
AD-A281 738
1I11111111I|1N Proceedings 0

S S ELECTE
JUL 9 1994

S F.

11th I Workshop on

Real-Time Operating
Systems and Software
Seattle, Washington May 18-19, 1994

This documeml has IDe QVO
tpublic teleose =~d saire its

Sponsored by tributon is uniiaiied&

IEEE Computer Society Technical Committee on Real-Time Systems

, IEEE Computer Society Press * The Institute of Electrical and Electronics Engineers, Inc.

Proccedihgs

K TOSS '194
Accesioll For

NTIS CRA&M
DTiL TAB 0

By...........

Availablity Codes
Availad1o

Dist Speciall ,

~ ~4u-2.2453 TC r3ZT

94 7 15 0 7

ss

Proceedings

11 th IEEE Workshop on
Real-Time Operating

Systems and Software

RTOSS '94

May 18 - 19, 1994

Seattle, Washington

Sponsored by

The IEEE Computer Society Technical Committee on

Real-Time Systems

IEEE Computer Society Press
Los Alamitos, California

Washington 9 Brussels * Tokyo

IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number 5710-02
Library of Congress Number 93-81372

IEEE Catalog Number 94TH0639-5
ISBN 0-8186-5710-3 (paper)

ISBN 0-8186-5711-1 (microfiche)

Additional copies may be ordered from:

IEEE Computer Society Press IEEE Service Center IEEE Computer Society IEEE Computer Society
Customer Service Center 445 Hoes Lane 13, Avenue de I'Aquilon Ooshima Building
10662 Los Vaqueros Circle P.O. Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
P.O. Box 3014 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1264 Tel: +1-908-981-1393 Tel: +32-2-770-2198 JAPAN
Tel: +1-714-821-8380 Fax: +1-908-981-9667 Fax: +32-2-770-8505 Tel: +81-3-3408-3118
Fax: +1-714-821-4641 Fax: +81-3-3408-1553
Email: cs.books@computer.org

Editorial production by Bob Werner

Cover art design and production by Michael Nomura
Printed in the United States of America by Braun-Brumfield, Inc.

* The Institute of Electrical and Electronics Engineers, Inc.

Contents

C h airs' M essag e ... v ii
Program C om m ittee viii

Invited Talk: Nancy Leveson, University of Washington
Software Safety

Session I: Operating Systems I
Chair. Karsten Schwan, Georgia Tech.

Predictable Spin Lock Algorithms with Preemption ... 2
Hiroaki Takada and Ken Sakamura

U ser-Level R eal-T im e T h reads .. 7
Shuichi Oikawa and Hideyuki Tokuda

Experience with a Prototype of the POSIX "Minimal Realtime System Profile". 12
T.P. Baker, Frank Mueller, and Viresh Rustagi

Session II: Scheduling I
Chair. Ted Baker, Florida State

An End-to-End Approach to Schedule Tasks with Shared Resources in
M u ltip rocessor S ystem s .. 18

Jun Sun, Riccardo Bettati, and Jane W.-S. Liu
Appropriate Mechanisms for the Support of Optional Processing in Hard Real-Time Systems 23

N.C. Audsley, R.I. Davis, A. Burns, and A.J. Wellings
A Linear-Time Online Task Assignment Scheme for Multiprocessor Systems 28

Almut Burchard, Yingfeng Oh, J6rg Liebeherr, and Sang H. Son

Session III: General
Chair. Mike Jones, Microsoft

Constructing a Heterogeneous Real-Time System ... 34
Sias Mostert

Using SDL in Embedded Systems Design: A Tool for Generating Real-Time OS pSOS-Based
Em bedded System s A pplications Softw are ... 39

Ye Huang and Michael Hughes
Practical Formal Development of Real-Time Systems ... 44

Steven Bradley, William Henderson, David Kendall, and Adrian Robson
Real-Time Communication in FDDI-Based Reconfigurable Networks .. 49

Wei Zhao, Amit Kumar, Gopal Agrawal, Sanjay Kamat,
Nicholas Malcom, and Biao Chen

Panel: Real-Time Education
Chair. Wei Zhao, Texas A & M

Session IV: Timing Analysis
Chair. Stuart Faulk, SPC

Correlation Analysis Techniques for Refining Execution Time Estimates of
R eal-T im e A p p lica tio n s 54

Rajiv Gupta and Prabha Gopinath
Issues of Advanced Architectural Features in the Design of a Timing Tool .. 59

Byung-Do Rhee, Sung-Soo Lim, Sang Lyul Min, Chang Yun Park,
Heonshik Shin, and Chong Sang Kim

Timing Analysis of Superscalar Processor Programs Using ACSR ... 63
Jin-Young Choi, Insup Lee, and Inhye Kang

Session V: Scheduling II
Chair Hide Tokuda, CMU

Task Scheduling for Real-Time Multi-Processor Simulations ... 70
Gaetano Borriello and Daniel M. Miles

Successful Use of Rate Monotonic Theory on a Formidable Real Time System 74
Larry Doyle and Jon Elzey

Tem poral Protection in Real-Tim e O perating System s ... 79
Cliff Mercer, Ragunathan Rajkumar, and Jim Zelenka

Panel: Real-Time Bench Marks
Chair. Karsten Schwan, Georgia Tech

Session VI: Operating Systems II
Chair. Keith Marzullo, UCSD

On Latency Management in Time-Shared Operating Systems .. 86
Kevin Jeffay

An Argument for a Runtime Layer in SPARTA Design .. 91
Robert W. Wisniewski and Christopher M. Brown

Real-Time Platforms and Environments for Time Constrained Flexible Manufacturing 96
J.A. Stankovic, Krithi Ramamritham, and Goran Zlokapa

Session VII: Concurrency Control
Chair. Vic Wolfe, U. Rhode Island

A Mixed Locking/Abort Protocol for Hard Real-Time Systems ... 102
LihChyun Shu and Michal Young

Window-Consistent Replication for Real-Time Applications ... 107
Jennifer Rexford, Ashish Mehra, James Dolter, and
Famam Jahanian

Using Data Similarity to Achieve Synchronization for Free .. 112
Tei-Wei Kuo and Aloysius K. Mok

Panel: If Scheduling Is So Important, Why Aren't Folks Beating a Path to Our Door?
Chair: Kevin Jeffay, University of North Carolina

A u th o r In d e x ... 1 1 7

vi

Chairs'Message

The IEEE Workshop on Real-Time Operating Systems and Software is a forum that
covers recent advances in real-time computing - a field that is becoming an essential
part of computer science and engineering. It brings together practitioners and
researchers from academia, industry, and government, to explore the best current ideas
on real-time software and operating systems, and to evaluate the maturity and
directions of real-time system technology. As the demand for the functionalities and
reliabilities of real-time systems continue to grow, our intellectual and engineering
abilities are being challenged to come up with practical solutions to the problems faced
in design and development of complex real-time systems.

The interest in this important topic is confirmed by the high number of quality
submissions. Following the tradition of previous RTOSS workshops, parallel sessions
are avoided in order to give participants the opportunity to be involved in interactions
with speakers and panelists, and to exchange opinions with all other participants. As a
consequence, many good position papers had to be rejected.

The technical program covers a wide range of issues, such as scheduling, operating
systems, communications, timing analysis, system design, concurrency control, and
formal methods. Besides the various sessions, the program includes three panel sessions
to address important issues on real-time programming languages, education, and real-
time scheduling. In addition, Nancy Leveson from the University of Washington will
deliver an invited talk on software safety.

Many people worked hard to make this year's RTOSS workshop a success. The
Program Committee members carefully reviewed and discussed every submitted paper,
and made the difficult decisions on which papers to accept. We also would like to thank
the authors of all the submitted papers. Special thanks go to Alicen Smith for managing
the administrative activities, and Bob Wemer of the IEEE Computer Society for the
publication of this proceedings. Finally, we are grateful to the IEEE Computer Society
Technical Committee on Real-Time Systems, the Office of Naval Research, and the
Departments of Computer Science at the University of Virginia and the University of
Washington.

Welcome to Seattle!

Sang H. Son, General Chair Alan Shaw, Program Chair
University of Virginia University of Washington

vii

Program Committee
Eleventh IEEE Workshop on

Real- Time Operating Systems and Software

General Chair

Sang H. Son
Department of Computer Science

University of Virginia
Charlottesville, VA 22903 USA

phone: (804) 982-2205
fax: (804) 982-2214
son@virginia.edu

Program Chair

Alan C. Shaw
Department of Computer Science and Engineering FR-35

University of Washington
Seattle, WA 98195 USA
phone: (206) 543-9298

fax: (206) 543-2969
shaw@cs.washington.edu

Program Committee

Ted Baker, Florida State University
Stuart Faulk, Software Productivity Consortium

Mike Jones, Microsoft Corporation
Luqi, U.S. Naval Postgraduate School

Keith Marzullo, UC San Diego
Karsten Schwan, Georgia Tech

Hideyuki Tokuda, Carnegie Mellon University
Wei Zhao, Texas A&M University

Viii

Session I:

Operating Systems I

Chair: Karsten Sch wan
Georgia Tech.

Predictable Spin Lock Algorithms with Preemption

Hiroaki Takada and Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract be preemptable for servicing interrupts (I]. With the algo-
Both predictable interprocessor synchronization and rithm, an upper bound on the time to acquire and release an

fast interrupt response are required for real-time systems interprocessor lock can be given when no interrupt request
constructed using asymmetric shared-memory multiproces- occurs, and fast response to interrupt requests is achieved.
sors. This paper points out the problem that conventional However, the algorithm has a shortcoming that a processor
spin lock algorithms cannot satisfy both requirements at possibly has to re-execute the lock acquiring routine from
the same time. To solve this problem, we have proposed the beginning after it services an interrupt request. In
an algorithm which is an extension of queueing spin locks schedulability analysis, this re-execution overhead must be
modified to be preemptable for servicing interrupts [1]. In added to the interrupt service time.
this paper, we propose an improved algorithm that mini- In this paper, we propose an improved algorithm that
mizes the recovering overhead from an interrupt service, minimizes this overhead. We also demonstrate that the
We also demonstrate that the proposed algorithms have proposed algorithms have required properties through per-
required properties through performance measurement. formance measurement.

I Introduction 2 Spin locks and interrupt latency
In many applications of high performance real-time In this paper, we assume that atomic read-modify-

systems, a large number of external devices such as sensors, write operations on a single word of shared memory (e.g.
actuators, and network controllers are connected to a system tesLand-set, fetch.and.store (swap), fetch.and.add, and
and the system is required to respond to the external compare-andswap) are supported in hardware.
events from the devices within predefined and usually In order to bound the time until a processor acquires
short time-bounds. To meet this requirement, asymmetric an interprocessor lock, the duration that each processor
multiprocessors in which each device is handled by a fixed holds the lock must be bounded as well as the number of
processor are often adopted. contending processors that the processor must wait for. The

In order to realize real-time systems using shared- latter condition can be met with ticket locks or queueing
memory multiprocessors, predictable interprocessor syn- locks [2], with which the turn that a processor acquires a
chronization mechanisms are of primary importance. In lock is determined when it begins waiting for the lock. To
addition to adopting a real-time scheduling algorithm with satisfy the former condition, the relationship with interrupt
resource constraints or a real-time synchronization proto- services must be considered.
col, the execution time of the underlying mutual exclusion In asymmetric multiprocessor systems, interrupt ser-
mechanism using spin locks must be bounded'. vices for external devices are requested for each processor.

In asymmetric shared-memory multiprocessors, each When multiple devices are connected to a processor, inter-
processor is required to achieve fast and predictable re- rupt requests from them are usually raised independently
sponse to interrupt requests, because external events are and the maximum time to service all of the requests be-
notified to each processor in the form of interrupts. How- comes unbounded or very long. Consequently, in order
ever, each processor cannot respond to external interrupts to give a practical bound on the duration that a processor
in short latency with conventional bounded spin lock algo- holds a lock, interrupt services should be inhibited for that
rithms. duration.

To solve this problem, we have proposed an algorithm On the other hand, in order to realize a system with
which is an extension of queueing spin locks modified to fast response to external events, each processor must be

t We assume that the access time of the shared bus (or interconnection able to service external interrupts with short latency time.
network) is bounded in this paper. Particularly, when the scalability of the system is an impor-

2
0-8186-5710-3/94 $3.00 © 1994 IEEE

L

tant issue, the worst-case interrupt latency should be given queue and passes the lock to a successor of P. When
independently of the number of processors in the system. only P, is waiting for the lock, Po makes the waiting

Here a problem arises in deciding whether interrupts queue empty. Po informs P, that P is dequeued using a
should be disabled first or an interprocessor lock should shared variable. Wiien P finishes the interrupt service, it
be acquired first. When acquiring an interprocessor lock checks whether it has been dequeued during the interrupt
precedes disabling interrupts, interrupts may be serviced service or not. If it has been dequeued, it re-executes the
while the processor holds the lock, and the condition that lock acquiring routine from the beginning. Otherwise, it
interrupt services should be inhibited while a processor resumes waiting for the lock.
holds a lock is not satisfied. If acquiring a lock follows When a processor is dequeued and re-executes the lock-
disabling interrupts, on the other hand, the interrupt mask acquiring routine, the waiting time after the processor first
time includes the time to acquire the lock and its upper links itself to the queue until it branches to the interrupt
bound heavily depends on the number of processors. handler is wasted. When the schedulability of the system

One method to solve this problem is the following. The is analyzed, this re-execution overhead should be added to
processor first disables interrupts and tries to acquire the the interrupt service time. Below, we present an improved
lock. If it fails to acquire the lock, the processor probes algorithm which is devised to reduce this overhead.
interrupt requests before it retries to acquire the lock. When
interrupt requests are detected, it suspends trying to acquire Improved algorithm
the lock, enables interrupts, and services them. The re-execution overhead can be reduced with the

Test-and-set locks can be extended easily with this following method. When the processor releasing the lock
method. Ticket locks and queueing locks, on the other (P) finds that the succeeding processor (P) is servicing
hand, cannot be extended similarly, interrupts, Po leaves P, in the waiting queue instead of

dequeueing it. P removes the processor to which to pass
3 Queueing locks with preemption the lock from the queue using the method adopted in the

In all spin lock algorithms that can give an upper prioritized queueing spin lock appeared in [5]. When P
bound on the time until a processor acquires a lock, a finishes interrupt services, it simply resumes waiting for the
processor modifies some shared variable and reserves its lock in its original position. Therefore, the overhead which
turn, to acquire the lock when it begins waiting for the must be added to the interrupt service time in schedulability
lock. When its turn comes, the lock is passed to the analysis is minimized.
processor by another. If the processor simply branches to A difficulty occurs when all processors in the waiting
an interrupt handler while waiting for the lock, it cannot queue are servicing interrupts. To handle this situation,
begin to execute the critical section immediately after the a global lock flag is introduced. If the processor trying
lock is passed to the processor, and makes the contending to release the lock finds that all processors in the queue
processors wait wastefully until the interrupt service is are servicing interrupts, it sets the global lock flag. A
finished, processor returning from interrupt services tries to get the

Consequently, when a processor begins to service in- global lock with the same method as with test-and-set
terrupts while waiting for a lock, it must inform others locks. If it succeeds getting the lock, it removes itself from
that it is servicing interrupts and should not be passed the the waiting queue. As the processor needs to know the
lock. The processor trying to release the lock checks if top processor in the queue to remove itself, the processor
the succeeding processor is servicing interrupts. If the releasing the global lock must pass the information in some
succeeding one is found to be servicing interrupts, its turn shared variable. It is also necessary for a processor to check
to acquire the lock is canceled or deferred, and the lock is the global lock flag once, after it links itself at the end of
passed to the next in line. the queue, because it is possible that all the processors in

the queue are servicing interrupts and the global lock is set.
Original algorithm Pseudo-code for the improved algorithm appears in

We have applied the above scheme to the MCS lock, Fig. 1 and 2. In these figures, the keyword shared
a list-based queueing lock algorithm [21, and proposed a indicates that only one instance of the variable is allocated
queueing lock algorithm with preemption [1]. Some other and shared in the system. Other variables are allocated
spin lock algorithms can be extended similarly. Recently, for each processor and located in its local memory. The
R. W. Wisniewski et al. have proposed a similar algo- right hand side of the and operator is assumed to be
rithm for improving the average performance of multipro- evaluated only if its left hand side is true. Fetch.and..store
grammed (non-real-time) systems [3]. Craig's algorithm reads the memory addressed by the first parameter, returns
can also support the same preemption scheme [4]. the contents of the memory as its value, and atomically

In the algorithm, if the processor trying to release writes the second parameter to the memory. CAS, the
the lock (PO) finds that the succeeding processor (PI) abbreviation of compare.and-swap, first reads the memory
is servicing interrupts, Po deniieues P from the waiting pointed to by the first parameter and compares its contents

3

type qnode = record II local data (allocated for each processor).
next, prey: pointer to quode; var 1: qnode;
locked: (Released, Locked, Preempted, Dequeueing) var pred, succ, top: pointer to qnode;

end; var interval, i: integer;
type lock = record

last: pointer to qnode; l.next := NIL;
glock: pointer to quode disableinterrupts;

end; (D pred := fetchandstore(&(L.last), &1);
If pred = NIL then goto acquired end;

IIglobal shared data. // enqueue myself.
saned var L: lock; I.prev :--pred;

SL.ast and L.glock are initialized to NIL. I.ocked := Locked;
(D pred-.next:= &I;

procedure dequeue(entry, pred, top: pointer to qnode) i := 1; I check the global lock once.
var succ: pointer to qnode; interval := oo; # never expires.
suc := entry--next; while (I.ocked *& Released) do
If suc = NIL then if interrupt-requested and

pred-next := NIL; CAS(&(I.Iocked), Locked, Preempted) then
if CAS(&(L.last), entry, pred) then goto release end; enableinterrupts;
repeat succ := entry-next until suc 6 NIL /interrupt service.

end; disableinterrupts;
pred.-next := succ; I.locked := Locked;
suc---prev := pred; i := 1;

release: interval a
entry-next := top; end;
entry-locked := Released i := i- 1;

end; ifi = 0 then
//check the global lock and try to get if it is set.

Fig. 1: Improved algorithm (1) top := L.glock;
f top 6 NIL and CAS(&(L.glock), top, NIL) then

If top $ & then dequeue(&I, L.prev, top) end;
with the second parameter. If they are equal, the function go" acquired

writes the third parameter to the memory atomically and end;
returns true. Otherwise, it returns false. interval :=intervalx 6

In this pseudo-code, the glock field of L serves both end

as the global lock flag and as the variable to pass the top end;

processor of the waiting queue. An exponential backoff acquired:II
scheme is adopted to get the global lock in this code critical section.
to reduce the number of shared-bus . tsactions. Two #
constant parameters a and Pi shoul, ae tuned for each succ := Inext;
target hardware and application. if succ= NIL then

Though there are two non-local spins (marked with //try to make the queue empty.
CAS(&(L.last), &l, NIL) then goto exit end;

#) in this pseudo-code, both of them continue during the repeat suc := I.next rntl succ * NIL
transient state afer another processor writes the pointer ad;
to its queue node to L.last (successful execution of the //try to pass the lock to the successor,
fetchland-store operation marked with (D) and until it if CAS(&(succ-locked), Locked, Released) then goto exit end;top := succ;
writes non-NIL value to the next field of its predecessor reto c
(marked with (1)), and their effect is not significant. pred := succ;

We have adopted the MCS lock as the base algorithm sum := pred- next;

in this section. The FIFO version of Craig's algorithm [41 V scc = NIL then
I set the global lock.can be extended similarly. L.glock := top;

II check if pred is really the last processor.

4 Performance evaluation IfL.ast = pred then goto exit ead;
/try to withdraw the global lock.

The effectiveness of the two queueing spin lock algo- If -,CAS(&(L.glock), top, NIL) thin goto exit end;
rithms with preemption, the original one in (11 (called # repeat succ := pred-.next until succm NIL
QLUP1, in this section) and the improved one presented ntiCAS(&(succ-locked), Locked, Dequeueing);

in Fig. I and 2 (QL/P2), are examined through perfor- dequeue(succ, pred, top);
mance evaluation. The performance of the algorithms is exit:

compared with the MCS lock without inhibiting interrupts enableinterrupts;

(QL/ei), the MCS lock during interrupts inhibited (QL/di), Fig. 2: Improved algorithm (2)

4

for i:= I to NoLoop do is about 40 ps including some overhead for obtaining the
() acquireJoct-andlisableinterrupts; execution time of the region. In order to change timing

conditions, each processor waits for a random time before
I critical section. it re-enters the critical region (random-delay in Fig. 3).

The average time of the random delay is about 40 ps.
releaselock; Empty loops are alsu included in the interrupt handler0reabdo telays in addition to the routine for obtaining interrupt latencyrandom elay time. The total execution time of the interrupt handler is

end; about 80 ps. The period of interrupt requests is about 5 ms.

Fig. 3: Measurement program skeleton The exact length of the period is varied in 0-2% for each
processor.

and the test-and-set lock with preemption with constant Performance metric
delay (T&SIP) 2.da In real-time systems, the effectiveness of algorithms
Evaluation environment should not be evaluated with their average performance

We have used a shared-bus multiprocessor system for but with their worst-case execution (or response) times.
the evaluation. The shared bus is based on the VME- However, in the case of spin lock algorithms, worst-case
bus specification, and each processor node consists of a times cannot be obtained through experiments because of
20 MHz GMICRot200 microprocessor, which is rated at unavoidable non-determinism in multiprocessor systems.
approximately 10 MIPS, I MB of local memory, and some Therefore, in place of worst-case times, we have adopted
1/0 interfaces. The local memory can be accessed from p-reliable times, the time within which a processor finishes
other processors through the shared bus. No cache memory executing a critical region (or responds to an interrupt
is equipped. The program code and the data area for each request) with probability p, as a performance metric. In the
processor are placed in the local memory of the processor. following section, we show the evaluation results when p
Global shared data (e.g. L in Fig. 1) is placed in the local is 0.999 (i.e. 99.9%).
memory of the master processor, which does not execute Evaluation results
spin locks.

The GMIcRo/200 microprocessor supports the com- Fig. 4 presents the 99.9%-reliable execution time of
pare.and.swap instruction but not fetch.and.store. In our the critical region (when no interrupt is serviced on the
experiments, the fetch.and.store operation was emulated processor during the region) as the number of processors is
using the compare.and.swap instruction and a retry loop. increased from one to eight. With QL/PI and QL/P2, the
As the VMEbus has only four pairs of bus request/grant execution time of the critical region increases linearly with
lines, processors are classified into four classes by the bus the number of processors, and the algorithms are found to
request line they use. The round-robin arbitration scheme be scalable. QL/ei exhibits poorer performance because
is adopted among classes and the static priority scheme is preceding processors service interrupt requests during the
applied among processors belonging to a same class, critical region.

In Fig. 5, the interrupt latency time is nearly independent
Measurement method of the number of processors with QLIP1 and QL/P2. With

Each processor executes the code presented in Fig. 3 QL/di on the contrary, the interrupt latency becomes long
whileperiodic interrupt requests are raised on the processor. as the number of processors increases.
The execution time of a critical region (the region between From these observations, it is demonstrated that QL/PI

(D3 and @ in Fig. 3) is measured for each execution, and and QL/P2 can give a practical upper bound on the time to
its distributions when the processor services no interrupt acquire and release an interprocessor lock while achieving
request during the region and when it services an interrupt fast response to interrupt requests. The other algorithms
are collected. The interrupt latency is also measured for cannot satisfy these two requirements at the same time.
each interrupt service and its distribution is obtained. The overall performance of QL/P2 is a little worse than

Inside the critical section, a processor accesses the QLIPI, because the number of shared-bus transactions
shared bus some number of times (for making the effect of is large with QL/P2 and because doubly linked queue is
bus traffic explicit) and waits for a while using empty loops, necessary. The advantage of QL/P2 appears in Fig. 6 which
Without spin locks, the execution time of the critical region presents the 99.9%-reliable execution time of the critical

2pa&# studies show that a test-and-set lock has good scalaility with region when an interrupt is serviced during the region.

exponential back [2]. However, because die lock acquion te When the number of processors is large, the recovering
varie widely with exponential backoff, it is inappropriate for real-time overhead from interrupt services is much smaller in QL/P2
systems. This conjecture was also confirmed throgh our experiments. than in QLJPI.

5I

400 •500

250 T&SJP-5 /-.350

300 3 200Qid 40
2 50 3 !50150 250

100 200

50~ 150

0 100
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

number of processors number of processors
Fig. 4: 99.9%-reliable exec. time of critical region Fig. 6: 99.9%-reliable exec. time of critical region

(when no interrupt is serviced) (when an interrupt is serviced)

_ _ _ _ _ 250 __ _...---_ 5
200 Qli--QUdi -- t- 20 QL/di-*- A"

150 '6b 150

100 : 100

2 50
m.•......I b.... t. -......... .40 .U . 4 4 ,

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of processors number of processors

Fig. 5: 99.9%-reliable interrupt latency Fig. 7: Average exec. time of critical region

Finally, in order to examine the average performance of References
the algorithms, we present the average execution time of [11 H. Takada and K. Sakamura, "A bounded spin lock algo-
the critical region (when no interrupt is serviced during the rithm with preemption," Tech. Rep. 93-2, Department of

region) in Fig. 7. Information Science, University of Tokyo, July 1993.

[21 J. M. Mellor-Crummey and M. L. Scott, "Algorithms for scal-

5 Conclusion able synchronization on shared-memory multiprocessors,"
ACM Trans. on Computer Systems, vol. 9, pp. 21-65, Feb.

Conventional spin lock algorithms cannot satisfy two 1991.
important requirements for real-time systems using asym- [3] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott,
metric shared-memory multiprocessors, predictable spin "Scalable spin locks for multiprogrammed systems" Tech.
locks and fast interrupt response, at the same time. In Rep. TR454, Computer Science Department, University of
this paper, we propose a improved spin lock algorithm Rochester, Apr. 1993.
that can give an upper bound on the time to acquire and [41 T. S. Craig, "Queuing spin lock algorithms to support tim-
release an interprocessor lock while realizing fast response ing predictability," in Proc. Real-Tune Systems Symposium,
to interrupt requests. To evaluate their effectiveness, we pp. 148-157, Dec. 1993.
have measured their performance through experiments and [51 E. P. Markatos, "Multiprocessor synchronization primitives
confirmed that the algorithms have the required properties. with priorities," in Proc. of the IEEE Workshop on Real-Time

We are currently designing a real-time kernel specifica- Operating Systems and Software, May 1991.
tion called ITRON-MP and implementing it experimentally [61 H. Takada and K. Sakamura, "ITRON-MP: An adaptive real-
(6]. It remains as a ftture work to adopt the algorithms in time kernel specification for shared-memory multiprocessor
the implementation and to evaluate the algorithms in real systems," IEEE Micro, vol. 11, pp. 24-27,78-85, Aug. 1991.
applications.

6

User-Level Real-Time Threads

Shuichi Oikawa Hideyuki Tokuda
Faculty of Environmental Information School of Computer Science

Keio University Carnegie Mellon University

Abstract Our goal is to realize high performance user-level real-
time threads because only user-level real-time threads canContinuous-media applications require more efficient and achieve the above functionalities. Since they are imple-

flexible support from real-time threads than traditional ac aeve bo te f at mana gemenSof thread

real-time systems. It includesfunctionalitiessuch as the dy- mented at user-level, both of the fast management of thread

namic management of thread attributes and the support of multiple thread models are

multiple thread models. In this paper, we ail es the possible. The next section describes the previous work.
desipe teand implemelntatiopere l eti e thes Section 3 discusses design issues of user-level real-timedesign and implementation of user-level real-time threads threads, and Section 4 proposes a software architecture for
on the RT-Mach micro kernel Since they are implemented user-level real-time threads. Sec - 15 describes the current
at user-level, both of the fast management of thread at- sttswhsoeprrmnef 1 esadScin6gvs

tributes and the support of multiple thread models are pos- the conclusion.

sible.

1 Introduction 2 Previous Work

Continuous-media applications require more efficient and Real-time threads have been developed as kernel enti-
fiexiblesupport from real-time threads than traditional real- ties. Existing real-time kernels, such as ARTS [101 and
time systems [4, 12, i3]. The "flexible support" includes RT-Mach [11], realize their real-time threads as kernel-
the following two functionalities: provided threads. Since threads are implemented in the

kernel, primitives like real-time synchronization and func-
• the dynamic management of thread attributes, tions to set thread attributes are also implemented in the
" the support of multiple thread models. kernel. Thus, the thread operations cost so expensive that

the performance is sometimes unacceptable for dynamic
The dynamic management of thread attributes is necessary environments requiring the dynamic management of thread
because system resource utilization in workstations and attributes [131.1
network environments is changing every minute. Timing First-class user-level threads were developed to solve
attributes, such as start time, deadline and period, are parts scheduling problems occurred in user-level threads envi-
of thread attributes. For example, if there are too many ronments where an entire task is blocked when a user-level
threads for a system to satisfy their timing requirements, thread is blocked in the kernel. Scheduler Activations [1]
some threads may be able to run more infrequently or with and the first-class user-level threads of the Psyche operat-
shorter execution time. As another example, if network ing system (7] provide the mechanisms to avoid the above
traffic is crowded and an application cannot receive data at problem. Both of them are implemented on the parallel
the expected rate, threads of the application should change computers to exploit the ability of parallelism of the under-
their behavior to follow the rate of data received. ling hardware. Thus, they have no functionality to manage

Ability to support multiple thread models is also im- timing attributes of threads.
portant. Since there is no standard way to implement Split-level scheduling [4] provides user-level real-time
continuous-media applications, programmers may be able threads through the shared user/kernel structures with the
to choose one of the existing thread packages or may want
to create a new one. For instance, one programmer finds 'In our previcis experience with ARTS [8], context switching in
it is useful to use a periodic thread to process continuous the same address space costs 3 sec for user-level threads and 26*ec
data, while another programmer would like to use threads for kernel-provided threads. Synchronization costs 9sec for user-levelthreads and 46psec for kernel-provided threads. Since the dynamic man-
which have their start time and deadline and to create a new agernent of thread altributes introduces nany operations in the same ad-
thread for each data chunk. dress space (described in Section 4.3), this izo-rt. is

7
0-8186-5710-3/94 $3.00 @ 1994 IEEE

split kernel-level and user-level schedulers. This is im- Creation of a new virtual processor: Scheduler activa-
plemented on a uniprocessor, and shared memory is ex- tions [L] create a new virtual processor when the current one
tensively used to pass information between a user-level is blocked in the kernel, but others do not do so. We chose to
scheduler and the kernel. Each user-level thread has its create a new virtual processor. There are two main reasons
logical arrival time and deadline, and the threads are sched- for this decision. One reason is that our platform, RT-Mach
uled by the deadline/workahead scheduling policy based on [11], requires it. Virtual processors are implemented us-
their timing attributes. Split-level scheduling proposes a ing kernel-provided threads. Since there are many places
new mechanism for asynchronous communication to avoid where a thread structure is referenced in the kernel, it is
threads blocked in the kernel. Since the split-level schedul- too hard to modify them to cope with a user-level threld
ing was developed to handle continuous-media efficiently, Another reason is that the number of interactions be
its goal is similar to ours. However, it does not have a notion a user-level scheduler and the kernel can be reduce,
of dynamic rebinding of timing attributes. The timing at- example, when a thread Is unblocked in the kernel,
tributes of threads is managed by the split kernel-level and event is notified to a user-level scheduler. If the user-level
user-level schedulers cooperatively, while our user-level scheduler decides to run the unblocked thread, it issues a
real-time threads manage timing attributes of threads using system primitive to resume it. We can avoid such a heavy
a timer which is a separate instance from a thread. This interaction if the current virtual processor is preserved and
feature increases the flexibility of user-level schedulers. a new one is used to upcall a user-level scheduler.

3 Design Issues 3.2 Dynamic Creation of Virtual Processors

The dynamic creation of a new virtual processor sometimes
User-level real-time threads must be treated as first-class takes a long time, and it can be a source of the unpredictabil-
user-level threads [1,4,71 since user-level real-time threads ity. If there is an extra virtual processor which is not in
need to be scheduled as correctly as kernel-provided use, it can be used instead of the current one. Then, the
threads. In this section, we first describe the design de- dynamic creation is not necessary. Therefore, when a user-
cisions to implement first-class user-level threads. Then, level scheduler is initializing its status, it asks the kernel
several design issues are discussed. to create several kernel-provided threads. Those threads

are maintained in the kernel, and are used later as virtual
processors when a running virtual processor is blocked in

3.1 First-Class User-Level Threads the kernel.
The number of kernel-provided threads created at initial-

Mechanisms proposed by previous implementations of ization is fixed. If all of them are used and blocked in the
first-class user-level threads [1, 4,7] were examined. Then, kernel, the kernel needs to create a new virtual processor
the following mechanisms were chosen for Implementing dynamically or just leaves it blocked. For hard real-time
our user-level real-time thread model, applications, the behaviors are analyzed and the necessary

Upcall: The kernel has to notify a user-level sched- number of virtual processors is found. For soft real-time
uler of events which were occurred in the kernel and af- applications, the dynamic management of the number of
feet a scheduling decision. The kernel upcalls a user-level virtual processors is necessary.
scheduler, and the user-level scheduler processes events and
choose the next thread to run. This mechanism is used on 3.3 Priority Consistency
all Implementations of first-class user-level threads while
they call it differently. User-level real-time threads are managed and scheduled by

Shared kernel/user data structures: There are two dif- a user-level scheduler, while virtual processors are sched-
ferent approaches to pass events to a user-level scheduler. uled by the kernel-level scheduler. User-level real-time
Shared kernel/user data structures are used for first-class threads and virtual processors have their own priority data.
user-level threads [7] and split-level scheduling [4]. Sched- Thus, they are managed independently. Since user-level
uler activations [1] upcall different entry points of a user- threads are multiplexed on a virtual processor, the prior-
level scheduler each of which is provided for the corre- ity of the current user-level thread must be reflected to
sponding type of events. We chose to use shared kernel/user the priority of its virtual processor to schedule the virtual
data structures since they can be used to pass information processor correctly.
of threads from user-level schedulers to the kernel, such as The problem which arises here is that the current pri-
priorities and timing attributes. It can also provide a simple ority which needs to be reflected to the virtual processor
way to pass events asynchronously. changes independently of the kernel because user-level

8

_ i " ii il t i ill ii; ii..ii iiii i
ULSS

,,,,. __-. V,,%-,,LJ
Figure 1: Blocking Thread in the Kernel Figure 2: Unbiocking Thread in the Kernel

threads switches at user-level. Therefore, a mechanism * A current virtual processor is currently executing

which makes the priority data of a virtual processor up- use-level threads in an address space. Only this type

dated is necessary. of virtual processors can run at user-level.
o A kernel virtual processor is attached to a specific

user-level thread, which is blocked in the kernel. It
3A Timing Management executes only in the kernel because user-level threads

User-level real-time threads also have timing attributes such running at user-level must be multiplexed on the cur-

as a start time, a deadline and so on. Usually, the tim- rent virtual processor.

ing management is done in the kernel using a clock de- * A reserved virtual processor is waiting to become a

vice which interrupts the kernel at intervals of very short current one. One of them is used when a current one

period.2 Since user-level real-time threads are managed by is blocked in the kernel.

a user-level scheduler, a user-level scheduler needs to man- When a user-level thread is blocked in the kernel, the
age their timing attributes. This requires for a user-level current virtual processor, which is executing the blocked
scheduler the close cooperation with the kernel, thread, becomes a kernel virtual processor. Then, one of

A user-level scheduler needs to tell the kernel when it reserved virtual processors is taken from the list, and be-
would like to be notified. Since the dynamic management comes the current virtual processor. Finally, the new cur-
of thread attribute requires fast rebinding of the timing rent virtual processor upcalls the user-level scheduler. (See
attribute, system primitives cost too much to do so. Thus, Figure 1.)
a shared kernelluser data structure is used to share such When a kernel virtual processor is unblocked, it is sched-
Information. A user-level scheduler maintains timing data uled by the kernel-level scheduler independently of the cur-
in it, and the kernel checks it. If the time which a user-level rent virtual processor. When a kernel virtual processor is
scheduler needs a notification comes, then the kernel sends about to exit the kernel, it passes two execution contexts to
an event to iL the user-level scheduler. One is for the user-level thread on

the kernel virtual processor. Another is for the user-level
thread on the current virtual processor, which is preempted

4 Software Architecture by the kernel virtual processor. Then, the current virtual
processor is linked in the list of reserved virtual processors,

In this section, we first describe how virtual processors are and the kernel virtual processor becomes the new current
used and interact with user-level real-time threadt. Then, virtual processor. Finally, the new current virtual processor
mechanisms for user-level timers and the dynamic man- upcalls the user-level scheduler. (See Figure 2.)
agement of timing attributes are discussed.

4.1.1 PrIoity Update
4.1 Virtual Processors To make the priority data of the current virtual processor

consistent with the priority of the current user-level thread,
There are the following three types of virtual processors: it is updated in the following cases:

21Oms isa verycommo value for cmuret workolaionm * when an interrupt is occurred,

9

" when the kernel-level scheduler Is invoked, This mechanism does not assume any model. Thus, user-

Swhen a user-level thread waked up by a t r hs level schedulers can interpret and use notifications as they

higher priority than the current virtual processor. wish.

At each Interrupt, The priority data of the current user-
level thread Is copied to the current virtual processor In the 4.2.2 Thread Wakeup by Timer
current task. Then, the kernel checks if the current virtual When a user-level thread which is waked up by a timer has
processor has the highest priority. If it doesn't, the kernel the highest priority, the current thread is preempted and the
invokes the highest priority kernel-provided thread. waked up thread must be invoked. This is the same case as

When the kernel-level scheduler is invoked, the priority when a user-level thread is unblocked in the kernel. Thus,
data of the current user-level thread is copied If the current the kernel does the same operations on threads. If a waked
kernel-provided thread is a virtual processor. Then, we up thread does not have the highest priority, the kernel just
can avoid the priority inconsistency if a user-level thread is notifies the event to the user-level scheduler.
switched after an interrupt.

We discuss priority update which is necessary when a
user-level thread waked up by a timer in Section 4.2.2. 4.3 Dynamic Management of Timing Attribute
4.2 Timer The dynamic management of thread timing attributes is

archived using deadline handlers and dynamic rebinding of

In RT-Mach, a kernel-provided timer called RT-Mach Timer thread timing attributes (14].
[9] is already implemented in the kernel for kernel-provided A deadline handler is an independent thread which is
real-time threads. To use it for user-level real-time threads, attached to a real-time thread. The deadline handler of a
several modifications are necessary to interact with user- real-time thread is invoked when the deadline of the real-
level schedulers. time thread is missed. In the deadline handler, it can resume

It is possible to use kernel-provided timers with a few the real-time thread to continue the rest of work although
modifications if one timer is used for each single user-level the deadline is missed, or it can abort the invocation if it is
real-time thread as kernel-provided real-time threads. This meaningless to continue the work after the deadline.
scheme, however, causes a lot of kernel interventions since When a system becomes overloaded and deadlines of
each operation on a timer is required to issue a system real-time threads start being missed, their deadline handlers
primitive. Semantics of a timer is also limited since it are Invoked. In such case, they can rebind the timing
is implemented in the kernel. Then, it makes difficult to attributes of the threads dynamically to reduce the system
achieve our goals. load. Dynamic rebinding of thread timing attributes resets

In our architecture, a user-level scheduler employs a sin- timing attributes of a real-time thread, such as a period and
gle kernel-provided timer only for notification, and man- a deadline, to new values. The new values become valid
ages user-lewl timers to decide what is necessary to do from the next invocation.
when notified. The above operations are all processed at user-level.

Thus, user-level real-time threads can achieve much higher

4.L1 User-Level Timer performance than kernel-provided real-time threads since
kernel interventions are not involved. A deadline handier is

User-level timers are managed by a user-level scheduler. an example of mechanisms for the dynamic management.
A user-level timer provides a kernel-provided timer with It is very easy to add new features to a user-level scheduler.
the time and the priority data. The time specifies when the
user-level scheduler would like to get a notification. The
priority data is used by the kernel to update the priority data 5 Current Status
of the current virtual processor. A kernel-provided timer
uses the above data of user-level timers, then decides when We are currently implementing user-level real-time threads
It notifies the user-level scheduler. Since data of user-level on RT-Mach [11]. As our first implementation of user-level
timers is written by a user-level scheduler and read by a thread packages, we decided to modify C-Threads package
kernel-provided timer, it needs to be placed in a shared [3]. Since our Implementation is upper compatible with the
kernel/user data structure. original C-Threads package, applications using C-Threads

Decoupling user-level threads and timers makes it pos- can also benefit from high performance of first-class user-
sible to support multiple thread models. The kernel just level threads.
notifies a user-level scheduler when it needs a notification. Table I shows the performance of signal/wait primitives

10

the User-Level Management of Parallelism. In Proceed-
RTC-Threads C-Threads RT Threads ings of the 131h Symposium on Operating System Principle,
(user-level) (user-level) (kernel-provided) October 1991.

25psec 38psec 170(sc 12] P. Barton-Davis, D. McNamee, R. Vaswani, and E.D. La-

Table 1: Signal/Wait Primitives zowska. Adding Scheduler Activations to Mach 3.0. In
Proceedings of the USENDf Mach 3rd Symposium, April

null function null system null system call 1993.

call call (trap) (via MIG) 131 E.C. Cooper and R.P. Draves. C Threads. Technical Report
0.8psec 5psec 72psec CMU-CS-88-154, School of Computer Science, Carnegie

Mellon University, February 1988.
Table 2: Basic Operations Performance [4] R. Govindan and D.P. Anderson. Scheduling and IPC Mech-

anisms for Continuous Media. In Proceedings of the 13th

Symposium on Operating System Principe, October 1991.
of our real-time version of C-Threads (RTC-Threads), 3 [5] D. Golub, R. Dean. A. Forin, and R. Rashid. Unix as an
original C-Threads and kernel-provided real-time threads Application Program. In Proceedingsofthe UsenixSummer
(RT Threads). The programs used to measure the per- ConferenceJune 1990.
formance implement a producer/consumer model that onethread is a producer and another threadois acosumer. The 161 R.G. Herrtwich. The Role of Performance, Scheduling, andResource Reservation in Multimedia System. In Proceed-benchmarks were performed on a Gateway2000 486DX2 ings of International Workshop of Operating Systems of the
66MHz system. Table 2 shows the performance of basic 90s and Beyond, Lecture Notes in Computer Science 563,
operations for comparison. Springer-Verlag, 1991.

[7] B.D. Marsh, M.L Scott, TJ. LeBlanc, and E.P. Markatos.6 Sununary First-Class User-Level Threads. In Proceedings of the 13th

The goals of our user-level real-time threads are the dy- Symposiun on Operating System Principle, October 1991.

namic management of thread attributes and the support of [81 S. Oikawa and H. Tokuda. User-Level Real-Tne Threads:
multiple thread models. We showed that the dynamic man- An Approach towards High Performance Multimedia
agement of thread attributes can be achieved by realizing Threads. In Proceedings of the 4th International Work-

real-time threads at user-level. Introducing the user-level shop on Networkand Operating System Supporrfor Digital

timer mechanism also makes the support of multiple thread Audio and Vdeo, November 1993.

models possible. [9] S. Savage and H. Tokuda. RT-Mach Timers: Exporting
Our user-level real-time threads can also keeps com- Tne to the User. In Proceedings of the USENIX Mach 3rd

patibility with existing kernel-provided threads. They can Symposium, April 1993.
coexist in the same environment, and existing applications [101 H. Tokuda and C.W. Mercer. ARTS: A Distributed Real-
still run without any modification. Tune Kernel. ACM Operating Systems Review, Vol. 23, No.

The current real-time thread model is being imple- 3,1989.
mented, and more accurate and various performance mea- [11 H. Tokuda, T Nakajima, and P. Ra. Real-Tme Mach:
surements will be completed. Towards a Predictable Real-Tune System. In Proceedings

of USENIX Mach Workshop, October 1990.
Acknowledgments [121 H. Tokuda, Y. Tobe, S.T.-C. Chou, and J.M.F Moura. Con-

tinuous Media Communication with Dynamic QOS Control
We would like to thank members of Multimedia Platform Uing aS with an FDD Nonsof

Using ARTS with an FDDI Network. In Proceedings of
Project for their various comments. We are also grateful ACM SIGCOMM'92, August 1992.
to Prof. Tatsuo Nakajima and Mr. Takuro Kitayama for
providing us with helpful information of RT-Mach. (131 H. Tokuda and T. Kitayama. Dynamic QOS Control based

on Real-Time Threads. In Proceedings of the 4th Interna-
tional Worhshopon Network and Operating System Support

References for Digital Audio and Vdeo, November 1993.

[] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. (14] H. Tokuda, S. Savage and C.W. Mercer, A Real-Tune
Levy. Scheduler Activations: Effective Kernel Support for Thread Model for Continuous M-dia Applications. In

Preparation.3This version of RTC-Threads does not have real-time facilities yet.

11

Experience with a Prototype of the POSIX
"Minimal Realtime System Profile"

T.P. Baker, Frank Mueller, Viresh Rustagi"
Department of Computer Science

Florida State University
Tallahassee, FL 32304-4019

Abstract System Profile" assumes a single process, with threads
being the only form of concurrency within the system.'This paper describes experience prototyping the The underlying hypothesis is that by not requiring sup-

proposed IEEE standard "minimal realtine system port for the more complex POSIX features, the profile
profile , whose primary component is support for real- permits an implementation that will be satisfactory for
time threads. It provides some background, describes realtime applications with very tight efficiency and tim-
the implementation, and reports preliminary perfor- ing predictability requirements.
mance measurements.

The POSIX proposals are likely to have an impact
I Introduction on future realtime applications development, since they

are being promoted as both U.S. Government and in-
A thread is an independent sequential flow of ternational (ISO/IEC) standards.

control. Threads differ from processes by sharing The draft Pthreads standard specifies the follow-
a common virtual address space with other threads. ing services:
Threads are widely accepted as a computational build-
ing block for both uniprocessor and multiprocessor en- * thread management: initializing, creating, joining,
vironments. In uniprocessor environments, the thread and exiting threads.
model simplifies the programming of asynchronous op- * synchronization: mutual exclusion, and condition
erations. In nultiprocessor environments, threads may variables.
also allow higher throughput, by utilizing more than variables.
one processor. * thread-specific data: data maintained on per-

The idea of cheap concurrency or "lightweight pro- thread basis.
ceaes" has been around in various forms for a long * thread priority scheduling: priority management,
time, including support for coroutines in the Mesa pro- preemptive priority scheduling, bounded priority
gramming language[13], and multitasking in the Ada inversion.
programming language[18]. The Pthreads (POSIX * signals: signal handlers, asynchronous wait, mask-
Threads) proposal is intended to provide similar func- ignof signal longleumps
tionality for programs in the C language. It is based on
considerable experience, including C-threads [2], Mach * cancellation: cleanup handlers, different interrupt-
threads[16, 17], and Brown University threads [3]. ibility states.
Several commercial operating systems support iiulti-
threaded processes, including the Lynx[4], Sun[12, 14], 2 Relationship to Ada Tasks
and Chorus[l] operating systems.

The POSIX 1003.4a project[8] represents an at- The Ada programming language[18 defines tasks
tempt to achieve some degree of application portability as the only form of concurrent threads of control within
for C programs, across operating systems that support a program. If the underlying operating system provides
threads. This is an extension of the POSIX application direct support for the POSIX (C-language) threads in-
program interface, which generally follows the UNIX terface, it may be desirable to implement Ada tasks
process model, using this interface, by mapping Ada tasks to POSIX

threads. Due to differences between the Ada andThreads are considered a "real time" extension to POSIXYC models, this mapping is not entirely straight-
POSIX. IEEE draft standard P1003.13[9] proposes a forward.
set of realtime application profiles, i.e. subsets of the
POSIX standard that are suitable for certain classes The PAR' (POSIX Ada Real Time) project, at
of realtime applications. Threads are a key feature of the Florida State University, is investigating the prac-
these profiles. In particular, the "Minimal Realtime ticality of using POSIX threads to implement Ada

tasks, especially in realtime applications. So far, a
"This work was supported in part by the Ada Joint Program complete tasking implementation has been produced

Offie, via the U.S. Army CECOM HQ Software Engineering for the Ada 83 standard, using an implementation of
Diretorate. However, the views reported here do not necessarily P1003.4a Draft 6 layered over the Sun UNIX operat-
reflect & position of the sponsoring organization. Authors may ing system[5]. Work is under way to extend this to the
be reached as "baker~cs.fsu.edu". proposed new Ada 9X language standard [6, 19].

12
0-8186-5710-3/94 $3.00 0 1994 IEEE

3 A "Bare Machine" Implementation 1. Pthreads support. This implements the de-
To evaluate the suitability of a Pthreads-based tailed functionality of the Pthreads standard, in-To ealuae th sutabiity f acluding the dynamic creation and termination

Ada implementation for realtime applications, one of threads, the synchronization primitives, and

must start out with a suitable realtime implemnenta- thread scheduling. It is the largest component,

tion of Pthreads. Experience with the FSU layered 1bu-t candbeintica t lar i mple ent

plementation, and other Ada tasking implementations, but can be identical to a library implementation.

makes it clear that acceptable realtime performance 2. Machine-specific support. This includes code to
is not achievable for an implementation layered over a save and restore register windows for context-
conventional UNIX operating system. Efficiency is cer- switches, boot up the kernel, and provide time-
tainly an issue, but the main problem is predictability, keeping services. The boot code involves initializ-

ing memory mapping hardware and installing trap
Most UNIX implementations impose ump:e- handlers. With the library implementation, all of

dictabe delays on user processes, due to preemptions these functions are performed by the underlying
by interrupt handlers and operating system processes. operating system. A bare-machine implementa-For an operating system to provide predictable timing tion must perform these functions for itself.

of user threads, it must be designed with this objective

in mind, from the hardware up. Some commercial real- 3. C language support, including basic I/O and mem-
time operating systems, such as LynxOS and Chorus, ory allocation. These are functions provided by
apparently have been designed in this way. the standard C libraries, but the standard Sun

Microsystems implementation of the C libraries
As a basis for performance testing of our Ad 9X makes calls to the operating system. Without the

implementation, we chose to port our existing layered support of the operating system, these libraries
implementation of Pthreads to a "bare" SPA RCengine need to be reimplemented.
IE[15]. We chose to do this rather than using an exist-
ing commercial realtime OS, for many reasons. Chief The design of the Pthreads functionality was con-
among these is that we needed source code, to tune the strained to be async safe. A function is async safe
threads implementation to better support Ada (if nec- if calling the function asynchronously will not cause
essary), and to take control over interrupts. We also any invariants to be violated, even if it is called from
were concerned that the commercial implementations the handler of an interrupt that may be delivered at
of threads might be too full-blown to take advantage any time [7]. Even though POSIX does not require the
of the restrictions of the POSIX minimal profile, since Pthreads functions to be async safe, we chose to require
they support multiple processes, file systems, and a va- it as a matter of quality. Async safety allows a user to
riety of hardware devices. (Finally, there was concern build more responsive realtime systems. Furthermore,
that licensing restrictions would stand in the way of it is required to support Ada 9X.
publication.) A single-threaded kernel approach was used. Once

The SPARCengine port of the FSU Pthreads Ii- a thread has entered the kernel, no other thread can en-
brary is intended to fit the POSIX minimal realtime ter the kernel until that thread has left it. The alterna-
systems profile. It runs on a "bare" machine, without tive, a multi-threaded kernel, where separate locks are
any other operating system. It does not support multi- associated with different kernel data structures, would
ple processes, and so operates in single virtual address allow more concurrency in a multiprocessor environ-
space. It does not have a file system. At present the mrent. For this to pay off, the cost of interprocessor
only devices supported are a serial port aid a timer. locking must be low, relative to the time typically spent
These simplifications eliminate unpredictable timie de- in kernel. Since we have only a single processor, the
lays due to page faults, waiting for completion of 1/O, choice was clear; the overhead of fine-grained locking
and I/O completion interrupt processing. would result in poorer performance.

The scope of this prototype implementation is lim- The source code of our bare-machine Pthreads ker-
ited to a subset of the proposed POSIX minimal real- nel consists of approximately 3300 lines of C-code, of
time system profile. The criteria that governed the which approximately 1000 lines are new for the bare-
choice of this subset are: machine version and the rest is reused from the library

" The implementation should be powerful enough to level implementation. The core inage of the kernel is
allw teti ntion shulde oe.uhiseuires 49 kilobytes, as compared to 984 kilobytes for the fullallow testing in a realtime context. This requires Sun UNIX kernel.
the following functionalities:

Dynamic creation and terminatioii of threads Reuse of most of the code from the layered FSU
- yPthreads library permits direct performance compar-
- Synchronization primitives isons of the two implementations. Differences can be
- A readable realtime clock attributed to running on a bare machine, versus as a
- Timer support sufficient for periodic task layer over the UNIX operating system.

scheduling This code was tested for both functionality and
- Output routines to print results performance.

" The implementation should provide sufficient Functional Testing Functional testing was done us-
functionality to implemnent Ada tasking. ing a set of 25 tests, derived from tests originally devel-
The design of the implementation is divisible into oped to test the layered version of the FSU Pthreads

three main components: library. The features tested by these bare-machine tests

13

include: * Thread context switch. This is the time taken fora context switch.
" Thread management - creation, termination, join, a Yiex (1 th.

detach 9 Yield (I thread). This is the time taken by the
yield operation when there is only one thread in

" Priority scheduling the system.
" Mutexes - with and without priority ceilings * Yield (2 threads). In this case, there are two
" Creating and destroying condition variables threads in the system.
" Timed conditional wait * Thread signal handler. The measurements taken
" Thread specific data for signal handling reflect the time from sending a" Setjmp/longjmp signal, by pthread-kill, till the signal is received,

" Signal handlers
" Cancellation and cleanup handlers Table 1: Performance of some Pthreads Operations

It was verified that the implementation could pass
these tests, before performance testing began. Timings (Ossecs)

Pthreads Operations Bare Layered

4 Absolute Performance Results Machine over UNIX
enter and exit Pthreads kernel 1 1

The performance tests were also derived from tests inutex lock/unlock, no contention 3 3
developed earlier for the layered version of the Pthreads niutex lock/unlock, contention 44 114
library. These tests attempt to measure the specific semaphore synchronization 60 103
performance metrics called out by Draft 6 of Pthreads. thread create, no context switch 37 104

Table 1 shows selected measurements of some of setjmnp/longjmp pair 16 49
these metrics. The test programs use a dual loop tim- thread context switch 17 95
ing analysis technique. The times reported are averages yield 1 operation 1 1
tken over 100,000 iterations. These measurements are yield 2 operations 33 70
compared to measurements taken earlier with the ver- thread signal handler 55 92
sion of the Pthreads library layered over UNIX, on the
same machine.

For the layered implementation, the time taken for 5 Time Predictability Results
100,000 iterations of an operation ranges froM about
100 milliseconds to 1 second. Though there was only From the design of the implementation, we ex-
one user process active, this is long enough that a sys- pect our bare-machine implementation to achieve pre-
tern process might preempt, so the numbers shown here dictable execution timing. The main cause of large
may be a bit high. deviations from the priority preemptive scheduling

model has been eliminated, namely preemption of user
The metrics include: threads due to scheduling of other processes, includ-

* Enter and exit Pthreads kernel. This is the time ing operating system processes. The precision of timed
taken to enter and immediately exit the kernel, wakeup events has also been improved, from ten down

to one millisecond. With these improvements, we be-
" Mutex lock/unlock, no contention. This is the time lieve that the implementation of priority scheduling is

to perform a pair of nmutex lock aid unlock oper- strict enough that actual schedulable utilization will be
ations, under the assumption that a nititex is re- very close to the theoretical predictions of schedulabil-
quested while unlocked. ity analysis.

" mutex lock/unlock, contention. This is the interval During debugging, we have already observed that
between an unlock by one thread and the return the timing is remarkably consistent. This was evident
from a lock operation by another thread, which in the reproducibility of failures due to race-condition
was suspended waiting for the mutex. problens between (earlier, incorrect versions of) the

* Semaphore synchronization. This is one Dijkstra timer interrupt handler and the rest of the system.
P operation plus one V operation. These are im- We are currently working on benchmarks to mea-
plemented on top of mutexes and condition van- sure the predictability of scheduling for actual task
ables. sets, to compare these against theoretical schedulabil-

* Thread create, no context switch. This measures ity models, and to estimate the amount of overhead
the time taken to create a thread, excluding the introduced by the Pthreads implementation.
context switch time. The first test is based on a benchmark developed

" setjmp/longjmp pair. This is the time taken by a earlier for a preliminary design of a minesweeper trainer
setjmp followed by a longjmp. system for the U.S. Naval Coastal Systems Center.
The performance of a pair of setjmp and longjmp This consists of a set of six periodic threads, comprising
operations gives a lower bound on the overhead a realtime simulation. Each thread has three phases.
of a context switch, but a true context switch ii- In the first phase, it reads the simulated state of other
volves some additional overhead, simulated subsystems from a global database. In the

14

ph).layered over L1NlX

second phase, it computes its own next state. In the
third phase, it updates the global database. The read U 3 - --------

and update phases require locking the database, which
is done via a single Pthread mutex. This is shown iti
pseudo-code in Figure 1. The thread periods, and the
execution times of the three phases, are shown in Ta-
ble 2.

tor(;;) { 2
pthread.mutexlock(shared-memory);
input-datao; 0
pthread-autex-unlock(shared.memory); 2 2 4 5 1 7 1

trial number

executeO); Figure 2: System Utilization for repeated Trails

pthread-mutex-lock(&shared-iemory);
output.datao;
pthread.mutex-unlock(shared-memory); over UNIX varies considerably at times. The bisection

sometimes failed on its first iteration, thereby indicat-
+ period~taskJ; ing that the breakdown utilization of 90% must reducednext.requestt + riod[t ;below 45%. The bisection would then proceed to ter-

if (next.request[task] >- simulation_time) iIIInate at a utilization around 44%. At other times,
break; the bisection succeed for a trial of a certain load factor.

Upon termination of the bisection, the same load factor
/* suspend until next period */ was tried again but resulted in a failure. We adapted
pthread-mutexlock(kmutex[self]); our algorithm to restart the bisection with the current
do { load factor as the upper bounds upon these sporadic
pthread-cond.timedwait (tcond[self], failures.

&mutex(self], &next-request[self]); The bare-machine implementation produced very
clock-gettime(L0CKRELTIME, ¤ttime); predictable results without any variation. The utiliza-

} while (next-request[task] > current-time); tion of the benchmark was measured at 81%. The re-
maiing 19% can be interpreted as the time consumed
by the bare-machine implementation of Pthreads. Un-

Figure 1: Task Simulation Algorithm der UNIX, the benchmark utilization had its peak at
77% with a remaining 23% overhead due to the operat-
ing system and the layered Pthreads implementation.

Task Period Input Execute Output Util. The smaller overhead of the bare-machine implemen-
[ms] [ts] [ms] [ts] tation can be attributed to the performance improve-

1 62.5 2.0 44.80 2.0 71% inents discussed in the last section.
2 125.0 0.3 0.05 0.3 0% The occasionally large variations in the utilization
3 166.7 1.6 27.80 1.6 16% under UNIX and the sporadic failures of the bisection
4 250.0 8.0 0.11 8.0 0% algorithn seeni to be due to operating system activi-
5 500.0 3.2 5.02 3.2 1% ties which occur at unpredictable times. These activi-
6 1,000.0 24.0 10.36 24.0 1% ties include process scheduling, CPU time accounting,

and the processing of ethernet messages'. The unpre-
Table 2: Task Set dictability of the UNIX operating system limits its ap-

plicability for hard real-time systems. Hard real-time
Such a task system should be suitable for schedu- applications may not be able to safely achieve a high

lability analysis, based on the Rate-Monotonic iodel, utilization under UNIX. A bare-machine implementa-
The objective of our benchmark is to determine how lion seems to permit a higher utilization for hard real-
close the actual perforriance comes to this model. time applications, providing both predictability and an

efficient use of the hardware.
In the benchmark, a bisection method is used to

compute the breakdown utilization, at which the tasks 6 Conclusions
can just barely be scheduled without missing any dead-
lines. This is done by varying a linear scaling factor, We have implemented a sufficient subset of the
called load factor, which applies to the execution times Miniimal Realtime System Profile to permit perfor-
of all phases of all the tasks. umance testing. The implementation supports preemp-

The benchinark was run repeatedly over both Live priority scheduling, with a restricted form of pri-
UNIX and the bare-machine impleeiitation with anm ority ceiling emulation for mutexes. It supports a re-
initial target utilization of 90%. The results are showu 'There was no local hard disk attached to the SPARCengine.
in Figure 2. The only asynchronous activities were due to clock and ethernet

It was observed that the timing of the benchlmark interrupts.

15

altime clock with microsecond precision, and timed of work in progress", TRI-Ada '92 Proceedings
events with millisecond precision, includig the time- (Nov 1992) 518-529.
out for the wait operation on a condi,, On variable. [61 E.W. Giering, Frank Mueller, and T.P. Baker,
Experience with this implemnentation suggests that "'hpleienting Ada 9x features using POSIXPthreads calm be implemented in a form that is suitable threads: Den issues", TRI-Ada '9 Proceed-

for realtime applications with hard timing constraints. ings, ACM (Sep 1993) 214-228.The absolute performance figures are encouraging. [7] IEEE Portable Applications Standards Commit-

The performance of the bare-machine immplementation tee, P1003.4a: Threads Extension for Portable
is much better than that of the version layered over a Operating Systems (Draft 6), IEEE (Feb 1992).
full UNIX system. Part of this improvemnent is due to [8] IEEE Portable Applications Standards Commit-
our algorithm for saving register windows to memory, tee, P1003.4a; Threads Extension for Portable
which is different from that used by the commercial Operating Systems (Draft 8), IEEE (Oct 1993).
UNIX operating system. The other big contribution to [9] IEEE Portable Applications Standards Corn-
the performance improvement is that our imnplementa- mittee, P1003.13: Information Technology -
tion avoids most of the overhead of UNIX system calls. Standardized Applications Environment Profile
User code executes in the same virtual address space - POSIX Realtime Application Support (AEP)
as the kernel. This umeans kernel service calls can be (Draft 5) (Feb 1992).
ordinary subprogram calls, or even in-line macro calls,
rather than traps. We also eliminate the overhead of [10] Frank Mueller, "Implementing POSIX threads
demultiplexig service requests ii the UNIX systein under UNIX: Description of work in progress",
call trap handler. This improvement seems specific to Proceedings of the Second Software Engineering
the minimal realtime systems profile. Running kernel Research Forum (Nov 1992) 253-261.
and user processes in the same virtual address space [11] Frank Mueller, "A library implementation of
would be unacceptable for a full POSIX imiplenmenta- POSIX threads under UNIX", Proceedings of the
tion. USENIX Conference (Jan 1993) 29-41.

The experiments performed support the hypoth- [12] M.L. Powell, S.R. Kleiman, S.Barton, D. Shah,
esis that a bare-machine implementation can achieve D. Stein, and M. Weeks, "SunOS Multi-thread
excellent predictability. This provides the ability of Architecture", USENIX (Winter 1991) 65-80.
this system to support a priori schedulability analy- [13] D. D. Redell et al., "Pilot: An operating system
sis, much in contrast to unpredictable systems such as for a personal computer", Communications of the
UNIX. ACM, Vol. 23, No. 2 (Feb 1980).

Next, we plan to port the PART Ada rmtime sys- [14] D. Stein and D. Shah, "Implementing lightweight
tern implementation to the bare-processor Pthreads i11i- threads", Proceedings of the USENIX Conference
plementation, and test both the absolute speed and the (Sumnumer 1992) 1-10.
timing predictability of Ada. This may require extend- [15] SUN Microsystems, Inc., The SPARCengine 1E
ing the functionality of the present implementation iii Card Family User's Manuals Part No: 800-8137-
some respects. Ilandlers need to be written for some 02 (Apr 1990)
traps that generate synchronous signals. For example, [16] A. Tevanian, R. F. Rashid, D. B Golub, D. L.
a mem..address-not-aligned trap should be processed to Black, E. Cooper, and M. W. Young, "MACH
generate a SIGBUS for the current thread. The current threads and the UNIX kernel: The battle for

library support also needs some extensions. control", Proceedings of the USENIX Conference

Efforts will be made to flesh out the implemen- (Summer 1987) 185-197.
tation in other respects, including support for timer- [17] Ilideyuki Tokuda, Tatsuo Nakajima, and Prithvi
driven round-robin scheduling, and sonme debugging Rao, "Real-Time MACH: towards a predictable
support. real-time system", USENIX MACH Workshop

(Oct 1990).
References [18] U.S. Departinent of Defense. Military Standard

Ada Programming Language ANSI/MIL-STD-
[1] F. Armand, F. Ilerrmann, J. Lipkis, and 1815A, Ada Joint Program Office (Jan 1983).

M. Rozier, "Multi-threaded Processes in CIIO- [19] Ada 9X Mapping/Revision Team, Ada 9X Ref-
RUS/MIX", Proceedings of EEUG Conference erence Manual: Draft Version 4.0, Intermet-
(Spring 1990) 1-13. rics, Inc., 733 Concord Avenue, Cambridge, Mas-

[2] E. Cooper and R. Draves, "C threads". TR sachusetts 02138 (available by anonymous FTP
CMU-CS-88-154, Carnegie Mellon University, from ajpo.sei.cmu.edu) (Sep 1993).
Dept. of CS (1988).

[3] T. Doeppner Jr., A threads tutorial, TR CS-87- Availability of Source Code
06, Brown University, Dept. of CS (1987).

[4] Bill 0. Gallmeister and Chris Lanier. "Early The source code of the version of the Pthreads
experience with POSIX 1003.4 and POSIX library layered over UNIX is available via anonymous
1003.4a", IEEE Symposium on Real-Tuime ys- ftp fromi ftp.cs. tsu.edu (128.186.121.27), in the file
tems, IEEE Computer Society (1991) 190-198. /pub/PART/pthreads. tar. Z. Other material (related

[5] E.W. Giering and T.P. Baker, "Using POSIX publications) can be found in the same directory.
threads to implement Ada tasking: Description

16

Session IT"
Scheduling I

Chair: Ted Baker
Forida State

An End-to-End Approach to Schedule Tasks with Shared Resources
in Multiprocessor Systems

Jun Sun Riccardo Bettati Jane W.-S. Liu
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, IL 61801

Abstract known as the Multiprocessor Priority Ceiling Protocol
(MPCP). According to MPCP, a resource needed by

In this paper we propose an end-to-end approach remote tasks on other processors is a global resource,
to scheduling tasks that share resources in a multipro- and the processor on which a global resource resides is
cessor or distributed systems. In our approach, each called its synchronization processor. When a task Ti
task is mapped into a chain of subtasks, depending on gains access to a global resource, a Global Critical Sec-
its resource accesses. After each subtask is assigned tion (GCS) server runs on the resource's synchroniza-
a proper priority, its worst-case response time can be tion processor on behalf of Ti. On each processor PCP
bounded. Consequently the worst-case response time is used to schedule both local tasks and GCS servers.
of each task can be obtained and the schedulability of Consequently, for each task, the total blocking time
each task can be verified by comparing the worst-case due to both local resource contention and global re-
response time with its relative deadline, source contention can be bounded, and whether each

task can meet its deadline can be determined based
on this blocking time by using the schedulability con-

1 Introduction dition for the single-processor PCP.

However, the performance of MPCP is sometimes
Tasks in real-time systems often share resources, poor, especially for tasks on synchronization proces-

and semaphore-like operations are necessary to guar- sors. One reason is that GCS servers on each synchro-
antee their mutual-exclusive access to critical sections. nization processor always have higher priorities than
A previous study shows that careless use of semaphore local tasks. The priority inversion problem is rein-
operations can cause uncontrolled priority inversion, troduced when a high-priority local task is delayed
which occurs when a high-priority task is blocked by by GCS servers executing on behalf of lower-priority
some low-priority tasks for an unpredictable amount tasks.
of time [1]. We refer to the total length of time a task In this paper we propose an end-to-end approach
is delayed by lower-priority tasks due to resource con- to scheduling tasks with shared resources and to ana-
tention as its blocking time. To ensure predictability, it lyzing their schedulability in multiprocessor systems.
is imperative to bound the blocking time of each task, Section 2 gives an informal description of this ap-
as shown in [2]. Several effective solutions have been proach and compares and contrasts it with MPCP.
proposed for single processor systems; two well-known Section 3 presents in detail the procedure used in the
examples are the Priority Ceiling Protocol (PCP) [1] end-to-end approach. Future work is discussed in sec-
and the Stack Based Protocol (SBP) [3]. tion 4.

In multiprocessor and distributed systems concur-
rency and distribution complicate the resource con-
tention problem. A task Ti can be blocked not only 2 The End-to-End Scheduling Ap-
by a local task on the same processor due to local
resource contentions, but also by a remote task that proach
needs some global resources also needed by Ti. Rajku-
mar, et al. [4] extended PCP for single processor sys- From the viewpoint of end-to-end scheduling, a task
tems to multiprocessor systems and provided an initial that needs remote resources is viewed as a chain of
solution for this problem. The extended protocol is subtasks in the following way. Each critical section

18
0-8186-5710-3/94 $3.00 © 1994 IEEE

associated with a remote resource is a subtask that is assigned to PI; T2 and R are on P2 . The table lists
executes on the synchronization processor of the re- the parameters of the tasks. Specifically, T, has three
mote resource. A segment that requires no resources segments. The first and the last segments need no re-
or only local resources is also a subtask, and this sub- source; they are executed on P1, each with processing
task executes on the local processor. Subtasks of the time 2. The middle segment requires the resource R;
same task collectively inherit the task's release time its processing time is 2. (The notation t(R) in the Seg-
and deadline, and they execute in turn. Specifically, ments column indicates that the segment is a critical
if task T has n subtasks, subtask TI is ready for ex- section that has duration t and accesses the resource
ecution at the release time of T, and subtask Tij is R.) We note that the tasks can not be scheduled ac-
ready for execution when subtask T,,j-I completes, for cording to MPCP. Since T1 needs to access R on P2 ,
j = 2, 3,. . ., n. The last subtask T,,, must complete there is a GCS server running on P2 on behalf of T1.
by the deadline of T. If task T is a periodic task, this This server has a higher priority than T2. Since the
precedence relation holds for every instance of Ti. processing time for this server is as long as T2's period

The precedence relation among the subtasks of and T2 will be blocked by the GCS server whenever

each task can be easily satisfied by using the phase- the server executes, T2 can not meet its deadline.

modification method proposed in [5]. Let cij be
the worst-case response time of TJ. According to T proc Oi pi r Segments

the phase-modification method, once we know ci,k for T, P 12 20 6 21j 2(R) 1 2
k = 1,2,..., j-1, we postpone the phase of the sub- T2 P2 I 1 1 I i
task Tij by El-I ci,k. This modification allows us
to enforce the precedence relation between subtasks Table 1: Example I - A Simple System
while treating the subtasks in each task as if there is
no precedence relation between them. We will return In the end-to-end scheduling model, task T 1 is di-
to discuss how to bound the worst-case response times vided into three subtasks, T1,1, T1,2 and T1,3. T1,1 and
of subtasks on each processor using the schedulability T, 3 execute on processor P1 and need no resource,

condition in [5], provided that the subtasks are as- while T1,2 executes on P2 and needs resource R. T, 1 ,

signed fixed priorities and some single-processor syn- T, 2 and T1 ,3 are dependent: the kth instance of T, 1

chronization protocol is used to control priority inver- (i.e., the instance of T1,1 in its kth period) must com-

sion. By summing up the worst-case response times plete before the kth instance of T1,2 can begin execu-

of all its subtasks, we can determine the worst-case tion. Similarly, the kth instance of T1 ,3 cannot start

response time of each task, and therefore whether the execution until the kth instance of T1,2 completes. Ta-

task can meet its deadline. ble 2 shows the parameters of the subtasks. T,,j is the
processing time of subtask Tj, fij denotes the mod-Similar to MPCP, we allow nested resource ac- ified phase of T,,,, and /3 i denotes the blocking time

cesses. However, we impose an additional restriction ie can experience.

that all resources accessed in one nested critical sec-

tion must reside on the same processor. In other words ij proc -i 'j p ri '36 c-,j I fij
accesses to resources on different processors cannot be .p, , ,_

nested. One consequence of the end-to-end schedul- T, P1 2 20 2 0 2 8
accesses to remote, global resources differently from T2,I P2 1 2 1 0 1 0

local resources. Each subtask that is a GCS server in T,2 P2 2 20 2(R) 0 6 2

MPCP model is local to its synchronization proces-
sor. All resource contentions are resolved locally and Table 2: Example 1 - Using the End-to-End Approach
separately on each processor.

Table I gives an example, Example 1. In the table, In this example, there is only one critical section,
T, denotes a task; column proc lists the processor T1 is and therefore there is no blocking. The priorities of
assigned to; 0bi is Ti's priority; pi denotes Ti's period; the subtasks are assigned on rate-monotonic basis. We
and ri stands for T's processing time. The smaller see that the worst-case response time C1 of the task
the value of 0, the higher T,'s priority. The system T1 is cI,I + c1 ,2 + c, 3 = 10, which is less than 20, and
in this example has two processors P and P2. There the worst-case response time of T 2 is 1, and it is less
are two periodic tasks, T, and T2, and one resource R. than 2. We can therefore conclude that the deadlines
The deadline for each task is the end of its period. T, of both tasks are always met.

19

task has nested resource accesses, each outermost
Input: critical section is mapped to a subtask.

1. Task set {T,. For each task Ti, the dead- 2. A subtask that requires no resource or only local
line Di, period pi, processing time ri, and resources is on the local processor of Ti. A sub-
resource accesses; task that requires remote resources is on the syn-

2. The task assignment mapping task set {Ti) chronization processor of the remote resources.
to processor set {Pk); 3. For every j = 1,2,..., ni-1, consecutive subtasks

3. The resource set { R3) and the resource as- Tj and Tj+ are on different processors.
signment mapping {Ri} to {Pk).

Rule 3 is not necessary for the correctness of the later

Output : The conclusion whether the system can discussion. However it allows us to obtain a tighter
be scheduled and the priorities assigned to sub- upper bound for the response time of each subtask.
tasks on each processor in the case the system is Example 2 illustrates the rules described above. In
schedulable. this example there are four resources and three proces-

sors. Resource R, is assigned to processor PI; R 2 and
Step IL : Map the given task set {T) to a end-to- R 3 to P2 ; and 4 to P3 . Task T, is a periodic task. It

Stepnn task set { to ahas 10 segments, as shown by Figure 2. The shaded
end task set {T1j}. segments denote that T, requires some resources dur-

Step 2 : Assign priorities to subtasks. ing those time intervals.
According to Step 1, T is mapped into 6 subtasks,

Step 3 : Obtain the worst-case response time for as shown by Table 3. The segment from time 0 to time
each subtask. 6, denoted as (0,6], is mapped onto one subtask T, 1

Step 4 : Based on the results obtained in Step 3 because during this time interval, T either does not

analyze the schedulability for the whole system.' require any resources or only requires local resources.
According to rule 3, we map it onto one subtask, and

,__it runs on the local processor, P1. Similarly, segment
(6,10] is mapped onto the subtask T1,2 because the

Figure 1: Pseudo-Code of the End-to-End Scheduling accesses to R 2 and R3 are nested and only the out-
Procedure most critical section becomes a subtask. This subtask

runs on processor P2 . Segments (16,19] and (19,22]
3 Schedulability Analysis are two different subtasks, T1,4 and T, 5 , because they

access different remote resources. They run on P2 and
We now describe how to choose the priorities P3 respectively. The segments (10,16] and (22,24] are

for subtasks and determine their worst-case response mapped onto T1,3 and T1,6. They are both on P1.

times. We confine our attention to the case where
tasks are periodic and their subtasks are assigned fixed T proc pi ;-,j Segment
priorities. However, the subtasks of each task may be T, 1 P 50 6 1 2(R1) 3
assigned different priorities. Ti, 2 P2 50 5 2(R 2) 1(R2 , R3) 2(R2)

Figure 1 gives the pseudo-code description of the T1,3 P1 50 5 5
end-to-end scheduling procedure. T, 4 P2 50 3 3(R 2)

T, 5 Ps 50 3 3(R 4)
Step 1 : Map the given task set to an end- T,_ P 50 , 3 3
to-end task set

Table 3: Example 2 - Subtasks Assignment
Following the rules below, Step 1 breaks up each

task Ti in the given task set into a chain of ni subtasks
Tij in the corresponding end-to-end task set : Step 2 : Assign priorities to subtasks

1. Each subtask Tj is either a critical section that Several methods can be used to assign priorities.
requires some remote resources or a segment that Rate-monotonic assignment is a possible choice. Other
requires no resource or only local resources. If a choices include

20

RI R2 R3 R2 R2 R4IA .. u I//A .
0 2 4 6 8 10 12 14 16 18 20 22 24

I! T j proc Pi I II Segments II
Ti P1 50 25 11 1 2(RI) 1 3 1 2(R 2) I l(R2, R3) I 2(R2) 1 5 3(R2) (R4) 3

Figure 2: Example 2 - Task T,

Global-deadline-monotonic assignment: the pri- and SBP can be used in this case. Furthermore, we
ority of a subtask is based on the global rela- can obtain the worst-case blocking timef1id for each
tive deadline, Di, the deadline of the task T,; the subtask Ti . Consequently the worst-case response
shorter Di is, the higher priority Tj has. time cij for each subtask can be computed accord-

* Effective-deadline-monotonic assignment: the ing to the following equation. The derivation for this

priority of a subtask Tij is chosen based on sub- equation can be found in [5.

task's effective relative deadline. The effective rel- -jT,,H,,, rk,i +1,'
ative deadline EDj of Ti, in a task T with ni cjj = 1 - T..IEH: Uk, (1)
subtasks is:

i _In this equation Hi, is the set of subtasks that (1) are
- ri, k on the same processor as T,,, (2) are of different tasks
k=j+1 than T, and (3) have priorities equal to or higher than

Ti, must complete at EDj units of time after T T,,. Hj is a subset of Hi, in which every subtask

is released in order for Ti as a whole to complete has a higher priority than Ti,. uij is the processor

in time. utilization factor of Ti . Again, ,ij is the maximum
blocking time Tij can experience. For both PCP and

Table 4 lists the priorities of subtasks in Example 3 SBP, fi can be approximated by MAX(Sk,j), where

with their priorities assigned based on their effective Sk, is the maximum duration of critical sections for

relative deadlines, all possible T,, that (1) is on the same processor as
Tj and (2) has lower priorities than Tij.

Ti proc i I pi Tr'

T1,1 P1 31 50 6 Step 4: Check schedulability for the whole
T1,2 P2 36 50 5 system
T1,3 P 41 50 5
T1, 4 P2 44 50 3 From the results obtained in previous step, the
T1,1 P3 47 50 3 worst-case response time for T can be obtained by
T, 6 P 50 50 3 summing up all response times of its subtasks:

Table 4: Example 2 - Priority Assignment Based on Ci = Zcij (2)
Subtasks' Effective Deadlines

If Ci > Di, where Di is the relative deadline of task

Step 3 : Determine the worst-case response Ti, we report failure for this task set. If all tasks pass

times for subtasks this test, we report success.

After Step 2 we have a set of subtasks on each pro-
cessor, in which (1) every subtask requires either no 4 Conclusions
resource or local resources and (2) every subtask has
a fixed priority. Resource-access-control protocols for In the previous section we present a procedure for
single-processor systems can be used to prevent dead- applying the end-to-end approach to scheduling tasks
locks and uncontrolled priority inversion. Both PCP with shared resources in a multiprocessor system and

21

analyzing the schedulability. In order to make this ap- the results to obtain a global solution. This merit
proach practical, some formulas need to be improved leads to a reduction in the complexity of the resource
and problems which may arise in practice need to be contention problem.
addressed. For example, the upper bound for worst-
case response time given by Eq. (1) sometimes is not
satisfactory, especially for subtasks with low priori- Acknowledgements
ties. A method based on time-demand analysis has
been developed to give a much tighter bound and will This work was partially supported by NSF contract
be presented in a future paper. No. NSF MIP 92-22408 and US Navy ONR contract

Another practical problem arises when we fix the No. N0001492J1815. The authors thank all mem-
subtasks' phases to enforce the execution precedence bers in Real-Time Systems Laboratory at University
among them. In order to make the modified phases of Illinois for many informative and inspiring discus-
consistent and meaningful in a multiprocessor or dis- sions, in particular, Too-Seng Tia for many in-depth
tributed system, clocks on all processors have to be discussions about MPCP model.
strictly synchronized, which can be difficult to achieve
in practice. We can allow some clock drift among
processors, provided that the drift is within a max- References
imum limit of 6 time units. Extra 6 time units can be
added to the worst-case response time for each subtask [1] L. Sha, R. Rajkumar and J. P. Lehoczky, "Priority
obtained in the previous section, and the execution Inheritance Protocols: An Approach to Real-Time
precedence relations among subtasks will be safely en- Synchronization". IEEE Transactions on Comput-
forced. ers, Vol. 39, No. 9, September 1990.

Another solution to this problem is to use dynamic
phasing for subtasks instead of static phasing used in [2] R. Rajkumar, Task Synchronizaton I Real- Time
this paper. In other words, a subtask can be triggered Systems, Kluwer Academic Publishers, Boston
to start as soon as its previous subtask finishes. We 1991.
are currently working on the schedulability analysis [3] T. P. Baker, "A Stack-Based Resource Allocation
for such systems. Policy for Real-Time Processes". Proceeding of the

An alternative way to map tasks to subtasks is to 11th Real-Time Systems Symposium, pp. 191-200,
map all critical sections, both for local resources and 1990.
for remote resources, into subtasks. The resultant task
system has end-to-end processing not only across pro- (4] R. Rajkumar, L. Sha and J. P. Lehoczky, "Real-
cessors but also within each processor. A study in (6] Time Synchronization Protocols for Multiproces-
has shown that schedulability analysis for end-to-end sors". Proceeding: Real- Time Systems Symposium,
processing within a processor is possible and promis- pp. 259-269, 1988.
ing. We are currently studyir the schedulability anal- (5] R. Bettati, "End-to-End Scheduling to Meet Dead-
ysis for such systems. lines in Distributed Systems". Ph.D. thesis, De-

In this paper we assume that all resources accessed partiment of Computer Science, University of lii-
in one nested critical section must be on the same nois at Urbana-Champaign, March 1994.
processor. This assumption in general can be overly
restrictive. We will address this problem from the [6] M. G. Harbour, M. H. Klein, and J. P. Lehoczky,
point of view of both resource access control and "Timing Analysis for Fixed-Priority Scheduling of
task/resource assignment. Ideally we want to assign Hard Real-Time Systems", IEEE Transactions on
resources to processors to minimize the number of Software Engineering, Vol. 20, No. 1, pp. 13 - 28,
nested critical sections that access resources on more January 1994.
than one processor.

In many ways, the end-to-end scheduling approach
can be viewed as a divide-and-conquer approach: it di-
vides the problem by mapping the given task set onto
an end-to-end task set where each processor becomes
relatively independent. It then resolves the local re-
source contention on each processor. Finally combines

22

Appropriate Mechanisms for the Support of Optional Processing
in Hard Real-Time Systems *

N. C. Audsley, R. I. Davis, A. Bums and A. J. Wellings.

Real-Time Systems Research Group, Dept. of Computer Science, University of York, UK.

Abstract cannot be provided at the expense of reduced predictability
It has been recognised that future hard real-time [4], a two-tier view of scheduling is taken:
systems need to be more flexible than current e initially, offline guarantees are given to hard

scheduling theory permits. One method of increasing processes, providing a guaranteed minimum service;

flexibility is the incorporation, at run-time, of optional * then, on-line guaranteed execution time is provided

components into processes with hard deadlines. Such for additional components at run-time without

components are not guaranteed offline, but may be violating the guarantees made offline.
guaranteed at run-time if sufficient resources are The first tier is provided by fixed priority scheduling
available. This is achieved by providing mechanisms (rapidly becoming a de facto standard in hard real-time
within the kernel for run-time monitoring of spare systems): scheduling theory is now available for the

processor capacity and its subsequent assignment to sufficient analysis of complex process sets [2]. The second
requesting processes. This paper examines these tier utilises the inherent spare processor capacity at run-
mechanisms within the context of fixed priority pre- time to provide additional, guaranteed execution time, to
emptive scheduling, requesting hard processes. Within this approach, the

following issues become apparent:

1. Introduction * appropriate programming models to express
additional components;

The next generation of hard real-time systems need to be * identification of spare capacity at run-time;
flexible, adaptive and able to exhibit intelligence. This is * assignment of spare capacity to requesting processes.
contrary to the relatively inflexible and static approaches Many programming models have been proposed, e.g. the
enforced by scheduling theory and kernel design today: Imprecise Model of Liu et al [101 and the Unbounded
both must advance before such flexibility can be realised Model of Audsley et at [3]. However, the discussion of
in applications. such models is beyond the scope of this paper. The rest of

One method of achieving improved flexibility is the this paper discusses kernel mechanisms to support the
provision of optional components, not afforded offline identification and assignment of spare capacity at run-
guarantees, but executed at run-time if sufficient resources time to requesting hard processes within fixed priority
are available. Classically, such components are embodied pre-emptive systems.
in soft real-time processes, executed when no guaranteed We assume that the kernel, as opposed to application
(i.e. hard) process is runnable. It is our contention that processes, is responsible for the identification and
greater flexibility and utility is obtained by permitting assignment of spare capacity at run-time. This is in-
critical processes to request time for optional components keeping with Rushby's view that a kernel for a safety-
[4]. Such components may be bounded and need to critical system should contain any mechanisms whose use
complete once started or be guaranteed a minimum time by one application process may affect another application
(unbounded or bounded). Under these circumstances it process which is crucial to the overall operation of the
becomes apparent that we require the ability to guarantee, system [I 1]. In contrast, it is assumed that the demand for
at run-time, execution time for optional components. spare capacity is application process oriented. Amongst

The focus of this paper is upon kernel mechanisms to competing processes, a kernel policy decides, at run-time,
provide guaranteed execution time for optional to which process spare capacity is assigned.
components of hard processes within fixed priority pre- The remainder of this introduction details our
emptive systems. terminology. Section 2 describes mechanisms for on-line

Assuming that in safety-critical systems on-line detection of spare capacity. Kernel level representation
guarantees of execution time for optional components

* This work is supported, in part, by the UK Science and Engineering Research Council, grant number GR/H 39611.

0-8186-5710-3/94 $3.00 0 1994 IEEE

and management of detected spare capacity are discussed of basic blocks would detect gain time as in Haban's
in section 3. Implementation issues are discussed in approach.
section 4, with section 5 offering our conclusions. The property of both these approaches is that gain time

is detected after it has been generated, at a relatively
1.1 Teinolo y coarse granularity. In general, we wish to be aware of

spare capacity as early as possible (implying a finer
execution time (WCET) C,, deadline D, and is invoked at detection granularity than Haban's or Dix's approach): the
periods defined by T (for sporadic processes T is the sooner it can be determined, the sooner it can be usefully
minimum inter-arrival time). The set of processes with utilised.
higher priorities than , is given by hp(i), the set of Consider the following program fragment:
processes with equal or lower priority than t, is given by IF condition THEN 16 units ELSE 4 units F1

lp(i). The set of higher priority levels than i is given by If the condition holds, the WCET of the statement is 16
hpl(i), with the set of priority levels equal to or lower units, otherwise 4 units. However, WCET analysis will
than i is given by lpl(i). have calculated that the WCET of the statement is 16
2. Identification Of Spare Capacity units. Hence, if the else clause is executed, 12 units of

gain time will become apparent. The earliest place that
Given the need to provide 100% deadline predictability for this gain time can be detected is after the condition has
hard processes, it is inevitable that the processor and other been determined, prior to execution of the else clause.
resources will be under-utilised at run-time. This occurs Here, a gain point is inserted into the code. This takes the
for many reasons (3], including pessimistic WCET form of a software trigger, informing the kernel of the
analysis, hardware speed-ups (e.g. cache, pipeline) etc. gain point value via a system call (to the kernel). Where
We term the resources not required at run-time as spare the gain point has a fixed value it is termed static.
capacity. Two forms of spare capacity may be identified: This approach can be extended for other control-flow

Gain Time - processor time guaranteed to a crucial language constructs. For example, in languages suitable
process offline but not required at run-time. for hard real-time systems a maximum loop count is
Slack Tine - processor time not utilised by declared at compilation time. When the actual number of
guaranteed executions at run-time. iterations is known (either prior to loop entry or on loop

Since gain time has been guaranteed offline as part of a exit) a dynamic gain point can be declared whose value is
crucial process's WCET, if it is assigned to another equal to the number of iterations not required, multiplied
process at run-time, the latter inherits the guarantee by the WCET of the loop body.
afforded to the original process. Section 2.1 discusses a We note that gain time, in general, is detected sooner
mechanism for the detection of gain time. In general, a using gain points than in either Haban or Dix's approach.
guarantee cannot be afforded to a process assigned slack Further uses of gain points, for other common language
time (since it was not necessarily guaranteed to a process structures, are given in [1]. The gain point approach is
offline). However, mechanisms exist which relax this applicable to both sporadic and periodic processes.
restriction. One example is discussed in section 2.2. Gain points (i.e. code for calculating the value and

2.1 Gain Points: making the kernel call) are inserted automatically during
A Mechanism for the Detection of Gain Time compilation or WCET analysis. However, it remains

Several approaches have been proposed which facilitate possible that a rogue process could report more gain time
the detection of gain time. Haban et at place software than detected (possibly causing failure if that gain time is
triggers at the end of basic blocks in process code to guaranteed to a requesting process). To detect this, when a
measure actual execution time [8]. This is then compared gain time call is made the kernel evaluates the condition:
with the pre-determined WCET of the block to calculate Ci > gj + .+ cT', + v (1)
gain time. In a similar way, Dix et al allow the insertion where g is the gain time detected by , so far in its
of milestones into process code [7). When the milestone is current execution; A is the actual execution time used so
reached the maximum remaining execution time of a far by the current execution; cs" is the WCET of the
process is communicated to the kernel. The motivation of process code from the gain point to completion (calculated
the milestone is to declare the point in its computation during WCET analysis and parameterised within loops); v
where it has completed its major computation (i.e. only is the amount of gain time reported by the call. If
has housekeeping functions remaining), although it could condition (1) does not hold, the amount of gain time
be used to detect gain time: milestones inserted at the end reported by the process is erroneous.

24

Note that gi +A is the WCET of the process up to the d,(t) - the next deadline of an invocation of t, (if the
gain point and c'""+v the remaining WCET after the current invocation is complete then
gain point. dQ)= x, (t) +D);

This approach can be extended to permit the effects of c, (t) - the remaining (worst-case) execution time of
pipelines and other processor accelerators to be monitored, the current invocation of i.
Assuming that the condition (1) holds, the amount of gain Note that xi (t) and d (t) are measured relative to time t.
time due to these hardware features is given by: The exact amount of slack time available at priority

e =C1-(g 1+A+ci""+v) level i in [t,t+d,(t)) whilst guaranteeing 'r meets its

Thus, the actual gain time recorded by the kernel is e+v. deadline can be found by viewing the interval as
Implementation is discussed in section 4. comprising a number of level i busy and idle periods (i.e.

2.2 The Approimate Slack Stealer: periods where processes of priority i or higher are
A Mechanism for the Detection of Slack ime executing or not, respectively). Any level i idle time in the

A ecansmfo te etctonOfSlckTie interval can be swapped for r. comptiowthu
Assuming that gain time is detected on-line via gain te dedline to e putation without

points, the only remaining spare capacity is slack time, causing dl tie i fo be missed. A lower bound on this

which occurs dynamically at run-time if the utilisation Of level i idle time is found by obtaining an upper bound on

the system is less than 100%. Conventionally, slack time the time processes r, Ehp(i)uri require in [tt+di(t)) .

cannot be guaranteed to processes. However, recent The maximum computation that -r, performs in the
research has shown that a proportion of the available slack interval is given byl:
time can be guaranteed to requesting processes at run- lj(t,d(t)) = cj(t)+fj(t,di(t))Cj +
time. Essentially, at any time, the amount of processor
time that can be stolen immediately from hard processes is min(Cj,(d(t)-xj(t)- fj(t,d(t))Tj)o)
calculated, whilst maintaining the offline guarantees given Where fj(t,dj(t)) is the number of complete invocations
to those processes: the execution of hard processes is of 'I in
postponed, allowing other non-guaranteed executions to o it't+dj(t)):

occur. The amount of processor time that can be stolen is fj(t,dj(t)) =(d(t)_x,(t))1T °
termed the slack.

The Optimal Slack Stealer algorithm relies on a pre- Thus, 1 (t,d,(t)) comprises three components: T,
computed table to define the slack present at each computation outstanding at t; fj(t,d(t)) complete
invocation of each hard process (9]. The method suffers invocations of r, and a partially complete final
two drawbacks: only periodic processes were considered; invocation. A lower bound on the level i slack at time t,
the size of the table is, in general, non-polynomial. These S(t), is given by:
problems were addressed by the Dynamic Slack Stealer
[51, which enables the amount of slack available to be S (t)=di t)- 1 t dj(t))
calculated on-line: at time t, the amount of slack at
priority level i is equal to the amount of time not required To enable the assignment of available slack time to

by processes hp(i)'; before the next deadline of ' 1 " The requesting processes, we must ensure that all hard
amount of slack that be guaranteed to a process at priority processes still meet their deadlines. Hence, the maximum
level i is the minimum slack at priority levels lpl(i) 151. amount of slack that can be guaranteed at priority level i
This approach has non-polynomial complexity - (i.e. assigned to a requesting process) is given by:
inappropriate for use within the kernel. S.'(t) = nm S(t)

Based upon the Dynamic Slack Stealer, a class of on- VJGIp(O)
line Approximate Slack Stealing algorithms can be The approach is applicable to periodic and sporadic
derived. These have been shown to be more effective than processes. In general, the complexity of the approach is
bandwidth preserving algorithms [6). 0(n) for determining the slack at one priority level and

At any point in time, Approximate Slack Stealing 0(n 2+n) for determining the slack at all levels. It is noted
algorithms provide a lower bound on the slack time that the latter is bounded, therefore appropriate for use by
available (i.e. for a given interval, the slack detected is the kernel. Approximate Slack Stealing algorithms have
less than or equal to the exact amount of slack). We now been explored further by Davis [61. Implementation issues
provide the derivation of one such algorithm. The are discussed in section 4.
following are assumed available from the kernel at time t:

x,(t) - the earliest possible next release of I (x)0 represents max(xO): its minimum value is thus 0.

25

3. Management Of Spare Capacity Note that when the Approximate Slack Stealing

In this section show how the spare capacity detected by the algorithm is executed, the value of c(t) is required. The

two mechanisms can be integrated into a joint framework management approach adopted above implies that since

to allow efficient assignment to requesting processes. gain time is held separately to slack time, the value of

3.1 Representation of Spare Capacity c,(t) used when calculating slack is given by:
3.1 Repsuetatio the Svalue Cacty, dt) (t)t an: C, -A
We assume that the values x,(t), d5(t), A4, S5(t) and 8 This management approach increases context switch
are held by the kernel, together with, g,, the amount of time by a bounded amount, O(n) in the number of hard
gain time assigned from priority level i during the current processes.
execution of ,. Thus, the storage requirements are O(n)in the number of processes. 3.3 Assigning Spare Capacity

Given the management of spare capacity as described
3.2 Management of Spare Capacity Tuples above, the assignment of spare capacity to requesting
Since gain time has been guaranteed at a particular processes becomes relatively straightforward. Consider
priority level by offline feasibility analysis, in general, it hard process Ti requesting additional computation time at
must be utilised in preference to the normal execution of a time t before its deadline at t+d (t). A number of sources
lower priority process. Otherwise, one of the fundamental of guaranteed spare capacity may be checked, including:
assumptions of fixed priority feasibility analysis, that (1) check gain time at priority level i (if gi >g, then gain
processes execute as soon as possible, is violated with the time is available for assignment);
possibility that guaranteed deadlines may be missed. Also, (2) check gain time at priority levels hpl(i);
values of S,(t) must be updated as time progresses: if t i (3) check gain time at priority levels jE Ipl(i) where
executes, the amount of slack available at hpl(i) must be d(5d()
decreased by the amount of execution of by 'r,.Theed undeyig mnagementissuei of correcty o(4) check slack time at priority levels lpl(i) (i.e.The underlying management issue is of correctlyevlae70)
ageing spare capacity. This can be achieved by modifying evaluate S;(t));
the fundamental principle contained in the Priority (5) if the time at which the slack at priority levels lpl(i)
Exchange algorithm [121: if gain time exists at priority was last calculated is prior to t, we may check for the
level i when % completes, the gain time at priority level i possibility of additional slack by recalculating the
is moved to priority level i-I. slack for priority levels lpl(i), then repeating (4).

Whilst updating of available gain time and slack time Clearly, more than one of the above can be used in the
could occur every time unit, the overhead would become provision of spare capacity to a single request.
large (without hardware support). Alternatively, updates The complexity of (1) is O(1). In general, the
could occur whenever a demand for spare capacity is complexity of (2), (3) and (4) are O(n), with (5) being
made. However, this would require that the kernel record 0(n 2 +n). A fast decision can be made using (1), with
the executing processes and the amount of time they greater cost incurred by the other approaches, although a
executed since the last update. This is complex since, greater amount of gain time may be found with an
potentially, many invocations of the guaranteed processes associated increased chance of being able to honour the
may occur. The approach adopted in this paper is to request for spare capacity.
update the spare capacity at a context switch or request for An O(n) approach for guaranteeing an amount of
spare capacity (other approaches are given in (I]), computation before an arbitrary deadline (i.e. not

At an update, let the executing process be ;,, with the necessarily the deadline of the requesting process) is given
elapsed time since the previous update be E (, will be the in [141.

only executing process in this interval). To update the After spare capacity has been assigned, adjustments to
available spare capacity, the kernel must: the available spare capacity must be made. If gain time at

(1) decrease the available slack at hpl(i) by E; priority level i is assigned, g, is increased; if slack time at

(2) if Ti has completed, increase the slack at levels priority level i is assigned, the available slack at lpl(i) is

lpl(i) by g, -g, and set g8 =0 and 8>--0. decreased.

Note, if the processor was idle in the interval since the last 4. Implementation Issues
update, the slack at priority levels lpl(l) is decreased by E. It has been argued that the requirement for small and

By using the above rules, the guarantees associated bounded kernel overheads precludes the use of complex
with gain time and slack time are maintained, without on-line scheduling techniques f131. It is the authors'
causing deadline failure of other processes. contention that to provide increased flexibility via re-use

26

of spare capacity requires relatively complex, but bounded, process blocking), precedence constrained processes; and
on-line kernel algorithms to be employed. The reliability process release jitter.
of the kernel should not be affected if it is constructed Currently, the mechanisms described within this paper
using the same engineering procedures as employed are being incorporated into the DrTEE hard real-time
during the application software life-cycle. The kernel. The initial results indicate that the feasibility of
fundamental issue is not one of on-line complexity, but of processes is not unduly affected by using these
being able to guarantee the feasibility of processes offline. mechanisms, with the ability to re-use spare capacity at
Hence, the use of on-line scheduling must minimise any run-time adding to the amount of computation time
effects it has upon process feasibility, available to hard processes at run-time, so improving the

The number of gain points inserted into process code utility and flexibility of the resultant system.
can be high. Ideally, their insertion should not affect the References
feasibility of a process by increasing its WCET. This isnotalwys ossbleunless some gain points are omitted. IIl Audsley, N. C. "Flexible Scheduling of Hard Real-Time
not always possible Systems". Dept. of Comp. Sci., Univ. of York. UK. D.Phil.
However, overheads can be reduced by only inserting gain Thesis. (1993).
points whose value will be at least the cost of the gain 121 Audsley, N. C., burns, A., Richardson, M. F., Tindell, K. W.
time kernel call. In this case, some gain time will be and Wellings. A I "Applying New Scheduling Theory to Static

detected late, although will show up as an efficiency speed Priority Pre-emptive Scheduling". Soft. Eng. J. 8, (5): 284-292.
(1993).up next time a gain point kernel call is made. Now, 131 Audsley, N. C., Burns, A., Richardson, M. F. and Wellings, A.

assuming that all processes are feasible, any gain points J. "Incorporating Unbounded Algorithms Into Predictable
not originally inserted could now be placed into process Real-Time Systems". Comp. Sys. Sci. and Eng. 8, (3): 80-89.
code whilst the system remains feasible. Alternatively, (1993).
gain time could be reported at a context switch or request (41 Bums, A. and Wellings, A. "Criticality and Utility in the Next

for spare capacity (i.e. at an update - see section 3.2)[1]. Generation". Real-Time Sys. 3, (4): 351-354. (199 1).
(51 Davis, R. I., Tindell, K. and Bums, A. 1993. "Scheduling Slack

The execution of the Approximate Slack Stealing Time in Fixed Priority Pre-emptive Systems". Proc. IEEE Real-
algorithm need only occur when insufficient spare Time Sys. Symp., pp. 222-231. (1993).
capacity is available for outstanding requests. Then, the (6] Davis. R. 1. "Approximate Slack Stealing Algorithms for Fixed
algorithm is only executed if sufficient spare capacity Priority Pre-emptive Systems". Dept. of Comp. Sci., Univ. of

ealgorithm York, UK. YCS 217. (1993).
exists to execute the algorithm itself. Thus, the feasibility [71 Dix, A., Stone, R. F. and Zedan, H. S. M. "Design Issues for
of processes is not affected by executions of the algorithm. Reliable Time-Critical Systems", Proc. of Workshop on Real-
We note that the algorithm can also execute instead of Time Sys., York, UK. (1989).
idling the processor. [81 Haban, D. and Shin, K. G. "Application of Real-Time

Whilst the above reduces the effects of spare capacity Monitoring to Scheduling Tasks With Random Execution
Times". IEEE Trans. on Soft. Eng. 16, (12). (1990).

detection and assignment upon the feasibility of processes, (91 Lehoczky, J. P. and Ramos-Thuel, S. "An Optimal Algorithm for
some other overheads must be taken into account, e.g. Scheduling Soft Aperiodic Tasks in Fixed Priority Pre-emptive
spare capacity updates. The approach of section 3.3 Systems", Proc. IEEE Real-Time Sys. Symp., pp. 110-123.
implies that additional information must be collected and (1992).
stored at run-time. Also, the manipulation of the run [10] Liu, J. W. S., Lin, K. J., Shih, W. K., Yu, C. S., Chung, J. Y.

and Zhao, W. "Algorithms for Scheduling Imprecisequeue may become more complex when a process is Computations". IEEE Comp., May: 58-68. (1991).
assigned spare capacity at a different priority level to its [11] Rushby, I. "Kernels for Safety?" pp. 310-320 in Safe and
own: the effects of this can be reduced by, for example, Secure Computing Systems, Anderson, E. T. (ed). (1987).
restricting a process to spare capacity at one priority level [12] Sprunt, B., Lehoczky, J. P. and Sha, L. "Exploiting Unused
other than its own. Periodic Time For Aperiodic Service Using the Extended Priority

Exchange Algorithm". Proc.IEEE Real-Time Sys. Symp., pp.

S. Conclusions 251-258. (1988)
[13] Stankovic, J. A. and Ramamritham, K. "What is Predictability

This paper has illustrated how optional components, not for Real-Time Systems?". Real-Time Sys. 2, (4): 247-254.
guaranteed offline, can be guaranteed computation time at (1990).
run-time (if sufficient spare capacity is available). Spare [14] Audsley, N. C., Burns, A., Davis, R. 1. and Wellings, A. J.
capacity is detected by the Gain Point mechanism and the "Integrating Fixed Priority and Best Effort Scheduling", Proc.

Approximate Slack Stealing algorithm. The management Workshop on Real-Time Programming, Lake Konstanz,

of detected spare capacity has been described, enabling its Germany, June 1994.

efficient assignment to requesting processes at run-time.
The approach described can be extended for more flexible
process characteristics (1,5,61, e.g. resource sharing (i.e.

27

A Linear-Time Online Task Assignment Scheme for Multiprocessor

Systems

Almut Burchard Yingfeng Oh **, Jrg Liebeherr **, Sang H. Son

• School of Mathematics Computer Science Department

Georgia Institute of Technology University of Virginia
Atlanta, GA 30332 Charlottesville, VA 22903

Abstract In this study, we are concerned with developing an
efficient heuristic algorithm for scheduling a set of pe-

A new online task assignment scheme is presented riodic tasks on a multiprocessor system. The general
for multiprocessor systems where individual proces- solution to such a problem involves two algorithms:
sors execute the rate-monotonic scheduling algorithm, one to schedule tasks assigned on each individual pro-
The computational complezity of the task assignment cessor, and the other to assign tasks to the processors.
scheme grows linearly with the number of tasks, and In the following, we only consider multiprocessor sys-
its performance is shown to be significantly better than tems where each processor executes the RM scheduling
previously existing schemes. The superiority of the algorithm.
assignment scheme is achieved by a new schedulabil- For the assignment of tasks to processors, one dis-
ity condition derived for the rate-monotonic scheduling tinguishes offline and online algorithms. If the entire
discipline. task set is known a priori, the scheduling method is

referred to as being offline, otherwise it is said to be
online. The task assignment scheme presented here

1 Introduction belongs to the class of online algorithms.
Since real-time systems often operate in dynamic

Rate-monotonic (RM) scheduling is becoming a and complex environments, many scheduling decisions
viable scheduling discipline for real-time systems. must be made online. For example, a change of mis-
Through the years, researchers have successfully ap- sion may require the execution of a totally different
plied this discipline to tackle a number of practical task set. Or the failure of some processors may render
problems, such as task synchronization, bus schedul- a re-assignment of tasks necessary. In these scenar-
ing, joint scheduling of periodic and aperiodic tasks, ios, the entire task set to be scheduled may change
and transient overload [4, 9]. This is done through dynamically, that is, tasks must be added or deleted
developing various scheduling algorithms to cope with from the task set.
situations that are not covered by the rate-monotonic Previous work on this problem illustrates the trade-
algorithm, off between computational complexity and perfor-

While rate-monotonic scheduling is optimal for mance of heuristic task assignment schemes. The com-
uniprocessor systems with fixed-priority assignments, plexity of an algorithm is given by the upper bound
it is, unfortunately, not so for multiprocessor systems. of the time required to schedule a set of K tasks. The
In fact, the problem of optimally scheduling a set of performance of task assignment schemes is evaluated
periodic tasks on a multiprocessor system using ei- by providing worst case bounds for N/Nps, where
ther fixed-priority or dynamic priority assignments is N is the number of processors required to schedule
known to be intractable [6]. Hence, any practical so- a task set with a given heuristic method, and N,,t is
lution to the problem of scheduling real-time tasks on the number of processors needed by an optimal assign-
multiprocessor systems presents a trade-off between ment. Bounds for the existing schemes are determined
computational complexity and performance. Heuris- by limN.,,-. N/Npt.
tic algorithms have been shown to deliver near-optimal Davari and Dhall presented an online task as-
solutions with limited computational overhead. signment algorithm with a computational com-

28
0-8186-5710-3/94 $3.00 0 1994 IEEE

plexity of O(K) and a performance bound of and the maximum execution time of task ri satisfy
limN.._,oo NIN., = 2.28 [2]. Oh and Son devel-
oped two scheduling algorithm in [8). The algorithms Ti > 0, 0 < Ci <T, = 1, ... , k

have a time complexity of O(K log K), and worst case We will refer to
performance bounds of limN.,,-.. N/N., = 2.33 and U, = C,/T as the loadfactor of the
2.66, respectively. In both studies, the authors ap- i-th task, and to U = FEj U as the total load of the

ply variants of well-known heuristic bin-packing algo- task set. We define a to be an upper bound for the

rithms where the set of processors is regarded as a set load factor of any task, i.e., >_ maxl<i<K U . p,

of bins '. The decision whether a processor is full denotes the utilization of the n-th processor, that is,

is determined by a schedulability condition. All as- the sum of the load factors of the tasks assigned to

signment schemes in [2, 8] are based on the sufficient processor n. Tasks are grouped into M classes, and

schedulability condition for uniprocessor systems de- only tasks from the same class can be assigned to the

rived in [7] and its variants, e.g., [3]. Thus, these as- same processor.

signment schemes differ mainly in the choice of the Next we present a new sufficient schedulability con-

bin-packing heuristic. dition for a processor that schedules tasks with the

Our approach for developing a task assignment RM algorithm. The result, presented in Theorem 1,

scheme for multiprocessor systems is different from is a simple modification to the schedulability condi-

previous work. Rather than increasing the level of so- tion for uniprocessor systems by Liu and Layland [7].

phistication of the bin-packing heuristic, we have de- Our condition yields a higher utilization of the proces-

veloped a tighter schedulability condition that allows sor if the task periods satisfy certain constraints. On

us to assign more tasks to each processor [1]. If the pe- a uniprocessor system, Theorem 1 does not provide a

riods of tasks are sufficiently close, we could show that significant improvement for scheduling real-time tasks.

each processor can be almost fully utilized. Based on For multiprocessor scheduling, however, we can divide

the new schedulability condition we present a novel a large task set into subsets in such a way that we

online scheme for assigning task to a multiprocessor can make use of the sharpened condition on all but

system. The complexity of our assignment scheme is possibly M processors.

given by O(K) and the worst case performance bounds The schedulability condition presented in the fol-

is shown to be limN.,,.oo N/Nopt = 1/(1 - a), where lowing theorem takes advantage of a special property

a is an upper bound for the load factor of any single of the RM scheduling algorithm. We show that we

task. can increase the processor utilization if all periods in
a task set have values that are close to each other. The
proof of the theorem can be found in [1].

2 Task Model and Schedulability Con- Theorem 1 Given a real-time task set T",..., TK.

dition For i =1,...K, define

We assume that the real-time computer system con- Si := logT i, - 1log 2 TJ and (1)
sists of an homogeneous multiprocessor system and a max Si - min Si (2)
set of K real-time tasks. The multiprocessor and the 1<i<K l<i<K

task set are characterized as follows. A task set with P < 1 - 1/K can be feasibly sched-
A real-time task is denoted by i = (Ci, T) (i = uled by the Rate-Monotonic algorithm if the total load

1,..., K). T denotes the shortest time between two satisfies (3). The condition is tight.
requests of task ,, and is referred to as the period of
n. C(denotes the maximum execution time of task U < (K - 1) (2 /(K - 1) - 1)+ 2 1- - 1 (3)

r,. Since we assume that the multiprocessor system
is homogeneous the execution time of r. is identical
on each processor. Each request for a real-time task Note that the condition given by (3) is tighter than the
must complete execution before the next request of the one given by Liu and Layland [7] under / < 1 - 1/K.
same task. Thus, in the worst case, the execution of

i must be completed after Ti time units. The period Corollary 1 Given a set of real-time tasks Tl,..., T"(.
If the total load satisfies U < max{in2, 1 - #In2},

'The bin-packing problem is concerned with packing then the task set can be scheduled on one processor,
different-msed item into fixed-sized bins using the least -umber where /f is as defined above in (2).
of bins [5].

29

3 An Online Task Assignment Scheme Theorem 2 Ifa task set is scheduled by Algorithm 1,

then the number of processors needed satisfies (5) and

Our new scheme is based on the schedulability con- (6). Inequality (5) is tight ifa < (1 - In2/M)/2, and
dition of Theorem 1. The parameter used for the inequality (6) is tight if a > (1 - In2/M)/2.
scheme, M, denotes the number of processors to which U
a new task can be assigned. Recall that tasks are di- N < 1 - In2/M - + (5)
vided into M classes. The class membership of a task
r is determined by the following expression: N < 1 - In2/M + M (6)

" Ilog2 (T) - [log2 ()) + 1 (4)
L =Proof. The schedulability condition used in Step 2 of

Each processor is assigned tasks from only one class. Algorithm 1 enforces that at any instant, the load on
Thus, at each processor the value of 6 as defined i- all processors but the M current processors exceeds
(2) is bounded above by 1/M. For each class, the both 1 -In 2/M - a and (1 -In 2/M)/2. 0
scheme keeps one so-called current processor. If a new Coroliary 2 Let {1i I i = 1, 2,... be a given infinite
task from class m is added to the task set, the scheme task set. Denote by U(k) the sum of the load fac-
first attempts to accommodate the task to the current tors of the first k tasks. Denote by NM(k) the num-
processor for class m. A complete description of the her of processors used by Algorithm 1, and by Npt(k)
algorithm for assigning a task r = (C, T) is given in the number of processors used by an optimal scheme.
Algorithm 1. If lirr--,o U(k) = oo then we obtain the asymptotic

In Algorithm 1, adding a new task r = (C, T) is bounds (7) and (8). The bounds are tight.
accomplished in the following manner. First, the class
membership of the new task r (Step 1) is determined. lim > max ji - ln2/M - , 1- 1n2/M}
If r can be added to the current processor of class m k .o NM(k) 2
without violating the schedulability condition it is as- Nm(k) 2 (7)
signed to this processor. Otherwise, r is assigned to an lim < min
empty processor. If the load factor of r is sufficiently k-oo N.pt(k) -n2/M- - ln2/M
small (Step 4), the processor to which r is assigned be- (8)
comes the current processor of class m (Step 5). If the
load factor of r is large, no other task will be assigned Proof. We obtain both (7) and (8) by passing to the
to this processor (Step 7). limit in (5) and (6). 0

From the derived bounds we see that the performance
of Algorithm I is sensitive to the selection of M, the

Global functions: number of task classes. The asymptotic bounds in
curr(m) : Returns current processor for class m. (7) and (8) improve for large values of M. However,
newproc 0) Returns index of an empty processor. M also determines the number of current processors,
Add (r =(C, T)) i.e., processors which are not fully utilized. Next we

1. m := [M (log2 (T) - Llog 2 (T)J)J + 1; present a method for selecting an appropriate value of

2. if (Pc .rr(m) + CIT < 1 - In 2/M) then M for in equations (5) and (6).
3. Pcurr(n) := Pcurr(m) + CIT; Assume that the total load of the task set is known.
4. else if (CIT < Pcurr(m)) then To find the value of M that gives the best worst-case
5. curr(m) := newproc(; Peurr(m) := CIT; bound for the number of processors in (6), we fix the
6. else value of U in (6). Since the right hand side of (6) is
7. z := newproco; p. := CIT; a strictly convex function of M, we can calculate the
8. endif unique minimum which is denoted by M*:

M' -- V2Uvn 2 +I In 2 (9)

Algorithm 1. Online Task Assignment. This suggests that we should choose M ,- v11. Then
we obtain

The performance bounds of our scheme are given I - ln2/M
in Theorem 2 and Corollary 2. Corollary 2 states the U/N> - - MIN) - 1/2 - 0(lU)
a. ymptotic bound. (10)

30

and hence NINopt !5 2 + O(I/1/'U) (11)

Similarly, we can minimize the right hand side of (5) T U0 -1
over M and obtain that the optimal choice for M V110

should be as close as possible to 40 I -(M
-- uSdw(=1O)
.+-Nn Sdwme1 20)O/ Ifn 2 + In 2 --N k* *(.}_

- (12) le" 1 - a j y

0D

0

If we choose M - -VU, we obtain with (5) the follow- 2%

ing bound for the average utilization at each processor. 2
E

U/N > (1-in2/M'-a)(1-M/N) U-.- 1-c-O(1/v/rU). Z15

(13) t

and N/Np is given by

NINop, < 1/(I - a) + o(11VUT) (14) 0
100 2 00 0W a 0 a 800 90D 10%

4 Average-Case Performance Evalua-
tion of the New Scheme Figure 1: Task Sets with a = 0.5.

While a worst-case analysis assures that the perfor- References
mance bound is satisfied for any task set, it does not
provide insight into the average-case behavior of the [1] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. Assigning

assignment scheme. To gain insight into the average- Real-Time Tasks to Homogeneous Multiprocessor Systems.

case behavior of Algorithm 1, we conduct some simu- Technical Report CS-94-01, University of Virginia, Com-

lation experiments. puter Science Department, January 1994.

Our simulations consider large task sets with 100 < (2] S. Davari and S. K. DhalU. An On Line Algorithm for Real-
Time Allocation. In IEEE Real- Time Systems Symposium,

K < 1000 tasks. In each experiment, we vary the value pages 194-200, 1986.

of parameter M, the number of task classes. The task [3] S. K. Dhall and C. L. Liu. On a real-time schedul-

periods are assumed to be uniformly distributed with ing problem. Operations Research, 26(1):127-140, Jan-
values I < T < 500. The execution times of the tasks uary/February 1978.
are also taken from a uniform distribution with range [4] J. D. Gafford. Rate-Monotonic Scheduling. IELE Micro,
0 < C' _5 T/2. Thus, a, the maximum load factor pages 34-39, June 1991.
of any task, is given by a = 1/2. The performance [5] D. S. Johnson, A. Demers, J. D. Uliman, M. R. Garey, and

metric in all experiments is the number of processors R. L. Graham. Worst Case Performance Bounds for Sim-

required to assign a given task set. ple One-dimensional Packing Algorithms. SIAM Journal of

We compare our scheme with the o. ine assignment Computing, 3:299-325, 1974.

W opeuscheme bywiavartand h [2], NF-M.ecall thg t [6] J. Y.-T. Leung and J. Whitehead. On the Complexity
scheme by Davari and Dhall [2], NF-M. Recall that of Fixed-Priority Scheduling of Periodic, Real-Time Tasks.
NF-M also has linear computational complexity. The Performance Evaluation, 2:237-250, 1982.

outcome of the simulation experiments is shown in [7] C. L. Liu and J. W. Layland. Scheduling Algorithms

Figure 1. Since an optimal task assignment cannot for Multiprogramming in a Hard Real Time Environment.
be calculated for large task sets, we use the total load Jotrnal of the ACM, 20(1):46-61, January 1973.

K
(U = Ei= Uf) to obtain a lower bound for the num- [8] Y. Oh and S. H. Son. On-line Task Allocation Algorithms

ber of processors required. The maximum number of for Hard Real-Time Multiprocessor Systems. Submitted for

task classes is set to M = 10, 20, 30, respectively. Each Publication.

data point in the figure depicts the average value of [9] L. Sha and J.B. Goodenough. Real-time Scheduling Theory

15 independently generated task sets with identical and Ad. Computer, pages 53-6, April 1990.

parameters. Note that for all values of M, our scheme
gives superior performance over the existing one.

31

Session III:
General

Chair: Mike Jones
Microsoft

Constructing a Heterogenoues Real-Time System

Sias Mostert
Department of Electrical and Electronic Engineering

Stellenbosch University
Stellenbosch, 7600, South Africa
email : mostert@firga.sun.ac.za

Abstract tion of hardware and software diversit can be cost
effective.

The construction of a real-time system on heteroge- The contribution of this paper is showing that the
neous hardware platforms, forces one to make choices emphasis on simple solutions throughout provides an
on which programming language, operating system, environment which is better suited for developing de-
development process and application programmers in- pendable real-time systems. Simple programming lan-
terface to use. The application (a micro-satellite) re- guages, operating systems, development lifecycles and
quirements state that the system must be dependable application programmer interfaces all form part of the
in a remote and harsh environment such as space. This proposed solution.
paper will detail the choices made and the experience The simple solution is important for the verification
gained from living with the choices made in the devel- and validation of the complete system. Further more,
opment of a micro-satellite and its associated ground the nature of the project environment causes us a 50%
support. The emphasis is on simple solutions through- manpower turnaround every year '. The maintenance
out. The simple solution is important for the verifica- of the software must not take more than 20% of the
tion and validation of the complete system. man hours available.

The paper will begin by describing the hardware

1 Introduction and software required for the application domain.
Each of the areas in which a decision had to be made
will be discussed in turn with all the options avail-

The construction of a real-time system on heteroge- able, the final choice made and the reasons for doing
neous hardware platforms, forces one to make choices so. The paper will close by reporting the experience
on which programming language, operating system, we have had with our approach to constructing a het-
development process and application programmers in- erogenoues real-time system.
terface to use. One has the option of going with main
stream products or considering products with features
of specific relevance to the application.

The application (a micro-satellite) requirements 2 The application requirements
state that the system must be dependable in a re-
mote and harsh environment such as space. This re-
quirement in addition to the heterogeneous platforms The application software is for the space- and
found in the space and the ground segment of the mi- ground segments of a micro satellite constellation.
cro satellite, complicates the choice of a development The micro satellite is a 45cm cube box, weighing in
environment and target executable environment, at 50kg. The strict mass and power budgets places

This paper will detail the choices made and the constraints on the flight control hardware which has a
experience gained from living with the choices made in profound effect on the computing resources available.
the development of a micro-satellite and its associated The real-time system of interest run on the space seg-
ground support. This project has been running for two ment and the supporting ground segment.
years and is entering the software intensive phase.

Heterogenoues computing implies increased cost. It 'Graduate students are taken in every year and graduate

has however been shown in (1] that a careful applica- after two years

34
0-8186-5710-3/94 $3.00 © 1994 IEEE

2.1 Hardware platforms The language of choice for the space based reliable
software is Modula-2 with small sections of Assembly

Traditional dependable hardware for use in space, language in such cases as working without a stack be-
is in the form of Triple Modular Redundancy (TMR). fore the memory integrity has been determined.
Each similar module is of high cost due to the relia- Modula-2 provides the following advantages.
bility encased in it.

The less expensive alternative is to have heteroge- 1. It is more readable for people with less software
noues hardware modules to increase fault tolerance training. This aides in maintenance and the fact

and resistance to failure [1]. In our micro satellite the that most of our staff have limited training.

processors are an Intel 80C188EC, 80386SL and an
INMOS T800. 2. It is stricter than C and C++ in its syntax which

In any space based system, the ground support adds makes it more difficult to induce unintended er-
another dimension to heterogeneity, because it being rors. The stricter syntax also aides in the verifi-
accessible for repair and the power budget infinite, it cation and validation process, making it easier tocreate reliable software.
does not have to be the same architecture as the space
segment. 3. Compilers are available for all our microproces-

2.2 Software composition sors.

The levels of reliability required from software in
the application domain ranges from ultra reliability 4 Operating System

to acceptance of an error once per 30 days. The table
in fig 1 summarizes the software functions and the The requirements placed on the Operating Sys-

reliability required. tem is different for the space and ground segments.
The space segment hardware resources are costly and
bounded by power and mass budgets. The ground

3 Languages segment hardware resources are for all purposes un-
bounded.

There has been numerous reviews and comparisons The requirements for the space based operating sys-

of languages suitable for real-time applications (2, 3]. tem are support for process dispatching, inter process

It all cases it was argued that mainstream languages communication, synchronization, loading and unload-

such as C, Pascal, Ada, Modula-2 etc. were not suit- ing of process sets, support for interrupt handling and

able for the construction of real-time systems. time functions. The implementation of these require-

From the available commercial real-time operating ments on different processors leads to the choice be-

systems [4] one can deduce that C and C++ are be- tween software diversity and -homogeneity.

ing used extensively for real-time applications. From The cost effective use of software diversity is ex-

our experience C is not more than a glorified assem- plained in detail in [1]. It amounts to using soft-

bler and is to be avoided for dependable software. In ware diversity on the kernel level where it can be af-

the favor of C is that is by far the most widely imple- forded and no software diversity on the application

mented compiler on different hardware platforms. level, where it is expensive. Due to the fact that our

The following requirements dictated our language software on the kernel level is reloadable in the final

choice: space segment component, it was decided in the in-
terest of development time to choose one operating

1. Most of the Software Engineers are Electronic En- system kernel for the current software support.
gineers with limited training in Software Engi- The space segment processors require an efficient
neering. Operating System Kernel in order to make best use

of the resources. There are many such kernels on the
2. The project staff join the project for at most two market [4], which all support priority based schedul-

years at a time. ing.

3. Most of the flight software has to be very reliable. Deadline driven scheduling is optimal when com-
pared with rate monotonic [5], and deadline driven

4. Most of the flight software is to be maintained scheduling specifies end to end deadlines more suc-
across a five year time span. cinctly.

35

Software component Hardware support Reliability required
Boot loader Fusible link PROM No errors
Default application EPROM No errors
Household and Integrity Tasks SRAM with EDAC One error per 30 days
Operating System Kernel SRAM with EDAC One error per 30 days
Device drivers SRAM with EDAC One error per 30 days
Fine ADCS Application SRAM One error per 30 minutes
Bulletin board Application SRAM with EDAC One error per 30 days
Experimental Software SRAM with EDAC One error per orbit

Figure 1: The software functions and the reliability required

It was decided to go with a simple kernel supporting neer to concentrate on the task and not the idiosyn-
deadline driven scheduling [6]. The specific paradigm crasies of the different kernels on the different proces-
was proposed by [7] and we are using an implementa- sors.
tion done by [8], calling it RTXN.

The requirement for the uploading and unloading
of application task sets, are to be supported through 6 Software development processes
the concept of Virtual Machines (VM). Each VM will
represent a hardware resource or percentage of hard- The diverse range of reliability requirements on the
ware resource. The executing code of a VM can be software necessitates a flexible approach to software
completely replaced without affecting any other VM. development. We have opted to support the water-
Multiple VMs are to run on each processor in the space fall development model with the extension of rapid
segment with each VM representing a percentage of prototyping before the software requirements phase is
the underlying resource available. Within each VM complete.
the RTXN kernel will be executed on which the ap- The flexibility is built into the waterfall model by
plication task set can be executed with real-time con- requiring the outputs of the different stages to be
straints guaranteed. checked only for specific types of software. See table 2

The ground segment processors are in such abun- for the types of software and the associated checks
dance that it was decided to support the resource ad- which must be performed on the output of each stage.
equate paradigm (9]. Each application on the ground The are strict standards in place for the following
would run on its own processor (80x86 PC). The outputs:
penalty to pay for this approach is a communication
mechanism which must be maintained between pro- 1. Software requirements document.
cessors. 2. Software design document.

3. Software testing document.

5 Application Programmers Interface 4. Software coding standards.

In order to provide access to a unified architecture In addition the design languages are pinned down to
acris space and ground segments an Application Pro- enable faster inter- engineer communication. The de-
grammers Interface (API) is required. This API is sign languages can be split in two groups ie. structural
called the SUNSAT-API (SSAPI) and is defined as the and behavioral. The table in fig 3 lists the options
simplest subset of functions required for the parallel available under each of the groups.
execution of processes in a Hard Real-Time environ- The structural design languages are aimed at arriv-
ment. ing at reusable software and specifies the way in which

The SSAPI supports only those functions as men- the software is to packaged. The behavioral design
tioned in section 4 and is described in detail in [10]. languages specify how the software is going to behave
The same SSAPI is also supported on the ground seg- in multiple dimensions, which include the state, the
ment, which enables the Application Software Engi- execution flow and the timing characteristics.

36

Development phase
Type of software output Requirements Concept design Detail design Coding Install
Hardware debugging * *

Subsystem testbed * *
Hardware demonstration software * *

Flight software * * * * *
Ground station software * * * * *
Porting an existing software * * * * *

Figure 2: The application of the Waterfall development lifecycle to various types of software

Structural design languages Behavioral design languages
Modular decomposition Flowcharts or pseudo code
HOOD (High Order Object Oriented Design) Statecharts
Software topology SSAPI dataflow diagrams
Hardware topology

Figure 3: Structural and Behavioral Design languages

7 Results 6. The resource adequate strategy for the ground
station is proving that every single application

The results up to date is promising. We have pro- developer can go ahead regardless of any other
gressed one year with the initial testing of the method- person. This facilitates true concurrent engineer-
ology on small pilot projects within the major project ing and simplifies the checking for adhering to
and found the following: hard real-time requirements.

1. The choice of Modula-2 (and Pascal substituted
in some cases) as programming language has in 7. The choice of going with a simple, non-
fact enabled the new intake of engineers to get up commercial kernel has not proved us wrong yet.
speed in a shorter period of time. The simplicity ensures that one person can un-

derstand the complete kernel which ensures corn-
2. The boot loader code has gone through the re- plete transparency through the kernel when iram-

quirements, conceptual and detail design phases, plementing on a specific hardware platform. -

with formal checks on the output of each phase

and we have a greater confidence in its correctness
than any other piece of software on the project.

3. We have found that the proper execution of the 8 Conclusion

requirements and conceptual design phases did
take about 70% of the time, but that the coding We have had to make many choices for implement-
was in fact a formality. ing a Real-Time System on a heterogeneous platform.

Neither the programming language nor the operating
4. For non-ultra reliable software we found that it systeere isrminrabutge ble th atith

is adequate to proceed with the design until the system kernel is mainstream, but we believe that the

module interface level. The additional time spent penalty paid for it (lack of support)will provide the

on detail design did not provide any additional return in ease of maintenance in the long run.

benefits in saving time for the reliability required. We have finished our initial investigation into the
suitability of the paradigm explained and we are pro-

5. The SSAPI is proving to be of great benefit as ducing software for our first integration of the Engi-
more than one person is working on the software neering model based on the paradigm selected. On
for the same processor. The common design lan- completion, the paradigm will be evaluated before the
guage has definitely saved on man hours support- actual flight software is produced in the latter part of
ing the execution environment. 1994 and the beginning of 1995.

37

Acknowledgements

The SUNSAT team responsible for the pilot
projects include Pieter Bakkes, Mike Blankenberg,
Jurie du Toit, Herman Gouws, Rein Brune, Ian de
Swardt and Louis Jordaan.

References

(1] Sias Mostert. Hardware and Software Diversity
for a Fault Tolerant Space Data Management Sys-
tem. Technical Report SUDEE-2/93, University
of Stellenbosch, Stellenbosch, South Africa, De-
cember 1993.

[2] Wolfgang A. Halang and Alexander D. Stoyenko.
Constructing Predictable Real Time Systems.
Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1991.

[3] Phillip A. Laplante. Real-time Systems Design
and Analysis. IEEE Press, 1993.

[4] Martin Timmerman. RTOS Issue II. Real Time
Magazine, 93(4):6-104, December 1993.

(51 C. Liu and J Layland. Scheduling algorithms
for multiprogramming in a hard-real-time envi-
ronment. Journal of the ACM, 20:46-61, 1973.

[6] Richard K.J. Henn. Feasible Processor Allocation
in a Hard-Real-Time Environment. Real-Time
Systems, 1(1):77-93, June 1989.

[7] Kevin Jeffay. The Real- Time Producer/Consumer
Paradigm: Towards Verifiable Real-Time Com-
putations. PhD thesis, University of Washington,
September 1989.

[8] Marius Ackerman. A kernelfor temporally correct
reactive systems. M thesis, University of Stellen-
bosch, 1993.

[9] Harold W. Lawson. Cy-Clone: An Approach
to the Engineering of Resource Adequate Cyclic
Real-Time Systems. Real- Time Systems, 4(1) :55-
84, March 1992.

[10] Sias Mostert and Pieter Bakkes. An architecture
supporting dependable real-time systems. Tech-
nical Report SUDEE-1/94, University of Stellen-
bosch, Stellenbosch, South Africa, January 1994.

38

Using SDL in Embedded Systems Design:
A Tool for Generating Real-Time OS pSOS based

Embedded Systems Applications Software

Ye Huang Michael Hughes

R&D and Consulting
Anonymix Inc. Los Gatos, CA95030

E-mail: yhuang@anonymix.com

Abstract systematic and engineering displinary methods and
techniques should be employed to produce quality and

In this paper, we present an efficient method us- cost-effective software system.
ing Specification and Description Language (SDL) for
designing and implementing real-time embedded sys- Significant improvements have been made since
ems. We also discuss the implementation of a com- then in many fields that ensure the software systems

panion kernel for a SDL base.s Design Tool (SDT) I with better quality in a controlled and cost-effective
CASE tool environment to generate real-time OS based manner thanks to the research efforts in the software
pSOS 2 multi-tasking application software by apply- engineering, methodology, and computer-aided soft-
ing defined mapping translation rules. Since SDL is ware engineering envrionment. Many fairly sophisti-
a formal specification and description language, with cated and large CASE tools exist, such as Teamwork,
the CASE environment SDT support, the major part Statemate, and ER-Designer 141, which assist the sys-
of a system can be analyzed, simulated, verified, and tern designers and developers in continuing improv-
validated at early stages during system development. ing the quality and productivity of documentation and
The concurrency due to the multiple concurrent state code.
machines in a system is preserved in target run-time
environment. Because the SDL described system uses The traditional real-time embedded systems devel-
message-passing, a distributed version can be rela- opment methods emphasize memory and speed by
tively easy to derive from. To emphasize the proposed handcoding the software systems in assembly lan-
method using SDL without dramatically compromising guages.
the memory and response time (speed), we show the
results obtained from pSOS implementation of an Ac-cessControl system. We also outline some areas that With the increasing performance of processors and
wearcontinuinsto. Weor oin shardware devices, memory and speed are less impor-tant. Thus the hardware technology has led to widely

use mixed development of software systems. The ma-
1 Introduction jority of the software systems is developed on the host

development environment in high-level programming
language, such as C or C++. Assembly code is still

1.1 Eveloving Software Development needed for some certain time-critical tasks and device
Methods for Embedded Systems drivers and interrupt routines.

Software system design and development has long Object-Oriented techniques and methodologies fur-
been regarded as art rather science or engineering. ther improve the real-time embedded systems design
The term Software Engineering was formally coined and implementation in terms of software reusability,
at a NATO conference in 1968, which signalled that quality, documentation, and classification [5]. Object-

ISDT is a trademark of TeleLOGIC AB. Oriented CASE tool environements have played major2 pSOS is a trademark of Integrated System Inc. role in this new trend.

39
0-8186-6710-3/94 $3.00 0 1994 IEEE

1.2 Current Methods with CASE Tool in the telecom and datacom sectors, especially in Eu-
Support and Our Approach rope. Moreover, this proven technology for the sys-

tems specification and design has been evolving grad-

The following steps are not uncommon for the cur- ually. SDL92 is more object-oriented.
rent embedded systems design and implementation: The methodology for using SDL and SDT in de-

signing and implmenting software systems for the real-
Step I : Requirement analysis time embedded systems is similar to that for the tele-

corn software system as outlined below
Step 2 : Specification and design

Step I : Requirement analysis (Message Sequence
Step 3: Implementation Chart)

* Host simulation and debugging Step 2 : System Specification (SDL)

* Target simulation and debugging Step 3: Semantic and dynamic system analysis

Step 4 : Testing (and may iteratively goto Step 1) Step 4 : Simulation, verification, and validation

There are a number of problems among the exist- Step 5: Code generation

ing CASE tools used today, such as informality, non- Step 6: Testing (conformance testing)
analysibility, and non-validatability, to name a few.

Aside from the confusion of different notations for Step I through Step 6 are supported by SDT.
those methods, most of them are based on preprotary Various SDL techniques have been studied and ex-
formalisms and lack mathematic foundation needed eprienced successfully, and broad literature can be
for system consistency analysis, verification, and vali- found [8] (71 [1] [?]. We will mainly discuss the code
dation. generation for the embedded system since the soft-

There tends also to be a gap between design and ware systems for the embedded systems have some
implementation. Design is automated to certain de- unique characteristics that are often not required by
gree, but implmentation is conducted separately and other types of applications, namely, time-criticality,
often manually. The implication is that the implemen- response time, and fast I/O processing.
tation is not ensured due to the discontinuity between To meet such kinds of operational requirements,
the design and implementation. two types of philosophy are instrumental in the de-

The next factor that hinders the software systems sign process:
prototyping and implementation for the embedded * Build software system on top of a commercial
systems is coding and debugging. Even using increas- real-time operating system
ingly sphisticated host development environments, de-
velopers are often overwhelmed in coding at the API * Build software system along with a self developed
level (C or C++ lanaguage). The debugging only oc- kernel
curs after downloading the cross-compiled system onto
the target. Then the usual nightmare is that signifi- Depending upon the applications and desired embed-cant time is spent on deep-level dubugging. Though, ded system configuration, these two approaches are

alternately used or interleaved. For instance, a dis-
sometimes, host simulation and debugging are pro- tributed embedded system's front end agent does not
vided,have real-time OS, but the some large nodes and host

Our primary focus is try to emphasize the suitabil- have ealt e Sltite s
ity of SDL in embedded systems specification and de- nodes employ the real-time OSs.sign. Secondly, we tried to bridge the gap between When building around an existing real-time OS, we
design and implmentation by mapping out rules and describe a model and SDT to automatically generate
algorithms to automatically generate the final target the target code that fully utilizes the real-time OS
algorithms to scheduling, memory management, and time manage-

enironmen ce.n sment capabilitie. For the latter approach, we augu-
SDL is a well-known specification and description ment the model by adding additional scheduling algo-

language standardized by ITU 3 as Z. 100 (1] (2]. Its rithms to the generic SDT kernel to fit a particular
successe and popularity are still growing, especially application.

3 ITU stands for International Telecommunications Union Critics have been questioning automatic-code gen-
previously called CCrTT. eration in terms of the quality of code, size of the code,

40

speed of systems with regard to response time to criti- Step I: Define the system architechare (configuration
cal device requests and interrupts. We have conducted of hardware and software);
some initial analyses based on an AccessControl sys-
tem generated for a M68K systems rnning pSOS. Step : Define he interface between the software y-

The following are major highlights from our expe- tem and hardware system in terms of interrupts
rience: and device drivers;

Step 3: Model software system using SDL and hard-
* Code size overhead: 1.3-1.5:1 ware interface in the environment either using

* Code quality: No debugging efforts for the major- SDL or unix processes as separate systems;

ity of system except for the interrupts and device (Note: the hardware device drivers and interrupt
driver part and interface part during the final in- routines in assembly level language can be devel-
tergation, oped simutanously.)

Step 4: Use the SDL modelling techniques to proto-
Systems maintenance and reusability are much easier type, simulate, validate, and test (conformance
now due to the fact that we are dealing with the most test) the system under design;
part of the software system at a high level - specifica-
tion and design. Step 5: Generate target code when Step I through

Research efforts are onging on the use of SDL for Step 4 completed by compiling and linking the
system specification and design. Some researchers proper shared library, i.e. library for taregt real-
have proposed notations and supporting systems try- time OS or without target real-time OS;
ing to bridge the gap between requirement analysis (Note: test suites also can be generated automat-
and specification. To a certain degree, the design spec- ically for unit or system test.)
ification can be automatically produced from require- Step 6: Use proper target debugging environement to
ment specification [9]. tes the interate dedgingemionemen t

Obviously, this method along with the tool sup- test the integrated embedded system on the tar-
port provides us with better system maintainability, get systems; and
tracibility, and other benefits, such as testibility. Step 7: Depending on necessity, perform some man-

ual code optimization for certain critical tasks.

2 SDL based Approach Overview In this suggested method, Step I through Step 4

are relatively well understood and deployed. Step 5

2.1 Overview through Step 7 are of interest to us here in paper.

2.2 Tool configuration for target code
The SDL based software modelling technique is not generation

new. The language was standardized in 1988 as Z.100
and it is still evolving. The current SDL92 is a su- In SDL, system behavior is described by state ma-
perset of the SDL with object-orientation extension, chines each representing a SDL process. Communica-
which is al&- ralled object-oriented SDL. tions mechanisms among the blocks and processes are

SDL was created for modelling large and complex realized by signalling (i.e. sending and receiving mes-
distributed real-time telecommnication software sys- sages). The time constrains are imposed by setting
tenis. Substantial experiences have been gained in us- timers. The code generated from SDL design imple-
ing SDL for the system specification and validation. In ments a complex finite state machine (FSM) compris-
many cases, real imrlementation code was generated ing many concurrent FSMs communicating via signals.
and deployed. Figure 1 shows the SDT tool configuration with ex-

Many methodologies based SDL have been pro- tension for generating pSOS target code.
posed and employed [1] [7] [6] for the systems spec- For many embedded systems, there are some special
ifications and design. We will omit the mature and issues, such as concurrency (multi-tasking), synchro-
common set of the procedures and stress those issues nization, fast multiple I/O processing, and interrupt
specially related to embedded systems, such as target handling.
code generation and systems integration. SDT has a generic kernel for both host" environ-

The following steps are suggested for modelling and ment simulation, validation, and verification and tar-
implementing an embedded system: get envrionment with some minor patching in clock

41

3.1 SDL Systems Semantics and Its Exe-
cution Model

six For continuity, we only revisit the definition and
key aspects of the model and its semantics. Refer
[11 and [8] for detailed description. SDL is based on

1 Goods,0- the concepts of a system of communicating extended
SftidDateUb] finite-state machine (CEFSM) that comunicate with

Ma" M Ub one another and their common environment by sig-
caNe nals in an asynchronous manner via possibly delaying

Unker Ocommunication paths. These signals are buffered on
arrival at a process.

MW An SDL specification represented by a execution
or do model comprises seven meta-process types. These

processes are Communicating Sequential Processes
(CSP), and thus they communicate using synchronous
events. These meta-processes are: (1) system
The only instance of this meta-process type creates

Figure 1: SDT tool configration with extension for all other meta-processes and maintains them; (2)
generating pSOS real-time OS based software systems: delaying-path One instance of this process type fordashed-lined component each communication path between processes of the

SDL system; (3) global-time The entity knows the

current global time; (4) view The only instance of this
and memory management handling. The SDT sched- process type keeps track all viewed variables; (5) sdl-
uler is priority oriented with granularity to the state process An instance of this meta-process type repre-
transition. The synchronization among processes is sents a process; (6) input queue An instance of this
realized through signalling. meta-process type represents the input queue of a pro-

For embedded systems without real-time OS, a cess; (7) timer An instance of this meta-process type
generic SDT is privided by SDT CASE tool. The gen- represents a timer of a process.
erated code from the SDL design can run with the
SDT kernel. If there are special domain requirements 3.2 Mapping Rules and Trasformation
to the OS, the current SDT scheduling algorithm can Algorithms
be modified, such as time-slicing and pre-emption.

When generating code for embedded systems with When formulating mapping rules and transforma-
Real-Time OS support, such as pSOS, the system de- tion algorithms to transform a SDL system onto a
signed in SDL will be transformed into the designated real-time OS system, such as pSOS, the rules to fol-
target real-time OS based software system. The map- low are: (1) preserve SDL dynamic semantics; (2)
ping rules and transformation algorithms are main- identify RTOS objects to realize SDL objects; (3) im-
taied in the pSOSlib. The current implementation plemetn additional software to augument the portions
maps the processes in SDL to a real-time OS tasks that RTOS does not support or best match.
and signals to messages. In our case, we map a SDL process to a pSOS task,

a input queue to a pSOS message queue. Due to some

The Mapping Model for Generating deficency between pSOS time management services
and SDL's, we implemented our own timer manage-

Real-Time OS based Code ment. When, some improvements on the time services
made, we are to use pSOS's for a tigher integration

The design for embedded systems without real-time which will reduce code size and fully utilize the pSOS
OS support has been briefly discussed in the previous kernel features. Because of the richer SDL communi-
section. We focus on the mapping rules and trans- cation properties, such as sending signal without spec-
lation algorithms to generate code for pSOS target ifying receiver PID, we implemented a relative concise
environment here 4. system.

4 Note:in the discussion followed, although pSOS is used, the
mapping rules are similar when applying them to other real-time OS environments such as VxWorks.

42

The view meta-process was not implemented con- Acknowledgements
sidering its side-effect on the code modularity and
reusability. Special thanks go to our colleagues Olle Hydbom

and Jan Karlsson at TeleLOGIC for their kind support
3.3 Opimization Issues and work in making changes in code generator. We

would like to thank Dong Parker and Manish Vadeya
To optimize the performance, we deliberately re- from Integrated System for the discussions with them

quire the SDL user to specify the receiving process and their comments and suggestions
PID. The idea is that no routing function needs to be
performed to search the receiver in a embedded envi-
ronment. However, we did implemented the full-SDL References
routing semantics for those who desire to use.

[1] Internaltional Telecommunications Union, "Func-
tional Specification and Description Language

4 Experiment Results and Analysis (SDL) Criteria for Using Formal Description Tech-
niques (FDTs)", Blue Book, IXth Plenary Assem-

We have used a classic example in the SDL litera- bly, 1988

ture [81 [61 AccessControl system to perform some pre-

limary performance analysis. Following are the major [2] Internaltional Telecommunications Union,
points to be discussed: "CCITT: Z120 Standard", Blue Book, IXth Pie-

* Outline of system requirements nary Assembly, 1988

" System description in SDL [3] Christina Groove, " Par-SDL code generation for
transputers," SDL Forum 1993, Gernmany, Oct,

" Measurements of generated pSOS application 1993, pp. 110-120
code [4] Alfonso Fuggeta, P. Milano, and Cefrifl, " A Clas-

* Runtime performance data analysis, such as sys- sification of CASE Technology", IEEE Computer,
tem call frequency, input queue length, and re- Vol.28, December, 1993, pp. 25-45
sponse time [5] Grady Booch, "Object-Oriented Design with Ap-

At the end of this section, some comparison data plications", The Benjamin & Cummings Publish-
analysis is expected And performance analysis for gen- ing Co., 1992
erated system with or without routine module is given.
We also report how the performance was improved by [6] Rolv Brak and Oystein Haugen, "SDL Method-
introducing a static-dynamic combined mechanism to ology", 4th SDL Forum Proceedings, Oct. 1993,
optimize the performance and maintain the SDL se- Germany, pp. 111-222
mantics. [7] Roberto Saracco, J. R. W. Smith, and Rick Read,

"Telecommunications Systems Using SDL", North

5 Conclusion and Future Work Holland, 1993

[8] Frenc Belina, D. Hogref, and A. Sarma, "SDL with
We think the method using SDL with the compan- Applications from Protocol Specification", Print-

ion tool to a large extent will improve the quality, lead ice Hall, 1992
time, and cost for engineering embedded systems.

However, there are other issues and areas to be fur- [9] Haruhisa Ichikawa, Masaki Itoh, June Kato, and
ther studied in this direction. The following list is in- Masashi Shibasaki, "SDE: Incrementatl Specifica-
tended to shed some light on what we feel that should tion and Development of Communications Soft-
be focused: ware", IEEE Trans. on Computers, Vol. 40, No.

" Automatic generating distributed applications for 4, April 1991, pp. 553-569

multi-processor architechure;

* Process-task grouping rules and realization

" Code optimization

43

Practical Formal Development of Real-Time Systems

S. P. Bradley W. D. Henderson D. Kendall A. P. Robson

Department of Computing
University of Northumbria at Newcastle

Newcastle-upon-Tyne, NE1 8ST, UK

Abstract plete route from a (timed) formal specification to a
verified implementation.

The complexities of real-time systems are such that The first goal of our project has been to provide a
it is often thought necessary to give a formal justi- means of producing a real-time system from its formal
fication of their correctness, especially if they are to expression in AORTA, as most of the existing theoreti-
be used in a safety-critical environment. In this pa- cal work covers the verification of a design with respect
per we describe our work on a formally based design to a formal specification. Work on real-time kernels
method for real-time systems which allows the timing has made advances in ensuring that processes will get
aspects of a concurrent system to be mathematically through their work as quickly as possible. Sometimes,
described and verified, as well as semi-automatically however, this is at the expense of making the schedul-
implemented. Our design language, AORTA, is a ing arrangements too complex to be able easily to
timed process algebra, with features to ensure that all provide reliable predictions about the performance of
designs can be implemented. A predictable real-time an interacting set of processes. Whilst priority-based
kernel is also described, which is used in the construc- scheduling algorithms may be provably optimal, it is
tion of a system from an AORTA design, and which not always optimality that is important - in particu-
allows the timing of the implementation to be verified. lar, predictability of time-critical systems can be cru-

cial. On this basis we have reverted to a very simple
yet predictable fixed time-slice round-robin scheduler,

I Background and motivation so that timing is easier to predict, as the performance
of each process does not depend on the performance of

There is much existing work on methods for real- others except at explicit communication or synchroni-
time systems, both on the theoretical aspects of veri- sation points. The efficiency sacrificed in using such
fying the correctness of a real-time system [1], and on a scheduling mechanism is balanced with the reduced
the practical ways of guaranteeing performance via a cost of developing a verified system; as hardware costs
real-time kernel (2], but little that links the two. If are relatively low compared with development costs,
practical formal techniques are to be found for real- we feel that this tradeoff is often justified.
time systems, then both high-level, more theoretical The kernel also provides sound, safe and predictable
aspects must be considered as well implementation communication primitives, based on Ada style syn-
performance issues such as scheduling. There is some chronous communication, which correspond directly
work which attempts to link the higher and the lower to the communication constructs in the AORTA de-
level, such as the implementation of formal models by sign language. Together with a timeout facility, this
compilation of (untimed) LOTOS [3, 4], or the over- provides a direct route to implementation, by C code
all system design methodology of the (non-formally generation from the AORTA design. Although the
based) MARS project [5], but we are not aware of any AORTA design only deals with the timing and inter-
work that addresses the practical design, implemen- communication of the processes, the sequential code
tation, and formal verification of a time-critical sys- within a process is included in a manageable way,
tem. In response to this apparent lack, we have devel- and the timing of non-generated code is verified by
oped a formal design language based on process alge- a combination of bounds on processing time of the
bra called AORTA (Application Oriented Real-Time code and the processing distribution figures available
Algebra) [6], with the specific aim of providing a com- for the kernel in [7).

44
0-8186-5710-3194 $3.00 © 1994 IEEE

2 The AORTA design language used instead. If our Convert process is to accept input
or allow its conversion mode to be changed, this would

Timed process algebras are widely known, but are be written
usually used for modelling or specifying real-time sys-
tems, rather than designing them. Our language, Convert in. (100 ,160) out . Convert
whilst having some features in common with timed +
(and untimed) process algebras, is distinguished by
its implementability. There are two main points of dif- where the reconfiguration procedure takes between
ference, the first being that the number of processes 300 and 400 milliseconds. If the data offered on the
within a system is constant throughout the lifetime out gates is also to be kept up to date then it may
of the system, making processor allocation, and hence need to be refreshed every 1.5 seconds or so, which is
computation times, easier to verify. Secondly, all tim- achieved by adding a timeout to the out communica-
ings in the design can be expressed as upper and lower tion:
bounds, rather than exact figures, as in reality bounds
can usually be given, where precise figures may not ex- Convert = in. [100,150)
ist. It is this representation of time bounds which is (out.Convert) [1450,15b0>Convert
most problematic in existing timed process algebras. +

In order to keep the model of the timing tractable, mode. [300,400] Convert
data within a system is not represented in AORTA, where 1450 and 1550 are estimates on the bounds
with all computation being represented only by the which can be placed on a timeout of about 1500 mil-
(bounds on the) amount of time required to complete liseconds.it. Within each process communication is represented lscns
by the name of the gate on which communication is The last construct which can be used in the defini-to take pace, anbo u e ae p on thch com caiont i tion of individual processes is a data-dependent choice,of time between both sides of the communication be- used where the flow of control of the process dependsing ready, to the communication actually taking place- on the value of some data in the system. Data is notProcesses are written in a simple equational format, modelled in AORTA, so this is essentially a nondeter-similar to that used in many other process algebras, ministic choice as far as the process algebra is con-A process written cerned. The choice between two possible behavioursis represented by ++, so that if our Convert process is
Convert = in. [100,150)out .Convert. to give a warning if the value that it finds is outside a

certain range, this would be written
will wait for communication on its in gate, before do-
ing some computation which lasts for between 200 and Convert = in. (Convert2 4+ varning.Convert2)
150 milliseconds (any time units, discrete or dense may +
be chosen for a design - [0.1,0.15] would be an equally mode. [300,400) Convert
valid expression) and offering communication on its Convert2 = [100,150)
out gate. Once this second communication has taken (out. Convert) [1450,1560>Convert
place the process will start again waiting for an in A system usually consists of the parallel composi-
communication. This is how a process which accepted tion of two or more processes; this is represented using
temperature data and converted it to a different for- the traditional process algebra bar 1, with a connec-
mat would be expressed. The bounds on communi- tion set showing pairs of gates which may communi-
cation times are given by a separate function which cate. This explicit connection of gates allows for a
takes a gate identifier and returns a time interval, more efficient implementation, and simplifies verifica-

A choice construct is provided, similar to the + of tion. The connection set is represented by pairs of gate
CCS and the select statement of Ada, which allows identifiers written in angle brackets after the processes
several possible communications to be offered. The of the system. A plant control system incorporating
future behaviour of the process depends on which is the Convert process with a Control process and a
completed first. Timeouts may also be defined, so Datalogger process, is written as follows:
that if none of the communication choices offered are
taken up within a certain time, then control passes to Tempsys =
another branch. Again, exact figures are not usually (Control I Convert I Datalogger)
available for occurrences of timeouts, so bounds are <(Control.changem,Convert.mode),

45

(Control.tmphighConvert .warning), list of timeouts to see if any have exceeded their time
(Convert.outDatalogger.gotdata), limit. By checking for communications and timeouts
connections between Control and Datalogger at every reschedule, bounds can be placed on the time

for a communication to take place once enabled, and
for a timeout to come into effect.

The ordering of the pairs of gates is not important, Communication primitives are offered by the kernel
and not all gates of the processes need be connected: as C functions which are called from the processes.
those left free will have to communicate with the envi- The calls to the kernel ar! generated automatically
ronment, like the in gate of our Convert process. Fig- from the design, along with the parameters of the ker-
ure 1 gives a diagrammatic representation of Tempsys. nel, such as the number of processes, and the gates

Most features of typical small embedded systems which are to be connected. Details such as the code
can be designed using this language: resource con- to be executed as part of a computation delay, the
tention can be handled with the choi, nnstruct, and data to be passed in the communication, and the con-
polling loops with a 'imeout. As wel ... allowing im- ditions for a data-dependent choice are attached as
plementation, AORTA has a formal semantics given annotations to the design. They have no interpreta-
in terms of a timed transition system, which allows tion in the formal semantics, where they are viewed as
formal reasoning to be done about the design, and the comments, but they allow the code to be included in
possible application of model-checking techniques such the correct place without having to edit the code gen-
as [8, 91. Space does not allow us to go into the details erated from the design. Putting the kernel together
of the semantics here, but see [6] for more details - with the generated code allows an implementation to
it remains now to show how AORTA designs can be be generated automatically from an annotated design.
implemented in practice. The pieces of sequential code still have to be hand con-

structed, but once written, their timing, and hence the

3 Implementation and the kernel timing of the whole system can be verified.

As the main point of the AORTA design language is
its implementability, we outline here the kernel which 4 Current and future work
we have written which allows AORTA designs to be
verifiably implemented. We mentioned earlier that we The work on providing a route from design to im-
have adopted a very simple approach to scheduling plementation is complete, so that a system can be built
in order to be able easily to verify the performance automatically from its design. Although all of the veri-
of each of the processes. This is achieved by using a fication methods are manually available, they have not
fixed time-slice round robin scheduler, where a fixed yet been integrated into a single tool. The verification
schedule of processes is executed on the kernel at a of an AORTA design will be addressed soon, but there
fixed frequency, so that each process has a guaranteed is currently a simulator tool, which allows a design (in-
amount of processing time per unit real time, unaf- cluding its timing) to be tested out by a user as the
fected by the performance of the other processes. For a first step in a verification process. It is hoped that
given amount of processing time required, bounds can existing formal verification methods (such as (8, 9])
be put on the amount of real time required, so that may be applicable. Figure 2 shows how the work fits
the timing of a piece of sequential computation can together: arrows going downward represent implemen-
easily be verified given the processing requirements of tation, arrows upwards verification; solid arrows indi-
that computation. Bounds on the computation time cate currently available routes, automated where ap-
required for a piece of code can be found using tech- propriate, and the dashed arrows represent possible
niques such as described in [10]. future pieces of work. Other implementation routes

At each scheduling point, the kernel checks through may be the subject of future work, such as distributed
the list of connected gates to see if there is a pair implementations or kernels based on other scheduling
which is ready; if there is then it effects the commu- mechanisms. One particularly interesting piece of fu-
nication, signalling to the processes involved that it ture work would be the integration of existing formal
has taken place, and disables communication on gates methods for developing sequential code (such as Z [11]
which were in choice with the successful gates. It then or VDM [12]) with AORTA, so that the timing of a
looks for possible external communications (on gates system and its functional correctness could be verified
that are left unconnected) before looking through the in a unified way.

46

in

changem mode

Control Convert out geldata Datalogger
temphigh~ warning

connections between Control and Datalogger

Figure 1: Connectivity of Tempsys

User Requirements-----------Formal Specification

'Simulate Write Design Write Design Design

Funciona Verfy 1 Functional

Fgr2:AORTA ihnareltmDesign methoolog

Coe7od

Acknowledgements [5] H Kopetz, A Damm, C Koza, M Mulazzani, W Sw-
abi, C Senft, and R Zainlinger. Distributed fault-

The authors would like to thank the University of tolerant real-time systems: The MARS approach.
Northumbria at Newcastle and Northern IT Research IEEE Micro, pages 25-40, February 1989.
for their financial support, and the anonymous review-
ers for their comments. [61 S Bradley, W Henderson, D Kendall, and A Rob-

son. An Application Oriented Real-Time Algebra.
Technical Report NPC-TRS-93-3, Department of

References Computing, University of Northumbria, UK, 1993.

[7] S Bradley, W Henderson, D Kendall, and A Rob-
[1] J S Ostroff. Formal methods for the specifica- son. A formally based hard real-time kernel. Tech-

tion and design of real-time safety critical sys- nical Report NPC-TRS-94-3, Department of Com-
tems. Journal of Systems and Software, 18(1):33- puting, University of Northumbria, UK, 1994.
60, April 1992.

[8] R Alur, C Courcoubetis, and D Dill. Model-
[2] A Burns. Scheduling hard real-time systems : a checking for real-time systems. In IEEE Fifth An-

review. Software Engineering Journal, 6(3):116- nual Symposium On Logic In Computer Science,
128, May 1991. pages 414-425, June 1990.

[3] I Tvrdy. From LOTOS to OCCAM. In Second [9 J S Ostroff. A verifier for real-time properties.
International Conference on Software Engineering Real-Time Systems, 4(1):5-36, March 1992.
for Real Time Systems, pages 175-179. The Com-
puting and Control Division of the Institution of [10] C Y Park and A C Shaw. Experiments with a
Electrical Engineers, September 1989. program timing tool based on source-level timing

schema. Computer, pages 48-57, May 1991.

[41 A Valenzano, R Sisto, and L Ciminiera. Rapid pro-

totyping of protocols from LOTOS specifications. [11] B Potter, J Sinclair, and D Till. An Introduction
Software - Practice and Experience, 23(1):31-54, to formal specification and Z. Prentice-Hall, 1991.
January 1993. [12] C B Jones. Systematic software development us-

ing VDM. Prentice-Hall, 1986.

48

Real-Time Communication in FDDI-Based Reconfigurable
Networks *

Wei Zhao, Amit Kumar, Gopal Agrawal,
Sanjay Kamat, Nicholas Malcolm, and Biao Chen

Department of Computer Science
Texas A&M University

College Station, Texas 77843-3112

Abstract critical issues must be addressed in order to achieve
We report our ongoing research in real-time com- this objective.

munication with FDDI-based reconflgurable networks. oe eThe original FDDJ architecture was enhanced an or- * Faut-tolerance capability mufst be enhanced.
de origina impro arciteue is eance d caaiit n ohile aWith the FDDI architecture, only one trunk linkdert m i a t nfault can be tolerated. Two trunk link faultsscheduling methodology, including message assign- cause the network to become disconnected. Fur-
ment, bandwidth allocation, and bandwidth manage- thermore, under the current standard, upon the
ment is developed to support real-time communication. tcerre, u l, the dtentistandreovery
As a result, message deadlines are guaranteed even in occurrence of a fault, the detection and recoverythe event of€ network fCaults, processes may take several seconds to complete.

This is too long to be able to satisfy message dead-

1 Introduction lines in many hard real-time applications.

Computer networks employed in mission-critical a Message transmission must be properly scheduled.
systems must meet stringent timing requirements Message scheduling includes the arbitration of
which arise due to the communication between real- network access for each node, and the control of
time tasks executing on different network nodes. In the length of transmission by each node. The
this paper, we report our work aimed at address- deadlines of messages can be met only if access ar-
ing issues related to fault-tolerant guarantees of syn- bitration and transmission control are performed
chronous message deadlines in FDDI-based networks, properly [17].
i.e., the transmission of messages before their dead-
lines, even in the event of network faults. The above issues are addressed in our project. In

FDDI is an ANSI standard [41 for a 100 Mbits/sec particular, we enhance the FDDI architecture in order
fiber optic token ring network. FDDI is a good can- to improve its fault-tolerance capability. Furthermore,
didate for mission-critical real-time applications, due we develop a scheduling methodology to ensure the
not only to its high bandwidth, but also to its prop- satisfaction of message time constraints. This work
erty of bounded token rotation time and its dual rinl complements previous work on the design of real-time
architecture. The bounded token rotation time [201 communication networks [1, 6, 7, 8, 9, 12, 13, 14, 19,
provides a necessary condition to guarantee hard real- 21, 23, 24, 25, 26]. For a recent comprehensive survey,
time deadlines, while the dual ring architecture allows the reader is referred to [171.
the maintenance of continuous real-time service under
some failure conditions. Several new civilian and mil- 2 FBRN: An Enhanced FDDI Archi-
itary networks have adopted FDDI as the backbone tecture
network. In particular, FDDI has been adopted by We have designed an enhanced network archi-
the Survivable Adaptable Fiber Optic Embedded Net- tecture called FDDI-based reconfigurable network
work (SAFENET) [18]. SAFENET is a military stan- (FBRN) [11]. An FBRN uses multiple FDDI trunk
dard for computer networks developed with the Navy's rings to connect network stations. Specifically, n sta-
Next Generation Computer Resources (NGCR) pro- tions are connected using r FDDI trunk rings. Fig-
gram. ure l(a) shows an FBRN with four FDDI trunk rings

Although indispensable, the bounded token rota- connecting four stations. Each station has certain re-
tion time and the dual ring architecture alone are in- configuration capabilities that provide an additional
adequate for guaranteeing message deadlines. Several level of fault-tolerance over that provided by the FDDI

wrap-UpI operation. In the case of (multiple) link
*This work wa supported in part by AFOSR under Grant

F49620-92-J-0385, ONR under Grant N00014-92-J-4031, and an 1An FDDI trunk ring can recover from a .sgle trunk link
Engineering Excellence Grant from Texas A&M University. fault by wrapping up its dual counter-rotating loops (3J.

49
0-8186-5710-3/94 $3.00 0 1994 IEEE

faults, our FBRN automatically detects the occur- time constraints are guaranteed. The methodology
rence of faults and recovers by reconfigurin; the trunk consists of the following components:
ring connections. This is achieved by judiciously re-
connecting the fault-free segments of those trunk rings line gaassignment method. To provide dead-
that could not be recovered by the normal FDDI wrap- line guarantees in theploit e muof trunk link
up operation. Figure 1(c) demonstrates the recon- faults, we have to exploit the multi-ring archi-
struction of such a trunk ring. tecture and the fault management mechanism.

Both analytical and simulation data show that our Note that once an FDDI trunk ring is disabled
FBRN can sustain a greater number of faults as com- due to faults, messages can only be transmitted
pared to an ordinary FDDI network. For example, an on other rings before the faulty ring is recovered.
FBRN consisting of 20 nodes and 4 FDDI trunk rings If all rings are fully utilized before the faults oc-
ean stillprovide, on average, 200 Mbps of transmis- cur, it is not possible to transfer message traffic
sion bandwidth even if the network has suffered more from a faulty ring to a non-faulty ring. Hence,
than 10 link faults. some of the messages will have to be dropped.

An FBRN can be implemented using existing FDDI We assume that when the network is in a faulty
concentrator technology. Each node in the FBRN net- state (i.e., some of the FDDI trunk rings are dis-
work consists of an enhanced concentrator through abled), only a subset of messages that are critical
which the multiple FDDI trunk rings pass. The con- to the mission will be transmitted. The dead-
centrator has the capability to reconfigure the con- lines of critical messages must be guaranteed at
nections (paths) among its various ports. A configu- all times, including during periods of fault detec-
ration monitor, resident on each FBRN concentrator, tion and recovery. The objective of this part of
uses this ability to route packets among the fault-free the study is to properly assign critical and non-

segments incident on the node. Further details critical messages to FDDI trunk rings so that theon FBzmN in cientthe de.u te r details deadlines of all messages are met when the net-
work is fault-free, and at least those of critical

"I N862 N8s3 N@64 NN6 messages are met when the network is faulty.
7.,.... A _ A- There are three possible methods for achieving

this objective:
- Fully redundant assignment. A possible so-

lution is to transmit each critical message
S-- - -over several rings so that when some of the

&"1 Ui W--*2 863 So&4 rings are not available, message deadlines
are still guaranteed because the messages are

(a): An FUN wih n--%. 4. transmitted via at least one available ring.
This solution is the simplest but it results in
wasted bandwidth when there is no fault.

-Dynamic reassignment. Another solution
is to dynamically reallocate the messages
from one ring to another once a fault is de-

'-- tected. This solution allows better utiliza-
' " '×tion of FDDI rings when there is no fault,

but cannot be applied to those applications
where the deadlines of critical messages are

(,): RemZofwaum by npiain FDM's ik fa,nmarnim. too small to tolerate any delays caused by
fault detection and dynamic reallocation.

-An integrated method. An alternative is to

combine the fully redundant method with
the dynamic reallocation method. Criti-
cal messages with small deadlines are as-signed to several rings, and dynamic reas-
signment is performed for other messages

R when a link fault occurs on one ring. This
method achieves better utilization of the

(c): lBidn-ezW B yfum-h uuusg awt network bandwidth than the fully redundant
method, while overcoming the shortcomings

Figure 1: FBRN Architecture of dynamic reallocation.

We are currently comparing and evaluating the
performance of these three approaches in terms of3 Scheduling Methodology their effectiveness in utilizing the network during

We develop a methodology for scheduling message both normal and faulty conditions, and in terms
transmissions in an FBRN network so that message of their run-time overhead.

50

B Bandwidth allocation method. of the queue are long, messages in the later part

Once a message is assigned to a particular EDDI of the queue may not be transmitted on time, and

trunk ring, its deadline cannot be automatically hence may miss their deadlines.
guaranteed, even though FDDI has a property In order to resolve this problem, we need to man-
of 'bounded token rotation time.' Guaranteeing age the use of bandwidth at run-time. The partic-
message deadlines is also dependent on the appro- u ar management functions are: 1) to fragment a
priate allocation of the synchronous bandwidth message into units of the size of the synchronous
to the nodes. If the source node of a message is bandwidth allocated to the application thatgen-
allocated insufficient synchronous bandwidth, it erated that message, and 2) to reorder these frag-
may be unable to complete the transmission of ments appropriately before transmission. This re-
real-time messages before their deadline. On the ordering is done to arrange the fragments in a se-
other hand, allocating excess synchronous band- uence equivalent to the transmission sequence
widths to the nodes could increase the token ro- that would result if each of these applications
tation time, which may also cause message dead- were considered to be executing on a separate
lines to be missed. node. As a result of this fragmentation and re-

Over the past two years, extensive studies have ordering, each application is able to transmit a

been carried out on this subject. The first com- portion of its messages every time the token is

prehensive study on synchronous bandwidth allo- received. This ensures that each application is

cation for FDDI was reported in [1]. In [5], an op- allowed to utilize the synchronous bandwidth al-

timal bandwidth allocation algorithm was stud- located to it.

ied. An optimal algorithm can guarantee dead- In our current implementation, the bandwidth
lines for all messages assigned to an FDDI ring management is accomplished by adding a syn-
whenever there is an allocation method that can chronous server (SS), which is a preprocessing
do so. However, the optimal algorithm is com- module at the application layer. The server re-
plicated and may not be feasible for on-line use. ceives messages from different applications on the
Consequently, in [21, a localized bandwidth allo- node, fragments the messages, and reorders the
cation method was developed. A localized scheme fragments as mentioned above, before forwarding
uses the information local to a node to allocate them to the device driver.
its synchronous bandwidth. An advantage of lo-
calized schemes is that a node can freely change 4 Final Remarks
its message parameters and its synchronous band- Finally, we would like to point out that the architec-
width (as long as the network utilization is within ture ofour FBRN network is consistent with existing
the given bound) without disturbing the opera- FDDI hardware. Our scheduling method is compati-
tion of other nodes. In [10, 15, 16, 22], extensions ble with the FDDI/SAFENET standard. Hence, the
were made to the case where messages may have results obtained from our work will be immediately
arbitrary deadlines (i.e., the deadlines need not applicable to the design and analysis of distributed
be equal to the periods), hard real-time systems where FDDI/SAFENET net-

works are used. In fact, SAFENET has adopted our
Bandwidth management, bandwidth allocation method [16], while it is currently
In the above studies of synchronous bandwidth considering our FBRN fault management method.
allocation, it was shown that an FDDI trunk ring References
where a node may have zero, one, or more streams
of synchronous messages can be transformed into [1] G. Agrawal, B. Chen, W. Zhao, and S. Davari,
a logically equivalent network with one stream "Guaranteeing Synchronous Message Deadlines
per node. This assumption of one stream per with the Timed Token Protocol," Proc. IEEE In-
node was used to simplify the analysis without ternational Conference on Distributed Computing
loss of generality. However, in practice, having Systems, Yokohama, June 1992.
multiple message streams on a node may cause (21 G. Agrawal, B. Chen, and W. Zhao, "Local Syn-
problems. In all the current implementations of chronous Capacity Allocation Schemes for Hard
the FDDI MAC component, a FIFO queue is Real-Time Communications with the Timed To-
used for out-going messages. Furthermore, the ken Media Access Control Protocol," Proc. IEEE
FDDI MAC component cannot distinguish be- -NFOCOM'93, 1993.
tween messages from different applications and
has no knowledge of the bandwidths allocated to [3] FDDI Station Management Protocol (SMT),
those applications. Whenever the token arrives at ANSI Standard X3T9.5/84-89, X3T9/92-067,
a node, the MAC transmits messages in the or- Aug. 6, 1992.
der of the FIFO queue until it exhausts its total
bandwidth.' As a result, if messages at the front [4] FDDI Media Access Control (MAC), ANSI Stan-dard X3T9.5/88-139, Rev 4.0, Oct 29, 1990.

2The synchronous bandwidth allocated to a node is the sum

total of the bandwidths allocated to the applications executing [5] B. Chen, G. Agrawal, and W. Zhao, "Opti-
on that node. mal Synchronous Capacity Allocation for Hard

51

Real-Time Communications with the Timed To- (19] J. Ng and J. Liu, "Performance of Local Area
ken Media Access Control Protocol," Proc. IEEE Network Protocols for Hard-Real-Time Applica-
Real-Time Syst. Symp., 1992. tions," Proc. 11th IEEE International Conf. onDistribufted Computing Systems, May 1991.

[6] D. Ferrari and D. C. Verma, "A Scheme for Real-

Time Channel Establishment in Wide-Area Net- [20] K. C. Sevcik and M. J. Johnson, "Cycle Time
works," IEEE Journal on Selected Areas in Cor- Properties of the FDDI Token Ring Protocol,"
munications, SAC-8:368-379, Apr. 1990. IEEE Trans. Software Eng., 13(3), 1987.

[7] D. T. Green and D. T. Marlow, "SAFENET - A [21] L. Sha, and S. S. Sathaye, "A Systematic Ap-
LAN for Navy Mission Critical Systems," Proc. proach to Designing Distributed Real-Time Sys-
Coal. on Local Computer Networks, Oct. 1989. tems," IEEE Computer, 26(9):68-78, Sept. 1993.

[8] R. M. Grow, "A Timed Token Protocol for Local [22] K. G. Shin and Q. Zheng, "Mixed Time-
Area Networks," Proc. Electro/8f, Token Access Constrained and Non-Time-Constrained Com-
Protocols, May 1982. munications in Local Area Networks," IEEE

Trans. on Communications, 44(11):1668-1676,
[9] R. Jain, "Performance Analysis of FDDI Token 1992.

Ring Networks: Effect of Parameters and Guide- [23] J. A. Stankovic and K. Ramamritham, Hard Real-
lines for setting TTRT," IEEE LTS, May 1991. Time Systems, IEEE Press, 1988.

[10] S. Kamat, N. Malcolm, and W. Zhao, "The Prob- [24] J. A. Stankovic and K. Ramamritham, Advances
ability of Guaranteeing Synchronous Real-Time in Real-Time Systems, IEEE Press, 1993.
Messages with Arbitrary Deadlines in an FDDI
Network," Proc. IEEE Real-Time Syst. Symp., [25] A. M. van Tilborg and G. M. Koob, Foundations
Dec., 1993. of Real- Time Computing: Formal Specifications

and Method., Kluwer Academic Publishers, 1991.
[11] S. Kamat, G. Agarwal and W. Zhao, "On

Avail-

able Bandwidth in FDDI-Based Reconfigurable [26] A. M. van Tilborg and G. M. Koob, Founda-
Networks," To appear in Proc. INFOCOM'94, tions of Real-Time Computing: Scheduling and
1994. Resource Management, Kluwer Academic Pub-

lishers, 1991.
(12] J. Lehoczky, L. Sha, and Y. Ding, "The Rate

Monotonic Scheduling Algorithm: Exact Char- [27] Q. Zheng and K.G. Shin, "Synchronous Band-
acterization and Average Case Behavior," Proc. width Allocation in FDDI Networks," Proc. ACM
IEEE Real-Time Syst. Symp., 1989. First Conference on Multimedia, 1993.

[13] C. C. Lim, L. Yao, and W. Zhao, "A Comparative
Study of Three Token Ring Protocols for Real-
Time Communications," Proc. 11th IEEE Inter-
national Conf. on Distributed Computing Sys-
tems, May 1991.

[14] C. L. Liu and J. W. Layland, "Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-
Time Environment," J. ACM, 20(1):46-61, Jan.
1973.

[15] N. Malcolm and W. Zhao, "Guaranteeing Syn-
chronous Messages with Arbitrary Deadline Con-
straints in an FDDI Network," Proc. 18th IEEE
Conf on Local Computer Networks, 1993.

[16] N. Malcolm and W. Zhao, "The Timed-Token
Protocol for Real-Time Communications," IEEE
Computer, 27(1):35-41, Jan. 1994.

[17] N. Malcolm and W. Zhao, "Hard Real-Time
Communication in Multiple-Access Networks,"
To appear in J. Real-Time Systems.

[18] U.S. Department of Defense, Survivable Adapt-
able Fiber Optic Embedded Network, Jan. 1994.
MIL-STD-2204A.

52

Session IV"
Timing Analysis

Chair: Stuart Faulk
SPC

Correlation Analysis Techniques for Refining Execution Time
Estimates of Real-Time Applications *

Rajiv Gupta Prabha Gopinath
Dept. of Computer Science SSDC Honeywell Inc. MN65-2300

University of Pittsburgh 3660 Technology Drive
Pittsburgh, PA 15260 Minneapolis, MN 55418

Abstract veniently as the system gets larger[8]. It also often
Scheduling techniques based upon worst case execu- results in severe under-utilization of the system since

tion times, as are commonly used in real-time appli- tasks typically complete in much less time (sometimes
cations, often result in severe underutilization of the orders of magnitude less) than their WETs would indi-
processor resources since most tasks finish in much cate [5]. Another problem with the above approach to
less time than their anticipated worst-case execution scheduling based on worst-case execution times arises
times. In this paper we describe techniques for iden- when a task for some reason, perhaps owing to re-
tifying correlation among the executions of various source sharing delays, exceeds its WET. This results
statements within a program. We demonstrate how in deadline failure, but such a failure is noticed very
this information can be used to refine the estimate of late in the task's lifetime. This reduces the time avail-
remaining worst case execution time of a real-time task able to take remedial action. One common solution to
as the execution of the task progresses. Refined esti- this is to add a safety margin by increasing the WET
mates can be used at run-time to achieve better uti- of a task by some arbitrary percentage. This approach
lization of the system and early failure detection and further exacerbates the underutilization problem.
recovery. In order to address the above problems researchers

1 Introduction have proposed run-time refinement of execution time
The success of real-time application software de- estimates based upon monitoring information [4 [5

pends on its ability to produce a functionally correct [7]. We had introduced a technique called Coin-
result within definite timing constraints. Hard real- piler Assisted Adaptive Scheduling (CAADS) [4] using
time applications, especially embedded applications, which execution times of the various parts of the pro-
interact with and influence the environment in which gram are determined at run-time. If time savings are
they execute. Consequently, safety and timeliness of observed at run-time, they can be used to accommo-
execution are critical issues since failures have the po- date newly arriving tasks. On the other hand, if the

tential to cause damage. A process in a real-time ap- estimate of the remaining worst case execution time

plication has timing-related constraints, such as an (RWET) of the task is too high, then the decision to

Earliest-Start-Time (EST) and a Deadline (DL). It abort an executing task is made.

must execute subject to these time constraints and The RWET values will often be much higher than
any failure to do so, a deadline failure for instance, actual remaining execution times. In this paper we
constitutes a failure. present techniques for identifying parts of a program

The traditional approach to guaranteeing deadlines whose executions are correlated with one another. At
is to obtain the worst case execution time estimates any given point during the execution of a task, based
(WETs) for the individual processes and manually lay upon the execution path followed so far and the corre-
out the various execution timelines. While this so- lation information, the execution paths that can be fol-
lution does ensure that the specific set of processes lowed during the remainder of the task are predicted.
meet their deadlines, there are several obvious prob- This information is then used to estimate the worst
lems with such an approach. It does not scale con- case execution time of the remainder of the task, to

*Partially supported by National Science Foundation Presi- perform such adaptations as may be required to ensure
dential Young Investigator Award CCR-9157371 to the Univer- that deadlines are met, to pre-schedule other related
sity of Pittsburgh. processes, and to pre-allocate resources for this and

54
0-8186-5710-3/94 $3.00 0 1994 IEEE

other processes. denoted as S -- BTIF.
Evidence that a significant degree of correlation ex-

ists in programs has been recently provided by Pan ef * The correlation between execution of a statement

al [6]. They found that correlation information signif- S outside a loop L and the number of loop itera-

icantly improved the accuracy of branch prediction. tions, denoted as S --- Iter(L).

Their results show that as compared to 2-bit counter-
based prediction scheme, the correlation-based branch P T he rela e e calsit of rocedure11% ddiionl acurcy.In hisP and the true/false evaluation of a branch B in
prediction achieved 11% additional accuracy. In this P, denoted as CallSite(P) . B T I t

paper we propose to utilize correlation information for
improving RWET estimates. In order to do so we must * The correlation between execution of a statement
identify correlation present in a program. Correlation S and creation of a task T in a parallel program,
can be detected at compile-time through static anal- denoted as S - Create(T).
ysis techniques and at run-time using profiling tech-
niques. Surprisingly, many of the opportunities for We consider the first kind of correlations listed
correlation identified by Pan et al [6] using run-time above in the remainder of this paper. However, the
history can also be identified through compile-time broad principles that are used to handle the first kind
analysis of a program. However, Pan el al [6 did of correlations are also applicable to other kinds of
not develop any techniques for identifying correlation correlations. The code fragment shown in Figure 1
through program analysis. In this paper we develop illustrates the utility of correlation information in es-
such techniques. timating RWETs. Each statement is the figure is la-

In section 2 we identify the type of correlation in- beled as S#(tine), where time is the execution time
formation that is useful for refining RWETs and we of the statement. There is a correlation between the
briefly illustrate how correlation information is used to execution of statement S1 and the false evaluation
carry out the refinement. In section 3 we consider an of the branch S4 nested inside the for loop, that is,
important class of correlations and illustrate the prob- SI --* BOT. The RWET immediately preceding the
lems that a compiler faces in recognizing these corre- for loop must be considered as 400 time units if no
lations. We briefly outline our approach for compile- correlation information is available since in this situa-
time analysis for detecting these correlations. Due to tion we must assume that S4 is executed during each
space limitations we will not discuss profiling tech- iteration of the loop. However, once having recognized
niques for correlation detection. Although it is obvious that there is a correlation between the execution of S1
that correlation can be detected through profiling, how and the false evaluation of BO, we can obtain a bet-
to do so efficiently is a challenging problem. Therefore ter RWET estimate. By recognizing that Si has been
in this respect our efforts are focussed on introducing executed at run-time, we can consider the RWET pre-
minimal program instrumentation necessary to collect ceding the for loop to be 300 time units instead of 400
profile data. time units.

2 Exploiting Correlation Information SO(): if (..) { SIMi): a = 0 }
for Refining RWETs s2(1): for (i = 1; i != 101; i++) {

Intuitively, the correlation between two events, El S3(1): ...
and E2 , exists if the outcome of El determines the out- BO (1): if (a! =0) {
come of E2 under some execution. Thus, correlation 4(1): ...
between El and E2 can only exist if after event El has }
taken place event E2 can occur. Although it is possible }
to determine correlation between arbitrary events in a Figure 1. Estimating RWET using Correlation.
computation, we concentrate on events that effect the
execution time of a computation. This approach ap- The above example illustrates a common situation
plies to both sequential and parallel programs. Some that Pan el al [6] observed in many SPEC integer
examples of events for which correlation values may benchmark programs such as the gnu C-compiler,
be useful are as follows: eqntott, 1i etc. Very often there are statements that

assign constant values to variables that are typically
* The correlation between execution of a statement flags. Later in the program the flag is checked to de-

S (or a set of statements), and the true/false eval- termine whether or not a body of code should be ex-
uation of a branch B in a sequential program, ecuted.

55

3 Computing Correlation Information false in all iterations but the last. If correlation
In this section we describe various situations in information was not available, we would have as-

which there is a correlation between the execution of sumed true evaluation for the if-condition during
an assignment statement and the true/false evaluation all loop iterations for computing the worst case
of a branch encountered later in the program. With execution time.
each different situation the compiler is faced with dif-ferent challenges. The solutions to these challenges 2. Directly Affecting Multiple Assignments:
are integrated to develop an algorithm which is also In some situations the branch condition may ref-presented in this section. erence multiple variables and hence correlationThe basic approach taken by the compiler is to first relationship may involve more than one assign-The asi appoac takn b th comile is o frstment statement. The example in Figure 3 taken
identify the conditional branches whose outcome sig- m StEmen.mThe emle ilFigre tke
nificantly affects the program execution time. Next in from SPEC benchmark eqntott illustrates thissituation. The branch S4 evaluates to false if
order to predict each such branch the compiler exam-
ines the assignment statements that directly or indi- statements Si and S3 are executed, that is,
rectly affect the values of variables referenced by the Si AS3 - E aec(BOf). In this situation the com-
nanch condition. In other words, given a branch B, pler must find all definitions of each variable used
ve must search for a statement S such that S - BT/F in a branch that reach the branch. Next a com-

xists. bination of assignment statements corresponding
to the variables are selected such that the corre-

1. Directly Affecting Constant or Non- sponding values of variables enable the evaluation
constant Assignment: If S assigns a value to a of the branch and the execution of these state-
variable which is compared with a constant or an- ments is not mutually exclusive. Each such se-
other variable to determine the outcome of B, and lection provides us with a correlation that allows
the outcome can be determined at compile-time the prediction of branch outcome under certain
then we have identified correlation S -- BT/F. conditions.
The example in Figure 1 illustrated this situa-
tion. Application of symbolic evaluation can ex- SO: if (aa==2) { Si: aa = 0 1
pose correlations that are not as readily observ- S2: if (bb==2) { S3: bb =0 }
able as the case in Figure 1. For example in Fig- BO: if (aa!=bb) { S5: }
ure 2a the correlation S2 --- BOT requires sym- Figure 3. Correlation Involving Multiple
bolic evaluation of the branch condition. Assignment Statements.

SO: ... 3. Indirectly Affecting Assignments: In some
Si: if (..) { S2: y = a + 1 } situations in order to identify correlations we need
B0: if (y 1= a) { S4:) to compute a program data slice [91 which identi-
Figure 2a. Correlation Detection Requiring fies all those statements that directly or indirectly

Symbolic Evaluation. influence the values of variables used in a branch
condition. Consider the example shown in Figure

BO: while (not done) { 4. The program slice for the value of y in S5 is
Si: .. includes statements S1, S2 and S4. By system-
S2: if ..) { S3: done = true atically searching this slice we can determine that
S4: .. the execution of S1 followed by the execution of

} S4 will cause branch S5 to evaluate to true, that
Figure 2b. Correlation Indicating Loop is, S1 A S4 -* BOT. As we can see this situation

Termination. can't be handled by earlier techniques discussed
in this section.

In example shown in Figure 2b the correlation
S3 -. BOF can be detected. The correlation es- SO: if C..) { Si: x I }
sentially identifies the loop termination condition. else { S2: x =a }
The worst case execution time of the while loop S3: if (..) { S4: y = x }
can be computed accurately using this informa- B0: if (y==i) { SS:
tion. To compute the worst case time we should Figure 4. Indirect Correlation Requiring
assume that the if-condition in S2 evaluates to Program Slicing.

56

The above example illustrates that in order to de- control condition in CC includes a single pred-
tect all correlations we must consider both statements icate. The reason for this restriction is that the
that directly influence the branch variables and those run-time overhead associated with capturing con-
that indirectly influence them. By combining the ideas trol conditions at run-time can be limited through
of symbolic evaluation, multiple assignments and di- this assumption. Special consideration of loops is
rect/indirect influences we develop a general algorithm required during the generation of SE sets. Ex-
for identifying correlations. The main steps of the al- pressions from loops are only forward substituted
gorithm are as follows: if they represent invariant computations. This

condition ensures that the presence of loops does
1. A control flow graph (CFG) representation of the not generate unbounded number of expressions in

program is constructed [1]. the SE sets.

2. The program is converted to static single assign- For each combination of expressions for the
ment (SSA) form [2]. The conversion of a pro- branch variables, taken from their respective SE
gram into this form guarantees that each variable sets, we attempt an evaluation of the branch con-
is reachable from a single definition of that vari- dition B using symbolic analysis. Based upon
able, that is, the definition-use relationships in these evaluations we prepare a set of combinations
the program are explicit in the program. This EVAL(B) for which the branch was successfully
representation simplifies the algorithms used in evaluated using symbolic analysis.
future steps. To achieve this goal a 0 function
corresponding to a variable is introduced at a * For each possible combination of variable expres-
join point if different definitions of the variable sions in EVAL(B), identified in the preceding
reach the join point along different paths. The 0 step, we check the control conditions (CCs) un-
function indicates the selection of the appropriate der which the expressions hold to ensure that the
value of the variable based upon the path along branch variables can simultaneously hold these
which the control reaches the join point, values in some program execution. If the con-

trol conditions can hold simultaneously, we have
3. Using some simple heuristics, the branch condi- identified a possible correlation under which thetions whose results are likely to affect the execu- outcome of the branch condition B can be pre-

tion time of a program significantly are identified. diceted.

4. For each of branch condition, B, identified in the
preceding step, we identify the statements that The above discussion provided the main steps for
influence its outcome as follows, correlation detection. The details of the various steps

are omitted due to space limitations. In Figure 5 we
" For each variable v, used in branch B, we com- present an example to briefly illustrate the above algo-

pute the corresponding data slice, DS(v). The rithm. The SSA for of the code fragment in Figure 5a
data slice contains all statements that directly or is given in Figure 5b. Due to the renaming of variables
indirectly lead to the computation of the value of and the introduction of 4 functions, the data flow re-
v used in the branch condition. Thus, the data lationships have been made explicit. The SE and CC
slice is computed by taking a closure of data de- sets for the three branches are giver in Figure 5c. Us-
pendences for the variable [9]. ing the SE values we evaluate the branches and get

the true/false evaluations of branches in the instances
" Corresponding to each variable v, using the data shown in Figure 5d. After checking the feasibility of

slice DS(v) and forward substituting expressions, these evaluations we detect the correlations listed in
we generate a set of symbolic expressions, SE(v), Figure 5e.
that represent the value of variable v at B under
various program executions. The set of control SO: read y
conditions that must hold for a given expression SI: inc = I
e E SE(v) is denoted as CC(v,e). Depending BO: it (y > 0) { S2: z = 1;
upon the complexity of SE and CC sets that one S3: w = 2; S4: x = y - inc }
is willing to allow, we can devise algorithms for else { SS:z=2; S6:v=1; S7: xzy+inc }
computing SE and CC sets with varying degree Bl: if (x < y) { ... }
of complexity. We intend to include only those B2: if (v = z) { ... }
expressions in SE for which the corresponding Figure 5a. Example Program.

57

of z computed at Si. This results in the detection
SO: read y of correlation SI --* B2T. In all other situations the
St: inc = I generation of expressions through the loop would have
B0: if (y > 0) { S2: z1=1; been discontinued and no correlation for B2 would

S3: w1=2; S4: xl=y-inc } have been detected.
else { SS:z2=2; S6:w2=1; S7:x2fy+inc l 4 Concluding Remarks
z3 =4(zi, z2)w3 = 0(wl, z2) In this paper we have introduced compiler tech-x3 = q(xi, x2) niques for detecting and exploiting correlation infor-Bi: if (x3 <y) ... mation for refining RWETs. We did not considerB2: it (0 3) I ... } parallel programs in this paper. However, methodsB2: it (w3 = W o ... I for statically analyzing distributed programs including

Figure 5b. SSA form of the Program. slicing algorithms also exist [3]. Thus we believe that
BO: with further research our approach can be extended

SE(y) = 1Y} to handle distributed programs.

BI: References
SE(x3) = {y-1,y+l}; [1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
CC(x3,y-1) = { y>O 1; CC(x3,y+l) { -,y>O } Principles, Techniques, and Tools. Addison-Wesley,
SE(y) = {y}; CC(y,y) = {true} 1986.

B2: [2] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman,
SE(w3) = {2,1}; and F.K. Zadeck. Efficiently Computing Static Sin-
CC(v3,2) = { y>O }; CC(w3,1)= { -y>O } gle Assignment Form and Control Dependence Graph.
SE(z3) = {1,21; ACM Transactions on Programming Languages and
CC(z3,I) = { y>O }; CC(z3,2) = { -,y>O } Systems, Vol. 13, No. 4, pages 451-490, October 1991.

Figure 5c. The SE and CC Sets. [3] E. Duesterwald, R. Gupta and M.L. Sofia. Distributed
Slicing and Partial Re-execution for Distributed Pro-

BO: no evaluation achieved, grams. Proc. Fifth Workshop on Languages and Com-
B1: pilers for Parallel Computing, LNCS 757 Springer Ver-

x3=y-1 * BIT lag, pages 497-511, August 1992.

x3=y+1 = B1 F [4] P. Gopinath and R. Gupta. Applying Compiler Tech-
132: niques to Scheduling in Real time Systems. Proc. 11th

(w3,3)=(2,i) * B2F; (w3,z3)=(2,2) =: B2T Real-Time Systems Symposium, pages 247-256, Or-

(w3,z3)=(1,1) : B2T ; (w3,z3)=(1,2) : B2F lando, Florida, December 1990.

Figure 5d. Branch Evaluation. [5] D. Haban and K.G. Shin. Application of Real-Time
Monitoring to Scheduling Tasks with Random Execu-

B0: no correlation detected. tion Times. Proc. 10th Real-Time Systems Symposium,
B1: S4 * BIT; S7 - B1F 1989.
B2: S2/S3 -- B2F; S5/S6 --+ B2F [6] S-T. Pan, K. So and J.T. Rahmeh. Improving the Ac-
Figure 5e. Correlation Detected. curacy of Dynamic Branch Prediction Using Branch

Correlation. Proc. Architectural Support for Program-
ming Languages and Operating Systems, pages 76-84,

SO: y = 1 1992.

BO: while (..) { [7] C. Park and A. Shaw. Experiments with a Program
BI: if (..) { Si: x y + 1 } Timing Tool Based on Source-Level Timing Schema.
S2: Proc. lth Real-Time Systems Symposium, pages 72-

81, 1990.

B2: if (x < 3){..} [8] L. Sha and J. Goodenough. Real Time Scheduling The-
Figure 6. Forward Substitution in Loops. ory and ADA. Computer, pages 53-62, April 1990.

[9] M. Weiser. Program Slicing. IEEE Transactions on
The example in Figure 6 illustrates the detection of Software Engineering, Vol. SE-10, No. 4, pages 352-

correlation in presence of a loop. If statement SI is 357, July 1984.
loop invariant and there are no other definitions of x in
the loop, then we generate an expression for the value

58

Issues of Advanced Architectural Features in the Design of a
Timing Tool*

Byung-Do Rhee Sung-Soo Lim Chang Yun Park
Sang Lyul Min Heonshik Shin

Chong Sang Kim

Dept. of Computer Engineering Dept. of Computer Engineering
Seoul National University Chung-Ang University

Seoul 151-742, Korea Seoul 156-756, Korea

Abstract This paper is organized as follows. Section 2
presents the overview of the timing tool. In section 3,

This paper describes a timing tool being developed we explain the problems in accurately estimating the
by a real-time research group at Seoul National Uni- WCETs of tasks in pipelined processors and present
versity. Our focus is on the issues resulting from an analysis method based on extended timing schema.
advanced architectural features such as pipelined ex- Section 4 explains why an accurate timing analysis is
ecution and cache memories found in many modern difficult in computer systems with cache memories and
RISC-style processors. For each architectural feature briefly discusses our approach. Finally, we conclude
we state the issues and explain our approach. this paper in section 5.

1 Introduction 2 Overview of the timing tool

In real-time computing systems, tasks have tim- Our timing tool, like [7, 81, is based on the timing
ing requirements (i.e., deadlines) that must be met schema [10]. The timing schema is a set of formulas
for correct operation. Various scheduling techniques for computing the time-bounds of programming con-
have been proposed to guarantee such timing require- structs. For example, the time-bound of S: if (exp)
ments. In many cases, these scheduling techniques then SI; else S2 is computed by the following equa-
require that the worst case execution times (WCETs) tions:
of tasks be known a priori.

This paper describes a timing tool that is being de- T(S) - T(Sthen) 1 T(Segse)
veloped by a real-time research group at Seoul Na- T(Sthe,) = T(exp) + T(th.n) + T(S1)
tional University. This timing tool aims at accu- T(S = e)
rately calculating guaranteed worst case execution = T(exp) + T(else) + T(S2)

times of programs for computer systems that use mod-
ern RISC-style microprocessors. Our particular focus where T(exp), T(S1) and T(S2) are the time-bounds of
is on how the timing tool addresses the issues resulting ezp, S, and S2 , respectively and T(then) and T(else)
from advanced features of these microprocessors such e the t nd to transi e cnTlton) and S 2,are the time-bounds to transfer control to S1 and $2 ,
as pipelined execution and cache memory. There have respectively. The operation WJ on time-bounds is de-
been various approaches to predicting program execu- fined as
tion times [2, 5, 8, 9, 11, 121. However, their machine
models were mostly CISC-style pro,essors rather than [a, b] W [c, d] =_ [min(a, c), max(b, d)]
RISC-style microprocessors.

*This work was supported in part by ADD (Contract ADD- Our timing tool consists of a compiler and a tim-91-4-4) and KOSEF (Grant KOSEF-93-01-oo-10). ing analyzer. The compiler is a modified version of

59
0-8186-5710-3/94 $3.00 0 1994 IEEE

t

wh0 k . -0;-- . _

avlonmoluko -u - -,

mom ac k4I s. -.

I A

otmorchek >-O -1{. ,,

C Source Program Assembly Code
'Was

IUM, ..,xt~o(m ;" .'

,am as

000at00

iu110111 *a ,

m a.

Program Stuctre Information

Figure 1: Sample C source program and the output from the compiler

an ANSI compiler called Icc [1]. This compiler ac- qw4 6781134

8f 1 121 1. I

cep Ls a C source program and generates the assem-I
bly code along with program structure information.
Figure 1 shows a sample C program and the gener-3
ated assembly code. Also shown in the figure is the
program structure information in both textual and4
graphical forms. The timing analyzer uses the assem-
bly code and the program structure information along
with user-provided information (e.g., iteration counts _________________0_

of loop statements, WCETs of the library functions =1

used in the program) to compute the time-bound of 1
the program. The machine model currently supported =0 1

in the timing tool is the MIPS R3000 CPU. Figure 2: Typical reservation table

3 Pipelining effects tended the original timing schema. In the extended
timing schema, the basic object is a reservation table

Due to data dependencies and resource conflicts rather than a simple time-bound. The reservation ta-
within the execution pipeline, the execution time of a ble was originally proposed to describe and analyze
basic block will differ depending on which basic block activities within a pipeline [3) (cf. Figure 2). In the
among the possible basic blocks was executed prior to reservation table, the vertical dimension represents the
this basic block, In the original timing schema, it is stages in the pipeline and the horizontal dimension
difficult to accurately account for such timing varia- represents time. The shaded boxes in the reservation
tions since the basic object of the timing schema is a table specify the use of the corresponding stages for
simple time-bound. To rectify this problem, we ex- the indicated period of time. In our approach, reser-

60

vation tables are used to specify timing of instruction F-
executions. In our timing tool, associated with each L-K|
reservation table are its worst and best case execution
times that are denoted by tmax and t ,n respectively
in Figure 2.

The use of reservation tables as the basic objects
of the timing schema allows us to rewrite the timing
schema in such a way that takes into account the tim-
ing variation due to dependencies between program-
ming constructs. For example, in the extended timing S- ;"

schema, the timing schema of S: S1 ; S2 is

R(S) = {I r = ® (B r 2 , r1 E R(S1), r 2 E R(S 2)}

where ED is an operation that concatenates two reser-
vation tables giving another reservation table. R(S 1) , 9

is the set of reservation tables corresponding to the
set of the execution paths that might take the longest
time among the possible execution paths in S1 . R(S2)
is defined similarly. During each instantiation of the - 1
above timing schema, a check is made to see whether 1- 24
the resulting set of reservation tables can be pruned. A
reservation table can be pruned if the worst case exe- -_______

u n in
_

cution time of the reservation table is shorter than the
best case execution time of another reservation table
in the same set. Note that in such a case the execution I M W m M L
path corresponding to a pruned reservation table can- 1 1
not be the worst case execution path. Figure 3 shows

an example of such pruning.
Likewise, the timing schema of an if statement S: Figure 3: Example of pruning

if (exp) then S; else S2 is

R(S) = {rar. = rexp rl, rezp E R(ezp), ri E R(SI)1 know the cache hit or miss of each memory reference

U to locate the worst case execution path. Unfortunately
such information is known only after 'he worst case ex-{rbIrb = rexp (E r2 , rep E R(ezp), r2 e R(S 2)} ecution path has been found due to history-sensitive

nature of caches. This cyclic dependency, in many
where U is the set union operation. As in the previous cases, yields a pessimistic estimation of WCETs [6].
example, pruning is performed each time a new set of To rectify the problem resulting from the cyclic de-
reservation tables is derived. pendency, we again extended the timing schema [4].

In the current implementation, not all the columns We will briefly describe the technique in the follow-
in the reservation table are stored. Instead only a first ing.
few columns whose timing behavior may be affected In the proposed technique, associated with each
by the preceding basic block and a last few columns statement is a set of atomic objects, each of which
who may affect the timing behavior of the succeeding abstracts an execution path in the statement. Each
basic block are maintained, atomic object consists of two sets of memory block

addresses and an execution time estimate. The first
set maintains the memory block addresses of the ref-

4 Cache Memories erences whose hits or misses depend on the cache con-
tents before the statement. In other words, this seL

Our timing tool currently does not support cache maintains for each cache block the memory block ad-
memories that have been extensively used to bridge dress of the first reference to the cache block. The sec-
the speed gap between the processor and main mem- ond set maintains the addresses of the memory blocks
ory. In a cache-based computer system, we need to that will remain in the cache after the execution of

61

the statement. In other words, this set maintains for [2] M. Harmon, T. P. Baker, and D. B. Whalley.
each cache block the memory block address of the last A retargetable technique for predicting execution
reference to the cache block. This is the cache con- time. In Proceedings of the 13th Real-Time Sys-
tents that will determine the hits or misses of memory tems Symposium, pages 68-77, 1992.
references from succeeding statements. The execution
time estimate is an estimated time needed to execute [3] P. M. Kogge. The Architecture of Pipelzned Corn-
the statement. In this estimate, correctly accounted puters. Hemisphere Publishing Corp., 1981.
for are the "guaranteed" hits and misses. However, the [41 S.-S. Lim, S. L. Min, C. Y. Park, K. Park, Heon-
memory references whose hits or misses are not known shik Shin, and C. S. Kim. An accurate instruction
(i.e., those in the first set) are conservatively assumed cache analysis technique for real-time systems.
to miss in the cache in the initial estimate. This ini- To appear in the Workshop on Architectures for
tial estimate is later refined as the hits or misses of Real-time Applications, 1994.
those references are known in a later stage of analy-
sis. This framework allows us to rewrite the timing [5] A. Mok. Evaluating tight execution time bounds
schema so as to accurately analyze the timing behav- of programs by annotations. In Proceedings of
ior of cache memories. A detailed discussion of the the 6th IEEE Workshop on Real-Time Operating
resultant timing schema is beyond the scope of this Systems and Software, pages 74-80, 1989.
paper and interested readers are referred to [4]. How-
ever, it is worth mentioning that the resulting timing [6] F: Mueller, D. Whalley, and M. Harmon. Pre-
schema is very similar to the one given in the previous dicting instruction cache behavior. Unpublished
section and that the two timing schemas can easily be Technical Report, 1993.
combined. [7] C. Y. Park. Predicting Deterministic Execution

Times of Real-Time Programs. PhD thesis, Uni-
5 Conclusion versity of Washington, August 1992.

[8] C. Y. Park and A. C. Shaw. Experiments with
In this paper, we explained the difficulty of ac- a program timing tool based on source-level tim-

curately estimating the time-bounds of programs in ing schema. In Proceedings of the 11th Real-Time
RISC-based computer systems by using as an exam- Systems Symposium, pages 72-81, 1990.
ple the timing tool we are currently developing. Our
particular focus was on pipelined execution and cache [9] P. Puschner and C. Koza. Calculating the maxi-
memories that are typical of RISC-based computer mum execution time of real-time programs. Jour-
systems. nal of Real-Time Systems, 1(2):159-176, Sept.

On the pipelined execution, we explained the limi- 1989.
tation of the original timing schema and described an [10] A. C. Shaw. Reasoning about time in higher-
extension of it that is based on reservation tables. On level language software. IEEE Transactions On
the memory hierarchy, we explained why an accurate Software Engineering, 15(7):875-889, July 1989.
timing analysis is difficult in computer systems with
cache memories and described our approach. [11] A. Stoyenko. A Real-Time Language with a

We expect that an accurate analysis of combined Schedulability Analyzer. PhD thesis, University
effects of pipelined execution and cache memory on of Toronto, Dec. 1987.
program execution time will be possible when the
planned extension of our timing tool is completed. [12] N. Zhang, A. Burns, and M. Nicholson. Pipelined
This will allow RISC-style processors to be widely used processors and worst-case execution times. Jour-
in real-time systems without worrying about their un- nal of Real-Time Systems, 5(4):319-343, Oct.
predictable worst case performance. 1993.

References

[1] C. W. Fraser and D. R. Hanson. A code gen-
eration interface for ANSI C. Technical Report
CSL-TR-270-90, Princeton University, July 1990.

62

Timing Analysis of Superscalar Processor Programs Using ACSR

Jin-Young Choi, Insup Lee, and Inhye Kang

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract ties and resource constraints using a formal technique
based on process algebra. We use ACSR, Algebra of

This paper illustrates a formal technique for de- Communicating Share Resources, because it includes
scribing the timing properties and resource constraints the notions of time, resources and priorities. There are
of pipelined superscalar processor instructions at high several advantages for using ACSR. First, the notion
level. Superscalar processors can issue and execute of ACSR resource facilitates the modeling of proces-
multiple instructions simultaneously. The degree of sors and instructions. A superscalar processor can be
parallelism depends on the multiplicity of hardware defined as a set of reusable resources such as registers.
functional units as well as data dependencies among Then, an instruction can be represented by a process
instructions. Thus, the timing properties of a super- which acquires and consumes a subset of resources in
scaler program is difficult to analyze and predict, time. Second, the concept of maximal resource uti-

We describe how to model the instruction-level ar- lization which is a fundamental idea for pipeline and
chitecture of a superscalar processor using ACSR and superscalar processors, can be described. This is done
how to derive ihe temporal behavior of an assembly using the notion of ACSR priority which allows the
program using the ACSR laws. The salient aspect specification of scheduling among several possible al-
of ACSR is that the notions of time, resources and ternatives. Third, ACSR has a proof technique that
priorities are supported directly in the algebra. Our can be used to verify properties of instruction speci-
approach is to model superscalar processor registers fications written in ACSR. There also is an available
as ACSR resources, instructions as ACSR processes, tool, called VERSA [2], which allows the programmer
and use ACSR priorities to achieve maximum possible to interactively execute, analyze, and rewrite ACSR
instruction-level parallelism, specifications.

Our formal processor specification based on ACSR
is useful in several areas. For instance, the specifica-

1 Introduction tion provides an assembly programmer precise mean-
ing of instructions with respect to timing behavior and

Instruction-level parallelism is widely used in super- resource use. This information is essential when a pro-
scalar processors to improve execution speed. Super- grammer wants to use the processor for time critical
scalar processors realize instruction-level parallelism systems. Furthermore, the specification can serve as
by replicating functional hardware and by overlapping documentation between instruction set designer and
instruction execution stages in pipeline [7, 5, 8]. Con- hardware implementor. Since the ACSR interpreter
sequently, multiple instructions can be issued and ex- already exists, the development of a timing analyzer
ecuted simultaneously in superscalar processors. The for a new superscalar processor requires only a simple
degree of parallelism depends on the multiplicity of translator from instructions to ACSR processes. Fi-
hardware functional units as w, as data dependen- nally, a translated superscalar program helps one to
cies among instructions. One of difficulties in using analyze a sequence of instructions in terms of data de-
superscalar processors for time critical applications is pendencies. Such data flow information is useful in
that it is difficult to predict the timing behavior of code generation and optimization for compilers.
programs. Our work was inspired by the pioneering work by

Our goal is to augment the Instruction Set Archi- Harcourt et al. which uses a process algebra called
tecture (ISA) level [3] description with timing proper- SCCS for instruction specification [4]. Our approach

63
0-8186-5710-3/94 $3.00 © 1994 IEEE

differs from theirs as follows. Since SCCS does not The instructions add and mov perform its task in a
have the notion of resources, they represent each re- single instruction cycle, while memory-related instruc-
source using a binary semaphore process. The result- tions, load and store, need two instruction cycles.
ing specification becomes quite complicated and cum- Thus, when a load or store instruction is executed,
bersome. Our specification is clear and natural, be- the result is available after 2 instruction cycles.
cause of the explicit notion of resources in the algebra.
Furthermore, since SCCS does not have priority con-
cept, they adapted a priority operator developed for Algebra of Communicating Shared Resource.

CCS [1] in the context of SCCS. On the other hand, ACSR is a real-time process algebra that incorporates
ACSR has the built-in notion of priority, which can the notions of communication, concurrency, resources,
be used to model the maximum parallel and pipeline and priorities into a single formalism. One of the im-
execution of instructions, portant concepts in ACSR is shared resources. We

To illustrate our approach, this paper uses a hypo- briefly describe the subset of ACSR which we use to
thetical superscalar processor, called ToyP, developed model microprocessor instructions; the detailed de-

by Harcourt et al. [4]. The ToyP processor includes scription and semantics of ACSR can be found in [6].
many features of commercial processors, such as de- We consider a system to be composed of a finite set
layed loads and branches, interlocked floating-point in- R of registers with priority 1 in ToyP processor. An
structions, and multiple instruction issue. To simplify action is defined as a subset of R, that consumes one
our presentation, we model only integer instructions cycle of time. As an example, the singleton action,
such as add, move, load, store instructions. We as- {(r, 1)}, denotes the use of some register r E R. For
sume that add and move instructions perform its task the simplicity, we omit the priority from actions here-
in a single instruction cycle, whereas memory-related after. The action 0 represents idling for one time unit,
instructions, load and store, need two instruction cy- since no resource is being used. We let A, B, C range
cles. over actions.

The rest of the paper is organized as follows. In The syntax of ACSR processes containing actions
Section 2, we introduce a hypothetical ToyP super- is as follows:
scalar processor and present a subset of ACSR and
review some basic properties. Section 3 describes our P ::= NIL I A : P I PI+P I [P] I PullP2 I rec X.P I X
approach for specifying instructions by using ACSR.
In Section 4, we demonstrate how a ToyP program can NIL is a process that executes no action (i.e., it is
be translated into ACSR and its execution sin .lated. deadlocked). There is one prefix operator. A : P ex-
Section 5 summarizes the paper and describes plans ecutes a resource-consuming action A, consumes one
for future work. time unit, and proceeds to the process P. The Choice

operator Pi + P2 represents nondeterminism - either
of the processes may be chosen to execute, subject to

2 ACSR for ToyP Processor the resource limitations of the environment. The op-
erator P jP 2 is the concurrent execution of PI and

This section introduces the ToyP superscalar pro- P2. The Close operator, [P]I, produces a process P
cessor and our basic formalism ACSR, Algebra of that monopolizes the resources in I C 1Z. The pro-

Communicating Shared Resource. cess rec X.P denotes standard recursion, allowing the
specification of infinite behavior.

We denote Done as rec X.0 : X. The process DoneToyP: a Simple 32-bit Processor. ToyP was de- has the following identity property with respect to the

signed by Harcourt et al. to illustrate the specification parallel composition operator : For every process P,

of instruction-level parallelism (4]. ToyP is a simple Par Done = P. We introduce one binary combinator

hypothetical RISC with 32-bit instructions, memory next which is used to model the issuing of instructions

word size, registers and addresses. To simplify our in consecutive cycles.

presentation, we only consider a subset of ToyP in-
structions: add, mo', load, store.adductions Ri, R , Rk s e.- RDefinition 2.1 For any A, P, Q, the next operator
aod Ri, Ri Ri4-R +is defined as follows:mov Ri, lRj Ri -Ri

load Ri, Rj, #c Ri -Mem[Rj + c] f
store Ri, Rj, #c Mem[Rj + c] +- Ri (A : P) next Q 4e A: (P 1 Q).

64

add Ri, Ri, Rk dEf 1<_6<e i<m<6 { Ri, RiJ, Rk,} : Done
mov d_ 1<1< 6{ RL, Rj,}: Done

load Ri, R, #c E-1<<6 Ri, Rj,}: {Ri} :Done
store Ri, Hj, c =__ '<t<6F-1<m<6{ Ri, Rim }: {Rij} Done

Table 1: Modeling ToyP Instructions Using ACSR

3 Modeling ToyP Instructions Using table 1.
ACSR To simplify the presentation, we choose one al-

ternative from the several choices for the translation

We model a ToyP instruction as an ACSR process of each instruction. For example, we translate add

and hardware components needed for execution of in- Ri, R2, R3 into {Rl, R2 1, R31 }:Done instead of

structions as resources in ACSR. For this paper, we E1l<1 ZX<m<6{ Ri, R21, R3},): Done.

need to consider only integer registers as resources. LTsi-ng the above translation scheme for ToyP in-

An instruction is modeled by an ACSR process which structions, a ToyP program can be represented by a

specifies the behavior of the instruction in terms of set of ACSR processes. The resulting set of ACSR

resource constraints and temporal properties, that is, processes is called a program specification. The next

which and when resources are needed. example illustrates how to translate a ToyP programs

There are two kinds of operations on an integer to a program specification.

register: read and write. A register can be shared by Example 3.1 The following program is assumed to
the executions of several instructions if all of them are be loaded into the memory starting at the location
reading a value from the register. However, only one PC:
instruction can use a register if an instruction is trying PC : add R1, R1, RI
to write a value into the register. If an instruction PC+4: load R2, R3, #8
needs a register whose use is not compatible with a PC+8: add 1l, R3, R3
currently executing instruction, then the execution of PC8 a d Rqn can reThe above program sequence can be represented by
the new instruction must be delayed. the following ACSR processes:

Since ACSR resources are serially reusable, we rep- def

resent each register as consisting of multiple ports for Mem(PC) = { RI } : Done
read and write. The number of ports depends on how Mem(PC+4) def f R2, R31 } : {R2} : Done
many instructions can be issued and executed in par- def

allel. We assume that ToyP can issue and execute up Mem(PC+8) = { R1, R32 , R33 } : Done
to three integer instructions in a single cycle if there Mem(PC+12) def NIL
are no data hazard. Since each integer instruction can
read a single register twice (e.g., in add R2, Ri, RI),
each register can be accessed by 6 read requests in the 4 Modeling Superscalar ToyP execu-
same cycle. Instead of modeling registers themselves, tion
we model these 6 read/write (serially reusable) ports
for each register. Here, a process can read a value if This section describes how to model the superscalar
it acquires any one of six ports, whereas a process can aspect of ToyP that can issue multiple instructions per
write a value only if the process acquires all six ports cycle using ACSR. The ToyP processor can issue and
of the register. Hence, when a process holds a register execute multiple (up to 3) instructions at the same
for writing, other processes cannot share the register. time. In the superscalar architecture, hardware deter-
Rij denotes the port j of the register i. For the sake of mines register use conflict (called data hazard) among
simplicity, we sometimes use Ri to mean all 6 ports of instructions. A ToyP program contains no explicit

the register i, that is, R" d= fRi, Ri, Ri3 , Ri4 , Ris, synchronization information to prevent data hazard.
Ris}. Hence, (Ri 1 , Ri} stands for (Rjl, Rij, Ri2, Ri3, Hence, in order to predict the timing behavior of a
Mi, Ri5 , Ri6}. ToyP program, it is necessary to be able to determine

We model the ToyP instructions using ACSR as in when there are data hazard.

65

InstsPC) cef
Insts(PC) =- 0 :Inst(PC) + Super-[nsts(PC)

ef
Super-Insts(PC) d1 (Mem(PC) 11 Mem(PC+4) 1 Mem(PC+8))

next Insts(PC+12)

+ (Mem(PC) I1 Mem(PC+4)) next Insts(PC+8)
+ Mem(PC) next Insts(PC+4)

Program =!e [Super-Insts(PC)]R

Figure 1: Modeling the Execution of ToyP Processor

Data Hazard. A value generated by execution of The choice among these three is explained in the next
an instruction is used by other instructions, and such paragraph. After one time unit, Super-Insts(PC) de-
a flow of data during program execution creates data termines whether or not the next instruction can be
dependencies. A sequence of instructions with data executed as specified by next Insts(PC+12). If there
hazard cannot be executed in a different order or con- exists data conflict between a not-yet completed in-
currently. Hence, they must be executed in the given struction and the next instruction, the execution of
order in the instruction sequence. Example 3.1 con- the next instruction is delayed. This delay possibility
tains data hazard on register RI since it is write ac- is specified by the left choice in the definition of In-
ceased by the first instruction and read-accessed by sts(PC). If there is no conflict, the next instruction is
the third instruction. Data hazard such as read-after- chosen for execution.
write, write-after-read, write-after-write hazard is pre- The process Program defines the behavior of the
sented as a resource conflict in ACSR, hence NIL. corresponding ToyP program. Note that in the defi-

The semantics of ACSR prevents concurrent execu- nition of Program, the process Super-Insts(PC) is de-
tions of instructions with potential data hazard as can fined with the Close operator with the resource set
be seen from the following lemma. R.

Lemma 4.1 Given two ACSR processes, A : P and The process Super-Insts(PC) has three choices.
B : Q, that represent two integer instructions, A : These choices represent the scheduling of ToyP's exe-
P11B : Q = NIL iff A : P and B Q hae a data cution: issuing and executing of up to three instruc-
hazard. tions simultaneously. When the sequence of instruc-

tions contains data hazard, the corresponding ACSR

For example, the sequence of instructions, add R2, term becomes NIL by Lemma 4.1. Thus, data hazard

RI, R1 ; add RI, R3, R3, have write-after-read haz- terms are eliminated during the expansion of Super-

ard. The parallel composition of two corresponding Insts(PC).

ACSR processes is as follows: The next question is how to ensure that as many in-
{ R2, RI1 , R12 : Done 11 1 RI, R31, R32} : Done structions as possible are executed at each cycle. This

Since RI is an abbreviation of the collection for {R11 , is the reason why the process Program is defined as
R12 , R13 , R14 , Rls, R16 }, the resources Rli and closed Super-Insts(PC). Even after the impossible ex-
R12 appear in both the left and right processes of par- ecution choice due to data hazard is eliminated, the
allel composition operator. Thus, the above parallel process Super-Inst(PC) can still have multiple choices.
process has resource conflict, that is, the process is In such case, the notion of preemption in ACSR [6] al-
equivalent to NIL by expansion law. lows the selection of a choice with the most number of

instructions.

Execution of a ToyP Program. Given a ToyP One of the most useful laws for process algebras
program, the ToyP processor executes as many in- is the expansion law, which can be used to eliminate
structions as possible at each instruction cycle. To parallel operators. Given a ToyP program specifica-
model such execution behavior, we define an indexed tion, we can usv the expansion law and other ACSR
set of ACSR processes, called Super-Insts(PC) where laws to conw a ACSR process which does not
PC is an index variable denoting the memory loca- contain any . operators. The resulting process
tion of the current instruction. As shown in Figure 1, describes all puL. oie behaviors of the original ToyP
Super-Insts(PC) specifies the possibilities of executing program and also facilitates the analysis of temporal
three instructions, two instructions or one instruction, properties.

66

Example 4.1 This example illustrates how to simu- References
late the ToyP program described in Example 3.1. By
law, we have Mem(PC) 11 Mem(PC+4) Ii Mem(PC+8) [1] J. Camilleri and G. Winskel. CCS with Priority
= NIL, since there exists resource conflict between Choice. In Proc. of IEEE Symposium on Logic in
first and third instructions (as well as second and third Computer Science, 1991.
instructions). Thus, the Super-Insts(PC) process has
the following expression after some rewriting [2] D. Clarke, I. Lee, and H. Xie. VERSA: A Tool for

Program the Specification and Analysis of Resource-Bound
Real-Time Systems. Technical Report MS-CIS-93-

= [Super-Insts(PC)]R 77, Dept. of CIS, Univ. of Pennsylvania, Sept 1993.
= NIL + {R1, R2, R31 :{R2):Done next Insts(PC++8) [3] T. Cook, P. Franzon, E. Harcourt, and T. Miller.

+ {R1}:Done next Insts(PC+4) 1R System-Level Specification of Instruction Sets. In
Since we have the following priority relation: [R1]R -< Proc. of the International Conference on Corn-
[R1, R2, 1L31]R, by the law of prioritized choice, we puter Design, 1993.
have

Program [4] E. Harcourt, J. Mauney, and T. Cook. Specifi-

= {R1, R2, R.31 }:{R2}:Done next Inst(PC+8) cation of Instruction-Level Parallelism. In Proc.
= fR1, R2, R31}:({R2}:Done 11 {R1, R32, R33}:Done) of the North American Process Algebra Workshop,

1993.
= {R1, R2, R31}:{R2, RI, R32 , R33 }:Done

[5] M. Johnson. Superscalar Microprocessor Design.
Therefore, the ToyP processor issues and executes the Prentice-Hall, 1991.
first two instructions simultaneously. It leaves the
third instruction for the next cycle, because of data [6] I. Lee, P. Br~mond-Gr6goire, and R. Gerber. A
hazard. Process Algebraic Approach to the Specification

and Analysis of Resource-Bound Real-Time Sys-
tems. Technical Report MS-CIS-93-08, Univ. of

5 Conclusion Pennsylvania, January 1993. To appear in IEEE
Proceedings, Jan 1994.

In this paper we have presented a technique for [7] D. Patterson and J. Hennesy. Computer Archi-
specifying the temporal properties and resou con- Lecture: A Quantitative Approach. Morgan Kauff-
straints at instruction-level parallelism us; SR. man, 1990.
We illustrate our approach using a simple :dlar
processor, called ToyP. Our approach is to consider [8] R. Rau and J. Fisher. Instruction-Level Parallel
the ToyP processor as a set of resources, such as inte- Processing: History, Overview, and Perspective.
ger registers. The resource constraints of an instruc- Journal of Supercomputing, 7, 1993.
tion specify a sequence of sets of resources required
by the nstruction, one set for each instruction cycle.
Each ToyP instruction is translated to a corresponding
ACSR process. A ToyP program is translated to an
indexed set of ACSR processes. We obtain the timing
properties of the original ToyP program by simplifying
the corresponding ACSR processes using ACSR laws.

We are currently experimenting with ToyP instruc-
tion specifications using ACSR tool-kit, VERSA [2].
We also have modeled various floating-point instruc-
tions and out-of-order instruction sequence execution.
We are currently investigating more complex super-
scalar architecture such as caches and pipelines. We
also are working on the formal specifications of various
branch instructions, conditional instructions as well as
on automatic derivation of instruction scheduling pa-
rameters.

67

Session V
Scheduling II

Chair: Hide Tokuda
CMU

Task Scheduling for Real-Time Multi-Processor Simulations

Gaetano Borriello Daniel M. Miles

Dep't of Computer Science & Engineering Flight Systems Laboratory
University of Washington Boeing Commercial Aircraft

Seattle, WA 98195 Seattle, WA 98124

constructed, it is tested in its operating environment by
Abstract insertion into the simulation replacing the corresponding

software LRU. There may even be multiple software
Scheduling of tasks onto multi-processors is an models of an LRU. An engineer checking out auto-pilot
increasingly important problem in the simulation of control laws may require a high-fidelity auto-pilot model
avionics systems. The problem is difficult due to the many with its necessarily higher complexity whereas an engineer
hard real-time constraints imposed on the schedule in the checking engine performance needs only a simple auto-
form of processor frame-time limits and latency pilot model to allow the airplane to fly an acceptable flight
requirements. In this paper, we present a solution to this path. In any case, hardware or software LRUs must have
real-tame schedming problem using simulated annealing identical interfaces to ease the job of reconfiguring the
techniques. The running time of the algorithm is fast simulation.
enough for it to be applied in the rapid reconfiguration of FORTRAN is used to implement the software LRU
simulation test benches in use at Boeing Flight Systems tasks. Common blocks are used to simulate the LRU
Laboratory. Its efficacy is demonstrated using an example interfaces and pass data from one task to another. To
with 60 tasks communicating through 1800 common facilitate the restructuring and reordering of software,
blocks and scheduled onto 6 processors under 4 latency common blocks are carefully partitioned by LRU output.
constraints which achieved a utilization factor over 95%. This is needed for modularity; if outputs of two tasks share
Such an example can be scheduled in approximately 35 a common block and the tasks are scheduled on different
minutes of CPU time on an HP-Apollo 425 workstation. processors, then one task's data may overwrite the data

produced by the other when the common block is copied
1: Imtroduction to shared memory. Therefore, common blocks have a

single writer and multiple readers. Common blocks reside
Simulation is a rapidly growing part of the process of in the local memory of the processor running the LRU

building new aircrafL The complexity of modem aircraft task. If data in a common block is needed by a task on
systems, especially their avionics, requires lengthy and another processor, the common block is written to shared
comprehensive testing before the first flight occurs. In memory and read by the task needing the data. The cost to
testing aircraft systems, individually and together, produce or consume a common block is determined by the
simulation is a very effective alternative to traditional on- size of the block, plus some additional overhead. A real-
ground and flight testing, in terms of both cost and safety. time executive on each processor coordinates the tasks by
Unfotunately, real-time simulation of avionics systems in consuming data, executing the tasks, and producing data.
a muli-processor environment is a complex and difficult In addition to running the real-time executive, the host
task. One of the many challenges is the allocation of tasks computer runs LRU tasks, the airplane simulation, and
to processors in a manner that efficiently utilizes the records data in real-time. This is a huge load on resources,
computing capacity and also meets the timing and improvements in computing capacity are always
requirements of the real-time environment. The particular quickly used up by expanding simulation requirements.
environment we are concerned with statically assigns tasks The use of multi-processor computers has provided a
to processors in a fixed execution order. substantial improvement in computing capacity, but at the

An avionics system can be thought of as a collection of same time has greatly increased the complexity of
interconnected processing units, called Line Replaceable effectively managing the computing environment.
Units (LRU). An LRU provides a particular function, Scheduling of tasks onto processors is complicated by
such as an auto-pilot, that can be swapped into and out of the presence of hard real-time constraints in the form of
an aircraft for servicing or maintenance. Simulations are processor frame-times and latency requirements. A
often organized in terms of LRU tasks allowing easy processor frame-time constraint states the period with
insertion and deletion of tasks. As hardware is which a processor will cycle through its assigned tasks.

70
0-8186-5710-3/94 $3.00 0 1994 IEEE

This will limit the number of tasks that can be assigned to calculations thus making the problem difficult to solve
the same processor. Latency requirements apply to data manually.
paths through a series of alternating tasks and common Algorithmic approaches have the same problems. It is
blocks and state that a computation (represented by the fairly easy to meet the frame-time requirements, but
path) must be completed within a specified amount of difficult to meet the data latency requirements. To solve
time. Latency calculations must not only take into account the frame-time requirements, a bin-packing algorithm can
the execution time of the tasks but also the costs of be used. A near optimal solution for frame-times is easily
copying common blocks to and from memory when obtained. However, with a fairly complex data flow, an
necessary and the relative execution order of the tasks algorithm to minimize data flow latency is not readily
involved, apparent. This is further complicated when processors

have differing frame-times and are asynchronous. It is
2: Simulated Annealing difficult to capture the decisions made by the engineer to

minimize data latency and would certainly make a

The problem has a large solution space (PT possible challenging AI project. Fortunately, there are simpler

solutions, where P is the number of processors and T is the alternatives.
number of tasks) [8]. An optimal solution is one for which Simulated annealing is an algorithm that has been
no frame-time or latency are violated. Existing scheduling successfully applied to another difficult allocation
approaches have some deficiencies when applied to this problem, the optimization of VLSI component placement
situation [1, 2,6,71. Specifically, there are three points to [3, 4, 5]. The algorithm is meant to mimic the annealing
consider. First, a pre-runtime or static scheduling process of forming a crystal. A solution is heated to a
approach is needed to ensure that all constraints will be point where molecules are moving randomly and not
satisfied all of the time. Second, processor utilization near bonding together. Then the solution is slowly cooled, and
100% must be achievable. Third, latency constraints must the molecules begin sticking. If the location is a strong
be supported (note that these stretch across a sequence of bond, a molecule is unlikely to move again. If the location
tasks and cannot be expressed as simple task deadline is a weak bond, a molecule will probably come loose to try
constraints). These three characteristics lead us to and find a better location. As the solution cools, a crystal
investigate heuristic approaches to solving this scheduling structure is formed by molecules sticking to the locations
problem. with strong bonds.

One possible heuristic approach would attempt to The algorithm is very simple and relatively easy to
mimic the decisions of the software engineer faced with implement. The basic idea is to generate random moves
the same problem. The typical approach to allocate tasks (in this case, moving a task to a different processor or
in a multi-processor environment starts with a uni-process another position in the execution order on the same
simulation. The engineer partitions the simulation into processor) and then evaluate the allocation. The
functional units, relying on knowledge about the data flow evaluation is based on the frame-time and data latency of
of the LRU tasks and the frame-times necessary to ensure the processors. If the new allocation is better, the move is
the individual tasks will support the time dependent always accepted. If the move is not better, the move is
computations, such as physical control laws. When LRU accept or rejected based on a probabilistic function of two
tasks pass data to each other sequentially, the best solution terms, the current temperature, and the difference between
is to order them sequentially in a processor to minimize the new allocation's evaluation and the old.
data latency. Problems arise when data flow is not clearly The temperature is determined by a cooling schedule.
sequential, or when a single processor doesn't have enough The cooler the temperature, the less likely it is that a bad
processing power to execute such a set of sequential tasks. move will be accepted. The cooling schedule begins with
The engineer is faced with making a best guess and then a high temperature, where almost all bad moves are
analyzing the allocation to see if it meets the requirements. accepted and cools to a temperature where almost no bad
Processor and LRU task frame-times are emphasized over moves are accepted.
data latency because the frame-time is often a less flexible The key to this algorithm is in the probabilistic
requirement for LRU tasks, and also because it is much acceptance of bad moves. A problem's solution space
easier for the engineer to measure and analyze than data typically has many hills and valleys when evaluating all
latency. All the engineer needs to estimate execution time the possible configurations. If only good moves are
are the individual execution times of the tasks. To accepted, that is, those that improve the evaluation, then
estimate data latency, processor frame-times and data flow movement within the solution space will always be
information are needed. When an allocation is made to downhill. Starting from a random point in the solution
multiple processors, the data flow must be traced from space, the best possible solution would be the lowest point
task to task and processor to processor in order to sum the reachable without going uphill. The problem is the best
total latency as outlined in the previous section. Minor solution might be just over the next hill. Allowing bad
changes in allocation can have large effects on these moves gives the algorithm the opportunity to climb the hill

and find the better solution on the other side. Algorithms

71

with this property have been termed probabilistic hill- violated constraints. The frame-time overrun is then the
climbing algorithms, sum of all the individual processor frame-time overruns

for those processors with frame-time violations. The
3: Results latency overrun is generated by summing the amount by

which latency constraints are violated for those constraints
The simulated annealing algorithm has been that are, in fact, unsatisfied. The "eval" value is computed

implemnented on an HP-Apollo workstation using the C as follows: (latency overrun * weight_factor) + frame-time

programming language. In this section, we describe the overrun. The weight factor is an input parameter.
results obtained on a realistic example. The annealing The best possible value for the evaluation is zero. As
program outputs representations of the allocations at every long as all frame-time and latency constraints are met, all
step in the cooling schedule, including the beginning and solutions are equal as far as the evaluation is concerned.
end. An example allocation is given in Table I. The weight-factor weights the latency constraints versus

The rows represent the order of tasks assigned to a the frame-time constraints. The latency overruns typically
processor, followed by two numbers separated by a colon, produce much larger numbers than the frame-time
The number on the left is the specified frame-time of the overruns due to the way the overruns are computed, so the

processor, which is equivalent to the smallest frame-time latency overruns are scaled down by setting weighLfactor
of te tasks allocated to the prcessor. The number to t to values between zero and one. Also, in the real-timeright is the actual execution time of the tasks allocated o environment of aircraft simulation, frame-time constraints

the procssor, along with the time needed to read and write are more critical than latency constraints, and the
common blocks to shared memory. If the actual execution multiplier helps push overruns to the latency evaluation.

time of a processor is larger than the processor's frame- The annealing program was run on an example having
time, a frame-time overflow occurs. The amount of the 60 tasks, 1800 common blocks, and 4 latency constraints,
overflow is the execution time minus the frame-time, targeting a system with 6 processors. The annealing

The evaluation of the allocation is given by the three algorithm was executed 92000 times over 5 temperatures,
numbers below the allocation table. Frame-time and taking 35 minutes on an HP 425. Sample output is given
latency overruns are computed similarly by first finding all in Table II.

Processor Tasks allocated to the processor (in order) Frame-time: exec. time
S 37 t53 t50 t39 t28 t5I1 t5 20:15.124 *

jcl t29 t6 t42 t57 t19 t27 t22 t26 t56 t1 20:15.1875 *
xoc2 t8W t33 t36 t34 t20 t12 t3O t4 20:24.1515 *
P=3 t31 t32 t44 t13 tll t55 t38 t14 tO 20:22.171 *
vroA tl0 t40 t54 t52 t8 t48 t23 t17 t45 t24 t49 t58 t9 3 20:42.2305 *
Proc5 t43 t46 t25 t21 t35 t7 tI5 t16 t47 t59 t2 20:16.2 *

latency overrun = 620 frame-time overrun = 28.553 eval 90.553

Table I. Sample Task Allocation

Processor Tasks allocated to the processor (in order) Frame-time: exec. time

S t 5s tl30t4 t12t31 3 t59t5 20:19.98
proc.l, tO tSl tl t34 t16 t35 t49 t13 t36 t33 20:19.07

.roc2 t22 t27 t25 t6 t7 t38 t20 t19 t26 t21 t23 20:19.575
pr t8 t48 t24 tl8 t14 t58 t15 t46 t28 40:39.565

1 t4017 t54t44 56t9 t57 t45 t2 t32 20:19.7
Lo5 It52 t53 t29 t41 t43 t37 t39 650 t42 t47 20:19.205
latency overrun = 0 frame-time overrun = 0 eval = 0

(seed= 1, weight factor=0.1)
Table Ii. Sample Output from Annealing Program

72

almost entirely derived from. substituting C language

The cooling schedule for this example was arrived a, pointer addressing and operations for indexed arrays.
by experimentation. The schedule has five temperatures,
100, 10, 1.0, 0.1, and 0.01. Using an exponentially 4: Conclusion
decreasing schedule is typical of annealing
implementations. Initially, a much wider range of The problem of allocating tasks in a real-time multi-
temperatures was used, from 1000 to 0.001. By studying processing environment to simulate modern aircraft is
the evaluations at the extremes of the temperature intractable, but has a suitable heuristic solution using the
schedule, the range was narrowed with no effect on the simulated annealing algorithm. The problem has been
quality of the final solution. The upper range was lowered formalized with a set of equations defining processor
to 100 because at temperatures of 10 and above, task firame-time and data latency as functions of task allocation.
allocations were seemingly random. The 100 was left in The equations are directly used to define the evaluation
the schedule to ensure that the algorithm covered a large portion of the simulated annealing algorithm. The
portion of the solution space. In this example, the algorithm was run on a large example based on existing
algorithm converged on a solution at temperature 0.1. real-time aircraft simulations and shown to be
This is not always the case. In about 20% of the trials, approximately linear in the number of common blocks and
there was a small frame-time overrun at temperature 0.1 latency constraints. Several input parameters have to be
which was erased by the iterations at temperature 0.01. fine-tuned experimentally to yield good results, but the
Since an evaluation of zero was produced with the execution speed of the algorithm (approximately 35
temperature of 0.01, there is no need to use a lower minutes as opposed to several days or weeks for hand
temperature. In no case did an evaluation ever increase methods) is fast enough to support repeated trials and be
once it went to zero at the 0.01 temperature. The number effectively applied in the Boeing Flight Systems
of iterations at each step in the cooling schedule were Laboratory.
similarly derived by experimentation. The cooling
schedule used in the above example appears to be References
adequate on all our experiments to date. However, given
the small running time of the algorithm, it is conceivable [V] Baker, T.P. and Shaw, A. "The Cyclic Executive Model
that the number can be tuned for each problem if many and ADA", Proceedings of the IEEE Real-Tune Systems
new simulation configurations (using different LRUs) are Symposium, Dec 1988, pp 120-129.
to be implemented. [2] Chetto, H., Silly, M., and Bouchentouf, T. "Dynamic

The process of tuning the schedule and weight factor is Scheduling of Real-Time Tasks under Precedence
problem dependent, but a schedule and weight factor that Constaints", The Journal of Real-Time Systems, Vol. 2,
works for a given problem will probably work well for 1990. pp 181-194.
similar problems. The most important factors are the size [3] Kirkpatrick, S., Gelat, C.D., and Vecchi, M.P.
of the problem in terms of tasks and common blocks, the "Optimization by Simulated Annealing", Science, May
number and complexity of constraints, and the number of 1983, pp 671-679.
processors available. Also, the example used for Table I 141 Mitra, D.. Romeo, F., and Sangiovanni-Vincentelli, A.
is tightly constrained in terms of frame-time. No "Convergence and Finite-Time Behavior of Simulated
processor has more than 5% idle time. It seems obvious Annealing", Proceedings of the 24th Conference on
that if a given schedule finds a solution with a tightly Decisions and Control, 1985, pp 761-767.
constrained problem, it will also work on problems less (51 Shahookar, K. and Mazumder, P. "VLSI Cell Placement
tightly constrained. Conversely, the more constraints on a Techniques", ACM Computing Surveys, June 1991, pp 143-
problem, the more iterations will be required to solve it, if 219.
it can be solved at all. [6] Sprunt, B.J., Sha, L, and Lehoczky, J.P. "Aperiodic Task

Since the algorithm is dependent on the number of Scheduling for Hard-Real-Time Systems", Real-Time
iterations, the performance of the algorithm is critical. Systems, June 1989, pp 27-60.
After some coding improvements, the runtime of a smaller (71 Versoosel, J.P.C., Luit, EJ., and Hammer, D.K. "A Static
example was reduced from 10 minutes to a little over 3 Scheduling Algorithm for Distributed Hard Real-Time
minutes. The runtime of the larger example above was Systems", The Journal of Real-Time Systems, Vol. 3, 1991,
dominated by the computations related to the large number pp 223-246.
of common blocks and scaled linearly with the number of [8] Zondag, E.G. "A Static Load Distribution Strategy for
blocks and constraints in the input. This was verified by Processor Pools", Memorandum INF-88-43, University of
adding large numbers of artificial latency constraints. A Twente, The Netherlands, 1988.
profiling utility was used to identify the most heavily used
routines and modifications to four routines (all in the
annealing evaluation routing) resulted in the performance
improvement. The improvements in efficiency were

73

Successful Use of Rate Monotonic Theory on a Formidable Real Time
System

Larry Doyle and Jon Elzey

(ITT Aerospace/Communications Division)

Abstract Hardware production and related work will extend into
the 1990s. The initial phase of development was a

The navigation payload software for the next block of competitive contract that led to the award of the current
Thebal nitiong pyload softwaies frent ckof d development contract. In the initial phase, a brassboardGlobal Positioning System satellites recently completed prtyewadvlodwhhsuotda resbt

testing. The computer program for the onboard computer prototype was developed which supported a core subsettestn8. Thecomuterproramforthe nbord ompter of functions for the Navigation Payload. The prototype

is sufficiently complex to expose almost every issue that

has been put forward in rate monotonic theory. The provided a proof of concept and some execution time

success of this effort demonstrates the utility of the theory benchmarks without which the risk of the ensuing

in this type of application. The system designed required development would have been unacceptable. Full scale

thedevelopment Was completed on the next phase. Although
deadine roealorte fcon. Thisy ders w o ha bsome time, perhaps a year, can be attributed to thedeadline real-time functions. This design would have been transition between two contracts, the extended

difficult or impossible prior to the development of rate

monotonic theory. The use of utilization bounds hs development time reflects the scope and complexity of

important advantages from a software engineering point of the effort.

view. The problems of insuring schedulability over the
course of development and verifying the schedulability of
the finished system are discussed.

The Global Positioning System provides navigation
Background and time signals to suitably equipped users on a global

basis for position, velocity and time determination. It also

Rate monotonic scheduling theory has been successfully provides a nuclear event detection capability.

applied to the development and testing of complex real GPS is composed of a User Segment, a Control

time software for an embedded space vehicle application. Segment and a Space Segment. The User Segment

The project development occurred over the same period of consists of user navigation receivers that receive and

time that much of the material on rate monotonic process the satellite downlink. The Control Segment
consists of ground stations responsible for monitoring thesheduling was being published. Thus, it was an

opportunity to apply these ideas very soon after space vehicles, supplying the space vehicles with updated

publication to a large project with cost and schedule Navigation Data, and ensuring proper space vehicle

commitments. Because the system design required the operation. The Space Segment is a constellation of

processor to perform such a complex mix of functions, it twenty-four space vehicles in six orbital planes, providing
depended heavily on the application of this theory. twenty-four hour coverage worldwide. On the spaceThe software was developed for the Navigation vehicle, the Navigation Payload performs the Space

Thelo softwaree was developedlforstheoNavigationm Segment role in the navigation mission and provides
Payload in the NAVSTAR Global Positioning System communications for the nuclear detection mission.

(GPS) Replenishment Satellites program. These satellites Becas the ae learee ctn ote
3 Because thewe satellites are used for aircraft and other

will be launched during the late 1990's as the current navigation, the integrity and reliability of the system are
generation of OPS satellites is retired. The new satellites critical. If the satellite were to broadcast erroneous signals
have significantly greater functionality than theirpredecessors, or data, the consequences could be disastrous. In this typeWredecesor . of hard deadline, real-time system, failure of a task toW ork bgan on this project in the spring of 1987 and c m l t n t m o l a e u p e i t b e r s l s h
completed final qualification testing in the fall of 1993. complete in time could have unpredictable results. The

74
0-8186-5710-3M94 $3.00 © 1994 IEEE

hardware often enters an undefined or undesirable state if allocated to store data received from the Control
the software fails to meet a deadline. It was therefore Segment. The XD Ada runtine system requires a separate
critical to insure the reliability of the real time design. Ada main program in each address state. Global shared

data provides inter-state communication and the XD Ada
The Navigation Payload Mission Processor implementation of the classical semaphore provides

inter-state synchronization.
Within the Navigation Payload, the Mission Data Perhaps the most distinguishing feature of the

Unit (MDU) serves as a central interface point to software design is that there are fifty-one tasks. Some

numerous other space vehicle subsystems. These include Ada designs may have a large number of tasks which

the Telemetry, Tracking and Control System, the Nuclear serialize access to data. Although this is the case with

Detection System, the Spacecraft Processing Unit, an some tasks, most of these tasks manage asynchronousDetetio Sytem th SpcecaftProessng nit an activities with deadlines. Five tasks are XD) Ad direct
inter-satellite crosslink for communications and ranging, itept adles. wo tal inerDpt ad re
and an L-bnd downlink. The MDU also contains interrupt handlers. Two additional interrupt handlers are

a d n rd- ar fo imink.gTheMDU control lain he only software coded in assembly language. Other
specialized hardware for timing control, modulation taskcs are allocated as application processing threads or as

control, navigation, and communications security. The

MDU includes the flight software which is the subject of servers. Tasks have deadlines ranging from a few
milliseconds to several minutes. Because the Mission

this paper. This is an Ada program, supported by the EDS

Scicon XD Ada cross-compiler and linker. The embedded Processor is required to resume operation after a

MDU processor, called the Mission Processor, is a processor reset, some checkpointed data are not altered by

Marconi MAS281 which is an implementation of the Ada elaboration. Initialization following Ada elaboration
and task activation is distributed over the tasks. The XDMIL-STD-1750A architecture with memory mapping. . Aarniesse rvdsts ceuigi h d

The computer program in the Navigation payload is Ad runtime system provides task scheduling in the Ad

large and complex compared to other spacecraft software. preemptive model without time slicing. Interrupt handlers

It performs a wide variety of loosely coupled functions. may propagate events through rendezvous or shared data.

There are numerous communication functions which Lower rate tasks schedule themselves by delay statements

involve data buffering, bit-packing, forward error or by rendezvous with a higher priority task which handsinvove atabuferin, bt-pckig, frwad eror off a large computational job with a later deadline.
correction coding, error detection and cryptography. In Sre a or aorendnzvo with a let.eFromnth

addition, the software performs a phase locked loop that Servers wait for a rendezvous with a client. From the

maintains the highly accurate timing signal to the point of view of data flow and functional processing, the

navigation users. The requirement to function software contains several pipelines with delays

autonomously for 1 80 days dictates that the spacecraft will corresponding to rate monotonic scheduling deadlines.

perform many computationally intensive functions which Since this large number of tasks incurs penalties in

are currently performed by the Control Segment. These memory usage, runtime overhead, and the
include monitoring the integrity of the navigation and comprehensibility of the system, the design was often

reviewed to see if the number of tasks could be reduced.
timing information, estimating the satellite's orbital Most of the shared data structure tasks have been
parameters from inter-satellite range measurements, andmaintaining the synchronization of the GPS constellation optimized away. In the final design, only a small
using the inter-satellite crosslink. reduction would be possible at the expense ofu software deadlines result from the many real-time significantly poorer modularity. Insuring schedulability ofThe sfO such a large number of tasks was a significant problem.
interfaces that must be serviced continously. The 1/O Although much detail has changed since the
architecture includes twenty-seven interfaces which use ltough muc dtare ach and se thenineteen interrupts with rates up to one kilohertz. All six prototype, the basic software architecture and use of Ad
spieee5n interrupts ates use t e kloh . si x a tasking have not. One source of change was the evolutionspare .750A interrupts are used, three of which are of many functional and interface requirements, another
multiplexed. Thirty-two IYO ports are allocated to the waachneocmplrvdrsDvlpetbgnIA) ddrss sace andtwety IO prts o a was a change of compiler vendors. Development began
register 1/0 address "ce, and twenty I/0 ports to a with a compiler that used the Ada rendezvous as the
memory mapped I/O page in one of the address states. means of inter-address state communication and

The processor memory architecute requires the programto be partitioned into address states which have separate synchronization. in early 1991, the program transitioned
logical adress spaces. The Navigation Payload software to the XD Ada compiler. The difference in :nterrupt
maps five 1750A logical address states to 448K 16-bit models induced changes in interrupt handlers. Interrupts
words fve 1750Aysical m emor. Adti l tmemory is are now handled as described in reference 131. The
words of physical memory. Additional mealternate methods for dealing with 1750A memory

75

L EIIIIIIIIIII

mapping caused substantial task re-allocation, including the importance of evaluating execution time estimates and
proliferation of agent tasks to transport service requests measurements as they become available.
across address states between clients and servers. Utilization was continuously updated as the design

Software development followed substantially the matured and execution time estimates became more
methodologies described in reference 1101. In addition, accurate. In the early phases, a single utilization bound
unbounded priority inversion was prevented by design was used to assign initial execution time budgets. Since
practices similar to those described in f111, 141, (51 and processing times always seem to increase as a software
161. project progresses, the fact that a single utilization is

conservative is an advantage. As the design matured, the

Insuring Schedulability throughout single bound technique yielded too pessimistic a result

Development and more complex techniques were employed.
Use of a single utilization bound requires that all

tasks are strictly periodic. If events have a burst rate
Reference (41 gives two groups of techniques for higher than the average rate, this shortest period must be

guaranteeing schedulability. The first group of techniques, used in the analysis. If the deadline is less than one full
derived from references [71 and [111, is based on period, you must either use a lower bound, inflate the
computing utilization bounds. The second group of execution time, or assume a period for the task equal to
techniques verifies schedulability by determining the the worst case deadline. Because of these considerations,
response time of each task. In these techniques, there is a the utilization that is computed for a single bound
tradeoff between complexity and pessimism. The simplest comparison is much higher than what is actually the case.
techniques tend to yield overly pessimistic results. As the Because the Mission Processor has many cases of
techniques become more complex, they yield increasingly both shorter-than-period deadlines and high burst rates
realistic results. All of the techniques for determining that are significantly higher than the average rate, this
response times are more difficult and require more data system would not meet the single bound criteria. It was
than the techniques for computing utilizatior bounds. necessary to use multiple bounds. Reference [41 describes

Application of the most accurate techniques to a use of utilization bounds for each event when the
system of this complexity would be far too costly and deadlines are within the period. The utilization of task i,
would have delayed the schedule. Li addition, since fi , is computed as follows:
execution time budgets must be continuously monitored,
it is important that the data required to do this monitoring
not be too complicated. The most economical analysis will ', _ 1
do just enough to prove schedulability and no more. f= + - +Bi+ C,)
Rate monotonic analysis requires a global view of the 'JeHn T T kGH
entire processor. However, good design dictates that the

program be decomposed such that each piece can be
designed with limited knowledge of the other pieces. On
a complex system, it is important to be able to deal with ,ehre C is compute time, T is the period, B is blocking,
the global properties of the system at a higher level of Hn is the set of tasks with a shorter period than task i,
abstraction. Utilization bounds are in the spirit of and HI is the set of tasks that must execute in order for
information hiding in that only a small amount of task i to complete. This utilization is then compared to
information about each task need be exposed. Information the appropriate bound.
hiding has been shown to be an important element of A major simplification in the use of this technique is
software productivity 11). This "separation of concerns" is that it is not necessary to perform this for every event. At
also discussed in [1 11. As a result of these considerations, the expense of being slightly more conservative, the
only utilization bound techniques were employed, equation above can modified to compute utilization for a

Execution time budgets were frequently exceeded at set of tasks. Tasks can be divided into sets that span
every stage of the development cycle. This required ranges of rates and utilization can be computed for each
reallocating budget or performing some optimization or set. With a small number of sets, most of the simplicity
both. When an optimization is required, an abstract, global of a single bound is retained. Selecting the sets carefully
view of schedulability is essential in deciding which of the eliminates the large discrepancy between computed and
potential optimizations will best address the problem. The actual utilization which occurs with a single bound. For
fact that optimization was needed so frequently points out most of the design process, just two bounds were used.

76

This was later extended to three. Utilization for a set of changed if, and only if, there is a context switch. With
tasks, H2, can be expressed as: the HP State Analyzer, we c9uld trigger on a desired

event and measure the exact time between every context
switch until the completion of the response to the event.
This had the virtue that all runtime overhead was
included in the measurement. It also provided the
blocking time measurements. The disadvantage is that

5'.nen 1 mnT) e2kH substantial knowledge of the program flow was required
to unravel which task executions were part of the

keH2 response. This turned out to be less difficult than it
appeared and it had the unexpected benefit that it
uncovered some design flaws.

Conclusion
Comparing this utilization to the appropriate bound can
then prove the schedulability of the set of tasks. The This project was a successful application of rate
periods, T. , in H2 are the burst rate periods but the monotonic theory to the design, analysis and testing of a
periods, T,, in Hn are the average over min(T). This complex real-time system. It would have been very
eliminates the excessive conservatism of a single bound. difficult, perhaps impossible, to implement this system

without preemptive scheduling. Throughout the project,
Verifying Schedulability of the Finished concerns about the use of Ada and preemptive scheduling

System in hard deadline systems were published 191, [8], [2].

There were also reservations within our own organization.
To some extent, the schedulability of a system is None of the difficulties were significant compared to the

demonstrated by the various functional tests. However, on advantages of the approach.
a complex system it is not practical to figure out how well What is most important, the methodology used makes
the test cases prove that system is schedulable in every it possible to deal with the overall schedulability of a
possible condition. Therefore, a final analysis was complex ical-time system at a higher level of abstraction
performed with measured execution times. On a fmished while maintaining the loose coupling and decentralized
system, there is the option of measuring the response design of the pieces.
times directly. This was considered but there were Several major issues were only touched on in this
instrumentation problems with several events. Therefore, paper. The design optimizations which were required
the same utilization bound technique that was used during provide important insights. The hardware/software
development was used in the test. This required accurate tradeoffs that lead to this design suggest some trends in
execution time measurements. real-time systems. Some important techniques in the use

The first attempt was to use end-to-end execution of Ada were devised. Economically obtaining execution
times as though they were the actual times. Test time estimates throughout the design was a challenge.
scenarios were constructed which attempted to minimize These may be the subject of future papers.
the activity which would preempt the task that was being
measured. The HP Software Performance analyzer was References
used to measure the time between a synchronization event,
such as a delay expiration or interrupt, and the completion 1. Boehm, B, Improving Software Productivity,
of processing. This device builds a histogram of durations Computer, September, 1987.
which occur between two events. From this, the longest
response time in a test scenario can be measured. The test 2. Cooling, J.E., Software Design for Real-Time Systems,
scenario is designed so that it forces at least one Chapman and Hall, 1991.
occurrence of the longest execution path of the task being
measured. However, the nature of the system is such that 3. Jennings, P., Ada Interrupt Handlers for Hard
preemption could not be sufficiently minimized. Real-Time Systems, International Workshop on Real-

The XDAda runtime system has a pointer to the task Time Ada Issues, ACM Press, 1990.
control block of the currently running task. This pointer is

77

4. Harbour, M.G., Klein, M.H., Rayla, T., Pollak, B., 9. McCormick, F., Scheduling Difficulties of Ada in the
Obenza, R., A Practioner's Handbook for Real-Time Hard Real-Time Environment, International Workshop on
Analysis, Software Engineering Institute, Kluwer Real-Time Ada Issues, ACM Press, 1987.
Academic Publishers, 1993.

10. Nielsen, K.W., and Shumate, K., Designing Large
5. Leinbaugh, D.W., Guaranteed Response Times in a Real-Time Systems with Ada, Communications of the
Hard-Real-Time Environment, Transactions on Software ACM, August, 1987.
Engineering,Vol. 6, No. I, Jan. 1980.

11. Sha and Goodenough, Real-Time Scheduling Theory
6. Levine, G., Control of Priority Inversion in Ada, Ada and Ada, Computer, April 1990.
Letters, Vol. VIII, No. 6, Nov./Dec. 1988.

7. Liu and Layland, Scheduling Algoritms for
Multiprogramming in a Hard Real Time Environment, J.
ACM, Vol. 20, No. 1, 1973.

8. Locke, C.D. and Vogal, D.R., Problems in Ada Runtime
Task Scheduling, International Workshop on Real-Time
Ada Issues, ACM Press, 1987

78

Temporal Protection in Real-Time Operating Systems

Cliff Mercer*, Ragunathan Rajkumar + and Jim Zelenka*
*Department of Computer Science

'Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Real-time systems manipulate data types with inherent timing constraints. I Priority-based scheduling is a
popular approach to build hard real-time systems, when the timing requirements, supported run-time
configurations, and task sets are known a priori. Future real-time systems will need to support these hard
real-time constraints but in addition (a) provide friendly user and programming interfaces with audio and
video data types (b) be able to communicate with global networks and systems on demand, and (c)
support critical command and control services despite potential risks introduced by such added flexibility
and dynamics. In this paper, we argue that temporal protection mechanisms can be as beneficial in these
systems as virtual memory protection. The processor reservation mechanism that we have implemented
in Real-Time Mach, for example, provides guaranteed timing behavior for critical activities.

1. Introduction
In real-time systems, the correctness of a computation depends upon both its logical and temporal

correctness. As a result, earlier real-time systems were often hand-crafted in order to meet stringent
timing constraints. Recently, more flexible priority-based scheduling approaches have become popular
[3, 6, 131. However, the design of such systems still requires a priori knowledge of tasks and their

timing requirements, and therefore these systems tend to be very static in nature. Many recent trends
indicate that future systems increasingly need to be much more dynamic in nature:

* Real-time applications are becoming more pervasive and complex. For example, the next
generation of naval systems are expected to support many data types including analog,
discrete, graphics, audio, video and voice, with integrated communications and control with
low latency requirements. This trend has been accelerated by two related mainstream factors.
First, the explosive surge of multimedia applications has literally brought time-critical data
types (audio and video) to the desktop. Secondly, the continuing growth of computing power
at ever falling prices enables more and more applications, with multitasking becoming a
natural candidate to use up available cycles.

" The advent of high-performance networks such as ATM opens up new applications with high
bandwidth, low latency, and guaranteed service requirements. These applications include
tele-medicine, distance learning, advanced air traffic control, sophisticated defense systems
and networked patient monitoring. In these applications, any overload conditions because of
dynamic requests and/or connections must not disrupt their basic mission.

" There is a rush towards universal connectivity and access, where a piece of information (or a
person) is just a call away. Such high-degree of connectivity between systems and networks
(both via cable and wireless networks) provides global access to information databases.

1This research was supported in part by the U.S. NRaD under contract number N66001-87-C-0155, by the Office of Naval
Research under contract number N00014-84-K-0734. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing official policies, either expressed or implied, of NRaD, ONR, or the U.S.
Government.

79
0-8186-6710-394 $3.00 © 1994 IEEE

Future systems would therefore be hard pressed not to exploit such information availability
and reachability. In addition, such information accesses may need to be set up dynamically
on user demand.

The above trends are expected to result in flexible, friendly, dynamic and informative systems but this
flexibility and accessibility bring about new problems such as issues of security and privacy. In addition,
real-time connections (such as multimedia) must be established online. These multimedia interfaces
require real-time behavior, but not at the cost of adversely affecting those critical activities with hard
real-time constraints. In this paper, we argue that robust temporal protection mechanisms are needed to
supplement and complement spatial protection mechanisms in order to achieve this goal.

2. Protection Mechanisms for Real-Time Programs
Early on, real-time systems were often built without virtual memory protection because the stochastic

nature, long delays and potential overhead introduced by demand paging were considered incompatible
with real-time requirements. However, processors and memory have become faster, and real-time
operating systems [4, 11, 16, 171 have become more sophisticated. Any associated overhead of virtual
memory management is now considered to be worth the address space protection enforced across process
boundaries. With address space protection, logical misbehavior on the part of one process (such as the
use of incorrect address pointers) does not necessarily mean that an entire processor will fail. We refer to
such protection mechanisms as spatial protection.

Traditional non-real-time operating systems also provide a simple notion of temporal protection with
fairness as a primary motivation. The scheduler in time-sharing systems typically uses a multi-level
feedback queueing mechanism such that a process executing for a long time typically has its priority
lowered in order to let other waiting processes execute 15). Hence, even a process which enters an infinite
loop can normally be stopped or killed when its scheduled time quantum expires and another process is
scheduled.

In real-time systems, where timeliness of critical activities (and not fairness) is the primary motivation,
the issue of temporal protection needs to be substantially re-considered. For example, consider the use of
fixed priority scheduling approaches such as rate-monotonic scheduling [7, 15] in building real-time
systems. Under a fixed priority scheduler, a process which enters an infinite loop will preempt all its
lower priority tasks, which can then never run again. Often, the only recourse is to reboot the machine.

Spatial virtual memory protection has been adapted to real-time systems by providing the ability to lock
down memory pages. Similarly, it is reasonable to expect that temporal protection schemes need to be
adapted to real-time systems in general and priority-driven real-time systems in particular. We believe
that such temporal protection mechanisms are critical to support the flexible and dynamic application
environments described earlier. In the next section, we consider temporal protection schemes in detail.

2.1. Temporal Protection for Real-Time Programs
Many real-time operating systems support a multitasking environment for its inherent modularity, ease

of program development and debugging, and programming (as well as conceptual) compatibility with
traditional operating systems such as Unix [1]. The timing behavior of a real-time process in this
multitasking environment depends upon its own behavior and its level of resource-sharing with other
processes. Resources shared by processes can be either physical or logical. Physical resources shared
across processes include the CPU, buses, networks, memory pages, memory heap, I/O interfaces etc.

80

Logical resources can include servers, shared queues, communication buffers, etc.

Scheduling theory for processors [7], buses [14] and networks provides the means to determine whether
a set of tasks using a physical resource can meet its timing requirements. Similarly, synchronization
protocols [13, 12, 21 provide the ability to analyze the needs of real-time tasks to share logical resources.
However, these analytical techniques must necessarily make assumptions such as the worst-case
execution time of a task, the maximum duration of a critical section, or the maximum bus transaction

time. If these assumptions are violated, undesirable consequences can occur. In static systems, it may be
relatively easier to ensure at development time that these assumptions are indeed satisfied. However, as
real-time systems and applications become more dynamic and flexible in nature, the robustness of the
system's ability to deliver its critical functionality may be compromised by errors and violations in a

relatively new and untested process.

3. Guaranteed Processor Reservation for Real-Time Programs
Processor and memory sharing are two critical pieces which can substantially affect (and dominate) the

timing behavior of a real-time program. We have been investigating an operating system abstraction
called processor reserve (8, 91 to provide temporal protection to a real-time process at the level of CPU
sharing. In this abstraction, we view processor capacity as a quantifiable resource which can be reserved
like physical memory or disk blocks. A processor reserve represents a claim on processor capacity over
time (e.g. 10 ms of computation time out of each 50 ms of wall-clock time). An admission control policy
determines whether a reservation request is accepted or not, and once the processor reservation is
established, it is scheduled and enforced by the operating system. Together, reservation and the
enforcement mechanism provide a scheduling firewall which protects reserved programs from outside

interference in much the same way as memory protection isolates a program address space from access by
other programs.

Our processor reservation scheme has been implemented in Real-Time Mach [17]. Real-Time Mach
supports a priority-driven paradigm to schedule real-time tasks2 . Each processor reserve is assigned a
rate-monotonic priority based upon its requested rate of usage and the processor is still scheduled on the
basis of fixed priorities3 . The reservation scheme includes an admission control policy to prevent
overload and a mechanism to accurately measure computation time consumed by programs. In addition
to measuring computation time usage, the reservation mechanism enforces computation time limits over
the short-term in order to ensure that a program which attempts to use more computation time than its
allocation does not interfere with the timing behavior of other programs.

3.0.1. Experimentation with Processor Reservation
We now describe an application built on our reservation scheme. The application consists of a number

of instantiations of a QuickTime video player [18], each of which displays a video stream on the screen.
Each program reads a short video clip and then begins to output frames to the screen using a memory-

mapped frame buffer. The video resolution is 160x 120 with 8 bits of color. The program applies a noise
filter to each frame before it is displayed. By itself, one instantiation of the program can run at 23.2
frames per second on a 486-based machine.

2Other CPU scheduling policies such as round-robin are also provided as dynamic configuration options.

31t is relatively easy to extend this scheme to use dynamic priorities based on earliest deadline scheduling.

81

4

When we run two instantiations of the program under a time-sharing policy, each program averages
11.6 frames per second. Under this policy, the programs get variable service: first one video stream gets
preference from the time-sharing scheduler and then the other, and they alternate getting better and worse
frame-update service as their priorities change in the multi-level feedback queue.

Our reservation system allows us to go further in controlling the timing execution behavior of these two
programs. If we consider one of the programs as the "focus" in the same way a video teleconference has
one video stream as the "focus," we can reserve more processor capacity for that stream at the expense of
the second stream. For example, when we give one video stream a reservation of 80% of the processor
(e.g. 80 ms every lOOms) and allow the other to consume the remaining processor capacity, we get 18.6
frames per second on the "focus" video stream and 4.2 frames per second on the other stream.

3.0.2. Processor Reservation Manager
Fine-grained feedback on performance and the status of the reservation can help the application adapt

to its own behavior and to the behavior of other parts of the system. Also, reservations may be changed
by forces external to the reserved program, and the program must be informed of the change so that it can
adjust its behavior. A "reservation manager" that manages the reservations on a system based on user
input via a reservation user interface might make such external reservation adjustments.

3.0.3. Processor Reservation in Distributed Systems
Processor capacity reserves can support reservation in distributed real-time systems by having each

reserve contain reservations for various resources around the distributed system. Then messages
containing requests for remote service will contain these "sub-reserves" which can be used to "charge" the
remote service. Another aspect of reservation in distributed systems concerns the reservation of
communications protocol processing on each of the hosts [10]. We are currently investigating other
applications of processor reservation in user-level schedulers and dedicated bandwidth for critical
activities.

4. Conclusion
Real-time systems need predictable timing behavior, and predictability is often achieved by exploiting

the a priori knowledge of supported system functionality. These systems therefore tend to be static in
nature. However, due to recent trends towards multimedia applications, high-performance networking
and wide connectivity, it can be expected that future real-time systems will support a highly dynamic mix
of applications and connections. These flexible and dynamic systems can be susceptible to errors and
misbehavior on the part of some task(s) and/or network/bus traffic. It is highly desirable that protection
mechanisms be available in these systems to ensure that critical functionality is still provided by
preventing temporal interference from other activities.

Address space protection offered by virtual memory provides a logical fence between processes. We
similarly argue that temporal protection mechanisms are also crucial fences that need to be built between
the timing behavior of caitical real-time activities. One of our abstractions for such temporal protection is
called the processor reserve. This abstraction ensures that a real-time task is guaranteed a required

fraction of the processor at a certain rate. This abstraction has been implemented in Real-Time Mach
where tasks with guaranteed reservations are themselves scheduled using rate-monotonic priority
assignment. We are currently investigating other temporal protection mechanisms in the management of
memory, display and storage.

82

References

1. M. J. Bach. The Design of the UNIX Operating System. Prentice-Hail, 1986.

2. Baker, T. "Stack-Based Scheduling of Realtime Processes". Journal of Real-Time Systems 3, 1
(March 1991), 67--100.

3. Bums, A. "Scheduling Hard Real-Time Systems: A Review". Software Engineering Journal (May
1991), 116-128.

4. K. Jeffay, D. L. Stone and F. D. Smith. "Kernel Support for Live Digital Audio and Video".
Computer Communications (UK) 15, 6 (July-August 1992), 388-395.

5. Leffler, S. J., McKusick, M. K., Karels, M. J. and Quarterman, J. S. The Design and Implementation
of the 4.3BSD UNIX Operating System. Addison-Wesley, 1989.

6. Lehoczky, J. P. "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines". IEEE
Real-Time Systems Symposium (Dec. 1990).

7. Liu, C. L. and Layland J. W. "Scheduling Algorithms for Multiprogramming in a Hard Real Time
Environment". JACM 20 (1) (1973), 46 - 61.

8. C. W. Mercer and S. Savage and H. Tokuda. Processor Capacity Reserves for Multimedia Operating
Systems. Tech. Rept. CMU-CS-93-157, School of Computer Science, Carnegie Mellon University, May,
1993.

9. C. W. Mercer and S. Savage and H. Tokuda. Processor Capacity Reserves: An Abstraction for
Managing Processor Usage. Proceedings of the Fourth Workshop on Workstation Operating Systems
(WWOS-IV), Oct, 1993.

10. C. W. Mercer, J. Zelenka and R. Rajkumar. "Resource Reserves for Operating System Protocol
Processing". Submitted for publication (January 1994).

11. IEEE Standard P1003.4 (Real-time extensions to POSIX). IEEE, 345 East 47th St., New York, NY
10017, 1991.

12. Rajkumar, R., Sha, L., and Lehoczky J.P. "Real-Time Synchronization Protocols for
Multiprocessors". Proceedings of the IEEE Real-Time Systems Symposium (1988), 259-269.

13. Sha, L., Rajkumar, R. and Lehoczky, J. P. "Priority Inheritance Protocols: An Approach to Real-
Time Synchronization". IEE.E Transactions on Computers (September 1990), 1175-1185.

14. Sha, L., Rajkumar, R. and Lehoczky, J. P. "Real-Time Scheduling Support in Futurebus+". IEEE
Real-Time Systems Symposium (Dec. 1990).

15. Sha, L., Rajkumar, R. and Sathaye, S. "Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems". IEEE Proceedings Journal (January 1994).

16. Stankovic, J. A. and Ramamritham, K. The Design of the Spring Kernel. Proceedings of the Real-
Time Systems Symposium, Dec, 1987.

17. H. Tokuda and T. Nakajima and P. Rao. Real-Time Mach: Towards a Predictable Real-Time
System. Proceedings of USENIX Mach Workshop, Oct, 1990.

18. H. Tokuda and T. Kitayama. Dynamic QOS Control Based on Real-Time Threads. ART Project
Technical Memo, School of Computer Science, Carnegie Mellon University.

83

Session VI:
Operating systems II

Chair.* Keith Marzullo
UcsD

On Latency Management in Time-Shared
Operating Systems*

Kevin Jeffay

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC 27599-3175
jeffay@cs.unc.edu

Abstract: The design of general purpose operating In this note, we describe a problem that arose during the
systems impose constraints on the way one can structure implementation of an experimental desktop video-
real-time applications. This paper addresses the problem conferencing system [4, 5]. Abstractly, the problem is
of minimizing the end-to-end latency of applications that cofreni system [atcy th roblemiis
are structured as a set of cooperating (real-time) tasks. that of minimizing end-to-end latency in real-time
When applications are structured as a set of cooperating applications that consist of a set of cooperating tasks or
tasks the time required for data to progress from an input threads. Here latency is defined as the difference between
task to an output task is a function of the number of the the times at which input data is first made available to an
tasks that handle the data and the deadlines of individual application thread and the time at which an application
tasks. We present an integrated inter-process com- thread performs an output operation based on the input
munication and scheduling scheme that can be used to
minimize the end-to-end latency of multi-threaded data. The thesis of this work is that by providing thc
applications. Our approach is to provide the scheduler kernel with information on the task structure of real-time
with information on the inter-process communication applications, one can both dramatically reduce the worst
interconnections between tasks and to use this information case end-to-end application latency and employ relatively
to guarantee an end-to-latency to applications that is simple scheduling algorithms to provide real-time
simply a function of the timing properties of the
application and not its task structure. This scheme has response to individual tasks.
been implemented within the YARTOS kernel and is The following section motivates the end-to-end latency
presently being ported to the Real-Time Mach kernel. problem using an idealized version of our video-

conferencing system as an example. Section 3 outlines a
1. Introduction real-time message passing service that we constructed

Multimedia applications that process streams of live and within the YARTOS (Yet Another Real-Time Operating

stored audio and video are stimulating research on the System) kernel [7]. We show how this service reduces

integration of real-time computation and communication worst case end-to-end latency and how it can be efficiently

services into general purpose, time-shared operating implemented. The YARTOS message passing service is

systems. While much is known about the scheduling and currently being ported to the Real-Time Mach kernel [11]

resource allocation problems that comprise the formal un- and will form the basis for a comparative study of the real-

derpinnings of such services, techniques for implementing time performance of the YARTOS and RT-Mach thread

and using existing algorithms, in particular within the models.

context of general purpose operating systems, have
received relatively little attention. 2. The End-to-End Latency Problem

Real-time computations require bounded response times.

* Supported in part by grants from the IBM Corporation, the Intel In general, by employing results from the real-time
Corporation, and the National Science Foundation (numbers CCR- scheduling literature (e.g., [101), for relatively simple
9110938 and ICI-9015443).

0-8186-5710-3194 $3.00 0 1994 IEEE

models of computation, it is possible to (I) determine In order for this conferencing application to be effective,
conditions under which it is theoretically possible to two real-time constraints must be met. First, every video
guarantee that an invocation of a task will complete frame that is generated by the camera must make it
execution by a certain point in time, and (2) allocate through all stages of the pipeline and be delivered to the
resources within an operating system to ensure that an network interface. Second, the end-to-end latency of each
invocation of a task actually achieves its response time frame - defined as the difference between the time the

bound. frame arrives at the network interface and the time the
frame was generated - must be kept to a minimum.

Often, it is desirable to guarantee a response time to a Since current video cameras and frame-grabbers generate
collection of cooperating tasks that execute in concert to data at regular, periodic intervals, the first constraint is
realize some application. For example, consider the video easily satisfied by implementing each stage of the pipeline
processing portion of a desktop videoconferencing as a periodic task and using any number of real-time
application. The goal of this application is to acquire, scheduling algorithms from the literature to schedule the
compress, and transmit a logically infinite sequence of tasks. The second constraint is not so easily satisfied.

digitized video frames across a network. The application
is composed of the following (idealized) tasks: An (NTSC) video frame is generated, and enters the

pipeline, every 33.3 ms. In our implementation of the
video frames generated by a camera, above video pipeline, every task has a period of 33.3 ms.

Since there are 5 stages in the pipeline, the worst case end-
* UP - a task to invoke user programs on the digitized to-latency of a video frame is 166.6 ms. The worst case

frames for any user-level image processing that isframs fr ay uer-lvelimae pocesingtha is occurs when each invocation of each task completes as late
desired (e.g., for feature extraction and notification), ours weh iocatio ach ta e a lteas possible within its period and stage i + 1 of the

" CP - a task to compress the digitized frame, pipeline is not invoked until stage i has completed as

" FF - a task to format and fragment the compressed shown in Figure 1. Whether or not the worst case

frame(s) into network packets for delivery across a actually occurs will depend on factors that are beyond the
network, and application writer's control such as the magnitude of the

" NI - a task to control the network interface hardware. total system workload (e.g., the number of other real-time

and non-real-time tasks sharing the processor).

These tasks cooperate to form a simple pipeline. Every
video frame generated by the camera is digitized, processed Nteat the late bound of 16. mis e

by the user, compressed, formatted, and delivered to the artiatof the ipne implmentato the vie
network interface for transmission across the network. application and is not fundamental to the conferencing

< Video framef is generated.

FG L
UP

Video framef delivered to
CP ne.... network interface.

FF d
NI

Time,
(in ms.)t t + 33 t + 66 t+ 100 r + 133 t+ 166

Worst case end-to-end latency for a single frame of video.

Figure 1

87

problem itself. For example, consider an implementation The YARTOS kernel supports a simple data-flow model
of the conferencing application that combines functions of real-time computation. Briefly, applications are
FG, UP, CP, FF, and NI into a single task. If the task composed of tasks, resources, and ports. Tasks are threads
had a period of 33.3 ms, then all video frames that are of control, resources are shared abstract data types, and
generated will be delivered to the network interface ports are queues for messages. Tasks communicate with
(assuming the system is still schedulable) and the worst other tasks by sending messages to ports. Each port is
case end-to-end latency of each frame will be no more than bound to a unique task. When a message is sent to a port,
33.3 ms. the kernel schedules the task bound to the port so that the

message will be consumed before a deadline defined by the
The problem is that it is not always possible (or desirable) rate at which the message sender emits messages. The
to collapse all application and system functions into a deadline is chosen so as to ensure that all messages from
single task. In particular, when executed on top of a this sender can be processed in real-time (i.e., without any
general purpose operating system, many of the real-time buffering). (The YARTOS programming model is
application's functions (such as input and output), are explained in greater detail in [9]. The scheduling
implemented by operating system system calls or servers algorithm used in the kernel is described in 16].)
(and associated device drivers) and are shared with other
applications. When tasks and ports are created, the kernel constructs a

directed graph of all possible communication paths. When
The challenge therefore is to support the pipeline model of a message is sent from task T to task T, the deadline for
application design and execution while not incurring the task Tj is computed using the time of Ti's most recent
penalty inherent in the straightforward realization of the invocation as invocation time for Tj. That is, tasks T and
pipeline. Specifically, we would like to structure the Tj are scheduled as if they were invoked simultaneously-
conferencing application as a series of cooperating tasks as if they were a single task.

and maintain a worst case end-to-end latency bound of 33.3
ms - the period of a single stage of the pipeline. For example, assume task Tj is invoked at time t and has a

deadline at time t + p. Ti executes sometime during the
Note that in principle this should be possible since the interval [t, t+pl and sends a message tf k Ti. No matter
total amount of computation (ignoring operating system when the message is actually sen Tj, task Tj is
overhead) performed by the single and multi-task considered to have been invoked at time t. It is a property
implementations of the application are the same. The of the YARTOS programming model that the invocation
only difference is that in the multi-task implementation of of task T "occurring" at time t cannot have a deadline
the application, several video frames may be processed before time t + p. Therefore, during the interval ft, t+p],
simultaneously (i.e., several video frames may be in the T will not preempt Ti and when Tj is dispatched, there
pipeline at any one time). will be a message from task T for it to process.

3. A Real-Time Message Passing Service The one exception to these invocation rules is when
messages arrive from the outside world (e.g., from

Our solution to the problem of minimizing end-to-end interrupt handlers). When a task receives a message from
latency is to make the pipeline structure of the an external process, the task's deadline is computed from
conferencing application known to the kernel and to use the arrival time of the message (using application specified
this information to schedule the stages of the pipeline as if parameters that are sufficient for providing the desired r:.al-
they were part of a larger sequential program. This time response to the external process).
technique has been implemented as part of the message
passing system in the YARTOS kernel [7]. We begin With this message passing scheme, the time required in
with an overview of the YARTOS programming model. the worst case for a message to pass through tasks Ti and

Tj in YARTOS is the same as the time required in the

worst case for a message to be processed by a single task

88

that combined the functions of T and Tj. Thus the worst Lastly, the flow shop scheduling results of Bettati and Liu

case end-to-end latency of a multi-threaded YARTOS [I are relevant. They consider the problem of minimizing

application is not a function of the task structure. Rather, end-to-end latency in a system of multiple processing
it is a function of the deadlines associated with application elements (e.g., a distributed system). We have only

messages. considered the latency problem on a single shared
pi. cessor.

For example, in our videoconferencing application, all
messages have a deadline for processing of 33 ms. If the
FG task receives a message (an interrupt in this case) at
time t, then if this message results in messages being sent The design of general purpose operating systems impose

to tasks UP, CP, FF, and NI, all messages will be constraints on the way one can structure real-time
processed at or before time t + 33. Therefore, each video applications. Common operating system services such as
frame is delivered to the network interface no more than 33 network transport protocols, and device management need
ms after it was generated. to be used by real-time applications. Because such

services are shared with other applications they cannot by
The alternate approach to minimizing end-to-end latency is tihl boun d o th r tie applications e have

to com bine all video processing tasks into a single task. sh o n t m k n a l tion inter caskocom unicatio
Howeerin ur yste iitass F andNI re ctully shown that making application inter-task communication

However, in our syste; m tasks FF and Ni are actually paths known to the kernel, one can provide a worst case
general purpose operating system services that are shared en-ondapitonlecybudhtisheeivet

withothr uer pplcatons nd enc ca no be end-to-end application latency bound that is the equivalent
with other user applications and hence cai not be to the bound for an implementation of the application as a
embedded directly into the conferencing application. (In single task.
fact, it is largely for this reason that a common approach
to achieving real-time performance in general purpose While we described the real-time message passing service
operating systems has been to move application code into within the context of an application whose tasks form a

the operating system where finer-grain control over pipeline, the service can be applied to any graph structure
resource allocation is also usually possible.) to minimize latency of message communication along any

path in the graph.

4. Related Work Currently we are porting the YARTOS message passing

Our message passing system is related to the paradigm of service to RT Mach (MK83) kernel and hope to compare
communication and scheduling integration reported by the end-to-end latency of applications using the RT Mach
Draves et al. [2]. In this work a scheduling and context- and YARTOS communication primitives.
switching mechanism based on the programming language
concept of continuations is introduced to allow an 6. References
applications that consists of multiple threads to execute
more like a single threaded application. The emphasis is [Bettati, R., Liu, JW.-S., End-to-End Scheduling toMeet Deadlines in Distributed Systems, Proc. I.JDCS
[2], however, was on reducing syste..m overhead. Our work Meet YoaJaan pp. 452-459.

seeks to minimize worst case end-to-end latency.

[21 Draves, R.P., Bershad, B.N., Rashid, R.F., Dean,
Other related work includes the general priority model of R.W., ising Continuations to Implement Thread

Harbour et al. [3], wherein periodic tasks can be.. -Managemeni and Communication in Operating

decomposed into subtasks that may have varying Systems, Proc. 13PI ACM Symp. on Operating

execution priority. In such a model it is possible to more System Principles, Pacific Grove, CA, October

directly express and reason about what we have called end- 1991, pp. 122-136.

to-end latency constraints. In our work we have argued 131 Harbour, M.G., Klein, M.H., Lehoczky, J., Fixed
that a simple scheduling algorithm (described in [6]) is Priority Scheduling of Periodic Tasks with Varying

sufficient for managing latency. Execution Priority, Proc. 1 2 1h IEEE Real-Time

89

Systems Symp., San Antonio, TX, December 1991, 81 Jeffay, K., Scheduling Sporadic Tasks with Shared
pp. 116-128. Resources in Hard-Real-7ime Systems, Proc. 13 th

IEEE Real-Time Systems Symp., Phoenix, AZ,
141 Jeffay, K., Stone, D.L., and Smith, F.D., Transport December 1992, pp. 89-99.

and Display Mechanisms for Multimedia
Conferencing Across Packet-Switched Networks, [91 Jeffay, K., The Real-Time Produceri Consumer
Computer Networks and ISDN Systems, to appear. Paradigm: A paradigm for the construction of

efficient, predictable real-time systems, Proc. 1993
[5] Jeffay, K., Stone, D.L., and Smith, F.D., 1992. ACM/SIGAPP Symposium on Applied Computing,

Kernel Support for Live Digital Audio and Video. Indianapolis, IN, ACM Press, February 1993, pp.
Computer Communications, Vol. 16. No. 6 (July), 796-804.
pp. 388-395.

[10] Liu, C.L., Layland, J.W., Scheduling Algorithms
[6] Jeffay, K., 1992. Scheduling Sporadic Tasks with for Multiprogramming in a Hard-Real-Time

Shared Resources in Hard-Real-Time Systems, Proc. Environment, Journal of the ACM, Vol. 20, No. 1,
I1,h IEEE Real-Time Systems Symp., Phoenix, (January 1973), pp. 46-61.
AZ, December 1992, pp. 89-99.

[H1] Tokuda, H., Nakajima, T., Rao, P., Real-Time
[71 Jeffay, K., Stone, D.L., Poirier, D., YARTOS: Mach: Towards a Predictable Real-Time System,

Ker el support for efficient, predictable real-time Proc.USENIX Mach Workshop, Burlington, VT,
systems, in "Real-Time Programming," W. Halang October 1990, pp. 73-82.
and K. Ramamritham, eds., Pergamon Press, Oxford,
UK, 1992. pp. 7-12.

90

An Argument for a Runtime Layer in SPARTA Design

Robert W. Wisniewski and Christopher M. Brown
bob and browndcs.rochester.edu
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

Abstract we are directly addressing in the design of Ephor*.
Among them are "what are the correct interfaces to

Researchers have used advances in hardware tech- robotics, RTAI, Vision, ... etc." and "what function-

nology to design larger and more complex real-time ap- ality should be in the OS level and what in the appli-

plications. Larger applications require new integration cation level."

techniques while more complex applications require a Designing a SPARTA is challenging, since in its full

restructuring of the underlying system support. We generality it calls for dynamic decision making about

examine the system design issues of supporting SPAR- resource allocation, scheduling, choice of methods,

TAs (Soft PArallel Real-Time Applications). There and handling reflexive or reactive behavior smoothly

exists a gap between hard real-time kernel mechanisms within a context of planned or intended actions, and

and the functionality desired by a SPARTA program- a host of other issues not typically encountered either

mer. Thus, an integral part of supporting SPARTA in off-line or hard real-time applications. SPARTAs

design will be providing an intermediate runtime layer. need different system support than either the large

We describe our experiences building Ephor, including data-crunching scientific programs or the smaller less-

what motivated its conception and development, and structured applications currently being investigated in

the resulting separation of responsibilities both easing parallel environments. Further, supporting such ap-

SPARTA design and improving their performance. plications was beyond the intended scope of previous
real-time kernels because other more fundamental or
lower level issues needed to be addressed first.

Hard real-time systems have not been designed to
1 Introduction support the newly evolving soft real-time applications.

In particular, they lack the flexibility needed to adjust
Many real-world applications contain both hard to a complex and dynamic environment. The reason

and soft real-time components. There has been con- is that they must provide absolute predictability and
siderable work on hard real-time system design such guaranteed scheduling. Our runtime, Ephor, interacts
as [3] as well as work for parallel [1) and distributed [2] with SPARTAs, maintaining hard real-time behavior
environments. Target applications for hard real-time when needed while providing graceful degradation in
systems include airplane autopilot and nuclear power cases where performance is important but not criti-
plant control. New complex, parallel soft real-time cal to the success of the application. Our interme-
applications have been generating considerable inter- diate runtime layer is built on a hard real-time sub-
est. Some example applications are: autonomous nay- strate providing the additional functionality needed by
igation, reconnaissance, and surveillance; operator-in- SPARTAs. The runtime reduces the replicated work of
the-loop simulation; and teams of autonomous coop- system monitoring and dynamic decision-making that
erating vehicles. The real-time community has ac- is common between applications.
knowledged the need to explore issues raised by SPAR- Initially, the effort needed to develop a general run-
TAs. Stankovic [4] enumerates a number of issues that time package, such as Ephor, versus simply incorpo-

rating the needed portions into an application, may
This material is based upon work supported by NSF Re- appear prohibitive. However, an analogy to threads

search Grant number CDA-8822724, DARPA Research Grant
MDA972-92-J-1012, and ONR Research Grant number NO0014- *Ephor was the name of the council of five in ancient Greece
93-1-0221. The Government has certain rights in this material, that effectively ran Sparta

91
0-8186-5710-3t94 $3.00 © 1994 IEEE

of control indicates this may not be so. Historically, SPARTA Properties
threads of control were thought of simply as support
for co-routining under direct user control. However, In designing Ephor in conjunction with the shep-

through time, many other issues with thread manage- herding application we wanted to ensure the mech-

ment have arisen. A similar situation applies with anisms developed for shepherding would be applicable

tasks, methods, or even planners in SPARTAs. Syn- to other programs. To do so, we designed the shep-

chronization between tasks may be a significant issue, herding application to have many of the same prop-
as might be the interleaving of tasks, or running one erties as the soft real-time applications mentioned in

based on an exception generated by another, etc. Al- the introduction. These applications contain an ele-

though it is conceivable these issues could be handled ment of search whereby the agent determines the next

at the application level much the same way parallel course of action. Most are designed around a high-

thread management could be, there are compelling level executive instructing lower levels. The executive

reasons for studying the systems aspects of such gen- reasons using a model of the real world and carries

eral capabilities, out actions in it. The world is governed by general

The rest of the paper is structured as follows. Sec- principles, but is not predictable. There is often an

tion 2 describes the motivation for, and our experi- intermediate layer responsible for small corrections to

ences leading to, designing a runtime. Section 3 con- the requested action (servoing). Also, there is often

tains the separation of responsibilities between the ap- a low-level layer whose actions need to be carried out

plication, runtime, and kernel, facilitating SPARTA constantly and can occur "subconsciously", i.e., with-

design. We present brief concluding remarks in sec- out intervention from the higher levels.

tion 4. SPARTA Des'n Problems

2 Motivating Factors Under the standard taxonomy there is only an appli-
Problem Domain cation and kernel. Any operations or functions not

performed by the kernel are the responsibility of the

Our research work in this area developed from a desire application. While the application needs to respond to
to study techniques for handling overdemand in real- the environment, determine the next course of action,
time applications. Originally, our plan was to design and evaluate current progress, to perform reasonably
a real-time application containing controllable overde- it also needs to:
mand situations. The shepherding problem we de-
vised contains overdemand as well as many other gen- 1. Monitor the load of the underlying processors.

eral properties described below in SPARTA Proper- Often the application has a choice of tasks to

ties. For a complete description of shepherding see [5]. accomplish the same end. Rather than sub-

Briefly, sheep (small vehicles) move around in a field mit impractical tasks, if the application knew

(table) and a shepherd (robot arm) tries to maximize the amount of compute power available, it could

the number contained in the field. Before and during quickly choose the appropriate task to submit.

implementation we observed that there were several 2. Maintain a list of allocated resources. As in 1,
mechanisms that would have been useful but were not a wiser task submission based on task resource
provided by current real-time systems such as con- allocation yields better behavior.
currency control, dynamic technique selection, help in 3. Track execution times of tasks, especially highly
priority assignment, etc. As Stankovic [4] notes, "Be- variable ones. We have found that locally, the
cause of these reasons many researchers believe that execution time of a task is fairly predictable, so
current kernel features provide no direct support for knowing the last several execution times is useful.
solving difficult time problems, and would rather see
more sophisticated kernels..." A system that provided 4. Determine the correct interleaving of prioritized

these features would be very useful. Rather than in- tasks.

cluding these features into the kernel and sacrificing 5. Monitor other resources such as memory usage,
kernel predictability, we placed the additional func- bus utilization, etc.
tionality into Ephor, our runtime environment. This
allows the designer to use the real-time kernel most ap- It was our objective in designing Ephor to ensure the
propriate for their environment. The application still enumerated ideas could be handled by the generalized
receives the same functionality (actually more) and we runtime, thus removing a significant burden from the
maintain a predictable kernel. SPARTA programmer.

92

Implementation Conclusions the application can give hints to the runtime by writ-
We have implemented a real-time shepherding simula- ing into fields the runtime is normally responsible for
Weran have amstcmpee implementedatraltimseperin soupdating. The clean breakdown of information com-
tor and have almost completed implementation of the munication in Fig. 2 has been achieved by dividing

real-world shepherding application using small vehi- la ronibiFies as deil ciew.

cles, a robot arm, and cameras. Ephor has been de- layer responsibilities as detailed below.

signed and implemented and handles a subset of the Application
items enumerated in the previous section. Results us-
ing Ephor's mechanisms [5] indicate the potential of an The application layer is solely responsible for respond-
intermediate runtime to facilitate the design of SPAR- ing to the environment. The application is responsible
TAs. for communicating to the runtime (see Appendix) the

Designing the shepherding application led us to different goals it will run throughout its execution,
the conclusion that there is considerable functional- the different techniques it has for solving the goals,
ity above the intended realm of real-time kernels that and the relative benefit of each technique. The appli-
an increasingly large class of real-time applications cation is responsible for determining the interaction
strongly desire. It is best not to remove the pre- of the environment and goals to produce the intended
dictability of the kernel since many critical applica- behavior. The application is responsible for indicat-
tions depend on this property. However, there is a ing when a new goal needs to be solved in response
large class of applications willing to relax the tight to an environmental stimulus, or as the result of a
constraints to gain increased functionality. These soft previously completed goal. In essence the application
real-time applications will sacrifice predictability with must provide the flow of control to produce the desired
or without a runtime. Further, if Ephor's mechanisms program.
are not desired for a portion of the application they
may be ignored causing no overhead to that portion. Runtime
For this reason, and others mentioned in [5], a runtime The runtime receives the structure of the goals the ap-
layer will have a positive effect on SPARTA design. plication will submit throughout its execution via the
The only penalty if Ephor is completely ignored (or data structure in the Appendix. As can be observed
used only very minimally) is the one processor nor- from the Appendix, items implement techniques, and
mally reserved to run it will be unavailable for other techniques satisfy goals. The runtime is responsible
tasks. Ignoring Ephor though, defeats the purpose of for determining the execution time of the different
the layering provided by the runtime. While it is cur- techniques for solving the goals. The application can
rently possible to do so, we may discover through more explicitly provide the times, or the runtime may dy-
experimentation and feedback that it will be best to namically gather them during the program's execu-
prevent this. In the next section we describe the re- tion. The latter method allows Ephor to adapt in a
sponsibilities of each layer. changing environment. Ephor is responsible for deter-

3 Layer Responsibilities mining and running the appropriate items needed for
completing a selected technique. In selecting the tech-

By defining the responsibilities of each layer, we nique to solve a requested goal, Ephor need not only be
clearly define the obligations of the SPARTA designer. aware of the program structure and application, but
More importantly, we can specify the interface to the also of the internal state of the system. The runtime
runtime, treating it as a "black box" with respect to is therefore responsible for interfacing to the under-
the SPARTA programmer. A contribution and impor- lying kernel to obtain the information it needs. It is
tant part of our work is a clean separation of responsi- responsible for monitoring the following resources nec-
bilities for each layer and a description of mechanisms essary to select dynamically the best technique: pro-
provided by Ephor independent of how they are coded. cessor load, expected available processors for running
Thus, we not only have provided mechanisms, but a parallel techniques, memory or cache utilization, bus
methodology, utilization, and other current resource allocation such

Figure 1 shows the three layers in designing a as range sensors, manipulator, or cameras. Ephor is
SPARTA and underlying system. Information is responsible for maintaining a central location where
shared across the runtime-application boundary by resource allocation information can be quickly and co-
the data structure appearing in the Appendix. The herently obtained by either Ephor or the application.
data structure provides flexibility even beyond its pri- To provide a comprehensive runtime package we
mary purpose. For example, it is two-way writable so have implemented many mechanisms in Ephor. While

93

Real-World Layer Responsibilities I Layer Division Characteristics

Generte ioal In- Executive Level agent determines next action, searchGenerate goals . execuve instructs lower levels

Application Layer Provide goal solving structure Intermediate.Leve corrections to actions(servoing)
w Lterrinterpret

-Lowest Level survival actions, sensing, manipulating
Remain domain independent Interface to . shared data sructure, mech ani sms,

RuntimeUse program structure representation Application isstem information to application
Provide mechanisms to the application Interface to real-- monitor underlying system, schedule

__ Monitor the und erying system - time substrate __ _ tasks_

Provide basic real-time properties
Real-Time Substrate Make more information available

__(e.g. resource allocation)

Figure 1: The Three Layers in the Design of a Real-World Application

Program Structure Scheduling requests
Flow of control - goal requests Priority assignments

ApiainEphor Kernel

Summarized low-level information Scheduling information
Goal Execution times and resource utilizations Resource allocation information

Figure 2: Layer Information Exchange

it is beyond the scope of this paper to discuss them the system.
in detail individually, we give a list to provide an sheep saved
overview of Ephor's functionality: 1) dynamic tech- 22 with runtime
nique selection based on internal system state, 2) 21

schedule tasks using derivative worst case policy, 3) 20

dynamic parallel process control, 4) de-scheduling of 19 planner A planner B
all running tasks associated with a particular goal, 18

5) automatically time tasks and update their status 167

block, 6) data structure to share information between 15
the runtime and application, 7) parallel scheduling of
hard and soft real-time tasks, 8) overdemand detec- 0

tion and recovery*, 9) early termination of tasks*, 10) Figure 3: Performance of dynamic technique selection
automatic resource allocation based on goal priority*.

A difficulty in soft real-time systems is evaluating Kernel

the performance of a given mechanism since there is of- We assume a hard real-time substrate. The kernel is
ten not a hard metric that can be used to judge success expected to provide fundamental real-time properties
or failure. Part of our continuing work involves defin- and mechanisms such as a predictable scheduling pol-
ing suitable metrics for measuring our mechanisms, icy, an accurate real-time clock, guaranteed deadlines,
Here we point to one particular case of how the dy- task priorities, and other properties typically associ-
namic technique selection mechanism of Ephor per- ated with real-time kernels [4]. The kernel is respon-
forms (a more complete analysis of this mechanism can sible for handling interrupts, and allocating resources
be found in [5]). Figure 3 represents the performance as directed by Ephor.
of two different planners (A and B) and the dynamic
selection of them (with runtime). The runtime results 4 Conclusions
were obtained by having Ephor dynamically select be- In this paper we discussed the difficulties in
tween the two planners based on the internal state of SPARTA design and argued for a runtime layer to al-

*planned but not yet implemented leviate some of these problems. The benefits of our

94

run-time system are two-fold. First, there are soft- References
ware engineering and programming benefits: appli-
cation programmers can specify their needs without [1] V. P. Holmes and D. L. Harris. A designer's perspective
knowing how they will be fulfilled; and a common set of the hawk multiprocessor operating system kernel.
of mechanisms can be reused across many domains Operating Systems Review, 23(3):158-172, July 1989.
without recoding. Second, by thoroughly investigat- (21 K. Schwan, P. Gopinath, and W. Bo. Chaos-kernel
ing many possibilities, we can include in the runtime support for objects in the real-time domain. IEEE
those mechanisms yielding the best performance. Transactions on Computers, 36(8):904-916, August

In designing a Soft PArallel Real-Time Applica- 1987.
tion (SPARTA) we discovered that the functionality [3] J. Stankovic and K. Ramamritham. The design of the
provided by current hard real-time operating systems spring kernel. Proceedings of the Real-Time Systems
was limited. We developed Ephor, a runtime envi- Symposium, pages 146-157, December 1987.
ronment, to increase the functionality of the system [4] John A. Stankovic. Real-time operating systems:
while maintaining a predictable kernel. Our design What's wrong with today's systems and research is-
provides a clean separation of responsibilities, facil- sues. Real-Time Systems Newsletter, 8(1):1-9, 1992.
itating SPARTA design and improving their perfor- [5] Robert W. Wisniewski and Christopher M. Brown.
mance. Ephor, a run-time environment for parallel intelligent
Acknowledgemnents applications. In Proceedings of The IEEE Workshop

on Parallel and Distributed Real- Time Systems, pages

Tom LeBlanc provided helpful discussions and com- 51-60, Newport Beach, California, April 13-15, 1993.
ments on this work.

Appendix
Ephor-Application Interface (abridged)

struct item-t {
int impkind; /* indicates if a function or technique implements item */
union implementert(

funct-t f.implement; /* pointer to function that implements this item */
struct techniquet *t-implement; /* pointer to the technique implementing item */

} implementer;
int complete; /* 0 means nothing, 1 means done, anything else is left to

the interpretation of particular item 5/

struct technique-t {
int priority; /* 0 -> n the lover the number the higher the priority */
int cpu-time; /* the median of the last three times, provides a good

dynamic estimate rather that using worst case time */
int cputimes[3); /* used to compute cpu-time see above */
int cpuindex; /* indicate which cputime index to write to 5/

float cpu.per; /* percentage of an INTERVAL of a cpu this technique needs */
float max-change; /* number indicating the maximum percentage change */
int cutoff-time; /* when the system should terminate this technique */
int memory; /* space required by this technique, instructions and data */
int *item.par.des; /* the parallel ordering on items similar numbers may proceed

in parallel, low numbers must be run before higher numbers */
struct item-t *item; /* set of items that implement this technique */

1;
struct goalt {
boolean periodic; /* TRUE indicates task is periodic */
int rate; /* if periodic is true the system runs this goal at rate */
int run-technique; /* technique that should currently be run to satisfy goal */
int numb-techniques; /* number of different possible techniques for this goal */
struct technique-t technique[MA.kTECHS]; /* list of techniques to solve goal */

1;

MAIN struct goal-t goal_list[MAXGOALS];/* a list of goals for the application*/

95

Real-Time Platforms and Environments
for

Time Constrained Flexible Manufacturing*

John A. Stankovic, Krithi Ramamritham and Goran Zlokapa
Department of Computer Science

University of Massachusetts
Amherst, Mass 01003

Abstract coexist within one application. The kernel also retains
The Spring Kernel and associated algorithms, lan- a significant amount of semantic information at run-

guages, and tools provide system support for static or time, supplied by the system designers and program-
dynamic real-time applications that require predictable mers as well as extracted by various tools such as the
operation. Spring currently consists of two major compiler. This information is then utilized at runtime
ports: (1) the development environment, where appli- providing a high degree of flexibility when required.
cation and target systems are described, preprocessed This flexibility is subject to the scheduling rules and
and downloaded, and (2) the run-time environment, algorithms so that predictability is retained even as
where the operating system, the Spring Kernel, creates the system is adapting. We refer to this architectural
and ensures predictable ezecutions of application tasks. strategy as a reflective architecture (7]. While many
Very recently, we have integrated our real-time system. papers have been written describing various innova-
technology with component technologies from robotics, tions in the Spring kernel and its associated scheduling
computer vision, and real-time artificial intelligence, algorithms [5, 6], in this paper we report on new ex-
to develop a test platform for flezible manufacturing, tensions and lessons learned when applying the ideas
But the results being produced are generic so that they and system to flexible manufacturing [1, 2]. The ex-
should be in many other real-time applications such as tensions arise both in developing a complete runtime
air traffic control and chemical plants. In this paper platform and because of the need for integrating com-
we describe this platform, identify new features that ponent technologies from robotics, computer vision,
we developed, and comment on some lessons learned and real-time Al with this real-time computing plat-
to date from this experiment. form.

1 Introduction
2 The Flexible Manufacturing

The Spring Kernel [6] is designed to conform to Tet ex
the requirements of a wide range of highly predictable Testbed
and dynamic real-time applications. The strength of
its run-time support lies in the use of its two distinct The basic idea underlying the testbed is to model
scheduling concepts as well as its support for both pre- applications which provide predictable responses while
dictability and flexibility. In regards to scheduling, it functioning in nondeterministic environments. In
supports a once-guaranteed-always-guaranteed policy this testbed (see Figure 1), objects or material
suited for applications, or parts of an application that needed by consuming processes are introduced non-
impose stringent time and resource requirements, or deterministically into a circular queue awaiting pro-
where once an operation begins it cannot be undone. cessing. A consuming process can request (a specific
It also provides a best-effort type of scheduling, where combination of) objects at any time, and it can set ar-
the system dynamically creates a schedule to maxi- bitrary deadlines and values for the objects needed by
mise the total accrued system value. Subject to sys- it. The circular queue can control the type of incoming
tem requirements, these two scheduling concepts can material and the rate at which it is processed.

To maximize total accrued system value (in terms
*This work is funded by the National Science Foun- of objects delivered in time to consuming processes)

dation under grant IRI-9208920. and resource utilization, Spring's dynamic scheduling

960-8186-5710-3/94 *3.000© 1994 IEEE

Deadline 2,
Value 2

i Deadline 1,
Value 1 0 Deadline 3,

ObjctValue 3

Robot detector
systemd
sensor g Consuming process

~~Storage ae
(non-deftermistic) ,

Delivery platform
(deterministic) New objects-J,-" _" Expired objects

Figure 1: Schematic of the Flexible Manufacturing Testbed

algorithm is used to manage the resources in the sys- 3 Extensions and Lessons
tern. Specifically, based on resource availability, spe-
cific requests of consuming processes, as well as spe- Learned
cific timing constraints, objects are removed from the
circular queue and placed on a delivery platform in Our prior work on scheduling and operating system
a timely manner. The delivery platform represents a support for real-time systems [5, 61 as well as recent
user specified, finite capacity intermediate storage. All work on software description languages and tools [4]
objects on this platform are guaranteed to meet their was not targeted at any particular application. Our
timing constraints and to be delivered to the down- goal was to design them to be applicable to time-
stream processes as requested and in time. critical applications that had a broad set of charac-

The entire specification of such a system, from ap- teristics.
plication processes to target hardware, is described In this section we discuss how some of these con-
using a System Description Language (SDL) [4. On cepts and their practical realizations in Spring had to
the other hand, all system dynamics are handled by be extended to apply them to the flexible manufactur-
the Spring Kernel. ing platform.

This testbed has characteristics applicable to a wide
variety of actual, real world applications including:

1. Air Traffic Control - airplanes can enter a hold- 3.1 Scheduling Extensions

ing pattern, they can leave if fuel is low or if they
cannot be guaranteed timely landing, required For flexible manufacturing, it was necessary to sup-
terminal, and service crew. If they are admit- port tasks with precedence constraints, shared re-
ted to the runway they must be guaranteed full sources and multiprocessing. Spring scheduling algo-
service. rithms had been designed with such requirements in

mind [5].
2. Chemical Plants - different chemicals ready for However, additional requirements were imposed by

mixing are placed on the conveyer belt. The con- the fact that scheduling must occur at different levels
suming processes require chemicals to be mixed of abstraction. At the higher level the system must
in a certain order. Due to chemical deterioration, deal with orders for products, resources which con-
each chemical solution must be either delivered sist of parts and subcomponents to be automatically
within a certain time, or it must be disposed to assembled - constrained by robots, floor space, cost,
prevent hazards. and expected profits. Decisions made at this level,

handled by the real-time Al subsystem, determined
3. Flexible Manufacturing - robotic workcells, de- which of the incoming orders need to be carried out,

picted in the figure above as the consuming pro- computational resources permitting. Whether it was
cess, can perform incremental operations such as possible to carry out a specific order was determined
mechanical assembly or quality control inspec- by the scheduler at tne lower level, where the sys-
tion, and deliver finished components to a sub- tem deals with the computational resources needed to
sequent manufacturing operation. move robots, assemble products, etc. It was neces-

97

sary to implement both levels of scheduling with a the properties of all parts of the system in great de-
feedback interface between these levels. For example, tail, independent of the application functionality [4].
if the higher level decides to make certain products, To provide easier system integration and to assist in
the actual manufacturing floor may not be capable on-line scheduling, a method of compiling or mapping
of performing these tasks in time. Such information program representations to task representations was
supplied to the higher level scheduler improves perfor- also developed. The compiled information is available
mance of the system in choosing between alternatives, for use by other tools as well as the runtime system

Interesting research questions regarding multiple that use, modify, or add to it. In short, SDL provides
levels of scheduling include: support for specification, compilation, and execution

of applications on the Spring system. It is also used
" how to partition the scheduling functionality be- for the specification of simulations run under Spring's

tween the high level (RTAI) planner and the sys- scheduling testbed. In this way, both the actual sys-
tem level scheduler (which is also a planner), tem and the simulations complement each other. This

is especially important in robotic applications where
* what information should be passed back and testing must be done with simulated robots for safety

forth between the levels, and reasons, before you control the actual robots.
While the SDL provides software support for spec-

" how to pass information back and forth between ifying important information, extensions were neces-
the schedulers so as to get the best performance. sary when used with the flexible manufacturing plat-

form:
In developing the flexible manufacturing testbed we

also found it necessary to be able to hold resources * techniques to describe the interfaces with the
across a set of processes. For example, a set of pro- robotic and vision subsystems and how they
cesses may require a common tool which cannot be are expected to operate (including the expected
shared with others. This adds an interesting schedul- workloads),
ing complication not typically addressed by real-time
scheduling algorithms. We also found that deadlines * specification of fault tolerance requirements and
can sometimes be relaxed within a deadline tolerance design, and
[3]. Interesting questions involve understanding the
cumulative effect of missing the original deadline, but * linking computer aided design (CAD) and design
satisfying the tolerance factor, for manufacture (DFM) tools to SDL.

Another key issue is the need for tools to aid the
3.2 Extensions to the Kernel to Interface system builder in deriving deadlines from time, value

with External Subsystems and fault properties of the application and environ-
ment. In flexible manufacturing there is a combination
of loose time constraints and very precise time con-

As originally implemented, the Spring kernel con- straints which are linked to each other. For example,
trolled computational activities running on processors the arrival of parts, orders for products, and delivery
within the multiprocessor Spring node(s). However, in dates and times usually have loose and unpredictable
the flexible manufacturing platform there was a need timing requirements. Yet, sometimes delivery times
to control, in a timely fashion, not only these activ- are very strict and missing the deadline can cause se-
ities, but also robotic and vision processes running rious financial loss. Further, once a product is begun
outside the Spring node(s). This is because, given there are often tight and strict deadlines to be met in
that commercial robotics and vision subsystems are the form of commands to the robots else the product
highly developed and efficient, it is necessary to be is ruined, or worse the robot itself is damaged.
able to link such subsystems into a flexible manufac-
turing plant without re-implementation. To do this,
we defined and implemented a remote interface so that 3.4 Integrated Simulation Support
such subsystems can be added to the Spring runtime
platform, as long as they adhere to the interface re- Simulation is critical to flexible manufacturing. We
quirements. The interface allows the Spring scheduler are developing a simulator that is integrated in three
to control the timing properties of the external sub- ways: across multiple levels of scheduling, with the
systems. The Spring, vision, and robotic subsystems runtime system model, and with actual robotic work-
interact via distributed shared memory, implemented cells.
using ScramNet[8]. In order to understand the operation of the sys-

tem prior to putting it into use, we have developed
3.3 System Description Language a simulator that is driven from an application level

view. This consists of being able to order products,
have raw materials arrive, and see the flexible manu-

The system description language (SDL) had been facturing floor in operation, i.e., visualize the robots
designed to provide a way for developers to specify assembling products. Then it is possible to zoom into

98

the system level and see what computational entities Tilborg and Gary Koob, Ed., Kluwer Academic
are actually running to effect the application level ac- Publishers, pp. 277-305, 1992.
tions. The schedules are dynamically changed as the
higher level actions proceed, precedence constraints [6) J. Stankovic and K. Ramamritham, The Spring
can be displayed, and summary statistics continuously Kernel: A New Paradigm for Real-Time Systems,
updated. These features provide the integration across IEEE Software, Vol. 8, No. 3, pp. 62-72, May
levels of scheduling. 1991.

The simulator also accurately follows the runtime
model of the flexible manufacturing testbed system so [7) J. Stankovic and K. Ramamritham, A Reflec-
that the same workloads, algorithms, etc. are operat- tive Architecture for Real-Time Operating Sys-
ing in both systems. The exact same tests can drive tems, in Principles of Real- Time Systems, Pren-
both systems and the outputs can be directly corn- tice Hall, to appear 1994.
pared.

We also have plans to integrate n copies of the sim- [8] SYSTRAN Corporation, Scramnet Network Ref-
ulator running on workstations with the actual robot erence Manual, Dayton, Ohio, 45432.
workcell so that a distributed factory floor can be
modeled. This will permit experimentation with dis-
tributed systems and coordination algorithms.

4 Summary

Attempting to use the Spring algorithms and ker-
nel to implement the flexible manufacturing platform
has resulted in significant improvements in the system
and has identified a number of new research issues
some of which have been briefly discussed here. As of
this writing the physical testbed has been completely
implemented, the kernel, SDL and simulator are all
functioning with two exceptions: (i) part of the inter-
face between the Spring scheduling algorithm and the
real-time Al planner remains to be fully debugged, and
(ii) minor modifications required by the scheduling al-
gorithm must be made. These should be completed
shortly.

References

[1] R. Ayres and D. Butcher, The Flexible Factory
Revisited, American Scientist, Vol. 81, Septem-
ber 1993.

[2) A. Baker and M. Merchant, Automatic Factories,
IEEE Spectrum, December 1993.

[3] G. Buttazxo and J. Stankovic, RED: A Robust
Earliest Deadline Scheduling Algorithm, Third
International Workshop on Responsive Computer
Systems, Sept. 1993.

[4] D. Niehaus, J. Stankovic, and K. Ramamritham,
The Spring System Description Language, Univ.
Of Massachusetts Technical Report, TR 93-1,
January 1993.

(5] K. Ramamritham, and J. Stankovic, Schedul-
ing Strategies Adopted in Spring: An Overview,
Foundations of Real-Time Computing: Schedul-
ing and Resource Management, Andre van

99

Session VIE.
Concurrency Control

Chair: Vic Wolfe
U. Rhode Island

A Mixed Locking/Abort Protocol for Hard Real-Time Systems

LihChyun Shu Michal Young
{ shu,young}Qcs .purdue.edu

Purdue University
Department of Computer Sciences
West Lafayette, IN 47907-1398

1 Introduction <i denotes the execution order of operations in each
about transaction T. A schedule is a partial order (11, <1n)

Serializability greatly simplifies reasoning about such that (1) 11 = UTTT; (2) <11D UTET <i and
correctness in concurrent systems, including real-time (3) for any two conflicting operation p, q E H, either
systems. Our research addresses concurrency con- P <H q or q <11 p.
trol protocols that accommodate analytic guaran- We assume static priority assignment based on rate
tees of schedulability, can be implemented with small monotonic analysis (RMA) [3]. Pi denotes the period
bounded overheads and blocking, and ensure serial- of ri. To control priority inversion, we use a variant of
izable execution of entire tasks including complete the the stack resource policy (SRP) [1], treating reads
read/compute/write cycles (as opposed to serializable and writes differently as in the read/write priority ceil-
execution only of short embedded transactions with- ing protocol (PCP) [6]; we will call this R/W SRP. It
out computation.) is interesting to note that the stack-based discipline

One such protocol which combines locking and is critical to the correctness of the mixed protocol de-
abort is described below. Among its interesting prop- scribed below, as well as its performance.
erties are that transactions scheduled by locking are
never aborted, tasks are aborted only due to conflict
with higher priority tasks, and the cost of abortion can 3 Mixed locking/abort protocol
be bounded for the purpose of schedulability analysis. 1
The protocol is illustrated with an avionics example SRP and read/write PCP are pure locking proto-
adapted from [4]. The priority ceiling protocol can en- cols with the characteristic that worst-case blocking is
sure schedulability of 8 tasks if serializability of only limited to the sizes of embedded transactions or crit-
short sequences of data accesses is required, but can- ical sections. In [6], PCP is termed a 2-phase lock-
not schedule even the first 2 tasks if serializability is ing protocol, but embedded transactions are presumed
required for whole tasks. Under reasonable assump- to contain only database operations. This limitation
tions our protocol achieves schedulability of the first 6 makes controlling priority inversion easier, but rea-
tasks while guaranteeing serializability of entire tasks. soning about overall system correctness harder. Un-

fortunately, a 2PL-scheduled transaction consisting of
a read-compute-write sequence must not begin to re-

2 Model and assumptions lease locks until the last lock has been obtained; crit-
ical sections may therefore be nested and may extend

We consider schedulability for a set of tasks, {rl, across the middle compute steps.
r2, ... , r, 1. We consider each task also as a trans- The protocol described below uses R/W SRP as
action which may contain read and write operations a baseline strategy, but schedules a transaction T
to shared data and is a unit of consistency, i.e., if ex- by abort when schedulability analysis reveals that T
ecuted alone, it transforms the shared data from a causes excessive blocking. T immediately releases each
consistent state to another consistent state. Ti is the read lock after its read access, hence incurring less
transaction associated with task ri, 1 < i < n. ri[x] blocking to higher-priority transactions. Since the
and wj[x] denote Ti's read and write operation on data protocol is not 2-phase, a combination of locking and
item x, respectively. Two operations are said to con- timestamps are used to order conflicting operations.
flict if they both operate on the same data item and We assume a source of monotonically increasing
at least one of them is a write. timestamps. Each data item x is associated with two

3Contrast to the abort-oriented protocol presented in [5], timestamps: Rcur[x] from the most recent read oper-
which completely avoids priority inversion but does not bound ation and Wmax[x] from the most recent write opcr-
abortion cost. ation.

102
0-8186-5710-3/94 $3.00 a 1994 IEEE

In transactions scheduled by pure locking, locks are This follows from the rules that a transaction ac-
requested as in 2PL. When a transaction T corn- quires its timestamp before it updates either Rcur or
mits, it obtains its timestamp ts(Ti) and for each da- Wmax, and it performs each of its operations before
turn x read(written) by Ti, sets Rcur[x] (Wmax[x]) it updates either Rcur or Wmax.
equal to ts(T) and then releases its lock on x. Definition 1 Given any operation~ qjfx], we call pi[Z]

* In transactions scheduled by locking and abort, 7) the immediate preceding conflicting operation of qj[xl
obtains its timestamp ts(7)) at initiation. if pi[x] executes before and conflicts with qj[x], ana

For each item x accessed in the read phase, T7 Zlok[X] such that ok[x] also conflicts with qj[x] and
first sets a read lock on x. It then checks whether Uip[x] <H UL?[X <1H U5I[X].
Wmax[x] > ts(Tj) and aborts if so; otherwise it
reads x. Rcur[x] is set to ts(7)), and the read lock Note that ok[x/ may or may not conflict with pi[x].

on x is released. Observation 2 If ok[X] conflicts with pi[x], then

For each item x accessed in the write phase, 7) sets UL?[x] <, Uif[X] iffok[x] <ii p[xI.
a write lock on x. It then checks)yhether Rcur[x] >
ts(Tj), and if so it aborts. If Wmax[x] > ts(Tj), 7) Informally, timestamp order is consistent with the
releases the write lock without writing (an applica- order of operations. This follows from the rules that
tion of Thomas' write rule [7]). Otherwise, it places each conflicting lock is not released until Rcur or
x on wList and delays the actual write operation Wmax has been updated. By Definition 1 and Obser-
until th commit phase. vations 1 and 2, we have Ui*[X] <H qj[x] <H UJ[2 x].

In the commit phase, each x on wList is written, The next observation follows directly from Defini-

Wmax[x] is set to ts(Tj), and then the write lock tion 1.

on x is released. Observation 3 If q = w (a write operation), ihen

As in read/write PCP, locks in our protocol are set both Rcur[z] and Wmax[x] will remain unchanged after
and released by changing the r/w priority ceilings of U [x] is executed and before qj[x] is executed. If q = r,
the corresponding data items. The protocol is not two then Wmax[x] will remain unchanged after UI[x] is
phase since read locks of each transaction scheduled by executed and before q. [z] is executed.
abort/locking are released immediately after access.
To guarantee serializability, timestamps are utilized, Property 1 The mixed locking/abort protocol guar-

in addition to locks, to order conflicting operations. aniees serializability.

Observe that Wmax[s] holds the maximum times- Proof: Given any operation qj [x], let pi [z] be its imme-
tamp of transactions that updated Wmax[x] (it in- diate preceding conflicting operation. We first show if
creases monotonically) but Rcur[x] holds the times- qj[] was not rejected or ignored, then ts(Ti) < ts(T)).
tamp of the transaction that most recently updated Thre war nour ctep to con ther:
Reur[i., Pernilttng Reur[] to be updated In the
"wrong" order complicates the correctness proof, but Case I1 Both Ti and 7) are scheduled by pure lock-
eliminates a costly critical section in an implementa- ing: By the pure locking scheduling rule, the lock
tion. on x is not released until timestamp is acquired and

properly attached. Since pi[x] precedes and conflicts

4 Properties of the mixed protocol with qj[x], Ti must obtain its timestamp before 7)
did. Hence, ts(T) < ts(T3).

We denote operations on x by o[x], p[x] and q[x]

where it is not necessary to distinguish between read Case 12 Ti is scheduled by abort/locking while 7) is
and write. tsk denotes acquisition of a timestamp by scheduled by pure locking: Ti obtains its timestamp
transaction Tk. UL?[x] denotes Tk's updating of Rcur[x] when it starts. Also, a lock is set on x before pi[x] is
if o = r or Wmax[x] if o = w. We assume either performed. Since Tj obtains its timestamp when it
Uk[x] <H U1'[x] or U10[X] <H UL?[z for any two trans- commits, ts(Ti) < ts(7)).
actions Tk and T, and o =r or w. Case 13 Ti is scheduled by pure locking while 7)

Observation 1 For every transaction T and an op- is scheduled by abort/locking: Since both Ti and
eration okjr] ofTk, tsk <k Uffizi and ok.] <L. U[x]. Tj set a lock on x and pi[x] precedes qj[], by the
Hence, t sk <H U*[x] and ok[X] <H U,.[x] for every time qj[x] is about to be performed pi[x] and UIP[x]
schedule H. must have been done. Since pi[x] is the immediate

103

preceding conflicting operation of q[x], by Observa- Proof- Follows from the scheduling rules that write
tion 3, no conflicting operations will update Rcur[x] locks are held until after a transaction commits or
or Wmaxfx] or both after Uf[x] is executed and be- aborts. C
fore qj [x] is executed. If ts(Ti) > ts(7;), then 7; will
be aborted unless p = q = w (in that case qj[xJ will Property 4 If a transaction is aborted, then it is
be ignored by Thomas' write rule). aborted by a higher-priority transaction.

Case 14 Abort/locking used for both T and 7T: sim- Proof: Suppose Tj must be aborted because its oper-
ilar to case 13. ation qj [x] can not be performed because a conflicting

operation pi[x] of T has becn executed and ts(Ti) >
Now suppose ts(Ti) < ts(7;). We show ts(Tk) < ts(7;). We want to show that T's priority must be

ts(7;) for any other preceding conflicting operation greater than Tj's. Since ts(T) > ts(Tj), tsj <H tsi.
ok[x] of qj[x]. Suppose to the contrary that ts(Tk) > By Observations 1 and 2, the schedule thus contains
ts(Tj). We have ts, <H tsj <H tsk because ts(T) < tsj <H tsi <H Uf[x] <Ht qj[x]. If 7; has higher
ts(Tj) < ts(Tk). There are two cases to consider: priority than Ti, then 7; is blocked by lower-priority

Case 01 ok[x] and pi[x] conflict: ok[x], pi[x], and transaction Ti after Ti starts, which violates the stack-

qj [x] are pairwise conflicting operations. By our as- based discipline. Hence, Ti's priority must be' higher

sumptions, Ok[X] <H qj[x] and pix] <H qj[x]. If than Tj's. 0

pi[X] <H Ok[z], then pdzI~ <H okiX] <H qj[x]. By Observation 4 When transactions Ti and 7; contain
Observation 2, Uf[x] <H Uk[x] <H Ujl[x], which vio- two conflicting operations pi[x] and qj[z], respectively
lates Definition 1 for immediate preceding conflicting and T 's priority is higher than 7; 's, then the worst-
operations. Hence, we must have Ok[X] <If Pjfa] <H case abortion cost for 7; by Ti due to conflict on x is
qj[x] and Uk"[x] <H Ur[x] <H UI[x]. By Observa- the longest execution time from Tj 's initiation up to
tion 1, tsk <H UkO[x]. Hence, the schedule must con- (but not including) qj[x].
tain tsi <H tsj <H tsk <H Uk,[X] <H Ur[z] <H
Ujl[x]. Because operations of Ti and 7; are not prop- This can be observed in the proof of Property 4: if
erly nested, this execution violates the stack-based qj[x] has been executed before Ti preempts 7;, then
discipline. Tj will not be aborted by Ti due to conflict on x. We

call such cost prefix abortion cost for 7;. If Ti andCase 02 o = p = r and q = w: Both Tk and T ofito oeta n aaiew edol
must modify Rcur[x], i.e., Uk'[x] and. Ui'[[]. Since Tj conflict on more than one data item, we need only
mut modify curx],and ipreede and nflictth[x Sconsider the largest such cost. We call such cost A-
both rk] and ri] precede and conflict with wjfx], costj.
by Observation 2, U i] <ih U, (] and Ur[x] <o Notice when a transaction is aborted, due to delayed
UJ[x]. By our assumption, either U[xI <Ht Ut[[] or writes there is no need to undo its write operations. In
Uf[x] <H U []. If U[] h[], then we have addition, there is no need to undo its read operations,
sumtion <hat x] <H the []hieioate rece gour i.e., to recover the old value of Rcur for each data item
sumtigpetion r [x] .isn~theimmedi rx] <n Ur[x read by the transaction. Those reads can be thought
flicting operation of wjx]. Hence, U <Hof as "ghost" operations and cause no harm to over-
The schedule thus must contain tsi <H t sj <H all system correctness. As a result, the overheads in
tsk <H Uk[XI <H ur[X] <H U'jwx], which again vio- aborting a transaction are very small.
lates the stack-based discipline. 0

Property 2 Transactions scheduled by pure locking Lemma 1 The worst-case abortion cost charged to

will never be aborted. task j by conflicting task ri is p[1 x A-costij.

Proof: Follows from Cases I1 and 12 in the proof of Proof: Because of stack-based discipline, each instance
Property 1. 0 of rT can abort rj at most once. The Lemma thus

follows from Observation 4. 13
When a transaction is aborted, we must remove

its effect to the database as well to other transac- We define HPCj = {ri: r has higher priority than
tions. If the protocol were not designed carefully, this rj and r conflicts with rj}.
might trigger further abortions, often termed cascad-
ing abort. Lemma 2 The worst-case abortion cost for rj is

Property 3 Executions produced by the mixed proto- E".TaHPcj([,, x A-ostid).

col are cascadeless. Proof- Follows from Lemma 1 and Property 4. 13

104

5 Application and schedulability anal- lower-priority task that reads "DB" and whose execu-
ysis tion time is greater than 1. (If the jitter requirement

is removed as in [2], then all the tasks will be schedula-When performing schedulability analysis, we first ble by pure locking.) All other tasks can be scheduled
assume that all tasks are scheduled by pure lock- by pure locking.

ing. If all critical tasks are schedulable, there is no Table 2 illustrates the schedulability calculations

reason to consider scheduling tasks by abort/locking, under the new protocol with all overheads for the first

Otherwise, we add timestamp management overheads six tasks.

and again calculate worst-cast execution times and

blocking duration. The schedulability analysis will
then determine which tasks must be scheduled by 6 Conclusion
abort/locking.

Whenever a task ri is found not schedulable due The non-2-phase protocol described above can im-
to excessive blocking caused by a lower priority task prove system schedulability while maintaining a strong
Ti, we schedule 7 by abort. We calculate worst-case correctness criterion, i.e., serializability (of whole tasks
abortion cost for rj based on Lemma 2. This abor- and not just of small sequences of data accesses). It is
tion cost effectively becomes part of the computation an example of a concurrency control protocol suitable
time for rj. We then re-evaluate worst-case blocking for hard-real-time systems, and is (to our knowledge)
to ri and resume the schedulability analysis. Because the first example of a protocol that may abort tasks
the new blocking caused by rj cannot be greater than and yet achieve better worst case schedulability than
before, schedulability results for tasks with higher pri- a pure locking protocol. Additional overheads are in-
ority than ri will not be affected. curred for timestamp management and abortion, but

A, these overheads are small and need not be incurred by
An example all tasks. The choice of which tasks require timestamp

management and possible abortion is straightforward
The avionics platform example in [4] has 18 pe- and driven by schedulability analysis. The general

riodic tasks and 9 data objects. As in [4], task avionics example adapted from [4] illustrates a class
Weapon-Release is ordered second (not in pure rate- of system for which selective abort may increase the
monotonic order) to meet a 5 ms jitter requirement. number of tasks whose worst-case schedulability can

We assume:2 be guaranteed.

" timestamp acquisition takes at most 50 s. References
" each update of Rcur or Wmax takes at most 0.5 Ps.
" each read/write of a datum takes at most 0.5 ps. [1] T. Baker. Stack-based scheduling of realtime processes.

Journal of Rcal-Time Systems, 3.-67-99, 1991.
" reading Rcur or Wmax and comparing it to a trans- [2] T.-W. Kuo and A. K. Mok. SSP: a semantics-based protocol

action's own timestamp takes at most 1 s. for real-time data access. In Proceedings of the Real-Time

" set/release a lock takes at most 50 ps. Systems Symposium, December 1993.

[3] C. L. Liu and J. W. Layland. Schedulingalgorithms for mul-* for each datum, access wList takes at most 50 ps tiprogranuningin ahard-rea.-timeenvironment. Journal of
the ACM, 20(1):46-61, 1973. Reprinted in Tutorial: Hard

Table 1 shows task set characteristics from [4] but Real-Time Systems , ed. J. Stankovic and K. Ramamritham,
with blocking calculated from execution times of whole IEEE Computer Society 1988.
tasks rather than short critical soctions. The schedu- [4] C. D. Locke, D. R. Vogel, and T. J. Mester. Building a pre-
lability analysis is based on thc "critical time test" dictable avionics platform in ad&. A case study. In Proceed-
reported in [4]. Task Weapon-Release is not schedu- ings of the Real-Time Systems Symposium, pages 181-189,
lable in a pure locking protocol due to its stringent December 1991.

jitter requirement and excessive blocking by lower- [5] ozalp Babaollu, K. Marzullo, and F. B. Schneider. A for-
malization of priority inversion. Journal of Real- Time Sys-priority tasks, even though cumulative task utilization tems, 5:285-303, 1993.

is only 6.15%. To schedule Weapon-Release and meet [6] L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang. A real-
its jitter requirement, we must permit abortion of each time locking protocol. IEEE Transactions on Computers,

'These assumptions are based on simple memory accesses for 40(7):793-800, July 1991.
most operations, with no context switches or operating system [7] R. H. Thomas. A majority consensus approach to concur-
services, and the protocol is designed to make such an imple- rency control for multiple copy databases. ACM Transac-
mentation possible. tions on Database Systems, 4(2):180-209, June 1979.

105

Table 1: Task set characteristics adapted from the generic avionics example in [4].

Task Period [Exec. Blocking' Read set f Write set Abort'?
_____________I (ms) J(ms)] (MnS) Jj______ __

TimerInterrupt 1 0.051 0
Weapon-Release 200 3 9". DB
Radar.TrackingFilter 25 2 9 DB,N D,DBT Abort
RWR.ContactMgmt 25 5 9 DB,N,K,W DDB,T Abort
Poll.Bus.Device 40 1 9 all
Weapon.Aim 50 3 9 N,T D,DB
Radar.TargetUpdate 50 5 9 DB,N,K D,DBT Abort
NavUpdate 59 8 9 DB,K.R DDB.T,R.W.RW Abort
Display.Graphic 80 9 5 all DB Abort
Display.Hook.Update 80 2 5 DB - Abort
Tracking .Target.Upd 100 5 3 DB,N.K.R. RW D.W Abort
Weapon.Protocol 200 1 3 K DB
Nav-Steering.Cmds 200 3 3 D D
DisplayStores.Update 200 1 3 W DB
DisplayKeyset 200 1 3 DB all
Display.Stat.Update 200 3 1 anl DB Abort
BET-E.StatusUpdate 1000 1 1 D _

Nav-Status 1000 1 0 DB D I
'Worst-case blocking based on treating whole tasks as traasactions, as in (2] but in contrast to [4].
"Note that blocking for Weapon.Release as calculated in [4] can be so more than 1.745ms. despite coml-t with Dis-
play-Graphic which has computation time ! ms and reads and wirite DB. Tiis difficulty is avoided in [2] by renomwag the
jitter requirement for Weapon.Release.

.0

Table 2: Schedulability calculations for the mixed ocking/abort protocol.

Task JPeriod Exec. Blocking Abot Schedulability TetI m) (ms) (UM)d d IT(me

Timer-Interrupt 1 0.051 0 0 .051 < I
Weapon.Release 200 3.0505 1.0545 0 5 1x .OSI +3&O05+.0545= 4.36<$
Radar.Tracking.Filter 25 2.0905 3.052 0.253 (25/1 x 0.051 + 125/2001 x 3.050+

L2/5 x 233 + 3.052 - 9.721 < 25
RWR.Contact.-Mgmt 25 5.0935 3.052 5.578 2S/11 K 0.051 + [2/2100 x 3.0505+

125/25 x 2_.35 + I2S2] x 10.67IS+
3.052 - 20.3 5 < 25

Poll.Bus.Device 40 1.0545 3.052 0 [40111 x .05 1 + (40/2001 x 3.055+
r4o/251 x (2.343 + 10.671S)+F/40/40 x .OS + 3.052 - 3S.227 < 40

Weapon.Aim 50 3.052 3.051 0 [50/II x .051 + f50/2001 X 3.0505+
[50/251 x (2.34$3++30.6715)4.

l50/401 x 1.054S + l501501 x 3.052+
1_ 1 3.051 - 37915 < 50

Acknowledgments. This material is based upon work
supported by the National Science Foundation under Grant No.
CCR-9157629, with additional support from AT&T. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

106

Window-Consistent Replication for Real-Time Applications *

Jennifer Rexford, Ashish Mehra, James Dolter and Farnam Jahanian

Real-Time Computing Laboratory
Department of EECS

The University of Michigan
Ann Arbor, MI 48109-2122

E-mail: {jrexford, ashish, jdolter, farnam}@eecs.umich.edu

Abstract 1 Introduction

Two widely-studied approaches for structuring fault- A common approach to building fault-tolerant dis-

tolerant services are the state-machine and the primary- tributed systems is to replicate servers that fail in-

backup replication schemes. For a large class of soft dependently. The objective is to give the clients the
and hard real-time applications, the degree of consistency illusion of a service that is provided by a single server.
among servers can be exploited to design replication proto- Two widely-studied approaches for structuring fault-
cols with predictable timing behavior. This is particularly tolerant services are the primary-backup and the state-
useful in applications, such as automated process control, machine replication schemes. In both approaches, a
in which one can tradeoff the quality or precision for timely modify request from a client results in the execution of
availability of data. an agreement protocol that ensures consistency among

This paper presents the architecture and prototype im- the replicated servers. For example, in the traditional
plementation of a primary-backup repecation service that primary-backup model, each client modify request to
employs window consistency semantics between the pri- the primary repository requires an update transmis-
mary data repository and the backups. A client registers sion to the backup. This approach artificially ties
a data object with the service by declaring the consistericy the rate of client modify operations to the rate of up-
requirements for the data, in terms of a time window. The dates to the backups, limiting both response time pre-
primary ensures that each backup site maintains a version dictability and total system throughput while ensuring
of the object that was valid on the primary within the pre-
ceding time window by scheduling update messages to the consistent data after fail-over. For a large class of soft
backups. and hard real-time applications, this restriction can be

more detrimental than having a slightly stale copy ofDecoupling the transmission of updates to the backups the data on the backups.

from the processing of client requests permits the primary This paper presents the architecture of a new

to handle a higher rate of operations and provide more primry-ackp nshem, erferedtocaute oinw

timely service to clients. The non-blocking semantics free primary-backup scheme, referred to as the window-

the client from waiting for updates to the backups to com- abit n ret ica ion to tolerate

plete. Furthermore, real-time scheduling of update mes- ability of many real-time applications to tolerate con-

sages can guarantee controlled inconsistency between the trolled time-inconsistency of the repository to pro-
primary and backup repositories. vide timely availability of this data. The notion of

window consistency relaxes atomic or causal consis-

tency among replicas to obtain less expensive repli-

*The work reported in this paper was supported in part by cation protocols. In particular, the proposed replica-
the National Science Foundation under Grant MIP-9203895. tion scheme exploits temporal constraints on objects to
Any opinions, findings, and conclusions or recommendations maintain a less current but acceptable version of the
expressed in this paper are those of the authors and do not nec- primary data on the backup. A client registers a data
essarily reflect the view of the NSF. Also supported by a grant
from the Racldiam School of Graduate Studies at the University object with the service by declaring the consistency
of Michigan. requirements for the data, in terms of a time window.

107
0-8186-5710-3/94 $3.00 0 1994 IEEE

The primary ensures that each backup site maintains
a version of the object that was valid on the primary
within the preceding time window by scheduling se- No UdkpNode

lective update messages to the backups. The time
window essentially establishes a bounded distance be-
tween the primary and the backup states for each ob-
ject. The following example illustrates the motivation
for the proposed approach.

Example - Highly-Available Process Control
System: Consider a primary-backup system for au-
tomated manufacturing and process control applica- Benor actimbor

tions, as shown in Figure 1. The primary and the Figure 1: Primary-backup process control system
backup nodes share external devices such as sensors.
The primary runs in a tight loop sampling sensors,
calculating new values, and sending signal to exter- A replication scheme based on window consistency
nal I/O under its control. The primary also maintains allows computations that may otherwise be disallowed
an in-memory data repository which is updated fre- by existing active or passive protocols that ensure
quently during each iteration of the tight control-loop, atomic updates to a collection of replicas. Enforcing
One of the requirements on the system is to be able a weaker correctness criterion has been studied ex-
to switch to the backup in case of the primary failure tensively for different purposes and application areas.
within a few hundred milliseconds. In particular, a number of researchers have observed

The in-memory data repository must be replicated in the past that the notion of serializability is too

on the backup to meet the strict timing constraint on strict a correctness criterion for real-time databases.

the switch-over. Since there can be hundreds of up- Hence, several alternatives have been proposed that

dates to the data repository during each iteration of eliminate or relax serializability as a correctness cri-

the control loop, it is impractical (and perhaps impos- teria for managing consistency in real-time transac-

sible) to update the backup synchronously each time tions. Among these are c-serializability [2], similar-

the primary copy is changed. An alternative solution ity [3],temporal and external consistency [4], triggered

is to exploit the data semantics in a process control real-time databases [5]. The above correctness crite-

system by allowing the backup to maintain a less cur- ra allow more concurrency by supporting a limited

rent but an acceptable copy of the data that resides amount of inconsistency in how a transaction views

on the primary. If the data on the backup does not the database state. The idea of imprecise computa-

fall too far behind the version on the primary, the tion is an interesting related approach that sacrifices

backup can recover from a primary failure. For ex- accuracy for timeliness in real-time computations [6].

ample, updates can be sent in batches or selectively Exploiting weak consistency to obtain better perfor-

to the backup. If the primary fails, the backup can mance has also been proposed in other non-real-time

take over even if the last few updates are lost. The applications. For instance, in [7], the notion of quasi-

objective is, however, to keep the backup data recent copy is introduced which allows a weaker type of con-

such that it can reconstruct a consistent system state sistency between the central data and its cached copies

by extrapolating from previous values and by reading at remote sites. The objective is to allow a cached copy

new sensor values. However, one must ensure that the to deviate from the central copy in a controlled way

distance between the primary and the backup copies so that a scheduler has more flexibility in propagating

is bounded within a predefined time. In fact, differ- updates. In the same spirit, the notion of window con-

ent objects may have distinct tolerances in how far sistency provides controlled inconsistency among the

the backup can lag behind before the object state be- replicas in a real-time application to support fault-

comes stale. The challenge is to bound the distance tolerance.

between the primary and the backup such that consis-
tency is not compromised while minimizing the over-
head in exchanging messages between the primary and 2 Window Consistency
its backup. Under transient overload conditions, the
system can gracefully degrade by allowing the backup The window-consistent replication service consists of
to increase its distance from the primary. 0 a primary and one or more backups, with the data

108

control data
operation operation

IP,

to t2 ll l l, 1

Update iObject Primar B

it

Scheduler Manager Bhave an older version of 0 than P, the copy on B must

, be "recent enough." The service must ensure that B
always believes in data that was valid on P within theFigure 2: Window-consistent primary-backup archi- last 6c time units. The value of 6, is set during object

tecture creation, based on the timeconsistency requirements
of the application; P rejects the registration request

on the primary shadowed at each backup. These sites i tcno aif h betswno ossecstore collections of objects which change over time, in veequirements.
response to client interaction with the primary. The B has a window-consistent copy of object 0 at time
primary handles client requests and ensures that each I if and only if P(t - 6i) < r(t) < rf(t). For ex-
backup repository maintains a sufficiently recent ver- ample, in Figure 3, P performs several operations on
sion of the objects. In the absence of any failures, 0,, on behalf of client requests, but selectively trans-
the primary satisfies all client requests and supplies a mits update messages to B. At time the primary

data-consistent repository. If the primary crashes, a has the most recent version of the object, which was
window-consistent backup performs a fail-over to be- timestamped at time t2 ; the backup has a version first
come the new primary by notifying the clients and recorded on the primary at time t. Thus, r (t) -tex
other replicas of the new configuration. Service avail- l(t) = t, and r(t - 6) to. Since ta op rt <n2, B
ability hinges on the existence of a window-consistent has a window-consistent version of 0 at time t. The

backup to replace a failed primary, primary US employs real-time scheduling algorithms
The service exports two sets of operations to the to coordinate the selective updates for the various oh-

clients, namely, control operations and data opea- jects.
tions, as shown in Figure 2. Control operations, such The primary P needs an accurate measure of the

as object creation and deletion, are handled by the window consistency of the backup objects to deter-
primary, and require complete agreement within the mine the operating mode of the backup sites. Al-
replication service. Client query and modify oper- though P cannot know the exact value of 71 at
ations on the data are handled locally at the pri- all times, the primary can estimate the state of the
mary, without triggering interaction with the back- backup. In particular, P does know the time u t m

ups. The primary concurrently handles client requests when it last transmitted an update for 0,. The pri-
and schedules selective updates to the backup repos- mary sent version an a meaure of the

itories to guarantee the window consistency require- the backup, so P knows roj c< mt s However, if P
ments of the data objects. The primary object man- has not received an acknowledgement for this update,
ager (OM) satisfies client data requests, while sending P cannot guarantee that B has this copy of 0, yet. If
update messages to the backup at the behest of the the backups tell P what object versions they have re
primary update scheduler (US). ceived, then the primary knows the latest version rfaC

Whenever the primary P modifies an object, p that P has seen acknowledged by B. The primary
timestamps the new version; these timestamps iden- then knows that r:5 <r Using Hwve and rtG, P

tify successive versions of the object on the primary, can provide both optimistic and pessimistic measures
The primary schedules transmissions to the backups to of the window consistency of Ot on B.

ensure that each backup has a sufficiently recent ver- A backup also needs some measure of its own win-
sion of each object. At time t the primary has a copy dow consistency to determine whether it is a suit-
of object Oi with timestamp rP(t), while a backup B able substitute for a failed primary. Since a window-

109

inconsistent backup B cannot supplant a crashed pri-
mary, B cannot tolerate long periods without hearing F 7 , 1
from P. The backups must balance the likelihood of 0 3 5 6 9 10 12 Is
false failure detection with the possibility of having no (a) Periodic schedule:
window-consistent backup to replace the crashed pri- (p, = 5, el = 2, P2 = 3, e2 = 1)
mary. Although B may be unaware of recent client
interaction with P for each object, B does know Tr L_.. ... i
and the time tmIt when P transmitted this update. 0 3 5 6 9 10 2 1'5
If less than 6i time units have elapsed since P sent this (b) Compressed periodic schedule:
update, then B has data that P believed within the (p, = 5, el = 2, P2 = 3 , e2 = 1)
last 6, time units.

Figure 4: Compressing a periodic schedule

3 Application of Real-Time Schedul-
ing next 6i - d time units; otherwise, the backups may

not receive a sufficiently recent version of Oi before
The window-consistent replication model satisfies a the time-window 6i elapses. For window consistency
high rate of client query and modify operations by this permits a maximum period pi = (6i - d)/2.
relaxing the consistency constraints between the pri- Compressing the periodic schedule: While the
mary and the backups. Under the limitations of finite periodic model can guarantee sufficient updates for
processing time and network bandwidth, however, the each object, the schedule updates O only once per
primary must schedule the selective updates to the period pi, even if computation and network resources
backup sites. By casting the transmissions of updates permit more frequent transmissions. This restriction
as tasks, the primary US can draw upon real-time task arises because the periodic model assumes that a task
scheduling algorithms. While several task models can becomes ready to run only at period boundaries. How-
accommodate window-consistent scheduling, we ini- ever, the primary can transmit the current version of
tialy consider the periodic task model [8,9]. an object at any time. The scheduler can capitalize on

With the periodic model, the primary coordinates this task readiness to improve both resource utilization
transmissions to the backups by scheduling an update and the window consistency on the backups by corn-
task with period pi and service time ei for each object pressing the periodic schedule. Consider two objects
Oi '. The end of a period serves as both the dead- 01 and 02 as depicted in Figure 4. The scheduler
line for one invocation of the task and the arrival time must send an update requiring 1 unit of processing
for the subsequent invocation. The scheduler always time once every 3 time units (unshaded box) and an
runs the ready task with the highest priority, preempt- update requiring 2 units of processing time once every
ing execution if a higher-priority task arrives. Rate- 5 time units (shaded box). For this example, both the
monotonic scheduling statically assigns higher priority rate-monotonic and earliest-due-date algorithms gen-
to tasks with shorter periods [8,9], while earliest-due- erate the schedule shown in Figure 4(a). While each
date scheduling favors tasks with earlier deadlines [8]. update is sent as required in the major cycle of length

Given a schedulable set of tasks, the primary US 15, the schedule has 4 units of slack time. The peri-
ensures that Oi is sent to the backup once per period odic schedule can provide the order of task executions
pi, resulting in a maximum time of 2pi between succes- without restricting the time the tasks become active.
sive transmissions of Oi. The replication service must If no tasks are ready to run, the scheduler can advance
consider object consistency requirements and trans- to the earliest pending task and activate that task by
mission delays in determining pi for each object. In advancing the logical time to the start of the next pe-
the absence of a link failure, we assume a bound d on riod for that object. With the compressed schedule
the end-to-end latency between the primary and the the primary still transmits an update for each Oi at
backups. If a client operation modifies Oi, the pri- least once per period pi but can send more frequent
mary must send an update for the object within the updates when time allows. As shown in Figure 4(b),

'The size of 0, determines the time ei required for eachi compressing the slack time allows the schedule to start

update transmission. In order to accommodate preemptive over at time 11. In the worst case, the compressed
scheduling and objects of various sizes, the primary can send schedule degrades to the standard periodic schedule
an update message as one or more fixed-length packets. with the associated guarantees. Integrating a new

110

backup: To minimize the time the service operates optimistic schedulability criteria (with some increased
without a window-consistent backup, the primary P cost in scheduler complexity), allowing the replication
needs an efficient mechanism to integrate a new or service to accept objects with more demanding win-
invalid backup. P must send the new backup B a dow consistency requirements.
copy of each object and then transition to the peri- Window consistency offers a framework for design-
odic schedule to sustain B. B must receive a copy ing replication protocols with predictable timing be-
of Oi in the "period" pi before the periodic schedule havior. By decoupling communication within the ser-
begins; this ensures that B can afford to wait until vice from the handling of client requests, a replica-
the next pi interval to start receiving periodic update tion protocol can handle a higher rate of query and
messages for Oi. P guarantees a smooth transition to modify operations and provide more timely response
the periodic schedule by sending the objects to B in to clients. Scheduling the selective communication
reverse period order, such that the objects with larger within the service provides bounds on the degree of
periods are sent before those with smaller periods. For inconsistency between servers. Although the current
object Oi, this ensures that only objects with smaller prototype implements the primary-backup replication
or equivalent periods can follow Oi in the integration model, we are exploring the application of window
schedule; these same objects can precede Oi in the consistency to the state-machine approach to server
periodic schedule. This guarantees that the integra- replication. In addition, we are investigating the in-
tion schedule transmits Oi no more than pi time units fluence of controlled time-inconsistency on failure de-
before the start of the periodic schedule, ensuring a tection and recovery in replication protocols.
consistent transition. The reverse-period integration
schedule transmits a single copy of each object, min-
imizing the time required to establish window consis- References
tency on a new backup. [1] A. Mehra, J. Rexford, J. Dolter, and F. Jahanian, "Window-

consistent replication service," Technical report, Department
of BECS, University of Michigan, April 1994.

4 Prototype Implementation and On- [2] C. Pu and A. Leff, "Replica control in distributed systems: An
asynchronous approach," in Proc. ACM SIGMOD, pp. 377-

going Work 386, May 1991.

(3 T.-W. Kuo and A. K. Mok, "Application semantics and con-
currency control of real-time data-intensive applications," in

We are developing a prototype implementation of the Proc. Real-Time Systems Symposium, 1992.

window-consistent replication service to demonstrate [4] K.-J. Lin, F. Jahanian, A. Jhingran, and C. D. Locke, "A

and evaluate the proposed service model. Each client model of hard real-time transaction systems," Technical Re-

or repository site is currently a Sun SPARCstation port RC 17515, IBM T.J. Watson Reseach Center, January
1992.

running Solaris 1.1. The sites communicate through
UDP datagrams using the Socket++ library from the [5] H. F. Korth, N. Soparkar, and A. Silberschatz, "Triggered real

time databases with consistency constraints," in Proc. of the
University of Virginia, with extensions for priority- 16th VLDB Conference, August 1990.

based access to the active sockets. The prototype [6] J. Liu, K.-J. Lin, W.-K. Shih, R. Bettati, and J. Chung, "Im-

implements rate-monotonic scheduling with compres- precise computations," to appear in IEEE Proceedings, Jan-

sion. While Solaris 1.1 provides a stable environment uary 1994.

for code development and testing, the platform does [7] R. Alonso, D. Barbara, and H. Garcia-Molina, "Data caching
issues in an information retrieval system," ACM Trans.

not support real-time thread scheduling, bounded Database Systems, vol. 15, no. 3, pp. 359-384, September

communication delays, or synchronized clocks. After 1990.

initial code development and testing, we will evaluate [8] C. L. Liu and J. W. Layland, "Scheduling algorithms for mul-
the service in a real-time distributed system 0. tiprogramming in a hard real-time environment," Journal of

the ACM, vol. 20, no. 1, pp. 46-61, January 1973.

The prototype provides a general framework for [9] J. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic

comparing the performance of different scheduling al- scheduling algorithm: Exact characterization and average case
gorithms for coordinating update transmissions to the behavior," in Proc. Real-Time Systems Symposium, pp. 166-gorihmsforcoodintin updte ranmision tothe171, December 1989.

backups. We are currently investigating the distance- 11 , D 1.constrained task model 11] which asgspriorities [10] K. C. Shin, D. D. Kandlur, D. L. Kiskis, P. S. Dodd, H. A.
[11 assigns Rosenberg, and A. Indiresan, "A distributed real-time operat-

based on separation restrictions. In addition, we are ing system," IEEE Software, pp. 58-68, September 1992.

considering adaptive scheduling algorithms that incor- [11) C.-C. Han and K.-J. Lin, "Scheduling distance-constrained

porate knowledge of recent client interaction with the real-time tasks," in Proc. Real-Time Systems Symposium, pp.
300-308, December 1992.

primary. These alternative models may permit more

III

Using Data Similarity to Achieve Synchronization for Free

Tei-Wei Kuo and Aloysius K. Mok
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

Abstract In [6], we proposed a class of real-time, data-access
protocols called SSP (Similarity Stack Protocol) which

In [4], Graham proposes several conditions which is based on the notion of similarity. Transactions are
are sufficient to guarantee that a transaction system allowed to run concurrently if their conflicting events
will run serializably without any extra effort having are strongly similar. We gave a schedulability bound
to be taken. Systems satisfying these conditions are for SSP and also reported some encouraging simula-
said to achieve serializability for free. The conditions tion results. Although SSP was shown to compare fa-
considered by Graham are determined by a syntactic vorably with Priority Ceiling Protocol (PCP) [11] and
check on the transaction programs, and are indepen- Stack Resource Policy (SRP) [2] especially on multi-
dent of the semantics of data. In this paper, we use a processor systemsi , a transaction system with a mod-
semantic approach and propose a sufficient condition erate workload is still hard to schedule. In this paper,
for achieving data synchronization for free which is we further explore the notion of similarity and pro-
based on the concept of data similarity [5]. Real-time pose a sufficient condition, so that a real-time trans-
transactions satisfying this condition can be scheduled action satisfying this condition can be scheduled cor-
correctly by any process scheduling discipline that is rectly by an independent process scheduling algorithm
designed for the independent processes model [8], e.g., such as RMS or EDF [8]. This means that the usually
RMS, EDF, where no locking of data is assumed. The high utilization factor that can be achieved by these
correctness of our approach is justified by exploiting scheduling algorithms is also attainable for transac-
the idea of A-serializability. tions satisfying our condition.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the similarity concept and the cor-

1 Introduction rectness criterion in [5]. Section 3 describes a sufficient
condition with which transactions can be scheduled

There has been substantial interest in the profer- independently. Section 4 further extends the results

mance of transaction systems which have significant presented in section 3. Section 5 is the conclusion.

response time requirements. These requirements are
usually posed as deadlines on individual transactions.
A scheduling algorithm must attempt to meet dead- 2 Data Similarity
lines as well as preserve database consistency. Due to 2.1 Database Model
priority inversion caused by data access, a transaction
system with moderate utilization factor is often hard The state of a real-time system is represented by the
to schedule. In [5], we explored a weaker correctness values of a collection of data objects. Each data object
criterion for concurrency control in real-time transac- vales of alleciof t objc. E ah dat etions, namely, the notion of "similarity", so that the takes its value from its domain. Events are primitive
schedulability problem is relaxed by the flexibility in data operations (atomic read or write) which may oc-
scheduling read/write events introduced by the notion cur many times in a computation. Each instance of
ofsimdlaity, ra wan event is associated with a time stamp whose value
of similarity. is the (wall-clock) time at which the event instance

"Supported in part by a research grant from the Office of occurs. A transaction is a partial order of events. An
Naval Research under ONR contract number N00014"89J-1472 instance of a transaction is scheduled for every request

I Notice that PCP and SRP are originally designed for single
processor systems. Hence comparing them with SSP may not be germane.

112
0-8186-5710-3/94 $3.00 0 1994 IEEE

for the transaction. To distinguish between a transac- t and state s' to t', then t and t' are similar if s and s'
tion and an instance of it, we shall use the notation are similar. We say that a similarity relation is regular
rij to denote the jth instance of transaction ri. The if it is preserved by all transactions. We are interested
view of a transaction (instance) is a vector of data ob- in regular similarity relations only.
ject values such that the ith component is the value
read by the tth read event of the transaction instance 2.3 Strong Similarity
(101.

A schedule over a set of transactions is a partial or- The definition of regular similarity only requires a
der of event instances issued by instances of the trans- similarity relation to be preserved by every transac-
action set. Each event instance in a schedule is issued tion, so that the input value of a transaction can be
by one transaction instance. The ordering of event swapped with another in a schedule if the two values
instances in a schedule must be consistent with the are related by a regular similarity relation. Unless a
event ordering as specified by the transaction set. In similarity relation is also transitive, in which case it
a real-time computation, the partial ordering of event is an equivalence relation, it is in general incorrect to
instances in a schedule is induced by the time stamps swap events an arbitrary number of times in a sched-
of event instances at different sites. A serial schedule ule.
is a sequence of transaction instances (i.e., a schedule The notion of strong similarity was introduced in (51
in which the transaction instances are totally ordered). which has the property that swapping similar events

in a schedule will always preserve similarity in the
2.2 Similarity output. This notion is motivated by the observation

that the state information of many real-time systems
The value of a data object that models an entity in is "volatile", i.e., they are designed in such a way that

the real world cannot in general be updated continu- system state is determined completely by the history
ously to perfectly track the dynamics of the real-world of the recent past, e.g., the velocity and acceleration
entity. The time needed to perform an update alone of a vehicle are computed from the last several values
necessarily introduces a time delay which means that of the vehicle's position from the position sensor. Un-
the value of a data object cannot be instantaneously less events in a schedule may be swapped in such a
the same as the corresponding real-world entity. For- way that a transaction reads a value that is derived
tunately, it is often unnecessary for data values to be from the composition of a long chain of transactions
perfectly up-to-date or precise to be useful. In partic- that extends way into the past, a suitable similarity
ular, data values of a data object that are slightly relation may be chosen such that output similarity is
different are often interchangeable as read data for preserved by limiting the "distance" between inputs
transactions. This observation underlies the concept that may be read by a transaction before and after
of similarity among data values. swapping similar events in a schedule.

Similarity is a binary relation on the domain of a For the purpose of this paper, it suffices to note that
data object. Every similarity relation is reflexive and if two events in a schedule are strongly similar (i.e.,
symmetric, but not necessarily transitive. Different they are either both writes or both reads, and the two
transactions can have different similarity relations on data values involved are strongly similar), then they
the same data object domain. Two views of a trans- can always be swapped in a schedule without violating
action are similar iff every read event in both views data consistency requirements.
uses similar values with respect to the transaction.
We say that two values of a data object are similar if
all transactions which may read them consider them 3 A Sufficient Condition
as similar. In a schedule, we say that two event in-
stances are similar if they are of the same type and Similarity is an inherently application-dependent
access similar values of the same data object. We say concept, and we expect the application engineer to de-
that two database states are similar if the correspond- fine it for specific applications. In many real-time ap-
ing values of every data object in the two states are plications, it is often acceptable to use an older value of
similar. a sensor as input to a calculation, instead of waiting for

A minimal restriction on the similarity relation that a more up-to-date value. This is possible because the
makes it interesting for concurrency control is the re- physics of the application may be such that changes
quirement that it is preserved by every transaction, in sensor reading over a short interval of time are so
i.e., if a transaction T maps database state s to state small as to be insignificant to the calculation. This

113

observation provides us with the needed connection 3.2 A Sufficient Condition: Timing Con-
between similarity and timing constraints governing straints vs Data Similarity
data access.

Specifically, we assume that the application seman- Suppose sbi is a similarity bound for a data object
tics allows us to derive a similarity bound for each data xi. Any two writes on x, within an interval shorter
object such that two write events on the data object than sbi are interchangeable because they are strongly
must be strongly similar if their time-stamps differ by similar. Let p 'a, pnIt, and pmT be the maximum,
an amount no greater than the similarity bound, i.e., the second largest, and the minimum periods of trans-
all instances of write events on the same object that actions updating zi, respectively. If there is only one
occur in any interval shorter than the similarity bound transaction updating x,, then pTwa is equal to p!"'
can be swapped in the (untimed) schedule without vi- and pnXt. Suppose pr is the maximum period of trans-
olating consistency requirements. Notice that the ex- actions reading xi. In the following, we shall derive a
istence of a similarity bound does not imply that the sufficient condition which guarantees the "strong sim-
similarity relation is transitive, since event swapping ilarity" of any concurrently executing transaction in-
is based on (wall-clock) time values and not on the stances.
relative positions of events in a schedule. For simplicity of discussion, we assume in this paper

that the deadline of a transaction instance is equal to
the end of its period. Extension of our results to relax

3.1 Basic Idea this restriction is straightforward.

Write vs Write Condition: (p,a + p,"t) < sbi
The basic idea is that transactions should not block By our definition of strong similarity, two con-

one another as long as meeting timing constraints flicting write events are interchangeable if they are
guarantees the strong similarity of their conflicting strongly similar. In order words, conflicting write
events. The event conflicts are resolved by appeal- events of any overlapping transaction instances are in-
ing to the similarity bound in the following discussion terchangeable if these write events are strongly similar.
which refers to Figure 1. (We say that two transaction instances overlap if their

execution overlap in time.) If no transaction misses

no larger tan imilarity bound its deadline, the maximum temporal distance between
any two conflicting write events of overlapping trans-

WI R W2 W3 action instances on data object xi is (pma+pi.zt). Ob-
nme viously, if (pi Z +pint) < sbi, conflicting write events
T1ie of any overlapping transaction instances are strongly

Done no larger than similarity bound similar and interchangeable.

Notice that the Write vs Write condition for data
Figure 1: similarity of conflicting events object xi can be ignored if there is only one transaction

updating xi. This is because no two instances of the

Suppose two events el and e2 conflict with each same transaction will overlap if the transaction never

other. Let el and e2 be the write events w2 and w3, misses its deadline. 0

respectively. If their write values are similar under
the similarity bound as shown in Figure 1, these two Read vs Write Condition: (pT" + 2 p!"" +p7) < sbi
write events are strongly similar and it does not matter Suppose r is a transaction with period pr and reads
which write value is read by subsequent read events, data object xi. To ensure correctness, conflicting write
Suppose el and e2 are respectively, the write event events which might be read by an instance of r must
W2 and the read event r in Figure 1. For their relative be strongly similar (thus interchangeable) so that any
ordering to be unimportant, there must exist an earlier instance of r will not block or be blocked by transac-
write event whose write value is similar to the write tion instances which may update xi.
value of w2 under the similarity bound. If this is the If no transaction updating xi misses its deadline,
case, as is shown in Figure 1, then it does not matter then no read event e, can read from a conflicting
which write value the read event r reads. The same write event which occurs more than 2pi ';f ago. Let
argument applies to the case where el and e2 are a this oldest write event be called writeold of er. For
read event and a write event, respectively, ease of argument, we assume without loss of general-

114

ity that the initial database state is determined by a schedule of any schedule r that satisfies all transac-
fictitious set of write events so that an oldest write tion deadlines. According to the definition of "derived
event always exists. On the other hand, a transaction schedule", 7r and it' must satisfy the following two re-
instance which overlaps with the transaction instance quirements: (1) all write events read by the same read
issuing er may issue a conflicting write event almost event in 7r and 7r' must be strongly similar in 7r. and
pTax later than the end of the period of the trans- (2) the last write events on every data object in 7r and
action instance issuing e,. Let this write event be ir' must be strongly similar in ir. In the following,
writeyO'g of e,. Obviously, this transaction instance we shall prove that there exists a sequence of event
of r (which issues er) should not block or be blocked swaps from ir to some serial schedule 7r' such that the
by any transaction instance because of read-write ac- requirements of a derived schedule are preserved at
cess conflict on z, assuming that the maximum tem- every step in the sequence.
poral distance of writeold and writeyo' g of er is no Since any conflicting write events of overlapping
more than the similarity bound sbi of xi. In order transaction instances in 7r are strongly similar (ac-
words, read-write access conflict of zi can be resolved cording to the Write vs Write condition), they can
if (pax + 2p,'"' + pr) < sbi. be swapped in any way without violating the second

When there is only one transaction updating zi, requirement of a derived schedule. Likewise, a con-
then pTa = pin, 0 (In the last case, further opti- flicting read event and a conflicting write event of two
mization is possible.) overlapped executing transaction instances in ir can be

swapped in any way without violating the first require-

We claim that, if a transaction set satisfies the Read ment of a derived schedule, because they are "strongly

vs Write and Write vs Write conditions, then these similar" according to the Read vs Write condition. In

transactions can be scheduled independently as if they particular, instances of all write events on the same
do not share data (with the usual assumption that data object that occur in any interval shorter than the

individual read and write events are atomic). Formal similarity bound can be swapped in a (untimed) sched-

justification of this claim is stated in Theorem 2 below. ule without violating consistency requirements. Thus,
Suppose two schedules 7r and 7r' have the same event swapping such write events will not violate the first

set E, A and A# are respectively a strong similarity requirement of a derived schedule. Therefore, conflict-

relation and a regular similarity relation for both ir ing events of overlapping transaction instances can be

and 7r'. We say that 7r' is a derived schedule of r if swapped in any order. Since non-conflicting events can

for any read event that appears in it and 7r', the two also be swapped in any order, events of overlapping

corresponding write events in i" and ir' read by the transaction instances can be swapped in any order.

read event are strongly similar in ir, and the last write In other words, overlapping transaction instances can

events which update the same data object in 7r and ir' be serialized in any order. Also, transaction instances

are strongly similar in 7r. which are not overlapped in 7r are already serialized.
Therefore, ir can be serialized by swapping events of

Theorem 1 /5, 7] Suppose two schedules r and 7r' overlapping transaction instances in any order. 0

have the same event set E, and A, A# are, respec- 3.3 Extensions
tively, a strong similarity relation and a regular sim-
ilarity relation for both 7r and 7r'. If 7r' is a derived Since different transactions may have different pre-
schedule of 7r, then ir and 7r' are view-similar under cision requirements for a data object, the Read vs
A#, i.e., ?r and 7r' transform similar states (under A) Write and Write vs Write conditions can be weakened.
into similar states (under A#). Suppose sb is the similarity bound of a data object xi

Notice that view-similarity is an extension of view with respect to a transaction r'. The Read vs Write
equivalence [5, 10]. A schedule is view A-serializable condition can be weaken to: (pnar + 2pmin +pi) < sb
if it is view similar to a serial schedule. if the period of 7- is p'. The Write vs Write condition

can be weakened to: (prax + pl:t) < sb.
Theorem 2 If a transaction set satisfies both the Finally, we consider the situation where some trans-
Read vs Write and Write vs Write conditions, then actions satisfy the Read vs Write and Write vs Write
any schedule that satisfies all transaction deadlines is conditions, but others do not. In this case, the trans-
view A-serializable. action system cannot be scheduled "fully" indepen-

Proof. The proof follows directly from Theorem I dently. A simple variation of Similarity Stack Protocol
if there exists a serial schedule ir' which is a derived (SSP) [6] can be made to take care of this situation,

115

as follows. ation," Proceeding of the 14th VLDB Conference,
As in SSP, transactions are partitioned into inter- Los Angeles, CA 1988, pp. 1-12.

active sets such that no two transactions in different
interactive sets may share any data object. If all trans- [21 T.P. Baker, "A Stack-Based Resource Allocation
actions in an interactive set satisfy the Read vs Write Policy for Real Time Processes," IEEE lth Real-
and Write vs Write conditions, the recency bound of Time Systems Symposium, December 4-7, 1990.
the interactive set can be set to oo such that transac- [3] S. B. Davidson and A. Watters, "Partial Compu-
tions in the interactive set can be scheduled indepen- tation in Real-Time Database Systems," The 5th
dently of one another. Here, the recency bound of an Workshop on Real-time Software and Operating
interactive set limits the length of any interval spanned Systems, May 1988, pp. 117-121.
by overlapping transaction instances in the set. If any
transaction in an interactive set fails any one of the [4] Marc H. Graham, "How to Get Serializability for
conditions, the recency bound of the interactive set is Real-Time Transactions without Having to Pay
calculated as defined in [6]. The correctness of this for It," IEEE 14th Real-Time Systems Sympo-
approach can be justified by an argument similar to sium, December 1993.
the last section. [5] Tei-Wei Kuo and Aloysius K. Mok, "Application

Semantics and Concurrency Control of Real-Time
Data-Intensive Applications", IEEE 13th Real-

4 Conclusion and Future Research Time Systems Symposium, 1992.

In [4], Graham proposes several conditions which [6] Tei-Wei Kuo and Aloysius K. Mok, "SSP: a
are sufficient to guarantee that a transaction system Semantics-Based Protocol for Real-Time Data
will run serializably without any extra effort having Access," IEEE 14th Real-Time Systems Sympo-
to be taken. Systems satisfying these conditions are sium, December 1993.
said to achieve serializability for free. The conditionsconsidered by Graham are determined by a syntac- [7] Tei-Wei Kuo, "Real-Time Database - Seman-

consderd byGraam ae dtermnedby asynac-tics and Resource Scheduling," Ph.D. disserta-
tic check on the transaction programs, and are in- tics anivesoce Sche uin, Ph .
dependent of the semantics of data. In this paper,
we take a semantic approach and propose a sufficient [8] C.L. Liu and J.W. Layland, "Scheduling Algo-
condition for achieving data synchronization for free rithms for Multiprogramming in a hard real-time
which is based on the concept of data similarity [5]. environment," Journal of the ACM, Vol. 20 No.
Real-time transactions satisfying this condition can 1, January 1973, pp. 46-61.
be scheduled correctly by any process scheduling dis-
cipline that is designed for the independent processes [9] Kwei-Jay Lin, Swami Natarajan, and Jane W.-S.
model [8] (e.g., RMS, EDF) where no locking of data is Liu, "Imprecise Results: Utilizing Partial Com-
assumed. With our approach, the usually high utiliza- putations in Real-Time Systems," IEEE 8th Real-
tion factor that can be achieved by these scheduling Time Systems Symposium, December 1987, pp.
disciplines is also attainable for transactions satisfying 210-217.
our condition.

We believe that there are many interesting research [10] C. Papadimitriou, "The Theory of Database
issues concerning the concept of similarity. To gain Concurrency Control," Computer Science Press,1986.
experience, it is important to investigate how to con-
struct similarity relations systematically from appli- [11] L. Sha, R. Rajkumar, and J.P. Lehoczky, "Prior-
cation specifications. A toolset which facilitates rea- ity Inheritance Protocols : An Approach to Real-
soning about similarity relations for typical real-time Time Synchronization," Technical Report CMU-
applications should be very useful. CS-87-181, Dept. of Computer Science, CMU,

November, 1987. IEEE Transactions on Comput-
ers, Vol. 39, No. 9, September 1990.

References

[11 R. Abbott and H. Garcia-Molina, "Scheduling
Real-Time Transactions: A Performance Evalu-

116

Index of Auathors

Agrawal. Gopal............................. 49 Malcom, Nicholas........................... 49
Audsley, N.C 23 Mehra, Ashish.............................. 107
Baker, T.P..................................... 12 Mercer, Cliff 79
Bettati, Riccardo 18 Miles, Daniel M.............................. 70
Borriello, Gaetano 70 Min, Sang Lyul 59
Bradley, Steven.............................. 44 Mok, Aloysius K........................... 112
Brown, Christopher M 91 Mostert, Sias 34
Burchard, Almut............................ 28 Mueller, Frank 12
Burns, A 23 Oh, Ymngfeng 28
Chen, Biao 49 Oikawa, Shuichi 7
Choi, Jin-Young............................. 63 Park, Chang Yun............................ 59
Davis, R-..................................... 23 Rajkumar, Ragunathan 79
Dolter, James 107 Ramamritham, Krithi...................... 96
Doyle, Larry 74 Rexford, Jennifer........................... 107
Etzey, Jon..................................... 74 Rhee, Byeong-Do............................ 59
Gopinath, Prabha........................... 54 Robson, Adrian.............................. 44
Gupta, Rajiv 54 Rustagi, Viresh 12
Henderson, William 44 Sakamura, Ken................................ 2
Huang, Ye 39 Shin, Heonshik 59
Hughes, Michael............................ 39 Shu, Lih Chyun 102
Jahanian, Famrn 107 Son, Sang H 28
Jeffay, Kevin 86 Stankovic, J.A................................ 96
Kamat, Sanjay 49 Sun, Jun....................................... 18
Kang, Inhye.................................. 63 Takada, Hiroaki 2
Kendall, David.............................. 44 Tokuda, Hideyuki............................ 7
Kim, Chong Sang........................... 59 Wellings, A 23
Kumnar, Amit 49 Wisniewski, Robert W..................... 91
Kuo, Tei-Wei 112 Young, Michal.............................. 102
Lee, Insup.................................... 63 Z.elenka,. Jim 79
Liebeherr, Jorg 28 Zhao, Wei 49
Lim, Sung-Soo 59 Zlokapa, Goran.............................. 96
Liu, Jane W.-S, 18

117

IEEE Computer Society Press IEEE Computer Society

Press Activities Board
Vice President: Ronald G. Hoelzeman, University of Pittaburgh IEEE Computer Society Press Publications

Mario R. Barbacci, Carnegie Mellon University
Jon T. Butler, Naval Postgraduate School

J.T. Cain, University of Pittsburgh Monograph@: A monograph is an authored book consisting of 100-
Bill D. Carroll, University of Texas percent original material.

Doris L. Carver, Louisiana State University Tutorials: A tutorial is a collection of original materials prepared
James J. Farrell III, VLSI Technology Inc. by the editors and reprints of the best articles published in a subject

Lansing Hatfield, Lawrence Livermore National Laboratory
Gene F. Hoffnagle, IBM Corporation area. Tutorials must contain at least five percent oforiginal material

Barry W. Johnson, University of Virginia (although we recommend 15 to 20 percent of original material).
Duncan H. Lawrie, University of Illinois Reprint collections: A reprint collection contains reprints (divided

Michael C. Muider, University of S.W. Louisiana into sections) with a preface, table of contents, and section introduc-
Yale N. Patt, University of Michigan tions discussing the reprints and why they were selected. Collections

Murali R. Varanasi, University of South Florida
Ben Wah, University of Illinois contain less than five percent of original material.

Ronald Waxman, University of Virginia Technology series: Each technology series is a brief reprint
collection - approximately 126-136 pages and containing 12 to 13

Editorial Board papers, each paper focusing on a subset of a specific discipline, such
Editor-in-Chief: Jon T. Butler, Naval Postgraduate School as networks, architecture, software, or robotics.

Assoc. EIC/Acquisitione: Pradip K. Srimani, Colorado State University Submission of proposals: For guidelines on preparing CS Press
Dharma P. Agrawal, North Carolina State University books, write the Managing Editor, IEEE Computer Society Press,
Oscar N. Garcia, The George Washington University PO Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA

Uma G. Gupta, University of Central Florida
A.R. Hurson, Pennsylvania State University 90720-1264, or telephone (714) 821-8380.
Viay X Jain, University of South Florida

Yutaka Kanayama, Naval Postgraduate School Purpose
Frederick E. Petry, Tulane University

Dhiraj K. Pradhan, Texas A&M University
Sudha Ram, University of Arizona The IEEE Computer Society advances the theory and practice of

David Rine, George Mason University computer science and engineering, promotes the exchange of tech-
A.R.K Sastry, Rockwell International Science Center nical information among 100,000 m, inbers worldwide, and provides

Abhijit Sengupta, University of South Carolina
Ajit Singh, Siemens Corporate Research a wide range of services to members and nonmembers.
Mukesh Singhal, Ohio State University

Ronald D. Williams, University of Virginia Membership

Press Staff All members receive the acclaimed monthly magazine Computer,
T. Michael Elliott, Executive Director discounts, and opportunities to serve (all activities are led by volunteer

True Seaborn, Publisher members). Membership is open to all IEEE members, affiliate society
Catherine Harris, Managing Editor members, and others seriously interested in the computer field.

Mary E. Kavanaugh, Production Editor
Lisa O'Conner, Production Editor

Regina Spencer Sipple, Production Editor Publications and Activities
Penny Storms, Production Editor
Edna Straub, Production Editor

Robert Werner, Production Editor Computer magazine: An authoritative, easy-to-read magazine
Perri Cline, Electronic Publishing Manager containing tutorials and in-depth articles on topics across the com-
Frieda Koester, Marketing/Sales Manager puter field, plus news, conference reports, book reviews, calendars,

Thomas Fink, Advertising/Promotions Manager calls for papers, interviews, and new products.
Periodicals: The society publishes six magazines and five re-

Offices of the IEEE Computer Society search transactions. For more details, refer to our membership
Headquarters Ofce application or request information as noted above.

1730 Massachusetts Avenue, N.W.
Washington, DC 20036-1903 Conference proceedings, tutorial texts, and standards docu-

Phone: (202) 371-0101 - Fax: (202) 728-9614 ments: The IEEE Computer Society Press publishes more than 100
Publications Office titles every year.

P.O. Box 3014 Standards working groups: Over 100 of these groups produce
10662 Los Vaqueros Circle

Los Alamitos, CA 90720-1264 IEEE standards used throughout the industrial world.
Membership and General Information: (714) 821-8380 Technical committees: Over 30 TCs publish newsletters, pro-

Publication Orders: (800) 272-6657 - Fax: (714) 821-4010 vide interaction with peers in specialty areas, and directly influence
European Office

13, avenue de l'Aquilon standards, conferences, and education.
B-1200 Brussels, BELGIUM Conferences/Education: The society holds about 100 confer-

Phone: 32-2-770-21-98 - Fax: 32-3-770-8-05 ences each year and sponsors many educational activities, including
Asian Ofn computing science accreditation.Ooshinm Building

2-19-1 Minami.Aoyama, Minato-ku Chapters: Regular and student chapters worldwide provide the
Tokyo 107, JAPAN opportunity to interact with colleagues, hear technical experts, and

Phone: 81-3-406-3118 -Fax: 81-4-408-3 serve the local professional community.

