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ABSTRACT

The area of concern addressed by this thesis is the development of a 3-D visual

simulation to aid in the testing of ground detection and foot placement algorithms for an

articulated walking robot's foot pads on uneven terrain.

Several collision detection algorithms and terrain mapping techniques were studied to

determine which approach would lend itself readily to the rapid detection of initial ground

contact and the required orientation needed to place each foot firmly on the ground.

As a result of these studies, a real-time, realistic and aesthetically pleasing graphical

simulation for the testing of control software for articulated walking machines has been

developed which utilizes the Silicon Graphics 3-D visual simulation toolkit, Performer.

Not only is rapid ground contact sensing and foot orientation possible, it is accomplished

without using extraneous data structures making the algorithm generic enough to use on

any terrain model.
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I. INTRODUCTION

A. AQUAROBOT

Aquarobot (Figure 1) is a 6 legged articulated walking robot developed by the Port and

Harbour Research Institute of Japan (PHRI), for the purpose of surveying the construction

of an undersea rock mound seawall foundation. This seawall is being built to protect

Figure 1: Aquarobot Being Lowered into Yokosuka Bay

portions of Japan's coastline from tidal waves (tsunamis), which have inflicted severe

damage and loss of life in the past. The primary functions of Aquarobot are to: 1) measure
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the flatness of the rock mound which will support a caisson barrier, and 2) survey the

placement of the cement caissons utilizing its on-board camera.

After completing several successful inspections, it was determined that human divers

could perform the surveys more cost effectively than Aquarobot due to the number of

people needed to lower, control, and recover Aquarobot using the current vehicle software

and "man in the loop" operational concept [Ref. 1].

B. NPS INVOLVEMENT

The Naval Postgraduate School, under a grant from the National Science Foundation

(NSF), is developing gait algorithms to increase the speed and improve the efficiency the

Aquarobot. A long range goal of this project is to achieve fully autonomous operation of

Aquarobot and similar vehicles [Ref. 2, 3].

Figure 2: Graphical Model of the Aquarobot in a Simulated
Underwater Environment
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To ensure that new software is performing correctly prior to actual use. a graphical

simulation is being developed to test all foreseeable situations. Once the software has

performed adequately in a controlled graphical environment, then it will be tested on the

actual Aquarobot.

Figure 2 depicts the latest 3D model of Aquarobot in a simulated underwater

environment. Even though this is the correct environment for the robot, the simulated

murky water makes the robot more difficult to see and slows down the simulation. For these

reasons, the simulation results shown in the remainder of this thesis have the appearance of

being performed on dry land, when in actuality the robot behaves as if it were in an

underwater environment.

C. SUMMARY OF CHAPTERS

Chapter IH is a brief history of the advances computer simulation has taken in becoming

a tool for project development. Also included is a look at where walking robots stand today

and a survey of work accomplished by individuals previously involved with the Aquarobot

project at the Naval Postgraduate School. Chapter I discuses the software tool Perforner

which is used to enhance the graphical simulation and provides a description of the

graphical model. Chapter lV describes environment modeling and terrain identification.

Chapter V deals with the algorithms used to detect foot contact with the ground and with

the orientation of Aquarobot's foot pads to conform to uneven terrain. Chapter VI is a

complete description of the simulation and its use. Chapter VII presents the conclusions of

this research and recommendations for follow on work. Appendices A and B contain

program code. Appendix C provides a description of a NPSGDL to Performer loader.

Source code for this loader can be obtained by contacting the author.

3



IL SURVEY OF PREVIOUS WORK

A. WALKING MACHINES

Researchers began seriously investigating the use of terrain-adaptive vehicles around

1970 for the purposes of off-road transportation, space assembly and forestry [Ref. 4]

The majority of walking machines today are research prototypes limited to navigating

smooth, non-compliant surfaces. [Ref. 5] discusses the first legged vehicle model to

incorporate foot slippage and sinkage and foot placement on rocks, uneven surfaces and

slopes.

Aquarobot is the first walking machine constructed for a specific purpose, the

inspection of an undersea rock wall foundation off Japan's coastline [Ref. 61.

B. GRAPHICAL SIMULATION

Using computer simulations to aid in the testing of products is by no means emerging

technology. But the idea of creating a virtual environment for the testing of a product before

the product is even built is relatively new [Ref. 7].

C. PRIOR CONTRIBUTIONS TO THE AQUAROBOT PROJECT

The Naval Postgraduate school first got involved in the Aquarobot project in 1992.

Since then it has been the subject of four masters theses (including this one), one Ph.D

dissertation and numerous papers. Current research is divided into two distinct categories,

control software and simulation.

1. Control Software

New control software is being developed which will increase the speed and

efficiency of Aquarobot's motion (gait). The gait currently used is a discrete tripod gait.

Three legs are moved in a group and the torso only moves when all six feet are on the

ground. The new gait algorithm (wave gait) allows for the control of individual legs to

4



maintain a "smooth and dynamic trajectory" of the torso [Ref. 8], and takes optimal

advantage of the range of motion for the legs while maintaining a sufficient margin for

stability (Ref. 11.

2. Simulation

[Ref. 9] establishes a kinematics model based on the Modified Danevit-

Hartenberg (Craig) method of representing articulated joints. This model was then used in

the development of the simplified dynamic simulation which models the DC motors that

control the motion of the joints [Ref. 10]. A complete hydrodynamics model is being

developed [Ref. 11] which will provide the base line data to verify the dynamic simulation.

This is necessary since it is unluckily that the hydrodynamic simulation will run in real-

time.

The work presented in this thesis develops a 3D simulation to display the results

of the dynamic simulation. It also deals with the issue of detecting foot collisions with the

ground and foot pad orientation on uneven terrain.
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11. GRAPHICAL SIMULATION USING PERFORMER

IRIS Performer is a 3D software toolkit developed by Silicon Graphics Inc. (SGI) for

developing real-time visual simulations on their graphics systems. Performer combines an

application programming interface (API) with a high-performance rendering library to take

full advantage of the advanced hardware improvements of SGI's Reality Engine visual

simulation system[Ref. 12].

There is no provision for off-line storage of this visual database, so a conversion

program must be used to create the run-time structure from some other database format.

The current implementation of the Aquarobot Simulator uses a locally developed visual

database called NPS Graphical Description Language (NPSGDL2) to describe the

articulated pieces which the robot is comprised of. A loader then reads the NPSGDL2

descriptions, converts them to Performer format, and stores them in memory for later

rendering. The NPSGDL2 loader is discussed in detail in Appendix C. The graphical model

is further discussed in Section D.

A. HIERARCHICAL DATABASE STRUCTURE

Performer uses a spatially organized hierarchical database structure that is created at

run-time for scene management. A hierarchical visual database is a tree-like structure

which contains all of the transformations and geometry needed to render a 3D graphics

image. A node may have more than one parent which prevents the database from being a

true tree. Figure 3 describes a simplistic Performer database.

1. pfScene'

A pfScene is the root node of the visual database It functions in the same manner

as a pfGroup with the exception that it can not be a child of any other pfGroup.

1. All Performer types and functions begin with 'pf to indicate it is a Performer feature.

6



S__.. 'pfGeode pfGeode pfGeode

pfGeode f~eode

Figure 3: Simple Performer Hierarchy

2. pfGroup

A pfGroup is a branch node in the visual database and can have any other type

of node as a child except for the pfScene node. It is used to group other nodes in the

database spatially. A pfGroup may share information with another pfGroup. This allows

multiple instances of a model at different locations and orientations while only having a

single model description in memory at run time.

3. pfGeode

A pfGeode (Geometry Node) is a leaf node that contains the graphics

information which defines the visual simulation. A pfGeode is comprised of pfGeoSets and

pfGeoStates which are described below. A pfGeode may have more than one parent.

B. IMPLEMENTATION

To have a better understanding of the graphical model of Aquarobot and of the foot

placement algorithm, it is beneficial to comprehend a few of the types, structures and

functions that Performer provides. For a more complete description of Performer see [Ref.

12, 13].

7



1. pfSCS

A pfSCS is a Static Coordinate System. Position, orientation, and scale

transformations can be applied when a node is added to the visual database. Since this is a

static coordinate system, these transformations are only applied once. This allows

instancing of a single model at several locations within the virtual world or allows for the

placement of articulated parts so that movement of these parts can simply be done with a

rotation about the joint axis. A pfSCS is a type of pfGroup.

2. pfDCS

A pfDCS is a D-ynamic Coordinate ,ystem used to translate and rotate objects at

run-time. These nodes are used for all object movement, from articulated parts, to actually

moving objects around in a virtual world. A pfDCS is a type of pfGroun.

3. pfGeoSet

A pfGeoSet ("Geometry Set") is a collection of like geometry2. The elements

within a pfGeoSet are called primitives and may be any one of points, lines, linestrips, tris

(3 sided polygons), quads (4 sided polygons), or tristrips3 . Primitives are described using

vertex lists which may be indexed or not indexed depending on whether or not memory

needs to be conserved.

4. pfGeoState

A pfGeoState describes the graphics state for the pfGeoSet for which it is applied

to. The state describes such features as material, textures, texture environment and

transparency.

2. Like geometry refers to a collection of primitives which are of the same type, and have the same
state information.
3. A tristrip is a collection of three sided polygons specified by a sequence of the three most recent
vertices.
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5. pfSeg

A pfSeg is a non-graphical line segment described by a starting position, a

direction and a length. These line segments, or intersecting rays, are used for intersection

testing with the stored geometry.

6. pflsect

A pflsect is a structure which contains information about the geometry that a

pfSeg intersects with. The structure definition is included at this time for completeness. A

more thorough discussion will be given on the data actually used in Chapter IV.

typedef struct I

long flags; /* intersection and structure validity */

long segnum; /* the number of the segment that has intersected*/

pfSeg seg; /* description of segment that has intersected */

pfVec34 point; /* point of intersection */

pfVec3 norm; /* normal at intersection point*/

long tri; /* index of triangle in the priutive */

long prim; /* index of primitive in the geoset */

pfGeoSet* gset; /* pfGeoSet of intersection */

void* userdata; /* data for user in callback */

pfMatrix5 xform; /* transformation to word coordinates */

} pflsect;

7. pfPlane

A pfPlane is a structure which describes a non-graphical, 2-D, infinite plane

which is used for intersection testing. A pfPlane is created using a point and a normal:

pfMakNormPtPlane(pjPlane *ds4 pJVec3 norm, pjVec3 pos)

or it is created using three points which will define any plane:

4. A pfVec3 is an array of 3 floats
5. A pfMatrix is a 4X4 array of floats.

9



pjMaketsPlane (piPlane *dY4 pJVec3 pi1, pJVec3 p2, pjVec3 pt3)

8. pfCylinder

A pfCylinder is a non-graphical cylindrical volume used for intersection testing.

It is defined as:

typedef struct (

pfVec3 center,

float radius;

pfVec3 axis;

float half Length;

} pfCylinder,

A pfCylinder can be constructed to encompass a group of pfSegs. This allows

for a more rapid intersection determination since the pfSegs only intersect the geometry if

the pfCylinder does. A single test with the cylinder can be performed prior to testing

individual segments. Figure 4 shows a pfCylinder around 4 pfSegs.

Figure 4: A pfCylinder around pfSegs

The pfCylinder is created using:

pfCyL4roundSegs(pfCylinder *dst, pfSeg **segs, long nseg)

where nseg is the number of segments to be encompassed by the cylinder. A maximum of

32 pfSegs may be defined.

10



C. COORDINATE SYSTEM

Performer utilizes an orthogonal coordinate system with the X axis out of the screen,

the Y axis to the right and the Z axis up. This differs from the conventional robotics

coordinate system where the X axis is North (right), the Y axis is East (out of screen) and

the Z axis is down.

In order to ease the incorporation of the motor dynamics simulation [Ref. 10] and the

hydrodynamic simulation [Ref. 11] with the graphical simulation, it was necessary to

transform the graphics coordinate system into the robotics coordinate system. This can be

done in two ways. The first is to manipulate the view volume [Ref. 10] which changes the

world coordinate system. Doing this, makes the simulation difficult to combine with other

graphics simulations and thus minimizes its portability.

The second method is to isolate the Aquarobot simulation from the graphics

environment. This allows the control algorithms to perform joint rotations and center of

body translations and rotations using conventional robotics notation while allowing the

robot to move in a conventional graphics world.

1. Joint Axis Notation

In robotics, there is also a set notation for the manipulation of articulated links.

The X axis is the common normal from the inboard joint axis (closest to center of body) to

the outboard joint axis. The Z axis is along the axis of rotation for the inboard joint and the

positive direction is chosen to be which ever is beneficial to the implementor. The Y axis

is orthogonal to the X and Z axes using the conventional right hand notation (Figure 5).

YBoY

... .!@ ......

ard l Outboard

Figure 5: Robotics Joint Axis Notation
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D. AQUAROBOT CONSTRUCTION

Aquarobot consists of a cylindrical torso, six articulated legs, an articulated camera

boom, and a 100 meter tether cable which connects the robot to a support vessel (not

shown). Each leg consists of four links, a shoulder, an upper leg, a lower leg, and a foot

pad. The camera boom consists two links attached to a rotating base at the top of the torso

(Figure 6).

Figure 6: Graphical Representation of Aquarobot

The Aquarobot model was constructed by hand using technical drawings and

photographs as a guide. Each articulated piece was broken down into a set of polygons and

12
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then stored in a visual database, NPSGDL. Performer was then used to define an articulated

system in which to display the models.

1. Performer Node Structure

Depicted in Figure 7, is the ree structure for the torso and one articulated leg of

pfScene

pfGroup

pfDC pfSCS

pfSCS

Torso local coordinatesystem - DC

Foot pad local coordinate
system

pfSCS

pfDCS e

Figure 7: Performer Node Structure for Aquarobot

Aquarobot. The tree is comprised of static coordinate systems (pfSCS), dynamic

coordinate systems (pfDCS) and pfGeodes, which contain the models for each of the five

13



different articulated pieces.6 The numbers adjacent to arcs indicate the number of branches

being represented. All nodes on a branch are duplicated the indicated number of times

except for the pfGeodes. Models need only be stored once and may be referenced many

times.

a. Articuklions

When constructing articulated links, the pfSCS is necessary to translate

and/or rotate. the local coordinate system from joint to joint in order to achieve a coordinate

system at the next joint in succession that is oriented with the Z axis coincident with the

axis of rotation (Figure 8). The pfDCS is then used to perform a single Z axis rotation which

x

Figure 8: Coordinate Systems for Tbrso and a Typical Leg With Foot Pad

6. The camera boom was omitted for simplicity

14



will place the leg in the desired orientation. Figure 9 shows the orientation of the local

coordinate systems after being rotated.

".

Figure 9: Local Coordinate Systems After Being Rotated

b. Torso Local Coordinate System

The top pfSCS establishes the correct orientation for the torso's local

coordinate system. It is achieved by performing two successive rotations; a 90 degree

rotation about the Z axis and a 180 degree rotation about the Y axis, and performing a single

matrix multiplication. This transforms Performer's coordinate system into a robotics

coordinate system. The torso pfDCS is then used to translate and rotate Aquarobot

throughout the graphics environment.

c. Foot Pad Local Coordinate System

The foot pad coordinate system is unique in that the position is determined

by the orientation of the previous links and the orientation is determined by the terrain

'5



characteristics. If the coordinate system was linked to the lower leg, all previous rotations

would need to be removed from foot's pfDCS in order for the foot orientation algorithm to

place the foot correctly (the algorithm assumes a non rotated coordinate system mitially).

So in order to maintain an initial non-rotated coordinate system for the feet. it was decided

to attach the coordinate system to the world. This does have a potential drawback. Since

the foot 's position is based on the world coordinate system, the foot position calculated

from the gait algorithm must be transformed to world coordinates. The simplistic gait

algorithm used in this research was originally designed in world coordinates, so this

transformation was not necessary.

2. Joint Limits

Each limb has a physical joint limit which prevents the limbs from bending too

far. The control software has a joint limit also, which is used to try and prevent the use of

the physical stops. To ensure the new control software is performing correctly, physical

stops in the graphical model were not incorporated.

a. Bai Joints

The ball joint has a physical limit as well. Unlike the other joints, when this

limit is reached, the foot pad will begin to tilt in the direction the leg is going (Figure 10).

i----] -- ----~

FIgure 10: Motion of Foot When Joint Limit is Reached

This limit is not controlled by the gait algorithm since it is determined by both the foot

orientation on the ground and the leg position. Reaching this limit causes the foot position

to change which then needs to be relayed to the gait algorithm so a new leg position can be

calculated. This feedback is beyond the scope of this research and is left for future work.

16



IV. ENVIRONMENT MODELING FOR FOOT PLACEMEN r

The first Aquarobot simulation was limited to traversing on flat terrain. The moving

feet continued to move until they reached a known plane, then the next set of feet would be

moved. The actual robot has sensors in the ball joint of each foot to signal ground contact.

When a foot touches ground, and is exerting enough force to support the robot, the control

software knows to stop the vertical motion of that foot and can continue on with the gait

pattern. The first step in trying to simulate the functionality of the foot sensors is to

establish a terrain on which to walk.

A. TERRAIN MODEL

There are many different types of terrain throughout the world, many of which are only

traversable by some sort of legged creature. Since an exhaustive model displaying all the

types of terrain is difficult to achieve, not to mention being beyond the scope of this thesis,

a simplified terrain representing certain features was designed to test the foot placement

algorithm.

1. Characteristics

Figure 11 illustrates the different characteristics portrayed in the terrain model.

The foot pad shows the relative size of a foot compared to that of the terrain. Each of these

terrain types have unique characteristics which must be overcome by the foot placement
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algorithm (Discussed in Chapter V). The rolling hills model is the most simplistic and was

used to get the orientation portion of the algorithm correct.

J_ Foot pad

Rolling "iu

Crevice Step Change

Multiple Slopes

Figure 11: Different Terrain Types Used in Terrain Model

B. LIMITATIONS DUE TO GAIT ALGORITHM

The simplistic gait algorithm used while testing the simulation had some strict

limitations imposed upon it since it was originally designed for flat terrain. The vertical

range of the foot is 0 to 20 cm, so the terrain must be modeled within this range. The torso's

height is fixed. If the terrain rises, the upper leg's joint angle will increase and the torso will

be closer to the ground.
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C. TERRAIN IDENTIFICATION

A useful feature provided by Performer is the ability to assign a unique 16 bit

hexadecimal identification number to each node. This ID, known as a traversal mask, is set

by the Performer function:

pfNodeTravMask (pfNode *node, long which, ulong mask,

long setMode, long bitOp)

The node specifies which node in the scene to begin with when determining how to

assign the traversal mask. The which value identifies the traversal type that the mask is for.

The setMode indicates if the mask is to be assigned to the node, the node's descendents or

both. The bitOp is used to set the node's mask, or change a pre-existing one.

When a traversal is executed (either draw, cull, or intersect), a bitwise 'AND' is

performed between the mask of the traversing function (Chapter V, Section B), and the

traversal mask of the terrain. If the result is non-zero, the traversal is continued to the nodes

descendents. If the result is zero, the branch is pruned and the traversal continues on to a

sibling, if one exists. shows the results of distinguishing between different terrain types.

Figure 12: Aquarobot Standing in Water
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D. UNDERWATER ENVIRONMENT

The undersea environment in which Aquarobot operates in can be simulated

using Performer's environment effects function for fog. Though this gives a fairly accurate

impression of being underwater, this effect is only used for demonstration purposes. The

fogging effect places a serious drain on the hardware and slows the simulation

E. RESULTS

The limitations on the terrain traversed in the simulation has no bearing on the

functionality of the foot placement algorithm to follow. Terrain limitations are a result of

limitations imposed on the gait algorithm. The foot placement algorithm is generic in

nature to work with any gait pattern.
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V. GROUND CONTACT DETERMINATION

Performer has two features which significantly enhance the ability to determine when

two graphical objects come in contact with each other. These are bounding volumes and

intersecting rays.

A. BOUNDING VOLUMES

A bounding volume is an imaginary space which encompasses an object (Figure 13).

Figure 13: Bounding Box for an Upper Leg

Performer has five different types of bounding volumes, these are boxes, spheres,

frustrums, half space, defined by a pfPlane (Chapter III, Section B), and cylinders.

When an intersection test is performed between two bounding volumes, the results are:

* No intersection

* Partial intersection

• Complete intersection: One volume completely inside the other

These limited responses do not allow for the positioning of one volume against another, so

volumes are inadequate for the orientation of the foot pads on uneven terrain.
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Another drawback to using bounding volumes is that they must be axially aligned. If

the object's coordinate system is not coincident withle world coordinate system, the

bounding volume does not give a true representation of the bounded object.

Figure 14: Growth of a Bounding Volume

Figure 14 illustrates the expansion of a bounding volume when the object it

encompasses is rotated 45 degrees. Since the bounding volume grew from one square inch

to two square inches, half of the intersections with this object will be false (solid grey area

represent false collisions). These are unacceptable results in a visual simulation.

B. INTERSECTING SEGMENTS

As previously mentioned, Performer utilizes pfSegs, non-graphical line segments, to

test the scene geometry during the intersection traversal of the node structure. These

segments are projected from a desired position for a given direction and distance.

Intersection testing is accomplished using the Performer command:

pfSegslsectNode(pfNode *node, pfSeg **segs, long nseg, long mode,

ulong mask, pfCylinder *bcyl, pflsect *isects,

long (*discFunc)(pflsect *isect))

The traversal begins at the specified pfNode, and all descendents are checked for

intersection with the nseg number of pfSegs. Performer allows up to 32 pfSegs to be

specified for any intersection routine. To reduce traversal times, a pfCylinder is specified

which encompasses the pfSegs (see Chapter III, Section B).
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For each pfSeg which successfully intersects the geometry, the intersection traversal

returns information which is stored in an array of nseg pflsect structures (see Chapter I,

Section B). The only information currently being used is the terrain height (Z position in

local coordinates) and the transformation matrix. This matrix is necessary to convert the

height information to world coordinates so it may be used by the foot orientation algorithm.

The mask is used to identify which type of geometry the intersection test is for. This

allows Aquarobot to distinguish between stepping on hard ground mid water, and perform

accordingly.

The discFunc is a discriminator callback function which is invoked upon all successful

intersections. This is a user defined function which provides a more powerful means to

control intersections than with the mask test alone. Currently, this option is not being used.

Performer has provided the desired tools to extract the necessary information from any

graphics scene. We must now determine how best to utilize these tools to obtain a realistic

simulation that runs in real time.

1. A Single Center Segment

The first attempt at getting the foot pads to contour to uneven terrain was to

project a single segment from the center of the foot in the -Z direction (that's +Z in the

conventional robotics coordinate system) and determine the XYZ coordinate and the

normal P at the point of intersection. This data was then used to set the height and

orientation of the foot pad (Figure 15).

a. Resudts

This method was very rapid and worked well when the terrain was designed

with large sloping primitives (polygons) and the normals between two adjacent primitives

did not differ very much. When this method was used with step changes in height, the visual

results were displeasing (Figure 16).
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P

Figure 15: Foot Placement With a Single Segment at the Center of the Foot

Figure 16: Result of Using a Single Segment From the Center of the Foot

2. Multiple Segments

The next approach in determining foot placement evolved from the first.

Multiple intersecting segments were organized in a manner to extract more information

from the terrain while taking maximum advantage in the use of Performers pfPlane

(Chapter MI, Section B).
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a. Foot Pad Divisions

The intersection segments (pfSegs) are arranged in three groups wfich

divide the foot pad into equal sectors of 120 degrees. Figure 17 shows the general pattern

used for the placement of the intersecting segments.

Figure 17: Placent of Segmnts

This pattern allows for the 100% detection of objects which are greater than

20 cm in diameter. Objects less than 20 cm may go undetected by the simulation if stepped

on in just the right manner. The shaded area of Figure 17 depicts the "dead zone" of the foot

pad where objects will be undetected.

b. Creating an Artifiial Plant

Dividing the foot pad into 3 sectors was chosen on the concept that any 3

non-linear points define a unique plane. If the highest identified point from each sector is

used, a plane can be defined on which to place the foot. Thus the orientation problem is
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reduced down to the single segment solution. This approach eliminates the problem shown

in Figure 16, but is still not adequate enough for an accurate simulation (Figure 18).

Figure 18: Foot Orientation Using an Artificial Plane

c. Correcting the Artilcial Plane

Once an artificial plane has been established, it is necessary to examine the

foot pad oriented to this plane and check for collisions with the surrounding geometry. If

such collisions exist, then it is necessary to recompute the artificial plane. Here is a

description of the algorithm used for foot placement on uneven terrain:

* Detem-ne the highest point in each sector of a foot pad.
* Create a pfiane (Chapter 1I, Section B) using the three highest points.
* Determine the height of the pfPlane at the center of the foot pad.
* Set the foot pad to conform to the pfPlane height and orientation.
* Calculate the height at each of the locations used to project the pfSegs based on
the new orientation.
* Compare the height at each location with the actual ground height returned from
the intersection test.
* For each sector, if the ground height is greater than the foot pad height, find the
point with the greatest difference and substitute this point into the pfPlane equation to
determine a new plane.
* Set the foot pad to the corrected pfPlane orientation.

d. Results

After a single iteration of adjusting the ground plane, the simulation was

able to overcome the previous two anomalies and produce a fairly accurate simulation
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(Figure 19). But this method too has its drawbacks. When traversing terrain that contains

Figure 19: Final Foot Placement

raised obstacles that lie perpendicular to one of the lines that divide a foot pad, a unique

situation arises if the three contact points for determining the artificial plane happen to fall

on one half of the foot pad (Figure 20).

'I,

Figure 20: Result of Having all Three Ground Contact Points on One Side of
the Foot

Though, this feature is not visually or physically correct, it does not

invalidate the simulation as a tool for testing the control software. The visual simulation

still sets the foot's ground contact flag to inform the gait algorithm to stop moving the foot

independent of the foot's orientation.
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3. Speeding Up the Process

Other than defining a pfCylinder to speed up the intersection traversal of the

terrain node, two flags were added which reduce the number of times the intersection

traversal is performed. The first is a ground contact flag. If the foot is on the ground, then

the routine for foot placement is not necessary. The second flag defines foot vertical

motion. Checking to see if the foot is touching the ground is only necessary if the foot is

being lowered. These two flags caused the simulations execution time to increase from 15

frames per second (FPS), to 30 FPS.
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V1. RESULTS

A. SIMULATION DESCRIPTION

The Aquarobot simulation is a real-time, 3-D computer simulation running on a

Silicon Graphics Workstation. The Simulation is currently running at approximately 30

frames per second. Additional hardware utilized is a Spaceball' for the position of the

viewing volume, SGI's Dial and Button indicators for the control of the camera boom, and

HOTAS flight control devices for Aquarobot's center of body commanded velocity

(velocity may also be controlled using the keyboard, See Below). Software needed for the

simulation is SGI's Performer, for its rapid drawing and intersecting routines and the

NPSGDL loader which enables rTrformer to display the models.

1. Keyboard Responses

The following describes the keyboard responses recognized by the simulation:

• ESC key -exits from the simulation

* Fl key - Displays system characteristics

* F2 key - Enables or disables texturing

* F3 key - Toggles fog on/off (underwater effect)

The arrow keys control the velocity of the torso. The responses are 0% to 100% of the

maximum simulation speed in increments of 20%.

1. A spacebali is a 6 degree torque sensing device
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VIL CONCLUSIONS AND RECOMMENDATIONS

A. RECOMMENDATIONS

Work is being done to create a virtual environment for AUV's [Ref. 14] to test hardware

and control software performance in a controlled, yet realistic manner. This same theory

may be applied to walking machines. This thesis demonstrated the ability to distinguish

between solid ground and water, the two extremes. It is also possible to model the terrain

to exhibit certain characteristics in between and also to model foot sinkage and slippage. I

believe that the development of a virtual environment that has the capability of providing

foot sinkage and foot slippage information in the form of reaction forces to the placement

of the foot will enhance the development of fully autonomous walking robots.

B. FUTURE WORK

This thesis is just the beginning of creating a complete simulation for the testing of

control software. Other areas that need research are:

• Detecting collisions between limbs

* Static forces acting on Aquarobot from the tether cable

* Modeling the ball joint limit and the feedback to the gait algorithm

Another area of research is the integration of walking robots into defense simulations

to investigate their use in mine hunting operations.
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APPENDIX A: SIMULATION SOURCE CODE

IFILENAM: pfaqua.c
#IPURPSE: Tis file contains dhe functions to set up die geometry for
#I the Aquarobot modeL determinin ground contctz and detennining
fl foot pad oientation

II NOTE: This progrant is written in C++ utilizng Performer 1.0
#I AUTHOR: John Goez
// DATE: 20 February 1994
#ICOMME3NT-
fUPDA7E:

finclude <stdllbji>
include qstdioh>

Alnchlde <stuing.h>
finclude <gl/deviceh"

#incblt "SGlwindowcam.H"
#include "robot-globulsil"
#include iloadGDLhz"
#include "pfEh

#fNO= TERRAIN-AASK 0x0008
#dein WATER-MASK 0x0004
#define RAYS..PBR-.SECTOR 10
#define F00TPADJRADRUS 22.5f

static void OpenPipeline pf Pipe *)
static void Dn~anl(wthannel *channel, void *data);
static void ClhanlpChannel cbui. void *daw);

void grouncL-contacz(%DCS *DCSlink6][41);
void sezjnitia-fo.posimo(pfDC:S *DCSink[6][41);
void set-footersoectionjegnent(pfSeg "seznenz. mt leg);
void odent-foot~psect datf3$RAYSJR...ECTOR+ 1], int leg);
void movesaneraboomnpf DCS *DCSboomn[31);
void readjnateriasO
pfa3rpw reuaterrainO;

pffiroup* build-Nauabot(pflDCS *base. pf]DCS *lDCS~jk[6j[4], pf]DCS *DSbogn(3]);

static pfScene *scene;
static ptLight *Sun, *Sun2;
staticpfFog *wawe,

pfSeg **segmenz= (pfSeg*)pfMaloc(sizeof(pfSeg*)*(3*RAY&PER-SECrOR),NUL);

static SharedData *Shared;
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void main() (

piPipe *p;
pfChannel *chan:
pfGroup *aquarobotl:
pfGroup *terrain;
pfDCS *aquabase:
pfDCS DCStink(6l(41;
pfDCS *DCScamboom[31;
pfEarthSky *eSky;

/ initialize Performer
pflnitO;

//Allows multiple threads to be forked. One for the application, one for
/H the Draw process and one for the Cull process

pfMultiprocess(PFMPDEFAULT);

//This prevents multiple threads from being forked.
HI pfMultiprocess(PFMPAPPCULLDRAW);

/ Establish shared memmory before calling pfConfigo so that all forked
//threads will know where it is.

Shared = (SharedData*)pfMalloc(sizeof(SharedData), pfGetSharedArenao);
Shared->exit-lag = 0;
Shared->resetFlag = 0;
Shared->ptStas =0;
Shared->pfFog =0;

pfConfigO;

scene = pfNewScene0;

readmaterialsO;

/ Load in the terrain model for robot to walk on and add it to the scene as
# the first child (index 0). This enables the terrain to be accessed redily
/ by the ground contact algorithms.

terrain = readterrainO;
pfAddChild (scene, terrain);

# Build the Aquarobot model
aquabase = pfNewDCSO;
aquarobotl = builCdaquarobot(aquabase, DCSlink, DCScamnboom);

# Add the robot to the scene
pfAddChild (sceneaquarobot 1);

H Configure and open a graphics pipeline
p = pfGetPipe(O);
pflnitPipe(p, OpenPipeline);

// Set desired frames per second
pframeRate(30.0t);
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II Get and configure a viewing channel
chan = pfNewChan(p);

HI Set the channels Draw and Cull functions
pfChanDrawFunc(chan. DrawChannel);
pfChanCullFunc(chan. CullChannel);

HI Establish dimentions for the viewing frustrumn
pfChanScene(chan, scene);
pfChanNearFar(chan. 0.1f, 6000.0f);
pfChanFOV(chan, 45.0f. -1.0f);

HI Establish orientation for viewing frustrumn
pfSetVec3(Shared->view.hpr 90.0f. 0.0f. 0.0f);
pfSetVec3(Shared->view.xyz, 650.0f. O.Of. 20.0f);,

IICreate an earth/sky model that draws sky and horizon
eSky = pfNewESkyO;
ptE~kyMode(eSky, PFES_-BUFFER CLEAR. PFESSKYCLEAR);
pF, hwffESky(chan. eSky);

IIpfChanTrav~rlde(chan. PFCtJLL_VIEW1PFCULL_GSET, NULL);

IThis pfS,a awd 1s;Frme are necessary to establish the graphics scene so
Ithat the pf~eg s<eNiA. toutine can be used in set-initial-foot..psition.

pfSyncO;
ptFrameo;

fl This restart gets the X and Y positions of the footpads
restart-robot(aquabase, DCSlink);

#I The Z position of the footpads is set based on terrain information
set-iiaLfoot-position(DCSlink);

IIMove robot is caledso that the joint angles may be calculated based
#I on the correct foot height

movejrobot(aquabase. DCSlink);

#I Start the continuous loop
while (!Shared->exitFlag)

t* Go to sleep til next frame time *
pfSynco;

/* Set view parameters. ~
pfChanView(chan. Shared->view.xyz, Shared->view.hpr);

/* initiate cull/draw for this frame ~
pfFrameo;

1* Update robot position *
ground..contact(DClink);
movej-obot(aquabase. DCSlink);
movesamera~boom(DCScamboom);

if (Shared->resetFlag)I
pfSetVec3(Shared->view.hpr, 90.0f, 0.0f, 0.0f),
pfSetVec3(Shared->view.xyz, 650.0f, 0.Of, 20.01);,
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restart:.robot(aquabase, DCSlink);
setinitial footjposition(DCS link):
Shared->resetFlag = 0;

/* terminate cull and draw processes (if they exist) */
pfExito;

/* exit to operating system */
exit(O);

HI OpenPipeline0 -- create a pipeline: setup the window system.
/H the IRIS GL, and IRIS Performer. This procedure is executed in
// the draw process (when there is a separate draw process).

static void
OpenPipeline (pfPipe *p)
{

/* negotiate with window-manager */
scrnselect(0);
foregroundO;

/* set up window */
prefposition(178, 779, 491,952);
wimopen("Aquarobot");

/* negotiate with GL 1
pflnitGfx(p);

t Set Z-buffer depth based on hardware */
if ( int(getgconfig(GCMSSAM[PLES)) > 0)

lsetdepth ( getgconfig(GC_MSZMIN), getgconfig(GC_MS_ZMAX));
else

Isetdepth ( getgconfig(GCZMIN), getgconfig(GCZMAX));

/* initialize events to be placed on the que */
initialze0;

/* create two light sources */
Sun = pfNewLight(pffietSharedArenao);
Sun2 = pfNewLight(pfGetSharedArenao);
pfLightPos(Sun, 0.5f, 0.5f, 1.0f, 0.0f);
pfLightPos(Sun2, 0.5f, -0.5f, 1.0f. 0.0f);

/* create a default lighting model */
pfApplyLModel(pfNewLModel(pfGetShaedArenao));

ptLightOn(Sun);
pfLightOn(Sun2);

P' enable culling of back-facing polygons */
pfcullFace(PFCF_.BACK);
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f* Set up fog parameters to simulate an underwater environment ~
pffinable(PFE1{JOG);
water = PfNewFog(pffletSharedArenaO);
ptFogType(water, PFFOGPIXEXP);
piFogColor(water, 0.0f. 0.38Sf, .4640):
pfFogRange(water. 0.0f. 50000.00;

" CullChannelK) -- traverse the scene graph and generate a
" display list for the draw process. This procedure is
" executed in the cull process.

static void
CullChannel(pfChannel*, void*)

* ptflrwGeoSet or other display listable Performer routines
" could be invoked before or after pfCuUI(

pfCuO;

static void DrawChannel (pfChannel *chan. void*)I

#I pfCoord *tenp = (pfCoord*)data;
static pfVec4 backdrop;

II fSetVec4(backdrop, 0.0f, 0.385f, 0.464f, 1.0f),
ptSetVec4(backdrop, 1.0f, 1.Of. I.Of, 1.0f);
pfClear(backdrop, PFCL...CLEARCZ);
1* rebind light so it stays fixed in position ~
piLight~n(Sun);
ptLight~n(Sun2);

/* draw Performer throughput statistics ~
if (Shared->pfStats)
pfDrawChanStats(chan);

#I if (Shared->pfFog)
pfApplyFog(water);

HI else
II pfClearChan(chan);

II Invoke Performer draw-processing for this frame
pf]Drawo;

Check..Que(Shared);

I I end DrawChannel
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II Builaquarobot sets te DCS's so that ail the legs ame connected.
II This does not set the initial posture

pfGroup* build~aquarobot(pfDCS *bs. pfDCS *DCSlinkt6I[41, pfDCS *DCSboom[31)I

register inti;
pfGroup *dummy;
pf~roup *shoulderH, *shouiderM;
pfGroup *upper legH, *upperjegM;
pfGroup *lower legH.. *owerjegM;
pfGroup *fbotpa
pfGroup *legnumber[6];

pfSCS *shoulderSCS [61,
'upper-legSCS [6] *lower IegSCS [6],
*camera~boomnSCS[3],
*SCSI.

pfLOD *torsLOD. *shoulderLOD.
*upperiegLOD. *lowerjegLOD:

pflatrix rot-.mat. roLmat2. trrsmat;

dummy = pfNewGroupo;

P he torso image is defind with the X axis comming out of the bottom of the
robot (this is the glZ axis) so it must be rotated 90 deg about the Y axis
for it to be oriented properly. */

pf~akeRotMat(rt.mat, 90.0f, 0.0f, 0.0f, 1.0f);
pf4,akeRotMAt(rocniat2, 180.0f, 0.0f, 1.0f, 0.0f);
pffreMultMat(rot-mat2, rot-mat);
scsI = pfNewSCS(rot-mhs2
pfAddChiid(dummy, scsi);

torsoLOD = piNewLODO;
pf LODRange(torsoLOD, 0, 1.0f);
pfLODRange(torsoLOD, 1, 100.00);
pfLODRange(torsoLOD, 2, 10000.0f);
pfAddChild(dwnmy, base);
pfAddChiid(base, torsoLOD);
pfAddChild(torsoLOD, LoadGDL2("modeLsl/RoboticslpftorsoLODH~gd"));
pfAddChild(torsoLOD. LoadGDL2("modeis/Robotics/pftorsoLODM~gdl")),

shoulderH = LoadGDL2C'modei/Robotics/pfshoulderlinkjODH.gdr');
shoulderM = LoadGDL2(models/RobospfshoulderlinkODM~gdl");
upper1egH = adGDL2(-modcls/Robocis- uperegLODltgdl");
uppetjegM = adGDL2("modeWsRobot==/fupregOLgr)
lowerjegH =LoadGDL2("models/Robotic/pflower_egLODagdl");
lower 1egM =LoadGDL2("models/Robotics/pflower iegLODM.gdi");
foc..pAd = GmDL2(-modcisloboics/pffoot-pd.gdi");

legnumber[O] = LoadGDL2("modl obtcstnumplatel.gd1");
legnumberlil] = LoadGDL2('models/Robotics/numplate2.gdi");
legnumber[21 = LoadGDL2("modeLs/Robotics/numplate3.gdi");
legnumber[3] = LoadGDL2("modeLs/Robotics/numplate4.gdi");
legnumberf4] = LaGDL2("modeLs./Robotics/numplate5.gdfl;
legnunberf51 = LodGDL2("models/Robotics/nump~ate6.gdl");
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fot(i = 0; i<6,, i++,) I

/* Rotate and translate shoulder so it will be rendered correctly *
pffiakeRotlvatlrot-mat (float)i*60.Of. O.Of. 0.0f, 1.0f):
ptfvakeTransMat(trans-.mat. LINKOLENOTH, 0.0f. 0.00);
pfPreMulthat(rot -Mal. trans-.maz);
shoulderSCS[i] = pfNewSCS(rot.mat);

f* Add DCS to the SCS so the shoulder can move ''
DCSlinkfi][01 = pINewDCSO;
shoulderLOD = pfNewLODO;,
ptLODRange(shoulderLOD. 0. 1.0f):
ptLODRange(shoulderLOD. 1, 100.00);
ptLODRange(shoulderLOD, 2, 10000.0f);
pfAddChild(base. shoulderSCSWi);
pfAddChild(shoulderSCS (ii, DCSlinkf[ilO;
pfAddChild(DCSlink((1, shoulderLOD);
pfAddChild(shoulderlOD1. shouldeffH);
pfAddChild(shoulderLOD. shoulderM);

f* Translate out from shoulder DCS to the next link *
pftke~TransMat(transmat. LINK1LENGTH, 0.Of. 0.00);
ptflakeRot~at(roLmat, -90.0f. 1.Of, 0.Of, 0.00;-
ptf'reMultMat(ftwmnjat. rotmat);
upperjiegSCS [i] = ptNewSCS(tank-.mat):
DCSrtnk~i][1] = pfNewDCSO;
upperjegLOD = pfNewLO)DO;
piLODRange(upper-legLOD, 0, 1.00);
piLODRange(upper-legLOD, 1,500.01);
pt LODRange(upperjegLO)D. 2, 10000.00;
pfAddChild(DCSlinKillOl, uppeilegSCScii);
pfAddChild upe ISCSWi, DcIinki](1]); #I DCS to move upper leg

pf~dd~ild(DC l[[], upper.iegLOD);
pfAddChild(upper~legLOD, upper-legH);
pfAddChild(upperjegLOD, upperlegM);

f* Translate, out from upper-leg DCS to the next link *
pt&keTrnsMatzransjnat. LUMKLENGTH, 0.0f, 0.0f);
lowerjegSCS~i] = pfNewSCS(trans..mat);
DCSlink~i][2] = PtNewDCSO;
lower legLOD = pfNewLODO;
pfLODRinge(lower-legLOD. 0, 1.00);
pfLODRange(lower-legLOD, 1,500.00);
piLODRange~lower-legLOD, 2, 10000.00);
pfAddChild(DCSlink[i1l1, lowerjegSCS [ij);
pfAddChild(lowerjegSCS Ii1, DCSli[212);// DCS to move lower leg
p ~dhl(clink~i] [21, lowerjlegLOD);
pfAddChild(DCS~ink[i][21, legnumbeufi]);
pfAddChjId(lowerljegLOD. lowerjegH);
pfAddChild(IoweKrlegLOD, lowerjegM;

/* Attach foot pad DCS's to the world not Aquarobot*/
DCSlink[i](31 = pfNewDCSO;
pfAddChild(scsl, DCSlink~i][3D;,
pfAddChild(DCSlinkii] [3], foot-.pad);

pt~latten(dummy);

# I end for statement ~

pfflakeTransMatgtrans -mat. 0.Of, 0.Of. -87.00);
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cazueuajoomnSCS[OJ = pfNewSCS(tansjuat),
DCSboom(0] - PfMewDCSO,
pfAddChild(bssc, camrajboomSCS[ODj;
pfAddChild(camcra,.boomSCS (01, DCSboomIO]);
pfAddChild(DCSbooiu(0]. LoadGDL2C'modeL-/Robotics/pfcamera.base.gdl"))-.

pffAkeTransMat(trnsjnaz 5 Of. 0.0f. 0.0f);
pffakeRotMa(rot-.ma. -90.0f. I.Of. 0.0f, 0.0f);
pf~rMuaIMtnns,.mat. rok-mat):
cameiabooinSCS[I] = pfNewSCS(umansna);
DCSboom(l] = pfNewDCSO;
pfAddChld(DCSboomIIO], camera..boomSCS[11);
pfAddChild(cameajboofnSCS(1J, DCSboom(1I);
pfAddChild(DCSboom(11, LoadGDL2C'modelsRobotics/pfcamralinkl.gdl"));

pfaeTransMat(tansjnaL 45-0f, 0.Of, 0.00);
camerajboomSCS 1 = PfNewSCS(trans-mat);
DCSboom[2] = pfNewDCSO;.
pfAddChild(DCSboom(11, camnera~boomnSCS[21);
pfAddChild(cazneraboomSCS[2], DCSboomII2];
pfAddChild(DCSboom (21, LoadGDL2("mode~s/Roboics4pfcaerajink2.gdfl));

return dummy;
# I end build.aquarobot
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void ground-contact(pfDCS *D(CljjW614I)

static long nsegs = 3* RAYS-YER..SECTOR;
1oa; isect:
static pflsect resuk([3 * RAYSPER.SECTORJ;
static pfCylinder *cyl = (pfCylinder*')ptIaloc(sizeof(PtCYlider),NuL);
pfVec3 head, head90:
float dotp;
pfMatrix pitch, roll:

for (int leg - 01) leg < 6; leg++)I

if ((fooLdatafleg.ground-.contact) &&
(foot data(legJldirection))l

set-footj ntersction..segments(segment. leg);

pfCylAroundSegS(cyl. segment nsegs);
pfSetVec3(cyl->center, footjlaallegj.foot xyz[21, foot...daateg].Iooxyz 0 ,

fo(_data[legj.foz..xyzf I]);
cyl->haltength. - LINK4LENGTH,
cyi->radius = FOOTPAD.R.ADIUS.
1* find intersection with terrain/
isect =

TERRAIN..MASK
cyl, result. NULL);

if ((isect) &&
(fooLdataflegl.fboolxyz~l] - result[O].point[2] < 9.00) 1
orieijoe(resukt leg);

pffcakTrma foo-aleg.foo -mat. foot-data[leg].foo-xyz[0J,
foot-daaeg.fo..xyz[2J, -foot..data[leg] fot.xy4 1]);

#I Set heading of foot pad. Always000
head[Ol = 0.Of:
headfl] =.IN;
head[2] = 0.0f;

fl Determine foot roll
dotp = PFDOT.YEC3(head. foot-lata(Ieg].nonnal);
pffiakeRotMat(roil, (pfArcCog~dotp) -90.0f), 0.0f, I.0f, 0.00;

#I Set heading of foot pad + 90 degrees
head9[0] = I.Of;
h=Md9I[I = 0.f;
head90[2J = 0.Of:.

II Determine footpic
doWp = PFO.E ia9,focdaMa~gl.normal);.
pffAkeRotMat(pitch. (90.Of - pfArcCos(dotp)), 1.0f, 0.0f, 0.0f);
pyffos~ultNat(pitch, roil);,
pfHlreMultLatgfooLdataleg.foo..mat, pitch);

II Set the foot pad DCS zo the calculated orientation
pfDCSMazrix(DCSlink~legJ[3], foot-datatlegl~fot.mat);

# I end if statement (isect)
# I end if statement (not foot contact)

#/end for statement
I H end ground-contact
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void set-initial-foot.position(pfCS *DCSlink[6ll4])I

long nsegs = 3* RAYS-PER.SECOR-
long isect:,
pflsect result(3 *RAYS-PERSECTORI;
pf~ec3 head. head90',
float doip:
ptMatrix pitch, roll

for (int leg = 0- leg < 6; leg++)I

set~footintersecion..segments(segmenr, leg);

/1 find intersection with terain
isect=

pf~gsloc~od( t~hld~cee. ).se ent nsegs, PFTRAV_IS_PRIMI
PFMA~IS-C .BACAM _IS!NORM.

TERRAiNMASK.
NULL, result. NULL);

if (isect)
orientjoot(result. leg);

elsefI
footjlataleglfoot-xyz1I] = LINK4LENGThL
PFSET-VEC3(fo1 dtalgJ~mral. 0.01. 0.0f. 1.0f);

pffakerrmatfootdataflegl-foot-nat. fotamfeg]foot.Xyz0J,
foo-atIeg1foxyz[2J, -fo-da[eg]fot .xyzilJ);-

#I Set haigof foot pad. Always 000
head(O]-OO-
head(1P.- I.0f
head[2] - 0.0f,

#I Detennine foot rol
dotp - PFDOTEC3(head. fot~dat.umfl;
pftakeRod4atroil, (pfArcCos(dop) -90.0f). 0.0f, 1.0f, 0.0f)..

IISet headingof footpad +90degrees
head90(O] - 1.01:.
head90(Ij]= 0.01.
head902] - 0.01;

#I Detemine foot pitch
dotP - PFDOT-YEC3(headM. foot-datafleglinoaal);
pffiakeRod~atQpiwh (90.01.- pfArcCos(doq,)), 1.0. 0.0f, 0.0f0;
pflostMultMat(pitch, roil);
pflreMul&atfoot-datmeg].foot..mat. pitch);

IISet the foot pad DCS to the calculated orientation
pfDCSMatrix(DCSlink~legll3l, fot~datallegj.fooc~mat);

#/ end for statment
# I end setinitial-fox...position
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nITis function establishes the location and direction of the intaection segments being
II projected from each foot.

void set-foot-intersection...sgments(ptSeg "segment. int leg)I

static pfVec3 footsegs _xyz[3)lRAYS!E..SECTOR];
static float angle = 120.Of / (RAYS_PERSECTOR - 1)-.
static int init = 1:
int count - 0:
float S. C:
pfVec3 temp..yeclI. temp-yec2,

iffinut) I
for (mt sect = 0; sect<3. sect++)I

pinCos(120.Of*sect+6.O, &s. &c);
PSTVEC3(foot-segs.xyzlsectI (01, -s*3.0f. c3.Of, 0.00;

segmentcount-41 = (pfSeg*)pfhailoc(sizeof(pfSeg), NULL);

for (int nseg = - nseg<RAYS.PE&LSECTOR -1; nseg++)(
pfSinCos((angle*nseg)+(angle2.Of)+(120.Of*sect), &s. &c);
PFSETY-EC3(foot-segs -xyzsectlnseg+lj, -s*FOOTPADRADIUS. c*FOOTPADRADIUS, 0.00;
segment(count++1 = (pfSeg*)pfMalloc(sizeof(pfSeg), NULL);

mnit = 0;
count = 0;

temp..yecl[0J = fo-data~leg1fot.xyzM2;
temp...ecl[1] = fo-datalegjfoot.xyz01;
temp..ec 11[21 = fooLdatafleg JboLxy4I 1 + 5.0f;

/0 make several rays looking "down" at terain/

for (mt sect =0; sect<3; sect++) (
for (int nseg = 0; nseg<RAYSYER..SECTOR; nseg4-.) I

PFADDY-EC3(segment~countl->pos, temp..yecl. foot..segs_.Xyz[sect][nsegj);
PFSETVEC3(segmnent(countJ->dir. 0.0f, 0.0f, -1 .0f);
ptNormalizeVec3(segmentfcountl->dir);
segnientllcountJ->length = M0OE,
count++;

#1 end set-foot intersection-.segments
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# This function deteimints the pfflane on which to oriem the foot pads

void orienL foot(pffiect data(3*RAYSPERSECTOR+ I], int leg) I
pfVec3 contct-ponLs[3I;
static pfPlane *ground =(pfflane*)pflaoc(sizeof(pffPlne), NULL).
int count = 0-1# Keeps track of the number of segments that moeds

#I to be considered

ptVec3 headl3](RAYS-PEK.SECTOR]. head9O,
float dotp;
float delta-..eight[3l[RAYS-.PER&SECTOR];
float deepest - 0.Of;
float sh. ch;
int sector= 0.
int ses-ray = 0:
pfMatrix m2, m3:

static float angle = 120.Of /(RAYSPERSECTOR - 1);
static pfSeg *foot = (pfSeg*)pffaoc(sizcof(pfSeg),NUL):.

for (int sect = 0: sect<3: sect++)
PFSET-EC3(contact-W.pintstsect]. 0.0f, O.Of. 0.0f);

for (int nseg = 0; nseg<RAYSYE&kSECTOR: nseg++){
if (dazacotmt].flags & (PFISY)Uf ISYORMAPFIS-YRIM) I #/Data is good

ptXfotmPt3(dacacountj-point. data~countj.point. daustcount].xform);

if(dazacount].poirn(21 > contact..points[sectll2])
PFCOPY EC3(conact-..oints~sectJ, data[count].point);

count-4-;

PFSETVEC3(oot->dir, O.Of, 0.Of. -1.0k)
foot->length = 50.0f,
foot->pos[0] = foot-.datajleg].fotxyz2];
foot->pos(1J = foodat&[legjJfootxyz(0];
foot->posI2] = foouLata[leg1fooLxyz[1;

pffakePtsPlane(ground. coinact..points[21, contact-points[1], contact-ointstOj);
pfNornalizeVec3(ground->normal).

if (ground->nonnalM2 < 0.00) (
pf~akeftsPlan(growmd, contactpoints[0], contact..points(1I, conat-.poits[2D);
pfNormalizeVec3(ground->normal);

I

count = 0;

if(pfSeglsectPlane(fo, ground, &foo~datafleg1otjmeight) == PRIS.FALSE)
printf("No ground intersection I for leg %iWn, leg);

head[(J[l - O.Of.
head(01[]C[11I= l.0f,
head[lO 12 = 0.0f,
dotp = PFDOTVEC3(head[OlIO], ground->normal);
pfMakeRoeMatm2, (pfArcCos(dotp) -90.0k), 1.0f, 0.0f, 0.0f);
head90[0J = IA0f
head9O(1J =0.Ot
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hewi9O21 = 0.0f*,
dotp = PFDOT EC3Qiead9O, ground->nonmal);

pfMakeRotMat(m3. (90.Of - pfArcCos(dotp)), 0.Of. I.Of. 0.00);
pfPreMultMat(m3. m2);

for (sect = 0; sect<3; sect++)

pfSinCos(l20.Of*sect+60.O, &sh. &ch),
PFSET..NEC3(heatlsect(O1. -sh. ch. 0.00:
ptXfonnPt3 (head~sectj 101, heaisect,110l. mn3)-
pfNormalizeVec3(headfsectll0l);
pfScaleVec3(headlsect)l0l, 3.0f. head~sectJ[0]);
delta...height~sectl (01 = foo-daxa[legI.fooxyz( 1] -

fo~daWa~eg)Jo~height +
headllsect][0112 - datatcount4+1.poimt[2];

if (dehta..height~sect][01 < deepest) I
deepest = delta~height~sect][10];
sector = sect;
segjay = count - 1

for (int nseg = 0: nseg<RAYS-YER..SECrOR - 1; nseg4-4) I
pfin~osg(anglsefl 0 +(20.0set). &sh, &ch);

pfXfbrmIpt3 (headsectllnseg+ 11. head~sectllnseg+ 11, mU)
pfNormalizeVec3(head(sectlnseg+11);
pfScaleVec3Qieadllsectlllnseg.1], FOOTPAD_P..DIS, headsectllnseg+lID;
delta-.height~sectl[nseg+1] - fot~datafleg.fbot..xyz[1 -

footjiatafleglfootheight +
head[sectj[nseg4.1]( - data~count++1.point(2];

if (deltajeight(sect(nseg+11 < deepest)(
deepest:- delta-heightfsect][nseg+ 11;
sector = sect;
seg jmy = count - 1;

I
if (deepest <-- 2.5f)
PFCOPYVEC3(contact-ointslsector], datafseg-rayj.point);
deepest = ONO;

pfMakPtsplae(ground. contactWints21, contact-oints(1], contact4,ointslOl);
ptNormalizeVec3(ground->normal);

if (ground->nocmal[2] < 0.00 1
pfMakeptsplane(ground. contactpoints01, contactpoints[11, contxtpints[21);
pfNormahizeVec3(ground->nornial);

if(pfSeglsectPlane(foot, ground, &footLdatafleg].foot-height) = PFIS-FALSE)
prin C(No ground intersection 2 for leg %j~n", leg);

PFCOPYilvEC3(foot-datalegI.nonhal. ground->normal);
fbot...data~eg.fbot-xyz[l] - (foot-datatleg].foot-height - LINK4LENGTH);
foot_,lataleg.ground-contact = TRUE,
# I end orient~foot
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void movecmera.boom(pfDCS *DCSboom(31)I

pfDCSRot(DCSboomn(O1, (float)getvaluator(DALO), 0.0f. 0.O00:
pfDCSRot(DCSboomn[ 11, -(float)getvaluator(DIAL 0),0.Of. 0.00;
pfDCSRot(DCSboomI(2]. -(float)getvaluaox(DLJ2),O.Of. 0.0f);

fl Read into memory materials and textures used in the simulation
void read-materialsO(

if (LoadGDL2("rnodels/marerials.gdl") - NULL)
fprnrf(stden,"lUnable to initialize materialWii);

if (LoadGDL2("modeWshowgdl.textures.gdl") = NULL)
fprintf(stderr,'tlnable to initialie textureft");

H/ end read-materials

#I Read in the terrain model and assign unique characeristics
pfGroup* read jerain (

pf~roup *G..irt, *pond;

G-.dirt = LoadGDL2C'modestsfioor.9d1");

pond = LoadGDL2("modes/PondLgdi");

#I Set up the intersection mUA for the terrain root node
pfNodcTravMask(Gjlirt.PFRAV-JSECI%

TERRAIN-MASK, PFn AV-SELFIPFIRAV-DESCENDIPFrRAV_-ISCACHE. Pf-.SET);

pfmodeTravhask(pond.PTRAVjSE~.
WATERJVIASK, PFT7RAV _SEL~FPFTRAV_DESCENDIPFTRAVISCACHE. PF-SET);

pfAddChild (G..dint, pond);

return(G-dirt);

# Iend read-errain
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# FILENAME: walk.C
# PURPOSE: This file contains the functions to perform a simplistic tripod gait/
H NOTE: This program is written in C++ utilizing Performer 1.0
// AUTHOR: Wrus Kristiansen and John Goetz
/ DATE: 20 February 1994
/COMMENT:
I/UPDATE:

/
//External access to two functions: (prototypes in "roboLglobals.h")'I
// 1. void restartrobotO;
# Initializes all robot parameters.
// placing the robot at the origin at rest
//
fl 2. void move_robotffcs joystick),
// Reads the system clock and updates robot position.
II Joystick is accessed for an "ordered velocity" at the
// beginning of each step. (Joystick port is assumed
// to have been successfully opened prior to call.)
// Robot body accelleration is non-infinite.
fl

#include <iosteam.h> # for error messages
#nclude <stdio.h>
#include <stdiib.h> //for exit strmt
#include <math.h> # for trig functions and sqrt
#include <sys/times.h> // for retrieving system time
#include <sys/apram.h>
#include "pf.h"

// Joystick attached to HOTAS Flight Control System is
# used for desired velocity input for the robot.

S"fcs.H" and "fcs.C", written by Paul Barham, are used
# for access to the device.
#include "fcs.H" # for joystick access

// aqua robot definitions and globals passed to draw function
#define _COMMON_
#include "robotglobals.h"

// LOCAL DECLARATIONS

/I joystick stuff

// minimum non-zero value recognized for joystick input
/l (smaller values are zeroed)
#define JOYhMN 0.1

# Name for joystick port
# gravy3&5 portname
#define JOY_STICKPORT "/dev/ttyd4"

// instanciate fcs object
char *port-pame = JOYSTICK-PORT;
fcs joystick (port-name, 0, 0);
//end of joystick stuff
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IIfor angle conversions (radians to/from degrees)
#define PI 3.1416f
#define RADTODEG 57.2958f
#define DEGTORAD 0.0174533f
#define MINIMUM(ab) ((a<b)? a:b)
#define HYPT(ab) pfSqrt((a*a)+(b*b))
#define LINK2SQR (LINK2LENGTH * LJNK2LENGTH)
#define LINK3SQR (LINK3LENGTH * LLNK3LENGTH)

float deltatime; // time since last update
float scalar-speed: # for robot body
float jointangles[ 18];

pfVec3 tpl.pos # XYZ center of legs 1,3,5 (tripod 1)
pfVec3 tp2_pos; (I XYZ center of legs 2,4,6 (tripod 2)

int moving.len..group; /IDs stepping tripod (O=none)
int stepin_proress; boolean
int reset # boolean to flag a reset

/ Center of body
pfVec3 robot..position;

# planned end of step positions
pfVec3 moving.groupgoalpos; #I tripod position
pfVec3 bodygoal.pos; # robot body position

pfVec3 actual_velocity

float body distance_this step;// scalar distances to determine
float distanceto.go; // pt of step completed

/ LOCAL PROTOTYPES

# Determines which tripod will take the next step.
/ Calculates and saves goal positions for body and stepping tripod.
void plan-modon(pfVec3 ordered),

II Increments stepping tripod position for new frame.
void movetripod..group(int endoLstep);

// Calculates leg joint angles for given
# robot body position and tripod positions.
void calculatejoinLanglesO;

void moveperfomer._DCS(pfDCS *base, pfDCS *DCSln[6][4]);

II Reads joystick of an FCS object and returns the horizontal
# component in X (left -1 to right +1) and the vertical component
# in Z (ahead -I to back +1). The vector sum of the two components
# is normalized if greater than one and zeroed if less than JOYMIN.
void readjoystick(pfVec3 *ordered);
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/ Establish the initial posture for Aquarobot

void restart_robot(pfDCS *base, pfDCS *DCSlink[6][4]) I

static pfVec3 initrobotposition

H Place robot in air so it can be placed on terrain correctly.
pfSetVec3(iniLrobot.position, 50.0f. ROBOTBEIGHT, 0.00:

//joysick setup
//Check to make sure the FCS was found on the desired port
//and that the FCS is communicating correctly.

if (!joystickexistso) I H/abort program
cerr << "Unable to communicate with joystick." << endl:
exit(0); # quitI

else ( //run program

// Deaden the joystick pitch and roll so user can rest
# hand on stick without causing movement.
joystick.deaden-pitch(0.05);
joystick.deadenroll(0.05):

// Clear joystick input
# (needed for reset so robot doesn't see old value)
if (joystick.new-data0)

joystick.geLdatao;
joystick.clearJataO;

//end joystick setup

# initialize local variables
pflnitClockO;
scalar speed = 0.0

moving-leg -group =0; / initially
stepin._progress = 0; # initially false
reset = 1; // initially true

// initialize robot's foot positions
pfSetVec3(moving-group.goal-pos, iniLrobotposition[0], LINK4LENGTH,

init.robot.position [2]);

pfSetVec3(tpl_.pos. init.roboLposition[0], 15.0f,
iniLrobot-position[2]);

pfSetVec3(tp2_tos, iniLroboLposition[0], 15.0f,
iniLrobotposition[2);

//initialize robot's body position
pfCopyVec3(body-goal-pos, iniLrobot-position);
pfCopyVec3(robotj-osition, init-robot-.position);

for (int leg = 0; leg<6; leg++) I
foot data[leg].ground_contact = TRUE;
fooLdataflegl.direction = FOOT-UP;
footJlata[leg].footxyzlI = 0.0f;
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II initialize robot's leg joints
calculate-joint-angleso;

moveperformer _DCS (base, DCSlink);

tpl-posl = LINK4LENGTH:
tp2...pos(lI = LINK4LENGTH;

HI Determine location of center of body based on joystick input

void move robot(pfDCS *bs, pfDCS *DC~jrk6[4I)

pfVec3 temp;
pfVec3 ordereitvelocity;

static float old-ime;
float current time = pffletfimeo;
int end~o...sep = 0; # boolean used to detect end of step, signal to put feet down.

if (reset)
oldctime 0 .0f;

delta6-time =current-.time - oldjime;
old-time =currenijtime;
if (deltajime > 1.0f)
delta-time = 0.05f;

if (!stpjn.progres) I #I If no step is currently in progress

#I get ordered velocity components
read joystick(&ordered~yeocity);
PFSCALEEC3(ordered~velocity, MAX_.SPEED, ordered-velocity);
PFCOPYVEC3(actu~veocty, ordered velocity);

#I save scalar value
scalar~speed = PFLENGT!HVEC3(orderedyelocity);

#lplan th'estep
plan..motion(ordered.yelocity);,

#I calculate distance remaining on this step
PFSUBYEC3(temp, body...goal...ps, robot..position);
distancejo...go = PFLENGTILVEC3(temp);

if (distacejto..o >-- deltaL-time * 10.0f) //prevent over-shooting goal
PFSCALE_VEC3(actualvelocity, (scalar..speed/dstancejo~go). temp);

else
end_o(_step = 1;

// updiate robot's body position
PFSCALE-YEC3(temp. deltajtime. actualvelocity);
PFADDEC3(robot..psition, robot-position, temp);
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II update stepping tripod position
if (stepjnprogress)

moveuipod-group(end ofstep); # move the stepping tripod group

calculate joint-angles(); update all eighteen joints

movejperformerDCS(base. DCSlink); // Set Performer DCS's

reset = 0:

]/Set bodies goal position based on joystick input

void plan-motion(pfVec3 ordered)

pfVec3 temp,

// detect end of motion condition
if (scalar._speed == 0.0f) stop ordered

//and was previously walking (tpl-pos not= tp2.pos)if (!PFEQUAL-VEC3(tpl.pos, tp2..os)) {

# plan next step to go to rest position
switch (moving leggroup)

# alternate groups
case (1):

fl set goals for rest position

pfCopyVec3(moving_group..goal.pos, tpl_pos);
pfCopyVec3(body.goa.pos, tplpos);
body-goal..pos[l] = ROBOTHEIGHT;

# switch groups
moving-leggroup =2;

/enable step
step..progress = 1;
break;

case (2):
# set goals for rest position

pfCopyVec3(moving.group..goal_.os, tp2_jos);
pfCopyVec3(body-goal.pos, tp2..pos):
body.goalposf I] = ROBOTHEIGHT;

II switch groups
moving.leggroup = 1;

# enable step
stepinprogress = 1;
break:

}//end switch

//set half speed
scalar-speed = 0.Sf * MAXSPEED;

4
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else

#I already in rest position (still in "stop ordemd" block)
movnjegroup = 0-

else // scalar~speed (ordered speed) > 0

Iplan next step.
switch (movingjleggroup)

#I alternate groups
case (1):

fl switch groups
Inovingleg-roup =2;

II enable step
step jn.progres=1

fl determine goal position for moving leg group

PfSetVec3(moving-group-oal..po. tpl-pos(0] + STRIDETIME *orderedll LINK4ENGTH,
tplj.os[21 + STRIDETIME * orderedll2l);

fl determine goal position for body
pfSetVec3(bodygoalpos, tpl..pos(0J + (STRID_TviME * ordered(01 / 2.00),

ROBOT-HEIGHT, tpL-posi2J + (STMIDE * ordered[2/ /2.0f));

break;
#I Y positions are a constan

case (0):
case (2):
#I switch groups
moving-eg..group =1;
#/enable step
step jl-.progress =I

Idetermine goal position for moving leg group
pfSetVec3(moving..group-.goaljpos, tp2.pos[Oj + STRIDE-TEWE *ordered[OI, UNK4ENGTIL

tp2.pos[2] + STRIDEJ-EIE *orderedllM);

#I datenine goal position for body
pfSetVec3(body-goal..ps. tpZ..posIO] + (STRIDETIM* orderedlO] / 2.0f).

bra;ROBOT-MEIGHT, tp2.jPos(21 + (STRIDE J&fiM * ordered[21 / 2.00));

# lend switch

# Iend if (scalar...speed ==0)

if (stepjn..progress) #I new step started

#I set length of step for pct completion calculation
body-dstance-his..step = PFI)ISTANCEPT3(body..goal-pos, robot..psition);,

J#Iend if

#l end plan-motion
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void move..tripod.group(int cnd-o.step)I

float s, c; #I Places for sin and cos
float footlIift;
pfVec3 temp;
static float lasttpl-height = 0.0f, lat_tp2,_height =0.0f,

switch (moving !eg..group)

case (1:
if (enc-Lstep)

Isnap position to end of step
pfSetVec3(tpl-jpos. moving-group-goalj-os(o],

LINK4LENGTH, movmng.group-oal..pos(2]);

#I reset step~in..progress
stepn.progress = 0;

if(Ifotdata[0].ground.contact)
foot-data(0J.groundsontact = TRUE;
PFSETY-EC3(foo~daa[0].nionnaj. 0-Of. 0.Of. 1.01);

if(foo _data[21.ground contact)I
foo~datat2].ground..contact = TRUE;
PFSETYVEC3(fo~data[2].normal, 0.0f, 0.0f. 1.0f);

ifIfbo~data[4j.ground contact) I
fo~data[41.ground..cornact = TRUE;
PFSET-VEC3(fooLdaa[4].nonnal, 0.0f. 0.0f, 1.01);

foot-dataf(l .direction = FOOT-UP.,
foot-data[2].direction = FOOT JJP-
foot_,dataf4j.direction = FOOT.JJP,

last~tpljieighz 0.0f,

else

if (distance-to-.go <= body distance zhis_.sep) // no overshoot
#I required in case body mo6mentumn is away from
Iordered direction of motion. Delays picing
Iup feet for next step until stabilazation.

pfSinCos((RADTODEG * (PI * distance to~o / bodydistancejthis _step)) &s, &c),
foot-lift = body...distancejthi$_step * s;

PFSCALEVEC3(temp, (2.0f * delta~time), actual-velocity);
tpl.pos(1I = LINK4ENGTH + MINMUM(mAXYOOT _LIFTfoot lift);

if ((Iastjtplieight > tpl.posl]) &&
(lfotdataIOI.direction)) (

fotjata(0].direction = FOOT..DOWN;
foot-data(2].direction = FOOT-DOWN;
foot-datall4].direction, = FOOT_DOWN;

Iast-tpl-height = tpl.pos[1J;
PFADD..NEC3(tpl-jmo, tplpos, temp);

I#l end if
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J//lend if
break

#lend case (1)

case (2):
if (end.of..step)

#I snap position to end of step
pfSetVec3(p2..pos. moving-roup-oaU-os(0I.

LINK4LENGTH. moving..jroup-goaL-pos[2J);

#I reset step-in-progress
stepn.progrss = 0;

if(foobjlaatl].gound-.conact) I
foot datafl].ground contac = TRUE;
PFSETVECd3(fotdata(11l.nonnal, 0.0f, 0.0f, 1.0f);

ifffot-data131.ground,-contact) I
fooL-data[3].ground-contact = TRUE;
PFSETVEC3(foz.data(3J.nonnal, 0.0f, 0.0f. 1.0f);

if(Ifootdata5].grounc~contact)
foot..Aata[51.groundsontact = TRUE:
PFSET VEC3(footdata(5I-nonual, 0.0f, 0.0f, 1.0f);

foot-datal.direction = FOOT-UP;
fo~data[31.direction = FOOT-UJP
foot..data[51.direction = FOOT-UP,

lasjtp2,_eight = 0.Of-,

else

if (distanceto-go <= body..disancejthis-.step) #I no overhoot

pfSinCos((RADTODEG * (PI * distanceto-jo / bodyjlistance_this-step)), &s, &c);
footjift = body...distancejthisstep * s;,

PFSCALE-'EC3(ternp. (2.Of * deltajim), actualvelocity);
tpZ..pos[ 1] = LINK4LEN3GTH + MMUM(MAX.Y.OOT...LIFTfbolift);

if (Qaszjp2_.height > tp2_.pos(1]) &&
(!fo-dazall].direction)) (

foot..data~l1.direction = FOOT-DOWN;
foot-ataM3.direction = FOOT-DOWN;
footdatafl].direction = FOOT-DOWN,

Iautp2jieight = tp2..pos(l];
PFADD-VEC3(tp2jpos, tp2jpos, temp);

)// end if
)# en~dif
break;

Iend case (2)
lend switch

I#l end movejripod..gVmp

void calculate-joint-angleso I

pfVec3 jointl-pos; #I XYZ coordinates

52



pfVec3 joinc2...pos; I

float m !:Kr. dy.dxz. rsq
float s. c. // Holds sin/cos values
register irn leg; II loop variable (0 = leg 1)

for(leg - 0: leg < 6; leg++)

#ldetermnine jointz I position
PFSETVEC3(temp. offset factorleg*21*LINKOLENGTH,

O.Of. offactorfleg'2+ l)LNKLENGTH)
PFADDYVEC(jointl..pos. robot..position, temp);

HI determine foot position
switch (leg) I,
case (0): case (2): case (4): #I legs 1.3&5 on tripod 1

if ((foot-data[legJbgroundcontact) 11
(QfIoo-data~legJ.diectnon) &&
(tpl-.pos(1] >= foot-iata[leg.footXyz[1]))) J

PIFSETYVEC3(temp. (offsetfactorfleg*2]*FOOTRADIUJS),
0.0f, (offse~factreg*2+11*FOOT..RADIUS));

PFADD-VEC3(oot.daza[IgJfooLxyz. tpl..pos, temnp);
if (step-n...progress)
foot-datatleg]groundcona = FALSE;

case (1): case (3): case (5): // legs 2.4&6 on tripod 2

if ((!fo-dataflegI.groundsonact) If
((!foot..dasaftg.direction) &&
(tpZ..pos[11 >- footdazaflegJ.oo..xyz(1D)) I

PFSET...VEC3(temp. (offset-factortleg2FOOT.RADIUS),
0.0f, (offseujfactor(Ieg2+IIFPOTRADIUS));

PFADD_VEC3(foo _daaflegj~foo~xyz, tp2...po, temnp);
if (step-jnprogress)
footLdata[leg.groundsontact = FALSE;

break;
# Iend switch

#I calculate mt *1 angle using slopes
#I slope of line from body center to Joint 1
ml = (jointi..pos[2] - robot-position[2]) #I dZ

/(jointl-pos(0I - robot..position(llo); #I dX
#I slope of fine, fromt joint 1 to position directly above foot
m2 - (fojiatalg.foot..xyz[2] - join: l.pos(21) #I dZ

/(f~ootjiaaqeg.fo...yz[0J - jointl.posO1); // dK
joint...angles(3*legJ = pfArcTan2((m2 - ml), (1.Of + (ml * m))

#I determine joint 2 position

pf~inCosOLADTODEG *((PI~leg(3.0f) + (DEOTORAD * join~angles3*legJ)), &s. &c);
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PFSETVEC3(temp. LINKILENGTH c, 0.0f. LINKILENGTH*s)

PFADD-E(join2..po. jointl-pos. temp).

YI determine length of
//d tethird side of triangle (joint 2. joint 3. foot).
dy - jointl..po(1I - (ootjlata(leglfbooxyz[lJ; #I Y coordinate

dxz - HYPT((oint2.po[01 - fo~data[legIJfoo-xyz40J, #I X coordinate
(joina..pos21 - foot-dataeg].fbo'xyz[2)// Z coordinate

r = HYPT(dy, dxz); /length of third side

#I need squares of all tee sides for "law of cosines"
rsq = r*r,

#lcalculate joint2 angle using law of cosines

pfkrctos((LINK2SQlR + rsqr - LUNKSQR) #I A3 (angle opposite
1(2.01 * LINK2ENGTH * r)) 1LINKLENGTII

-pfArvSin(dy /r); //1-phi

I/calculate joirn3 angle using law ofcosines
jointanges(3*leg+2J - # Ar (angle opposite r)

pE~ivCos((UNK2QR + LINK3SQR - rsq)
1(2.Of LINK2LENGTH * LINqK3LENGTH));

I #I end for loop

#1 end calculaw-joint-angles
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#I Update DCS's to diplay, new position
vod move-perfomer.DS(pfDCS *base, pfDCS *XSlrk[61[41)1

static pfMatrix ml1;
#I Move robots center of body (convet zo robotics coordinat system)

ptl)CSTrans(base. roboi..positionf 0], robot-positiont 2], -robotposition[l]);

for (int leg = 0: leg < 6, leg++)I

pf]DCSRot(DCSlink~legIIO], joint..angles[3*leg], 0.Of. 0.0f0;
pfDCSRot(DCSlink(legJ(l], jOint-angles(3*Ieg+ 1], 0.Of. 0.00;-
pfDCSRot(DCSlink[legJ(2J, 180.Of + joint..angles[3*leg+21, O.Of. 0.0f);

#I Translate foot into correct position (world coordinate)
PfMakeTransMat(foot-dataf leg I-foo -mat, foot data[leg].foot -xyz[0],

foot-data[legJ.fotxyz(2], -footdata(leg]Ifoo-xyz[l);

IIf foot is in the air, keep it level and have it rotae with shoulder
if (!foot-dataleg].ground..contact) I
pfflakeRoctazml 1.joint-angles3*Jeg]. 0.01. 0.Of. 1.0f);
pfflostMultMat(m I. foot datatleg].footjnat);
pfDCS~fatrix(DCSlink~leg][3], ml);

I #I end for statement

I #I end mnove-erformerDCS

// Check the joystick for response
void read-joysnck(pfVec3 *ordered)I

pfVec3 stick~direction;

if (joystick.newjiatao)

// read joystick data
joystick~geLdata);

pfSetVec3(sick..direction. joystickrollo, 0.01, joystick.pitcho);
p(NormalizeVec3(stick direction);

#/mark current data as used
joystickcleaJlata);

if (pfLengthVec3(stick-iirection) < JOY _MIN
pfSetVec3(stickjlirection, joystickroflQ(, 0.0f, joystick~pitcho);

I Iend if

Iwrite return values
PFCOPYVEC3(*ordered. stickdirection);
llend read-joystick
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APPENDIX B: SIMULATION SUPPORT CODE

//
H robotglobals.h
I,
/Iwritten by Wrus Kristiansen and John Goetz

/ Global definitions, variables and animation function prototypes
# for aquarobot, a six legged underwater walking robot.

# Aquarobot's positional data are calculated in functions
// and passed through variables declared in this header to
# external robot drawing function written by John Goetz./-
//Function definitions ae in "walk.C".//

#ifndef ._ROBOT_GLOBALSH

#define __ROBOTGLOBALS.H

#include "pf.h"

#ifdef COMMON
#defne EXTERN
#else
#define EXTERN exten
#endif

typedef struct

pfVec3 foot-xyz;
pfMatrix foot mat;
pfVec3 normal;
int ground_contact;
int direction;
float footheight;

} FOOTDATA;

EXTERN
FOOLDATA foot-data[6];

//Defines for foot direction
#define FOOT.UP 0
#define FOOTDOWN 1

//all positional information is based on a left handed //
# XYZ coordinate system: +X = right, +Y = up, +Z = toward//
/# viewer (out from screen). (SCALE 1.0 = I centimeter) I/
II II
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I
//DEFINITIONS//
# Any of these may be ,justed: however, care must be taken
# not to exceed physical limitations. For example, the product
// of MAX-SPEED and STRIDE_'IME should not exceed 50 for the
# current dimentional limitations of the robot. i.e. it can't
# take 2 second steps, going 400cm/sec because its legs can't
# reach far enough to move the body 8 meters per step.../
# maximum robot speed in cm/sec
#define MAX.SPEED 33.33f //25.0f

/radius of feet positions in cm
#define FOOTRADIUS 109.0f

//max height foot lifted during step
#define MAXFOOT_-LIFT 20.0f #15.0f

# time, in seconds. for one step
#define STRIDE,_TIME 1.5f //2.Of

//The floor for the robot to walk on is the plane
//described by Y = 0.0.

#define FLOORLEVEL 0.Of

Body9 ll Robot height = height of joint 1 above floor in cmFloor

#define ROBOTHEIGHT 102.0! 1192.0!

# ROBOT DIMENSIONS

Body l LLNKLENGTHS in cm

K? LINKOLENGTH

/* link lengths */
#define LINKOLENGTH 37.5f
#define LINK1LENGTH 20.0f
#define LINK2LENGTH 52.0f
#define LK3LENGTH 102.0f
#define LINK4LENGTH 3.0f
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I'
II Offset mati.I,
II For position of first joint of a leg, multiply X and Z
II components by bodyradius and add to body position;
/For position of a foot. multiply X and Z components
II by FOOTRADIUS and add to appropriate tripod position.
#ILeg I is on +X axis. and legs 2 through 6 are
H at 60 degree intervals.

coast float offsetjfacW r12] 1
// Xcomponent Zcomponent
II leg 1 cos(0) sin(O)

1.0, 0.0,
leg 2 cos(60) sin(60)

0.5. 0.866.
//leg 3 cos(120) sin(120)

-0.5. 0.866,
I leg 4 cos(180) sin(180)

-1.0. 0.0,
//leg 5 cos(240) sin(240)

-0.5, -0.866,
//leg 6 cos(300) sin(300)

0.5, -0.866);

/ aqua robot's body position. (X, Y, Z coordinates)II
/l Since orientation is constant, this is sufficient
# to totally describe the postition of the body.
I'
II aqua robot's leg joint angles./
II Three joint angles me defined for each leg.
II The joints and their 0, + and - angles are
# pictorially described as follows:'I
1/

joint 1 joint 2 joint 3

top side1
view 0 view0 side0view//-.view

side side

view view

II current angles for all joints
/leg 1,joint 1, 2, 3,
#/leg 2, joint 1.2,3,...
/leg 6,joint 1, 2, 3,
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//FUNCTION PROTOTYPES

/ Iniializes all robot global variables, positioning
// the robot at the origin in the rest position.
void restarLrobo(pfDCS *base, pfDCS *DCSlink(6][41);

//Reads system clock and updates robot position
/and joint angles.
//Reads fcs object. joystick pitch and rol components.
//for motion orders. FCS object must be valid!
II Returns robot to rest position, body and tripod
H centers having equal X and Z coordinates, when
// ordered velocity is 0.
void move.robot(pfDlCS *base, pfDCS *DCSHWJk6][4]);

#endif // __ROBOT_GLOBALS.H
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//F.ENAME: SGlwindowcam.C
/ PURPOSE: This program contains the functions for queing devices and
I checiing the events queue for mouse and spaceball events. It
1/ also contains the functions for controling the camera and focalII point.
I'
//NOTE: This is and IRIS 3D program written in C++
H AUTHOR: John Goetz,
HIDATE: 15 January 1994
/COMMENT:
//UPDATE:

#include <gl/glh>
#include <stdlib.h>
#include <gl/device.h>
#include <gl/spaceball.h>
#include "SGlwindowcam.H"
#nclude "pf.h"

#define RESET 14 # pop up menu item
#define EXIT 15 # pop up menu item

#define RADTODEG 57.29577951f
#define SBRATIO 0.0004f //spaceball rotational scale factor
#define SBTRATIO 0.008f //spaceball translational scale factor
#define PIE 3.141592654f
#define PIEOVER2 1.570796327f
#deflne TWOPIE 6.283185308f

long topmenu; #/ pop up menu hook

/* Function initialize */

void inializeo

//Que the devices and keys to be used
qdevice(REDRAW); # queue the redraw device
qdevice(MENUBUTTON); // queue the menubutton
qdevice(LEFI'MOUSE); //Initialize Mouse Buttons to be Queued
qdevice(SBTX); //SpaceBall Translate in X
qdevice(SBTY);
qdevice(SBI'Z);
qdevice(SBRX); //SpaceBall Rotate about X
qdevice(SBRY);
qdevice(SBRZ);
qdevice(SBPERIOD); / SpaceBall time delta
qdevice(ESCKEY); //Exits program
qdevice(FIKEY); //Toggles statistical information
qdevice(F2KEY); #/Toggles fog

# Set the limits for the dials to be used
setvaluator (DIALO. 0, -10000, 10000);
setvaluator (DIALL, 0, -40, 50);
setvaluator (DIAL2, 0, -90, 90);
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// Set dead band for the dials to be used
noise(DIALO. 2):
noise(DIAL1. 2);
noise(DAL2. 2);

# Create the pop-up menus to reset simulation and exit program
makethemenusO;

}//end initialize()

/* Function Make the Menus

void makethemenus0 I

# /build the top level pop-up menu
topmenu = defpup("Reset %x141 Exit %x15");

/* Function CheckQue */

void CheckQue(SharedData *data) {

long device;
long hititem: # variable holding hit name
short value; # value returned from the event queue
short sbvals7l; #/ array to hold spaceball values
short kbvals[7]; #/ array to hold keyboard values

// do we have something on the event queue?
while (qtestO)

device = qread(&value);
switch (device){
# Redraw window after resizing, not needed for a fixed windowsize
case REDRAW:

reshapeviewportO;
break;

case MENUBUrITON: # Menu selections
if (value -= 1)

/* which popup selection do we want? *1
hititem = dopup(topmenu);

switch (hititem) {
case RESET:

data->resetFlag = 1;
break;

case EXIT:
data->exitFlag = 1;
break;

}//end if for MENUBUITON
break;
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case (SBPERIOD):
case (SBTX):
case (SBTY):
case (SBTZ):
case (SBRX):
case (SBRY):
case (SBRZ):

sbvalsfdevice-SBTXI = value-,
if (device = SBRZ)

calculate-yiew(sbvals. &data->view);
break,

/* ESC-key signals end of simulation *
case ESCKEY:

data->exitFlag = 1:
break:

/* Fl-key toggles channel-profile display *
case FiKIEY:
if (value == 1)

data->pfStats = !data->pfStats:.
break;

I* P2-key toggles underwater environment ~
case F2KF.Y:
if (value = 1)

data->pf Fog = !data->pfFog;
break;

default

# I end switch
)1# end while qtest
qreseto;
# I end of Check&Que
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/* Function calculate-view *
void calculate view(short value(I, pfCoord *view)

float sh. ch. sp, cp, sr, cr

HI calculate (pitch)

if (view->hprfl] + (valuef 3] * SBRATTO) > 90.00)
view->hprf II = 90.0f;

else
if (view->hpr(1] + (valueI3] *SBRATIO) < -90.0f)

view->hprjlJ 90.0f,

else
view->hpr[l] += value[3] SBRATIO,

HI calculate (roil)

if (view->hprf2] + (valuef 5] * SBRATIO) > 90.0f)
view->hpr[2] = 90.Ofi;

else
if (view->hpr[2] + (valuetS] *SBRATIO), < - 90.00)

view->hpri2] 90.0f;,

else

view->hprjI2] += valuell5]4 SBRAIIO;
#I calculate (heading)

if (view->hpr[Ol + value[4] * SBRATIO > 360.0f)
view->hpr[0] - (view->hprf 0] + value[4] * SBRATIO) - 360.0f,

else
if (view->hpr[0] + value[4] * SBRATIO < - 360.0f)

view->hpr[0] = (view->hpr[O] + valueI4] * SERATIG) + 360.Of;,

else
view->hpriOJ +-- value[4] * SBRATIO;

pfSinCos(view->hpr[0I, &sh, &ch)-,
pfSinCos(view->hpr[1. &sp, &cp);
pfSinCos(view->hprf 2]. &sr, &cr);

#ICalculate Performer Y-axis position

if (view->xyzfl] + (value[21*ch + value(0]*sh) * SBTRATIO < -3000.0f)
view->xyz(1] = -3000.0f,

else
if (view->xyzI~l] + (value(21*ch + value[01lsb) * SETRATIO > 3000.0f)

view->xyzIfll = 3000.0f;

else
view->xyz[1] += (valuef2]*ch + value[O]*sh) * SBTRATIO;
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II Calculate Performer Z-axis position

if (view->xyzt2] + value(11 * SBTRATIO < 5.0f)
view->xyz[21 = 5.Of;

else
if (view->xyz[2] + value(lI * SBTRATIQ > 1000.00)

view->xyz(21 = l000.0f;

else
view->xyzI2] += value[1I * SBTRATIO;.

ICalculate Performer X-axis position

if (view->xyz(0] - (value[21*sh - valuef01*ch) * SBTRATIO < -3000.00)
view->xyzt0] = -3000.0f;

else
if (view->xyz[O] - (value(21*sh - value[0I*ch) * SBTRA1T0O> 3000.00)

view->xyztOl = 3000.0f.

else
view->xyz[0I -= (value[2]*sh - value[0]*ch) * SBTRATIO;

# I end calculate-.viewO

IFILENAME: loadGDL.h
IPURPOSE: This program contains the functions prototype for loading a file

HINOTE:
IAUTHOR. John Goetz,
IDATE: 15 anuary 1994

//COMM4ENT:
HI UPDATE:

#ifndef_-LOADGDLH_
#defineL-jOADGDLH_

#include "pf.h'

pfGroup* LoadGDL2(char* fienamne);

#endif
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APPENDIX C: LOADING NPSGDL2 FILES INTO
PERFORMER

1. PURPOSE

The purpose of this loader is to enable the use of the extensive model library that has

been created using Object File Format (OFF), NPS Graphics Description Language

(NPSGDL) or NPS Graphics Description Language I (NPSGDL2) in Performer

applications. These three formats differ slightly and some text editing of the model

description is required to convert OFF and NPSGDL files into the NPSGDL2 format. For

a complete description of NPSGDL see [Ref. 15]

2. GENERAL DESCRIPTION

The loader reads a NPSGDL2 file and stores all similar geometry with the same state

and same predraw callback in a pfGeode.,State refers to the color, material, texture or

texture environment. The predraw callback is discussed on page 69. When the state

changes, the current geoset along with its state information (geostate) is attached to the

current pfGeode. A new geoset and geostate is then created. If the state is changed

redundantly (red, white, red, white) many times, an excess number of pfGeosets will be

created and will increase the traversal time for the scene. In order to alleviate this problem

it is useful to group all polygons with similar characteristics (state) together in the model

file

After the entire model file has been read in, all the pfGeodes which have been created

are attached to a pfGroup. A pointer to the pfGroup is returned to the main application for

the user to attach to the scene. The following sample code shows how to load a file:

#include "loadGDL.h"
#include "pf.h"

pfGroup *GQdirt;
G-dirt = LoadGDL2("models/testLfloor.gdr');
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3. PRIMITIVES

Performer only allows for a few well defined primitives. These are points. lines,

linestrips, tris (triangles), quads (quadrilaterals) and tristrips'. GDL allows lines, Tmeshes

(triangle mesh), Qstrips (similar to tristrips except components are quadrilaterals) and

polygons which may have any number of sides (sides > 2).

NPSGDL Tmeshes convert easily to Performer tristrips. Qstrips and lines were ignored

since these features did not seem to be used very often. Polygons on the other hand are used

extensively and the limited Performer primitives must be made to handle any polygon. For

this reason all polygons are convened to Performer tristrips. This is accomplished by the

loader and is transparent to the user.

1 6

/

/

Figure Cl: Converting a polygon to a trimesh

Figure C1 depicts a typical 6 sided polygon and how the loader breaks it down into a

trimesh. The dashed line depicts the vertex path traversed by the loader (1, 2, N, 3, N- 1, 4,

N-2), and the solid lines depict the sides generated by the tristrip algorithm. The loader can

convert any convex N-sided polygon

It is not apparent, but there is a difference between trimeshes and polygons converted

into trimeshes. It is in the way they are indexed. Referring to Figure C1, the vertices of a

1. A tristrip is a collection of three sided polygons specified" uence of the three most recent
vertices. Also referred to as triangle mesh
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trimesh would be entered in the order (1,2,6,3,5,4). The index list (traversal order) would

be NULL, meaning the vertices will be traversed in the order they were entered. The

vertices for a polygon would be entered in the order (1,2,3,4,5,6) and the index list would

be (1,2,6,3,5,4).

The loader can be changed to handle 3 and 4 sided polygons more efficiently, but this

would require editing the model files and grouping similar polygons together to minimize

changes in the primitive type. Redundant changes will create an excess number of geosets

which will slow traversal time.

4. COORDINATE SYSTEM

Performer utilizes an orthogonal coordinate system defined with the Y axis to the right,

Z axis up, and the X axis out of the screen. This differs from IRIS's GL (Graphics Library)

coordinate system; utilized by GDL2; which has the X axis to the right, Y axis up, and the

Z axis out of the screen. In order for models stored using GDL to appear correctly when

rendered using Performer, the loader changes the oider of the vertices from XYZ in GDL

to YZX in performer.

5. MATRIX TRANSFORMATIONS

The NPSGDL2 commands for manipulating the model view stack (scale, rotate,

translate, pushmatrix, popmatr. 1-i.:imatrix) are used by the loader to transform vertices

to their desired location. Polygon and/or vertex normals are also transformed, but only by

the rotation matrix.

Level 0 SCALE I ROTATE j TRANSLATE

Level 1 SCALE I ROTATE I ITRANSLATE

Level 2 SCALE I ROTATE I TR SLATE

Level 9 SCALE I ROTATE I ITRANSLATEI
Figure C2: GDL Loader Matrix Array
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The loader has an array of ten sets of matrices. Each matrix set consists of three 4x4

matrices, one for scale, rotate and translate (see figure C2). When any or all of the matrices

are defined, they are multiplied together in the order S x R x T and the resultant matrix is

placed at the top of the array (Level 0). All vertices that follow are tansformed by the top

level matrix prior to being saved in the pfGeoset. When a pushmatrix is encountered the

array is incremented. All three matrices of the new level are loaded with the identity matrix

and they are ready for assignment. A popmatrix decrements the array and the previous

matrix is returned. The loader will not allow a user to push more than 10 matrices nor pop

more matrices than were pushed.

a. LOADING A MATRIX

The rotation matrix only allows for single axis rotations. If multiple rotations are

desired then the loadmatrix command can be used to enter a 4 X 4 homogeneous

transformation matrix. The matrix is entered in column vector format (translations in the

last row); common in graphics; not row vector format (translations in the last column);

which is common in robotics.

This matrix is physically stored in the rotate matrix position of the current matrix

level. In order to correct for the coordinate system differences between GDL2 and

Performer, the loader transforms the matrix to correspond to the Performer coordinate

system.

6. RENDERING ATTRIBUTES

Specifying the appearance of primitives may be accomplished using setcolor,

setmaterial or settexture. If textures are used, then a texture environment must also be

specified. Texture coordinates may be assigned in the polygon description of the model or

automatically generated by specifying a texture generating algorithm.
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a. TEXTURE COORDINATE GENERATION

The GL graphics commands for automatically generating texture (texgen)

coordinates have been placed in a predraw callback for pfGeodes. Each time the texgen

plane equation is changed, a new geode is created and attached to the tree with a new

callback. For a complete description of GL's texgen function, see [Ref. 161.

7. COMMENTS

Comments are allowed in the model files in either C notation /* */ or C++ notation//.

8. FUTURE WORK

The following GDL2 commands are not recognizable by the loader:

• deflight, sedight

* defimodel, setimodel

* decals

* defline

* defqstrip

• loadunit

The following GDL2 commands are recognizable by the loader, but have not been

implemented at this time:

• bounds

* origin

9. TESTING

The loader has been tested successfully on several different GDL2 files. However, this

does not mean it has survived rigorous and thorough testing. If anyone using this loader

should have difficulties, please send email to goetzjr@scs.usna.navy.mil with a description

of the problem and it will be investigated.

10. SOURCE CODE AND LIBRARY

The source code for the loader is located in /n/elsie/work3/goetzjr/loadgdl/ and the

library is libpfgdl.a. The library utilizes a pointer repository to reserve memory for
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instantiating template objects. In order for this repository to be visible by an application,

the entire path name of the repository must be specified in the makefile. An example of this

is:

C++FLAGS = $(INCLUDES) pte.C -ptr/n/elsie/work3/goetzjr/loadgdl/ptrepository
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