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ABSTRACT

The interpretation of satellite- or aircraft-borne synthetic aperture radar (SAR)

imagery requires increased understanding of processes that change the state of the sea

surface. Wind stress that results from kilometer-scale boundary layer circulations

produces sea-surface stress patterns responsible for some of this sea surface variability. A

Galerkin model of these boundary layer circulations-that take the form of two-

dimensional rolls and three-dimensional convective cells-is developed here to study their

effect on sea surface stress.

The objectives of previous investigations using spectral models were focused on the

structure of the circulations in the middle levels of the boundary layer, and so for

simplicity the stress and heat flux were assumed to vanish at the lower boundary.

However these boundary conditions do not allow the study of stress variability at the sea

surface. The goal of this thesis is to create a marine atmospheric boundary layer model

that allows nonzero heat and momentum fluxes at the lower boundary. Surface layer

similarity theory is used to specify constant forcing parameter values in the lower

boundary conditions. The focus of this study is to determine whether these lower

boundary conditions allow the model to capture the behavior of the roll circulations and, if

they do, to determine the fluxes at the lower boundary that influence kilometer-scale sea

stress variability.

Case study results demonstrate that the model does indeed capture the spatial

organization of the roll circulations and does correctly reproduce the vertical profiles of

heat and momentum flux. The results also show that the temperature perturbation is a

maximum at the lower boundary where the primary heat source is located. The temporal

periodicity of the system is consistent with physical and numerical analyses as well.



However there are two distinct case study results that indicate further redesign of

the model is needed before the surface stress patterns can be studied. The first result is

that only an amplifying roll solution could be found, indicating that a source of energy is

not being damped properly. The other result is that the maximum vertical velocity

magnitude occurs at the lower boundary, which produces a profile that is not consistent

with observations.

The case study results point to the need to re-evaluate the use of surface layer

similarity theory for obtaining the parameter values in the new boundary conditions. For

example, because the roll circulations scale with the boundary layer depth, it seems likely

that convective scaling theory might produce more appropriate lower boundary conditions

than would surface layer theory.
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However there are two distinct case study results that indicate further redesign of

the model is needed before the surface stress patterns can be studied. The first result is

that only an amplifying roll solution could be found, indicating that a source of energy is
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similarity theory for obtaining the parameter values in the new boundary conditions. For
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Chapter 1

INTRODUCTION

The use of satellite- or aircraft-borne synthetic aperture radars (SAR) as

meteorological and oceanographic observation systems holds great promise (Visecky and

Stewart 1982). Unfortunately, the interpretation of SAR signals is greatly dependent upon

the nature of the constantly changing state of the sea surface. The dominant atmospheric

mechanism for forcing the sea surface is wind stress, and so a better understanding of the

effects of this stress is required for us to be able to interpret correctly the SAR signals.

One approach is to use atmospheric modeling of boundary layer flow to analyze how it

might modulate sea-surface stress patterns.

We focus our study on kilometer-scale marine atmospheric boundary layer

circulations. There are two types of kilometer-scale circulations that affect sea-surface

stress. The first type comprises quasi-two-dimensional boundary layer rolls. Evidence

from SAR imagery of stress patterns caused by roll circulations is well documented, for

example, by Gerling (1985, 1986). The second type comprises convective cells, which are

filly three-dimensional flows that may form independently of the rolls in less windy

conditions. Such cells may also evolve from two-dimensional rolls as the forcing rates

increase. As described extensively elsewhere (e.g. Brown 1980; Stensrud 1987), each of

these boundary layer circulations may be driven by both convective and dynamic instabhity

mechanisms. Some important mechanisms include boundary layer wind shear, air/sea

temperature difference, and the magnitude of heating effects in clouds. All of these

mechanisms are ultimately responsible for the downward transport of horizontal

momentum that produces stress variability at the sea surface.
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A number of nonlinear modeling studies of boundary layer rolls (Shirer 1986;

Stensrud and Shirer 1988; Laufersweiler and Shirer 1989; Haack and Shirer 1992) have

sought to identify the dominant forcing mechanisms and characteristic spatial and temporal

responses of these convective boundary layer circulations. These nonlinear, Galerkin

models, which are based on the Boussinesq system of equations and use sinusoidal basis

functions, provide wind profile modifications, preferred orientation angles and

wavelengths, and simplicity in the study of bifurcation and stability properties. These

models also yield profiles of the vertical fluxes of horizontal momentum and heat.

The objectives of the above studies are focused on determining the structure of the

circulations in the middle levels of the boundary layer, and so for simplicity the stress and

heat flux are assumed to vanish at the lower boundary. However, these boundary

conditions cannot allow us to study the stress variability at the sea surface, unless bulk

aerodynamic techniques are used (Stull 1988). Thus the goal of this thesis is to create a

nonlinear, Boussinesq, three-dimensional boundary layer model that allows nonzero heat

and momentum fluxes at the lower boundary. There are a number of approaches that

might be adopted to determine appropriate lower boundary conditions. For example,

Schmidt and Schumann (1989) used surface layer similarity theory to specify the lower

boundary conditions in their model, which they used to successfully capture kilometer-

scale boundary layer structures.

We also use similarity theory, but adopt a different approach to specify our

boundary conditions. We set the bottom of our domain at 10 m above the sea surface and

then choose lower boundary conditions that represent wind and temperature values

typically observed at this height in the surface layer. To test this approach, we use

empirically derived similarity relationships for an unstable environment (Stull 1988).

These relationships lead to constant forcing parameters that may be used to specify the



3

lower boundary conditions. These boundary conditions allow for a more realistic

incorporation of thermal forcing, which in earlier models is spread throughout the entire

vertical domain via the Rayleigh number Ra. In reality, the thermal forcing at the lower

boundary should drive the system and the value of the traditional Rayleigh number should

be inferred from the model solutions. Finally, and for simplicity, the upper boundary

conditions are taken to be rigid, stress-free, and perfectly conducting as in the earlier

models.

We then develop the vertical basis functions for the model expansions by solving a

more realistic eigenfunction problem based on the new boundary conditions. These basis

functions are expressed in terms of exponential and trigonometric functions. When we

create the spectral model, products of these basis functions must be integrated; we obtain

expressions for these integrals using the symbolic manipulator software DERIVE. These

results are then incorporated into the FORTRAN program that does the numerical

integration of the model and subsequent simulation of the boundary layer circulations.

The focus of this study is to determine whether the lower boundary conditions

specified using similarity theory do, in fact, allow the model to capture the behavior of the

roil circulations and, if they do, to determine the fluxes at the lower boundary that

influence kilometer-scale sea stress variability. In Chapter 2, we explain the development

of the 60-coefficient nonlinear dynamic model, which is still much smaller than a Large

Eddy Simulation (LES) model, and so, in principle, can be studied more completely. We

first determine the appropriate partial differential system of equations, next form the

spectral system, and finally describe the computer model. In Chapter 3, we present the

results of some model integrations, first specifying the appropriate model parameter values

and initial conditions and then analyzing the data. Finally, in Chapter 4, we evaluate these

model results and suggest areas for further analysis and study.
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Chapter 2

MODEL DEVELOPMENT

The convective nature of boundary layer roll, or secondary, circulations allows us to

choose a set of approximate equations in which certain terms from the complete set of

equations are neglected. These approximate equations form what is known as the shallow

Boussinesq system. The roll circulations are represented by perturbations superimposed

on a basic state that is time-independent, isopycnic, hydrostatic, and horizontally moving

(Shirer 1986). We assume that the perturbations possess a three-dimensional structure,

and so we must consider both roll-perpendicular and roll-parallel variations. The

horizontal domain is infinite and cyclically continuous at x = O,y = 0 and x = L",y = Ly,

where L, and L, are the roll wavelength components. The vertical domain ranges from

z = h,, to z = z , where h,, is the height of the lower boundary and z, is the cloud top

height or inversion base. Only the part of the circulation above h. is specifically

modeled; the part below hLB is parameterized with surface layer similarity theory. In

dimensionless form the domain is defined by 0:< x" < 1, 0: _y" < 1, and 0:< z" _< 1. A

schematic representation of the domain is given in Figs. 2.1-2.2.

The basic state, known as the conductive state and denoted by subscript o, is given

as

V. = U(z)i+V(z)j (2.1)

P. =P. (2.2)

T1(z) = T. - A.T(z/zT) (2.3)

po(Z) = P. - p 0gz, (2.4)



*Z T
z z

0 h LB

0 x L
AAAAAAA.kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SEA SURFACE

Fig. 2. 1. A schematic cross-section of the model domain in the x-z plane.
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Fig. 2.2. A schematic cross-section of the model domain in the y-z plane.
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where subscript oodenotes the value at the lower boundary, U(z) and V(z) are the

components of the mean horizontal wind, and A.T is a constant lapse rate defined as the

temperature difference between the lower and upper boundaries. The three-dimensional

secondary circulation, denoted by primes, is given by

u'(x,y,z,t)= u(x,y,z,t)-U(z) (2.5)

v'(x,y,z,t) : v(x,y,z,t)-V(z) (2.6)

w'(x,y,z,t) = w(x,y,z,t) (2.7)

p'(x,y,z,t) = p(x,y,z,t) - p 0  (2.8)

p'(x,y,z,t)= p(x,y,z,t)-po(z). (2.10)

In the Boussinesq system, compression is considered negligible. Other approximations

include writing the equation of state in a normalized form and linearizing the pressure

gradient force (Shirer 1987).

2.1. The Partial Differential Equations

The Boussinesq system of equations for the perturbation temperature T' and the

perturbation velocity vector v' takes the form (e.g. Shirer 1986)

,+OV VT' +v'.VT' = A-Tw'+KV2T'-TV4T' (2.11)
-t zT

+V*Vv' +w' I +v'*Vv' =- Vp'-Jkxv'+g--k+vVv-Vv (2.12)
dz Ao. Too
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V.v' =0, (2.13)

where K is the constant eddy thermometric conductivity and v is the constant eddy

viscosity. We have added additional terms to (2.11)-(2.12) with dissipation parameters a

and 6 to control the growth of any numerical instabilities. A dimensionless form of the

equations is used based on the definitions

vI = (ui+v j) K
ZT-hLB (2.14)

w'
w W -- (2.15)

ZT - hIB

x = x*Lx (2.16)

y=y LY (2.17)

z = z(zT-hLB)+hLB (2.18)

t t* ( z - h ) (2.19)
K

T r= 3 (2.20)
g(zT - hLB)3

* 2

p,= p p_2 (2.21)
(zT - hLB)L

U(z) = IV(zT)IU*(z*) (2.22)

V(z) = IV(zr)V'(z") (2.23)

(Zr -K hu) 2 .(2.24)
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These dimensionless equations take the form

-V 2 T -T/Re V*. VTr + Raw* - v*. VTr (2.25)

ON--* .aVp* + PV2v - v - f*Pk x v* + Prk

-(Re V + v). Vv - Re w (2.26)
c8z' '(.6

where

, .+ dk. (2.2

The parameter 83 is the dimensionless version of a and the parameter u is the

dimensionless version of e. The values of the dimensionless parameters /8 and p control

the magnitude of the numerical dissipation terms. The dimensionless forms lead to two

forcing parameters in (2.25)-(2.26). The Reynolds number Re is given by

Re = lv(zT)(zT - h )/,c (2.28)

and represents dynamic forcing by the mean wind shear of the basic state. The Rayleigh
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number Ra is given by

Ra = gAT(zT -hk)3  (2.29)
VKT 0

and represents thermodynamic forcing across the domain.

Three other dimensionless variables appear in the system. The eddy Prandtl

number is defined as

P = v/K. (2.30)

The roll aspect ratios, a, and ay, are defined as

a, (zT -ha) (2.31)
L.

ay (ZT-hLB) (2.32)

The vector V*(z*) represents the dimensionless mean wind profile. As a result of the

definitions (2.22)-(2.23), it follows immediately that IV*(1) = 1.

We further transform the momentum equation (2.26) by taking the curl to form a



10

vorticity equation, thereby eliminating pressure. The resulting equation is

X v ) 2( V X )- x,( V x (k x v.)] + ( rk )

R x(V- * Vv')]- xJ X (W VX (V. VV* (2.33)

In order to solve the system of equations (2.25) and (2.33), we must specify

appropriate boundary conditions. For simplicity, the lateral boundaries are cyclic, and the

upper vertical boundary is rigid, stress-free, and perfectly conducting. In contrast, an

important source of energy for the circulations exists at the lower boundary; there

boundary conditions are specified using surface layer similarity theory as described in

Appendix A. The vertical boundary conditions are summarized below for sr > 0 and

Sm > 0:

7'(0)+ s, T0 -0 (2.34)

u*(O)-s. ° '(O) =0 (2.35)

Vv(O) - S. d*) =0 (2.36)

ow (O) 92w(0)-- 0 (2.37)

T 0()=o (2.38)



l  -w() 0, (2.39)

where s., the Schramm momentum constant, and s., the Schramm temperature constant,

which are both defined in Appendix A, control the forcing at the lower vertical boundary.

2.2. The Spectral System

The next step in the development of the model is to create an appropriate system of

ordinary differential equations from the partial differential system given in the previous

section. We use the Galerkin technique or spectral method to form this spectral model.

First, we substitute the Fourier expansions for the dependent variables into the appropriate

partial differential equation. Next, we multiply the resulting equation by the particular

eigenfunction that the amplitude coefficient multiplies in the expansion. We then integrate

the result over the spatial domain, using, where possible, orthogonality of the

eigenfunctions in the expansion. Finally, we retain only those terms that are nonzero

(H-iggins 1987).

Owing to the complexity of the model, the above steps are performed separately for

each term in the partial differential equations, with the results being stored in an

appropriate matrix. The truncation chosen, which is listed below, results in a system of 60

equations, 20 in temperature and 40 in velocity. Each term in each equation may be

represented by a 60 x 60 matrix that is multiplied by a 60-element vector representing the

60 amplitude coefficients. The resulting system takes the form

A9 = By + C(y)y, (2.40)
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where A is a 60 x 60 matrix of inner products multiplying the 60-element vector p that

contains the temporal derivatives of the amplitude coefficients, B is a 60 x 60 constant

matrix, based on the linear terms of the partial differential equations, multiplying the 60-

element vector y that contains the amplitude coefficients, and C is a 60 x 60 y-dependent

linear matrix, based on the advective terms of the partial differential equations, multiplying

the same 60-element vector. Because A is invertible, we are then able to solve for the

time-dependent amplitude coefficients by numerically integrating the following system:

j = A-'By+ A-'C(y)y. (2.41)

To find (2.40) from (2.25) and (2.33), we first choose a truncated Fourier expansion

for the dependent variable 7 composed of temporally dependent amplitudes, spatially

dependent trigonometric functions with horizontal wavenumbers I and m, and vertical

basis functions:

4 4

Tr(X*,y°,z*,t) I I T.(t*)trig(x°,y*)F(z), (2.42)
j=0 j=I

where

trig(x,y") = 1 (2.43)

trig,(x°,y*) = sin 2rdx° sin 2nmy" (2.44)

trig2(x*,y ° ) = sin2x° cos2nmy*  (2.45)

trig3(x*,y") = cos27dx* sin 2mny ° (2.46)
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trig(x*,y") = cos2nix" cos2mny" (2.47)

F(z*) = coshoz" - I sinhowiz, for s < 1 (2.48)

F(z*)=cosaoiz*- s)-lin, 1 z" for s. > 1 (2.49)

srO)I = tanhwa for sr < 1 (2.50)

srTo) =tanw, for sT> 1 (2.51)

j(z*)= cosw z -- sin (oz" for j=2,3,4 (2.52)

s7 a)o = tanco, for j = 2,3,4, (2.53)

and the vertical basis functions are orthogonal. A complete discussion of the vertical basis

functions and associated eigenvalues is found in Appendix B.

We next must choose an expansion for the velocity vector v*. Because it is

nondivergent, it will be convenient to represent v* (nonuniquely) as the curl of a vector

streamfunction A* that is the sum of two vector streamfunctions ¥* and /*. Therefore,

the velocity perturbation vector v may be expressed as

v =VxA* =Vx*+Vx,*. (2.54)

We then substitute this new definition for v into the partial differential system (2.25) and

(2.33). We can now use a truncated Fourier expansion to represent the dependent vector
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streamfunctions 1" and i':

4 4

W'(X'',z',t')= ._ ¥V(,')trig,(x',y')h,(z')i + Oj + Ok (2.55)
p=O q=1

V*(X'Y*zO'* )Oi,4 
4

S(x,y,z,t)Z= Oi + ( " *)trig,(x,y)h(z')j + Ok, (2.56)
p=O q=!

where trig(x,y') is defined as in (2.43)-(2.47), and

hq(z')=os'qz -S, ,qsintZ" for q = 1,2,3,4 (2.57)

S, Mq =cotwq for q=1,2,3,4, (2.58)

where the vertical basis functions are nonorthogonal. Once again, a complete discussion

of the vertical basis functions and eigenvalues is found in Appendix B.

Next, we substitute the temperature expansion (2.42) and, when required, the

streamfunction expansions (2.55)-(2.56) into each term of the thermodynamic equation

(2.25). We then multiply each term by the appropriate basis function and integrate over

the domain 0 < x" 1, 0_< y" < l, 0 z$ < 1. We use the following identities to simplify the

equations:

Jsin 2adx* sin 2,x'dx* = 2 (2.59)
0

fsin 2ndx cos2,xdx" = 0 (2.60)
0



15

sin 2zmy ° sin 2zmy'dy" = Y2 (2.61)
0

j sin 2vny" cos2mnydy"4  = 0, (2.62)
0

and realize that only integrals involving squares of horizontal functions are nonzero. We

thus conclude for the linear terms that we only obtain nonzero integrals when i = k in the

equation

f 1tig,(xIy)tr'gk(x,y)dddy . = X4" (2.63)

For the nonlinear term in the thermodynamic equation, we must consider integrals of triple

products and, therefore, must establish selection rules to determine the nonzero integrals.

These rules specify that the integral

I I

I f rig, (x*, y" trig, (x*, y*)trig,,(x, y*)dx'dy* = X4, (2.64)
0 0

exactly when

i =0 and k = m

or k = 0 and i = m

or m= 0 and i = k.
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We also observe, using the Lagrange Identity for orthogonal functions, that

f F, (z)F(z*)d 0, j (2.65)
0

and so we can eliminate expressions containing this integral. The remaining integrations

of vertical basis functions are evaluated using the DERIVE software integration routine

and simplifications given by the following relationships:

srrvj = tanhto, (2.66)

sinw = -ST(-1)j (2.67)
(1 + ST2o 2)7

= -(- 1)' (2.68)

(I +sT2ahi 2)Y2

STo~J = tanwo, (2.69)

for j = 2,3,4,

and sin- (-1) (2.70)
(1 + S.2Wq2)Y
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Cosaq (lWq(s1)q (2.71)

S.tWq = cot wq, (2.72)

for q = 1,2,3,4. Integrations of vertical basis functions in the mean wind advection term
I

are of the form fV*(z*)Fj(z*)F(z')dzand are evaluated using an IMSL subroutine.
0

We next substitute expansions (2.55)-(2.56), using the relationship given by (2.54),

into each term of the vorticity equation (2.33). We once again multiply each term by the

appropriate basis function and integrate over the spatial domain. We use the

trigonometric integral identities (2.59)-(2.62) to eliminate all expressions except those of

the form

f trig,(x',y')trigo(x,y')Ad" = 4, p: c. (2.73)
00

For the nonlinear term, we retain expressions of the form

f ftrig,y('')trig (x, y)Mi(x, y)dcdy* Y4 (2.74)
0 0

where

p=0 and r=c



11 18

or r=0 and p=c

or c=0 and p=r.

Owing to the nonorthogonality of the momentum vertical basis functions, we cannot

eliminate any expressions based on integrals of these functions. The integrals are

evaluated using the DERIVE software integration routine and the relationships (2.66)-

(2.72). The mean wind advection term integrals of the form fV*(z*q(z*)hd(z*)d*are
0

also evaluated using an IMSL subroutine; integrals involving W/tlz" can be put in the

above form via integration by parts (e.g. Shirer 1986).

2.3. The Computer Model

The computer code used to represent the physical and mathematical model

presented in the previous sections is written in the FORTRAN programming language. It

is compiled using the WATFOR77 compiler. The first part of the code determines the

values for co forj = 1, 2, 3, 4, and Wq for q = 1, 2, 3, 4, based on input values for the

constants s, and sT. The values of these constants are provided by the subroutine

discussed in Appendix A. An iterative technique is used to solve (2.50)-(2.51), (2.53),

and (2.58) for the eigenvalues. Prior to integrating the system, we must also input values

for the parameters 1, m, ax, a,,8, p, Ra, Re, and P.

The determined and input values are used to fill the 60 x 60 matrices representing

the terms in the spectral system. The individual matrices that compose A, B, and C are

grouped as temporal derivative term matrices, linear term matrices, and nonlinear term
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matrices. We can rewrite (2.25) and (2.33) in terms of this matrix notation:

Al = Bly + C(y)y (2.75)

A)2 = B2y + C2 (y)y. (2.76)

All the matrices in a given group are then added together:

A = ,A] +A 2  (2.77)

B= B + B2  (2.78)

C(y)= C1(y) + C2(y). (2.79)

This gives the system (2.40)-(2.41). The temporal derivative term matrix and the linear

term matrix are filled prior to the integration because A and B do not depend on the

spectral coefficient in y. An IMSL routine computes A and a different IMSL routine

computes A-'B. The nonlinear term matrix must be filled before each integration time

step because C depends on y. The calculation A-'C(y) must also be done before each

time step.

The IMSL integration routine uses the Adams-Gear method and requires user-

supplied initial conditions for the 60-element vector y. At each time step, an IMSL

routine calculates A-'By and A-C(y)y. The two resulting 60-element vectors are added

together to give the right sides of the 60 equations for which we are solving. The

integration routine uses these results to calculate new values for the 60 time-dependent

amplitude coefficients after each time step. We integrate the model until the square root

of the sum of the squares of the coefficients equilibrates. After the model integration is
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complete, these amplitude coefficients are used to construct the model solution using

(2.4. and (2.55)-(2.56). Examples of this solution are given in the following chapter.
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Chapter 3

MODEL EVALUATION

In order to investigate whether the model solutions represent the expected physical

processes, we performed a series of model integrations and analyses. The integrations

included varying the physical parameter values, changing the initial conditions, or using

various numerical integration techniques. The analyses included various eigensystem

evaluations and graphical representations of the evolution of the solution. These various

procedures were used not only to test the validity of the physical assumptions made, but

also to identify and correct any computer programming errors. The results of these

integrations and analyses are presented in Section 3.1.

Once we chose the physical parameter values, we performed a simple case study to

evaluate the quality of the model solutions. This study allows us to examine the patterns

produced by the roll circulations and the associated vertical transfers of heat and

momentum. By comparing these results with those of other models, we can assess the

performance of our model and the effects of incorporating the forcing rates in the lower

vertical boundary conditions. The results of this case study are given in Section 3.2.

3.1. Parameter Values and Initial Conditions

The first physical parameter values to be determined are those given by the basic

states of the atmosphere and sea surface. These parameter values are input into the

subroutine described in Appendix A that determines values for the surface roughness, z.,

and the Monin-Obhukov length, L. The values obtained for z. and L are then used in

another subroutine that calculates values for the two constant lower boundary forcing
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parameters, s. and sT. The parameter values used in the model case study are given in

Table 3.1.

Table 3.1. Parameter values used in the model.

PARAMETER VALUE

ASPECT RATIO IN THE X-DIRECTION (as) 0.001

ASPECT RATIO IN THE Y-DIRECTION (a) 0.7

HEIGHT OF TOP OF DOMAIN (ZT) 1000 m

HEIGHT OF BOTTOM OF DOMAIN (h.R) 10M

U MEAN WIND SPEED AT Z =ZT 2.5 ms -1

U MEAN WIND SPEED AT Z hln 2.5 ms 1

V MEAN WIND SPEED AT Z ZT 2.5 ms-1

V MEAN WIND SPEED AT Z =htR 2.5 ms-1

GRAVITY (g) 9.8 ms-2

CORIOLIS PARAMETER (I) 0.0 s-1

EDDY VISCOSITY (v) 10 m2 s-1

EDDY CONDUCTIVITY (K) 10 m2 s-1

PRANDTL NUMBER (P) 1.0

SEA SURFACE TEMPERATURE (T) 293 K

TEMPERATURE AT Z = h B  50 C

MIXING RATIO AT SEA SURFACE 6.0 g kg-1

MIXING RATIO AT Z = hl.R 1.5 g kg-1

RAYLEIGH NUMBER (Ra) 2.75 x 10'

REYNOLDS NUMBER (Re) 350
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In an effort to keep the system simple for the case study, we use a constant wind

speed of 2.5 ms' in both the x- andy-directions. This gives a total wind vector of

magnitude 3.54 ms-'. We choose aspect ratios of 0.001 in the x-direction and 0.7 in they-

direction to produce a quasi-two-dimensional domain oriented approximately in the y-z

plane. The most important parameter values supplied to the initial subroutine are those for

the sea surface temperature and the 10 m temperature. The surface layer vertical

temperature difference AT calculated from these two parameters determines the amount

of thermal energy being supplied to the system through the lower boundary. This AT

differs from A. T, which is the basic state temperature difference between heights z. and

hLB. In Table 3.2 we present various values of AT for fixed values of the other

parameters, together with the associated values of z., L, s., and sr.

Table 3.2. Parameter values for surface layer AT and associated calculated values for z., L, s. and sT .

AT(°C) ZAm) L(m) s. ST

1°  0.27425 x 10-4  -4.6468 0,277716 0,491370

50 0.27533 x 10-4 -1,9084 0,328111 0,704164

10 0,27733 x 10-4 -1.1104 0.361833 0.875182

150 0.27936 x 10-4 -0.78392 0.384626 1.004940

20°  0,28134 x 10-4 -0.60487 0,402118 1,112800

For our case study, we choose the relatively strong forcing value of AT = 15*C and use

the associated values shown in Table 3.2 for s. and s.. We note that sT > 1 here so that

the first temperature eigenfunction is given by (2.49) and (2.51). Smaller values for AT



24

would require us to use the hyperbolic first temperature eigenfunction given by (2.48) and

(2.50). This hyperbolic case remains untested.

Once we have determined the values for s. and s , the computer program, using

relationships (2.51), (2.53), and (2.58), calculates the eigenvalues Wo. and Wq for

j = q = 1, 2, 3, 4. These values for the case study are given in Table 3.3. We can use these

values and the vertical basis functions (2.49), (2.52), and (2.57) to plot profiles for

temperature and vertical velocity. These plots are given in Figs. 3.1-3.2. They indicate

that temperature and vertical velocity are well correlated. The temperature profile reveals

that the eigenfunction for wavenumber 1 gives a linear relationship, as seen in

observations, that is consistent with the basic state, and succeeding eigenfunctions

superimpose trigonometric functions on this linear relationship. The maximum in

temperature at the lower boundary is consistent with the thermal forcing occurring there.

The vertical velocity profile is similar, and although largest at z" = 0, a maximum in

vertical velocity conceivably could occur above the lower boundary through interaction of

the different eigenfunctions.

Table 3.3. Case study values for w and we for j=q=1,2,3,4.

0) i , q

j=q=1 0.121378 1.153289

j=q=2 4.494503 3.748059

j=q=3 7.725888 6.655595

j=q=4 10.904572 9.686992
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The initial conditions represented by the initial values of the 60 time-dependent

amplitude coefficients are determined using an eigensystem analysis. We find the

eigenvectors associated with the conjugate pair of eigenvalues whose real parts change

sign with a change in the forcing rate. Thus these eigenvectors tell us the relative

magnitudes of the coefficients that would approximate their values in the nonlinear

branching solution. We can multiply these eigenvectors by a constant to obtain values on

the scale of the model amplitude coefficients using the dimensionless conversions, and so

the resulting values as initial conditions.

As noted in Chapter 2, the IMSL integration routine uses the Adams-Gear method.

A series of model integrations were performed to determine the proper value for the time

step. The time step was reduced until the number of internal subroutine calls was small

enough to allow accurate solutions at each step. We determined the largest possible time

step to be 0.1 seconds, which corresponds to the dimensionless time value of 1.02 x 10-6.

Model integrations were run for 5 hours, which corresponds to 180,000 time steps, to

allow sufficient time for the system to equilibrate.

Because we expect the roll solutions to have time scales on the order of an hour or

less, we neglect the Coriolis term in the model. We specify only one wavenumber in the x-

and y-directions, and so we set I = I and m = 1. The values chosen for v and K

determine the value of the Prandtl number P using (2.30). In this case, V = K = 10 m's - ',

which gives P = 1. We also choose f8 = p = I for the numerical dissipation terms. The

value for the dimensionless Reynolds number Re is found using (2.28) based on a value of

the wind speed (3.54 ms-') at the top of the domain and a domain height of 1000 m; the

result is Re = 350. The value used for the dimensionless parameter Ra is determined

based on a stability analysis.
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Ideally, we would choose a value for Ra that produces a conjugate pair of

eigenvalues having slightly positive real parts in the linear stability analysis. This result

signals a Hopfbifurcation producing a periodic solution that, if supercritical and hence

stable, is realized after the system transients have disappeared (e.g. Pyle 1987).

Unfortunately, during the integrations performed for this study, the bifurcating model

so' ions did not equilibrate, indicating a source of energy that is not currently being

damped properly. This problem will be discussed further in Chapter 4. We therefore

choose a case for which all the real parts of the eigenvalues are negative and so the

solution is damping. By finding a value for Ra that produces a very slowly damping

solution, we can simulate a system approaching an attractor. We choose Ra = 2.75 x l0

that corresponds to AT = 0.85 °C across the domain. This allows us to integrate the

model without obtaining excessive growth or decay on time scales appropriate for

boundary layer rolls.

By plotting the square root of the sum of the squares of the 60 time-dependent

amplitude coefficients, we can determine when the system has reached a quasi-equilibrated

state. A plot of the square root of the sum of the squares is given in Fig. 3.3. This plot

indicates that it takes approximately 5 hours for the major transients to disappear using the

initial conditions determined from the eigenvectors. We have considered the possibility of

a subcritically branching bifurcating solution; but integrating the system further reveals

that the solution continues to damp very slowly, indicating that such a subcritical solution

is not likely.

We can also checK the validity of the model by examining the periodicity of the

solution. Using a linear eigensystem analysis, we can determine the values for the

imaginary parts Im of the eigenvalues. The limiting period of the bifurcating solution is
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Fig. 3.3. The square root of the sum of the squares for the 60 time-dependent amplitude coefficients,
demonstrating that the system is approaching a state of quasi-equilibration.
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determined by calculating (Pyle 1987)

Period = 2;r (3.1)
Im

This value must then be converted to dimensional units using (2.19). Based on our

analysis, Im = 1086. Using (3.1), we find a dimensionless period of 5.786 x 10-', or 9.45

minutes.

Given our constant wind profile, this period should correspond to the speed of

movement of the rolls caused by advection by the mean wind. To find this speed, we first

note that the ratio L/L, = ax/ay serves as a measure of the orientation angle 0 of a roll-

type solution, for which tan0 = a /a.; here 0 is the angle between the roll axis and east.

At any level, the background wind angle 0 is given by tano = V/U = V'/U*. Thus it

follows that the angle 0 -0 between the background wind vector and the roll axis obeys

tan( -0) = tan 0-tan0 = ay -aU* (3.2)
1+tanotan0 ayU*+ay'V(2

For the case discussed here, a, = 0.001 and ay = 0.7, the rolls are aligned nearly along the

x-axis, and so, with the constant values U = V = 2.5 ms- , the angle 0 - 0 between the

mean wind direction and the roll is approximately 45*. This result is also given by (3.2) in

which tan( - ) - I for a, << a, and U" = V*. This means that advection is accomplished

predominantly by the V component, as expected from (2.25)-(2.26) when a. << a,.

From the above argument, we find that the mean cross-roll wind is given

approximately by V = 2.5 ms'. The distance between the rolls is approximately 1400 m,
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which produces a period of 9.33 minutes that is close to the value of 9.45 minutes given

by (3.1). We next check these values for the period against the nonlinear results for two

of the time-dependent amplitude coefficients given by the numerical integration. The

period given by each graph in Figs. 3.4-3.5 is approximately 9.3 minutes, therefore

demonstrating that the model integration is accurately reproducing the expected

periodicity of the solution.

3.2. Case Study

We use the physical parameter values determined in Section 3.1 to examine a single

case of forced boundary layer roll circulations. Our goal is to determine whether the

model correctly captures the patterns produced by the rolls and to verify the behavior of

the various physical quantities. Because we have chosen a case in which the solution is

damping, the magnitudes of the physical quantities are not necessarily representative of the

actual physical solution. However, the planview patterns and profiles produced can be

analyzed using the dimensionless quantities given by the model.

Our first step is to determine whether the model captures the proper spatial

organization of the roll circulations. One way of examining this structure is to analyze the

vertical velocity field at the lower boundary. In Fig. 3.6 we present such an analysis in the

dimensionless x*-y*- plane at z" = 0. This corresponds to the height hLs of the lower

boundary, which is 10 m above the sea surface. The areas of light shading indicate

positive vertical velocities and the areas of dark shading indicate negative vertical

velocities. There are distinct bands of positive and negative vertical velocities that suggest

the model is capturing the spatial organization of the roll circulations. As expected, there

is no net vertical motion across any horizontal plane.
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Fig. 3.6. Planview of vertical velocity w" in the dimensionless coordinate system at the height h" of the
lower boundary. Areas of light shading indicate positive vertical velocity and areas of dark shading
indicate negative vertical velocity. The cellular pattern parallel to the roll is an artifact of the graphics
routine.
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As a consequence of the aspect ratios we have chosen, the roll pattern actually

aligns itself a bit differently in the dimensional coordinate system. The aspect ratio in the

x-direction, ax = 0.001, corresponds to a roll wavelength component of 990 km and the

aspect ratio in the y-direction, ay = 0.7, corresponds to a roll wavelength component of

1.414 kn. This observation means that in dimensional space, the rolls would actually align

themselves almost parallel to the x-axis, with spacing between the rolls on the order of

1.4 kn. This two-dimensional planform is consistent with observations of roll patterns,

although the orientation of 45 to the right of the mean wind is not. For this case study,

we choose such a large orientation angle to yield a periodic solution dominated by the

advective period.

Another way of examining the roll structure and of ensuring that the rolls are

actually transferring heat from the sea surface into the boundary layer is to analyze the

spatial pattern of the heat flux at the lower boundary. We would expect areas of positive

heat flux to be correlated with the areas of positive vertical velocity. In Fig. 3.7 we

present this vertical heat flux analysis. The areas of light shading indicate positive heat

flux and the areas of dark shading indicate negative heat flux. As can be seen, the areas of

positive and negative heat flux are well correlated with the areas of positive and negative

vertical velocity in Fig. 3.6.

We next analyze the vertical heat flux w*T' profile integrated over the x-y-plane.

The profile, given in Fig. 3.8, indicates a net positive heat flux over the entire domain that

is consistent with a net transfer of heat from the sea surface into the boundary layer. We

would expect this heat flux to be largest close to the sea surface and to decrease linearly

with height as indicated by observations (Lilly 1966; Stull 1988). The profile in Fig. 3.8 is

consistent with this linear decrease with height and only changes slope to accommodate

the upper boundary condition we imposed on the system. The modification of
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Fig. 3.7. Planview of vertical heat flux w'T" in the dimensionless coordinate system at the height h,, of
the lower boundary. Areas of light shading indicate positive heat flux and areas of dark shading indicate
negative heat flux. The cellular pattern parallel to the roll is an artifact of the graphics routine.
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Fig. 3.8. Vertical heat flux w*T profile integrated over the dimensionless horizontal plane.
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temperature profile by the roll circulations is given in Fig. 3.9. We construct this profile

using temperature amplitude coefficients T,, T2, T03, and &o only, since the other

contributions would integrate to zero on any plane. The profile suggests that the strong

positive heat flux at the lower boundary, dominated by wavenumber 1, does indeed change

the background temperature profile T.(z) the most there, and that this change decreases

linearly with height.

The fact that the circulation produces a linear profile means that the observed AT

values alone cannot be used to estimate the correct value of the Rayleigh number Ra for a

model. Ideally, we would set Ra = 0 in the model and compute using (2.29) the implied

Ra given by AT in Fig. 3.9. In our case, the effective Ra is the sum of the one imposed

by us (2.75 x 105) and the one implied by Fig. 3.9 (4.50 x 103). Here, the value of Ra based

on observed profiles would incorporate the effects of both, with each one reinforcing the

other.

The two components of the vertical momentum flux profiles, given in Figs. 3.10-

3.11, are found by integrating u'w" or v'w" over the x*-y* -plane. The profile given by

the product u'w*, in Fig. 3.10, indicates a maximum in the transfer of negative

momentum at a height of z* = 0.25, which corresponds to 250 m in the dimensional

system. This suggests that, over the domain, there is a net downward transfer of westerly

wind u" to the lower boundary from within the boundary layer. The resulting profile for

u', given in Fig. 3.12, shows that, as suggested, momentum has been transferred

downward giving larger negative u" values at the top of the domain. This would indicate

that the circulations should tilt with height.

The profile of the product v'w', given in Fig. 3.11, indicates a maximum in the

transfer of positive momentum at 150 m. This suggests that over the domain there is a net

upward transfer of southerly wind v" from the lower boundary into the boundary layer.
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Fig. 3.9. Modification of the vertical temperature profile by the rolls.
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Fig. 3. 10. Profile of vertical flux of westerly momentum given by integration of u w over the
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41

1.0

0.8

x 0.6
CO)
w

0

Z 0.4

N

0.2

0.0-

0.00 0.01 0.02 0.03 0.04
v*W* MOMENTUM FLUX (DIMENSIONLESS)

Fig. 3.11. Profile of vertical flux of southerly momentum given by integration of &w* over the
dimensionless horizontal plane.
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Fig. 3.12. Vertical profile for the perturbation velocity component u found by integrating as in Fig. 3.10.
This figure also represents a modification of the basic wind profile.
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The resulting profile for v*, given in Fig. 3.13, shows that positive momentum is

transferred upward giving larger positive v" values at the top of the domain. The shapes

of the vertical momentum flux profiles and associated velocity component profiles are in

agreement with the results found by Brommer and Busack (1990).

The momentum transfers indicated by our results imply that the initial constant wind

profile is altered to give a southwest wind at the bottom of the domain and a more

southerly wind at the top of the domain. Observations wouli reflect the sum of the

original wind and the modified wind, meaning that an observed wind turning with height

might originate from rolls formed in an environment with no wind shear. These effects,

together with the fact that wind modification is predominantly linear, must be accounted

for when using observed wind profiles as model input (Haack and Shirer 1992).

We next examine the vertical velocity profile for the center of an updraft given in

Fig. 3.14. This graph indicates that in the updraft, the maximum vertical velocity occurs at

the lower boundary and decreases to zero at the top of the domain. This result is not

consistent with what is observed in the atmospheric boundary layer. We would expect

from observations and other model simulations (e.g. Schmidt and Schumann 1989) that

the maximum vertical velocity for an updraft would occur in the middle of the boundary

layer and not at the lower boundary (see also Figs. 2.1-2.2).

Therefore, we cannot analyze the sea-surface stress patterns given by u'w" and

v'w" since the vertical velocity profiles are not correct. We must determine why this

inconsistency exists and correct it if we are to derive useful information about sea surface

stress from this model. In the next chapter we discuss some possible solutions to explore.

Ii i |I
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Fig. 3.13. Vertical profile for the perturbation velocity component v* found by integrating as in Fig. 3.10.
This figure also represents a modification of the basic wind profile.
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Chapter 4

CONCLUSIONS

The case study results in this thesis show that the model does in fact properly

capture the spatial organization of the roll circulations and does correctly reproduce the

vertical profiles of heat and momentum flux. We also showed that the temperature

perturbation is a maximum at the lower boundary, just as we would expect when the

primary heating source is located at the lower boundary. This result is in good agreement

with the findings of Schmidt and Schumann (1989) that are based on a study of a higher

resolution LES model. Their Fig. 18 illustrates a temperature profile that does indeed

have a temperature maximum at the lower boundary. Our results also reveal that the

temporal periodicity of the system is consistent with both physical and numerical analyses

of the solution based on advection by the cross-roll mean wind. These results indicate that

the system of equations used and many of the physical assumptions made are appropriate

for modeling boundary layer rolls in a marine environment.

Although the model did capture many of the expected aspects of the circulation,

there are two distinct results that point to the need for further analysis and model redesign.

One of the significant results of the model integrations is that we could not find a

bifurcating solution that came into a state of equilibration. As mentioned earlier, there

seems to be a source of energy that is not being damped properly by the model. Early

investigation points to excessive growth of the nonlinear term in some of the

thermodynamic equations. This growth manifests itself as a rapid increase in the

magnitude of the temperature amplitude coefficient T, that represents the modification of

the linear temperature profile by the roll circulations. Although in the case of the damping

solution used for our case study T, did equilibrate, it was to a value that greatly exceeded
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the magnitudes of the other temperature amplitude coefficients. This mysterious source of

energy may be a result of a computer coding error, although we performed many

integrations using symmetry tests to identify and eliminate this type of error. There is also

a chance that a numerical instability causes the solution to grow infinitely. We did add a

numerical dissipation term, as described in Chapter 2, that seemed to control the growth

and so allowed us to at least find a damping solution.

The other major concern suggested by the model integrations is the inconsistency

in the velocity field at the lower boundary. The vertical velocity profile indicates that a

maximum in upward or downward motion occurs at the lower boundary. This maximum

however should occur somewhere near the midpoint of the vertical domain, as confirmed

for example by Fig. 18 of Schmidt and Schubert (1989) and Figs. 2.1-2.2.

There are two ways of accepting as physically plausible the results of the present

model, although neither conform to the original concept. First, if we were to consider the

lower boundary to be near the midpoint of the boundary layer, then the maximum vertical

velocity occurring below it would be consistent with observations. Second, if we limited

our domain height severely to be within the lowest part of the boundary layer and were

interested in the growth of the circulation, then at some point the vertical velocity

maximum would occur below 10 m as given by our model results.

To meet our original intent, however, we must re-evaluate our application of the

new boundary conditions, which not only use nonzero boundary values at the lower

boundary, but rely on surface layer similarity theory to specify the constants in them. For

example, there may be a problem in how the values of the lower boundary forcing

constants, s. and sT, are determined. An energetics analysis may point to a problem in

how these constants contribute to the boundary source and sink terms that result from

integration by parts. The more likely problem is, however, that the way in which we apply
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the similarity theory does not result in a proper representation of vertical fluxes at the

lower boundary.

Upon further reflection, it seems likely that the similarity theory, which is used to

describe the dynamics within the lowest 100 m of the boundary layer, may not properly

represent the velocity scaling we need for specifying the lower boundary conditions for

kilometer-scale circulations. The solutions we are modeling fill the entire boundary layer

and so scale with boundary layer depth. It thus seems more appropriate to use convective

scaling to specify the lower boundary conditions for velocity.

Mathematically, similarity theory gives us positive values for the two constant

forcing parameters when the boundary layer is unstable. This forces the vertical profiles

for temperature and vertical velocity to take the form of the vertical basis functions given

in Figs. 3.1-3.2. As we stated earlier, the vertical profile for temperature is consistent with

what we expect at the lower boundary. A maximum of temperature at the lower boundary

follows from the fact that rand £T7/9z* at z* = 0 have opposite signs when s, > 0. This

fact can be seen by assuming T - cos(z/zr) at z = 10 m, which is a form having largest

values at z* = 0. The vertical profile for vertical velocity, however, does not allow us to

obtain a maximum above the height of the lower boundary because w* and Oew*!9z" have

opposite signs when sm > 0. The only way to move the maximum in w* into the domain is

to reverse the sign of the velocity constant forcing parameter sm in (2.3 5)-(2.37), which is

easily seen by assuming w - sin(z/zT) at z = 10m as suggested by Figs. 2.1-2.2.

Hopefully, we can so-.-ve the above boundary condition problem by employing

convective scaling theory to specify the lower boundary conditions for velocity (e.g. Stull

1988). We hypothesize that this scaling theory would give a velocity constant forcing

parameter sm that is negative and would produce vertical basis functions that yield a

maximum in vertical velocity above the lower boundary. Although our model did provide
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an accurate representation of the heat and momentum flux profiles, we must recognize

that the structure of these profiles may be correct even with qualitatively incorrect

representations of vertical velocity. Until the boundary conditions are correctly specified

to produce an accurate vertical velocity profile, we cannot study the stress variability

pattern at the sea surface.
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Appendix A

DETERMINING THE CONSTANTS IN THE BOUNDARY CONDITIONS

The boundary conditions used in the nonlinear dynamic model are based on the

surface layer similarity theory from Stull (1988). Two empirical convective surface layer

relationships are used,

kz9 (u z )Y

-. 1Z=0.74 1-9 L =,9, L' (A.2)

where k is the von Karman constant, z is the height above the surface, u is the mean roll-

scale wind speed, u. is the friction velocity, L is the Monin-Obukhov length, T is the

mean roll-scale temperature, and T. is the surface layer temperature scale.

The boundary conditions were developed by Ms. Julie L. Schramm. Her goal was

to make the boundary conditions (2.34)-(2.39) consistent with the similarity relationships

given in (A. 1)-(A.2). The relationship in (A. 1) is solved for u giving the equation

k. - z
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where

d~zlL)(A.4)
LL

We then use (A.4) and its derivative to eliminate u,/k to give

[lnzlz) -'P, (ziL)]
1u(z) = 'p l- zz) z/)/z (A.5)

,Oz {i/z - zL]Iz

Here %I. (z1L) and '9[tP (z/L)]/Iz are obtained from (A.4) using the definition (A. 1) of

,, (z1L), and the integral evaluation routine from the DERIVE software package. The

equation (A.5) can thus be expressed in the form

u(z) = - f.(z, z., L ). (A.6)

We next introduce the relationships

U = UK (A.7)
zT -

z = z*(zT -h.)+h., (A.8)
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where z. is the height of the top of the boundary layer and h9 is the height of the lower

boundary. Equation (A.6) now takes the form

1Z *

The function fm(Z, ZT,Zo, hL, L) is evaluated at z" = 0, which corresponds to the height

z = hL9. The parameter values z. and L are determined from a subroutine supplied by Dr.

George S. Young. This subroutine was implemented by Mr. Dave V. Ledvina during his

thesis research based on work done by Dr. Chris W. Fairall. The subroutine uses input

values for the mean wind speed, humidity difference, and temperature difference at the

lower boundary to calculate z. and L. The evaluated function fm(O.zr,zo,hL8,L) will be

referred to as the Schramm momentum constant, sm, which now represents the forcing of

the wind by surface layer eddies at the lower boundary. Example subroutine input values,

calculated values for z. and L, and associated Schramm momentum constants are given

in Chapter 3.

The new velocity boundary conditions for U I.; lower boundary that apply to both the

u and v components of the wind are then

*(O)S jO* =0 (All)

'(o)- S. 9Z 0
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but the one for the w component is given through use of the continuity equation by

,W'(O) 9w() 0. (A.12)
d z s .- z'0

Upper boundary conditions must be applied at z" = 1, which corresponds to the
height z = zr . We assume a rigid stress-free boundary so that

.9u(1l) - =!l-w'(1) =0. (A.13)

Boundary conditions for temperature are found with a similar method. The

temperature profile given in (A.2) may be solved for Tgiving the relationship

T(z) = T. I - T.- (A- 14)
k,, z. LZ,4

where

l. z.-J d' l "(A. 15)

L i1 L
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We then use (A. 15) and its derivative to eliminate T/k to give

q 5'T [In(z/zo) - . (zIL)] (A.16)

As with velocity, the equation can now be expressed in the form

T(Z)=-f(z,zL). (A.17)
10Z

This equation is now made dimensionless using the relationships

g(ZTr -h) 3  (A.18)

and (A.8), where v is the eddy viscosity, K is the eddy thermometric conductivity, and T

is the sea surface temperature. Equation (A. 17) now takes the form

Z*)O f (z* , z, ohLB, L).  (A. 19)

The function fT(z z., z., hL9, L) is evaluated at z" = 0 and is defined as the Schramm

temperature constant, sT, which represents the forcing of temperature at the lower
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boundary. The new boundary condition for the lower boundary is then

dTZ( = 0. (A.20)

We assume a perfectly conducting upper boundary so that

T7(1) = 0. (A.21)

These boundary conditions are applied to the Stokes and Helmholtz problems to

determine the vertical basis functions and their corresponding eigenvalues, as summarized

in Appendix B.
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Appendix B

VERTICAL BASIS FUNCTIONS AND EIGENVALUES

The vertical basis function and corresponding eigenvalues for temperature are

determined by solving the Helmholtz problem

rT I' = -; , (B.)

with boundary conditions (A.20)-(A.2 1), where

a,,=19a i .,9 j,- 9k, (B.2)

T is a dimensionless temperature eigenfunction, and y is the corresponding eigenvalue.

We use separation of variables to find solutions of the form

7 =trig (x*, y *)FJ. (z), (B.3)

where

trigo(x*,y*)= I (B.4)

trig,(x*,y*) = sin 2,x" sin 2nmy" (B.5)

trig2(x*,y*) = sin 2ndx* cos2ny" (B.6)

trig3(x*,y") = cos2,dx" sin 2mny" (B.7)

........
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trig (x,y") =cos21dx*cos2,ony*, (B.8)

with horizontal wavenumbers Iland m, and F (z) is a solution of the eigenvalue problem

,9 2F
+ +(-)Fj(z)=O0 (B.9)

Fj (0) +sT OZ = 0 (B. 1)

Fj (1 = 0,(B. 11)

where

a 2 = 4x,ra 2l12 + 4;2 a 2M, (B. 12)

Y - a = A (B. 13)

and A, is the eigenvalue of the vertical basis function J, (z*). We number these

eigenvalues by increasing value, starting with A, as the smallest.

When Ai > 0, the solution is of the form

F,(z*)= Asin o~jz + Bcosw z*, (8. 14)

where w,2 = Ai . and A and B are constant coefficients. Applying the first boundary
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condition (B. 10) produces

B+soJA =0. (B.15)

Applying the second boundary condition (B. 11) gives

A sin o, + Bcoso, =0. (B.16)

Solving this system of equations yields

FJ.(z*)=cosWfz - C sinaW(z*), (B.17)

where

sT~o = tanwo. (B. 18)

When sT > 1, (B. 14) represents the only solutions that exist. When s7. < 1, however,

the first eigenvalue 2 is negative. This eigenvalue and its associated vertical basis

function F(z °) are found by solving the differential equation

F, ( 19)
OZ*2
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which has a solution of the form

Aea"* + Be ° z' , (B.20)

where W I2 = AI and A and B are constant coefficients. Applying the boundary conditions

and solving the resulting pair of equations gives

F(z*) = cosho),z* 1 sinhoz, (B.21)
STC)1

where

srao = tanho,. (B.22)

The vertical basis functions and corresponding eigenvalues for velocity are

determined by solving the Stokes problem

aPav* = -PV2v* + a Vp* (B.23)

V *v =0. (B.24)

with boundary conditions (A. I 0)-(A. 12), where P is the Prandtl number, p* is the

dimensionless pressure, a is the aspect ratio in the x direction, v* is a dimensionless

velocity vector eigenfunction, and a is the corresponding eigenvalue. Equation (B.24)

together with the boundary conditions imply that the velocity vector v may be expressed
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in terms of the curl of a vector streamfunction A; this vector streamfunction is defined as

the sum of two vector streamfunctions, yi" and ri', where

4 4

Y/* (x*,y,z*,t) = 1 ':1 qy1,(t*)trig(x*,y*)hq(z*)i + Oj + Ok (B.26)
p=O q=1

4 4q*(x*,y*,z*,t*) Oi tpq(I*)trigp(x*,y*)hq(z*)j +Ok (B.27)

p=O q=1

in the dimensionless coordinate system. The coefficients Ylpq(t*) and rlpq(t*) are the

temporally dependent amplitudes for the pth horizontally dependent trigonometric

function and the qth vertical basis function. The definitions for the horizontally dependent

trigonometric functions are given by (B.4)-(B.8). The function hq(z*) is the qth vertical

basis function for which we are solving.

Next, we curl both sides of the Stukes equation to eliminate the pressure:

a ×v" 2 (vxv*), (B.28)a.

We now substitute the definition for v*, which yields

V2[Vx (V× A)] +axV x (Vx A)= 0. (B.29)

We substitute for A' using equations (B.26)-(B.27), after applying separation of
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variables, and expand the result to give the relationship

e:hq ( _ 0,2)hq(ZO)_ o= 03 0

~92~(a.,a-)h()0 (B.30)

where

oT2 = 4 a212 + 4r2 aY2m2  (B.31)

a.a -U 2 = 8 q (B.32)

and 8q is the eigenvalue of the vertical basis function hq(z*).

The vertical basis function and associated eigenvalues are now determined by

solving the differential equation

( q Z 2 +=q q(z =0, (B.33)

where WU2 = 8q > 0, and by using the boundary conditions

t hq(0) £9hq (0)
=Oh* ( m _ . 0 (B.34)

hq(l)= 0 (B.35)
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derived in Appendix A. In this case we have arbitrarily chosen the boundary conditions

for the velocity component w, although we could have chosen either of the other two

velocity component boundary conditions. The solution to (B.33) is of the form

hq(z*) = Csin wqz* + Dcosuqz*, (B.36)

where C and D are constant coefficients. Applying boundary condition (B.34) yields

wqC + szuq D = 0 , (B.37)

and applying boundary condition (B.35) gives

Csin uq + Dcoswq = 0. (B.38)

Solving the pair of equations (B.37)-(B.38) results in the vertical basis function

hq (Z*) = cosUqz* - sm0 q sin evqz*, (B.39)

where

s, mq = cot w'q. (B.40)

In contrast to the temperature case, these are the only solutions that exist, regardless of

the value of sm. Thus the solutions always take the form (B.36).


