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Abstract lﬂ 'l

Although mixtures of DFR (Decreasing Failure Rate) distributions are always
DFR, some mixtures of IFR (Increasing Failure Rate) distributions can also be DFR.

In this paper, various types of discrete and continuous mixtures of IFR distribu-
tions are considered, and conditions developed for such mixtures to be DFR. These
conditions show an unexpected result, that certain mixtures of IFR distributions,
even those with very rapidly increasing failure rates (e.g. Weibull, Truncated Ex-
treme , etc.), become DFR distributions. It is common practice to pool data from
several different IFR distributions to enlarge sample size, for instance. The results of
this paper serve as a warning note that such pooling may actually reverse the IFR
property of the individual samples to a DFR property for the mixture.
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1 Introduction

Although mixtures of distributions with decreasing failure rate (DFR) are always DFR,
some mixtures of distributions with increasing failure rate (IFR) may also be DFR. A well
known “border line” example by Proschan (1963) exhibits the DFR property of a mixture
of Exponential distributions, which have constant failure rate. Gleser (1989) described
arbitrary DFR Gamma distributions, i.e. Gamma distributions with shape parameter less
than 1, as explicit mixtures of Exponential distributions. In the light of such examples, and
from the standpoint of continuity, it is intuitively clear that a mixture of distributions with
“gently increasing” failure rate could be DFR. In this paper we show the unexpected result
that mixtures of some IFR distributions, even those with very rapidly increasing failure
rates (e.g. Weibull, Truncated Extreme, etc.), become DFR distributions. In practice,
data from different IFR distributions are sometimes pooled, in order to enlarge sample
size, for instance. These results serve as a warning note that such pooling may actually
reverse the IFR property of the individual samples to a DFR property for the mixture.
This phenomenon is somewhat reminiscent of Simpson’s Paradox (Simpson (1951), Blyth
(1972)), wherein a positive partial association between two variables may exist at each level
of a third variable, yet a negative overall unconditional association holds between the two
original variables.

Throughout this paper we denote the survival function, hazard function and failure rate
function of a life distribution function F(t) with t > 0, by S(t), G(t) and g(t), respectively,
i.e. S(t)=1-F(t),G(t) = —log S(t) and g(t) = G'(t). When the life distribution function
contains subscripts or parameters, we adopt the convention of adding the same to its its
survival function, hazard function and failure rate function; thus, Si1, Gy, g; are the survival
function, hazard function and failure rate function, respectively, of the life distribution
function Fy

In Section 2, we consider mixtures of two increasing failure rate (IFR) distributions and
give a necessary and sufficient condition, as well as sufficient conditions, for the mixture to
be a decreasing failure rate (DFR) distribution.

Many standard families of IFR distributions exhibit the property that mixtures of
two distributions from the same family become DFR distributions. We call such fam-
ilies PWMR, in words, pairwise mirture reversible families, and give some examples in
Section 2.

The above term PWMR refers to a pair of distributions from the same family. It is also
possible for a mixture of two distributions from different families of IFR distributions to be
DFR. In this paper, we also focus attention on IFR distributions whose mixture with an
exponential distribution is a DFR distribution. We call such an IFR distribution an MRE
in words, mirture reversible by the exponential distribution.

In Section 3, we show that all the well known IFR distributions are MRE distributions.
We also show an unexpected result, that even though the Truncated Extreme has an expo-
nentially increasing failure rate function, it is MRE. We also show, by means of an example
of an unconventional IFR distribution which is not MRE, that not all IFR distributions
are MRE.

A family of survival functions § = {S), A > 0} is said to be an IFR Lehmann family,
or an IFR proportional hazards family, if Sx(t) = e=*¢(®, for all A > 0,¢ > 0 and where




G(t) 2 0,G(t) / oo ast / oo and G(t) is a convex function. These conditions imply that
Sx(t) has an increasing failure rate function for A > 0. In Section 4 we study mixtures of
two distributions from IFR Lehmann families and show that they can be DFR distributions,
for a wide class of families. In Section 5, the same mixture reversible property is shown to
hold for mixtures of infinite sequences of distributions from IFR Lehmann families, when
the mixing distribution is the scaled Truncated Poisson.

In Section 6, we consider continuous mixtures of distributions from IFR Lehmann fam-
ilies when the mixing distribution is Gamma, and show that the mixture is DFR for a large
class of families. One conspicuous exception leads to the surprising result that a Gamma
mixture of distributions from the Lehmann family based on the Truncated Extreme whose
parameter is within a certain range and with an ezponentially increasing failure rate, is a
DFR distribution, while a Gamma mixture of distributions from the Lehmann family based
on the Gamma, which has only a linearly increasing failure rate function, is not DFR.

There are other possibilities for mixtures of IFR distributions which result in the mixture
reversing property described above. This paper presents a systematic approach to such a
study. As graphic illustrations, we present some figures wherein the graph of the decreasing
failure rate function of the mixture distribution is superimposed over the graphs of the
increasing failure rate functions of the individual distributions.

2 Mixture of two distributions

We begin by considering mixtures of two arbitrary IFR distribution functions F;,z = 1,2.
Let p = (p1,p2) with 0 < py, p2 £ 1, p1 + p; = | denote a mixing vector. Let
Fp(t) %« P1F1(t) + p2 Fo(t) be the mixture of F; and F; under p. Theorem 1 below gives a
necessary and sufficient condition for the mixture F}, to be DFR.

We use the notation

a() ® G"(t) and Qit) % piSit), i=1, 2.

Theorem 1 Let Fy, F; be two IFR distribution functions. The mizture Fy, is DFR if and
only if
(@14 Q2)(Q191 + Q295) < @:1Q2(91 — g2)* (2.1)
Proof. Note that
Sp(t) = p1Si(t) + p2Sa(t),
P151(t)g1(t) + p2S2(t)g2(t) _ Q191 + Q292
P151(t) + p2Sa(t) Q1+ Q2

gp(t) =
and
(@1 +@2)9p(t) = (@14 Q2)[Qug} + Q295 — Qi9] — Qag?]

+{(@191 + Q292)°
= (@1 + @Q2)(Qug1 + Q297) — @1Q2(91 — 92)?,

by using the fact that Q{(t) = —Qi(t)gi(t) in the last step. This shows that condition (2.1)
is necessary and sufficient for gp(t) < 0 and thus, for the mixture Fp to be DFR. D
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Remark 1 In some instances, condition (2.1) in Theorem 1 may hold only for sufficiently
large t, say t > to. To cover such instances, we could coin a new term and say that the
mixture is an ultimately DFR distribution. However, we can truncate all such distributions
to the region ¢ > tg, and the resulting mixture will be DFR. Since, in most applications, it
is the aging aspect of failure which is of primary importance, we will simply refer to such
mixtures as DFR, with this understanding.

We now give a precise definition of the term PWMR introduced in Section 1.

Definition 1 Let F be a family of IFR distribution functions. We say that F is a PWMR
(in words, pair-wise mizture reversible) family, if mixtures Fy, of two distributions from this
family are DFR distributions for some values of the mixing vector p.

To give some examples of PWMR families, we rework condition (2.1) to give a sufficient
condition for a mixture of two IFR distributions to be DFR.

Corollary 1 Let Fy, be the mizture of two IFR distributions Fy, F; as in Theorem 1. Then

Qu(t) < Qa(t) and 2(Q1(t)gi(t) + Q2(t)g2(1)) £ Qu(t)(9a(t) — g2(1)) for all ¢ (2.2)
is a sufficient condition for Fp to be DFR.

Proof.: When Q4(t) < Q2(t) for all ¢, the harmonic mean 2Q1Q./(@Q1 + Q1) of @; and @,
is always greater than or equal to ;. Corollary 1 follows immediately from condition (2.1)
of Theorem 1. 0

Remark 2 As indicated in Remark 1, the condition (2.1) may hold for only sufliciently
large t. The same comment can be made about condition (2.2), in particular @;(t) < Q.(t)
may hold for only sufficiently large ¢.

Examples of PWMR families

Example 1. Truncated Logistic distributions with survival function 11}:—',: Here G;(t) =
cit +log(l + e7') —log2,i = 1,2. Let ¢; > ¢; > 0. It is easy to see that both conditions
in (2.2) are satisfied for sufficiently large . Thus the mixture is DFR and the family is

PWMR.

Example 2. Distributions with survival function £=—: Here G;(t) = ¢;t + logcosht, i =

cosht*®
1,2. Let ¢; > ¢ > 0. As in the previous example:“it is easy to see that both conditions
in (2.2) are satisfied for sufficiently large ¢. Thus the mixture is DFR and the family is
PWMR.




3 Mixtures of an arbitrary distribution with an Ex-
ponential distribution

We now specialize Theorem 1 by putting G2(t) = At, that is by restricting the second
distribution to be Exponential. Then g(t) = 0 and condition (2.1) simplifies considerably,
yielding the following corollaries, which we state without proof.

Corollary 2 The following is a necessary and sufficient condition for the mizture Fp to
be DFR when Ga(t) = M:

' 2(t)
a(t) < m(gl(t) —2)? for all t. (3.1)

Corollary 3 Suppose, further, that

The following are progressively stronger sufficient conditions for the mirture Fy, to be DFR
when Ga(t) = M:

6i(1) < 5((1) = N for all , (3.3)
ai(t) 1
Eim < Egl(t) — A for all t. (3.4)

Remark 2 which appears after Corollary 1 also applies to all the conditions in Corol-
lary 3.
We now give a precise definition of the term MRE introduced in Section 1.

Definition 2 An IFR distribution F is said to be MRE (in words, mizture reversible by
the Ezrponential) if the mixture Fp with some Exponential distribution is DFR for some
mixing vector p.

An MRE distribution can also be described in terms of “contamination”, a term that
will be used in the following sense. Suppose that a distribution function F; has a certain
characteristic, but when it is mixed with another distribution function F3, the resulting
mixture reverses (or negates) the characteristic possessed by F;. We describe this by saying

that F; is contaminable by F,. In particular we can refer to an MRE distribution as one
which is contaminable by an Exponential.

We now demonstrate that many well known IFR distributions are contaminable by the
Exponential. In fact, all the usual classes of IFR distributions found in a typical textbook
such as Barlow and Proschan (1965), and even some with very rapidly increasing failure
rates, are seen to be MRE distributions. This should not lead us to conclude, however,
that all IFR distributions are MRE. At the end of this section we give an example of a
rather unconventional IFR distribution which is not MRE.




To verify whether a distribution F is MRE, we consider its mixture with F(t) = 1—e~*
for appropriate values of A and the mixing vector p, and use, as convenience dictates, the
necessary and sufficient condition (3.1) or the sufficient conditions (3.2) and (3.3) or (3.2)
and (3.4) from Corollary 3.

Examples of MRE distributions

Example 3. Exponential distribution: It is clear that the Exponential distribution is MRE
since condition (3.1) is obviously satisfied from the fact that g;(t) = 0.

Example 4. Gamma distribution: Let the density function of the IFR Gamma distribution
be

of

The survival function S; can be written as

e %'t#~! where a >0, #>1, t>0.

B o B
Si(t) = _o__/ e 2P dz = —g——e"“l(t,ﬂ -1)

() J: I'(8)
where o
= —au t)?du.
1(,6) /0 e~ (u+ t)du
The following facts concerning the function I(t,8) are easily verified:
I'(t,0) = al(t,0) — t°, (3.5)

al(t,0) > 1% and al(t,0) ~t° as t - . (3.6)
The failure rate of the Gamma distribution is given by

$8-1
SR (YR

and it satisfies,

! q 8-1
g1(t) _ -1 o+t t
gl(t) t ](tvﬂ - 1)
which approaches 0 as ¢ — oo, as can be shown by using (3.5) and (3.6). Hence, condi-
tion (3.4) is satisfied. Further, since

Qi(t) _ P1e-[6(0-M < |
Q2(t)  po

for t sufficiently large and a > ), it follows that condition (3.2) is satisfied for ¢ sufficiently
large. (Note Remark 2.) This shows that the Gamma distribution is MRE.

Example 5. Weibull distribution: The hazard function of the Weibull distribution is given
by
G, (t) = 6t

)




wherey > 0, § > 0 and g; = §~t~1). For vy > 1 this distribution is IFR and Condition (3.2)
is satisfied for sufficiently large t. Condition (3.4) reduces in this case to

which holds for sufficiently large t. This shows that the Weibull is MRE.

Let g(¢,pz) be the failure rate of the mixture, (1 — p2)Fi(t) + p2F2(t), of a Weibull
distribution with an Exponential distribution where 0 < p; < 1. We have shown in the
above that there is a turning point to = to(p;) such that g(¢,p;) is decreasing for t > t,.
We examine this phenomenon visually in Figures la and 1b.

Both figures contain plots of the increasing failure rate g;(t) of the Weibull, the constant
failure rate g;(t) of the Exponential, and the failure rates g(t, p;) of the mixture, for p, =
0.05,0.1,0.3,0.5,0.9,0.95 . In Figure la, the Weibull and Exponetial parameter values are
4=3,0=2.5,)A= .25 and in Figure 1b, they are v = 1.5,0 = 21.5,X = .1.

On examining the curves in Figure la, it is evident that for p, = 0.05 , the curve for
g(t,.05) decreases for t > to = .975. Since 51(.975) = .10 it is not surprising that the
failure rate g(t,.05) of the mixture is DFR in the region of the top 10% long-lived units
from the Weibull distribution, under contamination by an Exponential distribution. It is
also evident (as intuitively expected) from the curves for g(t,p;) that the turning point
to(p2) decreases as p, increases, since the Exponential plays an increasingly important role
in the mixture, and accordingly fewer items have failed.

As we examine the curves for g(¢,p,) in Figure 1b, which corresponds to vy = 1.5,0 =
21.5,) = .1, it is also evident that the turning point o decreases as p, increases. For an
illustration, we focus our attention on g(t,.3) , for which the turning point t, is equal to .1
and S;(.1) = .51. This is remarkable in that half of the units from the Weibull distribution
have survived to time to = .1, yet the failure rate of the mixture has started to decrease from
to = .1, although the mixture is predominantly (70%) Weibull. To a person dealing with
pooled failure data for which the underlying survival function is predominantly Weibull
(with 4 > 1), this apparently deceasing failure rate of the mixture could be disconcerting.
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Figure la
Mixture of a Weibull distribution (y = 3,8 = 2.5) with an Exponential(A = .25).
Graph of g(t,p;), g1(t) and g,(t) where p, = 0.05,0.1,0.3,0.5,0.9, 0.95.
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Figure 1b
Mixture of a Weibull distribution (y = 1.5,6 = 21.5) and an Exponential (A = .1).
Graph of g(t,p2),¢:1(¢) and g5(t), where p, = 0.05,0.1,0.3,0.5,0.9,0.95.

Example 6. Truncated Extreme distribution: Consider the Truncated Extreme distribu-
tion with hazard function Gy(t) = 6(e’ — 1) and failure rate function g,(t) = fe’. For
this distribution, with an exponentially increasing failure rate, clearly, condition (3.2) is
satisfied for sufficiently large . Condition (3.4) reduces in this case to

1<%0e’—k




which is satisfied for sufficiently large t. This shows that the Truncated Extreme distribu-
tion is MRE.

Let g(t,p;) be the failure rate of the mixture, (1 — p3)Fi(t) + p2 Fa(t), of a Truncated
Extreme distribution with an Exponential distribution where 0 < p, < 1. We have shown
in the above that there is a turning point ¢, = to(p;) such that g(t,p,) is decreasing for
t > tg. We examine this phenomenon visually in Figures 2a and 2b.

Both figures contain plots of the increasing failure rate g;(t) of the Truncated Extreme,
the constant failure rate g;(t) of the Exponential, and the failure rates g(t,p;) of the
mixture, for p, = 0.05,0.1,0.3,0.5,0.9,0.95 . In Figure 2a, the Truncated Extreme and
Exponential parameter values are § = 20, A = 1 and in Figure 2b, they are § = 4,) = .1.

For the first example, consider the graph of g(t,.05) in Figure 2a. In the neighborhood
of t = 0, it is almost constant, and actually begins to decrease at t; = .0054 (as can be
found by computation; a visual examination of the graph would lead one to believe that
g(t,.05) is decreasing on the whole range ¢ > 0). What is, indeed, remarkable is that
the failure rate g;(t) increases exponentially, yet g(t,.05), corresponding to a mixture only
slightly contaminated by an Exponential, begins to decrease just beyond ¢t = 0 . This
decreasing failure rate of such a mixture could be quite confusing to a person dealing with
slightly contaminated failure data.

For the second example, consider the graph of g(¢,.90) in Figure 2a. One might think of
this as contamination in reverse, that is, the mixture is predominantly (90%) Exponential
and is contaminated (10%) by a Truncated Extreme. It is, indeed, strange, that this failure
rate decreases at t = 0 and continues to do so.

For the third example, consider the graph of g(t, .05) in Figure 2b. This example is quite
similar to that corresponding to g(t,.05) in Figure la. Here, tq = .4375 and S(¢p) = .11,
and the decreasing nature of g(t,.05) in the region t > .4375 is not unexpected. It is also
evident, as in Example 5, that the turning point to(p;) decreases as p; increases.

Figure 2a
Mixture of a Truncated Extreme distribution (6 = 20) with an Exponential (A = 1).
Graph of ¢(t,p2), 9:1(t) and g2(t), where p. = 0.05,0.1,0.3,0.5,0.9,0.95.
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Figure 2b
Mixture of a Truncated Extreme distribution (6 = 4) with an Exponential (A = 1).
Graph of g(t,p2),9:1(2) and g2(t), where p, = 0.05,0.1,0.3,0.5,0.9, 0.95.

Example 7. Truncated Normal distribution: The survival function of the Truncated Nor-
mal distribution is given by
Si(t) = \/E /w =212
T Jt

= \/ge“mJ](t) (3.7)

~u?/2

where
* ue
—=—du 3.8
0 Vu?+t? (3:8)
as can be seen by the substitution z? = y? + ¢2. Differentiating (3.7) with respect to ¢ and
equating it to —\/ge“z/ 2, which is another expression for the same, coming directly from
the density of the Normal distribution, we obtain the useful identity

Ji(t) = thy(t) - 1. (3.9)

By examining (3.8), we can obtain the following useful inequality for J;(t), known in the
literature as Mill’s ratio: 1 1

t3 t
2 _u2
The upper bound in (3.10) is obtained by using the bound I +:: < 2 foru > 0, in

(3.8). The lower bound in (3.10) is obtained by integrating (3.8) by parts and using the
same bound. Again, from (3.7), we see that

Ji(t) =

SAh(t) <

1
i (3.10)

G1(t) = —log (\/;2:) + t—;— ~log Jy(2). (3.11)
9




By virtue of (3.9), the failure rate function g¢,(t) = —l—‘m satisfies
alt) 1
—_—= 3.12
P RAT) (312
and condition (3.4) reduces to
1 1
P QUL
Ji(t) T 2J1(t)
which is equivalent to . \
<1-Z%,
RO

This condition is satisfied for large t, since tJ;(t) — 1 as t — oo as can be easily seen from
(3.8). Since 0 < Jy(t) < 1, it is easy to see from (3.11) that Gy(t) > At for sufficiently
large t, which in turn implies that condition (3.2) is satisfied for such t. This shows that
the Truncated Normal is MRE.

Example 8. Truncated Logistic: Here S;i(t) = 2/(e* 4+ 1), t 2 0 and it can be seen that
g3(t)/g1(t) = 1/(e* + 1) which approaches 0 as t — oo. This shows that condition (3.4) is
satisfied for large . It can also be seen that condition (3.2) is satisfied for A < 1 and large
t. This shows that the Truncated Logistic distribution is MRE.

We can carry on in a similar manner and show that many more distributions — some
well known, and others not so well known — are all contaminable by the Exponential
distribution. We list a few more, without proof, just to illustrate this point.

Example 9. Distributions with G;(¢) = [t — log(1 +1¢)], t > 0.
Example 10. Distributions with G,(t) = t + logcosht, t > 0.
Example 11. Distributions with G;(t) = tlog(a+1t), t 20, a > 1.

It is remarkable that all of the distributions considered above are MRE. In fact, we
have examined several other distributions, only to find they have the same property. It
is tempting to conjecture that all “well-behaved” distributions are MRE; but one would
need to specify in precise terms what is meant by “well-behaved”. We are considering this
question, and expect to report on it at a later time.

We give below, in Example 12, a not so “well-behaved” distribution F; which is not
MRE, i.e. not contaminable by an Exponential distribution; the mixture of this F; with
an Exponential is neither IFR nor DFR. The failure rate of this distribution is increasing,
but its derivative oscillates between 0 and oo, a {eature not found among the common IFR
distributions.

Example 12. Let 1 — Fi(t) = S1(t) = ¢~ where g,(t) = G}(t),g}(t) = G!(t). Set

'(8) = n, te(n—,:—a,n+;1,-],n=2,3,...
i\t = 0, for all other ¢ € [0, 00).

10




Note that g¢,(t) / 2(%’- —1)>0ast— oo. Let 1 — F5(t) = S3(t) = e~* be the survival
function of an Exponential distribution. From condition (3.1) the mixture Fp(t) is DFR if
and only if

Qa(t)

ai(t) £ m[gl(t) - AP (3.13)

holds for sufficicntly large t. Note that the right-hand side of the above is bounded by a
finite constant, but gj(t) oscillates wildly. Thus there is no region of the form [to, o0) where
condition (3.13) holds and hence Fj is not an MRE distribution.

4 Mixtures of a pair of distributions from Lehmann
families

Let S = {S) = e~*¢() X > 0} where G(t) is an increasing convex function such that G(0) =
0 and G(t) / o0 as t ,/ oo. Then § is said to be an IFR Lehmann family based on the
hazard function G(t). In this section we consider the mixture S 3 (t) = p15), (t) + P25y, (t)
of two members from an [FR Lehmann family with mixing vector p, and give conditions
for the mixture to be DFR.

Theorem 2 Let S, §(t) = p15Sx,(t) + p2Sx,(t) be a mizture based on S), and S, from an

IFR Lehmann family with mizing vector p. Let p = ﬁf >landk= B2, The mizture Sp,A
is DFR if and only if

g’(t) < k’\l(l — p)2s)~2-/\1(t)
g2(t) = (1 4+ kSx,—5, ()1 + kpS»y-x, (1)

(4.1)

Proof.: Although this condition is obtainable by simplifying condition (2.1) of Theorem 1,
the following approach prevides insight into the structure of the failure rate of the mixture.
The survival function of the mixture is given by

S A1) = P8y, (OF + kL (0)]
and its failure rate function is given by

Sx (1)

- 2

P
Sn ()" '

14 kSSTR) (42)

This failure rate function is the product of two factors, the first of which is the increasing
failure rate function of S),(t) and the second is an adjustment factor, which is decreasing,
since p > 1. Condition (4.1) is obtained by requiring the derivative of (4.2) to be less than
0. a

Remark 3 Since S),-»,(t) <1, the following is a sufficient condition for the mixture SpA

to be DFR:
gt) ¢ Bhll = p)*Sion ()
g(t) = (1+k)(1+kp)

(4.3)
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Definition 3 A Lehmann family {Sx, A > 0} of IFR distributions is said to be a PWMRL
(in words, pair-wise mirture reversible Lehmann) family, if the mixture Sp,A(t) is DFR for
some values of p and A.

Examples of PWMRL families
We now give examples of PWMRL families.

Example 13. Consider the IFR Lehmann family based on G(t) = log(e*+1) —log2,t > 0.

Condition (4.3) becomes
et < Ale‘(’\T‘Al)[105(8'-1"1)-1032)]

for an appropriate constant A;. This condition is clearly satisfied for t large and A, < A; <
A1 + 1. Thus the Lehmann family based on the Truncated Logistic is a PWMRL family
for this range of values.

It may be remarked that the mixture of two distributions from a Lehmann family
based on the Truncated Logistic considered here differs from the mixture of two Truncated
Logistic distributions considered in Example 1.

Example 14. Consider the IFR Lehmann family based on G(t) = logcosht,
t 2 0. Condition (4.3) becomes

sech?(t) < A,

tanh(t) ~ (cosh(t))*—*
for an appropriate constant A,. This condition is clearly satisfied for ¢ large and A\;—\; < 2;
thus this family is PWMRL for this range of values.

We can also see that the Lehmann family based on G(t) = t + logcosh ¢t is a PWMRL
family following almost the same calculations as in Example 14.

5 Poisson mixtures of distributions from
Lehmann families

We begin this section by first defining Poisson mixtures from a Lehmann family. Consider
an IFR Lebmann family of distributions with survival functions {S)(¢) = =%, ) > 0}
where G(t) is an increasing convex function with G(0) = 0 and G(t) / o as t / oc.
We consider the Truncated Poisson distribution Ps., with parameters § and ¢, which is
defined to be the distribution of Y/c where Y has a Truncated Poisson distribution with
parameter 6. In other words, Ps, places its probability mass at the points ¢, 2¢, 3c, . . ., and
its frequency function is given by

e~6
Pse(re) = i

The probability generating function of P = P is given by

,r=1,2,....

8(z5=1) _ g6

1—e*

¥p(z) =

12




Let

o0

S(py(t) Z (t)ps,e(re). (5.1)

r=1

We will refer to S(p)(t) as a Poisson mixture of the Lehmann family {S,}. We now give a
precise definition of TPMRL families of distributions.

Definition 4 An IFR Lehmann family {S),) > 0} is said to be a TPMRL (in words,
Truncated Poisson mizture reversible Lehmann) family, if the Poisson mixture S(p) defined
in (5.1) is a DFR distribution for some choice of § and ec.

We shall see later that the use of the scale factor ¢, in the Poisson distribution, gives us
extra latitude in constructing TPMRL families. The other scale factor A in the Lehmann
family is being averaged out and does not appear in the Poisson Mixture S(p).

The theorem below gives necessary and sufficient conditions for an IFR Lehmann family
to be a TPMRL family.

Theorem 3 The Poisson mizture Sp) of an IFR Lehmann family {S\(t) = e *¢®, X > 0}
is DFR if and only if
14'(2) < et — 1 — Sw(t)
cg®(t) ~ efw(t) — 1

" where w = w(t) = e~C),

for all t (5.2)

Proof.: A compact expression for the Poisson mixture survival function is given by

Seey(t) = (e = (e —1).

1—e*¢
Using the identity

w'(t) = —cg(t)w(t)
which follows from the definition of w(t), we can verify that the failure rate function 9(P)
of S(p)(t) satisfies

cg(t)w(t)esv®
9t = —gm 7

Taking the logarithmic derivative, we obtain
g(p)( ) g(t) vl —1 — fw(t)
cg(t) 2 - Swit M
D () S 1

This shows that condition (5.2) is necessary and sufficient for the family to be a TPMRL
family. a

Remark 4 Since 0 < w < 1, it follows that

efv — 1w 627"’
> .
efv — 1 ef -1

Thus the following is a sufficient condition for the mixture S(p) to be DFR:

1g’(t) 626-CG(t)
poc T vy ¥
cg®(t) T 2(ef - 1)
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There is a marked similarity between the sufficient conditions (4.3) and (3.3). Suppose
that an IFR Lehmann family S, satisfies condition condition (4.3), i.e.

gl
= S Ale—(,\g-,\,)G

L~

for appropriate constants A;,A; and A;. Then it also satisfies condition (5.3), which can

be rewritten as ,

9

g
for appropriate values of ¢ and A,;. The converse, of course, is also true. Clearly, the
examples of PWMRL given in the Section 4 are also examples of TPMRL families.

S AQC_CG

6 Continuous mixtures of distributions from Lehmann
families

Let {Si(t) = ¢*®() X > 0} be an IFR Lehmann family where as before G(t) is an in-
creasing convex function with G(0) = 0 and G(t) / o0 ast / oo. “et C()A) be an
arbitrary distribution function on (0,00) with moment generating function ¢(s). Consider
the mixture survival function

Siey(t) = /0 “ Sy()dC (). (6.1)

The theorem below gives necessary and sufficient conditions for the mixture Si¢) to be
DFR.

Theorem 4 Let Sc)(t) be the survival function of the mirture of an IFR family {Sx(t)}
by a distribution C(A), as given in (6.1). Let the moment generating function of C()) be
#(s). Then Sicy is DFR if and only if

g(t) o {$(=GW)"(-G(1)) — [¢'(-G)]*}

PO #-GOe(GO) 62
Proof.: Rewriting the definition in (6.1) we get
S = [ sidcn) = [T Wi = 4(-6(). (63)

Hence the failure rate function of the mixture is given by

9(t)¢'(-G(?))
¢(-G(t))

where g(t) is the failure rate function of S(t). Thus

¢(—G()[8'(-=G(t))g'(t) — ¢"(—G(1))g*(t)] + g*(t)[¢'(=G(t)}?
[¢(G(1)?] ’

gio)(t) =

9(c)(t) =
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Consequently, S(c) is DFR if and only if the numerator of the above is nonpositive, which
is the same as condition (6.2). D
Note that Theorem 3 can be derived from Theorem 4 by substituting the moment
generating function (—1%66(“_1) for #(N).
We now specialize the mixing distribution C(A) to a Gamma distribution and examine

the mixture reversal properties of IFR Lehmann families.

Definition 5 The IFR Lehmann family {S,} is said to be a GMRL family, (in words,
Gamma mizture reversible Lehmann) family, if the mixture Sc) above is DFR when C(A)
is the Gamma distribution with scale parameter a and shape parameter 3, for some va'

of a and 8.

We now use the fact that the moment generating function ¢(s) of the Gamma distri-
bution C(t) with scale parameter a and shape parameter B (see Example 4) is given by

¢(s) = (1 - 2)7%.
Corollary 4 The IFR Lehmann family {Sx(t) = e *¢®, A > 0} is ¢ GMRL family if and

only if
gi) o _ 1
g*(t) ~ a+G(t)

(6.4)

Proof.: Note that the parameter # does not enter condition (6.4). This can be explained
by the fact that the mixture S(cy becomes a DFR Lehmann family in the parameter 5. In

fact, substituting ¢(s) = (1 — i)"ﬁ in (6.3), we find that
Sie)(t) = o—Blos(1+ ) (6.5)

Hence S(c) is a DFR survival function if and only if log(1 + %ﬂ) is concave, which is
equivalent to condition (6.4).
One could also give a proof of this result by simplifying the necessary and sufficient
condition (6.2) pertaining to this case. o
Let us now verify or refute the GMRL properties of several well known IFR Lehmann
families by verifying or negating condition (6.4) of Corollary 4.

Example 15. The Exponential family, which forms an IFR Lehmann family with G(t) = ¢:
This family is clearly GMRL since ¢’ = 0.

Example 16. The IFR Lebmann family based on a Gamma survival function is not a
GMRL family if the shape parameter satisfies # > 2. To verify this, refer to the expression

for Si(t), g(t) and %L(%l in Example 4. We see that

G(t) = —log Si(t) = log'(8) + at — Bloga —log I(t,3 — 1) and
g(t) _I(t,B-1) [ﬂ—l

7(2) = 261 ; —a] + 1.
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Substituting these in condition (6.4) and using the fact that al(2,0) ~ t? as t — oc (see
(3.6)), we find that the Lehmann family based on the Gamma is GMRL if and only if

ﬂ—1< 1
at ~ a+logl(B)+at~(8-1)loga— (8- 1)logt’

for large t, that is, if and only if

é:—%at + a+1logT(B) < (B — 1) log(at).
For sufficiently large ¢, this inequality is satisfied for 1 < 8 < 2 and the reverse inequality
is satisfied for § > 2. Thus, the Lehmann family based on the Gamma is GMRL for
1< f8<2and is not GMRL for 8 > 2.

Example 17. Weibull family of distributions: When the shape parameter 4 > 1 is fixed,
the Weibull distributions form an IFR Lehmann family in terms of the scale parameter.
Here G(t) = t” and 4 > 1. In this case condition (6.4) reduces to

(-1 . _1
¥ T a4+t

which is equivalent to (y—1)a < t7. This is satisfied for sufficiently large ¢; thus, the Weibull
Lehmann family is GMRL. The failure rate function of the Weibull Lehmann family can be
a rapidly increasing function. It is surprising to see that this family is mixture reversible
under Gamma mixtures. This can be seen graphically in Figure 3, where we superimpose
the plot of the decreasing failure rate function, g(c)(t), of the Gamma mixture with the
plots of the increasing failure rate functions, gi(t),: =1...,8, of a sampling of the Weibull
distributions that are being mixed, namely g;(t) = Ayt""~V), where A = th,i =1,...,8 with
h = .06 and 4 = 1.5. The parameter, o, of the mixing Gamma distribution was chosen to
be equal to 2.
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Figure 3
Mixture of a Weibull family of distributions by an Exponential.
Graphs of the failure rate functions of the mixture, g(c)(?),
and those of several of the original Weibull distributions g;(¢), = 1,...,8.

Example 18. The IFR Lehmann family based on the Truncated Extreme distribution:
Here G(t) = 0(e* — 1),t 2 0. Condition (6.4) reduces to

(a—0)e*<0.

This is satisfied for a < 6, and for such values, this family is also a GMRL family. This
continues our surprise expressed in the previous example, since the failure rate of the
Truncated Extreme increases even faster than that of the Weibull. However, for the range
of values a > 0, the reverse inequality to the inequality in Condition (6.4) holds and the
Lehmann family based on the Truncated Extreme is not ¢ GMRL family for such values
of a. This phenomenon is similar to the one in Example 16.

Example 19. The IFR Lehmann family based on the Truncated Normal distribution:
From Example 7, we see that G(t) = — log(\/:%-) + % — log J(t) where J(t) is the same as
Ji(t) defined in (3.8). From (3.10) we find

2, 1
< - \/-— — - - =) .
G(t) < —log( 7l_)+ 5 + logt — log(1 t'*‘) (6.6)
The calculations in Example 7 and (3.10) give the inequality
g'(t) 1
=1- < -. .
) 1-tJ(t) < 7 (6.7)

The inequalities (6.6) and (6.7) show that

2
G(t) + a Sa—log(\/§)+g—+logt—log(l - t%) <t?<
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for large t and any a > 0. This verifies condition (6.4) in its equivalent form, namely,
G(t)+a< 5;(‘3- Thus the Lehmann family based on the Truncated Normal is GMRL.

Example 20. The IFR Lehmann family based on the Truncated Logistic distribution:
Here G(t) = log (¢! + 1) —log2. It is easy to verify that condition (6.4) holds for large t
and hence that this is a GMRL family.

In a similar manner it can be shown that the Lehmann families based on G(t) for
G(t) = tlog(a + t) and G(t) =t — log(1 + t) are GMRL families.

7 Conclusion

In our search for IFR distributions which are mixture reversible, certain types of mixing
have been employed and some relevant conditions have been developed. To delineate certain
families of such distributions, some notation has been introduced and some examples of
distributions belonging to such families have been presented. For the purpose of discussion
it is helpful to associate the various families of distributions with the particular sufficient
conditions employed to obtain the illustrative examples, and to summarize the results
obtained.

Table 1 lists the 10 distributions considered here. The first six are from the list of
“typical useful failure laws” in Barlow and Proschan (1965) and include the Truncated
Logistic. The remaining four have been chosen for convenience and simplicity.

Table 2 summarizes the results obtained. As evident from Table 2, all of the distribu-
tions in Table 1 are GMRL except for the Gamma (with 8 > 2) and the Truncated Extreme
(with @ > 1). It is curious that the Truncated Extreme, with failure rate of order O(e!),
the Weibull with failure rate of order O(t”),4 > 1, and the Truncated Normal with failure
rate of order O(t), are all GMRL; yet the Gamma, with failure rate of order O(1) is not
GMRL for 8 > 2. As a matter of fact, Gamma mixtures of the Lehmann family based on
the Gamma with shape parameter S are IFR for 8 > 2.

It is also interesting that the only distributions from Table 1 which are TPMR or
PWMRL are the Truncated Logistic and the distributions with G(¢) = logcosht and
G(t) =t + log cosh .

It is zlso remarkable that all of the distributions considered here are MRE, i.e. are
contaminable by the Exponential. One is tempted to conclude that this class is very far
ranging. From a practical standpoint, this contaminable aspect could be quite serious
when analyzing pooled data. It could conceivably happen that much of the data conforms
to an IFR distribution, such as the Weibull or Truncated Extreme, for example, but the
remainder of the data conforms to an Exponential, in which case the overall pooled data
would conform to a DFR distribution.

In the light of the examples in this paper, it is conceivable that the failure 1ate, as
commonly employed, could be quite misleading when dealing with heterogeneous data.
The situation is not unlike the presence of outliers in regression analysis, where a few (or
even one) observations can seriously affect conclusions based on the regression function.
In the case of regression, the analysis can be performed separately, with and without the
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outliers, and the different conclusions assessed. In the case of heterogencous failure data.,
however, the different underlying populations in the mixture are usually not capable of
being separated out; hence, the eflect of contamination may not be assessable. It is an
open and challenging question of how to deal with pooled or heterogencous failure data.
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TABLE 1
DISTRIBUTIONS CONSIDERED

Exponential
Gamma
Weibull
Truncated Extreme

Tiuncated Normal
Truncated Logistic

G(t) = tlog(a+1t),a>1

G(t)=t—~log(l +1)
G(t) = log cosh t
G(t) =t + logcosht

TABLE 2
SUMMARY OF RESULTS

Condition

Family

Examples

Condition (2.2)

PWMR

G; = gt +logcosht, 7 =1,2,
and G, = ¢t + log &{_‘_'2, j=12

Conditions (3.2)
and (3.4)

MRE

All distributions from TABLE 1

Condition (4.3)

PWMRL

Lehmann families based on
the Truncated Logistic,
the G = log cosht

and the G =t + log cosh t

Condition (5.3)

TPMRL

The three examples above

Condition (6.4)

GMRL

Lehmann families based on all
distributions in TABLE 1,
including the Gamma distribution
(with # £2) and

the Truncated Extreme distribution
(with a < 6)
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