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Why This Paper is Important

With respect to economic control chart design, this paper demonstrates that trade-off analysis following

optimization has many advantages over optimization constrained by average run length. While researchers

of economic design have been aware of the relatively flat cost response surface in the region of optimality,

we demonstrate how this property may be exploited for improved control chart design. The flat cost

surface tends to increase sharply beyond certain ARL values, causing pre-specified ARL constraints to

sometimes result in substantially higher than optimal costs. Results from our trade-off approach show that,

by focusing on the flat cost area, vast improvements in ARL characteristics can be obtained with minimal

cost penalties.
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Abstract

Trade-off analysis following optimization of an economic CUSUM control chart is proposed. This

procedure exploits the relatively flat response surface in the neighborhood of the optimal design.

Comments are made with respect to criticisms of pure economic models and the difficulties with

constrained optimization are discussed. Two previously published numerical examples are used to

demonstrate that, using trade-off analysis, huge gains in statistical properties are attainable with little

increase in cost. By focusing on designs with improved in-control and out-of-control run length

performance, false alarm rates can be reduced and the ability to quickly detect process shifts can be

increased.



Introduction

The notion of selecting control chart parameters to minimize cost over time has intuitive appeal. The cost

is typically a function of many factors, among them are the cost of defects produced during an out-of-

control condition prior to the control chart signal, the cost of a false alarm, and the cost of obtaining sample

data. Although cost modeling of quality control systems was introduced prior to his paper, Duncan (1956)

proposed the first fully economic model for single assignable causes, complete with a formal optimization

methodology. His paper provided the foundation for much of the subsequent work in this area.

Montgomery (1980) and Svoboda (1991) have reviewed the literature of economic control charting.

Economic control chart models are either unconstrained or constrained. Most of the early research was

performed with models which are not constrained. However, Saniga (1989) used constraints with R and R

charts and McWilliams (1992) has proposed a cycle duration constraint which placed an upper bound on

the 95th percentile of out-of-control times. Torng, Montgomery and Cochran (1992) have investigated a

constrained economic model for the EWMA procedure. The constraints usually involve specifying a

minimum power and/or control interval width, or equivalently a minimum in-control average run length

(ARL) or a maximum ARL for a process shift of a specific magnitude.

Woodall (1986) mentions several disadvantages associated with the economic design of control charts.

Among them: 1) the parameters selected by the model may permit excessive false alarms and subsequent

introduction of excess variability in the process through overadjustment, 2) economic control charts are

needlessly insensitive to small shifts, 3) the use of such charts is inconsistent with the philosophy of

Deming who espouses that defects should not be allowed and hence tight control of processes is required.

Furthermore, models which lead to short-term profits without maintaining the controlled variable as tightly

as possible about the target value violate a Deming principle and 4) economic control charts ignore the

effect of management and workers efforts on the cost and time parameters. These are forceful arguments

indeed, but consider the following: In today's competitive environment, cost and time must be managed

while striving for continuous improvement in product quality. Economic models which limit false alarms



and provide detection of small shifts are a reality. Deming himself (Papadakis, 1985) developed a cost

model for sampling inspection.

The use of statistically-constrained economic control chart models can overcome concerns 1) and 2) above.

However, we feel that these models suffer from a number of drawbacks. They ignore the fact that the

response surface in the region of optimality is relatively flat (see, e.g., Montgomery (1991), Torng,

Montgomery and Cochran (1992)). We show that large gains in ARL properties can be achieved with only

a small increase in cost by moving away from the optimal point. The ARL (or Type I and Type H error)

constraints, established a priori, may lead to a solution far from the flat response surface. Furthermore, the

selection of constrained values is often an arbitrary matter. For example, a particular in-control ARL value

may be selected because subjectively, below that value there is a detrimental effect on employee morale. A

priori ARL constraints ignore the cost penalties associated with extremely high in-control or extremely low

out-of-control constraints. Even when an experienced control chart designer is available to determine

"good" values, it is not clear how the cost fimction behaves near those design values. It is possible that

slightly relaxed statistical performance constraints can result in greatly reduced costs. This paper proposes

the use of a pure economic model followed by a search on the cost response surface over a region near the

minimal cost. This trade-off approach considers numerous control chart configurations in the vicinity of

the optimum cost, which allows the analyst and decision maker to interactively choose the best overall

solution.

Economic Statistical Approach Using Trade-Off Analysis

The design of the control chart usually involves an engineer or analyst deciding the sample size n, the

sample frequency h, and the control interval limits L, for a particular type of control chart. The process is

assumed to begin in-control. A search for an assignable cause begins once the sample statistic exceeds the

control limits. The cycle continues until the assignable cause is removed and the process is repaired.

The model used for the application of the economic statistical trade-off method was the "unified" approach

of Lorenzen and Vance (1986). Their model incorporates the three types of economic costs used in many
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previous economic designs: the costs of sampling and testing, the costs associated with investigating an out-

of-control signal and the search and repair of any assignable causes found, and the costs associated with

the production of defetive items.

The Lorenze and Vance (LV) model was structured similarly to other economic models which solve for

the expected cost per cycle divided by the expected cycle length. The objective is to determine the

minimum cost design for a specified set of cost and time parameters. The optimal control chart design

parameters are determined from the minimal expected cost per hour function:

C = [ Co / X + Ci(-T + nE + h(ARL2) + BiTi + 82T2)]/ECT

+(sY/ARLI+W)/ECT (1)

+[((a + bn) / h)(1 / X - t + nE + h(ARL2) + 86Ti + 82T2)VECT

where ECT = 1 / X + (I - )sT / ARLI -c + nE + h(ARL2) + Ti + T2 (2)

ECT represents the expected cycle length, which is the time between successive in control periods.

Insert Table I here

Their approach has several attractive features that provide flexibility for a) dealing with different types of

process search and/or repair conditions and b) selecting most any type of control chart. The LV model

contains dummy variables that indicate whether or not a process continues during search and/or repair of

the assignable cause. This single assignable cause model is developed in terms of in-control and out-of-

control average run length values instead of levels of risk (a and 03) common to many existing designs.

Thus, any type of control chart that generates ARLs can be modeled using this approach. This unique

feature allows for comparison of different control chart types using metrics such as cost and statistical

performance.

The length of time between assignable causes is generally assumed to be an exponential random variable in

economic control chart designs. The LV model is robust to deviations in the assumed in-control time

distribution. McWilliams (1980) showed that substituting the Weibull distribution with varying shape and
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location parameters for the assumed exponential distribution, has virtually no effect on either the optimal

control chart design or the resulting cost. Banerjee and Rahim (1988) developed an approach for Weibull

time between process upsets using Duncan's model.

The control chart selected for this demonstration is the two-sided analytic CUSUM. The analytic form of

the CUSUM is computationally simple and focuses on deviations from the target. The CUSUM is an

effective control chart procedure for detecting small shifts. It is also flexible enough to work well with size

one samples, common in the chemical and process industries.

To model the CUSUM control chart using the LV model, the ccntrol interval width L used by Lorenzen and

Vance was replaced by the CUSUM decision interval (we refer to as H), and reference value k. A search

of possible combinations of the decision variables n, H, k, and h is conducted to find the optimal values n*,

H*, k*, and h* that minimize hourly cost. The optimization procedure uses a grid search for values of n,

H, and k, and a Golden section search for h to minimize expected hourly cost. The CUSUM control chart

in-control and out-of-control average run lengths were computed using the Markov chain approach

described by Brook and Evans (1972). The two-sided CUSUM was used because it is important to guard

against shifts in either direction (Lucas (1985).

It is recommended (see Montgomery (1991), Hawkins (1992)) to select the reference value k equal to the

magnitude of the process shift (A) divided by two. According to Chiu (1974) and Lucas (1982), this

approach gives the smallest out-of-control ARL (ARL2) for a given in-control ARL (ARL I). Because our

interest is in finding alternatives with improved statistical performance, we set the reference value to A/2.

We have also conducted numerous sensitivity studies on the LV model CUSUM and confirmed this

recommendation (Simpson and Keats (1993)).

Although the grid search is not computationally efficient , it worked well in this case, providing the

alternative designs near the optimum cost. An optimal cost was determined by using the Golden Section

search on h for discrete combinations of n and H. The designs were then ordered according to cost and the

ARL pairs were plotted to provide the analyst with a visual interpretation of the ARL structure of designs

near optimal cost. 4
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As was discussed earlier, the cost surface tends to be relatively flat in the region near the optimum, which

provides many design alternatives within only a few percent of the optimal solution. These design

alternatives tend to offer a wide range of ARLI and ARL2 combinations. As cost increases fractionally,

designs resulting in longer ARLI and shorter ARL2 values are available. The following examples show

the dynamics of the design characteristics near the values of optimal cost.

Example 1

We considered the example presented by Lorenzen and Vance (1986). They used a fraction defective

control chart to isolate assignable causes for high readings in carbon-silicate content in castings. High

levels of carbon-silicate indicated that the castings would have low tensile strength. We decided to apply

the CUSUM control chart with many of the same initial cost and time parameter values. Modifications

were made to the size of the shift and the fixed cost per sample. Previous analysis of CUSUM economic

models by Goel and Wu (1973) showed that the size of the process shift is one of the most significant

factors affecting the design parameters. Two scenarios representing different size shifts were tested. We

used a small (0.25) and medium (1.25) process shift. The example variables are:

X = 0.03 E = 0.333 a = $1.0

To = 0.333 CO = $115 b = $4.0

T1 = 0.333 C, = $950 Y = $975

T2=1.5 W = $975 A = 0.25, 1.25

The Golden Section and grid searches discussed earlier were run on a 486 personal computer in about 30

seconds, computing not only the global minimal cost, but also the local minimal costs for given n and H

values. Both the global and local minimum costs were obtained using the Golden Section search to locate

the minimal cost sampling interval given fixed values of the other design parameters n, H, and k. The

sample size ranged from one to 12. The decision interval values ranged from 0.5 to 6.5 in 0.5 increments,

resulting in 156 different combinations of n and H.. For each shift scenario, the resulting designs were
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ordered by cost and plotted. Table 2 shows the design alternatives closest to the optimal value for the 1.25

shift case.

Insert Table 2 here

Notice that deviations from optimal cost are very small and in some cases the ARL pairs offer significant

performance improvement. For instance, the minimal cost ARL2 can be decreased from 7.0 to 4.7 while

nearly doubling the ARLI (393.9 to 736.0), for only a 1.3% increase in cost. The ARL2 can be reduced

even further to 3.3, keeping the ARLI at 393.9 by increasing cost 2.5%.

The plot shown in Figure I is a three dimensional representation of the ARL trade-offs versus cost. The

data points for this illustration were obtained by applying the model to the LV example (shift of 0.75). The

sample size and CUSUM decision interval were varied (n: 1-12, H: 4.0-6.5) to generate the points below.

The resulting surface highlights the relative insensitivity of changes in ARLI to changes in cost.

Considerable gain in the in-control run length can be made for small cost penalties. Conversely, changes in

ARL2 cause steep changes in cost. The costs increase exponentially with decreasing ARL2 for a given

ARL 1. This asymptotic behavior is also illustrated later in Figure 6.

Insert Figure I here

Figures 2 and 3 present the same type of information in a clustered bar format, which enables the designer

to view the ARL structures of the chart alternatives. Figure 2 shows several designs with improved ARLI

and ARL2. For only a 1.2% cost increase, the in-control ARL can be increased 50% (41.8 to 61.5) and

ARL2 can also be reduced slightly. Figure 3 is plotted using a logarithmic scale because the design

alternatives can be quite large. For example, the ARLI can be increased from the optimal cost ARLI of

393.9 to nearly 8700 while obtaining a slightly smaller ARL2. This design costs about 6.1% more than the

optimal design, but may be worthwhile in some situations.

Insert Figure 2 here
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Insert Figure 3 here

Example 2

We used a modification of the example shown in Montgomery (1991, p. 420) to test the behavior of the

trade-off approach using somewhat different input values. In this example, control of soft drink bottle

thickness is monitored because the manufacturer is interested in detecting whether the wall of the glass is

too thin. If this condition occurs the internal pressure generated during filling will cause the bottle to burst.

The Montgomery example applied Duncan's model which assumes the process continues during search and

repair of the assignable cause. We set those flags (8, and 82) to one in the LV model to simulate that

situation. We also assumed a nominal value for the defect cost during in-control condition. Two scenarios

representing the small and medium process shifts were developed and tested. The process cost and time

values are:

X = 0.05 E = 0.0833 a = $1.00

To = 1.0 Co = $5 b = $0.10

T, = 1.0 C, = $100 Y = $50

T2=1.0 W = $25 A = 0.25, 1.25

The results of the grid search show a flatter cost surface than the LV example. Using the same grid search

method of determining optimal designs for various values of n and H, the initial cost parameters from this

example resulted in more design alternatives with the same percent increase in cost. For instance, within

2% of the optimal cost for the 0.25 shift LV example, 37 design alternatives were available. In this

example, 63 design alternatives are options within the same 2% of optimal cost. Thus, it is possible that

more significant improvements in the statistical properties of the control chart design can be made for the

same fractional increase in cost. In the case of the 0.25 shift (Figure 4), the ARLI can be doubled (16.7 to

33.9) with only a small increase in ARL2 (6.0-7.8) while cost increases just 0.9%.
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Insert Figure 4 here

For the medium process shift (Figure 5), the optimal cost design ARLI (58) can be almost doubled (111),

with very small change in ARL2 (1.77 to 1.99) for a cost increase of only 0.2%. The ARLI can be raised

to 209, with an ARL2 of 1.77 for a 2.8% cost increase.

Insert Figure 5 here

The ARL improvements we have discussed are representative of the types of improvements that can be

made within a few percent of the optimum economic cost. The figures displayed many options within

about five percent of minimum cost. Greater improvements can be made in both types of ARL but at some

point the response surface becomes steep and cost increase substantially. Figre 6 shows the relationship

between costs and the two ARL types for a given example. The Lorenzen and Vance baseline case was

used with a shift of 0.75 process standard deviations. To generate the ARL alternatives, we modified the

decision interval (H) and sample size (n) with fixed reference value (k=A/2), and minimum cost sampling

interval (h). The general shape of the curves indicate the need to carefully select ARLs, especially in the

case of ARL2. ARL2 can be improved in the immediate vicinity of the optimum from 17 to about 7 for

slight increases in cost. Further improvements in ARL2 however, becomes increasingly expensive. For the

in-control case, improvements in ARLI can generally be made at either a slight increase in cost or a slight

increase in ARL2, depending on the region of operation. This figure clearly shows the dangers associated

with pre-specified ARLs. Pre-specifying ARL2 < 8 costs very little relative to the optimum. Requiring

ARL2 < 4 costs about 30% more than optimum. This type of illustration can help the decision maker

decide which cost/statistical performance parameters are best for a particular scenario.

Insert Figure 6 here
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Futher Research and Summary

The trade-off approach could be enhanced by developing a multi-objective program that allows the designer

to select weights for the three objectives: minimize cost, maximize ARLI and minimize ARL2. Ideally, the

program would contain an interface so that what-if scenarios could be developed and solved so that the

designer could interact to develop the "best" solution. The GRG nonlinear optimization technique is a good

candidate approach. A more detailed description of this technique can be found in Luenberger (1989) or

Reklaitis et al. (1983).

Similar to the economic statistical designs, the trade-off approach was developed to address the concerns

mentioned in the introduction about economic designs. By focusing on designs with improved in-control

and out-of-control run length performance, false alarm rates can be reduced and the ability to quickly detect

shifts can be increased. Improved statistical performance with focus on achieving the largest improvement

in the region of minimum cost is also consistent with Deming's philosophy of tight process controls. The

charts presented in the examples enable designers to quickly understand the financial impacts of ARL

improvements.

The trade-off approach provides the analyst or engineer with a view of a portion of the cost surface that

may not be available under the constrained statistical economic approach. The constrained approach is

certainly valid if the constraints are required for a specific reason. It is possible though, that in many

instances the control chart designer may not be able to define firm statistical constraints needed to

successfully monitor and detect process assignable causes.

The primary advantage of the trade-off approach over other economical statistical approaches is that it

focuses the attention on the design alternatives in the immediate vicinity of the optimum. It takes some of

the guess work out of constraint formulation. Instead of arriving at a single best constrained design, the

analyst can prepare several options with slightly different benefits, so that the decision maker can select the

best choice for the organization.

9



REFERENCES

[1] Banerjee P. K. and Rahim, M. A., "Economic Design of X-Control Charts Under Weibull Shock
Models", Technometrics, 30, 407-414 (1988).

[21 Brook, D. and Evans, D. A., "An Approach to the Probability Distribution of Cusum Run Length",
Biometrika, 59, 539-549 (1972).

[3] Chiu, W. K., "The Economic Design of Cusum Charts for Controlling Normal means", Applications
in Statistics, 23, 420-433 (1974).

[4] Duncan, A. J., "The Economic Design of X-Charts Used to Maintain Current Control of a Process",
Journal of the American Statistical Association, 51, 228-242 (1956).

[5] Goel, A. L. and Wu, S. M., "Economically Optimum Design of CUSUM Charts", Management
Science, 19, 1271-1282 (1973).

[6] Luenberger, D. G., Linear and Nonlinear Programming, 2nd ed. Addison-Wesley, Reading, MA
(1989).

[7] Hawkins, D. M., "A Fast Accurate Approximation for Average Run Lengths of CUSUM Control
Charts", Journal ofQuality Technology, 24, 37-43 (1992).

[8] Lorenzen, T. J. and Vance, L. C., "The Economic Design of Control Charts: A Unified Approach",
Technometrics, 28, 3-10 (1986).

[9] Lucas J. M., "Combined Shewhart-CUSUM Quality Control Schemes", Journal of Quality
Technology, 14, 51-59 (1982).

[10] McWilliams, T. P, "Economic Control Chart Designs and the In-Control Time Distribution: A
Sensitivity Study", Journal of Quality Technology, 21, 103-110. (1989).

[11] McWilliams, T. P., "Economic Control Chart Models with Cyclic Duration Constraints", Economic
Quality Control, 7, 164-194 (1992).

[12] Montgomery, D. C., "The Economic Design of Control Charts: A Review and Literature Survey",
Journal of Quality Technology, 12, 75-87 (1980).

[13] Montgomery, D. C., Introduction to Statistical Quality Control, Second Edition, John Wiley
and Sons, New York (1991).

[14] Papadakis, E.P., "The Deming Inspection Criterion for Choosing Zero or 100 Percent Inspection",
Journal of Quality Technology, 17, 121-127 (1985).

[15] Reklaitis, G. V.; Ravindran, A.; and Ragsdell, K. M., Engineering Optimization, Methods and
Applications, John Wiley & Sons, New York (1983).

[16] Saniga, E. M., "Economic Statistical Control Chart Designs With an Application to X and R
Charts", Technometrics, 31, 313-320 (1989).

[17] Simpson, J. R. and Keats, J. B. , "Sensitivity Study of the CUSUM Control Chart with an Economic
Model", Arizona State University Quality and Reliability Engineering Research Technical Paper,
93-15 (1993).

[181 Svoboda, L., "Economic Design of Control Charts; A Review and Literature Survey", Statistical
Process Control in Manufacturing, J. B. Keats and D. C. Montgomery, editors, marcel dekker,
New York, 311-330 (1991).

10



[19] Torng, J. C., Montgomery, D. C., and Cochran, J. K., "Statistically Constrained Economic Design of
the Exponentially Weighted Moving Average Control Chart", Arizona State University Quality and
Reliability Engineering Research Technical Paper, 92-18 (1992).

[201 Woodall, W. H., "Weaknesses of Economic Design of Control Charts", Letter to the Editor,
Technometrics, 28, 408-409 (1986).

II



Symbol Input variable
n Sample size
I Number of assignable causes per hoar

Tn  Exp sear h Ume when fse alurm
Ti Expected time to discover the assignable cause
T) ExpecW tim to mar the poess
E Time to a dle a crt one item

Cn Quality costb while producing in control
c, Quality costAr while Pducing out-or-cotrol
w Cost for searth/epair
a Fixed cost per sample
b Variable cost per unit
Y Cost per false alam
A Mean shift - number of standard deviations slip when out-of-omtrol

61 Flag for whether production continues durng searches (1-yes, O-no)
87 Flag for whether production continues during repairs (1-yes, O-no)

ARLI In-control avere run leng
ARL2 Out-of-control avea e run len

L X bar chart - number of standard deviations from control limits to center line
h Hours between samples
k CUSUM reference value
H CUSUM decision interval
___ _ _ Probability of a type I error or probability of a false alarm

~ Probability of a type II error or 1.0 minus the power of the

Table 1.
Explanation of terms



Cost Cad InCree Simple Size Reference Decision Saiqie ARLI ARL2
Value Ieval kIVMl

$14Z31 0.0% 1 OM 49 0.3 39, 7.0
$142.6 0.2% 2 0.625 3.5 0.67 209.9 3.8
$142.72 0.3% 1 0.625 4.6 0.31 736.0 7.8
$142-.98 0.5% 1 0.625 3.5 0.41 209.0 6.2
$143.07 0.5% 2 0.625 4.0 0.60 393.9 4.2
$143.09 0.5% 2 0.625 3.0 0.78 11.0 3.4
$143.80 1.1% 1 0.625 5.0 0.2 1369.8 8.6
$144.23 1.3% 2 0.625 4A 0." 736.0 4.7
$144.50 1.5% 3 0.625 3.0 1.04 111.0 2.6
$144.85 1.8% 3 0.625 3.5 0.89 209.9 2.9
$145.10 2.0% 2 0.625 2.5 0.97 5e 2.9
$145.23 2.1% 3 0.625 2.5 1.27 5p 2.3
$145,24 2.1% 1 0.625 3.0 0.51 MA1, 5.4
$145,26 2.1% 1 0.625 5.5 0.27 2542.2 9.4
$145.74 2.4% 2 0.625 5.0 0.52 1369.8 5.1
$145.93 2.% 3 0.628 4.0 0.13 393.9 3.3

Table 2.
LV example with shift = 1.25
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Abstract

Economic control chart designs have not been universally implemented in industry for reasons such

as the parameters are too numerous and often difficult to accurately estimate. A possible solution

to these problems involves performing a sensitivity analysis of the inputs to determine which

parameters are significant and how parameter misspecification impacts the results Using two-level

fractional factorial designs, we identify highly significant parameters in the Lorenzen and Vance

economic control chart model under a Cumulative Sum (CUSUM) condition. The response

variables examined are expected cost per time unit, sample size, sampling interval, control chart

decision interval and reference value. A verification test and misspecification test supported our

conclusions with respect the expected cost per time unit response variable. The results of the study

should make industrial implementation an easier task.



2

1. Introduction

Economic considerations are often overlooked as important factors in the design and use of control

charts. To momtor and maintain statistical control of a process, control charts are often designed

with respect to statistical criteria only. Many times statistically optimal control charts can be more

costly than a control chart whose type and design parameters are determined by the economic

consequences.

Models that determine control chart parameters based on economic factors are attractive if an

organization is interested in minimizing costs related to the control process. These economic

models include measures of statistical performance in the total cost equation, so that the optimum

cost design incorporates considerations for the level of type I and type II error. Extensive research

has been conducted in the design and development of economic models. Unfortunately, little of this

successful research has been adopted by the engineers in industry. One of the concerns most often

expressed in attempting to apply these models in real world situations is that there are too many

inputs to estimate. One method for reducing the number of terms is to choose an economic model

and the appropriate type of control chart and perform a sensitivity analysis on the input variables

to determine which are critical.

To help promote the practical use of economic models in industry and help bridge the gap between

researchers and practitioners, we have selected a robust economic model and a robust control chart

to identify the input parameters significant to a general class of problems. We apply the Lorenzen

and Vance (LV) economic model to the CUSUM control chart and perform a sensitivity analysis

on the model inputs. Two previously published examples are used to test for robustness of the

results. A third example is used to verify the findings of the sensitivity. Finally, because the size

of the process shift is an important factor, an analysis of a wide range of possible shifts is also

conducted. From these analyses we determine the key factors driving cost in the LV CUSUM
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model, the key factors driving the control chart decision variables, and the extent to which certain

input variables may be misspecified without appreciably affecting cost.

2. Literature Review

As control charts became more common in industry, cost considerations became an important

factor. Cost modeling of quality-control systems was introduced prior to Duncan [1], but he

proposed the first fully economic model for single assignable causes, complete with a formal

optimization methodology. He developed an economic model for the Shewhart control chart. His

paper provided the foundation for much of the subsequent work in this area.

Although the Shewhart chart is very popular and easy to interpret, it is not able to quickly detect

small process shifts. The CUSUM chart is being increasingly applied in industry (60,000 charts

monitored daily by DuPont alone) because a) it can quickly detect small process shifts b) it is very

effective with size one samples, important for the chemical and process industries, c) the simpler

analytic form of the chart is now widely accepted, and d) the CUSUM can be combined effectively

with the Shewhart chart to detect both small and large shifts [2].

The CUSUM control chart was developed by E. S. Page [3]. The scheme became popular after

Barnard's article [4]. The basic form of the CUSUM for individual continuous variables is

Si = Max (0, cY, - k + Si-)

where,
Si = the CUSUM value
Yi = (xi - T)/s is a transformation of xi, the ith observation
T = the target value
s = an estimate of the process standard deviation
k the reference value
c = a multiplier set to +1(-1) to detect increases (decreases)

in the process mean.
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The reference value prevents an early signaling of an out-of-control situation. The initial value of

Si is usually set at zero. The current CUSUM value Si is compared with the CUSUM control

limit, H. The process is deemed out-of-control when Si > H. The one-sided CUSUM has a

minimum value of zero and a single control limit H. As in the case of Shewhart charts, if shifts in

the process mean in both directions (two-sided case) are of interest, then two separate CUSUM

charts are maintained. To apply this procedure for sample averages x, is replaced with 5i, and s

with s/Fn.

Research on economic models for CUSUM charts began when Taylor [5] first introduced a

CUSUM chart economic model, but his approach required that the sampling interval and sample

size be prespecified in order to solve the model. Goel and Wu [6] developed a single assignable

cause model, similar to Duncan's, for the CUSUM chart. Their work also provided sensitivity

analysis on some of the model parameters. Chiu [7] modified previous approaches to CUSUM

economic modeling by working with the analytic form of the CUSUM instead of the V-mask

version. The analytic form offers the advantages that it is easier to compute and easier for the

operator to understand.

In recent years, vast amounts of successful research have been accomplished in developing

economic control chart designs, but very little has actually been implemented in industry. Some of

the reasons given by Saniga and Shirland [8] and Chiu and Wetherill [9] are that the mathematical

models are complex, and the model input parameters are too numerous and often hard to estimate.

Others have noted that the assumptions used in developing the economic models do not apply in

real world situations.

The solutions to the economic model implementation problems are steadily surfacing. In part due

to the renewed interest in total quality control, statistical quality control computer software is

abundant and widely used, making the use of complex models relatively simple. Although the

input parameters may in some cases be difficult to estimate, Montgomery [101 noted that the cost



response is relatively flat and generally insensitive to errors in parameter estimation. Reducing the

number and required precision of input parameters has been studied by Montgomery [11], von

Collani [12), Montgomery and Storer [131, and Pignateillo and Tsai [14].

Advances in the applicability of these models to real world situations have also surfaced. Recently

proposed economic models, such as that of Lorenzen and Vance [15], are quite robust to the type

of control chart used, and the assumed assignable cause distribution. Before the Lorenzen and

Vance (LV) model was introduced, economic models could only be used for X-bar and fraction

defective charts. Because the LV model incorporates null and specified shift average run lengths,

most any control chart can be used. Deviations from the traditionally assumed exponential time

between occurrences in economic designs has been studied by Hu [16], Banerjee and Rahim [17

and 18]. Specifically with regard to the LV model, McWilliams [191 found that their design is

quite insensitive to the assumed distribution. He performed a sensitivity analysis on model

performance for non-exponential assignable cause distributions by applying the LV model under

Weibull distributions with varying shape parameters. He found that the LV model was insensitive

to the Weibull family assignable cause distribution. This finding provided additional rationale for

using the LV model in situations requiring a robust framework.

3. The Lorenzen and Vance Economic Design

The Lorenzen and Vance model provides the practitioner the most flexibility of any of the widely

known single assignable cause models available. By using average run lengths instead of type I

and type II errors, LV allows the analyst to choose from any type of variable or attribute control

chart. The authors also included indicator variables in the model to identify whether production

ceases or continues during search and/or repair, so that any possible operational scenario can be

appropriately modeled.
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The LV model incorporates three types of cost ratios into its formulation: 1) the cost of producing

non conforming items, 2) the cost of false alarms and of search and repair of the true assignable

cause, and 3) the cost of sampling. The control chart design parameters for the LV model sample

size (n), sampling interval (h), and control interval width (L) are chosen to minimize the expected

cost per hour function:

Co / X + Ci(--t + nE + h(ARL2) + 8Ti + 82T2)

ECT

sY/ARLI+W
ECT

+ [(a + bn) / h][l / X - - + nE + h(ARL2)+ 6T + 82T21
ECT

where ECT = I / X + (I - Si)sTo / ARLI -r + nE + h(ARL2) + Ti + T2. (2)

ECT represents the expected cycle time, which is the time between successive in control periods.

Table 1 provides a description of each of the model parameters as well as definitions of other terms

used in the paper.

Table 1.

Input Variables

To model the analytic CUSUM control chart in the LV framework, their control interval width

term L was replaced by the CUSUM decision interval H, and reference value k. A search of

possible combinations of the decision variables n, H, k, and h is conducted to find the optimal

values n*, H*, k*, and h* that minimize hourly cost. The optimization procedure included a grid

search on n, H, and k, and a Golden section search on h to minimize expected hourly cost. The

CUSUM control chart average run lengths were computed using Brook and Evans [201 Markov

chain approach. Because the matrix inversion routines were computationally time consuming,
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ARL tables for various combinations of n, k, H, and shift in the process mean (A) were developed

and a file lookup technique was used for the optimization runs.

4. Sensitivity Analysis

By examining the cost equation for the LV model it is evident that, although the terms fully

describe the economics of the control chart process, there are many parameters to estimate. The

purpose of the sensitivity analysis is to determine the key drivers of cost and four control chart

decision variables. We performed an experimental design and analysis of the twelve time and cost

input parameters. Table 2 provides a description of each input and indicates which portion(s) of

the model that variable affects. The response variables were expected cost per time unit, CUSUM

decision interval, CUSUM reference value, sampling interval, and sample size. The designs were

developed and run against two different previously published examples. We used the example

from the LV paper [15] and an example from Montgomery [21, p. 420] to provide a diverse set of

realistic scenarios. We also developed a third scenario, somewhat different from the first two to

verify the results of the two example sensitivity analyses. We modified the variables in groups

(significant versus nonsignificant) and compared the cost response variability for each group.

The designs for the first three scenarios included low, center and high levels for process shifts of

0.25, 0.75 and 1.25. An additional design was developed to determine whether the important

variables changed if larger process shifts were assumed. This design used process shift levels of

1.25, 1.75 and 2.25. We used the LV example input levels for this experiment and compared the

results to the smaller shift scenario from Example 1.

Table 2.
Input Variables
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A resolution IV 212-6 design was selected so the main effects could be estimated by not being

confounded with the two factor interactions. A range of +/-30% for the baseline variable values

was used to calculate the high and low levels. Because the equation to calculate expected cost was

deterministic, a single design replicate and single center point were run. The deterministic nature

of the response required us to use a heuristic approach for identifying significant variables.

Significant variables were determined by inspection of the normal probability effects plots. Higher

order interaction terms were pooled to provide an estimate of error. Significant main effects were

identified in an effort to identify the most parsimonious model. The proposed effects were used to

develop an analysis of variance (ANOVA) model and the effect estimates and standard errors were

calculated. Typically a cutoff point of p=0.05 is used to determine significance. In this situation

however, because the cost model is deterministic, there is no noise term in the ANOVA other than

the higher order terms. As a result, the standard errors of the effect estimates tend to be very small

and most of the main effects and two factor interactions were significant at the five percent level.

In the interest of parsimony and dimension reduction, only the major contributors were selected for

inclusion into each model.

Example I

The first scenario used in the sensitivity analysis was an example used by Lorenzen and Vance [ 151

when they introduced their economic model. They considered the economic implications of the use

of a fraction defectives chart (p-chart) in a foundry operation. The purpose of the control chart was

to isolate assignable causes for high readings in carbon-silicate content in castings. High levels of

carbon-silicate indicated that the castings would have low tensile strength.

We chose to apply the CUSUM control chart using many of the same initial cost and time

parameter values. We made small changes to a number of the variables to obtain reasonable

symmetric high and low levels for the designed experiment. We also included a nonzero fixed cost
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per sample term. The high (low) levels for each variable were found by increasing (decreasing) the

center point by about 30 percent. The design points are listed in the appendix. The center point

levels are listed below.

X = 03 E = 0.333 a=$I.O

To = 0.333 C0 = S115 b =4.O

T = 0.333 C! = S950 Y S975

T2=1.5 W = S975 A =.75

The runs were made using the algorithm previously described on a 486DX-33 personal computer

with each optimization taking about three minutes. The 212"6 fractional design including the center

point resulted in 65 runs per scenario. The analysis consisted of determining the significant

variables for each of the decision variables.

Table 3.
Example I results (shift of 0.25-1.25)

The results show that four of the twelve inputs significantly drive the cost response. The

significant variables include X, C0, C1, and A. As the number of assignable causes per hour

increases, cost also increases. The two quality cost variables, Co and C1 are also positively

correlated with cost. The process shift has a negative correlation, meaning that it costs more to

detect smaller shifts. This four variable model accounts for over 90% of the total variability in the

cost equation.

The CUSUM reference value (k) is almost entirely dependent on the level of the process shift. This

result is consistent with practical guidelines that suggest setting the reference value equal to the

process shift to be detected [21 and 22). According to Chiu [7] and Lucas [2], this approach gives

the smallest out-of-control ARL (ARL2) for a given in-control ARL (ARL I). Because the optimal
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cost control chart does not exclusively consider statistical performance, the resulting control chart

reference values did not always equal A/2, but were some function of A.

The sensitivity models for the design parameters of decision interval, sampling interval, and sample

size captured only about two-thirds of the response variability. Because the LV equation contains

many occurrences of these responses both directly and indirectly (via ARL values), we suspected

that many terms influenced these optimal cost design parameters. However, it was important to

only select the largely significant variables because we were interested in a parsimonious model

describing the underlying relationship between the responses and the influential inputs. The results

for the CUSUM decision interval (H) indicated that A was the primary influence and Y, the cost of

a false alarm, also had an affect. For the sampling interval response, we expected the LV model

cost of sampling ratio term to have an impact. Indeed, the major contributors included three terms

from that ratio X, E, and b and a fourth term C1, the cost while producing out-of-control. The

sample size was a function of E and A. In our ANOVA model development, we sometimes

encountered unequal error variances, requiring some transformation of the response variable. In

each case a logarithmic transformation worked well. We have indicated the models requiring

transformations in the tables.

Although the study included five response variables, the most important variable was expected cost

per time unit. The results of this example indicate that only four inputs significantly drove the cost

response. If this result can be generalized for the LV model using the CUSUM chart, the

practitioner's emphasis can be directed toward accurate estimation of this reduced set of variables.

The next example will be used to test the generalization.

Example 2

We used a modification of the example shown in [21, p. 420] to test the sensitivity analysis results

using somewhat different input values. In this example, control of soft drink bottle thickness is
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monitored because the manufacturer is interested in detecting whether the wall of the glass is too

thin. If this condition occurs the internal pressure generated during filling will cause the bottle to

burst. The Montgomery example used an X-bar chart and applied Duncan's model that assumes

the process continues during search and repair of the assignable cause. We used a CUSUM chart

and, in the LV model, set the flags (81 and 82) to one to simulate the process continuing during

search and repair. We also assumed a nominal value for the defect cost during in-control

condition. The process cost and time values used as the center points were developed from the

example and the high and low values were obtained using the same range (+/- 30%) as Example 1.

The center points are listed below.

X = 0.05 E = 0.0833 a=$1.00

To= 1.0 C0 =$5 b= $0.10

T = 1.0 C1 = S100 Y= S50

T2 =1.0 W = S25 A= 0.75

This example provided an opportunity to test the diversity of the sensitivity results from the first

example. It is important to compare the magnitudes of certain cost ratios between examples when

searching for significantly different inputs. Some practical cost ratios include the ratio of cost to

locate and repair the assignable cause to the quality cost per hour while producing out-of-control

(W/C 1). The ratio of quality cost per hour while producing out-of-control to the quality cost per

hour while producing in-control (CI/C 0) is also a practical consideration and may intuitively have

an impact on input variable significance. Table 4 shows that several of these ratios were compared

for the two examples and the results indicated that the examples were different.

Table 4.
Cost Ratios
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The results of this example are shown in Table 5 listed with the LV example results. Many of the

significant variables from the LV example are also significant in the Montgomery example. For

the cost response, the only change from the Example 1 results was that CO was not significant. For

the reference value response, A was again the only significant variable, accounting for 99% of the

variability. In the decision interval (H) model, two additional variables (a and b) were significant,

indicating that sampling costs also affected H. Additional variables were also significant in the

sampling interval model. The sample size model consisted of three terms E, C1 and A that

accounted for 91% of the variability.

Table 5.
Example I and 2 results (shift of 0.25-1.25)

The following suggestions are made based on the results from both examples. For the cost

response it makes sense to seriously consider all four inputs (X, Co, CI, and A) significant in the

first example. The process shift A drives the reference value. The major inputs in determining the

decision interval H are Y and A. The inputs E, CI and b were significant in both sampling interval

(h) models. The combined results of the sampling interval and sample size models indicate that as

E and C, decrease, the decision variables h and n increase.

Small vs. Large Process Shifts

We pointed out earlier that the two examples contained significantly different input values. The

only independent variable with identical values between examples was A. Because we chose the

CUSUM for the sensitivity, small to medium shifts (0.25, 0.75 and 1.25), were used in the designs

because the CUSUM is better than the Shewhart in detecting small shifts. We were interested if

the results of the sensitivity would change if A represented medium to large shifts (1.25, 1.75, and
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2.25). We selected the Lorenzen and Vance example (Example 1) to perform another 212-6 design

with a single center point run. The results are shown in Table 6 together with the small shift case.

Table 6.
Example I using small and large process shifts

For the cost response, the size of the shift makes no difference in terms of important variables.

Both models accounted for over 90% of the variability. The larger process shift still drove the

reference value. The results for the other decision variables were similar to the small shift case,

with minor changes in two of the models. As was the case for the examples in the small shift

scenario, A was significant in each model that was developed for the large shift scenario. These

results are not surprising, but they emphasize the importance of correctly specifying the size of the

process shift.

Verification

Although the results for the two control chart variables (k and H), the sample size, and the

sampling interval are interesting and can be beneficial in the decision making process, often the

primary focus in economic design is the overall process cost. We decided to develop a third

example, different from the other two, to test the results of the sensitivity analysis. A verification

of the significant variables was performed by comparing the range of optimal costs for non-

significant variable fluctuation (+/- 30%) versus the optimal cost range for significant variable cost

fluctuation. We first ran a baseline case using the following input variable values.

X = 0.067 E = 0.10 a = $0.30

To = 0.6 CO = SIO b = $0.10

T1 = 0.3 C, = S50 Y = S20

T2 = 0.2 W=SIO A = 0.75
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The expected relation between each input variable and the response was determined by studying the

LV cost function. For instance, it is clear from (1) that as the fixed cost per sample (a) increases,

total cost will increase. The relation between cost and other terms such as the expected time to

discover the assignable cause (TI), depend on the value assigned to the process continue or cease

flags (8, and 82).

Table 7.
Results of verification test

Based on the results of the two example sensitivity analysis, three variables (k, C, and A) were

significant in both examples and CO was significant in only the first example. For this

demonstration, all four variables were labeled significant. The remaining eight inputs comprised

the non-significant group. The significant variables were then modified by 30% in the direction of

increasing cost, while the non-significant variables were held constant. The optimal cost was

recorded. Then the significant variables were modified in the direction of decreasing cost again

holding the others constant and the optimal cost was recorded. The difference between the costs

was calculated to determine the impact the significant variables had on cost variability. A similar

experiment was conducted altering the nonsignificant variables, holding the significant variables

constant. The difference in costs for the nonsignificant variables was compared to the significant

variable cost variability. The results in Table 7 show that the four significant variables represent

an 85% change in optimal cost while the eight nonsignificant variables only alter the baseline cost

by 21%.

Misspecification

In effort to determine the impact that inaccurate estimation of the input variables have on optimal

cost, we developed a scenario using the verification test baseline and altered the variables in groups
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(significant, then nonsignificant) by +/- 10%. Table 8 shows that modifying the non-significant

variables over this range of 20% only changes optimal cost by 7%, but misspecifying the

significant variables by the same amount affects cost by 24%. Obviously the emphasis on accurate

estimation should be placed on the four significant inputs.

Table 8.
Results of misspecification test

Conclusion

The sensitivity analysis was designed to provide insight into the significant inputs to the LV model

when the CUSUM control chart is employed. By restricting our analysis to highly significant

factors only, the four main effects: rate of shift, magnitude of shift, and the costs while producing

in and out-of-control, have the largest effect on the dependent variable, expected cost per time unit.

We have also identified key input variables with respect to the decision variables of the LV model,

control limit, reference value, sample size and time between samples. We have verified our

conclusions concerning highly significant variables with respect to expected cost per time unit by

changing and not changing the highly significant variables and noting the effects on expected cost.

A major obstacle to industrial implementation of the LV model is the large numbers of terms and

difficulties in their estimation. Our results indicate that one could use as few as four input

variables and observe relatively small changes in the cost response relative to the full model. This

study provides a basis for the investigation of the use of cost ratios rather than actual cost as a

further aid to implementation.
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Symbol Description

Number of assignable causes per hour

TO  Expected search time when false alarm

T Expected time to discover the assignable cause

T2  Expected time to repair the process

E Time to sample and chart one item

CO  Quality cost/hr while producing in control

C1  Quality cost/hr while producing out-of-control

W Cost for search/repair

a Fixed cost per sample

b Variable cost per unit

Y Cost per false alarm

A Mean shift - number of standard deviations slip when out-of-control

n Sample size

h Hours between samples or sampling interval

k CUSUM reference value

H CUSUM decision interval

81 Flag for whether production continues during searches (I-yes, 0-no)

82 Flag for whether production continues during repairs (1-yes, 0-no)

ARLI In-control average run length

ARL2 Out-of-control average run length

L X bar chart - number of standard deviations from control limits to center line

a Probability of a type I error or probability of a false alarm

_ _ Probability of a type II error or 1 .0 minus the power of the test

Table 1.
Explanation of Model Terms



LVModel Component

Symbol Description Cost of Cost of search Cost of
producing bad and repair (true sampling
product cause and false

alarms)

X Number of assignable causes per hour x x x

To  Expected search time when false alarm x x x

T, Expected time to discover the assignable cause x x x

T2  Expected time to repair the process x x x

E Time to sample and chart one item x x x

CO  Quality cost/hr while producing in control x

C1  Quality cost/hr while producing out-of-control x

W Cost for search/repair x

a Fixed cost per sample x

b Variable cost per unit x

Y Cost per false alarm x

Mean shift - number of standard deviations slip when out-of-control x x x

Table 2.
Input Variables



Response Transform? R2  E C0  C1  a b Y A

cost 0.91 + + +

Reft,.nce Value 0.88 +

Decision Interval 0.67 +

Sampling Interval log e 0.64 - +

sample Size loge0 0.67

Table 3.
Example I results (shift of 0.25-1.25)



I /c wi/c C, /b WIY

[ Exwple 1 1.03 .3 237.5 1.0

Example 2 0.25 20.0 1000.0 0.5

Table 4.
Cost Ratios



Response Transform? R2  I E C0  C1  a b Y A

Cost

LV example 0.91 + + +

Ex. 10-1 09 4." + +

LV example 0.88 +

Ex. 10-1 0.99 J-
Decision Intwval

LV example 0.67 + -

Ex. 10-1 log e 0.64 -

Sampling interval

LV example loge 0.64 - " " I-
Ex. 10-1 0.58 "- + - - -

Sample Size

LV examie log e 0.67"

IEx. 10-1 0.91"

Table 5.

Example I and 2 results (shift of 0.25-1.25)



Responses Transform? Rt2  E C0  C1I b Y

Cost

Small Shift 0.91 + + + -

Large Shift 0.90 + + +

Refwance Value

Small Shift 0.88 +1

Large Shift 0.80 1+
Decision Interval

Small Shift 0.67 + 1
Large Shift 0.60

Sampling Interval

Small Shift log e 0.64 -

Large Shift log e 0.76 + @ +

Sample Size

Small Shift log e 0.67-

Large Shift insufficiert variability - all but 8 runs had n=l as optimum

-- sample size

Table 6.
Example I using small and large process shifts



Input vanabits Results

; To  TI T2  E .C: 01 W a b Y A& Cost %change

expected relation with cost +.- - + + + + . + -

baseline -00167 0.6 0.3 0.2 0.10 10150 10 0.3 0.10 20 0.75 16.07

modify non-significant variables _...

maximize cost .0.06 0.42 0.21 0.14 0.131 10 13 0.39 0.13 26': 0,. ___ 17.56

minimize cost I0.06.7 0.78 0.39 0.26 0.07. 10, so 7 0.21 0.07 14 0 1.7$ _ 14.10 21%

modify significant variables -- - - - -- - - - - " .

maximize cost 0.087 06 0.3 0.2 0.10 .13 ___ 10 0.3 0.10 20 0.25 23.73

minimize cost 0 06 03 0.2 0.10 7 10 0.3 0.10 201 1007 5%

Table 7.
Results of verification test



/n p vaaboas Results

I To  T! T2  E CG C0 W a b Y A Cost %change

~$) (s() () ) (() over base

expected relation with cost + -:+ . + + + - _ __: __

baseline 0.07 0.6 0.3 0.2 0,1 14 50 10 0.3 0.1 20 0,75 16.07

modify non-significant variables ....- -.- - - - - _____ _____

maximizecost 0Q0 0.54 0.27 0.18 0.11 1 0 11 0.33 0.11 221 075 1 1662

minimize cost 0.07 0.66 0.33 0.22 0.09 10 50 9 0.27 009 18 0.75 15.52 7%

modify significant variables - - - - - - - - -- -

maxmizecost 0.07 0.6 0.3 0.2 0.1 11 .55 10 0.3 0.1 20 O,68, 18,10

minimize cost 0.06 0.6 0.3 0.2 0.1 :45 10 0.3 0.1 201: 0.831 14.20 24%

Table 8.
Results of misspecification test



E ~azpk I Daip Poumi md Rahu

kwpu vafreb Oi variabes

. TO TI T2 E CO Cl W A Y A Cost k H I h n ARLI I ARL2
0.04 0.23 0.23 1 0.23 80 1250 1275 0.7 2.8 675 0.25 382.61 0.25 5.5 0.15 3 93.78 22.81
0.02 0.23 0.43 2 0.43 150 1250 1275 0.7 2.8 1275 0.25 376.99 0.25 6.5 0.19 3 162.55 27.87
0.02 0.43 0.43 1 0.43 80 650 1275 1.3 2.8 1275 1.25 152.34 0.625 S 0.25 1 1369.79 8.64
0.02 0.23 0.43 2 0.23 80 1250 1275 1.3 5.2 1275 025 343.07 0.25 5.5 0.28 3 93.78 22.81
0.02 0.43 0.43 1 0.43 150 650 1275 1.3 52 675 0.25 305.84 0.125 5.5 0.46 2 41.81 20.07
0.02 0.43 0.43 2 0.43 150 650 675 0.7- 2.8 675 1.25 196.31 0.625 4.5 0.26 1 735.97 7.84
0.02 0.23 0.23 2 0.23 150 650 1275 0.7 5.2 675 0.25 295.72 0.25 4 0.56 3 38.45 15.57
0.04 0.23 0.43 1 0.23 ISO- 650 1275 1.3 2.8 1275 0.25 360.74 0.25 6.5 0.29 4 162.55 22.87
0.04 0.43 0.43 1 0.43 150 1250 675 0.7 2.8 1275 0.25 467.58 0.25 6.5 0.15 3 162.55 27.87
0.04 0.23 0.43 2 0.43 150 650 675 1.3 5.2 675 0.25 340.36 0.125 6.5 0.21 1 61.53 34.03
0.02 0.23 0.23 1 0.43 80 650 675 0.7 5.2 675 1.25 143.25 0.625 4 0.34 1 393.04 7-04
0.02 0.43 0.43 2 0.43 80 650 675 0.7 5. 1275 0.25 251.14 0.25 6 0.29 2 123.88 33.13
0.02 0.23 0.23 2 0.23 80 650 1275 0.7 2.8 1275 1.25 143.05 0.875 3.5 0.42 2 1094.70 4.67
0.02 0.43 0.43 1 0.23 80 650 1275 0.7 2.8 675 0.25 226.19 0.25 5.5 0.30 3 93.78 22.81
0.04 0.23 0.23 1 0.43 80 1250 1275 1.3 2.8 1275 1.25 233.72 0.625 5 0.15 1 1369.79 8.64
0.02 0.23 0.23 2 0.43 150 650 1275 1.3 5.2 1275 1.25 219.24 0.625 4.5 0.37 1 735.97 7.84
0.04 0.43 0.23 2 0.43 150 650 1275 0.7 2.8 1275 0.25 351.92 0.25 6.5 0.23 3 162.55 27.87
0.04 0.23 0.23 1 0.23 150 1250 1275 0.7- 5.2 1275 125 300.97 0.625 5 0.15 1 1369.79 8.64
0.02 0.43 0.23 2 0.43 150 1250 675 1.3 5.2 675 0.25 368.40 0.125 6.5 0.17 1 61.53 34.03
0.04 0.23 0.23 2 0.23 80 1250 675 1.3 5.2 675 1.25 206.73 0.625 4 0.18 1 393.94 7.04
0.04 0.43 0.23 2 0.43 80 650 1275 0.7 5.2 675 125 190.53 0.625 4 0.25 1 393.94 7.04
0.04 0.43 0.43 2 0.43 150 1250 1275 1.3 5.2 1275 1.25 307.47 0.625 4.5 0.18 1 735.97 7.84
0.02 0.23 0.23 1 0.43 150 650 675 0.7 2.8 1275 0.25 290.05 0.25 6.5 0.29 3 162.55 27.87
0.02 0.43 0.43 2 0.23 80 650 675 1.3 5.2 675 1.25 141.43 0.875 2.5 0.72 2 189.01 3.55
0.04 0.23 0.23 2 0.23 150 1250 675 1.3 2.8 1275 0.25 435.67 0.25 6.5 0.15 3 162.55 27.87
0.02 0.43 0.23 1 0.43 80 1250 1275 0.7 5.2 1275 0.25 350.34 0.25 6.5 0.17 2 162.55 36.91
0.04 0.43 0.43 2 0.23 80 1250 1275 0.7 2.8 1275 125 221.91 0.625 5 0.15 1 1369.79 8.64
0.02 0.43 0.23 1 0.43 150 1250 1275 0.7 2.8 675 1.25 23622 0.625 4.5 0.17 1 735.97 7.84
0.04 0.43 0.43 2 0.43 80 1250 1275 1.3 2.8 675 0.25 393.49 0.25 5 0.15 2 70.42 25.93
0.02 0.43 0.43 1 0.23 150 650 1275 0.7 5.2 1275 1.25 221.28 0.875 3 0.67 2 456.84 4.12
0.02 0.23 0.23 1 0.23 80 650 675 1.3 5.2 1275 0.25 251.30 0.25 5.5 0.42 3 93.78 22.81
0.02 0.43 0.43 2 0.23 150 650 675 1.3 2.8 1275 0.25 283.93 0.25 6.5 0.36 4 162.55 22.87
0.02 0.23 0.23 1 0.23 150 650 675 1.3 2.8 675 1.25 199.44 0.875 3 0.51 2 456.84 4.12
0.03 0.33 0.33 1.5 0.33 115 950 975 1 4 975 0.75 247.69 0.375 6.5 0.15 1 529.72 16.95
0.04 0.23 0.23 2 0.43 150 1250 675 0.7 2.8 675 1.25 257.42 0.625 4.5 0.15 1 735.97 7.84
0.02 0.23 0.43 21 0.43 80 1250 1275 0.7 5.2 675 125 182.94 0.625 4 0.24 1 393.94 7.04
0.04 0.23 0.43 1 0.43 80 650 1275 0.7 5.2 1275 0.25 337.30 0.25 6 0.23 2 123.88 33.13
0.02 0.43 0.23 2 0.43 80 1250 675 1.3 2.8 1275 1.25 162.07 0.625 5 0.17 1 1369.79 8.64
0.02 0.43 0.23 2 0.23 80 1250 675 0.7 2.8 675 0.25 273.88 0.25 6 0.17 3 123.88 25.33
0.04 0.43 0.23 2 0.23 150 650 1275 1.3 2.8 675 1.25 23929 0.875 3 0.37 2 456.84 4.12
0.04 0.43 0.23 1 0.43 150 650 675 1.3 5.2 1275 1.25 243.26 0.625 4.5 0.26 1 735.97 7.84
0.02 0.43 0.23 2 0.23 150 1250 675 0.7 5.2 1275, 125 232.11 0.625 5 0.20 1) 1369.79 8.64
0.04 0.43 0.23 1 0.23 150 650 675 0.7 5.2 675, 0.25 342.91 0.125 5.5 0.34 2 41.81 20.07
0.02 0.43 0.23 1 0.23 150 1250 1275 1.3 2.8 1275 0.25 373.58 0.25 6.5 0.23 4 162.55 22.87
0.04 0.43 0.43 2 0.23 150 1250 1275 0.7 5.2 675 0.25 461.57 0.125 6 0.19 2 50.96 22.17
0.04 0.23 0.23 1 0.43 150 1250 1275 1.3 5.2 675 0.25 481.49 0.125 6 0.15 1 50.96 30.66
0.04 0.23 0.43 2 0.43 80 650 675 1.3 2.8 1275 1.25 168.39 0.625 5 0.18 1 1369.79 8.64
0.02 0.23 0.43 1 0.43 150 1250 675 1.3 5.2 1275 1.25 246.8 0.625 4.5 0.24 1 735.97 7.84
0.02 0.23 0.43 1 0.23 80 1250 675 0.7 2.8 1275 1.25 161.46 0,625 5.5 0.15 -1 2542.24 9.45
0.02 0.43 0.23 1 0.23 80 1250 1275 1.3 5.2 675 1.25 180.61 0.625 4 0.24 1 393.94 7.04
0.04 0.43 0.43 1 0.43 80 1250 675 0.7 5.2 675 1.25 226.21 0.625 4 0.17 1 393.94 7.04
0.04 0.43 0.43 1 0.23 150 1250 675 1.3 2.8 675 1.25 270.55 0.625 4.5 0.15 1 735.97 7.84
0.04 0.23 0.43 2 0.23 80 650 675 0.7 2.8 675 0.25 263.16 0.25 5.5 0.22 3 93.78 22.81
0.04 0.43 0.23 2 0.23 80 650 1275 1.3 5.2 1275 0.25 322.71 0.25 5 0.37! 3 70.42 20.35
0.02 0.23 0.43 2 0.23 150 1250 1275 1.3 2.8 675 1.25 234.64 0.875 3 0.34 2 45684 4.12
0.02 0.23 0.43 1 0.23 150 1250 675 0.7 5.2 675 0.25 369.95 0.125 6 0.25 2 50.96 22.17
0.04 0.23 0.23 2 0.43 80 1250 675 0.7 5.2 1275 0.25 429.27 0.25 6 0.15 2 123.88 33.13
0.02 0.23 0.23 2 0.43 80 650 1275 1.3 2.8 675 0.25 227.40 0.25 5.5 0.30 3 93.78 22.81
0.04 0.43 0.43 1 0.23 80 1250 675 1.3 5.2 1275 025 440.90 0.25 5.5 0.21 3 93.78 22.81
0.04 0.43 0.23 1 0.43 80 650 675 1.3 2.8 675 0.25 277.63 0.25 5.5 0.18 2 93.78 29.47
0.04 0.43 0.23 1 0.23 80 650 675 0.7 2.8 1275 1.25 163.83 0.625 5.5 0.15 1 2542.24 9.45
0.04 0.23 0.43 1 0.23 80 650 1275 1.3 5.2 675 1.25 199.23 0.875 2.5 0.53 2 189-01 3.55
0.04' 0.23 0.43 1 0.43 150 650 1275 0.7 2.8 675 1.25 251.73 0.625 4.5 0.20 1 735.97 7.84
0.02 0.23 0.43 1 0.43 80 1250 675 1.3 2.8 675 0.25 293.86 0.25 6 0.15 2 123.88 33.13
0.04 0.23 0.43 2 0.23 150 650 675 0.7 5.2 1275 1.25 232.86 0.625 4.5 0.25 1 735-97 764


