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ABSTRACT

Interactive programming environments for languages offer many advantages

over traditional batch-oriented ones, such as immediate static analysis. One form

of analysis is type checking, yet type checking in this setting for languages with

common features like overloading has received little attention.

We implement an interactive type checker for the polymorphic type system

of ML with overloading. The implementation was produced automatically from an

attribute grammar using the Synthesizer Generator, an attribute evaluator generator.

Type inference then is accomplished via attribute evaluation so that if the evaluation

is done incrementally, then type inference becomes incremental as well.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced

Justification.

By
Dist; ibution I

Availability Codes

Avail and/or
Dist Special

huh

b ' ' '" l I I I I I I II



TABLE OF CONTENTS

I. INTRODUCTION ............................. 1

A. IMPLEMENTING Wo . . . . . . . . . . . . . . . . . . . . . . . . . .  3

II. TYPE SYSTEM S ............................. 4

A. W HAT IS A TYPE? . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

B. POLYMORPHISM ........................... 5

C. OVERLOADING ............................ 7

III. THE ML TYPE SYSTEM AND OVERLOADING ......... 10

A . M L .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

IV. TYPE INFERENCE IN SYSTEM MLo . . . . . . . . . . . . . . . . 16

A. PARAMETRIC OVERLOADING AND SATISFIABILITY ..... 20

B. SATISFIABILITY ALGORITHM ................... 24

V. IMPLEMENTATION OF Wo . . . . . . . . . . . . . . . . . . . . . .  27

A. THE ROLE OF ATTRIBUTE GRAMMARS ............... 27

VI. CONCLUSIONS .............................. 39

A. FUTURE WORK ............................ 40

LIST OF REFERENCES ........................... 41

INITIAL DISTRIBUTION LIST ...................... 44

iv



LIST OF FIGURES

2.1 Polymorphic length function ............................ 6

2.2 Pascal min function ...... ........................... 6

2.3 Ada generic min function ............................. 7

3.1 System MLo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 13

4.1 Algorithm Wo ...................................... 17

4.2 Infinite and recursive overloadings ......................... 21

4.3 Type constructors of various arities ....................... 24

5.1 Context-free grammar for M4t type inference .................. 29

5.2 Inherited and synthesized attributes of implementation grammar. .. 30

5.3 Attribute equations for MLo type inference .................. 31

5.4 A partial derivation tree and dependence graph for pr (x, A y .\ z. y z) 32

5.5 Implementation initial screen ............................ 34

5.6 An assumption set defined ............................... 35

5.7 Type iaference of three expressions ......................... 37

5.8 Representation of attribute typeGrammar .................... 38

V



ACKNOWLEDGMENTS

I owe an immense debt of gratitude to Dr. Dennis Volpano for offering timely

and valuable assistance and insight into every aspect of my thesis. His tireless pursuit

of excellence and high ideals have been an inspiring example. He has made my efforts

at the Naval Postgraduate School both rewarding and memorable.

I wish to also thank Dr. Craig Rasmussen for lending his time and expertise

in ensuring the correctness of this thesis. His ability to make difficult concepts

understandable and genuine concern have greatly benefited many students at NPS,

including myself.

Most of all, I would like to express my gratitude to my family. To my wife Tacie;

for her encouragement, thoughtfullness, and untiring patience. To my children; for

providing reminders of what is truly important in life.

vi



I. INTRODUCTION

In this thesis, we assume the reader is familiar with basic type theory and its

associated notational conventions. We also assume a general familiarity with the

concepts and notation of the lambda-calculus. A comprehensive presentation of

these concepts can be found in the texts of Thompson [Tho9l] and Gunter [Gun92].

The advantages of interactive programming environments to increase program-

mer effectiveness and maximize utilization of system resources are significant. For

example, during program development, extensive context-sensitive type checking is a

valuable tool. The immediate recognition of type errors at this stage could yield vast

improvements to the quality and reliability of today's software products. Valuable

system resources would be preserved through decreased waste due to unnecessary

re-compilations. Perhaps more significantly, the advantages of providing an environ-

ment where programmers can focus on the fundamental aspects of a problem with

a much higher degree of continuity are clear.

The study of type inference is integral to this effort. Though significant ad-

vances have been made in this research area, further work needs to be done. This

thesis considers a suitable type system for implementing a polymorphic program-

ming language with overloading. Utilizing this type system, an implementation is

produced that performs incremental type inference in an interactive environment.

One can argue that system ML represents the current state of the art in type

systems. It is a polymorphic type system but prohibits the use of overloading. Yet

the need for overloading in programming languages is well known. Current imper-

ative languages, such as Ada and C++, and even the functional language standard

ML , allow an identifier to represent different types but the resulting programs merely

m m l I m 1



contain monomorphic instances overloaded on an identifiers name. A process called

overloading resolution is required to assign a particular type to an identifier based

on its context. Consider the following expressions, where + is defined over integers

and reals:

(a) 1+2
(b) 1.0+2.0

What is the type of +? We only know that it can have the type int - int -* int

or the type real -i- real - real. But we can reliably assign neither of these types to

+ without first examining its context. In a polymorphic language,.like ML , we can

assign + the type V a. a --+ a -- a but this results in + having too many types. On

the other hand, if we assign + the type real -- real --- real we preclude its use in

expression (a). We will examine these issues in more detail in Chapter II.

What is needed is a means to express a type for + which encompasses all of

its possible types and no more. We can do this with the use of constrained type

schemes. We can then assign to any occurrence of +, regardless of its context, the

type Va with(+ : a --i c - a). a - i a. This means that + can assume any

finite type a --* a --* a, with a instantiated to any particular type for which + is

defined.

Using the concept of constrained type schemes, an extension to system ML has

been developed incorporating overloading called ML.. The associated type inference

algorithm W. infers principal types for expressions in MLo. It turns out that, unless

we place restrictions on the kinds of overloadings we can express using constrained

type schemes, typability in ML. is undecidable. In Chapter IV we consider a form of

overloading called parametric overloading which makes typability in ML decidable

and present an algorithm which determines satisfiability of constraints with respect

to a parametric assumption set.
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A. IMPLEMENTING Wo

W performs batch type inference. In this respect, it is unsuitable for direct

incorporation into a useful interactive programming environment. What is needed

is an incremental approach to type inference which will provide immediate feedback

to the programmer when type errors are encountered.

One might attempt to rewrite Wo to achieve incremental type inference. Our

approach is to utilize the formalism of attribute grammars to express Wo. In this

setting type inference is performed via attribute evaluation. As expressions are input

a corresponding change is reflected in the attribution. If we are able to perform

attribute evaluation incrementally, type inference can also be done incrementally.

Furthermore, it is implicit in the formalism.

We present an implementation of Wo utilizing an attribute grammar in SSL, the

language of the Synthesizer Generator of Grammatech. It is an attribute evaluator

generator that takes as input a set of attribute equations and returns as output

an attribute evaluator, or in our case, a type-checker. By utilizing the Synthesizer

Generator for our implementation we are not only able to produce an attribute

evaluator, but one in which attribute evaluation is done incrementally. As a result,

we are able to achieve both attribute evaluation and type inference in an incremental

setting. Chapters IV and V discuss details of the implementation and the algorithms

used.

3



II. TYPE SYSTEMS

The concept of type systems in programming languages deals with a set of

rules which, when applied to terms of a language, produce types for those terms.

The notion of types in programming languages has been given steadily increasing

importance over the past several years. It is clear that languages with rich type

classes offer programmers more flexibility in modeling real-world objects. Yet, there

remains a significant lack of consensus as to what types are. As consensus in this area

is critical to the successful application of type theory to practical implementations

of new programming environments, this chapter outlines the most important aspects

of type systems and their application to this thesis.

A. WHAT IS A TYPE?

When discussing types, there exists a tendency to confuse the distinction be-

tween implementation issues and the underlying nature of types in general. Actual

machines, for example, provide relatively few types (i.e. integers, floating-point num-

bers, pointers, etc... ). The implementation of types in a high-level language, while

posing some very real problems in the area of compiler design, should remain dis-

tinct from a discussion of type correctness in the higher context of the meaning of

types. With reference to implementation issues, referred to as Reductionist type

correctness, Smith states:

The key issue is how to protect the representation from misuse. [Smi9l]

In this thesis, we will not concern ourselves with the reductionist view of types.

Rather, we will view a type as an algebra, a set of values and operations such that

4



the set is closed under these operations. For example, type int is the set of integers

together with the usual arithmetic operations, but the set of natural numbers and

the predecessor operation do not form a type. This view gives us a fundamental basis

from which to discuss the meaning and usage of types in programming languages

unencumbered by implementation issues. Operations of an algebra are axiomatized,

providing then a semantics that one can use to reason about programs in which they

occur. In order to use the axioms, however, it may be necessary to restrict the types

of certain program arguments to the algebras in question. For example, if we are to

prove that a function adds 1 to its argument then we might wish to fix the type of

its argument to int, say. For some programs, though, reasoning can proceed without

fixing argument types. Such programs are called polymorphic.

B. POLYMORPHISM

Polymorphic means to have many forms. With respect to programming lan-

guages, this refers to programs or terms which have many types, or can operate on

values of many types. Perhaps more intuitively, we can state that the purpose of

polymorphism is to allow programs which use a single name to operate on many

different types of inputs and, perhaps, produce different types of output.

We will first be concerned with a form of polymorphism called parametric poly-

morphism, where polymorphic entities can be described by a universally quantified

formula with all quantification at the outermost level (e.g. Va.a --* a). In Figure 2.1,

we give an example of a function, length, defined in a generic polymorphic program-

ming language. We can ascribe to length type Va. list(a) --, int. It's meaning is a

function which given a list computes its length.

Languages which do not support polymorphism put unnecessary restrictions on

the use of a function. Consider the Pascal program in Figure 2.2. Procedure min

has the type: int --+ int --+ int. Yet there is nothing inherent in min which depends

5



function length(x)
{

if not null(x) then
1 + length(tail(x))

else
0

Figure 2.1: Polymorphic length function

on integer. Replacing integer with char would yield a correct Pascal program with

meaning corresponding to the lexicographic ordering of characters.

It is not uncommon for the claim to be made that Ada is a polymorphic pro-

gramming language, as in [ASU861. One might argue that it is, but really only weakly

so. Through the use of generics, one can define a template for representing what ap-

pears to be a polymorphic function. In the example of Figure 2.3, one might wish to

ascribe the type Va.a --+ a -+ a to the Ada function min within the generic package

MINPKG. This would indicate that min is defined over all instantiations of a,

including int and char. This is obviously not the case, for a generic package cannot

be used directly in Ada. It must first be instantiated for a particular type so that it

can be properly type checked. Though the language provides constructs for express-

ing polymorphism, the resulting compiled program merely contains monomorphic

instances of the function overloaded on the identifier min. Research into providing

polymorphism in an imperative language is ongoing [Car87].

procedure min(x,y : integer);

begin
if x < y then
returnx)

else
return(y)

end

Figure 2.2: Pascal min function
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generic
type ITEM is private;

with function "<"(left,right : ITEM)
return BOOLEAN is <>;

package MIN_PKG is
function min(x,y : ITEM) return ITEM is
begin
if x < y then
return(x)

else
return(y)

end min;
end MINPKG;

Figure 2.3: Ada generic min function

It is clear that parametric polymorphism is a desirable property of practical

programming languages. Yet, in practice, situations arise where parametric polymor-

phism alone cannot provide us with the means to express certain types adequately.

Consider a polymorphic type for min in Figure 2.2. Clearly it is meaningful for

multiple types. However, if we ascribe the type Va. a -- a -+ a to min, terms with-

out meaning, such as min(true, false), become typable. It can be seen that min

depends on "<" being defined over its parameters. What is needed is the ability to

restrict use of min to input types whose values are partially ordered. In other words,

we need to be able to overload "<" so that min is polymorphic yet bounded in the

types of arguments to which it can be applied, a form of bounded polymorphism.

C. OVERLOADING

The common view of overloading is stated as follows:

An overloaded symbol is one that has different meanings depending on

its contezt [ASU86] (emphasis added).
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This process of determining the meaning of an expression by examining its context

is called overloading resolution. This is, in fact, the usual way of treating overloaded

symbols in a program; demanding that the local context of an overloaded symbol

determine a particular overloading to be used at each occurrence. This kind of

treatment is used even in the polymorphic language ML. In fact, any overloading

that requires overloading resolution to determine its meaning is termed an incoherent

overloading and gives rise to potential semantic ambiguity. For example

(2.1) real -- real--. real, 1
. Va.matrix(a) --+ matrix(,t) --+ matrix(a)

is an incoherent overloading of the operator * where * stands for real multiplication

and matrix multiplication.

Consider a term Ax.Ay. x * y. We can infer two different types for it: real

real -+ real and Va. matriz(a) -+ matriz(a) -+ matrix(a). We must apply the

process of overloading resolution to determine the meaning of the term.

A more desirable form of overloading, called coherent overloading, arises when

an overloading is constructed in such a way that its various instances share a corn-

mon semantics. In this case, overloading resolution is not required to ascribe a

unique meaning to terms. It's meaning is uniquely determined from an inspection

of the axioms for the operators occurring in a term. For example, suppose * is

commutative. We can readily see that our overloading in (2.1) is incoherent. For,

although we can derive from (2.1) that Ax.Ay. z * y has type real - real - real and

Va. matriz(a) -- matriz(a) -- matriz(a), matrix multiplication is not commuta-

tive. If we replace our second assumption on * with * : int -+ int --+ int with the

meaning of integer multiplication, the overloading now becomes coherent for both

integer and real multiplication are commutative. So we know that regardless of the

types of x and y, the function is commutative.

8



As will be seen, while our implementation of W does not prohibit the introduc-

tion of incoherent overloadings, our assumption is that all overloadings are coherent.

If this assumption is invalid with respect to a particular overloading, types will still

be correctly inferred for expressions involving that overloading. However, the guar-

antee that the meaning of such an expression is uniquely determined is lost.

Surprisingly, it is common in current languages to introduce incoherent over-

loadings regardless of the potential for semantic ambiguities. In Ada, for example,

the operator "/" is overloaded with different meanings of integer and floating-point

division.

Overloadings allowed in most languages, including: Ada, C++ and standard

ML , are restricted to being finite. In the MLo type system this restriction is

lifted. For example, we can represent an infinite overloadir, -ver lists under equality

as: Va with :a -. a -- bool. list(a) --+ list(a) -+ bool. In this case, if - has an

instance at r r " --+ bool, then it also has an instance at list(r) - list(r) -- bool.

9



III. THE ML TYPE SYSTEM AND
OVERLOADING

In this chapter we consider an extensicn of a Curry-style typed lambda cal-

culus (Ao) with type schemes called System ML . As mentioned previ a type

scheme represents parametric polymorphism, implying that all quantith ,n must

be outermost, or shallow. Research aimed at removing this restriction is described

in [Lei83, McC84, KT90].

A free identifier may be denoted as having infinitely many types via a tvpe

scheme. For instance, the primitive LISP operation hd may be given the type:

Va. seq(a) -- a which would indicate that for any choice of a, say r, hd has the

type: seq(r) --+ r.

System ML preserves the property of principal types; every typable term has a

principal type, one that is more general than any other type derivable for the term.

For instance, the term Af.Axz.fx, f and z occurring free, would have as principal

type Va. V13. (a -. 3) -* (a --. 0). This is regarded as the most general typing for

this expression. This means that any type whatsoever of Af.Ax.fz can be derived

from the type Va. V#. (a -+ fl) -- (a --* 1) by suitably instantiating a and 13;
formally, we say that all the types of Af.Az.fx are instances of the principal type.

The existence of principal types means that a type inference algorithm will always

compute a unique "best" type for a program.

In order to retain principal types, lambda abstraction in System ML , as in A0 ,

is monomorphic. This means that lambda-bound identifiers within a A-expression

cannot be assigned multiple types. Consider the expression (Az.z(Ay.y))Az.z. This

expression is typable in System ML with principal type Va.a -- a. This conforms to

10



the restriction on lambda abstraction since x, while being able to assume infinitely

many values, has polymorphic type Va.a -- a. The restriction is manifest when

an attempt at self-application is made within a A-expression. For example, a term

such as (Ay. yy) x. x is illegal in System ML . Here, y must be able to assume two

different types; (a _+ a) and a for some particular a. This results in the term Ay. yy

having type Va.(VO.0 -+ 3) -- a, which is not a principal type.

In order to allow free identifiers denoting polymorphic values to be assigned

multiple types, one uses the let construct. The above expression can then be rep-

resented as let y = Ax. x in y y. This involves no inner quantification, since each

instance of y is replaced with Ax. x in determining the type for yy.

System ML, like Ao, has a decidable typability problem. In other words, if a

type exists for a program (there may be more than one), the type inference algorithm

will be able to infer a correct type for it. Conversely, if a type does not exist, the algo-

rithm is capable of making that determination. System ML is also widely accepted

and has been incorporated into mainstream languages like Standard ML [HMM86]

and Miranda (Tur86]. Yet, an obvious and practical limitation exists in System ML

that prohibits overloading by restricting the number of assumptions per identifier

in a type assumption set to at most one. Miler himself makes the comment in his

1978 paper [Mi1781 that allowing more than one assumption is desirable.

An extension to the ML type system has been developed called ML4[VoS91. It

retains principal types and allows overloading. Deviations from System ML include

the introduction of constrained type schemes and modifications to the type instanti-

ation and generalization rules. Many extensions of System ML have been proposed

to incorporate overloading. Among these are the systems of (Kae88, CDO91, Smi9l,

Kae92, Jon92l and those related to the development of the functional programming

language Haskell [WaB89, CHO92, NiP93]. All of these type systems share the no-

11



tion of a constrained type scheme in various forms. A critique of these type systems

is given in [Vol93b].

A. MLo

Given a set of type variables (, 13,-y,...) and a set of type constructors (int,

real, bool, list,... ) of various arities, the set of unquantified types is defined by:

r" ::= ,Q I r -- + 7" 1 X ( rl ... , ' ")

The set of quantified types or type schemes, then, is defined by

a::= V (a j,...,a n) with (xl : r,...- , X m : r n). r,

where aj,..., c, is the set of quantified variables of o,, z : T 1 ,. . , X, : r, is the set

of constraints on a, and r is the body of ar. If there are no quantified variables, the

"V" may be omitted. If there are no constraints, the "with" may be omitted. In

our terminology, a will always be reserved to represent a type scheme, a denotes an

abbreviation for al,... , an and C will be used to represent a list of constraints. The

most general form of a type scheme is then:

O::=VU with C. r

A substitution is a set of replacements for type variables applied simultaneously

to all type variables. For example:

is a substitution where all of the ai's are distinct. The substitution is applied to a

type r by simultaneously replacing all of the ai's with the corresponding ri's. The

application of substitution S to type r will be denoted by r S.

Two new type assignment rules, (V-intro) and (V-elim), are given in Figure 3.1;

these represent extensions to System ML developed to accommodate overloading. It

should also be noted that if the constraint list C is empty, these two extensions are

identical to type generalization and instantiation in system ML [Mil78, DaM82].

12



(hypoth) AF-z:o,ifz:o E A

(---intro) AU{x:r}f-M: r'
A Axz.M : r --+ rP

(---elim) A M: r -- r', A - N: r
A F- (MN):r'

(let) AFM: o, AU{x:o}F-N:r
A let x = M in N: T

(V-intro) AUCF-M:r', AF-C[&:=f (a not free in A)
A F- M : V& with C. r'

(V-elim) AF M:V& with C. r', A - CI[5:=;r]
A FM: r'[:= ]

Figure 3.1: System ML,

Consider a term M = Ax. Ay. ((x * x) = y) which contains free identifiers • and

=, and the following assumption set.

(*:redl- real .-+ ral,

A = :int -. int int,
int -int b- bool,

= Vawith a -. a - , = -- a -- .. bool. lit(a) -. list(a) -. boo

Here we show a derivation of

A I- Axz.Ay.((z * z) = y) : Va with a : -. a -. a, =: a -+ a - bool. a -- a --i bool

in ML.

(1) Au: . ) U (=: a-. b U. z : a}u{a}) -: a F -: a (hypoth)

(2) A u a a) U f=: a a - boot u fx: a) U f,: a F *: a or (hypoth)
(3) A. U a.: - . a) U f=i: a a. 6"1 -- f,,,}u : a) U f(f: *} F (,,,) : a a. (-ei)
(4) A u f*: ,- a.€ a) u f=: ,- a tool - 0u (r: a) U fy: al ,- (z. *x: ,a (--.)

(7) AU .: a a U} u(= a - tool u : a} u (y: a)I- .} : a (hypoth)
(6) A U (.: a,- a -a) U f=: a a boot U {x0 : a) u fy: a) F-=: a -.# a --* boot (hypoth)
(7) A U I*: a, -a a) --,}U (=: ,- a- tool -- f,, eu : ,-) u (,: a) F-= (z * x): -a - boot (hyot.)
(3) A. U (.: a a ,- a) U ffi- a-- a &"I 8, 0 u (x: a) U (f,: a) F (x. * ) = V,: boot (hypoh)
(9) A u ( : ,- a- a ) - u {ff: a, a- &**I -, f,,0u : a,) * x .( ) = y,): -. , - to (.-i-i.)
(10) A U{: a-. a U (=: a a- -o, F .A.(( z) = y) : a -- a -oo (-.intro)
(11) A F a a a.-)- Uf=: a -a .ol[a := itJ (hypoth)
(12) A F x.A.((z ) = ) : Va wikh :- aa, =:- aa-ol.a b (V-into)

We are required to introduce assumptions about * and = in our derivation in

order to arrive at a type for M. However, for our derivation to succeed, we need

13



to be able to discharge those assumptions via the V-intro rule. This ensures that

M can be derived from only our initial assumption set A. The V-intro rule deviates

from generalization in system ML in that it requires that the constraint set C be

derivable from the initial assumption set A. This ensures that C is satisfiable with

respect to A. In our derivation, we can see from (11) that satisfiability is achieved

by substituting int for a. In general, there can be more than one finite type which

satisfies this requirement. For example, if = were defined for reals, both int and

real could be used in our substitution for a. Conversely, it is not always possible to

achieve satisfiability. For instance, if we removed the second assumption on * from

A, our derivation would end at (10). There would be no single substitution for a

which could satisfy the overlapping constraint requirements in (11) and we would

conclude that M is untypable with respect to A.

This requirement for satisfiability of constraint sets ensures that the type system

ML. is sound. It is interesting to compare ML, to a similar extension to system ML

proposed by Kaes [Kae88] based on type kinds, where a type kind is a universe of

types over which a type variable may be quantified. It proposed a restricted form

of overloading which is generally the same restriction adopted by ML,. However,

this type system turns out to be unsound in that it does not enforce satisfiability of

constraint sets as outlined above. This results in terms with multiple non-overlapping

constraints being deemed typable in some instances. In the last example of the

previous paragraph, for instance, the term M would be deemed typable. On the

other hand, the similar work of [CDO91], in an effort to relax the restrictions on

overloading in Kaes type system, enforces satisfiability and hence remains sound.

We have shown, by example, the process required to determine the typability

of a term in ML,. This process can be described as a modification to the concept,

used in system ML , of strong type inference [Tiu90l. Formally, strong type inference

says that a term M is typable with respect to an assumption set B if A F M : a is
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derivable for some type o and B C A. This criterion turns out to be less restrictive

than required in the presence of overloading. We are free, under strong type inference,

to choose any assumption set A which contains B. Returning to our derivation, it

can be seen that, in step (11), we would have the freedom to introduce any new

assumptions we required in order to satisfy typability under strong type inference,

resulting in untypable teems being deemed typable. Strong type inference relies on

the premise that assumption sets may contain at most one assumption per identifier.

This premise, of course, does not hold in ML. We then can view typability in MLo

as being that of strong type inference with the requirement that B = A. In other

words, B - M : a must be derivable for some type a.
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IV. TYPE INFERENCE IN SYSTEM ML,

An algorithm, based on W of system ML , has been developed for ML, named

Wo, [Smi9l]. In this chapter, we will discuss type inference utilizing Wo, which is

given in Figure 4.1.

Wo infers principal types for typable expressions in MLo, failing on untypable

expressions. Given assumption set A and expression e, Wo(A, e) returns (S, B, r).

S is a substitution such that AS U B - e : r is derivable. B represents a set of

constraints on A, which describe dependencies associated with overloaded identifiers

occurring in e, needed to arrive at a type for e. Wo, unlike W, utilizes the least

common generalization (LCG) of an identifier overloaded in A. This concept, along

with the function close(A, B, r) and unify(r, rT'), we will examine in some detail in

this chapter.

The LCG of an overloaded identifier can, perhaps, be best described by begin-

ning with an example. Consider the identifier *, overloaded in A with the assump-

tions * : int -. int -. int, * : real --+ real --+ real and * : int --+ real -- real. We

can see that all of these assumptions have in common second and third arguments

which are identical. There is no common ground in their structure with respect to

their first arguments. We can describe their common structure by the use of two

quantified type variables, one for the first argument and another for the remaining

two. We would then assign as the LCG of *, Va,/3.a -. 3 --+ 3.

More formally, we can say that a common generalization of some set of finite

types r1, ... , .rn is r if we can apply some set of substitutions St,... , S,' such that

Vi.rS, = T,. We further say that -r is a least common generalization if, for any other

generalization T' of T, there exists a substitution S such that r'S = -r. We can

16



Wo(A , e ) is defined by cases:

e is x
if x is overloaded in A with LCG V&.r,

return (I, {x: rS}, iS)
where S = [a:= 3] and $ are new

else if (z : V& with C. r) E A,
return ([ ], CS, TS)
where S = [:= 13 and 1 are new

else fail.

e is Az.M
let (S, B, r) - Wo(A U {z: a}, M) where a is new
return (S, B, aS --+ r).

eisMN
let (S,B,T) = Wo(A,M)
let (S', B', r') = Wo(AS, N)
let S" = unify(rS', r' --+ a).where a is new
return (SS'S", BS'S" U B'S", aS").

e is let z = M in N
let (S, B, T) = W.,(A, M)
let (B',a) = close(AS, B, r)
let (S', B", T') = Wo(AS U { : a}, N)
return (S5', B'S' U B", r').

Figure 4.1: Algorithm W,
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extend this principle to constrained type schemes by applying the concept over the

bodies of each constrained type scheme. Least common generalizations are discussed

in [ReyT0j, which gives an algorithm for computing them.

Function unify of Wo performs first-order unification of terms in expressions.

In essence, unify(r', r") returns a substitution S such that r'S = r" S, and fails if

no such substitution exists. Formal discussions of unification are given by Knight

and Robinson in [Rob65, Kni89].

Function close of W, takes as input (A, B, T) and returns a constrained type

scheme for ,-. This is accomplished, essentially, by applying the (V-intro) rule of

MLo to r. Function satisfy within close checks for satisfiability of B with respect to

A. The issue of satisfiability turns out to be one of the more interesting problems in

the ML, type system. We will discuss this problem, therefore, in detail later in this

chapter. Actually, there is latitude in how one computes the closure of a type in

W.. A basic algorithm for close is given by Smith [Smi91] which is sufficient in sup-

porting his soundness and completeness proofs of Wo,, but leaves the critical issue

of satisfiability somewhat unresolved. Our implementation of Wo uses an algorithm

developed by Volpano which incrementally determines satisfiability as an expression

is being constructed [Vo193a]. This approach allows us to detect certain type er-

rors, with respect to constraints, earlier than the alternative approach of delaying

satisfiability checks until the complete expression has been type checked.

We reproduce Volpano's algorithm for close(A, B, r) here for the sake of com-

pleteness:

1. Let V be the set of all finite types in B. For any two types ri and r2 in V,
define an undirected edge (ri, r2) if types r and r2 share a type variable, and
let E be the set of all such edges.

2. Let B' be the set of all constraints z : T' in B for which there is no type r"
such that -r" contains a variable free in A and there is a path from r' to r" in
(V,E).
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3. If B' is unsatisfiable under A then fail.

4. Let C be the set of all constraints x : r' in B for which there is a type r" such
that r and r" share a type variable and there is a path from 7' to r" in (V, E).

5. Re Lurn (B - B',V& with C. r), where & are the type variables free in C or r
but not A.

In steps (1) and (2) we define a graph which connects constraints in B which

share a type variable, and extract types from B which do not overlap on a type

variable. Set B' then contains all of the constraints in B which can be eliminated,

provided they are collectively satisfiable with respect to A. If we assume as we

do in our implementation, that the initial assumption set cannot contain free type

variables, then in the final call to close we are guaranteed that all constraints in B

will be discharged. This approach allows us to perform satisfiability checks in an

incremental manner. We do not eliminate a constraint from B if it requires us to

instantiate a type variable to some finite type; a subsequent term in the expression

may require instantiation of that type variable, in which case we need to be able to

ensure that previous overloading dependencies are satisfied. Consider the example,

slightly modified, from [Vo193a. If we have wasumption set:

I b bool }
+ : int - int --* int,
+ int -4real -+ real,

I=: Va.a --* a --, bool I

recognizing that + has LCG Va.a --. a --+ a, say we have the partial expression

Ax. let y = A.pair(z + z, z + x) in < exp >.

where < ezp> represents a placeholder. W., in the process of computing a type for

y, makes the call,

close(A U {x : t}, B, y * (-y x a)),
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where B is the constraint set,

B={+: -f --*-f , + : - a--* a}.

Function close determines that B' is empty, since all constraints in B share a type

variable, -y. So B is determined satisfiable, and close leaves B intact in returning

(B. V-y with B. -y - (-y x c)).

Now, suppose we replace < exp> with the term x = b. This determines the type of

x to be bool. W,, now makes its final call to close for the entire A-expression as

close(A, B, bool - bool)

where

B = -y -* - -t, + : y -- bool -+ bool}.

In our final call to close, since our initial assumption set contains no free type vari

ables, step (2) of the algorithm discharges all assumptions from B. This final call,

then, fails since the second constraint on + is unsatisfiable. In the previous call to

close, if we had discharged the constraints on + by including them in B', satisfiability

would be decided by instantiation of -f to int and c to real. As a result, the final

call to close would succeed, causing an untypable expression to be deemed typable.

A. PARAMETRIC OVERLOADING AND
SATISFIABILITY

Typability in M4t is Turing reducible to the problem of deciding whether a set

of constraints is satisfiable with respect to a given set of type assumptions. Through

the use of constrained type schemes, we can be very expressive in representing over-

loadings. It turns out that, unless we restrict our representations to certain kinds of
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] int -- int -4 real
/: real - real - real
+: int - int --* int
+: real -r Teal -+ real
+ :Va with +: a -- + a.

list (a) --* list(a)-- list(a)

avg Va with + : a -* a a a, / a -a a - real.

list(a) --+ real
avg Va with + : a a -a, / a + a - real.

set(a) --+ real

Figure 4.2: Infinite and recursive overloadings

overloadings, the problem of constraint-set satisfiability, and therefore typability, in

ML, is undecidable [Smi9l].

Consider the assumption set in Figure 4.2. We can see that the assumptions

on avg and + contain infinite overloadings, e.g., + can assume a finite type, say

list(list(... (list(int)))). Note also the occurrences of recursive overloadings, where

the satisfiability of the constraint set depends on the assumption itself. A mutually

recursive overloading would result if we added a constraint involving avg to the third

assumption on +.

Constraint-set satisfiability remains undecidable in the presence of mutual re-

cursion and/or straight recursion without restrictions fVol94a]. We should therefore

explore suitable bounds on recursion which make our satisfiability problem decidable.

We can see that recursion is a natural occurrence in practice through our example

in Figure 4.2. For this reason, while it makes constraint-set satisfiability decidable,

forbidding recursion entirely is unacceptable.

Various approaches have been examined. Smith gives a restriction called over-

loading by constructors which makes constraint-set satisfiability decidable in polyno-

mial time [Smi91]. But it disallows constraints on an overloaded identifier x involving

y where x 6 y. This would prohibit the overloading on avg in Figure 4.2. Another

restriction, similar to that proposed by Kaes [Kae88] and adopted by Haskell [Has89],
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is called parametric overloading.

Parametric overloading is a more practical form of overloading which allows

naturally recursive overloading like that of Figure 4.2 and makes constraint-set sat-

isfiability decidable. This is the form that we adopt in this thesis.
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Parametric overloading makes use of the concept of the least common gener-

alization of finite types discussed earlier. We give a formal definition here from

[Vol94b].

Definition A..1 Parametric assumption sets are defined inductively.

The empty set is parametric.

If A is parametric with no assumption for z and o, is a constrained type scheme
Vc with C. r such that for each z : p E C, z is overloaded in A and p is a generic
instance of its LCG then A U {z : o} is parametric.

If A is parametric with no assumption for x and B is the set{: V, with C1 . r[a := Xi(1i)]

x : Vj, with C,,. r[a := X,,(I,)]

such that

" x has LCG Va. -r,

" Xj 6 Xj for i # j (where X's are type constructors of various arities), and

" z : p E Ci implies that z has LCG Vr. p, for some r E j,, and either z is
overloaded in A or z = x

then A U B is parametric.

Note that we can only specify constraints which involve an overloaded iden-

tifier; constraints involving finite types or even polymorphic types are not allowed

under our definition. Though there are instances where this limits the practical use

of parametric overloading, this restriction is generally not a limiting factor in prac-

tice. Smith has considered approaches to relaxing this particular restriction for type

checking a language with subtyping and overloading (Smi9l, Smi93j. This thesis,

however, considers overloading only. We can also make the observation that an iden-

tifier z parametrically overloaded in A can always be characterized by an LCG which

has only one quantified variable. This gives us a practical view of the restrictions we

are talking about.
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E0: int, real, boot
E El :list, ref

E2 map, pair

Figure 4.3: Type constructors of various arities

We can characterize parametric overloadings as a regular forest of trees [Vol94b].

These regular forests can be generated by a class of context-free grammars called

regular tree grammars [GeS84]. If A is parametric then every overloaded identifier

x in A has an LCG of the form Vcr.r and the set of finite types 7r to which a can be

instantiated, meaning A F- x : r[a := 7r] is derivable, form a regular tree language or

forest.

B. SATISFIABILITY ALGORITHM

The determination of constraint-set satisfiability, which is computed by the

function satisfiable(A, C), takes the assumption set A and the constraint set C as

inputs. For any parametric assumption set A, we can construct for every overloaded

identifier z a regular tree grammar G. such that if x has LCG Va. r then for any

variable-free finite type r', we can derive A - z : r~a := I"] if an only if r' E

L(G,), where L(G,) represents the regular tree language generated by G.. In this

context, we need only parse -' with respect to L(G.) to determine whether constraint

x . a- := r'] is satisfiable with respect to A.

An algorithm for satisfiability has been developed based on the property that

regular forests are effectively closed under intersection [Vol94b. Our implementation

of W. uses this algorithm. Consider an example using the parametric assumption set

of Figure 4.2 and the type constructors in Figure 4.3, which includes constructors of

arity-0,1 and 2.
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We can see that /, + and avg are overloaded in A with respective LCG's:

Va. a -4 a --* real, Va. a --* a --* a and Va. a -.+ real. Our first task is to construct

a dependency graph of assumptions in A; if an assumption on x contains a constraint

on y we need to produce the grammar of y before we produce x's grammar. We then

can proceed to create regular tree grammars for each overloaded identifier in A based

on dependencies. We see that avg depends on / and + in A so we must compute

the grammar for avg last.

Since identifiers may be overloaded recursively, as in our example, we will rep-

resent occurrences of an identifier z in its own constraint list with the start symbol

for G,. In the case of constrained type schemes with multiple constraints, as occurs

in avg, we will represent this as a new non-terminal. This non-terminal will define

new productions for the grammar which result from the computed intersection of the

constraints. Given a constraint set which contains a constraint on x and a constraint

on y there intersection is computed as L(G.) n L(G.).

We represent the type constructors in E as a grammar GE. We can then take

advantage of the fact that L(GE) n L(G.) = L(G,) for any overloaded identifier z as

we construct our grammars for A. We therefore obtain the following set of grammars

for our example assumption set A:

GE S = int real I bool I list(S)
ref(S) S - +S I pair(S, S)

G1 A = int real

G+ B = int real I list(B)

G..,: C = list(D) set(D)
D = int real

where the non-terminal D represents L(G/) n L(G+).

In our batch implementation of W., where we do not allow occurrences of free

type variables in the initial assumption set, we can create the set of regular tree
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grammars once and reuse the representation. This was the approach we adopted in

our implementation.

We can now determine satisfiability of a constraint set C with relation to an

assumption set B by parsing each constraint in C, of the form id : r, with respect

to the grammars computed for B i.e. if r parses with respect to L(Gd) for each

constraint in C then C is satisfiable. It is possible, though, that we may encounter

overlapping constraints in C. In this case we must first compute the intersections on

any overlapping constraints before parsing those that don't overlap. If the computed

intersection is empty then C is unsatisfiable. An intersection is empty if there exists

no common type constructor of arity-O between constraints. For example, grammar

G below represents an empty intersection.

G =list(G) I ref(G)

This algorithm is exponential in the number of forests input, but this is very

likely the best we can do for the problem has been shown NP-complete (Vo194b]. The

use of our implementation of W. should provide valuable insight into determining

whether the NP lower bound for constraint set satisfiability is a practical limitation.
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V. IMPLEMENTATION OF Wo

As we have shown, algorithm W, has been developed to infer the most general

type of a term given suitable forms of overloading. We envision an interactive pro-

gramming environment in which incomplete expressions are type checked (may have

placeholder terms) and can be subsequently updated, perhaps requiring new types

to be inferred.

In this setting, Wo is unsuitable because it is not incremental. If a function, say

f, is computed on input x, then on input change A, we say that the computation of

f(x + A) is incremental if f(z +A) is computed from only f(x) and A. Although our

implementation does not type check definitions, it nonetheless exhibits incremental

type re-computation at the expression level, as we will show.

In efforts to develop an incremental approach to type inference, we might at-

tempt to re-write Wo. We have, however chosen an approach which makes use of a for-

malism, namely attribute grammars, for achieving incremental type re-computation.

Utilizing this formalism we foresee our implementation not only providing a means

to validate and explore bounds on the problem of type inference in the presence of

overloading, but also as a step towards integrating incremental algorithms for on-line

type inference and those for overloading.

A. THE ROLE OF ATTRIBUTE GRAMMARS

Updating expressions affords an opportunity to re-use previous type compu-

tation. The attribute grammar formalism provides a framework in which type re-

computation is identified with attribute re-evaluation. So if attribute re-evaluation is
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done incrementally then type re-computation is incremental as well and furthermore

it is implicit in the formalism.

Using an attribute grammar we can specify the syntax of a language via a

context-free grammar. Nodes of parse trees are annotated with attributes that are

prescribed by a set of attribute equations given as part of the attribute grammar. If a

parse tree is edited then attributes of the tree are re-computed using the equations so

that a consistent attribution is maintained. Re-computing the attributes is implicit

and is done by the attribute evaluator.

The productions of the context-free grammar for type inference in ML. which

we have developed for our implementation are given in Figure 5.1. Non-terminals are

represented in upper case while terminals are in lower case. Terminals in productions

that begin with Null represent placeholder terms which have universal type Va.cr.

Attributes are distinguished as either synthesized or inherited. Synthesized at-

tributes occur on the left-hand side of attribute equations; inherited attributes occur

on the right-hand side. In other words, in one case attributes are propagated up

(synthesized) in the parse tree and in the other they are propagated down (inher-

ited) in the parse tree. Figure 5.2 shows the inherited (AI) and synthesized (AS)

attributes associated with the productions of Figure 5.1.

To implement W., we define attribute equations, which create dependencies

between attribute values. As the derivation tree is updated these dependencies de-

termine what part of the tree is affected and where selective re-computation, via the

attribute equations, needs to be done in order to re-establish consistent attribute

values throughout the tree. The set of attribute equations in Figure 5.3 then defines

the dependencies required in each attributed production from Figure 5.1 to imple-

ment W.. Functional support, indicated by italics, is simplified and represented by

descriptive function names. The attributes S and B of EXP are precisely those terms

returned by W. as discussed in Chapter IV.
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(1) TOPLEVEL -~ ASSUMPTIONSET EXPLIST
(2) TOPLEVEL -~ NullPrgrm

(3) ASSUMPTIONSET - ASSUMPTIONLIST
(4) ASSUMPTIONSET - NullAssumptions

(5) ASSUMPTIONLIST, -~ ASSUMPTION ASSUMPTIONLIST 2
(6) ASSIJMPTIONLIST -. NullAssumption

(7) ASSUMPTION ID TYPESCHEMELIST

(8) ID -id
(9) ID -NulId

(10) TYPESCHEMELIST1 - TYPESCHEME TYPESCHEMELIST 2
(11) TYPESCREMELIST -~NullTypeSchemeList

(12) TYPESCREME -~TYPEVARLIST CONSTRAINTLIST TYPEEXP
(13) TYPESCIIEME -~NullTypeScheme

(14) TYPEVARLIST1  - QUANTTYPEVAR TYPEVARLIST 2
(15) TYPEVARLIST -. NuliTypeVarList

(16) QUANTTYPEVAR -~TypeVar

(17) QUANTTYPEVAR -~NuilTypeVar

(18) CONSTRAINTLIST1 - CONSTRAINT CONSTRAINTLIST 2
(19) CONSTRAINTLIST -~NullConstraintList

(20) CONSTRAINT -~ID TYPEEXP
(21) CONSTRAINT -4NullConstraint

(22) TYPEEXP -~UmversalType

(23) TYPEEXP -~Int

(24) TYPEEXP Real
(25) TYPEEXP -~Bool

(26) TYPEEXP -~TypeVar

(27) TYPEEXP -~NulType

(28) TYPEEXPI -~Map(TYPEEXP 2 TYPEEXP 3 )
(29) TYPEEXPI - Pair(TYPEEXP 2 TYPEEXP3 )
(30) TYPEEXP1  - List(TYPEEXP 2)
(31) TYPEEXPI -~Seq(TYPEEXP 2 )
(32) TYPEEXPI -. Ref(TYPEEXP 2)

(33) EXPUISTI - EXP EXPLIST 2
(34) EXPLIST -~NullExpression

(35) EXP E
(36) EXP1  - EXP2 EXP3
(37) EXP1  A ED.EXP 2
(38) EXP1  - let ED =EXP2 in EXP 3
(39) EXP -~NullExp

Figure 5.1: Context-free grammar for M4, type inference
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AITOPLEVEL {} ASTOPLEVEL {}
AIAssUMPTIONSET " {} ASASSUMPTIONSET = {typeEnv}
AIASSUMPTIONLIST = {} ASASSUMPTIONLIST = {typeEnv}
AIASSUMPTION = (} ASAssUMPTION = {typeEnv}
AIID = {} ASID = {name}
AIExPLISr = {typeEnv,typeGrammar} ASExPLIST = J1
AIExp = {typeEnv,typeGrammar} ASEXp = {S,B,typeAssignment}

Figure 5.2: Inherited and synthesized attributes of implementation grammar

To illustrate how incremental type recomputation is achieved via incremental

attribute evaluation, consider Figure 5.4. Here we have a partial derivation tree

annotated with a dependence graph showing the propagation of attributes in the

tree. For simplicity, we have chosen one inherited attribute and one synthesized

attribute. The inherited attribute A represents an assumption set. The synthesized

attribute T is a constrained type scheme representing the type of an expression

at each node of the tree. Figure 5.4 represents the partial derivation tree for the

expression pr(x, Ay.Az. y z), where pr is of type V a, 8.a -+ --+ pair(a,/).

Suppose the expression rooted at node n3 is updated. We can see that T at node n2

now must be recomputed but notice that no change has been made to the expression

rooted at node n4 , which therefore need not be retypechecked. In practice, this can

result in significant savings as the tree whose root is n4 can be arbitrarily large.

1. The Synthesizer Generator Platform

An attribute evaluator generator takes as input a set of attribute equations,

such as those in Figure 5.3, for a set of terms and outputs an attribute evaluator that

takes a term and annotates it with an attribution as prescribed by the equations.

There are attribute evaluator generators available today that not only output an

attribute evaluator but output one that evaluates attributes incrementally. One

such generator is GrammaTech's Synthesizer Generator (SynGen).
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(1) EXPLIST.typeEnv = IrnhaIEnt4) '4 ASSUMPTIONSET.typeEnv
EXP LIST -typeGrammar =Compute Gramm ar(ASSU MPTIONSET .typeEnv)

(3) ASSUMPTIONSET.typeEnv = ASSUMPTION LIST. typeEnv
(4) ASS UMPTIONSET.typeEnv = NullTypeEnv

(5) ASS UM PTION LIST,. typeEny ConcatEnv((ASSUMPTION .name, ASSUMPTION -type),
ASSUMPTION LIST 2 .typeEnv)

(6) ASSUMPTIONLIST.typeEnv =NullTypeEnv

(7) ASSUMPTION.name = ID-narne
ASSUMPTION.type = TYPESCHEMELIST

(8) ID.narne = id
(9) IDname = "undeclared"
(33) EXP~typeEnv = EXPLIST1 .typeEnv

EXP.typeGrammar =EXPLIST1 .typeGrammar
EXPLIST 2 .typeEnv =EXP LIST1 .typeEnv
EXPLIST 2 .typeGramnm& = EXPLIST,.typeGrammar

(35) EXP.typeAssignment = Compute Type(ID name, EXP.typeEnv)
(36) EXPI.S = let V = (Unify(EXP 3.S EXP2.typeAssignment),

(EXP3.typeAssignment - NetvVar~beta))) in
V (EXP 3.S EXP 2 .S)

EXP1 .typeAssignment = V beta
EXPI.B = (V (EXPs.S EXP2.B3)) @

(V EXP3.B)
EXP 2.typeEnv = EXP,.typeEnv
EXP3.typeEriv = EXP 2.S EXP,.typeEnv
EXP2.typeGrammar = EXP 1.typeGrammar
EXP3.typeGrammar = EXPI.typeGrammar

(37) EXP1 .typeAssignment = (EXP 2 .S New Var(beta)) EXP2 .typeAssigment
EXPI.S = EXP 2.S
EXPj.B = EXP2.B
EXP 2.typeEnv = ConcatEuwt(ID.namne, beta), EXP1 .typeEnv)
EXP2.typeGrammar = EXP1 .typeGrammnar

(38) let (B', ir) Close( (EXP2 .S EXP1 .typeEnv), EXP2.B,
EXP 2.typeAauignment, EXP1 .typeGrammar)

EXP1 .typeAssigment = EXP3.typeAesignment
EXPi.S = (EXP3.S EXP 2.S)
EXPI.B = (EXP3.S B') 0 EXP3.B
EXP 2.typeEav = EXPI.typeEnv
EXP3.typeEnw = ConcatEni((ID-name, or), (EXP2 .5 EXP1 .typeEnv))
EXP 2.typeGrammar = EXP1.typeGrammar
EXP3.typeGrammar = EXP1.typeGrammar

(39) EXP.typeAnsigmuent = New Var(beta)
EXP.S = NuliSubst
EXP.B = NuilConstraintList

Figure 5.3: Attribute equations for ML. type inference
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n, EXP inh A syn T

n 2 APP inh Asyn T

n3 APP inh A syn T n 4 EXP inh A syn T

pr x \(, ' .zy Z)

Figure 5.4: A partial derivation tree and dependence graph for pr (x, A y.A z. y z)
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We have developed our implementation utilizing SynGen for several reasons.

We are able to get a comprehensive and visually appealing X-windows interface with

relative ease. Utilizing Syngen also fits nicely with our opinion of attribute grammars

as being a desirable approach to achieving incremental type inference. Furthermore,

since we profit by the incremental algorithms embedded in SynGen, new advances

in this area, which may well be incorporated in future versions, will directly enhance

our implementation.

The incremental algorithms used in SynGen rely heavily on the concept of

ordered attribute grammars which were introduced in [Kas80]. The ordered attribute

grammars are a subclass of the noncircular attribute grammars. Though SynGen

can accept attribute grammars which are not ordered, it prohibits circular attribute

grammars.

The language of SynGen is SSL. Every (useful) SSL specification has three

major declaration areas: Abstract syntax which defines a set of grammar rules, At-

tribution which annotates the grammar with attributes and describes their depen-

dencies, and Unparsing which defines display formats for terms, identifies selectable

productions of the grammar and annotates which productions are editable. For our

implementation, Figure 5.1 represents the Abstract syntax and Figures 5.2 and 5.3

represent the Attribution.

2. The Implementation

We deionstrate our implementation through an annotated sequence of

actual X-windows display screens generated by our type checker. Figure 5.5 shows

an initial screen with placeholders for an assumption set entry, where we define

extensions to an Initial Environment, and an expression. The currently selected term,

corresponding to the ASSUMPTIONSET production of our grammar, is underlined.

Note that the type inferred for the placeholder term <exp> is <universal type>.
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TYPE: <aumvmaI type>

Contod: AssumptionSet IAssumption

Figure 5.5: Implementation initial screen.
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M a uumptoI al.8

Wrot. RmpMiWoemtlinlldbullhesalssVusumpthslisl.s

ASSUMPTIONS:

acpon: V awith (mt(a -* (oc-4 cc))). (c -b (int - a));
eq?: V awith (eq?:( - (a -+ oiol))). -(a- b oo));

SvE with 0. (Wisa) -- (li(a)-4 bool));
: (int -(nt - bool));

S(int --+ (mt-- int));
* (real -- (real -+ real));
SV awith (multc(a - (a-- cc)), e?:( -.- (a i- bool))). (liWa) .-. (.tz(a) Hst(a)));

EXPRESSIONS:

TYPE: <univenal type>

Context TVPEE)CP Alpha [EE ChD Doetalio rEai bool~a nitseq H pai

Figure 5.6: An assumption set defined.

We have entered an assumption set in Figure 5.6 with three overloaded

identifiers. The first type scheme for each identifier, without the constraints, must

represent the LCG of that identifier. The implementation currently does not com-

pute the LCG and so it must be provided by the user. Note the terms enclosed in

boxes at the bottom of the screen. These are called transforms. With the placeholder

for TYPEEXP selected, we may select a transform with the mouse and replace the

selected placeholder term with a term associated with the transform. This provides

an alternative means to enter terms without the need for the user to remember the

appropriate syntax. Users may also enter terms directly as long as the term being

edited is defined in the unparsing rules.
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In Figure 5.7 we have entered three expressions whose types have been

inferred. The type of our first expression is represented by a constrained type scheme;

it is the most general type we can give to it and we can be no more specific without

more information. In the second expression, where r : real is defined in the initial

environment, we see that, since mult is defined over reals, applying expon to r satisfies

the constraint on expon and we are able to infer a finite type for the expression. An

unsatisfiable constraint has been encountered in our final expression. This is a result

of the multiple constraints on mult and eq? in the third assumption of mult. We can

see that the grammar for mult is:

{ Gut : S = int j real I list(U)

IU = int J hst(U)f

which clearly does not derive list(real).

It is also possible to directly examine the attributes of the parse tree at

any point in the execution. This functionality, though mainly useful for debugging,

can provide a means to investigate aspects of the implementation from a lower level

viewpoint. For example, one might wish to examine a representation of the regular

tree grammars produced for overloaded identifiers in a given assumption set. This

can be done by examining the attribute typeGrammar at any EXP node of the

parse tree. For instance, Figure 5.8 shows the regular tree grammars computed for

the assumption set of Figure 5.7. Note that we have chosen to represent the start

symbol of grammar Gid as id, for each overloaded identifier id in the assumption

set. In addition, idjL._id2 was chosen to represent L(Gd) fn L(Gid2).

We have given a brief overview, through examples, of the X-windows inter-

face and general functionality of our implementation of W. with parametric over-

loading. By examining instances of type inference in ML, in the setting of our

implementation, we have endeavored to provide the reader with a clearer under-

standing of concepts discussed more formally in previous chapters.
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eCPn:ViWith (Mult(u --4(a--ea))).(CE--I(imt-. ci));
eq?: V aiwith (eq?(a --*(a -4bool))). (a -4 (cE--*bool));

:VCith ().(Iiutc)--* (it(CL) -+boo));
(int -4(int --*boo[));

(int -+ (nt -4 in));

V a with (mIlt(ci -4 (ai a~c)), eq?:(ci --# (a -4 bool))) .Iist~c) -. (Iitc) -4 Iist(ci)))

EXPRESSIONS:

TYPE: V(ci) with(mla-(-.))(-(c.);

TYPE: (int-rmI);

TYP: <ontranterror> ->
(ln(Iiuzrei)-Qutrh)-qwit0s)))
is umsatksflable.

Figure 5.7: Type inference of three expressions.
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*s*how*e (road-woni

M (intlI badl I roed I but(Z) I meq(Z) I rd(Z) I (Z -# Z) 1pIr(Z

(intl I ml I liut(oq? .inult));

?nlL (Uhtcqinut) I iut);

Figure 5.8: Representation of attribute typeGrammar
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VI. CONCLUSIONS

We have considered the problem of type inference in an extension to the type

system ML called ML.. The type system MLo is a formalism which is more suitable

for implementing future languages by virtue of its incorporation of global overloading.

Yet this increased functionality introduces new problems in developing algorithms

which make typability decidable. Without restrictions on the types of overloadings

and the structure of constraint sets, typability in MLo is undecidable. Typability

in ML. is Turing reducible to the problem of determining if a set of constraints

is satisfiable with respect to a given set of assumptions. If assumption sets are

restricted to parametric overloadings the problem of constraint set satisfiability is

NP-complete.

The type inference algorithm W. with parametric overloading has been imple-

mented utilizing the formalism of attribute grammars with GrammaTech's Synthe-

sizer Generator. It performs type inference on expressions in an interactive envi-

ronment. Type inference is performed incrementally so that the types of partial

expressions can be inferred and efficiency of re-computation in the presence of up-

dates is enhanced. Consequently, immediate feedback is provided to the user as

expressions are entered and updated.

Our implementation will be used to examine the practical bounds on the prob-

lem of constraint-set satisfiability. It will also represent a significant tool for explor-

ing the limits of bounded polymorphism, or overloading, in programming languages.

Can we devise new forms of overloading which are more flexible than parametric

overloading yet retain a decidable satisfiability problem?
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A. FUTURE WORK

This thesis will serve as a basis for further research aimed at ultimately de-

veloping a type discipline for a class of implicitly-typed imperative programming

languages with subtypes. overloading and polymorphism. A more immediate goal

is to merge our implementation of Wo with an SSL implementation that performs

on-line type inference utilizing the type inference algorithm W of ML.

On-line type inference allows the introduction of new global definitions as a

program is produced. This differs from our batch implementation, where we have

assumptions about types of free ids available to each expression in the form of an

assumption set. The incorporation of overloading in an on-line implementation will

be the subject of the next step in this research effort. This will produce an interactive

environment where global definitions, perhaps overloaded, may be introduced at any

point in the program. Types of all dependent terms are then recomputed as a result

of these new definitions.
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