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CAPACITANCE CALCULATIONS IN NANOSTRUCTURE DEVICES
VIA THE QUANTUM LIOUVILLE EQUATION IN THE COORDINATE
REPRESENTATION

ABSTRACT
Through the use of numerical methods the quantum Liouville equation in

the coordinate representation has been implemented for the study of
semiconductor devices with nanoscale feature sizes. This document summarizes
work performed under US Army Contract DAAL03-91-C-0035 to evaluate the
significance of calculating the capacitance voltage characteristics of quantum
structures via the quantum Liouville equation. All studies were to be performed
with. a user-friendly workstation based algorithm, copies of which have been
placed at the U.S. Army Research Laboratory at Fort Monmouth.




CAPACITANCE CALCULATIONS IN NANOSTRUCTURE
DEVICES VIA THE QUANTUM LIOUVILLE EQUATION
IN THE COORDINATE REPRESENTATION

1. INTRODUCTION
1.1 Background
Differential capacitance versus voltage (C-V) measurements permit a

reconstruction of density profiles in semiconductor heterostructures based upon a
standard textbook formula:

() Naa(<2>) oc["f,, ] ,

where:

2) Cm £
<x>

and <x>, which is implicitly defined in terms of a measured or computed
capacitance is extremely sensitive to changes in applied bias. As we will see,
equation (1) provides an excellent measure of the charge distribution of nanoscale
elements. Further, the extrapolated intercept of 1/C? versus ¥ yields the offset
voltage for simple heterostructure configurations. Thus from a single set of
measurements qualitative information regarding the position of the key
heterointerfaces, and quantitative information concerning the offset voltages are
obtained. This study was devoted to determining the significance of this method
Jor reliably analyzing the profiles of mesoscopic structures.

For the past decade CV studies have included a numerical component
involving the solution of Poisson's equation for a density distribution computed
either from the drift and diffusion equations or Schrodinger’s equation (coupled to
the equilibrium Fermi-Dirac distribution). The numerical component was
implemented for specific heterostructure configurations, from which computed CV
characteristics are obtained. The theoretical structure providing the closest fit
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between the calculated and measured CV relation and consequent reconstructed
density was often pronounced as the one representing the actual heterostructure.

The degree to which theory is a reliable guide to CV measurements is
dependent upon:

(a) the fundamental equations chosen to represent the structure (quantum
structures require equations describing quantum transport),

(b) the statistics, either Boltzmann or Fermi statistics;

(c) traps and unusual doping contributions (e.g. planar doping)

(d)  the ability to treat nonequilibrium conditions in which the distribution
functions represents quantum effects;

(e) the ability to treat specific quantum boundary effects.

In short the most representative calculation is that with the most physics. Thus, the
equations least likely to offer confidence in the reconstructed calculations are
based upon classical equations, e.g., the drift and diffusion equations. The
equations most likely to offer confidence are those yielding quantum distribution
functions, such as the Wigner function or the density matrix.

Under ARO Contract DAAL03-91-C-0035 Scientific Research
Associates, Inc. (SRA) has solved and applied the equation of motion of the
density matrix in the coordinate representation to examining capacitive
effects in quantum structures. This document summarizes these studies.

1.2 General Comments

1. SRA's density matrix algorithm has been used to solve the Liouville
equation in the coordinate representation for electrons and holes in semiconductor
with heterostructures, barriers and wells. The code, originally implemented for
CRAY computers, has been reconfigured for work station computation. Presently,
all quantum studies with the density matrix are performed on work stations.

2. A menu-driven point-and-click work-station version of SRA's
density matrix algorithm, named DENMAT (density matrix) has been used by the
Principle Investigator for all of the calculations in the study.

3. A copy of DENMAT has been placed at the Army Research Laboratory
at Fort Monmouth. R. Lux is evaluating DENMAT.
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1.3 Comments Specific to the Capacitance Studies

4. Quantum distribution calculations are necessary for the correct
evaluation of density, self-consistent potential energy and the intersection of the
capacitance voltage curve and the bias axis. The latter provides key device
parameters and is a function of temperature and density.

5. The code is being prepared for routine use as an adjunct to experiment.

1.4 Comments on SRA's Publications

6. A major paper discussing the structure of the equations and the results
to be obtained using DENMAT has been published; four additional papers have
either been published or have been accepted for publication.

7. An invited paper has been presented at the Computational Electronics
Conference (Leeds, England), and an invited book chapter in Solid State Physics,
Academic Press, has been written.

Copies of the above papers are incorporated into this final report.




2 CAPACITANCE-VOLTAGE CALCULATIONS
2.1 Introduction

The CV calculation is illustrated for several heterostructure configurations.
Standard formulae were used to evaluate the capacitance, with density
distributions obtained from the quantum Liouville equatior in the coordinate
representation. The quantum Liouville equation in the coordinate representation is
discussed in a later chapter. While the capacitance is obtained under zero current
conditions, the algorithm was generalized to include current and dissipation in
anticipation of additional studies in which the capacitance as obtained under finite
current conditions. Several calculations with current flow illustrate.

Calculations were either for a structure of length 2L, centered about x=0
with V(x=~L)=00 and V(x=L)=V,,,.,, or for a structure of length L, where

Mx=0=0 and (x=L)=V,,,,. The capacitance is obtained via Kroemer et al’,
as follows.

From Poisson's equation the change in density, dp(x), subject to the
change in applied potential energy, V' (L), at x=L, yields a net change in charge
density:

3) 30(L) = —e j dxdp(x).

The differential capacitance is:
_&8(L) _ ¢
@ = V(L) <x>’

which provides an implicit definition of <x>. From Poisson’s equation:

14
slav(x=L)/dx]

$) <x>=

1H. Kroemer, W. Chien, J. S. Harris, Jr. And D. D. Edwall, Appl. Phys. Letts. 36, 295 (1980).
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and the ‘width’ of the capacitor is determined by the ratio of the change in applied
potential energy at the boundary to the change in field at the boundary.
The carrier density is reconstructed from standard textbook expressions 2,

d<x>'Y'
©)  Nasrscsed = 2N.4Lf>(‘-;1ﬁ,—)

where = (k,T)™', and Lp is the Debye length:

&

7 L=
Y °= BN,

N, is a reference density. For a uniform structure N, s = Nof-

Equation (S) is routinely used as an adjunct to experiments, to obtain
information about doping profiles, offset voltages, etc. A reverse analysis is also
pursued where an assumed device configuration is assumed and the C-V
relationship is obtained. The resulting C-V is then compared to experiment where
the closest fit is pronounced as the design of the structure under study. Thus, as
indicated above, the results are dependent upon the physics used to represent the
device under consideration. We work under the assumption that the analysis with
the most representative quantum physics will provide a measure of the efficacy of
the approach.

To illustrate the calculation we consider structures that are uniformly and
nonuniformly doped. The first set of results is for a uniformly doped devices. For
each heterostructure configuration three groups of figures are shown:

() The first group displays the heterostructure configuration, the
reconstructed density, and the flat band density obtained fr’om the Liouville
equation;

(ii) The second group displays CV from which the reconstructed density is
obtained;

(iii) The third group displays a plot® (including blow-ups) of
<x>* L2 (2P)" versus Vapua, wWhose slope from equation (5) yields the

2 See, e.g. D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley &
Sons, Inc. NY (1990), Equation (2.5b).
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reconstructed density. Then from the combined C-V and <x>* L}(28)" curves
we obtained the reconstructed density versus <x>.

Several features are common to all configurations: (i) Qualitative features
of the density profile are represented by the reconstruction. (ii) The magnitudes of
the reconstructed density overestimate the minimum density.

For the uniform background density calculations the CV calculations have
been performed for a variety of barrier height configurations, as well as with
different effective masses. The code has been generalized to include variations in
effective mass, and it is now possible to include simple band structure variations.

2.2 Low/High/Intermediate Uniform N, Heterostructure

For the uniform background doping calculation the background density is
equal to 10" /cm®. Those regions of the curve C2vs V' that are parallel to the
comparable curve for a structure without heterolayers (and not corrected for
statistics), indicate a density equal to the background density, departures signify
local charge accumulation or depletion.

Within any given configuration the displacement of the intersection of the
C?vs V curve from the origin signifies a2 mean thermal and density dependent
contribution, arising from the use of Fermi statistics. A displacement of a linear
section of C™ vs V, from another linear section of the curve, represents the offset
voltage.

Figure la displays a comparison of the reconstructed and true density
under flatband conditions for a 2000A heterostructure (only the central 1400A
region is shown) with respectively, a 100mev barrier 800 A wide preceded by a
200mev, 200A barrier. The flatband distribution, N, (x), is obtained from the
diagonal component of the density matrix (the analysis is discussed in a later
section) and displays excess charge on either side of the taller barrier, with the
greatest excess occurring at the region of larger offset voltage. .

Comparing N, _.....(<x>) and N, ,(x) we see that the reconstructed
density faithfully represents the qualitative features of the flat band profile. But
there are troubling features that appear in many of the calculations (some of which
have been discussed by others'): N, .....(<X>) underestimates the

3H. L. Grubin, T. R. Govindan and M. A. Stroscio, Semi. Sci. Technol. To be published.




- accumulation of carriers closer to the reverse bias boundary and overestimates the
accumulation layer further into the structure. The numerical calculations also
reveal new quantum contributions at the reverse bias boundary arising from
gradients in the density which lead to large values of quantum potential. These
contributions are not shown in the diagrams, but generally lead to a reconstructed
density that is approximately 50% larger than the background density for
approximately 100 A from the boundary surface. The significance of these terms
will be discussed later in connection with some detailed modeling of the Schottky

barrier interface.
RECONSTRUCTED DENSITY PROFILE
4.0 — v v 4.0
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Figure la. Reconstructed density and density as obtained from the diagonal
component of the density matrix for an asymmetric barrier structures. Nominal
density is uniform and equal to 10"%/cm’.

All structure in the reconstructed density arises when the CV relation
departs from that associated with depletion layer theory for uniform structures.
CV for this structure is shown in figure 1b, where the vertical lines represent that




value of applied voltage at which <x> reaches the beginning and end of the wider
barrier. The steepest slope compared to the depletion layer theory for uniform
structures (dashed lines of figure 1b) occurs within the region of the wide barrier,
where the density is lowest. On either side of the wide barrier the slope is smaller
than that of depletion layer theory for uniform structures and there are regions of
local charge accumulation.
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Figure 1b. Capacitance versus voltage for the calculation of figure la.

N, incea (<X >) is obtained from the slope of C?vs V. C7 is
proportional to < x >?, and in figure 1¢ we show < x> vs. ¥, providing the most
dramatic effect of the variations of charge on the capacitar .» There are several
points to note. First, note the dashed curve in the center of the diagram, and
imagine this curve extend across the diagonal of the figure. The normalized
derivative of this curve with respect to the applied voltage yields the reference
density. Next imagine the presence of three lines representing the asymptotic
slopes to the curves. The low bias curve, beginning at approximately 4 eV
possesses a slope smaller than that of the diagonal, indicating with reference to
equation (5), a region of charge accumulation. At this voltage <x> is beginning to
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. reach the heterostructure. The intermediate bias curve displays a slope
considerably in excess of the diagonal line, indicating according to equation (5) a
region of charge depletion. The high bias curve displays a slope less than that of
the low bias curve, signifying charge accumulation in excess of the low bias value.
The consequences of these results is shown in figure 1a.

The dashed curve in figure 1a is a result of the calculation from the density
matrix in the coordinate representation. The integrated charge density, including
the background charge is zero. While we have not calculated the net charge from
the reconstructed density, it appears as though the net integrated charge density is
zero.

NORMALIZED MEAN SQUARE DISTANCE

14.0

——- Depletion Layer Theory
—— Density Matrix: <x><x> vs Bias

120
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40 }
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-20 0.0 20 4.0 6.0 8.0 10.0 12.0 140
APPLIED BIAS (ev)

Figure Ic. Normalized mean square distance versus voltage for the calculation of
JSigure la.

We note that the dashed line in figure la is obtained under flat band
conditions. From a computational point of view, this means that a voltage
difference must be imposed between the source and drain contacts equal to the
difference in barrier heights at the ends of the structure (in this case 100 meV).
Now standard theories from the depletion layer approximation with Boltzmann
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. statistics indicate that the normalized < x >* for uniform density varies as Vi
+&,T For the situation where there is a difference in the barrier heights between
the cathode and anode portions of the structure we expect this difference to appear
in the intercepts of < x >* at low and high bias levels. To determine it this was the
case we enlarged the extrapolated bias intercept points at low and high bias, as
shown respectively in figures 1d and le. At low bias levels the intercept is
approximately 65mev to the left of the origin. At high bias levels the intercept is
approximately 40mev to the right of the origin. The net displacement between the
low and high voltage intercepts is approximately 105 mev, which is near the 100
mev barrier height of the long barrier. These results appear to be independent of
the height of the middle barrier.

At high bias where there is no offset voltage expected, the existence of a
nonzero bias intercept arises from the statistics of the calculation. If Boltzmann
statistics were imposed an intercept of k,7 would be expected. For Fermi

statistics the intercept occurs at the mean energy of the entering carriers.

LOW BIAS BLOWUP OF FIGURE (1c)
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Figure Id. Low bias blow up of the normalized mean square distance versus
voltage for the calculation of figure Ic.
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HIGH BIAS BLOWUP OF FIGURE (1¢)
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Figure le. High bias blow up of the normalized mean square distance versus
voltage for the calculation of figure Ic.
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2.3 Double Barrier Uniform N,

The next sequence of calculations is for a double barrier resonant tunneling
diode uniformly doped to 10"*/cm’ Figure 2a displays the position of the double
barriers (lower solid lines). The barriers are each 100A wide, 300mev high, and
separated by a 100A quantum well.

The equilibrium solution displays a charge density within the quantum well
that exceeds the background doping. As in figure 1a N, uee (< X >) is initially
lower in value than that obtained from the density matrix. The remaining two
peaks in the reconstructed density are higher in value than that obtained from the
density matrix. This feature was also present in figure 1a. Of equal significance is
that the peaks are displaced from the values obtained from the equilibrium density
matrix calculation.

RECONSTRUCTED DENSITY PROFILE

5.0 — . v — v - 5.0
—— Double Basrier Structure (ev)
—— Density Matrbx: N{reconstructed) vs <x>
-~~~ True Density
40} {40
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‘g g
S 30 jao &
; :
w
?__ o
£ 20 {20 g
§ ]
k3
1.0 1.0
0.0 4 — 4 0.0
1700 1500 1300 500 300

Distance From Right Hand Boundary (angstroms)

Figure 2a. Reconstructed density and density as obtained from the diagonal
component of the density matrix for a double barrier structures. Nominal density
is uniform and equal to 10"*/cm’.
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The CV profile is shown in figure (2b) where the vertical lines again
delineate the values of bias where <x> reaches the beginning and ends of the
heterostructure. At low and high values of bias CV obtained from depletion layer
theory for uniform structures overlaps the computed CV and attest to the fact that
there is a zero offset voltage at the ends of the device. The steeper and shallower
slopes within the heterostructure region relate to accumulation and depletion in the
heterostructure region as in figure 1. matrix calculation.

CAPACITANCE VERSUS VOLTAGE

- T —
~— - Depletion Layer Theory

- -~ - Bias where < reaches interfaces
2 | - Donsity Matrix: 1/<x> vs Bias
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Figure 2b. Capacitance versus voltage for the calculation of figure 2a.

The normalized <x>* vs. V is displayed in figure (2c), and similar
structure is seen in the regions corresponding to charge depletion as well as
accumulation. In particular note that there are three regions where the slope of
<x>* vs. ¥ is smaller than that of the diagonal and two regions where the slope
is greater than the diagonal. The three regions of reduced slope correspond to
local charge accumulation, while the two regions of increased slope correspond to

charge depletion,
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Figure 2c. Normalized mean square distance versus voltage for the calculation of
JSigure 2a

Unlike the calculation of figure 1 where there was a heterostructure
difference between the cathode and anode sides of the structure, the figure 2
calculation sustains no such difference. It is anticipated that there will be no offset
between the high and low bias portions of the curves of figure 2¢. Figures 2d and
2¢ display blowups of these regions As seen these figures show approximately
equal displacements, indicating a zero offset voltage.
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LOW BIAS BLOWUP OF FIGURE (2c)
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Figure 2d. Low bias blow up of the normalized mean square distance versus
voltage for the calculation of figure 2c.
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Figure 2e. High bias blow up of the normalized mean square distance versus
voltage for the calculation of figure 2c.
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. 2.4 Staggered Heterostructure Uniform N,

The third study is for the staggered heterostrucure as shown in figure 3a.
This case treats the case where there is a heterostructure difference between the
cathode and anode portions of the structure, and there is a central region where
local flat band conditions occur. This structure consists of (i) a 300mev barrier
extending from the right boundary to a point 700 A into the structure, followed by
(ii) a 150mev barrier extending another 700 A into the structure.

The non self-consistent potential energy distribution is shown by the solid
lines at the bottom of the diagram. For this structure and a doping of 10'*/cm’
the charge distributions at the heterostructure interfaces are independent of and
replicate each other. The self-consistent potential distribution reflects this charge
distribution, and the self consistent potential at the ends of the structure and over a
considerable region within the center of the device is equal to zero. The real space
transfer at the heterostructure interfaces are all the same. The replication will be
modified when holes and the relevant energy gap variations are included.

RECONSTRUCTED DENSITY PROFILE
40 v T T v Y T 4.0
——— Heterosn:ture Barrier {ev)
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Figure 3a. Reconstructed density and density as obtained from the diagonal
component of the density matrix for a staggered heterostructure. Nominal density
is uniform and equal 1o 10%/cm’.
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. Unlike the earlier reconstructed density calculations studies where the
depletion zone <x> initially reached a region of charge accumulation, in figure 3a
the initial region is one of charge depletion, followed by charge accumulation. As
in the previous discussion the peak reconstructed density is both greater than and
displaced from the peak as obtained from the flatband solutions to the Liouville
equation in the coordinate representation.

Figure 3b displays CV where the vertical lines denote the bias values at
which <x> reaches the beginning and ends of the center heterointerface.

CAPACITANCE VERSUS'VOLTAGE
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Figure 3b. Capacitance versus voltage for the calculation of figure 3a.

The normalized <x>? vs. V is displayed in figure 3c. Note the two
isolated regions. For both of these regions the initial slopes are positive and equsl
in value and correspond to a decrease in value for the reconstructed density. three
regions where the profile is flat and parallel to the uniform density line. As a
function of bias the gradient of < x >* first exceeds that associated with the flat
profile and charge depletion occurs. This region is followed by a region where the
slope, while positive, is smaller than that associated with the uniform profile,

17




—

. signifying charge accumulation. Very similar structure appears at the higher bias
levels. There are important points to note about these results. At the low bias
levels, the applied bias range of local increase in <x>? followed by a local
decrease is smaller than at the higher bias levels. But the slopes are the same. The
nonlinear relation between the results of these regions is a consequence of the
nonlinear dependence of the depletion layer thickness as applied bias.

NORMALIZED MEAN SQUARE DISTANCE
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Figure 3c. Normalized mean square distance versus voltage for the calculation of
figure 3a

There are differences in the heterostructue potential at the two ends of the
structure and this is expected to manifest in differences in the intersection of the
high intermediate, and low bias portions of the curves of figure 3c. Blowups of
three regions as shown in figures 3d and figure 3f.

In the case of figure 3d, the bias levels correspond to <x> w:thm the 300
mev barrier region, approaching and reaching the first heterostructure interface at
700 A. The differences between the intercepts of the solid line representing
changes in <x> along the 300 mev barrier region (view the top portion of the
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. intercept) and the diagonal dashed line representing the flat region is approximately
270 mev.

LOW BIAS BLOW UP OF FIGURE (3c)
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Figure 3d. Blow up of figure 3c for a range of applied bias levels within the 300
mev barrier region.

In figure 3e the bias levels are such that <x> falls within the 150 mev
region. The displacement of the introspect of the solid and dashed lines (again
view the top most horizontal axis) is approximately 120 mev. For the final range
of bias shown in figure 3f the displacement of the solid and dashed lines (again
view the top most horizontal axis) is approximately -30 mev. The relative
displacements of the solid and dashed lines follows the same qualitative behavior as
that associated with figure 1. Further the net displacement between the right and
left hand sides of the structure is approximately 30 meV, which is the difference in
the values of the heterostructure barriers.
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INTERMEDIATE BIAS BLOWUP OF FIGURE (3c)
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Figure 3e. Blow up of figure 3c for a range of applied bias levels within the 150
mev barrier region.
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Figure 3f. Blow up of figure 3c for a range of applied bias levels within the 0.0
mev barrier region.
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2.5 Single Barrier, Nonuniform N,

Additional calculations have been performed with variations in background
density. In the calculation discussed below the Liouville equation in the coordinate
representation was coupled to Poisson's equation for a 2000 Along structure,
nominally doped to 10'%/cm’, with a 150 A, 300 mev barrier within a 300 A, N°
region. The density and potential energy at equilibrium are shown at equilibrium
figure 4a*, note the change in dimensions to meters and nanometers.

Density {1/ m?) and Potential Energy (ev)
25 0.3
24 p ccrvecenaa, . W ------------ - 0.30
11 L 025
21 1 T
E - 0.20 g
¥ - 015 &
4 | Potential Energy [\
' - 0.10
20 e
e - 0.05
:
e 77———/ - 0.00
18 —T +— T
0 50 100 150 200
Distance (nm)

Figure 4a. Equilibrium distribution of density, from the density matrix, and
potential energy for a single barrier located within an N region.

4D. K. Ferry and H. L. Grubin, A chapter to appear in Solid State Physics, Academic Press
(1994).
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The reconstructed density as well as the density computed from the
quantum Liouville equation in the coordinate representation are shown in figure
4b.

Reconstructed and Liouville Calculation Density

24— —— 4,.__.__.._
NI e

I}
8 )]

logiDenshy(1
1

19 "'AppuumDomlyJ
== Liouville Calculation
18 +—+——m—r—"r—"—"F 7
S0 100 150
Distance (nm) from Boundary

Figure 4b. Reconstructed density and density as obtained from the diagonal
component of the density matrix for a single barrier structure with a 300 A N
region in the center of the structure.

There are several points of note. First, the minimum value of the
reconstructed is orders of magnitude higher than that computed from the density
matrix, although on a linear plot the apparent difference would appear to be
smaller. Second there is a region in which the minimum in the reconstructed
density is smaller than that obtained from the Liouville equation. Again, while the
net charge density has not be computed it appears that the integrated charge
density obtained from the density matrix, and that from the reconstructed density
are the same.

The reconstructed density is obtained from the derivative of <x>* versus
applied bias, which is shown in figure 4c. According to equation (6) the slope of
<x>*? determines the reconstructed density. In the calculation, the central region
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was approximately three orders of magnitude smaller in doping than the cladding
region. Thus if the low doped region was long enough for the density to approach
its background value, the slope of <x>* versus Vs Would be correspondingly
three orders of magnitude higher at the higher bias levels than at the low bias
levels. Debye tailing would determine that rate at which this high slope would be
reached. For the situation of figure 4, with particular attention to figure 4c, where
the normalized <x>? versus Ve is displayed, the rate at which the slope is
increased is accelerated by the presence of the barrier. And it is anticipated that
increases in the barrier height would result in a larger slope. In figure 4c we have
drawn a line tangent to the slope within the depleted region. The intersection of
this line with the two dotted lines provides a measure of the bias need to move
<x> across the barrier-plus-N" region. Thus it appears that the CV measurement
will yield information about the position of the barrier; it is not clear that
information about the height of the barrier can be obtained using this technique.

<X>2 Versus Applied Bias
15 T
2
3
g |
‘g 4
o
Es
b4
1 —~—— Barier Calculation
1"/ Uniform Density Calculation
o S
0 2 4 6 8 10 12 14
Applied Bias (ev)

Figure 4c. Normalized mean square distance versus volage for the calculation of
figure 4a.
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3. DISSIPATION CALCULATIONS-
3.1 Introduction to the Phenomenological Model

The CV study discussed in the previous section was developed under
conditions of zero current flow. While under reverse bias conditions it is expected
that the nonzero component of current would be leakage current, capacitance
values are normally required under nonequilibrium conditions when current is
flowing. For example in a typical FET small signal analysis is generally performed
on structure that are already subject to a finite bias, from which a nonlinear bias
dependent capacitance is obtained. To perform similar calculations with the
density matrix program requires at least two ingredients:

(i) First we need a procedure for calculating current;

(ii) Second we need a more realistic representation of the contact boundary
condition.

Both of the above features is discussed below, using a phenomenological model
for the calculation of current.

With current flow, the density matrix is complex, and we have assumed
boundary conditions corresponding to either a displaced Fermi-Dirac or
Maxwellian distribution function, with current obtained from the condition that all
of the energy supplied by an external source is dissipated within the device. (We
note that problems including a solid-vacuum interface, such as in vacuum
microelectronics applications, would not satisfy this condition.)

Current was calculated using several different models. Initially 7V was
obtained using scattering contributions which at low energies was obtained from
Fokker Planck dissipation’. Current was obtained from a condition in which the
mean applied and dissipated energies were equal. At higher energies, within a
phenomenological description, a scattering potential (discussed in section 4) was
introduced whose structure reduces, at low energies to Fokker-Planck dissipation.
More generally the scattering potential behaves like a quasi-Fermi energy which

SM. A. Stroscio, Superlattices Microstruct. 2, 83 (1986).
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undergoes a significant change in the vicinity of a heterointerface, in the spirit of
Grinberg and Luryi 6.

The phenomenological model, discussed in section 3, in terms of a quasi-
Fermi energy, and illustrated below, does not provide any details associated with
the specific electron phonon interaction as discussed by others? .

3.2 The Phenomenological Model: Single barrier, constant scattering time.

We illustrate the model with recently presented calculations®, figure 5, is
for a 2000A structure centered about the origin containing a single 300 mev high,
100A wide barrier embedded within a 300A N- region, surrounded by uniformly
doped 10'*/cm® material. The scattering time < is constant and equal to 10™"sec.
The first three figures show potential energy, charge, and quasi-Fermi energy
distributions, respectively, for different bias levels. From figure (5a) as the
collector boundary is made more negative with respect to the emitter, a local
‘notch’ potential well forms on the emitter side of the barrier. The potential energy
decreases linearly across the barrier, signifying negligible charge within the barrier,
followed by a broad region where the energy decreases to its value at the collector.
The charge distribution, figure (5b) displays a region of local accumulation on the
emitter side of the barrier, followed by a broad region of charge depletion on the
collector side. Both results are consistent with the experimental findings of Eaves
et al. 9. Significant amounts of charge accumulation are apparent at bias levels
beyond 300 mev.

6 A.A. Grinberg and S. Luryi, JEEE Trans. Elect. Devices, 40, 859 (1993).

7Key papers of relevance to the proposed study include:(1) N. Mori and T. Ando, Phys. Rev.
B40, 6175 (1989); (2) K. W. Kim and M. A. Stroscio, J. Appl. Phys. 68, 6289 (1990), (3)A. R.
Bhatt, K. W. Kim, M. A. Stroscio, G. J. Iafrate, M. Dutta, H. L. Grubin, R. Haque and X. T. Zhu,
J. Appl. Phys. 73, 2338 (1993); (4) P. J. Turley and S. W. Teitsworth, J. Appl. Phys. T2, 2356
(1992). '

3D. K. Ferry and H. L. Grubin, Proc. International Conference on Computational Electronics,
Leeds, UK, 247 (1993).

9 See, e.g. L. Baves, F. W. Sheard and G. A. Toombs, in Physics of Quantum Electron Devices,
F. Capasso, ed., Springer-Verlag Berlin , 107 (1990).
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Figure 5a. Bias dependence of the potential energy for a single barrier 1004
wide, 300 mev high.
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Figure 5b. Bias dependence of the density for a single barrier 1004 wide, 300
mev high.
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For the figure 5 calculation, the quasi-Fermi energy (relative to the
equilibrium Fermi energy), which is introduced into the governing equations as
discussed in section 4, was computed from:

(N Ef(x)=-mjf 'p—(;.%;-)

whose form will be justified below. In equation (7), j = p(x)¥(x) is the velocity
flux density, p(x) is the electron density, 7 (x) a relaxation time. The velocity flux
density, satisfies current continuity conditions and is independent of position.
Current is -¢j. As seen from figure (5¢), E, is approximately equal to the zero
within the first half of the barrier (although in the emitter region the variation in
E, matches that of V(x), and insures that p(x) is constant in the vicinity of the
emitter boundary) and then drops to a value approximately equal to the bias
through the remaining part of the structure.

Fermi Energy (eV)

44

- «100mev
e -200mev
— -300mev
--- -400mev

Figure 5c. Bias dependence of the quasi-Femi energy for a single barrier 1004
wide, 300 mev high. '

IV for the 150A barrier is shown in figure (5d), along with, for comparison
a calculation for a 100A wide barrier (same barrier height). The inset displays the
same results on a logarithmic plot. The significant differences between the two
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are: (1) the shape of the curve at the lower bias levels, and (2) the magnitude of
the current. For the wider barrier the current at low bias is almost two orders of

magnitude smaller.

6000 r ~ v - r —
-— 150 ahgstrom wide barrier
~==~_100 angstrom wide barrier
r . /
- 4
4
2 4000 L ’ = / I’I i
£ I~ A
]
H
£
=
O

Applied Bias (mv)

Figure 5d. Current versus voltage for a single barrier structures.

In the IV calculations the field in the emitter region and the current are
related by a mobility law, which is specified once the scattering time, 7, is set.
Thus the difference in the current values, for the narrow and wide barrier
structures, reflects a value of the emitter region electric field that is smaller for the
150A wide barrier structure and that more of the potential energy falls across the
barrier for a given bias, then is the case with the 100A barrier. For the 150A
calculation, the current is dominantly thermionic and varies exponentially with
voltage (the inset shows a linear behavior on a semilog plot). The narrower
structure displays /V with a larger tunneling component and approximately linear
behavior at low bias levels.
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4. ETIOLOGY OF THE PHENOMENOLOGICAL DISSIPATION MODEL
4.1 The Quantum Liouville Equation

Initial work on dissipation incorporated Fokker-Planck mechanisms!©.
This took the following form:

A 2 2 [} * '
(8) %"‘(m}V, -V,.)p(x,x ,t)‘(;,'li)V(‘,’)-V(‘ ")lp(x’x r’)

*(?l;)‘x_x-).w,—v,,)p(x,x',t)+(ai=)(x-x')~(x—x')p(x.x',r)=°

where 7 represents a scattering time, and the term containing E represents a
diffusive term in the momentum representation. In reference [10], equation (2)
was used to obtain quantum corrected energy and momentum balance equations;
the term linear in (x-x') provided momentum relaxation, while term quadratic in
(x-x') yielded energy relaxation. In the calculations of this proposal only
scattering terms that were of odd-order in (x-x') were considered, contributions of
even-order in (x-x') are presently being incorporated into DENMAT.

Equation (8) which includes Fokker-Planck dissipation needs justification
for semi-conductor structures; this follows. The equation of motion for the density
operator p,,, govemned by the Hamiltonian H is:

dp,,
©) m7=[ﬂ, Py

where the Hamiltonian contains dissipation mechanisms. The dissipation portion
of the Hamiltonian H,_,.,,, is written as:

(10) i %

S

10H. L. Grubin, T. R. Govindan, J. P, Kreskovsky and M. A. Stroscio, Solid State Electronics
(in press).
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where dissipation is asserted to include momentum dissipation without any energy
loss at well as energy dissipation through, e.g. phonon scattering. We note that
Ax,x')=< xlp,,'x'>.

While general approaches to scattering have been discussed by lafrate and
Krieger!!, and others!? the approach we have taken developed from a
generalization of classical scattering, within the framework of the Boltzmann
transport equation, generalized for Wigner functions. The Wigner function and
density matrix are related through a Weyl transformation. In particular, if
scattering of the Wigner function is represented as!3 |

(12)

i)

= _@%3—) Jawk{ £ (k,x)1- £k, )H(x, k' K) - £.(K', x)1- 1, (k, x)F(x.k,k)}

then scattering of the density operator in the coordinate representation is obtained
through application of the Weyl transformation:

13)  <xlp, ix'>= [k <(x-x)k> f,(k,-‘-’;—‘-)

which in the case of Boltzmann statistics is of the form

14)

6<x+%|p,,|x——’->

2
a

= —-(—8-’2;,—)- I dk'dkds'< (s~ s')k ><x +§lpqlx -%' > (1- <sl(k'-k) >)#(x; k', k)

113, B. Kreiger and G. J. lafrate, Phys. Rev., B35, 9644 (1987).
12 See, ¢.g. R. Lake and S. Datta, Phys. Rev. B45, 6670 (1992).
13P. Carruthers and F. Zachariasen, Rev. Mod Phys. 55, 245 (1983).
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which is the coordinate representation of equation (10).
In equation (13) the variables x and x' are replaced by x +s/2, and x-3/2,

regpectively. We have evaluated equation (13) in an approximate sense through an
expansion of the term (I- <sf[k'-k]>)~i(k'~k)-s+[(k-Kk')-s]'/2 + higher

order terms. From the contribution linear in s, we obtain:

o<x+— m”x——>

(14)

(8 ,) dkds'< (s - s')|k><x+ |p°,|x——>(s k-K))W(x;k',k)

Recognizing  that (?,2}7)' [A(e-kW(xK',k) = KT (x k), equation (14)

becomes;

o<x+— m”h—%>
a

et ——

(15)

~—is- akds'< (s- 8")lk ><x+—;-|p,’|x—%> KI(x; k()
Direct manipulation of equation (15) results in:

s s
5<x+2p”|x—§>
a

(16)

~-s-, | dkds'<(s—s')lk><X+£2'|P.,|x‘%>r(’§|k|)

For the case when the scattering is treated as independent of the magnitude of
momentum,, equation (16) becomes:
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an ﬁ<x4j|p”|x—%z H—s-V‘<x+§lp”|x——;->
a 7(x)
dhssipation

which is recognized, with suitable coordinate transformations, as the first part of
the scattering term associated with equation (8). Higher order contributions are
expected to lead, in an approximate, sense to the second scattering contribution to
equation (8).

The incorporation of scattering, at least within the framework of equation
(11), is a significant advance over simple relaxation time approximations in device
simulations, although significant physics is missing, e.g., the effects of extremely
short time events. Nevertheless, the proposed program is concerned with treating
scattering within the framework of equation (11) as a first important step to a
numerical scattering approach in small systems, much within the framework of
the work of Buot and Jensen'4.

In anticipation of the res !ts of the proposed study we asked: How are the
effects of scattering manifested within the framework of the density matrix in the
coordinate representation? To answer this question we represented scattering, as
in the below equation (18), and then related the terms of equation (18) to the
approximations of the above discussion.

4.2 Phenomenological Scattering Potentials and Quasi-Fermi Levels

The calculations of figure (4) were performed within the framework of
phenomenological scattering potentials. These contributions were expressed as:

(18)  Vowing(%, X", ) =[Ep(x,0) - E (X', )} + {{W(x,0) + W(x',1)

and replaced the second line in equation (8). In equation (18) E, and W are both
real functions. In the calculations of figure 5 we restricted ourselves to one
dimensional transport and conservation of momentum in a direction normal to the

I4F. A. Buot and K. L. Jensen, Phys. Rev. B42, 9429 (1790).
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propagation direction.  Presently, the contributions of E.(x) have been
implemented; the contributions from W{(x,?) are currently being implemented. In
the present study:

19)  E.(0)-Ey () = [der ™)
(19 E,(»)- (x)j o

where Wx) is the expectation value of velocity. v(x) is obtained from the velocity
flux density, which is the diagonal component of the matrix:

(20) ](xx)( —a—--—a— x,x')

Writing  j(x,x') =v(x,x')p(x,x'), the expectation value of velocity is:
v(x) =v(x,x).

As a check on our procedures it is straightforward to relate the above
contributions to the first part of the Fokker-Planck dissipation. We introduce the
approximation:

@1)  Jr2) [ 2+ (e "’(5;‘&7 (e, ¥ o, ¥)

For sufficiently small values of (x-x°), j(x,x') = v(x)p(x,x'), and from equation
(19):

22) E,(x)—Ep(x'w(-"ﬂ"—")-("—’ﬂ).
7(x)
Thus:
23) Ep(x)-E.(x"))p(x,x') = (——)(x x' Z—_T x,x")

which has the structure of the first contribution of the second line to equation (8).
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To the extent that the approximations of equations (21) and (23) are valid,
the relevant equation of interest is:

(24)
o MIXZZ & -(%){V(x’ N-V(x',0)}—{E(x,0) - E (x',0)}]p=0

which under time independent conditions reduces to:

(25) ‘( = ;x?-—)p [{V(x 0)-V(x',0)}-{Ep(x)- Ep(» )}]p..

Equation (24) was implemented for the calculations of figure (5). On the basis of
the last bracketed term it is clear that scattering can alter the net potential seen by
the carriers, the consequent quantum distribution function and the carrier
distribution.

4.3 Consistency with the Quantum Hydrodynamic Equations

While all calculations are through solutions to the quantum Liouville
equation, for guidance we imposed the requirement that the results of the
calculations be consistent with the broad requirements of dissipation as expressed
in the infinite hierarchy of moment equations. For example, the current (/=-¢j)
was obtained subject to the condition that the energy applied to the structure was
dissipated within the structure!®. This condition is manifest as:

26) j=(—2;’¢—)iwcp(x)%

where p(x) = p(x,x). Equation (18), subject to the condition of equation (20) was
found to yield satisfactory results for modest values of applied bias, in that the

13 It is noted that with an energy dependent scattering mechanism this condition is often satisfied
without additional constraints, providing the structure is long enough.
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calculated density within the cladding regions was equal to the background density
of the cladding regions, and the quasi-Fermi levels decreased monotonically within
the structure, with the difference being equal to the difference in the applied
potential energy. Note: for uniform fields the calculations replicate Ohm's law!

S. GENERALIZED SCHOTTKY BARRIERS FOR CV STUDIES
8.1 Introduction

In performing the CV calculations of the preceeding sections (through
section 3), we have invoked the traditional means of simulating the effects of
Schottky contacts; namely it was treated as a boundary condition. While this
yields satisfactory results for structures with micron length feature sizes!¢, for
structures with depletion zones that are sizeable fractions of the total device, the
boundary condition approach is not satisfactory. Rather simulation tools must be
implemented that are capable of treating the relevant quantum transport physics.
The significance of dealing with the density matrix is that it is quantum mechanical,
contains statistics through boundary conditions, and is thereby able to treat
interfacial phenomena. The discussion below is specifically concermed with
transport across a metallurgical discontinuity. The metal Schottky semiconductor
problem is treated as a heterostructure discontinuity.

5.2 The Schottky Barrier Model

The initial stages of the model involve only single species of carriers, in the
case below, electrons, and the model we chose to simulate is a standard textbook
model!”. The metal is taken simply as a structure with a high density of electrons;
the semiconductor contains a lower density of electrons. For Ohmic

16 See, ¢.g. Section C of H. L. Grubin, D. K.., G. J. lafrate and J. R. Barker, The Numerical
Physics of Micron-Length and Submicron Length Semiconductor Devices, in VLSI Electronics,
Microsctructure Science,N. Einspruch, ed Academic Press, NY (1982).

17 See, e.g. E. H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1980)
and H. K. Henisch, Semiconductor Contacts Clarendon Press, Oxford (1984).
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metal/semiconductor (m/s) boundaries most simulation treatments represent the
interface as an N' N structure in which electrons from the heavily doped region
diffuse into the lightly doped region. There is a corresponding low value of
electric field at the (m/s) boundary. Zeroth order physics of the Schottky (m/s)
boundary is based upon differences in the amount of energy required to remove an
electron from the Fermi level in the metal to the vacuum, and from the Fermi level
in the semiconductor The transport of electrons between the semiconductor and
the metal is dominated by these work functions, but is modified by the presence of
interfacial states at the interface. In the discussion below rather than deal with the
issues of workfunction differences, we represent the metallurgical junction as a
barrier where the barrier height is taken as a measure of the workfunction
difference of the two materials. The actual barrier height for any structure is
determined by trial and error. In terms of the equation of motion of the density
matrix this barrier appears as a contribution to the potential energy
V(X)=Vpier (£} +V oy s (X), Where the self-consistent part arises from
Poisson’s equation. ¥}, (x) is represented in figure 6.

Large Thermionic Small Thermionic

Work-function Work-function

Figure 6. Schematic representation of the barrier between the metal and
semiconductor, as used in the study.

While the details of the results are mitigated by the approximations
necessary (at this point to get solutions) the follow picture emerges:

e The absence of a barrier at the (m/s) interface results in diffusion of charge
across the boundary. There is a local depletion of charge on the ‘metal’ side
and a local accumulation of charge on the semiconductor side.

¢ Introducing the barrier results in two competing effects: (i) Electrons from the
semiconductor undergo real space transfer to the ‘metal’ resulting in a local
depletion of carriers from the semiconductor and a local accumulation of
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electrons in the ‘metal’. (ii) The barrier reduces the amount of charge
diffusing from the ‘metal’ to the semiconductor. The net effect of both
contributions is band bending at the interface on both the ‘metal’ and
semiconductor side.

e Since the height of the barrier determines the amount of charge from the
heavily doped region to the semiconductor, there is likely to be a threshold to
the barrier height beyond which the depletion characteristics are determined
mainly by the amount of charge undergoing real space transfer on the metal.

An approximate representation of the above picture is presented below.
Approximate means the model is incomplete, e.g., the model does not include
holes, and there are constraints imposed by the limitations of the algorithm. First
consider the approximations: (a) we assume constant effective mass.!¥. For a
material such as GaAs in which the doping level are respectively 10%/m®> and
10%/m’, the Fermi energies are respectively 250.4 mev and -35.89 mev. For a built
in potential of 286.3 mev. We note that if the effective mass for the high density
region was that of the rest mass the built in potential would be considerably
smaller. Thus before any depletion is likely to occur on the low doped side of the
structure we would need to imposed a barrier of at least 240 mev. These features
are illustrated in figures 7 and 8.

Figure 7 displays the electron density distribution for a zero barrier
(corresponding to an N'N region) and the distribution for a barrier of 200 meV.
As can be seen the primary effect of the small barrier is to significantly reduce the
diffusion of carriers into the lower doped region built in potential for this structure
is shown in figure 2. »

Figure 8 continues figure 7 but for higher values of the barrier between the
‘metal’ and the semiconductor. At 400 meV there is some depletion at the
interface, whereas at 600 mev considerable depletion occurs on the semiconductor
side of the structure. Note the presence of charge accumulation on the ‘metal’
side. Now the densities we have chosen to represent the metal are clearly too small

18 Calculations with a variable effective mass have been performed , but for a different set of
boundary conditions. These calculations show among other things that a decrease in effective
mass results in an increase in local charge density, all of which can be accounted for through
analysis of the quantum potential. Results with these new boundary conditions and a variable
effective mass will be reported in the near future,
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and so these results are taken as being qualitatively representative of the m/s
interface. The potential distributions associated with the variation in density seen in
figures 7 and 8 are displayed in figures 9 and 10.

N(x), For Different Step Barriers

Figure 7. Density distribution as obtained from the Liouville equation for the
indicated barriers.
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N(x), For Different Step Barriers
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Figure 8. Density distribution as obtained from the Liouville equation for the
indicated barriers.

In figure 9, we display the distribution of potential energy corresponding to
figure 7. Also shown is the value of the equilibrium Fermi energy for this
calculation. For both case the potential energy monotonically increases from its
value on the ‘metal’ side to its value on the semiconductor side. The potential
energy distribution in the absence of any barrier between the two regions increases
according the Debye tail, while the increase in potential energy is steep when the
heterostructure barrier is present.

Apart from the suppression of carrier diffusion nothing very unusual
appears to be happening with regard to figure 9. The situation, as displayed in
figure 10, changes when the barrier height between the ‘metal’ and semiconductor
exceeds the built-in potential. Here the increased barrier: _
¢ Reduces the amount of charge diffusing from the high concentration portion of

the ‘metal’;
¢ Introduces real space transfer from the semiconductor to the metal'®.

19 The real space transfer from the barrier region to the adjacent region, will of itself result in
local charge depletion on the barrier side, with local charge accumulation on the metal side. If

39




o There is the presence of band bending associated with the metal?® .
V(x), For Different Zero-offset Barrier Heights
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Figure 9. The self-consistent potential distribution corresponding for a zero
barrier height structure and one in which the barrier height is 200 mev..

the barrier beight is small enough carriers will flow from the metal to the semiconductor and
essentially eliminate this charge depletion. In order for there to be any depletion on the
semiconductor side the barrier must be sufficiently high.

20 The band bending associated with the metal is discussed by Henisch who refers to the early
work of C. A. Mead, E. H. Snow, and B. E. Deal. Appl. Phys. Letts. 9,53, (1966)
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V(x), For Different Zero-offset Barrier Heights

ga"'T ~—— Barrier Height = 0.4ev
0.1 _{ """""" B.mcrﬂddt-o.scv
0.0 -‘_j
0.1
0.2 T T T L — T
0 $0 100 150 200 250 300
Distance (nm)

Figure 10. The self-consistent potential distribution corresponding for a 400
barrier height structure and one in which the barrier height is 600 mev.

5.3 The Schottky Barrier as an Interface Model / Quasi Fermi Levels

Within the context of this model, boundary conditions are introduced to
assure that the density of the carriers on the metal side as well as at the end of the
semiconductor side are constant and equal to the specified background values.
This implies the presence of nonzero quasi-Fermi level distributions and represents
a significant departure from the discussion of sections 2 and 3. The departure is a
consequence of treating the Schottky barrier as a boundary condition, rather than
as in interface problem.

What types of quasi-Fermi level distributions are we considering. If we turn
to a review by Henish2! we see that if the classical diode theory is invoked then
the quasi-Fermi levels within both the metal and semiconductor are flat and that
there is an abrupt discontinuity at the metal semiconductor interface. Comments
by Henish suggest that this quasi-Femi level variation is more gradual. Figures 9

21 Y, K. Henish, Semiconductor Contacts, Clarendon Press, Oxford (1984), especially section
226
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and 10 represent equilibrium solutions and the quasi-Fermi level is constant.
Under bias, the quasi-Fermi energy model discussed earlier (see equation 19) is
imposed. To achieve the result of two essential different quasi-Fermi levels, the
scattering time appearing in the above equation was increased by two orders of
magnitude in the lower doped portion of the structure. While time did not permit
the evaluation of the capacitance as a function of voltage under finite current
conditions, we were able to obtain charge, potential energy and quasi-Fermi energy
distributions for the idealized model discussed above. These are shown in the
figures below.

Figure 11 is a display of the potential energy as a function of distance for
different values of applied bias. Note that the bias is applied to the cathode
boundary. Here the quasi-Fermi level of the metal moves with the applied bias on
the metal. Then with the metal positive with respect to the semiconductor, but
with the quasi Fermi levels relative to the bottom of the conduction band
remaining constant within each portion of the structure, we get an increase in
voltage at the boundary between the heavily doped region and the semiconductor.
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V(x), For Different Values of Appiied Blas
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Figure 11. Potential energy distribution as a function of bias for the Schottky
barrier configuration within a quasi-Fermi energy framework.

N(x), For Different Values of Appiied Blas
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Figure 12. Density distribution as a function of bias for the Schottky barrier
configuration within a quasi-Fermi energy framework.
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The Schottky barrier, which is treated as an interface problem is seen to
possess the same qualitative features we generally associate with the Schottky
barrier as a boundary condition. Note that there is a small slope to the potential in
the ‘metal’ portion of the structure, signifying current flow.

The density distribution corresponding to figure 11 is displayed in figure
12. We note the broad increase in the depletion zone as the bias is increased,
although the minimum density for the 0.15 ev calculation is above that of the
0.10ev calculation. The details of this difference can all be found in the
distribution of the Fermi energy, and indicates a dependence of the details of
depletion on dissipation mechanism.

The studies illustrated in the section provide a good indication as to the
means with which CV calculations should be performed. First, the Schottky barrier
should be treated as an interface problem. Thus dissipation must be included in the
model. Second, while we have incorporated surface states in other aspects of the
Schottky as an interface problem, work must be begun to determine the effects of
the interface on the CV calculations. Work with CV studies on surface states at
dissimilar materials has been reported in the past. Third, the present program
indicates that CV calculations can be performed as a function of bias when leakage
current is flowing, these aspects should be included in future studies.




6. SUMMARY

The focus of the present study was the application of the quantum Liouville
equation in the coordinate representation to determine the efficacy of CV
measurements in determining the relevant characteristics of the nanostructure
devices. While the scope of the study was limited, it appears that we can
confidently use CV measurements to delineate the regions occupied by the
quantum structure. The relative barrier heights of multiple heterostructures can be
obtained providing the flat band conditions associated with each heteroregion are
met. Details of narrow 5-10 nanometer structures cannot be obtained. There is
considerable asymmetry in the charge distribution as reconstructed from the CV
algorithm for symmetric structures. But as suggested by others dual polarity
measurements should reveal the asymmetry as a consequence of the CV method
rather than a feature of the structure.

The algorithms are being prepared for transfer to government and
corporate research laboratories.
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