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Abstract

An algorithm is presented for determining the mean acoustic field in a layered medium
containing rough interfaces. It is assumed that scattering by the rough interfaces when

considered separately and in the absence of sound speed and density variation can be well-
approximated. It is also assumed that propagation in layered media with flat interfaces
can be well approximated. The present work shows how these results can be combined to
yield the mean field in a stack of layers with variable sound speeds and densities which are

separated by rough interfaces.
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I Introduction

In two previous papers [1, 2] it was shown that the mean acoustic field in a single-layered medium

with statistically rough boundaries could be expressed as an acoustic field in the same layer with

flat boundaries, but with boundary conditions described by effective reflection coefficients. The

effective reflection coefficients were constructed from the mean scattering amplitudes for the

interfaces calculated when they separate two homogeneous half-spaces, plus corrections involving

fluctuations of these half-space scattering amplitudes mediated by propagation between the

interfaces of the layer. In both I and II only layers with constant density and constant sound

speed were considered. The effective reflection coefficients were derived using coupled up- and

down-going plane-wave solutions which incorporated the boundary condition through half-space

scattering amplitudes. This was one of the primary features of the treatment in I and II: the half-

space solutions could be used directly in the construction of the Green function for the layer,

so that whatever approximations are known for the half-space problem needn't be rederived

for the layered problem. For example, non-perturbative approximations of half-space scattering

amplitudes, such as the small-slope approximation of Vor. iovich [3], could be used. The physics

of propagation which was incorporated in the solutions of I and II can be summarized by saying

that effective scattering amplitudes (or reflection coefficients) must account for all processes in

which a wave of given wavevector is forward scattered. In a layered medium there are processes,

involving either specular reflection or scattering at two or more interfaces, which allow forward

scattering, and which are not accounted for in the half-space scattering amplitudes. Mean

half-space scattering amplitudes only account for scattering at a single interface.

In this work, the results of II are generalized to the case of media with sound speed profiles

and densities which vary continuously in depth, and to include the description of transmission

through rough interfaces. In papers I and II, although approximations for scattering at the

interfaces did not need to be rederived in the layer, the construction of the Green function did

need to be rederived. As a result, a pair of coupled integral equations needed to be solved to

reproduce the source. Here, plane waves cannot be used because the sound speed or density

may be variable. One way of incorporating plane wave information without using plane waves is 0

to note that that plane wave solutions imply a non-local (in wavenumber) impedance boundary

condition, and then to assume this non-local impedance boundary condition applies even when

the media on either side of the interface do not support plane waves. This leads to a very
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elgant solution when transmission through the interface need not be considered. However, when

transmission is important, it is awkward to formulate a generalization of the impedance which

accounts for transmission in both directions through the interface.

The following alternate proceedure is equivalent to the impedance method and is expressed

directly in terms of reflection and transmission operators. Assume that a rough interface sepa-

rating two possibly inhomogeneous layers can be replaced by a flat interface which has the same

reflection and transmission amplitudes. This assumption is nearly the same as the Rayleigh

hypothesis in that it will be further assumed that if the surrounding media in the immediate

vicinty of the interface are homogeneous, then plane wave expansions of the field exists and can

be continued onto the flat replacement of the true interface. A second assumption, which will

be used throughout this paper, is that even in variable sound speed media, the solution of the

acoustic problem can be obtained by replacing the true medium in the vicinity of the surface by

one having constant sound speed and density in thin layers on either side of the interface. The

constant sound speed and densities are taken to be the values of the sound speed and density in

the surrounding medium at the boundary between the thin layer. See Figure 1. Sound entering

the layers adjacent to the boundary, rattles back and fourth between the rough interface and the

fictitious boundary between the constant sound speed region and the rest of the medium. The

rest of the medium may include other interfaces and and sound speed variation which returns

scattered sound to the interface in question. It is this return of energy which leads to effective

reflection coefficients in a stack of layers.

Section II develops the ideas just discussed and applies methods described by Brown et al

[4] to determine effective reflection and transmission coefficients for the mean field in a stack of

layers. In section III contact is made with earlier work, an estimate of the size of the effects causes

by the return of energy to a rough interface is discussed, and and estimate of the shift (caused

by interface roughness) in modal wavenumbers in a many-layered waveguide is given. Despite

the complexity of the following sections, the resulting algorithm is simple to describe: compute

the field in a layered medium using flat interfaces with boundary conditions determined by mean

half-space scattering amplitudes. From this field evaluated at a particular flat interface, reflection

coefficients for the remainder of the medium can be found. These and the fluctuations of the

reflection and transmission amplitudes at the surface in question can be used to compute effective

reflection coefficients. These effective amplitudes determine effective boundary conditions at

each interface from which the mean field can be re-calculated in a manner similar the way
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the flat-interface field is calculated. Self-energy-like corrections to the mean reflection and

transmission calculated when the interface separates homogeneous half-spaces arise because the

mean field must account for all possibilities of forward scattering. For example, even though

double scattering on each interface might be included in the mean half-space reflection and

transmission coefficients, these half-space coefficients do not include the possibility of scattering

out of the forward direction at one interface and then reflecting at another returning to the first

to be scattered back into the forward direction by roughness on the original scattering surface.

II The Net Reflection Matrix

In this section a simple formula for the net reflection and transmission at an interface embedded

in a stack of variable sound speed layers will be developed. The mean of the net reflection then

gives effective reflection and transmission coefficients. Voronovich [5] has used similar ideas to

treat a bounding surface, and the presentation here generalizes his work only in that an interior

interface is considered and effective reflection and transmission coefficients for the mean field

are developed explicitly.

To establish notation, first consider a rough interface S separating two homogeneous half-

spaces. Denote the amplitude of a plane wave of horizontal wavevector Q incident on the

interface from above by 4PIc(Q) and the amplitude of a plane wave, again with horizontal

wavevector Q, incident from below by 012lc(Q). Because the interface is rough, these incident

plane waves are converted into plane waves with horizontal wavenumbers K leaving the interface

with amplitudes 00i"t(K) above the surface and 02"t(K) below the surface. The relationship

between the incident amplitudes and the outgoing amplitudes is given by the matrix operator of

reflection and transmission coefficients, R(K, Q). If the amplitudes are combined into vectors

so that
49l()= (/9CQ)(1)

lc( Q))

and 
0

aOu (K) K0(04fut (K) (2)

( 0021(K)

then
0out (K) = fdQR(K, Q)OnC(Q), (3)
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where R(K, Q) is the matrix of reflection and transmission amplitudes associated with the rough

interface separating homogeneous half-spaces:

R(K,Q)= (Rl,,(K,Q) T1,2(K,Q) (4)
T2, 1(K,Q) R2,2(K,Q))

The reflection amplitude RI,1 describes scattering from the upper medium (1) back into the

upper medium, T1,2 describes scattering of plane waves incident from the lower medium (2)

transmitted into the upper medium etc. The relation between incident and outgoing plane wave

amplitudes with be abbreviated further by the operator equation

Oout = (5)

Now suppose S is one of many interfaces separating many layers with variable sound speeds

and densities. Just above S draw an imaginary flat surface S at z, and below S draw a surface

S 2 at z2. See Figure 1. In the thin layer above S replace the true sound speed c(z) and density

p(z) by

c, = lim c(z) (6)
Z-Z+

PI = lim p(z). (7)
z-Z+

Likewise, in the thin layer just below S replace the true sound speed and density by

c2 = lim c(z) (8)

P2 = lim p(z). (9)

An upgoing plane wave in the thin layer above S will be reflected back toward S by the surface

S, at z, into this layer according to the scattering amplitude Roj. This scattering or reflection

occurs because, although the sound speed and density are continuous at zI, upward traveling

plane waves will encounter the rest of the medium above S which can return and scatter

these waves toward S. Likewise the surface S2 at z2 has a scattering ampltude for down-going

waves being returned upward given by R0,2. If the remainder of the medium is not horizontally

homogeneous, these amplitudes will not be diagaonal in horizontal wavevector.

Now consider what happens if a vector of up- and down-going waves Oic whose origin is

somewhere else in the medium, are incident on the surface S. These hit the surface S, are
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scattered according to R and are returned to S by R0 ,1 and Ro, 2 and scattered again. The

result of all this scattering is that the orginal incident amplitudes OilC are converted into net

amplitudes

V =i(c = ) (10)

according to the matrix operator equation

Otnc = OiSc + RoRbinc. (11)

See Figure 2. The the kernel of the matrix operator Ro is given by

Ro(K' Q)= R°,'(KQ) 0, 2(K,Q)) (12)

Solving this equation gives the net incident field amplitudes as

=nc - 1 (13)

1 - ROR~

This means that the net out-going amplitudes are given by

Oout = R I Onc (14)
S-RoR

and that the net reflection (matrix) operator is given by

1
Rnet = R 1 (15)

The factor 1/(1 - RoR) could also be obtained by summing the geometric series obtained by

considering all possible reflections and transmissions. Note that there are no phase factors in

these expressions; it is assumed that the surfaces S and S2 can be taken to be arbitrarily close

to the flattened scattering surface S which is nevertheless characterized by the scattering R.

The same algebra can be performed by considering only one side of a rough interface. Then

one uses the reflection amplitude R of the interface computed when on one side (say the lower

side, for definiteness) there is a constant sound speed medium from which plane waves approach

the interface, and when the other (upper) side contains arbitrary structure. Although R is a

plane wave scattering amplitude, it contains information about the non-homogeneous structure

of the medium on the far side of the interface. It can be computed in most cases by using

a projection of the full 2 x 2 scattering matrix and knowledge of Ro,1 . The arguments used
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above can be repeated for variable sound speed in the lower medium by inserting a thin layer

of constant sound speed near the interface. If R can be found, the 2 x 2 matrix operators just

discussed become 1 x 1 operators, but formal results such as Eq.15 remain unchanged. See Fig

3.

11.1 The mean net reflection operator

The net reflection operator is random because the roughness on the surface S is random, and

therefor R is random. Furthermore scattering by the remainder of the waveguide, which is

characterized by R0 , is also random. In this paper, it will be assumed that Ro, is statistically

independent of R. In any case, one can first try to average P,,t conditionally on the value of

R0 . Averaging Rnet according to Eq. 15 requires the average of the inverse of a random operator.

The field theoretic techniques described in the appendix of Ref.[4] provide ready-made tools for

this purpose. To use these tools, write Eq.15 as

Holding R0 fixed, the quantity 1/(R-l - R) looks like the looks like a Green function G -
1/(Go' - V). The formalism in Ref.[4] then shows that the mean of 1/(Ro1 - R) can be written

in terms of a (mean) self-energy, Z

1 1
(G) (17)

Rol - R Ro - (R)- (17)

Brown et al [4] show that the self-energy E can be written in terms of a scattering operator T

which is defined by
1

T = (A - E)(18)T --(AR Z1 - (G)(AR - E)' (8

as

E = (AR(G)T) = (T(G)AR). (19)

In this equation, both (G) and T depend on the self-energy E. However, to lowest order in the

fluctuations, T will be given simply by T = AXR, the fluctuation in the half-space scattering

amplitudes. The self-energy will be determined by the Dyson equation

1 =)(AR I ( RoAR). (20)
1 - Ro((R) + E
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When the conditional (on RO) mean of R,,1, is expressed in terms of E, it becomes

1

(Rnee)ao = ((R) + ') 1 - Ro((R) + E)" (2)

If this result is compared with Eq.15, it can be seen that the mean of R,,,t behaves as if it were

the net reflection matrix associated with a flat interface with an effective half-space reflection

matrix

Reff = (R) + E. (22)

In the Bourret approximation, the self-energy is assumed small and is dropped from the right

side of Eq. 20,

E = (AR R OAR) = (ARRo1 AR) (23)
1 ROM I- (R)RO

Even in this Bourret approximation, the self-energy is still random because Ro, which depends

on the remainder of the waveguide, is random. However the operator Roj is of the same

form as that in equation 15 with R -+ R0 and R0 -- (R). Its average, now over the fluctuations

of R0 , can be written directly as

1 1(Ro I ((R 0) + E~o) (24)
1 (R)R =( 1 - (R)((Ro) + Zo)(

The mean (Ro) should be calculated using mean half-space reflection and transmission for the

other interfaces in the problem, and the self-energy Eo is given by the Dyson equation

0o = (ARo 1 - (R)ARo) - (ARo 1 - (R)AR). (25)1(R, - (R)((Ro) + Eo)(RAe I (R)(RO))

To this level of approximation, the mean self-energy, averaging over all interfaces, becomes

1-(E) = (AR1 I R)R (RO) AR) . (26)

The effective reflection and transmission matrix is now

Re11 = (R) + (E). (27)

Assuming that roughness on the interfaces is statistically homogeneous implies that Re1y is

diagonal in wave number. The factor 1 - (Ro)(R) will produce poles corresponding to normal

modes. However, since averaged quantities are used here, these poles will be pushed off the real

axis.

7



11.2 An algorithm for the mean field

The mean field in a waveguide with statistically homogeneous rough interfaces can be calculated

as follows:

1) Approximate half-space reflection and transmission amplitudes for each interface using ci

and pi above and below the interface. As long as fluctuations are reasonably small, these needn't

be perturbative in surface roughness. For example, one could approximate these amplitudes

using the lowest order small-slope approximation [3, 6].

2) Calculate the horizontal wavenumber representation of a solution O&(r = (R, z)) of the

wave equation in the waveguide with flat interfaces

Sz) - exp(-iK . R )tP(R , z)dR .

using boundary conditions implied by the mean half-space reflection and transmission ampli-

tudes. Apparently this is the solution calculated by Kuperman and Schmidt [8]. From this

solution one can find the impedance Z just above and just below any interface. For example,

for an interface at z = zi,

Z(K, +) = p+V)(K, zl+)/O,.O(K, z+). (28)

Normally this impedance will not be continuous across the interface. From the impedance Z,

the mean reflection coefficients (Ro) are found from

(Ro, 1(K)) = exp(2ii(K, +)zi) /(K, +)Z(K, z+)/p+ + 1 (29)
ei)(K, +)Z(K, z+)/p+ - 1

(Ro, 2(K)) = exp(-2i, -i(K-)Z(Kz)/p + 1 (30)
- i1(K, -)Z(K, z- )/p- - 1

Here O(K, ±) is the vertical component of the wavevector associated with K:

,3(K,+) = (c--) - K 2 , (31)

where the imaginary and real parts are non-negative.

3) Calculate (E) for each interface using Eq.26 and add to (R) calculated to second order in

fluctuations to find Reff for each interface (see section III.1 below).

4) Calculate the mean field in the waveguide by calculating the field with flat interfaces, but

now with the effective reflection and transmission coefficents given by R!.f Since these effective
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reflection and transmission coefficients differ from their flat interface, half-space counterparts,

the normal derivatives and the densities times the fields will not be continuous across the effective

interfaces. Section 111.3 shows how, given a field with sources s satisfying the usual continuity

conditions on the flat boundaries between interfaces, one can find a field arising from the same

sources but satisfying the jump condition implied by Rqjf.

A difficulty with this algorthim is that (Ro) needs to be known at each interface as a function

of wave number. A computer code like SAFARI [7] provides a numerical solution of the flat

interface problem as a function of horizontal wavevector. This solution can be used in Eqs. 23,24

and 25 to find (Ro). (Ro) needs to be known to sufficient resolution that the integral implicit

in Eq. 26 can be performed. However, it also appears that a code like SAFARI can be used to

find the mean field given the effective reflection and transmission coefficients [8, 9].

III Applications

In this section these ideas will be amplified in discussions of three topics. First, the case of a

waveguide with only two interfaces will be considered in order to make contact with the earlier

work of Bass and Fuks. Second, a possible iterative solution of the Dyson Equation Eq.20 will

be considered to determine when the correction E to the mean reflection coefficient is likely to

be important. Third, the dispersion relation in a many layered waveguide will be considered.

III.1 Relation to earlier work

In order make contact with the work of Bass and Fuks [10] consider one layer bounded by two

rough statistically independent interfaces whose means are at z = 0 and z = -H. Assume

that the sound speed and density are constant between the interfaces. Above and below the

layer there may be other layers containing other rough interfaces and variable sound speeds

and densities. However suppose that the structure above the upper interface and the interface

itself can be characterized by a scattering amplitude Ru(K, Q) for scattering up-going waves

into down-going waves at the upper interface, as in Fig. 3. Likewise let RL(K, Q) describe the

scattering of down-going waves into up-going waves by the lower interface and everything below

it. In this way the interfaces are characterized by single scattering amplitudes rather than a

matrix of reflection and transmission amplitudes. This makes the formalism of the preceding

sections easier to apply.
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To begin, consider only the upper interface and assume the lower interface is flat. Since Bass

and Fuks develop a formalism for the impedance, write Ru in terms of a non-local impedance

operator Z

Ru(K,Q) = ( i+ z)IK,P[- 1 + ii 1(P)Z(P,Q)]dP. (32)

or more succinctly

Ru =(1 + I i7Z)(-I + irqZ) (33)

Here )IK,P is the (K, P) element of the operator inverse of 1 + i77Z and '1' is understood

to indicate the identity operator

lK,P - 6(K - P).

The diagonal operator 77 is given by

i7(K, P) - b(K - Q)O(K).

Describing scattering in terms of the impedance operator has certain advantages as outlined by

Brown et al. For example, if Z is Hermitian, then R is energy conserving.

Write the impedance as the sum of its mean (Z) and a fluctuation:

Z = (Z) + AZ. (34)

Then some operator algebra shows that the reflection operator R = Ru can be written

R = R(z) + 2+ + Z. + 1 (35)

(ZIitZ i+
where

1
R(z) = ( )(-1 + ir7(Z)). (36)

If

= ii7(1 - R)/2 = 1i

and
1

Go = irq
I + (Z)i,7'

then Equation 35 is recognized to be of the same form for the surface Green function used by

Brown et al [Il].
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Equation 35 also lends itself to expansion in powers of the fluctuations of the impedance,

AZ. Thus, to first order in AZ, R is given by

R = R(Z) + (2/ii')GoAZG,. (37)

The first non-vanishing difference between (R) and R(Z) is second order in AZ, since (AZ) = 0.

Thus,

(R) = R(Z) - (2/irj)Go(AZGoAZ) + O((AZ)4 ). (38)

This means that the fluctuation of R about its mean (R) is given by

AR - R - (R) = (2/ib7 )GoAZGo, (39)

to first order in the fluctuation of the impedance.

One reason for introducing Z and AZ is that now both (R) and E can be expressed in terms

of AZ. If Eq.39 is used in Eq.20 and the result combined with Eq.38 , the following result for

R•11 = (R) + E is obtained:
R,,ff = R(z)
Re1

- (2/i27)Go(AZii7(1 - R(z)) 1  0 R (1 - Ro - Ro(Reff - R(z))AZ)Go. (40)

If Rfe is written in terms of an effective impedance, Zejf by

Ref = 1 )(-1 + i77Zef ), (41)
1 + i77Zf f

then

Re1f - R(z) & (2/iy)Go(Zf1 i - (Z))Go. (42)

If the difference between Rely - R(z) is neglected on the right side of Eq.40 then the difference

between the effective impedance and the averaged impedance can be written

1
Zeff- (Z) = -(AZiq(1 - Ry)1 - R)RI (1 - Ro)AZ). (43)

The combination ir7 ( 1 - Ref 1 f1)T ,, (1 - R,) can be recognized as the mixed second derivative

of the Helmholtz Green function (source -6(z - z')) within the layer evaluated in the limit of

source and receiver approaching the upper surface z = 0 from below, when the upper surface is

characterized by Re11 and the medium below the upper surface is characterized by R,. That is
1

,G(z, z')I=O-,.,=o- = (i77/2)(1 - R 1f). 1  ( RR ( 1 - RP). (44)
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Apart from factors of 2 and ir, equation 38 is just the Dyson Equation for the impedance which

is given in Bass and Fuks (101, Eq. 36.39. To be more precise, the reflection Ro can be replaced

by its effective value without doing violence to the approximation, if fluctuations at the lower

interface are of the same order as those on the upper interface. Then G refers to the mean Green

function.

111.2 Estimating the self-energy

Now return to Eq.20 for the situation just considered when the matrices are in fact 1 x 1.

Furthermore, assume that the medium between the two interfaces in fact has constant sound

speed and density and that the botton interface is really a fiat Dirichiet surface located at

z = -H. This means that

R,(K) = -exp(i203(K)H). (45)

Statistical homogeneity will be assumed so that the self-energy, E, is diagonal in wavevector:

E(K, Q) = 6(K - Q)A(K). (46)

The correlations in the fluctuations of the scattering amplitude, AR can be written as

(AR(K, P)AR(P, Q)) = 6(K - Q)W(K, Q). (47)

The mean relflection amplitude is also diagonal; it's diagonal part will be denoted here by R(Q).

Thus in the case of statistical homogeneity, scattering at the upper interface given, the Dyson

equation, Eq.20 becomes a scaler integral equation,

K 1 (48)
A(K) = dQW(K, Q) 1 - Ro(Q)[R(Q) + A(Q)]R°(Q)(

Consider only the 2-D case in which the horizontt i,,avevectors Q, K etc. are one dimensional

and use Eq.45 for the reflection from the lower part of the waveguide. Then the self-energy
becomes f 

exp(2iqH), (49)
A(K) = J dQW(K, )1 + exp(2iqH)[R(Q) + A(Q)]

where q = 1(Q). Expansion in powers of the surface roughness shows that for Dirichiet boundary

conditions W is given by

W(K, Q) = -413(K)13(Q)S(K - Q),
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where S(K) is the spectrum of the surface roughness, normalized so that f dKS(K) = o,2, the

rms roughness. W vanishes as K and Q separate. This should be a general feature of W, even

when calculated non-perturbatively. This means that if Eq.49 is examined for large K , W in

the integrand will force Q to be large. When Q is large the integrand vanishes because

Uim exp(2iqH)=exp(-21QIH)-- 0. (50)

IQI--o

Therefore, taking A = 0 would seem to be a reasonable starting point for finding an iterative

solution to Eq.49, finding successive iterates from

A.+,(K) [dQW(K, Q) exp(2iqH). (51)

,•+ + exp(2iqH)[R(Q) + A.(Q)]

It is important to note that R is the mean reflection amplitude, not the flat surface reflection.

Tis means, in contrast to the Bourret approximation used by Bass and Fuks for the effective

impedance, poles in the integrand of Eq.49 will be moved off the real axis if IRI < 1. Poles

that occur when R is taken to be the reflection amplitude of a flat surface correspond to normal

modes in the waveguide. Because the roughness will cause IR1 < 1, computations of the iterates

in this scheme are more straight forward than in the scheme described by Bass and Fuks for the

impedance.

To make an estimate of the likely importance of the corrections implied by A, suppose the

upper surface is a slightly rough Dirchlet surface, so that

AR((K,Q) • -2i/O(K)h(K-Q) (52)

R(Q) • -1 + 203(Q) J dPS(Q - P)1i(P) = -1 + r(Q) (53)

Following the discussion in Bass and Fuks, Ref.[10] p.479-481, the self-energy is likely to be

largest when there is a mode at cut-off, i.e. a mode corresponding to Q = 0. In this case an

estimate of A(K = 0) can be obtained by expanding the denominator of the integrand about

Q = 0, and evaluating everything else in the integrand at Q = 0. Then exp(2iqH) goes to

unity at cut-off and q -- k, = w/c. These approximations require that the function W be

considerably broader than the Lorentzian function resulting from the denominator. The result

of these approximations is

S1 (54)A(0) = W(0,0) Jd 1 + (1 - iHQ2/ko)(-1 + r(O))(
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Making the change of variable Q = x V;dO)W gives

A(O) k- W(0,O ) dzl/(l + ix2 ). (55)

For a Gaussian roughness spectrum with correlation length I

W(K,Q) = 4(o21),3(Q)/Q(K)/ (21rdýexp[-(K - Q) 212/2]

and

r(0) = 2k0o02.

This means that the first non-zero iterative correction to the effective reflection coefficient is

approximately, (for d = 1)

A(O)~ k0
2 F k2o2

A(0) =k 2V2U 2 exp[-i'/4] (56)

The self-energy is important if A(0) is greater or comparable to r(O) i.e. if

V/kol2/H(koa)2 > 1. (57)

The factor V'k,2/H is the ratio of the correlation length 1 to the Fresnel zone for propagat-

ing across the waveguide, a ratio that occurs in calculations of propagation through volume

inhomogeneities.

This estimate and the importance of the self-energy can be checked using a numerical eval-

uation of Eq.51 for n = 0, using Ao(K) = 0 and approximating (R(Q)) • -1 + 23(Q) 2a2

Letting

ko = (58)

H = 4 (59)

o = .01 (60)

I = 1, (61)

the estimate given in Eq.56 gives

A(0)eai,mated = 0.070 - iO.070, (62)

14



while numerical evaluation of Eq. 51 for n = 0 gives

A(O)numerical = 0.068 - iO.066. (63)

Thus for these waveguide and roughness parameters, the estimate in Eq.56 is not too bad. This

waveguide is designed so that there are 4 propagating modes with one mode at Q = 0. Note that

this estimate scales differently than that given in Bass and Fuks for the impedance self-energy.

More important than the quality of this estimate is the fact that for these parameters, the

mean of R calculated in a half-space is given by

(R(O)) = -1 + 0.0020,

showing that the self-energy resulting from rattling around between the upper and lower bound-

aries of the waveguide is considerably larger than the correction to the flat surface result (-1)

resulting from the roughness in isolation from other boundaries. For other modes the self-energy

continues to be larger than 1 + (R(K)). However, if there is not a modc ,ear cut-off, the self-

energy is small, a fact which may justify neglect of A in the work of Kuperman and Schmidt

18,91.

111.3 The dispersion relation in a many-layered waveguide

In this section we return to the problem of finding an approximation to the mean field in a

waveguide with many rough interfaces. As indicated above, the mean field can be calculated

by replacing each interface by a flat interface and applying the boundary conditions implied by

the effective reflection and transmission amplitudes at each of these flat interfaces. Since the

effective reflection and transmission concern the mean field, neither the mean pressure nor the

mean displacement fields are continuous across the mean interfaces. This subsection will show

how to find the mean field given the effective properties of the mean interfaces.

Let 0 be a solution of the Helmholtz equation in a stack of layers using the effective reflections

and transmissions at each interface:

pV(1/p)VO(r) + (w/c(z))2ik(r) = 0. (64)

Let OF be a solution of the same equation, but satisfying unperturbed (fiat) boundary conditions

at the interfaces, so that OF and (lp)Oz4'F are continuous across the interfaces. Suppose first
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that the top-most layer of the stack is in fact a semi-infinite homogeneous half-space and that

the fields in this layer are described by an incident plane wave and a reflected plane wave:

, = exp(-ikz)+Rexp(ikz) (65)

OkF = exp(-ikz)+RFexp(ikz). (66)

If the lower interface of the top layer is at z = HI and Green's theorem is applied to a region

bounded above by a plane at z = 2 and below by z = HI, the difference in reflection coef

can be shown to be given by

2ik(R - RF)/p = [ 1 F8O0 - 1O9 F IH+ (67)

Here, dependence on horizontal wavenumbers K is understood and k = O(K). If other interfaces,

labeled j = 2...M, are located at z = Hj > Hi=,, application of Green's theorem to lower layers

gives

IP C. - 19.F] I- [O= 9- .O]1,,+ (68)

In the bottom-most layer assume there are only downgoing waves so that the quantity on the

the right of this.equation vanishes. Subtracting the left and adding right sides of this equation

to and from the right side of Eq.67, and making use of the continuity of OF and 80z0F, allows

one to express the difference in reflection coefficients in terms of the discontinuities of 0 and

40',b across each interface:

M

2ik(R - RF)/p = O 4'F(Ht)JDj + ("9'."OZF(Ht)JFr. (69)
j=1

Here the discontinuities of 0 are given by

JD, = 1 -H) -'( (70)
p(HI) J p(H_) -

JFr = -[O(H+)- V(H;)]. (71)

The jumps JDj and JFi can be determined from the matrix of effective reflection and

transmission coefficients, Relf at each interface. For example, if 01 is the field incident from

above an interface and 02 is the field incident from below, then (using R for R/f )

= (1 + RI,I)0I + R 1,202 (72)

0 = R 2,101 + (I + R 2.2 )02. (73)
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Hence, the jump JF is given by

JF = [1 + Rij - R2,1101 + [R1 ,2 - (1 + R2,2)]0. (74)

The bracketed expressions on the right vanish for flat, unperturbed interfaces. Therefore these

terms depend on the deviation of the effective reflection matrix, 6R, from the corresponding flat

surface reflection matrix. These deviations are second order in impedance fluctuations. Hence to

lowest order in these fluctuations, the incident fields, Oi can be calculated using the unperturbed

surfaces. The 4i can now be identified by

W1 = P+ pk+-;7100VF)2 (75)pk+ 1+

02 = (0- - •--O'.F-2)/2 (76)

F i - F ik- p+

Combining these results gives

JF = (N1 ,;1 OZO+ + N1 ,21+)/2 (77)

where

N1 ,1 = [-±L(6R1,1 - 6R 2.1) + ±I-(6 R1,2 - 6R2,2)] , (78)

N1,2 = [(6R 1,1 - 6R2,I) + (6R1,2 - 6R 2,2)]. (79)

Similarly, the jump in the derivative can be written

JD = (N2,1  9.0' + N2,201+)/2, (80)

where

N 2,1 = - (-ik+6Ri.i - ik-6R 2 ,I)i- + (ik+6R1, 2 + ik-6R2.2 ) , (81)

N2,2 = - [(ik+6Ri,i + ik-6R 2,1 ) + (ik+6R 2,1 + ik-6R42 )] . (82)

The point of writing jumps in this way is that now the difference in reflection coefficients at

the top of the stack of layers can written succinctly in a matrix form as

M

2ik(R - RF)/p = -(1/2) L VTNj' V (83)
1=1
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where Vj is the column vector

V= ( a F(H+ )) (84)

If instead of a half-space above the stack there is a medium with effective reflection coefficient

RT just above H1, then the zeros of 1 - RTR determine the horizontal wavenumbers of the

normal modes of this waveguide. Suppose the flat interfaced waveguide has a normal mode with

wavenumber Q,,, i.e

I - RT(QN)RF(Q.) -O. (85)

Also suppose that the right side of Eq.83 is small so that there is a normal mode for the mean

field with wave number near Q,,. Writing this wavenumber as Q,, + q,. and expanding the

dispersion relation gives

M
q,. 2z -p( H+)RT( Q,)/[,RQ( RTRF)lQn4ik( H+) i N-ViN•Q.. (86)

j=1

The imaginary part of q. gives modal attenuation in the mean field caused by scattering. This

generalizes the results of Bass and Fuks by incorporating penetrable surfaces. If the matrix N

is computed with mean half-space reflection and transmission amplitudes, then apparently the

algorithm of Kuperman and Schmidt is reproduced.

IV Summary

The point of this work has been to show how the mean half-space scattering amplitudes are

altered by mechanisms return sound to a scattering surface. These mechanisms, resulting from

scattering at additional interfaces or from sound speed profiles which return energy to the

scattering surface, act to produce effective reflection and transmission coefficients for the mean

field. These effective coefficients are the sum of the mean coefficients calculated when the

interface separates two half-spaces, plus a self-energy which accounts for scattering between

interfaces and for variable sound speeds or densities. It is necessary to add the self-energy to

the mean half-space reflection and transmission coefficients in order to account for the added

possibilities for forward scattering. It was shown in section 111.2 that the self-energy contribution

to the effective reflection coefficient can be significant when there is a mode near cut-off. This

is consistent with the results of Bass and Fuks.

18



Many of the results here have appeared before in the literature, particularly in the book

by Bass and Fuks [10] and in the work of Voronovich [5]. What is new here is the possibility

of incorporating non-perturbative scattering amplitudes into the description of propagation in

a waveguide. Furthermore, the problem of transmission is not treated by Bass and Fuks nor

Voronovich.

An algorithm for computing the mean field in a many-layered waveguide was described in

section 11.2. The ingredients of this algorithm have already been developed separately e.g., code

for computing flat interface solutions of the wave equation and approximations for fluctuations

of half-space scattering amplitudes. If one is content with the Bourret approximation (A,) for

the self-energy, then this can also be computed relatively easily. The effective reflection and

transmission coefficients can be used in code similar to that of Kuperman and Schmidt's [81

adaptation of the SAFARI code [7]. It should be noted that even if the self-energy is small,

the present formalism still adds the possibility of using non-perturbative half-space reflection

and transmission coefficients to the discussion given by Kuperman and Schmidt. Still needed

are good ways of computing the self-energy beyond the Bourret approximation, and a way of

computing the second moment of fields in a waveguide, using the mean field, including self-energy

effects, to drive the scattering, instead of the unperturbed field.
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Figure Captions

Figure 1. To treat variable sound speeds, replace the true profile and density by a sound speed

and density that become constant at z, and z2, which can be made aribtrarly close to the mean

interface. There will be reflections from the imaginary interfaces at z, and z2 because of the

structure of the remainder of the waveguide.
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Figure 2. A graphical computation of the net incident field. The fields 01 and 02 impinge from

above and below the scattering interface. These are reflected and transmitted according to the

matrix R and then returned to the interface by Ro.1 which depends on the structure of the

waveguide above the upper dashed line and by Ro, 2 which depends on the structure below the

lower dashed line. Here R is a 2 x 2 maatrix operator.

Figure 3. This illustrates the same notion as figure 2. Now, however, R is a scalar operator which

describes reflection but not transmission at the upper interface. This operator must account for

all the structure above the upper interface. In addition, in this context, the fields 0 and 4 are

scalars.
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