thus, in figure 18 the

thickness would be taken as 10 mil (or 0.25mm) and the intercepted current as 8.5mA.

Figure 19 shows a cross section of the beam in the x-direction taken at a separate time at

y=-10mm, with the probe all the way through the beam in the z-direction. This shows that the

beam is lopsided, with higher current to one side (consistent with our photographs). With

everything running properly, we expected the beam width from the 1 cm cathode to be about

8mm, although now it was currently 6mm.
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Figure 19. Electron beam current profile across the width of the beam at y = -10mm.

A tabulation of the measured data at different positions is given in table 1. The data

points include the x position, y position, thickness, and current within the thickness. For graphing

purposes, thickness and current are plotted against the quantity x+2y in figure 20. Note that on

average the thickness is consistent with the cathode thickness of 0.3mm, although the thickness

and current increased towards the center at some locations. For microwave devices of interest

such as the orotron, it will be important that the current density at the surface uf the slow wave

structure or grooved metal plate be as high as possible. The test apparatus can now be used

during further research to optimize the current density distribution.
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Data Point X (mm) Y (mm) Thickness Current

(nm) (mA)

1 -3.555 -23.443 0.230 2.500
2 -1.618 -23.491 0.250 6.500
3 0.316 -23.371 0.250 8.500
4 2.232 -23.082 0.250 5.500
5 2.756 -16.406 0.130 2.000
6 1.420 -16.765 0.230 5.500
7 0.057 -17.007 0.050 2.500
8 -1.320 -17.120 0.200 3.000
9 -2.705 -17.131 0.200 3.000

10 2.665 -9.556 0.280 6.500
11 1.925 -9.934 0.300 6.500
12 1.156 -10.246 0.430 9.000
13 0.362 -10.489 0.710 16.000
14 -0.450 -10.663 0.330 7.000
15 -1.274 -10.765 0.480 9.500
16 -1.938 8.255 0.200 7.500
17 -1.108 8.210 0.380 5.000
18 -0.286 8.094 0.250 8.000
19 0.523 7.906 0.350 10.000
20 1.312 7.649 0.350 7.000
21 2.076 7.324 0.330 8.500
22 2.422 20.504 0.130 3.000
23 1.468 20.678 0.330 6.500
24 -0.456 20.899 0.630 17.000
25 -2.393 20.952 0.250 5.000
26 -4.327 20.836 0.300 2.500

Table 1. Measured thickness and intercepted beam current as a function of x and y position.
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Figure 20. Electron beam current and thickness as a function of position. (a) delta current,

(b) thickness.
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Conclusions
The proposed novel sheet-like electron emitter system was designed, built, and tested.

This project has produced a reliable electron gun that will facilitate the systematic study of the

beam's propagation stability. The LaB6 emitter design successfully demonstrated its reliability by

delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the

cathode survived two venting and pump down cycles without being poisoned or losing its

emission characteristics. A current density of 10.7A/cm2 was mcasured while operating on 50

watts of ohmic heating power. It is expected that a current density at the emitter of about

20A/cm2 can be achieved by operating at slightly higher heating power and temperature.

Alternatively, a design with slightly lower heat loss may enable the necessary temperature to be

achieved at the 50 W power level.

The novel test fixture with eight permanent magnets produced an extremely uniform

magnetic field with magnetic flux in the same direction as the electron flow. The tip/tilt

mechanism and the current probe allowed us to position the metal plate so that close interaction

with the electron beam was achieved. Based on the experiences gained from this program, an

alignment procedure can be developed to simplify future research.

The expected beam propagation instabilities were corroborated visually. The measured

beam current distribution showed some variation in beam thickness and current density along the

axis of propagation. The nearby presence of a metal plate leads to significant stabilization of the

beam. Further research can lead to optimization of the beam characteristics for particular device

applications.
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Recommendations
This program has successfully demonstrated the feasibility of the novel sheet-like electron

emitter system. The emitter system was specifically designed for high power millimeter and

submillimeter wave tubes such as an orotron with short period wigglers. The nearby presence of

the metal plate or grating stabilizes the beam, allowing it to maintain a very small thickness. In

the future, the sheet-beam apparatus can be used to optimize the electron beam characteristics for

an orotron millimeter wave tube. We recommend that the work pursued under this effort be

combined with a parallel completed Phase I SBIR for an orotron design. A single Phase II effort

should be undertaken to build a prototype broadly tunable, narrow bandwidth orotron.
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