Proceedings ()

DTIC

ELFCTE
JuL 1 81984

SEATINS
Real-Time Operating
Systems and Software

Seattle, Washington May 18-19, 1994

This document has bee ed
for lease and sal
d'utnb 1s unlimi

Sponsored by -

IEEE Computer Society Technical Committee on ime System

@ IEEE Computer Society Press 0 The Institute of Electrical and Electronics Engineers, Inc.

Proceedings

RTOSS "94

ailabilly Codes

94 7 19 07

“

Proceedings

11th IEEE Workshop on
Real-Time Operating
Systems and Software

RTOSS ’94

May 18 - 19, 1994
Seattle, Washington

Sponsored by
The IEEE Computer Society Technical Committee on
Real-Time Systems

D

IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors’ opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number 5710-02
Library of Congress Number 93-81372
IEEE Catalog Number 94TH0639-5
ISBN 0-8186-5710-3 (paper)
ISBN 0-8186-5711-1 (microfiche)

Additional copies may be ordered from:

IEEE Computer Society Press IEEE Service Center IEEE Computer Society 1EEE Computer Society
Customer Service Center 445 Hoes Lane 13, Avenue de I’Aquilon Ooshima Building
10662 Los Vaqueros Circle P.O. Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
P.O. Box 3014 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1264 Tel: +1-908-981-1393 Tel: +32-2-770-2198 JAPAN

Tel: +1-714-821-8380 Fax: +1-908-981-9667 Fax: +32-2-770-8505 Tel: +81-3-3408-3118
Fax: +1-714-821-4641 Fax: +81-3-3408-2553

Email: cs.books@computer.org

Editorial production by Bob Werner
Cover art design and production by Michael Nomura
Printed in the United States of America by Braun-Brumfield, Inc.

0 The Institute of Electrical and Electronics Engineers, Inc.

Confents

Chairs’ Message vii
Program Committee viii

Invited Talk: Nancy Leveson, University of Washington
Software Safety

Session I: Operating Systems I
Chair: Karsten Schwan, Georgia Tech.

Predictable Spin Lock Algorithms with Preemption 2
Hiroaki Takada and Ken Sakamura

User-Level Real-Time Threads 7
Shuichi Oikawa and Hideyuki Tokuda

Experience with a Prototype of the POSIX “Minimal Realtime System Profile” 12

T.P. Baker, Frank Mueller, and Viresh Rustagi

Session II: Scheduling I
Chair: Ted Baker, Florida State

An End-to-End Approach to Schedule Tasks with Shared Resources in
Multiprocessor Systems 18
Jun Sun, Riccardo Bettati, and Jane W.-S. Liu
Appropriate Mechanisms for the Support of Optional Processing in Hard Real-Time Systems23
N.C. Audsley, R.I. Davis, A. Burns, and A.]. Wellings
A Linear-Time Online Task Assignment Scheme for Multiprocessor Systems 28
Almut Burchard, Yingfeng Oh, Jérg Liebeherr, and Sang H. Son

Session II1: General
Chair: Mike Jones, Microsoft

Constructing a Heterogeneous Real-Time System 34
Sias Mostert

Using SDL in Embedded Systems Design: A Tool for Generating Real-Time OS pSOS-Based

Embedded Systems Applications Software 39

Ye Huang and Michael Hughes

Practical Formal Development of Real-Time Systems 44
Steven Bradley, William Henderson, David Kendall, and Adrian Robson

Real-Time Communication in FDDI-Based Reconfigurable Networks 49
Wei Zhao, Amit Kumar, Gopal Agrawal, Sanjay Kamat,
Nicholas Malcom, and Biao Chen

Panel: Real-Time Education
Chair: Wei Zhao, Texas A & M

Session I'V: Timing Analysis
Chair: Stuart Faulk, SPC

Correlation Analysis Techniques for Refining Execution Time Estimates of
Real-Time Applications

Session V: Scheduling 11
Chair: Hide Tokuda, CMU

Larry Doyle and Jon Elzey

Panel: Real-Time Bench Marks

Chair: Keith Marzullo, UCSD

Kevin Jeffay

Farnam Jahanian

................. 54
Rajiv Gupta and Prabha Gopinath
Issues of Advanced Architectural Features in the Design of a Timing Tool 59
Byung-Do Rhee, Sung-Soo Lim, Sang Lyul Min, Chang Yun Park,
Heonshik Shin, and Chong Sang Kim
Timing Analysis of Superscalar Processor Programs Using ACSR 63
Jin-Young Choi, Insup Lee, and Inhye Kang
Task Scheduling for Real-Time Multi-Processor Simulations 70
Gaetano Borriello and Daniel M. Miles
Successful Use of Rate Monotonic Theory on a Formidable Real Time System 74
Temporal Protection in Real-Time Operating Systems 79
Cliff Mercer, Ragunathan Rajkumar, and Jim Zelenka
Chair: Karsten Schwan, Georgia Tech
Session VI: Operating Systems II
On Latency Management in Time-Shared Operating Systems 86
An Argument for a Runtime Layer in SPARTA Design 91
Robert W. Wisniewski and Christopher M. Brown
Real-Time Platforms and Environments for Time Constrained Flexible Manufacturing............... 96
J.A. Stankovic, Krithi Ramamritham, and Goran Zlokapa
Session VII: Concurrency Control
Chair: Vic Wolfe, U. Rhode Island
A Mixed Locking/Abort Protocol for Hard Real-Time Systems 102
LihChyun Shu and Michal Young
Window-Consistent Replication for Real-Time Applications 107
Jennifer Rexford, Ashish Mehra, James Dolter, and
Using Data Similarity to Achieve Synchronization for Free 112
Tei-Wei Kuo and Aloysius K. Mok
Panel: If Scheduling Is So Important, Why Aren’t Folks Beating a Path to Our Door?
Chair: Kevin Jeffay, University of North Carolina
117

Author Index

vi

Chairs’ Message

The IEEE Workshop on Real-Time Operating Systems and Software is a forum that
covers recent advances in real-time computing — a field that is becoming an essential
part of computer science and engineering. It brings together practitioners and
researchers from academia, industry, and government, to explore the best current ideas
on real-time software and operating systems, and to evaluate the maturity and
directions of real-time system technology. As the demand for the functionalities and
reliabilities of real-time systems continue to grow, our intellectual and engineering
abilities are being challenged to come up with practical solutions to the problems faced
in design and development of complex real-time systems.

The interest in this important topic is confirmed by the high number of quality
submissions. Following the tradition of previous RTOSS workshops, parallel sessions
are avoided in order to give participants the opportunity to be involved in interactions
with speakers and panelists, and to exchange opinions with all other participants. As a
consequence, many good position papers had to be rejected.

The technical program covers a wide range of issues, such as scheduling, operating
systems, communications, timing analysis, system design, concurrency control, and
formal methods. Besides the various sessions, the program includes three panel sessions
to address important issues on real-time programming languages, education, and real-
time scheduling. In addition, Nancy Leveson from the University of Washington will
deliver an invited talk on software safety.

Many people worked hard to make this year’s RTOSS workshop a success. The
Program Committee members carefully reviewed and discussed every submitted paper,
and made the difficult decisions on which papers to accept. We also would like to thank
the authors of all the submitted papers. Special thanks go to Alicen Smith for managing
the administrative activities, and Bob Werner of the IEEE Computer Society for the
publication of this proceedings. Finally, we are grateful to the IEEE Computer Society
Technical Committee on Real-Time Systems, the Office of Naval Research, and the
Departments of Computer Science at the University of Virginia and the University of
Washington.

Welcome to Seattle!
Sang H. Son, General Chair Alan Shaw, Program Chair
University of Virginia University of Washington

vii

Program Committee

Eleventh IEEE Workshop on
Real-Time Operating Systems and Software

General Chair

Sang H. Son
Department of Computer Science
University of Virginia
Charlottesville, VA 22903 USA
phone: (804) 982-2205
fax: (804) 982-2214
son@virginia.edu

Program Chair

Alan C. Shaw
Department of Computer Science and Engineering FR-35
University of Washington
Seattle, WA 98195 USA
phone: (206) 543-9298
fax: (206) 543-2969
shaw@cs.washington.edu

Program Committee

Ted Baker, Florida State University
Stuart Faulk, Software Productivity Consortium
Mike Jones, Microsoft Corporation
Lugi, U.S. Naval Postgraduate School
Keith Marzullo, UC San Diego
Karsten Schwan, Georgia Tech
Hideyuki Tokuda, Carnegie Mellon University
Wei Zhao, Texas A&M University

viii

Session I:
Operating Systems 1

Chair: Karsten Schwan
Georgia Tech.

Predictable Spin Lock Algorithms with Preemption

Hiroaki Takada and Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

Both predictable interprocessor synchronization and
Jast interrupt response are required for real-time systems
constructed using asymmetric shared-memory multiproces-
sors. This paper points out the problem that conventional
spin lock algorithms cannot satisfy both requirements at
the same time. To solve this problem, we have proposed
an algorithm which is an extension of queueing spin locks
modified to be preemptable for servicing interrupts [1]. In
this paper, we propose an improved ulgorithm that mini-
mizes the recovering overhead from an interrupt service.
We also demonstrate that the proposed algorithms have
required properties through performance measurement.

1 Introduction

In many applications of high performance real-time
systems, alarge number of external devices such as sensors,
actuators, and network controllers are connected to asystem
and the system is required to respond to the external
events from the devices within predefined and usually
short time-bounds. To meet this requirement, asymmetric
multiprocessors in which each device is handled by a fixed
processor are often adopted.

In order to realize real-time systems using shared-
memory multiprocessors, predictable interprocessor syn-
chronization mechanisms are of primary importance. In
addition to adopting a real-time scheduling algorithm with
resource constraints or a real-time synchronization proto-
col, the execution time of the underlying mutual exclusion
mechanism using spin locks must be bounded!.

In asymmetric shared-memory multiprocessors, each
processor is required to achieve fast and predictable re-
sponse to interrupt requests, because external events are
notified to each processor in the form of interrupts. How-
ever, each processor cannot respond to external interrupts
in short latency with conventional bounded spin lock algo-
rithms.

To solve this problem, we have proposed an algorithm
which is an extension of queueing spin locks modified to

1 We assume that the access time of the shared bus (or interconnection
network) is bounded in this paper.

0-8186-5710-3/94 $3.00 © 1994 IEEE

be preemptable for servicing interrupts [1]. With the algo-
rithm, an upper bound on the time to acquire and release an
interprocessor lock can be given when no interrupt request
occurs, and fast response to interrupt requests is achieved.
However, the algorithm has a shortcoming that a processor
possibly has to re-execute the lock acquiring routine from
the beginning after it services an interrupt request. In
schedulability analysis, this re-execution overhead must be
added to the interrupt service time.

In this paper, we propose an improved algorithm that
minimizes this overhead. We also demonstrate that the
proposed algorithms have required properties through per-
formance measurement.

2 Spin locks and interrupt latency

In this paper, we assume that atomic read-modify-
write operations on a single word of shared memory (e.g.
test.and_set, fetch_and_store (swap), fetch_and.add, and
compare_and_swap) are supported in hardware.

In order to bound the time until a processor acquires
an interprocessor lock, the duration that each processor
holds the lock must be bounded as well as the number of
contending processors that the processor must wait for. The
latter condition can be met with ticket locks or queueing
locks {2], with which the turn that a processor acquires a
lock is determined when it begins waiting for the lock. To
satisfy the former condition, the relationship with interrupt
services must be considered.

In asymmetric multiprocessor systems, interrupt ser-
vices for external devices are requested for each processor.
When multiple devices are connected to a processor, inter-
rupt requests from them are usually raised independently
and the maximum time to service all of the requests be-
comes unbounded or very long. Consequently, in order
to give a practical bound on the duration that a processor
holds a lock, interrupt services should be inhibited for that
duration.

On the other hand, in order to realize a system with
fast response to external events, each processor must be
able to service external interrupts with short latency time.
Particularly, when the scalability of the system is an impor-

tant issue, the worst-case interrupt latency should be given
independently of the number of processors in the system.

Here a problem arises in deciding whether interrupts
should be disabled first or an interprocessor lock should
be acquired first. When acquiring an interprocessor lock
precedes disabling interrupts, interrupts may be serviced
while the processor holds the lock, and the condition that
interrupt services should be inhibited while a processor
holds a lock is not satisfied. If acquiring a lock follows
disabling interrupts, on the other hand, the interrupt mask
time includes the time to acquire the lock and its upper
bound heavily depends on the number of processors.

One method to solve this problem is the following. The
processor first disables interrupts and tries to acquire the
lock. If it fails to acquire the lock, the processor probes
interrupt requests before it retries to acquire the lock. When
interrupt requests are detected, it suspends trying to acquire
the lock, enables interrupts, and services them.

Test-and-cet locks can be extended easily with this
method. Ticket locks and queueing locks, on the other
hand, cannot be extended similarly.

3 Queueing locks with preemption

In all spin lock algorithms that can give an upper
bound on the time until a processor acquires a lock, a
processor modifies some shared variable and reserves its
turn to acquire the lock when it begins waiting for the
lock. When its turn comes, the lock is passed to the
processor by another. If the processor simply branches to
an interrupt handler while waiting for the lock, it cannot
begin to execute the critical section immediately after the
lock is passed to the processor, and makes the contending
processors wait wastefully until the interrupt service is
finished.

Consequently, when a processor begins to service in-
terrupts while waiting for a lock, it must inform others
that it is servicing interrupts and should not be passed the
lock. The processor trying to release the lock checks if
the succeeding processor is servicing interrupts. If the
succeeding one is found to be servicing interrupts, its turn
to acquire the lock is canceled or deferred, and the lock is
passed to the next in line.

Original algorithm

We have applied the above scheme to the MCS lock,
a list-based queueing lock aigorithm [2], and proposed a
queueing lock algorithm with preemption [1]. Some other
spin lock algorithms can be extended similarly. Recently,
R. W. Wisniewski et al. have proposed a similar algo-
rithm for improving the average performance of muitipro-
grammed (non-real-time) systems [3]. Craig’s algorithm
can also support the same preemption scheme [4].

In the aigorithm, if the processor trying to release
the lock (Pp) finds that the succeeding processor (P)
is servicing interrupts, Py denueues P; from the waiting

queue and passes the lock 10 a successor of P;. When
only P, is waiting for the iock, P, makes the waiting
queue empty. P, informs P that P, is dequeued using a
shared variable. Wien Py finishes the interrupt service, it
checks whether it has been dequeued during the interrupt
service or not. If it has been dequeued, it re-executes the
lock acquiring routine from the beginning. Otherwise, it
resumes waiting for the lock.

When a processor is dequeued and re-executes the lock-
acquiring routine, the waiting time after the processor first
links itself to the queue until it branches to the interrupt
handler is wasted. When the schedulability of the system
is analyzed, this re-execution overhead should be added to
the interrupt service time. Below, we present an improved
algorithm which is devised to reduce this overhead.

Improved algorithm

The re-execution overhead can be reduced with the
following method. When the processor releasing the lock
{Pe) finds that the succeeding processor (Py) is servicing
interrupts, Py leaves P; in the waiting queue instead of
dequeueing it. P removes the processor to which to pass
the lock from the queue using the method adopted in the
prioritized queueing spin lock appeared in {5]. When P;
finishes interrupt services, it simply resumes waiting for the
lockin its original position. Therefore, the overhead which
must be added to the interrupt service time in schedulability
analysis is minimized.

A difficulty occurs when all processors in the waiting
queue are servicing interrupts. To handle this situation,
a global lock flag is introduced. If the processor trying
to release the lock finds that all processors in the queue
are servicing interrupts, it sets the global lock flag. A
processor returning from interrupt services tries to get the
global lock with the same method as with test-and-set
locks. Ifit succeeds getting the lock, it removes itself from
the waiting queue. As the processor needs to know the
top processor in the queue to remove itself, the processor
releasing the global lock must pass the information in some
shared variable. Itis also necessary for a processor to check
the global lock flag once, after it links itself at the end of
the queue, because it is possible that all the processors in
the queue are servicing interrupts and the giobal lock is set.

Pseudo-code for the improved algorithm appears in
Fig. 1 and 2. In these figures, the keyword shared
indicates that only one instance of the variable is allocated
and shared in the system. Other variables are allocated
for each processor and located in its local memory. The
right hand side of the and operator is assumed to be
evaluated only if its left hand side is true. Fetch_and_store
reads the memory addressed by the first parameter, returns
the contents of the memory as its value, and atomically
writes the second parameter to the memory. CAS, the
abbreviation of compare_and_swap, first reads the memory
pointed to by the first parameter and compares its contents

type qnode = record
nexy, prev: peinter to gnode;
locked: (Released, Locked, Preempted, Dequeueing)
end;
type lock = record
last: pointer to gnode;
glock: pointer to qnode

/1 global shared data.
shared var L: lock;
// L.)ast and L.glock are initialized to NIL.

procedure dequeue(entry, pred, top: pointer to quode)
var succ: pointer to gnode;
succ = entry—next;
if succ = NIL then
pred—next :=NIL;
if CAS(&(L.1ast), entry, pred) then goto relcase end;
repeat succ := entry—next until succ # NIL
end;
pred—snext := succ;
succ—prev := pred;
release:
entry— next :=top;
entry—locked = Released
end;

Fig. 1: Improved algorithm (1)

with the second parameter. If they are equal, the function
writes the third parameter to the memory atomically and
returns true. Otherwise, it returns false.

In this pseudo-code, the glock field of L serves both
as the global lock flag and as the variable to pass the top
processor of the waiting queue. An exponential backoff
scheme is adopted to get the global lock in this code
to reduce the number of shared-bus . isactions. Two
constant parameters o and S shouls oe tuned for each
target hardware and application.

Though there are two non-local spins (marked with
#) in this pseudo-code, both of them continue during the
transient state afer another processor writes the pointer
to its queue node to L.last (successful execution of the
fetch_and_store operation marked with (1)) and until it
writes non-NIL value to the next field of its predecessor
(marked with (2)), and their effect is not significant.

We have adopted the MCS lock as the base algorithm
in this section. The FIFO version of Craig’s algorithm {4]
can be extended similarly.

4 Performance evaluation

The effectiveness of the two queueing spin lock algo-
rithms with preemption, the original one in [1] (called
QL/P1, in this section) and the improved one presented
in Fig. 1 and 2 (QL/P2), are examined through perfor-
mance evaluation. The performance of the algorithms is
compared with the MCS lock without inhibiting interrupts
(QL/ei), the MCS lock during interrupts inhibited (QL/di),

/ local data (allocated for each processor).
var [: gnode;

var pred, succ, top: peinter to gnode;
var interval, i: integer;

Lnext := NIL;
disable interrupts;

(© pred := fetch.and_store(&(L.last), &1);

if pred = NIL then goto acquired end;
// enqueue myself.

Lprev := pred;

Llocked := Locked;

@ pred—next = &I;

i=1; // check the global lock once.
interval ;= o0; 1/ never expires.
while (I.locked # Released) do
if interrupt_requested and
CAS(&(Llocked), Locked, Preempted) then
enable_interrupts;
// interrupt service.
disableinterrupts;
Llocked := Locked;
i=1;
interval :=
end;
i=i-1;
ifi =0 then
/ check the global lock and try to get if it is set.
top := L.glock;
if top # NIL and CAS(&(L.glock), top, NIL) then
if top # &I then dequeue(&l, Lprev, top) end;
goto acquired
end;
i := interval;
interval := interval x 8
end
end;
acquired:
/"

// critical section.

"

suce == Lneat;

if succ = NIL then
//try to make the queue empty.
if CAS(&(L.1ast), &I, NIL) then goto exit end;
repeat succ := L.next until succ # NiL

*nd;

1/ try to pass the lock to the successor.

if CAS(&(succ—locked), Locked, Released) then goto exit end;

top := succ;
repeat
pred := succ;
succ := pred—next;
if succ = NIL then
1/ set the global lock.
L.glock := top;
/I check if pred is really the last processor.
if L..}ast = pred then goto exit end;
// try to withdraw the global lock.
if ~CAS(&(L.glock), top, NIL) then goto exit end;
repeat succ := pred—next untll succ # NIL
end;
untll CAS(&(succ—locked), Locked, Dequeueing);
dequeue(succ, pred, top);
exit:
enable_interrupts;

Fig. 2: Improved algorithm (2)

for i := 1 to NoLoop do
@© acquireJockand disable_interrupts;
i
/ critical section.
"
release Jock;
@ enable_interrupts;
random delay
end;

Fig. 3: Measurement program skeleton

and the test-and-set lock with preemption with constant
delay (T&S/P)2.

Evaluation environment

We bave used a shared-bus multiprocessor system for
the evaluation. The shared bus is based on the VME-
bus specification, and each processor node consists of a
20 MHz GMICRO/200 microprocessor, which is rated at
approximately 10 MIPS, 1 MB of local memory, and some
I/O interfaces. The local memory can be accessed from
other processors through the shared bus. No cache memory
is equipped. The program code and the data area for each
processor are placed in the local memory of the processor.
Global shared data (e.g. L in Fig. 1) is placed in the local
memory of the master processor, which does not execute
spin locks.

The GMICRO/200 microprocessor supports the com-
pare_and_swap instruction but not fetch_and_store. In our
experiments, the fetch_and_store operation was emulated
using the compare_and_swap instruction and a retry loop.
As the VMEDbus has only four pairs of bus request/grant
lines, processors are classified into four classes by the bus
request line they use. The round-robin arbitration scheme
is adopted among classes and the static priority scheme is
applied among processors belonging to a same class.

Measurement method

Each processor executes the code presented in Fig. 3
while periodic interrupt requests are raised on the processor.
The execution time of a critical region (the region between

(@ and (9 in Fig. 3) is measured for each execution, and
its distributions when the processor services no interrupt
request during the region and when it services an interrupt
are collected. The interrupt latency is also measured for
each interrupt service and its distribution is obtained.

Inside the critical section, a processor accesses the
shared bus some number of times (for making the effect of
bus traffic explicit) and waits for a while using empty loops.
Without spin locks, the execution time of the critical region

1past studies show that a test-and-set lock has good scalability with
exponential backoff [2). However, because the lock acquisition time
varies widely with exponential backoff, it is inappropriate for real-time
systems. This conjecture was also confirmed through our experiments.

is about 40 us including some overhead for obtaining the
execution time of the region. In order to change timing
conditions, each processor waits for a random time before
it re-enters the critical region (random.delay in Fig. 3).
The average time of the random delay is about 40 pus.

Empty loops are alsu included in the interrupt handler
in addition to the routine for obtaining interrupt latency
time. The total execution time of the interrupt handler is
about 80 us. The period of interrupt requests is about 5 ms.
The exact length of the period is varied in 0-2% for each
processor.

Performance metric

In real-time systems, the effectiveness of algorithms
should not be evaluated with their average performance
but with their worst-case execution (or response) times.
However, in the case of spin lock algorithms, worst-case
times cannot be obtained through experiments because of
unavoidable non-determinism in multiprocessor systems.
Therefore, in place of worst-case times, we have adopted
p-reliable times, the time within which a processor finishes
executing a critical region (or responds to an interrupt
request) with probability p, as a performance metric. In the
following section, we show the evaluation results when p
is 0.999 (i.e. 99.9%).

Evaluation resulis

Fig. 4 presents the 99.9%-reliable execution time of
the critical region (when no interrupt is serviced on the
processor during the region) as the number of processors is
increased from one to eight. With QL/P1 and QL/P2, the
execution time of the critical region increases linearly with
the number of processors, and the algorithms are found to
be scalable. QL/ei exhibits poorer performance because
preceding processors service interrupt requests during the
critical region.

InFig. 5, the interrupt latency time is nearly independent
of the number of processors with QL/P1 and QL/P2. With
QL/di on the contrary, the interrupt latency becomes long
as the number of processors increases.

From these observations, it is demonstrated that QL/P1
and QL/P2 can give a practical upper bound on the time to
acquire and release an interprocessor lock while achieving
fast response to interrupt requests. The other algorithms
cannot satisfy these two requirements at the same time.

The overall performance of QL/P2 is a little worse than
QL/P1, because the number of shared-bus transactions
is large with QL/P2 and because doubly linked queue is
necessary. The advantage of QL/P2 appears in Fig. 6 which
presents the 99.9%-reliable exccution time of the critical
region when an interrupt is serviced during the region.
When the number of processors is large, the recovering
overhead from interrupt services is much smaller in QL/P2
than in QL/P1.

350
300
250

150
100 |
50

exec. time of critical region (micro sec.)

1 2 3 4 5 6 7 8
number of processors

Fig. 4: 99.9%-reliable exec. time of critical region

(when no interrupt is serviced)

e
200 1 Ol sei o
QL/di -
| T&SP -

150

100 |

e > .

50

interrupt latency (micro sec.)

[TETIREI NESOREEN . WEFRRIREY TP P S N ——

1 2 3 4 5 6 7 8
number of processors
Fig. 5: 99.9%-reliable interrupt latency

Finally, in order to examine the average performance of
the algorithms, we present the average execution time of
the critical region (when no interrupt is serviced during the
region) in Fig. 7.

5 Conclusion

Conventional spin lock algorithms cannot satisfy two
important requirements for real-time systems using asym-
metric shared-memory multiprocessors, predictable spin
locks and fast interrupt response, at the same time. In
this paper, we propose a improved spin lock algorithm
that can give an upper bound on the time to acquire and
release an interprocessor lock while realizing fast response
to interrupt requests. To evaluate their effectiveness, we
have measured their performance through experiments and
confirmed that the algorithms have the required properties.

We are cucrently designing a real-time kernel specifica-
tion called ITRON-MP and implementing it experimentally
{6]. It remains as a future work to adopt the algorithms in
the implementation and to evaluate the algorithms in real
applications.

500
450
400 1
350
300
250
200 t
150 |
100 L— R . . . R . A
1 2 3 4 5 6 7 8
number of processors

Fig. 6: 99.9%-reliable exec. time of critical region
(when an interrupt is serviced)

exec. time of critical region (micro sec.)

5 250 p——— v u v — —
3 QL1 ——
g QLP2 ——
-2 200 } QLsei - J
E QL/di —=—
'g T&SP —~—
g 10r w
3
b 100 o
]
-]
g S0t
3
<
g 0 L— R . . s N A
1 2 3 4 5 6 7 8
number of processors

Fig. 7: Average exec. time of critical region

References

[1] H. Takada and K. Sakamura, “A bounded spin lock algo-
rithm with preemption,” Tech. Rep. 93-2, Department of
Information Science, University of Tokyo, July 1993.

2] J.M. Mellor-Crummey and M. L. Scoti, “Algorithms for scal-
able synchronization on shared-memory multiprocessors,”
ACM Trans. on Computer Systems, vol. 9, pp. 21-65, Feb.
1991.

[3] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott,
“Scalable spin locks for multiprogrammed systems,” Tech.
Rep. TR454, Computer Science Department, University of
Rochester, Apr. 1993.

[4] T. S. Craig, “Queuing spin lock algorithms to support tim-
ing predictability,” in Proc. Real-Time Systems Symposium,
pp- 148157, Dec. 1993.

{5] E. P. Markatos, “Multiprocessor synchronization primitives
with priorities,” in Proc. of the IEEE Workshop on Real-Time
Operating Systems and Software, May 1991.

[6] H.Takada and K. Sakamura, “ITRON-MP: An adaptive real-

time kernel specification for shared-memory multiprocessor
systems,” IEEE Micro, vol. 11, pp. 24-27,78-85, Aug. 1991.

User-Level Real-Time Threads

Shuichi Oikawa
Faculty of Environmental Information
Keio University

Abstract

Continuous-media applications require more efficient and
Jflexible support from real-time threads than traditional
real-time systems. It includes functionalities such as the dy-
namic management of thread attributes and the support of
multiple thread models. In this paper, we will describe the
design and implementation of user-level real-time threads
on the RT-Mach micro kernel. Since they are implemented
at user-level, both of the fast management of thread at-
tributes and the support of multiple thread models are pos-
sible.

1 Introduction

Continuous-media applications require more efficient and
flexible support from real-time threads than traditional real-
time systems [4, 12, 13]. The “flexible support” includes
the following two functionalities:

o the dynamic management of thread attributes,
o the support of multiple thread models.

The dynamic management of thread attributes is necessary
because system resource utilization in workstations and
network environments is changing every minute. Timing
attributes, such as start time, deadline and period, are parts
of thread attributes. For example, if there are too many
threads for a system to satisfy their timing requirements,
some threads may be able to run more infrequently or with
shorter execution time. As another example, if network
traffic is crowded and an application cannot receive data at
the expected rate, threads of the application should change
their behavior to follow the rate of data received.

Ability to support multiple thread models is also im-
portant. Since there is no standard way to implement
continuous-media applications, programmers may be able
to choose one of the existing thread packages or may want
to create a2 new one. For instance, one programmer finds
it is useful to use a periodic thread to process continuous
data, while another programmer would like to use threads
which have their start time and deadline and to create a new
thread for each data chunk.

0-8186-5710-3/94 $3.00 © 1994 IEEE

e

Hideyuki Tokuda
School of Computer Science
Carnegie Mellon University

Our goal is to realize high performance user-level real-
time threads because only user-level real-time threads can
achieve the above functionalities. Since they are imple-
mented at user-level, both of the fast management of thread
attributes and the support of multiple thread models are
possible. The next section describes the previous work,
Section 3 discusses design issues of user-level real-time
threads, and Section 4 proposes a software architecture for
user-level real-time threads. Sec' =~ 5 describes the current
status with some performance fiy .es, and Section 6 gives
the conclusion.

2 Previous Work

Real-time threads have been developed as kernel enti-
ties. Existing real-time kernels, such as ARTS (10] and
RT-Mach [11], realize their real-time threads as kernel-
provided threads. Since threads are implemented in the
kernel, primitives like real-time synchronization and func-
tions to set thread attributes are also implemented in the
kernel. Thus, the thread operations cost so expensive that
the performance is sometimes unacceptable for dynamic
environments requiring the dynamic management of thread
attributes [13).!

First-class user-level threads were developed to solve
scheduling problems occurred in user-level threads envi-
ronments where an entire task is blocked when a user-level
thread is blocked in the kernel. Scheduler Activations [1]
and the first-class user-level threads of the Psyche operat-
ing system [7] provide the mechanisms to avoid the above
problem. Both of them are implemented on the parallel
computers to exploit the ability of parallelism of the under-
ling hardware. Thus, they have no functionality to manage
timing attributes of threads.

Split-level scheduling [4] provides user-level real-time
threads through the shared user/kernel structures with the

'In our previovs experience with ARTS [8), context switching in
the same address space costs 3usec for user-level threads and 26usec
for kernel-provided threads. Syachronization costs 9usec for user-level
threads and 46usec for kernel-provided threads. Since the dynamic man-
agement of thread attributes introduces niany operations in the same ad-
dress space (described in Section 4.3), this fzature is zeinl.

split kernel-level and user-level schedulers. This is im-
plemented on a uniprocessor, and shared memory is ex-
tensively used to pass information between a user-level
scheduler and the kernel. Each user-level thread has its
logical arrival time and deadline, and the threads are sched-
uled by the deadline/workahead scheduling policy based on
their timing attributes. Split-level scheduling proposes a
new mechanism for asynchronous communication to avoid
threads blocked in the kernel. Since the split-level schedul-
ing was developed to handle continuous-media efficiently,
its goal is similar to ours. However, it does not have a notion
of dynamic rebinding of timing attributes. The timing at-
tributes of threads is managed by the split kernel-level and
user-level schedulers cooperatively, while our user-level
real-time threads manage timing attributes of threads using
a timer which is a separate instance from a thread. This
feature increases the flexibility of user-level schedulers.

3 Design Issues

User-level real-time threads must be treated as first-class
user-level threads [1, 4, 7] since user-level real-time threads
need to be scheduled as correctly as kernel-provided
threads. In this section, we first describe the design de-
cisions to implement first-class user-level threads. Then,
several design issues are discussed.

3.1 First-Class User-Level Threads

Mechanisms proposed by previous implementations of
first-class user-level threads [1, 4, 7] were examined. Then,
the following mechanisms were chosen for implementing
our user-level real-time thread model.

Upcall: The kernel has to notify a user-level sched-
uler of events which were occurred in the kernel and af-
fect a scheduling decision. The kernel upcalls a user-level
scheduler, and the user-level scheduler processes events and
choose the next thread to run. This mechanism is used on
all implementations of first-class user-level threads while
they call it differently.

Shared kernel/user data structures: There are two dif-
ferent approaches to pass events to a user-level scheduler.
Shared kerncl/user data structures are used for first-class
user-level threads [7] and split-level scheduling {4]. Sched-
uler activations [1] upcall different entry points of a user-
level scheduler each of which is provided for the corre-
sponding type of events. We chose to use shared kernel/user
data structures since they can be used to pass information
of threads from user-level schedulers to the kernel, such as
priorities and timing attributes. It can also provide a simple
way 1o pass events asynchronously.

Creation of a new virtual processor: Scheduler activa-
tions [1] create a new virtual processor when the current one
is blocked in the kernel, but others do not do so. We chose to
create a new virtual processor. There are two main reasons
for this decision. One reason is that our platform, RT-Mach
[11), requires it. Virtual processors are implemented us-
ing kernel-provided threads. Since there are many places
where a thread structure is referenced in the kernel, it is
too hard to modify them to cope with a user-level thread.
Another reason is that the number of interactions be
a user-level scheduler and the kernel can be reduces
example, when a thread is unblocked in the kernel, .
event is notified to a user-level scheduler, If the user-level
scheduler decides to run the unblocked thread, it issues a
system primitive to resume it. We can avoid such a heavy
interaction if the current virtual processor is preserved and
a new one is used to upcall a user-level scheduler.

3.2 Dynamic Creation of Virtual Processors

The dynamic creation of a new virtual processor sometimes
takes a long time, and it can be a source of the unpredictabil-
ity. If there is an extra virtual processor which is not in
use, it can be used instead of the current one. Then, the
dynamic creation is not necessary. Therefore, when a user-
level scheduler is initializing its status, it asks the kernel
to create several kernel-provided threads. Those threads
are maintained in the kernel, and are used later as virtual
processors when a running virtual processor is blocked in
the kernel.

The number of kernel-provided threads created at initiai-
ization is fixed. If all of them are used and blocked in the
kernel, the kernel needs to create a new virtual processor
dynamicaily or just leaves it blocked. For hard real-time
applications, the behaviors are analyzed and the necessary
number of virtual processors is found. For soft real-time
applications, the dynamic management of the number of
virtual processors is necessary.

3.3 Priority Consistency

User-level real-time threads are managed and scheduled by
a user-level scheduler, while virtual processors are sched-
uled by the kernel-level scheduler. User-level real-time
threads and virtual processors have their own priority data.
Thus, they are managed independently. Since user-level
threads are multiplexed on a virtual processor, the prior-
ity of the current user-level thread must be reflected to
the priority of its virtual processor to schedule the virtual
processor correctly.

The problem which arises here is that the current pri-
ority which needs to be reflected to the virtual processor
changes independently of the kernel because uset-level

Task

Figure 1: Blocking Thread in the Kernel

threads switches at user-level. Therefore, a mechanism
which makes the priority data of a virtual processor up-

dated is necessary.

34 Timing Management

User-level real-time threads also have timing attributes such
as a start time, a deadline and so on. Usually, the tim-
ing management is done in the kernel using a clock de-
vice which interrupts the kernel at intervals of very short
period.2 Since user-level real-time threads are managed by
a user-level scheduler, a user-level scheduler needs to man-
age their timing attributes. This requires for a user-level
scheduler the close cooperation with the kernel.

A user-level scheduler needs to tell the kernel when it
would like to be notified. Since the dynamic management
of thread attribute requires fast rebinding of the timing
attribute, system primitives cost too much to do so. Thus,
a shared kernel/user data structure is used to share such
information. A user-level scheduler maintains timing data
in it, and the kernel checks it. If the time which a user-level
scheduler needs a notification comes, then the kernel sends
an event to it.

4 Software Architecture
In this section, we first describe how virtual processors are
used and interact with user-level real-time threads. Then,

mechanisms for user-level timers and the dynamic man-
agement of timing attributes are discussed.

4.1 Virtual Processors

There are the following three types of virtual processors:

210ms is a very common value for current workstations.

Figure 2: Unblocking Thread in the Kernel

e A current virtual processor is currently executing
user-level threads in an address space. Only this type
of virtual processors can run at user-level.

o A kernel virtual processor is attached to a specific
user-level thread, which is blocked in the kernel. It
executes only in the kernel because user-level threads
running at user-level must be multiplexed on the cur-
rent virtual processor,

o A reserved virtual processor is waiting to become a
current one. One of them is used when a current one
is blocked in the kernel.

‘When a user-level thread is blocked in the kernel, the
current virtual processor, which is executing the blocked
thread, becomes a kernel virtual processor. Then, one of
reserved virtual processors is taken from the list, and be-
comes the current virtual processor. Finally, the new cur-
rent virtual processor upcalls the user-level scheduler. (See
Figure 1.)

When a kernel virtual processor is unblocked, it is sched-
uled by the kernel-level scheduler independently of the cur-
rent virtual processor. When a kernel virtual processor is
about to exit the kernel, it passes two execution contexts to
the user-level scheduler. One is for the user-level thread on
the kernel virtual processor. Another is for the user-level
thread on the current virtual processor, which is preempted
by the kernel virtual processor. Then, the current virtual
processor is linked in the list of reserved virtual processors,
and the kernel virtual processor becomes the new current
virtual processor. Finally, the new current virtual processor
upcalls the user-level scheduler. (See Figure 2.)

4.1.1 Priority Update

To make the priority data of the current virtual processor
consistent with the priority of the current user-level thread,
itis updated in the following cases:

e when an interrupt is occurred,

e when the kernel-level scheduler is invoked,

e when a user-level thread waked up by a timer has a
higher priority than the current virtual processor.

At each interrupt, The priority data of the current user-
level thread is copied to the current virtual processor in the
current task. Then, the kernel checks if the current virtual
processor has the highest priority. If it doesn’t, the kernel
invokes the highest priority kernel-provided thread.

When the kernel-level scheduler is invoked, the priority
data of the current user-level thread is copied if the current
kernel-provided thread is a virtual processor. Then, we
can avoid the priority inconsistency if a user-level thread is
switched after an interrupt.

We discuss priority update which is necessary when a
user-level thread waked up by a timer in Section 4.2.2,

4.2 Timer

In RT-Mach, akernel-provided timer called RT-Mach Timer
[9] s already implemented in the kernel for kernel-provided
real-time threads. To use it for user-level real-time threads,
several modifications are necessary to interact with user-
level schedulers.

It is possible to use kernel-provided timers with a few
modifications if one timer is used for each single user-level
real-time thread as kernel-provided real-time threads. This
scheme, however, causes a lot of kernel interventions since
each operation on a timer is required to issue a system
primitive. Semantics of a timer is also limited since it
is implemented in the kernel. Then, it makes difficult to
achieve our goals.

In our architecture, a user-level scheduler employs a sin-
gle kernel-provided timer only for notification, and man-
ages user-level timers to decide what is necessary to do
when notified.

4.2.1 User-Level Timer

User-level timers are managed by a user-level scheduler.
A user-level timer provides a kernel-provided timer with
the time and the priority data. The time specifies when the
user-level scheduler would like to get a notification. The
priority data is used by the kernel to update the priority data
of the current virtual processor. A kernel-provided timer
uses the above data of user-level timers, then decides when
it notifles the user-level scheduler. Since data of user-level
timers is written by a user-level scheduler and read by a
kernel-provided timer, it needs to be placed in a shared
kernel/user data structure.

Decoupling user-level threads and timers makes it pos-
sible to support multiple thread models. The kernel just
notifies a user-level scheduler when it needs a notification.

10

This mechanism does not assume any model. Thus, user-
level schedulers can interpret and use notifications as they
wish.

422 Thread Wakeup by Timer

When a user-level thread which is waked up by a timer has
the highest priority, the current thread is preempted and the
waked up thread must be invoked. This is the same case as
when a user-level thread is unblocked in the kernel. Thus,
the kernel does the same operations on threads. If a waked
up thread does not have the highest priority, the kernel just
notifies the event to the user-level scheduler.

4.3 Dynamic Management of Timing Attribute

The dynamic management of thread timing attributes is
archived using deadline handlers and dynamic rebinding of
thread timing attributes {14].

A deadline handler is an independent thread which is
attached to a real-time thread. The deadline handler of a
real-time thread is invoked when the deadline of the real-
time thread is missed. In the deadline handler, it can resume
the real-time thread to continue the rest of work although
the deadline is missed, or it can abort the invocation if it is
meaningless to continue the work after the deadline.

When a system becomes overloaded and deadlines of
real-time threads start being missed, their deadline handiers
are invoked. In such case, they can rebind the timing
attributes of the threads dynamically to reduce the system
load. Dynamic rebinding of thread timing attributes resets
timing attributes of a real-time thread, such as a period and
a deadline, to new values. The new values become valid
from the next invocation.

The above operations are all processed at user-level.
Thus, user-level real-time threads can achieve much higher
performance than kernel-provided real-time threads since
kernel interventions are not involved. A deadline handler is
an example of mechanisms for the dynamic management.
Itis very easy to add new features to a user-level scheduler.

§ Current Status

We are currently implementing user-level real-time threads
on RT-Mach [11]. As our first implementation of user-level
thread packages, we decided to modify C-Threads package
[3]. Since our implementation is upper compatible with the
original C-Threads package, applications using C-Threads
can also benefit from high performance of first-class user-
level threads.

Table 1 shows the performance of signal/wait primitives

RTC-Threads C-Threads RT Threads
(user-level) (user-level) (kernel-provided)
25usec 38usec 170usec

Table 1: Signal/Wait Primitives

null function null system null system call
call call (trap) (via MIG)
0.8usec Susec T2usec

Table 2: Basic Operations Performance

of our real-time version of C-Threads (RTC-Threads),?
original C-Threads and kernel-provided real-time threads
(RT Threads). The programs used to measure the per-
formance implement a producer/consumer model that one
thread is a producer and another thread is a consumer. The
benchmarks were performed on a Gateway2000 4836DX2
66MHz system. Table 2 shows the performance of basic
operations for comparison.

6 Summary

The goals of our user-level real-time threads are the dy-
namic management of thread attributes and the support of
multiple thread modefs, We showed that the dynamic man-
agement of thread attributes can be achieved by realiziag
real-time threads at user-level. Introducing the user-level
timer mechanism also makes the support of multiple thread
models possible.

Our user-level real-time threads can also keeps com-
patibility with existing kernel-provided threads. They can
coexist in the same environment, and existing applications
still run without any modification.

The current real-time thread model is being imple-
mented, and more accurate and various performance mea-
surements will be completed.

Acknowledgments

We would like to thank members of Multimedia Platform
Project for their various comments. We are also grateful
to Prof. Tatsuo Nakajima and Mr. Takuro Kitayama for
providing us with helpful information of RT-Mach.

References

[1] TE. Anderson, B.N. Bershad, E.D. Lazowska, and HM.
Levy. Scheduler Activations: Effective Kernel Support for

3This version of RTC-Threads does not have real-time facilities yet.

11

the User-Level Management of Parallelism. In Proceed-
ings of the 13th Symposium on Operating System Principle,
October 1991.

P. Barton-Davis, D. McNamee, R. Vaswani, and E.D. La-
zowska. Adding Scheduler Activations to Mach 3.0. In
Proceedings of the USENIX Mach 3rd Symposium, April
1993.

E.C. Cooper and R.P. Draves. C Threads. Technical Report
CMU-CS-88-154, School of Computer Science, Carnegie
Mellon University, February 1988.

R. Govindan and D.P. Anderson. Scheduling and IPC Mech-
anisms for Continuous Media. In Proceedings of the 13th
Symposium on Operating System Principle, October 1991.

D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an
Application Program. In Proceedingsof the Usenix Summer
Conference, June 1990.

R.G. Hemrtwich. The Role of Performance, Scheduling, and
Resource Reservation in Multimedia System. In Proceed-
ings of International Workshop of Operating Systems of the
90s and Beyond, Lecture Notes in Computer Science 563,
Springer-Verlag, 1991.

B.D. Marsh, M.L. Scott, TJ. LeBlanc, and E.P. Markatos.
First-Class User-Level Threads. In Proceedings of the 13th
Symposium on Operating System Principle, October 1991,

S. Oikawa and H. Tokuda. User-Level Real-Time Threads:
An Approach towards High Performance Multimedia
Threads. In Proceedings of the 4th International Work-
shop on Network and Operating System Support for Digital
Audio and Video, November 1993.

5. Savage and H. Tokuda. RT-Mach Timers: Exporting
Time to the User. In Proceedings of the USENIX Mach 3rd
Symposium, April 1993,

H. Tokuda and C.W. Mercer. ARTS: A Distributed Real-
Time Kemel. ACM Operating Systems Review, Vol. 23, No.
3, 1989.

{11] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach:
Towards a Predictable Real-Time System. In Proceedings
of USENIX Mach Workshop, October 1990.

(12] H. Tokuda, Y. Tobe, S.T.-C. Chou, and J.M.F Moura. Con-
tinuous Media Communication with Dynamic QOS Control
Using ARTS with an FDDI Network. In Proceedings of
ACM SIGCOMM’92, August 1992.

(13] H. Tokuda and T. Kitayama. Dynamic QOS Contro} based
on Real-Time Threads. In Proceedings of the 4th Interna-
tional Workshop on Network and Operating System Support
Jor Digital Audio and Video, November 1993,

(14] H. Tokuda, S. Savage and C.W. Mercer. A Real-Time
Thread Model for Continuous M~dia Applications. In
Preparation.

f21

31

4]

151

[6)

7

(8]

91

(10

Experience with a Prototype of the POSIX
“Minimal Realtime System Profile”

T.P. Baker, Frank Mueller, Viresh Rustagi*
Department of Computer Science
Florida State University
Tallahassee, FL 32304-4019

Abstract

“This paper describes experience prototyping the
proposed 1EEE standard “minimal realtume system
profile”, whose primary component is support for real-
time threads. It provides some background, describes
the implementation, and reports preliminary perfor-
mance measurements.

1 Introduction

A thread is an independent sequential flow of
control. Threads differ from processes by sharing
a common virtual address space with other threads.
Threads are widely accepted as a computational build-
ing block for both uniprocessor and multiprocessor en-
vironments. In uniprocessor environments, the thread
model simplifies the programming of asynchronous op-
erations. In multiprocessor environments, threads may
also allow higher throughput, by utilizing inore than
one processor.

The idea of cheap concurrency or “lightweight pro-
cesses” has been around in various forms for a long
time, including support for coroutines in the Mesa pro-
gramming lanﬁuage[w], and multitasking in the Ada
programming language[18]. The Pthreads (POSIX
Threads) proposal is intended to provide similar func-
tionality for programs in the C language. 1t is based on
considerable experience, including C-threads [2], Mach
threads(16, 17], and Brown University threads [3].
Several commercial operating systems support multi-
threaded processes, including the Lynx[4], Sun(12, 14],
and Chorus{l) operating systems.

The POSIX 1003.4a project[8] represents an at-
tempt to achieve some degree of application portability
for 8 programs, across operating systems that support
threads. This is an extension of the POSIX application
program interface, which generally follows the UNIX
process model.

Threads are considered a “real time” extension to
POSIX. IEEE draft standard P1003.13[9] proposes a
set of realtime application profiles, i.e. subsets of the
POSIX standard that are suitable for certain classes
of realtime applications. Threads are a key feature of
these profiles. In particular, the “Minimal Realtime

*This work was supported in part by the Ada Joint Program
Office, via the U.S. Army CECOM HQ Software Engineering
Directorate. However, the views reported here do not necessarily
reflect a position of the sponsoring organization. Authors may
be reached as “baker@cs.fsu.edu”.

0-8186-5710-3/94 $3.00 © 1994 IEEE

12

System Profile” assumes a single process, with threads
being the only form of concurrency within the system.
The underlying hypothesis is that by not requiring sup-
port for the more complex POSIX features, the profile
permits an implementation that will be satisfactory for
realtime applications with very tight efficiency and tim-
ing predictability requirements.

The POSIX proposals are likely to have an impact
on future realtime applications development, since they
are being promoted as both U.S. Government and in-
ternational (ISO/IEC) standards.

The draft Pthreads standard specifies the follow-
ing services:

o thread management: initializing, creating, joining,
and exiting threads.

o synchronization: mutual exclusion, and condition
variables.

o thread-specific dala:

data maintained on per-
thread basis.

o thread priorily scheduling: priority management,
preemptive priority scheduling, bounded priority
inversion.

o signals: signal handlers, asynchronous wait, mask-
ing of signals, long jumps.

o cancellation: cleanup handlers, different interrupt-
ibility states.

2 Relationship to Ada Tasks

The Ada programming language[18] defines tasks
as the only form of concurrent threads of control within
a program. If the underlying operating system provides
direct support for the POSIX (C-language) threads in-
terface, it may be desirable to impfement Ada tasks
using this interface, by mapping Ada tasks to POSIX
threads. Due to differences between the Ada and
POSIX [/ C models, this mapping is not entirely straight-
forward.

The PART (POSIX Ada Real Time) project, at
the Florida State University, is investigating the prac-
ticality of using POSIX threads to implement Ada
tasks, especially in realtime applications. So far, a
complete tasking implementation has been produced
for the Ada 83 standard, using an implementation of
P1003.4a Draft 6 layered over the Sun UNIX operat-
ing system(5]. Work is under way to extend this to the
proposed new Ada 9X language standard [6, 19].

-

3 A “Bare Machine” Implementation

To evaluate the suitability of a Pthreads-based
Ada implementation for realtime applications, one
maust start out with a suitable realtime implementa-
tion of Pthreads. Experience with the FSU layered im-
plementation, and other Ada tasking iinplementations,
makes it clear that acceptable realtime performance
is not achievable for an implementation layered over a
conventional UNIX operating system. Efficiency is cer-
tainly an issue, but the main problem is predictability.

Most UNIX implementations impose unp:e-
dictable delays on user processes, due to preemptions
by interrupt handlers and operating system processes.
For an operating systein to provide predictable timing
of user threads, it must be designed with this objective
in mind, from the hardware up. Some commercial real-
time operating systems, such as LynxOS and Chorus,
apparently have been designed in this way.

As a basis for performance testing of our Ada 9X
implementation, we chose to port our existing layered
implementation of Pthreads to a “bare” SPARCengine
lEFlS]. We chose to do this rather than using an exist-
ing commercial realtime OS, for many reasons. Chief
among these is that we needed source code, to tune the
threads implementation to better support Ada (if nec-
essary), and to take control over interrupts. We also
were concerned that the commercial implementations
of threads might be too full-blown to take advantage
of the restrictions of the POSIX minimal profile, since
they support multiple processes, file systems, and a va-
riety of hardware devices. (Finally, there was concern
that licensing restrictions would stand in the way of
publication.)

The SPARCengine port of the FSU Pthreads li-
brary is intended to fit the POSIX minimal realtime
systems profile. It runs on a “bare” machine, without
any other operating system. It does not support multi-
ple processes, and so operates in single virtual address
space. It does not have a file system. At present the
only devices supported are a serial port and a timer.
These simplifications elininate unpredictable time de-
lays due to page faults, waiting for completion of 1/0,
and I/O completion interrupt processing.

The scope of this prototype implementation is lim-
ited to a subset of the proposed POSIX minimal real-
time system profile. The criteria that governed the
choice of this subset are:

¢ The implementation should be powerful enough to
allow testing in a realtime context. This requires
the following functionalities:
— Dynamic creation and termination of threads
~ Synchronization primitives
— A readable realtime clock

— Timer support sufficient for periodic task
scheduling

— Output routines to print results

e The implementation should provide sullicient
functionality Lo implement Ada tasking.

The design of the implementation is divisible into
three main components:

13

1. Pthreads support. This implements the de-
tailed functionality of the Pthreads standard, in-
cluding the dynamic creation and termination
of threads, the synchronization primitives, and
thread scheduling. It is the largest component,
but can be identical to a library implementation.

2. Machine-specific support. This includes code to
save and restore register windows for context-
switches, boot up the kernel, and provide time-
keeping services. The boot code involves initializ-
ing memory mapping hardware and installing trap
handlers. With the library implementation, all of
these functions are performed by the underlying
operating system. A bare-machine implementa-
tion must perform these functions for itself.

3. Clanguage support, including basic I/O and mem-
ory allocation. These are functions provided by
the standard C libraries, but the standard Sun
Microsystems implementation of the C libraries
makes calls to the operating system. Without the
support of the operating system, these libraries
need to be reimplemented.

The design of the Pthreads functionality was con-
strained to be async safe. A function is async safe
if calling the function asynchronously will not cause
any invariants to be violated, even if it is called from
the handler of an interrupt that may be delivered at
any time [7]. Even though POSIX does not require the
Pthreads functions to be async sale, we chose to require
it as a matter of quality. Async safety allows a user to
build more responsive realtime systems. Furthermore,
it is required to support Ada 9X.

A single-threaded kernel approach was used. Once
a thread has entered the kernel, no other thread can en-
ter the kerne] until that thread has left it. The alterna-
tive, a mulli-threaded kernel, where separate locks are
associated with different kernel data structures, would
allow more concurrency in a multiprocessor environ-
ment. For this to pay off, the cost of interprocessor
locking must be low, relative to the time typically spent
in kernel. Since we have only a single processor, the
choice was clear; the overhead of fine-grained locking
would result in poorer performance.

The source code of our bare-machine Pthreads ker-
nel consists of approximately 3300 lines of C-code, of
which approximately 1000 lines are new for the bare-
machine version and the rest is reused from the library
level implementation. The core in:age of the kernel is
49 kilobytes, as compared to 984 kilobytes for the full
Sun UNIX kernel.

Reuse of most of the code from the layered FSU
Pthreads library permits direct performance compar-
isons of the two implementations. Differences can be
attributed to running on a bare machine, versus as a
layer over the UNIX operating system.

This code was tested for both functionality and
performance.

Functional Testing Functional testing was done us-
ing a set of 25 tests, derived from tests originally devel-
oped to test the layered version of the FSU Pthreads
library. The features tested by these bare-machine tests

include:

o Thread management - creation, termination, join,
detach

o Priority scheduling

o Mutexes - with and without priority ceilings
e Creating and destroying condition variables
o Timed conditional wait

o Thread specific data

¢ Setjmp/longjmp

o Signal handlers

o Cancellation and cleanup handlers

It was verified that the implementation could pass
these tests, before performance testing began.

4 Absolute Performance Results

The performance tests were also derived from tests
developedp earlier for the layered version of the Pthreads
library. These tests attempt to measure the specific
performance metrics called out by Draft 6 of Pthreads.

Table 1 shows selected measurements of some of
these metrics. The test programs use a dual loop tim-
ing analysis technique. The times reported are averages
taken over 100,000 iterations. These measurements are
compared to measurements taken earlier with the ver-
sion of the Pthreads library layered over UNIX, on the
same machine.

For the layered implementation, the time taken for
100,000 iterations of an operation ranges frorm about
100 milliseconds to 1 second. Though there was only
one user process active, this is long enough that a sys-
tem process might preempt, so the numbers shown here
may be a bit high.

The metrics include:

o Enter and exit Pthreads kernel. This is the time
taken to enter and immediately exit the kerncl.

o Mutez lock/unlock, no conlention. This is the time
to perform a pair of mutex lock and unlock oper-
ations, under the assumption that a mutex is re-
quested while unlocked.

o mulez lock/unlock, contention. This is the interval
between an unlock by one thread and the return
from a lock operation by another thread, which
was suspended waiting for the mutex.

e Semaphore synchronization. This is one Dijkstra
P operation plus one V operation. These are im-
plemented on top of mutexes and condition vari-
ables.

o Thread creale, no context switch. This mecasures
the time taken to create a thread, excluding the
context switch timne.

o selymp/longjmp pair. This is the titne taken by a
set jmp followed by a longjmp.
The performance of a pair of setjmp and longjmp
operations gives a lower bound on the overhead
of a context switch, but a true context switch in-
volves some additional overhead.

14

o Thread conlex! switch. This is the time taken for
a context switch.

e Yield (1 thread). This is the time taken by the
yeeld operation when there is only one thread in
the system.

o Yield (2 threads). In this case, there are two
threads in the system.

o Thread signal handler. The measurements taken
for signal handling reflect the time from sending a
signal, by pthread kill, till the signal is received.

Table 1: Performance of some Pthreads Operations

Timings (usecs)

Pthreads Operations Bare Layered
Machine | over UNIX

enter and exit Pthreads kernel 1 1
mutex lock/unlock, no contention 3 3
mutex lock/unlock, contention 44 114
semaphore synchronization 60 103
thread create, no context switch 37 104
setjmp/longjmp pair 16 49
thread context switch 17 95
yield 1 operation 1 1
yield 2 operations 33 70
thread signal handler 55 92

5 Time Predictability Results

From the design of the implementation, we ex-
pect our bare-machine implementation to achieve pre-
dictable execution timing. The main cause of large
deviations from the priority preemptive scheduling
model has been eliminated, namely preemption of user
threads due to scheduling of other processes, includ-
ing operating system processes. The precision of timed
wakeup events has also been improved, from ten down
to one millisecond. With these improvements, we be-
lieve that the implementation of priority scheduling is
strict enough that actual schedulable utilization will be
very close to the theoretical predictions of schedulabil-
ity analysis.

During debugging, we have already observed that
the timing is remarkably consistent. This was evident
in the reproducibility of failures due to race-condition
problems between (earlier, incorrect versions of) the
timer interrupt handler and the rest of the system.

We are currently working on benchmarks to mea-
sure the predictability of scheduling for actual task
sets, to compare these against theoretical schedulabil-
ity models, and to estimate the amount of overhead
introduced by the Pthreads implementation.

The first test is based on a benchmark developed
earlier for a preliminary design of a minesweeper trainer
system for the U.S. Naval Coastal Systems Center.
This consists of a set of six periodic threads, comprising
a realtime sitnulation. Each thread has three phases.
In the first phase, it reads the simulated state of other
simulated subsystems from a global database. In the

second phase, it computes its own next state, In the
third phase, it updates the global database. The read
and update phases require locking the database, which
is done via a single Pthread mutex. This is shown in
pseudo-code in Figure 1. The thread periods, and the
execution times of the three phases, are shown in Ta-

ble 2.

tor(;;) {
pthread_mutex_lock(&shared_memory) ;
input_data();
pthread_mutex_unlock(kshared_memory);

execute();

pthread_mutex_lock(&shared_memory);
output_data();
pthread_mutex_unlock(&shared_memory);

next_request[task] += period(task];
it (next_request[task] >= simulation_time)
break;

/* suspend until next period #/
pthread_mutex_lock(&mutex(self]);
do {
pthread_cond_timedwait (&condfself],
tmutex{self], &next_requestiself]);
clock_gettime(CLOCK_REALTIME, ¤t_time);
} while (next_request[task] > current_time);

}

Figure 1: Task Simulation Algorithin

Task | Period | Input | Execute | Output | Util.
fms] | ([us] [ms] {pes]
1 62.5 2.0 44.80 20 1%
2 125.0 0.3 0.05 0.3 0%
3 166.7 1.6 27.80 1.6 | 16%
4 250.0 8.0 0.11 8.0 0%
5 500.0 3.2 5.02 3.2 1%
6 { 1,0600.0 24.0 10.36 24.0 1%

Table 2: Task Set

Such a task system should be suitable for schedu-
lability analysis, based on the Rate-Monotouic model.
The objective of our benchmark is to determine how
close the actual performance comes to this model.

In the benchmark, a bisection method is used to
compute the breakdown utilization, at which the tasks
can just barely be scheduled without missing any dead-
lines. This is done by varying a lincar scaling factor,
called load factor, which applies to the execution tines
of all phases of all the tasks.

The benchmark was run repeatedly over both
UNIX and the bare-machine implementation with an
initial target utilization of 90%. The results are shown
in Figure 2.

It was observed that the tiining of the benclunark

15

! T T T T \§ T Y T

layered over UNIX -—
*bare-machine® ~+--

g

Utilirat:

0 1 2 3 4 5 6 7 8 9
trial number

Figure 2: System Utilization for repeated Trails

over UNIX varies considerably at times. The bisection
sometinies failed on its first iteration, thereby indicat-
ing that the breakdown utilization of 90% must reduced
below 45%. The bisection would then proceed to ter-
minate at a utilization around 44%. At other times,
the bisection succeed for a trial of a certain load factor.
Upon termination of the bisection, the same load factor
was tried again but resulted in a failure. We adapted
our algorithm to restart the bisection with the current
load factor as the upper bounds upon these sporadic
failures.

The bare-machine implementation produced very
predictable results without any variation. The utiliza-
tion of the benchimark was measured at 81%. The re-
maining 19% can be interpreted as the time consumed
by the bare-machine implementation of Pthreads. Un-
der UNIX, the benchmark utilization had its peak at
T7% with a remaining 23% overhead due to the operat-
ing system and the layered Pthreads implementation.
The smaller overhead of the bare-machine implemen-
tation can be attributed to the performance improve-
ments discussed in the last section.

The occasionally large variations in the utilization
under UNIX and the sporadic failures of the bisection
algorithm seem to be due to operating system activi-
ties which occur at unpredictable times. These activi-
ties include process scheduling, CPU time accounting,
and the processing of ethernet messages'. The unpre-
dictability of the UNIX operating system limits its ap-
plicability for hard real-time systems. Hard real-time
applications may not be able to safely achieve a high
utilization under UNIX. A bare-machine implementa-
tion seems to permit a higher utilization for hard real-
time applications, providing both predictability and an
efficient use of the hardware.

6 Conclusions

We have implemented a sufficient subset of the
Minimal Realtime System Profile to permit perfor-
mance testing. The implementation supports preemp-
tive priority scheduling, with a restricted form of pri-
ority celling emulation for mutexes. It supports a re-

I"There was no local hard disk attached to the SPARCengine.
The only asynchronous activities were due to clock and ethernet
interrupts.

altime clock with microsecond precision, and timed
events with millisecond precision, including the time-
out for the wait operation on a condiv.on variable.
Experience with this hmplementation suggests that
Pthreads can be impleinented in a forn that is suitable
for realtime applications with hard timming constraints.

The absolute perforinance figures are encouraging.
The performance of the bare-machine implementation
is much better than that of the version layered over a
full UNIX system. Part of this improvetuent is due to
our algorithm for saving register windows to memory,
which is different from that used by the coinmercial
UNIX operating system. The other big contribution to
the performance improvement is that our irnplementa-
tion avoids most of the overhead of UNIX system calls.
User code executes in the same virtual address space
as the kernel. This nmeans kernel service calls can be
ordinary subprogram calls, or even in-line macro calls,
rather than traps. We also eliminate the overliead of
demultiplexing service requests in the UNIX systemn
call trap handier. This improveiment seems specific to
the minimal realtime systems profile. Running kernel
and user processes in the same virtual address spacc
would be unacceptable for a full POSIX hinplementa-
tion.

The experiments performed support the hypoth-
esis that a bare-machine implementation can achieve
excellent predictability. This provides the ability of
this system to support a priori schedulability analy-
sis, much in contrast to unpredictable systems such as

UNIX.

Next, we plan to port the PART Ada runtinie sys-
tem implementation to the bare-processor Pthreads jm-
plementation, and test both the absolute speed and the
timing predictability of Ada. This may require extend-
ing the functionality of the present implementation in
some respects. Ilandlers need to be written for soine
traps that generate synchronous signals. For example,
a mem_.address_not_aligned trap should be processed to

enerate a SIGBUS for the current thread. The current
library support also needs some extensions.

Efforts will be made to flesh out the implemnen-
tation in other respects, including support for timer-
driven round-robin scheduling, and some debugging
support.

References

(1] F. Armand, F. Herrmann, J. Lipkis, and
M. Rozier, “Multi-threaded Processes in CHO-
RUS/MIX", Proceedings of EEUG Conference
(Spring 1990) 1-13.

[2] E. Cooper and R. Draves, “C threads”. TR
CMU-CS-88-154, Carnegie Mellon University,
Dept. of CS (1988).

[3] T. Doeppner Jr., A threads tutorial, TR CS-87-
06, Brown University, Dept. of CS (1987).

[4] Bill O. Gallmeister and Chris Lanicr. “Early
experience with POSIX 1003.4 and POStIX
1003.4a”, IEEE Symposium on Real-Time Sys-
tems, IEEE Comiputer Society (1991) 190-198.

[5) E.W. Giering and T.P. Baker, “Using POSIX
threads to implement Ada tasking: Description

16

of work in progress”, TRI-Ada '92 Proceedings

(Nov 1992) 518-529.

E.W. Giering, Frank Mueller, and T.P. Baker,

“lmplementing Ada 9x features using POSIX

threads: Design issues”, TRI-Ada '93 Proceed-

ings, ACM (Sep 1993) 214-228.

IEEE Portable Applications Standards Commit-

tee, P1003.4a: Threads Extension for Portable

Operating Systems (Draft 6), IEEE (Feb 1992).

[EEE Portable Applications Standards Commit-

tee, P1003.4a: Threads Ezlension for Portable

Operating Systems (Draft 8), IEEE (Oct 1993).

IEEE Portable Applications Standards Com-

mittee, P1003.13: Information Technology -

Standardized Applicatlions Environment Profile

- POSIX Realtime Application Support (AEP)

{Draft 5) (Feb 1992).

Frank Mueller, “Implementing POSIX threads

under UNIX: Description of work in progress”,

Proceedings of the Second Soflware Engineering

Research Forum (Nov 1992) 253-261.

Frank Mueller, “A library implementation of

POSIX threads under UNIX", Proceedings of the

USENIX Conference (Jan 1993) 29-41.

[12] M.L. Powell, S.R. Kleiman, S.Barton, D. Shah,
D. Stein, and M. Weeks, “SunOS Multi-thread
Architecture”, USENIX (Winter 1991) 65-80.

[13] D. D. Redell et al., “Pilot: An operating system
for a personal computer”, Communications of the
ACM, Vol. 23, No. 2 (Feb 1980).

{14] D. Stein and D. Shah, “Implementing lightweight
threads”, Proceedings of the USENIX Conference
(Summer 1992) 1-10.

{15] SUN Microsystems, Inc., The SPARCengine 1E
Card Family User’s Manuals Part No: 800-8137-
02 (Apr 1990)

[16] A. Tevanian, R. F. Rashid, D. B Golub, D. L.
Black, E. Cooper, and M. W. Young, “MACH
threads and the UNIX kernel: The battle for
control”, Proceedings of the USENIX Conference
{Summer 1987) 185-197.

[17] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi
Rao, “Real-Time MACH: towards a predictable
real-time system”, USENIX MACH Workshop
(Oct 1990).

[18] U.S. Department of Defense. Military Standard
Ada Programming Language ANSI/MIL-STD-
1815A, Ada Joint Program Office (Jan 1983).

[19] Ada 9X Mapping/Revision Team, Ada 9X Ref-
erence Manual: Draft Version 4.0, Intermet-
rics, Inc., 733 Concord Avenue, Cambridge, Mas-
sachusetts 02138 (available by anonymous FTP
Jrom ajpo.sei.cmu.edu) (Sep 1993).

(6]

(8]

[9)

(10]

(1)

Availability of Source Code

The source code of the version of the Pthreads
library layered over UNIX is available via anonymous
ftp from ftp.cs.fsu.edu (128.186.121.27), in the file
/pub/PART/pthreads.tar.Z. Other material (related
publications) can be found in the same directory.

Session II:
Scheduling 1

Chair: Ted Baker
Florida Stafe

An End-to-End Approach to Schedule Tasks with Shared Resources
in Multiprocessor Systems

Jun Sun

Riccardo Bettati

Jane W.-S. Liu

Department of Computer Science
University of Illinois, Urbana-Champaign
Urbana, IL 61801

Abstract

In this paper we propose an end-to-end approach
1o scheduling tasks that share resources in a multipro-
cessor or distributed systems. In our approach, each
task is mapped into a chain of sublasks, depending on
ils resource accesses. After each subtask is assigned
8 proper priority, ils worst-case response lime can be
bounded. Consegquently the worsl-case response time
of each task can be obtained and the schedulability of
each task can be verified by comparing the worst-case
response time with its relative deadline.

1 Introduction

Tasks in real-time systems often share resources,
and semaphore-like operations are necessary to guar-
antee their mutual-exclusive access to critical sections.
A previous study shows that careless use of semaphore
operations can cause uncontrolled priority inversion,
which occurs when a high-priority task is blocked by
some low-priority tasks for an unpredictable amount
of time [1]. We refer to the total length of time a task
is delayed by lower-priority tasks due to resource con-
tention as its blocking time. To ensure predictability, it
is imperative to bound the blocking time of each task,
as shown in [2]. Several effective solutions have been
proposed for single processor systems; two well-known
examples are the Priority Ceiling Protocol (PCP) [1]
and the Stack Based Protocol (SBP) [3].

In multiprocessor and distributed systems concur-
rency and distribution complicate the resource con-
tention problem. A task T; can be blocked not only
by a local task on the same processor due to local
resource contentions, but also by a remote task that
needs some global resources also needed by T;. Rajku-
mar, et al. [4] extended PCP for single processor sys-
tems to multiprocessor systems and provided an initial
solution for this problem. The extended protocol is

0-8186-5710-3/94 $3.00 © 1994 IEEE

18

known as the Multiprocessor Priority Ceiling Protocol
(MPCP). According to MPCP, a resource needed by
remote tasks on other processors is a global resource,
and the processor on which a global resource resides is
called its synchronization processor. When a task T;
gains access to a global resource, a Global Critical Sec-
tion (GCS) server runs on the resource’s synchroniza-
tion processor on behalf of T;. On each processor PCP
is used to schedule both local tasks and GCS servers.
Consequently, for each task, the total blocking time
due to both local resource contention and global re-
source contention can be bounded, and whether each
task can meet its deadline can be determined based
on this blocking time by using the