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Abstract

A formalism is presented which demonstrates that the mean Green's function for the

acoustic field between two rough interfaces can be expressed as a Green's function associated

with two fiat interfaces with effective reflection coefficients. This result incorporates all orders

of the fluctuations in the half-space scattering amplitudes associated with each interface
considered separately. From the mean Green's function modal attenuations can be found.

To lowest order in the surface height fluctuations it is shown that it is not sufficient to

use mean half-space scattering amplitudes as effective reflection coefficients. The formalism

is designed to provide approximations for the Green's function in layered media which are

based on previously developed approximations for half-space scattering amplitudes.
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I Introduction

A number of good approximations have recently been developed for plane-wave, half-space rough

surface scattering amplitudes. The aim of this paper is to show how these scattering amplitudes

can be used to describe sound propagation between two rough interfaces. This work is motivated

by a certain laziness: it shouldn't be necessary to repeat the discussions used to describe the

scattering from one interface when treating two interfaces. One should only be required to treat

the interactions between the interfaces.

In an earlier paper [11 the method of smoothing was used to treat this problem to lowest

order in scattering amplitude fluctuations. It was indeed shown there that there are effective

rtflection coefficients for the mean Green's functions which are distinct from the mean half-

space scattering amplitudes. Here the work of Ref.[l] is extended to all orders in scattering

amplitude fluctuations. It is important here to distinguish scattering amplitude fluctuations

from fluctuations in surface heights. In general, scattering amplitudes are non-linear functionals

of the surface height. The idea here and in Ref.[1] is to develop a formalism which uses non-

perturbative approximations of the scattering amplitudes.

It. will be shown here that the existenc-: of effective reflection coefficients for propagation

between two rough interfaces is not an artifact of the smoothing approximation. In fact, the

effective reflection coefficients can be expressed in terms of self-energies associated with a cer-

tain random operator. In constructing the effective reflection coefficients, a systematic way of

including higher order moments of the fluctuations of the half-space scattering amplitudes will

be developed. In another extension of the work in Ref.[1], it will be shown how correlations

between the scattering on the upper and lower interfaces affect the mean field. If there is corre-

lation, the mean Green's function is the sum of two effective Green's functions. Finally, modal

attentuations for the mean field will be discussed here. It will be shown that in the case of

Dirichlet boundary conditions, in the small roughness limit, the present method reproduces the

perturbation results of Bass and Fuks [2]. Bass and Fuks also show that when a waveguide

is not wide compared to an acoustic wavelength, then modal attenuations arising from surface
roughness using half- space scattering ampitudes, as in the work of Kuperman and Ingenito Q0

(3], are considerably different that those calculated using renormalized reflection coefficents. It

should be noted that Voronovich has treated the problem of waveguides with a single rough

boundary [41 in a somewhat different manner. The results presented here for effective reflection
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coefficients are implicit in his work.

The discussion here concerns only constant sound speed profiles for which up- and down-

going plane waves can be used. In section II, scattering states will be introduced and will be used

to construct the field of a point source for each realization of an ensemble of rough interfaces.

In section III stochastic equations for the Green's function will be discussed. In particular, a

self-energy operator will be defined. In section IV the mean Green's function for the case of

statistically homogeneous roughness will be developed. Section V discusses modal attenuations.

A summary of this work, and an outline of future work will be found in section VI.

II Scattering states and the construction of the Green's func-

tion

Consider a homogeneous fluid bounded by two rough interfaces as in Fig. 1. These interfaces

are parallel in the mean and may or may not be penetrable. The formalism to be presented here

is not tied to any particular boundary conditions. However, assume that half-space scattering

amplitudes for each of these surfaces considered separately are known: T+(KIQ) for an upgoing

plane wave whose wave vector has a horizontal projection Q scattering at the upper interface

into a downgoing plane wave whose wave vector has horizontal component K, and T-(KIQ) for

a downgoing plane wave described by the horizontal wave vector Q scattering into an upgoing

wave with horizontal wave vector K. In practice, one will have only approximations for T*.

How can one construct the Green's function of the acoustic field using these amplitudes? The

idea here is that a lot of physics has gone into developing approximations of the scattering

amplitudes. Can this physics be incorporated directly into the two interface problem?

The problem here is to find the Green's function which satisfies

(V2 +"W2-/c)G(r, r.) = -6(R - R0 )6(z - z.) (1)

where

r = (R,z),r. = (R., z).

In general, lower case vectors will denote vectors in 3 dimensions with their horizontal projections

given by the corresponding upper case letter. As usual, W is the acoustic frequency and c is the

speed of sound between the interfaces. It will prove convenient to work with the double sided
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Fourier transform of G,

O(K, z; Q, z.) J I exp(-iK •t + iQ. Ro)G(Rt, z; R., z,)dMdR.. (2)

(In Ref.[1] only one-sided transforms were used. Two-side transforms make the equations below

more symmetric, but they are not absolutely necessary.) The two-sided transform satisfies the

separated wave equation

O.O(K, z; Q, z.) + (w'2/c2 - K 2)0(K, z; Q, z.) = -(2r)26(z - zo)6(K - Q). (3)

At the rough bounding surfaces S*, G must respect whatever boundary conditions are imposed

there. As a result, 6 will not be diagonal in horizontal wave vector. In order to respect

these boundary conditions, whatever they are, G and (0 will be constructed from two sets of

scattering states x*(r) which obey boundary conditions on S respectively. Away from the

boundaries, these states can be written as superpostions of up- and down-going plane waves

using the associated half-space scattering amplitudes. By staying away from the boundaries,

the limits of the Rayleigh hypothesis will not be encountered. In contrast to Ref.[1], here the

Fourier transforms of %c*(r) will be used:

X*(K, Q, z) = exp(+ikcz)6(K - Q) + exp(Fikz)T*(KIQ). (4)

Here k, is the vertical component of a wavevector with horizontal projection K

k, = V(-W2 /c 2 ) - K.

It was shown in Ref.[5] that the scattering states are sufficient to compute half-space Green's

functions. It will be assumed that they are also sufficient to compute the Green's function

between two interfaces. In order to respect the upper boundary conditions, the Green's function

(0 will be constructed as a continuous superpostion of the states X+ when z > z. and as a different

superpostion of the scattering states x- when z < z.. The coefficients of the superpositions must

depend on z, and the "incident" wave vector Q. Hence C will be written

O(IC, .; Q, Z) I x+(K, P, z)*+(P, Q, z.)dP if z> z,, (5)

f X-(K , z)&-(P, Q, z.)dP if z < z.

The a's can be determined from jump conditions across the plane containing the source,

z = zo. 0 must be continuous across this plane and the vertical derivative of 6 must have
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a jump discontinuity to produce the right hand side of Eq. 3. More explicitly these jump

conditions are

O(K, z.;Q, z.)- G(K,z.;Q, z.) = 0 (6)

I -Q,.)5 , z; Q, -. - (2K z6(K Q. -z (7)
ik. ik. -- 6k - ) (7

These conditions can be written as a matrix-integral equation for the unknown coefficients o.

Define elements of a matrix of integral kernels, M by

MI,I(K,P,z.) = x+(K,P,zo) (8)

MI, 2(K,P,z.) = -x-(K,P,z.) (9)

M2,I(K,P,z.) = (1/ik,)8#x+(K,P,zo) (10)

M 2,2(K,P, zo) = (-l/ik.)8,x-(K,P, z.). (11)

The jump conditions across z. can now be written asS) )( 0
dP ( MI(K, P, Z) MI,2(KP, z.) a+(P,Qzo) 2 (12)

M2,,(K, P, z.) .M,2(K,P, z.) ,Q(P,Q, zo) -"ýTL6(K-Q)

This equation is essentially the Fourier transform with respect to the horizontal position of the

source, &3 of Eq. 14 in Ref.[1]. To condense the notation write this equation as

M(z0 )a(z0 ) = a, (13)

with formal solution

C(zO) = M-(Zo)S. (14)

which can be written out as( a+(P, Q, Z.)' - Mj'(P, K, z.) Mil(P, K, zo)' 0
o-(P, Q,zO) MZ (P, K, z.) Mi2(P, K, zo) - (K - )

(15)

Note that MT, (P, K, z.) does not denote the inverse of MI,I. Rather M-I, is the (1, 1) (operator)

element of M- 1.

The coefficients a+ are now readily expressed in terms of M• and a- in terms of Mi.

The resulting expression for the Green's function 6 is

= f MI,I(K,P,z)M,,(P,Q, zo)dP[-(2w)2 /(iq.)] if z > z (16){ f-MI,2(K,P,z)Mý,(P,Q, zo)dP[-(2r)2 /(iq,)] if z < Zo
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To this point everything presented has been equivalent, but perhaps more explicit, to the devel-

opment in Ref.[1]. For flat surfaces, the operator M is diagonal in wavenumber so that inversion

is simply the inversion of a 2 x 2 ordinary matrix. As shown in Ref.[1l, the resulting Green's

function is the same as that given by Brekhovskikh for flat interfaces.

III Finding the Mean Green's Function

The Green's function is random because the scattering amplitudes T* are random. The primary

difficulty in determining, for example, the moments of 0 is in finding the moments of M- 1. In

Ref.[1] this was done by the method of smoothing which gives results which only involve second

moments of the fluctuation. Here the problem of treating M- 1 is addressed with methods of

quantum field theory. The idea is that if one performs a perturbation expansion of an operator

about a free-space operator, long-range interactions can cause difficulties in the covergence of

the expansion, and even place the existence of some of the terms in the expansion in doubt.

However, intuitively, one supposes that propagation between scattering events is damped at long

ranges because a third (higher order) event may come between the two events in question. One

might suppose that propagation between scattering events ought to be described using a mean

propagator, which is damped because of the randomness of the medium. Of course the mean

propagator is what one is trying to find, so the resulting formalism will present a problem in

self-consistency. The formal aspects of such a proceedure will now be presented. The operator

algebra is straight forward, even if the motivation may be somewhat obscure. A more thorough

presentation of this algebra is presented in the appendix of Ref.[6]. In contrast to the smoothing

formalism, the algebra presented below results in formal expressions which include all orders of

the fluctuations.

Denote the inverse of M by

9(Z() - ( , 1(Z0) = M15'(Z.) (17)

The explanation of this notation is that M-1 is the inverse of a linear operator, as is a Green's

function. In order not to confuse this inverse with the Green's function G, the inverse of the

Helmholtz operator, a calligraphic 9 is used.

Let

M =< M > +AM. (18)
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The angular brackets denote an ensemble average over the realizations of scattering amplitudes

T*. Fluctuations about the mean are denoted by AM. Just as the inverse of M is written

1
S= 1(19)

< M > +AM'

so the mean of G is written
1

< 9 > =(20)
<M > +< E>

< E >is called the average self-energy (or mass) operator or simply the self-energy. The ter-
minology comes from quantum field theory. Use C0 to denote the inverse of the average of
M:

1
C0 = <M . (21)

Following Ref.[61 it is simple to show from Eqs. 20 and 21 that the mean of M-1 and the inverse

of < M > are related by

< > = - >< .(22)

This is Dyson's equation, eq. A14 of Ref. 6. Fluctuations of C are found from
1 1

< + > =<1 (23)

which using simple operator algebra can be written as

S- < G > = -9(AM - < E >)< 9 > = -< 9 >(AM - < E ).(24)

Finally, G can be expressed entirely in terms of < 9 > and a scattering operator T:

G = < 9 > + < >T< >,(25)

where the scattering operator is given by
1

T =_-(AM- < >)(26)T-~~~ ~ -(M )+ < 9 >(AM - < E >)"(6

Expansion of the operator T shows that the "propagation" between "scattering events," (AM -
< E >), occurs via the mean of the inverse of M, <C>, not via the inverse of the mean of M,

Co.
Since <C - < C > >= 0, it follows that the mean of the scattering operator T, vanishes.

< T >= 0. (27)
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The vanishing of the mean of the scattering operator T can be used to develop an expansion of

the self energy in powers of the fluctuations AM. Write

< E > = fo + 1 + a2 +. -- (28)

where the ai is the contribution to < E > from terms ith order in powers of AM. Equation 27

and the definition of the scattering operator T in Eq. 26 imply that

= 0 (29)

=0 (30)

a2 = - < AM< G >AM > (31)

a3 = <AM<C>AM<9>AM> (32)

04 = -<AM<9>AM<C>AM<C>AM>

+02< C >a2- < AM< C >a2< 9 >AM > (33)

For Gaussian fluctuations, a3 will vanish. The subtractions in a4 show that it is represented by

a skeleton diagram, or an irreducible diagram [6].

Substituting the expression for 9 in Eq.25 in the identities < MM-' >=< M-'M >= 1

shows that < 9 > can be written as
1 1

< 9 > = 1 . (34)
< M > + < TIM< 9 >T > =< M > + < 7"< 9 >AM >

Comparing with the definition of the self energy shows

< E >=< AM< 9 >T >=< T< 9 >AM >. (35)

In this equation < C > on the right hand side depends on < E >, and 7T can't be found until

< C > is known. Hence, although this result is exact, it is purely formal. To make progress,

the quantities on the right must be approximated. It is to be hoped that approximation of the

operators on the right will be a more effective proceedure than approximating < C > directly.

It is to be understood here that all operators depend on z.. In fact the fluctuation AM has

a simple dependence on z0.

AM(K, Q, zo) = exp(-ik,z.)AT 4(KIQ) (Xo)-exp(+ik~z.)AT-(KIQ) ( 1

(36)
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Thus, with summation over repeated indices and integration over repeated wavevectors under-

stood, the self-energy can be written as

< E(PQ, Zo) >=

exp(-ip~z)( A(P, Q, zo)1,, A(P, Q, Zo)1 ,2

p -A(P, Q, z.)1 ,, -A(P, Q, z0 )1.2

- exp(+ipzzo) (A(P,Q, z-) 2 ,1  A(P,Q, z.) 2 ,2  (37)
A(P, Q, zo) 2 ,1 A(P, Q, zo)2,2

where

A(P, Q, zo)i,i = <AT+(PIK)< C >1,(K,K',zo)Tj, 1(K',Q,zo)> (38)

A(P, Q, Z)1,2 = <AT+(PtK)< 7 >1 ,j(K,K',zo)T,,2(K',Q,zo)> (39)

A(P,Q, zo)2,1 = < AT-(PIK)< 9 > 2,j(K,K',zo)Ti,,(K',Q, zo) > (40)

A(P, Q, Zo)2,2  = < AT-(PIK)< C >2 4 (K, K', z)Tj,(K', Q, z) >. (41)

Even though the averages here appear to depend on the source level, z., they, in fact, are

independent of z., as is showi in the Appendix. The functions A will turn out to be those parts

of the effective reflection coefficients not contained in the mean half-space scattering amplitudes.

These formal expressions for 9 allow computation of the averaged Green's function for the

Helmholtz equation given in Eq.16. For example, for the case z > zo

< G(K, z; Q, z.) > = [-(2•r)2/(iq.)] I < M1,1 (K, P, z) > < 91,2 (P, Q, Zo) >

+ < AM 1, 1(K, P, z)A9C, 2(P, Q, Zo) > dP. (42)

The first product of averages is easily expressed in terms of < E >, and therefore A's, and the

averaged half-space scattering amplitudes, < T* >. The average of the product of fluctuations

in Eq. 42 appears more problematic, but it too can be expressed in terms of the A's, as follows.

The fluctuation of M1 ,1 is

AM1 ,1(K, P, z) = exp(-ikzz)AT+(KIP). (43)

The fluctuation of 9 from eq.25 is just < 9 >T< 9 >. The average of the product of these

fluctuations is (again with summations and integrations understood for repeated indices and

wavevectors)
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< AMI,t(K, P, z)AGt,2(P, Q, z.) >=

exp(-ik, z) < AT+(KIP) < G(P, V, zo)Ij > T(IP,l:P,Zo)ijt >< G(P",i QiZo)1.2 >

= exp(-ikz)A(K, P)Ij < G(P, Q, Zo)j,2 > • (44)

This general expression for the average of the products of the fluctuations was missed in ref.[1).

The point here is that the mean Green's function for the Helmholtz equation, 6, is now entirely

expressible in terms of the averaged half-space scattering amplitudes < T* > and in terms of the

functions Aij. When there is statistical homogeneity it will be shown that G can be expressed

as the Green's function for a duct with flat interfaces and effective reflection coefficients which

are combinations of < T* > and the A's. In terms of the A's and the mean of 9 the Green's

function for the Helmholtz equation is now given by

(cd(K, z; Q, zo)) =

() I[exp(+ik, z)(K - P) + exp(-ik.z){(T+(KJP)) + A1j 1(K, P)})] (Q(P, Q, z.) 1 .2)
iq,

+ exp(-ik~z)Ai, 2(K, P)(Q(P, Q, Zo) 2,2)dP, (45)

for the case z > zo. For the case z < zo, (d) is given by

(d(K, z; Q, z)) =

S(2)f / exp(-ikzz)6(K - P) + exp(+ikzz){(T-(KIP)) + A2.2(K, P)}] (Q(P, Q, Zo)2.2)

iq,

+ exp(+ikz)A2,i(K, P)(Q(P, Q, z0)1,2)dP. (46)
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IV Statistically Homogeneous Roughness

In this this section the results of the previous section are specialized to the case of statistically

homogeneous surface roughness. This case is tractable because when the statistics are homoge-

neous, the inverse of the mean Green's function < >- = < M > + < E > becomes diagonal

in wavenumber. Finding < G > itself then requires only finding the inverse of a 2 x 2 matrix.

As discussed in the appendix to Ref.[l], statistically homogeneous roughness means that if

z = h(R) is a member of a ensemble of surfaces, then z = Dah(R) M h(R - a) is an equally

probable member of that ensemble, where a is any constant translation vector in the x-y plane.

In Ref.[1] it is also argued that scattering amplitudes are functionals of the surface function h(R).

(Here there are two surface functions, one for the upper surface and one for the lower surface.

When necessary h will be understood to include both surfaces, and translations will apply to

both simultaneously.) If this functional dependence is made explicit, as in T(KIQ, [hi), then

simple physical arguments show that the scattering amplitudes for translated and untranslated

surfaces, Dah and h are related by

T*(KIQ, [h]) = exp(i(K - Q) . a)T*(KIQ, [Dahl). (47)

Applying the same translation to both the upper and lower surfaces shows that the matrix

operator M behaves similarly:

M(K, Q, z., (hi) = exp(i(K - Q) . a)M(K, Q, z., [Dahl). (48)

Since G is the inverse of M, it too behaves this way under horizontal translations of the

waveguide:

9(K, Q, zo, [h]) = exp(i(K - Q) a)Q(K, Q, zo, [Dah]). (49)

Because of the assumed statistical homogeneity, it follows that

< Q(K, Q, z., [h]) >=< G(K, Q, zo, [Dahl) >, (50)

for all translations a and all wavevectors K and Q. This means that < C(K, Q, zo, [h]) > must

be proportional to a delta function in K - Q, i.e. it must be diagonal in wavevectors, and that

it can be written as

<9(K,Q,z,,[h]) >= 6(K - Q)g(Kz.).
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When eq. 25 is used to compare G's for translated and untranslated surfaces, it follows from

eqs. 49 and 51 that T has the same properties under translation:

T(K, Q, z., [h]) = exp(i(K - Q) ) a)T(K, Q, z., [Dah]). (52)

The matrix elements of the average self energy E, the A's (treated generically) satisfy

A =< AT(KIP, [h])g(P, z)")T(P, Q, z., [h] > =

exp[i(K - Q) a] < AT(KIP, Dafh])g(P, zo)T(P, Q, zo, Da[h] >. (53)

The averages are equal for all translations and it follows again that the A's are diagonal in

wavevector:

Aj(K, Q) = 6(K - Q)Aij(K). (54)

Obviously the averaged self-energy < E > is also diagonal in wavevector and can be expressed in

terms of the A's. The same arguments show that the mean scattering ampitudes can be written

< T*(KIQ) >= 6(K - Q)t*(K). (55)

It is now possible to express the mean Green's function g in terms of the A's. The function

g is found from the inverse of

< M(K,Q, zo) > + < E(K,Q, zo) >= 6(K - Q)x

S+exp(-ik.zz)(t+ + A1,1)+ exp(ikzz)(1 - A2,1), -exp(-ikz 0 )(1- A1,2)-exp(+ik~zz)(t- + A2,2)

-exp(-ik~zz)(t+ + A1,j) + exp(ik~z.)(1 - A2,1 ), + exp(-ik~zz)(1 - A1,2) - exp(+ik~zz)(t- + A2,2)
(56)

and is given by 1
g(K, z) - 2D(K)

( +exp(-ik~z.)(1 - A1,2) - exp(ikz 0 )(i- + A2,2), + exp(-ik.z0 )(1 - A1,2) + exp(ik~zz)(t- + A2,2)

-exp(ik~zz)(1 - A2,1) +exp(-ik..z0 )(t+ + A1,1), exp(ikzz0 )(1 - A2,1) + exp(-ikzZo)(t+ + A1,1)+
(57)

It is understood here that t* = t*(K) and Aij = Aj(K). The determinant 2D is given by

2D(K) = 2[(1 - A1,2(K))(1 - A2,1(K)) - (t+(K) + A1, 1(K))(t-(K) + A2.2(K))] (58)
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These results can now be used to write the mean Green's function of the Helmholtz equation,

G, in terms of Aij and t*. Combining Eqs. 42, 44, 51 and 54 gives

< d(K, z, Q, zo) >= -(2r)2 6(K - Q)G(K, z, zo). (59)

For z > z. the reduced Green's function is

G(K, z, zo) = [exp(ikz) + exp(-ikzz)(t+(K) + A1, 1(K))]g1,2(K, z,)+

exp(-ik~z)AI ,2(K)g2 ,2(K, z.), (60)

while for z < z0 it is given by

G(K, z, z,) = [exp(-ik.z) + exp(ikzz)(t-(K) + ,i 2,2(K))]g2,2(K, z,)+

exp(+ ik.z)A2 ,1(K)g1,2(K, z.). (61)

Equation 57 gives expressions for the gj that appear here in terms of t's and A's.

Reciprocity in the form

G(R, z; R., z.) = G(R., z.; R, z), (62)

implies

G(K, z; Q, z.) = 6•(-Q, z.; - K. z), (63)

and

G(K, z, z.) = G(-K, z., z). (64)

Comparing coefficients of exp(ik,(z - z.)) in these expressions shows that

(1 - \ 2,1(K))/D(K) = (1 - A1 ,2(-K))/D(-K). (65)

If isotropy is assumed in the form

A; Aj) = (-K),

and

t±(K) - t'(-K)

then Eq. 65 implies that

A1,2(K) = ,,(K).

Then, assuming isotropy, it is possible to combine the parts of G(K, z, z,) to show what is the

principal result of this work,
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, [ekz"> + e-ik.z> V,(K)J[e-k"z< + e+ik.z< V.f(K)]
2(1 - A 1,2(K))(1 - V, K)+V,(K))

Ai,2(K) exp(-ikzlz - z. ()
2(1 - A1,2(K)) (66)

In this equation, z> is the greater of z and z, and z< is the lesser of z and zo. The effective

reflection coefficients, V,! are given by

V-ff= t+ + AjU (67)
0 - A1,2)

ef t- + A2,2 (68)VjI -(1 - A,2)"

When there is no correlation between the fluctuations in the scattering amplitudes at the upper

and lower interfaces, A1,2 will vanish, at least to second order in the fluctuations. Then G is

exactly of the form described by Brekhovskikh [7] for flat surfaces with reflection coefficients

V1 This is also the form found in ref.[1] using the method of smoothing. Here the existence ofeff*

effective reflection coefficients is demonstrated to all orders in the fluctuations of the scattering

amplitudes.

The mean field will be described by normal modes which are determined from the poles

of G(K). Apparently these poles can arise from the zeros of 1 - A1,2 or from the zeros of

1 - Vf(K)VYý(K). However, as A1,2  1, eVf - oc. Keeping track of dominant terms shows

that in fact, G is not singular as A1,2 --+ 1. Thus the normal modes are determined only by the

zeros of 1 - VKt(K)V,'/(K). These zeros occur for complex K and the imaginary parts of K

determine modal attenuations.

In the next section the A's will be discussed in more detail in the lowest order approximation,

when only second order terms in the fluctuations of scattering amplitudes are kept. It turns out

that the effective reflection coefficients describe all processes in which a wavevector is forward

scattered. The mean half-space scattering amplitude includes only processes than involve a

single interface. When a second interface is present, there are additional processes by which a

wave may be forward scattered. These processes are contained in the A1, and A2,2 additions

to the mean half-space scattering amplitudes, to form the effective reflection coefficients for the

mean field between two interfaces.
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V Second order calculations

In this section the simplest approximation for the effective reflection coefficients will be de-

veloped. In effect, this means finding the average self-energy. It will be shown that if this

result is further approximated by using pertubative approximations for the half-space scattering

amplitudes, then the approximation of Bass and Fuks [2] is obtained.

To find the self-energy, an approximation for the scattering operator T is required. Of course,

to find T, < E > is required, but one has to start somewhere. Equations 28-33 show that the

self-energy will be at least second order in fluctuations of the half-space scattering amplitudes.

This means that a first order approximation for T (see Eq.26) is simply

T • -AM, (69)

and this is the approximation that will be used throughout this section. This approximation does

not require that AT be expressed in powers of the surface roughness. One could approximate

AT, for example, by the first-order small slope approximation.

In any event, if for the purposes of this section we assume Eq. 69, then

Ajj(P,Q) = -IdKgt.I(K, zo) < AT*(PIK)AMIj(K, Q, zo) >, (70)

where AT+ is to be used when i = 1 and AT- when i = 2. For example, from Eq.36 it follows

that

A1, 1(P, Q) = fdK[-gl,i(K, zo) + g1,2(K, zo)] exp(-ik=zo) < AT+(PIK)AT+(KIQ) > . (71)

From eq. 57, the sum of the g's here is
- glj (K, z.) + 91,2(K, z.) = exp(ikzo) (t-(K) +,\ 2 ,2 (K))

D(k) (72)

so that A1, 1(P, Q) is given by

A1, 1(P, Q) = f K(t-(K) + A2,2(K)) <AT4 (PIK)AT4 (KIQ)> (73)
D(k)

Note how the exponential dependence on the source level has dissappeared. Statistical homo-

geneity implies that the average of the fluctuations of the scattering amplitudes can be written

as

< AT*(PIK)AT*(KIQ) >= 6(P - Q)c:±*(P, K), (74)
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so that

Al,.(P,Q) = b(P - Q) fdK(t-(K) + A232(K))c+'+(P, K)
D(k)

= 6(P - Q)Ai,I(P). (75)

One can show similarly that

AU(P) =f ,(t+(K) + A1.1(K)) _,...(PK) (76)•2s() jaf D(k) c ,

A1,2(P) = d(1 - A1,2(K)) +I D(k)

These three equations form a coupled set of integral equations; one can't find A,1, without

knowing A2,2, for example. If there is no correlation between the fluctuations in scattering

amplitudes at the upper and lower interfaces, then c+,- will vanish and AI,2 along with it.

Furthermore, A1,1 and A2,2 are second order in the fluctuations and should be small compared

to t*. Thus, the A's are further approximated by

jI(P) = / dK' c+'+'nK) (78)

A2,2(P) = f 5-c (79)
j (k)

To this same order the determinant D(K) should be written as

D(K) = 1 - t+(K)t-(K). (80)

There might be zeros in D(K) near the effective modal wave numbers. However, since t* are

the mean hail-space scattering amplitudes, the zeros of D(K) should occur for complex K.

One can expect that Eqs. 78 and 79 provide reasonable approximations if the A's determined

by these equations are small compared to t+ and t-. It is also necessary that the zeros of D(K)

not be shifted significantly by the use of the approximation in Eq. 80. Without doing detailed

calculations it is difficult to determine when the A's will be small. However, consider the following

"toy" problem. Suppose that the fluctuations in scattering amplitudes are sharply peaked in

the forward direction, corresponding to an ensemble of nearly flat surfaces. In fact suppose that

c+'+(P,K) = o,+6(P-K) (81)

c--(P,K) = o-6(P-K). (82)
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Then Eqs. 78 and 79 give

A2,2(P) = t(P)u (83)
D(P)

X2,2(P) =- +PO (84)
D(P)

The approximations in Eqs. 78 and 79 will be self-consistent provided

< t+(P) (85)
D(P)

t(P)u < t-(P). (86)
D(P)

These two inequalities in turn require that

(87)

If.the zeros of D occur for real values of P this inequality will be violated. Otherwise, it would

seem possible to satisfy this constraint if the strengths of the fluctuations are sufficiently small.

The corresponding approximations for the effective reflection coefficients now become

V'+f(p) = t+(P) + JdK t(ýK) _+(PK) (88)1 -,+(

V11 (P) = t+(P) + I'K1 - t+(K)t(89)t+(K)t_(K)c-'-p , K). (9

If there is a small correlation between AT+ and AT+, then

A1,2(P) = dK 1 +-(PK), (90)1- t- (K.t- (K•)

and the effective reflection coefficients will be reduced by 1 - \ 1,2. These expressions for the

effective reflection coeficients were derived in ref.[1] by the method of smoothing. Here they have

been shown to be low-order approximations for more general expressions. The result for A,,2 is

new here. It is not known yet how important A,,2 is, but it seems likely that it is important in

scattering in thin sedimented layers where interfaces tend to follow one another.

The expressions for the effective reflection coefficients can be specialized even further in the

case of small surface roughness. This specialization will be shown here to compare the pres int

results with those of Bass and Fuks [2] and to illustrate the contribution of the self-energy to

the effective reflection coefficients.
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Consider two Dirichlet surfaces on which the field vanishes, and which are described by

z = H/ + h*(R). (91)

The nominal width of the layer between these sufaces is L = H+ - H- > 0 and the mean values
of roughnesses h* vanish. To second order in the surface roughness the scattering amplitude

for the upper surface with a plane wave incident from below is [8] (with exponentials appearing

because the mean surface is not at z = 0)

T+(KlP) = -e2ikEH+6(K - P) - 2ip~el(PE+k-)H+h+(P - K)

+ e/(pg~k)H+ J dQ2pq~h+(Q - K)h+(P - Q), (92)

where the Fourier transform of the surface roughness is defined by

h (K)2= f eiK'Rh*(R)dR. (93)

For a plane wave incident from above on the lower surface whose mean is at H-, the scattering

likewise is

T-(KIP) -, -e-2ik.H+6(K - P) + 2ipe-1(P3+b')H-h-(P - K)

+ e1(p,+kz)H+ f dQ2p~q~h-(Q - K)h-(P - Q). (94)

The spectra of the surface roughnesses, S-.±, are defined from

< h+(Q - K)h*(P - Q) >= 6(P - K)S*+*(P, Q). (95)

Through second order in the surface roughness, the mean half-space scattering amplitudes are

seen to be

t±(K) = e2ikH* {--1 + 2k. I dQqS*i'(K, Q)). (96)

On the other hand, the correlations of the scattering amplitudes, c*,* are given by

c+'+(K,P) = -4kpzS++(K,P)e+2ikH++2ipH+ (97)

c-'-(K,P) = -4kpS-'-(K,P)e-2ikzH--2ip 5 H- (98)

c+.-(K, P) = +4k~pS+,-(K, p)e+ik(H+-•-)+ip.(H4+-H-) (99)

To compute the self-energies, Aij, approximate the determinant D using the fiat surface reflection

coefficients, tý

D(K) z 1 - t+to = 1 - e2iks(H+-H-) e 1- 2ikaL. (100)
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In this perturbative approximation, the self-energies are given by

Ai,(K) = 4kse2ikEH+ i's I e2iVL S+'+(K, P)dP (101)
j - 2ipsL

A2,2(K} - ke2*H- pIe21 EL S-'-(K, P)dP (102)

Se2ilks+p,)LAI, 2(K) = -4k. Pf 7- e2ipL S+'-(K, P)dP. (103)

As indicated in the previous section, the pole structure in the integrands of these expressions

is capturing the fact that in a layer, forward scattering can occur not only by first scattering

to an intermediate wave number P and then back to K by a single surface, as expressed in

the various contributions to < t* >, but also that forward scattering can occur by scattering

into P, then having any number of unperturbed forward scatterings when the energy bounces

between the interfaces of the layer, and then rescattering into the incident wavevector K. The

denominators in these expressions for A are the phases acquired in bouncing between interfaces.

One can see that the self-energy contribution to effective scattering amplitudes will have a much

stronger frequency dependence, because of the denominators in the integrands, than the half-

space scattering amplitudes.. These contributions are of the same order of magnitude as the

perturbations of the flat surface mean scattering amplitudes.

In fact, t+ and A1,, can be added to show how the result of Bass and Fuks can be obtained

from this formalism,

t+(K) + A1.1(K) = e2kH+ {-I_ + 2k+ dPp.[ II + e 2ipLIS+'+(KP)}. (104)

This expression can be written in terms of the Green's function between two flat Dirichiet

surfaces at H*. From Brekhovski or from eq.66 above this Green's function is

G.(Kz, z) = (21r)2 - eik,(2Hz)eikz<- -(05)-2ik, I - e2ik•L(

It is now straight forward to show that the integrand in the effective reflection coefficient can

be expressed in terms of a second derivative of G.:

Uin hm 88 8,oGo(K,z, z.) -G(K)
xo--*H+ zýHI 1

(2r)2ik I + e2ikEL (106)
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The effective reflection coefficient now can be written as

V+ (K) ek l 2ik, dPp p)S+ (107)of f (2 r) 2

Bass and Fuks calculate az effective impedance, which is the ratio of the mean field to the

z-derivative of the mean field. When the effective reflection coefficient is Ve,! the effective

impedance m is

=(K) 2 J Pp.G (P)$+'+(K, P)- (108)
(22r) 2 1

Apart from factors of r and 2 which arise from differences in normalization of the Green's

function and the Fourier transforms, this is precisely the impedance of Bass and Fuks.

VI Summary

This work is an extension of the ideas presented in Ref.[1]. The primary result is Eq. 66

which shows that the mean Green's function in a medium between two rough interfaces can be

expressed as a weighted sum of two familiar Green's functions. The first is the Green's function

in a layer bounded by flat interfaces with effective reflection coefficients, V*f. The second is

a free-space Green's function whose exponent has a sign opposite to that of the conventional

free-space Green's function. The z-derivative of the combined Green's function has the correct

jump discontinuity across the plane z = z.. This result extends that of Ref.[1 in that it is

not restricted to be second order in fluctuations of half-space scattering amplitudes. It seems

to be a quite general result that surface roughness can be incorporated into the mean field by

effective reflection coefficients. In addition, here the possibility of correlated surface roughness is

considered. To show that the methods used here are not unreasonable, results were specialized

to first include only second-order terms and second, to include only terms second order in surface

roughness. In this case, the results of Bass and Fuks were obtained.

The motivation for this inquiry is to find a way to incorporate what is already known about

half-space scattering into the waveguide problem. One shouldn't have to do the half-space

problem again in the waveguide. For example, with the results presented here, one could consider

propagation in a fluid layer bounded by an elastic solid without repeating some fairly messy

computations.

The effective reflection coefficients are not simply the mean half-space scattering amplitudes.

Instead, these effective reflection coefficients account for channels of forward scattering that are
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not available when there is only one interface. Modal wave numbers are found from the dispersion

relation

As discussed by Bass and Fuks, the modal wave numbers can be quite different from those found

using only the half-space scattering amplitudes.
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Appendix

It is argued here that in the self-energy given in Eq. 37, the A's must be independent of the

source level, z.. This is important for it means that the effective reflection coefficients for the

mean field will be independent of the source level, a desirable property. When \1,2 A 0 it appears

that this will not be the case, even though the V's are independent of z0 .

First note that the derivative of M(z) satisfies

dM(z) = ik, 0 1)M(z). (Al)dz 1 0

Since by definition

M(z)M(z)-t = 1, (A2)

the derivative of the inverse of M satisfies

dM-I(z) -1 0 1)ik," (A3)

Averaging this equation shows that

d<C(z)> _ (A4)
d< z - < > 1)ikz. (A4)dz 1 0
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Repeating these arguments shows first that

dz = ik, < > (A5)

This equation obviously holds for < M >, and since < 9 >-=< M > +< E >,

= ik 2 ( 1 < E >. (A6)
dz (1 0

Using Eq. 37 for < E > shows that A must satisfy

exp-ipz)dAI(z) _ x(i~)dA2(Z)= ,(7" (d = ,(A)

where A, is the first matrix in eq.37 and A2 the second.

Equation (A6) can be differentiated again to show that the self-energy satisfies the separated

wave equation:
2 - + p!< E>= (A8)

dz2

This means that the A's must be of the form

A1j = Ai + Bi exp(2ipzz) (A9)

A2 j = Cj + Dj exp(-2ipzz) (A10)

with A, B, C, D constant. Then eq.A7 implies

Bj exp(ipzz) - Dj exp(-ipzz) = 0. (All)

The only way this can hold over a continuous range of z is for the B's and D's to vanish, which

implies that the A's are independent of source level.
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Figure Captions

Figure 1. A sketch of the geometry used in this paper. The z-axis is positive upward. The dashed

line indicates an imaginary plane through the source. Between the planar surfaces shown here,

the field can be expanded in half-space plane-wave scattering states, X". These states describe

scattering from a wavevector K into a number of plane-waves with wavevectors Q.
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