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ABSTRACT
INVISCID DISTURBANCE DYNAMICS IN BAROTROPIC SHEAR FLOWS

The inviscid nature of disturbance evolution in shear flows is investigated as an initial-value problem
within the framework of nondivergent vorticity dynamics. To ensure a basic understanding of physical pro-
cesses, disturbance evolution is first considered in a rectilinear system of simple shear. Particular emphasis is
placed on identifying how the disturbance evolution depends on the zonal wavenumber and on the meridional
structure of the initial conditions.

Insight acquired from the rectilinear problem is then applied to a bounded Rankine vortex. Here, the
dependency of disturbance evolution on the azimuthal wavenumber is of special interest. Recent development
of a low-frequency balance theory for rapidly rotating vortices has provided observational evidence that the
low azimuthal wavenumber asymmetries, especially wavenumber one, are dominant in the near-vortex region.
The results of this work provide further theoretical evidence of an inviscid wavenumber selection mechanism
that preferentially damps the higher wavenumber asymmetries.

The radial structure and location of the initial conditions are found to be critical factors in determining
how rapidly a disturbance is compressed or elongated. This in turn controls the rate of disturbance growth
or decay. For swirling flows, a definition of an effective shear that accounts for both the radial variations in
the initial conditions as well as the radial variation in the angular velocity is proposed. Using the reciprocal
of this effective shear, time scales for a disturbance to decay to half its initial energy, the half-life time, are
calculated for initial conditions and symmetric wind profiles that are found in hurricanes.

Simple shear flow and the bounded Rankine vortex do not admit discrete modal solutions since there is
no mean state vorticity gradient to support them. The unbounded Rankine vortex is briefly considered in
order to investigate how the presence of discrete neutral modes modifies the nonmodal solutions presented
in this work.



THESIS

INVISCID DISTURBANCE DYNAMICS IN BAROTROPIC SHEAR FLOWS

Submitted by

Gerald B. Smith, II

Department of Atmospheric Science

In partial fulfillment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 1994



COLORADO STATE UNIVERSITY

May 12. 1994

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPER-

VISION BY GERALD B. SMITH, IU, ENTITLED INVISCID DISTURBANCE DYNAMICS IN

BAROTROPIC SHEAR FLOWS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Adviser"

Deparmeo~e



ABSTRACT

INVISCID DISTURBANCE DYNAMICS IN BAROTROPIC SHEAR FLOWS

The inviscid nature of disturbance evolution in shear flows is investigated as an initial-value

problem within the framework of nondivergent vorticity dynamics. To ensure a basic understanding

of physical processes, disturbance evolution is first considered in a rectilinear system of simple

shear. Particular emphasis is placed on identifying how the disturbance evolution depends on the

zonal wavenumber and on the meridional structure of the initial conditions.

Insight acquired from the rectilinear problem is then applied to a bounded Rankine vortex.

Here, the dependency of disturbance evolution on the azimuthal wavenumber is of special interest.

Recent development of a low-frequency balance theory for rapidly rotating vortices has provided

observational evidence that the low azimuthal wavenumber asymmetries, especially wavenumber one,

are dominant in the near-vortex region. The results of this work provide further theoretical evidence

of an inviscid wavenumber selection mechanism that preferentially damps the higher wavenumber

asymmetries.

The radial structure and location of the initial conditions are found to be critical factors in

determining how rapidly a disturbance is compressed or elongated. This in turn controls the rate

of disturbance growth or decay. For swirling flows, a definition of an effective shear that accounts

for both the radial variations in the initial conditions as well as the radial variation in the angular

velocity is proposed. Using the reciprocal of this effective shear, time scales for a disturbance to

decay to half its initial energy, the half-life time, are calculated for initial conditions and symmetric

wind profiles that are found in hurricanes.
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Simple shear flow and the bounded Rankine vortex do not admit discrete modal solutions since

there is no mean state vorticity gradient to support them. The unbounded Rankine vortex is briefly

considered in order to investigate how the presence of discrete neutral modes modifies the nonmodal

solutions presented in this work.

Gerald B. Smith, II
Atmospheric Science Department
Colorado State University
Fort Collins, CO 80523
Summer 1994
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CHAPTER I

INTRODUCTION

Intense vortices observed in the atmosphere and ocean exhibit a high degree of axisymmetry,

although they are subject to persistent asymmetric forcing. In hurricanes, the interaction between

the vortex and environmental asymmetries has implications for spiral band dynamics (Willoughby,

1977; Guinn and Schubert, 1993), intensification (or weakening) processes (Molinari, 1992), and

storm motion (Shapiro and Ooyama, 1990; Shapiro, 1992; and Smith and Weber, 1993). Thus,

understanding the asymmetric dynamics of intense vortices is critical for understanding the physical

mechanisms controlling vortex evolution.

Until recently, the full primitive equations have been the favored tool for investigating the three-

dimensional asymmetric dynamics of intense vortices. Formulation of a low-frequency balance theory,

in which high-frequency gravity and inertial waves are filtered while retaining the pertinent aspects of

advection, is complicated for rapidly rotating vortices since the time scale of the tangential advection

is comparable to that of the gravity and inertial waves on the vortex. Shapiro and Montgomery

(1993, hereafter SM) proposed a three-dimensional asymmetric balance (AB) theory that includes

the full inertial effects of the rapidly rotating region while filtering the gravity and inertial waves.

In the vortex environment, AB theory reduces to the quasi-geostrophic balance theory. In the

absence of asymmetries, AB theory reduces to Eliassen's axisymmetric balance model (Eliassen,

1951) throughout the vortex.

SM were able to separate the advective processes from the inertial and gravity waves by defining

a local Rossby number that accounted for the varying rotation in an intense vortex. This local

Rossby number was given as the ratio of the orbital frequency to the inertial frequency multiplied

by the azimuthal wavenumber. Based on observations from Hurricane Gloria (1985), SM showed

that the square of the local Rossby number is generally less than unity only for wavenumber one
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in the rapidly rotating region of an intense vortex. A goal in this work is to further explore the

wavenumber selection mechanism that provides the basis for AB theory.

To aid in understanding the fundamental physical processes of axisymmetrization, previous

works using quasi-geostrophic shallow water models and nondivergent barotropic models are now

reviewed. Melander et al. (1987) studied the axisymmetrization in a quasi-geostrophic shallow water

model using a pseudospectral formulation. The model was initialized using finite-amplitude elliptical

vortices with modified 'tophat' radial profiles. In that paper, axisymmetrization was identified

with the shedding of vorticity filaments outside the nearly axisymmetric vortex core. Rather than

decompose the results into radial and azimuthal components, the vortex evolution was diagnosed

by plotting the aspect ratio of vorticity isolines as a function of time. At early times (t less than

a few orbital periods), all aspect ratios decreased towards unity and then began small-amplitude

oscillations. Melander et al. identified this initial transition with axisymmetrization.

For the majority of cases they considered, representation of dissipative processes at small scales

was parameterized using a hyperviscosity formulation in the potential vorticity evolution equation.

This could conceivably have played a role in the axisymmetrization process. However, by increasing

the value of the hyperviscosity used in their model, Melander et al. convincingly demonstrated the

inviscid nature of the axisymmetrization process.

In a complementary approach, McCalpin (1987) used a reduced-gravity quasi-geostrophic model

to study axisymmetrization in Gulf Stream rings. The vortex model consisted of finite-amplitude

azimuthal mode 2 or mode 3 perturbations superposed on an axisymmetric Gaussian basic state.

McCalpin found that nearly all of the perturbation energy was transferred to the basic state on time

scales on the order of an orbital period. While only weakly dependent on the perturbation strength,

the decay time scales were found to be strongly dependent on the strength of the mean flow and the

azimuthal wavenumber. In particular, the decay time scale for wavenumber three was found to be

60% faster than that of wavenumber two.

Like Melander et al., McCalpin parameterized dissipative processes with a hyperviscosity for-

mulation. However, he provided only a limited discussion regarding the effects of diffusion on the
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symmetrization process. McCalpin calculated a diffusion time scale that appears to be based on

L'/AB, where L is the characteristic horizontal scale and AB is the hyperviscosity coefficient. For

deformation radius scale waves, his diffusion time scale was found to be 80 years. However, since

the differential rotation in the vortex rapidly reduces the radial scale of the asymmetries (SM; also

Sutyrin, 1989), one must not neglect this effect when estimating the diffusion time scale.

In terms of McCalpin's model parameters, an estimate of the diffusion time scale that incorpo-

rates the differential rotation is

1

td AB[(41r 2 m2 n2 +n 2)/r 2] 2  (1.1)

where m is the number of orbits traversed by a fluid parcel at the radius of maximum winds (r)

and n is the azimuthal wavenumber. For AB = 5 x 109 m4 s- 1, m = 1, n = 2, and r = 50 kin, td is

found to be approdmately 13 hours. In calculating td, it is assumed that the differential rotation

has already decreased the radial scale of an asymmetry to render basic state quantities effectively

constant in a first approximation. Based on the results of Melander et al., this occurs in roughly a

few orbital periods. For a typical run, McCalpin found the perturbation decay time scale to be 1.5

orbital periods. This suggests that any viscous influence was likely insignificant.

Both McCalpin and Melander et al. simulated asymmetric vortex evolution using fully nonlinear

numerical models that generally prevent analytical solutions. While their results represent important

and meaningful contributions to our understanding of axisymmetrization, basic physical processes

may be masked by the presence of nonlinear dynamics, diffusion, and the #-effect.

Sutyrin (1989) developed a formal solution for linear disturbance evolution in a quasi-geostrophic

shallow water model on an f-plane. In this model, the disturbance potential vorticity was conserved

following fluid particles. For regions where the basic state potential vorticity was identically zero,

Sutyrin showed that the nonmodal component of the disturbance potential vorticity became oscil-

latory in radius with the oscillations controlled by the differential rotation of the fluid. In addition,

the radial gradient of the nonmodal disturbance potential vorticity was shown to increase linearly

with time. Sutyrin asserted that a similar nonmodal disturbance evolution would be observed in

regions with a continuous and monotonic basic state potential vorticity profile.
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The linear increase with time of the nonmodal disturbance potential vorticity gradient was

fundamentally due to the reduction of the radial scale of the disturbance. Sutyrin concluded, then,

that the symmetrization process was due to the differential rotation of the fluid and was analogous

to perturbation decay in rectilinear simple shear flow (Case, 1960).

Like Melander et al., Sutyrin did not examine the possibility of an inviscid azimuthal wavenum-

ber selection mechanism nor did he investigate the energy transfer between the asymmetries and the

circularly symmetric basic state. Identification of these processes is complicated in Sutyrin's model

since the solution is expressed in terms of an infinite function space operator.

Carr and Williams (1989, hereafter CW) studied axisymmetrization using an inviscid nondiver-

gent barotropic vortex model. Their evolutionary model consisted of small-amplitude perturbations

superposed on a steady axisymmetric Rankine flow. CW were primarily interested in the asymmetry

inducing influences of # and environmental wind shear.

CW asserted that the damping rate of perturbations is proportional to the square of the az-

imuthal wavenumber. This conclusion was based on results derived from initial conditions in which

both the azimuthal wavenumber and the radial structure changed simultaneously. CW asserted

further that their result was analogous to the dependence of damping on the zonal wavenumber as

described by Case for plane Couette flow. However, a careful review of Case did not reveal any

discussion of how the perturbation damping rate and the zonal wavenumber are related. Since this

relationship is potentially a fundamental aspect of an inviscid wavenumber selection mechanism in

sheared flows, both Case and CW must be revisited to clarify this issue.

In this work, the axisymmetrization process will be studied as an initial-value problem within

the framework of inviscid nondivergent vorticity dynamics. Since the curvature vorticity and the

curvilinear coordinate system of the swirling problem may complicate understanding of the distur-

bance dynamics, the analogous rectilinear simple shear problem (Case; also Farrell, 1987) will be

examined first. Identification of how the disturbance evolution depends on the zonal wavenumber

and the meridional structure of the initial condition will be emphasized.
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CHAPTER 2

ALGEBRAIC INSTABILITY IN UNBOUNDED SIMPLE SHEAR

2.1 Introduction

The purpose of this chapter is to examine the evolution of small-amplitude perturbations in

simple shear as a first step in the understanding the evolution of asymmetries in a hurricane. Of

particular interest is how the perturbation evolution depends on the zonal wavenumber and the

meridional structure of an initial vorticity profile. The flow is assumed unbounded and the model

employed is the two-dimensional inviscid Euler equations on an f-plane. Since the model is ul-

timately formulated at the level of the vorticity equation, the Coriolis parameter does not affect

interpretation of results, but is retained for consistency with ) r chapters.

Linear perturbation theory is used to decompose the flow into a meridionally varying basic state

and small perturbation field. Ultimately, the results of this chapter are extended to hurricanes. Since

observations show that the asymmetric winds in hurricanes are small compared to the symmetric

tangential wind (SM), the use of linear perturbation theory is justified on observational grounds.

2.2 Rectilinear Shear Model

The zonal and meridional momentum equations and continuity equation in Cartesian coordi-

nates are, respectively,

8u 8u 8u _p
ft au au- It, = - L9+ U + a ax' (2.1a)

at+ U + + fu = -2E (2.1b)

T + 5 =0,(2.1c)

where x and V are the zonal and meridional coordinates, u and v are the zonal and meridional winds,

f is the constant Coriolis parameter, and p is the pressure divided by constant density. The Coriolis
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parameter and pressure may be removed as explicit variables by taking the horizontal curl of the

momentum equations to give

N + U + V- =0, (2.2)

where

C=a a (2.3)

is the vertical component of the vorticity. Equation (2.2) states that the vorticity is conserved

following fluid particles.

Perturbations are brought out explicitly by letting u = f(y) + u', v - p - p + p',

where an overbar denotes the basic state and a prime denotes a perturbation. Negiecting products

of primed quantities, the equations of motion and the vorticity equation become

aO,' Oa' + di , ap_ p
&I+ +V dH =- a' (2.4a)
Wa T-'T a ax,
&- + a-&I + fil + fu' = a p ' (2.4b)

S + ij = 0, (2.4c)

a( + + = 0. (2.4d)
Wt Ox Wdp

Since the basic state alone must be a solution to (2.1), the momentum equations (2.1a, b) give

Op

x= 0, (2.5a)

f p (2.5b)-y,

while the continuity equation (2.1c) and the vorticity equation (2.2) are trivially satisfied. After

cancelling the basic state contributions, the linearized system (2.4) becomes

au- + s &up + V , /= V -O, (2.6a)
+at - + f ' - (2.6b)

Ov ' O'

a +' " C,2
6+  =0. (2.d)
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For simple shear flow, the basic state wind is given by G -Sy where S is a constant shear (see

figure 2.1). The basic state vorticity is then

-L = -s. (2.7)

The equations of motion (2.6a)-(2.6c) become

-+ SV -! + (S - f)V (2.8a)

+ sy + A' =(2.8b)

+ 0, (2.8c)

while the vorticity equation (2.6d) is

-C + SYLC = 0. (2.9)

The linearized vorticity equation (2.9) states that the perturbation vorticity is conserved following

the basic state flow.

For notational simplicity, primes are now dropped. All quantities are understood to be per-

turbations unless they have an overbar. Boundary conditions must be specified before (2.9) can be

solved. In an infinite domain, u and v be must be bounded as lxi or lvi becomes arbitrarily large.

To satisfy continuity (2.8c), a perturbation streamfunction may be defined such that

U= , =-. (2.10)

Equation (2.3) becomes

C = V20 (2.11)

where the Laplacian operator is defined by

V 2 = (-  + p (2.12)

Equation (2.9) is thus

& ( - -I- 2 - 0. (2.13)

7



There are several methods that can be used to solve (2.13). The normal mode and initial-value

approaches are considered below.

2.3 The Normal Mode Approach

In the normal mode approach, separable solutions of the form

'(x, y, t) = *(y)e ' (kZ+t) (2.14)

are assumed where k is a real zonal wavenumber, o is the eigenfrequency, and %(y) is the eigenfunc-

tion. Substituting (2.14) into (2.13) and dividing out the common exponential term yields

(o + kS/) (J- - k2) % = 0. (2.15)

If the factor a + kSy is naively divided out, then (2.15) has a solution of the form

- c=eA;Y + c2e - p. (2.16)

The boundary conditions for (2.16) require that * be bounded as V --, -oo. The only way to satisfy

these conditions is if cl = 2 = 0. Thus, there are no normal modes associated with a + kSY 0 0

and the naive conclusion is that there are only trivial solutions to the problem. To see why this is

incorrect, note that (2.15) may also be satisfied if a + kSy = 0. At such points, more informatiom is

needed to integrate (2.15) for I.

2.4 The Initial-Value Approach

An alternate solution strategy follows the methodology of Case (1960). Since the basic state

flow only depends on y, the zonal dependence may be represented by a Fourier integral. The Fourier

transform pair is given by

00

1(k) = f f(z)e - "'2 dx, (2.17a)
-00O

"1 j(k)e'kZ dc (2.17b)

8



where k is the zonal wavenumber. Examination of the initial-value problem associated with (2.13)

is of interest. This problem is formulated by using the Laplace transform pair, which is given by

f(q)(q) = df(t)eftdt, (2.18a)
0

fAt) = -L f(9)(q)eqt dq, (2.18b)

where q is the Laplace transform parameter (generally complex) and C denotes a line parallel to the

imaginary axis that is positioned to the right of all singularities of f(q)(q).

The Fourier transform of (2.13) is

(I+ iSy.~) (21 - k 2) =0 (.9

while the Laplace transform of (2.19) is

(q + ikSy) (d- - (k2 ) -2 k) . (2.20)

The variable . is the meridional structure of the initial streamfunction for wavenumber k and the

right side of (2.20) is the initial vorticity. On dividing through by (q + ikSy), equation (2.20) may

be written as

( _t ) j(,) _q +-csiky" (2.21)

Noting that the Laplace transform of exp(-ikSyt) is 1/(q + ikSy), the inverse Laplace transform of

(2.21) is

(- - k2) = e -Cj s t. (2.22)

The boundary conditions require that be bounded as vi[ --+ oo. Recalling the a parameter from

the normal mode approach, it is seen that o = -kSy, or a + kSy = 0. Unlike the separable normal

mode solutions which maintain a constant structure in time, the initial-value problem has a time

dependent meridional structure.

The differential equation (2.22) is readily solved by the Green's function method. The Green's

function is defined as the solution to

(t - L-2) G(, y.) 6(y - y.) (2.23)

9
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where 6(y - V.) is the Dirac delta function and G(y,11) is bounded as lyj -- oo. Using the one-

dimensional form of Green's Identity, the solution to (2.22) is then

00

(k, y.,t) = J G(ppo) o(k, y)e - kstv dy. (2.24)
-00

The Green's function is now determined. For p1 y ., equation (2.23) is homogeneous and the

general solution in each region is

G(,,.)= Aei I + Ce-Ik1P, y<p y (2.25)
,1 Delkiv + Be-IkY, y > yo.

For simplicity, only the case k > 0 will be treated explicitly. Applying boundedness at infinity gives

SAe1, 11 < 1. (2.26)G(11, Y.) = Be_4, y1 > y1.

Two other conditions are needed to uniquely define G(1,11.). Since is continuous, the Green's

function is required to be continuous at y = y.. The second condition is found by integrating (2.23)

over a small interval about y.. This yields

ZJ ~(, y) dp J L G(y, y.) dp= 6(y -y.) dy (2.27)

which becomes

8G Y + , Y)- 2 (Yo - , .) - k2  f G(, .)dy = 1. (2.28)

Since G(y, y.) is a bounded function on the integration interval, the integral in (2.28) vanishes as e

goes to zero, yielding the jump condition

- (vv,) = 1 (2.29)5i-(Y.+ I Y.) ay1

The Green's function is now uniquely determined by imposing the continuity and jump conditions

on (2.26), giving
I f ek(V-V-), Y:5 _<Y. 2.

G(y,V.) = 1 e - (1 ' - .  . (2.30)

Since G(y, y.) " G(y., V), equation (2.24) may be written as

Y(k, ,t) f J G(p, y.)4.(k, y.)e - ' Sty dy.. (2.31)

10
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Equation (2.31) is referred to as the continuous spectrum solution to equation (2.13) since it results

from integrating over all advective frequencies -ikfi(y.) spanned by the flow.

The solution is completed by applying the inverse Fourier transform, yielding

CO0 0_

OX'P , 0 = 1 J eitk J G(y,yo)(o(k, y)e_,kso-tdyodk. (2.32)
-00 -00

In this chapter and the next, attention is restricted to initial vorticity perturbations of the form

f(y)e tk- I where k. is A pre-specified wavenumber. The Fourier transform of this initial condition is

f(y)6(k. - k), where 6(k. - k) is again the Dirac delta function. When an initial condition of this

form is substituted into (2.32) and the integration is performed, the delta function maps every k

into k.. For simplicity, the delta function will not be explicit in any of the subsequent manipulations

and k will be used to refer to the wavenumber in both physical and spectral space. With the above

convention, the solution (2.32) is written as
00

'P(x, V, t) f G(y, .) o(k, y°)e( '¢ -(st) dyo. (2.33)
-00

In (2.33), the subscript k is a reminder that the delta function has filtered a particular wavenumber

from the inverse Fourier transform integral.

Before examining the specific evolution of the perturbation streamfunction for various initial

vorticity profiles, recall that the problem is inviscid. Thus, all processes are time-reversible. The

convention will be to define t = 0 as the initial time, t > 0 as future times, and t < 0 as past times.

2.5 The Plane Wave

In an infinite domain, a natural choice for an initial condition is one that is periodic. Let

i° = • ''  (2.34)

where 1. is the initial meridional wavenumber. The initial vorticity is then

° = -(k 2 + l )e - . (2.35)

Substituting (2.35) into (2.33) and integrating yields

=O ; k 2  +1 2  ei +(k+ -kSp1. (2.36)
V=k + (.- kSt)2

11



Taking the real part of (2.36) gives

Pk + 12 T2 cos[kz + (1, - kSt)y]. (2.37)
V+(,- kSt)

The quantity 1. - kSt is a time dependent meridional wavenumber, 1, which describes the ever-

changing amplitude and meridional structure of the perturbation. The meridional wavenumber and

time are negatively related so as t increases I decreases.

As an aid to understanding the evolution of the physical fields, consider the wave vector

YA = (k, 1). The magnitude of the wave vector, I'1, is the total wavenumber of the perturbation.

The angle the wave vector makes with the zonal axis (measured in a counter clockwise sense from

the positive z axis) is given by 0 = tan-1 (il/k). The wave vector is perpendicular to the perturbation

contours, so 0 ranges from -7r/2 to ir/2.

The streamfunction evolution described by (2.37) is qualitatively considered for fixed k and

I.. The maximum streamfunction amplitude is (k2 + l)/k2 and occurs when t = 1./kS (I = 0).

Thus, the streamfunction amplitude grows when t < 1./kS (I > 0) and it decays for t > 1o/kS

(I < 0). When the streamfunction amplitude is maximum, the streamfunction field is parallel to the

meridional axis and the number of waves in the domain is given by k. Since t and I are negatively

related, increasing t results in decreasing 9, so the streamfunction field rotates clockwise. However,

increasing (decreasing) t results in 0n11 decreasing (increasing) when t < 1./kS (t > 1o/kS). Thus,

when the streamfunction field is in the growth (decay) phase, the number of waves in the domain

decreases (increases).

Figure 2.2 shows streamfunction contours for k = 1. = 1 at nondimensional times St = -10.0,

-1.0, 1.0, and 10.0. When the streamfunction field is in the growth phase, the contours have a

negative slope. When the streamfunction field is in the decay phase, the contours have a positive

slope. The shear for this problem is positive and, thus, has a positive slope (figure 2.1). Comparing

the slope of the streamfunction contours with the slope of the shear, the streamfunction field tilts

against the shear in the growth phase while the streamfunction field tilts with the shear in the decay

phase. When the streamfunction field is upright, its amplitude is maximum.

lb further quantify the growth and decay, an expression for the perturbation kinetic energy

12



(KE) density is derived. Substituting (2.37) into (2.10) gives the zonal and meridional winds for the

plane wave streamfunction. These are

(I. - kSt)(k 2 + 12)
Uk = - -+ sin[kx + (Io - kst)Y], (2.38a)

V + (I. - kSt)2

k 2  + -1t) 2 sin[kx + (to - kSt)y]. (2.38b)

The KE density is then p(u2 + v2)/2, which gives

(k2 +lz.) 2

EA- 2[k 2 + 102---t)
2 ] sin2 [kz + (I. - kSt)yl (2.39)

where p has been set to one.

Equation (2.39) gives a local measure of the KE density. A more useful measure which isolates

the temporal evolution of the disturbances is an integrated KE. For the plane wave, the integration

is performed over one wavelength zonally and meridionally since the integrated KE density over the

entire plane is infinite. The integration yields

(k2 + 1.2)2 ( .0
(E) = 4[k2 + (I. - kSt)2] (2.40)

where (Ek) is the KE per wave. This is maximum when to - kSt = 0, which gives

(Ek)max = (k2 + l2)2 (2.41)= 4k2

Thus, the normalized KE per wave (hereafter, the normalized KE) is

(Ek) __ _ _ _(E)= P(2.42)

(EA).. k2 + (to - kSt)2 (

The normalization has been done with the maximum value of the normalized KE rather than the

initial value so that the normalized KE ranges from zero to one. From (2.42), the instantaneous

growth (decay) rate is found to be

1 d(E) 2kS(o - kSt) (2.43)

(Ek) dt k2 + (1, - kSt) 2

Setting the time derivative of (2.43) to zero gives the maximum growth (decay) rate which occurs

at St = T1 + W0/k. This corresponds to I ±k, 9 = k-r/4, and a normalized CE of 0.5 for both

times.

13



This suggests a natural evolution time-scale for the perturbation energy to decay to half its

maximum energy, the half-life time. For the plane wave perturbation, the half-life time is 1/S.

Interestingly, this is independent of k and 10. Figures 2.3 and 2.4 show the normalized KE and the

growth (decay) rate as functions of time for k = 1, 10 = 1; k = 1, 1. = 2; and k = 2, lo = 1. These

figures dearly demonstrate that changing k and lo merely shifts the energy curve along the time

axis, but do not change the structure of the energy curve.

The half-life time for sheared disturbances in mid-latitude cyclones, hurricanes, and tornados

may be estimated as follows. Letting U and L denote typical horizontal and temporal scales, the

half-life time is - L/U. In moderate mid-latitude cyclones, U - 10 ms - 1 and L - 1000 km giving

a horizonatal shear of 10- 5 s - 1 and a half-life time of about 1 day. In the eyewall of a hurricane,

U - 50 ms- 1 and L - 50 km. Thus, the horizontal shear is 10- s - 1 and the half-life time is about

15 minutes. Finally, in a tornado, U - 100 ms- 1 and L - 100 m yielding a horizontal shear of 1 s-1

and a half-life time of 1 second. These numbers are only approximate, but they serve to illustrate

how the strength of the shear affects the evolution time-scale.

Perturbation growth and decay imply an energy transfer to and from the disturbance. Under-

standing of this process is obtained by examining the perturbation kinetic energy equation, which

is formed by taking the dot product of (u, v) with equations (2.8a) and (2.8b). This yields

OE 8E dfs a(up) (vp)
- + fA- + U =W- (2.44)

Integrating over the perturbation domain gives

(E ) u fdy8)= - f j uv dd. (2.45)

When the perturbation grows, the left side of (2.45) is positive. For positive shear, the momentum

flux term is negative and perturbation zonal wind is fluxed equatorward. The effect, then, is that

the shear decreases and the basic state provides energy for the perturbation's growth. When the

perturbation decays, the left side of (2.45) is negative. Here, the momentum flux is positive and

perturbation zonal wind is fluxed poleward. The effect is that the shear increases and the basic state

strengthens at the expense of the perturbation.
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From (2.45) it is seen that the perturbation energy tendency is a nonlinear process since it

depends on uv. Thus, the perturbation energy is not conserved in the linear problem and the basic

state energy is viewed as an infinite reservoir. It can be shown from the nonlinear momentum

equations, though, that the total energy in this system is conserved.

For the remainder of this work, attention is restricted to disturbance decay, so 10 = 0. The

equations developed in this section become

= -k 2, (2.46)

= -k 2 cos[k(x - Sty)], (2.47)

1
Ok = 1 + (St)2 cos[k(z - Sty)], (2.48)

-kSt
Uk = -(St) 2 sin[k(x - Sty)], (2.49)

== (st)2 sin[k(x - Sty)], (2.50)

Ek = 1 + (St)2 sin2[k(z - Sty)], (2.51)

(Ek) 1 (252)

(Ek)= 1 + (St)2'

1 d(E-, ) -2S 2t (2.53)
(Ek) dt 1+(St)2

The upright plane wave initial condition is formally equivalent to a constant initial vorticity profile.

Thus, perturbations forced by either constant or periodic initial conditions in simple shear flow have

global energy evolutions that are independent of the zonal wavenumber k.

2.6 Gaussian Initial Condition

The plane wave considered in the previous section provides analytical solutions for the per-

turbation evolution in simple shear. However, transient atmospheric forcings are more realistically

represented as isolated disturbances. To simulate a short wave trough, a Gaussian initial vorticity

profile is considered. This is given by

o(y) = e (2.54)

where 1/I/a defines the characteristic e-folding length scale of the Gaussian. Unlike the plane wave

initial condition, when (2.54) is substituted into (2.33), there are no closed form solutions available.
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Using the trapezoidal rule to evaluate the integral, figures 2.5 and 2.6 plot streamfunction and

vorticity contours, respectively, for the initial vorticity profile 4, - exp(-y 2 ). The rows show zonal

wavenumbers k = 1, 2, and 3, respectively, while the columns denote nondimensional times St =

0.0, 1.0, 2.0, respectively. There are several differences between the Gaussian and the upright plane

wave cases. For a fixed time, the streamfunction amplitude decreases with increasing k. In addition,

the figure suggests that that higher wavenumber perturbations decay faster than lower wavenumber

perturbations. In the upright plane wave, the streamfunction amplitude and the decay rate were

independent of the zonal wavenumber. Finally, there is a suggestion that for large time, the plane

wave solution emerges.

As with the plane wave perturbation, a global measure of the KE is desired. Here, though, the

meridional integration is from -oo to +oo. Figure 2.7 shows the normalized KE as a function of

time for the initial vorticity profile 4o = exp(-y 2 ). As indicated in figure 2.5, higher wavenumber

perturbations decay more rapidly than lower waven :mber perturbations. In addition, for increasing k

or t, the normalized KE curves asymptote to the plane wave solution. Interestingly, the wavenumber

k = 1 perturbation decays much slower than all higher wavenumber perturbations. This would not

be surprising in a viscous fluid. However, in the above results, the viscosity is identically zero

yet higher wavenumber disturbances still decay faster than smaller wavenumber disurbances. This

suggests a truly inviscid decay mechanism that rapidly damps the higher wavenumbers leaving the

lower wavenumbers behind.

To gain further understanding of the zonal wavenumber dependence in the evolution of merid-

ionally confined initial vorticity disturbances, it is instructive to examine the interaction of the three

terms comprising the integrand of (2.33). Figure 2.8 shows the Green's function, G(y, yo); the phase

function, cos(kSty,); their product; and the initial vorticity , = exp(-y.2) as functions of yo for

zonal wavenumber k = 1. Figure 2.9 is the same plot for zonal wavenumber k = 3. In the figures, the

Green's function is only considered at y = 0 and the -1/2k factor is ignored since it is constant in

the integration. In addition, the time is chosen so that St = 1. As k increases, the Green's function

narrows while the phase function oscillates more rapidly. The effect of increasing k, then, is for the
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product of the Green's function and the phase function to become more meridionally confined. For

large enough k, the meridional scale of this product is so small that the initial vorticity appears ef-

fectively constant in the integration. This is reminiscent of the upright plane wave solution in which

the initial vorticity profile is constant in the integration. Thus, while the meridional scale of the

initial vorticity generally introduces a dependence on the zonal wavenumber in the shear dynamics,

for large k the plane wave solution should emerge.

For increasing k, the plane wave solution may be recovered from a meridionally confined initial

condition. This can be demonstrated analytically as follows. The streamfunction amplitude in

Fourier space is

(y)= f G(V, Yo)o(yo)e-kSty@ dy. (2.55)
-00

As k becomes large, the streamfunction amplitude can be approximated by

00

) ; (Y) f G(y, y.)e - ikS ° dy. 1 < k < oo. (2.56)
-00

This integral may be evaluated exactly giving the approximate streamfunction amplitude

e (2.57)
k2[1 + (8t)2]

Upon applying the inverse Fourier transform and taking the real part, (2.57) becomes

k +(S) cosk(z - Sty)], (2.58)@--k211 + ($t)2]

so the meridional velocity is

V = (y) sin[k(z - Sty)]. (2.59)--k[1 + (St)2]

Now, the zonal velocity is

h= d d.(y) coe[k(x - Sty)] _ o(y)St

dy k2[1 + (St)2J k[1 ( 2] sin[k(z - Sty)]. (2.60)

Assuming k large enough but finite such that the first term on the right side of (2.60) is small

compared to the second term, the zonal velocity becomes

S0(p)st
Uk Z - k[1 + (St)2] sin(k(x - Sty)]. (2.61)
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The KE density is then approximated by

Ek = 2 (Y) sin2 [k(z - Sty)] (2.62)
E k= [1 + (St)2]

where the density, p, has been set to one, while the integrated KE is given by

00

(E,) = J ) dy. (2.63)
2k(1 + (St)2]_0

Normalizing (2.63) by its initial value

(Ek)o= 3 f (y() dy, (2.64)
-00

gives the normalized KE for large k

(Ek) 1 = -- (2.65)
(Ek). 1 + (St)2

This is the normalized KE for the upright plane wave. A physical interpretation for the zonal

wavenumber dependence is presented at the end of this section.

Figure 2.5 shows the plane wave solution emerging for large time. As time increases, the phase

function oscillates more rapidly while the Green's function and initial condition remain unchanged.

For sufficiently large times, the half-wavelength scale of the phase function is narrow enough so that

the initial condition appears locally constant which is analogous to the upright plane wave. Further,

double integration by parts of (2.55) subject to the boundary conditions reveals the t- 2 dependence

of the streamfunction amplitude at large times.

Figures 2.10 and 2.11 plot perturbation streamfumction and vorticity contours, respectively, for

zonal wavenumber k = 1. The rows show the fields for initial vorticity profiles . = exp(-ay2 )

where a = 1, 2, and 3, respectively, while the columns denote the fields at nondimensional times St

= 0.0, 1.0, and 2.0, respectively. Figure 2.12 plots the corresponding normalized KE as a function

of time and shows that decreasing the meridional scale of the initial condition results in slower

energy decay. Since the energy decay is related to the half-wavelength scale of the phase function,

decreasing the scale of the initial condition increases the time required for a given amount of energy

decay. Thus, small-scale disturbances asymptote to the plane wave solution more slowly than large-

scale disturbances.
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Physically, disturbance evolution is governed by the conservation of disturbance vorticity so the

meridional change in the zonal wind across a disturbance controls how rapidly a vorticity disturbance

is elongated. Because the area of a fluid element does not change in nondivergent flow, an elongating

vorticity patch implies an attendant decrease in the disturbance meridional scale. The decrease in

the meridional scale is directly related to the decrease in disturbance energy. Disturbances of large

meridional extent are elongated more rapidly than those of small meridional extent and, thus,

decay more rapidly. Since the plane wave solution spans the domain, its meridional length scale

is effectively infinite. Therefore, the plane wave always decays more rapidly than any meridionally

localized disturbance.

In a similar fashion, the dependence on the zonal wavenumber may be explained. For an

initially upright disturbance, the zonal wavenumber is inversely related to the initial zonal extent of

a disturbance. Consider two disturbances with the same initial energy and meridional extent where

one disturbances has twice the initial zonal extent of the other. In a given amount of time, the zonal

elongation of both disturbances is the same. To conserve area, the change in the meridional scale

of a disturbance with large zonal extent is less than that of a disturbance with small zonal extent.

Therefore, a lower wavenumber disturbance decays slower than a higher wavenumber disturbance.

2.7 Summary

The evolution of disturbances in unbounded simple shear flow has been examined as a first

step in understanding the evolution of asymmetries in hurricanes. The system was formulated as an

initial value problem and two types of initial conditions were considered. For the plane wave initial

vorticity profile, the disturbance evolution was only a function of time and decayed as t - 2 . Since

transient atmospheric forcings are more realistically represented by isolated disturbances, Gaussian

initial vorticity profiles were considered. Unlike the plane wave, the evolution of these perturbations

depended on both the meridional scale and the zonal wavenumber of the initial condition. The

meridional scale determined how rapidly the disturbance was elongated. Large-scale disturbances

elongated and, subsequently, decayed more rapidly than small-scale disturbances. The dependence
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of the evolution on the zonal wavenumber illustrated a truly nviscid mechanism associated with

differential advection that favors the decay of small-scale disturbances over large-scale disturbances.
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Simple Shear Flow
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Fig. 2.1: Simple shear flow. Arrows show basic state zonal wind vectors, dashed line shows the
shear (S 1).
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Perturbation Streamfunction
Infinite Channel
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Fig. 2.2: Perturbation streamfunction for a plane wave initial vorticity profile with k = 1.=1 and
St = (a) -10.0, (b) -1.0, (c) 1.0, and (d) 10.0. The contour interval is 1.38 x 10-1 m2s-1 . Solid lines
denote ~ 0, dotted lines < <0.
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Normalized Kinetic Energy
Infinite Channel
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Fig. 2.3: Normalized kinetic energy for a plane wave initial vortidty profile with k = 1,!o10
(dot); k = 1, 1o = 2 (dash); k = 2, 1o = 1 (dot dash).
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Growth (Decay) Rates
Infinite Channel
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Fig. 2.4: Growth (decay) rates for a plane wave initial vorticity profile with k = 1, 1o = 1 (dot);
k=-1,1 0 o= 2(dash); k=2, 1o= 1 (dot dah).
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Perturbation Streamfunction
Infinite Channel
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Perturbation Vorticity
Infinite Channel
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Normalized Kinetic Energy
Infinite Channel
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Fig. 2.7: Normalized inetic energy for the Gaussian initial condition 4 = p(..y 2) for k=1
(dot), k = 2 (dash), and k =3 (dot dash). The solid curve is the normalied kinetic energy for the
upright plane wave.
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Integrand of Equation (2.33)
Infinite Channel
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Fig. 2.8: The integrand of equation (2.33) for k = 1, y, 0, and St =1.0. (a) The Green's
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Intergrand of Equation (2.33)
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Perturbation Streamfunction
Infinite Channel
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Fig. 2.10: Perturbation streamfunction for zonal wavenumber k =1. Panels (a)-(c) show contours
for the initial vorticity profile , = ep (-t,..2) at times St = 0.0, 1.0, and 2.0, respectively. Panels
(d)-(f) show contours for the initial vorticity profile 4. = exp (-2y2 ) and panels (g)-(i) show contours
for the initial vorticity profile 4 = ex~p (-3y2) at the same times. The contour interval is 3.76 x 10-2
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Norm~alized Kinetic Energy
Infinite Channel
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Fig. 2.12: Normalized perturbation inetic energy for zonal wavenumber k =1 for the Gaussian
initial vortiCity proffile 4 = exp(-g, 2) (dot), 4. = exp(-2y2) (dash), and 4= exp(-3y2) (dot
dash). The solid curve is the normalized kInetic energy for the upright plane wave.
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CHAPTER 3

ALGEBRAIC DECAY IN BOUNDED SIMPLE SHEAR

3.1 Introduction

The purpose of this chapter is to briefly examine how meridional boundaries alter the evolution

of perturbations in simple shear flow. Since the evolution of asymmetries in a bounded vortex is

the topic of the next chapter, investigating the effects of boundaries in the simple shear problem is

a natural intermediate step.

3.2 Bounded Rectilinear Shear

The presence of boundaries does not alter the governing equations used in chapter 2. Neverthe-

less, meridional boundaries provide a convenient length scale that may be used to nondimensionalize

the equations. Letting (z,y) = L(ig), C = S, and t = i/S where L is the boundary separation

and the tildes denote nondimensional quantities, the linearized vorticity equation (2.9) becomes

+ = 0. (3.1)

Although the magnitude of the shear is no longer explicit in (3.1), the evolutionary time is scaled by

the shear. Upon application of the Fourier-Laplace transforms defined in chapter 2, equation (3.1)

becomes

(!?2 - k) - _e~'' (3.2)

For notational simplicity, the tildes have been dropped. Unless otherwise noted, all quantities are

henceforth nondimensional.

Solutions to (3.2) depend on the choice of boundaries. Here, the meridional boundaries are

assumed to be slippery walls at y a and y b where a < b. Thus, v(a) =v(b) 0 to satisfy
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the no normal flow condition. In terms of a Fourier perturbation streamfunction amplitude, the

boundary conditions become i(a) = i(b) = 0.

The Green's function technique is used to solve (3.2) subject to the boundary conditions. Im-

posing the continuity and jump conditions from the previous chapter along with the boundary

conditions yields

G(yy.)1 f siuh[k(y - a)] siah[k(y0 - b)], a < V < y. (3-3)
ksinh[k(b - a)] I sixih[k(y - b)] sinh[k(y. - a)], y. _ y :_ b

The solution to (3.2) is then
b

= J G(y, y.) .e- t - dyo. (3.4)

To complete the derivation, the inverse Fourier transform is applied to (3.4) giving

b

Ok = J G(y, yo) e"( - ) dyo, (3.5)

where the subscript k is in accord with the convention of chapter 2.

3.3 Uniform Initial Condition

The initial vorticity given by (o = -k 2 , which corresponds to the upright plane wave of chapter

2, is considered first. Substituting 4, into (3.5) yields

1 cosfk(x - ty)] + sinh[k(y - b)] cos[k(z - ta)] - sinhk(y - a)] costk(x - tb)]}. (3.6)1k + t-2 I [~ *~ simh[k(b - a)]I

The first term inside the braces is recognized as the infinite plane wave solution while the second

term is the boundary correction that ensures tk(a) = OP:(b) = 0. Figure 3.1 plots streamfunction

contours for initial vorticity = -k 2 and boundaries at a =-1, b = 1. The rows show k = 1,

2, and 3, respectively, while the columns denote t = 0.0, 2.0, and 4.0, respectively. The boundary

correction in (3.6) decreases the maximum streamfunction amplitude relative to the unbounded case

since sinh[k(y-b)] < 0 and - sinh[k(y -a)] :_ 0 for all y, while sinh[k(b-a)] > 0. As k increases for a

given boundary separation, the magnitude of the boundary correction decreases and the maximum

streamfunction amplitude increases since the hyperbolic sine in the denominator increases faster
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than either of the hyperbolic sine terms in the numerator. In the limit k -- o, the boundary

correction goes to zero and the plane wave solution is recovered.

The evolution of perturbations in a bounded channel forced by a uniform initial vorticity profile

may be further analyzed by examining the integrated kinetic energy (KE) associated with (3.6).

This is given by

kE___ ( (1 + t 2 ) 2{cos(kt(b - a)] - cosh[k(b - a)1}
2(1"+-t2)2 + k(b - a)sinh[k(b - a)]

cos[kt(b - a)] cosh[k(b + a)] {sinh(2kb) - sinh(2ka))

2k(b - a) sinh2[k(b - a)]

+ cos[kt(b - a)] sinh[k(b + a)]{cosh(2kb) - cosh(2ka)}
2k(b - a) sinh2fk(b - a)]

sinh[2k(b - a)] (
+ 2k(b - a) sinh2 [k(b - a)] " (3.7)

The first term inside the braces is the energy of the infinite plane wave while the other terms describe

how the perturbation energy is changed by the presence of boundaries. Since the first term decays as

t- 2 while the remaining terms decay as t - 4 , the infinite plane wave solution emerges for increasing t.

Figure 3.2 shows the normalized IE as a function of time for initial vorticity 4o = -k 2 for boundaries

at a = -1, b = 1. Unlike the infinite plane wave case where the energy decay was independent of

k, perturbations decay more rapidly with increasing wavenumber for a constant initial condition in

a bounded channel. Moreover, the k = I perturbation decays significantly slower than the higher

wavenumber perturbations. While very different from the infinite plane wave, disturbance evolution

for a uniform initial vorticity profile in bounded shear is qualitatively similar to that of an unbounded

Gaussian initial condition.

The similarities arise because each problem has a characteristic length scale. In the unbounded

problem, the initial vorticity profile defined the length scale. For a constant initial condition in

a bounded channel, the boundary separation defines the length scale. From (3.6), it is seen that

changing the boundary separation for a fixed k is equivalent to changing k for a fixed boundary

separation. Thus, as b - a increases, the boundary correction term decreases and the maximum

streamfunction amplitude increases. As expected, in the limit of infinite boundary separation, the

plane wave solution is recovered.
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Similar arguments explain the effect of increasing boundary separation on the perturbation

evolution as described by (3.7). As b-a increases, the denominators of the boundary terms increases

more rapidly than the corresponding numerators and the perturbation decays more rapidly. In the

limit of infinite boundary separation, the plane wave evolution is recovered. Figures 3.1 and 3.2

can be used to illustrate the described behavior if the plots for k in the figures are reinterpreted as

plots for b - a. Physically, increasing the boundary separation increases the meridional scale of the

perturbation. Thus, the perturbation is sheared more and decays more rapidly. This is analogous

to changing the scale of the Gaussian initial condition of chapter 2.

3.4 The Gaussian

The evolution of perturbations forced by Gaussian initial vorticity profiles in a bounded channel

is now considered. Since (3.5) does not admit closed form solutions, the trapezoidal rule is used to

evaluate the integral.

Figures 3.3 and 3.4 plot streamfunction and vorticity contours, respectively, for initial vorticity

o = exp(-V2) and zonal wavenumber k = 1. The rows show contours for boundary separation b - a

= 0.2, 2.0, and 20.0, respectively, while the columns show contours for time t = 0.0, 2.0, and 4.0,

respectively. Note that the bottom row is virtually identical to the unbounded case. In terms of the

two characteristic length scales, the rows represent b- a < 1/v/, b - a - 1//, and b- a > 1/Vf,

respectively. As long as b - a < 1/V1, the maximum streamfunction amplitude and the decay rate

will be decreased relative to the unbounded case. For b - a > 1/%Fa, the unbounded evolution may

be recovered provided b - a is sufficiently large to render boundary effects in the Green's function

negligible.

Figure 3.5 shows the normalized KE as a function of time for initial vorticity 4 = exp(-i 2 )

and zonal wavenumber k = 1. As was seen for the constant initial condition in the bounded channel,

increasing the boundary separation increases the decay rate since the perturbation is sheared more.

The curve corresponding to b-a = 20.0 in figure 3.5 is the decay observed in the unbounded problem

and does not change for further increases in the boundary separation. At this point, the meridional
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scale of the perturbation is the characteristic length scale. For this curve to asymptote to the plane

wave solution at small times, the zonal wavenumber must be increased.

3.5 Summary

The evolutionary decay of perturbations in bounded simple shear flow has been examined as

an initial-value problem. The case of a uniform vorticity profile was considered first. Relative to

the unbounded problem of chapter 2, the maximum streamfunction amplitude was smaller and the

decay rate was slower because the presence of boundaries introduced a characteristic length scale.

The infinite plane wave is not a localized disturbance and, thus, decays faster than any bounded

disturbance. In the limits of large zonal wavenumber, boundary separation, and time, the infinite

plane wave solution emerged.

The case of Gaussian initial vorticity profiles was then examined. For boundary separations

smaller in scale than the meridional scale of the perturbation, the maximum streamfunction am-

plitude was smalle and the decay was slower relative to the unbounded case. The scale of the

boundary separation was the characteristic length scale. When the boundary separation was greater

than the scale of the perturbation, the unbounded evolution was recovered as long as the boundary

separation was large enough to make the boundary effects in the Green's function negligible.
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Perturbation Streamfunction
Bounded Cha~nnel
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Fig. 3.1: Perturbation streamfunction contours for initial vorticity (.=-k 2 and boundaries at
a = -1.0, b = 1.0. Panels (a)-(c) show contours for zonal wavenumber k =1 at times t = 0.0, 2.0,
and 4.0, respectively. Panels (d)-(f) show contours for k = 2 and panels (g)-(i) show contours for
k= 3 at the same times. The contour interval is 6.21 X 10-2 in all panels. Solid lines denote Ok 2:0,

dotted lines tp < 0.
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Normalized Kinetic Energy
Bounded Channel
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Fig. 3.2: Normalized inetic energy for initial vorticity 4=-k 2 and boundaries at a -10
b = 1.0. The curves are the energy decay for k = 1 (dot), k =2 (dash), and kc 3 (dot dash). The
solid curve is the energy decay for the upright plane wave.
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Perturbation Streaznfunction
Bounded Channel
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?1g. 3.3: Perturbation streamfunction contours for zonal wavenumber k =1 and initial vorticity
C. = exp(-IP). Panels (a)-(c) are for boundaries at a = -0.1, b = 0.1. The contour interval
is 3.43 x 104. Panels (d)-(f) are for boundaries at a = -1.0, b = 1.0. The contour interval is
2.11 x1-.Panels (g)-(i) are for boundaries at a = -10.0, b = 10.0. The contour interval is
3.76 x 10-2. The columns denote time t =0.0, 2.0, and 4.0, respectively. Solid lines are OA, 0,
dotted lines k < 0.
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Perturbation Vorticity
Bounded Channel
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Fig. 3.4: Perturbation vorticity contours for zonal wavenumber k =1 and initial vorticity C,=
exp(p'). The panels are the same as in figure 3.3. The contour interval is 1.33 x 10-1 in all panels.
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Normalized Kinetic Energy
Bounded Channel
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Fig. 3.5: Normalized kinetic energy for k -I and initial vorticity o--exp(-y2). The curves
are the energy decay for boundaries at a = -0.1, b = 0.1 (dot); a -- -1.0, b = 1.0 (dash); and
a = -10.0, b = 10.0 (dot dash) . The solid curve is the energy decay for the upright plane wave.
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CHAPTER 4

AXISYMMETRIZATION IN SWIRLING FLOW

4.1 Introduction

The purpose of this chapter is to study the axisymmetrization process in a vortex. The objective

is to extend the results of the previous chapters to a rapidly rotating fluid with radially varying shear.

The dependence of asymmetric evolution on the azimuthal wavenumber and the radial structure of

an initial vorticity profile is of particular interest. As in previous chapters, the model employed is

the inviscid incompressible Euler equations on an f-plane, but here a cylindrical coordinate system

is chosen to represent the problem. Consistent with observations (SM), linear perturbation theury

is used to decompose the flow into a circularly symmetric basic state of swirl and small-amplitude

asymmetries.

In formulating the asymmetric vortex model, an appropriate coordinate system must be chosen.

A natural coordinate system is one that moves with the center of the vortex, i.e., a storm-relative

coordinate. Fbllowing Willoughby (1979), SM showed that in storm-relative coordinates, vortex

motion on an f-plane merely modifies the definition of pressure while preserving the form of the

momentum equations. Since the model adopted below is ultimately formulated at the level of the

vorticity equation, the storm motion is no longer explicit in the vorticity dynamics and only appears

in the boundary conditions at infinity. In a Fourier azimuthal representation, storm motion projects

only onto the azimuthal wavenumber one component. For the simple case of a resting environment,

the associated winds must coincide with the motion at infinity. All other azimuthal components

must vanish at infinity. The more common choice of coordinates is the ground-based system. Here,

vortex motion is explicit in the vorticity dynamics and, for a quiescent environment, all asymmetries

must vanish at infinity. Unless otherwise stated, a ground-based coordinate system will be adopted.
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4.2 Swirling Model

The radial and tangential momentum equations and continuity equation in cylindrical coordi-

nates are, respectively,

O ou V au v2  Op
+ U + -fv-- = (4.1a)

ov &v v~v isv 10p
-+ + -A + fu + r = r A (4.1b)

1 0(ru) 1 v=r'- -- r 0,(4.lc)
r O r rOA 0

where r and A are the radius and azimuth, u and v are the radial and azimuthal winds, f is the

constant Coriolis parameter, and p is the pressure divided by constant density. Explicit dependence

on the pressure and Coriolis parameter may be removed by taking the horizontal curl of (4.1a) and

(4.1b). The result is the vorticity equation, given by

a ( + U L( + ! L =0(4 2-o (4.2)
5i Or rOAm

Here C is the vertical component of the vorticity, defined by

1 a(rv) 1au (43)
r Or rOA

Equation (4.3) states that vorticity is conserved following the fluid particles.

Since intense atmospheric vortices often exhibit weak asymmetries, linear perturbation theory

is applied about an axisymmetric basic state of swirl. Let u = u', v = V(r) + V, and p = p + p'

where an overbar denotes the basic state and a prime denotes an asymmetry. Neglecting products

of primed quantities, equations (4.1a)-(4.1c) become

Ou rf= -u(p + p'), (4.4a)

&I' +o -D ', dv' V,= 1 a (.b
- - -A u-, + fu' + . r -- ( + P),(4.4b)

O(ris') Oi'
Tl ) + IV 0= . (4.4c)

Noting from (4.3) that the basic state vorticity is only a function of r, the vorticity equation (4.2) is

0c' V OC' +,d-
5- + T=0 (4.5)
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Since the basic state variables alone must satisfy (4.1), the momentum equations imply

V2 _ a(p
7f - - = - - (4.6a)

= 0, (4.6b)

while the continuity and vorticity conservation equations are trivially satisfied. Substituting the

basic state relations back into (4.4) gives

D t +  f++ 2 (4.7a)- r TT ( '

aO' f v' / 1O(rV)\_,= lap'-- +--+ f+ - Or = (4.7b)
& r aO r -T') O r 8\

T(r') + - = 0. (4.7c)

Defining = f + 2V/r, q f + , and recalling that f is constant allows the equations of motion

and the vorticity equation to be written as

rO' 'o r (4.8a)
-+ BA--

+ r -57, + qu -r &VOA (4.8b)

c (ru') c#v'T +  = 0 o (4.8c)

a( + - U , df =o. (4.8d)

The quantities q and represent the absolute vorticity and the effective Coriolis parameter of the

symmetric vortex. For notational simplicity, the primes will now be dropped. All quantities will be

perturbations unless they have an overbar. Attention is now restricted to (4.8d).

Equation (4.8d) is nondimensionalized by defining r = RJ, (u,V) = V(ii,i), t = R.mVt,

(Cq) = Vm/R.(,f), and A = A where Vm is the maximum azimuthal wind, Rm is the radius of

maximum winds, and tildes denote dimensionless quantities. Substituting these definitions back into

equation (4.8d), the factor V,2/R, is found common to every term. On dividing out this term, the

nondimensional vorticity equation is formally identical to equation (4.8d). Dropping the tildes for

notational simplicity, the nondimensional linear vorticity equation is

( o ( + =
S+r +u =0 (4.9)
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Unlike the rectilinear problem in simple shear where there was no gradient of the basic state absolute

vorticity, the perturbation vorticity in a swirling flow is generally not conserved following the basic

state flow.

For the rectilinear problem in simple shear, the meridional gradient of the basic state zonal wind

controlled the perturbation decay. The vorticity tendency was directly related to the advection of

the vorticity by the basic state zonal wind. For the swirling problem, the vorticity tendency is

proportional to the advection of the vorticity by the symmetric vortex. The basic state angular

velocity is playing an analogous role in the swirling environment that the basic state zonal wind

played in the rectilinear environment. It is therefore anticipated that the radial gradient of the basic

state angular velocity will control the decay of asymmetries in the swirling vortex.

Before equation (4.9) can be solved, boundary conditions must be specified. Since observations

show that the rotation of a hurricane inside the radius of maximum winds is in approximate solid

body rotation, the angular velocity gradient is small in that region and little symmetrization is

expected there. To isolate the basic decay process, a boundary is placed at the radius of maximum

winds. While this approach is justified on observational grounds, it also has the mathematical

advantage of avoiding .he geometric singularity associated with the vortex center. Since observations

also show that asymmetries become comparable to the symmetric azimuthal wind several hundred

kilometers from the storm center, the linear assumption is adequately satisfied for an outer boundary

placed so that f > (u', v'). In nondimensional coordinates, r = a denotes the boundary at the radius

of maximum winds while r = b gives the location of the environmental boundary. The boundaries

are assumed to be slippery walls at which the normal velocity vanishes. Thus, u(a) = u(b) = 0.

To ensure that solutions to the vorticity equation (4.9) satisfy continuity (4.8c), define a per-

turbation streamfunction such that

-r '-(4.10)

Equation (4.3) becomes

c = V(4.11)
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where the Laplacian operator is given by

Lr 5k 8Or r2 aX2j

The vorticity equation (4.9) is then

(8+3-,\2 0~(: ~ = . (4.12)
+r r r r dr A

Equation (4.12) describes the evolution of the system subject to the constraint that the az-

imuthal gradient of the streamfunction vanish on the boundaries. Further transformation of this

equation is desired to facilitate finding its solutions. Because the azimuthal variable is periodic

by definition, the azimuthal dependence may be represented by a Fourier series where the Fourier

transform pair is
2w

(n) = f f(A)e - m dA; n = ±1, ±2,±/3,... (4.13a)

0

f(A) E i j(n)einA; n 6 0 (4.13b)
n=-00

and n is the azimuthal wavenumber. The wavenumber zero contribution is excluded from the above

definitions because it represents the symmetric component which does not change in the linear

problem. The Fourier transform will hereafter be applied to asymmetric quantities. As in chapter 2,

the initial-value problem associated with (4.12) is considered. This is done by using the Laplace

transform pair, given by
00

f(q)(q) = J f(t)e- ¢ dt (4.14a)

0

(t) = .- f()(q)eq
t dq (4.14b)

where q and C are the same as defined in chapter 2.

The Fourier transform of (4.12) is

(I +in!) (r!)in dq 0 4.5

while the Laplace transform of (4.15) is

47 (8 2
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with to the radial structure of the initial streamfunction for wavenumber n. The right side of

equation (4.16) is the initial vorticity for wavenumber n. Upon dividing by q + iniJ/r, this equation

can be rewritten

[18 (2] (,)_ ind, (9) (4.17)

r5; - r2 r dr (q + inf/r) - (q + inf/r)(

Unlike the rectilinear problem with zero vorticity gradient, the inverse Laplace transform of

(4.17) does not simply result in a differential equation for (c. (2.22)). Rather, the direct inversion

of the second term on the left side of (4.17) requires the convolution theorem and yields as the

argument of a time integral. An alternative solution method for the analogous rectilinear problem

is described by Case (1960) which requires evaluation of a contour integral in the complex plane

involving a Green's function for (4.17) multiplied by the right side. Ultimately, numerical schemes

are needed to obtain explicit solutions. Such procedures, and thus the general solution to (4.17), are

beyond the scope of this thesis.

Here, attention is restricted to a specific class of vortices that admit simple solutions. If the

second term on the left side of the equation is zero, the solution to (4.17) is readily constructed. For

the geometry considered in this chapter, the Rankine profile (see figure 4.1) given by

i= a/f, r > a (4.18)

satisifes this requirement since q(r) = f. Equation (4.18) then becomes

[! (r_) - ] q+ian/r (4.19)

Noting that the Laplace transform of exp(-iant/r2) is 1/(q+ian/r2 ), the inverse Laplace transform

of (4.19) yields

[- ~ j_ 1 = 4.e~n/ (4.20)

The Green's function method will now be used to solve (4.20). The equation is first put in standard

form by multiplying by r, giving

[(rj) _ L2. -roiant/r2.(21
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Recalling that the azimuthal gradient of the streamfunction must vanish on the boundaries in phys-

ical space, the corresponding Fourier-space boundary conditions are then (a) = (b) = 0.

The Green's function is defined as the solution to

[I (r±) - ft]G(r,p) = 6(r - p). (4.22)

If r : p, equation (4.22) is the homogeneous Euler's equation and the general solution in each region

is

G(rp) = Ar +Br - , a<r< .3
r+Dr - ", p<r<b.

Thus far, only two conditions have been specified for the problem. Two more are needed to uniquely

determine G(r, p). Since is continuous, the Green's function is required to be continuous at r = p.

On integrating over a small interval about p, equation (4.22) becomes

p+e

(p + e)- (p + C, p) - (p - e)- (p - , 2 G(r, p) dr = 1. (4.24)

p-E

Since G(r, p) is bounded on the integration interval, the integral in (4.24) vanishes as e goes to zero,

yielding

§POG (+ P) G 1 P'I (4.25)

The Green's function is uniquely determined by imposing the slippery boundary conditions, conti-

nuity of G(r, p) at r = p, and the jump condition (4.22). This gives

1 f (pn - b2np-n)(a2n r 2n), a _r<p (4.26)
G(r, p) = 2nr,(a2

n - b2,) (P" - a2np-n )(b2 " - r2n), p < r < b.

It is easily verified that G(r, p) = G(p, r). Thus, in an analogous manner to chapter 2, the solution

to (4.21) is
b

(r)= J G(r, p)C(p)e-i'IP2 Pdp. (4.27)
a

In the previous chapters, only initial vorticity profiles of the form f =(y)6(k. - k) were con-

sidered. This allowed examination of the perturbation evolution on a wavenumber by wavenumber

basis. A similar strategy is employed here. The initial vorticity will be restricted to functions of

the form 4 = f(r)6(n. - n) where 6 is the Kronecker delta. The effect on the integration will be
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the same as in the previous chapters. The 6 maps n into n. when the inverse Fourier transform is

applied. Fbr notational simplicity, the variable n is used to refer to the wavenumber in both physical

and Fourier space. With this convention, the inverse Fourier transform of equation (4.27) is
6

e" f G(r, p).e - i t/P'2 Pdp. (4.28)
a

Since exact solutions to (4.28) cannot generally be found, the trapezoidal rule is used as the solution

method throughout the remainder of the chapter. Note also that the initial condition in (4.28) is

expressed in terms of the initial vorticity. Hereafter, the terms initial vorticity and initial condition

will be used interchangeably. Finally, the locations of the boundaries are set at a = 1 and b = 10.

4.3 Initial Conditions

In order to gain insight into the asymmetric dynamics that are applicable to hurricanes and

other rapidly rotating vortices, initial vorticity profiles are needed that represent phybical processes

relevant in such vortices. CW motivate four classes of initial conditions. Their analysis is outlined

below. Consider two-dimensional incompressible inviscid vorticity dynamics on a 0-plane. In ground-

based coordinates, the governing equation is

+ ¢.V(C + ) = 0 (4.29)

where C is the vertical component of the vorticity, V is the horizontal wind vector, and f is the

Coriolis parameter given by

f =f. +6. (4.30)

Here $ is the linearized latitudinal derivative of the Coriolis parameter at a reference latitude and

f. is the reference value of f . Equation (4.29) may be transformed into a coordinate system moving

with the storm center through

V = V", (4.31)

at at
&- -C ' (4.32)

where ((t) is the storm motion vector and the primes denote operations with respect to coordinates

in the moving frame.
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The velocity is now partitioned into three parts

17 = . + IV. + V?. (4.33)

subject to the following definitions: (a) Vo is a known symmetric flow that is steady in the moving

reference frame, (b) IV. is a known zonal environmental flow that depends only on latitude and is

steady in the stationary reference frame, and (c) IV, is an asymmetric flow that represents unknown

perturbations to the symmetric flow. Using these definitions, the vorticity equation in the moving

reference frame is

81 .+ -17 + ) +'c W . +'¢ +, + C. + /')

= -$'." V'(C + f') - fl. V' . (4.34)

The terms have been grouped so that external processes which act to generate C appear as forcing

terms on the right side of (4.34).

The initial vorticity perturbations are obtained by examining the forcing terms in component

form. CW define the vectors as follows:

.= t,(,. (4.35a)

IV. = uewi', (4.35b)

= C[cos(A - a)F- sin(A - a)X], (4.35c)

where t, f, and X are the zonal, radial, and azimuthal unit vectors, respectively. The angle a is

the direction of the storm's motion following the convention of Willoughby (1988). CW ote that

asymmetries can be forced by the term -6 . V'C which is the advection of the symmetric vorticity

by the storm's motion. Grouping this term with the other forcing terms, the vorticity tendency in

Cartesian coordinates due to these forcings is

-&-- c -V,( -+ 0 cosA - (u. - c ) -cOSA + c -sin A (4.36)

where c. = C cos a and c, = C sin a. To assess the radial structure of the forced response, consider

the truncated Taylor series expansion of u. about the position of storm's center

ue(p) = U,(O) + Sep - 1,2 (4.37)
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where

S. (4.38a)

-!-,0 (4.38b)

The scaling for v, and dC./dr may be identified by examining the modified Rankine profile

V. = r (4.39)

The radial derivative of C. is then

X2=MR1)V- . (4.40)

The Rankine profile used in this chapter is recovered by setting X = 1 in (4.39). In order to have

a nontrivial scaling on (4.40), however, X cannot be exactly one. It is assumed that for X very

close to one, the vorticity gradient will be sufficiently small that the perturbation evolution will be

essentially unaffected. Thus, equation (4.40) becomes

8C. Sn (X 2 1)V .R (4.41)

Examining the first term on the right side of (4.36), substituting (4.38b) and (4.39) gives

at Vc -- (P +,.)cos . (4.42)

This represents the generation of wavenumber one asymmetry due to the advection of absolute

environmental vorticity (the 0 terms) by the symmetric vortex. CW refer to this as the '#3-induced

asymmetry'. An equivalent nondimensional intial condition is then

1o=-1, n -- .(4.43)

Examining the second term on the right side of (4.36), substituting the first two terms of (4.37)

and (4.41) gives

Op [0,. C.) e.si
-- c (1 -X2)V,~m [(P co A - sin 2 (4.44)
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where the identities V = r sinA and 2 sin A cosA = sin 2A have been used. This represents the

generation of a wavenumber one asymmetry due to the vortex motion relative to the environmental

wind and a wavenumber two asymmetry due to the linear shearing of the symmetric vortex by

the relative environmental wind. CW refer to these as the 'motion-induced' and 'shear-induced'

asymmetries, respectively. Equivalent nondimensional initial conditions are then

n =11 (4.45)

-72 n = 2. (4.46)

The last initial condition used by CW was motivated by a desire to have exact solutions to

(4.28). By making the substitution p = 1/p2, it can be shown that an initial vorticity profile of the

form

= + 4 (4.47)

admit analytical solutions to the integration (d. equations (30) and (31) in CW). These initial

vorticity perturbations are radially confined to the inner boundary and may be physically interpreted

as asymmetries forced by convection in the eyewall of tropical cyclones. CW refer to these as

'convection-induced' asymmetries.

4.4 Model Results

Since one of the objectives of this thesis was to address some of the unresolved issues of the

CW paper, a necessary first step was to be able to reproduce their results. Although their stream-

function fields were easily reconstructed, the integrated kinetic energy plots associated with the four

initial conditions developed in the previous section were not reproduced exactly. Figure 4.2 is a

reproduction of figure 4a from CW while figure 4.3 shows the results from this work. Although the

trends are the same, the magnitudes and shapes of the curves are different. Specifically, CW show

a more rapid energy decay for 'convection-induced' initial conditions and a more abrupt transition

to the asymptotic behavior. The conclusions CW draw from their figure, however, are essentially

qualitative in nature and can still be obtained from figure 4.3.
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CW provide little information about the numerical model used to generate their results. It is

likely, then, that the conditions of their experiments have nu, been exactly duplicated. However, we

are confident that the results presented in this thesis are robust. The numerical results here have

been verified to satisfy the momentum and mass conservation equations to within the discretization

error associated with the trapezoidal rule. Moreover, as the model resolution was increased, the

results were quadratically convergent (see Appendix B).

In their paper, CW restrict attention to the initial vorticity profiles developed in the previous

section. While physically motivated, they change both the radial structure and the azimuthal

wavenumber simultaneously. Using the CW initial conditions as a reference, initial vorticity profiles

where only one parameter changes at a time are considered.

Figure 4.4 shows the streamfunction fields for an upright initial vorticity distribution o - 1/r3

and figure 4.5 shows the corresponding vorticity fields. The rows represent wavenumbers n = 1,

2, and 3, respectively, while the columns designate times t = 0.0, 3.6, and 7.2, respectively. These

figures show that, with respect to increasing the time or the wavenumber, the rectilinear and swirling

problems behave similarly. This is not surprising as the Green's function and the phase function are

formally identical between the rectilinear and swirling cases.

While the mathematical solutions are qualitatively similar between the rectilinear and swirling

cases, there are physical differences in the disturbance evolution between the two systems. Figure

4.6 shows the energy decay in the rectilinear problem for the initial condition 'o = -1/(y - 11)3.

Figure 4.7 shows the energy decay in the swirling problem for o - I/r . These plots show that, on

a wavenumber by wavenumber basis, the energy decays more slowly in the swirling problem than in

the rectilinear case. In addition, the figures suggest that the difference between the wavenumber one

disturbance and the higher wavenumber disturbances is more pronounced in the swirling problem.

These differences are explained by examining how the shear acts in each system.

In the rectilinear problem considered in chapter 2, the shear is constant an defines limiting

values for the energy decay of the perturbation. In particular, the limiting energy decay is given by

1/11 + (St)q. Thus, the limiting time for a perturbation to decay to half its initial energy is t = I/S,
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the half-life time. In the swirling problem, however, the shear varies radially and is only a local

measure of the flow. In order to investigate the limiting integrated energy decay of asymmetries, a

global measure of the shear is required.

In simple shear and in the bounded Rankine vortex, the physical process governing disturbance

evolution is the conservation of vorticity following the basic state flow. In the rectilinear problem of

chapter 2, the perturbation vorticity is advected by i, the basic state zonal wind. The corresponding

shear is thus dfi/dy. Since the shear is constant, the meridional scale of the perturbation qualitatively

describes the decay rate for a constant zonal wavenumber. The change in the zonal wind across a

large-scale perturbation is greater than the corresponding change across a small-scale perturbation.

Thus, the large-scale disturbances decay more rapidly.

In the swirling problem, the disturbance vorticity is advected by V/r, the basic state angular

velocity. The corresponding local shear is rdi/dr (SM) where 11 = ti/r. In a Rankine vortex, 11 is

equal to 1/r2 and the local shear is equal to -2/rA. Since the angular velocity does not describe

solid body rotation, both the radial location and the radial structure of the asymmetry are needed

to describe the decay rate. A plausible candidate for an effective shear that satisfies these conditions

is
b

f C dr
= b (4.48)

f o.dr

The analogous expression in the rectilinear problem reduces to the simple shear definition if dUi/dy

is constant. For initial conditions of the form 1/ra, the effective shear is found to be

Sf (a -- 1)
2  a1 a 61 44a

Self a - 1. (4.49b)

Appealing to the rectilinear case, the effective shear should define limiting values for the decay rate

of asymmetries. In particular, the limiting energy decay should be given by 1/[ + (S.fft)2]. Thus,

the limiting asymmetry half-life time should be t = -1/Sff. The limiting energy decay curve is the

solid line in figure 4.7.
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Figure 4.8 shows the integrated energy as a function of time for azimuthal wavenumber n = 1

and vorticity profiles , = I/r* where a = 3, 4, 5, and 6. Figure 4.8 confirms the expected behavior

for the 1/r 3 and 1/rI asymmetries. However, the decay rates for the I/r s and 1/0 4 asymmetries

are nearly identical until t f 5.5. In addition, the decay rate for the 1/r" asymmetry is less than

that for the 1/r asymmetry until t % 8.0 and is less than the decay rate for the I/rb asymmetry

for the times plotted. Thus, for initial conditions tightly confined to the inner boundary, there is a

transient period when the decay rate decreases with decreasing disturbance scale. This resembles the

rectilinear problem. The decay rate eventually reverts back to increasing with decreasing disturbance

scale though the cross-over time is later for smaller-scale disturbances.

This duality may be qualitatively explained as follows. Initially, most of the kinetic energy in the

asymmetry is concentrated near the inner boundary. The radial change in the energy is so large that

the basic state angular velocity appears constant in a first approximation. Thus, as in the rectilinear

problem, decreasing the disturbance scale results in a decrease of the decay rate. However, the inner

portion of the asymmetry is symmetrized more rapidly than that farther out in the vortex. The

kinetic energy near the inner boundary is transferred to the basic state much faster than the kinetic

energy in the storm's environment. The cross-over time occurs when the inner core energy decays to

the same magnitude as the environmental energy. At this time, the basic state angular velocity no

longer appears constant. The cross-over time is later for smaller-scale disturbances because it takes

longer for the inner core kinetic energy to decay to environmental kinetic energy values.

The initial vorticity profiles considered thus far represent forcings that act nearly continuously

in a hurricane. It is also of interest to investigate transient forcings that act in hurricanes, such as an

upper-level short-wave trough or a tropical easterly wave. As a proxy for such forcings, consider a

Gaussian initial vorticity profile of fixed radial scale. As the vorticity maximum is moved toward the

vortex center, the effective shear and the decay rate increases due to the increase in the differential

rotation.

The Gaussian initial vorticity profiles considered in this work have been initially upright with

respect to the local shear. Consequently, such disturbances have only had a decay phase. However,
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migratory short-wave troughs, upon encountering a tropical system, are generally not upright with

respect to the local shear. As an example, consider a trough positioned 300 km east of a tropical

cyclone in the Northern Hemisphere. Let the trough axis be oriented 30 degrees east of north such

that the trough leans against the local shear. Recall from chapter 2 that disturbances leaning against

the shear grow at the expense of the basic state. Thus, while the trough leans against the shear, the

trough will intensify and the tropical cyclone will weaken. As the trough grows, it rotates counter

clockwise and becomes maximum when it is oriented north-south. Once the trough is upright with

respect to the local shear, further evolution results in the trough weakening and the tropical cyclone

intensifying.

Figures 4.9, 4.10, and 4.11 show the asymmetry half-life times for initial vorticity profiles of 1/r2,

1/r 3 , and 1/r5. For each of these profiles, the n = 1 asymmetry clearly decays more slowly than all

higher wavenumber asymmetries. The dotted line in each plot is the asymmetry half-life time -1/Seff

for the given initial condition. For the lower wavenumbers, -1/S., significantly underestimates the

asymmetry half-life time. For the 1/r 3 and 1/r5 profiles, the -1/S., line adequately defines the

asymptotic limit of the half-life time for the higher wavenumbers. This suggests that the Sff

definition of this chapter is applicable to asymmetries which fall off in radius more rapidly than the

basic state angular velocity. This conclusion has been verified for Gaussian initial conditions.

The above results refute an assertion made by CW. Based on closed form solutions obtained

for the convection-induced asymmetries (cf. CW equations (30) and (31) ), CW argue that the

asymmetry damping rate should be proportional to the square of the wavenumber. If their assertion

was correct, then as n -- co, the damping rate should also become infinite. Thus, the half-life time

should asymptote to zero. However, the asymmetry half-life plots show that for increasing n, the

time required for the energy to decay to half its initial value approaches a nonzero constant and

does not decrease as 1/n2 .

4.5 Application to Hurricanes

The definition for the effective shear presented in the previous section need not be restricted to
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the Rankine vortex. Here the effective shear is evaluated for the analytical profiles fj = 1/r0 where

a = 1/3, 1/2, and 2/3. These profiles are better approximations of the symmetric tangential winds

typically observed in hurricanes than is the Rankine vortex. The effective shear is also calculated .or

the observed 700 mb winds in hurricane Gloria (Montgomery, personal communication, 1994) which

occurred in 1985. The Gloria data are nondimensionalized using V, = 57.91 ms - 1 andR, = 20 km

corresponding to Gloria's maximum tangential wind and radius of maximum winds, respectively.

The Gloria winds are given at 10 km intervals and are considered out to 500 km from the storm

center. Thus, for a nondimensional inner boundary set at a = 1, the corresponding outer boundary

is at b = 25. Figure 4.12 shows the Gloria and analytical symmetric tangential winds.

Since the effective shear calculation also requires the specification of initial vorticity profiles,

three types of initial conditions are considered here. The first is a convectively forced asymmetry and

is confined tightly to the radius of maximum winds. The second is shear-induced asymmetry which

is also confined to the inner boundary but extends farther out into the vortex than the convection-

induced asymmetry. The final initial condition corresponds to a trough in the environment of the

vortex several hundred kilometers from the vortex center. Mathematically, these initial conditions

are given by (. = 1/r', 1/r 2 , and exp(-(r - 15)2), respectively.

Table 4.1 shows values of Seff and -1/Seff for the initial voticity profiles and symmetric wind

profiles above. The values have been dimensionalized using the Hurricane Gloria data cited above.

The asymmetry half-life times given by -1/Seff are underestimates of the decay rate. Examination

of figures 4.9, 4.10, and 4.11 indicate the n = 1 asymmetry decays approximately seven times slo ?r

than the limiting time-scale. Assuming that the n = 1 decay rate approximates the decay rate for an

atmospheric disturbance, the asymmetries forced in the inner region of a hurricane give up half their

initial energy in 35-70 minutes for the analytical symmetric winds. The table suggests that similar

asymmetries in Hurricane Gloria gave up half their initial energy in 40-60 minutes. The Gaussian

initial vorticity here represents a trough 300 km from the storm center. This feature decays to half

its initial energy in 17-35 hours for the analytical symmetric winds. The table suggests that similar

asymmetries in Hurricane Gloria gave up half their initial energy in 14 hours.
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4.6 Summary

Wave disturbances on a symmetric vortex have been shown to favor the lower wavenumber

asymmetries. Disturbances evolve in a similar fashion to their rectilinear counterparts for changes

in the wavenumber and in time. However, the disturbance evolution for changing radial structure is

complicated by the change in the basic state angular velocity with radius. In addition to the radial

scale, the radial location of the initial asymmetry must be known.

For asymmetries forced in the inner core region of the vortex, decreasing the radial scale of the

asymmetry increases the effective shear and the decay rate when the environmental portion of the

kinetic energy is comparable to the inner core portion. When the asymmetry is tightly confined to

the inner boundary, the kinetic energy near the inner core dominates. The effective shear appears

constant and further narrowing of the radial scale results in a decreasing decay rate. This transient

behavior lasts until the kinetic energy near the inner core is reduced to levels comparable to the

environmental kinetic energy. For asymmetries forced in the environment of the vortex, increasing

the radial scale of the asymmetry or moving a fixed scale asymmetry towards the inner boundary

results in an increase of the effective shear and the decay rate.

Since the shear varies with radius, an integrated measure of the shear is needed to estimate the

global evolution of asymmetries. The shear definition presented here considers both the basic state

angular velocity and the initial vorticity profile. Noting that the reciprocal of the rectilinear shear

defined the limiting time for a perturbation to decay to half its initial energy, the reciprocal of the

effective shear was expected to define the limiting asymmetry half-life time. This time scale signifi-

cantly underestimated the decay rate for the lower azimuthal wavenumbers for all initial conditions

considered. However, the decay time scale -1/Sff reasonably represented the asymptotic limit of

the asymmetry half-life times for the higher wavenumbers as long as the initial condition fell off in

radius more rapidly than the basic state angular velocity.
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Table 4-1: Effective shear values and limiting asymmetry half-life times for various symmetric wind
profiles. Symmetric wind data from the 700 mb level of Hurricane Gloria are also considered. All
values have been dimensionalized using Gloria's maximum azimuthal wind (57.91 ms- 1) and the
radius of maximum winds (20 kim).

(0

1/r5 1/r 2  e(?-15)2 /1o
1/r I / 3 -2.81 X 10- 3 s- 1 -1.77 x 10- 3 s - I -1.09 X 10-4 s- I

5.94 min 9.44 min 2.56 hr

V 1/r1/ 2  -3.06 x 10- 3 s- 1  -1.86 x 10- 3 s- I -7.83 x 10- 5 s- 1

5.45 mm 8.96 min 3.55 hr

1/r2/3 -3.29 x 10- 3 s- 1  -1.94 x 10- 3 s- 1  -5.59 x 10- 5 s - '

5.07 mi 8.58 min 4.97 hr

Gloria -2.89 x 10 - 3 s- 1  -1.81 x 10 - 3 s- 1  -1.29 x 10 - 4 S- 1

5.76 min 9.23 min 2.15 hr
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Bounded Rankine Vortex
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Fig. 4.1: The nondiniensionalized bounded Rankine vortex.
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Normalized Kinetic Energy
Bounded Vortex: &=I, b=10

N..a

0.4
02 - - - ----

.......... ... ... - -- ----- -
0.0 . 4

TIME (If&%S

Fig. 4.2: Figure 4.(a) from the Carr and Williams (1989) paper. It is a plot of the normalized
kinetic energy as a function of time for the four initial conditions developed in their paper. The
curves are the energy decay for: convection-induced (n = 2, dot; n = 1 dash), motion-induced
(chaindot), and shear-induced (chaindash) asymmetries.
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Normalized Kinetic Energy
Bounded Vortex: a=1, b=1O
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Fig. 4.3: Normalized kinetic energy as a function of time for the four initial conditions developed
by Car and Williams (1989). The curves are the energy decay for: convection-induced (n = 2, dot;
n = 1, dash), motion-induced (dot dash), and shear-induced (dot dot dot dash) asymmetries.
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Perturbation Streamfunction
Bounded Vortex: a=l, b=10
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Fig. 4.4: Perturbation streamfunction field for =_ 1/r3 for the bounded Rankne vortex. The
columns show contours at times t = 0.0, t = 3.6, and t = 7.2, respectively. Panels (a)-(c) show
contours for n = 1 where the .ontour interval is 1.10 X 10-2. Panels (d)-(f) show contours for n = 2
where the contour interval is 5.67 x 10- 3. Peuiels (g)-(i) show contours for n = 3 where the contour
interval is 3.31 X 10-3.

64



Perturbation Vorticity
Bounded Vortex: &=I, b=10
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Fig. 4.5: Perturbation vorticity field corresponding to figure 4.4. Note the different axis scales.
The contour interval is 6.90 x 10-2.
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Normalized Kinetic Energy
Bounded Rectilinear Channel: a=1, b=10
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Fig. 4.6: Normalized kinetic energy for the rectilinear problem with (,=-1/(y - 11)3. The curves
are the energy decay for: k = 1 (dot), k = 2 (dash), kc = 3 (dot dash). The solid curve is the energy
decay for the upright plane wave given by 1/(I + P2).
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Normalized Kinetic Energy
Bounded Vortex: &=1, b=10
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Fig. 4.7: Normalized kinetic energy for the bounded Rankine vortex with 1~ /r3. The curves
are the energy decay for: n = 1 (dot), n = 2 (dash), n = 3 (dot dash). The solid curve is the limiting
energy decay given by 1/[I + (Sfn't) 21 Where Sff = -1.01.
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Normalized Kinetic Energy
Bounded Vortex: a=l, b=10
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Fig. 4.8: Normalized kinetic energy for the bounded Rankine vortex for n = 1. The curves are the
energy decay for: _ "- 1r 3 (dot), / = 0/r (dash), 4 = 1/r (dot dash), and 4 = 1/r (dot dot
dot dash).
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Asymmetry Half-Life
Bounded Vortex: &=1, b=10
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Fig. 4.9: Time required for an asymmetry to decay to half its initial energy as a function of
wavenumber for 4,-1/r2 The dotted line is the limiting case given by -1/Sff where Seff =-0.74.
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Asymmnetry Hall-Life
Bounded Vortex: a=l, b=10
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Fig. 4.10: Same as figure 4.9 except 4' J /r3 and Seff =-1.01.
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Asymmetry Half-Life
Bounded Vortex: a=I, b=10
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Velocity Profiles
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Fig. 4.12: The nondimensionalied Gloria and analytical tangential wind profiles. The analytical
winds axe given byDi = 1/r' where a = 1/3 (dot), 1/2 (dash), and 2/3 (dot dash).
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CHAPTER 5

CONCLUSION

5.1 Summary

The inviscid nature of disturbance evolution in sheared flows has been investigated. The problem

has been studied within the framework of nondivergent vorticity dynamics. Particular emphasis has

been placed on understanding the wavenumber and spatial structure dependencies in perturbation

evolution.

A truly inviscid mechanism which favors the decay of high wavenumber perturbations over

low wavenumber perturbations was identified. Further, the wavenumber one perturbation decayed

significantly slower than all other perturbations. In the development of AB theory, SM appealed to

both observational and computational evidence of a wavenumber selection mechanism as the basis

for the theory. The results presented here further elucidate the wavenumber selection mechanism

and provide further theoretical support for the validity of AB theory.

The spatial structure of the initial conditions was shown to play a significant role in disturbance

evolution. The spatial scale controlled how rapidly a disturbance sheared and subsequently decayed.

In the swirling problem, the radial location of the initial condition was an important consideration

as the shear decreased from the radius of maximum winds. These factors led to the definition of

an effective shear which accounted for the interaction of the symmetric basic state and the initial

vorticity profile. As defined here, the effective shear was shown to be an adequate estimate for the

higher wavenumbers as long as the radial variation of the initial condtion was greater than that of

the symmetric basic state. However, the effective shear was a significant underestimate for the lower

wavenumbers.

Using the effective shear, decay half-life times were estimated on a wavenumber by wavenumber
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basis. The results clearly demonstrated that the decay half-life times do not decrease as 1/n2 which

refuted the CW assertion that the damping rate is proportional to the square of the azimuthal

wavenumber. The effective half-life times for wavenumber one were found to be approximately

seven times slower than those forecast by the effective shear. This was used to estimate half-life

times for tangential wind profiles that are more representative of hurricanes outside their radius

of maximum winds. These half-life times seemed to be reasonable estimates for the asymmetric

forcings simulated.

5.2 Suggested Further Work

The wind profiles considered did not have a basic state vorticity gradient and, thus, excluded

discrete normal modes from the solution set. While the interaction of the continuous spectrum

and the discrete normal modes has been considered for the Eady model (Pedlosky, 1964; Farrell,

1984), this topic requires further investigation in rapidly rotating vortices. An analytical method

that extends the Rankine vortex into a uniformly rotating core is briefly considered in Appendix A.

In addition, a basic state vorticity gradient may be viewed as an effective vortex ft. CW suggested

that this effective 0 would introduce a retrogression that could counteract the rate of perturbation

tilting induced by the differential rotation. Further work is needed to examine this hypothesis.

Sutyrin characterized the transfer of energy from the azimuthal perturbations to the circularly

symmetric basic state as being analogous to the energy cascade to larger scales in two-dimensional

turbulence. Moreover, he associated the growth of the basic state potential vorticity gradient with

the transfer of enstrophy to smaller scales. These ideas merit further investigation and quantification.
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APPENDIX A

AXISYMMETRIZATION IN UNBOUNDED RANKINE FLOW

In this appendix, the asymmetric dynamics of an unbounded Rankine vortex are briefly consid-

ered. The nondimensional linearized vorticity equation from chapter 4 is again used to represent the

system. The inner boundary is now at the origin while the outer boundary is removed to infinity.

It is assumed that all quantities are bounded at the origin and vanish at infinity.

When including the region inside the radius of maximum winds, the Rankine profile is given by

r/a, r <a;
aft, r>a; (A.1)

where a is the nondimensional radius of maximum winds and r is the nondimensional radius. The

corresponding basic state vorticity profile is

2/a, r<a; (A.2)S=0, r >a;

while the absolute vorticity profile is given by

(R1+2/a , r<a;
r > a. (A.3)

The quantity R;' is the inverse Rossby number defined by R;' = fR,/V,, where f is the Coriolis

parameter and V, is the symmetric wind at the radius of maximum winds (Rm). Figure A.1 shows

v and t7 for the full Rankine vortex.

The discontinuity in the mean state vorticity at r = a effectively introduces another boundary

to the system. Since this boundary is interior to the fluid, the kinematic and dynamic boundary

conditions must be satisfied at the disturbed interface r = a+e, where e is the interface displacement.

The kinematic boundary condition requires that the normal velocity be continuous while the dynamic

boundary condition requires that the pressure be continuous at r = a + e, respectively. Consistent
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with the linearization employed below the matching conditions will be evaluated at r = a. The

evolution of the disturbed interface may still be determined by integrating

8

at r = a once u' is found.

For the full Rankine proffle (A.2) the linearized vorticity equation of chapter 4 is modified to

+ T XC =0, r a. (A.5)

To solve (A.5), the discontinuity in the basic state vorticity at r = a must be accounted for. Since

the problem is linear, the superposition principle may be used to decompose the solution into two

parts by letting C = C. + (I where C. is defined to be smooth for all r and (i accounts for the

discontinuity in the basic state vorticity at r = a. The vorticity equation (A.5) is then split into two

parts

+ . =0, Vr; (A.6a)

( 1 +=0, r6a. (A.6b)

Equation (A.6a) is formally identical to the system solved in chapter 4, but with the boundary

conditions cited above. The corresponding solution in Fourier space is

C0

( t) = J G(r, p)4.o(p)e - 4 "nt/P pdp (A.7)
0

where the appropriate Green's function is

(r, p) = - (p-r_, p < r < p (A.8)

and C.(P) is the smooth component of at time t = 0.

The Fourier space equivalent to (A.6b) is

f+ , #a. (A.9)
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Anticipating that the solution to (A.9) will yield the discrete normal modes which are irrotational

on both sides of the discontinuity, Ci is assumed separable of the form

S=-y(t)6(r - a). (A.10)

Here, -y is an undetermined temporal multiplier for i and 6(r - a) is the Dirac delta function. In

terms of the streamfunction, equation (A.10) is written

V I = -y(t)6(r - a). (A.11)

The streamfunction is also assumed separable of the form = -(t)lil(r). Thus, equation (A.11)

becomes

For r A a, equation (A.12) is Euler's equation. Two conditions are needed to match the solutions

in each region across r = a. The first is the kinematic boundary condition requiring that the radial

velocity, u, be continuous at r = a. Thus, the Fourier streamfunction amplitude must be continuous

across r = a. The second condition results from integrating (A.12) over a small interval that includes

r = a. This yields the following jump condition for ti

-9"P ( a' -= 1. (A.13)

Applying the boundary conditions, and the continuity and jump conditions at r = a, yields

a a-"r' 0_<r<a
-n I r-n, a < r < o. (A.14)

To complete the derivation, - must be determined. The remaining constraint is the dynamic

boundary condition which requires that the pressure be continuous at r = a. In Fourier space, the

azimuthal momentum equation is given by

0 inO in.+ + ,,= in-.  (A.15)

Evaluating (A.15) on each side of r = a and subtracting gives

Sin. 2
[f(a+)- 6(a-)] + af(a+)- (a-)] - 2id(a) =0. (A.16)
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In terms of the total streamfunction, equation (A.16) becomes

(a) - (a - (a+ ) - 7(a + () 0. (A.17)

Now, from the superposition principle, = i. + 'y'P, where t. and its derivatives are everywhere

smooth by construction. Since 41' is continuous but has a unit jump in its derivative across r = a,

equation (A.17) simplifies to
d-y (n 2in -d- + a - 1)-y -- 0- (a, t), (A.18)

a first-order linear differential equation for -y. Upon multiplying through by the integrating factor

exp[i(n - 1)t/a] and substituting for j.(a, t), equation (A.18) becomes

d -!± JG(a, p).oe(i(-)/-inI/lt pdp. (A.19)
0

Integrating in time and Chen multiplying through by exp[-i(n - 1)t/a] gives

2(n) = 2n (a, p)C.0, - - / pdp + cl e- i(n-u)t/a (A.20)

whee c isthecontan ofintegration at t = 0. Equation (A.20) then yields
00

7()=-2n J7( G(a, p) es~ - si p-a = - - 1 - an*/p)

0

00

2n= (, p) e""I/,) pp

a (n - I--"nv)• a0

+ +o L G, G(a, p).o pdp] e- ( n- )t (

+a f' (n --1 - an)/)

where y is gtven by (A.8) and i is given by (A.14). To obtain the physical space streamfunction,

the invere Fourier trsform must be applied to (A.22).
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Equation (A.22) is interpreted as follows. The first line may be tentatively identified with the

continuous spectrum solution and is the analogue of the solution presented in chapter 4. The second

line is a conversion term that transfers some of the energy in the continuous spectrum solution into

the discrete mode, which is the third line of the equation. Interestingly, even with no normal mode

component initially (,y, = 0), the continuous spectrum solution will always project onto the normal

mode at later times (d. Farrell, 1982). Note that for n = 1, the discrete mode does not rotate on

the vortex, but rather represents the translation of the basic state vortex. For n 0 1, the discrete

modes rotate slower than the vortex and represent retrogressing Roesby waves at r = a + e.

Edwards (1994) demonstrated that this model can be extended to an arbitrary number of

regions of constant basic state vorticity. Sutyrin (1989) developed the quasi-geostrophic shallow

water equivalent of the multi-region model. However, his formulation did not explicitly describe the

interaction between the continuous and discrete spectrum solutions. Extension of the above model

to a quasi-geostrophic shallow water system is of interest as it may prove useful in idealized studies

of hurricane track.
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97.

Symmetric Tangential Winds and Absolute Vorticity
for the Ranine Vortex
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Figure A.1: Panel (a) shows the symmetric tangential winds for the full Rankine vortex. Panel

(b) i the corresponding absolute vorticity using an invers Rossby number of 0.1.
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APPENDIX B

MODEL VERIFICATION

In this appendix, the verification of the numerical model is briefly considered. Since the merid-

ional or radial disturbance scale generally changes with time, an estimate of when the disturbance

scale becomes smaller than the model resolution is desired. In the rectilinear problem of chapter 2,

the meridional wavenumber of an upright plane wave perturbation was found to be 1 = -kSt. Thus,

a meridional wavelength was given by 2w/kSt. Assuming the model resolves perturbations that have

scales greater than or equal to twice the grid spacing, the model no longer resolves the perturbations

when

21< 2Ay (P.1)
kSt -

where AV is the grid spacing, k is the zonal wavenumber, and S is the shear. Thus,

St> , (B.2)

gives an estimate of when the perturbations are no longer resolvable. In chapter 2 and 3, the worst

model resolution was Ap = 0.056, corresponding to 361 grid points and integration limits at ±10.

For k = 3, the model resolution starts becoming inadequate for St f 20.

For the swirling problem, SM have shown that the change in the radial wavenumber with time

is

dk (B.3)W.= -I, .Trs

Here, k is the local radial wavenumber, n is the azimuthal wavenumber, and fil is the basic state

angular velocity. For the Rankine profile (A.1), equation (B.3) is

dk 2n (B.4)

Thus, for a locally upright asymmetry

k = -- -. (B.5)
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a

The model resolution, then, starts becoming inadequate when

27r < 2Ar (B.6)

or, when
irr3

t > -- r" (B.7)
-2nAr

In chapter 4, the worst model resolution was Ar = 0.05, corresponding to boundaries a = 1 and

b = 10 with 181 grid points. Thus, at the radius of maximum winds for n = 3, the asymmetries

start becoming smaller than the model resolution when t s 10. However, at r = 5 and n = 3, the

asymmetries start becoming unresolvable when t ; 1300.

To be consistent with the analytical system, the model results must satisfy the momentum

equations to within discretization error. Since the trapezoidal rule was used in this work, the

discretization error should be proportional to the model resolution squared, i.e., model output must

be at least quadratically convergent. The procedure used to evaluate the model output for the

swirling problem is briefly presented below.

For the bounded Rankine vortex (4.18), model verification was performed with the Fourier space

representation of the momentum equations (4.8a) and (4.8b)

+ _If2 - =-(B.8a)

afo in n
5i+-r + * = P-. (B.8b)

From (B.8b), P was founa for all radial values at a fixed time. Using centered difference approxima-

tions for all differentiated quantities, the radial gradient of P was calculated and compared to the

left side of (B.8a). For the shear-induced asymmetry from CW ( . = -i/r 2, n = 2) and model

resolutions of Ar = At = 5 x 10-2 at t = 9, the difference between the left and right sides of (B.8a)

at r = 2.3 was -2.54 x 10- s . For double and quadruple the above model resolution, the difference

was -6.34 x 10's and -1.59 x 10- e , respectively. In each case, as the model resolution doubled,

the difference decreased by a factor of 4. For the same model resolutions at r = 1.7 and t = 5.9,

the differences were 9.02 x 10-6, 2.01 x 10- e , and 4.87 x 10 - 7 , respectively. The model output was
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checked for a variety of times, radial locations, and initial vorticity profiles. In all cases, the model

output was found to be quadratically convergent.
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