
I/1994 INTHNATIONAL OUMW O D EuRAt NWVORK SoOETY YLM
~E'~ 1ThRLD MEETING

ON NEUmL JUN 5-9 1994

Accesion For

NTIS £R&SA DEG DTC I A3

Justi'tio)

Avilabiihty GCcc

Avail or
ilililo o o g ~ llililililllliliiilillllllllllllll111IIIIIIIIIIID is t S P L-c iaI ,

DTIC QUALIT71 INSPECTED 8

;94 ~ 390

Copyright © 1994 by Lawrence Erlbaum Associates, Inc., and INNS Press, held jointly. All
rights reserved. No part of this book may be reproduced in any form, by photostat, microform,
retrieval system, or any other means, without the prior written permission of the publisher.

Lawrence Erlbaum Associates, Inc., Publishers
365 Broadway
Hillsdale, New Jersey 07642

ISBN 0-8058-1745-X

Books published by Lawrence ErIbaum Associates are printed on acid-free paper, and their
bindings are chosen for strength and durability.

Printed in the United States of America

WCNN '94 ORGANIZING COMMITTEE

Paul Werbos, Chairman, National Science Foundation

Harold Szu, Naval Surface Warfare Center

Bernard Widrow, Stanford University

WCNN '94 SPECIAL SESSION CHAIRS

BIOMEDICAL APPLICATIONS OF NEURAL NETWORKS
David G. Brown, Center for Devices and Radiological Health,
US Food and Drug Administration
John N. Weinstein, National Cancer Institute, US National Institutes of Health

COMMERCIAL AND INDUSTRIAL APPLICATIONS OF
NEURAL NETWORKS
Bernard Widrow, Stanford University

FINANCIAL AND ECONOMIC APPLICATIONS OF
NEURAL NETWORKS
Guido J. Deboeck, World Bank

APPLICATION OF NEURAL NETWORKS IN THE
CHEMICAL PROCESS INDUSTRIES
Thomas McAvoy, University of Maryland

MIND, BRAIN, AND CONSCIOUSNESS
John G. Taylor, King 's College London

oio11

WCNN '94 PROGRAM COMMITTEE

Daniel Alkon, National Institutes of Health
Shun.ichi Amari, University of Tokyo
Richard A. Andersen, Massachusetts Institute of Technology
James A. Anderson, Brown University
Kaveh Ashenayi, University of Tulsa
Andrew Barto, University of Massachusetts
Horacio Bouzas, Geoquest
David G. Brown, Center for Devices and Radiological Health, US FDA
Gail Carpenter, Boston University
David Casasent, Carnegie Mellon University
Ralph Castain, Los Alamos National Laboratory
Chris Darken, Siemens Corporate Research
Joel Davis, Office of Naval Research
Judith Dayhoff, University of Maryland
Guido J. Deboeck, World Bank
David Fong, Photon Dynamics, Inc.
Judy Franklin, GTE Laboratories
Walter J. Freeman, University of California at Berkeley
Kunihiko Fukushima, Osaka University
Michael Georgiopoulos, University of Central Florida
Lee Giles, NEC Research Institute
Stephen Grossberg, Boston University
Dan Hammerstrom, Adaptive Solutions, Inc.
Robert Hecht-Nielsen, HNC, Inc.
Robert Jannarone, University of South Carolina
Jari Kangas, Helsinki University of Technology
Christof Koch, California Institute of Technology
Teuvo Kohonen, Helsinki University of Technology
Bart Kosko, Signal and Image Processing Institute
Clifford Lau, Office of Naval Research
Soo-Young Lee, Korea Advanced Institute of Science and Technology
George Lendaris, Accurate Automation Corporation
Daniel Levine, University of Texas -Arlington
Alianna Maren, Accurate Automation Corporation
Kenneth Marko, Ford Motor Company

iv

WCNN '94 PROGRAM COMMITTEE

T homas McAvoy, University of Maryland
Thomas McKenna, Office of Naval Research
Larry Medsker, American University
Erkki Oja, Lappeenranta University of Technology
Robert Pap, Accurate Automation Corporation
Barak Pearimutter, Siemens Corporate Research
Richard Peterson, Georgia Tech Research Institute
Gerhardt Roth, Brain Research Institute
David Rumeihart, Stanford University
Mohammad Sayeh, Southern Illinois University
Dejan Sobajic, Electric Power Research Institute
Harold Szu, Naval Surface Warfare Center
John G. Taylor, King's College London
Brain Telfer, Naval Surface Warfare Center
Shiro Usui, Toyohashi University of Technology
John N. Weinstein, National Cancer Institute
Paul Werbos, National Science Foundation
Bernard Widrow, Stanford University
Takeshi Yamakawa, Kyushu Institute of Technology
Lotfi A. Zadeh, University of California at Berkeley
Mona Zaghloul, George Washington University

VJ

CONGRESS SPONSOR

The International Neural Network Society (INNS) is the
sponsor of WCNN '94 - San Diego.

PRESIDENT Walter J. Freeman, University of California at Berkeley
PRESIDENT-ELECT John G. Taylor, King's College London
PAST PRESIDENT Harold Szu, Naval Surface Warfare Center
SECRETARY Gaff Carpenter, Boston University
TREASURER Judith Dayhoff, University of Maryland

BOARD OF GOVERNORS:

Shun-ichi Amari, University of Tokyo
James A. Anderson, Brown University
Andrew Barto, University of Massachusetts
David Casasent, Carnegie Mellon University
Leon Cooper, Brown University
Rolf Eckmiiler, University of Bonn
Kunihiko Fukushima, Osaka University
Stephen Grossberg, Boston University
Mitsuo Kawato, Advanced Telecommunications Research Institute
Christof Koch, California Institute of Technology
Teuvo Kohonen, Helsinki University of Technology
Bart Kosko, University of Southern California
Christoph von der Malsburg, University of Southern California
Allanna Maren, Accurate Automation Corporation
Paul Werbos, National Science Foundation
Bernard Widrow, Stanford University
Lotfi A. Zadeh, University of California at Berkeley

vi

TECHNICAL AREAS

ORDER OF APPEARANCE

Plenaries

Special Session: Biomedical Applications of Neural Networks I

Special Session: Commercial and Industrial Applications of I
Neural Networks

Special Session: Application of Neural Networks in the
Chemical Process Industries

Special Session: Mind, Brain, and Consciousness

Technical Sessions:

Applications - Oral Presentations I
Applications - Poster Presentations I

Machine Vision - Oral Presentations I
Machine Vision - Poster Presentations I

Neural Fuzzy Systems - Oral Presentations I
Neural Fuzzy Systems - Poster Presentations I

Neurocontrol and Robotics - Oral Presentations II
Neurocontrol and Robotics - Poster Presentations II

Hardware Implementations - Oral Presentations II
Hardware Implementations - Poster Presentations II

Mathematical Foundations - Oral Presentations II
Mathematical Foundations - Poster Presentations II

Prediction and System Identification - Oral Presentations II
Prediction and System Identification - Poster Presentations II

Biological Neural Networks - Oral Presentations II
Biological Neural Networks - Poster Presentations II

Signal Processing - Oral Presentations III

Pattern Recognition - Oral Presentations III
Pattern Recognition - Poster Presentations III

Supervised Learning - Oral Presentations III
Supervised Learning - Poster Presentations III

vii

TECHNICAL AREAS continued

Associative Memory - Oral Presentations IV
Associative Memory - Poster Presentations IV

Unsupervised Learning - Oral Presentations IV
Unsupervised Learning - Poster Presentations IV

Biological Vision - Oral Presentations IV

Circuits and System Neuroscience - Oral Presentations IV
Circuits and System Neuroscience - Poster Presentations IV

Links to Cognitive Science and Artificial Intelligence - IV
Oral Presentations

Speech and Language - Oral Presentations IV
Speech and Language - Poster Presentations IV
Cognitive Neuroscience - Oral Presentations IV

Neurodynamics and Chaos - Oral Presentations IV
Neurodynamics and Chaos - Poster Presentations IV

viii

TABLE OF CONTENTS
Presenting author is listed first.

VOLUME 1

Plenaries

Fuzzy Logic and Soft Computing: Issues, Contentions, and Perspectives 1-3
L Zadeh

Se-Organization in a Simple Brain Model 1-4
P. Bak, D. Stassinopouos, P. Alstrorn

New Progress Towards Truly Brain-Like Intelligent Control 1-27
P. Wetbos, R. SantiAgo

Special Session: Biomedical Applications of Neural Networks

Application of Artificial Neural Networks to Medical Image Pattern Recognition 1-37
S. Lo, J. Un, M. Freedman, S. Mun

Application of Artificial Neural Networks to the Task of Merging Feature Data in Computer-aided 1-43
Diagnosis Schemes
M. Giger, P. Huo, W, Zhang

Application of a Shift-Invariant Artificial Neural Network for Detection of Breast Carcinoma in 1-47
Digital Mammograms
W. Zhang, M. Giger, R. Nishikawa, K. Doi

Artificial Neural Networks for Outcome Prediction in Cancer 1-53
H. Burke, P. Goodman, D. Rosen

Artificial Neural Network for Pattern Recognition in Mammography 1-57
B. D"eng, W. Qiann, L. Clarke

Biomedical Application of Neural Networks in Japan 1-63
S. Usul, N. Toda

Biomedical Applications of Neural Networks: VEP's, Cardiology, Neurology 1-69
E. MIcheI-Tzanakou

Computational Schemes and Neural Network Models of Human Arm Trajectory Control 1-76
T. Fash, M. Jordan

Computer-Assisted Pap Smear Screening Using Neural Networks 1-84
L. Mango, R. Ton, J. Herrman

Data Compression for Long Time ECG Recording Using Neural Networks: Clinical Evaluation 1-90
and Hardware Design
Y. Nagasaka A. Iwata

Finite Training Sample Size Effects on Neural Network Pattern Classification in Low-Dimensional 1-96
Feature Space
D. Brown, M. Anderson, R. Wagner, A. Schneider

Medical Students' and Experienced Immunologists' Problem - Solving 1-102
Strategies Can Be Distinguished By Artificial Neural Networks
R. Stevens, P. Wang, A. Lopo, N. Bogan

ix

TABLE OF CONTENTS continued

Neural Filters and Hybrid Neural Networks for Gamma Camera-Bremsstrahlung Image Restoration 1-109
W. OQan, L. Clarke, M. Kallergl, M. Abernathy

A Neural Network Approach to the Efficient Control of Neuromuscular System with Big Variance - 1-115
Toward Further Improvement of the FES -
N. HoshimlyA, T. Nakamura, R. Futami, Y. Handa

Neural Networks for Biomedical Prediction Tasks 1-119
J. Dayhoff, D. Lin, P. Ligomenides

Neural Networks in the Biomedical Sciences: A Survey of 386 Publications Since the Beginning of 1991 1-121
J. Weinstein, T. Myers, J. Cascar, J. Buolamwini, K. Raghaven

Prediction of Breast Cancer Malignancy for Difficult Cases Using an Artificial Neural Network 1-127
C. Floyd, A. Yun, J. Lo, G. Tourassi, D. Sullivan, P. Kornguth

Poster

Neural Network Recognition of Multiple Mammographic Lesions 1-133
P. Downes

QRS Complex Recognition U-.ng NLD and Neural Networks 1-138
P. Downes

A Neural Network Approach to the Classification of Autism 1-871
. Cohen

An Artificial Neural Network Analogue of Learning in Autism 1-872
/. Cohen

Special Session: Commercial and Industrial Applications of
Neural Networks
Oral

A Large-Scale Neural Network Application for Airline Seat Allocation 1-145
K. Orws/, S. Hormby W. Hutchson

Neural Control for Hydrocarbon Processing 1-151
T. Graettinger, J. Buck

Prediction and Control of Paper Machine Parameters Using Neural Network Models 1-152
J. Rudd

Special Session: Application of Neural Networks in the
Chemical Process Industries
Oral

Sensor Data Analysis Using Autoassociative Neural Nets 1-161
T. Mc4voy, D. Dong

Rectification of Packed Distillation Column Data via Subset Identification 1-167
D. Himmelblau, R. Barton

x

continued TABLE OF CONTENTS

The Application of Neural Networks in the Development of an On-line Model for a Semi- 1-173
Regenerative Catalytic Reformer
C. Chessa, B. McKay, 0. Agamennoni, G. Balton, J. Romagnoli

Using Pressure Sensor Pattern Analysis for Precision Injection Molded Parts 1-179
D. Cooper, S. Woll

Identification of a Waste Water Neutralization Process Using Neural Networks 1-185
B. Eikens, M. Kaim

Neural Networks as Generic Nonlinear Controllers 1-191
T. Samad, W. Foslien

A Neural Network Based Prediction Scheme for an Industrial Propathene Reactor 1-195
0. Agarnennoni, C. Chessa, J. Romagnoli, G. Balton, K Bourke

An Inturential Approach Using Neural Network Models for Controlling Chemical Processes 1-201
T. McAvoy, N. Ye, K Kosanovich, M. Povoso

Special Session: Mind, Brain, and Consciousness

Oral

Computer Simulation of Conscious Sensory Experiences 1-209
F. AlaW, J. Taylor

Steps Toward a Neural Theory of Self-Actualization 1-215
R. Bapi, D. Levine

Neural Nets, Consciousness, Ethics and the Soul 1-221
P. Werbos

A Net Program for Natural Language Comprehension 1-863
J. Weiss

Applications

Oral

ANN Design of Image Processing Correlation Filters and Classifiers 1-231
D. Casasent

Mathematical Concepts Underlying the Functional-Link Approach 1-236
Y. Pao, B. Igelnik

Detecting Ground Clutter Contamination of Weather Radar Data with Neural Networks 1-247
R. Cornelius

Test and Evaluation of Neural Network Applications for Seismic Signal Discrimination 1-253
G. Patnaik T Sereno

Plasma Shape Recognition in a Tokamak Machine 1-254
F. Morabito

Robust Multispectral Road Classification in Landsat Thematic Mapper Imagery 1-260
J. Wolfer, J. Roberge, T. Grace

xi

TABLE OF CONTENTS continued

Neural Network Based Chemical Sensor Systems for Environmental Monitoring 1-269
P. Keler, R. Kouzes, L Kangas

An Automated System for Environmental Monitoring Using a Neural Network Classifier 1-273
M. Larkin, M. Perrone

Neural Network Base Knowledge Fusion in Hybrid Lung Nodule Detection Systems 1-279
Y. Chiou, Y. Lure, P. Ligomenides

Neural Network Classifier for Hepatoma Detection 1-285
P. Munro, B. Parmanto, H. Doyle, C. Doria, L. Aldighetti, I. Manno, S. Mitchel, J. Fung

Hierarchical Neural Networks for Partial Diagnosis in Medicine 1-291
L. Ohno-Machado, M. Musen

Neural Network Models for Quantitative Genetics with Application to Dairy Cattle 1-297
D. Bisant, D. Brown

Unsupervised Competitive Learning Neural Network Algorithms for Circuit Bipartitioning 1-302
M. Unaltuna, V. Pitchumani

Modified Back-Propagation Neural Network Device Characterization for VLSI Circuit Simulation 1-308
P. OjaLa, J. Saarinen, K. Kaski

On the Analysis of Pyrolysis Mass Spectra Using Artificial Neural Networks. Individual Input 1-318
Scaling Leads to Rapid Learning.
D. Kel, M. Neal, R. Goodacre

Using a Neural Network to Predict Electricity Generation 1-324
S. Gmbrough, R. Capone

The Second Method of Lyapunov and Neural Networks in Power Systems Stability Studies 1-330
D. Mwspaka, W Hwang, V. Moturi

Using the Hopfeld Netwo, .vith Annealing to Solve the Team Decision Theory Problem 1-336
G. Rao, W ltham

Modified Frequency Sensitive Seif-Organization Neural Network for Image Data Compression 1-342
H. Chu, L. Chlou, J. Limqueco, J. Tian, C. Lursinsap

Modeling Cortical Neuron Responses Using Artificial NeurrJ Networks 1-348
M. Palakal, S. Chlttajallu, D. Wong

An Improved DNA Encoding Scheme for Neural Network Modeling 1-354
M. Russo, A. Huff, C. Heckler, A. Evans

A Neural Network Tool for Forecasting French Electricity Consumption 1-360
C. Muller, M. Cottrell, B. Girard, Y. Girard, M. Mangeas

Hierarchical Competitive Neural Nets Speed Complex Fluid Flow Calculations 1-366
T. Long, E. Hanzevack

Neural Networks for Steam Boller MIMO Modeling and Advisory Control 1-372
B. Ung, K. Relnschmkit

Flexible Manufacturing Systems Scheduling Using Q-Learning 1-378
L Rabelo, M. Sahinoglu, X. Avula

xii

continued TABLE OF CONTENTS

Real-lime Control of Synchronous Machines with Neural Networks 1-386
D. Sobaji, D. Lee, Y. Pao, K. Komeyli

On-Une Identification Using an ART2-BP Neural Net with Applications to Petroleum Reservoir 1-392
Engineering
W Tsai, H. Tai, A. Reynolds

Back-Propagation Algorithm for Refinement of Multilayer Dielectric Optical Interference Filter 1-398

S. Lee, H. Lee, J. Cho

Poter

Back Propagation Neural Network for American Sign Language Recognition 1-405
R. Erenshteyn, L. Messing, R. Foulds, G. Stem, S. Galuska

Using Artificial Neural Networks to Identify Roads in Satellite Images 1-410
J. Boggess

Neural Network Based Cancer Cell Classification 1-416
K. Ashenay, Y. Hu, R. Veltn, R. Hurst, R. Bonner

A Preview I-PD Control System Using Neural Networks 1-422
T. Matsuoka, Y. Ishida, K. Katsumata, J. Shibuya, T. Honda

Neural Controller for Parallel Connected Switching Fabrics 1-426
A. Garcfa-Lopera, F. Garcta-Oller, F. Sandoval

Simulation of Verdicts in Civil Liability 1-432
F. Romeo, F. Bwbarossa

Simulation of Human Hedonic Choices 1-437
F. Romeo, M. Giaccio

An Open Application Framework for Hybrid Neural Network Research 1-441
J. Mittendofer, A. Berger

Adaptive Self-Organizing Concurrent Systems and their Applications 1-445
A. Bartczak

Classifyn Aphasic Syndromes by Means of Connectionist Models 1-450
M. Sorlano L6pez, K. Willmes

The Cooperative - Competitive Network: A Neural Network Method for Making Assignments 1-456
A. Maren, R. Pap

Comparison of a Backpropagation Network and a Nonparametric Discriminant Analysis in the 1-462
Evaluation of Sleep EEG Data
M. Grozinger, B. Freisleben, J. Roschke

Reengineering Software Modularity Using Artificial Neural Networks 1-467
J. Arseneau, T. Spraclden

A Coupled Gradient Network for the Solution of the Static Unit Commitment Problem in Power 1-471
Systems Planning
P. Watta, M. Hassoun

Neural Networks Processing Improves the Accuracy of a System Dedicated to the Automatic 1-478
Interpretation of Antibiotic Disk Diffusion Susceptibility Tests
J. lla/n, G. Heiblum, V Jadlier, J. Grosset, A. Aurengo, B. Fertil

xiii

TABLE OF CONTENTS continued

Pavement Surface Evaluation Using Neural Networks 1-484
L Achene, V. Kalidd, N. Garrick

A Neural Network Approach to Predict Missing Environmental Data 1-490
I. Wong, D. Lam, A. Storey, P. Fong, D. Swayne

ART-based Control Chart Pattern Recognizers 1-496
H. Hwarng, C. Chong

A Consensus-Learning Committee Network 1-501
S. Garavaglia

An Information Theoretic Re-interpretation of the Self Organizing Map with Standard Scaled 1-502
Dummy Variables
S. Garavaglia

Computer System Performance Modeling Using Neural Networks 1-510
J. Bigus

The Application of the Artificial Neural Network in the Grading of Beer Quality 1-516
Y. Cal

Solving the Pure 0-1 Linear Programs with Inequality Constraints Using a Two-Step Method 1-521
J. Chen, S. Xia

ATM Traffic Models Generation By Neural Networks 1-529
A. Dfaz-Estrella, A. Jurado, F. Sandoval

Development of a Neocognitron Simulator for Group Technology 1-535
L. Rabelo, F. Kulakv

A Neural Network Approach to Estimating Material Properties 1-541
T. Marfinetz, T. Poppe

Electricity Demand Prediction Using Discrete-Time Fully Recurrent Neural Networks 1-545
S. Rementea, J. Oyanguren, G. Marijuan

Hardware Tradeoffs for Boolean Concept Learning 1-551
A. Krshnamoorthy, R. Patui, M. Blume, G. Linden, L. Linden, S. Esener

Visualization of Eoiution of Genetic Algorithms 1-560
B. Nassershaif, D. Ence, M. Au

A Task Decomposition Neural Network Approach to Non-Destructive Testing Problems 1-566
F. Morabito, M. Campolo

Machine Vision
oral

Visual Pattern Recognition with Selective Attention 1-575
K. Fukushima, H. Shouno

Why Synchronization? An Attempt to Show Quantitative Advantages 1-581
G. Hartmann, S. Drue

An Improved High Order Neural Network for Invariant Recognition of Human Faces in Gray Scale 1-587
R. Foltynilewcz, S. Skoneczny

xiv

continued TABLE OF CONTENTS

Incremental ART: A Neural Network System for Recognition by Incremental Feature Extraction 1-593
J. Agular, W Ross

A Parallel Channel Binocular Vision Neural Network Model 1-599
T. Lee, C. Guest

Selectivity of Feature Detection Weights for a Neocognitron-like, Image Analysis Neural Network 1-605
P. Siz, J. DiTwcIM. Cuoepper, G. Taff

Cortical Perceptual Processing Mapped into an Active Resistor Network 1-612
S. Sabatini, L. Raffo, G. Iiver4 D. Catiglia, G. Bislo

NEUROEXPERT -An Automatic Neural Network Based System for Image Blur Identification 1-618
S. Skoneczny, R Fotynewicz

An Ensemble Approach to Automatic Masking of Clouds in AVIRIS Imagery Using BCM 1-624
Projection Pursuit
C. Bachmnann, E. Clothiaux, J. Moore, K Andreano, 0. Luong

Foreign Object Detection Using an Unsupervised Neural Network 1-631
D. Patel, L. Hannah, E. Davies

Multispectral Neural Network Camouflaged Vehicle Detection Using Flight Test Imagery 1-636
C. Bowman, M. De~bong

Visual Motion Tracking: A Neural Approach 1-642
R. Zunlno, 0. Anguits, F. Passagglo

SEJONG-NET with Analyss-by-Sythesis 1-649
K Lee, . Lee

Poster

Neural Network Power Density Filter for Image Filtering 1-659
S. Skoneczny, J. Szostakowski, R Foltyniewicz

Motion Analysis with Recurrent Neural Nets 1-664
A. Psanfou, H. Buxton

A Computational Model for Texton-based Preattentive Texture Segmentation I-668
M. Shiraz, M. Hide . Nishlkawas

A General Purpose Model for Image Processing Based on Multilayer Proceptrons; 1-673
J. Moh, F ShIh

A Hybrid Neural Network Architecture for Sensor Fusion 1-679
R. Mc~auchlan, K Geli, R. Chafloo, S. Omar

An Interpolated Counterpropagation Approach for Determining Target Spacecraft Attitude 1-686
B. Wnz

Image Transformation by Recognising Facial Control Points 1-692
T. Godson, S. Chan

XV

TABLE OF CONTENTS continued

Neural Fuzzy Systems

Fuzzy Logic and the Calculi of Fuzzy Rules, Fuzzy Graphs and Fuzzy Probabilities 1-695
L. Zadeh

Optimal Fuzzy Rules Cover Bumps 1-697
B. Kosko

Adaptive Fuzzy-Rule-Based Classifier 1-699
V. Cherkassky, Y. Lee, J. Slagle

Neural Network Based Fuzzy Logic Decision System 1-705
A. Kulkami, P. Coca, G. Girldhar, Y. Bhatikar

Fuzzy ART Choice Functions 1-713
M. Gaja, G. Carpenter

Retrieval of Images Using Fuzzy Interactive Activation Neural Networks 1-723
J. Wu, S. Chan, C. Choo

Fuzzy Self-Organizing Map 1-732
L. Chan, J. Sum

Edge Detection and Image Enhancement Using Neuron-like Networks and Fuzzy Rules 1-738
W. Woo

Learning Fuzzy Rules with Competitive Hebbian Learning 2 1-743
R. V4hft

3-D Object Recognition by the ART-EMAP Evidence Accumulation Network 1-749
W Ross, G. Carpenter

Conventional Controllers in Fuzzy Form 1-759
J. Johnson, H. Smart

Modeling Complex Human Social Dynamics Using Neural Networks of Fuzzy Controllers 1-765
M. Karasik P. Wllamson

Fuzzy Membership Functions in Soft Computing Models 1-772
A. Saiyadas, H. Chen

Setting the Initial Weights in a Neural Network Using Fuzzy Curves 1-778
G. Cunningham, Y. Un

Poster

An Approach for Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787
E Teixeira, G. Lafbrga, H. Azevedo

Neural Fuzzy Logics as a Tool for Design Ecological Expert Systems 1-793
P. Blinder

Human-Motlon Recognition Using Fuzzy Associative Memory System 1-799
H. Ushida, A. Imura, T. Yamaguchi, T. Takagi

xvi

continued TABLE OF CONTENTS

The Fuzzy Polynomial Rules 1-805
L Chan

Can Possibility Functions Directly Enter a Fuzzy Neural Network? I-all
L. Chen, 0. Coolhy, J. Zhang

Selection of Fuzzy Rules Using a Genetic Algorithm 1-814
J. CaWpa, B. lt'Almowski

A Sel-Learning Fuzzy Inference System 82
R. Kuo

Fuzzy Functional-Unk Net for Seismic Trace Edbtin 1-826
K Huang

A Real-Time Near Neighbor Type Fuzzy Pattern Recognition Neural Network 1-830
M. Ulug

Causal Structure, Model Inferences, and Fuzzy Cognitive Maps: Help for the Behavioral Scientist 14836
P. Cralge

Automated Surface Property Inspection Using Fuzzy Neural Networks and lime Series Analysis 1-842
R. KWo

Holographic Neural Manifolds and Genetic Systems Embedded Within a Classical Distributed 1-848
RDBMS
R.Nlxon

Naming the Unmeasurable Using a Neural-Fuzzy Approach 1-853
W Pulice

A Machine with t Feelingsm: System Models of Emotional Behavior 1-857
I. Mad,,, J. Sappington

Connectionist Production Systems for Approximate Reasoning 1-85
N. Kasabov

Xvii

TABLE OF CONTENTS continued

VOLUME 2

Neurocontrol and Robotics
oral

Neural Networks for the Intelligent Control of Dynamical Systems 11-3
K. Narendra

Radial Basis Function Networks for Mobile Robot Localisation 11-9
N. Townsend, M. Brownow, L. Tarassenko

Neural Network Control for a Free-Flying Space Robot 11-15
E. W//son, S. Rock

A Neural Network Based Visuosteenng Control Algorithm for Autonomous Land Vehicles 11-23
S. Oh, D. Choi, K. Kh

A Robot that Learns an Evaluation Function for Acquiring of Appropriate Motions 11-29
K. Shlbata, Y. Okabe

Learning to Catch a Baseball: A Reinforcement Learning Perspective 11-35
S. Dfs. R. Das

A State History Queue for Efficient Implementation of a Reinforcement Learning System 11-41
R. Fellman, Y. Hu

Inverse Kinematics Via Linear Dynamic Networks 11-47
K Mathia, R. Saeks

Good Fibratlons: Canonical Parameterization of Fiber Bundles with Self-Organizing Maps 11-54
D. DeMers, K Kreutz-De/gado

An On-line Adaptive Controller Based on the Connectionist Normalized Local Spline Neural 11-60
Network for the Optimization and Control of a Small-Angle Negative Ion Source
W. Mood, P. Bowling, S. Brown, R. Jones, C. Barnes, H. Gibson, J. Goulding, Y. Lee

Neural Modeling of Non Unear Systems by Systematic State Space Sampling 11-61
J. Codh7a, J. Fueres, R. Villa

A Reinforcement Learning Approach to On-Line Optimal Control 11-66
P. An, S. Aslam-Mir, M. Brown, C. Harris

A Pulse-Based Reinforcement Algorithm for Learning Continuous Functions 11-73
D. Gorse, J. Taylor, T. Clarkson

Poster

An Adaptive Heuristic Critic Based Architecture for Exploring Mazes with Large Search Spaces 11-81
A. Pipe, Y. Jin, A. Winfled

A Proposed Hierarchical Neural Network Controller for a Hexapod Leg 11-87
A. Ne, J. Benade

Hebblan Learning Strategies for Neural Adaptive Control 11-93
C. Poon

xviii

continued TABLE OF CONTENTS

Neural Linearbring Control with Radial Basis Function Network for Chemical Process 11-94
M. Le, S. Km, S. Park, S. Lee, C. Park

Neurocontroller for Robot Biological Joint 11-100
S. Zein-Sabatto, M. Bodruzzaman, C. Glover

Neuro-Controller Via Simultaneous Perturbation 11-106
Y. Maeda, Y. Kanata

Control with Neural Networks Using Minimum Information 11-112
F. Panetsos, A. Nayla, J. Za/divar

Rapid Reinforcement Learning for Reactive Control Policy Design in Autonomous Robots 11-118
A. Fagg, D. Lotepeich, J. Hoff, G. Bekey

Visually Guided Motor Control: Adaptive Sensodmotor Mapping with On-line Visual-Error Correction 11-127
L L, H. Ogmen

Practical Issues in Applying Artificial Neural Networks for Identification in Model Based Predictive 11-135
Control
J. Blum, P. Vilrd, A. LeubA T. Karla, D. Himmeilbau

Neural Subgoal Generation with Subgoal Graph: An Approach 11-142
M. Eldracher

A Real Time Controller Based on a Pulse Stream Neural System 11-147
M. Chlabwge, D. Del Corso, L. Reyned, L Zocca

Nonlinear Missile Controller Using Memory Neural Networks 11-153
M. Tummala. M. Fallon, R. Garcia

Stable Neural Network Control Systems Using the Multiple-nonlinearity Popov Criterion 11-159
S. Kuntanepreeda, R. Fullner

Direct Computation of Robot Inverse Kinematic Transformations Using Hopfield Neural Network 11-165
D. Rao, M. Gupta, P. Nikifonk

Geometry-based Process Control 11-171
J. Root

NAVITE: A Neural Network System for Sensory-Based Robot Navigation 11-177
J. Aguilar, J Contreras-Vda/

Efficient Learning of Genedic Grasping Functions Using a Set of Local Experts 11-183
M. Moussa, M. Karnel

Computer Recognition of Imprecise Dynamic Arm Gestures of People with Serve Motor Impairment 11-191
D. Roy, R. Erenshteyn, M. Panayi, W Harwin, R. Foulds, R. Fawcus

Neural Networks for Manipulator Control: Methodology, Stability and Simulations 11-197
Y. J, A Pipe, A. Wnfiel

Condition Monitoring of Impulsively Loaded Mechanical Equipment Using Neural Networks 11-203
A Ne T. Snyman

An Architecture for Leaming to Behave 11-209
A Aitken

xix

TABLE OF CONTENTS continued

Application of Neural Networks to Fuzzy Control of Bioreactor 11-214
T. Alvager, R. Shotwell

Neural Networks In Control: A Practical Perspective Gained from Intelligent Arc Furnace TM 11-217
Controller Operating Experience
S. Ananthrninan, W Stab

Prediction and System Identification

How We Cut Prediction Error in Half By Using A Different Training Method 11-225
P. Werbos

Prediction of Chaotic Time Series and Resolution of Embedding Dynamics with the ATNN 11-231
D. Lin, J. Dayhof, P. Lomrenids

A Business Application of Neural Networks 11-237
I. Jageka, A. Jacob

Search for an Improved Time-Frequency Technique for Neural Network-Based Helicopter Gearbox 11-238
Fault Detection and Classification
T. Robinson, M. Bodruzzaman, M. Malkani, R. Pap, K. Priddy

Binary Response Forecasting: Comparison Between Neural Networks and Logistic Regression 11-244
Analys
M. Leon

Time Delay Neural Network for Small Time Seres Data Sets 11-248
W. Kreesuradej, D. Wunsch, M. Lane

Memory Neural Networks Applied to the Prediction of Daily Energy Usage 11-254
A. Surkan, A Skudkhin

Experiments Using a Group Method Data Handling Neural Network as a Predictor in a Biotechnical 11-260
Process
D. Tspfsinoe J. Leigh

Time Series Prediction Using Minimally-Structured Neural Networks: An Empirical Test 11-266
W. Jhee, M. Shaw

Stable and Efficient Neural Network Modeling of Discrete Multi-Channel Signals 11-272
J. Hao, S. Tan, J. Vandewalle

Forecasting and Decision-Making Using Feature Vector Analysis (FEVA) 11-278
V. McGee, A. Kumar

System Identification with Dynamic Neural Networks 11-284
J. P,*clp, M. Mofter

Neural Networks for Predicting Options Volatility 11-290
L Salchenber, M. fats

A Least-Squares Derivation of Output Error Feedback for Direct State Estimate Correction in 11-299
Recurrent Neural Networks
D. Sed, R. Lorenz

xx

continued TABLE OF CONTENTS

Adaptive Inverse Control of Nonlinear Systems Using Dynamic Neural Networks 11-305
D. Rao, M. Gupta, H. Wood

Computing the Probability Density in Connectionist Regression 11-311
A. Srvastava, A. Weigend

Experience with Using a Neural Network for Forecasting Time Series 11-315
L. Achenie, P. Devika

On-line Learning of a Network with Gaussian Kernel Functions 11-321
R. Ki, J. Choi

Predicting Prediction: Error Bounds for Feedforward Neural Networks 11-328
S. Welstead

A Threshold Polynomial Neural Network 11-334
D. Prokhorov, D. Wunsch

Linking of an Artificial Neural Network with the EEIE Expert System to Identify Environmental Impacts 11-338
A. Pazos, A Santos del Rego, J. Dorado

An Artificial Neural Network Customer Forecasting Model 11-344
K Eghtesad, M. Cullen, D. Vu

Fuzzy Curves and System Identification 11-350
G. Cunningham, Y. Ln

Mathematical Foundations

Manifolds of Neural Networks and the EM Algorithms 11-359
S. Aman

Analysis of the ARTMAP Neural Network Architecture 11-360
M. Georgiopoulos, J. Huang, G. Heileman

Minimal Training Set Size Estimation for Sampled-Data Function Encoding 11-366
J. Zurada, A. Mailnowski

Constructive Uniform Approximation of Differentiable Vector-Functions by Neural Network Methods 11-372
L. Manevitz, M. Shoam, M. Meltser

Training of Elliptical Basis Function NN 11-379
I. Grabec, M. Kokol

Counting the Number of Functions Realizable with Two Hidden Layer Networks 11-385
A. Sakurai

On the Mappings of Optimization Problems to Neural Networks 11-391
A. Jagota, M. Garzon

Combinatorial Optimization Neural Nets Based on A Hybrid of Lagrange and Transformation 11-399

L Xu

A Modifled.Gating Network for the Mixtures of Experts Architecture 11-405
L Xu, M. Jordan, G. Hinton

xxi

TABLE OF CONTENTS continued

Spatial Variation of the Weights of Recurrent Synapses During Equilibrium 11-411
A. Roque-da-Silva-Filho

Competitive Activation, Bayesian Networks, and ART 11-416
F. McFadden

Robustness of Neural Networks 11-422

K. KdshnaKumar

Poster

Performing Differential and Integral Calculus Using Radial-Gaussian Neural Networks 11-431
L Rood

Path Integrals for Stochastic Neurodynamics 11-437
T. Ohira, J. Cowan

Positional Sharpening in the Boundary Contour System 11-443
L. Wieske

Psychological Laws of Choice (the Generalized Matching Law), Psychophysical Perception 11-449
(Steven's Law) and Absolute Rate (Hermstein's Equation) Can be Derived from Stochastic Networks
L. Hutton

Neural Networks for Short Term Pattern Storage 11-454
G. Francis

Study on the Kinds of Training Difficulty in Feedforward Neural Networks 11-460
X. Liang, S. Xia

On the Properties of the State Space of Discrete Neural Network 11-466
Z Cheng-fu

Representation of Number. A Theory of Mathematical Modeling 11-479
J. Cristofano

An Ecological Approach to Cognition 11-485
P. Prueift

Necessary and Sufficient Condition for the Existence of Neural Network Models for Logic Circuits 11-491
R. Dai, Z Zhang

Hardware Implementations
Oral

Challenges in Neurocomputers 11-499
C. Lau

Subthreshold MOS Fuzzy Max/Min Neuron Circuits 11-500
C. Baysoy, L. Kinney

Results from a Neural Network Application in High-Energy Physics using the ETANN Chip 11-506
R. Odorco, C. Baldmnza, F. Bisi A. Cotta-Ramusino, L D'Antone, L. Mafferran, P. Mazzanti,
F. Odo/ci, M. Zuffa, C. Bruschini, P. Musico, P. Novelli, M. Passaseo

VLSI Implementation of a Pulse-Coded Winner-Take-All Network 11-512
J. Meador, P. Hylander

xxii

continued TABLE OF CONTENTS

A Theoretical Study of Training Set Parallelism For Backpropagatlon Networks on a Transputer Array 11-519
F. Kfng P. Swrat chandrun, N. Sundararajan

Practical Approach to Implementation of Neural Nets at the Molecular Level 11-525
N. Ramnbid

Highi-Performance Digital Neural Networks: The Use of Redundant Binary Representation for 11-531
Concurrent Error Detection
V. Piud, S. Bogta

The Impact of Finite Precision in the VLSI Implementation of Neural Architectures for Image 11-537
Processing
C. Alippi, L. Bnozzo

Analog VLSI Neuromorph with Spatially Extensive Dendritic Tree 11-543
J. Eiaes, D. Nodthmore

A Quick Search of Optimal Solutions for Cellular Neural Networks 11-549
B. Sheu, S. Bang

An Improved Programmable Neural Network and VLSI Architecture Using BiCMOS Building Blocks 11-555
M. Elmaw, D. Zhang, R. Gu

Poster

A Parallel Algorithm for Neural Computing 11-563
M. Bayouml, 0. MOW.hl T Rao

Programmable Synapse and Neuron Circuits in VLSI for Perceptions and Cellular Neural Networks 11-570
B. Sheu, J. Choi, J. Chang

An Asynchronous Inter-Processor Communication Basedl, Input Recycling Parallel Architecture for 11-576
Large Scale Neural Network Simulation
Ml. K0m, J. Kim, Y. Song, Y. Lee, H. Lee

Placing Feedforward Neural Networks Among Several Circuit Complexity Classes 11-684
V. Belu, J. Peperstraste, J. Vandewalle, R. Lauwereins,

On the Design of an MIMD Neural Network Processor 11-590
R. Saeks, K. Pridj* K Schnieder, S. Sftowell

Neurocomputer Taxonomies 11-596
KC Non'ag

Temporal Binding in Analog VLSI 11-601
S. Delss

High Performance Compressor Building Blocks for Digital Neural Network Implementation II-607
D. Zhang M. Elnmasry

Coprocessors for Special Neural Networks: KOKOS and KOBOLD 11-612
H. Speckmann, P. Thole, M. Bogdan, W Rosenstiel

Circuit Implementation of the Multivalued Exponential Recurrent Associative Memory 11-618
R. Huang, T. Chluoh

Hybrid Chip Set for Artificial Neural Network Systems 11-624
M. Bayouml, B. Alhulab

xxiii

TABLE OF CONTENTS continued

A Neural Network VME-module for Recognizing AC Current Demand Signatures in Space Shuttle 11-631
Telemetry Data
T. Undhl.d R. Shelton S. Hultberg

Image Restoration and Compression by Neurochips 11-641
H. Szu, J. Landa

VLSI Implementation of the Hippocampal Dentate Gyrus 11-647
0. Chen. T. Brger, B. Sheu

Skeletonizaton of Arabic Characters Using a Neural Network Mapped on Maspar 11-653
M. Bayoumi, M. Altuwaqd, R. Ayoubi

Biological Neural Networks

Oral

Odor Processing in the Insect Olfactory System 11-661
W Getz

A Class of Functions for the Adaptive Control of the Cerebellar Cortex 11-669
G. Chauvet, P. Chauvet

Distribution of Gamma and Beta Oscillations in Olfactory and Limbic Structures During Olfactory 11-675
Perception In Rats: Evidence for Reafference
L. Kay

Combining Cellular Dynamics, Systems Descriptions and Computational Methods for Revealing 11-681
Sensory Integration Functions in Cardio-Respiratory Brainstem Circuits
J. Schwabe.

Modeling the Baroreceptor Reflex Neural Network Performing Blood Pressure Control in Mammals 11-682
I. RFybak, J. Schwaber, R. Rogers

Circuit Model of Neuronal Inhibition and Sustained Excitation 11-688
M. Levine

Steady-State and Transient Properties of a Neural Network for Hexapod Leg Control 11-695
D. Mkci Barca, H. Ogmen

Flexible Motor Control by Forebraln, Cerebellar, and Spinal Circuits 11-703
0. Bullock

Understanding Handwriting Motor Impairments in Parkinson Disease Through Neural Networks 11-709
J. Contreras-Vidal, H. Teullngs, G. Stelmach

A Neurocomputational Theory of Hippocampal Region Function in Associative Leaming 11-717
C. Myers, M. Gluck

Stimulus Configuration, Classical Conditioning, and Spatial Leaming: Role of the Hippocampus 11-723
N. Schnauk

Feedback Regulation of Cholinergic Modulation and Hippocampal Memory Function 11-729
M. Hssaelm, E. Schnell

PON-

LTP Learning Rules and Categorization: Effects of Physiological Parameters 11-737
K Glbom, R. Granger

xxiv

continued TABLE OF CONTENTS

An Artificial Neural Network Architecture for Multiple Temporal Sequence Processing 11-738
S. AMcCabe, MA. Denham

Modeilng of the Three-Phase Respiratory Rhythm Generation 11-744
J. Schwaber, L. Rybak

Phase Modulation in Oscillatory Model Neurons 11-750
F. Eisenhar, P. Rowat

Neurosolver~ A Neural Network Based on a Cortical Column 11-756
A. 6ies~ad

On the Relation between Topology and Geometry in Biological Neural Networks 11-762
G. Chauvet

Average Firing-Rate of a Compartmental Model Network with Randomly Distributed Synaptic 11-769
Background Activty
P. Sr"s"of

Cumulative Learning in a Scaffolded Neural Network 11-775
R. Paradls E. Dietrich

Endoneurology Virtual Imaging of Neural Ensemble Signals by Quantum - Neurodynamics 11-781
G. Bermrolder

Pre-Conditional Correlation Between N ,'urons in Cultured Networks 11-786
G. Gross, D. Tam

Post-Conditional Correlation Between Neurons in Cultured Neuronal Networks 11-792
D. Tam, G. Grows

Neural Network Training Via A Primal-Dual Interiom Point Method for Unear Programming 11-798
T. Tratalis, N. Couellan

Storage Capacity of Quantum Neural Networks 11-804
A Samsonovich

Motion Interpretation of Trochoidal Paths 11-808
L King, M. Aibib

Principles of Neural Computation from the Evolution of Neural-like Systems 11-813
A. Horowitz

xxv

TABLE OF CONTENTS continued

VOLUME 3

Signal Processing
Oral

Nonlinear Adaptive Signal Processing for Inverse Control 111-3
B. Wkdrow, M. Bilello

The Use of Calibration Layers in a Sliding Network Architecture 111-14
G. Peacock

Partial Recurrent Time Delay Neural Network Channel Equalizer 111-20
X Yang, A. Kuh

Image Compression Using Multi-layer Perceptron with Block Classification and SOFM Coding 111-26
S. Lee, K. Cho, C. Park

On the Convergence of the Least Mean Squares Algorithm to Rational Expectations Equilibria 111-32
L. Landi, E. Barucci

A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture 111-38
T. Troudet, W. Merrill

A Multiresolution Learning Method for Back-Propagation Networks 111-46
L. Chan, W. Chan

A Neural Network Demodulator for Bandwidth Efficient Waveforms 111-52
K. Schneider, R. Nazaro

An Edge-Preserving Neural Network for Image Compression 111-59
M. Kamel, M. EI-Sakka

A Neural Net for the Separation of Nonstationary Signal Sources 111-65
K. Matsuoka, M. Kawaroto

Optimal Local Estimation of RBF Parameters 111-71
N. Borghese, S. Marchini

A Neural Network Approach to High Accuracy Optical Character Recognition 111-76
T. Diep, H. Avi.ltzhak

Two-Layer Structures for Fast Adaptive Filtering 111-87
F. Beaulays, B. Widrow

Pattern Recognition
oral

Physiological Model for the Self-Organizing Map 111-97
T. Kohonen

Adaptive Wavelet Networks for Pattern Recognition 111-103
9. Telfe, H. Szu

Comparison of Sequences Generated by a Self-Organizing Feature Map Using Dynamic 111-110
Programming
AL Lalonde, J. Brault

xxvi

continued TABLE OF CONTENTS

Handwritten Digit Recognition Using Fuzzy ARTMAP Network 111-117
N. Ma,*uzon

The Adaptive Feature Extraction Nearest Neighbor Classifier 111-123
W. Fakhr, M. Elrnasy, M. Kamel

Parallel Consensual Neural Networks with Optimally Weighted Output 111-129
J. Benediktsson, J. Sveinsson, 0. Ersoy, P. Swain

Efficient Nearest Neighbor Classification 111-138
N. Ramesh, I. Sethi

Reduction of Input Nodes for Shift Invariant Second Order Neural Networks Using Principal 111-144
Component Analysis (PCA)
B. Lee, D. Kim, Y. Cho, H. Lee

Temporal Sequence Processing Based on the Biological Reaction-Diffusion Process 111-150
S. Ray, H. Kargupta

A Language for Connectionist Pattern Recognition 111-156
T. Cooper

A Neural Network for Recognizing Characters Extracted from Moving Vehicles 111-162
J. Yoo, B. Chun, D. Shin

Dual-Use Neural Network Pattern Recognition for Automated Imagery Database Query 111-167
T. Rainey, D. Brette, F. Weingard, R. Sibert, E. Bimbaum

Medial Axis Transform Based Features and a Neural Network for Human Chromosome Classification 111-173
B. Lerner, B. Rosenberg, M. Levinstein, H. Guterman, 1. Dinstein, Y. Romem

Neural Network Classifier to Threshold Images from 3D Microcomputed Tomography 111-179
L. Feldkamp, G. Jesion, G. Puskonus, D. Kubinski

Poster

An Iterative Algorithm to Find the Energy Function Coefficients of a Recurrent Neural Network 111-187
F. Unal

A Multi-Stage Neural Network Classifier 111-198
A. Logar, E. ConWin, S. Greni, K Whitehead, R. Welch

A Modular, Cyclic Neural Network for Character Recognition 111-204
E. Pasero, M. Costa, E. Filippi

Self-Organization of Feature Maps for Recognition of Unconstrained Handwritten Numerals 111-210
S. Lee, Y. Choi

A Framework for Estimating Performance Improvements in Hybrid Pattern Classifiers 111-220
J. Ghosh, K. Turner

An Adaptive Resonance Theory (ART) Neural Network for Synthetic Aperture Radar Target 111-226
Recognition and Classification
T. Walker, M. Tummala, R. Voigt

Learning Categorical Error Bounds as well as Prototypes with Error Correcting Adaptive 111-232
Resonance Networks
R. Baxter

xxvii

TABLE OF CONTENTS continued

Robustness of Pattern Recognition in a Noniteratively Trained, Unsupervised, Hard-Limited 111-238
Perceptron
C. Hu

On Modifying the Weights in a Modular Recurrent Connectionist System 111-243
H. Elsherd, M. Hambaba

Learning Curves and Optimization of a Multilayer Perceptron Neural Network for Chromosome 111-248
Classification
B. Lene, H. Guterman, 1. Dinstein, Y. Romem

Neuro-Muscular Signal Decomposition for Diagnosis and Prosthesis Control Using Hopfield 111-254
Neuro-Chip
M. Bodnizzarnan, S. Zein-Sabaffo, M. Malkani, H. Szu, R. Saeks

Molecular Lesion Spectra as Radiation Signatures 111-261
K. RupniA S. McGlynn

Ability of the 3D Vector Version of the Back-Propagation to Learn 3D Motion 111-262
T. Nitta

Asymptotically Stable Automaton-like Behavior in Recurrent Neural Networks 111-268
R. Fanelli

Havnet: A Novel Neural Network Architecture for Two-Dimensional Pattern Recognition 111-275
C. Dagli, R. Rosandich

The Cortecons: A New Class of Neural Networks for Temporal Pattern Association 111-281
A. Maren, E. Schwartz

Deformed Lattice Analysing Using Neural Networks 111-287
J. Leopold, H. Gunther

Automatic Target Recognition from Radar Range Profiles Using Fuzzy ARTMAP 111-291
M. Rubin

Recognizing and Diagnosing Psychiatric Disorders Using the Clinical Matrix 111-299
F. Un, M. Smolinski

Principal Components and Neural Nets 111-307
C. Koutsougeras

Pattern Identification by Trajectory Analysis in Autocorrelation Hyperspace 111-312
C. Tyler, R. Miller

Supervised Learning

On Prestructuring ANNs A Priori Knowledge 111-319
G. Lendards, K Mathia

Error Minimization, Generalization, and Hardware Implementability of Supervised Learning 111-325
S. Lee, 0. Jeong

Application of Simulated Annealing to the Backpropagation Model Improves Convergence 111-331
A. Abunawass, C. Owen

xxviii

continued TABLE OF CONTENTS

Backpropagation Learning for Systems with Discrete-Valued Functions 111-332
E. flison

Fuzzy-Controlled, Parallel Coordinate Descent in a Backpropagation Net 111-340
T. Feudrng, W. Lippe, A. Tenhagen

The Vector Back Propagation Algorithm 111-346
M. Ibn Kahia, S. Puchmore, F. Castanie

Improving Generalization Performance by Entropy Maximization 111-352
R. Kamimura, S. Nakanishi

The Boolean Sphere: A Geometrical Approach to Perceptron Learning 111-358
R. Rojas

A Classical Algorithm for Avoiding Local Minima 111-364
D. Gorse, A. Shepherd, J. Taylor

Globally Optimal Neural Learning 111-370
J. Bathen, A. Fijany, N. Toomadan

Covariance Learning Rules for Stochastic Neural Networks 111-376
J. Movellan

Network Reciprocity: A Simple Approach to Derive Gradient Algorithms for Arbitrary Neural 111-382
Network Structures
E. Wan, F. Beaufays

Efficient Learning Through Cooperation 111-390
Z Obradovic, R. Venkateswaran

Growing Neural Tree Networks Using AMIG Learning 111-396
J. Yoo, . Sethi

An Adaptive Structure Neural Network Using an Improved Back-Propagation Learning Algorithm 111-402
K. Khorasani, H. Yin

Improving Model Accuracy Usng Optimal Linear Combinations of Trained Neural Networks 111-408
S. Hashem, B. Schmeiser

Projection Learning for Multilayer Neural Networks 111-409
J. Alberg

Analysis of Input Vector Spaca for Speeding Up Learning in Feedforward Neural Networks 111-414
C. Lursinsap, V. Coowanitwong

An Approach for Combinatorial Optimization Problem Based on Learning in the Recurrent Random 111-420
Neural Network
J. Aguilar

A Double-Well Potential Energy Function Resolving Bistable Ambiguity Figures by Neural Networks 111-426
H. Szu, F. Lu

Performances of a Perceptron with Slope Learning Backpropagation Algorithm 111-432
E. Mallard, D. Guerot

Tangent Hyperplanes and Subgoals as a Means of Controlling Direction in Goal Finding 111-438
A. Fernandes, M. Weir

xxix

TABLE OF CONTENTS continued

Soft-Monotonc Error Functions 111-444
M. Mole, J. Depenau

Methods in Digging Tunnels into the Error Hypersurface 111-450
X L~an

Hardware Supervised Learning for Cellular and Hopfield Neural Networks 111-451
M. Ba/

Speed and Area Improvement by Reduced Operation Backpropagation 111-457
K. Boonyanit, A. Peterson

Fault Tolerant Radial Basis Function Networks 111-463
M. Hegde, P. Bepat, M. Naraghi-Pour

A Neural Network Learning Theory and Modified RBF Net Generation 111-470
A. Roy, R. Miranda

Some Further Results on L 2 Convergence Rate of RBF Networks and Kernel Regression Estimators 111-474
L. Xu, A. Krzyzak

Weighted Neural Network Models for Nonlinear Regression with Fixed and Random Effects 111-478
M. Xlong, P. Wang

Poster

Weight Decay as a Process of Redundancy Reduction 111-486
R. Kamnimura, S. Nakanishi

Dynamic Creation of Hidden Units with Selective Pruning in Backpropagation 111-492
S. Ho, S. Urn

A Self-Pruning Constructive Algorithm Based on Linear-Programming 111-498
F. Mascioli, G. MartinellI

Aspects of Generalization and Pruning 111-504
J. Depenau, M. Moller

Sequential Classificiation By Perceptrons and Application to Net Pruning of Multilayer Perceptron 111-510
K. Huang

Layered Neural Networks with Horizontal Connections Can Reduce the Number of Units 111-516
J. Smid

Principle and Methods of Structure Variation in Feedforward Neural Networks 111-522
X. Liang, S. Xia

Block-Recursive Least Squares Technique for Training Multilayer Perceptrons 111-528
R. Paris, E DiClaudio, G. Orandi

Batch Parallel Training of Simple Recurrent Neural Networks 111-533
B. Kalman, P. McCann

Learning the Sigmold Slopes to Increase the Convergence Speed of the Multilayer Perceptron 111-539
E. Maillard, D. Guedot

The Constraint Based Decomposition Training Architecture 111-545
S. Draghici

xxx

continued TABLE OF CONTENTS

Integration of On-Uine and Batch Versions of the EBP Algorithm and Its Three Cost-Effective 111-555
Approximate Implementations
. Li, . Saikar

Backpropagation Algorithm Modification Reducing Number of Local Minima and Convergence lime 111-561
C. Kwnddk

Condition Number as a Convergence Indicator in Backpropagation 111-568
J. Shah, C. Poon

Speeding Up fth Training Process of the MLNN by Optimizing the Hidden Layers' Outputs 111-574
. ft.i, M. Zhao, X Ding

Investigating the GAI3ack Propagation Trade-Off in the GANNet Algorithm 111-580
. Whfte

Restart Concept for Error Backpropagation with Gains Algorithm 111-586
KC Byun, S. Bang

Learning Algorithm for a Piecewise Linear Neural Network 111-591
M Brady

Pattern Recognition Using a Faster New Algorithm for Training Feed-Forward Neural Networks 111-601
M. Mastdanl

Computational Experience with a Quasi Newton Based Training of the Feedforward Neural Network 111-607
L Achenle

Neural Networks Sharing Knowledge and Experience 111-613
S. Zein-Saba tto, W Hwang

An ART2-BP Supervised Neural Net 111-619
W Tsai, H. Tai, A. Reynolds

On a Unified Geometrical Interpretation of Muitilayer Feedforward Networks Part 1: 111-625
The Interrtation
H. Lee, P. Hala

On a Unified Geometrical Interpretation of Multilayer Feedforward Networks Part 11: 111-631
Quantifying Mapping Nonlinearity
H. Lee, P. Halefa

Unbounded Reinforcement for the Associative Reward-Penalty Algorithm 111-637
R. Neville, T. Stonham

Fuzzy Encoding as a Preprocessing Method for Artificial Neural Networks 11-64
N. Pizr, . Sowial

Improving Generalization with Symmetry Constraints 111-649
W Joerdng, N. Cardell, Y. Li

The Error Absorption for Fitting an Under-fitting (Skeleton) Net 111-655
Z Yang

Active Data Selection and Subsequent Revision for Sequential Learning with Neural Networks 111-661
H. Yamakawa, D. Masurnoto, T. Kkmoto, S. Nagata

Input Data, Transformation for Better Pattern Classifications with Fewer Neurons 111-667
. 0MA 0. Wlantow

lxxi

TABLE OF CONTENTS continued-

Fundamentals of the Bootstrap Based Analysis of Neural Network's Accuracy 111-673
A Katz, S. KAMz N. Low@

A Study of the Effect and Effectiveness of Noise Infection During Neural Network Training 111-679
A Abusa wase C. Owen

Minimum Information Principle: Improving Generalization Performance by Information Minimization 111680
R. Kamlmura, T. Takagi, S. Nakanishi

Improved Learning of Baclcpropagation Neural Networks Using an Alternative Data Clustering Algorithm 111M8
1. Dvomrhk~ H. Doyle

Analysis of Unscaled Contributions in Cross Connected Networks 111-690
T Shultz, Y. Osia- Taken

Genetic Algorithm Approach to Fault-Tolerant Neural Networks Design 111496
H. Chu, C. Chow, M. Naraghi-Pour, MA. Hegde

An Analysis on the Learning Rule in the Complex Back-Propagation Algorithm 111-702
T. Nitta

Identification of Finite State Automata in Simple Recurrent Networks 111-708
J. Ludk IL Mlete, E van dor Poel

Estimating Lipschitz Constants of Feedforward Neural Networks 111-714
Z Tang G. Koehler

Some Remarks About Boundary Creation by Muiti-Layer Perceptrons 111-720
X Welpg M. Swihod

Performance of Neural Network Loop 111-726
V. Zhang

A Blnazry-lnput Supervised Neural Unit that Forms Input Dependent Higher-order Synaptic Correlations 111-730
M. Guler, E. Sahin

Adaptive Tesselltion CMAC 111-736
J. Choy

A Bias Architecture with Rank-Expending Algorithm for Neural Networks Supervised, Learning Problem 111-742
J. Luo

Elgenvalue Acceleration Technique for Back Propagation Artificial Neural Networks 111-748
B. Neserhadf, S. Praead

Foward Propagation (FP-1) Algorithm in Multisayer Feedforward Network 111-753
J. Zhan, F. UI

Speculations on the Evolution of Learning 111-760
J. Alexander

Effects. of Activation Functions In Multilayer Neural Network for Noisy Pattern Classification 111-767
K Hare K Nakayama

Xxxii

continued TABLE OF CONTENTS

VOLUME 4

Associative Memory

oral

A Perspective of Associative Learning: Computational Models and Some Applications for Color IV-3
Vison Models
S. Lsu, S. Nakauchi, H. Szu

Using Old Memories to Store New Ones IV-9
0. Bakktas J. Levy

The Sector Conditions and the Stability of Discrete Hopflield Networks IV-15
D. Sbwbaro

A Computatlonally Verifiable Test for the Complete Recall of All Training Pairs for the 6AM IV-20
Y. Leung, Z. Xu, X. He, B. Chen

Feature Based Contraction of Sparse Holographic Associative Memory IV-26
J. Khan, D. Yun

Adaptive Flteuing Network for Associative Memory Data Preprocessing IV-34
J. DeoWit

Improving Adaptive Logic Networks: Initialization and Confidence IV-39
W MaUnsA N. MNIneon

Multiple Targets Discrimination Using Neural Networks Based Clustering Algorthms IV-45
M. Km

An Error-Correcting Learning Algorithm Using Double Hysteresis Thresholds for Associative Memory IV-51
K Nakayama, K. Nishimura

Further Cros Talk Reduction of Associative Memory Using Functional Property of Cross Talk IV-57
Y. Ku'nsag

Information Theory Analysis of Hebblan-Type Associative Memories (HAMs) IV-64
0. Yu, T. Kie

An Attractor Neural Network Model of Associative Memory at Low Spike Rates with Fast IV-70
Inhibitory Interneurons
A BukIt

Minimizing the Number of Weights for Prescribed Performance in Hebblan-Type Associative Memories IV-76
0 Yu, T. Ke

PoW

A Continuous Input Heteroassoclative Neural Network Model for Perfect Recall IV-85
A Haque, J. Chung

A Class of Auto-Assoclative Neural Networks with Low Connectivity IV-91
D. Vogel

The Predictive RAAM: A RAAM that Can Learn to Distinguish Sequences from a Continuous Input Stream IV-97
K HeW, M. Brngmann, D. Langan, M. Niccolai, W. Nowack

xxxiii

TABLE OF CONTENTS continued

Parahled Hardware Annealing for Optimal Solutions in Multi-Level Recursive Neural Networks IV-104
a Sheu, S. Bang J. Chang

Optimization of Presentation Order in Networks of Goal Seeking Neurons IV-110
W. Madrln N. Alnson

A Network Paradign to Detect Similarities in a Data Base Concerning Industrial Health Survey IV-1 16
M. Rizzo, M. Facy, A Emond

A Model of Neural Electromagnetic Fields IV-125
H. Liu, Y. Kakazu

Unsupervised Learning
Orat

Distributed Recognition Codes and Catastrophic Forgetting IV-133
G. Carpenter

Concurrent Learning Algorithm Trends IV-143
R. Jannarone

Self-Organization of Temporal Pattern Generation Based on Anticipation IV-149
D. Wang, B. Yuwono

Representation of Temporal Order with the Sequential Memory with ART Neural Network IV-155
J. Vogh

Sequence Prediction and Cognitive Mapping by a Biologically Plausible Neural Network IV.164
C. Prepeic, W Levy

An Unsupervised Network for Speech Recognition IV-170
C. Lee, C. Chung

Disanbiguation of Pattern Sequences with Recurrent Networks IV-176
A. Mha, G. Barrows, W. Levy

On the Stability ot Receptivity-Based Adaptive Synaptogenesis IV-182
H. ODer, W. Levy

The Median Leaming Algorithm for Robust Unsupervised Learning IV-188
D. DeSleno

Assemblies of Neural Elements with Adaptively Expanding Structure IV-194
S. Katz, A. Katz

Unsupervised Learning with the Soft-Means Algorithm IV-200
C. Thornton

Local Stochastic Competition for Vector Quantification of Images IV-205
M. Graa, A. D'Anjou, A. Gonzaez, F. Aizur, M. CotIre/l

A Neural Architecture for 3-D Object Recognition from Multiple 2-D Views IV-211
G. Brad*, S. Groseberg

Using the Binary Diamond Neural Network In the Classification of Satellite Images IV-220
. SaWu

xxxiv

continued TABLE OF CONTENTS

Pow

Analysis of Long-Term Behavioral Dynamics of an Unsupervised Pattern Classification System IV-223
M. Sqj'wh, R. Athlnarayanan

Redundancy Reduction by Unsupervised Boltzmann Machines IV-229
G. Deco, L. Parra

Weight Shifting Technique for Recovering Faulty 80ff-Organizing Neural Networks IV-234
C. Khunasaraphan, T. Tanpraseit C. Lursinsap

Generalized ART2 Algorithms IV-240
M. Snofrason, A. Caglayan

Fuzzy ART and Morphological Image Processeing IV-246
J. Shatpe, N. Sungar, K. Johnson

An Algorithmic Implementation of Sequential Memory with ART IV-252
J. Vagh

Neural Networks in the Former Soviet Union IV-260
0. Wunsch

Self-Organizing Surfaces and Volumes - An Extension of the Self-Organizing Map lV-269
A. Zell H. Bayvr, H. Baukweht

Biological Vision

Why Bright Kanizsa Squares Look Closer' Consistency of Segmentations and Surfaces in 3-D Vision IV-277
S. Groaaberg

Rules fo the Cortical Map of Ocular Dominance and Orientation Columns IV-284
S. Olson, S. Grouberg

A Simple Cel Model with Multiple Spatial Frequency Selectivity and Linear/Non-Linear Response IV-290

H. Nmmamann, L Pessoa

A IM-Scale Network Model of Brightness Perception IV-299
H. Ncumnn E MkrgOl L. Pessoa

Procssin Ultrasound and Night-Vision Images by the Boundary Contour - Feature Contour Model IV-307
of Biologicl Vision
6. NAbW, U. Abeyrtne, W Krebs

A Neural Architecture that Develops a Chromatic Visual Model for Perceptual Segmentation and IV-31 4
Recognition
F Pemnas, J. Ldpez Coronado

The EDANN Concwept A Modular Artificial Neural Network Model for Biological Vision and Image IV-320

AE Van Hu, G. Otban

Human Visual Syshem Neural Approach to Image Compression IV-321
R. Zw"~, F. Pacusgglo, 0. Angulla

XXXV

TABLE OF CONTENTS continued

*Tallored" Neural Networks to Improve Image Classification IV-327
B. Lemer, H. Guterman, I. Dinstein, Y. Romem

Receptive Fields by Implicit Partial Differentiation: Bifurcations in a CAVLI Model IV-332
F. McFadden, H. Szu

Parallel Processing in the Visuomotor System of Amphibians IV-340
U. Dicke, G. Roth

Circuits and System Neuroscience
oral

Temporal Analysis for Neurobiological Signal Processing IV-349
J. Dayhoff

Temporal Analysis of Spike Patterns in Monkeys and Artificial Neural Networks IV-353
C. Koch

Neural Networks for Learning Space Trajectories Based on the Quasi-Newton Method IV-354
0. Chen, B. Sheu

Weber-Fechner Transduction: A Logarithmic Compressive Nonlinearity is a Generic Property of IV-360
Integrate and Fire Neurons
D. Tal, E. Schwartz

A Neuron Model with Variable Ion Concentrations IV-368
A. Grunewald

Interdisciplinary Strategies for Analyzing Data Recorded from Biological and Simulated Ensembles IV-373
of Neurons
L Espinosa, H. Gonzalez, J. Quiza, J. Gonzalez, J. Gomez, R. Arroyo, F. Santamania

Neuronal Group Selection Theory: Steps Towards a Hippocampal Model IV-379
J. Quiza, I. Espinosa

A New Algorithm for Unsupervised Classification: Expectant Hebbian Learning IV-385
T. Vold

Generation Mechanism of Integrative Potential in Axon Hillock of a Single Neuron and Noise IV-391
Feedback Pulse Coding
J. Shin

Neural Phase-Locked Loop IV-397
J. Jang

Learning to Generate a Sinewave with an Autonomous Recurrent Two-Neuron NetworK iV-403
J. Pdncipe, J. Kuo

The Role of Short Term Memory for Temporal Processing with Neural Networks IV-408
J. Principe

Links to Cognitive Science & Artificial Intelligence
Oral

Neural Network Connections to Expert Systems IV-411
L Medaker

xxxvi

continued TABLE OF CONTENTS

A Neural Network for Analogical Reasoning IV-418
Y. se/u

Extracting Shapes and Segmenting Images Using Constrained Networks IV-424
R. Kane, M. Milgram

Interactive Knowledge Discovery Through Self-Organising Feature Maps IV-430
X. Liu, G. Cheng, J. Wu

Improving Learning Abilities of a Coupled Connexionist-Rules Based System IV-435
L. Condamin, P. Naim, C. Nottola

A Hybrid System for Case-Based Reasoning IV-442
B. Yao, Y. He

A Model of Recurrent Neural Networks that Learn State-Transitions of Finite State Transducers IV-447
I. Node

Cognitive and Semantic Interpretation of a NN Classifier Using Prototypes IV-453
C. Decaestecker, T. Van de Merckt

Use of a Neural Network to Diagnose Student Errors in an Intelligent Tutoring System IV-459
U. Ziegler

Evolutionary Structuring of Max-Min Propagation Net IV-465
P. Estdvez, Y. Okabe

Neural Network Automata IV-470
C. Chen, V. Honavar

The Generation of the Logic Neural Network for Decision Making (Test Strategy Planning) IV-478
Z. Yang

Adaptive Fuzzy Cognitive Maps in Virtual Worlds IV-484
J. Dickerson, B. Kosko

Speech and Language
oral

Computational Psychology Approach to Human Facial Language Communication to Robots IV-495
J. Ding

Word Spotting with the Gamma Neural Model IV-502
J. Pdncipe, L Turner

Dependency Analysis: Assessing the Functional Relationships Among Processing Units in Artificial IV-506
Neural Networks
S. Small, T. Nguyen

Neural Network Code Book Search for Digital Speech Synthesis IV-512
M. Bodruzzamen, X. U, H. Szu

Concept Prediction for Spontaneous Speech Retranscription IV-518
P. Gallinar, A. Stevenin

Recognizing Norwegian Vowels Using Neural Network IV-524
A. Eds, T. Undn

xxxvii

TABLE OF CONTENTS continued

Learning Incremental Case Assignment Based on Modular Connectionist Knowledge Sources IV-538
S. Wermter, U. Peters

Self-Organilsing Maps In Synthetic Speech IV-544
A Cohen, M. Bishop

Integrating Symbolic and Parallel Distributed Processes in a Jigsaw Neural Network IV-550
R. Pozarlik

Spoken Word Recognition Using Adder Neurons and Ear Filte Model IV-556
J. Mrsic-Flogel, J. Shaw

Person Identification by Neural Networks and S, eech Processing IV-562
J. Wroldsen, A. Wold

Speaker Independent Digit Recognition with Reduced Representations for Nerual Network VLSI Chip IV-568
K Km, L Han, J. Lee, H. Lee

Poster

Intelligent Judge Neural Network for Speaker Independent Isolated Word Recognition IV-577
S. Lee, D. 10m, K. Hwang

Dynamic Adaptation to Speaking Rate IV-583
M. Nguyen, G. Cottrell

Recognition of CV Segments Using Fuzzy Neural Networks IV-589
B. Yegnanarayana, S. Prakash, C. Sekhar

A Speaker Recognition System Based on Auditory Model IV-595
F. Sun, X. Jiang, Z. Gong, H. Chi

Adequacy of Neural Predictions for Speaker Identification IV-601
T. Artdres, P. Gallinaeu

The Cochlear Nucleus and Primary Cortex as a Sequence of Distributed Neural Filters in Phoneme IV-607
Perception
J. Antrobus, C. Tarshish, S. Molholm, M. Sawicld, J. Fookson

Behavioral and Electrophysiological Correlates of Reading Processes IV-613
M. Niznildewlcz, N. Squires

A Neural Network for Speech Encryption and Filtering IV-620
J. Rouat, F. He, D. Audet

Phoneme Learning as a Feature Selection Process IV-626
G. Scheler

Learning Image Motion Fields of 3D Objects in Motion IV-632
R. Cunningham, A. Waxman

Cognitive Neuroscience
Oral

Primacy Effects in Sequential Task Performance IV-641
R. Bapi, 0. Levine

Xxxviii

continued TABLE OF CONTENTS

Medium and Long-Term Memory in Context Processing: A Network Model of Cortex- IV-647
Hippocampus Relations
J. Contras-V/da, J. Banquet

Synchronized Neural Activities: A Mechanism for Perceptual Framing IV-655
A. Grunewald, S. Grssberg

Unification of Hippocampal Function via Computational Considerations IV-661
W. Levy

Neural Scale Invariance: An Integrative Model with Implications for Neuropathology IV-667
J. Sutton, H. Breiter

Neurodynamics and Chaos
Oral

Multi-Resolution Analyses of Fuzzy Membership Functions by Means of Chaotic Neural Networks IV-675
H. Szu, J. Gacia, L. Zadeh, C. Hsu, J. DeWitte, Jr., M. Zaghloul

CMOS Circuit Implementation to Control Chaotic Neuron IV-684
M. Hsu, M. Zaghloul, H. Szu

Switched-Capacitor Chaotic Neural Networks for Traveling Salesman Problem IV-690
Y. Horo, K. Suyarna, A. Dec, K. Aihara

Appearance of Devil's Staircase in Intracellular Calcium Spikes in Response to a Pulsatile IV-697
Release of Neurotransmitters from the Brain
T. Chay

Bifurcations and Chaos In Pulsing Si Neurons IV-704
A. Perera, S. Betarbet, S. Matsik

Developing Multiple Attractors in a Recurrent Neural Network IV-710
P. Palmadesso, J. Dayhoff, F. Richards

Chaos as a Network Mechanism for Endogenous Generation of Variability in Behavior IV-716
J. Flala, S. Olson

Learning the Dynamical Invarants of Chaotic Time Series by Recurrent Neural Networks IV-722
G. Deco, B. Schurmann

Decision Boundaries of the Complex Valued Neural Networks IV-727
T. Nitta

Discrete Chaotic Processes and Recurrent Neural Networks IV-733
E. Cowln, A. Logar, W Oldham

Percolation on a Feed-Forward Network IV-739
R. Deaton, P. Shah, M. Batz

Locally Excitatory Globally Inhibitory Oscillator Networks IV-745
D. Wang, S. Terman

Dynamics of an Integrate-and-Fire Neuron Without Dendritic Potential Reset IV-751
P. Breeuloff

xxxix

TABLE OF CONTENTS continued

PSW

VLSI Neuromorphs Exhibit Wide-Range Dynamics IV-759
J. Elias, D. Northmore

Behavior of the Complex Numbered Back-Propagation Network Which Has Learned Similar IV-765
Transformation
T. Nitta

Globally Diagonal Lyapunov Functions for Descrete - Time Analogy Neural Networks IV-771
L. Jin, P. Niklfonk M. Gupta

Dynamical VLSI Neuromorphs IV-777
D. Northmore, J. Elias

Conscious Control: From Freud to the Frontal Lobe IV-783
H. Del Nero, 1.. Macel, A. Maranca, J. Piqueira

Networks of Coup~rig Oacilators: The Case for a 4Math* Psychiatry IV-789
H. Del Nero, L. Maciei

Probabilities of Transitions Between Stable States of Neural Networks IV-795
V. Chinarov

Phase Transitions in Neurodynamics IV-801
R. Gordon

Chaos, Adaptation and Neural Networks IV-807
J. Shine

Neural Feature Extraction / Compression for Odentation-Invariant Underwater Target Recognition IV-808
Using Muiti-Sparse-Sensors
C. Tan, Y. Ma

Index IV-815

xl

Neurocontrol and Robotics
Session Chairs: Andrew Barto

Kaveh Ashenayi

ORAL PRESENTATIONS

Neural Networks for the Intelligent Control of

Dynamical Systems

Kumpati S. Narendra

Center for Systems Science
Yale University

New Haven, CT 06520

1 Introduction

A control system is one in which some physical quantities are maintained more or less accurately
around prescribed values. One of the fundamental contributions of control theory to science is

the concept of feedback whose essence is the use of the error between the desired output and
the actual output to control the system. Even very advanced control systems essentially use
the same concept, but in such systems precisely what information is to be collected and how
it is to be used in the control context is generally not evident. Examples of extremely efficient

control systems abound in the biological world. The ease with which such systems perform the
tasks of processing sensory information and interacting with uncertain environments has, for a

long time, inspired engineers to attempt the design of artificial systems with similar capabilities.

Most practical systems have multiple inputs and multiple outputs and the coupling that exists

between them makes their control more difficult than that of single variable systems. External
disturbances and parameter variations add to this difficulty and the problem of control becomes

truly formidable when the system is nonlinear. Our objective in this paper is to describe a

methodology for the fast, accurate, and stable control of nonlinear multivariable dynamical
systems using neural networks.

An intelligent control system can be broadly defined as one which can operate rapidly and

accurately in many environments. Hence a prerequisite for the design of intelligent controllers

is that techniques be known for the design of effective controllers in each of the environments

that the system might encounter. In this paper we consider systems whose characteristics

are nonlinear and which have to operate satisfactorily in the presence of sudden variations in

parameters, input disturbances and reference trajectories. Hence, we first describe briefly how

neural controllers can be trained to accomplish each of the above objectives.

The training of a neural controller for any new situation is a slow process. Since our objec-

11-3

tive is to obtain fast and accurate response in all the different situations encountered, it seems

reasonable to store the parameters of the neural networks trained for different control situations

and use the specific control input that is called for at any moment. For example, if the system

encounters a finite number of classes of disturbances, the parameters of the corresponding neural

controller can be stored for each class. At any given moment, if the class to which the distur-
bance belongs can be recognized, the corresponding controller can be used to obtain fast and

accurate response. The same procedure can also be used for different reference inputs, parameter

variations and noise. Since neural networks perform well as pattern recognizers, expert systems,

identifiers and controllers, they are ideally suited to deal with all the problems described thus

far.

Due to space limitations, only the principal features of the method are included in this paper.

The theoretical questions which are currently under investigation are also briefly outlined. For
a more detailed treatment of the various ideas contained here, the reader is referred to [I].

2 Adaptive Control

Before proceeding to consider intelligent control we have to deal with the problem of adaptive

control i.e., the problem of controlling a plant whose input-output characteristics are not com-

pletely known. The adaptive control problem of a discrete time dynamical system may be stated
as follows: The system is described by the equations

z(k + 1) = f[x(k), u(k)] (1)

y(k) = h(k)] (2)

where the functions f: R' x 1Z - 7?, and h: 7R. --+ 1Z belong to CO and are unknown. It is

further assumed that the state of the system cannot be measured. The objective is to determine

a bounded control input u(k) such that lim-..o II yd(k) - y(k) 11= 0 where yd(k) is a desired

output.

There is a vast literature on the subject of linear adaptive control [2], but the above problem

cannot be solved using such methods because the plant is nonlinear. We, however, attempt to

use the indirect method, in which the plant is first identified using an identification model and

the latter in turn is used to determine the optimal controller.

2.1 Input-Output Representation

In [3, 4] it has been rigorously shown that under certain conditions the plant (1-2) can be

represented by an equation of the form

II-4

y(k + 1) = F[y(k), y(k - I),-.., (k- -n+ 1), u(k),,,(k - I),- .. ,,(k -n + 1)]

where F is a general nonlinear function. Neural networks are ideally suited to approximate F

and hence we set up a neural network model having the form

0(k + 1) = NF[V(k), y(k - I),- .,y(k - n + 1), u(k), u(k - I),-., u(k - n + 1)]

The parameters of the neural network NF are updated using the error el(k) = 0(k) - y(k).

2.2 Design of the Controller

Once a reasonably good model of the plant is known, we can attempt to control the plant. It has
been shown in [4] that a controller G exists whose output u(k) can be expressed as a nonlinear

function of the inputs y(k), y(k-1),..., y(k - n + 1), u(k), u(k - 1), ... , u(k - n + 1) and a reference

input r(k) (defined as the desired output y(k + d)) i.e.,

u(k) = G[y(k), y(k- I),..., y(k- n + 1), u(k), u(k - 1), ... , u(k- n + 1), r(k)]

Once again we attempt to approximate G using a neural network NG. Since the only observed
error is e0(k) = y(k) - yd(k), and the plant lies between NG and e(k), the error has to be
backpropagated through the model of the plant.

Simulations carried out during the past four years have clearly revealed that the above
method performs very well in the adaptive control of a very large class of nonlinear systems.The

mathematical requirements for the nonlinear identifier and nonlinear controller to exist have also

been investigated in detail. A sufficient condition for this is that the linearized system around
the equilibrium state can be controlled adaptively. Since this is true of almost all systems in

industry, the outlined procedure has wide applicability.

3 Robust Control

As mentioned earlier, an intelligent controller is one which can operate satisfactorily under a
variety of conditions. In this section we consider the extension of the concepts developed earlier

to situations where external and internal perturbations are present.

In [51, the concept of indirect adaptive control was extended to cases where external distur-
bances are present at the input. The disturbance v(k) was assumed to be bounded and governed

by a difference equation of the form v(k + 1) = q[v(k)]. It was shown that for a large class of
systems, the effect of the disturbance at the output could be compensated by increasing the

dimensionality of the controller.

11-5

In [6], the concepts of adaptation and disturbance rejection were extended to multivariable

systems. The success of the adaptive methods also increased the search for faster and more

accurate control. A few years ago this resulted in the concept of using multiple models and

switching between them and tuning the appropriate controller. Such an approach proved effective

in the presence of external disturbances as well as internal parameter variations.

4 Intelligent Control

The situations in which a controller is expected to perform satisfactorily can be broadly classified

as (i) Anticipated Situations and (ii) Unanticipated Situations.

4.1 Anticipated Situations

This category includes those situations which are anticipated and for which adaptive solutions

have been determined in the past. These can include disturbances, inputs and parameter vari-

ations which we shall jointly refer to as perturbations. Though, in theory, these perturbations

can assume arbitrary values, such is not generally the case in real systems. The system is more

likely to have perturbations belonging to a finite number of classes. For instance, if parameters

of a system can vary due to faults within the system, their values are generally clustered, where

each duster corresponds to one type of fault. If the fault can be detected, the initial value of

an adaptive controller can be chosen to correspond to a point within the duster so that fast

and accurate response can be obtained. In a typical case, the fault is detected and the neural

networks, used as identifiers and controllers, are initiated at predetermined values and tuned

on-line.

Extensive simulations have been carried out in this area at the Center for Systems Science

at Yale University and a large body of empirical knowledge has been acquired in recent years.

Research is also in progress to determine theoretical conditions for the stability of such nonlinear

switching systems.

One of the principal decisions that have to be made is the classification of the different situ-

ations that can arise, and how the optimal controller parameters are to be stored and retrieved.

If the number of distinctly different situations that can arise is small, this is not of major con-

cern. However, when this number is very large, the organization of the information becomes

critical. A hierarchical structure, similar to that used in pattern recognition, can be used for this

purpose. For example, the first level of the hierarchy determines whether an observed change in

output due to a given input is due to parameter variations or external disturbances or changes

in the reference input. The next lower levels of the hierarchy would then correspond to regions

in the parameter spaces where the perturbations lie. Specific parameter values are located at

the next level. In all cases, pattern recognition (or identification using an appropriate model)

11-6

can be used to detect the situation that exists and choose the appropriate controller.

4.2 Unanticipated Situations

When none of the existing models approximates the plant to within a desired tolerance, the

situation must be classified as an unanticipated one. Identification, adaptation, learning all
correspond to unanticipated situations where the approximate parameter values are not known.
Once the process is completed and the parameters of the identifier and controller have reached
stable values, the latter can be included in the class of anticipated situations.

When unanticipated (or new) situations arise and adaptation or learning is used, performance
in the form of speed, accuracy, stability and robustness become important. A new approach,
based on the use of multiple models and switching and tuning, has evolved in recent years for
improving performance. A a set of models is used to identify the unknown plant and the one
which corresponds to the smallest value of an error function is chosen at every instant. The
controller corresponding to that model is connected to the plant and both identification model
and controller are tuned on-line.

Multiple models can be used to determine the order of the system, the delay (or relative
degree) of the system, which of several adaptive gains are to be used and which of different
adaptive algorithms are to be preferred. It can also be used to determine the best among a set
of models when the plant is nonlinear or to decide between neural networks of different sizes to
represent a plant. Simulation studies of all the above cases have conclusively shown that the
methodology is a sound one. Indeed, switching and tuning as an abstract concept appears to be
steadily gaining ground among both control theorists and control engineers.

4.3 Stability

It is well known that while simple feedback can improve the performance of a system, it can also

make the system unstable. Since "switching and tuning" is merely another form of feedback,
the possibility of instability exists when we attempt to use it in a practical context to improve
performance. Hence, determination of conditions under which switching and tuning systems axe
asymptotically stable is an extremely important problem. It is worth remembering, that even
though adaptive control had been around since the early 1960s it was only after the stability
problem of adaptive control was resolved in 1980 that adaptive control became a truly viable

one.

11-7

5 Conclusion

Work is currently in progress at Yale in different aspects of adaptive control and intelligent

control of nonlinear systems using neural networks. Theoretical work on the stability of different

types of switching and tuning systems will appear in [7]. The application of methods based

on multiple models to robotics will be reported in [8]. The improvement of performance by
switching between discrete and continuous time controllers is the subject of [9]. Finally, a

detailed discussion of intelligent control methods based on neural networks which address many

of the issues raised in this paper can be found in [1] and [7].

References

[1] K. S. Narendra and S. Mukhopadhyay, "Intelligent Control Using Neural Networks", to
appear in Intelligent Control Systems, M. M. Gupta and N. K. Sinha eds, IEEE Press, 1994.

[2] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ:
Prentice Hall, 1989.

[3] I. J. Leontaritis and S. A. Billings, "Input-output parametric models for non-linear systems,

Part I: deterministic non-linear systems", International Journal of Control, Vol. 41, No. 2,

pp. 303-328, 1985.

[4] A. U. Levin and K. S. Narendra, "Control of Non-linear Dynamical Systems Using Neural
Networks, Part II: Observability and Identification", Tech. Report 9116, Center for Systems

Science, Yale University, New Haven, June 1992.

[5] S. Mukhopadhyay and K. S. Narendra, "Disturbance Rejection in Nonlinear Systems Using

Neural Networks", IEEE Transactions on Neural Networks, Vol. 4, No. 1, January 1992.

[6] K. S. Narendra and S. Mukhopadhyay, "Adaptive Control of Nonlinear Multivariable Systems

Using Neural Networks", to appear in Neural Networks.

[7] K. S. Narendra and J. Balakrishnan, "Intelligent Control Using Switching and Tuning",

Tech. Report 9312, Center for Systems Science, Yale University, New Haven, 1993.

[8] M. K. Ciliz and K. S. Narendra, "Intelligent Control of Robotic Manipulators Using Multiple

Models and Switching", Tech. Report 9313, Center for Systems Science, Yale University, New

Haven, 1993.

[9] H. Yang and K. S. Narendra, " Performance improvement in adaptive control systems by
switching between continuous and discrete time controllers", in preparation, Center for Sys-
tems Science, Yale University, New Haven, 1993.

U-8

Radial Basis Function Networks for Mobile Robot Localisation

Neil W. Townsend Mike J. Brownlow Lionel Tarassenko
Robotics Research Group, Department of Engineering Science,

Oxford University, Oxford, OXI 3PJ, UK

Abstract

The problem of estimating a robot's z - V position in its environment is considered. A neural network
solution is proposed, using an RBF network whose hidden layer is a Kohonen feature map which relies on
(optical) range data for its input. The optimisation of such a network is considered and results from such a
network ae given. It is shown that the network learns to compensate for the discontinuities in input space which
are associated with obstacles within the environment. The network gives an average localisation error which is
less than the diameter of the robot and is therefore acceptable for robot navigation tasks.

1 Introduction

There is an increasing demand for robots which can perform tasks which involve the motion not only of an object

but also of the robot itself. If a robot is to be capable of moving around an environment in a manner which does

not require the room to be specially configured (with beacons or wires under the floor, for example) it is necessary
for the robot to be capable both of 'learning' the environment and of subsequently using this 'knowledge' to
identify its position in the environment (ie to localise itself) and plan its next displacement.

The past decade has seen a resurgence of interest in using neural network techniques for solving
problems which have yet to be completely solved using classical artificial intelligence techniques. The aim of the
work described in this paper is to examine the suitability of neural techniques for solving the robot localisation

problem from data acquired from a time-of-flight optical range finder.
The problem of estimating a robot's position from range scan data is exactly the type of problem

which the Hough transform is capable of solving. However, the Hough transform is computationally expensive

to perform and is restricted to a grid. Indeed, it is even rejected for line fitting to range data because of its

unnecessary computational requirements compared to other methods. The other standard approach is to combine
odometry with some form of beacon recognition and use triangulation to calculate a position estimate from within

a Kalman filter.
Any localiser which relies on any form of odometry, however loosely, loses the ability to calculate an

accurate position estimate if the odometry fails or if it doe not receive an initial position estimate from an outside

source. One of the advantages of the neural network localiser described here is its independence from these

.equirements. We describe a localisation method which is based purely on range data.

2 Range sensing for robot localisation

Range sising has mostly been performed using with sonar devices. Drumheller [4] showed how such Oata could

be used to localise by extracting short line segments from the range data and matching them to a map of known

1-9

straight lines in the environment. His results were remarkably accurate considering the problem of specular
reflections which affects the determination of range using sonar. The main limit of his work, however, is the time
taken to acquire and process a 3600 range scan which means that the method could not be adapted to work in real
time.

Sethi and Yu [151 used a multi-layer feed forward network, derived from an entropy-net solution, to
solve the localisation problem. Their work simulated a robot with a ring of idealised sonar range sensors on its
circumference. They trained a feed forward network to estimate the robot's position (ie to localise) using the
range data from the sensors.

One of the earliest people to use a laser range finder to provide data for mobile robot localisation was
Cox [2]. Using what could be described as the standard localisation cycle, in which odometry is used to estimate
the robot's position and the sensor data is used to improve or correct the estimate, he showed that his sensor
could provide useful data for this task. The estimate improvement was achieved by matching sensor data to
an environment map and using the error in the match to correct the position. Freund and Dierks [5] pursued
the avenue opened up by Cox and improved the accuracy and speed of the localisation by improving the search
strategy of the matching.

Kurz [9] uses the same cycle but in a slightly different manner. He uses a Kalman filter to combine the
odometry readings and the results from a Radial Basis Function (RBF) network. The RBF network is trained to
identify the 'type' of region in the environment in which the robot finds itself, although the definition of 'type' is
left to the training process. This information is used to error correct the position estimate given by the odometry
and the Kalman ifiter. As with all Kalman filter based approaches, this is a time-dependent method (ie it relies on
previous estimates to maintain the accuracy of its current estimate.)

3 The Oxford Infra-Red (I-R) range sensor

The sensor uses a 100% amplitude-modulated light beam at a frequency of 5MHz. The phase shift in the signal
which comes back after reflection from a target surface is used to measure the distance to that target surface (the
range value). The sensor also also generates an error signal which allows an estimate to be made of the variance
for each reading [1]. Figure 1 shows the quality of the scan data for a difficult indoor environment.

4 Selection of input parameters

For this problem it might seem that the choice of input data is obvious: the range readings themselves provide
data from which the robot's position in its environment can be estimated. There are, however, two reasons why
this data is not used as the input vector to the network. Firstly, it is advantageous to limit the dimensionality of
the input vector because it decreases the computational load if the network is implemented serially and because
it is obvious that there is a high degree of redundancy in the information content in adjacent rays. Secondly, if
the network is to be capable of successfully estimating its position in real time it is important for the input vector
to be independent of the orientation of the robot (ie rotation invariant.) To satisfy these constraints a feature set,
calculated from the range data, is chosen to be used as the input vector to the localisation network.

The final issue which it is important to consider when selecting input features for this problem is how
smoothly the feature varies with small displacements of the robot in the x and y directions. For this reason, the
number of visible corners is not a good input because it will undergo zero change for the vast majority of possible
robot displacements but will change significantly for a (relatively) small number of small displacements. Having
considered these factors, we selected the following seven features for out input vector:

" shortest range measurement in the scan
" median range measurement in the scan
* longest range measurement in the scan

II-10

(boo . I d 1 2 3 7 10

A a

Figure 1: Typical range scans taken using the Oxford I-R range scanner On the left is the outline of a room is
superimposed on two scans taken from inside that room. On the right the two scans are shown on their own.

* magnitude of the largest discontinuity in the scan
* magnitude of the second lar'gest discontinuity in the scan
* energy of the scan
* length of the longest wall segment visible to the robot

Intuitively one might expect that this list does contravene in part the requirement for a smoothly varying
input vector. However the results in section 7 will show that the discontinuities in input space do not lead to
severe discontinuities in the (a,, y) output of the trained localisation network.

5 Selection of network

It can be shown, by considering the relation between the walls which make up a room and the path travelled
by the I-R beam used to sense range, that the mathematical relationship between the position of a robot in an
environment and the range scan data or features derived from that data is uninvertible for any environment other
than a simple convex room. Neural networks have been shown to be capable of learning non-linear mappings
with a single layer of hidden units [3, 12], with the additional advantage in this case that they do not need a map of
the environment either to train or operate. Although they are computationally expensive to train, a trained neural
network can provide an (z, y) estimate very quickly, especially if implemented in VLSI parallel hardware.

For this Iocalisation problem, an RBF network was chosen because of its known approximating capa-
bilities and because the activities of the hidden units can be visualised using a Kohonen feature map. Previous
work has shown how effective and useful this can be [13, 14].

An RBF network has two layers; a non-linear layer followed by a linear layer. Each neuron in the first
(non-linear) layer is a basis function whose centre c3 corrspnds to a prototype vector in the input space. For
a network with N inputs the basis functions are often chosen to be N dimensional Gaussians, with associated
covarmance matrices F3 :

= exp (-j(x - c1)T F "(x - ci)) (1)

11-11

H F F •
!

where x is the input vector (7-dimensional in this case.)
The training of the first layer (le the selection of the prototype vectors) can be performed with any

unsupervised clustering algorithm, for example the adaptive K-means procedure [11. We chose Kohonen's

feature map algorithm (7, 81 instead because the topology preservation properties of the feature map allow us
to visualise the clustering in a low-dimensional space (2 or 3-D). With the work described in this paper the K

centres are positioned on a 2-D grid. After training neurons which are neighbours on the grid have centres which
are close in input space in the Euclidean sense. This ensures that if the input changes smoothly over time the
grid position of the Gaussian with the closest centre to the input should also vary smoothly. Once the first layer
is trained the second (linear) layer is trained by estimating the linear relation between the desired results y, (the
(z, y) coordinates here) and the outputs of the first layer and a bias term:

K

y,= E wjij + W (2)
j=1

This can be done using singular value decomposition or least means squared optimisation.

6 Network training

It is important to have sufficient training data for the number of free parameters in the network representation.
For this problem, we found that 10000 points were sufficient: fewer points significantly affected the error rates
whilst more did not significantly decrease the rates. It can also be advantageous to consider the distribution of
training points: a redistribution such that regions of input space which are hard to learn contain more training

points may be beneficial, though we found that it didn't significantly affect Average error rates.
It is also important to have a network of sufficient size for the complexity of the problem being solved.

We found that a square Kohonen map of edge length 19 (ie 361 neurons) was sufficiently close to optimum,

without imposing too heavy a computational burden during training.
During training, a set of training vectors {x) are presented at the input to the feature map. For each

presentation the Euclidean distance, di, between the vector x and each centre cj is calculated:

di = IIx - c 1l (3)

The centre cj. which is closest to x (ie the centre which minimises dj) is found. All the centres inside a

neighbourhood A(centred at cj. are then updated according to the update equation:

cj (t + 1) = cj (t) + a(t)13(t) [x - cj ()] (4)

a(t) is a gain parameter which decays exponentially with time, and whose initial value must lie between 0 and

1. /3(t) is the function which gives the size and type of neighbourhood A(used for training. The neighbourhood
is set to be large initially (so that the topological ordering occurs early during training) and decreases in size
linearly with time until it contains only one unit or centre. Five values have to be set: a(0), the exponential rate
of decay of a(t), the initial size of the neighbourhood .A(0) and its rate of change A and the shape of /3(.).
For this work we chose a standard set: o(0) = 0.5 and K(0) was set to include the entire feature map; -- was
set so that A(had shrunk to contain only one unit once half the training iterations had occurred. The decay of a
was set to ensure that magnitude of the update became negligible at the end of training. /3 was chosen to be a
triangular function decreasing from its maximum value of I at cj. to a small negative value at the edge of the
neighbourhood (ie a linear approximation to the Mexican hat function.)

At the end of training the widths of the Gaussian functions associated with each centre were set using

the algorithm described by Hartman and Keeler [6] in which each basis function is given a covariance matrix
of the form F, = aJ2I where I is the identity matrix and oj is the squared Euclidean distance (in input space)
between ci and the nearest centre in input space. It is probable that the use of more complete covariance matrices
would improve the accuracy of the results calculated using the (trained) network, though the benefit of these
improvements is not likely to be great.

IU-12

Figure 2: (a) The ieft plot shows the change in input for a small change in position. (b) The central plot shows
the localisation error across the room. In both plots black is high, white is low. (c) The plot on the right shows
the error vectors for 1000 test points randomly distributed across the room together with the covariance ellipse
(assuming a Gaussian distribution).

7 Results

In section 4 it was stated that a smoothly varying input vector is preferable to one which varies dramatically
for a small change in desired output. The effect of such discontinuities on the accuracy of the localisation was
examined by calculating the differential of the input vector with respect to a small change in the robot's position
at several thousand grid points across an environment. This measure of discontinuity is shown in figure 2a The
accuracy of the localisation from the trained RBF network is shown in figure 2b. The activities in the Kohonen
feature map enable us to establish how the discontinuities in input space are transformed in the hidden layer of
the RBF network. (In addition we can also follow the trajectories which are generated on the feature map as the
robot moves around its environment.)

From these results it can be seen that the network has learnt to cope with the discontinuities in input
space which surround the internal obstacles (note that the dark areas around the pillars in figure 2a have mostly
gone in figure 2b.) However, in figure 2b, the boundary of the room is dark indicating a large localisation error
in this area.

It could be that there is insufficient training data in these regions or that there is much less correlation
between changes in input vector and changes in the absolute position of the robot in these regions than in the rest
of the room.

To examine the overall accuracy of the network localisation was attempted at 1000 randomly placed test
points in the environment. The average error (/(z - T)2 + (y- 9)2 where z and y are the actual coordinates
and i and P their estimates from the RBF network using the 7-D input vectors derived from the scan recorded
at that position) was calculated for the 1000 results, and the distribution of the x - y errors was approximated
to a Gaussian. The average error was just over 23cm (which is well under the diameter of the robot; the major
dimensions of the room are 4 m by 5m) and the distribution of the points is shown in figure 2c.

8 Future work

It would be advantageous for the estimates which are generated by the network to have an estimate of the error
associated with them. Ideally the (2x2) covariance matrix of the Gaussian probability distribution representing the
positional probability density function of the robot would be calculated for each position estimate. Preliminary
work indicates that the work of MacKay [10] on the computation of error distributions within multi-layer
perceptrons can be extended to calculate error estimates for the output vector of an RBF network.

11-13

With this approach it will then be possible to construct the ideal localisation cycle: the combination of
a Kalman filter with odometry and a neural locali-tion routine will allow for real time calculation of position
estimates which are accurate, both benefiting from Lnne information whilst being freed from any reliance on it.

The final issue which we will address is the combination of such a method with a strategy for learning
the environment in which the robot is to operate. This will remove the restrictions imposed by a once-for-all
learning cycle.

References

[1] M. Brownlow. A time-of-flight optical range sensor for mobile robot navighation. D.Phil. thesis, Oxford,
October 1993.

[2] IJ. Cox. Blanche: Position estimation for an autonomous robot vehicle. In IEEEIRSJ Internation Workshop
on Intelligent Robots and Systems '89, pages 432-439, September 1989.

[31 G. Cybenko. Approximation by supe ;ition of a sigmoidal function. Mathematics of Control, Signals and
Systems, 2(4), 1989.

[4] M. Drumheller. Mobile robot localisation using sonar. IEEE transcripts in Pattern Analysis and Machine
Inteligence. PAI-9(2):325-332, 1987.

[5] E. Freund and F. Dierks. Laser scanner based free navigation of autonomous vehicles. In 1st IFAC
International Workshop on Intelligent Autonomous Vehicles, pages 229-234, April 1993.

[6] E. Hartman and J.D. Keeler. Predicting the future: advantages of semi-local units. Neural Computation, 3,
1992.

[7] T. Kohonen. Self-organised formation of topologically correct feature maps. Biological Cybernetics,
43:59-69, 1982.

[81 T. Kohonen. The self-organising map. IEEE proceedings, 78:1464-1480, 1990.

19] A. Kurz. Building maps based on a learned classification of ultrasonic range data. In 1st IFAC International
Workshop on Intelligent Autonomous Vehicles, pages 193-198, April 1993.

[10] DJ.C. MacKay. Bayesian interpolation. Neural Computation,4(3):415-447, 1992.

111] J. Moody and CJ. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation,
1:281-294, 1989.

[12] J. Park and I.W Sandberg. Universal approximation using radial-basis-functior networks. Neural Compu-
tation, 3:246-257, 1991.

[131 J. Reynolds and L. Tarassenko. Spoken letter recognition with neural networks. International Journal of
Neural Systems, 3(3):219-235, 1992.

[14] S. Roberts and L.Tarassenko. The analysis of the sleep eeg using a multi-layer network with spatial
organisation. lEE Proceedings-F, 139(6):420--425, 1992.

[15] I.K. Sethi and G. Yu. A neural network approach to robot localisation using ultrasonic sensors. In Proceedings
of the 5th IEEE International Symposium on Intelligent Control, pages 513-517, 1990.

11-14

Neural Network Control of a Free-Flying Space Robot

Edward Wilson* Stephen M. Rockt
Stanford University

Aerospace Robotics Laboratory
Stanford, California 94305

ed,rock@sun-valley.stanford.edu

Abstract

Recent developments in neural network control at the Stanford Aerospace Robotics Laboratory are
presented. A "Fully-Connected Architecture" (FCA) is developed for use with backpropagation (BP).
This FCA has functionality beyond that of a layered network, and these capabilities are shown to be
particularly beneficial for control tasks. A complexity control method is successfully used to manage the
extra connections provided, and prevent over-fitting.

Second, a technique that extends BP learning to discontinuous functions is presented and applied
to a difficult on-off thruster control problem. This method has many applications, namely any time a
gradient-based optimization is used for systems with discontinuous functions. The modification to BP is
very small, simply requiring replacement of discontinuities with continuous approximations and injection
of noise on the forward sweep.

The viability of both of these neural network developments is demonstrated by applying them to
a thruster mapping problem characteristic of space robots. Real-world applicability is shown via an
experimental demonstration on a 2-D laboratory model of a free-flying space robot.

1 Introduction

In our research program in neural network control at the Stanford Aerospace Robotics Laboratory, we have
developed some widely-applicable neural network methods during our efforts to apply networks to the control
of a free-flying space robot.

In Section 2, the experimental equipment (robot) we have used in this research is described, and the
particular thruster mapping problem we address is presented. Controlling the on-off thrusters presents a
truly challenging problem for the neural network application. In Section 3, we present a "Fully-Connected
Architecture" (FCA) for use with backpropagation (BP), that has greater functionality than a standard
layered network. Particular benefits of the FCA, some of which are especially useful for control problems,
are outlined. In Section 4, we present a method for using BP learning with systems containing discontinuous
functions, such as the on-off thrusters on our robot. The method is a simple modification to standard BP,
and extends to multiple layers of hard-limiting neurons or the FCA without modification. The experimental
viability of these methods was verified on our robot, and is presented in Section 5.

2 Robot Control Application

The control task that motivated the neural network developments was the control of position and attitude
of a free-flying space robot using on-off thrusters. Control using on-off thrusters is an important problem
for real spacecraft, and the non-linear and adaptive capabilities of neural networks make them attractive for
these problems.

Our experimental equipment consists of a mobile robot that operates in a horizontal plane, using
air-cushion technology to simulate the drag-free and zero-g characteristics of space. This robot, shown
in Figure 1, is a fully self-contained planar laboratory-prototype of a free-flying space robot complete
with on-board gas, thrusters, electrical power, multi-processor computer system, camera, wireless Ether-

net data/communications link, and two cooperating manipulators. It exhibits nearly frictionless motion as
it floats above a granite surface plate on a 50 micron thick cushion of air 11].

*Ph.D. Candidate, Department of Mechanical Engineering. Research partially supported by NASA and AFOSR.
t Associate Professor, Department of Aeronautics and Astronautics.

11-15

Figure 1: Stanford Free-Flying Space Robot

The three degrees of freedom (x, y, 0) of the base are controlled using eight thrusters positioned around
its perimeter, as shown in Figure 2. The thruster mapping task to be performed during each sample period is
to take an input vector of continuous-valued desired forces, [Fzde*, Fydes, T8des, and find the output vector of
discrete-valued (off, on) thruster values, [TI, T2, ..., T8], that minimizes a specified cost function. The on-off
nature of the thrusters substantially complicates the control design, due to their discontinuous nature and
the fact that each thruster simultaneously produces both a net force and torque. The current base control
strategy is shown in Figure 2.

desired truster T3 T2 At every sample period,
position, commanded pattern:

etc. F, Fy, T Ti, T,... T T4 T given: Fxdes, Fyda, Tedea

SZc find: TI, T2,..., Ts
resulting in: Fx., Fyc, Ted

7T 8 to minimize: gbang.IIFdes-Fai

T6 T7

Figure 2: Base Control Strategy, Thruster Mapping Problem Definition

Left: the control strategy treats the thrusters as linear actuators. Right: the on-off thrusters and
coupling between forces and torque make this problem difficult. The thruster mapper must find
the thruster pattern producing a force dosest to that requested by the base control module.

In this paper, we focus on developing neural networks for the "Thruster Mapper" component. A sub-
sequent step, made possible by the developments in Section 4, is to merge the base controller and thruster
mapper design into a single component, improving performance.

Three different techniqueb used to solve the thruster mapping problem have been applied as research
progressed. They are summarized in Figure 3. The first implementation used an exhaustive search at each
sample period to find the thruster pattern minimizing the force error vector [1). Symmetries are used to

1-16

SEARCH Fa. TF(-TToo)
(optimal solu tion)

Soptimal mapping

DITECT Fdes: desired force, [Fides, Fydes, Tdes]

TRAINING * error Fact: actual force, [Fxact, Fyact, TsactI
T: thruster values, [Ti, T2, ... , T81]
Topt: T that minimizes the cost function
error: signal used to train network

INDIRECT Fds
TRAINING

Figure 3: Thruster Mapping Methods

reduce the search space, but this method relies on testing every possible thruster pattern to find the one
with minimum error. In the second method, a neural network was trained to emulate the optimal mapping
produced by the exhaustive search [2]. This work led to the Fully Connected Architecture, presented in
Section 3. The third method used a neural network trained to find the optimal solution when presented
with a model of the plant, but no optimal teacher. This required back-propagation of error through the
discontinuous thrusters, which motivated development of the noise injection method presented in Section 4.

3 Fully-Connected Architecture

3.1 Introduction

We develop a general architecture for feed-forward neural networks that can be trained using backpropagation
[3 [4]. This "Fully-Connected Architecture" refers to the structure shown in Figure 4, which was first
presented by Werbos [41 [5]. The network's neurons are considered to be ordered, beginning with the first
input, ending with the last output, and having hidden units in between, perhaps interspersed among input or
output units. Note that there is no longer a concept of layers. Backpropagation restricts information flow to
one direction only, so to get maximum interconnections, each neuron takes inputs from all lower-numbered
neurons and sends outputs to all higher-numbered neurons.

1 2 3 j -4p N-1 N W(ij) is weight connectingJ P Inp -4neuron i to neuron j
Layered [] no connection (W(ij) = O)Fee Fr'wad euivlen sigmo1,4s on outputs of _0

V..d-lorward quhAW hidden neomos only 0 connections in 3-5-4 layered network
Network ,3 additional connections with FCA

(I 3-4 (D Feedthrough weights - direct, linear

-f-}- connection from input to output

npts ---------- Outputs (Flexibility- subsumes one, two,

o y,.o-" "cl"----- both RCA - - ... hidden layered topologies
eor and laye-d () Output croastalk - communication

Natwak - FCAonly~ ~among outputs
MCA)~ ~~~ (V V2 V1 N-- F nyinput crosstalk - communication

oTs Outputs among inputs

Figure 4: Extra connections available with FCA

This general feed-forward architecture subsumes more-familiar single or double-hidden-layer ar-
chitectures. Here we show that it has all the connections of a single-hidden-layer network, and
some extras as well.

11-17

3.2 Comparison with layered network

The right side of Figure 4 highlights the benefits of the extra connections that are unused in a single-layered
network. The question is whether the enhanced functionality outweighs the increased computational load
and susceptibility to over-fitting. This must be decided for each application.

Advantages of the FCA:

" The Feed-through segment is a matrix that implements a direct, linear connection from inputs to
outputs (provided sigmoids are used only on hidden units). This provides fast initial learning and
allows direct pre-programming of a linear solution calculated by some other method. This is particularly
important for control applications, where there is a large body of linear control knowledge that can be
drawn upon to provide a good starting point. The FCA provides for seamless integration of linear and
non-linear components

" Flexibility: since the FCA subsumes any number of hidden layers, when combined with a systematic
weight pruning procedure, the network topology (defined by the remaining connections) is set in a
systematic manner based on gradient descent.

" Cross-talk among inputs and outputs may be valuable, i.e. one output may excite or inhibit another
output, a feature unavailable with layered networks.

Disadvantages:

" Increased complexity: number of weights increases quadratically with the number of hidden units,
versus linearly for a layered architecture. The extra weights increase susceptibility to over-fitting.

" Slower hardware implementation: updating must be one neuron at a time, versus one layer at a time
for layered networks.

1 " .--- Layered, random i.c.

- FCA, random i.c.

. FCA,apriori info

07

id 1010' c
0 2. 3

epochs

Figure 5: Training History, FCA versus Layered Networks

Figure 5 compares learning histories (thruster mapping error on the training set) for the thruster mapping
problem outlined in the previous section. The networks, each with 5 hidden neurons, were trained to emulate

the optimal mapping (minimizing force error). The figure represents the average performance for ten different
sets of initial weights.

Looking at the initial learning performance, the FCA network performs better, due to the weight gradient
being instantly available via the direct connection of inputs to outputs. As expected, the FCA network with

the a priori linear solution built in provides the best early performance.

In the middle region, between 100 and 1000 epochs, the layered performance surpasses that of the FCA,
due to the reduced number of parameters, and simplified search space. However, after 1000 epochs, the

greater functionality of the FCA network comes into play and performance surpasses that of the layered

network.

11-18

3.3 Complexity control

The example of Section 3.2 has shown the potential value of the extra connections associated with a fully-
connected neural network. However, the high number of parameters, while increasing functionality, makes
the network susceptible to over-fitting. Often during training, performance on test and training sets will
improve until a certain point, and then test performance will worsen as the network stops generalizing, and
begins to fit the particular data set, as seen in Figure 6. Use of a "sufficiently-large" training set can reduce
over-fitting problems, but this may not be practical due to a lack of data, or an adaptation speed requirement
that requires a faster solution than this brute-force approach.

Many systematic network pruning techniques have been proposed. One we have used successfully involves
the addition of a complexity cost term to the total cost function, as first proposed by Weigend and Rumelhart
in (6]. Each weight contributes A- (w,2/(w 2 + 1)) to the total cost function, where w, = w/wo is a scaled value
of the weight. The scale factor, wo, effectively sets the cutoff point for weights, and A selects the relative
importance of complexity cost versus performance cost.

I 0.2
- complexity control

0.18 - - - no complexity control

0.5- Cost01

'0.14
0.5 _0l2 ',

I test set

* 0 S01

dCostld(W/W0) 0.1 training set

-0.5 0.08 'Training set

-5 0 5 0 2000 4000 6000
Scaled Weight Value [w/wO] epochs

Figure 6: Complexity Control Function, Effect on Network Performance

The complexity control function and training histories for a fully-connected network with 5 hidden neurons
are plotted in Figure 6. Without complexity control, over-fitting becomes clear at around the 4000th epoch,
as the performance on the test set worsens, while performance on the training set improves. With the
addition of the complexity term, over-fitting is controlled, as performance histories on test and training sets
no longer diverge.

4 Backpropagation for Discontinuous Functions

4.1 Introduction

Optimization methods that us gradient information often converge much faster than those that do not. Use
of the backpropagation algorithm to get this gradient information for training neural networks has made
them useful in many applications; however, BP's requirement of continuous differentiability, not only for the
network itself, but for anything that the error is backpropagated through (e.g. the plant model in a control
problem), limits its applicability.

This is a significant limitation since there are many applications where discrete-valued states arise. For
example: on-off thrusters commonly used in spacecraft; other systems with discrete-valued inputs and out-
puts; and NNs built with signums (aka hard-limiters or Heaviside step functions) rather than sigmoids.
Signum networks may be preferred to sigmoidal ones due to hardware considerations.

In cases like these, one choice is to use an alternative method not restricted by to continuously differen-
tiable functions, such as unsupervised learning, simulated annealing, or a genetic algorithm, but these are
usually significantly slower to train, because they do not use gradient information.

Another option is to approximate the discrete-valued functions with linear functions or smooth sigmoids
during the learning phase, and switch to the true discontinuous functions at run-time, as with the original
ADALINE [7]. This method works in many cases where the behavior of the system with sigmoids is close

II- 19

Now -•

enough to that of the real system. However, this assumption is unreliable, and the thruster control problem
presented here offers a clear example where this method fails.

In related research aimed at using gradient-based learning for multi-layer signum networks, Bartlett and
Downs [8 use weights that are random variables, and develop a training algorithm based on the fact that
the resulting probability distribution is continuously differentiable. The algorithm is limited to one hidden
layer, requires all inputs to be I or -1, and needs extra computation to estimate the gradient.

In this section we present a technique for BP learning for systems with discontinuous functions, and
apply it to the on-off thruster control problem described in Section 2.

4.2 Noisy sigmoid training algorithm

RUN-TIME T X = [1X1 X...XJ

w = lb w1 w 2 ... wnT

TRAINING et y C cost
Forward ZM

Sweep

&getacos &Ot k5Qst a
Backward + onet _ -Es

Sweep ad

Figure 7: Training Algorithm
During training, replace discontinuous signums with sigmoids, and inject noise before the sigmoid
on the forward sweep. The backward sweep calculation is the same as standard backpropagation.

We introduce the method of noise injection by applying it to the training of a single hard-limiting neuron,
as shown in Figure 7. The first block diagram shows the neuron as it appears at run-time: a dot-product
and hard-limiter. The next two diagrams show the neuron during training, where the hard-limit from the
top diagram has been replaced by a smooth sigmoid function.

This is almost the same as training a standard neuron with backpropagation - the only difference involves
the injection of zero-mean noise, N, immediately before the sigmoid. The noise injection enters just as the
desired signal does, and does not corrupt the calculation of cost/OW. Using an unmodified backward sweep
is not only the simplest thing to do, it does precisely the right calculations for estimating the weight gradient.
To summarize, the training algorithm is:

" Replace the hard-limiters with sigmoids during training

" Inject noise immediately before the sigmoids on the forward sweep

" Use the exact same backward sweep as with standard backpropagation

4.3 Intuitive Explanation

Without addition of noise, the network may train using values in the sigmoid transition region (roughly
-0.8 to 0.8) that will be unavailable at run-time. Simply rounding off at run-time may introduce significant
errors. For example, in a hypothetical cost surface, a value of 0.4 may be optimal, but if forced to choose
between -1 and 1, a value of-1 may be better. The goal of noise injection is to move neuron activations away
from the transition region, so round-off error will be small when the discontinuous functions are replaced.

An intuitive reason for adding the noise is to throw the neuron off its transition region, and effectively
force it to hard-limit at the high or low value. For this reason, the standard deviation of the noise is chosen
to be higher than the width of the transition region of the sigmoid. Figure 8 shows how the neuron output
distribution changes as the noise level increases. With no noise, only a single output can result, but as noise
increases to cover most of the transition region, the output distribution approaches that of a hard-limiting
function. Differentiability is maintained, however, so gradient information will be available to speed up

11-20

learning. Since the noise has pushed the distribution to approximate a hard-limiting non-linearity, when the
hard-limiter is re-introduced at run-time the performance degradation will be small.

Noise - 0.2 Noise = 0.5 Noise= 1.5 Nose =3 InpuL Noise = 3 Outt, Noise = 3
1 1 1 1 1 4

0 05]

-4-2 0 2 4 -4 -2-02 4 -4 2024 2 0 2 4 -4-2 0 2 4 -I 0 I

Figure 8: Effect of Input Noise Level on Sigmoid Output Distribution

Lightly-shaded region represents the sigmoid input probability distribution (in this case, -0.3 +
noise). Darkly-shaded region is the sigmoid output distribution (from -1 to 1), plotted horizontally
to correspond to the sigmoid plot. Each distribution has an area of 1. As noise level increases, and
the input distribution spreads out, the sigmoid output approaches that of a hard-limiter, while
remaining differentiable. At right, input and output distributions are plotted separately.

4.4 Extensions, application considerations

This method has been successfully applied to multiple layers of hard-limiting units with no modification.
One concern is the attenuating effect of the derivative-of-sigmoid function. When back-propagated through
many layers of near-saturated sigmoids, the error signal is attenuated and may lead to slow learning. To
handle this problem, it may be necessary to be gradual in increasing the noise variance - slowly push the
outputs from the linear region to the hard-limits, rather than all at once, where the attenuation is high and
the network will find it difficult to react.

When using a system with discrete-valued functions that are not Heaviside step functions, the method
may work if a continuously differentiable approximating function is used. For example, a function whose
output can take on a number of discrete values may be approximated by combining a number of sharp
sigmoid functions. This was done for the thruster mapping, replacing the eight (0,1) thrusters with the
equivalent set of four (-1,0,1) thrusters.

4.5 Application to space robot

Here, we apply this technique to the thruster mapping, as shown in the third section of Figure 3, where the
network finds a solution itself, without the help of an optimal teacher.

Training without this noise-injection technique is not possible. For example if one unit of thrust is
requested in the +z direction, during training, the network will set T4 and T to 0.5, but at run time, for
requested forces near 1.0, chances are they will both be 0 or both 1, resulting in a large error.

A good solution results when noise is added because it prevents the network from using a solution that
uses non-saturated portions of the sigmoid. Such a solution would give a nearly random output and high
error during training. The training algorithm must find a solution that works well despite the noise addition.
This means the expected value of the output must be well into the saturated region to consistently work
well. The results approximate the optimal solution very well, and work when the sigmoids are replaced with
signums.

5 Experimental Results

Experiments were performed on the mobile robot described in Section 1 to verify the applicability of these
neural network results. The neural network thruster mapping component described in Section 3 is imple-
mented on the on-board Motorola@ 68040 processor, as is the rest of the control system (at a 60 Hz. sample
rate).

Figure 9 shows robot base position during single-axis and multi-axis maneuvers. For the single-axis
maneuver (left), good tracking is obtained from both optimal and neural network thruster mapping compo-
nents. In the 3-axis maneuver (right), the neural network control system closely follows the 20-second-long
straight-line trajectory in (z, y, 0). Tracking error is very small, so to avoid clutter, only the robot's actual
(z, y) position is plotted.

II-21

0.5 2

.6, *10

0.4
N - deszredtraj. -. 5 1

0.2 Wdanu mqpift

S 10 15 20 25 1 -0.5 0 0.5 1
tm [se00061 X-axis position [m]

Figure 9: Experimental Results, Single-Axis Maneuver, Multi-Axis Maneuver

6 Summary and Conclusions

This paper has described two recent developments in neural network control that grew out of a research
program using a laboratory-based prototype of a free-flying space robot. Both advances were motivated by,
and developed for, a complex thruster mapping function typical of real spacecraft.

A fully-connected neural network architecture was presented that has connections beyond those provided
by a layered network, yet is trainable with backpropagation. Aided by a systematic complexity control
scheme, this network was shown to have certain advantages over layered networks, particularly for control
problems.

A new technique was developed that extends BP learning to systems involving discontinuities, such as
the on-off thrusters used to control our robot. The modification to BP is very small, simply requiring careful
injection of noise on the forward sweep.

When tested experimentally on the real robot, all networks provided near-optimal performance during
multi-axis trajectories, thus demonstratihg the utility of these techniques.

References

[1] M. A. Ullman. Experiments in Autonomous Navigation and Control of Multi-Manipulator, Free-Flying
Space Robots. PhD thesis, Stanford University, Stanford, CA 94305, March 1993.

[2] E. Wilson and S. M. Rock. Experiments in control of a free-flying space robot using fully-connected
neural networks. In Proceedings of the World Congress on Neural Networks, Portland OR, July 1993.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propa-
gation. In David E. Rumelhart, James L. McClelland, and the PDP Research Group, editors, Parallel
Distributed Processing, page 318. The MIT Press, Cambridge, MA 02142, 1986.

[4] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, Cambridge, MA 02142, August 1974.

[5] P. J. Werbos. Backpropagation through time: What it does and how to do it. Proceedings of the IEEE,
78(10):1550-1560, October 1990.

[6] A. S. Weigend, B. A. Huberman, and D. E. Rumelhart. Predicting the future: A connectionist approach.
International Journal of Neural Systems, 1(3):193-209, 1990.

[7] B. Widrow and R. Winter. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE
Computer, 21(3):25-39, March 1988.

[8] P.L. Bartlett and T. Downs. Using random weights to train multilayer networks of hard-limiting units.
IEEE Transaclions on Neural Networks, 3(2):202-210, March 1992.

II-22

A Neural Network B, :aed Visuosteering
Control Algorithm for Autonomous Land

Vehicles
Doo-hyun Choi, Se-Young Oh*, and Kwang-Ick Kimt

*Dept. of Electrical Engineering, tDept. of Mathematics
Pohang Institute of Science and Technology

Pohang, South Korea 790-600

Abstract

A neural network based navigation algorithm has been developed for the Postech Road
Vehicle I (PRV I) to drive on outdoor roads with intersections on campus. The neural net
essentially watches a human to drive and remembers driving signals for different road conditions
and later on, generalizes this knowledge to similar road conditions. Four neural net modules
are used for outdoor driving. The first one detects intersections just by being shown typical
intersections. If an intersection is detected, a higher level command selects the proper one
among three network outputs, namely the left turn net, the straight-ahead net, and the right
turn net. For verification, the whole algorithm has been tested on campus roads and also in
simulation of various driving conditions.

I. INTRODUCTION

There has been increasing interest in neural network applications that demonstrate their
relative advantages over existing techniques. One application area which can take advantage
of neural network's implicit trainability and superior mapping capabilities is autonomous road
driving. Research done so far involving outdoor or indoor vehicles include VISOCAR by Frohn
et al. [1], Blanche by Cox [2], MAVIN by Baloch[31, NAVLAB I and II by Carnegie Mellon
University(CMU) researchers[4][5], VaMoRs by Dickmanns[61, and CONCIC-2 by Cheng et
al.[7]. Both the NAVLAB and the VaMoRs demonstrate speedy highway driving. However,
these systems require extensive computing power and/or specialized hardware for real time
control.

This paper presents a PC-based algorithm based on neural nets to drive on roads with in-
tersections using only camera inputs. Basically, neural nets are trained to implicitly learn the
relationship between the input road scenes and the corresponding steering signals by watching
a human to drive. Previous navigation research involving neural nets is done by Pomerleau,
Baloch, and Cheng of which only Pomerleau has worked with outdoor vehicles. The neural net
essentially watches a human to drive and remembers driving signals for different road condi-
tions. But, in order to detect intersections, he relies on other types of sensors such as a laser
range finder and an inertial navigation system, whereas only camera data have been used in this
paper. Besides, a minimal set of image information (instead of the whole image as in Pomer-
leau's work) sufficient for vehicle control was input to the net, since the system is based on a PC
without any image processing hardware. Four neural net modules are used for outdoor driving.
The first one detects intersections just by being shown typical intersections. If an intersection is
detected, a higher level command selects the proper one among three network outputs, namely
the left turn net, the straight-ahead net, and the right turn net. For verification, the whole
algorithm has been tested on campus roads and also in simulation of various driving conditions.

II-23

11. VEHICLE SYSTEM CONFIGURATION

Fig. 1 shows the vehicle tested PRV I with six wheels altogether, two in the front, two in
the middle, and two in the rear. The front and rear pairs are free wheels having no power and
the middle pair are driven by two 500 Watt DC motors. The on-board batteries provide power
for motors and computers. Eight ultrasonic sensors are attached to the front of the vehicle for
emergency stops and obstacle avoidance maneuvering. The vehicle state (forward velocity and
steering direction) control command is given either by a remote control pendent for a manual
teaching mode or by a program on PC486 for an autonomous mode. This command becomes
the set point for the vehicle direction and speed adjusted by the relative difference between the
two driving motor speeds and directions. The computer talks to the remote controller through
an RS-232C port and also to the vehicle controller board through 80C196 microcontroller's
on-chip serial port.

III. NAVIGATION SYSTEM

A. Neural Network Steering

Fig. 2 illustrates the navigation algorithm in block diagram form. The camera image goes
through a very simple preprocessing scheme to be explained in the next subsection. The IDNN
(Intersection Detection Neural Network) is trained to recognize road intersections by being
shown several examples of them. In case the vehicle has encountered an intersection, the high
level path planner, using the road map and the GPS (Global Positioning System) data, decides
whether to preceed straight, turn left, or turn right. Depending on the outcome of this decision,
the system takes the steering command from a proper output among LTNN (Left-Turn Neural
Network), STNN (Straight-going Neural Network), and RTNN (Right-Turn Neural Network).
For no-intersection case, it simply takes an output from STNN for straight or curvy maneuvers.
The vehicle velocity profile is planned by huristic rules such as "slowly accelerate after start,
speed down a little or a lot at intersections(depending on whether to go straight or make turns),
and slowly decelerate before stop."

B. Preprocessing of the Driving Scene Image

It is very important for real time control to extract a minimal set of image information
sufficient for vehicle control, since the system is based on a PC without any image processing
hardware. Out of the frame grabber image of 256 x 256 pixels in 8-bit B/W gray level, only
two narrow horizontal strips of window (each window looking at 8 x 256 pixels .of the road
scene) were used. To further reduce data, intensity averaging over a block of 8 x 8 pixels is
used. Therefore, 64 real numbers are generated which then go through the following shifting
and scaling operation before being input to the net:

x(i) = 1(i)/c - 1 (1)

where z(i) is the input to the network, 1(i) is the average intensity of the ith block, and c is the
normalization factor which simply compensates for some brightness variations. Subtraction of
the background intensity will highlight the intensity gradient information.

C. Neural Network Architecture and Its Learning Procedure

The standard backpropagation (BP) multilayer perceptron with a single hidden layer[8] and
direct connection between the input and output layers is used to learn the steering commands
as well as to recognize intersections. In all steering control networks, training is effected by
gathering real world data while actually driving the vehicle with a remote controller. The CCD
image which has been preprocessed as described in the previous subsection is input to the neural
net and the remote control command becomes the desired output for training the net. In case of

11-24

as input to the net. The steering command was generates from the single output node using 4
hidden nodes. The result of a test run at 30 km/h is shown at the Ottom of Fig. 3 which may
be compared with the result with no learning at all in Fig. 4. Also, to check the, algorithm's
robustness, test with a slightly different starting position from training has been performed in
Fig. 5. The vehicle is shown to move toward the center at it should. As a generalization test,
only the first 1/3 of the road (the large block sequence in Fig. 6) was learned and then with
learning turned off, the rest (the small block sequence) was test driven with the result shown
in Fig. 6.

Finally, the neural navigator was trained on more complicated roads. Let the high level path
planner give a command, "Turn left at the first intersection and stop after driving 10 m." The
navigation result is shown at Fig. 7. The IDNN detects an intersection at point D and then
the vehicle drives as commanded by the LTNN. After a while, the STNN again takes over and
continue to run before the vehicle stops. Due to some overlap in road images common to both
the LTNN and the STNN, a stable switching characteristic between two differing networks was
achieved. The overall simulation performance seems to be quite good and robust.

V. REAL DRIVING TEST

The same algorithm as used in simulation was tested with success in real driving on campus
roads with intersections and the results were satisfactory according to visual confirmation. It
is mentioned however that the real driving results are difficult to present due to some practical
problems with vehicle trajectory measurements. All neural nets used 64 input nodes, 4 hidden
nodes, and a single output node. The forward processing time of each network was 0.2 seconds.
This time involves grabbing an image, memory loading of needed pixels, preprocessing, IDNN
forward computation, one of the steering command net's forward computation, and finally
sending control commands to the control board's serial port. With 5 Hz of steering updates, a
small amount of neural computation errors presents no problem due to the continuing correction
efforts. If a real automobile had been used, this image processing speed roughly corresponds to
70 km/h of highway driving, but with PRV I, this speed is not achievable due to the limited
motor driving power, not due to the processing speed.

VI. CONCLUSION AND FUTURE WORK

The validity and efficiency of using neural networks for autonomous steering control of road
vehicles have been positively demonstrated in both simulation and real experiments. Several
neural net modules cooperate to generate steering commands for different maneuvers in order to
carry out a planned driving path. A significant achievement along the way is the development
of both intersection and road driving in a unified framework using neural nets for all. It is also
emphasized here that the whole system consists of standard hardware/software components
using only an IBM PC486 as host and an 80C196 as the motor controller. Neural nets seems to
possess an excellent potential for fast and robust autonomous driving with also great economy
in development time and cost. But, still much further work is needed. Continuing investigation
is going under way into system stability and robustness under different driving conditions using
the simulator and real experiments. The PRV I has recently been equipped with ultrasonic
sensors and laser sensors and research on obstacle avoidance and sensor data fusion will also be
carried out. Finally, PRV I1, the computer controlled van, has been built and will be used for
extensive navigation research.

Acknowledgement

This research was fully supported by an ADD grant to the Pohang University of Science and Tech-
nology. Also Special thanks are extended to Professors Jin-Soo Lee, Sang-Woo Kim, and Mr. Min-Koo

11-25

the intersection detection net, training inputs are the preprocessed intersection/non-intersection
images and desired outputs are +1 for an intersection and -1 for a non-intersection.

The steering control nets essentially learn the mapping of "produce this steering when the
road looks like this," as done in human driving. Although this relationship cannot be easily put
into words even by humans, the neural network can implicitly learn by examples and further,
generalize what it learned under similar situations later on. The STNN is trained by looking at
scenes while driving through intersections or just following a road. The LTNN is trained while
turning left at intersections and the RTNN while turning right. A modest amount of overlap
between the LTNN or the RTNN and the STNN is introduced to overcome the subtle switching
time error between them. Training patterns are obtained and stored on-line but the neural nets
were trained off-line. In practice, initial off-line learning and subsequent on-line modification
or fine tuning is recommended.

IV. SIMULATION TEST

A. PRV I Simulator

The PRV I Simulator was built to test the navigation algorithm proposed in Section 3 under
various conditions and environments (This might take several months of real experiments just
to gather widely varying data). Actually, this simulator used real road images and their shifted
and oriented versions. From a 256 x 256 image taken from the center of the road, the center
200 x 200 portion of the image was used as input scene in order to handle shifting and rotation.
Fig. 3 shows a computer screen of the simulator. Its top portion shows one snapshot of the
changing images as the vehicle proceeds with the original image at the left, normalized image
at the center, and the network input at the right. The lower portion illustrates the vehicle
trajectory on the road.

The original image as well as its left-shifted and right-shifted images were used as training
patterns for various driving conditions[5]. After learning, the test image was generated with
proper shifts if needed from the selected image prestored in the disk depending on the vehicle's
current position. The vehicle position is determined as follows

Xt+l = Xt + vi cosd v (2)

= iYt + vv sindv (3)

where xt, yt are the vehicle position components at time t along the road and perpendicular to
the road respectively, and vv , dtv are the vehicle's actual state and may be different from the
input commanded state from the controller. The vehicle and lower level controller dynamics
are modeled in simulation as a simple delay :

V C(4Vt = Vi(4)

dtV = dV_ I + dCt_ (5)

where VIE,, dt_1 are the commands at time t - 1 given to the vehicle controller.

B. Simulation Results

The first test was on straight roads. 150 images in total obtained at every 50 cm on a road
stretch of 80 m long were obtained as the original data base. The training images were selected
at every 8 m interval and these along with their transformed images trained the net for 200
iterations. 3 strips of 10 x 200 pixels with 10 x 10 block averaging resulted in 60 real values

II-26

Kang who have designed and built the hardware/controller for PRV I.

REFERENCES

(11 H. Frokn and W. V. Seelen, "VISOCAR: An Autonomous Industrial Transport Vehicle Guided by Visual

Navigation," IEEE Int. Con!. Robotics and Automation, Vol. 2, pp. 1155-1159, 1989.

(21 1. J. Cox, "Blanche: An Autonomous Robot Vehicle for Structured Environments," IEEE Int. Con!. Robotics

and Automation, Vol. 2, pp. 978-982, 1988.

(3) A. A. Baloch, "Visual Learning, Adaptive Expectations, and Behavioral Conditioning of the Mobile Robot

MAVIN,m Neural Networks, Vol. 4, pp. 271-302, 1991.

[4] C. E. Thorpe, "Vision and Navigation - The Carnegie Mellon Naviab,' Kluwer Academic Publishers, 1990.

(51 D. A. Pomerleau, "Neural Network Perception for Mobile Robot Guidance,' Ph. D Thesis, Carnegie-Mellon

University, Pittsburgh, PA, 1992.

(61 E. D. Dickinanns and B. D. Mysliwets, "Recursive 3-1) Road and Relative Ego-State Recognition," IEEE

Trans. Pattern Recognition and Machine Intelligence, Vol. 14, No. 2, Feb. 1992.

[7] R. M. H. Chen&, J1. W. Xiao, and S. LeQuec, "Neuromorphic Controller for AGV Steering,' IEEE Int. Conf.

Robotics and Automation, pp. 2057-2062, May, 1992.

(8] J. A. Freeman and D. M. Skapara, Neural Networks, Addison-Wesley, 1991.

Ciue2PhSNua e asdNvgto

amE .. . e.'E sm

Figre . traghtDrvin Beor Lernig. Figure . STih Derin from Diasee SNarigtin

Position.

11-27

Figure 3. Screen Layout for the PRV I Simulator.
(Also Shows the Result of Straight
Driving after Neural Learning).

IL

Figue 6 Genralzaton Tst.Figre 7 Tet onIntrsetion Driing
(The ater /3 ofthe oad divingwas a(Go traigt -> eft urn- oSrih
genealiatio ofwha it eared o drve > Sop Squece)

on te fist 13 ofthe oad)

11-28

A Robot that Learns an Evaluation Function
for Acquiring of Appropriate Motions

Katsunari Shibata and Yoich Okabe
Research Center for Advanced Science and Technology, Univ. of Tokyo

4-6- I Komaba, Meguro-ku, 153 Tokyo JAPAN
shibata@okabe.rcast.u-tokyo.ac.jp

Summary
An unsupervised learning method of an evaluation function is proposed. By this function, a robot can learn a series
of motion to achieve a given purpose. The evaluation function is calculated by a neural network and time derivative
of this function is reduced during motions with random trials. We confirmed by simulation that a robot with
asymmetric motion feature could obtain an appropriate asymmetric evaluation function and become to achieve a
given purpose along an almost optimal path.

1. Introduction
In famous Skinner's experiment, a mouse in Skinner's box
becomes to be able to push the button to get a piece of food after .
some trials as shown in Fig. !I11. However, the mouse could not
know that it could get a piece of food by pushing the button before
the mouse was put into the box. At early stage, the mouse moves
randomly, and when it pushes the button unexpectedly, it gets a
piece of food. From the experience, the possibility that the mouse
pushes the button, slightly becomes large. Then after many
experiences, the mouse has an intention to push the button. This ,
means that the mouse in Skinner's experiment did not know only-
the way to push the button, but also were not given any evaluation
functions about getting the food. From this fact, a robot also can fig. I Skinner's experiment
obtain an evaluation function through its experiences. Then we
assumed a locomotive robot as shown in Fig. 2. The robot has
only a purpose to get a target. target

The mouse in Skinner's experiment, can learn the
evaluation function and motion by the interaction between the
mouse and the environment without any supervisors. When we sensor
make a robot learn an appropriate series of motion using the wheek N1
interaction, we usually give the robot an evaluation function that
we madet 2 1131. The evaluation value of the present state is locomotive robot
calculated from the sensor signals through the evaluation function.
If the robot continues to move towards the gradient direction of fig. 2 An .%sumed robot that has a purpose
the evaluation function, it will be able to achieve the given to get a target
purpose. For example, in the case of the robot in Fig. 2, an
evaluation function can be the inverse of the distance between the change
robot and the target. As shown in Fig. 3, the robot moves and
gets sensor signals. Then the evaluation function makes the environment
supervisor signal for the motion creator from the sensor signals. sense . move
The motion creator, that is made by a layered type neural network,
learns by the supervisor signal, and become to create an motion
appropriate motion signal. creator

Then we tried to make a robot learn both an evaluation valuatio
function and a series of motion to achieve a given purpose. We function supervisor
cannot know if the evaluation function, that we give to a robot, is per(uor
the best for the robot and the environment. Furthermore, if the .--.---.. (auto-create)
environment changes, the evaluation function also has to change. urpos robot
For these reasons, the robot has to learn its evaluation function for
a good adaptation to the environment, fig. 3 Learning system and

In this paper, we describe the way to learn the evaluation interaction to the environment

11-29

function without any supervisors, and the way to learn the evaluation function and the motion in parallel. Finally
we show the result for comparing which series of motion was closer to the optimal route when the robot was given a
fixed evaluation function or when the robot learned the evaluation function by itself.

2. Learning Method of a Series of Motion ms = m + ,A. r (D
Some ways to learn a series of motion from an evaluation M = m + k- A 0P
function has been already proposed12 113l. We indicate the /Contour of
way that we employed. Here, the motion signal is calculated evaluation function
by a layered type neural network. Let us suppose the3

dimensions of space as shown Fig. 4. X, Y axes show . A
sensor signals respectively. The other axis shows the j go*
evaluation value. An evaluation value is decided for each /Z
set of sensor signals and the surface in this figure is an learning direction vector
evaluation function surface. The robot moves according to
the sum of the output of a neural network and a small / A , movable range
uniform random number as follows,

M = m + r (1) fig.4 Motion learning

where M : actual motion vector, m : motion signal vector and r : uniform random number vector. If the robot has
two or more actuator, the neural network has two or more output neurons and each output is added by a different
random number. The circle filled with oblique line in Fig. 4 shows the movable range of the robot by the random
vector r. The robot moves and can get a new evaluation value using the evaluation function. Then the robot makes
the following supervisor signal,

m s = m + rA(P (2)

where m5 : supervisor signal vector for motion signal, (ict) : evaluation function and AO = 0(t) - (t-I). The neural
network learns at every time unit by this supervisor signal, using a conventional supervised learning algorithm like
Back Propagation Method'41. By the learning through many experiences, the direction of the robot motion vector
becomes close to the gradient direction of the evaluation function in average as m, in Fig. 4. Then the robot can
learn a series of motion close to the optimal route under the evaluation function.

3. Unsupervised Learning Method of an Evaluation Function
Let us think how should the evaluation function be made. Supposing the 3 dimensions of space in which there is a
robot and a target as shown in Fig. 5 (a), we can think of an evaluation method using the distance bLtween the robot
and the target. However, how to normalize on each axis cannot be known easily. Furthermore if there is an area
that the robot cannot move through, like an obstacle as shown in Fig. 5 (a), it is meaningless to evaluate only by the
distance. Then we propose to evaluate by necessary time for
arriving at the target. If there is an obstacle, the robot can move Z
beside the area and arrive at the target. If we project the route on
the time axis as shown in Fig. 5 (b), we can evaluate under only robot
one criterion and there are no necessity to normalize each axis any
longer. obstacle" 7 Y

However, if the robot modifies the evaluation function by 6
tracing back the route to the starting point when the robot arrives 6
at the target, the robot must remember all the states it has existed. . 4
In order to avoid wasting memory, we propose a real-time 3
learning method of the evaluation function. The evaluation
function should be as follows. As shown in Fig. 6, the output of target (a) X

the function is small in an initial state, the output becomes larger
as time goes by, and finally the output becomes the largest value ,. time
when the robot gets the target. Here, the evaluation function is target 1 2 3 4 5 6 7 robot
calculated by a layered type neural network and the output (b)
function of each neuron is sigmoid between 0.0 and 1.0. The fig.5 State evaluation method
learning method has three phases. When the robot is in an initial (a) evaluation on space
state, to -decrease the output of the evaluation function, the

11-30

network learns by the supervisor signal as Target
.... te

O(x(O) = 8 (3) Ideal
•,. Real. .0 Evaluation " -

Evluation -

where Os(x(t)) supervisor signal for the evaluation function and 8: .
small constant value. Here we employ 0.01 as 8. When the robot > = .- -- ;-

arrives at the target, the network learns by the supervisor signal as Lning,..'" Learning

ds(t) = (ar (4) 0 _ _ _ _

Initial Time
State

where Pmax : the maximum value of the evaluation function fig.6 Learning method that realizes
(different from the maximum of the output function). Here we an evaluation on time
employ 0.9 as the maximum value Pmax. Since it is the best state
when the robot arrives at the target, the supervisor signal can be a A route (a) B
constant value. However, since the initial state is not always the 0 1 2 3 4 5 6 7 8
furthest state from the purpose, we cannot set up a constant value, -. . p -. .__
and we set up a slightly small value than the actual output as the A 0 1
supervisor signal. Otherwise from the initial state to the target, in L iearning 9
order to increase the output smoothly, the supervisor signal is as3

d2 x(Xt5) 6 $

0.'(X(t)) = x(t)) + (5) fig.7 An example of optimizing route

where 4: a smoothing constant. Here we employ 0.5 as the smoothing constant . One thing we have to take care
is that the learning is on job learning and the network learns only one iteration using conventional supervised
learning algorithm like Back Propagation Method. The output does not become to the value of the supervisor
signal, but it becomes closer to the supervisor signal slightly.

Let us assume that a robot moves along the route (b) in Fig. 7 when the robot goes from a point A to a point
B. It takes I I time unit, but if it moves along the route (a) it can arrive at the point B in 8 time unit. By the
learning of the evaluation function, it becomes smooth around the route (b). On the other hand, dclPdt along the
route (a) is larger than that along the route (b) because the robot can arrive at the point B faster. By the learning of
motion, the motion changes to the gradient direction of the evaluation function. The route, that robot moves along,
becomes slightly close to the route (a). By repeating the learning of the evaluation function and the learning of
motion, the robot becomes to move along the route (a). We can see that the combination of the two learning
processes makes the route close to the optimal one.

4. Structure and Flow of the Learning
To realize the combination of the two learning
processes, we employ the structure as shown in Fig.
8. The large rectangle shows the robot brain and drno
there are two neural networks. One of them is to
calculate the evaluation function and the other is to mo+e
calculate the motion signal. Each of them I +
calculates the output from the sensor signals, and so : -

we can use only one neural network for both
purposes. The robot moves according to the sum
of the output of the motion network and a random BPA BWA BP
number. The supervisor signal for the evaluation
neural network is usually made from the second
order deviation of the output of itself as Eq.(5). iinout
The supervisor signal for the motion network is 5 stale
made from the product of the first order deviation A neural network for A neural net
of the evaluation output .d the random number evaluation function for motion signal
that was used for creating, . motion. Then the each

fig.8 Network structure and learning method

11-31

network learns only one iteration by the supervisor signal respectively at change initial target point
every time unit. Fig. 9 shows the flow of the learning. First the robot is
placed somewhere, and the evaluation network learns by the supervisor initial eva uation function
signal as Eq.(3). Then the robot repeats a motion as Eq.(I) and learning state I learn to U. I
of both neural networks by the supervisor signals as Eq.(2) and Eq.(5)
respectively until it arrives at the target. When it arrives, the estimation t
network learns by the supervisor signal as Eq.(4). Then the process is nit roo

repetedmanytims. including random factorrepeated many times. ,

5. Simulation (evaluation function
Simulatiolearn to decres irgularities

In this section, we show the simulation result. We assumed the
environment as shown in Fig. 10. The locomotive robot has two wheels (motion signal
and can move them independently. The rotate angle of each wheel is learn to the direction
decided by the sum of each output of the motion network and a random to get more evaluation value

number. In order to make the environment in which we can make the
evaluation function easily, the ratio of the rotation angle against the arriva n
motion signal is three times larger in the right wheel than in the left to target
wheel. The range of rotating angle of the right wheel is also three times
wider that of the left wheel as shown in Fig. 11. The robot also has two y
sensors. One of them sensed the lateral distance from the robot to the target evaluation functio
target and the other one sensed the forward distance. Initially a target state I learn to 0.9
was placed randomly at the edge of the rectangle except for the edge that
the robot existed. It is drawn by a thick line in Fig. 10. The robot fig.9 Learning procedure
moved and if the target went backward passing under the robot, we
assumed that the robot could catch the target. If the target went backward passing beside the robot, we assumed that
the robot failed to catch the target. In this simulation, when the robot failed to catch the target, the evaluation neural
network learned by the supervisor signal 0.1. We defined one experience from placing the target on the initial
position to the success or failure to catch the target. However, the robot can move only randomly at first phase and
cannot arrive at the target in a finite time. Then we moved the target close to the robot when the robot could not
arrive after some time. In order to compare, we do another simulation. We gave the robot an evaluation function
that we can think of easily, and make the robot learn only the motion signal.

Then we show the change of the evaluation function in Fig. 12. Each graph in Fig. 12 is drawn on robot
centered coordinates. The robot was placed at the center of the coordinates and corresponding evaluation value was
plotted on Z axis when the target was placed on each lattice. The contour of the evaluation function is also drawn.
Figure 12 (d) shows the evaluation function that we gave the robot in the comparison simulation. Figure 13 shows
the contour of the evaluation function and the motion between the robot and the target when the target was placed on
each of 5 places. They are also drawn on the robot centered coordinates but on the 2 dimensional surface. Though
the robot moved and target did not move actually, the robot was fixed and the target moved in these figures because
of the robot centered coordinates. On the locus of the target, the points were plotted at every 10 time unit. In these
graphs except for the graph (a), the target moved more when the target was far from the robot and moved to the
tangential direction. The reason is that when the robot rotates actually, the target relatively moves according to the
product of the rotation angle and the distance on the robot centered coordinates. We also show the loci on the
absolute coordinates in Fig. 14. Figure 14(a) shows the comparison between the locus after 5000 experiences and
that after 30000 experiences. Figure 14(b) shows the comparison to the case of the fixed evaluation function after
30000 experiences. On the locus of the robot, the points are also plotted at every 10 time unit. After 1000
experiences, the evaluation function did not have an enough expansion of value range and the robot could not get the
target as shown in Fig. 13(a).
After 5000 experiences, the Initial Target Position o w
evaluation function had a sharp randoml selected). fowarn Target, 3

shape and the robot could arrive at
the target from any initial
positions. The robot got the target robot
at the right half of the robot. The
reason is that the right wheel could
rotate 3 times more than left wheel
and the robot could get the target 3ateral
soon when the target was in the F Sc Fli.Am t
right. After 30000 experiences, Fail Succeed F Fig. II Asymmetric

fig. 10 Environment in the simulation robot motion

11-32

1.0

(ee.5

1.04

5. 0.0
forward -

7N distance
(a) 1000 experiences -5.0Z 0.0 oo .

(a) 3000 experiences

1.0

::ii~ : :i:.... 7.0

-."- . 0.5

forward

7.0 distance 0.0f7.03 y, -5.0 0.0 "\robot 5.0

(b) 500 experiences (b) 5000 experiences

LO0 7.0

S 0,5

5.0 0.
0.0 ..1 X'& J forward 500.0 robot 50

7.(diYa, ce(c) 30000 experiences
(c) 30000 experiences Y, \ N

0 target

0.5

S0.00

70 dsace (d) fixed evaluation function
gx d) fixed evaluation function Y , (30000 experiences)

(30000 experiences) fig. 13 Evaluation function and the locus
fig.12 Evaluation function (on robot centered coordinates) (on robot centered coordinates)

11-33

the ridge of the evaluation function moved to the left --- o-- 5000 experiences
and the target moved along the ridge. It means that the --- 30000 experiences
robot approached the target with looking at it in the left. .
In the absolute coordinates as shown in Fig. 14(a), the
locus of the robot became like an arc after 30000 6g
experiences. Furthermore, the robot went back with 54
rotating itself to the right when the target was seen in 4-
the right direction. So, the locus after 5000 experiences
seems better than that after 30000 experiences at a 3-
glance. However, the necessary time was more after 2-
5000 experiences. The evaluation function and the I-
locus could be reflected the characteristic of the robot. (s
On the other hand, the evaluation function in a 0-
comparison simulation is symmetric shape as shown in -5 -4 -3 -2 -1 0 1 2 3 4 5 X
Fig. 12(d), and the locus of the target expanded in front (a)
of the robot as shown in Fig. 13(d). When we see the --- fixed evaluation function
Fig. 14(b), the locus in the case of fixed evaluation -a--.- self-organized evaluation functio&
function is close to a straight line and it seems better Y -.

than that in the case of self-organized evaluation 7-
function at a glance. Also in this case, the robot could target

arrive at the target faster in the case of self-organized 5
evaluation function. Then we show the change of the
necessary time for the robot to arrive at the target in Fig. 4-
15. The time is the average of the 12 trials in which the 3
target was placed at a regular interval on the edge of the
rectangle. If the robot failed in a trial, the time is set
1000. In this figure, we show the results of 4 1 robot
simulations. We did two simulations in which the 0
initial weight value in the neural network was different
from each other in the case of the fixed evaluation -5 -4 -3 -2 -1 0 I 2 3 4 5 X
function and in the case of the self-organized evaluation (b)
function respectively. We can see that the robot, using fig.14 Locus of the robot (on absolute coordinates)
the fixed evaluation function, could become to get the
target faster than in the case of the self-organized 1000
evaluation function in an early stage. The reason is that a-- f.-* " --...o-- fixed evaluation No. I
it took some time to form the evaluation function in the . o
case of the self-organized evaluation function. We can | --.- fixed evaluation No.2
also see from the Fig. 15 that after many experiences the 2 -. o-- self-organized evaluation No.I
evaluation function and the route of the robot were E self-organized evaluation No.2
optimized in the case of the self-organized evaluation "
function and realized the better route than in the case of
the fixed evaluation function. 170

1406. Conclusion z

We have proposed an unsupervised learning method by 00
which a machine forms an appropriate evaluation 0 1000 2(X) 300X)
function and a series of motion through its experiences. Experiences
We confirmed in a simulation that the evaluation fig. 15 Change of the necessary time to get the target
function obtained by the learning method was reflected
the characteristic of the environment. Then the robot became to be able to move along with the optimal route.

Reference

I I]Skinner B.F., "Cumulative Record", Appleton-Century-Crofts, 1961
12lYoda,H., Miyatake,T. and Matsushima, H., : "A Kinematic Model with a Self-Learning Capability of a Series of

Motions Based on Instinctive Incentive", Trans. of IEICE, J73-D-II, 7,1027-1034, 1990
13lNakano, K., Doya, K., SICE'84, S 1-3, 1984 (in japanese)
(4lRumelhart D.E., Hinton G.E. and Williams R.J.: "Learning representations by back-propagating errors", Nature,

323, 9, 533-536, 1986

11-34

Learning to Catch a Baseball: A Reinforcement Learning Perspective

Sreerupa Dast and Rajarshi Dast
t Department of Computer Science, University of Colorado, Boulder, CO 80309-0430
tComputer Science Department, Colorado State University, Fort Collins, CO 80523

Introduction

Scientists have often wondered how baseball outfielders can judge a fly ball by running either forward or
backward and arriving at the right point at the right time to catch the ball before it hits the ground (4, 5, 9].
Such a trajectory interception problem is most difficult when the idder is in the plane of the ball's motion.
In this case the fielder does not have a perspective view of the ball's trajectory (Figure 1). Yet, moments
after the batter hits the ball, the fielder has to decide if it is a short pop up in front, or a high fly ball over
the fielder's head, and run accordingly. Thus, there is an important temporal credit assignment problem in
judging a By ball, since the success or failure signal is obtained lovg after the actions that lead to that signal
are taken. Considerable work in experimental psychology has focused on identifying the perceptual features
that a fielder uses to judge a fly ball [8, 9]. Several alternative hypothesis, as to what perceptual features
are important in making the decisions, have been postulated. In this paper, we explore the problem in detail
using reinforcement learning models. Our experimental results show that one prime hypothesis made earlier
about the necessary perceptual features is not sufficiently strong enough to learn the task using reinforcement
learning models. We also investigate other perceptual features that help in learning this task. We believe that
trying to solve such tasks using reinforcement learning models can provide us with clues that can better guide
future research in experimental psychology.

The physics of judging a fly ball
In [5, Chapman analysed the trajectory interception problem using Newton's laws of motion but neglecting
air resistance. For perfect parabolic trajectory, the tangent of the ball's elevation angle 4 increases at a steady
rate with time (i.e. d(tano)/dt = constant) over the entire duration of flight, if the fielder stands stationary
at the ball's landing point (Figure 2). This simple principle holds true for any initial velocity and launch angle
of the ball over a finite range. If the ball is going to fall in front of the fielder, then tan4' grows at first and
then decreases with d2 (tanO)/dt2 < 0. .he other hand, if the ball is going to fly over the fielder's head,
then tan4 grows at an increasing rate 6 . *(tano)/dL > 0.

What happens when a fielder has i . to catch a fly ball? In [3], Brancasio shows that many of the
perceptual features available to a fielder (see Table 1) cannot provide significant initial cue as to the location

VVP balls trajectory¥ V

beal's location

batter's location ball's landing point fielder's location

Figure 1: The task of the fielder is to run and intercept the ball at the end of the ball's trajectory.

1-35

Brancasio's List of Perceptual Features Available to the Fielder

Symbol Feature
Angle of Elevation
d4/td Rate of change of #
d 2 41W Rate of change of d4/it
D Distance between bell and fielder
dD/dt Rate of change of D (= -v,, the radial velocity)

Velocity of ball perpendicular to fielder
dw,/Jt Rate of change of y.

Table 1: Brancesio [3] showed that, with the possible exception of d2#/dt2 , these features provide no signiftc initial
cue as to the location of the ball's landing point. Note that D is inversely proportional to the apparent rise of the bell.
Other possible perceptual features include tan#, d(tn#)/dt, 4e(9an#)/e.

Is

Figure 2: The figure shows the variation in tano as see by three different fielders standing at 59.5 mn, 79.5 in, and
99.5 m from the batter. The initial velocity of the ball is 30 rn/s and is hit at a 60* angle. The range of the ball is
79.5 ur, and since this simulation ignores air resistance, tan* increases at a constant rate only for the fielder standing
at 79.5 mn.

of the ball's landing point. Recent experimental results obtained by McLeod and Dlenes; [7] show that an
experienced fielder run such that d2 (taia#)/dt2 is maintained close to sero until the very end of the bell's
flight. McLeod and Dlenes suggest that this is a very robust strategy for the real world, since its outcome is
independent of the effects of aerodynamic drag on the ball's trajectory, or the ball following a parabolic path.
However little is understood about how human beings learn to intercept a free falling ball [7, 8J and what role
the d2 (tan4#)/it2 information plays in the learning process.

In this paper we use reinforcement learning models to show that d2 (tan0)/d 2 information is not sufficient
to learn the task. Also, we experimentally determine other perceptual features that appear essential for
learning this task.

Using reinforcement learning to catch a baseball

We use Rarto, Sutton and Anderson's Multilayer Adaptive Heuristic Critic (AIX~) model [1) as well as Watkins'
Q-learning model [10] to learn the task. The perceptual features that are available to the fielder while judging
a fly ball define the input variables of our system. At any time t, the input to the systemn are: q6, d2 (tan0)/dt2 ,
vI-the velocity of the fielder, and a binary flag which indicates whether tan4. is greater or less than 90*-that
is, whether the ball is spatially in front or behind the fielder. Thus the system receives no information about

11-36

I

m bb i " u m

Figure 3: The variation of 4 (ta#)/d is ownmu for three difievent positions. Aerodynamic drag is taken into
consideration here, which decreases the range to 5T.5 mn for the same initial parameter of the balls as in Figure 2. The
hbll touches the ground at t = 4.9 "econdo. Note that when the fielder is at 59 mn and very close to the ball's landing
point, the &4(tan#)/dt is close to sero for most of the ball's flight, but it increases dramnatically at the end.

the beolutie coordinates of the kel or the fielder at any point in time. Initially, the fielder is positioned at a
random distance in front of or behind the ball's landing point. The initial velocity and the initial acceleration
of the fielder awe both set to seo. The simulation is continued (see Appendix for the equations) until the
balls trajectory is complete and a failure signal is generated. If the bail has hit the pround and the fielder
has failed to intercept the bail, the fbaure signal f(t) is proportional to the fielder's distance from the ball's
landing point.

0 while the ball is in the air,
A(t) 0 if D(final) '52 (Success!),

-ID(final) if D(final) > It (Failure!).

where D(f ae) is the di a e nthe ball and the fielder when the ball hits the round, 7-is the catching
radius, and C is a positive constant. It may be noted here that the information about whether the bell fe in
front or behind the fielder is not a part of the reinforcement signal. This information is provided as an input
signal (with ot) and thus, all through out the ball's trajectory, the fielder knows whether the ball is in front of
or behind the fielder.

For the .47C approach, the action net generates real valued actions similar to that described by Gullapalli
[6]. The output of the action network determines the mean, t), and the output of the evaluation network
determines the standard deviation, w(t) of the action space at a particular time.

pQt) = output of action network, 4r(t) = mae (s(t), 0.0)

where f(t) is the output of the evaluation network. Assuming a Gaussian distribution It, the action a(t) is
computed using t e(t) and a,(). The action of the network corresponds to the acceleration of the fielder:

a(t) - #(pt, ar(S))

The objective function that determines the weight update rules (see [1] for details) is defined as:

Error f(t) + (t + 1) - i(t) while the ball is in the air,
A(t) - f W d if the ball has hit the ground.

For the d-learning model, the network uses a single layer of radial basis hidden units, similr to Anderson
(21, to learn the Q(aa) function. Q(a) is a prediction of a weighted sum of future reinforcements given
that action a is taken when the system is in state a. For our simulations, the action (fielder's acceleration) is
quantised into 20 discrete values equally spaced between ±2.0 r/ 2 . Thus the network has 20 output# that

11-37

1 ** -.- ~. . -

N el 'N Ntm

40

"30 2 L3

Figure 4: The variation of the perpendicular component of the ball's velocity as seen by the fielder at three different
positions. The initial parameters are the ae as in Figure.2. The ball touches the ground at 9 = 4.9 seconds. Note
that the three plots are very close to each other for the first three seconds, and diverge only at the end.

generate 1 values corresponding to the 20 possible actions. The action applied to each time step is the one
corresponding to the selected winner among the Q values. To introduce exploration, the winner is chosen
probabilistically with higher 9 values having greater chances of being selected. The failure signal is the same
as in AWC. Back-propagation of the following error is used at every time step t, to update the weights as
described in [2].

Error f 1 1(t) + yQ(xt+,at+,) - Q(xt,at) while the ball is in the air,
1(t) - Q(xt, at) if the ball has reached the ground.

Simulation details

The inputs to the network were bounded in the interval [0.0, 1.0] and were computed as follows. The raw inputs,
as determined by the system dynamics (defined in the Appendix), were first clipped using the following lower
and upper bounds (indicated by ()): (-10.0, 10.0)m/s for the fielder's velocity, VJ; (-5.0, 5.0)M/s82 for the
fielder's acceleration; (0° , 180", ') for 0; (-25.0, 25.0)m/s for v, (referred in the next section); (-0.5, 0.5)s-2
for d2 (tano)/dO2 . The clipped inputs were then scaled to 0.0 and 1.0 and finally presented to the network.
Nevertheless, while determining the system dynamics none of the values were either scaled or clipped. The
sampling frequency was set to 100 Hs (that is, At in the Appendix was set to 0.01s).

During training, each trial began with the fielder positioned randomly in front of the batter. Once the
ball was hit, the fielder attempted to catch it by moving forward or backward. The trial ended when the ball
hit the ground. In order to account for last moment adjustments made by the fielder (for example, making a
final dive at the ball), a catch was considered successful if the ball hit the ground within a region around the
fielder's position defined by the catching radius, R. In our simulations, the catching radius was set between
1 m and 2 m.

Results

Our results, using both the reinforcement learning methods, show that d' (tau4)/dt3 information by itself is
not sufficient to learn the task at hand. After an initial learning period, the system surprisingly learns to move
the fielder away from the ball's landing point instead of moving towards it. Figure 3 delineates the underlying
problem. For a fielder standing at the ball's landing point d2(tan0)/dt2 is always zero. However, if the fielder
is only a small distance away from the ball's landing point, d2(tan4O)/dt2 is close to zero for most of the ball's
Right, until near the end when it increases dramatically. Thus large and small magnitudes of d2(tanO)/dt2 can
be associated with both large and small values of negative failure signals. This suggests the need for additional
feature(s) that might help in the learning process by removing the ambiguity.

11-38

.d I I I U

Igo - -

is,

1 61
,- -l

2 l /\ I !0

0 0 4000 sm M10 10000
Tr

Figure 5: The plots show the number of successful catches every 200 trials as a function of total number of trials for
three diffeent sets of learning rates. The initial parameters of the ball are the same an in Fi4ure 2. The fielder's initial
position is chosen from a random distribution [47.5m, 67.5m. The initial velocity and the initial acceleration of the
fielder are both set to sero in every trial.

In our second set of simulations we use the perpendicular component of the ball's velocity as seen by the
fielder, vu, as an input along with the other inputs used earlier. Figure 4 plots the variation of vp as seen by the
fielder standing at three different positions. Initially, v,, provides little cue as to the balls landing point, but
as the ball's Might comes to an end, v. is significantly different for the fielders standing at different positions.
Interestingly enough, both methods were now able to learn the task, since v,, information adds the necessary
discriminating ability in judging fly balls during the latter stages of the ball's flight. Figure 5 shows some
typical learning curves using .4HC learning algorithm with fielder starts with a random initial position every
trial. Figure 6 shows space-time plots of the fielder's trajectories before and after training for 20 different
trials (note that the initial positions of the fielder are set randomly). Plots in Figure 5 and 6 were obtained
from the AliC model (results obtained from the Q learning were similar in nature).

Conclusion and future work

The above results may be explained as follows. Both d2(tan#)/dt2 and v. are necessary for learning the task
of catching a ball. During the initial part of the ball's flight, the system learns to keep d'(tanO)/dt2 very
small, and move in the correct direction. Towards the end of the ball's flight, when d2 (tanO)/dt2 increases
drastically, the system learns to use v. to decide whether to run forward or backward.

The goal of this research was to use reinforcement learning models to better understand the perceptual
features that actually guides a fielder to learn catch a fly ball. We believe that such findings could help further
research in experimental psychology.

References

[1] C.W. Anderson, Learning and Problem Solving with Multilayer Connectionist Systems, Doctoral Disser-
tation, University of Massachusetts, Amherst, 1986.

[2] C.W. Anderson, "Q-Learning with Hidden-Unit Restarting," Neural Information Processing Systems 5,
1993, pp. 81-88.

[3] P.J. Brancasio, "Looking into Chapman's homer: The physics of judging a fly ball," American Journal
of Physics, Vol. 53, No. 9, 1985, pp. 849-855.

[4] V. Bush, Science is Not Enough, Wm. Morrow Co., NY, 1967.

1-39

0 1

Figure 6: The two space-time plots show the fielder's location in 20 tuials, before (left) and after (right) training for
10000 trials. The initial parameters of the ball are the same as in Figure 2 and the fielder's initial position is chosen
from a random distribution [47.5m, 67.5im]. The initial velocity and the initial acceleration of the fielder are both set

to sero in every trial. The sampling rate of the dynamics of the ball and the rate at which the fielder's position is

updated is the same a the basic simulation rate. i.e. 100 Ha. The ball landing point is at 57.5 m which is reached at
t = 4.9 second*.

[5] S. Chapman, "Catching a Baseball," American Journal of Physics, Vol. 36, No. 10, 1968, pp. 868-870.

[6] V. Gullapalli, "A Stochastic Reinforcement Learning Algorithm for Learning Real-Valued Functions,"
Neural Networks, Vol. 3, 1990, pp. 671-691.

[7] P. McLeod and Z. Dlenes, "Running to catch the ball," Nature, Vol. 362, 1993, pp. 23.

[81 K.S. Rosenberg, "Role of Visual Information in Ball Catching," Journal of Motor Behavior, Vol. 20, No.
2, 1988, pp. 150-164.

(91 J.T. Todd, "Visual Information About Moving Objects," Journal of Eperimental Psychology: Human
Perception and Performance, Vol. 7, No. 4, 1981, pp. 795-810.

[10] C.J. Watkins, Learning with Delayed Rewards, Doctoral dissertation, Psychology Department, Cambridge
University, 1989.

APPENDIX: THE EQUATIONS OF MOTION

The equations of motion in two dimensions for a projectile can be expressed as:

x" = -Kv., y' = -Kvv -g (1)

where a" and p" are the instantaneous horizontal and vertical accelerations, v. and v, are the horizontal and
vertical components of the velocity of the ball v, g is the acceleration due to gravity and K is the aerodynamic
drag force constant equal to 0.005249 m- 1 for a baseball [3]. Using a sampling time of At second, the above
equations are numerically integrated using third derivatives as follows:

As = ,,.At + 0.5,"'(At)2 + 0.1667,-,(At)8 , Ay = , At + 0.5p'(At)2 + 0.1667y"'(At)s, (2)

where a" = -K(v'v. + va"), y " = -K('w, + vi"), and v' = (v.z" + v ,')/v. The velocity components
are also updated as:

AV. = Z"(At) + 0.5,"'(At)2 , AV, = Z"(At) + 0.SVp"(At)' (3)

Given the current coordinates of the fielder and the ball, and their respective velocities, it is possible to
calculate the variables associated with .0, and tan.0 including their derivatives using trigonometric equations
and calculus.

11-40

A State History Queue for Efficient Implementation of a Reinforcement Learning System

Yendo Hu and Ronald D. Fellman

Department of Electrical and CompUer Engineering, 0407
University of California at San Diego

December 7, 1993
Abstract -This paper presents a modification to the BOXES-ASE/ACE reinforceiweza learning algorithm to improve
implementation efficiency. We introduce a state history queue (SHQ) to replace the decay variables associated with
the states, decoupling the hardware complexity from the number of control states. We analyzed the effectiveness of
the SHQ and constructed both a simulation and an actual hardware of a pole-cart balancer. Analysis shows this tech-
nique preserves performance, while decimating the required computation time and memory demand of tracking
access to each state.

1. INTRODUCTION
The BOXES network, developed by Michie and Chambers [Mich68] and later refined by Barto et al. [Bart83], is

a reinforcement learning algorithm designed to solve difficult adaptive control problems using associative search
elements (ASE) and adaptive critic elements (ACE). The equations of motion of the physical system are not known to
the network. Rather, it learns how to respond based upon feedback from past trials. This feedback evaluates system
performance from a failure signal occurring when the controlled object reaches an undesired state.

Using the current input state, the ASE acts as a control memory that uses the current system state as its address to
look up data, and sends a signal to control the target object, or plant. The resulting action may generate a
reinforcement signal, usually negative, that the ASE and ACE receives. On the basis of a first-order linear prediction
from past reinforcement signals, the ACE uses this catastrophic reinforcement signal to compute a prediction of the
reinforcement signal when the plant produces no actual reinforcement The ASE updates its control information using
both this improved reinforcement signal along with a trace through the previously traversed system states. The effect
of a reinforcement signal on a control parameter decreases exponentially with the elapsed time since the system had
last entered that state. In [Bart83], a single ASE, along with one ACE, successfully learned to solved the pole
balancing problem. Many researchers have also used this pole-cart balancer as a benchmark for evaluating the
performance of their algorithms [Bart83J[Widr87][Shep88][Ande89].

By monitoring the plant, the ACE adjusts its reinforcement prediction to emphasize learning when the system
moves between states. Predicted reinforcement diminishes when the system remains in the same state. It then sends
this modified reinforcement signal to the ASE. The ASE, whose output controls the system, learns by adjusting its
long-term time-traces of the modified reinforcement signal and its associated time-decaying short-term traces of the
control actions given for each state. The ASE assigns a register to bold an output control value for each unique system
state. This output register holds the long-term trace that represents both the output action, the trace's sign, and also a
confidence level, the trace's magnitude. Thus, high confidence levels are represented by large trace magnitudes. The
ASE adjusts only the traces of states that led to the reinforcement event. A second value for each state, the short-term
memory trace, tracks the contribution of a state towards producing the current system state. For each state, this short-
term trace weighs the reinforcement adjustment of the long-term trace value. This mechanism allows past states to
learn from a system failure in proportion to their contribution to the current outcome.

An ASE contains one control output, one reinforcement input, and an input state vector. Each element within the
vector represents a unique state within the system. The ASE output, which controls the system, is just the thresholded
long term trace selected by the decoded state vector, I(t), as in (1).

SN
0O(t) = 0 (1 (I(t) X Wi(t)) ,0(a) =Iif a> 0, else0(a)=-l. (1)

The following equations recursively relate two internally stored variables: the long term trace, w(t), and the short
term trace, ei(t), to each input, i:

wi(t) = wi(t- 1) +zR(t- 1)ei(t- 1) (2)

ei (t) = 8ei(t- 1) + (I-)i(t-1)O(t-1) (3)

II-41

Effcient Implementation of a Reinforcement Learning System Yendo Hu & R. D. Feliman

where R(t) = reinforcement signal, 8 = ASE trace decay rate
I(t) = state vector, O(t) = output action
a = positive constant determining rate of change

The ACE contains one modified reinforcement output, one reinforcement input, and a set of inputs equaling the
number of outputs from the front end decoder. Two internally stored variables, ii (t) , the time decay factor, and v.(t),
the state predictor, recursively update their values each cycle from the current system state. The change in the system
predictor, p(t), provides feedback to update the variables, vi(t) and t (t). The following equations describe the
operation of the ACE:

ii(t) = .ii(t- 1) + (1- X)Ii (t-l1) vi (t) =vi (t-1)+ of(t-1) ji (t-1) (4)

N
p(t) = (vi(t) × (t)) (t) = r(t) +YP(t) -p(t-l) (5)

i=1

where X = ACE trace decay rate, N = number of possible input states
y = discount factor, = positive constant determining rate of change

The ACE predicts a reinforcement signal for each input state, based upon past reinforcement signals and their
occurrence with respect to input activity. A negative reinforcement signal produces unfavorable prediction values for
states with recent signal activity. Positive reinforcement increases the prediction values for recently accessed states.
In terms of our notation, positive t reinforces actions that move the system into higher vi , whereas negative?
discourages actions that move the system toward lower v. values.

• state variables

Figure 1. Example of a simple ASE oad ACE system.

During operation, the system first quantizes each of four input variables: pole angular velocity, cart position, cart
velocity, and the reinforcement feedback. The quantized system parameters then pass through the decoder and
activate the unit state vector representing the current system state. The ASE and ACE elements connect as shown in
Figure 1. [Bart83J gives detailed experimental results. The ASE/ACE network learned to balance the stick within an
average of 70 trials.

!. State History Queue
The short-term trace or eligibility function, e(t), in the ASE, and the state trace, x(t), in the ACE, decay

exponentially over time, thus only carry significant values over a limited period. All associated computations
involving these variables are influential on], during this period. The state history queuing (SHQ) scheme takes
advantage of this characteristic to reduce both memory and computation time.

Rather than store a decay value for each system state, the SHQ scheme keeps only a truncated list of all recently
traversed input states. Weighting these states by position in the history queue generates an equivalent decay value. By
restricting the length of this list, the SHQ scheme, in effect, sets a threshold to truncate insignificant decay values. It
ignores weight adjustments of those states whose last visits occurred beyond a time period specified by the list length.
Thus for each network update, only variables associated with the states listed in the queue need adjustment. This
limited updating algorithm decouples the weight updating time from the input state space size.

The state history queue is just a shift register that keeps track of the past inputs states (Figure 2). The register
depth, H, defines the length of the queue. The parameter H sets the time threshold where incremental weight
adjustments beyond this point are assumed insignificant, and ignored. The ASE state history queue records the
decoded input address and the generated output.

11-42

Efficient Implementation of a Reinforcement Learning System Yendo Hu & R. D. Fellman

AddreQ Input State Output Decay Scalar
Ha&*-1 A(t-[H-1I) O(t-[H-1]) k

ASE

State History Oueue
I A(t-1I) O00-1I) k(H-1)

0 A(t) 0(t) kH

Figure 2. The state history queue structure for ASE.

An approximation to the decay function using the queue further reduces the computation time needed for weight
adjustments. This is achieved by assigning constant decay scalars to each register within the queue. The
approximated decay function for each input state is just the sum of all decay scalars of registers holding the input
state. This decay function replaces the decay variables e(t) and i (t) in the original algorithm. A linear function to
represent the set of constant decay scalars further reduces the complexity of the algorithm. As an example, the
approximate decay funcfon for systems that dwell in the same input state is given in equation (6)

j=1

where 8 = trace decay rate, u(t) = step function
H = length of the state history queue, K = decay scalar rate of change

The error analysis in the following sub-section mnd simulations in Section IV confirms the fact that the approximation
introduces only a small difference to the overall system performance.

Using the SHQ, equation (2) to update the control weights becomes:
w[SHQA[h]]ne w = w(SHQA[hJ old + R(t)*ca * (h+l)* SHQO[h]*1cs

where: a -rate of change constant in Barto et al. network,h = pointer in SHQ, 0 h < H,. -1
Ys, = change slope between addresses in SHQ,w = weights (addressable memory)

The SHQ algorithm also applies to the ACE, and both ASE and ACE can share the same state history queue.
With the SHQ, equation (4) becomes:

v[SHQA[h]]. = v[SHQA[h]Jo +3 [R(t) +1y p(t) - p(t-1)]r.x

where: h = pointer in SHQ, 0 9 h < H., - 1, = discount factor (a constant)
v = prediction values (addressable memory)

Relating the State History Queue to the ime Decay Function

Two parameters control the effective time decay in the SHQ scheme: x, the decay slope, and H, the register
length. Here, we will determine the values of these constants to minimize the average mean squared error between the
step responses of these two schemes. Simulations show that as the system stabilizes, it tends to spend most of its time
in a particular state or small set of states. Thus, the eli, ility function for these states tends to resemble the response
to a step input. We therefore match step responses to rnJel this desired system learning behavior.

The original eligibility decay function, e,(t) of equation (3), is a recursive one-pole infinite impulse response
digital filter with an exponential time constant oft = IlnS -1. The SHQ simply truncates this impulse response and
approximates it as by the sum of all occurrences of a given state within the queue. When only few states are
constantly visited, as occurs when the system is beginning to learn, this accumulation can be roughly approximated
by the quadratic function given in equation (7) for this typical value of ei(t),h q.

The two functions, ei(t) and ei(t)4, should also match at t=0 and t = infinity, giving a constraint on K and H.

e t2 it 2 (7)
i = (s Ht--+- H2 +H

Ideally, we would minimize the mean-squared error between ej(t) and ei(t)shq to derive optimal 'c and H values
that match the SHQ eligibility function to Barto's eligibility function. However, for a simple approximation to find H,
we will impose one more condition between the functions e1(t) and e(t)q: the functions should intersect at time ",

11-43

Efficient Implementation of a Reinforcement Learning System Yendo Hu & R. D. Fellman

the time constant of the step response of e(t). From (6), for t = ' = jln8j -1I e1(t) = ei(t),hq= 1- lie = 0.632. Solving
(7) for H and setting t = r we get:

I + Jo.36 2.54 2 (8)
0.632 (Ilnj) lnSI 12

The slope, ic, and the SHQ length, H, determine the response of the approximated eligibility function. Equations (7)
and (8) fit the SHQ eligibility function ei(t),hq onto the original eligibility function e1(t). The step response plot,
Figure 3, of the original eligibility decay function and its SHQ equivalent show the difference graphically. For this
example, the mean squared error between these two curves is 8%. Our simulations in section IV confirm equivalent
learning performance for the SHQ compared to the original algorithm.

Step Response 8=0.9, = o.00307, Haox=25. Heop27

1200 ___

100

400

200

0
0 10 20 30 40 s0

E el(t) E approx ei(t)shq EE optimal el(l)shq

Figure 3. Step response comparison of the original eligibility function and the SHQ decay function.

Effectiveness of the SHQ Scheme

We present two factors to measure the effectiveness of these suggested improvements: TF, the time efficiency
factor, and MF, the memory efficiency factor.

TF = time to address memory without modification MF = memory used without modification (9)
time to address memory with modification memory used with modification

A large efficiency factor indicates significant improvement achieved by the modifications. We must assess the number
of operations per update for the network. The original system without the SHQ would need to update all elements in
the e, i, w, and v array each cycle; whereas the modified network with the SHQ only need update some elements in
the array. Figure 4 gives the number of multiplication and addition operations required to update each array.

Operations Per Update

Without SHQ With SHQ

Multiply Addition Multiply Addition Shifting

e 3M iM 0 0 H

X 2M iM 3H 2H 0

W 2M iM 0 0 H

V M+2 M+2 H2 H+2 0

Defimition of Variables:
M := total number of possible inputs states
H - L.ngth of State Hiatory Queue

Figure 4. Effectiveness of the SHQ measured by the number of operations to update the eligibility array.

In this case, the time efficiency factor becomes:

(4 M+ 2)Ta+ (M+ 2)Tm

TFshq = 2TsH+ (3 H+ 2)Ta + (4 H+ 2)Tm (10)

where T s = time to perform one shift operation, Ta = Time to perform one addition operation

11-44

Efficient Implementation of a Reinforcement Learning System Yendo Hu & R. D. Fellman

T in= Time to perform one multiply operation.

The memory needed for the original network must be large enough to bold the four arrays: e, x, w, and v, which gives
a total memory demand of 4M. The SHQ modification eliminates the two arrays, e and i, but adds the state history
queue of length H; the SHQ will need 2H memory spaces. The memory efficiency factor is thus:

MF 4M
shq = 2H+2M

IlL SIMULATION RESULTS

Computer simulations of this learning system, both with and without our modifications, measured the
improvement in speed, performance, and hardware demand The original adaptive network by Barto et al. offered a
reference for comparison. The sequence of experiments presented below evaluates the contribution of each scheme to
the network's overall improvement. A NeXT workstation provided the environment to develop the simulations. All
programs are written in Objective C and ran under the Unix operating system. We took advantage of the NeXT
supplied interface library to generate a graphical user interface that showed the simulated pole-cart system learn in
real-time. A hardware implementation using an 8-bit microcontroller (MC68HCI 1) demonstrated the practical
feasibility of such a system.

Recreating Barto's Network and Environment

We recreated the environment and network Barto et al. [Bart83J developed. The cart and pole motion equation
from their paper defined the physical system. All physical parameters in the network's learning environment remained
the same. The simulator used Euler's method to solve the differential motion equation, using a time step of 20 ms. It
implemented Barto's network in full, both ACE and ASE algorithms used the same parametric values given by
[Bart83]. We measured the performance of the network by observing the number of trails verses elapsed time
between failures. The slopes and the peaks of the learn curves reveal the network's learning rate and the control
solution's robustness.

Observing the SHQ Effect

We evaluated the SHQ's effects on the learning performance of the modified ASE/ACE network. The SHQ
replaced the short-term trace, or 'e' array, in the ASE, and the state trace, or 'x' array, in the ACE. For 8 = 0.9, the
ASE SHQ length, H., was found to be 25 using (8). This result was used to compute ic, = 0.00307 from (8).
Similarly, for X = 0.8, H. and Ka. were found to be 13 and 0.0109. We computed the average learning curves over ten
random seeds using the SHQ as shown in Figur- 5. The curves fell within the same range as the Barto's network's

Average Learn Ng 0.1

Dario t. al. our AOW/AC1K ReW OHM

Figure 5. Average learning curve comparing SHQ with original ASE/ACE

learn curve. The different learning rate as seen in Figure 5 using the SHQ algorithm arose as a side effect of the decay
truncation in the SHQ scheme and the limited number of noise seeds for the simulation runs. The SHQ approximation
to Barto's decay function used only a limited number of past states to compute short-term traces. For all occurrences
of a given state within the SHQ, the sum of the constant decay-scalars estimates a short-term trace for that state. This
introduced a marked improvement over the original algorithm for this application. The time and memory efficiency
gain using the SHQ scheme, defined by TF*, and MF.,, were found to be,

11-45

Efficient Implementation of a Reinforcement Learning System Yendo Hu & R. D. Fellman

650Ta + 1298Tm 648

shq 50T s + 7 7 Ta + 102 Tm shq = 50 + 324-

IV. HARDWARE IMPLEMENTATION

We constructed a hardware implementation of a reinforcement learning adaptive controller and a pole-cart
balancer system that demonstrated the implementation advantages of our modified control network. Its reduced
hardware demand enabled us to develop a self contained portable unit capable of performing real time learning.

A low cost 8-bit microcontroller, Motorola 68HC 11, implemented most of the algorithm. The reduction in
computation time resulting from the State History Queue enabled this 2 MHz processor to update weights in real
time, a 50 Hz rate. A Xilinx 3090 programmable gate array augmented the 68HC1 1 to control external memory and
allow implementation of state association. State association would have decreased learning time, but was disabled for
these SHQ measurements. The entire network with memory and necessary interface fits onto a 5 in.2 board clocked at
the 2 MHz controller rate. All 2 kilobytes of firmware code resides within the 68HC1 1 controller. Computations were
performed with 16 bit integer arithmetic and a shift-add multiply routine. The 256 bytes of internal controller RAM
held system variables, parameters, and program stack. Less than 1 Kilobyte of external RAM implemented the SHQ,
holding values for long-term traces and the ACE's prediction array. For the 68HC1 1, TF = 12.

The non-ideal training environment provided a challenge to the network. Mechanical vibration from the motors
reduced the angle sensor's accuracy in determining the stick's state. The stepper motors limited the cart's position
resolution. Inconsistency during human supervision when re-centering the stick set different initial states for
successive trials. These uncertainties introduced excess noise that reduced system learning rate Despite this, the
system successfully learned to balance the stick for more than 10 minutes after 100 human supervised trials.

V. CONCLUSION

The State History Queue allowed the BOXES-ASE/ACE reinforcement learning algorithm to be effectively
implemented using conventional digital technology. This technique scheme not only kept the hardware demand at a
practical level, it also improved learning speed. The State History Queue addressed only memory that was significant
to the control system, thereby reducing both computation time and memory space.

Algorithmic improvements, such as the state history queue, and leveraging the maturity of digital technology
makes possible the implementation of the entire cart-pole controller using a low-cost microcontroller chip. This
demonstrated the practical application of associative learning to adaptive control problems. Custom implementation
using a VLSI ASIC will further optimize the hardware configuration, rendering a faster and more powerful
implementation to perform tasks for the more complex control problems that exist in the physical world.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the National Science Foundation for funding provided
through their Research Initiation Grant program. This project was funded by NSF award number MIP-9008839
through the Microelectronic Information Processing Systems division.

REFERENCES

[Ande89] Anderson, C. W., "Learning to control an inverted pendulum using neural networks" IEEE Control
Systems Magazine, vol. 9, pp. 31-37 April 1989.

[Ande90I Anderson, J. A. and Rosenfeld, E. eds., Neurocomputing, Cambridge, MA: MIT Press, 1990.
[Bart83] Barto, A. G., Sutton, R. S., and Anderson, C. W., "Neuronlike adaptive elements that can solve

difficult learning control problems,' in IEEE Trans. Syst., Man, Cybern., SMC-13, pp. 834-846, 1983.

[Mich68] Michie, D. and Chambers, ILA., "BOXES: An Experiment in Adaptive Control," in Machine
Intelligence 2, Editors: E. Dale and D. Michie, Edinburgh: Oliver and Boyd, pp. 137-152, 1968.

[Shep88] Shepanski, J. F. and Macy, S. A., "Teaching artificial neural systems to drive: Manual training
techniques for autonomous systems," in Proc. of the 1987 Neural Information Processing Systems
Conf., D. Z. Anderson, ed., Am. Inst. of Physics, New York, pp. 693-700, 1988.

[Widr87] Widrow, B., "The original adaptive neural net broom-balancer," in Int. Symp. Circuits and Syst., pp.
351-357, May 1987.

11-46

Inverse Kinematics via Linear Dynamic Networks

Karl Mathia* and Richard Saeks**, Ph.D.
Accurate Automation Corporation

7001 Shallowford Road
Chattanooga, Tennessee 37421

Abstract. A solution of the inverse kinematics problem in robotics is presented. The usual difficulty
of inversion or non-invertability of robot kinematics is circumvented by linearization of the forward
kinematics and the design of an appropriate energy function, which then is minimized by linear dy-
namic networks. The results of the dynamic optimization process are the 'best' joint angle rates which
minimize the manipulator's position error. We call the class of networks used Linear Hopfield Net-
works, due to it's similarities with the original Continuous Hopfield Network. A convergence proof for
the dynamics of the synchronous Linear Hopfield Network is given. The development of an explicit
upper bound on the step size is presented which guarantees convergence and whose values at or near
the upper bound provide fast convergence. The simulated tracking control ofa trajectory in 3-D Car-
tesian space with a three-joint robot manipulator demonstrates the performance of this approach.

1 Introduction

The forward kinematics of a robot arm (manipulator) describe the geometry of manipulator mo-
tions, i.e. the mapping from given joint angles to the associated position of the manipulator in Carte-
sian space (or some other space). The inverse kinematics problem is to find the joint angles needed
to move the end-effector to a desired position, i.e. an inverse mapping from a point in Cartesian
space to an associated point in joint angle space must be determined. A closed form solution of the
inverse kinematics can be non-trivial to determine or may not even exist, depending on the complex-
ity or redundancy of the robot's forward kinematics.

Initial ideas of circumventing a closed form solution by linearizing the direct kinematics and
then defining and minimizing an energy function were presented earlier [2]. The present paper ex-
tends the theory and provides simulation results. To find the required joint angles for a desired ma-
nipulator position, the inverse kinematics problem is reduced to the numerical solution of a linear
system. The linear system is specified and solved for each manipulator position, i.e. for each point
on the manipulator's trajectory in Cartesian space, the required associated point in joint angle space
is determined via an optimization process.

An appropriate energy function is represented in a form which can be minimized by a linear, fully
connected, recurrent network. Due to it's similarities with the original Continuous Hopfield Net-
work (CHN), we call this class of linear dynamic networks Linear Hopfield Network (LHN). As op-
posed to the CHN, which has nonlinear transfer functions and is used as an 'autoassociator' [4], the
LHN has linear transfer functions and solves systems of linear equations. A design method for the
LHN is presented which guarantees convergence to the optimal solution, here the 'best' joint angle
velocity to minimize the manipulator's velocity error. The resulting discrete velocities are integrated
to track the preplanned end-effector path. As an example, the simulated control of a three-joint ma-
nipulator in 3-D Cartesian space is presented.

* Ph.D. candidate in electrical engineering, Portland State University, Portland/Oregon.
** Vice president of AAC, previously dean of engineering at the Illinois Institute of Technology.

This research is funded by the Office of Naval Research (ONR) under contract N00014-91 -C-0268.

11-47

2 The Inverse Kinematics Problem

Manipulator kinematics describe the geometry of robot arm (manipulator) motions. The end-ef-
fector of a manipulator is moved to a target position by controlling the manipulator's joint angles
in an appropriate manner. The manipulator's forward kinematics describe this mapping from joint
angle space to Cartesian space. Let x(t) be the m-dimensional Cartesian position vector and 0(t) the
n-dimensional joint angle vector, both functions of time. Then the forward or direct kinematic
problem is solved by transforming 0(t) to x(t):

x(t) = f(OWt), ())

f:RM' - I"R', (Rn, Xe C= .

In general the desired path for the robot manipulator is planned in Cartesian coordinates. Then
the inverse kinematics problem is to find joint angles 0(t) (in the robot's control space) such that the
manipulator's end-effector is placed at a desired position x(t) in Cartesian space (here the robot's
reference space). This inverse mapping is given by

0(t) = fl(x(t)) , (2)

f-1: R"m R",

where unique closed form solutions for the inverse mappingf-(.) in (2) do not exist for redundant
manipulators (m < n, fewer equations than unknowns) or may be hard to determine for non-redun-
dant manipulators (m Z! n), due to the complexity and nonlinearities off(.) in (1). Extending initial
ideas expressed in [2], this paper proposes a solution of the inverse kinematics problem using 1) li-
nearization of the trajectoryf(0(tk)) at discrete time instances tk, 2) the specifications of predesigned
energy functionsE(tk), and 3) the numerical solution of the linearized system obtained by optimizing
E(tk). The energy functions E(tk) are implemented in Linear Hopfield Networks (LHN), which carry
out the optimization processes at each discrete point x(tk) of the end-effector's path.

3 Linearization and Velocities

Difficulties in performing the inverse kinematics (2), introduced by the complexity off(.) or the
redundancy of the system in (1), can be overcome by simplifying the direct kinematics. One ap-
proach is to differentiate (1) with respect to time and use the resulting joint angle velocities
0 = dO/dt and Cartesian velocities k = dx/dt as input and output (or reference and control vari-
ables) for the manipulator control system. The time derivative of(1) is the velocity equation (3), the
inverse is given in (4):

S= J(0) 0, (3)

0 = J-1(0) kx, (4)

where the Jacobian matrix J(0) is defined by

[6A (5f.10, "" 0,i R m

W0) I •
6A 3f1 Je'

SO. 60.j

Given a desired Cartesian velocity profile id, the manipulator joint angles 0 are obtained by inte-
grating the joint angle velocities 0 obtained by equation (4). When using a digital computer to solve

11-48

(4), numerical optimization of an energy function E(tk) is preferred over the matrix inversion ap-
proach for two main reasons: 1) the inversion of J can be numerically unstable, e.g. if the Jacobian
is close to singularity (assumingJ -- exists), and 2)J may be singular and therefore a unique solution
of (4) does not exist, e.g. for redundant manipulators. If J is not invertible, additional constraints
can be added to make (4) uniquely solvable. A common way is to apply the Moore-Penrose pseudo-
inverse J t , where tht additional constraint is given by finding the solution with minimal norm. In
the present paper the system in (4) is made invertible in a similar way, and a numerical solution is
used where the inverse J-i1 is not needed at all.

4 Energy Function and Optimization Process

In this paper the inverse kinematics problem for a robot manipu!ator is converted into an opti-
mization problem. The first step is to design an energy function E (cost function, objective function),
and then to optimize this performance measure using linear dynamic networks. The primary control
objective is to minimize the position error xe(I = x(tk)-Xd(t) of the manipulator's end-effector.
Since in this paper the velocity equation (4) is to be solved, the energy function is expressed in terms
of the velocity error ie(t) = x'(t)-xd(t. As an additional constraint the minimization of necessary
joint angle changes, or velocities, 0 is introduced. This additional constraint results in a smoother
trajectory in joint angle space (and therefore Cartesian space).

Provided a desired trajectory xd, the energy function E is defined in terms of the velocity error
xe and the joint angle velocity 0 as

2E= + E 110112 (5)
= x--dI 2 + 110112

=("~d) T ("_d) + E6

where c is an arbitrary non-zero constant (discussed below). The velocity error .i can be expected
to increase with e, which will be demonstrated by simulation results. The factor 2 in (5) is used for
later convenience when deriving the energy function for optimization purposes. Equations (3) and
(5) result in a representation of the energy function E with joint angle velocity 0 as the optimization
variable:

2E(O) = (JO-d) T(Jo-'d) + T 0
= ++ TT.

(-[+JT) * -'d +XdXd
= AO- 2 bTO + iT d , A e ' , b e Rn, (6)

where A = E I + jTj and b = JTxd. The constant E is used for two purposes: it weights the
influence of the angular velocity term on the joint angles (this strategy is common in optimal control
methods), and the term EI provides invertability of A for all forms ofJ and therefore a unique solu-
tion of the equation system (6). The energy function E must be minimized at each point along xd
to find the 'best' 0 = &opt, in order to obtain the 'best' desired velocity Xd. The derivative of E in
(6) with respect to 'iteration time r' is (the manipulator moves in physical time t, which 'stays still'
during optimization):

11-49

dE(O) - 1 E(O) dO
dr 2 6 dr

E = A6-b, (7)

The energy function settles at 0 = OPt, i.e. E(OoPl) = 0 (assuming convergence), and consequently

minimizing E solves the linear system

A6 = b. (8)

5 The Linear Hopfield Network

To carry out the optimization process above, the linear system (7) is mapped onto a linear dynam-
ic network. Before the notion of Linear Hopfield Networks (LHN) is introduced, the similarities of
equations (6), (7) with the Continuous Hopfield Network (CHN) are pointed out.

Continuous Hopfield Network. In the original paper by Hopfield and Tank [41, the energy
function of CHNs (single layer, recurrent) is defined by 2E = _VTTV-21TV, with weight matrix
T, optimization variable V, constant input vector 1, and therefore is similar to the energy function
in (6). The derivative of Hopfield's energy function is E = -TV-I and thus almost identical to (7).
The CHN is primarily used as an 'autoassociator' and requires sigmoidal transfer functions for it's
neurons in order to guarantee convergence of it's dynamics to the nearest minimum of E [3]. If
instead a linear transfer function is used, the CHN equation in [4] becomes V" = T*V + *, with

T* = -diag(ki) + T and I* = -I. When converging to the equilibrium (V1 = 0), the linear system

T*V = -I* is solved, which is a linear system like (8).

Linear Hopfield Network. As shown above, the linear dynamic network defined by (6) and (7)
is very similar to the CHN, which also is characterized by a energy function and a differential equa-
tion. The main difference between CHN and LHN is the sigmoidal transfer function, which is mis-
sing in (6) and (7). This fact leads to our notion of the LHN (single layer, recurrent), which solves

the linear system (8), provided convergence to the solution 0ot with E(Oopt = 0. A design method
for the LHN, which satisfies the convergence requirements, is given below in (9) and (10).

Definition. The Linear Hopfield Network is a single-layer, recurrent network with weight ma-
trix W, constant (clamped) input vector u and linear transfer functions. The dynamics of the continu-
ous-time LHN and the discre'e-time LHN by are defined by (9):

dO =-W6 + u (9a)
r

where r represents 'iteration time', not physical time t, and

W =A = a(s I+JTJ), WG RM., (9b)

u =ab = aJT Xd, ue E ', (9c)

and for numerical solutions using digital computers, the discrete time representation of (9a) is

A O(n) = O(n + 1)-4(n) = -WO(n) + u. (9d)

In the following we proof that this linear system converges for

0 _< a < 1 (10)
IIAII

11-50

The LHN state vector 0 is updated in synchronous (simultaneous) mode. Convergence of the
continuous-time LHN in (9a) and the discrete-time LHN in (9d) is guaranteed for any initial condi-
tion 0 0 if the step size a satisfies (10) for some matrix norm IA!. For fast convergence a should be
near it's upper limit. Suitable norms are e.g. the maximum eigenvalue (maximum spectral radius)
, ,. {A} or the maximum singular value a,,,, {A}.

Proof. While the sigmoidal transfer function plays a central role in the convergence proof for
the CHN, this proof does not apply to LHNs [3]. Here the defining equations (9) must be 'scaled'
with a constant factor a to provide convergence. This is possible due to the fact that the unscaled
system (Ila) and the scaled system in (llb) have the same solution 0, as is shown in (12):

Ao = b (lla)

aAO = ab (l1b)

= A-'b = 1A-'ab = W-Zu. (12)a
A sufficient condition for the convergence of (lla) as well as for (llb) is (see e.g. [1])

IWII = laAll = aiA41 < 1,
which results in the inequality (10) for some matrix norm IJ (q.e.d.)

With a given a and A0(n) = 0(n + 1)-14(n) the discrete-time LHN in (9d) can be rewritten as

O(n + 1) = O(n)-WO(n) + u (13)

= 6(n) + a(-AO-b) (14)

= 6(n) + a AO(n). (15)
Equation (15) suggests the interpretation of a as a 'step size' (as in the common learning context,

here better 'convergence rate'), small enough to guarantee convergence of (15). It is generally
known that a greater x provides faster convergence. Equation (10) gives a guideline to chose an up-
per bound a=ama to achieve the fastest convergence to the solution vector OP,.

6 Practical Considerations and Simulation

For the implementation of the LHN it was intended to keep the required computational power
minimal. This is of particular interest because the LHN needs to be specified at each tk along the
desired trajectory, i.e. LHN initialization can require a considerable amount of computational power.
A matrix norm 11A11 specifying a for fast convergence may be the maximum singular value a,, {A },
but determining omax requires a considerable number of floating point operations. Thus the
trace{A}, which is easy to compute, was used for this work as an upper bound of Uma:

n

omnax{A} <= tracef{A} = ZA ii.
i= 1

According to the Jacobi iteration [1], synchronous (simultaneous) value corrections were used.
Successive or asynchronous corrections provide slightly faster convergence, but require more cal-
culations to design W Also, for simulations it is important to choose appropriate initial conditions
xd(tk=O): if the initial Jacobian matrix has zero entries 6fIl/Oj, the algorithm may not move one or
more joints as would be necessary for tracking the desired end-effector path. Zero entries of the Ja-
cobian of course are unlikely in real-world applications, where noise is always present.

1-51

Simulation. For simulations an example manipulator, similar to a human arm (Figure 1), and
a straight line in 3-D Cartesian space (Figure 7) as desired trajectory were chosen. The manipulator
consists of two segments of unit length, two adjustable joint angles 01, 02 at the shoulder and one
adjustable joint angle 03 at the elbow. The shoulder is positioned at the origin of the Cartesian refer-
ence system. Thus the control system has three reference inputs, three control signals and three con-

trol variables: desired Cartesian velocities Xd e R3, joint angle velocities 0 c t3 and actual Carte-

sian velocities x e H3. The resulting LHN weight matrix is W e 1 3x3 (Figure 2).

The desired end-effector path xd(1) from time 1=0 to t=T was constructed as follows: Starting
and ending point were obtained by (1) with Od(O)=[n/ 3, it/3, a/7]T Od(T)=[27t/3, -n/3, n/5] T to
xd(O) - [0.28,0.50, 1.8 7]T and xd(T) = [-0.70, 1.22, - l.27]J. Between these points the selected path
xd is a straight line, consisting of a total of 1000 points, and the velocity curve Xd was selected to

be bell-shaped. To track the trajectory, the incremental angle velocities 0(t), computed by the LHN,
were integrated to obtain the joint angle trajectory (Figure 3). The reader may verify the general
shape of 0(t) by moving his/her hand along a similar virtual line. The position tracking error xe of
the control system increases with increasing r, although here only the simulation with e=0.05 is
shown. Due to the particular xd chosen here, the product jTj is invertible and r could be set to zero,
which also was verified during simulations.

Simulation results are shown in Figures 3 to 7. The three dimensions of the desired and actual
Cartesian trajectories are shown in Figures 4 to 6 for r=0.05. Because the energy function imple-
ments a 'compromise' between accurate position and smooth angle velocity curve, the error is not
expected to be zero. The 3-D trajectories (desired and actual) for this example are shown in Figure
7. The integrated linearization error can be further reduced by using more points along the desired
trajectory. With increasing r the LHN performance changed towards smoother curves, but with
greater position error, as expected.

Conclusion. The presented solution of the inverse kinematics problem, using an appropriate en-
ergy function which is minimized by a linear dynamic network (Linear Hopfield Network), shows
promising results. It provides a variety of control strategies for a huge number of manipulator kine-
matics. A drawback of this approach is the required preplanned trajectory with a fixed number of
points. From a practical point of view, the upper bound developed for the step size provides a means
for confidently operating at a high convergence rate.

Acknowledgement

We would like to thank Chadwick Cox and Professor George G. Lendaris for helpful discussions
and suggestions. This research is funded by the Office of Naval Research (ONR) under contract
N00014-91-C-0268.

References

Il] Golub G.H., van Loan C.E 1989. "Matrix Computations," Johns Hopkins University Press, Balti-
more and London.

121 Guo J., Cherkassky V. 1989. "A solution to the Inverse Kinematics Problem in Robotics using Neural
Network Processing," International Joint Conference on Neural Networks (IJCNN) 1989, Vol. I1, pp.
299-304.

(3i Hertz J., Krogh A., Palmer R.G. 1991. 'Introduction to the Theory of Neural Computation," Eddi-
son-Wesley Publishing Company, New York.

141 Hopfield J.J., Tank D.W 1986. "Computing with Neural Circuits: A Model," Science, Vol. 233. Au-
gust 1986, pp. 625-633.

11-52

X3 > u01

IW
N\ end-effector W

U 3 0 3

Xl,

Figure 1: The example manipulator in Figure 2: The 3x3 Linear Hopfield Net for
3-D Cartesian space. the inverse kinematics example.

I0t!! & lelw q *-1. -4- 3 .

lO.S dQ--,x()

....... -. - - -- -0 0

-1; Ot 200 300 400 000 Soc 700 g0 000 1000 0 '00 200 300 4 500 600 700 goo 900 1000

Figure 3: Optimized joint angle vector 0 Figure 4: Desired and actual x, component of
over time for c=0.05. the end-effector trajectory for c=0.05.

1.4 2

0. 1 - -- !

0 100 oo 300 400 .00 800 0oo 0 1000 too 200 300 400 300 800 700 800 900 1000
.I . .Ves

Mum a..sq
dim011.ts mS lIps

dlVicrete limeseps

Figure 5: Desired and actual x2 component of Figure 6: Desired and actual X3 component of
the end-effector trajectory for E=0.05. the end-effector trajectory for r=0.05.

'.2 1".
-o

'
-" '

111

.2 0

Figure 7: Desired and actual 3-D trajectory in Cartesian space over time for F=O.05.

1-53

Good Fibrations: Canonical Parameterization of Fiber Bundles
with Self-organizing Maps

David DeMers Kenneth Kreutz-Delgado"
Electrical and Computer Engr. 0407
University of California, San Diego

9500 Gilman Dr.
La Jolla, CA 92093-0407

Abstract

A natural parameterization of the redundant degrees of freedom of a robot manipulator is learned
from input-output data. A family of direct inverse kinematics functions are constructed by self-organizing
maps. As a result, all inverse functions can be computed directly. Optimization of any side function is
possible in the low-dimensional space of the natural paraneterization, rather than in the full configuration
space.

1 Introduction

A naturally arising problem is that of regularizing systems with excess degrees-of-freedom (dof). For ex-
ample, control of a dextrous robot manipulator with more joints than the minimum necessary to perform
its tasks requires "resolving" the redundancy in order to find a unique configuration of joint values which
position the manipulator at a desired location.

We consider a system which can be represented as S = (6, W, f)

f B C on __ W C Xm

(m < n). Such a function is said to have excess or redundant dof
It has been shown that if f is a smooth function and B (and therefore W) are smooth manifolds'. W can

be partitioned into disjoint regions Wi such that the inverse of Wi consists of a finite number of ?Is Bi

with the property that (B , T n -m , W,, f,) forms a trivialfiber bundle, where T n - m is an n - rn di eal

manifold in BI, and fi is f restricted to Ui B [1], [5]. Each element x of Wi has as its inverse a unique

n - m dimensional submanifold in each BM, homeomorphic to T - ' , [2]. That is, for each x E Wi there is
a unique "fiber" in B which maps to x under f.

The hallmark of a trivial fiber bundle is that there exists a canonical parameterization of the fibers [9].
Any cross section through all the fibers 2 results in a manifold diffeomorphic to Wi. Therefore B has a local
product space topology equivalent to the product of the topology of Wi and the topology of the fibers3 , or
XM X on-rn.

An inverse function on Wi is a (smooth) function g : x E Wi -+ 0 E On such that f(g(x)) = x Vx E Wi
[12]. In general, g is not unique, even when n = m. For example, let y = f(x) = x'. There are two inverse
functions over W = R+; g+(y) = V,/ and g-(y) = -/y-. Each region of the workspace, Wi, is invertible

*Supported by NSF grant IRI-9202581
IA manifold is a space which can be approximated locally as a Euclidean space. For example, the surface of a sphere appears

locally everywhere as planar, but globa:'y it can not be represented as a plane.2To be more precise, a section through its principal bundle, see [9].
3 Note that the Wi may have a simpler topology than W. For example, if ' is S2 , the sphere. and eacht i.f twu W,', i, a

hemisphere, then the Wi have a topology equivalent to R2 .

1-54

(admits an inverse function over the entire region), and there exists independent i... rse functions for each
B of f-l(W) [5]. Each inverse function W, W, x T n -m 5,1 maps each point x C W, to the fiber in B, ,

parameterized by the n - m redundant degrees of freedom. Any values for s E T -" result in an inverse
function; g(x, s) is thus a fully parameterized family of inverse functions.

This paper shows that the entire fiber bundle can be approximated with a set of self-organizing maps,
such that a natural parameterization of the fibers is constructed. The inverse of f can then be approximated,
with the parameterization resulting in n - m free task space variables. If the inverse solution which optimizes
a side function is sought, a search through the n - m dimensional space of the redundancy suffices, rather
than a search through the full n dimensional config,,ation space.

2 Self-Organizing Maps
Self-organizing maps have been used to construct inverse functions [10], [11]. However, the redundancy was
regularized at training time, resulting in loss of the extra degrees of freedom at runtime. In this section,
the basic ideas of using self-organizing maps to identify the redundancy are given. As a result full use of all
degrees of freedom is maintained at runtime, thus allowing dextrous use of the manipulator, and ability to
change optimization criteria (e.g. between maximum manipulabib~ty, /det(J(O)JT(9)) and maximum force
applicability) without re-training.

The input-output (0, x) data for f can be partitioned such that the x components of each elemeat of the
partition are in the same Wi [4]. The resulting, subsets of data can be further partitioned such that the 0
components of each element are in the same B [5]. These subsets contain data from a single trivial fiber
bundle, corresponding to the map f : B, - Wi.

From these input-output data samples we would like to construct a parameterization which is consistent
throughout the entire Bl region and thereby construct a canonical parameterization of the complete fiber
bundle. This is approximated by constructing self-organizing maps of the same topology as the fibers to a
grid of query points in Ai region. The construction is such that the same parameter value of neighboring
fibers corresponds to neighboring points.

Since the topology of the fibers for the case being considered is that of a one-dimensional manifold
diffeomorphic to the circle, an appropriate topology preserving map is an elastic network. The Durbin-
Willshaw algorithm, [6], applied to a network trained on data samples approximating one of the inverse
fibers4 , produces an approximation to the data manifold [11].

The topographic map can be used to parameterize the data by assigning values to the nodes and inter-
polating between nodes (see, e.g., Figure 3). The network can be constructed to conform to the a priori
known topology of the data and thus a local parameterization of the data can be generated.

The Durbin-Willshaw algorithm 5 for updating an elastic network is

Awi= 77(E A,(i)(d, - wi) + rK(wi+l + wi- 1 - 2wi))

where dj is the location of the pth data point and wi is the location of the ith node in the network, and
At(i) is a neighborhood function, here

eldj w,. 2 /2a 2

Au(i) = , e":1.. -wjlI/2a

From the data the WA space is sampled at a number of locations x. and data from BS which approximates
the fiber (the inverse of zq). A self-organizing map is fit to one of these fibers. This map is then used as the
initial network to fit to the remaining fibers. We let wq,o represent one of the nodes of the self-organizing
map, the canonical zero point. The equivalent node in the next map, wq+I,0, can be made to be near to that
of its neighbor network by adding the term

0 - WqO)

4 Where the number of data sanples is significantly greater than the number of nodes in the elastic network.
5 We use terminology similar to that in [7].

11-55

to its update rule, where w; is the zero position of the initial network and is an adaptatio:i rate parameter.
The adaptation rate parameters, qt, , and a are typically initialized to the sane value and annealed in
proportion to the number of epochs of data presentation.

3 Manipulators with Redundant Degrees-of-Freedom

In this s,-ction an example is shown. The inverse kinematics of a 3 -dof robot manipulator operating as a
planar positioner is completely regularized and approximated thioughout the entire reachable workspace.

The forward kinematics function for the 3-dof planar positioner maps a set of three joint angle values
(a configuration) to a point (x, y) in the plane. Assuming no joint limits, the topology of an angle space is
a unit circle, thus B is the product of three unit circles, the unit 3-torus. The range space W is the image
of 6 under f which is either a disk or an annulus centered at the origin, depending on the lengths of the
three links of the manipulator. Generically, W can be partitioned into either 3 c 4 Wi regions, [3], such
that there are either 2 or 1 associated B pre-image regions for each Wi.

030

2\

B Ia

A maps to w-sheet W3

W3 0a1t -s~tW

D2)

D1 D2 eachmaptow-sheet W4

Figure 1: Manipulator Workspace & Joint space The range space ("workspace") and the domain space
("configuration space" or "joint space") of the kinematic map for the 3R planar manipulator. The four
annular regions are separated by boundaries (called Jacobian Surfaces) which are the image of thc singularities
of the forward kinematic function. These regions are denoted bit Wi, i = 1,. .. , 4. The configuration space
space is the 3-torus, which is shown "cut" and "unjolded" into a cube, and projected to the Joint 2-Joint 3
phrne.

A set of 216,000 data samples are chosen in B (the configuration space) and the end effector location in W
corresponding to each is computed by the forward kinematics function6 . The workspace W was partitioned
into fo; r regions based on the number and nature of the inverses for 213 query points. Figure 1 shows the
partition of the workspace and the inverse regions in the configuration space. Each connected region in the
configuration space maps onto -ne of the four Wi.

In Figure 4 the learned fibration in the configuration space for two of these Wi (corresponding to the
annuli W 3 and W 2 in Figure 1) are shown. The inverse data corresponding to points which map to one of
the query points (the fiber) is approximated by individual self-organizing maps. The self-organizing maps

6 Each angle was sampled every 6 degrees over its entire rauge.

11-56

C.n.nid I FI Ii.

* tkw..y k.

Figure 2: Fibration of A =f- (W/V1). All points along each of the one-dimensional fibers, f- I (xi), map
to the same point xi in the range space. Each fiber represents the null-motion of the robot; the manipulator's
end-effector remains at the same location in W, for all configurations on the fiber. Each fiber is diffeomorphic
to the "canonical fiber", S' . The cross-section shown for s = so is 01(Wi, so), which is diffeomorphic to

W1.

can be used to compute a piecewise linear approximation to the fibers. Each fiber is homeomorphic to a
circle. The nodes along each map are assigned parameter values based on their normalized distance around
the fiber. The parameterization is qualitatively consistent over the set of fibers throughout each region.

4 Regularized Inverse Functions

A function computing the parameter value for any point in 611 can easily be approximated from all of the

nodes in al of the elastic nets trained over the region. This function allows the map to be augmented into one
which is one-to-one and onto, and thus invertible. That is, we can write f : 0 E Bl i (x, s) where x E Wi

and s E T " r . Now, given data samples (O, z) from the original system, we can computed parameter
values s for each x and use any nonlinear function approximator to learn the inverse i- 1 : (X, s) -' 0,
where x E W i, s E T n - and 0 E Bli. In this way a function which has nontrivial inverse topology

can be regularized such that the redundancy is resolved by introduction of free parameters in a canonical
way. We have approximated regularized direct inverse functions for the 3-1ink redundant planar arm over
all of its reachable workspace using both feedforward networks and radial basis function (RBF) networks.
The average positioning error of each is less than 2% of the diameter of the reachable workspace. The RBFm
networks are more robust in that when presented with targets outside the reachable workspace, they produce
a configuration which is close to that for the nearest reachable location, whereas the feedforward networks
do not extrapolate well to unreachable locations.

5 Summary

We have shown that the many-to-one forward kinematics function can be partitioned into regions which
have a well-defined topology as a trivial fiber bundle. The redundancy is resolved by introduction of learned
free parameters in a canonical way, exploiting the trivial fiber bundle structure of each solution branch Bli. A

11-57

' ' ' ' ' 'n I I I I mA m

Zero points
t =0.0

7 t 0..1
t= 0. 13 Segments of two neighboring

self-organizing maps. The zero
t= 0.22 points are constrained to be near

t 028 each other (by construction). The
remaining nodes are assigned a
value based on their normalized

= 0.43 t = 0.4 distance from the zero point. Thus
the same parameter value for two
neighboring fibers results in nearby
configurations for the robot.

t 0.67 _______________

t = 0.7

Figure 3: Interpolated Fibers The configurations for two neighboring fibers, corresponding to the inverse
solution set for two neighboring points in Wi. The zero points are constructed to be nearby; the remaining
nodes in each fiber are parameterized by their normalized distance from the zero point. A configuration for
any parameter value is found by interpolation. The entire set of nodes for all fibers form a regularized map
between the configuration space and the workspace augmented by a natural representation of the redundancy.

family of regularized direct inverse functions are con ucted over the entire reachable workspace for the 3-
link redundant planar arm using self-organizing maps, parameterized by the learned natural representation
of the redundancy.

References

[11 Joel Burdick (1988), Kinematics and Design of Redundant Robot Manipulators, Stanford Ph.D. Thesis,
Dept. of Mechanical Engineering.

[2] Joel Burdick (1989), "On the Inverse Kinematics of Redundant Manipulators: Characterization of the
Self-Motion Manifolds", Proc. 1989 IEEE Int. Conf. Robotics & Automation, pp. 264-270.

[3] David DeMers & Kenneth Kreutz-Delgado (1993), "Issues in Learning Global Properties of the Robot
Kinematics Mapping", Proc. IEEE Int'l Conf. Robotics 8 Automation (Atlanta).

[4] David DeMers & Kenneth Kreutz-Delgado (1993), "Global Regularization of Inverse Kinematics for Re-
dundant Manipulators", in S.J. Hanson, J.D. Cowan, & C.L. Giles, eds, Advances in Neural Information
Processing Systems 5 255-262 San Mateo: Morgan Kaufmann.

[5] David DeMers (1993), Learning to Invert Many-to-One Mappings, Ph.D. Thesis, University of California,
San Diego, Dept. of Computer Science & Engineering.

[61 Richard Durbin & David Willshaw (1987), "An Analogue Approach to the Traveling Salesman Problem
Using an Elastic Net Method." Nature 326, 689-691.

[7] John Hertz, Anders Krogh & Richard Palmer (1991), An Introduction to the Theory of Neural Compu-
tation.

[8] Teuvo Kohonen (1982), "Self-Organized Formation of Topologically Correct Feature Maps." Biological
Cybernetics 43,59-69.

11-58

Joint Joint
11 i7101 ngieAngle

3 3

Joint Angle 1 Joint Angle 2 Joint Angle 2

Figure 4: Inverse fibers. (a) Twenty fibers from the inverse image of the next most inner annular region
of the workspace of the three-link redundant planar manipulator. (b) Fibers from both inverse regions of the
next most outer annular region. Apparent discontinuities are an artifact of the representation of this space
(the 3-torus) as a cube - opposite faces of the cube are identified with each other. Greyscale represents an
induced parameter value based on normalized distance from a canonical zero point.

[91 Charles Nash & Siddhartha Sen (1983), Topology and Geometry for Physicists.

[10] Helge J. Ritter, Thomas M. Martinetz, & Klaus J. Schulten (1989), "Topology-Conserving Maps for
Learning Visuo-Motor-Coordination", Neural Networks, Vol. 2, pp. 159-168.

[11) Helge J. Ritter, Thomas M. Martinetz, & Klaus J. Schulten (1992), Neural Computation and Self-
Organizing Maps, (Addison-Wesley).

[12] Charles W. Wampler II (1988), "The Inverse Function Approach to Kinematic Control of Redundant
Manipulators", Proc. American Control Conference (Atlanta).

11-59

ABSTRACT

Submitted to WCN'94
June 4-9, 1994

An On-line Adaptive Controller Based on
the Connec tonist Normalized Local Spline Neural Network

for the Optimization and Control of a Small-Angle Negative Ion Source

W. C. Mead,&,& P. S. Bowling,c S. K. Brown,c R. D. Jones,a
C. W. Barnes,' H. E. Gibson,c J. R. Goulding,6,1 and Y. C. Leed

'Applied Theoretical Physics Division
'Center for Nonlinear Studies

cAccelerator Technology Division
University of California

Los Alamos National Laboratory, Los Alamos, NM 87545

dDepartment of Physics and Astronomy
University of Maryland, College Park, MD 20740

We have developed1 CTL, an on-line nonlinear adaptive controller, to optimize and
control the operation of a repetitively-pulsed negative ion source. The controller
processes multiple diagnostics, including the beam current waveform, to determine
the ion source operating conditions. A figure of merit is constructed that weights
beam current magnitude, noise, and pulse-to-pulse stability. The operating space
of the ion source is mapped coarsely using automated scan procedures. Then,
CTL, using information derived by fitting the sparse operating-space data using
the Connectionist Normalized Local Spline artificial neural network (CNLS-net),
interactively adjusts four ion-source control knobs (through regulating control loops)
to optimize the figure of merit. Once coarse optimization is achieved using CNLS-
net's model of machine parameter space, fine tuning is performed by executing asimplified gradient search algorithm directly on the machine. Beam quality obtained

using the neural-net-based adaptive controller is consistently quite good. The search
technique has tuned the ion source for near-optimum operation on six cold startups
in one to four hours from the time of initial arc.

IW. C. Mead, P. S. Bowling, S. K. Brown, R. D. Jones, C. W. Barnes, H. E. Gibson,
J. R. Goulding, and Y. C. Lee, Nucl. Instr and Meth. B72, 271 (1992).

11-60

Neural modeling of non linear systems by systematic state space sampling.

Joan Codina, Josep M. Fuertes, Ricard Vill.

Automatic Control and Computer Engineering Department
Email: jcodina@esaii.upc.es

Universitat Politacnica de Catalunya
Pau Gargallo, 5 E-08028 Barcelona - Spain

Abstract. In non linear systems identification or modeling there is always the problem of finding the
best test signal to be used in order to make the identification in a correct way. It's obvious that in
linear systems a signal rich in frequencies is good enough but this is not the case for non linear
systems. We can state that the best test signal will be the one that is able to make the system evolve
through the whole working region of the state space. A method is presented that using artificial
neural networks to identify non linear systems is able to optimize its own test signal to be used for
system modeling and identification. As the definition of the test signal can not be done without a
knowledge of the system behavior, an iterative process uses the partially learned system dynamics to
improve the test signal. The same neural network that identifies the system will be used to generate
the test signal for the next training phase. At every iteration the state space region already identified
grows till it fills the predefined working area.

1. Introduction

One of the problems in modeling non linear, time invariant systems by ANN is related to the design of the
correct input signal u(t) necessary to obtain a model that works when the inputs are no longer the training ones.
This problem is difficult to solve because non linear systems can't, of course, be identified by an impulse signal.
The design of the correct signal is related to the system dynamics and non linearities, this means that if we don't
know the system dynamics we can't find the optimal input, and if we don't know the optimal input we can't find
the optimal model. But from any reasonable input signal we can find some model of the system and from this
model of the system we can extract some information to improve the test signal and model.

The research in the field of systems identification by neural networks has produced some models based on
feed-forward neural networks. Such models usually take the form given by (1) and use external delay blocks for
the inputs and outputs to accomplish the dynamic behavior:

y(k)= H [u(k), u(k-1), u(k-2)... y(k-1), y(k-2)... I (1)

In Narendra [1) is presented a very extensive work with such methodology where different configurations
are studied. The neuron activation functions used in such work are of sigmoidal type. And input-output simulation
of some proposed dynamic systems are carried out.

The use of dynamic neurons or the Hopfield network [2] increases the order of the system to the number of
neurons, obstructing the study of the network dynamics.

To allow simpler models for multiple inputs multiple outputs (MIMO) systems we have developed an ANN
architecture based on the state space representation of dynamic systems, fig. 1. Such structure allows the
application of modern and classical control theories for single input single output and MIMO systems and allow
the application of classical techniques. Beginning with linear discrete-time systems, we obtained, Codina [31, a
neural network able to learn the matrices of the system state representation from pairs of input-output vector
signals. The model was a neural network with three layers: input, state and output. The state and the output layers
are connected to the input layer, composed by the actual inputs and state of the system. We used the back-
propagation through time learning algorithm Werbos (4], where the error is back-propagated from the actual state
to the previous state. With this methodology, and using linear neurons, we can obtain from the system the state
space matrices A, B, C and D:

11-61

x(k+ l) = A x(k) + B u(k) (2)
y(k) = C x(k) + D u(k)

This model was expanded in order to deal with non linear systems. But expanding the linear model using
sigmoids hinders a theoretical study of the proposed NN model. To solve this drawback we have used a structured
neural network based on Fourier series in order to approximate any non linear function, within a bounded
interval, by a weighted sum of sines and cosines, Codina [51. In fig. 2 we can see a neural network that obtains
the Fourier coefficients corresponding to a one-dimensional function.

A non linear discrete-time system can be expressed by the following difference equations:

x(k+ 1) = F(x(k), u(k)) (3)

y(k) = G(x(k), u(k))

where F and G can be approximated in a bounded interval by a Fourier series.

f(k)

x~k u k)

k

Fig. 1 Proposed linear NN structure Fig. 2 Fourier series based model

The use of neural networks with state space system description allows making an exhaustive search through
the state space. The same NN which models the sytem is used for generating the inputs to the modeled system so
as to improve the identification.

The optimal input signal.

Before beginning to optimize the input signal, we must know which is the attainable optimum, and after
that we must search a way to obtain it.

From the state space equations we take only the part referring to the calculation of the next state (3).
Applying an input function u(k) to them recursively we can define O(k) as the output after the first k terms of
u(k). Assuming an initial state x(O):

x(k + 1) = O(x(O),u(O)...u(k)) = F(F(...(F(x(O),u(O)),u(l))...),u(k)) (4)

Then, in a system with n states and m inputs, the optimal input function ii(k) is the one that, in a bounded
working space C of dimension n+m, makes the system evolve through it describing a path that takes all possible
values in C once and only once:

H-62

ii(k) so that V[Fiij r]EC 3k, / [1(k. +1)] = Oi(k0),ii(k,)]
with 1(ko)=1. and ii(k)=i.

This expression gives the optimum, but such an input function does not exist. What is feasible is to have a
set of points P , constructed by the cartesian product of Px, (a regular sampling over the states), and Pu (a
regular sampling over the inputs).

i(k) sothat V[i.,ii,]EP 3ko / [i(ko +)]=4{~(k 0), (k,)] (6)
with F(ko) = Fr and ii(k) = i.

It is a very hard condition that the only points the system goes through be in P and to force it to pass
through the points once and only once. This condition is very important to guarantee that the learning procedure
has the same behavior over all C. To make feasible the search of u(k) we redefine the problem in order to find a
set of functions that in a fixed number of steps (controllability is then assumed) bring the system from the initial
state to a desired state belonging to the set of points PX . That is

VFa e P, 3 iio(k),k o / 1. = 0[i(0),g.(0)..Ro(ko)] (7)

Then we can append to each iio(k) succesivally all the values in P., so that we can obtain the output
corresponding to all the pairs input-state in P:

y.,X(k 0 + 1) = G= G(k.,ii) V R. e P, Ui E P. (8)

Now Ya,b(k) can be used in order to train the network. But instead of training the network for all k we only
do it for k=k,+ 1, the last value. Doing so we are training the network for a set of points sampled regularly over
the C space. If we use a network with a structure inspired on the Fourier series, Codina [51, then we can assume
that the net is calculating Fourier coefficients corresponding to the function F. To get the first N coefficients we
need 2N points for each dimentsion in C.

Obtention of A. (k)

The problem is now to find ,o (k) for all the states in Px without knowing F. And of course this is not
possible. What is possible is to have and approximation of F, obtained by training the neural network with a pair
of input-output signals. Thus we obtain an estimation of the state space model and we use it to obtain the

approximation to 5a (k).
So let's imagine that we have trained the network with a pair of input-output signals, and that the network

has learned the system behavior. Let's now suppose that we have a first order, one input system, with F known.
We can draw the state trajectory due to the input u(k) , fig. 3. And we assume that if the system has learned to
simulate this input-output pair of signals, then it approximates the function F in an area surronding the trajectory;

we call A this first approximation. We now use P, to calculate ii.(k) and then we use the resulting outputs of

the system to train the network. In this way we obtain the new function F,, which approximates F correctly in a

wider area, because the ii(k) were good at least where A was good and in some neighbourhood.

H-63

state state

bounded bounded
interval interval

input .4 3 input
bounded bounded

interval interval
sqwoximatiuo of F M expanded area

Fig. 3 Area of correct identification Fig.4 Expansion of the Area of correct identification

Implementation using neural networks

To obtain i.(k) we use the neural network which has learned the system dynamics. The way to do it is by
building the structure of NN shown in figures 5 and 6. There NetSim is the system simulator that implements the

function F, and is used to train the network Netlmp. This network is composed of a linear neuron with k0 inputs,
and at each time k only the kth input is activated with a value of 1.0. After k0 sample times, the state is compared
with the desired state and the resulting error is backpropagated. We use the backpropagation through time
algorithm to find the way in which each of the inputs influence the output through the state.

0 1

1x 0 0

input at time 4 f 01 0

for a sequence of 7 0

Fig 5 Neural Network structure Fig 6 Learning procedure

After the training is done, the weight of the linear neuron contains the sequence of values that form i. (k). This
procedure is inspired in the way used to train NN controllers done by Nguyen [6].

Example

A first order non-linear system has been used to test the NN training procedure:

x(k + 1) = x(k)u(k)-.5u(k) (9)
y(k) = ex + hist(u(k)); hist(x) = x if Ix >.4 (10)

A signal composed of random steps with noise has been used for the first training iteration. Six Fourier
coefficients are used. In fig. 7 it can be seen how the training signal explores the state space. After the first
iteration the search in the state space is carried ut systematically for the area where the state was reached by the

11-64

training signal. When we now apply to the system to be identified all the pairs input-state, the system can reach
some state outside the searching area. This state will contribute to the expansion of the search area. If no state is
outside the searching area then it means that, for the number of Fourier terms considered, this state can not be
reached from those initial conditions.

2.0

• •Input-state pairs

" ' " r' '' ' ' from a train in g' ' .'.' .A, ,signal

* * * " #5 Input-state pairs
Mu, -, 1 after the

first iteration

* 0 e6 066 0 • 0 0

-2 r
-2 - 0 2

Fig. 7 Area explored by the network during training

Conclusions

In neural modeling of non linear, dynamic, time invariant systems, the selection of the right input-output
pair of signals to use is crucial. As there is no prior knowledge of the system to model, there is no possibility to
calculate, a priory, the best test signal to be used. A good test signal is that one which makes the system state
evolve through all the state space. The use of ANN to optimize the input signal to improve the identification of
non linear, dynamic, time invariant systems, is a new subject to be explored. In this paper the basic methodology
is presented. The use of ANN has been shown through an example with a first order non linear system.The
promising preliminary results indicate the convenience to continue with the theoretical basis development and to
test the application to real systems.

References

1. Narendra K.S., Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks.
IEEE Trans. on Neural Networks. Vol 1. N 1. March 1990.

2. Hopfield, J.J. Neural Netwoks and Physical Systems with Emergent Collective Computational Abilities. Proc.
National Academy of Science. 79:2554-2558 (1984).

3. Codina J., Morcego B., Fuertes J.M., Catali A. A Novel Neural Network Structure for Control. IEEE Int.
Conf. on Systems, Man and Cybernetics. 1339-1344. Chicago, 1992.

4. Werbos P.J. Backpropagation Through Time: What it Does and How to Do it. Proc. of the IEEE. Vol. 78 N.
10 pp. 1550-1560 October 1990.

5. Codina J., Fuertes i.M. Structured Neural Network for Nonlinear Systems Modeling. To be presented at
Sicica'94.

6. Nguyen, D.H., Widrow, B. Neural Networks for Self-learning Control Systems. IEEE Control Systems Mag.
pp 18-23 April 1990.

H-65

A Reinforcement Learning Approach to On-Line Optimal Control

P.E. An, S. Aslam-Mir, M. Brown, C.J. Harris

Advanced Systems Research Group,
Department of Aeronautics and Astronautics,

Southampton University,
Southampton, S09 5NH, UK.

Abstract

This paper presents a hybrid control architecture for solving on-line optimal control. In this archi-
tecture, the control law is dynamically scheduled between a reinforcement controller and a stabilizing
controller so that the closed-loop performance is smoothly transformed from a reactive behavior to one
which can predict. Based on a modified Q-learning technique, the reinforcement controller is made of
two components: policy and Q functions. The policy function is explicitly incorporated so as to bypass
the minimum operator normally required for selecting actions and updating the Q function. This ar-
chitecture is then applied to a repetitive operation using a second-order linear-time-variant plant with
a nonlinear control structure. In this operation, the reinforcement signals are based on set-point errors
and the reinforcement controller is generalized using second-order B-Splines networks. This example
illustrates how, for a non-optimally tuned stabilizing controller, the closed-loop performance can be
bootstrapped with the use of reinforcement learning. Results shows that the set-point performance of
the hybrid controller is improved over that of the fixed structure controller by discovering better control
strategies which compensate for the non-optimal gains and nonlinear control structure.

1 Introduction

A common objective in closed-loop control tasks is to design suitable control laws such that the systems
closely follow their desired trajectories, such as pick and place operations in robotics. The complexity of
such control laws vary considerably with the degree of plant nonlinearities. When the plant has an unknown
structure, linear or nonlinear modeling techniques are generally incorporated in the design process so that
these models adapt to their appropriate representations specific to the time scale of their performance
objectives. At one extremum of this time scale, the performance objective can be formulated as a supervised
learning problem in which the instantaneous cost is minimized. This optimization problem requires that the
desired trajectory point be specified in every sampling interval, and constraints of the plants' kinematics
and dynamics be satisfied. The controllers essentially adapt to the plant's inverse dynamics such that the
closed-loop transfer dynamics is minimized. The standard Least-Mean-Square algorithm or its variants are
commonly applied to minimize the instantaneous cost (15].

At the other extremum of the time scale, the performance objective can be formulated as a reinforcement
learning problem in which the Iong-term cumulative costs are minimized. Unlike its supervised learning
counterpart, this optimization problem is generally harder because the only information about the desired
trajectory is the plant's goal state whereas no other useful action evaluation is fedback to the controller
with regard to its transient performance. The controller no longer explicitly models the plant's inverse
dynamics, but rather a different representation of knowledge governed by the chosen optimality criteria. By
incorporating temporal sequences of the plant's movement throughout the task, this representation generally
reveals an additional knowledge on the plant's characteristic, which is ignored in the supervised learning
scenarios [11]. The basis of the reinforcement learning control strategy is hus twofold: it is generally diffcult
to design an appropriate reference model specific to the choice of the sampling interval and to a plant with
an associated degree of uncertainty and nonlinearity so that the constraints of kinematics and dynamics are
satisfied; more importantly, this control strategy provides an important channel for designing a particular
form of optimality about the long-term plant's behavior. Examples are minimum fuel or minimum time
criteria commonly adopted in dynamic programming problems.

Within the context of reinforcement learning control, the problem of pole balancing has been widely
studied as a means to explore temporal credit-assignment with delayed reinforcement signals [1, 3]. In this
problem, the reinforcement signal is only available to the controller when the pole or the cart falls outside
the specified limits. The basis of this reinforcement learning takes on a "trial and error" philosophy in which
the underlying control action is stochastic. This facilitates a richer exploratory action throughout the plant
states before an optimal control strategy can be estimated. This "trial and error" learning technique, from a
control perspective, is not justified when the primary concern is the closed-loop stability. One way to resolve
this "exploration-stability" tradeoff is to first estimate the control law off-line from a set of training data
and later incorporate it into the closed-loop environment. The merit of this control strategy is determined

11-66

largely by the modeling errors associated with the controller, which results from its structural representation
and also its exposure to the off-line training experience.

Another way to resolve the "exploration-stability" tradeoff is to perform estimation and control proce-
dures simultaneously [10]. These control architectures incorporate stabilizing controllers to both safeguard
closed-loop stability and provide feedback signals to adaptive controllers for parameter estimation. When
these controllers are bootstrapped by feedback signals, exploration is generally restricted and the condition
of persistent excitation of training inputs is thus critical for proper control [2]. Nevertheless, this resolution
is generally preferred to the former one as the control law can be smooth] transformed on-line from its
purely reactive behavior to one which can predict. This paper proposes a hybrid control architecture for
solving on-line optimization problems via reinforcement learning. The rest of this paper is organized as
follows: The next section reviews the reinforcement learning problem and available techniques that have
been proposed to solve the problem. Section 3 presents the hybrid architecture in which the control law is
based on a stabilizing controller to ensure closed-loop stability, and a reinforcement controller to provide
the long-term performance. This architecture is then applied to a pick-and-place learning operation using a
second-order linear plant with a nonlinear control structure. In this operation, the reinforcement controller
is generalized using second-order B-Splines networks whereas the stabilizing controller is a fixed gain PID,
and the set-point performance results are presented in Section 4. In the final section, the reinforcement
learning results are summarized, and practical implementation issues are discussed.

2 Reinforcement Learning

The reinforcement learning problem can be formulated as one which chooses a control policy 1 that minimizes
discounted cumulative reinforcements for every possible states. This learning objective provides a potential
benefit of resolving temporal credit-assignment issues especially for delayed reinforcement and a long sequence
of control actions. Examples are shortest-path planning and pole-balancing control problems [1, 3, 8, 9
where the informative transitional reinforcement occurs infrequently, and is only available upon an arrival of
destination/failure. The reinforcement signal for the shortest-path problem can be defined as the number of
time steps taken before the goal is reached [8], whereas for the pole-balancing problem it can be defined as
the number of failures occurred within a fixed interval [3]. Different definitions in the reinforcement generally
result in different forms of optimality in the plant's behavior.

Let z, and ut be the current state and action taken at time t. Also, let J(z,, z 4,, ut) be its transitional
reinforcement when the plant moves to a new state st+, and Vu(zt) be the output of an evaluation function
associated with x, based on some policy U. The learning task can now be described mathematically as
estimating an optimal evaluation function Vj. which contains minimum cost-to-go values for every states
[41, and its policy U* such that

V .(zt) < VU(wt) (1)

where VU(zm) is defined as

M

Vu(Z=) = ykJ(Zt+k90t+k+iut+k) Vzt (2)
k=O

m is the number of time steps taken before the goal state is reached. This value generally varies from one trial
to another when the adaptation is performed continually. -y is a discount factor which determines the level
of influence of future reinforcements on the selection of the current action, and is bounded between 0 to 1.
A proper choice of -y generally depends on the length of the task performed, nonstationary characteristics of
the plant's dynamics and also the magnitude of the modeling errors introduced when Vj. (Zt) is interpolated
[13].

To illustrate how the optimal evaluation function and its policy are computed, an example is given ir
Figure 1 in which the plant takes on discrete states and actions, and has deterministic transitional dynamics.
In these sub-figures, S and G are the start and oal state respectively. Each node in the tree represents
a state, and associated with each of these states is a set of directional branches that leads to other states
under all possible actions. In Figure la, the transitional reinforcements are represented by values that are
attached to their branches. For example, J(a -- d) = 4. Similar to dynamic programming techniques,
the computation procedure generally starts from the goal state, and then proceeds backward through the
transitional chains under all possible actions, until the start state is located.

A control policy is one which maps every states to actions.

11-67

l 5
2s G SG

~ 5

(a)
(b)

S G s G

c0

(D G)
(8) (C)

Figure 1: (a) Instantaneous reinforcement assignment. Each node in the tree represents a state, and each
branch represents a state transition. Each transition results in an instantaneous cost, as indicated by
numerical values. S and G represent the start and goal state respectively. (b) compute minimum cost-to-
go values at state b and d, assuming that the goal state has zero cost-to-go value; (c) compute minimum
cost-to-go values at state a and c; (d) compute minimum cost-to-go value at S. In (b-d), minimum cost-to-go
values are indicated by circles.

In Figure 1b, there is only one possible action taken in either state b or d, and their resulting minimum
cost-to-go values are 5 and 2 respectively. To compute V*(a), two possible cost-to-go values ({J(a -
b) + V4(b)} and {J(a -4 d) + V*(d)}) are compared, and the minimum cost-to-go value at a is 6. Similar
procedures are carried out for state c and S. As soon as the minimum cost-to-go value of the start state is
computed, an optimal evaluation function is immediately found, ard is given in Figure id. The minimum
cost-to-go values are indicated by circles, and the optimal policy U" is (S -- a -F d-- G). From a control
standpoint, this selection of control actions based on minimizing the cost-to-go values is efficient because
it only requires one-step ahead searches of actions to achieve long-term performance. Whereas minimizing
only the transitional reinforcement often results in a short-term benefit (S --* a --* b --+ G), as commonly
performed under supervised learning. When the plant has many possible states and actions, the estimation
of V (or 1/*) can be carried out iteratively so that moderate intermediate solutions can be obtained. Two
methods have been proposed to facilitate on-line reinforcement learning: Adaptive Heuristic Critic and Q-
Learning method. These methods are conceptually similar to the standard dynamic programming (or DP)
method for solving nonlinear optimization problems, except that the estimation procedure of the evaluation
function is incremental.

2.1 Adaptive Heuristic Critic (AHC)

This method makes use of two separate models, V* and U*, to estimate the optimal evaluation function and
control policy respectively . These models are functions of the plant's states, and can be implemented in
forms of look-up-tables, or connectionist models so that the credit assignment can be generalized spatially.
A flow chart of its operation is given in Table 1. At time t, the state xt is sampled and a stochastic action
ut is computed according to a predefined probability distribution biased by r*(xt). Consequently, the plant
moves from xt to xt+,. J(zt, zt+1,ut) as well as f*(Zt+l) are computed for the new state. Both models are
then adapted such that the temporal-difference error in Step 3 is minimized [11). One important observation
of the AHC is that its action selection and policy update are not based on minimizing the cost-to-go value
in every iteration 1. In the case where the policy is nonstationary (due to step 4), V° often converges to one
which is different from V*.

2 These are referred to as adaptive critic element and adaptive search element respectively in [3]3 To be exact, the AHC method only accounts for how the evaluation function is adapted based on the error in step 3, as
originally developed in [12].

11-68

1. Get - xt;

2. Apply ut = Random(Ur(xt)) --* get xt+,;

3. Compute TD, ,, = J(zt, zt+l,ut) + -y'*(Zt+) - fr*(zt);

4. Update 11' and Ut each to minimize TD,,.,,;
5. Go to 1.

Table 1. A flow chart of the Adaptive Heuristic Critic method.

2.2 Q-Learning

Unlike the AHC, this method makes use of only one model structure: Q function for estimating the cost-to-go
values (or 4 values). This function is defined over the state and action speces, and its action selection and
policy update require that these values be minimized among different policies. This function converges to
its optimal Q* when the following condition holds

mxn.Q(XU) = V w.(Z) VX (3)
A flow chart of its operation is given in Table 2. At time t, an action ut is chosen that minimizes immediate

4* values among all possible actions, and consequently the plant moves from zx to xt+n. J(zt, zt+, ut) and

the minimum Q (zt+i, Ut+l) are evaluated. The Q model is then updated such that the Q,., in step 3 is
minimized. Convergence proofs of the Q-function to its optimal Q° for discrete states and actions have been
established [7, 14].

The main difference between these methods stems from the representation of the stored knowledge. In
the AHC, the evaluation function estimates the minimum cost-to-go values given that the policy is optimal
whereas the Q function estimates the cost-to-go values for different control policies. The convergence of 4*
to its optimal solution comes at a price: direct search of actions that minimizes immediate 4* values can
be time-consuming, especially when the action space is excessively large. For continuous state and action
domains, the Q function must be interpolated and this representation generally results in modeling errors.
When the minimum operator is used in the update, the modeling errors often cause the 4* values to be
biased [13].

1. Get xt;
2. Apply ut = Random(min (Zt, ut)) -4 get zt+1;

3. Compute Q,,. = J(xt, t+,ut) + tminut+1 4 (t+i,ut+l) -(*Tt UO

4. Update Q to minimize Q,,,O,;
5. Go to 1.

Table 2. A flow chart of the Q-Learning method.

3 Hybrid Control Architecture

This section describes a hybrid control architecture which can be used to solve on-line optimal control
problems. The generation of control actions is dynamically scheduled between a stabilizing controller and
a reinforcement controller. Based on a modified Q-learning technique, the reinforcement controller has two
components: policy and Q functions, as denoted by U* and 4* respectively. t%* estimates the optimal control
policy, and is defined with respect to the plant states; whereas Q* estimates the cost-to-go values, and is
defined with respect to the state and action spaces. Unlike the Q-learning method, the explicit incorporation
of the policy function avoids the minimum operator normally required for selecting actions and updating
4*. An overall block diagram of the hybrid architecture is given in Figure 2 and a flow chart of its operation
is given in Table 3.

The role of the stabilizing controller is twofold: it ensures that the plant remains bounded within a
desired region during a trial and it also bootstraps the reinforcement controller during learning with feedback
signals so that the policy and Q functions can be estimated incrementally. This stabilizing controller can
be implemented based on any controllers, such as classical PID or Ho. The Scheduler generates an action
according to step 6 in Table 3. a is initially set to 1, and slowly increased as more training experiences are

11-69

QZ
ibi

Poic

PFunctio

+

Figure 2: A reinforcement learning control architecture for nonlinear optimal control.

gathered to update the reinforcement controller. This setting allows the control strategy to be smoothly
transformed from a reactive type to one which can predict the long-term performance. In addition, the
variation in a introduces an extra degree of excitation of training signals for parameter estimation. In the
case where the closed-loop performance deteriorates as a result of the control transfer, a can be reset to a
small value (> 1).

At time t, an action u(zt) is computed according to step 6, and the plant moves from zt to zt+i. To

update the Q function, u* is first computed based on U*(zt+i) as if this were the optimal action that led to

a minimum * (zt+i, u), or q*. The Q function is then updated using step 9. To update the policy function,

Q(Zt, u(zt)) and (2t, U*(xt)) are compared. If the action taken leads to a smaller Q* value, the policy
function is then updated using step 11. When a trial is complete, the plant resets to its original state and a
new trial begins. Note that a varies only from one trial to another, and stays constant during the trial.

1. Set a to 1; specify the decay constant r for updating a (see step 11);
2. Do trial 1: 1 to n
3. Do time step t: I to m
4. Get zt;
5. Apply u(z,) = UPID(Z,) + (1- 1) *(xt) -. get st, ;

6. Compute u* = -- *(x,) and q" = Q(X+l, U*);

7. Update Q*(z, u(zt)) to minimize Q,,, = -f q" + J(xt, zt+i, u(Xt)) - (X' U(Zt));

8. Compute q' = *(Xt, U*(xt));

9. If *(zt, u(xt)) < q', update CT*(Zt) to minimize the control error = u(zt) - 00 (X,);
10. Go to 4 unless t = m;
11. a = a + r;
12. Go to 3 unless I = n;

Table 3. A flow chart of the hybrid control operation.

4 Simulations/Results
In this section, the hybrid control architecture is applied to a pick-and-place operation in which the noiseless

plant, unknown to the reinforcement learning controller, has the following characteristics

jI(t) = -0.5i(i) - 5y(t) + 5u(t); iu(t)l !5 3, _i(t)I < 1 (4)

The second-order dynamics were sampled at a rate of 20Hz, and the stabilizing control was based on a
standard PID with its fixed gains chosen to be {0.3 0.3 0.3}. These fixed gains were not tuned to produce
an optimal performance for the plant in (4), but rather were chosen to illustrate how this reinforcement
control strategy allows the closed-loop performance to gradually improve over that of the PID. The policy
and Q functions associated with the reinforcement controller were based on second-order B-Splines networks

H-70

0.7 j 0.
= 0' 0" 'i

rA OA OA

Cor

0. 0 .O

03 0A

0.1 0.1

6 so 14 20 a a 10 Is 00

Time (seconds) Time (seconds)
(a) (b)

Figure 3: A comparison in tracking performance between the reinforcement learning controller (broken line)
and the fixed gain PID controller (solid line). (a) after 2 trials (b) after 10 trials.

in which the univariate basis functions are piecewise linear 4. These interpolative networks have nonlinear
modeling capabilities over a compact input region, and are well suited to on-line low-dimensional applications
based on their rapid convergence and minimum learning interference properties. Note that for other control
problems of high dimensionality, these networks might be undesirable because their memory storage and
computational cost grow exponentially with the input dimension. The policy function was defined over {y,
j} whereas the Q function was defined over {y, Y, u}. Nine interior knots were uniformly allocated along
each of these input axes. Ranges of these network inputs were chosen to be -1.5 < y < 1.5, -1.5 < y < 1.5,
and -5 < u < 5. Note that additional inputs are generally required when the goal state is non-stationary.
The parameters in the policy and Q function were updated using a stochastic approximation version of the
normalized LMS algorithm, where the learning rate 13t of the parameter k was defined as

0.5
(5)1+

where n is the number of times the parameter k has been updated. The diminishing learning rate was
designed so as to minimize the effect of modeling error/measurement noise, which could deteriorate the
cost-to-go value estimation.

The pick-and-place learning task was decomposed into a set of trials, and during each trial, a set of
actions was chosen so that the plant moved from its origin state defined by Yd = 0 and d = 0 toward its
goal state defined by yg = 1 and yd = 0 and the reinforcement signal was chosen to be the set-point error,
(yj(t) - _(t))2 + (jk(t) - 1 (t)) 2 . After 500 sampling iterations were elapsed, the plant was reset to its origin
state, and a new trial repeated. The discount factor - was chosen to be 0.6 and r was chosen to be 5, as
defined in Table 3. The set-point performance of the hybrid control was compared to that of the PID, and
the results are shown in Figure 3a and b after 2 and 10 trials respectively.

5 Discussion

This paper has proposed a hybrid control architecture for solving on-line optimal control of partially known
dynamical processes. It has been assumed that there exists sufficient prior plant information to select a
fixed stabilizing robust controller. In this architecture, the control law is dynamically scheduled between
a nonlinear Q function to provide long-term performance and a stabilizing controller to ensure closed-loop
stability. While this paper provides a working example based only on a linear plant, this hybrid control
strategy is generally applicable to many nonlinear plants, such as actuator dynamics and time delay, of which
their state variables are observable and transitional behaviors are deterministic. In the case of stochastic
plant characteristics, the reinforcement controller must be modified in such a way that the ezpected cost-to-go
values are minimized. From the pick-and-place simulation results, the performance appeared to be sensitive
to a large -f (near 1). The relatively small -y was thus chosen so as to minimize the modeling errors that were

4More detail of the model structure and instantaneous learning rule of the B-Splines network is referred to [5, 6].

11-71

accumulated when the cost-to-go values were estimated [13] while achieving the long-term performance. The
B-Splines model parameters were chosen based on the assumption that the underlying cost-to-go mapping
was smooth. r was chosen so that the reinforcement controller was exposed to reasonably varied feedback
signals for cost-to-go function estimation. The reinforcement signal was based on the informative set-point
error rather than the binary goal-reaching signal commonly chosen in reinforcement learning literature.
In general, this type of learning does not restrict any form of reinforcement signal, and more informative
reinforcement signal naturally results in faster learning. While it is a challenging task to design an optimal
control law based only on failure signals, incorporating such a critic seems inappropriate when the primary
focuses are on closed-loop stability and fast learning convergence.

Acknowledgements This research has been funded by the European Prometheus Project under Jaguar,
Lucas and Pilkington support.

References
[1] Anderson C.W. 1989. Learning to Control an Inverted Pendulum Using Neural Networks, IEEE Control

Systems Magazine, April, pp.31-37.

[21 Astr6m K.J., Wittenmark B. 1989. Adaptive Control, Addison Wesley.

[3] Barto A.G., Sutton R.S., Anderson C.W. 1983. Neuronlike Adaptive Elements That Can Solve Difficult
Learning Control Problems, IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC-13, No. 5,
September, pp.834-846.

[4] Barto A.G., Bradtke S.J., Singh S.P. 1993. Learning to Act Using Real-Time Dynamic Programming,
submitted to Al Journal, special issue on Computational Theories of Interaction and Agency.

[5] Brown M., Harris C.J. 1994. NeuroFuszy Adaptive Modelling Control, Prentice-Hall (in press).

[6] Cox M.G. 1990. Algorithms for Spline Curves and Surfaces, NPL Report DITC 166/90, 36p.

[7] Jaakkola T., Jordan M. 1993. On the Convergence of Stochastic Iterative Dynamic Programming Algo-
rithms, Technical Report 9307, Department of Brain and Cognitive Sciences, Massachusetts Institute
of Technology (also submitted to Neural Computation).

[8] Kaelbling L.P. 1993. Hierarchical Learning ir. Stochastic Domains: Preliminary Results, Proc. of the
Tenth International Conference on Machine Learning, Boston, Massachusetts, pp.167-173.

[9] Lin L.J. 1992. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching,
Machine Learning, Vol. 8, pp.293-321.

[10] Miller W.T., Glans F.H., Kraft L.G. 1987. Application of a General Learning Algorithm to the Control
of Robotic Manipulators, International Journal of Robotics Research, Vol. 6, No.2, Summer.

[11] Sutton R.S. 1988. Learning to Predict by the Methods of Temporal Differences, Machine Learning, Vol.
3, pp.9-44.

[12] Sutton R.S. 1984. Temporal Credit Assignment in Reinforcement Learning, PhD Dissertation, Depart-
ment of Computer and Information Sciences, University of Massachusetts, Amherst.

[13] Thrun S., Schwartz A. 1993. Issues in Using Function Approzimation for Reinforcement Learning, to
appear in the Proc. of the Fourth Connectionist Models Summer School, Lawrence Erlbaum Publisher,
Hillsdale, NJ, December.

[14] Watkins C.J.C.H 1989. Learning From Delayed Rewards, Ph.D. Dissertation, Cambridge University,
Cambridge, England.

[15] Widrow B., Stearns, S.D. 1985. Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice-Hall.

11-72

A PULSE-BASED REINFORCEMENT ALGORITHM
FOR LEARNING CONTINUOUS FUNCTIONS

D Gorse
Department of Computer Science

University College, Gower Street, London WCIE 6BT, UK

J G Taylor
Department of Mathematics

T G Clarkson
Deparment of Electrical and Electronic Engineering
King's College, Strand, London WC2R 2LS, UK

An algorithm is presented which allows continuous functions to be learned b 'eural network using
spike-based reinforcement learning. Both the mean and the variance of the w re changed during
training; the latter is accomplished by manipulating the lengths of the spik used to represent
real-valued quantities. The method is here applied to the probabilistic RAM (pi .) model, but it may
be adapted for use with any pulse-based stochastic model in which individuad weights behave as ran-
dom variables.

1. Introduction

Reinforcement learning [1] has many attractions for neural networks; it is more widely applicable than supervised
techniques (since target values are not needed for any of the processing nodes), it is biologically plausible, and it is
less prone to being trapped in local minima than classical methods like error backpropagation. However standard
reinforcement techniques have a major disadvantage in that they were developed to apply to systems with only a
finite number of behavioural responses, which makes them unsuitable for learning real-valued functions. In the
case of the A~p neural model [1] there are two such responses: output 0 (off, not firing) and output 1 (on, firing).
The Ap reinforcement learning rule has the inevitable effect of driving neurons into saturation, changing weight
parameters so that neurons will eventually output 0 or I with certainty for almost any input pattern. This behaviour
is adequate for some control applications, such as the "bang-bang" approach to controlling an inverted pendulum
[2], and for classification problems, since the user can define a different binary output code for each pattern class,
but not in more general learning situations (such as process control, time series prediction, robot arm movement
and so on) for which the desired outputs are continuous functions of the inputs.

The algorithm to be presented here makes use of the noise associated with the representation of real-valued quanti-
ties by finite spike trains in order to provide the necessary variation about the mean for weight parameters during
training. If a variable x in the interval [0,1] is represented by spike train of length R, its measured value

i(R) = I a(r)
R r-

(where the a(r) are spikes E (0,1), with Prob(a=1) = x) has a variance
2(x, R) = x(l -x) (1)

R
As training progresses, and performance improves, the spike trains representing the weights are lengthened so as to
decrease the amount of stochastic variation in their measured values. The advantage of using spike trains in this
way, rather than choosing values from a distribution function such as in [3], is that one may then hope for a simple
implementation in digital hardware.

2. The pRAM Model

An N-input pRAM [4] has 2 memory locations, indexed by the N-bit binary vector u = (u1 ,u2 ,...uN). A binary sig-
nal i = (i,i2,...iN) on the input lines will access just one of these locations, that oni'for which u = i. The variable
stored at this location, a, gives the probability that a spike value a=l will be produced on the otipurline, given an
input i. Thus in this binzry input case the mean value of the output is given by %. If there is a real-valued signal
x= (x,x2,...xN) on the input lines each xj is represented by a stream of pulses ij In which Prob(ij = 1) = xj. Over
F=-I..R time steps a spread of locations (as in general each i(r) will be different) will be accessed and contribute sto-
chastically a spike value a=1 or a=0 to the otuput stream. In- this case the mean value of the output is

y = OE 0t lu xX + (l-u)-Xi) a I tuXu(x) (2)
U -j=l U

II-73

where the variable X, is the probability location u is accessed.

When hardware is used [5] the output of a pRAM is not computed from (2) directly, but as an approximation by
averaging over the bits in the output stream: r

R19(R) = -- a(r) (3)

As R -4 -, 9(R) -+ y, the mean value of the output. In practice a value of R = R,,. in the order of hundreds of
spikes gives a suitably close approximation to the mean.

The pRAM is not a 'weightless' model; the 2 N variables a, are the weights of the system. It is not a look-up table,
since these variables represent probabilities continuous in the range [0,1] and a pRAM output in general contains
spikes that have been contributed by a wide range of locations. The way that noise is introduced into the pRAM
model, as an independent random variable for each input channel, is closer to biological reality than models which
inject noise only at the threshold; one of the ideas underpinning the pRAM is the biologically realistic synaptically
noisy neuron model presented by Taylor in 1972 [6].

3. Reinforcement Learning for pRAM Networks

A binary output version of this algorithm has been described in detail elsewhere [7]. It is a non-linear extension of
Barto's Ap rule [1] which can be implemented in self-contained hardware [5]. The learning system interacts with
the outside world only through the global reward and penalty signals r and p. The update to an addressed memory
location u in an N-input pRAM is given by

N Aau = p[(a- au)r + X(1 - a - a)p] (4)
The other 2 N - 1 non-addressed locationi-do not have their weight parameters updated. The variable a is the spike
output of the pRAM on the addressing of location u; r and p have values in [0,1] but may themselves be carried by
spike trains. The effect of the rule (4) is to move the addressed memory content au in the direction of a 'successful'
output if a reward signal is received, tv move cu away from that output value (toward 1-a) if a penalty is received.
It is clear that application of (4) will eventually lead to addressed locations containing binary values, since the
values toward which the o, are shifted (a or 1-a) are themselves binary. This is the output saturation problem [3] in
the context of the pRAM nModel.

In order for outputs not to become saturated, the system needs to be able to experiment with values for the au
which are not binary, but which may be seen to lead to better or worse (encouraged or discouraged) performance.
Thus any continuous output reinforcement rule will have the general form

Aa. = p[(oh - a)r + X(l - ,. - au)p]X. (5)
In this rule the variable au is the result of some Rtochrstic experiment pffrformiEd by the system; it is a 'trial value'
for au ,the effect of which is then assessed by the environment, which delivers appropriate reward and penalty sig-
nals. -X, = [0,1], which scales the weight change, reflects the relative contribution of address u during this 'experi-
ment'; it is a random variable which approximates Xu , the address access probability defined iff(2).

The variables a, and Xu can be defined for a puLse-based simulation (or a hardware implementation) by using
counters Su, Au,-to monittr the contributions of individual locations to the R-bit output stream of (3). It is the fact
that R is finite (and possibly small) which gives rise to the 'stochastic experiment' needed by a reinforcement train-
ing technique, since by (1) real numbers represented by an R-bit pulse stream have a variance inversely propor-
tional to R. Let Su (an integer from 0 to R) be the total number of times address u is accessed whilst the output
j(R) is being accuflulated according to (3), and let A (also an integer from 0 to RTbe the number of Is output by
location u when accessed during this process. It is evident that

ISu = R, I Au = (R)

Xu, the proportion of times address u is actessed, is then defined by
-u - SU

X - R
and the 'trial value' au by

aX=- -, Su * 0
In order to avoid the need for special action when Su = 0: it is convenient both for simulation and hardware realisa-
tion to write the learning rule (5) in the alternative form

Aau_ = -[(Au -oSu)r - X(A.-(I-(1-)S")p 1 (6)
The rule (6) relates to the adaptation of the mean values of the weight parameters; a further rule is required which

11-74

gives the change in their variance (determined by, and inversely proportional to, the spike train length R) as a func-
tion of the performance of the system. This further rule requires in general that R increases when performance
improves and decreases when it worsens.

In order to proceed further we will need to define 'performance' more precisely. Although the method described
here can be applied in any situation in which it is possible to define a cost or utility function for the purpe of rein-
forcement, we will from this point on restrict the discussion to the learning of a function from LQ, I I to (0,1]M,
from a set of P training patterns x E [0, 1 N and their corresponding desired outputs q. E (0, !' (to be learned
either by a set of M N-pRAMs or a muiilayer structure, as appropriate). We will use an 'on-line' or pattern-by-
pattern updating strategy. A broad overview of the function learning algorithm is as follows:

while mean error over training set > tolerance

1. Pick a pattern p from the training set.
2. Make an accurate assessment of the performance of the network in classifying this pattern.
3. Use this measure to update R for the next 'stochastic experiment'.
4. Make an assessment of the performance of the network during this stochastic procedure.
5. Use this new measure to calculate reward r and penalty p.
6. Update weights using r and p.
7. Goto step 1.

In this case a suitable performance measure is the Euclidean distance D between the actual and desired outputs.
Depending on the value of R used in the output computation, this measure may itself show significant stochastic
variation. It is best to measure the error as accurately as possible when R is to be updated (step 2.). We define

F_ = D(dp, 9(Rnm)) = D(, yp) (7)
where R,, is a spike train length sufficiently long feat the output yp(Ra) is very close to that which would be
obtained by computation using the mean values of the variables (inputs, weights, outputs) of the system. R may
then be calculated, for example, from

R(E) =ceiling C 8

where the 'ceiling' function deliver% the smallest integer greater tan or equal to its argument, and CR, kR are posi-
tive real numbers.

In calculating the reward and penalty, the performance measure D will be a random variable whose degree of varia-
tion depends on the current (updated by step 3., equation (8)) value of R:

Epi= D(d,, jp(R)) (9)
It is clear that (9), not (7), should be used in the calculation ofr and p, since reinforcement should reflect the perfor-
mance level achieved when R < R,,. by using 'trial values' or,,, of the weight parameters.

The reward and penalty signals can be given in terms of& by
r = 1-Er, p= EP (10)

where k, kp are positive real numbers. It can be shown (see Appndix) that the above algorithm converges pro-
vided that

kR+k >2, k > 3, X>0 (11)
These conditions are easy to satisfy and convergence has been observed over a wide region of parameter space.

A construction using Bernstein polynomials can be used to show that any function F:[0, 1] -- [0,11 can be approxi-
mated arbitrarily well by a single N-input pRAM of suitably high order. The simulation to be described below
shows how the approximation power of a single N-pRAM improves with N. The function to be learned was the
chaotic logistic series x(t+l) = 3.97x(t)(l - x(t)); the training set was P = 100 consecutive points of this series,
starting from x(0) = 0.5. Figure 1 shows how the mean absolute error decreases with epoch (one epoch is a presen-
tation of the complete set of P patterns) for single pRAMs of input dimension N = 4, 6 and 8 (note that in a pulse-
based output computation it is necessary to use independent spike trains on the N input lines carrying the single
variable x). The parameters used in (8) and (10) were cR =0.25, kR = 1.5, k, = 0.5, kp = 2.0. The choice
kR + k, = 2.0 gives exponential convergence, and is the optimal choice for a spike train length function given by
(8) and reward function given by (10). The penalty parameter X was 0.01 for each case, but the training rate p dif-
fered so as to facilitate the plotting of the results on the same scale: for N--4, p = 0.05; for N=6, p = 0.20; for N=8,
p = 0.50. It can clearly be seen how the approximation ability improves with input order N.

1-75

0.30

0.23

0.20I
0.15I S

0.10

0.00
0 5O0 000 1500 2000 2500 3000

ep'.h

Figure 1

5. Adding Non-linear Output Transforms

Under certain circumstances, in particular when multi-pRAM networks with hidden units are used, it may be desir-
able to apply a non-linear 'squashing' transformation to the pRAM output function. This greatly extends the func-
tionality of pRAM nets, and leads to more efficient function approximation. By applying a sigmoid-like output
transformation a given function can usually be approximated by a more compact network which also uses pRAMs
of lower input dimensionality. This reduces the number of free parameters, thereby improving generalisation. The
output transform must be applied to the bit stream of (3), integration of which gives an approximation to the poly-
nomial function (2), and applied in such a way as not to disrupt the free flow of pulses from input to final output
(performance assessment), on which the stochastic reinforcement algorithm depends. The sigmoid output transform

(y) = 1 (12)

is designed for models with output activities

y = wjxj C:(--oo)

not for the current case, where the activity y, as given by (2), is restricted to the interval [0,I]. The transform func-
tio

s(n, y) =
(13)

+ (1-y)
illustrated for various values of n in Figure 2, preserves al the essential features of the sigmoid (12), being steepest
(with a gradient equal to n) and closest to linear in its midrange, and with a gradient of zero at the limits of its argu-
ment (y = 0,1 in this case). As well as being a more natural choice than the sigmoid (12) for arguments restricted to
[0,1], s(n,y) has the very useful feature that it can be implemented by a simple pulse-based feedback circuit. The
output bit stream (mean value y) is tapped and n+1 independently generated bits diverted to a buffer a0 a, ... a0.
The n spikes a, .. a are input to a recurrent (n+l);input pRAM with fixed deterministic memory contents

au = (l-uo) nuj + Uo (l-Il(-u))
j- I j=l

(the 0th input is the self-feedback fine). The output of this recurrent pRAM has the mean value (13). By applying
an output transform like (13) we are able to effectively increasing the range of the probabilistic weights (the c),
which are of necessity restricted to the interval [0,1]. However it is commonly observed in the training of conven-
tional neural networks that not all problems require the development of large weights (and the corresponding step-
like output function). So the transform we are looking for should be one which can be applied adaptively. It is
clear that the parameter n in (13) (the number of external inputs to the recurrent 'squashing' pRAM) is not a good
choice for adaptation, since it must necessarily change in discrete (integer) steps, and the effect of such a change
can be large (see Figure 2). A much better choice is the interpolation parameter P in the new output function

f(,y) = (-) y + 0s(n,y) (14)

11-76

0.70

0.2o

0.00 0.25 0.50 0.75 1.00

Figure 2

as this function can be accomplished by a 2-input pRAM with memory contents (0, 1, 1-13, 1) and inputs (i) from
the untransformed bit stream with mean value y and (ii) from the spike output of the recurrent pRAM whose mean
value is given by (13). (It should be noted that a different interpolation pRAM - and hence adaptive 3 - is to be
attached to each pRAM neuron, and that if a single pRAM of high input order is replaced by a pyramidal structure
then only the apex pRAM has an output transform circuit.) The variable 0 in (14) plays a similar role to the
'inverse temperature' parameter in the Boltzmann model. When it is smallest (highest 'temperature', 3 = 0) the out-
put function is flattest, when it is largest (lowest 'temperature', 3 = 1) the output is most strongly compressed into a
step-like form. Of course there will be a limit to the amount of squashing ultimately available which is determined
by n. A suitable value for n must therefore be decided by simulation before any hardware is constructed. It appears
from work done so far that n does not need to be large; a value between 2 and 4 was adequate for all applications
we have investigated. The question remains as to how the interpolation parameter 1 is to be adapted. In fact all of
the machinery is already in place, since this parameter (with its complement, 1-3) is contained in a pRAM and can
be learned using the same techniques as were described in Section 3 (with a small amount of additional circuitry to
ensure that the sum of the second and third locations in theAnterpolation pRAM always sum to 1, and that the con-
tents of the first and fourth locations are not adapted). Thus the learning procedure is uniform over all modules;
there is only one kind of adaptive circuit required to change both the parameters involved in polynomial fitting (the
Ni.) and the parameters which allow a non-polynomial 'tuning' of the output behaviour (the Ps).

The task chosen to illustrate the use of non-linear output transforms is the same one which was used in Section 3 to
show the approximation ability of single N-pRAMs, the chaotic logistic series x(t+1) = 3.97x(t)(1 - x(t)), with the
same 100-pattern training set. The architecture used in this case had six 2-input pRAMs in the hidden layer and one
6-input pRAM in the output layer (there was no attempt to optimise the archtecture and it is likely that similar
results could have been obtained with a somewhat smaller network). Adaptive output transform circuits (with n=2)
were attached to all the pRAM neurons. The parameters CR, ks, kr and kp were set to the same values used in the
single pRAM simulation. The u had a training rate pa = 0.025 and penalty parameter A = 0.01; the 13 had a lower
training rate pp = 0.0005 and a'higher penalty parameter 4 = 0.1. The relatively large value chosen for)f was
needed because training progressed most effectively when fhe 1 were initially set to zero, which is an absorbing
point when A0 = 0 [7]. A larger Xp enables this initial setting to be escaped more easily should this be required. The
network begins by trying to fit a polynomial approximation to the data (P = 0); if this is unsatisfactory the P then
begin to increase, otherwise these parameters remain negligible. Figure 3a shows the decrease of mean absolute
error with epoch for this example; it should be compared with Figure 1, where the same function is being approxi-
mated by single pRAMs of input dimension N = 4, 6 and 8. Notice that although the multilayer net in Figure 3a
takes twice as many epochs to converge as the single N-pRAMs in Figure 1, the training rate for the au.. in this case
is only 1/8 that used for the 6-pRAM in Figure 1, and 1/20 that used for the 8-pRAM. The final error juoduced by
the multilayer net is significantly less than that produced by the 6-pRAM, and in fact slightly lower than that pro-
duced by the 8-pRAM, despite the fact that the multilayer net has only 95 adaptive parameters (88 weights ok,, 7
transform parameters 1) compared with the 256 weights of the 8-pRAM.

11-77

O30 0.30

m'qw" ait
0.23

0.15

0.1S 1 0

0.20

,,

0.05

0,00 0.00
0 2000 2000 3000 4000 5000 6000 0 000 2000 3000 400 30O0 6000

,.-h epuh

Figure 3a Figure 3h

Figure 3b shows the evolution of the seven 0 in the network during training. The top curve is the transform param-
eter for the output unit, the cluster of six curves below it the P~s associated with the hidden units. Notice that all
seven 13 initially show a rapid increase - indicating that the network has discovered that pure polynomial approxi-
mation in a network of this architecture is not adequate - but thereafter level off. None of the 0 achieve a value
close to the theoretical maximum of 1, indicating that a transform circuit with n=2 is easily sufficient in this exam-

le. However, although the 03 remain quite small, their presence is crucial to get a result of this quality - with all the
fixed at zero (no output transforms) this network converges to a final error about twice that achieved in Figure 3a.

Discussion

An algorithm has been presented which uses the noise associated with the representation of real-valued quantities
by finite spike trains to drive a reinforcement algorithm which can enable a probabilistic RAM (pRAM) net to learn
to approximate any function from [0, 1]N to [0,11M arbitrarily closely. Because the algorithm can in this way be
directly implemented in self-contained hardware, it provides the possibility of embedded neurocircuitry with many
applications in areas requiring a real-time learning capability. The underlying ideas are also applicable to any other
pulse-based stochastic model in which the weights are treated as random variables.

References

[1] A G Barto, "Learning by statistical cooperation of self-interested neuron-like computing elements", Human
Neurobiol. , 4, 229-256(1985).

[2] A G Barto, R S Sutton and C W Anderson, "Neuronlike adaptive elements that can solve difficult learning
control problems", IEEE Trans. Syst. Man and Cyb. , 13, 834-846 (1983).

[3] V Gullapalli, "A stochastic reinforcement learning algorithm for learning real-valued functions", Neural Net-
works, 3,671-692 (1990).

[4] D Gorse and J G Taylor, "An analysis of noisy RAM and neural nets", Physica , D34, 90-114 (1989); T G
Clarkson, D Gorse and J G Taylor, "From wetware to hardware: reverse engineering using probabilistic
RAMs", Journal of Intelligent Systems , 2, 11-30 (1992).

[5] T G Clarkson, C K Ng, D Gorse and J G Taylor, "Learning probabilistic RAM nets using VLSI structures",
IEEE Transactions on Computers, 41(12), 1552-1561 (1992).

[6] J G Taylor, "Spontaneous behaviour in neural networks", J. Theor. BioL , 36, 513-528 (1972).
[71 D Gorse and J G Taylor, "Universal associative stochastic learning automata", Neural Network World, 1,

193-202 (1991).

11-78

Neurocontrol and Robotics
Session Chairs: Andrew Barto

Kaveh Ashenayi

POSTER PRESENTATIONS

An Adaptive Heuristic Critic based Architecture for Exploring Mazes with Large Search Spaces

A. G. Pipe, Y. Jin, A. Winfield
Intelligent Autonomous Systems Group

Faculty of Engineering
University of the West of England

Coldharbour Lane, Frenchay, Bristol BSI6 IQY
United Kingdom

Abstract

We present a hybrid architecture, called EXPI, which balances exploration and exploitation in order to efficiently
solve two dimensional mazes with large state spaces (eg. 262144 states). To achieve this it draws on the strengths
of the Genetic Algorithm in search & optimisation, and on the combined strengths of the Radial Basis Function
Neural Network and Temporal Difference learning algorithm in approximating continuous functions with strong
temporal dependence. The Neural Network acts as an Adaptive Heuristic Critic (AHC). Over successive trials it
learns the V-finction, a continuous mapping between real numbered positions in the maze and the value of being
at those positions. EXPI solved all the mazes with which we tested it and proved to be quite robust to changes in
internal parameters. It also displayed some favourable capabilities in responding to time variant environments.

1. Introduction

In problems with a strong temporal dependence, such as maze solving and manipulator end-effector navigation in
uncertain environments, the need for a good balance between exploration of the environment and exploitation of the
knowledge gained from that exploration has been well established [Thrun 1992). In this paper we present the results
of an attempt to develop a learning architecture with distinct "exploration" and "exploitation" parts, and strong but
structured interaction between the two.

Temporal Difference (TD) reinforcement learning algorithms [Barto et al 1989] such as the Adaptive Heuristic Critic
(AHC) [Sutton 1984] [Werbos 1992] and Q-learning [Watkins 19891, both "on-line" approximations to Dynamic
Programming [Barto et al 1991], have shown great promise when applied to 2-dimensional maze problems where
an agent, such as a mobile robot, attempts to establish an efficient path to a goal state by interaction with its
environment. In most maze solving problems presented to date the area covered by the maze is divided into a
number of states, usually on an equally spaced 2-dimensional grid [Lin 1993] [Roberts 1993] [Sutton 1991].

Good representative work in this area has been conducted by Long-Ji Lin [Lin 1993]. As part of his PhD thesis he
presented an excellent comparison of these two learning algorithms for a class of maze solving problem. He used
feedforward and recurrent Multi-Layer Perceptron (MLP) Neural Networks to store information about the states
(ie. positions) in the maze. In the case of AHC the Neural Network learns the V-function, an arbitrarily non-linear
mapping between state inputs and the value of being at that state. In the case of Q-learning the analogous Q-function
learned by the Neural Network represents the multi-output mapping betweeaLbeing at a state and the value of moving
to each of the neighbouring states.

Other related work includes the use of a "Holland style" Classifier System [Booker et al 19891 in the creation and
reinforcement of rules for navigation in a "grid world" [Roberts 1993] and the use of Genetic Algorithms (GAs)
in evolving Neural Network controllers. In the latter case two approaches have been popularly adopted, either each
member of the GA population represents a complete Neural Network [Cliff et al 1992], or the GA is used to replace
the Neural Network learning algorithm [Belew et al 1990]. Whilst this work is of great interest we will not consider
it in detail here.

In all the work referred to above where the learning agent is given a maze to solve the problem domain has been
divided into relatively few state spaces, though in some cases there is a large amount of time variance in the
environment making the problem much harder. However we are interested in the short term in investigating

11-81

problems where the maze is finely divided into a very large number of states, and in the long term in investigating
those problems where movements in the maze are expressed as real numbers (or at least computer floating point
representation), ie. in the limit the concept of a discrete state space entirely disappears.

To test our architecture we restrict our experiments to problems where the maze has 262144 states. The obstacles
are relatively sparse in this space. This is not intended as a simplification of the problem, the maze presented is still
non-trivial, rather it is an inevitable result of dividing the state space into sufficiently small regions to allow for
finely resolved movements whilst still allowing for the traversal of open spaces. These types of environments are
representative of real world mobile robot and multi-jointed manipulator navigational problems (in the latter case the
state space has three dimensions and is correspondingly huge!).

Large state spaces make the exploration part of the problem much harder. The simple "nearest neighbours" action
policy used by many of the methods referred to above would take a very long time to investigate a maze such as
that described here, one tiny square at a time.

2. The EXPI Architecture

In our architecture a GA is used directly as the exploring part of the agent and a Radial Basis Function (RBF)
Neural Network is used to store the knowledge gained from exploration. It acts as an Adaptive Heuristic Critic
(AHC), using a Temporal Differences (TD) learning algorithm to learn the V-function as the search progresses.

At each "movement time step" the GA is restarted with a fresh population and searches the entire maze for the "best
next movement", any straight line traversal of the maze from the current position. At each generation of the GA
Lamarckian interaction with the environment occurs for each population member wherein the position is "tried out"
on the maze by making the movement and then returning. If a collision with an obstacle occurs then that population
member is modified to be the coordinates of the collision. The fitness function used to rate each member of the GA
population is supplied by the RBF Neural Network, which performs a mapping between a given xy-coordinate input
and a "value" for that position as its output.

This process continues through the normal process of GA evolution until either the population has converged or a
maximum number of generations has been reached. The highest rated population member is then used to make a
movement to the next position in the maze. After this has happened a simple variant of the standard Temporal
Difference (TD) algorithm [Sutton 1984, Sutton 1991] is executed on the RBF network to change the V-function's
shape. It changees the regions of the maze surrounding the movements made so far in the current trial by
distributing a discounted reward or punishment back to them. The amount of this reward/punishment is simply
derived from the value of the V-function at the new position.

The processes described above are then repeated from the new position in the maze until the goal position is
reached. This completes one trial. The RBF Neural Network thus acts as an Adaptive Heuristic Critic (AHC) of
the GA's every attempt to explore the maze. It learns a V-function which reflects the true value of being in each
position in the maze, refining the accuracy of the function after every movement in every trial of the maze.
Knowledge of the maze is embodied in the Neural Network and all that is inherited by EXPI in successive trials
is the new RBF network weight vector.

3. The Problem to he Solved

Our maze is on a 512 X 512 square grid. Positions in the maze are expressed as 2-D coordinates. Four straight line
obstacles form the maze. Although simple it is nonetheless representative of a confounding problem, a sharp
"double-back" must be performed in order to find the solution, and after this is negotiated the obvious next moves
lead to a "blind alley". EXPI was applied to mazes with more obstacles, some with more "blind alleys", yielding
results consistent with those presented below. This particular maze was chosen simply because the resulting figures
illustrating movements are clear enough to print on a small scale in this paper.

II-82

In the experiments presented below we wished to simulate an environment wherein the agent knows its absolute
position in the maze and where the goal position is at all times, but nothing about the obstacles which will impede
its progress until the first trial begins. Since the RBF network is intended to reflect the value of states in the maze
it can be off-line trained to reflect this, or indeed any other, a priori knowledge. The RBF centres of the Neural
Network were off-line trained with a smoothly reducing function of the Euclidean distance from the goal state.

4. Genetic Algorithm

Esch GA population member is an 18-bit number made up of a 9-bit x-coordinate and a 9-bit y-coordinate. These
are absolute coordinates rather than being relative to the present position purely for computational ease. Though
large for maze problems this is quite a small search space for contemporary GAs. A simple implementation was
therefore used with a population of 40 individuals. The selection method was "Roulette wheel'. Crossover and
mutation were both 2-point, one in the x-coordinate and one in the y-coordinate.

To maximise knowledge acquisition from interaction with the environment, when each new GA population member
is tested against the maze to evaluate its fitness if a movement results in collision with an obstacle then the
population member is truncated to the collision point and returned the fitness value of this position.

5. Neural Network

A Neural Network has a number of advantages over tabular methods for storing the V-function. Firstly it is well
known that most classes of real numbered Neural Networks can be designed to perform continuous arbitrarily
nonlinear interpolation between known points in the solution space. In our application the exploration strategy may
be relatively sparse in the network's input space, good interpolation performance is therefore important so as to
extract as much knowledge as possible from the positions visited in the search. More significant in the long term,
given the aims expressed above, the function learned is a continuous one which will be important when considering
real valued search spaces. Secondly a certain amount of data compression can be achieved, though this is variable
dependent upon network type.

We chose the local learning Radial Basis Function (RBF) [Sanner & Slotine 1991, Poggio & Girosi 1989] Neural
Network ziher than the global learning Multi-Layer Perceptron (MLP) used by Long-Ji Lin (Lin 1993] since this
class of Neural Network has certain advantages for real time control applications. Firstly since passes of the learning
algorithm affect only weights in the local region the problems of "knowledge drift" in other unrelated parts of the
input space is avoided. Secondly learning time for these types of networks can be orders of magnitude faster with
no local minima to get stuck in. Most importantly however the characteristic of "local generalisation" which this
Neural Network type possesses means that changing the V-function mapping at one point in the input space has a
tendency to modify the local region to a gradually diminishing degree as distance from this point increases. This
property is very useful here in extracting as much knowledge as possible from each movement through the maze.
It translates roughly as, for example, "if a position is a good one then the region around it will also be good".

We chose to represent the V-function here rather than the Q-function from Q-learning [Watkins 1989]. In Q-learning
the input-output mapping is from state to possible actions from that state. When the possible actions are movements
to nearest neighbour states this yields a modest number of Neural Network outputs. In our maze problem the entire
maze area is available at every time step, so there are 262144 possible movements from each state. Clearly this is
not a practically realisable situation.

The overall feedforward transfer function of the RBF network we used can be defined by the following expression
for a given pair of xy coordinates;

V E E Wu
1.0 J=O 0)2

H-83

Where; V = Neural Network output; i, j = x and y coordinate indexes respectively; maxx, maxy = maximum
maze coordinates; cxj, cy, = Basis Function centres in x and y dimensions; a - a suitable measure of RBF
width; w, = weight value for a given neuron.

A critical design consideration is density of the basis functions on each axis. Clearly there is a trade off here
between generalizing ability, which could result in fewer explorations being required to solve the problem, against
approximation ability in terms of smoothness requirements of the V-function to be learned. If the function centres
are too widely separated then EXPI may fail to investigate small gaps between obstacles. This is clearly a problem
dependent factor. However we found experimentally that this is not as limiting as it may at first appear, provided
that the centres are above a certain density set by the minimum anticipated gap size in the maze then an over dense
network merely results in more painstaking, that is to say unnecessarily localised, learning rather than incorrect
behaviour.

6. Temporal Difference Learning

The V-function network was modified after each movement using a simple Temporal Difference (TD) algorithm,
according to the following update rules;
V 1 =V_, + ThRATE ((V - PUNISH) - V,-,) for the movement prior to the current one then;

V-1 =V, TDRATE (V, - V) for i = 2 to HORIZON

Where; V, V-function output at time step t; TDRATE = Temporal Difference learning rate between 0 and 1;
PUNISH = a small punishment to encourage exploration; HORIZON = TD scope.

The PUNISH factor was included to counteract limit cycles and/or stationary behaviour. Under these circumstances
the value of those states will incur a small penalty at each time step, thus resulting in EXPI eventually breaking out
into new areas of the maze. The HORIZON factor limits the effects of the TD learning to a fixed number of
backward time steps. This is merely a computational device since, for all TDRATE values used in our experiments,
the exponential decline of the effective TDRATE with successive backward steps renders V-function updates
negligible by the time HORIZON is reached.

7. Experimetal Results

Though many experimental runs have been undertaken we give only a representative set here. The following maze,
GA, Neural Network and TD learning parameters pertain to the results given below.

Maze: (1,1) is the starting position (the top left corner in figure 1) and (400,400) is the goal position. Maximum
fitness at the goal position is 512. Other off-line trained initial fitnesses calculated by;

F1*nss~= 52 ,(i.. ((cx,-goaL%)2 .(y-goaWy2

GA: 20 generations executed to determine each movement. Crossover probability = 0.9, mutation = 0.01.
RBF: 64 Basis Function centres on each axis, ie. eight maze positions between each centre. a was set to 16, ie.

2 X Basis Function separation.
TD: TDRATE = 0.5, PUNISH = 30.0, Horizon = 12

Figure 1 shows the results of the first trial from start to goal position. EXPI took 121 moves to find the goal
position. In the subsequent trial it took 135 moves, mostly investigating areas not covered during the first run. These
two trials covered most difficult parts of the maze. In the next 7 runs EXPI took between 10 and 20 moves, most
of these were either spent investigating some small area missed by GA searches in the previous trials or staying still
whilst the worth of a position was devalued through the TD learning PUNISH factor. From the 10th trial onwards
EXPI's path was stable taking 9 or 10 moves. Figure 2 shows the path taken at the 10th trial.

11-84

II

Fgure 1 Figure 2

Though there is not space to illustrate it here, from the 10th
trial onwards the V-function had a smooth "ridge" along the
established path from start to goal position.

We induced a limited form of time variance in the environment
by opening up a more direct path as shown in figure 3. In this
case EXPI immediately explores it discovering the quicker
route in one trial.

8. Discussion

The limited time variant experiment illustrated in figure 3
represents only the "fortuitous" discovery of the exploration
part of EXPI. Once a route is well reinforced through TI)
learning only the few positions at which EXPI stops in the
maze will continue to be investigated for a better route. If Figure 3
obstacles are removed, or as in this case an opening becomes
available near one of EXPI's "stops" then it will immediately
take advantage of it. However if an opening were made in the centre of the second vertical obstacle then EXPI
would "speed" past it. This deeper form of continuous investigation could be brought about by including a "boredom
factor" in the TD learning [Sutton 1991], to devalue the established route through time so that search would be
reinitiated. However this would inevitably have a detrimental effect on the asymptotic performance for time invariant
situations.

We found that EXPI was fairly robust to changes in value of the many parameters in the system, such as number
of RBF centres, TID learning rate, PUNISH & HORIZON values, GA population size & number of generations,
mutation and crossover probabilities etc. Most changes induced a more or less efficient search or affected the
convergence behaviour over successive trials rather than resulting in incorrect behaviour. For example, as one might
expect, lower TD learning rates generally produced a system which established a stable route more slowly, but
sometimes found a better route in the end than those systems which converged effectively in one or two trials.

9. Condsions and Further Work

EXP1 successfully solved all the maze problems with which we presented it within a 512 X 512 state space.
However we would like to try the architecture on much bigger search spaces.

11-85

It will continue to make fortuitous use of changes in the maze if a better move appears at one of its established
"stops", for example the removal of an obstacle will immediately be exploited. However it does not cope well with
the more general example of time variance in the environment. We would like to pursue the inclusion of an
additional factor in the TD learning which periodically reduces the V-function in local regions of the state space in
order to induce re-investigation.

Although EXPI is relatively robust to internal parameter changes we would like to investigate a means of
automatically adjusting the Neural Network's Basis Function centre separation. There is no reason why this should
be regular throughout the maze, an interesting concept would be to automatically adjust centre separation to match
the resolution required in different regions of the maze.

In EXPI the RBF network learns the V-function. We are interested in looking at the possibility of a partial Q-
function mapping wherein, say, the best 10 possible actions from a given state are learned. Long-Ji Lin [Lin 1993]
investigated the use of recurrent Neural Networks to handle so called "hidden" maze states, we would like to extend
our work in this direction also.

References

Barto A. G., Bradtke S. J., Singh S. P., 1991, 'Real-Time Learning and Control using Asynchronous Dynamic
Programming', Dept. of Computer Science, University of Massachusetts, USA, Technical Report 91-57
Barto A. G., Sutton R. S., Watkins C. J. C. H., 1989, 'Learning and Sequential Decision Making', COINS
Technical Report 89-95
Belew R. K., McInerney J., Schraudolph N. N., 1990, 'Evolving Networks: Using the Genetic Algorithm with
Connectionist Learning', University of California at San Diego, USA, CSE Technical Report CS90-174
Booker L. B., Goldberg D. E., Holland J. H., 1989, 'Classifier Systems and Genetic Algorithms', Artificial
Intelligence 40, pp. 23 5 -2 82

Cliff D., Husbands P., Harvey I., 1992, 'Evolving Visually Guided Robots', University of Sussex, Cognitive
Science Research Papers CSRP 220
Lin L., PhD thesis, 1993, 'Reinforcement Learning for Robots using Neural Networks', School of Computer
Science, Carnegie Mellon University Pittsburgh, USA
Poggio T., Girosi F., 1989, 'A theory of Networks for Approximation and Learning', MIT Cambridge, MA, Al
lab. Memo 1140
Roberts G., 1993, 'Dynamic Planning for Classifier Systems', Proceedings of the 5th International Conference on
Genetic Algorithms, pp.231-237
Sanner R. M., Slotine J. E., 1991, 'Gaussian Networks for Direct Adaptive Control', Nonlinear Systems
Laboratory, MIT, Cambridge, USA, Technical Report NSL-910503
Sutton R. S., 1984, PhD thesis 'Temporal Credit Assignment in Reinforcement Learning', University of
Massachusetts, Dept. of computer and Information Science
Sutton R. S., 1991, 'Reinforcement Learning Architectures for Animats', From Animals to Animats, pp288-296,
Editors Meyer, J., Wilson, S., MIT Press
Thrun S. B., 1992, 'The Role of Exploration in Learning', Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches, Van Nostrand Reinhold, Ed. White D. A., Sofge D. A.
Watkins C. J. C. H., 1989, PhD thesis 'Learning from Delayed Rewards', King's College, Cambridge.
Werbos, P. J., 1992, 'Approximate Dynamic Programming for Real-Time Control and Neural Modelling',
Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, Ed. White D.
A., Sofge D. A.

1-86

A Proposed Hierarchical Neural
Network Controller for a Hexapod Leg

A.L. Nel & J.G. Benad6
Laboratory for Cybernetics, Rand Afrikaans University

Johannesburg, amn@ing1.rau.ac.za

Abstract

We report on the development of a neural controller for a three degree of freedom leg of a hexapod.
Biological systems are considered as motivation to develop the neural control system. Backpropagation
training of multilayer perceptrons and a combination of hetrogeneous neurons are used to implement
several pattern generators. Previous work [11 shows that a two degree of freedom leg controller cannot
compensate for surface irregularities. The proposed controller for the leg is extended to compensate
for such surface irregularities. All the components of the proposed controller are biologically feasible.
Simulation results that demonstrate the performance of the leg are presented.

1 Introduction

There are two reasons for researching legged robots: viz. a) mobility - there is an increasing need for vehicles
that can travel on difficult terrain where wheeled vehicles cannot go and b) understanding - how humans and
animals use their legs for locomotion. Evolved locomotion in animals demonstrates a remarkable mobility,
agility and reliability. The use of mathematical computations to simulate such systems is complex and
this type of control problem cannot be solved with classical methods in real time, except if very powerful
computers are used.

Studies of insect leg control systems, especially the cockroach, have been done by Pearson (2]. Beer et al
[11, and (31 based their simple artificial leg controller for a leg with two degrees of freedom on these results
(Figure 1). Pearson (2] postulated that the coordination of the legs of a hexapod is thatof a relaxation
oscillator (41, ie. a bistable system that switches from a state A to a state B when a certain internal
threshold is reached and back when another threshold is reached.

The legs of the hexapod as described by [1] could only perform simple two degree of freedom motions: viz.
lifting the leg and swinging it forward and backward. To compensate for surface irregularities another degree
of freedom is needed to enable the leg to maintain the hexapod's body posture in a given state. Our aim
was to develop a biologically feasible three degree of freedom leg controller which would perform this task.

2 Proposed Leg Controller

In most mobile robot systems developed a common feature has been the recognition for the need of a
hierarchical structure of intelligence and therefore hierarchical decomposition of the task. This is found in
lower class animals where motion control is highly decentralized, ie. the higher level (the brain) defines tasks
or subgoals for the lower nervous control centers and then monitors their status.

Pearson's model of a motion controller (2] (Figure 2) for a cockroach suggests that these different levels of
control. The controller designed by Beer [1) (Figure 1) is extended to three distinct levels of control; viz.

11-87

Stance

Foot

swing
Figure 1: Leg Controller Circuit of Beer Figure 2: Pearson's Model of Cock-

roach Locomotion

central pattern control level (CPCL), motion pattern control level (MPCL) and segment control level (SCL)
as indicated in Figure 3 in order to control a leg with three degrees of freedom.

There are two different phases that can be distinguished in hexapod walking; a stance and swing phase. The
control hierarchy must configure the three joints, ie. the torso, hip, and knee to coordinate the stance and
swing phases and so ensure that the hexapod retains its posture.

In Beer's model the central pattern control is activated by a higher level (the brain), causing LC to fire. LC
then excites the pacemaker (P) and Stance simultaneously. The excitation of Stance produces the stance
phase. Periodically, however, this state is interrupted by a burst from P. This burst excites Swing, lifting
the foot and swinging the leg forward. When this burst terminates, another stance phase commences, and
so the cycle is completed. The rhythmic bursting of P thus results in a basic stance/swing cycle.

To properly synchronise the swing and stance phases as in biological systems, the controller requires some
feedback information about the ,.xact position of the three segments of the leg and whether the foot is raised
or not. This information is produced by two different sensors which provide the necessary information to
the CPCL: viz. the angle (S) and pressure (F) sensors. Angle sensors are used to locate the various leg
segment positions. For example, if the leg is at the end of the swing phase, the forward angle neuron (FA)
is influenced by the shoulder sensor S, causing FA to excite the Stance and inhibit the back angle neuron
(BA). The load carried by the leg is determined by the pressure sensor and activates the foot down neuron
(FD). FD inhibits P and Swing preventing it from switching to a swing phase. (This sensor corresponds to
the hair receptors in the model of Pearson [21.)

A few pattern generators were incorporated into the controller and were implemented in the form of homo-
gene.)is neural networks. The use of a pattern generator is consistent with biological evidence [5]. When
Stance or Swing are activated, control is passed to the MPCL which consists of a signal processing neuron
and a neural pattern generator. The neural networks used for the pattern generators were trained by means
of the standard back propagation training algorithm and consisted of one input layer with five neurons,
one hidden layer with ten neurons and an output layer with a single output. The training input data is the
integrated signal received from the signal processing neuron and the output data is the analytical trajectories
calculated using a simulation of the motion of an idealized leg.

Excitation of Swing or Stance causes that neuron to fire, and activates the applicable signal processing
neuron. This neuron integrates the incoming signal and transmits the result to the pattern generators which
produces the different motor signals for controlling the leg segments.

Biological systems have kinesthetic and vestibular sensors that monitor segment position and loading. Beer
[3] argues that such low level feedback control is essential. Most of the information generated by these

II-88

Ca" Pattern IMotion Pbasm gs Con"i LAMe

*a Ik. I

* ..~78~L ceu a ! e, !Semc

LS. 8

-0 V a I * F 1i---

Figure 3: Hierarchies of the Proposed Controller

sensors is only utilized at the local level, while some of the information is also made available for processing
at higher levels. Information from the sensors is utilized in the lower levels for momentary control. This
control is accomplished by a strictly local negative feedback closed loop controller.

Instability or oscillations might occor at high input frequencies due to the time constant of the segment which
is much smaller than that of the neural controller. The Renshaw cells [5] found in most neuron controllers,
especially on lower levels reduce the system gain by an inhibitory action on the segment controller at high
frequencies. The phase-lead/phase-lag controller in our controller is therfore a type of lower motor control
and has the same objective.

The duration of the walking cycle varies inversely with frequency [6]. In other words, higher step frequencies
excite LC to a higher firing rate. The result is an increased excitation of Stance and P. The Stance is
thus continuously activated and deactivated by LC and P. This is due to the inherent characteristics of
the control system. A modulated synapse is implemented between the forward angle sensor neuron and P.
The result is that P is inhibited during the stance over a wide range of frequencies. (Modulated synapses
increase/decrease the gain of the affected synapse.) A faster throughput of the pattern is found by using the
modulated synapse between the stance and swing neurons and their respective signal processing neurons.
This results in an increase in magnitude of increments of the pattern outputs, thereby adjusting the rate at
which the leg position is updated.

3 Irregularities in Terrain

How should the proposed controlled be changed to compensate for irregularities in terrain? Figure 5 shows
the results of a mathematical simulation for a leg stepping onto an object which varies in height from 5mm
to 50mm. Similarity exists between the curves of motor 2 and 3 in that they have the same characteristic
of an offset and gain applied to the curve when walking on a horizontal surface. This characteristic is used
to derive an equation to enable the controller to adapt to the irregularity in terrain. The equation is the
following:

BA. (9,,, - ,.,. + Gain x 0l,.,)Bt ., (1)
Gain x G,.,.

II-89

. ... It i llli Hit LC l i l

where

6A Desired angle when foot is at position A from horizontal
9ib Angle when foot is on horizontal surface
9bq., Minimum angle of curve when foot is on horizontal surface
OA.,. Minimum angle of curve when foot is at position A above horizontal

Cmll Paes, I Mmim Pau n epm Ccuol Level
Coal LAvel I CMl Level

,.,,M

Figure 4: Modified Leg Controller for Irregular Terrain

All the values in the equation above are constant except for G, which represents the values of the curve when
walking on an horizontal surface. If the constants are known the new curve can be derived. The minimum
values, the gain and offset for all the curves in Figure 5 were calculated. A neural network was trained with
the motor angles 2 and 3, at positions A, as inputs. The gain and minimum values for each curve, when the
foot is at position A, is obtained as output.

The proposed controller was changed as shown in Figure 4. When the leg has reached the end of the swing
phase the FA and the sensor F are activated which then activates the obstacle processing neuron (0). On
activation the 0 inhibits the SPST neuron to prevent it from firing. The angle values of motor 2 and 3 are
sent to 0. 0 uses these signals to generate the gain and offset necessary to change the curve. The result is
transmitted to the obstacle trajectory neuron (0CT) which then excites the SPST neuron causing it to fire.
The signal received from the SPsT is then changed by CT using Equation 1 and the signals recived from 0.

4 Simulation Results

The simulation of a single three degree of freedom leg performed is a full kinematic simulation including the
complete neural controller as detailed in Figure 4. The change in inertias of each of the legs as the joints
rotate and the standard dc motor model driven by a controlled voltage source is included.

The motor output angles for the walking cycle are shown in Figure 6. A view of the simulated leg positions
based on these output angles which are the result of the simulation of the complete neural controller is shown
in Figures 7 and 8. These figres are based on a complete kinematic simulation and it can be seen that the
motion is not symmetric (the pattern generator is based on a symmetric curve). What can however be seen
is that a continuous and realistic power and return stroke has been achieved.

11-90

. ' ' ' ' I I S3

65 85

75- -- -

0 20 40o 6 ,IC tO 1 20 14o ISo ISo 0 20 40 60 60 10o 120 40 teo tao
ime, (.) lie (a)

Figure 5: Motor Patterns when Stepping onto an Irregularity

5 Conclusion

As can be seen from the results, a biologically feasible controller for a three degree of freedom leg which
consists of a command hierarchy is possible, which divides the general goal into workable sub-commands at
each level. Communication between the different levels of the control system is limited to essential neural
quantities.

An advantage of the developed controller is that it can be extended to accomplish tasks such as turning
without having to redesign the basic structure as has been demonstrated by the extension to incorporate
surface irregularities. This is the basis of continuing research.

References
[1] R.D. Beer. Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology. Academic

Press Inc., first edition, 1990.

[2] K. Pearson. The control of walking. Scientific American, 235:72-86, 1976.

[3] R.D. Beer, R.D. Quinn, H.L. Chiel, and K.S. Espenschied. Robustness of a distributed neural network
controller for locomotion in a hexapod robot. IEEE Trans. Robotics and Automation, vol.RA-8(3), 1992.

(4] U. Bassler. On the definition of central pattern generator and its sensory control. Biological Cybernetics,
vol.54:65-69, 1986.

(5] E.W. Kent. The Brains of Men and Machines. McGraw-Hill Publishing Co., New York, 1981.

[6] D.M. Wilson. Insect walking. Annual Review of Entomology, 11:103-122,1966.

11-91

90.0 *

750 v.....t.4

30.0 ...X.

e Nor ..'014 3

.24Dturm 16ur

-15.0 4-

0.5 110 1.5 2.0 2. 3.0 3.5
-motor I -oo ma 2 otor S

TWOd (a)

Figure 6: Motor Position during Walking

y

x
C)

y

b) C) b))d

Figure 7: Leg Positions during Stance Figure 8: Leg Positions during Swing
Phase Phase

11-92

Hebblan Learning Strategies for Neural Adaptive Control

Chi-Sang Poon

Harvard-MIT Division of Health Sciences and Technology
Massachusetts Institute of Technology

Cambridge, MA 02139

Hebbian associative learning is a common form of neuronal adaptation in the brain. In this paper
[1] we show that a Hebbian synapse is an ideal neuronal substrate for adaptive control and other
supervised learning tasks. In particular, a homosynaptic Hebbian synapse that exhibits pairing-
specific and activity dependent long-term potentiation (LTP) may constitute an adaptive element
in a high-gain adaptive control (HGAC) system. Similarly, an associative Hebbian synapse that
is conditioned by a heterosynaptic pathway is capable of implementing the delta adaptation rule
that is widely used in model-reference adaptive control (MRAC) and error-backpropagation
learning schemes.

The peculiar neuronal configuration in a Hebbian synapse suggests that a MRAC
adaptation rule based upon Hebbian associative learning must be accompanied by a high-gain
(adaptive or non-adaptive) feedback path similar to that of HGAC. The resulting dual adaptive
control (DAC) system represents a new class of adaptive control scheme that combines the best
of HGAC and MRAC. Theoretical and simulation results suggest that DAC is superior to MRAC
and HGAC in that 1) it enjoys the rapid convergence capability of HGAC and zero tracking
error capability of MRAC; 2) it shows improved stability for higher-order systems; 3) it is more
robust with respect to system uncertainties than is HGAC and MRAC.

Improved robustness is obtained provided the adaptation has leakage or self-decay. In
other words, the memory must be short-terrn. For purpose of neural adaptive control, therefore,
short-term synaptic plasticity (e.g., short-term potentiation) is of particular interest because it
protects the animal against environmental uncertainties or perturbations. Theoretical analysis
shows that a DAC scheme with short-term memory offers the greatest protection against
unknown input disturbance and unmodeled system dynamics.

The theoretical results have interesting engineering as well as biological implications.
Firstly, the design of physiological control systems is such that different control strategies of
reinforcement learning and negative feedback could be simultaneously operative as a result of
associative neuronal learning. These complementary strategies may act in concert to enhance the
effectiveness and reliability of neural adaptation. Secondly, on the practical side the dual
adaptive control scheme that has been inspired by these multi-denominational neuronal strategies
may prove to be a useful technique for engineering adaptive control applications.

This work was supported in part by National Science Foundation under Grant BCS-
9216419.

[1) Poon, C.-S. Dual adaptive control by Hebbian associative learning. Technical Report,
Industrial Liaison Program, Massachusetts Institute of Technology, Bldg. E38-500, Cambridge,
MA 02139.

II-93

Neural linearizing control with radial basis function network for chemical processes

Snkjoon Kim', Minho Lee", Sunwon Park', Soo-Young Lee-, and Cheoi Hoon Park"

Department of Chemical Engineering
"Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
373-1 Kusong-Dong Yusong-Gu,

Taejon 305-701, Korea
Phone: +82-42-869-5431 Fax: +82-42-869-3410

E-mail : mblee @ kumgang.kaisLacJkr

Abstract

In this paper a new neural control architecture for chemical processes is proposed, which consists of a P1
controller for initial stabilization and a radial basis function(RBF) network for linearization of nonlinear plants. The
control input applied to the process is summation of outputs of the PI controller and the RBF network. First, a
reference linear model, which defines relationship between the PI controller output and the process output, is
determined from the analysis of the past operation data. Initially the PI controller operates the process alone. The
RBF network is gradually trained to minimize the difference between outputs of the plant and the linear model. As
the training of the RBF network goes on, the dynamics of the nonlinear plant added by the RBF network converges
to that of the linear reference model. Then, the overall control problem becomes linear, and the linearized system
can be easily controlled by the PI controller with closed-loop architecture, of which parameters can be determined
by simple pole-zero assignments. Provided the initial PI controller stabilizes the plant, it remains stable throughout
the whole training phase. Comra.,ter simulation shows that the proposed control architecture is very effective in
controlling nonlinear chemical processes such as continuous stirred tank reactor and pH process.

I. Introduction

Multilayer neural networks have been successfully used for control of unknown nonlinear dynamic systems[l-
91. In these researches, indirect adaptive neural control architecture based on the forward modeling was successfully
used for control of the robotic arms[2,8], the truck backer upper problem[l], and nonlinear plants[3,51. In this
indirect approach the neuro-controller was trained by error back-propagation through identifier neural networks.
Although this approach gives interesting results, the controller with neural networks only may be inefficient in the
real applications because of large computation time, and suffers from local minima[6]. Moreover, the neural
identifier for the unknown system must be trained off-line with sufficient input and output data, which are difficult
to obtain in many real plants, especially chemical processes[9].

On the other hand, majority of real systems already has conventional controller such as PID controller, and
system managers do not want to replace the conventional controller with the advanced one with "yet-to-be-proven"
reliability. Therefore, the preferred choice for practical applications may be hybrid control architectures where the
neuro-controller increases control performance on existing controller with stability[6,71. Although the feedback
error learning method[7] provides very good control results of robotic manipulators, there still exists question on
transient control performances. Also the overall control architecture becomes feedforward in learning phase, and one
may suspect robustness above the performance of the linear controller[6].

We propose a new learning control scheme, which maintains the conventional linear controller and increases the
control performances by linearization of nonlinear plants. By adding a radial basis function (RBF) network in front
of the nonlinear plant, overall system can be made linear. The transient and steady state control performances
depend on the linear dynamics and the PI controller gains. Provided the initial linear controller stabilizes the plant
the proposed control scheme satisfies the stability criterion during the whole training process and increases the

11-94

control performances continuously. Computer simulation shows that the proposed control architecture is effective in

tracking control of chemical processes such as a continuous stirred tank reactor (CSTR) and a pH process.

I1. Radial Basis Function Network

Figure 1 shows the radial basis function(RBF) network. From the regularization theory Green functions may be
used as hidden activation functions[101, but Gaussian potential functions are used in this study.

Z y: Outputlayer

I" Hidden layer

'Otu •. - -nput layer

Figure 1. Radial basis function network.

The output of the RBF network is calculated by Eq.(1), where x and y denote the input and output values, and
M is the number of hidden neurons. W i denotes the weight value from the i-th hidden layer neuron to the output, a,
and ci denote the standard deviation and the center value of the i-th Gaussian activation for hidden neurons,
respectively. Also, 1I • 11 denotes the Euclidean norm.

y(k) = XW(k - 1) exp(-1) (1)o'a i(k - 1)

The popular learning algorithm of the RBF network consists of the clustering algorithm for determining the
center values of hidden activation functions and the least square algorithm for adaptation of weight values, W. for
minimizing the output error[1t,121. In this study, we adopted the learning algorithm in Ref.[12] to incorporate
self-generation of hidden nodes and on-line adaptation of the parameters(c and cr) for the Gaussian functions. The
error E(k) = (d(k)-y(k)) 2t2 is minimized by gradient descent and error back propagation, where d(k) denotes the
desired output values at time k[121.

MI. Linearizing Control architecture with Radial Basis Function Network

Fig. 2 shows the proposed control architecture. Basically, by adding the RBF network in front of the plant, we
would like to convert the nonlinear plant into a linear system. Then, the linearized system in the dashed box can be
easily controlled by the linear PI controller with feedback. The input of the plant is generated by the summation of
the outputs from the linear controller and the RBF network. The reference model is chosen as an approximate linear
model around the operating point of the process. The training of the RBF network is progressed to minimize the
error, ie., the difference between the output of the preassigned linear model and the output of real plant.

The objective of the RBF network is to make the plant output linearly influence by the linear PI controller
output similar to the reference model. To train the RBF network, the training error must be transformed to the output
error of the RBF network. In case that the plant dynamics is unknown and the neural identifier does not exist, one
may approximate the inverse Jacobian value to simple perturbed sensitivity of input and output values, and the

II-95

required gradient becomes

dE(k) = -(d(k) - y(k)) -(k) u (k - 1) (2)

6 ,(k -1) 66. k) -) (k - 1)

=- (d(k) -y(k))sgn(Ay(k) __u_._%_k_-_= -(~k) y~k)sgnAu. (k - 1) ov(k - 1)

where the v denotes the RBF parameters, W, si, and c.

+ E(k)

Figure 2. Proposed neural linearizing control architecture using RBF network.

At the initial stage of training, the control performance of the plant mainly depends on the ability of the linear
P1 controller[61. As the training of the RBF network progresses, the overall system dynamics of the RBF network
and the plant gradually resembles the preassigned linear model. If the overall system dynamics converges to be the
preassigned linear dynamics by sufficient training of the RBF network, one can easily design the PI controller of the
linearized system for desired poles and zeros. The initial conservative PI controller tuning parameters for

stabilization of the process are now changed to these new values, and the overall closed loop system has the desired
transient and steady state response. Specific dynamics of the preassigned linear model is not critical to the overall
control performance.

IV. Simulation

To investigate its control performance and usefulness the proposed control scheme is applied to two typical

chemical processes, i.e., a continuous stirred tank reactor(CSTR) model and a pH process.

CMfq Tf F F,

CqT NaOH IHC

qcTcf F1 + F

Figure 3. Schematics of CSTR. Figure 4. Schematics of pH process.

(a) CSTR example

This CSTR model was developed by Henson and Seborg[141, and used for simulation test by Nahas and

11-96

Seborg[lS]. Fig. 3 shows the schematics of the CSTR. A single irreversible exothermic reaction converts material A

to B in the reactor. The process model is shown in Eqs.(3) and (4),

CA = q(C - C,) -koCp, exp(--) ()

E(T,- T - -AH~C, xp(--L + pp j I- e p(- .A) I x (T./ - T) (4)
V 1 PC, RT pC~V q~pC,.

where CA and CM are the effluent and the inlet concentration of component A, respectively, T is the reactor
temperature and q is the ieed flowrate. The nominal operating conditions are shown in Table 1.

q =1001min' E/R=9.95XI03 K v =10001
C= I Molr, -AH = 2X10Scal moo' pH=7
T,= 350 K p, p= 1000 g I" F, = 515 1 mini'
T,,= 350K CC,= I cal g'K' F2 = 811 min-'

V = 1001 q.= 103.411 min" C, = 0.32 mol V"

hA = 7X0 cal min-'K "' T = 440.2 K C2 = 0.05 Mol r
ko = 7.2 CA = 8.36X0 "2 mol r, [HACI =0.0435 mol r'

[NaOHI--0.0432 mol t'

Table 1. Nominal CSTR operating conditions. Table 2. Nominal pH operating conditions.

In this problem the controlled variable y is CA and the manipulated variable u is q. The open-loop responses to

*10% step changes in the input are shown in Fig.5. This result shows severe nonlinearity of the process. The initial
tuning parameters of the PI controller are set as the proportional gain k. = 150 and the integral gain t, = 0.3. The
sampling time At is set to 0.1 min. The closed loop response with the PI controller is shown in Fig. 6. The
preassigned linear reference model is set as

d(k+l) = 0.327y(k) + 0.003 u(k-1). (5)

After training the RBF network and assigning new PI controller gains as k,7293.4 and t,=0.33 1, the closed-loop
response is shown in Fig. 7. Obviously the closed loop response of the proposed control architecture is uniform for
the different set point changes, and the control performances are improved from the performance shown in Fig. 6.

(b) pH process

The process for the second simulation study is a pH process model reported by McAvoy et al.[16] and studied
by Bhat and McAvoy(17]. Its schematic is shown in Fig. 4. The process model is described in Refs.[16,17] and the
nominal operating conditions are shown in Table 2. In this problem, the controlled variable y is pH and the
manipulated variable u is F2. The open-loop responses of pH to +2 /min and -2 /min step changes in F2 are shown
in Fig.8. There exists very large difference of steady state gains between positive and negative step changes, and it is
very difficult to control this process using conventional linear controllers. We use initial parameters of the PI
controller as k. = 2.5 and t. = 1.5. Fig. 9 shows the closed loop response of the PI controller. The sampling time At
is set to 0.5 min. The linear reference model is set as

d(k+l) = 0.3796y(k) + 0.7165uL(k-1). (6)

After sufficient training of the RBF network, the closed-loop response with the new PI controller gains, k =4.0
and t.=1.5, is depicted in Fig. 10. In spite of highly nonlinear characteristics of the pH process, the proposed neural
linearizing control architecture demonstrates good control performance.

II-97

* ~ +2

410%

s * a is 7A IIIa * I

@1m mua0m" -.. 9W

Figure 5. Open loop responses to step input in CSTR Figure 8. Open loop responses to step input in pH
proces. - :+10% step change process. - :+ 10% step change

.... -10% step change- 10% step change

"S3

lie

.0.

Figure . Control response o with P controller nd Figure 0. Control response l with P controller anp

-:R rces plant output -rces plant output
control input control input

....... reference trajectory..... reference trajectory

A1-9

V. Concluion

The proposed neural linearizing control architecture demonstrates good control performances for the continuous
stirred tank reactor and a pH process. In this control scheme, a conservative PI controller controls the plant initially
and as the training proceeds the RBF network produces the additional control output to linearize the relationship
between the linear controller signal and the plant output. Now it becomes a simple linear control problem for the
preassigned linear model with PI controller of desired poles and zeros. Provided the initial linear P1 controller
stabilizes the plant, it becomes stable through out the whole training and following testing phases. An experimental
study of implementing the proposed control architecture on a pH chemical process is underway.

References

[1] D.H. Nguyen, and B. Widrow, "Neural networks for self-learning control systems," IEEE Control Systems
Magazine, voL 10, no. 3, pp. 18-23, 1990.

[2] M.I. Jordan, DE. Rumelhart, "Forward models: supervised learning with a distal teacher," preprint.
[3] K.S. Narendra and K. Parthasarathy, "Identification and control of dynamic system using neural network," IEEE

Trans. on Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.
[41 B. Kosko, "Neural networks for signal processing," The Prentice-Hall international editions, pp.161-187, 1992.
[5] M. Lee, S.Y. Lee, and C.H. Park, "Neural controller of nonlinear dynamic systems using higher order neural

networks," Electronics Letters, vol. 28, no. 3, pp. 276-277, 1992.
[6] M. Lee, S.Y. Lee, and C.H. Park, "A feedforward/feedback neural control structure and its application to a

robotic system," Procs. of International Joint Conf. on Neural Networks, vol. 3, pp. 2757-2760, 1993.
[7] M. Kawato, "Feedback-error-learning neural network for trajectory control of a roboic manipulator," Neural

Networks, voL 1, pp. 251-265, 1988.
[8] T.Hoshio, M.Kano, and TEndo, "Optimal control with a recurrent neural network and a priori knowledge of the

system," Procs o2228f International Joint Conf on Neural Networks, vol.1, no.3, pp. .226-231, 1991.
[9] M. Lee and S. Park, "A new scheme combining neural feedforward control with model-predictive control,"

AICHE J, vol. 38, pp. 193-200, 1992.
110] T. Poggio and F. Girosi, "A theory of networks for approximation and learning," A.I. Memo No. 1140,

Artificial Intelligence Lab., MIT, 1989.
[11] S. Chen, F.N. Cowan and P.M. Grant, "Orthogonal least square learning algorithm for radial basis function

networks," IEEE Tr. on Neural Networks, vol. 2, pp. 302-309, 1991.
[12] S. Lee and ILM. Kil, "A gaussian potential function network with hierarchically self-organizing learning,"

Neural Networks, vol. 4, pp. 207-224, 1991.
[13] Y. Maeda, H. Yamashita, and Y. Kanada, "Learning rules for multilayer neural networks using a difference

approximation," Procs. of International Joint Conf. on Neural Networks, vol. 1, pp. 628-633, 1991.
[14] MA Henson and DX.. Seborg, "A critique of exact linearization strategies for process control," AICHE J, vol.

36, pp. 1753-1757, 1990.
[15] E.P. Nahas and DE. Seborg, "Nonlinear internal model control strategy for neural network models," Computers

Chem. Engng., vol. 16, pp. 1039-1057, 1992.
[16] TJ. McAvoy, E. Hsu and S. Lowenthal, "Dynamics of pH in CSTRs," Ind. Engng. Chem. Process Des. Dev.,

vol. 11, pp. 68-70, 1972.
[17] N.V. Bhat and TJ. McAvoy, "Use of neural nets for dynamic modeling and control of chemical process

systems," Computers Chem. Engng., vol. 14, pp. 573-582, 1990.

11-99

NEUROCONTROLLER FOR ROBOT BIOLOGICAL JOINT

S. Zein-Sabatto, M. Bodruzzman, and C. Glover*
Center for Neural Engineering

Tennessee State University, Nashville, TN 37209
Oak Ridge National Laboratory, Oak Rige TN 37831

Abstract

A biologically motivated, Human Like (HL), robot joint is developed and a neurocon-
troller is designed to provide motor control signals needed by the joint. The main features of
biological joints have been translated into electro-mechanical mechanism applying reverse
engineering techniques. The proposed servo-mechanism is capable of providing restricted
three dimensional motion analogous to that of a human being joint. The developed mech-
anism is suitable for the design of robot rotational joints. The advantages of a robot arm
constructed from a such spherical servo-mechanism are: fast response, high resolution and
high force generation per unit volume.

I. Introduction

Description of neurological models vary depending on the objectives for which they axe
developed. Two approaches exist; the systems anatomical approach and systems scientist
approach. In the systems anatomic approach the concern is with the anatomical structure
of neural mechanisms and their functions. While from the systems scientist approach
the attempt is to describe observed behavior in terms of mathematical models [1]. From
anatomical structural point of view most biological joints have spherical shape and produce
restricted rotational motion in the three dimensional space. This is proven to be useful
and essential for biological systems to accomplish what they do.

II. Biological Joints

A simple observation of a human shoulder movement reveals that biological joints are
capable of providing a restricted three degrees of freedom (DOF) motion. This movement
is very useful and, if current robots were equipped with smiler biological joint they would
be more powerful and extremely flexible. A key element in making the three dimensional
motion possible in biological joints is the anatomical structure of such joints. Anatomical
studies showed that most biological joints posses spherical shapes, as shown in Figure 1,
allowing restricted three dimensional motion [2].

The spherical structure of biological joints will be translated into analogous mechanical
structure using reverse engineering technique. This technique will lead to the development
of a restricted three degree of freedom servo-mechanism suitable for robot joint design.

III. Human Like Robot Joint

The main features of biological joints are preserved and translated into an electro-
mechanical structure. The proposed mechanism is capable of three dimensional rotational

11- 100

motion. It consists of a ball joint and two electrical servomotors coupled through me-
chanical structure. The two servomotors are positioned along two orthogonal axes. The
mechanical coupling structure consists of two arches perpendicular to each other. The
two arches provide an opening for a rod connecting the ball joint into the servomotors
through the coupling mechanism. A three dimensional visualization of the HL robot joint
is shown in Figure 2. On one side of the mechanism a servomotor is attached and on the
opposite side a position sensor is mounted to provide additional position feedback signal.

The servomotor shaft and the position sensors are both connected together through the
coupling structure.

Link

I!I

Fig. 1. Anatomic Structure Fig. 2. Visualization of HL Joint
of a Biological Joint with Coordinate Frames

IV. Dynamic Model

A dynamic model of the HL joint is developed. Both the dynamic of the electrical
and mechanical parts of the mechanism are considered in the model. First, the model is
developed in the form of a transfer function. Then a block diagram is deduced for controller
design purpose. All the mechanical frictions and inertia, including the servomotor inertia,
are identified in Figure 3.

From Figure 3, the total torque required from each servomotor (assuming only one servo-
motor is running at a time) is given by the sum of the following torques

T.(t) = (2J. + J1)0"(t) + (2B,, + 2Bb + B. + B 1)O'(t) + T (1)

where J.=servomotor inertia, J1 =ball joint (fixture) inertia, B,,--servomotor friction,
Bb=bearing friction, Bj=fixture friction, B8 =arch friction and, Tj=external load. Assum-
ing no load, T = 0, equation (1) can be written in the Laplace domain as

Tm() = (Jqs2 + Beqs)e(s) (2)

11-101

From the electrical circuit of a servomotor the total voltage drops in the armature circuit
are equal to the input voltage

v,(t) = L. -t + R.i.(t) + e,,(t) (3)

dt

where the back e.m.f. em.(t) = kw(t). The Laplace transform of equation (3) yields

V.(s) - kesO(s) = (sL. + R.)1.(s) (4)

the torque produced by the servomotor is proportional to the armature current T(t) =
kii.(t). In the Laplace domain

Zi(S) = kMI(s) (5)

equating equations (2) and (5) gives

(s) (JqS2 + Beq$)AS) (6)

if +

Link

Fig. 3. Inertia and Frictions Fig. 4. Complete Setup of HL
of HL Joint Joint with Controllers

substituting 4(s) from (6) in equation (4) and simplifying the expression gives a dynamic
model of the IiL mechanism relating the Laplace transform of the output B(s) to theLaplace transform of the servomotor input Vs(s)

B(s) __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _
V.(s)'' = [LoJe qs2 + (RaJq + LaBeq)s + (RaBeq + keki)] (7)

The transfer function dynamic model, equation (7), is transformed into an equivalent block
diagram for illustration. Figure 4. shows the dynamic model of the HL joint in the block
diagram format.

3- 102

7= •OOO

II7 FI II"W sowI II

V. A Classical Controller Design

A general controller transfer function G.(s) is added to the HL joint dynamic model
in a cascade compensation form. Three feedback signals are established to provide input
information for the proposed controller. The actual position feedback signal, Oact(t), is
compared with the desired position, represented by a reference input signal ed(t), in order
to generate position error signal e(t). The contribution of the velocity and torque feedback
signals are to supplement the position error signal and generate a total input for the
controller r(t) = e(t) + w(t) + r(t). Figure 4 shows a complete block diagram including the
joint dynamic model, the controller, and the three feedback signals.

Using block diagram reduction techniques Figure 4 was simplified to a single loop feedback
system. The closed-loop system characteristic equation is found to be a third-order equa-
tion. To simplify the controller design procedure, the servomotor armature inductance is
assumed to be small and set equal zero L. = 0. This reduces the characteristic equation
into a second-order equation of the following form

as2 + bs + c =0 (8)

where:
a = RaJe, - KtKiJqGc

b = R.Be(-KtKiBeq + KeKi - K,,Ki)Ga (9)

c = KeKiGc

A desired joint response can be specified by a desired second-order characteristic equation
of the form

n2 Cw s + w.2 =0 (10)

setting equations (8) and (10) equal and comparing term by term to produce the following
two equalities

2(wn = b 2 C (11)
a a

selecting a simple proportional controller Ge(s) = Kp and substituting the terms a, b and
c from (9) in equation (11) yields two expressions for the controller gain

K, (2(wnJ.q - Beq)Ra (12)
(K, - KtBeq - K. + 2(wnKtJeq)Ki

or

na J(13)K =- (K, + w2KtJeq)Ki

equations (12) and (13) must be satisfied simultaneously for successful controller design.

A controller was designed under the following conditions; Ke + K, = K, wn = 2 rad/sec
and, C = 1 for a response with zero overshoot. The controller gain then can be calculated
either from equation (12) or (13). The numerical values of the servomotor parameters and
the feedback gains used in the simulation are as follows: La = OH, Ra = 18 horn, Ki =

11-103

0.Nm/amp, K. = 9.52V/rad/sec, K, = 1.OV/Nm, Kw = 6.385V/rad/sec and, K9 -

2.865V/rad. Substitution of the above numerical values produced a proportional controller
with gain value Kp = 88.967. The closed-loop response of the joint to a unit step input is
computed. Figure 5 shows this response for different values of the controller gains, Kp =
88,84,80 and, 76. This Figure also shows that an acceptable joint response with minmum
overshoot and settling time is obtained for a value of the controller gain K, = 76.0. The
controller respnse with gain K = 76.0 was used to train a neurocontroller.

......" .. , ,-,....

.....

!~ g /S.]oot-]e Repne -i.. Nuootr e-Rsos

to aSte gnut t a Ste 1nput

V. Design of a Neurocontroller

To complete the biological concept of the proposed robot spherical joint a neural
network is trained and used to provide motor control signals necessary for the control of
the joint. Several neural network architectures and training algorithms are considered.
This includes a feedforward neural network with time integration type of neurons and an
on-line training algorithm. This neural network paradigm still under investigation and
the results will be reported in future work. In this study a feedforward neural network
with backpropagation training algorithm is used to build a neurocontroller. The network
consists of one hidden layer with five neurons and sigmoid non-linearity. The network is
of the single-input single-output type of neural nets. The input-output pairs used to train
the neurocontroller are obtained from the input-output pairs of the P-controller driving
the joint in response to a step input.

After training is completed the P-controller (teacher) is replaced by the trained neurocon-
troller and tested on different input signals. Figure 6 shows position response of the joint
controlled by the neurocontroller in response to a step input. Similar result are shown in
Figure 7 in response to a ramp input. Figure 8 shows the control signal produced by the
neurocontroller and that produced by the P-controller. It is clear from Figure 8 that the
neurocontroller is superior to the teacher, P-controller, since the former produces lower

I- 104

level control signal for the same task. This can be looked at as if the neurocontroller work-
ing as an energy saving device or as an optimal controller with energy performance index.
Other teacher controllers, i.e., PD-controller and PI-controller, are also used to train the
neurocontroller. The results of such controllers are not presented here for space limitation
and will be reported in future work.

14 3D

12-

U 101-.

44'
00 30 40 a S W0 20 40 ISW W

Fig. 7. Neurocontroller Responses Fig. 8. Neurocontroller Output
w.r.t a Ramp Input w.r.t. a Ramp Input

VII. Conclusion

A new Human Like robot joint have been suggested and developed. The proposed
robot joint have biological motivation and is capable of producing three degrees of ro-
tational motion. The HL robot joint can be used to design flexible robot wrist and/or
shoulder making robots more flexible and intelligent. Other application of the developed
mechanism is for vision systems providing flexible joint for Camera mount. In active vi-
sion systems this provide vision setup similar to a human eye. More complex biologically
motivated joints are under research investigation.

Acknowledgement

This work is a part of the research activities conducted in the Center for Neural
Engineering (CNE) at Tennessee State University. CNE is supported by the U.S. Navy
Grant No. N00014-92-J-1372. The authors wish to thank them for their support for
pursuing this research.

References

[1] Linkens, D.A. (Editor) "Biological Systems, Modelling and Control," IEE Control
Engineering Series 11, Peter Peregrinus Ltd., New York, 1979.

[2] Taylor, C.L., and Schwartz, R.J. "The Anatomy and Mechanics of the Human Hand,"
Artificial Limb, Vol. 2, No. 2, pp. 22, 1956.

11-105

Neuro-controller via simultaneous perturbation

Yutaka Maeda and Yakichi Kanata
Departmnent of Electrical Engineering, Faculty of Engineering,

Kansai University
3-3-35 Yamate-cho, Suita, Osaka 564 JAPAN

Abstract
This paper proposes a learning rule for a neuro-controller that controls an
unknown plant. When we apply a direct control scheme by a neural network,
the neural network must learn an inverse system of the unknown plant.
Therefore, using a kind of gradient method as a learning rule of the neural
network, we must know the sensitivity function of the plant. On the other
hand, the learning rule described here does not require information about the
sensitivity function. Some numerical simulations for a static plant and a
dynamic plant are shown.

1. Introduction

Recently, neural networks (NNs) are well studied and widely used in many field. Also in the field
of the control problem, NNs are used as a controller, an identifier or an adjuster that gives some
parameters in a conventional controller[l]. Usually, it is very difficult to treat a nonlinear objective
in the control theory. However, NNs can handle a nonlinear problem. From this point of view, NNs
are promising in the control problem.

There are many schemes to utilize NNs in the control problem. Figure 1 shows a basic
arrangement of a neuro-controller (NC). In this arrangement, NC must learn an inverse system of
an unknown plant. After the learning process, NC controls an input of the plant directly. This
configuration is very simple. However, it is relatively difficult to construct a learning rule of NC
without information about the plant

yd _ Neuro- y- +ln --(--

Yd Pln)<cwntrollerf
Yd

Figure 1 A basic scheme for a neuro-controller.

1-106

For convenience, In this chapter, we discuss a case that an input of the plant U and an output of

the plant y are both scalar and a characteristic of the plant Y = f(u) is static. Moreover,

W=(w-. w"), denotes a weights vector of the NN with n weights. Superscript T is transpose of

a vector.

Ordinarily, an error function J(w) is defixd by an error between the output of the plant and the
desired output for the plant in the arrangement shown in Figure 1. By means of an adjustment of the
weights in the NN, the NN must produce an input of the plant that decreases the error. When me

use usual gradient method as a learning rule of the NN, we must know the quantity

Define an error function as follows;

J(w) = Iy- Y (I)
2

where, Yd denotes the desired output of the plant. Then, we have

dl(w) = a(w) dy A~

d W 0y dU 07W(2)==(Y-Yd) df (u) u(2

7u 7w

(y - Yd) is known. Moreover, we can calculate au/e7w by using so-called back-propagation.

However, if we don't know the sensitivity function or, at least, the sign of the sensitivity function of

the plant, we can not obtain the quantity d f(w)/ou or the sign of this quantity. Therefore, it is

difficult to use gradient type of learning rule in this arrangement. This is one of difficulties to make
use of this arrangement.

Replacing this plant by a NN that learned the characteristic of the plant makes us possible to
obtain af(w)/au [I]. On the other hand, we introduce an idea of the difference approximation. In

this case, there is no need to know the sensitivity function of the unknown plant.

The difference approximation is a well-known approach to obtain a derivative of a function. We
can utilize this kind of technique to our problem.

We add a small perturbation C to the i -th weight, that is, we define w' as follows;

Wi =(Wl,...,W +C'...Wn) T (3)

Since U, which is the output of the NN, is a function of the weight vector, we obtain

f u(wi)) - fAU)
(4)

By using Eq.(4), we can apply the gradient method to our scheme.

Similarly, we can employ the difference approximation to obtain dJ(w) dw overall. That is, by

using the following quantity,

ei(w) J(w')- J(w)
&IV - (5)

U- 107

We can update the weights of the NN.

Moreover, it is relatively easy to implement this learning rule. M. Jabri, B. Flower and authors
fabricated an analog NN circuit with learning ability using the learning rule, independently[2],[3].

This simple idea described above needs much more forward operations of the NN. That is, we
must know J(w') for all i = 1, .. ,n. Therefore, we can not expect parallel operation of modifying
the weights.

The next chapter presents the details of the learning rule using simultaneous perturbation that is
an advanced version of the one using simple difference approximation.

2. Learning rule via simultaneous perturbation

First of all, we define the following perturbation vector C, that gives small disturbance to all

weighL
C$ = (C,,--.,c) (

'C' (6)

where, subscript t denotes iteration.

The perturbation vector c, has the following properties.

[All C, is a uniform random number in an interval [-C,,,m,, C.] except an interval [-C., Cmin]. c'
is the i-th element of the vector C,.

[A21 E(c,) = 0.

A3 E(cic:) ={0 if i j

[-2 if i =j

We consider the following learning rule.
W, = W,- arAw, (7)

Where, a coefficient ais a positive number that adjusts the magnitude of revision. Moreover, the i-
th component of the vector AW, is defined as follows;

Awi J(w, + c) - J(w,)i (8)
C"

Let's consider the quantity described in Eq.(8). Expanding J(w, + c,) in Eq.(8) at w,, there exists
Ws such that

AW~ J(W,+C,)-J(w,) =cr aJ(w) + 1 T ,92J(w51)4C t w 2c' 9W2 (9)

Taking expectation of the above equation, from the assumptions [AlJ-[A3] of properties of the
perturbation, we have

E(Aw') + }Cj(1

-108

This means that if the perturbation c, is sufficiently small, then the right side of Eq.(8) is nearly

equal to the derivative of the error function dJ(w,)/w'w in the sense of the expected value,

because the second term of the right hand side of Eq.(10) is small. Therefore, the learning rule (7)
and (8) is a type of stochastic gradient method.

In this learning rule, magnitudes of the perturbation corresponding to all weights are different
each other and vary with respect to time t.

As same as the learning rule using the simple difference approximation, this type of learning rules
is easy to implemenL Author pointed out superiority of these kinds of learning rules for a hardware
implementation and fabricated an analog NN circuit using this kind of the learning nle[41.
KHlrotsu and M.A.Brooke also proposed a similar learning rule and fabricated a NN circuit with
their learning rule(51. From similar point of view, O.Fujita also proposed exhaustive learning rules
and insisted on the feasibility of those learning rules[6].

3. Simulation results

In this chapter, we examine effectiveness of the learning rule by using the arrangement shown in

Fig. 1. A characteristic of each neuron is the usual sigmoid function 1 / 1 + e-.

First, we handle a simple static system with a characteristic;

f(u) = sinu (11)

Three layered feedforward NN (1-5-I) is used. The NN learns the inverse of sin u in an interval
(% X). The number of learning points is ten. The learning points locate on (3 .') uniformly. An

error function J(w) is defined as follows;

10

.5 i=I

0.3

0.2
00

0.1
0

0 2000 4000 6000 0 10000 12000 14000 16000 18000 20000

Figure 2 A simulation for a static plant.

11-109

J(W) (Yi -Yi)' (12)

Where, i denotes a learning point, Yd represents a desired value corresponding to YE. We
assume that 07f(ul/du is completely unknown. In this interval (% xr), f(u)/ du is negative.
Though the learning rate ais positive, we can gutvantee the convergence of the learning rule (7)
and (8).

Modifications of all weights were performed after a presentation of each learning point. Figure 2
shows simulation results for the learning rule (7), (8). Where, The learning coefficient a'is 0.01.
C,,,, which is a maximum value of the absolute value of the perturbation, is 0.01. c,,, which is a

minimum value of the absolute value of the perturbation is 0.001. These coefficients we
determined empirically.

It seemed very difficult to decide an optimal C, and c.. theoretically. However, we know that
too large perturbation teaches a wrong direction when the weights are updated. This causes that the
trial will never converge. At the same time, controlling the magnitude of the perturbation properly,
we have a good chance to escape from a so-called local minimum. We need much consideration and

analysis about these.

The weights of the NN are randomly initialized in an interval [-10 101. Fig. 2 shows that the
error decreases as iteration increases.

Next, we consider the following dynamic plant characteristic with a non-linear term.

1= -0 5y- 2 -0. Y- 2 + U.- +0.4u,- 2 (13)

Where, we use a recurrent NN shown in Figure 3. Middle layer has five neurons. Output [0 1] of
the NN is linearly converted to [-2.5 2.5]. The error function is defined as follows;

40

J(w)= Yi -yid) 2

That is, the error function is the sum of the squared error between a practical output and a desired
output of the plant for
every one cycle. One Input Outputof
cycle consists of 40 9 NN
iterations. 0

We deal with a
tracking problem. The
desired output of the
plant is sinusoidal wave
shown in Figure 4 (open
circles). Every one Figure 3 A recurrent neural network
cycle, modifications of
the weights were performed. Output [0 1] of the NN is also linearly converted to [-2.5 2.5]. The
initial weights are randomly determined in an interval [-1 1]. The learning rate a is 0.002.
Moreover, c. = 0.05, cn, =0.01.

Triangles in FigA4 show practical outputs of the above dynamic plant after 50 learning of NC.

11-110

1 5 Output

0.5 Ao 40
a A 0

06 60 00 h 0
0 0

0

Time

Figure 4 An output of a dynamic plant controlled by NC.

4. Conclusion

In this paper, we described the learning rule for NC. By using the learning rule, we can easily
apply the direct control scheme. At the same time, we clarified that the learning rule using
simultaneous perturbation is applicable not only to usual feed forward NN but also to recurrent NN.
Moreover, the learning rule is relatively easy to implement. From these points of view, the learning
rule described here is promising.

References

[Iledited by W.Thomas Miller,Ill, R.S.Sutton and P.J.Werbos, "Neural Networks for Control", The
MIT Press, 1990.

[21M.Jabri and B.Flower, "Weighit perturbation: An optimal architecture and learning technique for
analog VLSI feedforward and recurrent multilayer networks", IEEE Trans. Neural Networks,
vol. 3, pp. 154-157, 1992.

[3JY.Maeda, H.Yamashita and Y.Kanata, "Learning rules for mulLtlayer neural networks using a
difference approximation", in Proc. IJCNN, Singapore, Nov., vol. 1, pp.628-632, 1991.

[41Y.Maeda, H.Hirano and Y.Kanata, "An analog neural network circuit with a learning rule via
simultaneous perturbation", in Proc. IJCNN, Nagoya, Oct., vol. 1, pp.853-856, 1993.

15]KCHirotsu and MkBrooke, "An analog neural network chip with random weight change
earning algorithm", in Proc. LJCNN, Nagoya, Oct., vol.3, pp. 3031-3034, 1993.

[610.Fujita, "Trial-and-error correlation learning", IEEE Trans. Neural Networks, vol 4, pp.720-
722, 1993.

o 11-o11

Control with Neural Networks Using Minimum Information

A. Navia*, F. Panetsos*, J.M. Zaldfvar**

*Laboratorio de Inteligencia Artificial
Universidad Carlos III de Madrid

Avda Mediterrdneo 20. 28913 Legands. Madrid (Spain)
navia@inf.uc3m.es

**Joint Research Center of the Comission of the European Communities
Institute for Safety Engineering Division

21020 Ispra (Italy)

Abstract
A neural network implementation is proposed, such a network uses the least information possible,

and is able to learn on-line, adapting its weights in a continuous way using reinforcement learning. At the
beginning, the network behaves as a reflex conditioned system, after being vaguely initialized, yielding a
rough control signal very similar to bang-bang controllers, but as learning progresses, the response is
gradually smoothed. A similar process can be observed in animal behaviour during learning. As an
application, the network is used to control a chemical batch reactor. This kind of reactors are difficult to
control: they are highly non-linear, they have time varying parameters and no stable state, and the kind of
chemical processes and operating conditions change very often.

1.- LEARNING AND EXPERIENCE.
A first approach to human or animal skill learning is that the relation between the mind and the body

(thinking and action) is not simply fixed but can be fundamentally changed. At the beginning of the development
of a skill, the desired objective is known (goal) but the actions to perform are usually unknown (control signals).
As the learning subject interacts with the environment, the connection between intention and act becomes more
intense, until the action is correctly performed [16]. Usually, the skill to perform a task is rapidly developed but
the quality of the performance is not so good.

Sensory-motor organization in animal subjects relies on the interaction and integration of different sensorial
systems. This interaction process can be observed during the learning of voluntary motor gestures. It is also
known that reflex responses can be modified by simultaneous activation of other sensorial systems. Depending
on the sensorial pathways and the nature of the response (voluntary or reflex), different mechanisms are activated
with diverse effects upon the motor response. Motor cortex and cerebellum play an important role in this process,
being the latter the most important part in motor coordination. Some kind of hierarchical structure is needed to
coordinate all the sensorial pathways. The function of the highest hierarchical levels can be resumed as follows:
they join the different sensorial paths in order to select the objectives and make high level decisions. The higher
the level is, the less straightforward the relations between stimuli and responses become [6][13].

On the other hand, the spinal reflex lies at the lowest level in the sensor-motor hierarchy. This kind of reflex
response makes it possible to produce automatic, fast and simple actions. Such reflex stimulus, nevertheless, is
submitted to the control of higher levels, which modify the responses, adapting them in a suitable way to a
changing experiential environment or new stimuli.

2.- CONTROL OF NON-LINEAR SYSTEMS.
Several approaches to control are possible within the artificial techniques approach. A possible

subdivision can be carried out, yielding two main areas: symbolic techniques (expert systems) and sub-
symbolic techniques (artificial neural networks, ANN's for short). Here we are facing a problem which has no
available explicit formulation or this one is too difficult to obtain. Therefore, the latter are best suited to deal
with systems of unknown but observable behaviour, and the former can be used in high-level knowledge
systems.

When a sufficiently accurate model of the process is available and can be approximated by a linear time-
invariant model, one of the conventional control algorithms, like a tuned PID controller, will be able to control
the process in a suitable way. In any case, the rational way to deal with nonlinearities is to develop a design
theory that takes them into account, using optimal control theory. However, such a design is quite complicated
and the resuling control law is complex as well. As mentioned above, artificial neural networks (ANN's) used
in a real-time control environment usually yield good results and are specially adequate for hard-to-control

H112

systems exhibiting delayed responses and nonlinearities. Nevertheless, great benefits can be obtained from the
combination of ANN's and classical contol systems. For instance, we can use a knowledge-based supervisory
system to monitor the ANN's controllers during operation [8].

Many approaches have been made to control, using ANN's, but in fact, some topics must be taken into
account regardless of the neural model chosen. Usually the actions required to achieve a control objective are
unknown, this is, it is not possible to define a gradient function a priori. Instead a gradient surface has to be built
interactively. Besides, the goodness of an action can not be determined instantaneously in many cases. This topic
has been exhaustively studied in the literature and deals with the temporal correlation between control actions
performed at certain instant of time and the results observed later. This delayed behaviour can be experienced in
many physical systems and of course, in chemistry. Another main drawback of these methods is that important
properties such as stability, convergence and robustness cannot usually be mathematically proved and we have to
trust experimental data. A general trade-off between generality and specificity is still present: ANN's are ill-
conditioned when considered as a black-box solution to ay problem, instead, specific architectures are needed to
achieve a better performance quality.

3.- DESCRIPTION OF THE NEURAL MODEL USED.
The question proposed in this work relates to the minimum amount of information needed to control such

non-linear processes in a suitable manner. As proposed in recent studies 17], there are certain non-linear systems
that can be easily controlled using linear discriminators and bang-bang control. The main drawback is that this
kind of control produces a signal which is highly discontinuous, usually oscillatory between two or more levels.
This may not represent an obstacle for problems like the well known inverted pendulum on the cart, but it is
impractical for industrial processes in general.

If we try to use as least information as possible we have to deal with two classic topics in control theory:
controllability and observability. The former relates to the feasibility of being able to modify the state of our
system with the control signals being used. A system is wide sense controllable if it is possible to force every
state to an arbitrary target state in a finite number of steps. Nevertheless, this is a sufficient condition but not
necessary at all because neither all states are visited during normal functioning nor every state has to be
reachable. Only several regions in the state space will be of importance for specific control purposes. A process
is observable if every variation in the system state can be detected using the variables under observation. This
way, a controller might be able to perform well without knowledge of several state variables. In most practical
situations, in fact, not all the state variables are available nor can be easily obtained.

F r Con editioned t t

.! ReflexN 'etwork 1

Respons Creit
Smoothing Assignment

NetworkNewr

Figure 1: Neural Controller Structure.

The functioning of the proposed system is closely related to animal behaviour, as mentioned above. At the
beginning of learning the actions performed to control an unstable system are abrupt and imprecise, usually
approaching a bang-bang control. As learning progresses, the responses are gradually smoothed because the
system learns to take into account high level interactions and future predictions. It is widely known that
continuous force controllers are more robust and more precise than bang-bang controllers, nevertheless, the latter
are easier to find as stated in several works. So the scheme proposed seems to be a natural evolution for the
controller to achieve a valid configuration

The conditioned reflex network is initialized using data extracted from experimentation, and performs on its
own a sort of bang-baig control, such control signalling is not acceptable for real-world chemical processes
because the resulting power transitions are highly abrupt and very often such power excursions are impossible to

II-113

achieve. Nevertheless, it is valuable because-it is able to place the reactor in states close to the desired ones,
while providing the necessary variability to learn from experience (due to the noisy behaviour). This way, the
network can be initially trained on-line using any existent process simulator, even an imprecise one would serve,
because the final training will be carried out using a real process.

Safety super-visor
SElectrical qh eco

Tsp Neural qn Power -1 hae 2 r
TsP controller 7! splitter erCo-ntrolheatervaevet Tm

Figure 2: General diagram.

The general framework used for the smoothing network is the well-known topic of reinforcement learning
networks dealing with delay between action and reaction [1][2][9][12][15]. It addresses the problem of
improving performance as evaluated by any measure which values can be supplied to the learning system. This
way, the system is not taught with the correct actions, instead, it is told whether or not an action is valuable for
the desired purpose. These methods are mainly used because such information is usually unavailable, otherwise a
supervised method would be more useful and faster to train. The objective is to map the state of the process into
control actions which have to be learnt through experience. Many descriptions of reinforcement learning and
delayed critic exist in the l.iterature[l][2][10][12][16], so it will commented no longer. The only difference is
that the reinforcement signal used is not only of failure as in the cart-pole problem, but it indicates how the
controller is performing, using an empirical criterium based on the measured variables and its first derivative. As
mentioned previously, only the input and output data are involved in training the ANN, none of the information
about the model is used.

4.- A REVIEW OF CHEMICAL BATCH REACTORS.
The complexity of chemical plants and the diversity of products have been increased due to the rapid

development of Chemical Industry during the past decades. More complexity involves a higher risk of accident
and also the need for better controlling systems. A poorly controlled reaction may lead to a decrease in final
product quality and eventually to a hazardous situation in the reactor, with possible human losses, material
damages and environmental impact, in case of accident [3).

From the point of view of chemical engineering, the batch and semibatch operation modes have become
very popular due to their versatility and the good quality of the resulting products. Batch processing allows to
produce small amounts of special chemicals, and rapidly alternate from one process to another . The main
drawback is that batch reactors are very complex, with time-varying parameters and strongly non-linear
dynamics and so they are more frequently involved in accidents than continuous process plants (CSTR).
Continuous corrections and tuning are needed to keep the reaction under control, because batch reactions have
no stable state. In order to optimize such processes, we must take into account both performance and safety
although the former has more to do with this work, as a safety monitoring system exists.

The above mentioned discontinuous operating modes (batch and semibatch) are only slightly different. In
the former case, the reactor is charged with all the reagents, solvents and catalysts and the control is performed
through a heat exchanging process in the cooling-heating circuit while in the latter only a part of those products
are fed at the beginning, the rest being provided through a feeding circuit. The semibatch operation is intended
for strongly exothermic reactions in which it is not feasible to control the reaction temperature with the heating-
cooling circuit alone and the feeding rates have to be controlled as well. Only batch performing is analyzed here.

At the beginning of a typical batch reaction some heat has to be supplied (except in strong exothermic
reactions) in order to raise the temperature to a desired value (set point temperature, Tsp) so the reaction can
start. When this point is reached, cooling is applied to keep the temperature close to the set point. Towards the

11-114

end, again aditional heating may be necessary for the reaction to be completed. The power splitting mechanism
uses an empirical law to choose between both actuators, but it is not of crucial importance.

A simulator was developed, which is based on the Mettler reaction calorimeter RCI (which is a computer
controlled batch reactor able to carry out isothermal, adiabatic, isoperibolic and temperature programmed
experiments) as test bed for small scale reactions (up to 2 litres) [181. This simulator was used as a "black box"
and not as a mathematical model to extract analytical data from, since when the controller is working on real
time with a physical reactor, very few parameters will be available (usually only the temperatures Tin, Tc, Te
and Tsp). The RCI simulator was endowed with a control module which treats the process as if it were linear
and applies a PID-like algorithm. The heat flow (qremoved) is proportional to the driving force, i.e. the
temperature difference between the reactor and the jacket (Tm-Te), being the term US the effective heat transfer
coefficient:

qremoved7US.(Tm-Te) (1)

The base expression is as follows, where e(t) is the time varying error:

e(t) = tTm-Tsp,Te-Tsp, u(t = K + I ed(dt + e(t) (2)

The criteria generally used for early-detection of hazardous states are:

d2Tm > 0 and 4Tm-Te) > 0 (3)

d2 (I

The final results of the neural controller will be compared with that of this PID-like controller.

5- SIMULATION RESULTS
Figure 3 shows the temperature profiles corresponding to PID and neural controller before training. PID

control produces very smoothed signals although it exhibits the characteristic offset of this kind of controllers.
On the other hand, the neural controller provides a higher accurate following of the path Tm-Tsp=O but due to the
initial behaviour as a bang-bang controller, strong variations can be observed in the Te-Tsp curve. In the case of
the batch chemical reactor, only temperature and power measures are available, being also of importance such
parameters as reacting mass pressure or reagent concentrations. Much effort has been dedicated to design a
network with minimum information requirements, but although control is possible with only information about
Tm-Tsp, another variable Te has been added to improve performance. In figure 4 the above mentioned
behaviour is evident observing the curve of applied power. Although such power profile may not be suitable in a
real case, it helps during training.

Tm-Tsp (FIDura

-- -* ----- ----

.- -

T-...- ----

..... r ".

- -
- - ~Tsp (Neural)I ____

0 0 000 ZOS 400 9800 0 1000 W~0 3"DO

Figure 3: Temperature profiles before learning. Figure 4 Power applied before learning.

11-115

i ~s (f ID)i

. ..QZ 4 - ,.......---"...

-- -_ _ --------

a -

-- ,- --.-...-r-...-................-....... ~~~~ ~~~~~~~ ~ ~ ~~~......--..

-- ~~--- ---------.- --- t
• --F -..

T -P rr

0 00 w100 3400 8a0 0 1000 MM 3EM

Figure 5: Temperature profiles after learning. Figure 6: Power applied after learning.

Figure 5 is the counterpart of figure 3 but after learning. The smoothing network has learnt to supervise the
reflex network and the resulting power profile (Figure 6) is therefore suitable for a real process. The learning
profile is very similar in shape to many other reported in previous researches, but due to the discontinuous nature
of these chemical reactions, another measure of performance was used instead of "time to failure". Another result
to comment is that an attractor-like pattern can be observed in the states space, very similar to many others
obtained when controlling the pole on the cart. This can be regarded as a reminder of the highly unstable nature
of the problem, such that only closed loops in the state space, which can also be observed in the cart-pole
problem, are the only valid solution for the system to be indefinitely kept under control. The afore mentioned
high unstability can also be observed in figure 8, the control was disabled after iteration number 750, and the
temperature grows exponentially, showing the strong exothermic nature of the reactions under study (note the
modification of the temperature scale).

a-a

Vo

' 4'

V!

TT---TTp

0 g00 to"0 3400 s800 7-0.3 -0.1 0.0 0.1 0.3
Ta-Top

Figure 7: Intentioned exothermic runaway. Figure 8: Trajectories in state space.

6.- CONCLUSIONS AND FURTHER RESEARCH.
The work presented so far should be regarded as a first step towards a multilevel control network able to

deal with different types of reactions while producing a well behaved control signal able to control a real
chemical reactor. The analogy between animal skill learning and the proposed scheme gives us much intuition
about how to construct such hierarchical control structure. As more variables are taken into account, some kind
of reduction in the representation of the state space must be done in order to keep the system between practical
limits, while more abilities are added to the controlling system.

1- 116

7.- REFERENCES.

[1] Barnard, E. Temporal-Difference Methods and Markov Models. IEEE Transactions on Systems, Man
and Cybernetics, Voi23, n"2, March/April, 1993.

[2] Barto, A. Sutton, R., Anderson, C. : Neuronlike Adaptive Elements that Can Solve Difficult Learning
Control Problems. IEEE Transactions on Systems Man and Cybernetics. SMC-13,5, 834-846, 1983.

[3) Benuzzi, A. and Zaldfvar,. J. M. editors. Safety of Chemical Batch Reactors and Storage Tanks.
Kluwer Academic Publishers for the Commission of the European Communities. 1991.

[4] Bingulac, S., VanLandingham, H. F. Algorithms for Computer-Aided Design of Multivariable Control
Systems. Marcel Dekker, Inc. 1993.

[5] Chapman, D. Kaelbling, L. P., Input Generalization in Delayed Reinforcement Learning: An Algorithm
And Performance Comparisons.

(61 Eccles, J. Evolution of the Brain: Creation of the Self. Routledge London and New York. 1989.

[7) Geva, S., Sitte, J. A Cartpole Experiment Benchmark for Trainable Controllers.

[8] Gullapalli, V. Barto, A. G. Shaping as a Method for accelerating reinforcement learning. Proceedings
of the 1992 IEEE International Symposium on Intelligent Control. Glasgow 1992.

[91 Handelman, D., A., Lane, S. H., Gelfand, J. J., Integrating Neural Networks and Knowledge-Based
Systems for Intelligent Robot Control. IEEE Control Systems Magazine, April 1990.

[10] Hoskins, J. C., Himmelblau, D. M., Process Control via Artificial Neural Networks and Reinforcement
Learning. Computers & Chemical Engineering. Vol 16, April 1992.

[I] Panetsos F., and Zaldfvar J.M.: Batch Chemical Reactors Control and Malfunction Diagnosis Using
Neural Networks. Fourth World Congress of Chemical Engineering. Strategies 2000.
Karlsruhe/Germany, 16-21 June 1991. 12.1-2 Schon and Wetzel.

[12] Miller, Sutton, and Werbos, editors. Neural Networks for Control. The MIT Press, 1991.

[13] Myers, C. Reinforcement Learning When Results are Delayed and Interleaved in Time. INNC Paris,
July 1990.

[14] Schmid, R. Metodi di Analisi dei Sistemi Neurosensoriali. CNR - Gruppo Nazionale di Bioingegneria.
Patron Editore, 1986.

[15] Stephanopoulos, G. Chemical Process Control. PTR Prentice Hall. 1984.

[16] Sutton, R. S. , Learning to Predict by the Methods of Temporal Differences. Machine Learning 3,
Kluwer Academic Publishers, 1988.

[17] Varela, F. J., Thompson, E., and Rosch, E.The Embodied Mind: Cognitive Science and Human
Experience.. MIT Press, 1991.

[18] Zaldfvar, J.M., HernAndez, H. and Barcons, C. Development of a Mathematical Model and Numerical
Simulator for a Reaction Calorimeter: FISIM, RC1 version, Tech. Note nO. I. 90.109, Joint Research
Centre, Commission of the European Communities, Ispra, Italy, 1990.

11-117

Rapid Reinforcement Learning for
Reactive Control Policy Design in Autonomous Robots

Andrew I-L Fagg* David Lotspeich # Joel Hoff' George A. Bekey*
AS. as me"c.du ui M octdu baouWAdmwedv b. ubaI€mcedu

Center for Neural Enghirg
TDPqztner of Computer Sduce and *De ptnent of hidiatrial Systez Ersmien

Her" Salvatorl Buil #300
University of Southern lIe mia

Los Anelw California 90069-OM
Abstract

This paper describes work in progress on a neural-based reinforcement learning architecture for the
design of reactive control policies for an autonomous robot. Reinforcement learning techniques allow a
programmer to spca) y the control program at the level of the desired behavior of the robot, rather
than at the level of the program that generates the behavior. In this paper, we explicitly begin to
address the issue of state representation which can greatly affect the system's ability to learn quickly
and to apply what has already been learned to novel situations. Finally, we demonstrate the
architecture as applied towards a real robot that is learning to move safely about its environment.
Introduction

Traditional methods of constructing intelligent robotic systems, employing artificial intelligence-
based techniques, have met great difficulties in application to real-world problems. Such systems
have often required a tremendous amount of computational power in order to make control decisions, and
thus have sacrificed the ability to make decisions in real time. In addition, these systems must make
many assumptions about the information that is supplied by the sensory processing subcomponents or
about the results of actions that are taken. When these assumptions become invalid (which is
typically the case when presented with a dynamic environment), these systems become brittle, and
ultimately are unable to reliably accomplish their mission.

Reactive or behavior-based control systems have been offered as alternative methods to these more
traditional techniques of designing robotic control systems (Arbib, 1989, Arkin, 1990;, Bekey & Tomovic,
1986; Brooks, 1986; Brooks, 1991). These approaches embody two key principles. First of all, the control
problem is decomposed into a set of simple computing modules, each of which may be designed and
implemented separately. Secondly, each module only extracts the information that it needs in order to
make a reasonable decision. This approach contrasts significantly with traditional Al approaches, in
which the sensing system is used to update a global world model, from which decisions are then made.

However, despite some of the recently reported successes of reactive or behavior-based approaches,
hiding behind most successes is a graduate student who spends many hours carefully designing, testing,
and redesigning the set of control modules, until the desired behavior is achieved (exceptions to this
include (Maes & Brooks, 1990; Mahadevan & Connell, 1992)). One reason that this process is so
laborious is that it is typically very difficult for a programmer to put herself in the shoes of the robot,
and truly understand the information that is being provided by the (often imperfect) sensing
subcomponents, as well as understand the range of possible outcomes of actions taken by the robot. In
addition, when a robot is picked up and placed into a new environment, there is no guarantee that the
control program will continue to function as desired (Verschure & Kr6se, 1992).

One possible approach to these difficulties is the application of a reinforcement-based learning
technique (Barto & Bradtke, 1991; Barto, Sutton, & Anderson, 1983; Samuel, 1%7; Sutton, 1988; Watkins
& Dayan, 1992; Williams, 1987). Here, the programmer (or teacher) provides the robot with only an
evaluation of its behavior. In our case, this evaluation is a scalar score that is potentially (but not
necessarily) given for each control decision that is made by the controller. We refer to the manner in
which the reinforcement information is computed as the reinforcement policy. Based upon this abstract
representation of the desired behavior, the task of the learning system is to infer a reactive control
strategy that satisfies the reinforcement policy provided by the teacher.

However, many reinforcement learning techniques suffer from the amount of time required to learn
an effective control strategy. This difficulty is due in part to the manner in which states are

II- 118

represented in these systems. Purely localist representations (Barto & Bradtke, 1991; Barto, et al.,
1983; Watkins & Dayan, 1992) store the relevant information for each possible state that the system
might encounter. Such an approach suffers because it scales poorly with an increasing number of state
variables. In addition, neighboring states are not able to share information with one-another, requiring
that the system visit all states during the learning process in order to ensure an optimal control policy.

On the other end of the spectrum are the completely distributed representations, such as
backpropagation-based techniques (Williams, 1987), where every (hidden) unit participates to some
degree in each learned mapping. Although such approaches allow for generalization between states,
the very same mechanism that gives us this feature also causes a significant amount of interference
between dissimilar states. The result is a rapid slow-down in learning as the state space becomes larger
or more complicated. In this work, we seek a state representation that sits somewhere between these
two extremes - that allows us to capture some degree of generalization, but is still localist enough such
that learning in different regions of the state space will not interfere with one-another.

In the remainder of this paper, we first present a specific neural architecture for the representation
of reactive control programs. We next show how this model can be updated in light of reinforcement-
based information from a teacher, and how a module that predicts future reinforcement can be used to
solve the temporal credit assignment problem. Finally, we illustrate the behavior of the architecture
when it is presented with several tasks to be learned.

Problem Description
The Robot

The robotic system used in these experiments is an adapted radio-controlled car. The vehicle is
equipped with two tactile bumpers that are mounted on the Front and the Rear of the vehicle. In
addition, there are five sonar sensors which are oriented in different directions: Left, Forward, Right,
Up (forwards), and Rear.

The Task
The world in which the robot is situated is a standard laboratory environment, with a large

variety of obstacles, some of which (such as chair and table legs) are rather difficult to detect,
especially with a moving sonar platform. In work to date, we have experimented with three different
tasks that the robot is to learn:

1. Avoid collision with obstacles.
2. Environmental exploration.
3. Wall following.

For each different task, the teacher chooses an appropriate reinforcement policy. For example, one
possible reinforcement policy for task 1 is to punish the robot when it collides with an obstacle
(reinforcement = -1), and otherwise no information is given (reinforcement = 0). From this sparse
information, the learning control system must learn a control policy that reliably keeps the robot from
receiving the negative reinforcement.

Network Model
The general network architecture is depicted in Figure 1, and has evolved from our work on

modeling of primate visual/motor conditional learning (Fagg & Arbib, 1992). The goal of the network
is to map current sensory inputs into appropriate actions. Inputs from five sonar units, and two bumpers
(I) activate a particular pattern activity across the feature detector units (F). The feature detector
units then interact with one-another to contrast-enhance the activity pattern across the vector of
feature detectors (G). The feature detector units that continue to be active vote for a favored set of
actions at the action-selection layer (A). The votes from the set of active feature detector units are
gathered together at each action through a summation operation. The one action with the highest
activity is chosen to be executed for the current time-step, after which the process is repeated. The six
possible actions are movements in the following directions: Left Forward, Straight Forward, Right
Forward, Left Reverse, Straight Reverse, and Right Reverse.

In the interest of computational efficiency, the unit dynamics are implemented as a one-pass
system. The sensory vector (1) contains one neuron for each bumper sensor (active if touching something),
and three neurons each for the sonar inputs (corresponding to Near, Mid, and Far sonar ranges). The
mapping from sensors (I) to feature detector units (F) is implemented as a simple matrix-vector

H-119

operation:-

where b-ei\. i
I and F are vectors representing the input e G wla.T.k... l

unit activities and the feature detector .
inputs. w.

Wls a weight matrix (initially random) that A_

maps from I to F.
Noie is a vector of random sigitals that are

Injected into the feature detector units. o tFigure 1. The general network a'ddtacture 'Me sensor
The contrast enhancement function at the feature input ctivate a set of feature detector units. Thse

detector layer is implemented by a local winner-take- reain after the local Winner-Take-All competition
all operation. Unlike the standard winner-take-all instantiate votes for one of six actions (LF - left forward,

SF ; straight forward,..., RR = right reverse). The onealgorithm, a particular unit only has an effect over a with the highest number of votes is output for
small neighborhood of the feature detector field. In execution.
fact, the interaction between the units is best described
as a mexican-hat connectivity, with near neighbors supporting the activity of one-another, and
neighbors that are further out inhibiting each other.

The interaction amongst the feature-detector units is implemented according to the rule:
l if Fi - Mar X F,}

Wu 0eothe{rwifse

where:
N defines a local neighborhood of feature detectors.

The output activity values (G) are then computed in two steps:
1. Gi = Winneri * Fi
2. If Winner = 0 and i is a dose neighbor of a winner (call it unit j), then:

Gi = Max(Fi, "Fj) where 0 < y < 1
The Winner vector determines the location of the peaks of activity within the feature detector

layer (as implemented by equation 1). Close neighbors of the winning feature detectors are also
activated to some degree (equation 2). Close neighbor is smaller than the neighborhood size (N), used
to compute the Winner vector.

The contrast-enhancement operation serves a vital role in the assignment of credit during the
learning process. Through its application, it is guaranteed that only a small number of units in the
feature detector layer actually become active at any one time (and thus instantiate their votes at the
action selection layer). This is important because when reinforcement information becomes available,
identifying those feature detector units that are at fault (so that learning can occur) is a much more
precise computation. This will be elaborated further in the Discussion section.

The votes are then collected by the action selection units:
A - W *G + Noise!

The action that is output is action i such that:

Once the selected action is executed, a new set of sensory inputs is presented to the network and the
process of selecting a new action is repeated.
Network Learing

In parallel to the execution process described above, the learning system makes updates to the
weight matrices W and W' based on the reinforcement information (R) that is received from the
teacher. The sign of this signal indicates the appropriateness (R > 0) or inappropriateness (R < 0) of
the recent behavior of the robot, and the magnitude of the signal represents the degree of this
(in)appropriateness. Inherent in this definition is the fact that an entire sequence of actions may
contribute to the final reinforcement signal that is provided by the teacher. Thus, the learning
algorithm is faced with propagating current reinforcement information backwards through time in such

H- 120

a way that the recent actions are updated appropriately.
We will first consider the structural credit assignment problem, which states that given some

instantaneous state of the network and a reinforcement signal, R, how is blame assigned to the
Individual weights of W and W.

Suppose that the execution of the last action yielded a positive reinforcement signal from the
teacher. In order to increase the probability of making the same decision the next time the same
situation arises, two things must be done. First of all, we must insure that the same set of features are
recognized (i.e. the same set of feature detector units are turned on). This may be accomplished by
increasing the strengths of the synaptic weights from the currently active input units to the currently
active feature detector units. Secondly, given that the same set of features are recognized, the same
action must be taken. This is captured by increasing the strength of the synaptic weights from the
currently active feature detector units to the selected action.

On the other hand, suppose that a negative reinforcement signal is received from the teacher. The
selection of the incorrect action may be due to one of two cases. First of all, the incorrect set of feature
detector units may have been selected. If this is the case, then the connection strengths from the
currently active input units to the currently active feature detector units should be decreased. The next
time that the same situation arises, the total input to these feature detector units will be weaker,
giving them less of a chance to win the local winner-take-all competition. In the second case, the set of
feature detector units is corrtt, but the selected action is incorrect. For this case, the connection strength
from the active feature detector units to the selected action is decreased, thus reducing its future
probability of being selected. The only difficulty is that the system does not know which of the two
cases are the correct assessment of blame. Therefore, both sets of weights are updated.

The update rule for both the positive and negative reinforcement cases may be expressed by.
AW - a RA j W

where:
a and a' are learning rate constants.

is a vector in which all elements are 0, except for the kth element, where k is the winning
action.

I Gj w.and Gik jk are measures of the participation of specific synapses in the last
decision (synapses between input unit i and feature detector j and feature detector j and
action unit k, respectively).

In order to approach the problem of temporal credit assignment, we make use of the concept of
eligibility, which was first introduced by Klopf (Klopf, 1982) and later used by others, including
(Barto, et al., 1983). The eligibility of a weight is defined as a temporal memory of a synapse's
participation in recent action decisions, and is computed as follows:

+diA

dt -

where
eV and e!jk are the eligibility measures.

-r and Va determine the temporal width of the memory.
Finally, the weight updates become:

AW, -r ctReVj

AWk - a'Re i*
By this definition of eligibility, the assignment of credit or blame for a reinforcement signal is

given with the highest weight to the most recent decision that was made, and exponentially
decreasing weight for decisions that were made further back in time. One key aspect of this definition
of memory is that the number of memory elements does not depend upon the size of the time window

H-121

over which the memories are stored, and only depends upon the number of synapses in the network.
Reinforcement Prediction

Eligibility provides a simple means by which credit can be assigned to a sequence of control
decisions. However, the propagation of reinforcement information is limited to a fixed window of time
defined by the decay of the eligibility memory. It is thus possible that a critical decision occurs outside
of this window, and therefore would not receive any reinforcement information. As a result, the control
network cannot learn to behave properly when an action and the corresponding reinforcement signal are
separated by a length of time that is greater than that of the eligibility memory.

This problem is approached in this work through the method of reinforcement prediction (Sutton,
1988). First of all, suppose that we have a prediction network P(x(t)) that maps the current state of the
system (x(t)) into a measure of the expected future reinforcement (relative to a fixed control policy).
More explicitly.

P(xQ)) -E{~ YX Rr

where:
R(t) is the reinforcement received at time t.
A is the discount factor for future reinforcement.

The function P(x(t)) can be viewed as the goodness of being in state x(t). Now observe that:

P(xQt)) - E{XA'-R(ii}

- E{R(t)+, 7VLyt1R(r)}
-E{RQ) + AP(x(t +.l

And define:
R (t) - R(t) + XP(x(t + 1)) - P(x(t))

R (t) can be interpreted as a measure of the deviation of the actual reinforcement received from
that which was expected by the prediction network (for an individual time-step). In other words, if R'
> 0, then the system performed better in the last time-step than it expected to perform; and when R' <
0, the system performed worse than expected. This measure can be used as an internally-generated
reinforcement signal, that has the potential for delivering more meaningful reinforcement information
at every instant that a decision is made, even when the teacher is providing a very sparse
reinforcement signal.

It is important to note that the function P(x(t)) is also relative to the control policy implemented
by the control network As this control policy adapts through experience, so must this prediction
function. In this work, we make use of the method of Temporal Difference Learning (Sutton, 1988) to
acquire the prediction function. This learning process is performed in parallel with the adaptation of
the control network.

The R' that we compute from the non-stationary control policy has several important properties:
0 The measure rewards incremental improvements in performance. When the controller discovers

an action that leads to a higher level of performance than what was expected, the control network
adjusts itself such that the probability of executing the same action given a similar situation is
increased. This results in an overall improvement in the system's performance. The prediction network
quickly adapts itself such that it expects this new level of performance. At this point, execution of the
same action yields a null internal reinforcement signal, and a positive signal is only received if a new
action further improves the performance.

* The above implies that even when the teacher only provides negative reinforcement as a way
of specifying the desired behavior, the internal reinforcement signal can provide positive
reinforcement information for actions that cause the system to receive less negative reinforcement than
it was receiving earlier.

* More effective propagation of reinforcement information through time. Consider a controller

1-122

that has learned for all points in the set A (Figure 2) the correct sequence
of actions to drive the system to point p, where it receives positive
reinforcement from the teacher. Outside of set A (e.g. point z), however, z
the system does not know how to get reliably to point p, and in these
cases, generates random actions. Once the system has visited the points A Jr%

in set A a number of times, the expected future reinforcement will become
that which is received at point p (with some discount in the number of Figure 2 State space ep.entato,
steps required to reach p). Thus, the internal reinforcement for moving of a controler's actions. For those
from any of these points towards p win effectively be zero. points within set A, the contioller

knows the correct sequence of

For the case of point z, the expected future reinforcement will be actions to drive the system to

small, if not zero, and expected internal reinforcement will also be zero point p. where positive
(because from point z the system will tend to wander aimlessly outside reinforcement is received.

However, outside of set A, the
of the set A). However, there is a some probability that an action system has not yet learned the
chosen at state z will take the system into a point within A - Le. from a correct actions By using R' as the
state with low expected future reinforcement to a state with high reinforcement signal, the system

is able to deliver a large amount of
expected future reinforcement. As a result, the internal reinforcement positive reinforcement to
signal will be high, thus rewarding the action that brought the system network when the boundary is
into A. This is the case even though the actual reinforcement from the crossed from point z to a point inset A. This is the case even
teacher is still several time-steps away. though reinforcement from the

* Prevention of over-learnin& If the external reinforcement signal teacher is still several time-steps
is used to update the control network, weight updates will continue to be away.
made when positive reinforcement is received, even if the network is
already completely committed to the correct action. This can cause problems in terms of unnecessary
interference with learning in other nearby regions of the state space. By using R' as the reinforcement
signal, the system only adjusts its weights as long it is necessary to ensure commitment to the correct
action(s), and then learns no further. Thus, other regions of the state space can be learned more easily,
and more neural hardware can be reserved for learning during later experiences.

The updated network architecture is shown in Figure 3. The prediction network is a linear neural
network, with. the feature detector activity vector (G) serving as the input. The environmental
reinforcement signal (R) is now combined with system's prediction of reinforcement to generate an
internal reinforcement signal (R'). This signal is not only used to update the connections invo!ved in the
action selection process (V and W'), it also serves as an update signal for the prediction network (P).
Experimental Results

In this section, we illustrate the behavior of the system through a series of learning experiments.
At this time, we are especially interested in understanding how the reinforcement policy affects the
learned behavior.

Experiment L Collision Avoidance
Up to this point, the collision avoidance problem has been the primary focus of our

experimentation. Several different reinforcement policies have been explored:
1. Punish running into an obstacle. When this policy is used, the network has a difficult time

determining which action is appropriate, because it is only being told when an action was a bad choice.
As a result, the system must spend a significant amount of time searching for the action that will
produced the desired behavior.

2. Reward not running into an obstacle. The network often quickly discovers a one-move local
minimum that satisfies the basic requirements of the behavior. An example of this is always making a
forward right turn, causing the robot to move in a circle. However, the network very quickly and
completely commits itself to this simple strategy, and when later faced with a new situation (such as
an obstacle in the path), it is very difficult for the robot to explore alternative actions.

3. Punish for nuning into a wall and reward for not. Two sub-cases are possible:
3A. I Punishment I < I Reward 1. This type of policy enables the robot to develop short cycles of

movements, which result with overall positive reinforcement. When faced with an obstacle, a very
common behavior that is learned is one in which the robot moves forward, collides with the obstacle,
backs up one step, and then repeats the process. Even though this strategy receives negative

1-123

reinforcement for the collision, it makes up for it by - - ,-
insuring that it receives a higher degree of positive w
reinforcement at the next time-step.

3B. I Punishment I > I Reward 1. This policy . .

produces control programs that perform the best for the
collision avoidance problem. This is due to a balance
between policy I (from above), where learning requires a A

long time, and policy 2, where learning happens so , ,
quickly that the system does not have adequate
opportunity to explore the control space.

Figures 4 and 5 show the learning results of using Figure 3- Modified network architecture. The

policy 3B to solve the collision avoidance problem. reinforcement information from the teacher is first

Figure 4 tabulates a number of the feature detectors th~at combined with the output of the Predictor Network
to produce an internal reinforcement signal, R. It is

were commonly learned over several experiments, and this signal that is used to update the weights in the
the actions that these feature detectors supported. In control network. The Predictor Network (P) is

many cases, the input units that activate the feature implemented as a linear function of the feature

detectors logically match the preferred actions.

Figure 5 shows the actual and internal reinforcement Sensory Inputs Supported
_______________ Actions

signals as learning takes place. We see a significant Mid Rag e o Straight Forward

improvement in performance up through about 300 time- Fa Range Left Sonar

steps (as measured by the actual reinforcement curve). Far Range Up Sonar
Also note that the internal reinforcement begins to Front Bumper Straight Reverse
deviate from the actual reinforcement curve at about 100 Near Range Forward Sonar
time-steps, demonstrating that the reinforcement Mid Range Up Sonar
predictor has begun to learn something useful. By -.he Far Range Up Sonar
600th time-step, this curve has leveled off, indicating Far Range Up Sonar Straight Forward
that the predictor has learned to anticipate Rear Bumper Right Forward
reinforcement to the best of its ability, and that the Far Range Up Left Forward
controller learning has stopped. Near Range Forward Sonar Left Reverse

Experiment 2: Environmental Exploration Mid Range Front Sonar
In this experiment, the goal is to develop a behavior Near Range Right Sonar

that causes the robot to cover a large area of its Figure k Common feature detectors and the actions for
environment. The policy reinforces this behavior by which they vote Over a set of several learning

experiments (policy 31), these rules (with some
rewarding the robot for moving in a straight forward variation) were consistently learned.
direction, and punishing reverse movements. As it is
still important to avoid obstacles, this rule is combined with policy 3B.

It is possible to assign different weights to each of these two sub-policies to reflect learning
priorities. It was observed that the sub-policy given higher priority was learned faster than the other
and typically dominated the other.

Experiment 3: Wall Following
A reinforcement policy for this behavior which has been posited is to reward the network when it

moves in the straight forward direction while an obstacle is detected in the mid range of the left sonar.
This policy is designed to encourage the robot to follow straight sections of walls. It is our belief that
the reinforcement predictor network can provide sufficient information to internally reward the robot
for properly turning corners when they are encountered. This is the subject of our ongoing experiments.

Discussion
This work has drawn on the results on TD (Temporal Difference) Learning of Sutton (Sutton, 1988),

as well as those on Q-Learning (Barto & Bradtke, 1991; Watkins & Dayan, 1992). The primary
difference with our algorithm is in its more neural orientation, and in the type of predictive
information that is stored at each state. In our case, we only store the expected future discounted
reinforcement (Watkin's VO function), as opposed to the expected future reinforcement relative to the
next action to be taken (Q-values). The information provided by the Q-values is given to some degree
by the activity levels of the output units, in that those actions that have the higher Q-values will

11-124

tend to acquire higher and higher activity levels as
learning progresses.

Our primary contribution is an attempt to
identify more efficient coding schemes for state k_.
space representation. In this case, efficiency .A
constitutes the amount of experience necessary to
yield a competent reactive policy, and the amount
of time required to actually learn the policy. For
the experiments described above, learning was
performed in real time (as the actions were being
executed by the robot), and robot was allowed at
most 30 minutes to acquire its program (about 1000 u. us '
time-steps). These results are possible by a F-&

combination of the reinforcement predictor (as Figure 5: Actual (upper curve) and internal reinforcement
discussed earlier), and the input state coding (lower) over the course of a single learning collision

scheme used at the feature detector layer. avoidance experiment.

The local winner-take-all operation at the
feature detector layer forces moderately different input activity patterns to activate different sets of
feature detector units. As a result, learning that is performed in one region of the state space tends not to
interfere with learning in other regions of the space, as is the case with Backpropagation-based
reinforcement learning algorithms (Williams, 1987).

One the other hand, local support given by winning feature detectors to nearby neighbors tends to
create a topological mapping of the input space (von der Malsburg, 1987). As a result, points that are
nearby each other in the input space will activate largely overlapping sets of feature detectors,
allowing these points to share their common experiences, yielding some degree of generalization.

State space representation for reinforcement learning as applied to robots has also been addressed
in (Mahadevan & Connell, 1992) using statistical clustering techniques.

Conclusions
Reactive or behavior-based systems have been offered as alternative approaches to the more

traditional AI-based techniques for the design of intelligent control systems for autonomous robots.
Their ability to deal with uncertainties in sensing and in action generation, as well as their limited
computational requirements have allowed them to demonstrate some level of success beyond that of Al
systems. However, these systems are constructed in a trial-and-error fashion, and can often require long
periods of programming time to reliably achieve the desired behavior.

This paper has presented an approach to constructing reactive control systems that allows the
programmer (or teacher) to specify only the desired behavior of the program. This specification comes
in the form of a reinforcement policy (rewards and punishments for certain behaviors that the robot
exhibits), from which the learning algorithm must infer a control policy that attempts to maximize the
rewards and minimize the punishments that are received. Specifying programs in this way is useful
because the specification happens at a level that is easy for the programmer to express and understand,
and yet the programs are evaluated within the environment in which they must ultimately perform.

The problem of programming however has not gone away. It has only shifted from specifying sets
of reactive rules to specifying reinforcement policies that lead the learning system to discover sets of
rules that accomplish the desired task. As was demonstrated in our experiments described above, this
second process is also an iterative one, where the final behavior is observed, the reinforcement policy is
adjusted, and the learning process is then repeated.

The current challenge is to construct principles from which reinforcement policies can be designed,
such that the time required to learn a desired behavior is minimized. With this goal in mind, two
directions are being pursued:

0 Staged Learning is a technique in which partial solutions to a problem are first taught to the
robot before it is expected to solve the entire problem (Lewis, Fagg, & Solidum, 1992; Lin, 1993). This is
accomplished by first presenting the robot with a reinforcement policy that encourages the
development of the partial solutions. Once the robot has obtained this intermediate level of

11-125

capability, the reinforcement policy is changed such that the robot is then required to solve -. i tire
problem in order to receive positive reinforcement. This technique can be used to lead the robot along a
specific path of learning, significantly reducing the amount of search that is necessary to disc'-,er a
program that produces the desired behavior. The behavior-based decompositions for the lezrning
system described in (Mahadevan & Connell, 1992) also has some interesting parallels to sta 7ed
learning.

0 Learning by Demonstration is an approach in which motor programs are demonstrated to the
robot by the human (Fagg, 1993; Handleman & Lane, 1993; Lin, 1993; Liu & Asada, 1992). The robot first
learns to mimic the behavior of the human through a more supervised learning approach.
Reinforcement learning is then applied to further refine the learned motor programs such that they are
better matched with the robot's own sensory and actuation abilities.

Acknowledgments
The authors would like to thank Dr. Michael Arbib, Gaurav Sukhatme, Mike McHeziry, Amanda Bischoff,

Nicolas Schweighofer, Tony Lewis, Jason Bagley, Parag Batavia, Anand Ramakrishna, and Mathew Lamb for their
con ents, suggestio and help durng the course of this work The neural model has been implemented in NS1, (NeuralSimulation Language (Weitzenfeld, 1991)), which is available via anonymous ftp from yorickusc.edu. More
information may be obtained by contacting Aifredo W/eitzenfeld (alfredo~rana.usc.edu). This work has been
supported in part by grants from the University of Southern California Graduate School, School of Engineering, and

C~omputer Sciene Dpartment, and by the Human Frontiers Science Program.I References

Arib, M. A. (1989). Schemas and Neural Networks for Sixth Generation Computing. |ournal of Parallel and Distributed
sT2agMg 6,18s5-216.

Arkin, R. C. (990). Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robotics and Autonomous

Barto, A. G., & Bradtke, S. H. (1991). Real-Time Learning and Control using Asynchronous Dynamic Programming (TR No. 91-57).
Department of Computer Science, University of Massachusetts, Amherst.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike Adaptive Elements That Can Solve Difficult Learning Control
Problems. IEEE Transactions on Systems. Man. and Cyvbernetirs. SMC-5, 834--46.

Bekey, G. A., & Tomovic, R. (1966). Reflex Control of Robot Actions. In IEEE International Conference on Robotics and Automation.
(pp. 240-247). San Francisco.

Brooks, KL A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE 1. Robotics and Automation. RA-7,(RA-2), 14-23.
Brooks, R. A. (1991). Intelligence Without Reason (A.L Memo No. 1293). MIT.
Fagg, A. H. (1993). Developmental Robotics: A New Approach to the Specification of Robot Programs. In G. A. Bekey & K Y.

Goldberg (Eds.), Neural Networks in Robotics (pp. 459.86). Nor'well, Massachusetts: Kluwer Academic Publishers.
Fagg, A. H.L, & Atbib, M. A. (1992). A Model of Primate Visual-Motor Conditional Learning. lournal of Adaptive Behavior° 1(1), 3-37.
Handleman, D. A., & Lane, S. H. (1993). Fast Sensorimotor Sill Acuisition Based on Rule-Based Trainng of Neural Nets In G. A.

Bekey & K.Y. Goldberg (FEds.), N raNewksnRotis(pp. 255-70). Norwedl, Massachusetts: Kluwer Academic Publishers.
Klopf, A. H. (1982). Th eoitcNuo.Washington, D. C.: Hemisphere.
Lewis, Ni. A., Fag8, A. H., & Solidum, A. (1992). Genetic Programming Approach to the Construction of a Neural Network for

Control of a Walking Robot. In P'roceedings of the 1992 IEEE Conference on Robotics and Automation. (pp. 2618-23). Nice,
France:

Lin, J. J. (1993). Hierarchical Learning of Robot Sills by Reinforcement in Proceedings of the 1993 IEEE Conference on Neural
NIklx. (pp. I81.6). San Francisco, California: IEEE.

Liu, S., & Asada, H (1992). Transferring Manipulative Skills to Robots - Representation and Acquisition of Tool Manipulative Skills
Using a Process Dynamic Model. lournal of Dynamic Systems Measurement and Control Transactions of the ASME. 114(2), 220-

Maes, P., & Brooks, K. A. (1990). Learning to Coordinate Behaviors. In AAI (pp. 796-802). Boston, MA.
Mahadevan, S., & Connell, J. (1992). Automatic Programming of Behavior-Based Robots Using Reinforcement Learning. Atfca

ki ulgn~ 55, 311.365.s
Samuel, A. L (1967). Some Studies in Machine Learning Using the Game of Checkers. IBM lournal of Research and Development.

11, 601-17.
Sutton, KL 5. (1988). Learning to Predict by the Methods of Temporal Differences. In Machine Learning 3 (pp. 9-44). Boston: Kluwer

Academic Publishers.
Verschure, P. F. .J., & K rse, B. J. A. (1992). Distributed Adaptive Control: The Self-Organization of Structured Behavior. Robotics

and Autonomous Systems 9, 181-196.
vonder Malsburg. C. (1987). Ordered Retinotectal Projections and Brain Organization. In F. a Yates, A. Garfinkel, D. 0. Walter, &

G. Yates (Eds.), Se~f-Organizing Systems - The Emergence of Order (pp. 265-78). New York: Plenum Press.
Watkdns, C. J. C. H., & Dayan, P. (1992). Q-Learning. Mahn Conusing A 8(3), 279-92P
Weitzenfeld, A. (1991). NSL - Neural Simulation Language Version 2.1 (TR No. TR 91-05). Center for Neural Engineering.

University of Southern California, Los Angeles, CA.
Williams, 1 J. (1987). Reinforcement Learning Connectionist Systems (No. NU-CCS-87-3). Northeastern University, College of

Computer Science.

II- 126

Bros R. A. (18 A Rous Laee Coto Syte fo a MoieIbIE .Rbtc n uoai A2R-)1-

Visually Guided Motor Control: Adaptive Sensorimotor
Mapping with On-line Visual-Error Correction

L. Li"l 2 and H. O6men'

1 Department of Electrical Engineering 2 Automation and Robotics Division
University of Houston NASA/Johnson Space Center
Houston, Texas, 77204-4793 USA" Houston, Texas, 77058 USA

Abstract. A neural network architecture combining an adaptive sensory-motor mapping and an on-
line visual error correction (VEG, mechanism is proposed. The sensory-motor network (SMN) acquires
a consistent intermodal mapping through primary circular reactions. During performance, SMN gener-
ates feed-forward control commands to the motor networks. This feed-forward command is augmented by
VEC which is a feed-back control mechanism. The feedback allows the system to correct immediately dur-
ing performance, errors that may arise from various sources including intermodal inconsistencies. This
dual feed-forward feedback control enables the network to maintain the accuracy of its performance while
inconsistencies are resolved through long-term adaptation. We present simulation results that illustrate the
long-term learning as well as immediate correction capabilities of the network.

1 Introduction
Visually guided arm movements constitute an important part of the behavioral repertoire of many bio-
logical systems as well as robots. In visually guided reaching, there are four major steps involved: target
selection, sen.sory-motor transformation, trajectory generation, and visual-error correction. Target selection
is, in general, dependent on the the task to be performed. Once the target is selected visually, sensorimotor
transformation is required to convert the target's visual activity into the corresponding motor command.
This requires that the sensory signals should be converted into consistent motor signals so that the tra-
jectory generator moves the arm smoothly to the final position. Often, due to various sources of errors,
inconsistencies may arise between'the sensory and motor systems. The final arm position may not reach the
target, and a visual error may remain even though there may be no motor error. Therefore, a visual-error
feedback mechanism is necessary to compensate for such inconsistencies and to correct the arm position.

In this paper, we propose a neural network architecture capable of fast and consistent sensorimotor
learning and visual-error correction. The visual-error correction mechanism (VEC) which we developed,
does not require the learning of Jacobian matrices. Instead, VEC is an on-line visual servoing mechanism
as a result of short-term memory (STM) interactions. A major advantage of such an on-line servoing
mechanisms is that it allows the system to operate properly even during its learning (re-organization)
phase. The resulting motor behavior consists of a mainly two-phase movement observed in many biological
systems [1][3]: (i) A feed-forward dominant phase that brings the hand near the target, and (ii) smaller
amplitude corrective movements that use visual feedback.

The proposed neural network architecture has a very simple external control interface, and it can be
easily integrated with higher-order cognitive networks to fulfill the four steps of visually guided reaching.

2 The Proposed Neural Network
The proposed neural network architecture, shown in Fig. 1, consists of a spatiotopic representation of hand
position (Q), target position (U), and a set of three-dimensional (3D) loci where spatiotopic errors are
computed (S). Each neuron in S fans-out to motor target position neurons via outstars (W). The outstars
encode adaptively a consistent visuo-motor mapping. The network architecture described in this paper is
specifically configured for a 3 degrees-of-freedom (DOF) robot with a pair of video cameras for sensory
inputs. The architecture, however, can be extended to control a n-DOF robot, as long as the kinematics
redundancy can be resolved.

Three mutually exclusive signals for mode control are available to external sources: MB for babble, Alp
for performance, and Mft for homing. The babble mode is when the robot learns the sensorimotor mapping
from self-generated arm movements (primary circular reactions). The performance mode is when the robot
recalls a learned arm posture from the corresponding visual activity of a target. The homing mode is where
the robot corrects the arm posture using the visual error. Usually, the homing mode is entered automatically
near the end of the performance mode, when the hand is within a certain "spatiotopic radius" of the target.

For each joint on the robot, a motor network is required. Each motor network has five layers of
neurons: B, D, T, V, and P. Each layer consists of two neurons representing the two opponent muscle
channels: agonist and antagonist. We incorporated the Adapt ive-Vector-lntegration-To-Endpoint (AVITE)

11-127

model developed by Gaudiano and Grossberg [2] as the core of our motor network. The AVITE model is
represented by layer T, V and P of Fig. 1.

-
r NP S

0 NP r

T

~' NP r

Figure 1: The proposed neural network architecture.

The video cameras are the sensory inputs to the proposed neural network. The activities of the spa-
tiotopic maps, U and Q are computed from the image centroids of the target and hand, respectively.
Activities of U and Q interact in S to produce the appropriate sensory activity for learning, recall, and
correction.

Each spatiotopic map is a 3D neuron lattice of dimension X, x Y, x Z,. The activities of the spatiotopic
maps are defined as

r 1 _ (.,)+, h)+k k)
= ;7.... MB Ot , (1)

$I -,_)2+0_ ,t ?
2

+..kt 2

=i e =~ + r~jk (2)

Sijk = [Ujk - MHQijk]R, (3)

where i = 1.. .X, j 1.. .Y, k = 1.. .Z, and [a]R = max(0, a). Parameter or defines the degree of
Gaussian spread, 0, defines the signal threshold, and r = MB(1 - gp) is the learn signal. Parameter gp is
the ERG-OFF signal generated by the neural oscillators. Indices (ijh, h, k h) and (it, j, k) are generated
from the stereoscopic image coordinates of the hand and target, respectively. The superscripts, 'h' and 't',
denote indices of the hand and target, respectively. The indices for the hand are computed according to

= hLR, jh = yhIRy, kh =DhR +GX
where R, Ry, and R, are reduction factors for each of the three dimensions. The x-disparity, Dh, contains
the range information. It is computed as Dh = X- Xh, where X h and Xh are the x-coordinates of the
centroids of the hand's left and right image, respectively. Parameter a is simply a positive constant, such
that at infinity (D, = 0), k' is bounded by Z,. The target indices are also computed the same way, except
that 'W' is changed to 'T.

A set of outstar connections. W, forms the sensorimotor network that bridges the visual space to the
motor space. The source nodes of these ouistars are the neurons in S, and the output nodes are the neurons
in B. Thr-e outstar networks learn the sensorimotor mapping between the visual and motor modalities
according . the following equations:

d B,.,dm - aBj + b 1 SijkVVIjkml + crTmt, (4)
di

1- 128

dt -FSit(-Wjk(-skmL + eB.m), (5)

dt

where a, b, c, , i are positive constants. Eq. (4) represents the STM dynamics of the output neurons,
where in = I ... 3 is the joint index, and I E (+/-) denotes agonist (+) or antagonist (-) muscle channels.
Parameter 4 = Mp + MH modulates the outflow of motor commands so that, during performance and
homing, the outflow paths are enabled. Eq. (5) represents the dynamics of the adaptive connections, where
(i, j, k) are the spatiotopic map indices.

One benefit of using the outstars for sensorimotor learning is their abilities to perform both fast and
slow learning. This feature is evident in the steady-state solutions of Eqs. (4) and (5) during learning, when
4 = 0 and r = 1. Combining with the steady-state solution of Eq. (4), the steady-state solution of Eq. (5)
can be written as Wijk.1a = AT.Tj, where A = (c)/(ja). This shows that Wijkml will encode the motor
pattern in Trno during learning. Therefore, fast learning can be implemented simply by copying the motor
pattern into the appropriate weights. Since the outstars encode the normalized motor patterns [4], the
recalled patterns must also be normalized. This is accomplished by the normalizing layer, D, which obeys

dDm+ _dt = (1 - Dm+)Bm+ - Dn+Bn-. (6)

Since each layer in the motor network contains two opponent channels (agonist/antagonist) whose dynamic
equations has the same form, only agonist channel equations are shown in this paper. The ability of D to
normalize the motor pattern in B is evident from the steady-state solution of Eq. (6).

We used the Endogenous Random Generator (ERG) [2] to synchronize learning during the babble mode.
This allows a consistent learning of intermodal and intramodal maps. The theory and equations behind the
AVITE and ERG are well-documented by Gaudiano and Grossberg [2]. Therefore, we will not elaborate on
this subject.

3 Network Operation
The proposed neural network has three modes of operation: babble, performance and homing. The babble
mode is further broken down into two phases: active and quiet. Fig. 2 summarizes the various modes of
operation.

During the babble mode (MB = 1), the robot learns from self-generated actions. A random, new arm
posture is generated by the ERG-ON channel during the active phase, while the hand is visually tracked
by Q. At the offset of ERG-ON, the robot will stop moving, and ERG-OFF will become active, and opens
all the NP gates to start the quiet phase. The quiet phase is when the current arm position, P, is printed
into T and B, so that simultaneous, consistent, learning of W and Z can take place. In the visual modality,
opened NP gate will cause the visual activity of the hand, represented by Q, to be printed into S through
U. Note that, during the babble mode, outflow of motor command is blocked (0 = 0). The active-quiet
cycle will rer'eated indefinitely until *MB is turned off.

The performance mode (Mp = 1) is when the robot executes motor patterns recalled from the target's
visual activity, U. In this mode, the Q -- S pathway is blocked, leaving U to recall the motor pattern
through the S - B pathway. Also, 4> will open the outflow pathways in the motor network, permitting the
embedded AVITE to generate the necessary trajectories.

Due to various sources of errors, the performance mode alone may not place the hand at the target.
Therefore, the homing mode (MH = 1) is entered to carry out the VEC mechanism. In our implementation,
VEC is activated whenever d! < rf, where rf is a predefined spatiotopic radius, and

d, = (i - i)2 +(jt - jh)2. (7)

During the homing mode (MH = 1), both Q - S and U -- S pathways are opened, resulting in a neural
computation of S = [U - Q]R. Fig. 3 shows the effects of such a computation. In Fig. 3A, the subtraction
between the Gaussian spheres from U and Q creates a zero plane where on one side the plane, SiL > 0, and
the other side, Silt < 0. With the negative result clipped by the [.JR operator, as is shown in Fig. 3B, only
those Sijk > 0 will contribute to the computation of the motor command. According to Eq. (4), the recalled
motor command is a weighted average of learned motor patterns associated with nonzero Silt. Therefore,
the result of clipping will cause the arm to move closer toward the target. The closer the hand is to the
target, the greater the amount of clipping. Consequently, the arm will continue moving toward the target
until Q and U fully overlaps and the hand reached the target.

This visual-error correction (VEC) mechanism has two other desirable features. First, any overshoot of
the hand over the target will cause the clipping to appear on the other side, thus causing the arm to move

11-129

r -W a wP S

'-r-'

,.,~~

V0 NP

N, , -.

Babble: active phase Babble: quiet phase

Performance: reaching Homing: visual error correction

Figure 2: The operating modes of the proposed neural network.

back. Second, the damping of arm movement is automatic, because JIS[I "- 0 as the hand moves closer to
the target.

To carry out the analysis of this error correction scheme, one needs to relate 'joint angles to the cor-
responding spatial coordinates of the tip of the arm, i.e., the kinematics of the arm. To di the analysis
independent of the arm structure, we will simply assume that the activation of a set of outstars causes a
movement of the arm towards the spatial point corresponding to the mean, or the "center of gravity" of
the activated outstIars. The center of gravity, G(xt, 5), is defined as 9(xt, 5) = J:xes G(x, xt) • x, where

x = (i. j, k) represents a point in the visual space with coordinates (i, j, k); xt = (i t , j', V) is the position
of the target: G(x. xt) is a Gaussian function defined as

G(x, xt) = I e- (_) ---2"kkf (8)

a v'-- r
aV -a

and P is the set of "activated" points, i.He.. s ex = (i, o , k) I Sik > 0}r
When equals the whole visual space, (xt, S) ce xi . The center of gravity for a subset. t. of the

visual space may deviate from xf. Moreover. since AVITE has been analyzed elsewhere 2], we will simply

let P,,. = Dm.

1I- 130

independent of th ar tut ure I sIl asum thtteatvtoIfasto usascue

Activity from U Activity in S

Zero0 Plant ZZKO Pan

A Activity from Q

Activity in S Zero Plane Activity from U zero Plant

° o

D C Activity from Q

(A) As the hand gets closer to the target, activities of U and Q will overlap. (B) The result ofS computing
[U - Q]R will generate a clipped Gaussian sphere that gives a stronger bias to those recalled motor patterns
that contribute to moving the hand in the direction r. (C) Arm movement along r will cause a greater
overlap between the activities of U and Q, therefore, a greater amount of clipping will result. (D) Additional
clippings will further strengthen the influence of those motor patterns that contributes to arm movement
toward the target until the two spheres completely overlap. If the hand overshoots the target, then the
overlap will appear on the other side of the zero plane, and the recalled motor pattern will move the hand
back.

Figure 3: Interactions between spatiotopic maps, U and Q, under the VEC mechanism.

Let xt = (it, jt, kt) be the position of the target and xh = (i, jh, kh) the position of the hand generated
by the network in the performance mode (all in the visual space). Usually, one should have xt = xh. But
due to various sources of error, xt # xh, and a visual error, e = Xt - xh, occurs. When the homing mode is
entered. Sijt changes from Uijk to [Uijk - Qijk]R. As a result, the set, S, is reduced from the whole visual
space to a smaller subset.

We will define xm as x.. = (xt + xh), and let u and v be two nonzero linearly independent vectors on
the plane passing by x,m and perpendicular to e. Then x E S if and only if there exist 5, # and > 0, such
that x = xm + &v +,3u + je. To show this, note that, during the homing mode, Sijk = [Uiij -Qijk]R , with

1 (_
-

)2+(i
-

, 1
2

+(k
- k

)2

and
1 (*.-.')2 +(J," l +(,k- ,k 2

=ij - 7 e , (10)

Since the 3D Gaussian function has spherical symmetry, Uit = Qijk for points x = (i,j, k) satisfying
the parametric equation,

x = Xm + &V + 1u. (11)

11-131

Since the 3D Gaussian function is a decreasing function of the distance from the origin. Uk. - Q,j- > 0 for

all x satisfying the parametric equation,

x = x", +&v+ u+ je, " >0; (12)

and Uj. - Qijk < 0 for all x satisfying the parametric equation,

X = xm+6v+ 3u- je, 5'<0. (13)

As a result, 8 (denoted by SN) now consists of points satisfying Eq. (12). This implies that (j(xt,S1) =
x,, + de for some positive constant &. Hence, homing mode moves the hand in the direction of the target.

Rewriting Eq. (6) in the form,

dD (Bn+)Dm +Bmi, (14)

where I E (+,-), shows that the system will slow down as T, Bmi gets smaller. In particular, if we use the
steady-state expression of Eq. (4) during recall for Bmg, then Eq. (14) becomes

dtrn (ESjL-kjmI' Dint+ESjkWjkm. (15)
(ijkJ / jk

This shows that when the arm reaches the target, it will stop, since when x, = Xh, Sijk = 0 for all i.j, k.
and therefore, 16m = bi = 0.

Oscillations can occur when the learning is insufficient, as illustrated in the following example: Assume
that only two outstars are guiding the movement of the hand in the neighborhood of xt (this can arise when
that region is not sufficiently learned, so that all weights from other outstars are zero). Let the source nodes.
xM and xt2), of these outstars be placed as shown in Fig. 4. When the homing mode starts, x") SH and

Xh

Figure 4: An example of how oscillation can occur when learning is insufficient.

only x(2) guides the arm. This causes the arm to move towards x(2); but as soon as the hand crosses to
the x(2) side of the target, x) becomes activated. Consequently, it causes the arm to return to Xh, which
yields the ,riginal scenario thereby creating an oscillatory pattern.

Various factors, however, will prevent or damp these oscillations. If the trajectory of the hand crosses
xt, the hand will automatically stop on the target. In addition, when the region is sampled more densely,
as the hand gets closer to the target, there will be a decrease in F, B,,, which, in turn, will slow down
significantly the hand near the target.

The particular behavior of the system depends on the structure of the arm as well as the density and
distribution of learning samples in a neighborhood. The aforementioned remarks also suggest that the
performance will be poorer near the boundaries of the robot's workspace, due to the fact that each of the
samples is outside the boundary, so that the distribution of learning samples will be biased.

11-132

4 Simulation and Results
The proposed neural network was simulated on an SGI 320VGX graphics workstation running a 3D solid
model animation software called Tree Display Manager (TDM). The video cameras were simulated by
attaching two view ports on simulated video cameras for display. Frame-grabbing is done by reading the
images from the display memory. The neural network equations were integrated using a fourth-order Runge-
Kutta solver with an integration step of 0.2. Since the total number of differential equations was very large,
we also implemented the fast learning mode.

One of the best ways to evaluate reaching performance is to look at the reach accuracy. For the
particular target location, (17, 6, 10), the reach accuracy is recorded in Fig. 5. This plot shows that initially
the target and hand are separated by approximately 18 inches from each other. At the instant when the
mode changes from perform to homing, the distance is approximately 5.86 inches. After that, the distance
decreases to about 1 inch. The small "hump" between t = 18 and t = 25 (time-steps) is caused by the VEC
mechanism, where visual-error feedback are used to compensate an overshoot. The final accuracy achieved
for this particular target location is approximately 1 inch (approximately 2% of the robot size). which is
within the accuracy allowed by the visual-space quantization limit [5].

s1oDistance
(inches)

0 10 so

rne (sttp)

Figure 5: Reach accuracy during performance.

To analyze the network's global performance, we presented the target at 496 different positions for the
robot to reach. Out of the 496 target positions, 250 belong to the set of target positions presented to the
robot. during learning; the other 246 points are generated by commanding the arm to random joint positions
while recording the hand's spatial position. The above method of generating target positions ensures that
all target positions are visible and reachable by the robot hand.

To speed up the data gathering process which will otherwise take weeks to compute, we decided to use
the target arm position .enerated by the sensorimotor network directly, without going through the motor
networks which, once calibrated, reproduce these positions accurately.

For each target position presented to the robot cameras, an initial move corresponding to the perfor-
mance mode is carried out. After the initial move, twenty corrective moves corresponding to the homing
mode are also carried out to reduce any residual error. The initial move and the follow-on corrective moves
are all generated by the sensorimotor network directly, and do not involve the motor network. After the
initial and corrective moves are completed, we recorded the relative distance between the target and hand.
This process is repeated for the set of 496 target positions.

The above procedure provides a measure of the global performance of the neural network after a certain
amount of learning. We are interested in seeing how the global performance relates to the amount of
learning. So we plotted the average reach-error (over the 496 points) as a function of the number of babbles
(i.e., learning trials), and the result is shown in Fig. 6.

The plot shows that after 7000 babbles, the average reach-error remains fairly constant at approximately
1.37 inches, and is slightly higher if the number of babbles is less. Relative to the overall size the robot,
which is computed by adding the robot's height and full arm extension (65.4 inches), the average reach-error
is only about 2 percent. The lower limit of the error originates mainly from the quantization of the visual
space, whose range for (Ax, Ay, A-) is from (0.6, 0.5, 1), when the arm is at the closest possible position
(Z = 7.3), to (3.1, 2.5, 15), when the arm is fully extended (Z = 37.3). The units of these measurements
are in inches.

One of the main benefits of using neural network for robot control is its ability to adapt to plant
changes. To evaluate the ability of the proposed neural network in adapting to physical changes, we altered
the robot's kinematics by raising the shoulder by 2 inches and by shortening the upper-arm by 3 inches.
Then we tested the neural network that was trained by 20000 learning trials (without the robot being
altered). One hundred random target positions, which were not part of any previous learning trials, were
presented to the robot. The result shows an average reach-error of 1.39 inches (2.13% of the robot size),
and a standard deviation of 0.94 inch (1.4% of robot size). It is important to emphasize that this accuracy

II- 133

Avrae
Reach 1.

Error
(ich) 4 - ,

10 2000 4=0 MW0 80(10[0 12000 f4oW0 re00 ISM) 20W

Number of ewning trimrI (bbbm)

Figure 6: Average error of reach as a function of the number of learning trials.

is obtained without any learning after the modification of the arm only by the corrective effect of VEC.

5 Conclusions
We presented a neural network architecture that shows how a combination of nonlinear feed-forward and
feed-back control can yield an efficient learning and real-time performance. We showed that the robot can
acquire a reach accuracy which is mainly limited by its visual resolution. In addition, we demonstrated that
the VEC mechanism can compensate immediately for unforeseen perturbations to preserve the accuracy of
performance without any learning. It is also important to point out that the proposed mechanism does not
require the learning of the Jacobian matrix.

Acknowledgements

This material is based in part upon work supported by NASA/JSC and by the Texas Advanced Technology
Program under Grant No. 003652023-ATP.

References
[I] W. D. A. Beggs and C. I. Howarth. The accuracy of aiming at a target. Acta Psychologica, 36:171-177,

1972.
[21 P. Gaudiano and S. Grossberg. Vector associative maps: Unsupervised real-time error-based learning

and control of movement trajectories. Neural Networks, 4:147-183, 1991.

[3] A. Georgopolous. On reaching. Annual Review of Neuroscience, 9:147-170, 1986.

(4] S. Grossberg. Pattern learning by functional differential neural networks with arbitrary path weights. In
K. Schmitt, editor, Delay and Functional Differential Equations and their Applications, pages 121-160.
Academic Press, New York and London, 1972.

[5] L. Li. Adaptive neural control of visually guided arm movements. Master's thesis, University of Houston,
1993.

II- 134

PRACTICAL ISSUES IN APPLYING ARTIFICIAL NEURAL NETWORKS FOR
IDENTIFICATION IN MODEL BASED PREDICTIVE CONTROL

Joachim Blum, Philippe Villard, Astrid Leuba, Thomas Karjala, and David Himmelblau
Department of Chemical Engineering

The University of Texas, Austin, TX 78712

Abstract

Several investigators have shown that nonparametric model building via artificial neural networks (ANN) can be
used with nonlinear programming to implement nonlinear model predictive control (MPC). The use of nonlinear
combinations of basis functions in an ANN can often provide models for MPC superior to conventional methods for
nonlinear processes. We will discuss how to select an appropriate set of data to be used in training an externally
recurrent ANN for modeling nonlinear dynamic processes as well as issues of model validation. In addition, we
illustrate the use of an ANN as a process model in an MPC control scheme for parts of the Tennessee Eastman (TE)
Test Problem.

1. Introduction

In this paper we focus on the use of Artificial Neural Networks as models for a model based predictive control
strategy.

Most nonlinear control techniques are model based, and thus their success depends substantially on the
quality of the model used. This is especially true in the case of model predictive control, where a good dynamic
model of the system is essential. Identifying a suitable model is often the major part of the effort necessary to
implement model predictive control (MPC). A traditional attempt to develop a model from first principles often
proves to be a difficult and costly process because of the large-number of variables, poorly understood reaction
mechanisms and the overall complexity of the system. Whatever model is developed may well be based on so many
simplifying assumptions that its accuracy and utility are degraded.

An alternate approach is to identify the model directly by input/output data collected from the plant.
Artificial neural networks (ANN) are one class of nonparameeric identifiers. They have been proven to be capable
of approximating any nonlinear function. For this reason they have great potential in nonlinear MPC and have been
proposed as process models by several researchers [1, 5, 7, 8, 11].

In following sections we will discuss how an ANN model can be identified and used as a predictor of future
system behavior, describe the net architecture implemented for the test problems, and explain how an ANN can be
trained effectively for practical applications.

2 Model Identification

To build a predictor, we use a structure capable of predicting an array of Ny measured variables, yi(t), based on a
window of past measurements and of past values of the Nu manipulated variables ui(t)

y ()= F (y (i - At),... y(t- TA), u(i - A)., u(- TA)) (1)

where u, y, and y are vectors of manipulated variables, measured variables at past time steps (inputs), and predicted
variables (outputs), respectively; Ty and Tu set the orders of the model, equal to the number of past values for y and
u; and At is a uniform time interval. F represent the model and includes a set of adjustable parameters (not shown)
that are estimated by minimizing an objective or figure-of-merit function E. E measures the agreement between the
data and the predictions of the model. In a conventional maximum likelihood approach we minimize:

Miftia N7 s ~2
y__ _t_ (2)

E= ~CY 11;-L,

where aij is a weighting factor for variable Yij, and depends on the underlying (generally unknown) distribution of
measurement errors. For our purposes it is set to unity. Mtrain is the number of data samples used for identifying

II-135

the model. Ny is the dimension of y or j. To avoid sensitivity to outliers, a more robust objective function based on
a Lorentzian distribution would be:

Mi Ny 2

E=Po -I-- L ig((y j))(3)

If we are able to identify a function F well, in application, we can predict y(z) not only one but multiple time steps
into the future by successively applying Equation (1) for a moving window of past inputs and outputs. Predicted
values y replace measured values of y as the window moves in time along the measurement record. Figure 1
illustrates the "chaining" of a predictor on itself.

y(t)

(Tp+ 1). PREDICTION

1. PREDICTION I I I I

t j 0 0 0

2. PREDICTION

t-Ty 6 t-N t t +At t+Tp~t"-

Figure 1: Chaining of a one-step-ahead predictor on itself to obtain multiple-step-ahead predictions: (,) are
measured, (o) predicted values of y.

Tp is the number of time steps y is predicted into the future, called the prediction horizon. Note that the true values
of the manipulated variables u(t + kit) are assumed to be known (or provided by the MPC optimization algorithm-
see Section 5). whereas with chaining, the future predictions of y increasingly depend on prior predicted values of y
as the prediction horizon is extended. This leads to propagation of the prediction error which is also increased as
unmeasured disturbances enter the system. The prediction error, therefore, sets a limit on the practical prediction
horizon Tp, and requires an error feedback scheme for the strategy to be implemented, as will be explained below.

The predicted trajectories can be used by a model based predictive controller to optimize some system
performance objective with respect to the manipulated variables u over the prediction horizon [tt+TpAt].

To identify an ANN model, one needs to address the following issues:
" what net architecture will represent the process adequately;
" what training method will estimate the coefficients (weights) of the ANN most efficiently;
" what data must be selected so that the ANN can represent the process adequately in the regions of

interest?
Also, during or after training the ANN, one needs to validate / evaluate the performances of the model obtained.

II- 136

3. The ANN Architecture Used For Modeling

To represent the process model we used an externally recurrent net comprised of one hidden layer of 10
nodes each with sigmoidal activation functions, and an output and input layer each composed of linear activation
functions. The input layer received Ny values of y representing delayed output values plus Nu delayed input values.
The output layer yielded values of the process output up to Nu future time steps. In the example below there were
45 input nodes representing 3 variables times 15 time steps of u, plus 30 input nodes representing 3 variables times
10 time steps for the delayed outputs. The net had 3 output nodes.

4. Training the Network

The objective function used in this work was Equation (2), hence the training was a minimum squares problem.
Ideally, the error index should be the measure of error while training the net. In this case, the objective function (2)
would be changed to:

N, (y (t +kk (tj + kAt)) 4

mean square error over prediction horizon

calculated for all sample points in training set

averaged over all predicted variables

Referred to as "parallel training," this approach has been suggested as yielding better performance for long-term
predictions (e.g. [101, but has not, yet, been implemented in our training scheme yet. Although the goal in training is
to create a surface through the training data that minimizes the objective function, it is clear that one could pass an
interpolation surface through every sample point in the training set by simply providing a sufficient number of
parameters in the ANN such as by increasing the number of hidden nodes or hidden layers. However in fitting the
data we really want to create a surface smooth enough to enable good generalization.. A net possesses good
generalization capabilities if it can make good predictions from inputs that were not included in the original training
set.

The performance of the net after training and testing is a direct consequence of the quality of the data
collected. Usually the training set covers only a sub-space of the entire space of possible measurements. Prediction
which involves extrapolation outside of the domain of the data should be considered unreliable, as the network has
no apriori information of the underlaying physical phenomena in new regions. Even in regions where data is
available, there may not be enough to train the net properly. Furthermore, without an adequate experimental design,
measurements in some regions may well have been obtained from steady state operation and consequently do not
hold enough information about the dynamic behavior of the system. Without uniformly distributed, or properly
weighted, training data. the network's performance will vary greatly across the state space of the predicted variables.
Hence, there is clearly a need for building the training and testing sets methodically, not randomly.

If we are simulate a process, we can generate data sets for almost any domain we want. But for a real
process, unless designed experiments are possible, we will likely have to work with long data sets of the normal
operating record containing mostly steady state data with a relatively small amount of dynamic information caused
by perturbations, setpoint changes, etc. Also, the training times for a network with our present hardware become
unreasonable if the data sets consist of a few hundred thousand sample points. Consequently, for training and
testing we have to either extract subsets of representative data from the recorded process measurements or carry out
some form of dimensional reduction, such as principal component analysis, partial least squares, and so on. Another
idea would be to apply cluster analysis to the data to provide good coverage of the state space. However, these
approaches will not make up for too little dynamic information.

We built a suitable training set via an iterative process based on using the network itself to detect poorly
modeled regions of the state space. After the net was trained on a set of data, predictions were made for various
other operating conditions, and from the regions in which the predictions were poor, additional data was then added
to the training set, and a net with the same architecture trained again on the new training set, The new data can
either be taken from a collected data base-but for values not previously used in the training or testing set (as was
done in our work), or-if no more data in the critical regions is available-duplicated from the existing data in the

11-137

training set similar to bootstrapping. This step is equivalent to giving more weight to the sparse data relative to that
in the well populated regions.

As to the size of the necessary data sets, for the example below, our first training set contained about
150,000 patterns, and the testing set about 25,000, input/output patterns.

In the example below, we used the NPSOL [61 code in lieu of other codes to train the networks because the
training time was less by an order of magnitude compared to BFGS or Conjugate Gradients, it was easy to use, and
NPSOL allows for the specification of constraints. This option opens the way for various improvements in the
training of networks [11]. We used this feature to put limits on the weights in order to avoid saturation effects in the
nodes of the next layer.

L -

Figure 2: Diagram of Tennessee Eastman Test Problem. (1) Reactor, (2) Condenser, (3) Separator, (4) Compressor,

(5) Stripper, (ANN-identified part in bold).

5 The Test Problem

The Tennessee Eastman simulator has been made available to the process control community as a realistic process
for the testing of different control strategies [2]. This simulator (coded in FORTRAN) is based on an existing
industrial process and is suitable for the study of a wide variety of control issues.

The process makes two products from four reactants. An inert product and a by-product are also present,
making a total of eight components. It contains five major unit operations: a reactor, a product condenser, a
vapor/liquid separator, a recycle compressor, and a product stripper. A diagram of the whole process is shown in
Figure 2.

To provide an example, we identified and controlled the reactor and the condenser uniL
" The predicted and controlled variables were the temperature, the pressure, and the level of the reactor.

For each predicted variable, a moving window of 10 measurements was fed to the net input layer. The
variables to be manipulated were the reactor cooling water flow, the condenser cooling water flow, and
the reactor agitator speed. For each command variable, a moving window of 15 past values was fed to
the input layer. Thus, there were 75 input and 3 output nodes altogether.

" To find the optimal number of hidden nodes, the net was initially configured with 10 hidden nodes.
During training, additional units were automatically added and subtracted to check whether a changed
number of hidden nodes yielded better generalization results on the test set. However, 10 hidden nodes
proved to be suitable for this problem.

" The orders of the model with respect to the manipulated and predicted variables, Tu and Ty.
respectively, were found by training various nets with different window sizes for both parameters.
Figure 3 shows a comparison of four nets each with different window sizes for the manipulated and

II- 138

predicted variable inputs. Net 3 (Tu = 15, Ty = 10) was found to have the lowest prediction error of
all. This result confirms the rule found for digital filters (IIR) that the filter/model should be of higher
order with respect to the command variables to avoid introducing instability into the system (by
feeding back the predicted output to the input). Based on an error index, the maximum prediction
horizon for the MPC application of the (15/10) net was limited to 500 steps.

0.003
Net 1 (7/1'0) --

Net 2 (0tO) ----
Net 3 (l5/1O) ..

0.0025 Net 4 (20/10).

0.002

0.0015 ; V I

0.001 1V

0.0005

0 --- I-L=

0 100 200 300 400 S0
prediction horizon Tp

Figure 3. Error indexes for nets with different window sizes (Tu/Iy), trained and tested on the same dta sets.

In a similar fashion an adequate spacing At = tj+ I - tj for the input nodes was investigated. Several
nets of the same configuration were trained and tested on the same data set with only the time interval
between past measurements being different. It was found that At = 10s gave the best results. There
seems to be no general way of determining a suitable At; rather the choice will always depend on the
inherent dynamics of the modeled system (time constants, dead times, etc.). In our work, with Tu = 15
and At = 10s, the input of the net covered a reactor history of 2.5 minutes because of the time-delayed
dynamics of the plants recycle loop.
The collection of training and testing data was a two-step process. Because of the open-loop instability
of the reactor with respect to changes in the manipulated variables (see below), we first generated data
corresponding to system responses to step changes of the command variables (simultaneous and/or
individual). These runs were of short duration, since the controlled variables quickly went out of
control and reached their shutdown limits. With this data on hand we trained a preliminary net that
was incorporated into the MPC scheme. The performance of the controller using the poor model was
not satisfactory, but allowed us to generate data for a wide range of changes in both manipulated and
controlled variables covering a broader region of input space. The final net presented here was trained
and tested on this data. In practice, an existing control system could be used to generate the necessary
data if open loop data was inadequate.

The reactor exhibited a clear tendency to "run away." It was possible to stabilize the rest of the plant (stripper,
separator, compressor) with simple PI-controllers. The reactor, however, could not be made to follow setpoint-
changes in temperature and pressure by installing PI loops: Not only was the base case operation mode of the
reactor (p = 2705kPa, T = 120.40C, L = 75%) highly unstable, but the dynamics of the three controlled variables and
the three manipulated variables could not be separated into three independent control loops.

We implemented a MIMO (Multiple Input Multiple Output) control scheme using a model-based predictive
controller with the ANN representing the reactor. For a detailed discussion of nonlinear model predictive control,
refer to [31 or [9). Based on predictions of the process model-in this case the trained neural network-a future
profile of command variable moves u is determined by the controllei which will drive the behavior of controlled

11-139

variables y as close as possible to a desired trajectory. This is achieved by solving a minimization problem with the
manipulated variables being the independent variables. The objective function represents a measure of the
deviations of the predicted from the wanted trajectory of y. We also added terms to penalize excessive variations in
the control moves to the objective function, i.e., a form of regularization. The profile of u on the time interval
[t,t+TcAt], where Tc is the control horizon, is usually approximated by a sequence of constant-valued, equal-length
segments of u.

Theory shows that an infinite horizon control is capable of stabilizing any system, provided that a good
model is available. Shorter horizons represent one limitation of applied MPC. The neural net predictor can forecast
with a reasonable error on a finite horizon. Choosing a suitable prediction horizon consequently means
compromising between a) a horizon long enough to ensure stability of the controlled system, and b) a horizon short
enough to avoid instability via accumulating prediction errors. To account for prediction errors and resulting steady-
state offsets or for unmeasured disturbances entering the system, an error estimation and feedback scheme is
necessary. However, an inappropriate feedback scheme can destabilized the transition from one setpoint to another,
so we did not include any feedback of error. Linked to the feedback problem is the question of how frequently the
controller should update its output, the optimized profile of command values, u. In general, the more often the
profile is computed, the better the performance of the controller, but obviously an update at every time step is not
feasible because of current computational time requirements both to obtain net responses and execute NPSOL.

Figure 4 shows a successful attempt to drive the reactor temperature from one setpoint (120 0C) to another
(140°C).

180 I

T reactor

Setpoint (new)
Setpoint (old).

160

140 ----------------- - - - - - - - -
,

1.4

4) 120

100

80 I I I I I

0 1000 2000 3000 4000 5000 6000
time (s]

Figure 4: Result of a setpoint change for the reactor temperature; Tp = 500, Tc = 500.

Figure 5 displays the optimal control profiles of the reactor and condenser coolant flow corresponding to
Figure 4.

II- 140

45 1 1
Reactor cooling Water -

40
Condenser cooling Water

35

30

r_ 25
0,4

20

4'-4 "-

15 ",

10

5 -------------

0 I I I I I

0 1000 2000 3000 4000 5000 6000

time (s]

Figure 5: Result of a setpoint change for the reactor temperature: command profile.

References

1 Bhat, N., McAvoy, T., Use of Neural Nets for Dynamic Modeling and Control of Chemical Process
Systems, Computers and Chemical Engineering, Vol. 14, pp. 573-583, 1990.

2 Downs, J., Vogel, E., A Plant-Wide Industrial Process Control Problem, submitted for Computers and
Chemical Engineering, 1992.

3 Eaton, J., Rawlings, J., Feedback Control of Chemical Processes using On-line Optimization Techniques,
Computers and Chemical Engineering, Vol. 14, pp. 469-479, 1990.

4 Gill, P., Murray, W., Saunders, M., and Wright, M., User's Guide for SOLINPSOL: A Fortran Package for
Nonlinear Programming, Technical Report SOL 83-12, System Optimization Laboratory, Department of
Operations Research, Stanford University, 1983.

5 Haesloop, D., Holt, B., A Neural Network Structure for System Identification, 1990 American Automatic
Control Conference, Vol. 3.

6 Hsiung, J., Suewatanakul, and Himmelblau, D., Should Back Propagation Be Replaced By More Effective
Optimization Algorithms ?, Proceedings of UCNN, Seattle, 1991.

7 Narendra, K., Parthasarathy, K., Identification and Control of Dynamical Systems Using Neural Networks,
IEEE Transactions on Neural Networks, Vol. 1, March 1990.

8 Saint Donat, J., Bhat, N., and McAvoy, T., Optimizing Neural Net Based Predictive Control, 1990
American Automatic Control Conference.

9 Seborg, D., Edgar, T., Mellichamp, D., Process Dynamics and Control, John Wiley and Sons, 1989.
10 Su, H., McAvoy, T., Identification of Chemical Processes Via Parallel Training of Neural Networks, Ind.

Eng. Chem. Res., Vol. 31, pp. 1338-1352, 1992.
11 Ydstie, B., Forecasting and Control Using Adaptive Connectionist Networks, Computers and Chemical

Engineering, Vol. 14, pp. 583-599, 1990.

II- 141

Neural Subgoal Generation with Subgoal Graph:
An Approach

M. Eldracher"
Fakultit fir Informatik, Technische Universitit Miinchen,

80290 Miinchen, Germany, email: eldrache@informatik.tu-muenchen.de

Abstract

Building a world model for manipulators is computationally expensive. If the environment changes
over time and no further information is provided, other than that a local misfit has occurred, classical
algorithms have to start the model's computation anew. In order to plan complex trajectories, hierarchical
planning shows many advantages. In this article we report on an approach, that hierarchically combines
sub-trajectories using symbolic graph search techniques and a sub-symbolic neural classification and
generalization preprocessing system. We combine a graph of possible subgoals in configuration space
with a mapping from configuration space on to this graph.

1 Motivation and Introduction

Trajectory generation for manipulators is a difficult problem, up to now not satisfyingly solved. Despite
several classical algorithms are able to construct collision free paths (e.g. (Latombe, 1991)) using only
very limited computational resources, there does not exist a general satisfying solution. Typically classical
algorithms are based on world models. The construction of a world model takes exponential costs with the
number of obstacles to be avoided. Thus feasible solutions for real-world problems can not be provided
due to many obstacles. If the environment is slowly changing this problem is aggravated, because a full
recomputation must be done after each incremental change.

Glavina (1991) introduces an approach that does not need a world model. In order to construct a path
between two points in joint space, the system tries to use a straight trajectory (with a sliding mechanism
that is necessary to avoid too many failures). If no straight trajectory can be found, the system successively
generates random subgoals. To find a path, all tested straight sub-trajectories between start, generated
random subgoals, and goal are stored. A path is then found via graph search methods. Although the
algorithm is stochastically complete, the approach in practice suffers from several disadvantages: First the
number of subgoals t! at are tested must be limited (and the search is no more complete). Second the
system does in no way optimize the generated trajectories during planning. Third the system does not use
knowledge available from prior search.

We want to construct a system that takes the advantages from (Glavina, 1991) but avoids the disadvan-
tages. Following (Glavina, 1991) we plan hierarchically, combining straight trajectories that connect start
and goal via subgoals. Opposite to (Glavina, 1991) subgoals are not randomly generated anew for each task,
but chosen in order to yield a generally valid subgoal graph for all tasks. This provides the advantage that
after construction we can always use the same subgoals without further search.

2 Approach

In order to construct complex collision free trajectories, collision free simpler trajectories are combined.
We only use straight trajectories in joint space, but arbitrarily shaped sub-trajectories could be used. If

*This work has been funded by the German Ministry for Research and Technology (BMFT) under FKZ FKZ 01 IN 102 B/0.
The authors are solely responsible for the contents of this publication.

11-142

a straight collision free trajectory exists between two configurations, we call these configurations directly
connected.

If start and goal are not directly connected, we use subgoals. All sub-trajectories between subgoals in
the subgoal graph as well as between subgoals and arbitrary start or goal, have to be directly connected.
The idea is to construct a subgoal graph, that allows the following path planning approach: At a first step
the closest directly connected nodes in the subgoal graph for start and goal are determined. This can be
done via testing whether each one of all nodes is directly connected to start or goal. (A different approach
is proposed in section 4.) At a second step the subgoal graph is searched for direct connections between
subgoals that allow to connect the stored nodes from the first step.
In order to allow the proposed algorithm the subgoal graph has to fulfill the following conditions:

1. Each arbitrary configuration must be directly connected to at least one of the nodes in the subgoal
graph.

2. Each two nodes in the subgoal graph must be connected to each other.

To construct the graph, we perform the following procedure. First we chose an arbitrary configuration as
first node . Next we choose random configurations to enlarge the subgoal graph. If a random configuration
is directly connected to at least one of the nodes graph we check, whether it should be inserted in the set
of candidates that will probably be inserted into the subgoal graph, soon. If a random configuration is
not directly connected any node, we test, whether this configuration is directly connected with the set of
candidates. If so, we insert the closest, directly connected candidate into the subgoal graph. This insertion
guarantees that the subgoal graph remains connected, as all candidates are directly connected to at least
one of the previous nodes. If the random position is not directly connected to the candidate set, we forget
about this configuration for the moment and put it into a set of disconnected configurations. (Of course we
could start a new part of the subgoal graph with this random configuration. It would not be guaranteed any
more, that the subgoal graph is connected. Furthermore it is expensive to check whether disconnected parts
of a subgoal graph can be reconnected).

If many random configurations are tested, the subgoal graph spans the whole configuration space, if an
appropriate heuristics for choosing the candidate set is applied. The simplest technique is to store a fixed
number that fulfill the following condition: Of all generated random configurations the candidates are that
configurations that have the longest distance to the nearest directly connected node. A technique that yields
a better distribution is to use the following criterion: Choose as candidates a fixed number of configurations
that have the largest sum of distances between the closest node graph and all other directly connected
candidates. If one of the candidates is not directly connected, add a certain maximum distance instead.
These heuristics can be further improved, if there are different candidate sets for each node.

After developing the subgoal graph the set of disconnected configurations can be used to test, whether the
whole configuration space is directly connected to the subgoal graph. Of course the test could be performed
with a new set of random configurations.

3 Results of Graph Construction

For the tests we use two simulation environments for manipulators with two degrees of freedom. Figures
1, 2 and 3, 4 show the environments with their corresponding configuration spaces. In configuration space
figures the axes denote the angles of the two joints. White points show configurations that do not collide.
Black points show configurations that collide.

Configuration space figures also show three sets of configurations: Black circles mark nodes of the subgoal
graph. White circles denote candidates. Black squares label the disconnected. It is interesting, that the
disconnected were only disconnected during generation of the subgoal graph, but are directly connected to
the nodes graph or at least the candidates after 5000 random configurations were tested. Thus each arbitrary
combination of start and goal configurations can be connected using the subgoal graph.

For the environment in Fig. 1 there was only used a common set of ten candidates for all nodes. The
insert heuristic for the candidate set was simply "longest distance to the nearest directly connected subgoal
graph node". Only three nodes suffice to cover the whole space.

11-143

o C

Figure 1: Two-linked manipulator with two walls as /

obstacles.

Figure 2: Configuration space of Fig 1.

For the environment in Fig. 3 a different candidate set of each ten candidates is used for each node.
Furthermore the more complicated heuristics described above is used to insert candidates. Nevertheless
using only three candidates in each list and the simple candidate heuristics suffices to produce similar
results. The main difference is, that more configurations are temporarily put into the disconnected set, if
less candidates are used. Only seventeen nodes suffice to get a one hundred percent task solving ratio within
our system.

4 Interlinking the Subgoal Graph with Neural Preprocessing

It is expensive to test all nodes and candidates for all random configurations during construction of the
subgoal graph. Neural preprocessing allows to save a lot of computational costs. If a neural network gives
the node that is directly connected to previously tested neighboring configurations of the current random
configuration, normally only this node has to be tested. If unexpectedly this node is not directly connected,
still all other nodes can be tested.

Training of such a neural preprocessor is done straight forward. If a random configuration is directly
connected to a node, the neural network is trained using this configuration as input and the directly connected
node as output. It is intended to use a CMAC (Albus, 1981) for this neural preprocessor. Compared to
backpropagation networks CMAC shows the advantage, that it can be trained incrementally because of its
local generalization.

After termination of the subgoal graph construction the neural net has stored the corresponding nodes
for every configuration. Thus a search for the next node in the subgoal graph may be omitted by simply
asking the neural preprocessor for that node. This considerably speeds up the use of the subgoal graph.

5 Discussion

Our approach shows many advantages over competing algorithms. Opposite to Glavina (1991) there is no
need to search anew for subgoals for every task. The subgoal graph has all necessary subgoals for all tasks.
That is, knowledge about the configuration space is stored. As a second advantage this knowledge is used
in order to save the expensive evaluation of directly connected or not, as this information is inherent in
subgoal graph and neural preprocessing. Therefore (after training) the subgoal graph approach is even faster
than random search. During subgoal path construction there is furthermore the possibility to incorporate
optimization constraints by varying the heuristics for the candidates.

H- 144

0.

Figure 3: Two-linked manipulator with four boxes*
and four walls as obstacles.

Figure 4: Configuration space of Fig 3.

Compared to Eldracher and Baginski (1993b), Eldracher and Baginski (1993a) and Schmidhuber and
Wahnsiedler (1992) our approach has the advantage, that an arbitrary number of subgoals is produced
depending on the task. Furthermore there is no need to double the input space, as needed for the evaluation
function in the articles cited above. Input space doubling hinders application of such subgoal generation
systems for manipulators with more than three degrees of freedom (Baginski, 1993).

Compared to classical algorithms (Latombe, 1991) path planning is possible for areas that are already
explored, even if no complete model is available. Classical approaches have to compute the whole model first.
Furthermore there remains the adaptability of the neural preprocessor. This allows to retrain constantly in
order to react on slowly changing environments. Should the change in the environment cause a node to fall
into an area that causes collisions, there still remains the possibility to reuse the graph generation process to
get an adapted graph. This is computationally cheap as there are only very few nodes in the subgoal graph
(opposite to a complete reconstruction of the world model in classical approaches). It could also be thought
about moving the nodes according to a Kohonen-like procedure. But this would require a continuous test
whether a nodes remain directly connected to other nodes. As this test is the most expensive computation
in our approach, it seems not worth to do that.

Regarding the system from a different point, it becomes clear, why it shows so many advantages. The
neural preprocessor does something like a cell decomposition. But opposite to classical cell decomposition the
mapping onto the subgoal graph gives cells of arbitrary shape. Thus only very few cells suffice to cover the
whole free space. Furthermore the combination of symbolic graph search with sub-symbolic preprocessing
takes the advantages of both paradigms.

6 Conclusion

It is shown that our approach produces subgoals in order to combine simpler trajectories to complexer
ones. Per construction a varying number of subgoals is produced, depending on the task at hand. The
approach is not fully implemented yet, but the core, the subgoal graph generation is already tested. Neural
preprocessing is a relatively simple classification task and therefore it is not expected, that there will arise
any major problems from this part. The subgoal graphs produced show, that very small graphs suffice to
yield a path planner that will outperform each of the known planning algorithms with respect to speed,
planning success or adaptability.

H-145

Reference
Albus, J. S. (Ed.). (1981). Brains, Behaviour, and Robotics. Byte Books, Subsidiary of McGraw-Hill. ISBN

0-07-000975-9.

Baginski, B. (1993). Neuronale Generierung von Subzielen fui Roboter. Fortgeschrittenenpraktikum. Tech-
nische Universitat Miinchen.

Eldracher, M., & Baginski, B. (1993a). Hierarchical planning using neural subgoal generation. In Proceedings
of IEEE SMC'98.

Eldracher, M., & Baginski, B. (1993b). Neural subgoal generation using backpropagation. In Lendaris,
G. G., Grossberg, S., & Kosko, B. (Eds.), World Congress on Neural Networks, pp. 111-145-I-148.
Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale.

Glavina, B. (1991). Planung kollisionsfreier Bewegungen fir Manipulatoren durch Kombination von ziel-
gerichteter Suche und zufallsgesteuerter Zwischenzielerzeugung. Dissertation. Ph.D. thesis, Technische
Universitiit Miinchen.

Latombe, J.-C. (Ed.). (1991). Robot Motion Planning (3 edition). Kluwer Academic Press, Boston.

Schmidhuber, J. H., & Wahnsiedler, R. (1992). Planning simple trajectories using neural subgoal generators.
In Meyer, J. A., Roitblat, H., & Wilson, S. (Eds.), Proc. of the 2nd International Conference on
Simulation of Adaptive Behavior. MIT Press. In press.

II- 146

A Real Time Controller Based On a Pulse Stream Neural System

M. Chiaberge*, D. Del Corso*, L.M. Reyneri**, L. Zocca"

Dip. Elettronica, Politecnico di Torino - C-so Duca degli Abrussi, 24 - 10129 TORINO - ITALY
Dip. Ingegneria Informasione, Universiti di Pisa - Via Diotisalvi, 2 - 56126 PISA - ITALY

Abstract

This paper describes a real-time signal processing system based on an Artificial Neural Net-
work chip, which has been developed for and tailored to non-linear control applications. The chip
described, which uses Pulse Stream computation principles, has been designed and manufactured
using a standard 1.51m digital CMOS technology. The system can compute up to 140MCPS, with a
Nyquist frequency of about T0kHz.

The prototype of a controller board containing one such chip has been developed and fully tested.
The board can be directly interfaced to a host computer and the whole system supports neural and
cognitive training algorithms. The system is currently being used to assess the performance of these
algorithms for real-time control in several applications.

1 Introduction

Several applications of automatic control have very stringent real time requirements. They therefore
require a large amount of computing power, which can be obtained only using powerful DSP chips.
These have a high cost, they are power hungry and very sensitive to faults. Furthermore they generate
a large quantity of electromagnetic interferences.

An interesting alternative to DSPs is the use of silicon Artificial Neural Systems (ANS), which are
computing systems based on cognitive approaches [1]. These rely on non-linear correlators which can
be implemented in massively parallel arrays using analog and hybrid VLSI analog/digital technologies.
They suffer at a lesser extent of the drawbacks of traditional DSP chips. More and more designers are
developing specific VLSI circuits using various techniques, ranging from fully digital to fully analog and
even optical ones [2, 31.

This paper describes the hardware implementation of a low-power real-time controller based on a
VLSI neural chip designed by the authors. Section 2 introduces the system, while sections 3 and 4
describe, respectively, few applications and some training algorithms tailored to the proposed system.

2 Pulse Stream Neural System

Because of the advantages they provide, "Pulse Streams" (PS) [2, 3] are gaining support in the field
of hardware implementations of ANS. PS are a class of modulations using "almost periodic" binary
signals; continuously-valued information is contained in waveform timing and not in the amplitude.
Applying PS to ANS provides high noise immunity, ease of multiplexing, low energy requirements,
straightforward interface with external world and it simplifies the design of synapses and neurons.

A PS technique in particular has been used, namely Coherent Pulse Width Modulation (CPWM,
see fig. 1.a), which presents very good performance [3]. With this modulation technique, activation
pulses have constant frequency f. -- , while their width is proportional to an activation value ai:

T = Tm .azi (1)

where ar E (0... 1] and Tma < T.. All inputs Xl,..., X, have a phase relationship with the clock
signal CCK: waveforms are allowed to be high only during the active phase of CCK while they are
forced low during the idle phase. In the prototype described here, pulse period is T. = 7.2ps, divided
into an active and idle phase of T.., = 6.3As and T. - T,,,, = Tdle = 0 .9ps, respectively, which
corresponds to a stream frequency of 139kHz.

'This work has been partially supported by the Italian Research Project: 40% MURST - VLSI Architectures and the
Inter- Universiti Cooperation "Integrated Neural Sytemn for Robotic Applications" between Italy and Spain.

11-147

To Idte M

T o ---- - -

X1

X32.......

VCf CI S.

VCS ---- ---- --i - --
O U T .X. X. , !,
a) I0)

Figure 1: a) Timing of the CPWM system; b) Schematic of a CPWM synapse

2.1 Synapse and neuron architecture

The circuit of a CPWM synapse (figure 1.b) consists of two MOS transistors (M+ and M-) that
implement a pair of current generators controlled by the voltage stored on two identical capacitors (C+

and C-) of about lpF [3]. The current generators are switched by the incoming CPWM pulse stream
(input X,). At every cycle each synapse injects into the neuron a differential current pulse of duration
Ti = T Oi. Provided that the differential voltage on the two capacitors is made proportional to the
synaptic weight u ', the total -harge injected during one CCK cycle is

Q = KwTmaz.(u~iai), (2)

where Kw ; 21AA is an appropriate constant depending on technological parameters.
Several synapses are connected to a pair of summing nodes S + and S-, respectively for ezcitatory

and irAibitory charges. Charges coming from all the synapses are summed up together in the neuron
body (not shown), where they either charge or discharge an integration capacitor CT. The output
is reconstructed as a digital CPWM signal through a saturated amplifier (non-linear function) and a
sampled voltage-to-time converter.

The voltage on capacitors C + and C- is periodically refreshed from an external digital memory,
through a D/A converter using REN and CEN enable signals. Worst case refresh period for an error
of 1.5% is higher than Is.

2.2 Structure and reconfiguration of the prototype chip

A complete general purpose neural network (NN) chip with a synaptic array of 1056 synapses (32 x
32 + 32 thresholds) and 32 neurons has been developed and manufactured. As shown in fig. 2.a, the
array has 16 inputs coming from the external world (8 digital for direct CPWM signals and 8 analog,
internally converted by on-chip A/PS converters [3]) and other 16 inputs internally connected to the
outputs of the lower 16 neurons. These can be used as a hidden layer in a multi-layer NN.

Furthermore the weight matrix can be split into different blocks depending on the number of network
layers. According to what values are written into the blocks, different networks topologies can be
implemented such as, for instance, Hopfield nets, Multi Layer Perceptrons, competitive nets, etc. The
chip has 32 digital outputs, including the hidden ones, which are also available outside.

2.3 The Signal Processor Board

A self-standing prototype board has been built to interface the Neural Chip (NC) described above to
the controlled plant. This board has also been used to test the NC and for performance evaluations.
The diagram in fig. 2.b shows the main blocks of the board.

A three phase clock (CCK, 01, 02) is obtained from a 2.22MHz quartz oscillator, which controls and
synchronizes the whole system.

Refresh of weight capacitors in the neural chip is performed using an external digital RAM plus a
refresh counter. Weight values (8 bits) are stored into the RAM and from there periodically transferred
into the neural chip via the two DAC converters. RAM size is 8KBytes and it can contain up to four
different weight matrices (about 2KBytes per matrix).

11-148

16

00 0.

dat InefaeRers

116A

Figure 2: a) Internal organiNation of the chip; b) Block diagram of the board

The two DACs transform numeric values [-128. .. + 127] into a differential voltage range
[-l.S5V... + 1.5V]. Since refresh is disabled during the active phase, 6.3p s are available for RAM access
and DAC output settling.

The board is interfaced to a host PC via a 16-bit bidirectional parallel port (two 8-bit ports, respec-
tively for data and control signals). The control signals are used for read and write operation between
the PS and the digital weight memory (RAM). Weight matrices can only be read or written sequentially
under control of the host PC. No random access has been foreseen.

The interface with analog signals (0i) is composed of few operational amplifiers, with the task
of signal conditioning (adapting transducer ranges to the NC input dynamic range, compute signal
variations and filtering). One quad sample/hold amplifier is also used for analog signal sampling.

2.4 System implementation and performance

A NC prototype has been designed using a Full Custom approach, manufa .ured using aetwee
CMOS digital technology and successfully tested. Synapse and neuron size are about 0.00sqm 2 and

200.000pro2, respectively.
The chip computes about 4MCPS with an accuracy better than 1.5% (including inter-neurons

spreads), with a total power dissipation of less than 10oW. This corresponds to a computation energy
of about 7 5p per connection, which is one of the lowest figures among existing silicon NN implemen-
tations [3].

Since the system operates in the discrete time domain, it is appropriate to define its Nyquist frequency

f = f./2, which is about 70kHz. This is higher than what can be obtained by most DSP of comparable
power consumption. The only drawback is a reduced accuracy, of the order of 7-8 bits, which is yet
enough for several practical applications.

• . " ~PC INTrRE L,

' .]~ t !lANALoOG SIGNALS CONDITIONING C IRCUITS

*~ MC 3~ R~. ..c
Figure 3: Photograph of the board

11-149

3 Applications

The prototype board shown in fig. 3 has been used as a test vehicle to demonstrate how neural networks
can be used for control applications. Several applications have been considered and two demonstrators
are currently under development: a magnetic suspension and the leg control for a six-legged walking
robot.

3.1 Magnetic suspension

The magnetic suspension keeps a steel sphere floating in the air using a magnetic field. This is a simple
one-axis magnetic bearing, but the technique developed with this structure will be applied also to more
complex bearings, such as those used in vacuum pumps and high speed turbines. Due to the highly
non-linear behavior, the design of algorithmic controllers for such systems is very difficult and they are
a good test bench for neural networks.

The position of the sphere is sensed by an array of photodiodes, and this signal is conditioned and fed
to the analog inputs of the network. The inputs are the sampled position xk and the differences between
current position zk and previous positions z-I and z- 2 . These values are computed outside the neural
chip by the sample/hold circuits. The system is configured as a three-layered 3-5-1 network, and the
analog output is amplified to drive the suspension coil. Section 4 describes the training algorithms
which have been used for this problem.

3.2 Walking robots

The second application envisaged is the control of leg movements and coordination in a 6-leg walking
robot [4]. For this application, an analysis of computational requirements for an analytical (equation
solving) approach brought to an estimated processing power comparable with one 80486 processor for
each leg. The neural controller makes possible to solve the same problem with a small number of custom
NCs, with significant savings in size, power consumption and cost.

The lower layer of leg control, that is the closed loop control of position and speed of leg joints, is
handled by conventional control circuitry. Two higher layers use the neural network for:

" leg trajectory control: height from ground of the vehicle and the feet and the trajectory specifica-
tion are converted into rotation angles for the leg joints.

" leg movements coordination: gaits are executed as instructed from higher "navigation" layers.

Currently, simulations have been performed with several network architectures, and best results have
been achieved by either a single four-layers network with 4 inputs, or two separate networks for the
different angles of each leg [4]. All these configurations can be realized with one or two NCs with
appropriate input and synapse multiplexing.

4 Training algorithms

A crucial point in the design of a critical control system is the selection of an appropriate algorithm.
In the magnetic suspension application (section 3.1), the board described has been used to compare
traditional solutions (e.g. PID) with modern ones based on cognitive principles, in terms of performance,
training time and hardware complexity. Actually the board is interfaced with an host PC where the
algorithms are executed off-line. Next version of the board will contain the algorithms directly built
on chip. In the whole study the constraints of an analog silicon implementation have always been kept
in mind: low memory requirements, insensitivity to computation errors and small complexity of the
algorithm primitives. The performance of all the methods analyzed is measured in terms of the average
position error. The mean absolute error (MAE) of the ball has been used:

em jIdt, (3)

which has also been used as the fitness function for Genetic Algorithms. The following solutions have
been considered:

11-150

M ethod T TC 1 Sie of M em ory size Num ber of Tri i g
I (iterst.) (mm) population (bytes) trials

PID - 0.75 1 4 - on HW
NN 12 0.69 1 38 12 on SW

GA (PID) 8 0.23 50 200 400 on HW

SA (PID) 10 0.68 4 16 80 on HW
GA+SA (PID) 17 0.30 4 16 136 on HW

Table 1: Performance comparison of traditional and cognitive methods

" Linear PID controller, which is the reference method. The controller used is a linear PID with
a transfer function given by:

KAzk

= KPZi + d'- + K. tzk + Ko (4)
At

where Kp, Kd, Ki, Ko are respectively the proportional, derivative, integral and constant terms
of the controller. The PID has been used both alone (with coefficients tuned heuristically) and
in conjunction with the other algorithms described further. A PID has a very compact silicon
implementation.

* Neural Network controller (NN), that is the same described in section 3.1.

" Genetic Algorithms (GA) are powerful optimization methods [51 which can be used within
control systems in conjunction with other techniques (e.g. PID, NN, etc.), either to find the best
controller parameters (for PID) or the best network topology (for NN). In this work GA has been
used to evolve the parameters of a PID and the weights of a NN. In the first case a GA randomly
chooses the parameters of a PID within a predefined range. The solution was found after few
generations giving good controller performance. In a second case, GA is used to optimize the
weights of a NN with the same topology described above (3-5-1). The initial population was
composed of neural networks with random weights. Results were bad; barely one network in each
generation managed to make the ball rise from the rest position and make it fly for few fractions-
of a second. This shows that the combination of NN weights that make a good controller is very
sparse.

" Simulated Annealing (SA) in which the solutions were chosen randomly and evaluated by a
fitness function (the same than the GA algorithm) i F the fitness of the new solution was less
than the previous one, it was accepted with a probaL of:

P(a) = e- l (5)

where T is the current "temperature" of the system and Aft = (fk - ft-1) is the difference
between the energy (fitness) of the actual solution and the previous one. With an annealing
schedule of T as 1/In(k), the best solution (PID parameters) is obtained after about 10 iterations
and with a population of only 4 elements. This approach is slower than the one with GA but
this algorithm does not need a large population of possible solutions and in the perspective of a
hardware implementation, this is an important factor.

" Hybrid Approach (GA+SA) is the combination of a Genetic Algorithm and Simulated An-
nealing, which keeps the advantages of both methods, namely: lower memory requirements of SA
and better performance of GA. A solution better than the one with SA is found in less than 20
iterations, with the same number of genomes as SA (see tab. 1). A hybrid algorithm with just
mutations but no crossover has also been tried, as shown in figure 4.

Table 1 compares the different methods in terms of: Number Tc of iterations needed to reach an
error close to the asymptotic error e.. (namely eM _ 1.5eoo); the asymptotic error e.., the size of the
learning population (i.e. number of genomes or weight sets needed); size of memory needed (i.e. number
of weights or PID coefficients times the size of the population); number of "trials" (i.e. number of times
the controlled system is stimulated with different genomes before the controller reaches eM !5 e,,).

The use of the hybrid algorithm GA+SA combines the main properties of the standard GA operators
(efficient sampling of the solution space, stochastic hill-climbing, memory of the later stages of search)
with those of SA (small population, efficient use of memory, easy hardware implementation).

I- 151

S • , ,.
I\I

GA.
SA -

2GA-SA 4_ ~~mown .

is - - - --- - - --- - -- --- - ------ -- - - -

I Numl ~ -- I J-*---

0s

NI6u O'IfwMo

Figure 4: Evolution of the error during training for different cognitive algorithm

5 Conclusion

The paper has described a real-time signal processor based on a Pulse Stream neural chip. That chip
has been manufactured, tested and plugged onto the prototype of a neural controller board. The system
has been used to assess the feasibility of using cognitive methods for real-world control applications.
The board has been interfaced to a PC, for off-line training, on which several traditional and cognitive
learning algorithms have been implemented. System performance are better than those of other methods
of comparable power dissipation.

6 Acknowledgment

The authors wish to thank Dr. J.J. Merelo and Prof. A. Prieto (Departamento de Electr6nica y
Tecnologia de Computadores, Universidad de Granada, Spain) for the useful cooperation in the devel-
opment of training algorithms.

References

[1] P.J. Verbos, "An Overview of Neural Networks for Control", IEEE Trans. on Control Systems,
Vol. 11, No. 1, January 1991, pp. 40-41.

[2] A. F. Murray, D. Del Corso, and L. Tarassenko, "Pulse-Stream VLSI Neural Networks Mixing
Analog and Digital Techniques", IEEE Trans. on Neural Networka, vol. 2, no. 2, March 1991, pp.
193-204.

[31 L.M. Reyneri, M. Chiaberge, D. Del Corso, "Using Coherent Pulse Width and Edge Modulation
in Artificial Neural Systems", to be published on International Journal on Neural Systems, Special
Issue on Microneuro '93.

[4] D. Bassani, M. Chiaberge, D. Del Corso, G. Genta, F. Zanetti, "Simulation of a Hexapode Walking
Machine Controlled by Neural Network", Proc. of 1SMCR 1993, Torino, September 21-24, 1993

[5] L. Davis, "Handbook of Genetic Algorithms", New York, Van Nostrand Reinhold, 1991.

[6] Dan Adler, "Genetic Algorthms and Simulated Annealing: A Marriage Proposal", IEEE Interna-

tional Conference on Neural Networks 1993, San Francisco (CA), March 28- April 1, 1993.

[7] S.W. Mahfoud, D.E. Goldberg, "A Genetic algorithm for parallel simulated annealing", in Parallel
Problem Solhing from Nature, 2, R. Minner, B. Manderick eds., Elsevier Science Publishers B. V.,
1992.

11-152

Nonlinear Missile Controller Using Memory Neural Networks

Michael P. Falion, Randy E. Garcia, Murali Tummala
Department of Electrical Engineering

Naval Postgraduate School
Monterey, California 93943, USA

ABSTRAcT

Presented is the solution to a nonlinear missile control problem through application of the
backpropagation algorithm to a feed-forward artificial neural network that uses memory neurons. Memory
neuron networks have recently shown promise in identification and adaptive control as the memory neurons
allow the network to combine historical values with present backpropagation weights and outputs 11,21. The
learning algorithm employs only locally available information rather than feeding some or all past plant
inputs to the network. This solves the memory problem associated with storing all past values of the
missile/target system in order to apply a new control to minimize the difference error.

1. Introduction

The practical application of neural networks to such real-world problems has greater possibilities with the
advent of increased capabilities of parallel processing architectures. As shown in several previous examples 12-61,
neural networks can solve highly nonlinear control problems such as the interception of a target by a missile.
Anderson 141 employs reinforcement and temporal-difference learning methods to design a system which balances
an inverted pendulum on a cart. His performance measure in training a neural conholler is the failure signal
delivered by the system output. Nguyen and Widrow [3) apply the estimator/controller cascaded backpropagation
scheme in controlling a truck to back up to a loading dock position given a random starting position in a parking
lot. Sastry et. al. 121 apply the same technique and suggest a solution for feed-forward controllers and modify it by
applying memory neuron networks. In this work, we desire to train a missile to intercept a target with an arbitrary
trajectory by applying the latter method, which uses memory neuron networks. A missile controller learns to
identify given target trajectories and the necessary control required to allow the missile to kill the target
successfully. To train the controller, however, we implement another neural network that adequately models the
nonlinear plant (transfer function) of the missile system. This neural network is the estimator. The purposes of
the estimator are to model the plant and allow backpropagation of the error through the entire controller-estimator
network. The backpropagated error, in turn, will allow the adjustment of the weights in the controller to provide
the learning required to modify control parameters with changing target motion. Training occurs in two phases:
estimator first and controller second. The problem is valid in R2 with obvious extensions to R. The result of this
work is a memory neuron network missile controller for nonlinear networks involving delay.

2. Problem Definition

The nonlinear plant here is a missile with a ± transfer function. The control input is a bang-bang 171

force input of +u or -u applied to the missile. State variables identifying the missile plant (which will also be used
to feed the networks) include:

x. = missile horizontal position
y. = missile vertical position
xm = missile horizontal velocity
Ym = missile vertical velocity

- 153

and the target variables include:

x,. = target horizontal position
target vertical position

x= target horizontal velocity
Yt = target vertical velocity.

The neural network structure (see figure 1) resembles that used in 12,31. The variation to the Nguyen and Widrow
approach is the addition of memory neurons. The variables that apply to the neural networks are:

L = number of layers in a network
N = network neurons per layer
M = memory neurons per output network neuron
x = input to a network neuron
s = output of a network neuron
w = weight connecting network neurons between layers
f = weight connecting memory neuron to next layer network neuron
a = input weight to a memory neuron
3 = weight connecting memory neuron to its output network neuron
g(x) = activation function of a neuron.

(target states)
xt

Controller ()- -ec
Umn Missile n

,7 Plant

A Estimator
A ()-*ee_ Xm

------------------- - - - - -e

Xm (k+ I)

(missile states)

Figure 1. Memory neural network controller architecture.

Details of the design of the memory neurons within the input, hidden, and output layers contained in t21
provide a useful algorithm for updating output values and weights. The difference between memory neural
networks and traditional neural networks is in the memory neuron assigned to each network neuron. The memory
neuron receives the output of its associated neuron and its own feedback signal to be defined below. The self

11-154

feedback allows a weighted accumulation of the past neural activity at that processing element. The memory
neuron feeds its output to the next layer network neurons in the same manner as its source network neuron.

Traditionally, the input to a hidden or output layer neuron is 13,61

where i indicates the layer number. However, with additional outputs from previous layer memory neurons, the
input becomes

and the input to the output layer neuron is further extended by

- +jy, +

These last two equations show where the effect of the memory neurons take place. Since the output s of any neuron
is a function of its input

each of these additional memory neuron values, which contain historical data of the related network neuron, will
affect the output proportionally to the weight derived through learning. The activation functions g(x) chosen for
the hidden and output layers 121, respectively, are

I 1 +exp(-k 11)"

1 - exp(-k2X)
g2(x) = +2 +exp(-k 2x-)

The beauty of the memory neural network is found in the recursively weighted history seen in the output of the
memory neuron whereby

Vj(k) = ?%j(k)3j(k - 1) + (I - ?Z(k))Vj(k- 1).

Time k is included in the notation to isolate which values and weights are dependent on past time quantities. Note
that required past values of the total network input and output do not have to be stored in memory as they must be
with traditional "look back" smoothing control schemes such as the extended Kalman filter.

With the calculations of neuron input and output values understood, it is now important to determine how
the weights are updated in order to perform backpropagation of error. Once the output layer output values are

A
calculated above, the resulting s, are called the estimates of the plant output. We call this estimate ,,. The
squared error between the estimate and the actual plant output is:

I Ae (- _Tj)2

where j indicates which neuron's output value (state variable estimate) is being compared to the plant state
variable. Backpropagation of this error through the network is now possible. Fortunately, the error
backpropagation need not pass through the memory neurons to the network neurons, but solely through the
network neurons themselves. Weight updates 121 for time k+ I are

i(k + 1) = ;Pi(k) - 55+j (k)gj(k),

U- 155

6

f1(k + 1) =f(k) - Tl,+, (k)i,(k).

Ostensibly, the ith layer weight depends on the (i +1) layer error that is backpropagated and the previous value of
the ith layer weights. Additionally, the past output of the network and memory neuron, respectively, are weighted
by a step factor i. The memory neuron weights (x and 03 are updated as well using chain-rule approximations of
the differential error with respect to that weight.

3. Results

We chose networks with the characteristics listed in table 1. For this particular control problem, the
three-hidden layer zero-memory neuron system failed to adequately train the estimator-controller pair. The
six-hidden layer one-memory neuron system the estimator-controller pair. The six-hidden layer one-memory the

estimator controller estimator controller
1 1 2 2

number of layers L 3 3 3 3

input neurons N, 5 8 5 8

hidden layer neurons N 2 3 3 6 6

output layer neurons N3 4 1 4 1

output memory neurons M 0 0 1 1

input values u, Xm IIt, 'm I. xa ,

output values I u Y. U

Table 1. Missile controller/estimator architecture.

estimator-controller pair. The six-hidden layer one-memory neuron system gave quite favorable results in the
initial estimator training. Estimator training took place for 1000 epochs with a control input of zero, 1000 epochs
with a random uniform control input, and 1000 epochs with a sinusoidal control input. State variables were
random over the scaled ranges for position and velocity. The altitude varied to 5000 feet (the target at 3000 feet)
and the range limit on the horizontal was 30,000 feet. Each epoch trained over a two second interval of sequences
spaced by a time step of .01 second. Thus, the estimator reacts to 200 sequences of states and control each epoch,
for a total of 600,000 time steps. Initially, we gave equal weight to the position and the velocity errors. This
caused poor convergence for the position error and good results for the velocity error. We made a key change to
favor the position error over the velocity error in the weight updates. Figure 2a shows the position error of the
estimator during the first 1000 epochs, and it reflects poor convergence. Figure 2b shows the position error of the
estimator after 3000 epochs and considerable training. Figure 3 also shows velocity error improvement.

E timator ero F 2b. Estima err onvergec.S

. .i -11 -156

knW Sf0 5550t

Figure 2a. Early estimator error. Figure 2b. Estimator error convergence.

11-156

Eftmato 00..g. 1000 20WN ,, W)5 ESW00o U,0, 320042W 9"~p

200

12000

.1 Soo500

-2000 a

_600

2500 1000

Figure 3a,b. Snapshots of estimator velocity error.

Each initial surge in the convergence plots indicates a new random sequence. The subsequent taperng to
zero shows how quickly the estimator minim-izes its difference with the actual missile plant. Training the
controller off-line decreased the time required to update weights. No adjustment of estimator weights occurs
during this phase, and the outputs of the actual missile plant need not be calculated since the estimator should
accurately model the plant. Controller training, unlike the estimator, tailors its objective directly to the target
intercept problem. The cost function to minimize was the difference between target state and missile state.

5

-5

20

2. &S 21 23

Figure 4. Trained system error magnitude in distance and velocity.

Training the controller on-line allows the estimator to continue learning much like a traditional adaptive
controller. A final plot of the trained missile trajectory is shown in Figure 5. Although the trajectories appear to
be close, the nearest point of approach was off by 3000 feet.

4000000o~

3000 -

2 000-

1000

-2000 .

_30000

-ism 100

Figure S. Missile contfroller trained and employed against target.

11-157

4. Conclusions

Estimator training in this system proved to be excellent. The use of memory neurons proved to be a viable
method by which to train this two neural network system. Controller training, however, was not optimal in this
case. The tendency in the system was to overshoot the trajectory of the missile. The controller net perforned
much better as a velocity predictor than a position predictor. From this point, there exist two major areas of study
which vary in complexity. The first is to emphasize position in our weighting of neural values through the
network. This can be performed by lowering the learning coefficient of the control in order to allow the position
values and weights to dominate. The other direction of study is to analyze the positive effects of including
acceleration. The addition of two more state variables in the target and missile complicate the problem, yet the
same principles apply. Only the network structure changes. Similarly, the coefficients associated with acceleration
must be fully understood in order to optimize learning and performance of the controller.

5. References

III P. Poddar, K. P. Unnikrishnan, "Memory Neuron Networks: a Prolegomenon," (;MR-7493, General Motors
R&D Publication, October 1991.

121 P. S. Sastry, G. Santharam, K. P. Unnikrishnan, "Memory Neuron Networks for Identification and Control of
Dynamical Systems," (;MR-7916, General Motors R & D Publication, March 1993.

131 D. Nguyen, B. Widrow, "Neural networks for self-learning control systems," IEEE ('ontrol Sys. Mag., April
1990, pp.18-23.

(41 C. W. Anderson, "Learning to Control an Inverted Pendulum Using Neural Networks," IEEE Control Sys.
Mag., April 1989, pp.31-37.

151 A. G. Barto, R. S. Sutton, C. W. Anderson, IEEE Transactions on Systems, Man, and Cybernetics," vol.
SMC-13, No. 5, September/October 1983, pp.834-846.

161 M. Fallon, R. Garcia, "Control of a Nonlinear System Using Neural Networks," EC4900 Course project,
NPS. September 1993.

17] D. E. Kirk. Optimal Control, Prentice Hall, 1970, pp. 246-247.

11-158

Stable Neural Network Control Systems Using

the Multiple-nonlinearity Popov Criterion

S. Kuntanapreeda and R. Fulmer

Center for Self Organizing and Intelligent Systems
College of Engineering

Utah State University, Logan UT, 843224130

ABSTRACT

This paper introduces a new concept for training a neural network controller which guarantees Lyapunov
stability of a closed loop controlled system. A modified backpropagation algorithm is derived, where the
usual minimization problem is constrained to satisfy the multiple-nonlinearity Popov stability condition.
The generalized Kalman-Yakubovich condition is used to provide necessary and sufficient conditions for
satisfying the Popov criterion.

1. INTRODUCTION

It is well known that the standard backpropagation training rule for a feedforward neural network is a
steepest descent solution to a nonlinear least-square minimization problem. Briefly, the rule is obtained by
defining the minimization objective function as the sum of n squared terms

J(W) = , (xd, _](W))2 (1)

where W denotes the weight parameters of a neural network and xdi and x(W) denote the ith components
of the desired and actual response of plant state n-vectors, respectively. The training rule can be written as

Wk+l = Wk - 8NVwJ), (2)

where 8 is known as a training rate and Wk and VwJ are the weights and the gradient at iteration k,
respectively.

There are several approaches to train a neural network controller (NNC). For example, it may be possible
to train a NNC to emulate the input-output response of some existing non-neural network controller, such
as a human operator. Some other possibilities are given in the paper by Nguyen and Widrow[I) and
Kuntanapreeda et al.[21, where neural network controller design is independent of existing controllers.
Unfortunately, all of those approaches have a major difficulty which prevents their gaining widespread
acceptance by the control system community at large. That is, once designed, it is either impossible or
prohibitively difficult to prove the stability of the closed loop system. About all that can be done at this
stage of neural network control theory is to demonstrate the adequacy of closed loop performance
through simulation.

This paper introduces a novel modification of the closed loop backpropagation algorithm for training a
NNC which guarantees stability (in the Lyapunov sense) of the closed loop neural network controlled
system. The idea is to use the multiple-nonlinearity Popov criterion [3,4] as a training constraint. The
generalized Kalman-Yakubovich lemma [3] is used as a necessary and sufficient condition for the Popov
criterion. Minimization of the constrained objective function is achieved by using an iterative feasible
direction method [5,6].

I- 159

2. DYNAMICAL SYSTEM

Assume the plant is modelled by

dxldt - G(xu), (3a)

where x is the state n-vector of the system and u is an n-vector control input. Without loss of generality, it
is assumed that zero is the equilibrium state. Furthermore, it is assumed that the system can be written (by
using a Taylor expansion about the equilibrium point) as

dxldt = Ax + Bu + g(xu), (3b)

where A is a real (n x n) matrix and B is a real (n x m) matrix. The nonlinear term g(xu) is an n-vector
function which is assumed sufficiently small when (xu) is sufficiently close to x = 0, u = 0. The matrix A
is assumed to be a Hurwitz matrix and the pair (AB) to be completely controllable. As usual, assume all
of the system states variable are either available for feedback purpose or can be satisfactorily estimated by
an observer.

3. NEURAL NETWORK CONTROLLER CONFIGURATION

The NNC of Figure 1 is assumed to be in the form of a single hidden layer network with linear output.
The hidden layer consists of p nonlinear neurons whose nonlinear functions satisfy f(O) = 0 and
o 5 f(y)y < y. Note that tanh(.) is an example of a function satisfying this requirement. Let W, denote
the (p x n) weight matrix of the hidden layer and W2 the (m x p) weight matrix of the output layer.

Wi w2

f

- Plant

f

Figure 1. NNC configuration.

4. THE POPOV CRITERION AND THE KALMANoYAKUBOVICH LEMMA

The following well known theorems will be stated here without prooL They can be found in any number of
well known textbooks from control system literature, such as [3] and [4].

I- 160

Thmom (PoPov criterion). Consider the closed loop system whose state space representation is given by

dx/dt - Fx + Gu
y - HT
u -=D(y), (4)

where x, y and u are the n-state, m-output, and m-control input vectors, respectively. It is assumed for (4) that
F is a real (n x n) Hurwitz mae Gx and H are real (n x m) and (mx n) matrices, respectively (FG) is
completefy controllable; and that 0(y) is an r-vector function whose i component Aj is a function of the
single variable y, only, for i 1, 2, ..., n, and where

0 #84(ydyj :5 kjy2 and 4,(o) = 0.

Then, the equilibrium position x = 0 of (4) is asymptotically stable in the sense of Lyapunov if the (m x m)
maoft

Z(s) - IC1 + H(Is-F)'1 G

of functions of the complex variable s is positive rea where K is a (M x m) diagonal matrix with all diagonal
elements exactly equal to ki for i = 1, Z .., n.

Theorem (Kalman-Yakubovich lemma). Let r' be a real (m x r) matrix and F a real (n x n) Hurwitz matrix
Furthemore, let G and H be real matrices with the dimension of (n x m) and (m x n), respectively, and let
(F,G) completely controllable. Then, for given (n x n) symmetric positive semi-definite real matrix Q
a real (n x n) symmetric positive definite matriv P and a real (n x r) matrix q satifying

FTp + PF = .qqT. Q

and
PG .HT -qrT

exist if and only if the (mx m) matrix

Z(s) = (IT/ 2) + H(Is-F)'G

of functions of the complex variable s is positive real,

5. STABLE NEURAL NETWORK CONTROL

Assume the linearized system (3) is to be controlled by a NNC of the configuration shown in Figure 1.
Equation (3) can then be written in the form

dx/dt = Ax + Bu
u = W2 F(h)
h = WIx (5)

where F(h) is an p-vector function whose i h component (i = 1, 2, ... p) is a function of the single
variable h, and whose components satisfy

0 : f.(hi)hj < hi2, and fj(0) = 0.

Note that the neural network control law can be written as

u(x) = W2F(Wlx). (6)

11-161

Pogodon. The neural network control system (3) with the control law (6) is at least locally stable if there
ama real (n x n) positive symmetric definite matrix P and a real (n x p) matrix q such that

ATP + PA = .qqT. Q (7a)
and

PEW 2 + (W)T = .qrT (7b)

where r is a real (p xp) diagonal matrix with diagonal elements ri exactly equal to ri = 20
, for each

i Z 1, , .., p and where Q is a real (n x n) postive symmetric semi-definite mariz Furthermore,

V =xTPX

is a Lyapunov function for control system.

Proof Let the system be given as above and assume P and q satisfy (7). Then

-dV/dt = -(dx/dt)TPx - xTP(dx/dt).

From (5) and (7),

-dV/dt = xTQx + xTqqTx + 2F(h)T[rq + W1Jx

= xTQx + xTqqTx + 2xTqr'F(h) + 2F(h)Th

= xTQx + xTq + F(h)T12
2 + 2F(h)Th - 2F(h)TF(h).

> 0.

Then, V is a Lyapunov function and, therefore, the equilibrium is Lyapunov stable. Q.E.D.

6. TRAINING RULE

In order to train the NNC of Figure 1, it is necessary to minimize the objective function

J(W) = 6 'i=i,n a3 (xdC -(w)) 2, (8)

but, in this case, with the added Popov criterion constraints

c =ATP+PA+qqT+Q =0

c2 = PB(W2)T + qTF + W1 = 0. (9)

Here A and B are the system matrices of (3); WI and W2 the weight matrices of the NNC; and P and q
are defined as in the previous proposition. For convenience, lei X, be a column vector whose elements
are the formed from the consecutive rows of the weight matrices W, and W 2, respectively, and X9 is
similar formed from the rows of P and q. Furthermore, let X and C(X) be defined by [X1, X21 and

Ideally, we need a training rule which minimizes the objective function (8) subjected to the constraints (9).
Furthermore, if X k (X at iteration k) is satisfied, Xk+l = Xk+Sk should also be satisfied, i.e.

C(Xk) = C(Xk+Sk) = 0. (10)

-162

If we expand (10) by using Taylor expansion about the current point Xk, we get

C(Xk+Sk) * C(Xk) + I(X)Sk, (n)

where 7(Xk) is the Jacobian matrix of C(X) corresponding to the current point Xk. Obviously, the local
feasible search direction S. must be in the null space of l(Xk), i.e. Sk = Zkx, where Z4 is a matrix whose
columns form a basis for the null space of Y(Xk), i.e. I(Xk)Z k - 0, and X is a search direction. Also, let
Yk be a matrix whose columns form a basis for the range space of X(Xk) when I(Xk)Yk = I. The matrix
(Yk,Z) can be obtained, for example, by QR factorization. Thus an equivalent form of (8) is to minimize
the unconstrained objective function

Y(Z) = i-,. a (Xdi - .(Xk+ZkZ))2 (12)

By using the chain rule In X = Xk+ZkX, the gradient is given by

v.y =z(VxT). (13)
Also, VXT O VXJI0 = VWJ 10. (14)

Note that the right hand side term, Vw.J, of (14) is the same as before, without the Popov criterion
constraint. Then the local feasible gradient direction can be written as

Sk = "ZtTZk[VwJ 101 (15)

This is called the gradient projection method [6].

The first attempt is to move from Xk to X' in the direction of Sk, i.e.

X' = Xk - 8ZjZkIVwJ 1 01. (16)

for a small positive training rate S. Since Sk is a local feasible direction, it may lose feasibility. In this case
we need some iterative strategy for returning sufficiently close to the feasible region. We seek a point
(X'+p) such that C(X'+p) = 0. By Taylor expansion, we get

0 = C(X'+p) . C(X') + I(X')p,
so that

Y.(x,)p - -C(X').

If we start closed to Xk, we can assume that

I(Xk)p - C(X').

Recalling the matrix Yk (7(Xk)Yk = I), the equation above can be written as

I(Xk)P - -7-(XkYkC(X'),

which implies

P = -YkC(X') •
(17)

Next obtain a new point by forming

X'(1) = X'- YkC(X' (18)

Substituting X'(1) for X' in (18) and successively iterating the process yields a sequence {X'(r)}

- 163

(where r is the iteration index) generated by

X'(r+1) = X'(r) - YkC(X'(r)). (19)

which, started sufficiently closed to Xk, will converge to a feasible solution Xk+1.

Therefore, the learning rule can be written as

Xk+l = Xk- 8ZTZ[VWJ 01 - YkC(X'(r)), (20)

where X'(r) represents the iterative vector in (19).

After training, we get a set of neural network weights which guarantees at least local equilibrium stability
of the neural network control system by satisfying the Popov criterion. Furthermore, we also get the matrix
P which allows us to establish stability using V = xTPx.

7. CONCLUSION

It has been shown that a NNC can be trained to guarantee the Lyapunov stability of the closed loop
controlled system. The method has been successfully applied to training a stable NNC to emulate a non-
neural network controller, and also for training a model reference neural network as discussed in [21.
These results, plus a discussion of convergence questions will be presented in a companion paper [7] now
in preparation.

ACKNOWLEDGEMENTS

The authors would like to acknowledge support for this work by the Center for Self-Organizing and
Intelligent Systems at Utah State University, and for valuable assistance and suggestion provided by its
Director, Dr. R.W. Gundersen.

REFERENCES

[1] D.H. Nguyen and B. Widrow, "Neural network for self-learning control system", IEEE Control SysL
Mag., Vol. 10, No.3, April 1990.

[2] S. Kuntanapreeda, R.W. Gunderson, and R. Fullmer, 'Neural network model reference control of
nonlinear systems', Int. Joint Conf. on Neural Networks, Vol.2, page 94-99, Baltimore, MD, June 1992.

[3] KS. Narendra and C.P. Neuman, "Stability of continuous time dynamical systems with m-feedback
nonlinearities', AIAA Journal, Vol.5, No.11, Nov. 1967.

[4] J.B. Moore and B.D.O. Anderson, 'Application of the multivariable Popov criterion', Int. J. Control,
Vol.5, No.4, 1967.

[5] R. Flecher, Practical Method of Optimization, John Wiley and Sons Ltd., 1987.

[6] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesly Pub., 1989.

17] S. Kuntanapreeda, R.W. Gunderson, and R. Fullmer, "Results and Convergence of the Stable Neural
Network Training Algorithm', in preparation.

11-164

Direct Computation of Robot Inverse Kinematic Transformations
Using Hopfield Neural Network

D.H. Rao, M.M. Gupta and P.N. Nikiforuk

Intelligent Systems Research Laboratory, College of Engineering
University of Saskatchewan, Saskatoon, Canada, S7N OWO

Abstract

Computation of inverse kinematic transformations is an important problem in the field of robotics as it
must be solved in real-time in order to position the end-effector at the desired position in a given task-space.
However, it is a difficult problem for it involves the determination whether or not at least one mathematical set
of robot joint angle values exists that will produce the desired coordinate configuration. The mathematical
solutions should be checked against the physical constraints associated with the manipulator. The advent of
artificial neural networks has made it possible to obtain general learning schemes which can be used to arrive at
feasible solutions to inverse kinematics problem in a constrained environment independent of a robotic structure.
The intent of this paper is to use the Hopfield neural network for the direct computation of inverse kinematic
transformations of two- and three-linked robots, thereby avoiding the off-line training of neural networks.

1. Introduction

1.1 The Problem of Inverse Kinematics In Robotics
The forward kinematics problem is concerned with the determination of the configuration (position and

orientation) of the end-effector for a given set of the joint variables such as angles and lengths. The joint
variables are the angles in the case of rotational joints, and the link extension in the case of prismatic or sliding
joints. Thus, the forward kinematics problem uniquely relates the given set of joint variable (the angles
between the links 9, and the link lengths L) vector, 1, to a set of task-space coordinate vector, X, by a relation

X = (p[Ti] where 4p is a continuously differentiable nonlinear function and T1 = [8, L] T. This has a unique
solution in the sense that for a given set of joint angles 0 and link lengths L, the configuration of the end-
effector within the task-space can be uniquely determined. The more difficult problem, which is of primary
practical importance in robot manipulation, is the computation of inverse kinematic transformations, that is ri
= -1 [XI. In other words, the inverse kinematics problem may be stated as follows [11: Given a desired
position and orientation of the end-effector, determine a set of joint variables (angles) that achieve the desired
position and orientation.

Equations to determine the robot joint angles are nonlinear in nature because they not only contain the
trigonometric functions, but also squared and cross product terms. The periodicity and symmetry of the tangent
function and the multiple roots of the squared terms result in an ambiguous determination of the end point
location. The problem becomes more severe as the number of links in the robot increases. Therefore, the
inverse kinematics problem involves the questions of existence, uniqueness and the method of solution. More
specifically, the existence question involves the ability to determine whether or not at least one mathematical set
of robot joint angle values exists that will produce a desired configuration. The mathematical solutions that one
may arrive at should be checked against the constraints associated with the manipulator in order to determine
whether or not they represent physical solutions as well [2].

1.2 Neural Networks in Robotics
Advances in the area of neural networks have given a different direction to robotic control. By virtue of

their functional mapping and iterative capabilities, neural networks can be employed for learning coordinate
transformations [3 - 6]. The advantage of using the neural approach, over the conventional inverse kinematics
algorithms, is that neural networks can avoid time consuming calculations. Furthermore, in a manner that is
typical of neural networks, it would be very easy to modify the learned associations upon changes in the
structure of the mechanism.

- 165

The conventional methodology for computing inverse kinematic transformations involves the training
of a multi-layered feedforward neural network off-line for possible data patterns within the robot task space to
obtain solutions to the inverse kinematics problem. Because of the generalization property, neural networks can
learn the associated patterns and recall the learned patterns. The trained network is then used to achieve the
desired end-effector movements. This technique basically involves therefore two modes of operations, namely
the training phase and the performing phase. However, the major drawback of this technique is a very long
training procedure in addition to the fact that static neural networks do take a very large learning time for a given
task.

The emergence of dynamic neural computing (the use of dynamic neural networks) has made it possible
to develop learning schemes which can be used to arrive at feasible solutions with relatively small convergence
time to complex problems, such as the inverse kinematics problem in robotics. Although the learning of
inverse kinematics transformations is a static problem, the use of dynamic neural networks helps to compute the
transformations fast compared to static neural networks. The authors used a neural structure called the dynamic
neural processor (DNP) for this task [5, 6]. In this paper, the Hopfield neural network is used as an alternative
to the slow convergence of static networks and the complexity of DNP for computing inverse kinematic
transformations.

Following this introduction, the rest of the paper is organized as follows. A brief description of the
Hopfield neural network (HNN) is given in the next section. Computer simulation studies demonstrating the
direct computation of inverse kinematic transformations of two- and three-lined robots are discussed in Section
3, followed by the conclusions in the last section.

2. Hopfield Neural Network

The dynamic neural networks, also known as feedback or recurrent neural networks, were first
introduced by Hopfield [10, 11]. Unlike the static neural networks, a dynamic neural network employs
extensive feedback between the neurons. The node equations in dynamic networks are described by differential or
difference equations. Neural architectures with feedback are particularly appropriate for system modeling
(identification), control, and filtering applications. From a computational point of view, a dynamic neural
structure which contains a state feedback may provide more computational advantage than that of a purely
feedforward neural structure. A HNN consists of a single layer network included in a feedback configuration
with a time delay, as shown in Fig. 1. This feedback network represents a discrete-time dynamical system and
can be described by the following equation

y(k+l) = P [w(k) y(k)], x(0) = x0 (1)

where y(k) and y(k+l) represent the states of the neural network at k and k+l instants of time, x0 represents the
initial value, w(k) denotes the vector of neural weights, and 'l[.] is the nonlinear activation function. Given an
initial value x0, the above dynamic system evolves to an equilibrium state if TP [.1 is suitably chosen. The set
of initial conditions in . neighborhood of x0 that converge to the same equilibrium state is then identified
with that state. The te,,-i "associative memory" is used to describe such systems. The feedback networks with
or without constant inputs are merely nonlinear dynamical systems, and the asymptotic behavior of such
systems depends on the initial conditions, specific inputs as well as on the nonlinear function. Single-layer
HNN consists of n computing elements (neurons) with thresholds w i as depicted in Fig. 2.

The feedback input to the i-th neuron is equal to the weighted sum of neural outputs yj, where j = 1, 2,
n. Denoting wi as the weight value connecting the output of the j-th neuron with the input of the i-th

neuron, we can express the total input ui of the i-th neuron as [9]
n

u.= yw..+ xi -w i=l, 2, n. (2a)
ui jul 'J "w£ i

jei

II- 166

In vector form, Eqn. (2a) can be rewritten as: ui = Wy+xi -W ,i=1,2. (2b)

where w. A (WilWi2 wIn] T and y = [yl'y 2 yn IT

The linear portion of the recurrent neural network can be described in matrix form as

U = W y + X - w0 (3)

-T TTwhere U A UlU 2 ... u I , X A [Xx 2 xn and w

The matrix W in Eqn. (3), also called connectivity matrix, is an (n X n) matrix. This matrix is
symmetrical, i.e., w.. = w.., and with diagonal entries equal to zero, w.. = 0 indicating that no connection exists

from any neuron back to itself. This condition is equivalent to the lack of self-feedback in the neural structure
shown in Fig. 2. The weights of the HNN are updated during the learning process using the following rule

w(k + 1) = w(k) + gt W(k) (4)

where W(k) is the estimation of the weight vector at time k, and pt is a step size parameter, that affects the rate
of convergence of the weights during learning. The output ui of the HNN at current time k may be obtained

only using the state and input of the network at past time k - 1. Ile error index, J, should be then defined as

m m1 21 2

where ei(k) = ydi(k) - yi(k) is a learning error between the desired and the observed outputs at time k. For

complete details of the learning algorithm, readers are referred to [9].

3. Computer Simulation Studies

The learning scheme [61 employed for the direct computation of inverse kinematic transformations of
two- and three linked robots is shown in Fig. 3. This learning scheme uses a neural network to determine the
joint angles for a given set of desired Cartesian coordinates. These estimated joint angles, which act as inputs
(after denormalization) to the forward kinematics, are checked against the pre-defined robot task space. This
additional level of control makes the robot operate within a specified work-space. The HNN used to compute
the inverse kinematic transformations consisted of five neurons configured in a single layer as depicted in Fig. 3.
The desired end-effector x-y positions served as inputs to the first two neurons of the HNN. In this section, we
discuss the computer simulation results for 2- and 3-finked robots.

3.1 Two-Linked Robot: Consider a 2-linked robot shown in Fig. 4. The point (x,y), the free tip of the
second link, also called the 'end point', describes the trajectories based on a Cartesian coordinate system. The
origin of the coordinate system is the first joint, which is assumed to be fixed in space, while the end point
coordinates (x, y) are located with respect to the two perpendicular axes, X, Y. The relationship between these
two angles, defined as 0t, e2 and the end point coordinates, x and y, form the kinematic equations of the 2-

linked robot. Specifically, the coordinates x and y are defined as [1]

x=L1 cos (01) + L2 cos (01+ 02), and y = L! sin (01) + L2 cos (91+ 02). (6)

The above equations in x and y are the 'forward' kinematic equations of the robot. For the lengths (L1, L2), the
point coordinates (x, y) of the end-effector are uniquely determined by the two variable joint angles (01, 02).

11-167

The task at hand is to compute the joint angles (()I (2) for a given end-effector Cartesian position without

analytically solving Eqn. (6). In the simulation examples discussed below, the lengths of the two links were
0.5 meters.

Example 1: In this example, the desired position of the end-effector was chosen randomly at xd = - 0.6 and

Yd = 0.5. These coordinates served as inputs to the HNN. The weights of the neural networks were adjusted
until the output eor decreased to a pre-set tolerance limit of ± 0.05. The initial position of the end-effector was
arbitrarily set at x = 0.2, y = 0.4. The desired and the obtained x-y coordinates and the position error trajectories
e. , ey are shown in Fig. 5. In sequel to this, different desired Cartesian locations were presented to the HNN.
The end-effector convergence and the error trajectories are shown in Fig. 6.

Example 2: The adaptive capability of the HNN-based learning scheme is demonstrated by changing the
desired end-effector positions during the computational process. Initially, the desired end-effector locations
presented to HNN was: xd = - 0.6 and Yd = 0.5. At time instant k = 150, the x,y positions were changed to: Xd

= 0.5 and yd = - 0.85. The simulation results obtained are shown in Fig. 7.

Example 3: In this example, we consider a case where one of the links, L2 , of the robot during the learning
process undergoes a stretching effect, for example in a telescopic robot. Due to these dynamic perturbations, the
observed end-effector position may not match with that of the desired position which necessitates readjustments
in the neural weights. The simulation results are shown in Fig. 8. From these results it may be seen that the
HNN could adapt to the change in robot dynamics, thereby demonstrating the robustness of the learning scheme.

Example 4: The successful operation of an intelligent robot depends upon its ability to cope with
perturbations that may cause dynamic changes in its structure. To study the performance of neural structures
under noisy conditions, the robot dynamics were corrupted with a random signal bounded in the interval [0,1].
Tables I and 2 show the targeted and the observed end-effector positions for 20% and 50% noise respectively.
These results show that the HNN could compute the robot joint angles fairly accurately even under the presence
of noise.

3.2 Three-Linked Robot: A three - linked robot model is illustrated in Fig. 9. The forward kinematic
equations of this model are

x= L1 cos(0 1) + L2 cos (01+ 02) + L3 cos (0 1+ 02 -03), and

y= L 1 sin (1) + L2 sin (01 + 02) + L3 cos (0 1+ 02 -0 3). (7)

The lengths of the three links, (L,, L2, L3), were 0.5, 0.5 and 0.2 meters respectively. The proposed

neural learning scheme made it unnecessary to derive, from the equations given above, an analytical derivation of
the inverse kinematic relations of this three-linked structure. All that was required was the forward kinematic
equations given in Eqn. (7), and the output of the third neuron which corresponded to the joint angle 03. This
shows the ease with which a neural network can be adapted to include a different structure whose inverse
transformation needs to be formed. The network outputs were suitably transformed to the Cartesian space using
the forward kinematic equations.

Example 1: In this example as in the 2-linked robot case, the desired position of the end-effector was chosen
to be xd = - 0. 1and yd = 0.5. The weights of the neural networks were adjusted until the output error decreased
to a pre-set tolerance limit of ± 0.05. The initial position of the end-effector was arbitrarily set at x = 0.2,
y = 0.4. The desired and the obtained x-y coordinates and the position error trajectories for different desired end-
effector positions are shown in Fig. 10.

Example 2: In this example, the desired end-effector positions were changed as follows: xd = - 0.6 and

yd = 0.5 for k < 150, xd = 0.5 and yd -- "0.85 for k 2 150. The simulation results obtained are shown in Fig.
11. Extensive simulation studies were carried out for different dynamic perturbations and the computation of
inverse kinematic transformations were found to be fairly accurate.

11-168

4 Conclusions

In this paper, the Hopfield neural network (HNN)-based learning scheme that could directly compute the
invcrsc kinematic transformations of two- and three-linked robots was described. From the computer simulation
rcsuls presented in the preceding section, it is clear that the HNN could avoid time consuming analytical
calculations in sharp contrast to the conventional inverse kinematics algorithms. Furthermore, in a manner that
is typical of neural networks, it would be very easy to modify the learned associations upon changes in the
structure of the mechanism as was demonstrated for a three-linked robot.

References

[if M.W. Spong and M. Vidyasagar, Robot Dynamics and Control, John Wiley and Sons, Inc., 1989.[21 W.A. Wolovich, Robotics: Basic Analysis and Design, Holt, Rinehart and Winston, New York, 1987.
[3] A. Guez and Z. Ahmad, "Solution to the Inverse Kinematics Problem in Robotics by Neural

Networks", IEEE Int. Conf. on Neural Networks, San Diego, Calif., pp. 617-624, March 1988.
141 J. Barben, S. Gulati and M. Zak, "Neural Learning of Constrained Nonlinear Transformations", IEEE

Computer, pp. 67-76, June 1989.
[5] MIA. Gupta, D.H. Rao and P.N. Nikiforuk, "Dynamic Neural Network Based Inverse-kinematics

Transformation of Two- and Three-Linked Robots", IFAC Conference, Sydney, Australia, Vol. 3, pp.
289-296, July 19-23, 1993.

[61 D.H. Rao, M.M. Gupta and P.N. Nikiforuk, "On-Line Learning of Robot Inverse Kinematic
Transformations", IEEE Joint Conf on Neural Networks (IJCNN), Nagoya, Japan, Oct. 25-29, pp.
2827-2830, 1993.

[71 J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational
Abilities", Proceedings of the National Academy of Sciences, Vol. 79, pp. 2554 - 2558, 1982.

[8] J.J. Hopfield, "Neurons with Graded Response Have Collective Computational Properties Like of
Those Two-State Neurons", Proceedings of the National Academy of Sciences, Vol. 81, pp. 3088-
3092, 1984.

[91 J.M. Zurada, Introduction to Artificial Neural Systems, West Pubh. ng Company, St. Paul, MN,
1992.

static Net oA a1twek

7FIG-R- 2

FIGURE 1

..... 14 . .. [11-169

User- Ro t mk - W0 We.I.--

es) ..(k)

--_I
ZI',

IrlgI" 17UR

II- 169

il H R I I I I

:131 1 2121

2 2

*b*I 1 !l~ t t l

I11 .,-.I- - ' "x M " "

it,

-r V

I -1

in1 ' 1 u iI -| =

A : .- p q uuamfw

-- d U,

U. " .C. -x - .u . .r ~m~u

Smssu m2 " i

"1 2; "L -

- -U~
1 "

n- 170

Geametry-based Process Control

Jeff Root
do Root Associates
55 Whitney Street

P.O. Box 299
Westminster, MA 01473-0299

Abstract

This paper will discuss a straight-forward approach to process control learning and
generalization which is based on the geometric mapping of monitored inputs. It will be shown
that when output thresholds or goals have been defined and are used as criteria for storing
information, unique process shapes are learned. These shapes may be used to automatically
derive the appropriate set of control adjustments for each generalized state of the problem.

Introduction: Process Control Framework

The general framework for process control discussed in this paper is shown in figure 1.
Controllable process inputs as well as the output state are monitored and used to determine the
appropriate feedback to apply to each input.

Monitored inputs to feedback decision

I--------------------------------------- .-- - - - - - - - - -

I I

Feedback,,

-"- I I
I '-I "'--__ _ __ __ _ __ __ _

I
I I

Process lo be controle

Output
Inputs

Figure 1: Process Control Framework

There are two unique challenges regarding process control to resolve using connectionist
networks. The first is to adaptively generalize similar input sets within an associative memory.
The second, more challenging problem has been to provide an adaptive framework for learning
solutions to each state of process control problems.

11- 171

Geomety-based Process Control

The technique presented here has the ability to learn solutions to a problem as well as
providing the input-to-output association capability.

The primary advantages to this approach are:

a) inputs and outputs are modeled using an editable geometric approach,
b) output solutions may be determined from the geometry of the inputs using an

output threshold or constraint, and
c) solutions may be assigned from a continuous range of output values.

Serial Proximity Networks

The memory for the geometric mapping approach is provided by serial proximity
networks. Serial proximity networks are serial-processing distributed-memory maps with the
folowing capabilities:

a) pattern recognition
b) generalization
c) instantaneous, unsupervised learning
d) adaptability

They provide a highly dynamic set of associations that enable internal analysis, edit and
optimization. This is accomplished by utilizing pre-determined, predictable thresholds of
association for each monitored input of a problem. These thresholds, called proximity factors,
represent the acceptable range of variability of each input based on a specified monitoring interval.
In other words, if we know a particular input varies from one to five units per time interval, we
might decide to assign a proximity factor of five in order to associate the highest number of values
for this input.

Large proximity factors provide more generalization and require less memory. Smaller
proximity factors provide for more specific associations yet require more memory. The
architecture of serial proximity networks model each input and output as a separate entity. Input
sets are associated to output sets within unique sub-spaces. Figures 2 and 3 depict the
architecture of a serial proximity network.

000 0 000 POS00000000
co 0 o 2o31

POOL GROUP ..."....NODES
CDNNECTIONS
(Outppt cop, ection

SUB-SPACE (NO 00000 not0000own0
..00 00 00 0 0 0

Figure 2 Architecture of a Serial Proximity Network

I- 172

Geomery-based Process Control

NODES representing Values through

00 00000 Base 10O pool

0000..... Base 10 pool
0 0 0.......... I.......... ° PP o

Connection representation of values 357, 358 and 359 (Proximity Factor-3)

Blow-up of a POOL GROUP (is: for variable X)
Figure 3

Geometric Maps

Because each input is modeled as a separate entity with a specified range and proximity
factor, serial proximity networks actually form a multi-dimensional geometric map of the process.
Each input represents one geometric dimension of the problem being modeled. When output
boundaries or goals have been defined and are used as a criterion or identifier for storing
information within the network, unique process shapes are learned. These shapes may be used to
automatically derive the appropriate set of control adjustments for each sub-space.

To illustrate how unique geometric shapes may be learned when storing process data, let
us consider the following problem. Let us assume that the process we would like to control
could be characterized by the following equation:

2 2

Let us also assume that the variable ranges for the problem are from 5 to 75 units for X
and from -40 to 50 for Y. Also assume that we have determined an upper and lower output
control zone for our output Z, based on the following limits:

Upper Control Zone
upper limit: 3500 units
lower limit: 2200 units

Lower Control Zone
upper limit: 1000 units
lower limit: 0 units

If we plot these output boundaries over the complete range of input values we would
obtain the following approximate geometric shape:

- 173

Geomevy-based Process Control

50------1 a4to~llT

Upper Control Zone -- I I

- A - I W'A' r r Zone

-40

5 75
Rough approximation of output control zones mapped using
process inputs. Serial proximity sub-space grid shown in
background.

When we store sub-spaces within the serial proximity network for this problem we could
tag them with an identifier that would associate them with one of two states:

1) WithinBounds or
2) Out Of Bounds

If the state of the output at a particular time interval fell within one of our pre-determined
output control zones (black sub-space) we would identify it as being OutOf Bounds.
Conversely, if the output state during a particular time interval fell between our specified output
control zones (shaded sub-space), we could tag it as being Within-Bounds.

Using the Geometric Map to Automatically Derive Feedback

Once we have modeled our process geometrically and tagged our sub-spaces as being
either WithinBounds or OutOfBounds, we have an excellent framework with which to derive
our feedback values. Consider the figure above. Look at the black sub-space. What can we
determine, visually, regarding corrective measures that might be applied to the black sub-space?
We can see that, we should decrease both X and Y via control feedback. What we have just done
visually to correct the problem is the fundamental principal behind geometry-based control. In
other words, we can determine the solution to a problem by measuring the geometric distance
from the current problem state to the closest solution state. Following is a short outline of the
geometry-based process control technique.

11- 174

Geomety-based Process Control

Outline for geometry-based process control:

1) Determine limits.

2) Build a serial proximity network. Tag each new sub-space with a zone identifier
based on where this sub-space lies in relation to the pre-determined limits.
The tags should represent either of the two conditions:

WithinBounds or OutOf Bounds

3) Derive control outputs from the geometry of process. For each OutOf Bounds
sub-space, associate each input to be controlled with an output value that when
added together equals a value that falls within the range of the closest
Within-Bounds sub-space. Closeness should be based relative to each input. In
other words, when attempting to find the closest WithinBounds sub-space for
calculation of the X output value, the distance should be measured from the
current X value to the closest Within Bounds X value.

Appication Results

1) 'Classic' pole balancing problem

Supwersed lerIn vipeaor actions

A pole-balancing simulator was used to allow an operator to manually balance a 'pole' on a
PC screen using a mouse. As the operator balanced the pole the corrections were learned by the
network. After a short while, the network was able to balance the pole by itself. This part of the
evaluation was developed to demonstrate how well serial proximity networks might provide for
rapid supervised learning and generalization. What we found, however, was that the network
could easily unlearn all the good corrective moves the operator had taught it if the end of the
training suite was filled with poor corrections. We also noted that the set of solutions was fairly
brittle. If the operator did not teach the net what to do to correct a particular situation, the pole
would fall over.

I nsuneroised larina via geometay-based control technique

The pole-balancing simulator was used to map the geometry of the process. Basically the
pole was allowed to fall in either direction. As the pole fell the geometry of the process was
mapped. The geometry-based process control algorithm was applied to the network. The
procedure completed instantaneously. After running the procedure the pole was able to balance
itself perfectly. We also tried applying the algorithm after several sloppy manual operator training
suites and found that the algorithm fixed the network's solution set such that the pole stayed
properly balanced.

11-175

Geometry-based Process Control

2) Mild-dmensiono problems

A process control data file was generated from a simulator for a series of non-linear,
interactive problem. Inputs and outputs to the problem were provided by the simulator for each
time interval of a specified frequency. The file was formatted using TAB delimiters between each
process control variable and a carriage return delimiter between each time interval.

A set of output boundaries and control zones were specified prior to building the network.
The file was read twice by the geometry-based process control application. The first time the data
file was read, each variables range, minimum value and proximity factor were determined. From
this information the input/output network structures (POOL GROUPS, POOLS, NODES) were
built. An additional Output Zone POOL GROUP was built to accommodate the process Zone
identifier.

The second time the data file was read, pattern data was stored in the network's
distributed memory (PATTERN NODES, CONNECTIONS). Each sub-space was tagged with
an output zone identifier dependent on where its output value fell in relation to the pre-specified
output zones and boundaries.

The process control network was then built from ten thousand lines of process control
data in less than 2 seconds. This was achieved using a 80486 chip running at 66Mhz.

The Geometry-based process control algorithm was applied to the network. The
procedure completed in less than one second.

The network was then connected to the process simulator such that the simulated inputs
were fed into the network while the network outputs provided feedback to the simulator's process
controllers.

The maximum activation response time was less than one millisecond and the problem was
succsly contained.

Results

In conclusion, it appears that this technique may offer several practical advantages over
the current range of adaptive learning methods. Not only does it provide an excellent learning
engine for efficient input-to-output association and generalization but it also has the ability to
learn solutions to process control problems based on the geometry of the process as it is mapped
within the network. It appears that there is much opportunity for applying this technique to many
diverse real world process control problems.

References

1. J. Root, (1993) Serial Proximity Networks (Serial Distributed-Memory Processing)- 1993
International Neural Network Society Annual Meeting, VIII
2. J. Root, (1993) The Benefits of Serial Proximity Networks - AI Expert Volume 8, Number 7

11-176

NAVITE: A Neural Network System For Sensory-Based Robot Navigation

J. Mario Aguilar* Jose L. Contreras-Vidall

Cognitive and Neural Systems Department Motor Control Laboratory
Boston University Department of Exercise Science and Physical Education

III Cummington St. Rm 240 Arizona State University
Boston, MA 02215 Tempe, AZ 85287-0404

1 Abstract

A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance i ,r-
sented. Unlike other approaches, the system is effective in unstructured environments. Multimod, ,a-
formation from visual and range data is used to improve obstacle detection by eliminating uncertainty in
the measurements. This sensory information is then used to generate alternative trajectories which avoid
collision. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing
computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of
the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to
incorporate global map information into the local decision-making process.

2 Introduction

The proposed NAVITE system forms a trajectory by instantiating a target position in a synchronous,
variable-speed adaptive multijoint controller implemented as a neural network. The target vector is deter-

mined by a global path planning algorithm operating at a higher level in the processing hierarchy. Global
path planning criteria is utilized to generate a set of these target vectors which define an optimal trajectory
based on a-priori knowledge of the environment. The collection of target vectors forms the sequential motor

program that drives the trajectory formation network. The nature of this process allows for continuous
recalibration of the system's variables and thus permits adaptability to changes in the environment.

The target vector is compared to the present location of the robot and the shortest path is computed
incrementally. Navigation begins along this trajectory and if no obstacles are found, the robot's state
variables are controlled optimally until the goal is reached. Optimality is obtained through the simultaneous
control of state variables to obtain straight and smooth paths. This system is capable of position code
invariance so that a trajectory can be generated at several speeds depending on the demands of the task,
without altering the path.

On the other hand, the detection of obstacles within a predetermined range will produce a perturbation
of the internally generated trajectory which will lead to detour of the robot. Since the original plan remains
instantiated, the perturbation is overcome by continuous updating of the trajectory given the present
position. Here, the path is no longer the shortest but in exchange, the system is able to simultaneously
control the kinematics and dynamics of the robot to avoid unpredicted obstacles, as well as allowing for
continuous instantiation of the goal.

Utilization of learned spatial maps (which allow the instantiation of target and present position in
allocentric coordinates) and global path planning come into play both when generating the original tra-
jectory and when defining local detours. In this manner, local processing has priority and thus is able to
continuously adapt to the environment. However, its configuration and "decision-making" are constantly
modulated by the global spatial map. The modulation of local decision processes by global spatial knowl-
edge is the subject of present research. The present implementation assumes that targets instantiated in

*Supported in part by ONR (N00014-92-J-1309) and by ARPA (ONR N00014-92-J-4015) darpa (afosr 90-0083) and office
of naval research (ONR N00014-92-J-1309).

tOn leave from Monterrey Institute of Technology (ITESM, Mxico. Supported by a Flinn Foundation Grant). Supported
in part by a fellowship from CONACYT (63462)

H- 177

spatial coordinates which avoid all known obstacles (local minima) are available at the input stage of the
system.

In the field of path planning for mobile robotics, research has been focused in two different approaches:
a) planning within a static environment, and b) planning within an unstructured world. The former has
been approached with the assumpt" n that either the environment is known [12] or unknown [10]. In the case
of unstructured environments, two main trends can be identified, namely those which emphasize heuristics
(7, 8] and those based on perceptual processing [2]. The latter, based on the linking between perception
and action has also been called active perception.

Past attempts have shown that the problem of motion planning with multiple non-static objects is
intractable using algorithmic approaches [8]. Our approach deals with planning within an unstructured
environment utilizing multimodal sensory information. As such, sensory data through perception can trigger
adaptive behavior (eg. obstacle avoidance, active target search). Because our method uses incremental
planning, it can deal with changing environments.

3 A neural network for trajectory generation

A neural network model that specifies the kinematics of point-to-point arm movements has been proposed
in [3]. This model is based on neurophysiology, anatomy, and clinical data concerning the kinematics of
synchronous, variable speed multijoint reaching movements. The model, Vector-lntegration-To-Endpoint
(VITE), produces the typical kinematic signature of most arm movements.

The model provides the position and velocity specification of the desired trajectory from the current
position of the arm (Present Position Vector, or PPV) to the target position of the arm (Target Posi-
tion Vector, or TPV). These vectors can be seen as a pattern of neuronal activation levels distributed
across a population of neurons that codes the current and the target position in muscle-length coordinates
respectively.

The descending TPV is compared with an ascending "efference copy" of the PPV to produces a differ-
ence vector at a stage that specifies the muscle length update (direction and distance vector, DV) required
to move the limb from the PPV to the TPV. Before updating the PPV using the DV, a nonspecific speed
scalar or GO signal under voluntary control is used to gate multiplicatively the contents of the DV to
produce a desired velocity vector (Figure 1). Integration of the signal DV times GO to the PPV pro-
duces a desired position vector. Both the desired velocity vector and desired position vector comprise the
DESIRED-TRAJECTORY which is then used as a command to the plant.

The main features of this GO signal is that before movement, it has a value of zero and then grows
faster-than-linearly to a positive value as the movement is developed. In addition, the rate of growth of the
GO signal changes the contraction rate synchronously of all muscles contributing to the arm movement, so
that all the muscles acting to move the arm have the same onset and offset times. It is hypothesized that
in the biological system, the specification of the desired position and velocity vectors by the VITE circuit is
used as input to the neuro-muscular system (e.g. the actuator) that actually executes the movement. The
structure and neural network implementation of the VITE central controller are depicted in figure 1. The
VITE system is specified in terms of nonlinear differential equations as described in [3].

The VITE circuit can also be seen as a proportional + derivative (PD) central controller with time-
varying velocity and position gains over the duration of the point-to-point movement. The controller acts as
a feedforward controller without sensory feedback, and its outputs generate reciprocal ramp-like descending
commands (Present Position Vect, :s) to antagonist actuators. The duration and amplitude of changes in
these PPVs are specified by a GO signal (which affects the time-varying position and velocity gains) and
Target Position Vectors. The transient characteristic of this model lies between a perfectly symmetrical
smooth movement and a typical skewed PD controller movement.

4 A neural network for navigation control.

We propose to use the VITE system to drive a pair of antagonist (in a push-pull arrangement) DC motors.
One of the systems will produce movement along the horizontal axis, and a second system will produce
movement along the vertical axis by comparing the magnitude and sign of the differential output of each

11-178

Vector Integration To End point (VITE)

TARGET
PTN
VECTOR

I+

DIFFERENCE
VECTOR

+ +
MULTIPLIER + GO Iflh"1)
(SH4UNT) SIGNAL

+PRESENT
POSITION
VECTOR

OUTFLOW COAMAND Y" a A, A V10

Figure 1: a) Model of trajectory generation based on [3] for synchronous, variable speed multijoint mov-

ments. b) Neural network implementation of a two channel, agonist-antagonist, trajectory generator.

VITE system (Al - A 2). The relative speed of movement between the two DC motors will produce a
movement in a given direction.

The uncoupled system of VITE actuators minimizes computational costs by avoiding optimization of
cost functions. The algorithm derives the trajectory for a robot of known dynamic capabilities and allows

for continuous adaptability.
For reasons of simplicity, the algorithm will be illustrated using an autonomous vehicle with motion

being constrained to the XY plane, with bounded distance and velocity. A sample simulation of the
trajectory generator system consisting of 2 VITE modules is shown in figure 2a. The trajectories generated
by the system in the absence of obstacles are monotonic, in the sense -.hat they display a monotonically

decreasing distance to the target position. Thesc trajectories can be performed at different speeds depending
on the task or hardware constraints.

This simulation shows the path followed by a mobile robot assuming ideal dynamics. Three goal
trajectories (point-to-point) are shown, namely, P0 --+ PI --+ P2 -* P3. The velocity profiles for all the
trajectories are shown independently for each component in the cartesian space. Note, by the top and
bottom flatness on the trajectories, that the robot reaches the pre-established maximum velocity in two of

the trajectories. When one of the DC motor reaches this pre-established maximum velocity, the velocity

of the other motor is also kept constant (to its current velocity) to allow for straight-line trajectories (e.g.
minimum distance) as long as the other actuator moves to maximum velocity. The advantage of this
control scheme is that the system will always move towards the target location while tending to maintain

the original straight-line path regardless of the structure of the environment, climinating the need for a
parametric search in the space of possible trajectories.

4.1 Obstacle avoidance and DC motor dynamics

The dynamics of a DC motor driving an inertial load are far from the ideal conditions (e.g. 100 % efficiency
for all inertial loads), and therefore must be considered. The transfer function of the DC motor controlling
motion along the X-axis (or Y-axis) is defined as follows,

11-179

where the parameters K and C specify the parameters of the plant (e.g. efficiency and inertial load), and
the driving signal (A, - A2) is the output of the VITE module. To transform the coordinate system to
the cartesian space, we need to make a change of variables so that v, = w,/r, where r is the radius of the
motor wheel, and v, is the tangential velocity.

Figure 2b shows a simulation of the system including the non-ideal dynamics of the DC motors. Tra-
jectory P2 -- P3 also includes an obstacle as shown. First, note that due to the non-ideal efficiency of the
voltage-mechanical energy conversion and the inertial load, the velocity patterns do not reach maximum
speed for these trajectories.

In the working model, range data from ultrasonic sensors and vision data (depth) from scene views
taken at successive time intervals would be used jointly to guide the mobile robot and avoid collisions.
This will be reviewed in the next section. In this simulation, the robot avoids the object by changing
momentarily the difference-vector (DV) field in the direction depicted in figure 2b. As described in figure 3,
as soon as the robot is outside a safety margin (e.g. force field, dsafety) surrounding the obstacle, it turns
again toward the target producing a straight path. During the time the robot is avoiding the obstacle, the
GO signal is kept constant in both axes. Thus, since the distance to the object is decreasing at rate a, the
velocities are effectively decreased as soon as an object is detected at a distance defined by the distance to
the obstacle and the safety margin (dobeel + daiet~y). The rate of deceleration is proportional to the rate
of change of the difference, DV, and therefore, it does not matter how far the robot is from the target. The
above distance values are tuned so that a safe velocity value can be reached even if the robot is traveling
at maximum speed.

Y Y

0.0 0.00 X

P P 1 PO0.00 1.00 0.00 0.50 1.00

-0.01 -J V I 0.006 , ,... t
0.0061

PO P1 P2 P3 PO P1 P2 P3

Figure 2: Trajectory formation: a) Ideal trajectory formation without obstacles.b) Trajectory formation
with an obstacle and motor dynamics. Two VITE systems generate the position commands driving the DC
motors along the X- and Y-axes. Position and velocity for the two systems is shown. Solid line: X-direction
motor. Dashed line: Y-direction motor. Vertical dashed lines mark the end of the movement. The rest
period indicates that the robot is waiting for the next command.

The flexibility and fine control of the plant arises from the independent control of speed (GO signal)
and movement direction (difference vector, DV). The system is tuned so that when the distance between
the robot and the obstacle equals the safety margin (da.eiy), the robot initiates a detour modulated by
the characteristics of the sensory data (structure of local environment). Figure 3 depicts the geometry of
this formulation. As shown in the figure, in the absence of higher level modulation, the characteristics of
the obstacle define the direction which the robot will follow.

As in Brooks' proposal [2], the system uses sensory information to continuously guide the robot when
obstacles are found in the desired pathways. This greatly relaxes the constraint commonly introduced by

- 180

---*.AuetW dlectn

Robt -- -- Effectivo push by obaetcle

(a) (b)

Figure 3: Geometric description of the algorithm used to define the direction and velocity changes of the
robot. a) The robot detects objects at distance do6jeet + dsa/ety and reduces its velocity. At dobject, it

initiates a detour determined the characteristics of the obstacle. b) The geometry of the obstacle, as
determined from sensory data, defines the direction the robot will follow. Each point in the obstacle
produces a perturbation in the opposite direction to the reception by the sensors.

other navigation systems which require purely a-priori knowledge of the structure of the environment. In
such a circumstance, the sensory data would guide the robot to avoid collision by modulating the GO signal
that gates movement and/or by redirecting the robot's path.

5 Multimodal data fusion

In biological systems, multisensory interactions appear to be governed by spatial rules in such a way that
coincident multisensory stimuli produce an enhancement of the neuron's firing rate (or reinforcement of
the distributed code in a neural population), whereas disparate stimuli provoke either depression or no

interaction at all [11].
We propose to use both visual and range data to eliminate uncertainties, noise, and intrinsic errors

introduced by the measurements. The sensory data from each modality competes with each other to
produce a consistent sensory map of the immediate frontal surrounding.

Multimodal sensory interactions can reduce uncertainty introduced in the sensory representations of
stimuli. In particular, the signal-to-noise ratio is improved by combining two or more different modalities
of information. In fact, it has been observed that the level of enhancement in the response is greater than
the sum of the responses of each modality when the patterns are spatially coincident. On the cther hand,
spatially-disparate inputs usually depress orienting behavior [11].

The mechanism for data fusion consists of inhibitory feedforward interactions in a neural network
with two inputs corresponding to each sensory modality. The sensory inputs are convolved with their
respective sensory filters. The results of these convolutions are then combined so that congruent areas in
the environment detected by the sensors cooperate while neighboring areas compete and are attenuated by
activated neighbors. The details of the data preprocessing are given in [1, 5].

The process of data extraction is performed at successive time intervals along the robot's trajectory.
Visual data is pre-processed by a fast segmentation and boundary completion algorithm [4] based on the
BCS/FCS system [9], to extract disparity information from motion. This information is then fused with
ultrasonic range data to provide a more accurate measure of depth [6].

6 Conclusion
It was noted that path planning algorithms which assume static environments will not be successful in
controlling a robot under changing conditions. As an alternative, some algorithms which propose to solve

11-181

the planning problem under dynamic conditions were reviewed. Their unsuitability to this application was
pointed out in terms of the extremely expensive cost of the computations.

Reactive navigation, not as an alternative but as complement to the control scheme, was proposed. A
neural network-based reactive navigation system for mobile robotics was presented. The system does not
need to optimize any performance index therefore avoiding costly computations. In fact all computations
are performed in real time. Additionally, no assumptions are made as to the state of the environment. The
system is capable of continuously adapting to changes in the surroundings.

The system is able to autoscale velocity in either axis (or degree of freedom), therefore allowing straight-
line trajectories. Since the computation of the trajectory is expressed as a difference vector, the trajectories
to the target need not be learned but instead are differentially generated by the network.

The characteristics of the final trajectory evolve through local and possibly global modulation of the
current state. Yet, given a detour, the robot resumes along the optimal path from current to target position.
The nature of global modulation upon local detour decision making is the focus of current research.

Although the global path planning stage is responsible for defining a path free of local minima, simula-
tions have been run in which the robot escapes typical minima by adding noise or by planned perturbations
in the trajectory.

References

[1] Aguilar, M. and Contreras-Vidal, J.L. (1993). An active pattern recognition architecture for mobile
robotics. In Proceedings of the World Conference in Neural Networks 1993, Portland, OR.

[2] Brooks, R.A. (1987). Intelligence without representation. In Workshop in Foundations of Artificial
Intelligence. Dedham, MA: Endicott House.

[3] D. Bullock and S. Grossberg, Neural dynamics of planned arm movements: Emergent invariants and
speed-accuracy properties during trajectory formation. Psychological Review, 95, pp. 49-90, 1988.

[4] Contreras-Vidal, J.L., and Aguilar, M. (1993). A fast BCS/FCS algorithm for image segmentation. In
Proceedings of the International Conference on Artificial Neural Networks (ICANN-93), Amsterdam,
September 13-16, 1993.

[5] Contreras-Vidal, J.L., Aguilar, J.M., Lopez-Coronado, J.L., and Zalama, E. (1992). Multimodal real-
world mapping and navigation system for autonomous mobile robots based on neural maps. In Pro-
ceedings of the SPIE Conference: Applications of Neural Networks X. Orlando, Fl.

[6] Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE J. of Robotics and Automation,
vol. RA-3, pp. 249-265.

[7] Erdman, M. and Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica, 2, pp. 477-521.

[8] Gil de Lamadrid, J.F. and Gini, M.L. (1990). Path tracking through uncharted moving obstacles. IEEE
Trans. on Systems, Man, and Cybernetics, 20, pp. 1408-1422.

[9] Grossberg, S. and Mingolla, E. (1985). Neural dynamics of form perception: Boundary completion,
illusory figures, and neon spreading. Psychological Review, 92,173-211.

[10] Lumelsky, V.J. and Stepanov, A.A. (1986). Dynamic path planning for a mobile automaton with
limited information on the environment. IEEE Trans. in Automatic Control., AC-31, pp. 1058-1063.

[11] Stein, B.E., Meredith, M.A., Huneycutt, W.S., and McDade, L. (1989) Behavioral indices of multisen-
sory integration: orientation to visual cues is affected by auditory stimuli. J. of Cognitive Neuroscience,
Vol. 1, No. 1, Winter, 1989, pp. 12-24.

[12] Zaharakis, S.C. and Guez, A. (1990). Time optimal robot navigation via the slack set method. IEEE
Trans. on Systems, Man, and Cybernetics., 20, pp. 1396-1407.

11-182

Efficient Learning of Generic Grasping
Functions using a Set of Local Experts

Medhat A. Moussa and Mohamed S. Kamel
Pattern Analysis and Machine Intelligence Lab.

Department of Systems Design Engineering

University of Waterloo, CANADA

Abstwac--I this article, we presented the concept of generic grasping functions that can be used to
find grasping choices for arbitrary objects in the environment. Examples of these functions actions
can be collected from sensory data and approximated using artfircial neural networks. We tested the
application of a modular neural architecture to the approximation of some simulated grasping
fumctions. A modified architecture in which the gating network output rule was replaced by a
competitive output rule gave better results. We also found that applying an incremental learning
process would significantly enhance the learning rate and the approximation accuracy.

1.0 INTRODUCTION

A key measure of success for an autonomous robotic system is to have the ability to grasp an
arbitrary object in an uncertain environment. Attaining this ability requires the solution of several
complex questions such as what is the object (i.e recognition), how to grasp the object (i.e grasp
choice), and which path to take to avoid obstacles present in the environment (i.e. path planning).
In this paper, we are interested in the solution of the second question, the grasp choice.

Choosing a grasp for an arbitrary object is a very complex problem. In general, the solution
often requires the satisfaction of several constraints such as task requirement, gripper limited
capabilities and object geometry. If several solutions are possible, then the chosen grasp is then
required to optimize a grasping criteria such as stability. To make the solution tractable, even the
most sophisticated grasp model often involves a simplified representation of the grasped object
typically treated as smooth, rigid geometric primitives or polyhedra [1]. As a result current
grasping models are limited to operate under ideal laboratory conditions. Relaxing geometric
simplification is important to allow a robotic system to grasp a wide variety of objects without
extensive encoding of object models and with less sensitivity to sensory noise. Tomovic et al. [71
have proposed a grasping model that is based on the representation of target objects of arbitrary
shape by one of a small number of geometric primitives. Grasping is then accomplished using a
number of standard grasp configurations. Liu et al. [3] have proposed using a BP network to build
a multi-dimensional table of object primitives-grasping modes for a multifinger robot hand. Xu et
al. [8] applied a modified Hopfield network to find the optimum grasping position for a 2-D
arbitrary object.

In [5] we have proposed a neural grasping system that learns the mapping between an object
configuration and a gripper configuration at stable grasping points using a BP network. The
learned mapping can then be applied to geometrically similar objects irrespective of the
complexity of the object geometry itself. While this has relaxed the assumption of simplified
representation, learning grasping functions for every conceivable object class through

11-183

experimentation is impractical due to the large number of training examples needed for each
function to be learned accurately. In addition, since multiple solutions can be found for each
object configuration, several networks are needed. In this paper we propose a more generic
representation of grasping functions which would enable the application of one function learned
through grasping experiments on one object to an entirely different object. We will then examine
how to train a set of local neural experts to perform an accurate approximation of these functions
using a small number of training examples.

2.0 GENERIC GRASPING FUNCTIONS

The orientation and position of an object in the robot work envelope can be described by a
4x4 homogenous transformation matrix, called the object configuration, that relates the body
attached coordinate frame to a reference coordinate frame. Similarly, the description of the
gripper local coordinate frame relative to the reference coordinate frame is called the gripper
configuration. To simplify the analysis, we will assume the gripper to be a two finger parallel
gripper. Figure 1 illustrates an object that is being grasped. In this figure, the following
transformations are defined as:

z TG

FIGURE 1. Object and gripper configuration during a grasp operation

To e R4X4 relates the object configuration to the robot base coordinate frame.
TG e R4 4 relates the gripper at a grasping configuration to the robot base coordinate frame.

A grasping configuration is defined as the configuration of the gripper when:

" The gripper fingers are in contact with the object faces.
" The object is stable under this grasp.

OTG e R4X4 vlates the gripper configuration to the object coordinate frame.

From these definitions TG can be written as:

T = T0T G)

Evaluating To can be done using vision or other sensory information; however, evaluating
OT represents a grasp choice which is dependent on several variables and even for objects with

11- 184

simple geometrical representation there could be an infinite number of potential grasping

configurations [4]. Thus T3 can be written in a general form as

TGi =TOfi (Object geometry, Task requirement, Gripper, Grasping Criteria) (2)

Where fi e R4 is a homogenous transformation matrix that represents a grasp choice of
the object.

Since no a priori encoding of grasping rules will be done, then the question becomes what
forms of OT to learn and how to learn them? Casting the problem in terms of an input-output
mapping we first define a generic grasping function as a function G:R4x4 -+ RX4 such that

TG = G (TO) (3)

Adopting the roll, pitch and yaw convention for orientation description we then define TG as

TG= 7*(x, yz, ,o, vg) = xrzeT (4)

Where XYZ a Trans (0,0,x) Trans(O,O,y) Trans(O,Oz)

Oe'P E Rot (Z,*) Rot (YO) Rot (XW)

17* a a matrix function T*: R6 -4 R4 x4 [61

Similarly To can be written as

T = T* (x,y,z,O,0, V) (5)0 0

Thus equation 3 can be written as

TG = G(I* (xo, yo, zo, 0 o, 0 0,)) (6)

The mapping can be further simplified by performing a kinematic decoupling. Since
To = Tt Rtt. then we rewrite 1 as

Transo0 TG = Ro0 TG (7)

But since Trans0 is a constant that can be evaluated from sensory information, then we
rewrite 6 as

TG = G (7* (, ,,W))s

Comparing between equation 2 and equation 8 one can notice that instead of formulating the
problem in terms of different objects, different grippers, different tasks and different grasping
criteria, the problem now is formulated in terms of three generic rotation angles. That means that
a grasping function G could be used to grasp two different objects as illustrated in Figure 2. Two
objects with different geometric shapes are both being grasped by a two finger parallel gripper.
One can imagine a grasping scenario in which the first object configuration is composed of an
initial rotation around the local z-axis with angle *, the gripper has to rotate with the same angle

H-185

to achieve a correct grasping configuration. But the second object can be grasped by the same
grasping function even though they are totally different objects. This observation means that a
robot trained to grasp an object can use the same function to grasp another object. However there
are still an infinite number of grasping functions that could be learned during grasping a wide
variety of objects.

zz

zz

(a) (b)

FIGURE 2. Two different objects can be grasped using the same grasping function

VWe can further categorize these generic grasping functions by noticing the degrees of
freedom objects normally possess in the environment RO has three rotational degrees of freedom;
however, in reality most objects have one or two d.o.f only under free standing conditions. This
leads to the categorization of generic grasping functions in terms of the object orientation variable
of which they could be a function as illustrated in Table 1.

TABLE 1.

Type Number of variables

Type 0 TG = Constant

Type 1 TG = f() or f(O) or f(W)

Type 2 TG = f(*,O) or f(0,,)

Type 3 TG = f(C,O,!)

Categorization of grasping functions makes examining the learning requirements easier and
more traceable. However, grasping functions could represent a complex grasping criteria and that
could lead to difficulty in learning. At this point the goal is to design an efficient process for
learning various types of grasping functions based on examples from experimentation.

11-186

3.0 SIMULATION OF GRASPING SCENARIO

Three simple grasping scenarios are considered in this paper. They represent some of the
infinite grasp choices that a gripper could have to grasp an object All three scenarios can be
modeled using type I grasping functions; however, the complexity of the function could vary. The
three scenarios are:

" Grasp 1:
As illustrated in figure 2a, a constant relationship exists between the object and the gripper.

" Grasp 2:

This scenario illustrates the same object and gripper but with an objective criteria to reduce the
rotation of the manipulator wrist, thus minimize 0. This scenario is

IFo 0 900 THEN = -
ELSE IF 90P < 0o < 2700 THEN *,- 180 -0o

ELSE #- 360- o
This scenario is especially difficult to learn since it contains a function discontinuity at 00--90
and at 0=270.

" Grasp 3:

This scenario illustrates a grasp choice of a cup by the handle. However, the grasp would be
done on the cup body if the handle is on the far side of the robot. Thus the scenario is

F00 1200 THEN =-to
ELSE IF 3000 < 0 THEN 0, = 360 - t0
ELSE #,= 30
In addition the gripper experiences translation due to the handle size thus

IF 90° < o < 270° THEN xg = handle size

ELSE x,= 0
Again function discontinuity exists at 0 = 1200, 3000

4.0 DESCRFTION OF LEARNING EXPERIMENTS

In [5] we have reported results on similar simulated grasping functions using a BP network
and a modified BP network that increases learning speed. In both cases, long training sessions
were noticed along with the need for a large number of training examples. Since we assume that
training examples will be obtained through real experimentation, we are interested in-using the
minimum amount of training data to learn a complex grasping function with a high accuracy. This
can be done by using a set of local experts in a modular architecture as proposed by Jacob et
al.[2]. In this architecture each local expert is allocated a part of the mapping space which is a less
complex mapping than the original mapping, such as linear vs. nonlinear mapping. This
uncouples the weights of each expert from other experts weights which makes learning faster and
yields better generalization. A gating network divides the space among the local experts using a
special error function. The final output of the network, where there are n experts, is

I- 187

Y = 9i Yi (9)

i= 1

Where g is the output of the ia' output PE of the gating network

y, is the output of the ith local expert

Wf performed four experiments to explore how to design a training process that could yield
fast learning using a small training set size.

Faperbment I

In this experiment, we established a benchmark by dividing all grasp scenarios into linear
segments and training linear networks on these segments. The size of the training set and the rate
of learning represent a benchmark performance that the following networks performance will be
measured against. Grasp 1 is already a linear function, while grasp 2 is divided into 3 linear
segments: Grasp 2a, 2b, and 2c. However, the first segment is the same function of grasp 1 then
only grasp 2b, and 2c are needed. For grasp 3, two linear and a constant segment are possible.
Both linear segments are represented by grasp I and grasp 2b.

Experunent 2

In this experiment, we presented grasps 2 and 3 to a modular neural network that was
constructed using the NeuralWare Professional II simulator. For grasp 2 the network topology has
varied considerably starting from 3 experts and up to 6 experts with various internal topologies.
The number of PE in the gating network hidden layer also varied from 3 PE and up to 10 PE.
Experinents n different topologies were allowed to run for up to 500K before other topologies
were explored. For both grasp 2 and grasp 3 no reasonable learning was achieved.

Eperiment 3

In this experiment, we presented grasps 2 and 3 to a modified modular network in which the
output of the gating network was altered after a few thousand epochs from a normalized output

eSk
gk- (10)

i=1

where s = (si, . . . , sn) is the summation vector of the gating network output layer

To a competitive output defined as

g I if si>s I= n...n

ii0 otherwise

The effect of this change is eliminating the weighting of the experts output by the gating
network output according to equation 9. As a result, the function of the gating network becomes

11- 188

limited to classifying the input pattern to one of the local expert classes without weighting the
patter by how far or close it is to the center of the class.

E eriment 4

In this experiment, we repeated experiments 2 and 3 on a modified training set of grasp 2 in
which training cases that follow grasp 1 function were removed, i.e all cases were #o 9 900. The
idea is that if this function has been learned at grasp 1 then what improvement can result by
eliminating all training examples related to it from the learning process of the remaining
functions.

5.0 RESULTS AND DISCUSSION

In all experiments an acceptable approximation was achieved when the error on the testing set
did not exceed 1 for the angles output and 2 mm for the translation output. Results of the 4
experiments tabulated in tables 2 &3 show the following:

" Learning rate can be significantly increased if we can a priori divide the training set into
subsets each representing a less complex mapping. In addition, since learning is localized to
one region, excellent generalization is achieved even with very small training sets.

" Using a gating network in experiment 2 and 3 failed to achieve reasonable approximation for
grasp 2 and 3. This is due to the fact that the output of the expert network is weighted by the
output of the gating network. For a problem such as grasp 2 and 3, where discontinuity could
exist in the mapping, the gating network requires a large training set, and takes a longer time to
be able to separate between numerically close but quite different inputs.

SThe problem of the gating network learning can be rectified by changing the output of the
output layer from a normalized output to a competitive output after a reasonable number of
training cycles has elapsed. This effectively makes the training process a function of the
training of the expert network only, and speeds up training considerably. In addition, during
recall high approximation accuracy is achieved even with a small training set size.

" It is reconmended while using the modified training procedure to train the network using a
small training set rather than a large training set This allows the gating network to easily
separate the adjacent regions, while using competitive learning during recall guarantees good
generalization. However, a biased training set might give an opposite effect, this case should be
taken into consideration during selection of the training examples.

" Incremental learning where previously learned function actions are removed from the training
set greatly enhance the learning process. For grasping, robot experiments can be greatly
reduced using previously learned functions to represent a more complex ones.

TABLE 2. Experiment I

Accuracy
Cam Size of training set mean/max. error # of epochs

Grasp I 5 0.4/0.9 120
Grp 2a 5 0.2/0.4 100
Gfasp 2b 5 0.1/0.2 80

11-189

TABLE 3. Experimemts 2,3 & 4

Case Modulmr Network (Experiment 2) Modified Modular Network (Experiment 3)

Sue of training Accuracy # of iterations Size of training Accuracy # of iterations
set set I

Grasp 2 Various sets ae N/A Up to 500K Same as in Experiment 2
Grasp3 used 30- 180

Experiment 4
Grasp 2 23 1.1/90 11 OK 23 0.02/0.13 IK

6.0 CONCLUSION

Performance of a modular neural architecture is dependant on the performance of the gating
network. A modified training process for the gating network proved to be very efficient in both
training and recalling. Furthermore, removing previously learned function actions from the
training set proved to enhance training speed and reduce the number of trained examples needed
to achieve a required accuracy. Future research is directed towards the application of generic
grasping functions to multifingered grippers.

ACKNOWLEDGEMENT

This research has been partially funded by the Natural Sciences and Engineering Research
Council of Canada.

REFRENCES

[1] Cutkosky, M. R.(1989). "On Grasp Choice, Grasp Models, and the Design of Hands for
Manufacturing Tasks", IEEE trans. on Robotics and Automation, Vol. 5, No. 3, pp. 269-279.

[2] Jacobs, R., Jorden, M., Nowlen, S., Hinton, G. (1991) "Adaptive Mixtures of Local
Experts", Neural Computation, Vol. 3, pp. 79-87.

[3] Liu, H., Iberall, T., Bekay, A. (1989). "Neural Network Architecture for Robot Hand
Control", IEEE Control Systems Magazine, pp. 38-42.

[4] Lozano-Perez, T., Jones, J.L., Mazer, E., O'Donnell, P.A., Grimson, W.E.L., Tournassoud, P.
and Lanusse, A. (1987), "Handy: A Robot System That Recognizes, Plans and
Manipulates", Proceedings IEEE Conference on Robotics and Automation.

[5] Moussa, M. A., Kanel, S. M. (1993). "Mapping of Complex Grasping Functions using a BP
Network", WCNN, Vol. 3, pp.

[6] Paul, R. P. (1981). "Robot Manipulators: Mathematics, Programming, and Control", MIT
Press, Cambridge, Mass.

[7] Tomovic, R., Bekey, G. A., Karplus, W. A. (1987) "A Strategy for Grasp Synthesis for
Multifingered Robot Hand," in Proc. 1987 IEEE Int. Conf. on Robotics and Automation,
Raleigh, pp. 83-89.

[8] Xu, G., Scherrer, H., Schweitser, G. (1990). "Application of Neural Networks on Robot
Grippers", IEEE Int. Conf. on Robotics and Automation, pp. 3 37-342.

11-190

Computer Recognition of Imprecise Dynamic Arm Gestures
of People with Severe Motor Impairment

David M. Roy1,2 , Roman Erenshteyn1, Marilyn Panayi3,
William S. Harwin1 , Richard Fouldsi, Robert Fawcus2

1Applied Science and Engineering Laboratories, A. I. duPont Institute/University of Delaware,
USA. 2City University, London, UK. 3Educational Consultant, London, UK.

A. I. duPont Institute, Dept. ASEL, P.O. Box 269
Wilmington DE 19899

Email: roy@asel.udel.edu

Tel: 302 651 6830 Fax: 302 651 6895

ABSTRACT

Backpropagation artificial neural networks (ANN) were trained to distinguish two visually similar
dynamic arm gestures from a subject with severe speech and motor impairment due to cerebral
palsy (SSMICP). Data was collected using a six degree of freedom magnetic position tracker
attached to the forearm. The recognition error rates from ANNs trained using both static and
motion parameters were compared with static parameters alone and motion parameters alone.
Results show that ANNs can be trained to recognize "noisy" arm gestures produced by neuro-
motorically impaired individuals. Findings indicate the importance of both static and motion
parameters in the machine recognition of such gestures. The results confirm that dynamic gestures
can be used to increase the bandwidth of information transfer across the human-machine interface
(HMi).

INTRODUCTION
The research into the computer recognition of gesture is part of an overall effort to develop new
methods of gestural HMI for people with severe motoric dysfunction. The work is complemented
by a concurrent investigation into the human factors of gestural interaction (1,3).

People with SSMICP have limited and imprecise motor control. Each member of this population
is likely have an idiosyncratic range of physical abilities. Cerebral palsy is a result of damage to
the developing brain usually during or near birth. The damage results in a loss of control over vol-
untary muscle action together with inappropriate muscle tone (2). If the condition is severe, pre-
cise targeting or activities involving fine motor control are very difficult.

This population can often produce a range of imprecise but visually recognizable gestures (3).
The machine recognition of such gestures would find applications in the areas of communication
through speech synthesis, computer access, interaction in virtual environments, wheelchair,
robotic and environmental control.

Although the field of computer recognition of gesture is still in its infancy, research in this area is
encouraging. Harwin and Jackson looked at the computer recognition of head gestures from peo-
ple with cerebral palsy (4). They used the concept of a "virtual head-stick" and hidden Markov
models as the recognition method. Their work highlighted the difficulty in automatically segment-

11-191

ing gestures where the movement contains an involuntary component.

Other work into gesture recognition using neural networks (5, 6, 7, 8) has looked at data from
hand shapes using the cyberglove or dataglove. However, people with SSMICP commonly
exhibit a very spastic clenched fist with limited voluntary control precluding their use of this tech-
nology.

APPROACH
The ultimate objective of our work is develop gesture recognition algorithms based on ANNs.
Equally important at this stage is the examination of the information content of the gestures them-
selves. The aim is to use ANNs to:
i) Identify the importance of parameters in the recognition of gestures from people with cerebral

palsy.
ii) Examine the value of sensor integration e.g. the combination of EMG and position sensors (9).
iii) Guide the future selection of gesture sub-sets in order to obtain a good feature separation for a

high rate of recognition.
Our immediate goal is to determine appropriate feature extraction for this type of dynamic ges-
ture. ANN models are being used both as a tool to understand the problem of gesture recognition
and as the means to realize a gestural HMI.

It is possible to consider the voluntary/involuntary components of cerebral palsied motion as a
signal/noise model. Unfortunately, knowledge of the mechanisms of human motion in general and
cerebral palsied motion in particular is insufficient to enable us to model either signal or noise, or
to define how both are interrelated. The ANN approach is well suited to modeling this problem
since little a priori knowledge is available.

The well understood simple backpropagation ANN model was chosen for the initial analysis of
gestural data.

DATA COLLECTION
The human-factors study looked at twelve subjects aged eight to seventeen years, each with
SSMICP. As reported in this study, it was possible to elicit 120 gestures without training. This
work proposed that gestural modalities may be an appropriate means of human-machine interac-
tions (1, 3).

Movement and surface EMG data were collected from four of the twelve subjects. The gestures
were selected on the basis that they a) reflected the subjects' physical abilities, and b) involved
one arm as a principle component of the gesture.

Data was collected using a six degree of freedom magnetic position tracker (the "Bird" from
Ascension Technology). The receiver was attached to the right forearm. The data sampling rate
was 100 samples/second. The data were stored on the hard disk of a 486 PC. The gestures were
produced upon verbal command of the investigator. The time of elicitation was recorded and used
to initially segment the data.

The data presented in this paper were collected from one of the subjects, a 17 year old male, with
severe spastic-athetoid cerebral palsy. The subject was non-verbal due to severe dysarthria. His
method of accessing the environment using assistive technology was limited to pressing up to five

11-192

large electromechanical switches with various parts of the body including the head, elbow, and
knee. This restricted input modality enabled him to communicate using a speech synthesizer and
to drive an electric wheelchair. Twenty seven gestures were chosen from the set of 120. The sub-
ject performed each the 27 gestures a minimum of 20 times in random sequence (figure 1).

Figure 1. Subject performing dynamic arm gestures

ANALYSIS
The data were animated using an arm model created using Matlab matrix manipulation software.
Graphics animation software was developed in-house to render images in real-time on a Silicon
Graphics Iris Elan workstation. The software allowed approximate reconstruction of arm motion
and was used to view and compare gestures. Gestures were further manually segmented so that
the precise onset and finish of controlled motion could be located. These data were used to create
training exemplars for the development of gesture recognition algorithms (figure 2).

Gesture (a) Gesture (b)

Figure 2. Computer Animation of Dynamic Arm Gestures

To investigate the relative importance of features, two gestures were chosen that looked visually
similar. The gestures chosen were a) pretend to play the drums b) pretend to shake hands.

II- 193

Although there were only 23 elicitations of gesture (a) and 26 of (b), it was possible to increase
the number of gestures in each class by considering repetitive gestural segments as individual ges-
tures. Each cycle was manually segmented and then four points automatically extracted from each
gesture segment. The resulting data set was divided into two halves, each half containing the same
number frames of a particular gesture. These were used as the training set and test set 1 while test
set 2 comprised contiguous frames of both gestures (table 1).

Table 1. Size of training and testing data sets

Gesture (a) (to play the drums) Gesture (b) (to shake hands)

Training Set 186 118
Test Set 1 186 118
Test Set 2 156 y3

Feature Extraction
The data was manipulated using the Matlab matrix manipulation package running on a Sun Sparc
10 workstation. The following features were derived from the raw position and rotation matrix
data. Position, velocity, acceleration and Euler angles or { x, y, z, x, 9, 1, X, y, ', 0, , p}
These were assembled into the following three feature sets
ix, y, z,x, , y, ,Y, 0, , p} F1 tx, y, Z, 0, 0,p P F2 .) , , ,Y, z} EF3

Neural Network Architecture
The feature sets were presented as the input layer to a back propagation neural network with one
hidden layer. The architecture of neural networks is described by: Z1 - Z2 - Z3, where ZI - num-
ber of inputs (6 or 12), Z2 - number of hidden nodes (40) and Z3 - number of outputs (2). Log-sig-
moid functions were used as the transfer functions for the hidden and output nodes. Nguyen-
Widrow initial weights, momentum and adaptive learning rate were used to improve the training
rate. Momentum was used to assist in the learning procedure by taking into account local gradient
and trends in the error.

Gesture (a) Gesture (b)

\1

0.8 0.8-

50.6 15 0.6
t40

o .4 0.4

A h
0.2 ! I 0.2

0 L I.Ik ,I. j0
20 40 60 80 100 120 140 50 100 150 200

Frame Number Frame Number
Figure 3. Plot of Output vs. Contiguous frames of Each Gesture

11-194

RESULTS AND DISCUSSION
The experimental results are shown in table 2. Recognition error probability was used as a mea-
sure of the quality of recognition.

Table 2. Training and testing results.

Problem Training Testing 1 Testing 2

Nep Esq P1 P2 Pav P1 P2 Pav P1 P2 Pav

F1 5000 23.51 0.011 0.076 0.036 0.086 0.347 0.188 0.032 0.066 0.054

F2 5000 27.96 0.005 0.101 0.043 0.151 0.390 0.243 0.109 0.046 0.068

F3 5000 82.15 0.215 0.178 0.201 0.312 0.398 0.345 0.256 0.578 0.468

In the table: Nep - maximal number of epochs for training; Eq - sum-squared error; Pi, P2, Pav -

recognitii error probabilities (for the first gesture, for the second and an average respectively).

Figure 3 shows typical plots of output vs. frame number for test set 2 containing contiguous frame
data (using feature set Fl). As can be seen from the example graphs, gesture (b) was recognized
with more certainty that (a). However, thresholding can be used effectively with very relatively
few frame sequences misidentified.

Table 2 shows that although recognition rate was in general higher for F2 (position and orienta-
tion only) than for F3 (linear velocity and acceleration only), F1 (position, orientation, velocity
and acceleration) gave significantly higher results than either F2 or F3. Thus movement parame-
ters contain information that is sufficiently orthogonal relative to position and orientation that
they can be used to enhance recognition.

This has significant implications for the computer recognition of the gestures of people with
SSMICP. People with SSMICP find precise targeting and tracking in space extremely difficult.
However, most assistive devices require either targeting of electromechanical switches which
only sense position or operating joysticks which sense path. Thus, the computer recognition of
dynamic gestures as a method of human-machine interaction should result in an increase in the
bandwidth of information transfer across the HMI in comparison with existing modalities. If
bandwidth is used as an objective criterion for the quality of the HAl, then dynamic gestures are
clearly an improvement on existing modalities.

CONCLUSIONS
As shown in this study, back propagation NN as a pattern recognition method is very useful for
the analysis of feature space taking into account not only output recognition error, but also errors
produced in hidden layers. Also, this method can solve complicated meshed class recognition
problems which is extremely useful when the topology of the recognized objects is unknown as is
the case of imprecise dynamic gestures.

11-195

ACKNOWLEDGEMENTS
The authors would like to gratefully acknowledge the financial support of the Nemours Founda-
tion, USA, the Science and Engineering Research Council, UK and the NIDRR, USA.

Special thanks to Dr. Michael Floyd and Professor Ewart Carson of the City University, UK, Dr.
Michael Alexander and Dr. Freeman Miller of the A. 1. duPont Institute, and Dr. Charles Marler
of the University of Delaware, USA for their continued support and encouragement.

Thanks to Dr. Garland Stem, Randy Glass, Marian Cowley for their assistance with the visualiza-
tion of the data presented in this manuscript. Additional thanks to Cindy Brodoway and Jack Nee-
dle of the Medical Photography department of the A. 1. duPont Institute.

Particular thanks to student collaborators, their care-givers, and staff of John G. Leach School, A.
I. duPont Hospital School, Delaware, HMS School for Children with Cerebral Palsy, and Widener
Memorial School, Philadelphia, PA, for their interest and commitment.

REFERENCES
1. Roy, D.M., Harwin, W.S., Fawcus, R. (1993) The Enhancement of Computer Access for People
with Cerebral Palsy through the Computer Recognition of Imprecise Gestures. Proceedings of
ECART2 - European Conference on the Advancement of Rehabilitation Technology, Stockholm,
Sweden.

2. Levitt, S. (1992) Treatment of Cerebral Palsy and Motor Delay, Second Edition. Blackwell Sci-
entific, Boston MA.
3. Roy, M., Panayi. M., Harwin, W.S., Fawcus, R., (1993) The Enhancement ofInteractionfor
People with Severe Speech and Physical Impairment through the Computer Recognition of Ges-
ture and Manipulation. Proceedings of CSUN Conference on Virtual Reality and Persons with
Disability, San Francisco.

4. Harwin, W.S., Jackson, R.D. (1990) Analysis of Intentional Head Gesture to Assist Computer
Access by Physically Disabled People. Journal of Biomedical Engineering, Vol. 12, May, pp 193-
198.
5. Murakami, K., and Taguchi, H. (1991) Gesture Recognition Using Neural Networks. SIGCHI
Proceeding, pp 237-242.

6. Fels, S.S. (1990) Building Adaptive Interfaces Using Neural Networks: The Glove-Talk Pilot
Study. Technical Report CRG-TR-90- 1, University of Toronto, Canada.

7. Briffault, X., and Braffort, A. (1993) Space, Language and Gesture: A Model of Multimodal
Expression of Space. Proceedings of the Eleventh lASTED International Conference, Annecy,
France.

8. Peters, S., Foulds R., (1991) Interaction and Training Requirements for Machine Recognition
of Human Gestures. Interactive Learning Technology for the Deaf. NATO Advanced Research
Workshop, Sint-Michielsgestel, the Netherlands.

9. Roy, D.M., Panayi, M., Harwin, W.S., Fawcus R. (1993) Advanced Input Methods for People
with Cerebral Palsy: A Vision of the Future. RESNA '93 Conference Proceedings.

11- 196

NEURAL NETWORKS FOR MANIPULATOR CONTROL:
-METHODOLOGY, STABILITY AND SIMULATIONS

Y. JIN, A .G. PIPE, A. WINFIELD
University of West England, Faculty of Engineering, Frenchay, Bristol BSI6 IQY, UK

Abstract: In this paper we discuss how to use neural networks to control robotic manipulators. Two different
control structures and neural network on-line learning algorithms are proposed. The reason behind the proposed
control structures is also presented. The whole system stability is guaranteed. Neural network off-line learning
algorithm is suggested. Off-line learning improves the on-line running performance.

1. INTRODUCTION

Manipulators are coupled multi-input multi-output systems. They are subjected to structured and/or unstructured
uncertainties even in a well-structured setting for an industrial use. Structured uncertainties are mainly caused by
imprecision in the manipulator link properties, unknown loads, and so on. Unstructured uncertainties are caused
by unmodeled dynamics, e.g. nonlinear friction, disturbances, and the high-frequency part of the dynamics.

Despises of complexity and uncertainties, manipulators (n joints) can be modelled in a general form

H(q)4+C(q,4)4+g(q)+F(q,4)=i(q, 4, 4) (1)

where q is the nxl vector of joint displacements, . is the nXl vector of applied joint torques, H(q) is nXn
symmetric positive definite manipulator inertia matrix, C(q, #)# is the n xl vector of centripetal and Coriolis
torques, i(q) is the nxl vector of gravitational torques, and F(q, 4) is the unstructured uncertainties of the
dynamics including friction and other disturbances. C is not unique but for one choice I? = C+ Cr will hold.

Design of idea controllers for such systems is one of the most challenging tasks in control theory today. PID
controllers are simple and easy to implement but their dynamic performance leaves much to be desired. The
computed torque method and the adaptive control method (ACM) suffer from three difficulties. First, we must have
detailed explicit knowledge of individual manipulators. Second, uncertainties existing in real manipulators seriously
devalue the performance of both methods. Although ACM has ability to cope with structured uncertainties, it does
not solve the problem of unstructured uncertainties. Third, the computational load of both methods is very high.
Since the control sampling period must be in millisecond level, this high computational load requires very powerful
computing platforms which result in high cost of implementation.

Neural networks have the potential to overcome all these difficulties experienced by conventional control
methods. Because of the universal approximation feature of neural networks, they could be used as general
controllers suitable for any manipulator. With their learning ability, neural networks could improve their
performance and finally achieve satisfactory results through off-line and/or on-line learning without requiring explicit
knowledge of manipulator dynamics. Their parallel computational structure on the other hand could help solve high
computational load problems.

Much research effort has been put into the design of neural network applications for manipulator control. Albus
(1975) used the cerebellar model articulation controller (CMAC) to control manipulators in 1975. Miller, et al
(1990) extended Albus' results and developed neural network learning algorithms. liguni, et al (1991) combined
manipulator linear optimal control techniques with BackPropagation (BP) neural networks which were used to
compensate the nonlinear uncertainty. Kawato, et al (1988) added BP networks in original manipulator PD control
systems as feedforward compensators. Although all authors claimed very good simulation or even experiment
results, lack of theoretical analysis makes industrists wary of using the results in real industrial environments.

Since 1990 we began involved in this field. A complete set of theories has been established which is presented
as the main part of this paper. The results are based on a conceptual set of neural networks which is called
Linear-Equivalent (L-E) neural network set. Within this set, neural networks have a general form, i.e.

y=G(X)TW (2)

where y is the neural network output vector, x is the neural network input vector, G(x) is the neural network fixed
nonlinear mapping matrix, and W is the neural network weight vector. L-E Neural networks have the universal
approximation feature, i.e. neural networks can approximate any continuous function as long as the function input
is bounded. The approximation error could be as small as possible by carefully choosing neural network structures

- 197

(the number of adjustable weights and the fixed nonlinear mapping matrix).
Detailed neural networks in this conceptual set include Radial Basis Function (RBF), Cerebellar Model

Articulation Controller (CMAC), and Adaptive Fuzzy Controller (AFC). Therefore the present results stay when
one of these type neural networks is used.

2. METHODOLOGY

Considering the general manipulator dynamic form of Equation 1, there are lots of important features which do
not depend on individual manipulators. For example, the initial matrix H is positive definite. Since these features
are not dependent on detailed manipulator knowledge, they can be used in neural network control design. The details
of these important features have been explored in the conventional control theory and are used in our stability
proofs.

Neural networks are able to approximate any continuous function (universal approximation feature), so a L-E
neural network can be used to approximate manipulator inverse dynamics. Using the L-E neural network general
form, we have

r(q,4,4)"G(q,44,)T W+t(q, 4, 4) (3)

where G is the L-E neural network nonlinear mapping matrix, W is the neural network weights, I is the neural
network approximation error which satisfies I I .,, c, could be as small as possible by carefully choosing the
neural network structure. Neural network weights, W, are unknown since the manipulator dynamics are unknown.
we shall call W the desired weights and denote the actual neural network weights as *. In the case where Columbia
friction is considered, the manipulator dynamics are no longer continuous functions with q, 4, 4. But when sgn(4)
is considered as function input as well, the manipulator dynamics are continuous functions again. Therefore they
can be approximated by a L-E neural network, i.e.

7(q, 4, 4)G(q4,4sgn(4))TW+t(q, 4, 4) (4)

For a more general form, we denote x as the joint values which consist of joint displacements, velocities, and/or

other variables depended on applications and control structures.

i(x) =G(x)T W+J(x) (5)

In off-line learning, the neural network tries to learn the desired weights as accurately as possible. In other words,
the neural network tries to approximate by learning the manipulator inverse dynamics as accurately as possible.
Training data are normally discrete sets of manipulator joint driving torques and the corresponding joint values.
These sets of data are collected either directly from the manipulator or from simulation software. The off-line
learning algorithm must guarantee that the neural network will finally approximate the manipulator inverse dynamics
in the sense that within the training data sets the neural network outputs the driving torques when its inputs are
the corresponding joint values.

In on-line learning, the neural network is used as a control part. Its output is part of control signals which are
used to drive the manipulator. The joint values in turn are used to train the neural network on-line. Therefore the
on-line learning algorithm must guarantee that these two coupled systems (neural network & manipulator) work in
a converging fashion. This is called "STABILITY" guarantee in control theory.

If the approximation equation 5 stays, existing results in the conventional adaptive control fied may directly be
used to design the neural control structure and the neural network on-line learning algorithm. Unfortunately things
are not so simple. The neural network universal approximation feature requires that the neural network input must
be in a compact set. However, before the whole system stability is proved, the joint values may be unbounded.
Therefore the approximation equation is not necessarily true in on-line learning. Two techniques are used to solve
this problem. The first technique is to use the desired joint values instead of the actual joint values as the neural
network input since the desired joint values are normally bounded. The second technique is to force the joint values
into a compact set when they leave away from it. This technique is called "sliding control" in the conventional
control field and is called "reflexive stabilizer" in the learning control field. These two different techniques result
in two different control structures. However the neural network learning algorithms in these two different methods
are very similar although the neural network input is different.

I- 198

3. NEURAL NETWORK OFF-LINE LEARNING

In order to use our previous work in Jin et al. (1993) to develop neural network off-line learning algorithm in
this application, we rewrite Equation 5 into a scalar form. Let W1, g, be the weights and the nonlinear mapping
vector for joint i. Then Equation 5 for each joint is

r/x)-g(x) T W .(x) il,2,...,n (6)

where r, is the driving torque for joint i, x is the joint values whose actual values depend on control structures and
will be specified late, t is the approximation error and has III I ! r [c., c, is the approximation accuracy and
could be as small as possible by carefully choosing neural network structures.

Let zxk, f be the kth set of training data collected from the actual manipulator or simulation software. During

off-line training, x' is fed into the neural network as inputs. A, is used to train the neural network. Define *l

and), t be the actual neural network weights of joint i before and after the kth training date set is used, and , is

the actual neural network output. We have

Y,'g 8(Xhk (7)

From Equations 6-7 we obtain

where 9(X')-y,. * The off-line training algorithm is stated in the following theorem.

Theorem 1: Consider the off-line training algorithm of Equations 9-10. If the two constants, a,, P,, are chosen

0<a<P< 2 , then the neural network weights approach fixed values and the neural network output approaches the

manipulator driving torque within the error e. =2sJ(p,-crd.

+ at -Sxx' ea (9)

eAti=f if 1j1
11'.e. (10)

4. CONTROL STRUCTURE AND NEURAL NETWORK ON-LINE LEARNING ALGORITHM-METHOD I

In this section we present the first control structure and neural network on-line learning algorithm. This method
is suitable for any manipulator consisting of only revolute joints. The neural network input i.e. the joint values
consist of the desired joint placement, velocity, acceleration and the sign of the actual joint velocity. Consider
the following function

y(q,, 4d4,, sgn(#)) = H(qd)#, + C(q1 ,#)#d + Fsign(#) + Fd d + F,(qd) +j(q) (11)

where F,, F, are constant positive definite matrices standing for Viscous and Columbia frictions, F stands for
unstructured uncertainty whose norm is over bounded, in addition, the norm of aFlaq is over bounded as well.
Since the function inputs are bounded and the function is continuous with its inputs, it can be approximated by a
L-E neural network with approximation error as small as possible.

H(q. + C(q, Q4)j + Fsign(4) + F,4# + F(qd) = G(q, 4r qsign(d))TW. E (qd4d 40 sign(4)) (12)

where G is the L-E neural network hidden layer nonlinear mapping matrix, W is the neural network weights,/
satisfies t 1 : c ,, and . could be as small as possible.

Theorem 2: Consider (1) where F(q,#)=Fcsgn(4)+F,4+F(q) with the control law

IJ- 199

7- *KP + KA + G(q , #, Sgn(#))T* =sgn(#+cq) (13)

it-rcq #,, sgn(4)) (4c) (14)

iere F is a constant positive definite matrix called the lering rate. If Y, and K, a sufficiently large, a c is

smdl enough, then the closed-loop manipulator system is asymptotically stable and lim-0, lin -0.

Equation 13 defines the control structure and Equation 14 defines the neund network on-line learning algorithm.
Set the joint value x be (qj, #J, 4r sgn(# 7))r. The off-line learning algorithms in Section 3 can be directly used.
Off-line learning in this control structure is very useful. The proof of the theorem uses the Lyapunov method. The

Lyapunov fuwction is V-1 rH(q)jq K lcq T H 1 * TrWunlike conventiona adaptive control
2 2 22

whom only a few of the unknown manipulator parameters are adapted, in a neuM network controller hundreds of
or even thousands of weights are trained. If the neural network has not been trained off-line before on-line running,
the initial weight errors will be very large, i.e. the initial Lyapunov function value will be extremely large. This
can only result in two possibilities, i.e. either K, extremely large or c extremely small. Both possibilities are not
acceptable in practice. Another problem with a large initial Lyapunov function value is that the joint tracking errors
may be very large in transient response since Theorem 2 only guarantees that the tracking errors will asymptotically
approach to zer.

Exampk 1: A two link manipulator discussed in Slotine & Li (1989) is studied here again. The manipulator
dynamics have additional terms, i.e. viscous frictions and unmodeled uncertainties. The final dynamics are(a , a3C21 a12, 4 1 V 2[0 aA 42 a AS2142 + [4' 1a3c2, a4$2 , a 2 2 21 o larr , -ac 2,4 0141 +F- 2n

wher C2 -c(q 2-q), s2,=sin(q2-q,),
a10.15, a2=0.04, a3=0.03, &4=0.025, Radians
F includes the viscous frictions and 0.8
unmodeled uncertainties, i.e.

{0.44,iO.Scos(q) 0.4
0 .242 .O.4sin(q,) 0.

J g

The manipulator is required to track the 0-%=P.
following desired joint values

/q. =4 2(-.4 (v

q,, -! +2(l -cos(t))
4

D 6 time (s)

The PD controller parameters are chosen - . Ito be I=2I and K,=51 where I is an 0 20 40 60 80
identity matrix with proper dimension. c
is chosen to be 1. The L-E neural
network is chosen to be a CMAC. r is Figure 1: Tracking Errors in Example 1
chosen to be 0.81. The simulation has
been carried out for 80 seconds. The
displacement tracking errors are shown in Figure 1 where the solid line is the joint I tracking errors and the dashed
line is the joint 2 tracking errors. The tracking errors have asymptotically approached to 0.

11-200

5. CONTROL STRUCTURE AND NEURAL NETWORK ON-LINE LEARNING ALGORITHM--METHOD 2

In this section we present the second control structure and neural network on-line learning algorithm. ti
method is suitable for any muoipulaW consisting of rnvolute joints, prismatic joints, or both types of joints. The
neura network input i.e. the joint values (z) consists of the actual joint displacnmrnt and veocity, the duired
joint velocity and acceleation, and the sip of the actual joint velocity. A sliding controller is used to force the
joint values into a compact set.

For the convenience of the following discussions, define
E(O)-q,(t)-u(O, 4,-q,-A4, ,-4,-4-j h4

where A is a positive definite matrix. Let v be (q 7#)T and x, be a set fvllvlc).
Consider the following function

(1, 4. 4,. 1,. sn(4)) -H(q)#, C(q4) (q) -P(q,#)

When vEX,, the function inputs are bounded and the outputs are continuous with the inputs therefore the function
can be approximated by a L-E neural network with approximation error as small as possible, i.e.

H(q)j, + C(q,#i) + g(q) + P(q,q) (16)
= G '(qA##,,s()) W+qq~.sn4

where W is the desired neural network weights, C is the approximation error which satisfies IJCJ.. e. is a
constant and is called the approximation accuracy which could be as small as possible.

During the transient response, it is possible that , leaves the set X, and, therefore, goes out of the control of
the neural network. A technique called "sliding control* is used to force Y into the set. Let c4, c. be constants,
which satisfies c,>c,, c is large enough so that (qj,#)T is always in %,. The whole space of v is divided into

three parts, x.-. and c. -{IlwI l>'c. When v is in x,, only the neural controller will be used. When

v is in C,, only the sliding controller will be used. When Y is in €c., the domination of the control smoothly shifts
from neural network into the sliding controller. We define the following dominating factor.

A(L) - I r- (17)

where sat(x)X i ox1. Then the above description can be expressed as the following equation:

where uw is the sliding control output in Bailey & Arapostathis (1987) and KD(t) is a uniformly positive definite
matrix.

Theoran 3: Consider (1) with the control law of Equation 18. The neural network learning algorithm is

. (1,,.sn())a (9)

Then the closed-loop system is asymptotically stable and lim--O, lim---O.
-- t-

Set x be (q, q, 4, ,(, 7(4)T. The off-line learning algorithm in Section 3 can be directly used for this
control structure. Off-line learning improves the on-line running performance. Theorem 3 only guarantees
asymptotical stability. Large initial weight errors may result in large tracking errors in transient response.

Example 2: The example is a two link manipulator. H, C,9 are the same as ones in Example 1. F(q,q) is

11-201

0.6 Radiana

Te m is asked t track the 0.4
desired joint position function, i.e. 0.2

01 -+ " ' - - -

4= (1-cos50). The PD controller is -.2

({-Q+8(qa-q) i-1,2. Comparing -.4 t (nc.)

with Theorem 3, KD1, A=81 where I is 0 1 3 4'

an identity matrix with proper dimenion. 04 Radas a

A CMAC neural network is used. r is
chosen to be 0.21. Simulation period is 4
seconds. Figures 2a and 2b show the .02
results in the firsthe tenth trial. The
solid line is the joint I displacement
tracking errors and the dashed line iste - 1
joint 2 displacement tracking errors.

_.02 /t (Sec.)
6. CONCLUSION 0 1 3 4'

In this paper we present how to us (b)
neural networks to control manipulators.
Two different control structures and on- Figure 2: Tracking Errors in Example 2
learning algorithms are proposed.
Stability is guaranteed. Neural network off-line training algorithm is also presented. Off-line training does improve
the on-line naming performance. The proposed neural network control structures can work together with
conventional adaptive control.

Thee is a difficulty applying the theoretical results, i.e. it is difficult to get the neural network approximation
error. The difficulty is overcome in simulations by trial and errors.

In on-line learning, neural networks are time-continuous, i.e. the neural network inputs, outputs and weights
change time-continuously. Although time-continuous neural networks can be realized by analog circuits, it seems
that the implementation of time-continuous neural networks is not so easy as the implementation of time-discrete
neural networks which can be realized by current discrete VLSI technology. The results presented in the paper have
been extended from using time-continuous neural networks into using time-discrete neural networks.

REFERENCES
[1) J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller

(CMAC)-, Journal of Dynamics Systems, Measurement, and Control, vol.97, pp.220-227, Sept. 1975.
[21 E. Bailey, A. Arapostathis, "Simple Sliding Mode Control Scheme Applied to Robot Manipulators", lnt7

Journal of Control, Vol.45, pp.1197-1209, 1987.
[3] Y. liguni, H. Sakai, and H. Tokumaru, "A Nonlinear Regulator Design in the Presence of System Uncertainties

Using Multilayered Neural Networks", IEEE Trans. on Neural Networks, vol.2, pp.410-417, July, 1991.
[4] 7. Jin, A. G. Pipe, A. Winfield, "Stable Neural Adaptive Control of Discrete Systems, World Congress on

Neural Networks, Vol.3, pp.277-280, 1993.
[5] M. Kawato, Y. Uno, M. Isobe, and R. Suzuki, "Hierarchical Neural Network Model for Voluntary Movement

with Application to Robotics", IEEE Control System Magazine, vol.8, no.2, pp.8-15, April, 1988.
[61 W. T. Miller, R. P. Hewes, F. H. Glanz, L. G. Kraft, "Real-Time Dynamic Control of an Industrial

Manipuf'or Using a Neural-Network-Based Learning Controller", IEEE Trans. on Robotics and Automation,
vol.6, pp. 1-9, Feb. 1990.

[7] J. J. E. Slotine, and W. Li, "Composite Adaptive Control of Robot Manipulators', Automatica, vol.25, no.4,
pp.509-519, 1989.

II-202

Condition Monitoring of Impulsively
Loaded Mechanical Equipment using

Neural Networks

Travers Snyman Andr6 Nel
ESKOM - NPTM&C Rand Afrikaans University

Germiston - RSA Johannesburg - RSA
aln@ingl.rau.ac.za

Abstract

Monitoring of mechanical condition of electro-mechanical circuit breakers as reported in (1], [2] and
[3] reflects the necessity of a noninvasive method for predictive maintenance. By far the most common
source of malfunction of circuit breakers is due to mechanical faults that are dependant on the number
of operations.

In attempting to provide an alternative method for predicting the mechanical condition we have
postulated that instead of using spectral information [1] we would simply make use of the original time
domain signal. For the pattern recognition process a backpropagation trained multilayer perceptron was
implemented.

From results obtained it appears that an accurate classification of the vibration signature of an
impulsively loaded mechanical component can be achieved. Not only can faults be detected but a reliable
indication of the specific type of abnormality can also be achieved. This type of condition classifier will
be very effective in early fault detection and prediction of mechanical failure in large electro-mechanical
circuit breakers.

1 Introduction

A regular (ie. planned) schedule of maintenance is followed by most power companies to ensure reliable
operation of electro-mechanical circuit breakers. This involves taking the breaker out of service, disassem-
bling the operating mechanism, inspecting the components and adjusting the mechanism to predetermined
standards. This is a time consuming and costly operation.

Successful application of non-invasive condition monitoring will lead to early detection of mechanical mal-
functions, Such a technique using vibrational signatures is suggested in [1], [2land [3]. The technique applied
is to create an extensive database which combines short-time energy, short-time spectra, event timing ex-
traction techniques and a reference based mechanism for pattern analysis. This de facto expert system is
then used to determine the condition (normal or abnormal) of the specific breaker under investigation.

A specific problem with the above approach is that the placing of the transducers on the body of the breaker
itself presents a problem in the field. Repeatable placing of the sensor is a requirement for the technique as
described in [2]. A further problem is that each different type of breaker leads to the development of new
reference features. This makes transfer of experience from one breaker to another virtually impossible. This
method only provides a classification between normal and abnormal operation and the specific fault still has
to be determined. The reference features also employ time consuming signal processing techniques such as
short-time spectra and short-time energy.

In attempting to provide an alternative method for predicting the condition of a circuit breaker we have
postulated that instead of using the spectral information, we would prefer to simply make use of the original

1-203

time domain signal. Inherent in this attempt therefore was the decision to make use of a more standard
pattern recognition type approach rather than the direct reference technique described above. For the specific
pattern recognition process, a backpropagation trained multilayer perceptron was proposed (described in
[4], [5], [61, and [7]).

The problem addressed in this paper is therefore to determine how well a neural network can classify
mechanical characteristics of a circuit breaker using vibrational information.

At first a neural network structure (number of input samples, number of hidden neurons and number of
hidden layers) was determined experimentally, using only the time domain vibrational information. The
classification problem chosen in these experiments was the classification of close and trip vibrational signals.
Finally two similar dc-operated contactors were used to determine the capabilities of a neural network to
classify certain mechanical abnormalities using the time domain vibrational signatures of close and trip
operations. Networks were only trained on one of the contactors and tested on both to show that experience
can be transferred. The classification capabilities of the neural network was tested when the input consisted
of known abnormalities, unknown abnormalities and a variation in the severity of the abnormalities.

2 Experimental Test Setup

The ac-operated and dc-operated circuit breakers used, are small relay operated breakers that are operated
from 220 V ac and 110 V dc respectively. These breakers are small enough to be operated under controlled
laboratory conditions. In the case of the ac-operated breaker, the acceleraometer was mounted at different
points on the baseplate of the breaker using a permanent magnet and in the case of the dc-operated breaker
the transducer was mounted with studs on plates connected to the contacts.

The vibrational signals were passed through anti-aliasing filters before being presented to an analog to
digital converter. The signals (512 digital samples per signal) are then normalized and presented to the
neural network. For perceptron learning to be considered successful, it is essential for the system to perform
correct classification of test samples on which the system has not been trained. Sufficient samples must thus
be captured to allow for both training and testing.

3 Pattern Recognition

The back-propagation neural network has already been tested with problems related to speech recognition
and problems related to visual pattern recognition [5]. The vibration signals yielded by circuit breakers are
similar to speech signals and it was felt that a perceptron could be used as a classifier for the mechanical
condition monitoring. Small variations will be discounted by the network and it will generalize to such
an extent that a single system could be used for monitoring different fault conditions. The generalization
capability will also reduce the effect of the sensitivity of the system to transducer mounting positions - a
problem experienced in [3]. In contrast to a reference based expert system the perceptron does not require
a known set of rules to solve the problem - another problem of the reference based system [3].

4 Neural Network Structure

From a practical point of view there is not much to be gained from distinguishing between a close and a
trip signal. In this case however, this classification was used to determine a successful neural architecture.
In the case of the ac-operated contactor, the vibrations are scarcely repeatable. In fact it is sometimes very
difficult even for trained opreators to distinguish between a trip and a close operation by visual inspection.
This non-repeatability makes the classification problem non-trivial. The same signal operating the breaker
is used for triggering the analog to digital converter and this results in a variable phase in the signal because

11-204

the triggering does not occur at exactly the same instant in the 50 Hz ac cycle. The variable dc component
and the phase variability could be considered as extra parameters which would complicate the classification
task. Figure 1 shows an example of close and trip vibrations.

I I o2

0,6 0.1

0.4 0.05

0.2 0

0 .0.05 1

.0.2 - -0.1
-0.4 -0+I$

-0.: -0.2

.0., -0.25

-l -0.3

0 100 200 300 400 b0 0 100 200 300 400 b0

Clo.* (S.Mpl. N.Mb.r Trip ISimpl. Nmberj

Figure 1: Close and trip vibrations of the ac-operated contactor

The hidden layers of a neural network act as feature extractors in a classification problem. The number
of neurons must be large enough to form a decision region that is complex enough to abstract the decision
space required for the given problem. In spite of the various attempts to determine stricter bounds on the
number of hidden neurons required [9] this is still an open research problem. To determine the number of
hidden nodes required by the network for this specific classification problem, the network was trained with
the number of neurons varied from 50 to 1000. Only one layer of hidden neurons was used and the number
of training samples was held constant at 320. The resuits are presented in Figure 2.

95

90\
85 /

Percentage 80 -

75

70

65
0 100 200 300 400 500 600 700 800 900 1000

Number of hidden neurons

Figure 2: Graph of network performance versus the number of hidden nodes

As pointed out in [5], the neurons of the first hidden layer of a two hidden layer network often function as
hyperplanes, that partition a d-dimensional input space into various regions. This together with [6] suggests
that multiple hidden layer networks should provide networks that generalize better in some classification
problems. Figure 3 shows a graph of network performance as a function of the number of neurons in each
hidden layer for networks with multiple hidden layers.

The conclusion to be drawn from the above experiments is that given a finite training set, one way to find
a suitable hidden layer structure for the specific classification task is by trial and error. It thus appears
that a single hidden layer network with approximately 600 hidden nodes will be sufficient to perform the
classification.

11-205

100

95 1 Layer --
952 Layers

90 3 Layers

Percentage 85

80

75
70 t " \T

50 100 150 200 250 300 350 400 450 500
Number of neurons in each hidden layer

Figure 3: Graph of network performance versus the number of nodes in each hidden layer

5 Fault Classification

The construction of the dc-operated breaker makes it possible to induce the following mechpnical abnormal-
ities in a repeatable manner : Bad Contact, Looseness, and Bad Spring. A bad contact condition is
induced by applying layers of masking tape to the contacts of the breaker. A bad spring condition is achieved
by replacing one of the springs with one of the same dimensions but reduced stiffness. Looseness is achieved
by loosening the baseplate screws. Figures 4 and 5 show examples of close operations in normal and three
abnormal conditions.

0.8 08 1

0.7 - 0.7

0.6 N.-Imal.. - 0.8
0.5 0.
0.4 0.4
0.3
0.0.3
0. 0.2

0.3

0.01
-o.1 0o1I I

0 100 200 300 400 300 0 100 200 300 400 300

Sample Number Sample Number

Figure 4: Close samples of normal and abnormal conditions

The first step in analyzing the fault classification abilities of the neural network was to determine how well
it would perform on input samples that were similar to those on which it was trained. A single hidden
layer network with 640 hidden nodes in the hidden layer and 8 output neurons (defining the trip and close
operations of each of the abnormalities) trained to completion and resulted in a 100% correct classification
of all the abnormalities. The number of training samples was 640 with an equal number for each of the
eight conditions. For test purposes, an equal number of each condition was withheld from training, (160 test
samples). If the combination of the close and trip inputs is considered as a test set this network also resulted
in a 100% correct classification of the specific abnormality. The combination of close and trip inputs is used
because the vibrational signals of some abnormalities have a prominent feature in a close operation which is
sometimes not present in the trip operation and vice versa.

Abnormalities do not always occur to the same degree as that on which a network was trained. If the

11-206

O.- 0 2-

0.3 ..d Sp'.g C°.. B.d Ca.t CI... ..

0.4

0.3 0.1

0.2 0.05

0.- 0
00

.0.4 -0.1

0 100 200 300 400 oo 0 100 200 300 400 b&O.

Sampl. Numb.. Smple Number

Figure 5: Close samples of abnormal conditions

Condition Number of classifications
Normal 0

Looseness 24
Bad Contact I
Bad Spring 0
Unknown 5

Table 1: Classification of 30 test. sets with both screws slightly loose

trained network should also be used on different degrees of the abnormalities, the classification results are
also satisfactory. Tables 1 and 2 show the classification results obtained with varying degrees of looseness.
The results obtained from using the network with test sets where the severity of the abnormalities are
different from the training set, underlines the generalization capabilities of a neural network. In all of the
abnormalities, the network is insensitive to small changes in the feature properties on which it was trained.

In practice there is no certainty that only one abnormality will exist in a contactor when a trip or close
operation is performed. If the trained network is tested on inputs that contain combinations of the abnor-
malities, abnormal classifications are correctly classified. In all the cases the specific fault is either classified
as unknown or bad spring. It thus seems that the bad spring contains a feature that is either easier to detect
than the features of the other conditions or which is equivalent to the combination of other features.

When the network is subjected to unknown abnormalities, (eg. some other component in the breaker is
loosened), the network still classifies the inputs as abnormal - not necessarily the correct fault but certainly
indicating that there is a fault present.

Testing for the ability to transfer experience, the network was also tested on vibrational signals obtained
from another breaker of the same type. The results obtained are given in Table 3. The poor classification
of the normal conditions can be attributed to the fact that the age of the contactors differed significantly.
There is thus some unknown feature in the vibrations of the second breaker when operated under normal
conditions. If the network is retrained with some of the normal conditions of the second contactor added
to the training set, the poor chssification of the normal conditions is corrected while not affecting the fault
classification.

Condition Number of classifications
Normal 2

Looseness 21
Bad Contact 0
Bad Spring 0
Unknown 7

Table 2: Classification of 30 test sets with one screw tight and one screw loose

11-207

Condition Classifications Classifications Classification Classification
of normal looseness bad-contact of bad-spring

inputs inputs inputs inputs
Normal 6 0 0 0

Looseness 16 10 0 0
Bad Contact 1 0 0 0
Bad Spring 1 0 3 10
Unknown 6 0 7 0

Total tests 30 10 10 10

Table 3: Classification results for a different contactor of the same type

6 Conclusion

The results obtained in this paper indicate that the network classification performance in this application
depends strongly on the network architecture and the particular training samples used. It appears that a
very accurate classification of the vibration signature of an impulsively loaded mechanical component can
be achieved using a very simple neural network classifier. What is particularly interesting is that the results
can be achieved in this case only using the time domain data.

It is hoped that these results will assist in making practical recommendations for using neural networks as
classifiers of mechanical fault conditions in impulsively loaded mechanical equipment. If successful, this will
no doubt be a major step towards cost effective predictive maintenance on large electro-mechanical circuit
breakers.

References

[1) V. Demjanenko H. Naidu A. Antur M.K. Tangri R.A. Valtin D.P. Hess S.Y. Park M. Soumekh A. Soom
D.M. Benenson S.E. Wright. A noninvasive diagnostic instrument for power circuit breakers. IEEE
Trans. on Power Delivery, vol.PD-7(2), 1992.

[2] S.Y. Park M.L. Lai C.C. Lin H. Naidu A. Soom A.M. Reinhorn Y.H. Lee V. Demjanenko D.M. Benenson
T.T. Soong S.E. Wright. Measurements for noninvasive mechanical diagnostics of power circuit breakers.
Electric Power Systems Research, 19, 1990.

[3] M.L. Lai S.Y. Park C.C. Lin H. Naidu A. Soom A.M. Reinhorn Y.H. Lee T.T. Soong V. Demjanenko
D.M. Benenson S.E. Wright. Mechanical failure detection of circuit breakers. IEEE Trans. on Power
Delivery, vol.PD-3(4), 1988.

[4] R. Hecht-Nielson. Neurocomputing. Addison - Wesley, 1990.

[5] R.P. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, pages 4-22,
1987.

[6] J. Stanley. Introduction to Neural Networks. California Scientific Software, third edition, 1990.

[7] B. Widrow M.A. Lehr. 30 years of adaptive neural networks. In Proceedings of the IEEE, volume 78(10),
1990.

[8] K.G. Mehrotra C.K. Mohan and S. Ranka. Bounds on the number of samples needed for neural learning.
IEEE Transactions on Neural Networks, 2(6), November 1991.

[9] S-C. Huang Y-F. Huang. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE
Trans Neural Networks, vol.NN-2(1), 1991.

1-208

An Architecture for Learning to Behave

Ashley M. Aitken

Al Laboratory, School of Computer Science and Engineering,
University of New South Wales, Box 1, PO Kensington,

N.S.W., 2033, Australia.
Ph. +61-2-697-3940
Fx. +61-2-663-4576

ashley@cse.unsw.edu.au

Abstract

The SAM architecture is a novel neural network architecture, based on the gross architecture of the cerebral
neocortex, for combining unsupervised learning modules. When used as the high-level behavioral
mechanism of an agent, the architecture enables the agent to learn the functional semantics of its high-level
motor outputs and sensory inputs, and to acquire high-level and complex behavioral sequences by imitating
other agents (learning by 'watching', or learning from a coach). This form of learning involves the agent
attempting to recreate the sensory sequences it has been repeatedly exposed to. The architecture should scale
well to multiple motor and sensory modalities, and to more complex behavioral requirements. Finally,
insofar as it is based on the architecture of the cerebral neocortex, the SAM architecture may also help to
explain several features of the operation of the cerebral neocortex.

1. Introduction

To survive and thrive in a realistic environment (Booker, 1991) agents require a number of different behavioral
and learning strategies (Lorenz, 1978; Meyer & Guillot, 1990, September 24-28). Some agents behave
predominantly according to reflexes orfixed action patterns (Beer, 1990; Braintenberg, 1984). Others include more
flexible but still instinctive behavior or learning programs (Gould, 1982). Finally, some agents (in particular
those animals with cortical structures) are capable of learning and executing complex behavioral sequences. In fact,
this ability to learn to behave is arguably one of the most important facets of higher intelligence.

If an agent employs a subsumption architecture (Brooks, 1986, March) for its control system it is possible
to consider the lower level behavioral mechanisms as part of an extended environment for a higher level behavioral
mechanism (Fig. 1). In this way the precise problem tackled here can be made clear: how can a high level behavioral
mechanism, with no a-priori control information, learn the functional semantics of its motor outputs and sensory
inputs, and acquire and execute complex behavioral sequences? This paper provides a solution to this problem by
presenting an architecture based upon the structure and function of the cerebral neocortex (Eccles, 1984;
Szentagothai, 1975) which builds upon the hypothesis that "... the cortex is nothing but a mixer of information for
the purpose of discovering and recording correlated activity ..." (Braitenberg, 1982).

Figure 1. Brooks' creatures employ a range of behavioral mechanisms by way of a subsumption architecture
(left). It is possible to consider the lower level behavioral mechanisms as a part of an extended environment
for the higher level (right).

11-209

Most contemporary neural network architectures are not modular, and use supervised learning rules. However,
modularity and unsupervised learning are essential to enable neural networks to scale to larger applications (Murre,
1992) Recent work has sought to find useful modular supervised learning architectures (Jacobs & Jordan, 1991;
Nowlan & Hinton, 1991). Regrettably it seems however that little progress has been made on defining general and
extendible architectures for combining unsupervised learning modules. The SAM architecture presented in this paper
is a general and extendible architecture for combining unsupervised learning modules to learn complex behavioral
sequences.

Neural networks for learning behavioral sequences have predominantly used time-delayed sampling with
standard feed-forward networks, or more complex recurrent networks (Elman, 1990). Although these approaches
have been successful they both employ error-backpropagation from desired output states to train the network. For an
agent this assumes that the supervisor knows the agent's motor representations. The SAM architecture presented
here uses unsupervised learning modules with a coach who repeatedly performs the desired behavioral sequence. The
agent 'watches' the coach and, later, attempts to recreate the sensory sequences it was exposed to. In this case, the
supervisor and agent need not share similar motor or sensory representations (although some commonality of
'sensory view' and 'motor capability' is assumed).

2. The SAM Architecture

The basic components of the SAM architecture are unsupervised learning modules. The modules are required to be
capable of detecting and representing correlations in the inputs in a semi-distributed manner, to generalise across
input patterns, to have units with stochastic output states, and to be tolerant to noise. However, the SAM
architecture is independent of the exact nature of the modules. This research uses extended BCM neurons (Aitken,
1993; Bear & Cooper, 1990) with lateral inhibition amongst neurons to form the unsupervised modules. However,
other modules, like CALM (Murre, 1992), Linsker's layers (Linsker, 1988) or even ART (Carpenter & Grossberg,
1988, March), should work just as well.

Figure 2 : The basic SAM Architecture - feed-forward and feed-backwrd connections between three
unsupervised learning modules - the sensory, the motor and the association module.

The SAM architecture, in its simplest form, consists of three unsupervised learning modules with feed-
forward and feed-backward connections. The sensory module (S) also receives sensory inputs from the extended
environment (4). The motor module (M) also produces motor outputs which effect the extended environment (4).
The remaining module that receives neither sensory inputs nor produces motor outputs is called the association
module (A). The SAM architecture, unlike most other classical or neural network architectures, relies on the closing
of the loop (Kuperstein, 1988) between motor outputs and sensory inputs by way of the extended environment to
define the functional semantics of the motor outputs and sensory inputs.

3. Learning to Act and Perceive

Learning in the SAM architecture commences with random explorations of the motor space due to the stochastic
states of the neurons in the modules- much like an infant's random movements or babblings. Initially, as all
modules only receive random patterns there is no significant learning. However, when the motor module executes an
effective motor sequence the sensory module detects and represents the correlation between the motor state and the
sensory inputs (Fig. 3). An effective motor sequence is simply a motor sequence that causes a tangible sensory
consequence (for example, in mammals compare an ineffective random firing of muscle fibres with a progressive

11-210

firing of muscle fibres - the former would produce little, if any action, whereas the latter would cause a physical
action and sensory consequence). At this stage, the architecture is in effect learning the primitive motor commands
and their sensory consequences - it is learning to act and perceive.

Figure 3 : Closing the loop. Sensory modules detect correlations in the motor outputs and the sensory
inputs. Effective motor sequences cause correlated sensory sequences. Clearly, this is a highly schematized
diagram - for any reasonable control of an elbow joint a much more complex control system is required.

Significantly then, in the SAM architecture, the sensory modules represent correlations between the motor
states and the sensory inputs rather than just sensory inputs. This is in contrast to the traditional view of sensory
processing, and in particular to the traditional view of mammalian sensory processing. Traditionally, it has been
assumed that the representative units in the sensory areas of mammals directly represented sensory inputs.
Interestingly, there may be some physiological evidence for this new view. Nicolelis(Nicolelis, Luiz, & Lin, 1993)
has found, when recording simultaneously from up to 23 single thalamic neurons in awake rats, that the receptive
fields changed with the motor states (the sweeping of the whiskers). Similar dynamic receptive fields would be
expected with the SAM architecture as the motor states changes since it also provides input to the sensory module.

4. Learning to Behave

AGENTAGN
[COACING(LEARNING]

Figure 4 : Learning by Imitation. The teacher (or coach) provides the desired sensory sequences (most
commonly as a result of her own motor system). In this way the teacher is not required to know the agent's
sensory or motor representations.

It is not feasible to use random exploration of the motor space to learn complex behavioral sequences. Instead, once
the SAM architecture has learnt to act and perceive it learns more complex behavioral sequences by imitation1 . This
entails repeated exposure to sequences of sensory inputs - usually the sensory consequences of another agent's motor
outputs (Fig. 4). This pushes the sensory module through a sequence of sensory states. As a result of the learnt
sensory-motor correlations, the motor module also steps through the appropriate motor sequence for the production
of that sensory sequence. With repeated exposure to this sensory sequence, the association module will detect and
represent the correlations in the sensory-motor sequence. The association module then becomes the context that

limitation as a form of learning is well known in psychology (Weinsheimer, 1984) but relatively neglected in

machine learning.

11-211

signals the appropriate motor state for a particular sensory state (and vice-versa, primes the appropriate sensory state
for a particular motor state) in a particular behavioral sequence.

The modularity of the SAM architecture allows it to scale well to multiple sensory and motor modalities and
more association modules. It is easy to extend the simplest SAM architecture (as described above) by regarding the
association module as a higher level "motor module" and adding an extra association model connected to the sensory
module and the previous association module (Fig 5.). A similar extension can also be made on the motor side of the
sensory-association-motor triangle. With multiple sensory, motor and association modules the system can capture
and perform more complex behavioral sequences.

Figure 5 . The Extended SAM Architecture. By considering the standard association module as a higher
level "motor module" it is possible to add an extra higher-level associative module on the right-hand side.
Similarly, by considering the standard association module as a higher level "sensory module" it is possible
to add an extra, higher level, associative module on the left-hand side.

S. Further Discussion

Reinforcement learning (Sutton, 1991) could be included in the SAM architecture by using a critic's evaluation to
modify the learning rates of all or some of the modules and hence to direct the learning. Similarly, as the SAM
architecture sits on top of a layered architecture (much like the cortex sits on top of the mid- and lower brain in
mammal) it operates with and through the lower levels. These lower levels may usefully blinker what the SAM
architecture observes and thus learns.

Finally, insofar as the SAM architecture provides a model of the operation of the cerebral neocortex it also
hints at possible explanations for a number of clinical findings. Firstly, the way in which higher SAM association
modules only form stable representations once the lower modules become correlated is similar to the process of
hierarchical learning in young children (Karmiloff-Smith, 1987, April; Karmiloff-Smith, 1992). Secondly, a recent
indication that experts tend to use less cortical activity than novices on a similar task (Begley, Wright, Church, &
Hager, 1992) may be explained by the SAM architecture as a result of there being more correlated activity in the
modules of an expert, compared with the mismatched uncorrelated activity in a novice (where correlations have yet to
be detected and represented).

6. Summary and Future Work

In summary, the SAM architecture provides a method for combining unsupervised learning modules to allow an
agent to learn the functional semantics of its sensory inputs and motor outputs, and complex behavioral sequences.
The SAM architecture learns complex behavioral sequences by a combination of random exploration of the motor
space and imitation of observed sensory sequences. As the architecture does not assume any predefine semantics of
the agent's inputs and outputs it should make the construction of agents simpler. Also, as a result of learning by
'watching' the coach need not share or know the motor or sensory representations used by the agent. The SAM
architecture is inspired by the anatomy and physiology of the cerebral neocortex and as such also provides a model
for, and possible explanation of, cortical operation. Future work includes investigation of the relationship between
the number of modules, their interconnection, and the complexity of the behavioral sequences that can be learnt.

11-212

7. References

Aitken, A. M. (1993). Preliminary Aspects of the SAM theory of the Cerebral Neocortex. In Proceedings of the Second
Australian Conitive Science Conference (CoeSci-93) (pp. 104-106).

Bear, M. F., & Cooper, L. N. (1990). Molecular Mechanism for Synaptic Modification in the Visual Cortex: Interaction
between Theory and Experiment. In M. A. Gluck & D. E. Rumelhart (Eds.), Neuroscience and Connectionist Theory (pp.
65-94). Hillsdale, N.J.: Lawrebce Erlbaum Associates.

Beer, R. D. (1990). Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology.

Begley, S., Wright, L., Church, V., & Hager, M. (1992, June 9). Mapping the Brain. Bulletin (with Newsweek). p. 76 - 80.

Booker, L. B. (1991). Instinct as an Inductive Bias for Learning Behavioral Sequences. In J.-A. M. Meyer & S. W. Wilson
(Eds.), From Animals to Animats (pp. 230-237). Cambridge, MA: Bradford Book, The MIT Press.

Braintenberg, V, (1984). Vehicles * Experiments in Synthetic Psychology. Cambridge, Massachussetts: The MIT Press.

Braitenberg, V. (1982). Outline of a theory of the cerebral cortex. In L. M. a. S. Ricciardi A.C. (Eds.), Biomathematics in
I= (pp. 127-132). Amsterdam: North-Holland.

Brooks, R. A. (1986, March). A Robust Layered Control System For A Mobile Robot. IEEE Journal Of Robotics And
Automation, R-2(1), 14-23.

Carpenter, G. A., & Grossberg, S. (1988, March). The ART of Adaptive Pattern Recognition by a Self-Organizing Neural
Network. EELggtn, 77-88.

Eccles, J. C. (1984). The Cerebral Neocortex : A Theory of Its Operation. In E. G. Jones & A. Peters (Eds.), Cerebral Cortex
(pp. 1-36). New York, New York: Plenum Press.

Elman, J. L. (1990). Finding Structure in Time. Cogmitive Science. 14. 179-211.

Gould, S. J. (1982). Darwinism and the Expansion of Evolutionary Theory. Sc , 216, 380.

Jacobs, R. A., & Jordan, M. 1. (1991). A competitive modular connectionist architecture. In R. P. Lippmann, J. E. Moody,
& D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems 3 (pp. 767-73). Morgan Kaufmann
Publishers.

Karmiloff-Smith, A. (1987, April). Beyond Modularity: A Developmental Perspective On Human Consciousness. In

Karmiloff-Smith, A. (1992). Abnormal Phenotyoes and the Challenges They Pose to Connectionist Models of
l)lgmenL (Technical Report No. PDP.CNS.92.7). MRC Applied Psychology Unit, Cambridge, England.

Kuperstein, M. (1988). Neural Model of Adaptive Hand-Eye Coordination for Single Postures. Sien 239, 1308-1311.

Linsker, R. (1988, March). Self-organization in a perceptual network. lEE Computer p. 105-117.

Lorenz, K. Z (1978). The Foundations of Ethology. New York: Springer-Verlag.

Meyer, J.-A., & Guillot, A. (1990, September 24-28). From animals to animats- everything you wanted to know about the
simulation of adaptive behavior No.

Murre, J. M. J. (1992). Learning and categorization in modular neural networks. Hillsdale, NJ: Lawrence Erlbaum.

Nicolelis, M. A. L., Luiz, B. A., & Lin, R. C. S. (1993). Distributed Spatiotemporal Properties of Networks of Neurons in
the Ventral Posterior Medial Thalamus of Awake Rats. In J. M. Bower (Ed.), Computation and Neural Systems,
Washington, D.C.

Nowlan, S. J., & Hinton, G. E. (1991). Evaluation of Adaptive Mixtures of Competing Experts. In R. P. Lippmann, J. E.
Moody, & D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems 3 (pp. 774-80). Morgan
Kaufmann Publishers.

Sutton, R. S. (1991). Reinforcement Learning Architectures for Animats. In J.-A. M. Meyer & S. W. Wilson (Eds.), Erom
Animals to AM= (pp. 288-96). Cambridge, MA: Bradford Book, The MIT Press.

Szentagothai, J. (1975). The "Module-Concept" in Cerebral Cortex Architecture. Brain Resarh 21 475-96.

Weinsheimer, J. (1984). Imitation. London: Routledge & Kegan Paul.

11-213

APPLICATION OF NEURAL NETWORKS TO

FUZZY CONTROL OF BIOREACTOR

TORSTEN ALVAGER AND ROBERT SHOTWELL

Department of Physics and
Interdisciplinary Center for Cell Products and Technologies

Indiana State University
Terre Haute, Indiana 47809, USA

ABSTRACT

Continuous cell culture in bioreactors is an important tool in cell research. To use it to its
full potential a suitable control system must be applied. The objective of this report is to
resent results from simulation experiments using neural networks to fuzzy control of

INTRODUCTION

Continuous cell culture in bioreactors can provide substantial gains in applications and the
method is presently eagerly pursued by a variety of potential users including a group at our
laboratory (1). To achieve the maximum benefits of these kind of reactors development of
control systems need to be pursued.

Traditional control methods are not well suited for continuous culture bioreactors, often
involving nonlinear processes. Fuzzy controllers are possible options especially if on-line
biosensors with fluorescence detection techniques are applied.

The objective of this report is to present results from simulation experiments using neural
networks to fuzzy control of bioreactors.

PROC MODEL

Fig. I shows a schematic diagram of a cell culture system with inputs A(1),...,A(n) and an
output B. The inputs would, in general, be nutrients while the product B, for instance,
could be a useful protein.

Cell Culture B.0

Fig.l A bioreactor with inputs A(l),...,A(n) and output B.

11-214

A given, constant concentration of B (maybe the optimal value) is required. If this
concentration for some reason is changed from the desired value the inputs must be
changed to compensate for the fluctuation of the B concentration.

The regulation can be achieved by the use of fuzzy control and NN methods which are
especially advantageous if the system is nonlinear. For simulation experiments values for B
and A are assumed to be related by a functionwhich will allow us to calculate B from the
A-values.

FUZZY CONTROLLER

In the simplest case the concentration (B) of the product and its change (B') depends on
one input value only, which we will denote by A. This variable is regulated by a pump, the
setting of which will be denoted by u. Table I lists the fuzzy control rules for low values
(N) of Afor proper level (Z) of A and high values (P) of A respectively.

Table 1

Fuzzy control rules for u when
(N = low level, Z = proper level, P high level)

A=N A=Z A=P

E'/B N Z P B'/B N Z P BB N Z P

P N Z P P Z P P P P P P
Z N N Z Z N Z P Z Z P P
N N N N N N N Z N N Z P

Using the rules in Table I and the standard procedure as outlined by, for example, Kosko
(2) for the inverted-pendulum case, we generated the control surfaces of the fuzzy
controller for B, Band u in the intervals [- 0.21 to 0.20], [-1.40 to 0.251, [-60 to 6.0]
respectively. The result is shown in Fig 2. In the next section a discussion is given of the
neural network used for implementation of the fuzzy controller.

NEURAL NETWORK FOR THE IMPLEMENTATION OF FUZZY
CONTROLLER

A three-layered neural network system with backpropagation was generated using a
NeuralWork (3) software package and data from the fuzzy controller. The output from the
neural network system was similar to the result for the fuzzy controller, but the surface was
smoother than the one shown in Fig 2.

11-215

6.00"

4.00-

2.000
U 0.00.

-2.00"

-4.00

C. 0.25
o2 cob -1.40 of

Fig. 2 Fuzzy controller output

CONCLUSION

The performed simulation experiments show the feasibility of the control system.
eiminary experiments with a simple cell cultur system conf'um this conclusion.

REFERENCES

1. AlvagT, Baleavage W, et al Appc of fluomcece bioensor to cell eultu
ecmology. Am. Lab. November 1991, pp 21-27

2. Kosko B. Neural Networks and Fuzzy Systems. Pntice Hall, Englewood Cliffs, NJ.
1992

3. Gamble J, Holden D. NeuralWorks Pofessional lI/Plus.Al Exper.1991;6(7),51-9

11-216

Neural Networks in Control: A Practical Perspective Gained from
Intelligent Arc FurnaceTM Controller Operating Experience

William E. Staib and Santosh K. Ananthramani
Neural Applications Corporation

University of Iowa Oakdale Research Park
2600 Crosspark Road, Coralville, IA 52241-3212

ABSTRACT
Extensive progress has been made in the past half decade or so in the use of neural networks techniques for control
[4, 7]. Neural networks offer the ability to approximate nonlinear mappings, and thus, to model nonlinear system
dynamics, which is the feature to be most readily exploited in the synthesis of nonlinear controllers. Presented in
this paper is a practical perspective on the use of neural networks for control, which the authors have obtained
from the operating experience gained out of numerous neural network based Intelligent Arc Furnace' Controller
installations worldwide. A detailed discussion of related issues arising out of such real-world installations has also
been provided.

INTRODUCTION
The basic processes involved in the design of a controller for a dynamical system include the mathematical
modeling of the system, identification of the system based on experimental data, processing of the outputs, and
using them, in turn, to synthesize control inputs to achieve a predetermined system response. The understanding
of the fundamental theoretical issues involved in control of nonlinear multivariable systems is still in the initial
stages, and the best developed aspects of classical control theory continue to be those related to linear systems.

As control methods have been adapted into standard practice, they have opened the door to a wide spectrum of
real-life applications involving complex dynamical systems. Such systems are characterized by poor models, high
dimensionality of the decision space, hierarchies, multiple performance criteria, distributed sensors and actuators,
high noise levels, and complex information patterns [18]. Hence, there is a need to move away from classical
linear control algorithms and look towards novel, intelligent control algorithms, which have the capability to cope
with the above mentioned categories of difficulties. The three popular techniques that are used in the context of
intelligent control are: arffca intelligence (Al) baed expert systems, fuzzy logk, and meural networks [1].

The manual control of such highly complex systems is more of an art than an exact science. The human (expert)
controller controls the system using his or her knowledge base which he or she has formed over years of training
on the system. In most cases it becomes extremely hard for the operator to quantify his or her control actions in the
form of rules, which are necessary for building Al based expert systems or fuzzy logic based systems. On the other
hand, a neural network based system learns the correct control methodology simply by observing training data sets
comprised of input-desired output pairs that are generated when the system is in operation. For example,
controlling a complex industrial process can be a good task for a neural network, since rules are often difficult to
define, historical data is plentiful but noisy, and perfect numerical accuracy is not required [5, 6].

Utilizing their attractive features, neural networks can be shown to be extremely efficient in solving
mathematically hard classification, prediction, and process control problems [11, 13]. Presented below is a
practical perspective on the use of neural networks for control, which the authors have obtained from operating
experience gained out of numerous neural network based Intelligent Arc Furnacem Controller installations all over
the world. An elaborate discussion of related issues arising out of such real-world installations regarding the
implementation of neural network based control systems has also been provided.

The athors can be reached by ema at wes@neumr.com or ska@nwa.mn or by pmne at (319) 626-5000

11-217

NEURAL NETWORKS: THE HYPE
Phrases such as "neural networks," "fuzzy logic," "artificial intelligence," and "intelligent control" attract a lot of
hype. Sentences such as "intelligent control can solve every problem" are often implied in such hyped propaganda
from the media/business world and even from some authors of research papers. Soi-, examples of such hype are:

1. "They're fast! They can read! They can generalize! They can do lots of different jobs! They think like you and
me. They're neural networks. And if your research facility doesn't have one yet, get ready. Because by the end of
the 90s, it will be the rare R&D lab that doesn't use a neural network [16]."

2. "Computer scientists build neural networks by imitating in software or silicon the structure of brain cells and the
three-dimensional lattice of connections among them [3]."

Such hype causes concern in two categories of people. A conventional controls person considers intelligent
control techniques to be non-rigorous, since theoretical or experimental analyses are not performed as has been
done in the past for conventional control methods [2, 10]. While such a bias can be attributed partially to the fact
that the field is new, it is essentially due to media hype and propaganda from research papers where unjustified
comparisons (for example, a backpropagation type neural network based controller compared with a poorly tuned
linear controller) are performed. Some authors have even incorrectly portrayed neural networks as a flawless
alternative to conventional control theory and statistical methods [17]. Hence, it is up to the neural network (or
intelligent) controls community to replace the art in their design by solid engineering practices.

Neural networks can make mistakes as well, since the portion of the dynamics they learn is entirely dependent on
the persistence of excitation in the training data. Many users do not understand the implications of the above and
wrongly claim to have learned the entire system dynamics; they fail upon trying to operate the system outside the
boundary conditions and constraints established by the dynamics reflected by the training data.

When there is time and a priori dynamic knowledge, conventional control theory can work very well. Most
practical applications probably involve a mix of known and unknown dynamics, so that the ultimate optimum is to
combine the conventional and neural control approaches.

A typical process control plant manager whose only exposure to neural networks is through popular magazines
(or less in most cases) represents the other category that succumbs to the hype and tends to over expect. One is
reminded of the Human-Superhuman Fallacy where a person A says to a person B: "You say your computer is
intelligent. Can it write plays like Shakespeare and compose music like Beethoven?". To this B replies: "Can
you?". Such over expectations cause drastic problems in the successful functioning of a neural controller in a
process control plant.

Hence, it is critical that utmost care be taken to maintain credibility and avoid hype in the presentation of ideas on
neural network based control to the real world. Inexpensive, general purpose "any problem, here's the neural
network based solution" type software packages do not serve the cause to alleviate the above concern.

THE INTELLIGENT ARC FURNACETM CONTROLLER
One of Neural Applications Corporation's most successful products has been the Intelligent Arc Furnace TM (IAFm)

Neural Network Controller for controlling the operation of electric arc furnaces at steel plants [14, 15]. The IAF TM4
Controller resides in a sophisticated computing environment which contains an Intel i486 CPU, an Intel i860 40
MHz high performance co-processor, a 400 kHz data acquisition system, and a multi-gigabyte storage subsystem.
The LAF T" Controller continually learns to adapt its control of the furnace to correct for changes in scrap makeup,
electrode size, system supply voltage, etc. It constantly re-optimizes the control criteria and provides the following
major features :

1. It is "three phase aware," in that it takes into account the effect that an electrode positioning signal will have on
the correlations among all the three system phases. The three output signals are chosen such that all three phases
meet desired operating conditions. This drastically reduces the setpoint hunting observed in traditional controllers.

11-218

2. It continually predicts event occurrences 100 to 300 milliseconds in the future, and then sends electrode
positioning signals to correct in advance the errors that are anticipated in the future. This causes an unprecedented
smoothness in operation.

Figure I shows a diagram of an electric arc furnace. Considering only the current flow for phase A, one can see
that the current flows from electrode A through the scrap metal and returns through phases B and C. Thus, to
control effectively to a setpoint, a controller must account for the interrelationships among the three phases and be
"three phase aware" (Figure 2). A production version of the system has been installed at thirteen different
customer locations all over the world, and the consumption of electric power has been reduced by 5-8% (an
average furnace has a capacity of 30 MW or more; enough power for a city of 30,000 people); wear and tear on the
furnace and electrodes has been reduced by 20%; and the daily throughput of steel has been increased, often by
10% or more.

INPUT AE on OUTPUT

REGULATOR

A Aolt Odlot A
F 1h Figural

A"R ATpCt BB] Vib Network

C Amp Controller oiy

TIHONAI.
BULATOfl

A A!o"l Odpvd A

nelgn A ne Cor Controller A

1Ne Vftpt Control e C n I 0,,,
B s e sy aC Vch centrolbue Cto

Are Furnee Diagram

Arrow@ show the flw of 'Phoe A Curret Compirith. hrtwof th Ar e d Tre itioHI aluitq System

Figure I Figure 2

RELATED PRACTICAL ISSUES
A few basic questions are addressed in this section relating to general issues in neural network based control
system implementation. These issues have been raised in the context of the installation and the operation of the
Intelligent Arc FurnaceOA Controller at numerous sites.

1. Need for sophtisticated diagnostic procedures within the IAF Tm Controller
Because there is a mystique associated with a neural network controller, clients may attribute more intelligence to
the IAPrA Controller than it should be credited with. The root of this problem lies in the lAF ability to adapt to

changes in system characteristics. If a process disruption occurs while running on a fixed controller, the client will
blame operating practices or maintenance problems. If the same disruption occurs when running under
intelligent, neural adaptive control, the same client may wonder why the neural controller no longer delivers the
performance it did before the disturbance.

1I-219

To prevent this situation a two-pronged approach is employed. First, the sales department makes sure that the
client does not over expect in terms of results (for example, correcting myths such as the neural network's ability to
predict scrap cave-ins). Secondly, sophisticated diagnostic procedures incorporated in the system ensure that
clients can isolate the exact cause of any anomalies. The LAY7r1 Controller has a very sophisticated data logging
system which logs every control and state variable for every time slice - about 10 MB of data per hour. Since this
logging began, the number of hallucinated IAFm problems has fallen from a few per week to almost zero. A
couple of anecdotal examples are given below.

We received a call from a client saying that the neural regulator had suddenly started breaking electrodes. Upon
careful analysis of the data we found that the problem was due to a bug in the client's Programmable Logic
Controller (PLC). When scrap cave-ins occurred, the client's PLC was incorrectly sending manual override signals
to the LAFm Controller, which, as a result, did not take any corrective action.

The graphite electrodes in an arc furnace wear out as a consequence of the large current flow. When an electrode
is too short, the distance between the end of the electrode and the scrap metal is too large for the current setpoint to
be maintained. Although the neural regulator outperforms the conventional regulator and handles such situations
by increasing the current demand from the other two phases, there is a physical limit to such fault tolerance.
Normally when this limit is reached, a furnace operator will notice that an electrode is too short, and will turn off
the furnace. This did not occur in one instance and the client stated that the neural regulator had stopped
controlling properly since the average current was much below the desired setpoint. Upon analysis of the data files
it was immediately obvious that the electrode on one of the phases was too short for reliable operation and that only
two of the electrodes were conducting and hence, the three phase average was lower than the setpoint.

2. If the basic process changes, would the control system become obsolete? How can incremental changes in
the processes be accommodated ?
Neural network based controllers can be transferred from one process to an entirely different one with relatively
moderate amounts of change, unlike controllers that are based on Al based expert systems, fuzzy logic or classical
control techniques. However, a boundary conditions and constraints analysis should be performed to ensure that the
system operates within the dynamical space learned by the neural controller.

Incremental changes in the control process can be dealt with quite systematically as well. One just has to
accommodate the incremental changes into the input/output training system and then go through a process of
"retraining" the neural controller in order for the controller to adapt to the incremental changes. The engineers at
one of the steel plants wanted their 1AFm Controller to adapt to such an incremental change by adding new
hydraulic back pressure inputs. The inputs were simply wired in and the system adapted (on-line) to the new
inputs over a short period of time. No changes were necessary in the system hardware or software configurations.

After a successful installation at another steel plant, we discovered another feature of the IAFrm Controller that
demonstrated its degree of fault tolerance. Several months after the IAFm Controller had been successfully
operating, the furnace transformer was replaced. The IAFm Controller ran equally well using the new transformer
and was operating for many heats before we temporarily took it off-line for a software update. As soon as the old
regulator was put on-line the furnace started breaking electrodes. An investigation revealed that the transformer
voltage lines on the secondary winding had been reversed during installation of the new transformer. This caused
the classical, old regulator to break electrodes and caused expensive down time. The IAF, " Controller was
brought back on-line and continued to run smoothly with the miswiring until the transformer could be correctly
wired. The reason the IAF rN Controller was able to compensate for miswiring is because it learns on-line. As
problems or changes occur in the process, the neural network will do whatever it can to maintain the current
setpoints; the neural network regulator has a very high degree of fault tolerance.

3. Solving a problem In an application domain in which we are not experts ourselves
This is an important issue, since Neural Applications Corporation has diversified its activities by entering process
control industries other than steel. In order to prepare for such situations, Neural has established a Scientific
Advisory Board which is comprised of leaders in the field of intelligent control. The Neural Applications Group
member in charge of a certain project works together with the liaison project engineers at the customer site and

11-220

with specialists in the Scientific Advisory Board to accomplish project objectives in the shortest possible
developmental time cycle.

There are numerous critical issues that one needs to address when designing a neural network based intelligent
control system. Pre-network statistical analysis on the process data to determine best training set (by determining
correlation strengths to identify effects of input variables on the output variables), as well as choosing the right
architecture and the right control strategy are of supreme importance for successful implementation of the control
system [12].

Many neural network companies offer canned software packages as generic solutions to specific problems [8, 9].
They typically offer three-day to week-long classes to the engineers from the customer's plant in order to get them
up to speed in the use of their software (and achievement of "neural network expert" status) and implementation of
the system. Such packages and courses are really useful to novices trying to solve toy pr-blems in academic
laboratories and as a tool to get up to speed in neural networks, or to experts in the field who can indulge in rapid
prototyping using powerful software packages to either implement systems or generate data to chum out papers.

But they are of little use to today's average plant engineers who are actually trying to solve a real world problem
using such a package simply because of their lack of collective expertise in all three areas - namely, intelligent
control, statistical data analysis, and real-world control system implementation. Experience in all these three areas
is absolutely critical to the successful design and implementation of a neural network based control system in the
real-world. This criticality of expertise became even more obvious during one of our recent projects. In the
process of designing a control system for a small-sized MIMO system the system designers came up with seven
different control strategies employing combinations of neural/fuzzy/expert system/linear techniques. It was a hard
task to pick the one strategy that best optimized the system performance while adhering to prescribed constraints
and required considerable intelligent control engineering experience.

The other key issue is the understanding of the underlying principles behind the dynamics of the process before
attempting to design the neural network based controller. The degree of persistence of excitation in the training
data determines the extent to which the system dynamics can be learned by the neural controller. One has to
account for the trade-offs th-t are involved in such a process and make arrangements within the controller to
handle unexpected situations. Failure to do so frequently results in the downfall of a system designed using a
canned package.

CONCLUSION
A practical perspective gained by the authors on the use of neural networks in control was presented in this paper.
We have learned a lot about the advantages and complications of applying neural network technology to process
control, and abou, the operation of electric arc furnaces. Experienced operators have noticed subtle improvements
in furnace operation such as reduced noise, less electrode shaking, and smoother operation, apart from the basic
cost-savings and improvement in performance.

Neural networks are extremely powerful tools (as are fuzzy, expert system, and classical control techniques) and it
is critical that the utmost care be taken to maintain their credibility and avoid hype when presenting ideas in neural
network based control to the real world. Depending on the process at hand, a competent control systems engineer
should employ the right combination of these tools to achieve the desired system performance.

REFERENCES
[I] Ananthraman, S., "An Introduction to Neural Network Based Intelligent Systems", Technical Report,

Neural Applications Corporation, September, (1993).
[2] Billings, S. A., Jamaluddin, H. B., and Chen, S., "Properties of Neural Networks with Applications to

Modeling Non-linear Dynamical Systems", International Journal of Control, Vol. 55, No. 1, pp. 193-224,
(1992).

[3] Bylinsky, G., "Computers That Learn By Doing", Fortune, pp. 96-102, September, (1993).
[4] Caudill, M., "The View From Now", AI Expert, pp. 24-31, June, (1992).

II-221

[51 Hammerstrom, D., "Neural Networks at Work", IEEE Spectrum, pp. 26-32, June, (1993).
(6] Hammerstrom, D., "Working with Neural Networks", IEEE Spectrum, pp. 46-53, July, (1993).
[7] Hunt, K., Sbarbaro, D., Zbikowski, R., Gawthorp, P. J., "Neural Networks for Control Systems - A

Survey",Automatica, Vol. 28, No. 6, pp. 1083-1112, (1992).
[8] Information Technology Special Report, Fortune, Autumn, (1993).
[9] Kaplan, G., "Industrial Electronics: Technology 1994", IEEE Spectrum, pp. 74-76, January, (1994).
[10] Passino, K. M., "Bridging the Gap Between Conventional and Intelligent Control", IEEE Control Systems

Magazine, pp. 12-18, June, (1993).
[11] Reinschmidt, K. F., "Neural Networks: Next Step for Simulation and Control", Power Engineering, pp.

41-45, November, (1991).
[12] Ripley, B. D., "Statistical Aspects of Neural Networks", Invited Lectures for SemStat, Sandbjerg,

Denmark, April 25-30, (1992).
[13] Shandle, J., "Neural Networks are Ready for Prime Time", Electronic Design, pp. 51-58, February,

(1993).
[14] Staib, W. E., "The intelligent Arc Furnace": Neural Networks Revolutionize Steelmaking", World

Congress on Neural Networks, Portland, OR, pp. 466-469, (1993).
[15] Staib, W. E., and Staib, R. B., "The Intelligent Arc Furnace' Controller: A Neural Network Electrode

Position Optimization System for the Electric Arc Furnace", International Joint Conference on Neural
Networks, Baltimore, MD, (1992).

[16] Studt, T., "Neural Networks: Computer Toolbox for the '90s", R&D Magazine, September, (1991).
[17] Werbos, P., "An Overview of Neural Networks for Control", American Control Conference, San Diego,

CA, May 23-25, (1990).
[18] White, D. A., and Sofge, D. A., "Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive

Approaches", Van Nostrand Reinhold, New York, NY, (1992).

11-222

Prediction and System Identification
Session Chairs: Paul Werbos

Guido Deboeck

ORAL PRESENTATIONS

How We Cut Prediction Error in Half
By Using A Different Training Method

Paul J. Werbos
Room 675, National Science Foundation"

Arlington, Virginia, USA 22230

ABSTRACT

Neuroidentification -- the effort to train neural nets to predict or simulate dynamical systems over
time -- is a key research priority, because it is crucial to efforts to design brain-like intelligent systems
[1,2,3]. Unfortunately, most people treat this task as a simple use of supervised learning [4]: they build
networks which take all of their input from a fixed set of observed variables from a fixed window of time
before the prediction target. They adapt the weights in the net so as to make the outputs of the net match
the prediction target for those fixed inputs, exactly as they would do in any static mapping problem.

With McAvoy and Su, I have compared the long-term prediction errors which result from this
procedure versus the errors which result from using a radically different training procedure -- the pure
robust method -- to train exactly the same simple feedforward network, with the same inputs and targets.
The reduction in average prediction error was 60%, across 11 predicted variables taken from 4 real-world
chemical processes. More importantly, error was reduced for all variables, and reduced by a factor of 3
or more for 4 out of the 11 variables [5,p.3191. Followup work by Su[6,p.92] studied 5 more chemical
processes (mostly proprietary to major manufacturers), and found that the conventional procedure simply
"failed" (relative to the pure robust procedure) in 3 out of 5. This paper describes how we did it; it also
tries to correct common misconceptions about recurrent networks, and summarize future research needs.

INTRODUCTION AND GENERAL CONTEXT

Of the hundreds of papers I have seen using artificial neural networks (ANNs) for prediction, all
but two (sections 13.5 and 13.6 of [5], and [7]) fit into one or more of three categories:

1. The supervised learning approach, described above.
2. The batch time-series approach. Here, an ANN is adapted by iterating over a fixed time-series

database.
3. The forwards propagation approach. Here, an ANN is adapted by a time-forwards variation on

backpropagation, published for the general case in 1982[8], and popularized for special cases
by Williams and Zipser ("the Williams-Zipser method") and by Narendra ("{dynamic
backpropagation").

In the supervised learning approach, some people use simple multilayer perceptrons (MLPs); MLPs for
this application are now called "Time-Delay Neural Networks" (TDNNs). In our recent work[5,6], this is
what we used. Many other people have used simultaneous-recurrent networks, such as Grossberg-style
nets, to learn the exact same static mapping; they often use the term "associative sequence learning."
Improved supervised learning designs, in general, are also a priority area for my program at NSF[4];
however, they pose few major design issues unique to prediction as such. Nevertheless, I will begin this
paper with a review of this approach, in order to set up notation and make a few observations.

The batch time-series approach to neuroidentification is really just a special case of the general
task of "time-series estimation" (as studied in statistics) or of "system identification" (as studied in
engineering). Conversely, because of the general approximation capabilities of ANNs, time-series methods
applied to neural networks can accomplish virtually anything that the classical approaches can accomplish;

*The views herein are the personal views of the author, not the views of NSF.

II-225

thus there is no need for complex, unnatural hybrids using "neural" and "nonneural" blocks. (There are
two major exceptions to this rule: (1) in special-purpose applications where useful fixed preprocessors or
postprocessors are easily available off the shelf, and there is no time to develop something better; (2) in
complex neural architectures, which naturally require many components or stages in estimation, where it
may be useful to use different kinds of networks -- neural or nonneural -- to fill in different blocks in the
design.) The pure robust method is actually a general approach to time-series estimation, developed back
in 1974[9], along with backpropagation through time[9,10]. The neural net community could make major
contributions to the general problem of time-series estimation, in part because of our interdisciplinary
orientation if we keep extending that orientation!) and in part because computational tools like
backpropagation through time are essential to implementing these kinds of designs.

The third approach has sometimes been described as a more brain-like variant of the second
approach, because it permits true real-time learning. Unfortunately, the cost per gradient grows as kMNT,
where M is the total number of weights in the network, N is the total number of neurons, and T is the
total number of time-points. This compares with kMT to calculate the same exact gradient using
backpropagation through time [8-10]. In a sense, the time-forwards method is not truly a neural network
design, because its costs (and structure) are utterly and grossly implausible for organic brains, where M
and N are both huge numbers. Narendra has reported, in a public talk at Yale, that he uses this method
less and less, because of its high computational cost, even in medium-sized engineering problems.

The human brain itself does not fit the second approach either, because: (1) it uses real-time
learning, rather than batch learning; (2) it may or may not require a stochastic model of its environment,
rather than just a forecasting model. In section 13.5 of [51, I specify an error critic design (similar in spirit
to [7], but hopefully capable of scaling better to larger systems) which would allow the brain to
approximate the best batch time-series designs, in true real-time learning. In section 13.6 of [51, I describe
a complex design -- the Stochastic Encoder/Decoder/Predictor (SEDP), building on concepts I published
in 1977 [11] -- which learns a true stochastic model of the environment, without making the usual
"simplifying" assumption that errors in predicting different targets are unrelated to each other. Earlier, in
1988 [12], I proposed some similar but simpler designs, which include the famous Cottrell design as a
special case; however, I have not pursued these simpler designs any further, because of limitations both
in performance and in statistical consistency. In most applications today, the usual batch time-series
approach is quite adequate; because the error critic is actually Just a way to approximate that approach,
research directed towards batch time-series issues will still be crucial to the development of effective
brain-like systems. After a brief review of supervised learning approaches, the remainder of this paper will
focus on the second approach, which includes our recent work with the pure robust method.

The error critic and the SEDP and much of my related work in [5,231 falls under patents pending
at BHI[3]. These patents do not limit the use of these ideas in basic research, subject to proper citation
and mention of the patents, but revenue-generating applications should be discussed beforehand with BHI.

ISSUES IN SUPERVISED LEARNING FOR PREDICTION

Suppose that we are trying to predict n variables, Y, through Y., at time t. We may think of these
variables as a vector Y(t). Suppose that we plan to predict Y(t) as a function of earlier values of Y in k
previous time periods, Y(t-k) through Y(t-l), and as a function of some other variables, which we may
describe as X(t-k) through X(t-l). (In control applications, the "other variables" are usually the control
inputs to the process, denoted as u(t-k) through q(t- I).) Suppose that the function f describes the neural
network we are trying to adapt to solve this prediction problem; in other words:

£(f(Y(t-k), Y:(t-I), X(t-k),..., XQt-1), W)()

where W represents the weights in the network and X(t) represents the output of the network. In the
supervised learning approach, we simply plug in our actual data for X and Y into f, and adapt the weights

11-226

W to make €(t) approximate Y(t). Any supervised learning scheme -- from backpropagation through to
Hebbian learning -- can be used. Likewise, we could use a simultaneous-recurrent network [4] to widen
our choices of functions f, so as to allow a more powerful function approximation capability[41, so long
as we do not confuse "settling down time" (which is internal to the network) with the dynamics of the
process we are trying to model.

When we add a simple noise term to equation 1, it becomes what engineers would call a "NARX"
model -- a Nonlinear AutoRegressive model with eXogenous variables. (Many authors have mistakenly
called this a "NARMAX" model.) Equation I also describes what people in signal processing would call
Finite Impulse Response (FIR) systems, systems whose "memory" goes back a finite period of time (k).

The next section will describe how the pure robust method may be used to adapt forecasting
models like equation 1. The pure robust method is essentially a global modelling technique, like the global
techniques for supervised learning described in [4]. However, in [4], 1 argued that optimal real-time
learning requires a special kind of hybrid of local memory-based approaches and global approaches.
Perhaps it is premature to stress this issue -- because the relevant kinds of hybrids have yet to be seriously
studied even for simple supervised learning -- but it will become a concern sooner or later. As Tan et al
point out in this session[131, time sequences have less of a tendency to cluster than do simple snapshots
at a fixed time t; in general, the most popular local learning schemes tend to become less workable when
the number of inputs grows large, and multiplying the number of inputs by k can be a serious problem.
Special designs may be needed to cope with the various issues here.

Many authors also advocate the simple, direct use of Taken's theorem, from chaos theory, to arrive
at a choice of k[14]. However, in testing this idea on a variety of real-world time-series, Weigend has
found it to be markedly inferior (most of the time) to the more reliable empirical approaches, used for
decades by statisticians[151. This is hardly surprising, because most real-world systems do not emerge as
the simple low-dimensional attractors studied by conventional forms of chaos research. (This should not
be taken as a criticism, however, of other uses of chaos theory, which are indeed quite promising[16,171.)

The supervised learning approach is inadequate as a model of generalized, brain-like prediction
capabilities, for two reasons: (1) It does not lead to a high degree of dynamic robustness, which is crucial
to systems like the brain which need to make plans over time periods much larger than their data sampling
intervals (circa 0. 1 seconds for the neocortex); (2) It does not lead to efficient short-term memory,
Kalman-like filtering, adaptation to slow changes in parameters in the external world, or to the ability to
learn efficient "relaxation" algorithms (which are crucial in many pattern recognition applications).

This paper will only discuss the first of these problems. The second is discussed at length in [5]
and in [10]. A general solution to the second problem is to use time-lagged recurrent networks (TLRNs),
networks with real short-term memory. TLRNs represent general NARMAX models. Backpropagation
through time -- in its correct, original form [9 -- provides an exact and low-cost technique for adapting
such networks, in the general case, for a generalized range of network structures. (It is extremely
unfortunate that the term "backpropagation through time" has been misused by some authors to describe
alternative inexact or inefficient methods, limited to the MLP case. So far as I know, I was the first person
to use this term in any publication [181, and the definition I used in 1990 [101 was extremely specific.)
Given an infinite number of parameters or weights -- i.e., an infinite value for k -- any NARMAX model
can be represented equivalently by a NARX model; however, the need for additional parameteis or
weights is devastating to performance in practice, because of the importance of parsimony in determining
the generalization capabilities of neural networks [5, chapter 10]. As in statistics, we are far better off by
building systems designed to do well in the Peneral case, the NARMAX case, which includes NARX as
a special case in a parsimonious manner. The brain itself is, of course, designed to handle the general case.

THE PURE ROBUST METHOD: FOUNDATIONS AND ALTERNATIVES

The easiest way to define the pure robust method is to spell it out as an algorithm. The
conventional way to adapt equation 1 is to minimize total error defined by the following calculations:

II-227

1. For t = k+1 to T, calculate:

(0 = f(&~-k).... , (t-I), XQt-k),..., X(t-1), R) (2)

E) = ((t) - ())2 (3)

2. Define total error as the sum of E(t) from t=k+l to t=T.
The usual form of the pure robust method is very similar:

1. Set Y(t) to X(t) for t=I to t=k.
2. For t = k+l to T, calculate:

i(t) = f(t-k)..., 2(t-l), Xt-k),..., X(t-I), W) (4)

Et) = 'AE (j(t) - ?j(t))2 (5)

3. Define total error as the sum of E(t) from t=k+l to t=T.
The difference between the two methods may seem very slight at first (i.e., the two extra hats in equation
4 compared to equation 2); however, it has powerful implications. The pure robust method looks even
closer to certain methods discussed in adaptive control, where the weights W in equation 4 would be
adapted by simple supervised learning; however, in the pure robust method we actually minimize total
error accounting for the impact of W in changing Y(t-k), for example, all through the dynamics of the
process. For each value of W, we calculate total error across the entire time-series, and we try to pick that
value of W which minimizes total error.

Intuitively, the pure robust method directly minimizes the long-term stream of errors resulting from
using the neural network to predict many periods of time ahead into the future. It makes common sense
that this should work better in long-term forecasting, but worse in short-term forecasting. However, this
simple piece of common sense is not quite right; the real story is far more complex. Furthermore, the pure
robust method is really only the lowest-order member of a family of methods which I first tested out in
197419], and improved substantially in 1978[19]. There do exist systems where the pure robust method
does worse than the conventional method both in long-term and short-forecasting, but where the next
method up in the family does better than the conventional method in both[19]. Section 10.4.6 of [51
describes the next method up and, more importantly, describes some fundamental concepts in statistics
which could be used in developing even moe powerful methods.

A few words may be in order to sketch out the basic issues, even though they are far too complex
to fully explain here. After a careful analysis of what it takes to minimize the error in estimating weights
by adding some kind of externally forced filtering, I arrived at a formula (equation 89 of chapter 10 of
[5]) which simply does not reduce to a simple neural network design. The formula suggests that we can
adapt a maximally robust, sparse neural network predictor only if we explicitly seek an alternative
representation of reality () which corresponds to something like the eigenvectors of the dynamics of the
external environment. Unfortunately, the eigenvectors of a general matrix are made up of complex
numbers so that the practical implications of this are highly unclear. Intuitively, it would seem that the
concepts of "chunking" in artificial intelligence, or the idea of "learning invariants" in biology (see the
papers accompanying [2]), may have something very important to tell us, something which goes far
beyond the usual foundations (like maximum likelihood theory) which engineers and statisticians rely on
almost religiously. A crucial task for future research may be to deepen these concepts, and assimilate them
into a more rational time-series framework, building in part on the concepts of section 10.4.6 of [5]. See

1I-228

(281 for some ideas. In addition, [20] suggests a few further ideas, exploiting the fact that prediction

networks are often embedded within control systems (as in the brain).

THE PURE ROBUST METHOD: IMPLEMENTATION AND RESULTS

Both the conventional method and the pure robust method can be adapted by use of
backpropagation (or its many variants[4,51) in batch form, by use of the same traditional approach:

1. Initialize W "at random."
2. Calculate total error for the current value of W.
3. If total error is worse than before, go back to the old W with a smaller learning rate.
4. Calculate F..W, the exact gradient of total error with respect to W.
5. Reset W to W - learning-rate * FW.
6. If convergence has not been achieved, go back to step 2.

Almost anyone in this field should know how to do this for the conventional method. (If not, see [101.)
For the pure robust case, the only possible gap for most readers would be the exact calculation of F_W,
which can be done efficiently using backpropagation through time. The equations for this case are given
in two different (equivalent) forms, in sections 10.4.1 and 10.9 of [51; however, these equations all follow
quite directly from the chain rule for ordered derivatives, discussed at length both in [11 and in other
sections of [5]. (However, the term "+F_.Y 2(t+l)*3" shculd be added to equation 110 in [5].)

As a practical matter, initializing W, tuning the learning rates, and avoiding local minima are all
much harder for the pure robust method than for the conventional method. There is a kind of general
Murphy's law at work[20], which always makes convergence trickier when the final weight estimates are
more accurate. In [5], we used a combination of backpropagation and direct search, because human time
was limited. In [6], Su went back to some of the ideas in [5], and proved that he could avoid the need for
direct search by an appropriate choice of initial weights. Additional suggestions in [5] may make the
learning process still easier in the future. In general, there are many techniques which make later
applications easier, after the initial general-purpose computer programs are in place.

The recent results from McAvoy, Su and myself were already summarized and cited in the
Abstract. Again, however, the pure robust method was proposed over 20 years ago as a generalized time-
series estimation method. In those studies, it outperformed both the conventional method and ARMA
models in simulated time-series and in predicting political time-series[9]. In 1978, robust methods reduced
error in predicting GNP in Latin America by a factor of 2 [191. (Error in predicting conflict variables was
reduced, but not by as much, because the variables commonly used in predicting conflict at that time had
little predictive power; predicting conflict is tricky.) Tests on a simple model of the US economy by Kuh
led to similar improvements[II

The publication of [, - directly to my employment by the Energy Information Administration
(EIA) of DOE, to reevaluate .. -build major long-term and annual models used by EIA in its official
reports to Congress. Backpropagation through time[8,24,25] was important to that effort, as was my
understanding of dynamic robustness[25,26]. However, annual modeling in economtrics uses far less data
than neural net methods need, and energy use depends heavily on exogenous information about economic
growth and population; thus I was able to reach the limits of accuracy here -- I -I lh% error in all demand
sectors, but far worse in predicting individual breakthroughs like fuel cell cars -- without explicitly
using robust methods. This is another reason why ANN activities -- which often use higher frequency data,
like the brain itself or like daily financial data[27] -- are an excellent testbed for robust identification.

The neural net use of these methods was proposed in 1981-7 [8,11,201. The first step of Kawato's
cascade method [211 can be seen as a working example of the pure robust method, though I do not know
of any comparisons with conventional methods. Feldkamp of Ford has said that the pure robust method
has led to extremely good results in automotive applications this past year; however, because these appli-
cations involve key competitive technologies, the details are proprietary. These applications do involve
the use of backpropagation through time with true TLRNs. Earlier related work[22] showed that this kind

11-229

of approach does provide a better basis for dynamic control of the bioreactor benchmark problem in [211 -
- a simple but very tricky problem, which has been very useful in sorting out general-purpose designs from
the many designs which only work when conditions are simple and the user is extremely lucky.

REFERENCES

1. P.Werbos, The Roots of Backpropagation: From Ordered derivatives to Neural Networks and Political
Forecasting, Wiley, 1994.

2. P.Werbos, The brain as a neurocontroller, in K.Pribram, ed., Origins, Proceedings of the 2nd
Appalachian Conference, INNS Press, Erlbaum, 1994.

3. R.Santiago and P.Werbos in WCNN94 Proceedings, INNS P'ess, Erlbaum, 1994.
4. P.Werbos, Supervised learning: Can it escape its local minimum?, WCNN93 Proceedings, INNS Press,

Erlbaum, 1994
5. D.White and D.Sofge, eds, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches,

Van Nostrand, 1992.
6. H.Su, Dynamic Modeling and Model Predictive Control Using Generalized Perceptron Networks, PhD

thesis, Department of Chemical Engineering, University of Maryland at College Park, 1992.
7. J.Schmidhuber, Recurrent networks adjusted by adaptive critics, IJCNN90 Proceedings, Erlbaum, 1990.
8. P.Werbos, Applications of advances in nonlinear sensitivity analysis, in R.Drenick and F.Kozin, eds,

System Modeling and Optimization: IFIP 1981 Proceedings, Springer-Verlag, reprinted in [1].
9. P.Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences,

Harvard U. PhD thesis, November 1974, reprinted in [1].
10. P.Werbos, Backpropagation through time: What it does and how to do it, Proc. of the IEEE, Oct. 1990

issue, updated version reprinted in [11.
11. P.Werbos, Advanced forecasting for global crisis warning and models of intelligence, General Systems

Yearbook, 1977 issue.
12. P.Werbos, Backpropagation: Past and future, ICNN88 Proceedings, IEEE, New York, 1988.
13. S.Tan, J.Hao and J.Vandewalle, Stable and efficient neural network modeling of discrete multi-channel

signals, WCNN94 Proceedings, INNS Press, Erlbaum, 1994.
14. A.Weigend nd N.Gershenfeld, eds, Time-Series Prediction, Santa Fe Series, Addison-Wesley, 1994.
15. G.Box and G.Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, 1970.
16. K.Shimode and W.Freeman, Modeling of chaotic dynamics in the biological system and application

to speech recognition, IJCNN92 Proceedings, IEEE, New York, 1992.
17. P.Werbos, Self-organization: Reexamining the basics, and an alternative to the big bang, in Origins[2].
18. P.Werbos, Backpropagation and neurocontrol, IJCNN89 Proceedings, IEEE, New York, 1989.
19. P.Werbos and J.Titus, An empirical test of new forecasting methods derived from a theory of
intelligence: the prediction of conflict in Latin America, IEEE Trans. SMC, September 1978.
20. P.Werbos, Learning how the world works: specifications for predictive networks in robots and brains,

Proceedings of the SMC Conference, IEEE, 1987.
21. W.Miller, R.Sutton and P.Werbos, eds, Neural Networks for Control, MIT Press, 1990.
22. L.Feldkamp and G.Puskorius, A neural network approach to process control -- the bioreactor

benchmark problem, WCNN93 Proceedings, INNS Press, Erlbaum, 1993.
23. P.Werbos, Elastic fuzzy logic, J. of Intelligent and Fuzzy Systems (Wiley), Vol. 1, No. 4, 1993.
24. P.Werbos, Maximizing gas industry profits...,lEEE Trans. SMC, March/April 1989.
25. P.Werbos, Generalization of backpropagation...recurrent gas market modelNeural Networks, Oct. 1988.
26. P.Werbos, Econometric techniques: Theory versus practice, Energy, March/April 1990.
27. G.DeBoeck, ed, Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial
Markets, Wiley, 1994.
28. J.Schmidhuber,Adaptive decomposition of time, Artificial Neural Networks 1,North Holland, 1992.

1H-230

Prediction of Chaotic Time Series and Resolution of
Embedding Dynamics with the ATNN*

Daw-Tung Lint-t, Judith E. Dayhofft and Panos A. Ligomenidest
tElectrical Engineering Department

and
tlnstitute for Systems Research

University of Maryland
College Park, MD 20742.

Abstract

Chaotic time series prediction is an essential task of signal processing, physiological analysis and eco-
nomic forecasting. In this paper, we apply the Adaptive Time-Delay Neural Network (ATNN) to study
the chaotic Mackey-Glass differential equation prediction problem. We discuss the embedding dynamics,
training set size and performance, and prediction over time. We demonstrate this neural network approach
to be flexible, to predict the chaotic dynamics, and to achieve good performance.

1 Introduction

How can one predict the future precisely? Prediction of events in temporally changing signals is an important
field of research for mathematicians and physicists. Chaotic time series prediction is an essential task of signal
processing, physiological analysis and economic diagnosis. One of the significant features of chaotic behavior
is that a chaotic signal continually generates new patterns, whereas simpler signals do not. Conventional
methodology for probing this problem is to explore mathematical models that describe the physics behind the
chaos phenomena and try to solve the parameters of the models by approximation. However, the computation

may not converge to explicit solutions due to the high degree of nonlinearity, and resolution of parameters is

often impractical.
In neural systems, the relevant information is transformed by distributed neural processing. Therefore, the

neural network is regarded as an information processing machine which distributes important information or
features through a complex circuit inspired by the function of the human brain. Learning algorithms produce
an estimation of the system behavior based on the observation of input-output pairs. These methodologies
can be applied to the category of tasks in system identification and prediction. Neural network technology

has been found to be useful for universal continuous function approximation [1, 5]. Researchers have exploited
neural network technologies such as feedforward networks and radial basis functions for prediction and have
demonstrated promising capability (6, 12, 16].

Some neural net paradigms capture temporal dynamics, including the Adaptive Time-Delay Network

(ATNN) and the Time-Delay Neural Network (TDNN), which employ time delay taps on connections. These
networks have been successfully implemented for spatiotemporal pattern production and phoneme recognition
[7, 8, 9, 14, 15]. In this paper, the ATNN is applied for chaotic time series prediction.

2 Problem Description

The prediction of future variation from past and current system measurements is often an essential task in

dynamic systems analysis and control. A dynamic system has time-varying outputs and outputs determined

*This work was supported in part by the Institute for Systems Research, University of Maryland (NSF CDR-88-03012), the
Naval Research Laboratory (N00014-90K-2010), and the Applied Physics Laboratory of Johns Hopkins University.

11-231

L - - - - - - - J

Delay Block

Figure 1: Delay Block: Basic time-delay connections between two processing units (node i of layer h - I and
node j of layer h) in ATNN, and flpi,...i is the number of delays applied. Reprinted from Lin et a1 [7].

by a set of independent parameters. The delay differential equation of the form Z5,-! = F(z(i), z(t - r))
describes a dynamic system in which a stimulus has a delayed response. The time delay factor r usually
determines the nature of the time series. This equation fits many practical examples of physiological control
systems, economics, and other fields. The model we will use in this paper is the example proposed by Mackey
and Glass which describes the production of white blood cells as following [10]:

dzQt) =_ ax(t - r) bXt,(1)
S _1 +x(i-r)

where zQt) denotes the concentration of blood at time t, and r is a delay time (for leukemia patient, r
is excessively long). The dynamic properties of this differential equation have been addressed extensively by
Farmer [4]. The Mackey-Glass system is infinite dimensional, which requires an infinite set of independent real
numbers to specify an initial condition [4]. It possesses many dynamic properties such as nonlinearity, limit
cycle oscullation, aperiodic wave forms and other dynamic behaviors [41, and the Fourier spectrum is a broad
band similar to that of noise. This chaotic time series has become a benchmark for prediction and temporal
learning.

3 ATNN for Prediction
Preliminary results from the Adaptive Time-Delay Neural Network (ATNN) on system modeling and pre-
diction applications have been shown to be promising (8]. The ATNN architecture and learning paradigm
is described briefly in this section. The ATNN model employs modifiable time delays and synapse weights
along the interconnections between two processing units, and both time delays and weights are adjusted ac-
cording to system dynamics in an attempt to achieve the desired optimization. The configuration of multiple
interconnections between a single pair of units, each with its own delay, is called a delay block as illustrated
in Figure 1. In each delay block, node i of layer h - I is connected to node j of the next layer h, with the
connection line having an independent time-delay 7 and synaptic weight Wikh-1. The entire network
is constructed by the delay blocks which connect neurons layer by layer [7]. Each node sums up the net inputs
from the activation values of the previous neurons, through the corresponding time-delays on each connec-
tion line. Then the output of node j is governed by a nondecreasing differential function f of the net input
(symmetric sigmoid function is selected in this paper).

The adaptation of the delays and weights are derived based on the gradient descent method to minimize
the cost function E during training based on error back-propagation [111. The mathematical formulas of the
weight and time-delay modifications are described below:

OEQt.)

11-232

6 iic II

where q and q2 are the learning rates. The training set consists of a sequence of time series and target
outputs. The time delay values " can cross one another during learning. Processing units do not receive
data through a fixed time window, but gather important information from various time delays which are
adapted via the learning procedure. The largest time delay between two units can change during adaptation.
With these mechanisms, the network implements dynamic delays along the interconnections of the ATNN.
The derivation of this learning algorithm was addressed explicitly in [2, 7].

4 Simulations and Results

The ATNN implements dynamic delays along the interconnections of an artificial neural network. We applied
the ATNN architecture to the chaotic time series prediction of Mackey-Glass differential equation as shown
in Equation 1. We set a = 0.2, b = 0.1, c = 10 and r = 17 and the initial value z = 0.8. The resulting output
is a quasi-cyclic signal with a characteristic time of tcher 1 w 50 and with an attractor of fractal dimension
s 2.1 [4]. Before collecting the training and test data set, the equation is iterated long enough (after 1000
iterations) to let the transients die out. In our simulation, we use one input unit, three hidden units, and one
output unit, four and six delay elements on the first and second connection layer respectively, which is a very
economic configuration. In this configuration, the number of delay variables selected on this first connection
layer is based on the chaotic series attractor dimension as discussed in Section 4.1, while the choice of delay
element number is motivated by the intuition that higher level units should learn to make decision over a
wider range in time based on more local abstractions at lower levels [14].

4.1 Resolving Embedding Dynamics

The state at time t of Mackey-Glass differential equation is determined by the function f(t) = d, (Equation 1)
at the interval [t, t -]. However, the value r is unknown when only the time series is observed. Then one
needs to pick a reasonable delay time f and model the function according to the information between estimated
interval [t, t - f]. This function can be approximated by n samples taken at

A = _(2)

These n samples can be thought of as n variables of an n dimensional space vector

[z, X2 , ... , z=]T = [z(t), z(t - At), ..., z(t - (n - I)AfIT

The prediction is accomplished by mapping this n dimensional vector space to a real value. The mapping
f : R" - R maps n measurements of the time series to the value at a future moment z(t + T). Thus, the
conventional prediction task was concentrating on finding a function such that z(t + T) = f(zl, X2, ... , Zn).
The lacking of prior knowledge of choosing embedding n and f is the obstacle of conventional methods. These
parameters are usually chosen by trial and error, although there have been suggestions for choosing n, e.g.
d, < n < 2d, + 1, where d, is the fractal dimension of the attractor [13]. If f were too small, the embedding
would have incomplete information. If f" were too large, then information is included that is farther in the past
than needed. Farmer suggested to weight the delay coordinates before performing the function approximation,
in other words, the state vector becomes: [z(t), exp- z(t - A), ... , exp- h(n-) z(t - (n - 1)Af)] , however,
a priori knowledge is still needed to decide h and z [3].

The ATNN accomplishes the prediction adaptively in the manner different from the single mapping de-
scribed above. It employs multiple mappings according to the following procedures in the three layered network
case:

1. Distributes the information on the interval [t,t - f] into j vectors with m dimension, where j
is the number of hidden units and m denotes the number of time delay variables employed on

Stcher is the "characteristic time" for the time series estimated as the inverse of the mean frequency in the power spectrum

11-233

traiing set sise 1 epoch NRMSE training set size epoch NRMSE
200 125 0.1991 200 16 0.2515
300 81 0.1991 300 11 0.2418
400 64 0.1903 400 8 0.2371
500 48 0.1997 500 7 0.2713
600 36 0.2067 600 6 0.2701
700 16 0.2078 700 6 0.2701
800 11 0.2075 800 5 0.2775

Table 1: Experiments of different configurations Table 2: Experiments of different configurations
as the cutoff RMSE is set to 0.02, T = 1. as the cutoff RMSE is set to 0.05, T = 1.

the connections between input processor and node j on the hidden layers. Each m dimensional
space vector is transformed to a real value yj by weight vector W and squashing function a which
associate with hidden node j.

y2(t) = o(w2T[z(t - .21,1), z(t - "22,1) z(t - r2.,)] T)

yi(t) = o.(WT[z(t - rj z - j2,1) ..., z(t - r T

where m is the number of time-delays on the first connection layer.

2. These activation values from hidden units are again mapped to a real value which is the prediction
target, in a similar manner as described above.

z(t + T) = ar(w2 [yl(t - 711,2), .., ylt - rl,,2); ...; y,(t - T1,2), .., yj(t - 7. 2)]T)

where n is the number of time-delays on the second connection layer.

The time-delay variables and weight parameters of the above functions are adapted as the training proceeds.
The appropriate value of f is obtained from the resulting time-delay parameters (f = maz(rj,,i) + ... +
mazx("im,h) - 1), and f does not have to be sampled at regular intervals as in Equation 2, which gives the
potential for better prediction. Therefore, the embedding dynamics is resolved automatically and efficiently
from this network paradigm.

4.2 Training Set Size and Performance

We explored the relationship between size of training set, number epochs of training , training RMSE
cutoff, and the performance during the system modeling task. In a series of experiments, the size of the
training set was varied. The network was trained in batch mode (epochs), with a RMSE cutoff point based
on performance on the training set. The performance was measured on the first 4000 time steps of the Mackey-
Glass series. Error measure was reported as normalized root-mean-square error 2 (NRMSE) over time of the
target value and the desired prediction (i(t, T)), e.g. predicting T steps ahead from observed information.
This scheme is equivalent to resolving system modeling of the Mackey-Glass equation when T is equal to one.
Note that performance measure NRMSE, usually averaged over time, represents a perfect prediction when
NRMSE value is equal to zero. If NRMSE approaches one, the performance is no better than a constant
predicter. In Table 1, the training RMSE cutoff was 0.02, and in Table 2 the cutoff was 0.05. Each table
shows a series of different training set sizes, and reports the number epochs of training needed in each case,
and the performance on the 4000 sample test set in each case was denoted in NRMSE.

2NPRJSE - (B'(t(e'P)- +P))Z})1 1 where x(t) is the original signal value and f(t) is the network prediction output, and

a, denotes the standard deviation of the original time series.

1-234

1.0

0.8

&.6

0.4

O&-0.O '500.0 4000.0

Figure 2: Simulation results of ATNN with Mackey-Glass equation prediction as T = 1 and test on t = 3000
to 4000 sample data period.

In principle, the larger the training set size is, the longer the network will take to compute on an epoch.
Fortunately, from Tables 1 and 2, it is not necessary that the network spends a longer time to converge when
a larger set of data is used for training. The number of epochs needed decreases as the training size increases.
The performance of the network is excellent, as shown in Figure 2. The network output is plotted in the solid
line with the dotted line plotting the original sampling data, these two plots overlap most of the time.

4.3 Prediction Over Time

Usually, prediction error increases over time during the prediction, as in conventional methods without self
adjustment. The neural network approach shows advantages. Lapedes's simulation showed that the error
measure of conventional methods grow exponentially, while the performance of the neural approach (back-
propagation net) continues in a more promising way and is superior to the other traditional techniques, as
illustrated in Figure 3. Figure 3 shows NRMSE as a function of prediction time.

In our experimentation, prediction was made iteratively step by step by recursively using the new predicted
value to march along further. The results are shown in Figure 4 for various network configurations in which
the solid black line A is the result from a network trained on f(t, T = 2) with cutoff criteria 0.03. The gray
dotted line B and dashed line C are the network performance from &(t, T = 1) training with RMSE cutoff
at 0.02 and 0.05 respectively. Our results showed that the performance of ATNN prediction on this chaotic
time series confirms the high performance of neural networks as observed by Lapedes. Figure 4 demonstrates
that when T = 2, the network gets better prediction within 300 time steps, while in the long run, the network
maintains a more consistent performance for T = 1. The performance is better for T = 1 and NRMSE does
not drift upwards over time.

5 Conclusion

In this paper we have shown that a prediction approach based on ATNN technology is effective and accurate.
The beauty of this work is to show this complicated problem, based on the Mackey-Glass time series prediction,
can be accomplished by such a simple ATNN architecture, while training can be done with reasonable amounts
of data and computing time. Furthermore, the embedding of the system dynamics can be resolved adaptively,
unlike exhausting trial and error efforts in conventional methods. We can conclude from this study that the
ATNN is a good tool to tackle temporally changing signal processing and prediction problems. The simulation
results confirm the performance improvements of the neural network approach, as suggested by Lapedes and
Farber [6]. Future work may engage in the examination of numerical comparisons with traditional methods
and neural network techniques.

11-235

1.0 ,,

I :Conventional

E

0.5
4

I! Neural Net Approach
0..5 A. -.." ofl

7-I32O.
il ,o ooo 3 . - 4oo.oM .

Prediction Time 50 OO 0. ~0 soo*

Figure 3: Performance comparison of neural net Figure 4: Prediction performance of ATNN on
and conventional methods: relative quantity dia- different network configuration with 400 training
gram. Adapted from Lapedes and Farber [61. data.

References

(1] N. E. Cotter and 0. N. Mian. A pulsed neural network capable of universal approximation. IEEE Thzas.
on Neural Networks, 3:308-314, March 1992.

(2] S. Day and M. Davenport. Continuous-time temporal back-propagation with adaptive time delays. IEEE
Trans. on Neural Networks, 4:348-354, March 1993.

(3] D. Farmer and J. Sidorowich. Exploiting chaos to predict the future and reduce noise. In W.C. Lee,
editor, Evolution, Learning, and Cognition, pages 277-330. World Scientific, Singapore, 1988.

[4] I.D. Farmer. Chaotic attractors of an infinite-dimentional dynamical system. Ph ysica D, 4:366-393, 1982.
(5] E.J. Hartman, J.D. Keeler, and J.M. Kowalski. Layered neural networks with gassian hidden units as

universal approximations. Neural Computation, 2:210-215, 1990.
[6] A. Lapedes and R. Farber. How neural nets workc. In W.C. Lee, editor, Evolution, Learning, and Cognition,

pages 331-345. World Scientific, Singapore, 1988.
[7] D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides. Adaptive time-delay neural network for temporal

correlation and prediction. In SPIE Intelligent Robots and Computer Vision XI: Biological, Neural Net,
and S-D Methods, volume 1826, pages 170-181, Boston, November, 1992.

[8] D.-T. Lin, J. E. Dayhoff, and Panos A. Ligomenides. Learning with the adaptive time-delay neural
network. Submitted to Neural Networks, August, 1993.

[9] D.-T. Lin, P. A. Ligomenides, and .1. E. Dayhoff. Learning spatiotemporal topology using an adaptive
time-delay neural network. In World Congress on Neural Networks, volume 1, pages 29 1-294, Portland,
OR, 1993. INNS, New York.

(10] M.C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:287, 1977.
(11] J.L. McClelland, D.E. Rumeihart, and the PDP Research Group. Parallel Distributed Processing: Etplo-

rations in the Microstructure of Cognition, volume 2. MIT Press, Cambridge, 1986.
(12] J. Moody. Fast learning in mult;-resolution hierarchies. In D.S. Touretzky, editor, Advances in Neural

Information Processing Systems, volume 1, pages 29-39, Denver 1989, 1989. Morgan Kaufmann, San
Mateo.

[13] N.H. Packard, J.P Crutchifleld, J.D. Farmer, and R.S. Shaw. Geometry from a time series. Physical
Review Letters, 45:712-716, 1980.

[14] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-delay
neural networks. IEEE Trans. on Acoust., Speech, Signal Processing, 37:328-339, 1989.

[15] A. Waibel, K. J. Lang, and G. E. Hinton. A time-delay neural network architecture for isolated word
recognition. Neural Netwzorks, 3:23-43, 1990.

[16] P. J. Werbos. Backpropagation through time: What it does and how to do it. In Proce.dings of the IEEE,
volume 78, pages 1550-1560, October 1990.

I1-236

A Business Application of Neural Networks l

lona Jagielska Ashok Jacob
Monash University, Australia Tattersall's Australia

A backpropagation neural network was built to predict sales figures for Tattersall's,
Australia. The system will be used by the marketing department and will support the
marketing managers in making sales forecasts for the lottery products.

Input/Output variables
Past Sales - sales in Million dollars; a sliding window of three immediately past
draws each having the following parameters:
Super Draw = (1, 0) where 1 corresponds to "yes" for super draws, Jackpot - The

number of weeks the division 1 has jackpotted, DivlPrize - prize amount in Millions.
Average Weekly Earnings - AWE figures available from Australian Bureau of
Statistics were used. The output consisted of one element corresponding to the sales
amount of the current draw.

Training and Testing
Thc training set consisted of data recorded between July 1989 and December 1991
(i30 input/output training vector pairs - one pair for each week of this period). The
trained network was then used to predict weekly sales volumes for the period
January 1992 to September 1992 (33 vector pairs).

Analysis of Results
The sales forecasts produced by the network were compared with the actual sales
figures as well as the forecasts made by the marketing managers. Some of the results
are shown in Figure land Figure 2

Qakb

9..M draw 0I AcMW 0" ~ t klEtal aU

.7

6.

4

3

2

I week no

Figure 1. Sales preiicted by Neural Network vs. Actual Sales and Experts' Forecasts

Prediction Error

Predictions 7 -:lation Average Super draw Std Error

Neural Net 0.979 3.48% 12% 0.280

Experts 0.977 3.67% 15% 0.316

Figure 2. Comperson of Accuracy of Prediction.

The prediction done by the network compares favourably to the sales forecast of the
experts. These studies indicate that neural networks can be successfully applied to
this problem.

1. Jagielska I., Ashok J., A Neural Network Model for Sales Forecasting, The First New
Zealand International Two Stream Conference on Artificial Neural Networks and Expert
Systems, ANNES'93, IEEE Computer Society Press.

11-237

Search For an Improved Time-Frequency Technique For Neural
Network-Based Helicopter Gearbox Fault Detection and Classification

Timothy W. Robinson, Mohammad Bodruzzaman, Mohan Malkani
Center For Neural Engineering

Tennessee State University
Nashville, TN 37209-1561

Robert M. Pap and Kevin L. Priddy
Accurate Automation Corporation

Chattanooga, TN 37406

Both military and civilian helicopters require routine maintenance to prevent problems
while they are in flight. One of the most dangerous problems is the failure of gearboxes,
which can lead to a catastrophic crash and loss of life. Traditional methods of detecting future
problems relied on vibrational analysis models of the gearbox, which were highly complex.
Newer techniques focused on applying signal pre-processing techniques, such as the
Short-Time Fourier Transform (STFT) or the Wigner-Ville Distribution (WVD) to the
vibration time signal and using the results as inputs for neural network training. These
methods have all reached a measured level of success. This paper will show that it is possible
to have improved neural network learning speed as well as improved fault detection and
classification utilizing a new signal pre-processing technique known as Enhanced
Time-Frequency Distribution (ETF.) The helicopter gearbox vibration data was supplied by
Accurate Automation Corporation and the network architecture used was a two-layer
feedforward network using generalized backpropagation learning rule.

1 Introduction

Everyday, thousands of helicopters routinely take-off and land safely around the world. From military
reconnaissance and combat missions, to search and rescue operations, to the latest traffic updates, these
vehicles have become an integral part of our lives. With so much depending on them, safety becomes
a top priority when considering a helicopter as a primary mode of transportation. When an in flight
critical failure occurs, such as in a gearbox, landing the craft safely becomes difficult, if not impossible.
The result is usually a loss of helicopter and quite possibly the crew.

There is always a constant need to develop faster and improved diagnostic systems for
maintenance. Ideally, such systems would be able to analyze a device, detect any flaws or problems,
and alert the user in advance so appropriate action could be taken. This would result in two immediate
benefits: a decrease in the number of accidents and injuries, and a reduction in overall maintenance
costs. The drop in the number of accidents is self-evident; reduced maintenance costs are confirmed by
the U.S. Government. A Department of Defense study found that when the gearboxes for one of its
series of helicopters were removed for routine maintenance, 47% of them were still in satisfactory
operating condition [I].

The first improvements in gearbox fault detection came from analyzing vibrational signatures in
terms of its spectral energy content by using the Fast Fourier Transform (FF). These signatures were
obtained from accelerometers, strategically placed in and around the gearbox. A raw accelerometer
signal is composed of a failure signal (or a predetermined 'clear signal' if there is no failure), clutter
(noise signals that resemble failures) and machinery noise (signals that are unlike failures.) The types
of failure signals typically found are those caused by either bearings or gear teeth. For bearings, there
are inner and outer race faults, which occur when the raceway becomes spalled and dislodges debris.

11-238

There is also a rolling element fault, which occurs when the bearing itself fails. Gear spalls can occur
in the teeth due to metal fatigue, which can also lead to a gear fault, where part or all of a tooth breaks
off. Clutter arises from shaft imbalances and imprecise gear meshes. Machinery noise is the natural
vibrations produced by the system elements. By examining accelerometer signals in the frequency
domain, clutter and machinery noise were identified and appropriate filters developed to eliminate
them, leaving a signature containing mostly fault information.

The first attempts to classify these faults used spectral templates, which were applied over an
FFT-generated spectrum. Spectral components that matched the template criterion were summed
together to produce an overall score, which was an indication of spectral energy content. Special rules
were then applied to this score to determine whether it matched a previously stored fault in memory [2].
The major flaw with this system was that it neglects the time information, which is crucial to future
fault prediction. It relied on the premise that the frequency content of the fault data remained constant
during the occurrence of the fault, which is incorrect. In fact, the frequency content (especially the
natural frequency) of the helicopter gearbox changes as the fault conditions change over time.
Therefore, it is necessary to observe the spectral content as a function of time and frequency.

Newer attempts at fault classification involve a neural network approach. Because of their ease of
implementation and execution speed, a properly trained neural network could effectively classify
several types of faults. For inputs, the neural network relies on pre-processed fault signal data, which
can contain both time and frequency information. There are various time-frequency techniques such as
Short-Time Frequency (STFT), Wigner-Ville Distribution (WVD), Wavelet Transform (WT) and
Enhanced Time-Frequency Distribution (ETF) that can be used to generate the necessary input data.
With enough training examples, a neural network can develop a generalized classification scheme
suitable for real-time fault diagnosis. The major problems with using neural networks is getting enough
training examples with good features and reducing the training time to produce acceptable training and
testing results.

The objectives of this research were to compare three of the above techniques (STFT, WVD, and
ETF) and determine which method produced the smallest training error and the lowest amount of
classification errors. After pre-processing the fault data with each of the three methods, a neural
network is trained from an initial set of weight values. A comparison between the error history training
curves as well as results from unseen data classification errors will be used as performance criteria.

2 Signal Pre-Processing

To go from the time domain to the frequency domain, a time signal can be pre-processed with an
algorithm that will extract the necessary frequency information. One of the most common methods
used to produce a two-dimensional time-frequency (TF) plane is the STFT which is defined by,M!

S(t,f) _ sx)w(t - r)e-2Kfdzr (l)

where wt - -) represents the selected data window centered at time location E that is convolved with the
time signal s(t). The discrete version at any time instant n is given by,

cc

S(nk) = s(m)w(n - m)e -J2nt "/v (2)

Typically, the data window size is selected to be much shorter than the length of the time signal. There
is a trade-off in resolution when using this technique; good time resolution requires a shorter window
w(t) and good frequency resolution demands a longer window.

The Wigner-Ville distribution (WVD) is another method that can be used to generate a
two-dimensional TF representation. It is an improvement on the original Wigner distribution (WD)

11-239

algorithm in that no aliasing is created and it does not exhibit low-frequency artifacts typically
produced in the real WD [3]. The WVD of a real signal s(t) is defined by,

Ws0,o) f z(t + r12)z(t - r/)e (3)

where z(t) is the complex analytic signal associated with the original signal s(t) as follows

z(t) = s(t) + jH[s(t)] (4)

and HI.] is the Hilbert Transform. The windowed discrete WD of the signal s(n) is

L

W(no) w(m)s(n + m)s(n -m)e f2"'" (5)

A new technique capable of extracting time-frequency information is Enhanced Time-Frequency
distribution (ETF). This method employs computing the FFT of the magnitude spectrum of a time
signal, finding the autocorrelation of the resulting signal, then computing the magnitude of the inverse
FFT. The result is a TF-like distribution with increased resolution of harmonic frequencies [4].
Mathematically, the procedure for a time signal s(t) is

sj((o) = 4(s(o))s*(o)) where s(co) FFTs(t)] (6)

al (r) = a(i)a(r) where a(t) = FFTs(w)] (7)

y = (y(*)y*(*)) where y() = IFF7Taj()1 (8)
3 Network Architecture

The neural network used was a traditional two-layer feedforward network, with weight updates
accomplished using the generalized backpropagation learning rule (70% of previous weight
adjustment.) Network input consisted of 1024 points, which was generated by a moving window of
2048 points with 50% overlap for the STFT and WVD data, and a 4096 window with 50% overlap for
the ETF. The hidden layer contained 4 nodes and the output layer 2. Continuous bipolar activation was
used at all nodes, in addition to a negative bias term.

Three types of gearbox fault data were used: no fault, bearing inner race, and bearing outer race,
with a maximum file size of 65,000 points. For training, 60% of the data set was used and the
remainder left for testing. Five different randomly generated weight sets were used, to which were
applied the three types of TF network inputs for a maximum of 5000 presentations. Two types of
training and tests were done: a fault/no fault condition and a comparison of 2 fault types with a no fault
condition. For the fault/no fault training and test, bearing outer race fault data was used.

4 Simulation Results

The two best error learning histories are shown for both sets of training conditions (see Fig. 1). For the
fault/no fault condition, data that had been processed using the ETF algorithm clearly surpassed the
performance of both the STFT and WVD processed data. Each of the weight sets converged to
approximately the same level using each respective data type. The WVD data was the second best
performer followed by the STFT data.

Training results for all three types of errors again show that overall, the ETF data converges faster
than the other two (Fig. 2). In this case, however, we noticed that three of the five ETF curves exhibited
a period of oscillations before resuming a smooth training path. Note that with more information used
for training, all the network results for the all fault training sessions are surpassed by fault/no fault
network training.

11-240

In Fig. 3, performance measures are given based on converting a segment of raw data into one
input pattern of the respective TF representation. This performance is calculated by taking the
following: # of flops + I pattern + conversion time. Subsequent performance will be defined as: # of
flops + # of patterns + elapsed time. This chart shows that the ETF algorithm used had a very high
conversion rate compared to the other two methods. Fig. 4 gives the network training performance for
actual sets of patterns. For the ETF/STFT/WVD methods, the corresponding number of patterns are
found in Table 1.

Classifications using the training and testing data are shown in Figs. 5 through 8. In Figs. 5 and 6,
the criteria level was set to 20% or lower. The results of fault/no fault and all fault classification show
ETF as a clear winner for both training and testing, although the all fault tests results were not
particularly great. If the criteria are reduced to 10% or lower, Fig. 7 shows that the ETF test results still
surpass all others for the fault/no fault condition, but are nearly equivalent to the WVD for the all fault
condition.

5 Conclusions

Our research results show promise that training with the ETF distribution algorithm for data analysis is
a worthwhile endeavor. The preliminary results reached would seem to indicate that this technique of
signal pre-processing is beneficial to this form of fault diagnosis system, with the potential for
applications to other types of similar systems. Classifications using this method have matched and/or
outperformed comparable techniques. Future areas of research would focus on extending the number
of learning cycles and using a richer data set for comparison purposes.

6 Acknowledgment

This work was supported by the U.S. Navy-funded Center for Neural Engineering at Tennessee State
University, ONR Grant Number: N00014-92-J-1372. Additional support was supplied by research
partner Accurate Automation Corporation of Chattanooga, TN. The authors would like to thank them
for their support for pursuing this research.

References

1. Lawrence J. Mertaugh, 'Evaluation of Vibration Analysis Techniques for the Detection of Gear
and Bearing Faults in Helicopter Gearboxes,' Report for Naval Air Test Center, Code RWATD,
RW41, Patuxent River, MD 20670-5304

2. Doug Gore and Glenn Edgar, 'Techniques for the Early Detection of Gear and Bearing Failures in
Helicopter Drive Trains,' Presented at the 40th Annual Forum of the American Helicopter Society,
Arlington, VA, May 16-18, 1984

3. M. Bodruzzaman, S. S. Devgan, 'On-Line Intelligent Health Monitoring Systems for NASP Type
Hypersonic Structure,' Reportfor Aeronautical Systems Center, Contract No. F33657-90-C-2264,
WPAFB, OH 45433-7644

4. Timothy Robinson, Gee-In Goo, 'Phoneme Detection and Classification as Inputs For Neural
Network Speech Recognition,' Presented at the NSF National Conference on Diversity in the
Scientific and Technological Workforce, Washington, DC, September 24-2 7, 1992

11-241

0.2 0.16

B.STFT A ETF
C: V4dD 8: STFT

0.12..............---------------------------- C WD

0 .06 - ----------------- -------

1 0. ------ 400-----0---------00------200----00---00----00---000

0.04a... ... Ji
UA B -

Fig. 3 Erformtaine hibserve uin futano Fig. 2 Erfortainne hsosrv runnialngul
formin ein nput tota repcivintr usngrspctvaipus

repreentaions

1.I....... .W .124 2.

.

..........

.. L...........

10-

ETF SWD ET TT D

M TrungV To"~g TruinM To"~i

Fig. 5 Classification of errors for fault/no Fig. 6 Classification of errors for all fault
fault data using 20% as correctness data using 20% as correctness
criteria, criteria.

.......-.

I0. --.--

ElF STFT WVD EMF SIFT V

ET-wV W TsV E ~Tm*m M Tsml

Fig. 7 Classification of errors for fault/no Fig. 8 Classification of errors for all fault
fault data using 10% as correctness data using 10% as correctness
criteria. criteria.

Table 1

Fault/No Fault Condition All Fault Condition

____ ETF STFT WVD EF STFT WVVD

Input Type Quantity Quantity Quantity __Input Type Quantit Quantity Quantity

Training 54 113 60 __Training 78 164 87

Testing 34 72 41 __Testing 49 104 60 J

11- 243

BINARY RESPONSE FORECASTING: COMPARISON BETWEEN

NEURAL NETWORKS AND LOGISTIC REGRESSION ANALYSIS

Mauricio. A. Le6n, MD

Department of Anesthesiology, University of South Florida, College of Medicine,
MDC Box 59, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612

Abtrct-Logistic regression models are used to forecast outcomes from binary response events. Examples of such
events are patient survival or a blood transfusion. Logistic regression models are calculated using input
parameters correlated to the event of interest. The purpose of this research was to compare logistic regression
and neural networks forecast performance on simulated data. Mathods: Two-615 record data sets were created
Each record included 24 independent and one dependent (outcome) binary variables. In the first data set
(probability set), outcome was computed using a probability function. In the second set (rule set), outcome
resulted from the application of logic rules. The first 400 records of each set were used for neural network
training and logistic regression estimation. The remaining records were used for testing. Results: Both models
estimated correctly 6636 of outcomes in the probability set. In the rule set, the neural network predicted outcome
significantly better (p<0. 0001) than the logistic model (neural network 96% vs. logistic regression 78% correct).
Both models estimated outcome significantly better in the rule set than in to the probability set (p<O. 000)).
Conhuio,: This work compared neural network and logistic regression forecasting performance on two binary
data sets. These data sets were selected as extreme examples of cause-effect problems observed in medical
research. Our results indicate that neural networks may yield better results that logistic regression. This finding
may encourage the use neural networks in problems approached traditionally with logistic regression models.

1. INTRODUCTION
There are many examples of events that result in only two possible outcomes. This binary
response is typical of situations such as patient survival after illness or the decision to transfuse
blood. Among statistical methods used to predict binary outcomes or responses, a logistic
regression of the form:

eb, bx, ...+bex.

=+eb,+bx,+...+b.x.

is frequently chosen because the output is confined between zero and one. Usually zero and one
are assimilated to symbolic concepts such as true or false, yes or no, or pass or fail. The popular
mufti-layer back propagation neural network usually generates output responses confined to 0 to
I or -1 to I ranges, th.s making this type of neural networks naturally fit for modeling binary
response problems. While logistic regression methods are frequently used in bio-medical research
(From 1988 to 1993, at least 864 Medline citations report the use of logistic regression models
for data analysis), we found no instance of use of neural networks as and addition or alternative to
logistic regression analysis. To evaluate the advantages, if any, of using neural networks over
logistic regression models for prediction of binary responses, we designed an experiment to
compare the forecast performance of the two methods on simulated data sets.

2. METHODS
In order to compare the efficacy of neural networks and logistic regression analysis for
forecasting, two data sets were created. Each data set consisted of several independent and a

H-244

single dependent variable. In the first data set (probability set), the relation between independent
and dependent variables was defined by a probability function. In the second data set (rule set),
the dependent variable resulted from the application of a fixed number of rules to the independent
variables. In both data sets, there were 24 independent and one dependent (outcome) binary
variables.

2.1 Assembly of the probability set
A table s of 25 columns and 615 rows was generated in a commercially available spreadsheet.
Independent variables sji were randomly set to zero or 1 for] = 1,...,615, i = 1,...,24. A table t=
{tj.... ,t2 4) was filled with random coefficients normally distributed between -50 and 50. These
coefficients determine the initial weight of each on of the independent variables. An additional
table u = (J,...,u61J5} was filled with random scores normally distributed between zero and 100.
These scores were used guarantee that the outcome of each record was a probability function.
The outcome variable j25 was calculated using the following equation:

SiZ5 = if Pi <Uj
P if p > uj

where:
24

pi = b(qj - a), qj = 2ss ti,a = Minnum (qj), and b = 100 / (Maximum(qj) - a).
i=1

2.2. Assembly of rule set
A table similar to the one used for the probability set was filled randomly with zeroes and ones.
The outcome variable sj25 was set to one, if at least one rule (out of six rules) could be applied.
The general form of each rule was RULEr IF [Condition I AND ... AND Conditionn]. Examples
of conditions are I sjo....sj5 > 3, sj20 = 1, sj22 = 0, etc.

After assembly, the first 400 records from each data set were used for calculation of logistic
regression coefficients and for training of backpropagation neural networks. The remaining 215
records were used for testing.

2.3. Logistic regression analysis
Multiple logistic regression analysis on both data sets was accomplished using a commercially
available statistics package (STATISTICA, Statsoft, CA). The logistic regression option was
selected using the quasi-Newton search algorithm. The maximum number of iterations was
increased from 100 to 1000. After convergence, coefficients of the multiple regression equations
and equation estimates for all training records were saved. Then, using the logistic regression
coefficients, a spreadsheet was programmed to forecast the test data outcome.

2.4 Neural Network training
Neural network training was accomplished using a commercially available neural network
simulator (DMW, HNC, CA) running on a dedicated accelerator board (BALBOA, HNC, CA)
installed in one expansion slot of an AT compatible 486 computer, Neural network training
parameters are listed table 1. For each data set, the neural network simulator evaluated 50

11-245

different models, varying in the number of hidden layer neurons. The program automatically
selected the model yielding the lowest mean squared error and calculated the outcome response
for the records set aside for testing.

Table I
Neural network training parameters

Activation function: Logistic
No of hidden layers: I
Learning method: Smoothing
Max. number of epochs: 1000
Initial weight generation: Random
Maximum initial weight: 1

3. RESULTS
3.1 Probability set
The probability set-test group consisted of 215 records. One hundred and eleven records had an
outcome of one. The outcome of the remaining 104 records was zero. Using optimal cut-off
thresholds, 66.5% (n= 143) and 66.9% (n= 144) of the test data were estimated accurately by the
neural network and the logistic regression models respectively. Cut-off values were 0.33 for the
logistic regression and 0.36 for the neural network models.

3.2 Rule set
The rule set-test group consisted of an identical number of records. There were 72 records with
an outcome of one, and the outcome of the remaining 143 records was zero. The best cut-off
thresholds obtained for the probability set data were 0.44 and 0.39 for the network and logistic
models respectively. Using optimal cut-off thresholds, 96%(n=208) and 78% (n=169) of the
records were estimated accurately by the network and logistic models respectively. There was a
significant difference (p <0.0001) between the correct number of outcomes estimated by the
neural network and by the logistic regression model in this group.

3.3. Both methods estimated output significantly better in the rule set group than in the
probability set (p<0.0001 for neural network model and p= 0.0068 for logistic regression model)

4. DISCUSSION
Neural networks have been compared to some statistical methods in the medical literature (Watt,
1991). However, we fail to find evidence of any attempt to compare neural networks and logistic
regression analysis. The objective of this research was to compare the forecast performance of
neural networks and logistic regression models for events having a binary outcome. We selected
extreme examples of data groups in which the relation between independent and dependent
variables ranged from a highly complex but "stable" (rule set) to a rather "unstable" (probability
set) model, in which two records with identical independent variables occasionally resulted in
different outcomes. Our results indicate that, at worst, a single hidden-layer back propagation
neural network performs as well as a logistic regression model. While this work does not intent
to proof mathematically the "superiority" of neural networks, the empirical evidence suggests that

11-246

neural networks should be considered in research endeavors in which logistic regression analysis
has been selected a the main statistical tool.

REFERENCES
Watt R.C. (1991). A comparison of artificial neural networks and classical statistical analysis.
Anesthesiology, 75, A451

11-247

Time Delay Neural Network for Small Time Series Data Sets

Worapoj Kreesuradej, Donald C. Wunsch H, Mark Lane
Texas Tech University

Electrical Engineering Department
Lubbock, TX 79409-3102

nus03@ttacsl.ttu.edu

Abstract

For large data sets neural networks have better time series prediction performance than
conventional methods [6]. However, when neural networks are trained with meager data, the
problem of overfitting seriously decreases their performance. The objective of this work is set
apart from previous neural network approaches by focusing on noisy data of limited record
length. Observation of monthly slaughter hog prices from January, 1965 to July, 1987 are used.
The work uses two techniques to overcome the problem of overfitting: the validation method and
the use of time delay neural networks (TDNN).

Background
Applying neural networks to the problem of time series prediction is not new. Lapedes [3]

showed that neural networks are capable of predicting the future values of time series by
extracting knowledge from the past. Weigen [6] found that a backpropagation network
produced more accurate results than the best mixed autoregressive-moving average (ARMA)
model identified so far. Other studies have also concluded that the neural networks perform as
well as or better than the conventional methods.

In the general nonlinear time series prediction schemes, the basic framework can be
described as

A
y(k) = y(k) + e(k) = F(y(k-1), y(k-2), ..., y(k-T)) + e(k) (1)

A A

The estimate of y(k) is given by y(k). The error term derived by subtracting y om y(k) is
assumed to be a white noise.

To approximate a function, F(.), the neural network uses a backpropagation learning
process. This constructs the function, F(.), based on the training patterns of data which consist of
a current value and lagged values. The network is provided both input patterns and desired
outputs. The learning algorithm tries to minimize a cost function, the sum squared error; e2 (k) =
(Y(k) - Y(k))2 , with the goal of making the network respond as desired.

The approximated function, F(.), can also be viewed as a function of the current value and
the past values at the input layer and a collection of synaptic weights determined by the training
algorithm. Thus, the output of a network is written by

F(y(k-1), y(k-2), ..., y(k-T); W),

where W is a collection of weights. For a general statistical rule of thumb [1], the number of
weights should be less than one tenth of the number of training patterns. If a network has a large

1-248

number of weights, then the bias of the approximated function will be reduced. However, the
variance of the function still causes a high mean-squared error[2]. In order to reduce the mean-
squared error, the balance between bias and variance of the approximated function must be done.
This problem seriously affect on the accuracy of the approximated function when the training set
has only a few hundred patterns.

The time delay neural network (TDNN) was proposed by Waible [4] to expand the hidden
layer by adding multiple delay-lines. One of its properties, which is suitable for time series
prediction, is that TDNNs form an approximted function which has a small number of weights
[5]. This reduces the number of free parameters of the network. Therefore, this property help the
TDNN reduce bias and variance problems.

During the training process, weights are adjusted in order to fit the features of the data.
Therefore, as the training process continues, the degree oi bias is decreasing. To keep the balance
between bias and variance, the training process must be stop before the network begins to be an
unbiased approximator. Thus, the second technique is validation method which is used to avoid
overfitting problem.

To train a network with validation technique, the available data are classified into three
sets. First, the training set is used to determine the values of the weights. Second, the validation
set is used to monitor the network performance. The training process still cc ntinues if the
prediction on the validation set improves. When improvement stops, the training process must be
terminated. Figure 1 illustrates how if the training process still continues after the end of the
improvement in validation set, the network performance begin to degrade. The third, prediction
or testing set is set apart and never used in training.

Error on validation set

The bestpoint to sto it

Number of iterations

FIGURE 1: Error on validation set is used to decide when to terminate training.

Experiment Result of Hog Price Prediction
The experiment is conducted on the slaughter hog price data. The data series is collected

by the Agricultural Marketing Service Group from Jan, 1965 to July, 1987. The data is recorded
monthly and is composed of 272 hog prices in total. To train the network, the 272 data points are
normalized to (0,1). (We simply divided the data values by 100.) Furthermore, the data are
classified into three sets: the training set, having 233 points, the validation set, which comprises
15 points and the prediction set, composed of 24 points.

A TDNN time delay neural network is set up for one-step prediction. The neural network
uses a current value and some past values as an input pattern and the next value as a desired
output. Then, once the neural network model is set up, it is used to iteratively predict several
steps into the future.

The performance of networks is measured by normalized sum squared error, given by

11-249

N
nSSE = X (targetk - predictionk) 2 (2)

k=1

N
I (targetk - mean) 2

k=1
N A

I I. . (xk - Xk)2

c 2 N k=I
A

xk,xk are the actual value and the prediction value of sequence, respectively, o2 is the estimated
variance of the actual value sequence and N is the number of data points.

The prediction results for this time series can be found in tablel, Figure 2A and figure 3.

Table 1: Normalized sum squared error, nSSE, for predictions of time delay
neural network.

Duration Time Delay Neural Network
Single-step Pred. Iterated Pred.

nSSE nSSE

Training Set 0.0211
249-253 0.0433 0.3707
249-260 0.0326 0.4585
249-272 0.0489 0.7798

Table 2: Normalized sum squared error, nSSE, for prediction of
autoregressive-integrated-moving average (ARIMA)

Duration ARIMA(4, 1, 0)(0, 1, 1)12
Single-step Pred. Iterated Pred.

nSSE nSSE

Training Set 0.0482
249-254 0.0473 1.4604
249-260 0.0164 0.9485
249-272 0.0214 2.4193

II-250

SINGLE-STEP PREDICTION FROM TDNN
70

z
0a 0

I--

L40

CD 30O
0

a Solid line =Predicted value

CD Dotted line = Actual value

Ifl I I __ __ _

99Ma Jun5 Jul196 5 199 1973 197 1985 1989

(A)
SINGLE STEP PREDICTION FROM ARMA(4,1,0)(0,1,1) 12

802

uf 70
z
0

Z- 50

1 3o
w

a40
CD

0

z30
w
x 20 -Solid line =Predicted value

10-Dotted line =Actual value

0 Jan Feb Mar Ar Ma Jun ul

1965 1969 1973 1977 191 1985 1989

(B)
FIGURE 2: The single step prediction from TDNN in (A) and from ARIMA(4,1,0)(0,1,1)12 in

B. Both models predict on the training set for the data before the vertical line and in the predicted
set for the data after the vertical line.

11-251

65

Solid line = Actual value

z 60 Dashed line = TDNN
D
0
a- Dotted line ARMA

(Q)0 "7,\ ' ,I ."

45 -

~40
Cn,,

0 5 10 15 2) 25
NUMBER OF ITERATIONS

FIGURE 3: Multistep prediction for slaughter hog price data as function of number prediction
iterations into the future.

This experiment data set is also used to fit to a linear model in order to compare the
results with those of TDNN. The data is transformed to meet stationarity requirements. Then,
the autocorrelation and the partial autocorrelation are calculated. From the pattern of the
autocorrelations and the partial autocorrelation, the autoregress./e integrated moving average
model ARIMA (4,1,0)(0,1,)12 is set up. The results are presented in Table 2, figure 2.B and
figure 3.

Both models, TDNN and ARIMA, do not show significant difference in performance for
the single-step prediction. However, TDNN outperforms the ARIMA model for multistep
prediction.

Conclusion
In this work, we show that TDNN can keep more past information, which is necessary for

prediction problems, than the same size simple feed forward network. As an example, the TDNN
can transform to a static equivalent feedforward which has more weights than the original
network. However, the TDNN needs a complex algorithm to train the network. As a result, the
network consumes more time for its training process.

Finally, the TDNN is used to predict hog prices, and shows better performanbe than the
ARIMA model. Although effective techniques for learning exist, the appropriate size of the
network is still determined by trial and error. This is a time-consuming process. In addition, it
rarely produces the network that is optimized for the application. The theoretical analysis and
empirical studies related to this issue remain open research subjects. Although research is

11-252

continuing on the further improvements, the TDNN is already a powerful model for use in time
series prediction.

References
1. Eric B. Baum and David Haussler, ",What size net gives valid generalization?", Neural

Co~utationVol. 1, 1987, pp 877.
2. Geman, S., Bienstock, E., and Doursat, R. "Neural networks and the Bias/Variance

Dilemma." Neural Computation, Vol. 4, No. 1, 1992, pp. 1-58.
3. Lapedes, A.., and Farber, R. "Nonlinear signal processing using neural networks:

Prediction and system modeling." Technical report LA - UR - 87 - 2662, Los Almos
National Laboratory, 1987.

4. Waibel, A., Hanazawa, T., Hinton, G., Shikamo, K., and Lang, K. "Phoneme
Recognition Using Time - Delay Neural Networks." IEEE Transaction Acoust..
Speech.. and Signal Processing. Vol. 37, No. 3, 1989, pp. 328- 339.

5. Wan, E. "Temporal Backpropagation : An Efficient Algorithm for Finite Impulse
Response Neural Networks." Proceeding of The 1990 Connectionist Models
SumLerSchool San Mateo, CA: Morgan Kaufmann, 1990.

6. Weigend, A., Bernado, H., and Rumehart, D. "Predicting the future: A
Connectionist Approach." International Journal of Neural Systems, Vol. 1, 1990, pp. 193.

11-253

MEMORY NEURAL NETWORKS APPLIED TO

THE PREDICTION OF DAILY ENERGY USAGE
Alvin J. Surkan

Department of Computer Science and Engineering, University of Nebraska
Uncoln, NE 68588-0115 USA Email: surkan@cse.unl.edu Fax: 402-272-7767

Alexel N. Skurlkhln
Mathematics Department, Institute of Physics and Power Engineering

249020 Obninsk, RUSSIA. Email: root@ippe.obninsk.su Fax: + 7 095 230 23 26

Abstract

Daily records of energy consumption make a time series that can be used for predicting demand
expected one or more days in the future. A neural network enhanced with memory neurons and
called an MNN, has been developed and tested to make approximate time series predictions. At
present, the prediction is done without taking external influences into consideration. In an MNN,
both inputs and hidden weights are modified by time delay coefficients. Optimized values for the
weights and delay coefficients can be learned incrementally from the systematic components of
fluctuations extracted from historical data. Currently, the observed time series is the only source of
information being used to predict future values. Later, other series of independent predictive data
can be used to expand the MNN model. Network training has successfully demonstrated that up to
6000 iterations over the training set can make a ten-fold reduction in the average prediction error.
Repeated presentation of hundreds of training patterns in training a network can lead to systematic
convergence and the synthesis of a predictive network. Training of the MNN can make the error
of prediction fall to be consistently below 20% when averaged over one year of set-aside test
patterns.

Problem Context and Internal Delays in Memory Neural Networks

Industrial decision makers need predictions of time series formed from daily energy records. Typically, the time
series represent energy used as electrical power and natural gas. Such series are the result of the operation of very
complex systems. These systems combine commercial and residential energy consumption over large or extended
geographic areas. Data sampling times range over minutes, hours, days, and weeks. The more effective prediction
systems must recognize temporal patterns in the historical series of values and environmental factors. Memory
elements may be added to layered neural network models to include time-delay variables, implicitly. Memory
elements introduce data which implicitly adds another dimension. The effect of including the memory elements is to
generate an analog of time-delayed inputs. Differential weighted parts of the time series can effectively account for
data that is delayed. The memory elements can help to make predictions for times that are one or more units in the
future beyond the last available elements of a series.

Enhancement of Layered Neural Networks by Including Memory Delays

Neural networks with the architectural structure of multiple-layered perceptrons can be augmented so that they learn
from time-localized information. This modification is incorporating extra memory neurons. Also, it is suspected
that it is advantageous to minimize network size to improve the network's ability to generalize. The parameters of
such memory neurons must be learned to optimize their performance as predictors. The MNN proposed by Poddar
and Uniinkrishnan [19911 has been developed so data from only the current time need be applied at the network's
input. In the network, the relative influence of past data effects is represented and stored internally by an adequately
trained set of weights. Such a network learns to perform real-time predictions without introducing unacceptable time
delays. Excessive delays could diminish or nullify the usefulness of the output values needed for making control
decisions.

II-254

Effective Convolution Action of Memory Neuron Networks

The contribution to the output from memory neurons is the sequence obtained from a discrete convolution of past

outputs of memory neuron and a kernel. This kernel is parameterized by a neuron's single memory coefficient M)
I

where subscriptj tags the j-th network neuron of the i-th layer (see Figure 1). Both memory coefficient Ci and
1

other weights W! and f0! learning is directed by errors accumulated from the difference between the predicted

values and the corresponding elements of the target vectors. Such network enhanced with internal memory can be
used to identify the system's unknown order and internal delays. Only one input is required because recurrence effects
make the output of the MNN depend indirectly on all past inputs introduced while training. The degree of this time-
sensitive effect depends on the memory coefficient values that are established by training.

XI V

I .
" 0a

................

* a

0 Network neuron 0 Memory nuo

Figure 1. Architecture of a Memory Neuroni Network patterned after the sketch of Poddar and Unnikishnan
[1991] showing at right, details of memory neuron associated with the top neuron of the first layer.

Background on Recurrent or Memory Neural Networks

The azrhitecture of an MN is shown in Fgure 1. The larger open circles represent network neurons. Neurons
within a layr ame not conected to each other, but every network neuron of one layer is connected to every network
neuron of the next layer. Cirepoiig to each network neuro, thr is a memory neuron, represented by the
smaller shaded circles. These neurons contain infonnatiot about the past output of the corresponding network

nern.Each network neuron in a layer is connected to all the network neurons and to the memory neurons of the
immediately lower layer. Them are separate links from a network neuron and its coresponding memory neuron to
every network netmo of the upper layer. Campodng memory nuros can also be provided for the network
neurn in the output layer. The not input to the j-th network neuron of layer 1, at time t, is given by:

I NI-I 1! 1II -

iP) =7 1., .-tt+ i; t

where Ni is the number of network neurons in the 1.th layer.

II-255

• .I I I II I I I

For the network neuns of the output layer, the net input is given by:

L Nj..1 - NL M.
L U t +- f- L1 t . VLijt ~I(t) + L t (2

i=O i= i= l

where Mj is the number of memory neurons associated with the j-th network neuron of the output layer, U(t)

is de output of the network neuron at time t, V!(t) is the output of the corresponding memory neurons at time t,

is the weight of the connection from the i-th memory neuron of the j-th network neuron to the j-th network

neuron in the output layer, memory coefficients W1j is the weight connecting from the i-th network neuron to the

j-th network neuron of layer (1+1), and ?j is the weight of the connection from the corresponding memory neuron

to the i-th network neuron of the (1+1) layer, memory coefficients. The output of this network neuron is decided by
its transfer function and the net input:

U(t) = g!(X!(t)) (3)

The output of all the memory neurons except for those in the output layer, are derived by

V!(t) = a!- t -1) + (I-a!) V(t -1) (4)
JJ +i

For memory neurons in the output layer,

V (t) = +---) + -ij) -Vi(t-1) where Vo =Ui (5)
lJ ij ijl-l 0 (

To preserve causality, both UO(t) and VJ(t) ar zero for any t 0.

To eniue stability of the network dynamics, the conditions 0 -- 'L a!, I 1 should be satisfied.

Learning by Error Minimization
The external environment of the network is characterized by a sequence of input vectors and the correspmding
sequence of target vectors. The squared Euclidean distance was used as the error measure that direct learning.

IT NL
E = L (Oj(t.-UL() 2 (6)

t-1 j=

The learning process minimizes this error by iteratively modifying the connection strengths W.. between network

neurons, the connection strength between memory neurons and network neurons, and the memory coefficients

CX. for memory neurons. The original back-propagation learning rule (Rumelhart et al., 1986) was modified by

Poddar and Unnlkrishnan (19911, Sastry, Santharan and Unnikrishnan, 1993) that include memory neurons.

II-256

Each free variable is updated in proportional to the partial denrivative of the error with respect to each variable:

aE T k T I k T

- vi -each I = 8X!ht) =

(7) (8) (9)

All the above derivatives can be estimated from only locally available spatial and temporal informatio. The actual
correction term for each variable is obtained by multiplying the corresponding estimate of the derivative by a
learning rate. The other novelty in comparison with original back-propagation is that the learning rates for each
variable are modified during learning. This speedup in the rate of convergence. The learning rate is modified
through a novel heuristic strategy. With this strategy one tests if the partial derivatives along a dimension, in the
current and previous iteration, have the same sign. When the sign is the same, then increase the learning rate by
taking a larger step along that dimension. Otherwise decrease the learning rate.

Prediction of Daily Energy Consumption
A memory neural network or MNN was trained to predict a time series consisting of daily values of energy

demand of a large geographic area. The project began with a program originally developed and supplied by K. P.
Uunikrishnan. Some minor errors and bottlenecks were removed and overcome. The results reported here are from a
new C program for a MNN. The program runs on both a CYBER 960-32 mainframe and 80386 personal
computers. Networks with only one hidden layer and one memory neuron per node in the output layer have been
used in these experiments. The number of input and output nodes are determined by the problem's structure. For
these predictions only a single neuron was used was used at the networks output. The notation (nl:n2) is used to
denote a network with n, input nodes having n1 corresponding memory neurons and with n2 hidden network neurons
having n2 corresponding memory neurons.

Functions and Parameters Used for Network Development
The basic network was developed with the following parameters: (momentum factor = 0.48), (initial range of

weights [-.l,+0.1] ,(rate modifier = 0.01), (initial learning rate for network-network neuron links = 0.24),
(learning rate for memory-network neuron links = 0.24), and (initial range for the memory coefficients = 0.1 to 0.9)
The activation functions gI, g2, g3, g4 tested with c1 = c2 = k, = k2 = 1. had the following definitions:

c1 I- €ek2"X N

l -= I+ e- kl'X g 2
= c 2 tahn(kl'X), g3 =%2 1+ 2

" g 4 = I inPutic=l

A simple linear mapping of the variable's observed extremes to the networks practical operating limits was used to
scale data. Dam values are mapped either to the range (0.1 to 0.9) or (-0.9 to +0.9) depending on which of the
activation functions was in use.

Error Accumulation and Partitions of the Training and Test Data
The learning algorithm used the errors accumulated over batches of input training patterns. Before beginning the

training of a network, the historical data records were partitioned into three non-overlapping sets. The first set was
used for training. The second was used in selecting of a better trained network. Te third set was used for providing
the option of choosing a better performing network. The first data gave daily values for the energy consumption
over the nine year period from 1981 to 1989. The second set had the daily energy consumption values for the single
year 1990. The third set consisted of the same series of values from 1991. This was the original method of data
preparatio. Later, this method was a modified by limiting the first set of data to only the three years from 1987 to
1989. This modification was made to explore how prediction accuracy reduced with the size of the training set.

Testing of Activation Functions
The effects of different activation functions were tested before completing an extensive series of simulation

experiments. Preliminary tests showed that the preferred combination of activation function was a hyperbolic
tangent as the nonlinearity for the hidden nodes used in combination with a linear function on the output node. This
combination produced the fastest convergence. There was no significant difference in the accuracy of the predictions
when a sigmoid replaced the hyperbolic-tangent as the nonlinear activation function. However, the latter choices

II-257

gave more rapid convergence in learning the mapping. Accordingly, all the results were obtained with the hyperbolic
tangent funciou as the nonlinearity at the hidden nodes while the output node was linear.

Results of Simulation Experiments
For all experiments, the mean prediction errors were monitored by averaging the magnitude of the difference between
observed and predicted time series values. Comprehensive simulation studies were made using networks with the
structres: (2:2), (2:1). (1:2), (1:10), (2:10). All simulations used the parameter values given earlier in combination
with the 3 and 9 yew training data sets. Ten trials were implemented for each combination of data and network
structure. When two input nodes were used, one of them was scaled the source data signal and the second one was
the scaled funst difference of the source. One important conclusion from the results of these simulation experiments
is that the same accuracy is obtained when using, for input, only one source signal as when the input was both the
source signal and its first difference.

In all simulations the process converged in fewer than 5000 iterations. As a rule, most of the accuracy is obtained
during the first 100 to 2500 iterations of training. Training with more than 2500 iterations degrades the prediction
perfommnce. Another observation is that some trials fail to meet the pre-specified criterion for convergence.
Convergence is achievable in the first 200 iterations or near the last 500 iterations of the 6000 iterations. The five
previously specified network structures were used to predict 1, 2, or 3 days ahead. Figure 3 provides comparisons of
the predicted values and those values known or expected from the test data. The results obtained in predictions for
added days ahead were found to degrade as expected with time into the future.

Statistical Test of Errors in the Predicted Values

. 60 COMPARISON OF DISTRIBUTION OF ERRORS IN RESIDUALS
05 FROM PREDICTION WITH THOSE EXPECTED FROM NORMAL

~50

0
w

z30
w

w,cr10
02 -

00

1 2 3 4 5 6 7 8 9 10111213141516
Figure 2 Hffistograms of the residues in the difference between the observed daily values and

those predicted by the memory neuron network MNN over a full year of test data

Observations and Conclusions
An error reduction of 10-fold has been realized by training the network in fewer than 6000 iterations. It is important
to discover how the time-delay effects of memory neurons use information from earlier inputs. The main finding
was that only one input signal is sufficient when only the single time series data from the energy consumption
observations are available. In the limit, one can achieve an average prediction accuracy of 17 to 18 percent.
Collectively, the experiments indicate that an MNN using the hyperbolic tangent version as the hidden layer
activation function and linear output unit is fastest. The accuracy has little if any dependence on the specific
combination of activation functions. Also, a modif'cation of the "QUICKPROP" procedure of S. Fahlman [see
Fahlman 1988] obtained a similar result which was no better in either prediction accuracy or in its rate of
convergence. Generally, the learning asymptotically approaches a limiting accuracy with a 17-20% level of error.

11-258

Figure 2 Graphs comparing final prediction of energy usage by the memory neuron network.
The left shows the full year of daily values and at right shows the last 121 days.

Vie

,-,. OBSERVED PREDICTED

*a

0.

PREDICTED
OBSERVED

1PREDICTED

a N N - HNNco_ "

510 3 07 15 3 4 S 9 7 4 4
510575

DAYS OF COMPLETE YEAR TESTED DAYS IN THE LAST THIRD OF TEST YEAR

The accuracy was not improved further by many different modifications of the training process. It would appear that
an acceptable pro-specified target accuracy can not be obtained only by additional fine tuning in which one adjusts the
number of hidden layers and the number of nodes in these layers or by introducing artificial signals.

Upon completion of the many modifications aimed at improving the MNN, an attempt was made to model the
nearly 20% residual noise remaining after the final training of the MNN using the time series data alone. Because
this training of the model for the noise was unsuccessful, it is concluded that the residual errors can not be shown to
be other than random.(see Figure 2). The chi-square was 32 for 13 degrees of freedom with a significance level of
0.002. It is concluded that the prediction of the time series (on auto-regressive data only) with 17 to 20 percent
error may be the best accuracy possible with the available data. Statistical calculations madc on the residual errors
indicate they are random and devoid of any systematic information content.

Future Directions Suggested by the Experiments
Further enhancement of the structure of the MNN is still desirable. It is proposed to conduct further experiments to
explore the following: (1) Possible ways of problem-solving with a two stage algorithm which applies in tandem
two stages: global search by a genetic algorithm(GA), and the local search of the memory neuron network (MNN).
(2) Interpretation of the obtained link weights to identify the most important factors and to determine the length of
the historical record that can play a part in prediction. (3) Applications of more powerful statistical analysis and
criteria to compare performance accuracy.

References

Fahlman, S. E. *An empirical study of Learning Speed in back-pmpagation networks" 1988 Technical Report June
1988 CMU-CS-88-162. Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.

Poddar, Pinaki and Unnikrishnan, K. P. "Memory Neuron Networks: A prolegomenon" R & D Publication GMR-
7493, October 21, 1991. NAO Research and Development Center, GM Technical Center, 30500 Mound
Road, Box 9055, Warren, Michigan 48090-9055, USA.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams 1986. Learning internal representations by error propagation,
In: Parallel Distributed Processing, MIT Press, Volume.I, pp. 318-362.

Sastry, P. S., Santharam, G. and Unnilrishnan, K. P. "Memory neuron networks for identification and control of
dynamical systems" R & D Publication GMR-7916, March 9,1993. (same source as Poddar refemce above).

II-259

Experiments using a Group Method Data Handling Neural Network as a predictor in a biotechnical process

D. Tsaptsinos, J.R. Leigh.
Industrial Control Centre, University of Westminster, London W IM 8JS, UK.

Abstract

Present work at the Industrial Control Centre involves the exploration and development of the most suitable
techniques for the modelling and control of fermentation processes. Techniques such as Kalman filters, kinetic
models and multi-layer perceptrons have been evaluated previously [1,2,31. In this contribution, work performed
for the modelling of an industrial fed-batch fermentation process using the Group Method Data Handling Neural
Network (GMDHNN) will be presented [4]. Fermentation processes present the neurocomputing community with
a number of challenges due to the non-linearities and dynamics of such processes. The architecture of a
GMDHNN is introduced as well as the series of experiments performed using the available data. The experiments
address the suitability off the GMDHNN as a selector of inputs, as a one step ahead predictor, and as a long term
predictor. Current results seem to be promising. Networks generated for the one step ahead prediction of the
residual carbon in the fermentation process provide accurate estimations but the long term prediction presents
more problems.

Introduction

The Group Method of Data Handling (GMDH) is an automatic self-organization method introduced in 1970's [5].
The book edited by Farlow [61 presents the initial GMDH algorithm and a number of more recent enhancements.
The outcome of the algorithm is a layer-like structure. Each layer contains a number of submodels which are
connected to the models of previous and succeeding layers. This paper introduces the GMDH method and reports
on the usage and evaluation of a commercial software package (AIM) [7] which implements a version of the
algorithm for the modelling of a highly non-linear fermentation process. Additionally, the performance of the
AIM generated models as one-step and multiple-step ahead predictors is discussed.

The features of Group Method of Data Handling and AIM models

The GMDH is a modelling technique introduced in the 1970s by A.G. Ivakhenko [1). The GMDH algorithm
creates a model which is based solely on the available data. The generated model has a multi-layered network
structure where the first layer simply distributes the inputs and the last layer reports on the generated output. The
task of the model is to find the relationship between inputs and the output. Figures 1 and 2 show a typical model
structure and a processing element respectively. The output of a processing element is given by the following
combination of the 2 inputs:

= I + + +(1)
A number of methods related to the original GMDH algorithm have been reported in literature. The abductive
induction mechanism is implemented by a commercial package (AIM). The package uses what can be considered
as a descentant of the GMDH method but with a number of genes either missing or being improved.
* The architecture of the AIM-generated model is the same as the one for GMDH depicted in Figure 1.
* The structure of a piocessing element is as in Figure 2 but 3 inputs are allowed.
* The polynomial is not restricted to just the form shown in equation 1 [5).
" The available data set is not split into training and testing groups. Each model is eNaluated using the Predicted

squared error criterion [6]. Another benefit is that one does not have to worry about the representativeness of
the two groups.

A brief introduction to the fermentation process

Pharmaceutical products are generated by secondary metabolism during the deliberately constrained growth of a

11-260

micro-organism. The process of organism growth and secondary production depletes the level of carbon and
nitrogen in the initial substrate but the levels of these nutrients is maintained by continuous feeding of the reactor
with sources of additional carbon and nitrogen. On the commercial scale, standard control is achieved through a
normal process management systems but in order to obtain higher levels of performance, process variables, such
as secondary product concentration, must be measured in real time and made available to the control system.
Sixteen on-line measurements were made available. These include, temperature, pH, oxygen uptake rate etc. Four
state variables need to be estimated but in this paper we will only consider residual carbon. Twenty batches of
industrial data were provided with each batch containing the on-line hourly figures and the off-line figures for the
state variables. In order to have a complete data set the off-line figures were interpolated. For the estimation of
residual carbon, the following on-line measurements were thought by process technologists to be significant:
Carbon dioxide evolution rate (RCO2), Carbon source fed in hour (CF), Power input (POWER), and Dissolved
oxygen (DOT).

Using AIM as an input selector

All sixteen on-line measurements were employed and AIM was executed for each of the twenty batches in order
to compare the selection of the inputs. The main observations were:
" The broth weight (BWT) was the most popular on-line measurement. It appeared on 14 out of 20 networks.
" Head pressure (HP) and Respiratory Quotient (RQ) did not appear in any network.
* Irrespective of the diverse of selected inputs and the polynomial parameters there was a common structure of

the generated networks.
" Re-execution of each batch with only the previously selected measurements resulted in identical networks.
It was concluded that the benefits of using GMDH related methods could be obscured by the presence of bad
data. There were strong indications revealing:
• the sensitivity of the generated models, in terms of polynomial forms and coefficients, towards the training set

examples, and
• the reduction of the measurements space is also dependable on what examples are presented.
A review reassessing the available measurements for designing more representative data sets took place. At the
end of the reassessment exercise two on-line measurements were dropped. This action was taken because of
sensor problems. Five batches were selected to be employed for training.The batches included the normal and the
extreme values for each on-line measurement. The generated model is shown in Figure 3.

One step ahead prediction using the AIM model (inputs without memeory)

Figure 4 presents the results obtained using a batch from the training test. Generalization is an important aspect of
any modelling exercise. Figure 5 presents the performance of the AIM network with a previously unseen batch. It
can be seen that a reasonable fit to the trained and to most of the testing data is obtained but with room for
improvement.

One step ahead prediction using AIM (inputs with memory)

In order to improve the performance of the model historical values of the input and output were used. Only the
inputs indicated by the previous model were employed, i.e., 5 inputs. Previous unreported work had shown that 2
delayed values were sufficient, hence a total of 17 inputs were used. The generated model is shown in Figure 6.
Figures 7 and 8 show the performance of the model using a single batch. The use of historical data was obviously
availing.

N-step ahead prediction using AIM (inputs with memory)

It will be advantageous to be able to predict the performance of the residual carbon in multiple steps in the future.
For example, a model can be employed to investigate the effect various feed strategies will have to the product
concentration and other variables.
For that reason the model was used off-line to test its capabilities for long term prediction. Initially the model was

11-261

presented with measured values for all inputs and the prediction of the residual carbon was calculated. Then the
model was presented with the measured values of the on-line variables, as before, but the residual carbon model
prediction replaced the value of the data set. This way, feeding the model's predictions, the errors are being
accumulated and it is easier to judge the soundness of the model. Figure 9 shows the performance of the model
using two batches.

Conclusions

The employment of GMDHNN in the field of fermentation process seems to be promising. As in any other
technique which learns by examples extremely care must be taken for the validation of the process data. The
learning data must include the normal and the extreme situations and bad examples due to the instrumentation
must be identified. Networks generated using AIM can be used for one-step-ahead predictors but more work is
required in order to be employed as models of the residual carbon.
A number of decisions are performed automatically by AIM. These decisions the, do not become available to the
user. In addition to this the manual does not provide enough information about such matters as the type of
regression technique employed or the determination of eligible inputs. All in all the user experiences a black-box
approach and s/he may feel reluctant to use the delivered products.

References
1. Jalel, N.A., Tsaptsinos, D., Mirzai, A.R., Leigh, J.R., and Dixon, K. 5 th International Conference on Computer
Applications in Fermentation Technology 1992, Keystone, Colorado, USA.
2. Tsaptsinos, D., Jalel, N.A., and Leigh, J.R. Colloquium on the application of neural networks to modelling and
control 1992, Liverpool University/ Polytechnic, UK.
3. Tsaptsinos D., and Leigh J.R. Journal of Microcomputer Applications (Special issue on Neural Networks-
Techniques and Applications) 1993, Vol. 16, pp. 125-136.
4. Hecht-Nielsen R. 'Neurocomputing', Addison-Wesley 1990.
5. Ivankhnenko, A.G. Automatica 1970, Vol 6, 207-219.
6. Farlow, J.S. "Self-organizing Methods in Modelling-GMDH Type Algorithms', Marcel Dekker, New York,
1984.
7. AIM Investigator"' manual, AbTech Corporation, 700 Harris street, Charlottesville, Virginia 22901

N

0

U =0 0

!//T _ D
oo, T

Figure 2: A GMDH processing element. The AIM
Figure 1: A typical GMDH generated model. A processing element is the same but with an
similar model is created by AIM but see text for additional input.
differences.

11-262

POW- N

SwNT - N -- *=

UP N

Sip N t

IW! - N

gC% - N

Figure 3: AIM generated network when training data was chosen to span the range of likely operating conditions.
The letter N indicates the nornaliser function. This function transforns the original input variable into a region
with a mean of zero and a variance of one. The letter P stands for polynomials

R" Ca.6..

34

14
12

N

26

is

I'

4

I
SI I I I I I I I I I I I I I I I I I I

Figure 4: Testing the AIM network of Figure 3 as one step ahead predictor (training data)

6-263

I a I I

Figure 6: AIM Generated network when training data was chosen to span the rangc of likely operating conditions
and time-delayed measurements were used.

Rod;.,-

3.

34 j..-. UAM ,B.

16

I-
12

12

4

3

4

1126

29
27 Measured
25
23
21

17

13

Tim.

ResCarbon

30
28 Measurd
26
24
22
20

16 edto

14
12

4
2

Time
Figure 9: N-step ahead predictions of residual carbon using the feedback version of the network in Figure 6. See
text for explanation.

11-265

Time Series Prediction Using Minimally-Structured Neural Networks:
An Empirical Test

Won Chui Jee Michael J. Shaw
Dept of Ifthial Eneering Beckman In um

Hogg 1k Univesit Univ. of Uhinois at ubn-hmag
72-1 Mopoko Sunigudxg 405 N. Madtew Avenue

Seoul, 121-791, Korea Urbana, EL 61801

ABSTRACT

Artificial Neural Networks (ANN) have been much mentioned as a promising new tool for time
series analysis and forecasting. However, to answer the question of how to determine the structure of
ANN that can effectively capture the characteristics of the time series in a specific forecasting
environment, it is still required that ANN be rigorously analyzed, In terms of fitting capability and
forecasting accuracy, using real world data that are often contaminated by noise and limited in the
number of vations. In this paper, murtlayered perceptrons (MLP) are adopted as approximators to
time series generating processes. The Information from ARIMA modeling is used to determine the input
units of MLP so that the designed MLP have minimal structures. The 111 series of Maiordkis
Competition Data are used to train the MLP and to analyze their performance. A comparative analysis
with ARIMA models has been done to determine the factors that affect the forecasting performance of
MILP. Examples of these factors are the number of observations, observation Intervals, seasonality,
trend, and backpropagatuon leming parameters and procedure. The experimental re s are expected
to be used as a guideline for designing and training MLP.

INTRODUCTION

ANN have been advocated as an alternative to conventional tools for time series prediction, after
Lapedes and Farber [1987] reported that MLP trained by the backpropagation algorithm are better at
predicting by orders of magnitude than conventional forecasting methods. For example, there Is an
argument that well-designed ANN-based forecasting systems proclaim the opening of a new era In the
evolution of forecasting and decision support systems. The works of Werbos [1988], Welgend et aI
(1990, 1991], Tang st al [1991], Sharda and Pal [1992], Foster etal[199], and Hoptroff [1993] support
this argument However, White [1988], Fishwick [1989] and Ripley [1993] reported that standard
statistical procedures will often be at east as effective as neural networks when a fair comparison is
made. Observing those inconsistent research results from the analyses of socioeconomic data sets,
Chatfield [1993] commented that ANN will be able to outperform standard forecasting procedures for at
least certain types of situations, but there is little systematic evidence of this as yet. Thus, the purpose of
this paper is to provide such evidence using well-known real world data such as M-Competition Data.

Since the success of forecasting methods depends heavily on the properties of the time series to
which the methods are applied, especially when the methods are univariate analyses, we first need to
address the basic properties of time series from socioeconomic systems. First, most of the series have
very limited number of observations. Since the socioeconomic systems are changing their structures and
compositions, the addition of data obtained from much earlier observation are often Irrelevant or even
harmful to the analysis. Furthermore, one cannot generate extra data as needed because they do not
allow experiments. Therefore, there are at most 200 observations or so and it Is not unusual that there
are under 50 observations. Second, the time series are often contaminated by noise from unknown

* A lae put of this wok w cwfed out while pofesor hee wa visiting the Beckman Iwsite, Univeny of Minois at
uewwa.aampign caoe kid bospitality s gadfully aknowbe 1e i also grateful to Korea Scienc a udD g
Foundatio (KOSEF) and Hong &k Univesky who mnpotd dhe visit

II-266

sources and suffer from high level of measurement errors. This noise and error is not merely added to
the series but become embedded In the series. Consequently, there Is no reason to believe that the noise
follows Independent and identically distributed Gaussian random process. Finally, most of the observed
series do not satisfy the assumption of stationarty on which most time series analyses rely. There is
frequently a dear trend and/or seasonaity, -I.e., long memory, In the mean process, and the fluctuations
In variance are also often observed. Therefore, dIfferencing and log transformation should be applied
through Intensive data analysis to transform the data Into stationary series. The above three facts partly
explain why different analysts have different forecasting results on the same time series, and why simple
lnear models such as exponential smoothing or the combination of their forecasts are preferred to more
complicated methods for practitioners and even M-Competitins.

However, some researchers argue that significant portion of real time series are generated by
nonlinear processes and that they can benefit from the recent developments In nonlinear modeling
[Tong, 1990; De Gooijer & Kumar, 1992]. Nevertheless, nonlinear models with many parameters are so
extremely flexible that they bear the risk of overfitting the time series. That is, the model which provides
the best fit to past data does not necessarily provide the best forecasts, especially if there exist noise
Involved In the series or changes In the generating process. For reasons of conservatism, statisticians
have tended to severely restrict the number of free parameters by tolerating some bad results 3 -i
underfitting. Since ANN models are at the heart of nonlinear modeling, appropriate parameterlze
Indispensable to good forecasting performance of ANN. In this sense, the minimally structured .

networks in this paper means that MLP have the proper number of connection weights, which are
equivalent to the number of parameters In nonlinear models. To restrict the size of MLP, special
attention was paid to determining the number of input units, because the moderate size of Input space
enables MLP to capture the essential features In a time series without being disturbed by noise. ARIMA
model Identification results were used as valuable Information in determining MLP structures, and our
approach was tested using the M-Competition data.

DATA AND METHODS

Makridaks at al(1982, 1993] collected time series from real world and held the competitions to
determine empirically the post sample accuracy of various univarlate methods. Although the results of
forecasting competitions are somewhat controversial, the 1001 series provided by the Ml-Competition
enables us to test a number of Interesting questions on forecasting methods. Out of original data base,
the 111 series, which consist of 13 annual, 20 quarterly and 68 monthly series, has often been
Investigated In the previous comparative studies [Sharda & Path, 1992]. This subset of Mi-Competition
Data was analyzed in this paper to answer the question of whether the MLP can be an expert under the
socloeconomic forecasting environments.

At the time of the first competition, the most recent observations of each series were held out by
Makrdaelf The numbers of holdout samples were 6, 8, and 18 for annual, quarterly and monthly series,
respectively. Forecasting models were fitted to the remaining observations of each series and then used
to obtain its prediction values which were compared with the holdout sample values. The performance or
error measure was mean absolute percentage error (MAPE) over the forecasting horizons. This
evaluation scheme was adopted without any modifications in our comparative analysis between ARIMA
models and minimally-structured neural networks.

AUTOREGRESSIVE MOVING AVERAGE MODELS

ARMA models have been served as a benchmark model for creating linear models because of
their theoretical elaborateness and accuracy In short-term forecasting. For time series to be modeled
{Zt, t e f), transformed if necessary, the general class of ARMA(pq) model has the following form:

O(B)Zt = C + e(B)at,

where B , (B)=1 -1B-O2* ... qBq, LQB)=1 -UIB
.. U d 4B)=d1.-B.... r'-'B, BZt=Z#-,, Cisaconstant, {at}isagaussian white noise

prves. Note that If LB)=(1 -B)d then ARMA(pq) model can be expressed as ARIMA(p-d,d,q) in

11-267

Box-Jenldn! approach which Is the most popular ARMA modeling method. Among the Iterative modeling
stepe in Figure 1, the model identfication step which determines the order of p and q is crucial to
representing the time series adequately because the resulting model performs poorly if the modeler Is
prodigal In using the parameters. Therefore, the principle of parsimony Is an Important modeling
philosophy [Box & Jenkins, 1976]. The identification step requires an Intensive data analysis where
expert judgment must be exercised to Interpret some statistics such as ACF and PACF, AIC, etc.
because of the difliculties involved In the model Identification step, there have been efforts to automate
the modeling procedure (for details, refer to Jhee & Lee, 1993). An outgrowth of such efforts Is
AUTOBOX'" 3.0, whose performance Is comparable to human experts. This commercially available
software was adopted to secure the objectivity of our comparative analysis. The 111 series of
Mi-Competton Data was analyzed under the default setting of AUTOBOXym 3.0, which means the
intervention option was not used.

MINEMALLY-STRUCTURED NEURAL NETWORKS

D*tenid g MLP Strucar
To predict the future values of time series, the iterative one-step-ahead forecasting procedure

was adopted using the following relationship,

where {t.,, r e L} are the estimated values for the future observations In forecast horizon L The
function f that Is fitted for the past observations will be used to predict one point into the future and
simply Iterate Itself on its own outputs and the past data to predict further into the forecast horizon. In our
analysis, this approximation function fwas replaced by a multilayered feedforward perceptron which has
one output unit and one hidden layer. Therefore, the remaining Issue Is how to choose right number of
hidden and Input units, because the size of MLP greatly affects the forecasting performance.

The fact that MLP can be universal approximators (Hornik et a/, 1989] does not mean that the
structures of MLP can be arbitrary chosen. The MLP of large size might promise to extract more
Information from data, but such MLP also tends to mistake noise for information. As a result, they make
more serious errors and rarely yield the gain they promised. This erroneous behavior of MLP tend to be
easily magnified In the univarlate time series analysis with limited number of observations. Although
there has been some research on the optimal design of MLP structures, it Is still largely an art to
determine the optimal number of hidden units. Furthermore, we can hardly find any research results that
reported the impacts of Input spaces on the forecasting performance of MLP.

Since the learning paradigm of ANN is learning by examples, an exploratory data analysis before
preparing training examples is recommended to increase the performance of learned ANN. This is why
we use the results of ARMA model Identification, which Involves an Intensive correlation analysis among
data points. In doing so, the starting point is the observation that an ARMA(p,q) process can be put In
state space form by defining a state vector of length m= max(p, q+ 1) [Harvey, 1984]. Therefore, If the
order of time series was identified as ARMA(p,q), we used m as the input space and also as the number
of hidden units.

Pmvladaay Experment
Before applying our idea to the whole data sets, we tested our idea with 5 time series from the

111 M-competition Data. One of the purposes here is to examine the effects of varying numbers of Input
and hidden units. Figure 2 -4 present the typical Illustration of our results which were obtained using the
8184 series (Figure 2) that follows ARIMA(1,4,4) In terms of Box-Jenkins' or ARMA(5,4). Figure 3 shows
the effects of input spaces. When we applied our stopping rule (see the next section for details) the MLP
of five input units gave the least MAPE that were measured over the holdout samples and beat the
AUTOBOX0 3 v3.0 of which MAPE is represented by straight line in Figure 3(a). We observe that the
large Input spaces do more harm than good In predicting the future values, even though they brought
better fitting results in terms of F12, on the past observations. During these preliminary experiments, we
traced the performance of each MLP structure as the leaming of MLP proceeded, and recorded when the
MLP showed the best prediction result. Figure 3(b) shows that five Input units is also best for the series

11-268

S184. This result may not be always the case. However, we could obtain similar results from the other 4
time seies. Figure 4 shows the effects of hidden units when we used 5 and 12 Input units. As we
expected, the let MAPE's were obtained when we used the same numbers of hidden units as the
numbers of Input units. Thus, we were very encouraged to utilize the ARMA model Identification results
In determining the MLP structures. With these favorable experimental results, we analyzed the 111
series of M-Competition Data according to the following training procedure.

To trajn MLP on each time series using the algorithm, we first adopted the
stopping rule as follows: training was temninatd If the mean squared error reached 0.0001 before 5,000
training epochs, which was the allowed maximum epochs. This Is a very simple rule, but the philosophy
behind our opping rule is "Let MLP learn sufficiently from the given data. Our stopping rule appears to
have the risk that MLP overfits the given eres, but the risk Is not serious as we constrain the size of
MLP. If we consider the actual forecasting situations where the future values are not known a priori, our

pprOach can be an eaily applicable and sound stopping rule. Before the time series were fed Into MLP
as trining data, each series was linearly transformed Into the range between 0.1 and 0.9. We did not
consider differenoing or deseasonalzing to remove nonstatlonarity from the time series.

During the preliminary experiments, we also determined learning parameters using twelve time
series that were selected equally from four categories. We dassifled time series Into four categories
according to time series characteristics, L.e., trend and seasonality. Four oombinations of learning rates
and coefficients to momentum term, (0.1, 0), (0.1, 0.1), (0.1, 0.9), and (0.3, 0.5), were tried, and the use
of (0.1, 0.1) gave slightly better prediction results. We also tested the weight updating Interval. In
addition to updating connection weights pattern by pattern, we tried two cumulative methods: one
updated the weights every five Input presentations and the other updated only once during each epoch.
Updating the weights at each Input presentation outperformed the cumulative methods. Once the MLP
learned from time series, the degree of fitness to training data was measured using AF, and then the
learned MLP was tested over the holdout samples of the series. The outputs of the MLP were converted
Into their original scale and MAPE was computed to measure the prediction ability.

EXPRIMNTRISUL1

Over the 111 seies the minimally-structured MLP outperformed ARIMA models In terms of both
fitting and forecasting abilities. The palrwlse t-tests Indicate that performance differences were
statisticaly significant Some critics on the M-Competlition argue that several series In the 111 series are
not suitable for forecasting with AFIMA models Pack & Downing, 19831. So, we further analyzed the
forecesting results from only 72 series as Shards and Patl [1992] did. Table 1 exhblts the number of
seres on which MLP performed better than ARIMA and vice verse. Over this reduced data set, the
performance differences were also signiicant However,. the results are grouped according to
observation Intervals. It s noteworthy that MLP did not perform well on monthly series as they did on
yearly or quarterly series. This observation Is against our expectation because most of monthly series
have more data points than others. Therefore, we rearranged the reduced data set Into three categories
according to the number of observations. The first category Included series having less than 30 data
points, and the series In the third category contained more than 100 data points. We subtracted MAPE's
of MLP from those of AUTOBOX 3.0. As shown In Figure 5, the performances of two methods were not
dioriminable In the case of the third category. This analysis confirms the above observation.

To explain this phenomenon, we classified the series into 4 categories according to the
cof time series: whether the series has trend or seasonality? Table 2 shows that when the
seies has the seasonality component MLP did not perform relatively well. This analysis provides us with
a cue. In M-Competion Date, the serIes that have more than 100 data points are all monthly series. If
they have seasonality components simultaneously In AR and differencing orders, the MLP In our
approach will have large Input spaces and overit the time series to yield poor forecasting performance.
At this point, readers need to remember that we did not adopt any dat transformations which make the
nonstabtnry sees Into stationary one. f we use deseasonalized series, the overfitting problems In
monthly series will be greatey reduced. Anyway, the minimally-structured neural networks outperform
ARIMA models.

II-269

CONCLUSIONS

Our experiment provides evidence that artificial neural networks are a promising alternative to
conventional forecasting methods. We determined the structure of multilayered feedforward perceptrons
using the ARMA model identification results and demonstrated that our design works well for noisy time
series of limited number of observations The approach outlined In this paper can be used as a basis for
automating the ANN foeasting procedure. Our experiment also reveals that exploratory data analyses
we greatly useful In obtaining better forecasts from MIP.

1i) AFA imc, (1991). AUT06)XU 3.0 User' manual. [q1 Maurlalds et al, (1993). The W~-Comptillon: A
Hatboro, PA. real-rn judgmentally based forecasting study. hIt?
P23 Box, G.E.P., &L Jenkins, G., (1976). Time Aso Jownaloftforecathg 9,5-&a.
aiayui- kist ai conrol. Holdmn-Day, SF. (101 Rumelhaut D., & McCleland, J., (19117). Parall
1 De Gooler, J.G., & Kumar, K, (1992). Some recant obwlsd pooessing: etphvaone i tMe mootwlza

dslopments In non-linear time series modelling, of ogni Vn. (eds.), MT, Cambridge MA.
testing, and forecasting. It? JournaI of Forucaathg, 8, fill Sharda, Ft. & PetIl, RLB., (1992). A connectionist
135-15& appoach to time eries predotlon: an empirical tea
141 Foster. W.R., Calkpy, F., & Ungar, LH.. (1992). Journalof Intsfigent abiuactadig,
Neural network forecasting of short noisy time series [121 Tang, Z., Aimnelda, C., & Fishwlck, P. (1991). Time
Conx~w mid Chembal Engieerhi, 16(4), M9-297. series forecasting using neural networks vs. Box-Jenkins
(1 Harvey, A.C., (1984). A Unifie View of Statistical methodology. Sftuibn, 57(5), 303-310.
Forneatn Procedures. Journal of forevasit, 3, [13J Tong, H., (1990). Mbi-&iear time sedies a dyinala
245-V75. systail spawos. Oxford Univ. Preos.
[6]J Jhe, W.C., & Lea, K.J., (1993). Performnance of [14 Weigand, A.S., Rumelhart, D.E., & Huberman, B.A.,
neural networks In managerial foraesting. Inbowt (1990). Back-propagation, welght-eflmination and time
Opvtmn i AccouiU,, Flnoie and Aftwgement 2, series Mrediation. In Touretsky et al (oe), Connsctlonlat
66-71. Modsh: ftom of the 1990 Summer School, 106-116.
M7 Lapedes, A.S. & Fwber, R.M., (1987). Nonlinear [15) Werbos, P., (1989). Gneralization of back-
signal Processing using neural networks: predton and propagation with appicatlon to recurrent gas market
sytem modeling. Los Alamos Nat'l Lab Technial modal. AswnaImfwl, 1, 339-35.
Rinpot LA-UR-87-2W62 [161 White, H. (1988). Economic predictin using neural
(83 Makrid"d at si, (1982) The accuracy of extrapltol ewrs the case of IBM daily stock returns. MOW~
(time series) methods: results of a forecasting 11461 -11488.
competition. Journial of Fbrecaet, 1, 111-153.

Table 1L Comparatdve Pre"=clo Pedcnman dam"ie by Observation Isteralls
______________________ Unit: No. of Series

Obs. Intervals YEARLY QUARTELY MONTHLY Total
MSINl 7 16 30 5

AUT013OX &0 1 2 16 19__

IL Total 8 18 46 2

Table 2. Comparatdve Prediton Nronance damfled by the Series Characteistics
________________ Unit: No. of Series

liaaceratcs NONE TRIM SEASONALITY T +S Total
MSNN 5 26 15 8 53

AUTON7OX &O 1 3 9 6 19

ToE 6 28 24 14 72

H-270

imm ~ ~ AU Jdd(p d growmmp FR*

Jire L ABA oeigPedr FFECr of HIDDEN4 UNMI

S184: 4: 56 ()S104: k%"Pft 5

0.1 W ~ -17.5

4 4A

0A 410

0.5.-V

1?rw11SkWpku C-5 (b S S :k Pb 1

-030

uvu.Vmurn A- /A

04

5.5NIatMoFe

10 * 4c6i6m*oIa6 mo ii "

NCLC~bWAP&AUFoeoxo wIG N RALNBTYRXW

(b) 8144: am~ Peoroece

0*30

0.7-

ii' uiiifs 'I

11-271

Stable and Efficient Neural Network Modeling of Discrete
Multi-Channel Signals *

Shaohua Tant, Jianbin Haol and Joos Vandewalle
t Dept. E.E., National University of Singapore

10 Kent Ridge Crescent, Singapore 0511
Dept. E.E., Katholieke Universiteit Leuven

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Abstract

This paper presents a neural network based recursive modeling scheme that constructs a nonlinear
dynamical model for a given discrete multi-channel signal and the corresponding excitation. Using the
o-calld Radial-Basis-Function (RBF) neural nets as generic discrete-time nonlinear model structure

and the ideas developed in the classical adaptive control theory, we have been able to derive a stable and
efficient weight updating algorithm that guarantees the convergence for both the prediction error and
the weight error. Elements of the spatial Fourier transform and sampling theory have been employed to
provide the guidelines in choosing the parameters associated with the network structure and the RBF
neurons.

1 Introduction
Neural nets have recently attracted considerable attention for their potential role in offering alternative
formulations and solutions for various nonlinear problems [1]. The key feature of neural nets, which is
relevant to the modeling problem, is the so-called universal approximation property possessed by classes of
fedforward neural nets [3] [4] (5]. More interesting is the fact that such an approximation can sometimes be
arrived at using a finite sequence of input-output samples only. These interesting features are of particular
significance in designing new nonlinear modeling techniques.

The objective of the this paper is to present a discrete-time nonlinear modeling scheme for constructing
nonlinear models for multi-channel signals using feedforward neural nets. Three key ideas are important for
the development of the new scheme. First of all, the nonlinear model structure is chosen to be that of the
so-called RBF neural nets. This choice is made not just because of the universal approximation property
associated with this class of feedforward neural nets. More importantly, in the light of the spatial Fourier
analysis, RBF nets can be regarded as a general function reconstruction scheme using radial-basis-functions
as the interpolating functions for finite number of data samples. This allows rigorous determination of RBF
neural net structures for our signal modeling problem. The linear-in-the-weights characteristics of RBF nets
also makes possible the derivation of a stable recursive weight updating rule for the nets.

Secondly, the Lyapunov function approach developed in the framework of stable adaptive control theory
is employed to derive a simple and efficient recursive algorithm for determining the weights of the RBF nets.
This algorithm is proven to guarantee the convergence for both the prediction error and the weight error.

Thirdly, the thoughts along the line of spatial Fourier transform and sampling theory are followed to
examine the issue of setting the number of RBF neurons and their parameters as the first stage of the
modeling. These analyses lead to a constructive procedure that appears to be effective for common signal
modeling tasks.

*This reeard work was partially carried out at the ESAT Laboratory of the Katholieke Univeraiteit Leuvmn, in the f-amework
of a Concerted Action Project of the Flemish Community, entitled Applieable Neurel Netwoerks. The scientiic responsibility Is
ssumed by its authors.

II-272

2 The modeling scheme

2.1 General idea
Let a discrete-time multi-channel signal {Y} E R" (t = 0, 1,...) be generated by an unknoum discrete-time
dynamical system of the following form

Yt+1 = f(y,,Y-i,..., 1,&+i,utu,-1,.... PUt-i+i), (1)
where u, E Rf is the excitation at time instance t; and f : R* x Rif -- R' is a nonlinear vector function
which is of course unknown; k, I are two positive integers relating the current sample to k samples and I
excitation samples in the past.

The basic idea of our signal modeling scheme is to use RBF nets as a general model structure for the
unknown nonlinear function f(.). It follows from the universal approximation property of RBF nets that
I('), defined on a compact set S, can be approximated to a given precision with an appropriate weight matrixAr

and structural parameters. Or more precisely, assuming z = zt = Li, ,1, ...- , U,, ut1,..., I U,+I]T

and y = yt+j, the universal approximation property asserts the existence of a weight matrix W and the
structural parameters n (the number of RBF neurons), pi (center of the RBF neuron) and o- (radius of the
RBF neuron) such that a given signal {,) along with its excitation sequence {u,} can be modeled as follows

vs+1 = W*0 (2)

where z(-) is Gaussian function. In the preceding equation (2), both the parameters n, pi, ej involved in z(z)
and the weight matrix W are of course unknown. The central task of the signal modeling is, therefore, to
determine n,pi,or and 1" so that (2) holds.

For the modeling problem to be well-defined, f(.) is required to meet the following two conditions. First,
f(.) should be sufficiently smooth on a compact set 8 E Rkm+lf, and have unique solution for any set
of initial conditions and any admissible excitation sequence {us} chosen in S. Secondly, the function f(.)
should be time-invariant. As a discrete-time dynamical system, system (1) is also required to be such that
any initial condition in S will result in an output sequence on a compact subset in S. In other words, as
long as (1) starts in S, the subsequent dynamical iteration will not bring the output SR out of S.

2.2 Weight updating rule
The idea for determining W is to construct a one-step-ahead recursive predictor which will generate 01, the
prediction of y,, using a linear dynamical system. An error model analysis will then yield a stable updating
rule for the weight matrix.

To begin with, let W, E Rxn be the weight matrix, and et = f, - SR E Rm be the prediction error at
time t. Upon introducing the so-called auxiliary error vector i, E Rin

Ce,- 1 + W-lz(z,-. 1) - SR (3)
1 + zT(z,_.)z(z,_.) (

where C e R xm is a constant diagonal matrix to be fixed later, a one-step-ahead predictor can be built as
follows

= Ai-1 - Ayt- 1 + W-z(z.- 1) - zT(z._ 1)z(xt-)it-1 , (4)
where A C- Rmxi is a diagonal matrix with all its diagonal elements confined within (-1, 1). Thus, all the
eigenvalues of A are strictly inside the unit circle. Subtracting SR from both sides of (4), and rearranging
the terms give rise to the following error equation

et = Ac,_ 1 + Wt- 1z(z,-j) - ye - zT(z)z(z)i (5)

As will be shown shortly, the following weight updating formula

W, = Wt- 1 - i,-_Z T (,_) (6)

will make both the prediction error vector e, and the weight error matrix

E, = W,- WV

converge to zero.

11-273

2.3 Convergence analysis

We wish to prove that with appropriate choices for A and C, the preceding modeling scheme will indeed
drive both et and E, to zero. For the notational convenience, the ith entry for the vectors e,, i, will be
denoted by ei, respectively, e E R, and the ith row of the matrix E, by E, where (Ei)T E R".

To prove the convergence, let us observe that (5) and (3) can be regarded as constituting a discrete-time
ruth-order linear system in the following state-space form

et+i = Ae, + Bv, (7)
it = Ce, + Dv,,

where the matrices A, C have been introduced in (4), respectively, (3); B = D = I E R'nX' , I is the unit
matrix; and v, = Ejz(z,) - zT(zt)z(z,)4, E R" representing a closed-loop output feedback term. As all
the constant matrices A, B, C, and D involved are diagonal, System (7) with the feedback term vt can also
be treated as a collection of m linear discrete-time first-order single-input and single-output systems of the
following form

tt4 aef V , i= 1,2 ,m , (S)et = ade' + t1

where asi,b are the ith diagonal entries for A, respectively, B, with the loop closed by v = Ez(z,) -

zT(zt)z(zt)O, the the ith entry of the feedback vector v,.
We first show that if (8) is strictly positive real, then it will be asymptotically stable, consequently, e

and Ef will converge to 0 as t --o oo. As (8) is assumed to be strictly positive real, the discrete positive real
lemma can be applied, which results in the following set of equations (see, e.g., (2]).
I 4,'a ,j -Ai = - '

a,, , = ' + Vjp, (9)
1 -j A = V

where Ai, p,, Mi E R+ , and pi E R.
Consider the following scalar function

V' = 2)X(e')2 + E(E) T . (10)

It is obviously positive and vanishes only at et = 0 and Et = 0. The forward difference of V,' is easily
calculated as

-"' V I - V(1
2(a?,Ai -Ai)(e) 2 +2a Aievit +Ai(t,) 2+ Et+, E+ - EtEf.

Inserting (9) into (11) and rearranging the terms, we have
A' = -2[p-4 - vv1]2 - 2-v,(e') 2 + 2et4 + 2Et(AE)T + t(),

where AEt = t+l - E. Inserting (6) and vi into the last three terms in the above equation

A41' = -2(pie - ,,)2 - 2.(e')2 - zT(z,)z(z,)(e)2 < 0. (12)

The above derivation allows us to conclude that Vi is actually a Lyapunov function for (8) with the loop
closed by vt.

Returning to (7), consider the following scalar function

V, = eTPe, + tr (EtET), (13)

where P is a diagonal matrix with the ith diagonal entry being A.; tr (.) denotes the trace of a matrix, which
is the sum of the diagonal entries. 1' is obviously positive, and vanishes only at e, = 0 and E, = 0. By
noting the following equation

m

I1-274

and using (12), the forward difference AV = V,+ - 1t can be calculated as

= 2i' (el)2 - ZT(Z,, . ,)z(,,', -

-- j[f a 2]- 2E, Ce,)] - i=i[z (t,)z(z,)()] < 0.

We can therefore conclude that Vt is a Lyapunov function for (7), and consequently, the closed-loop system
(7) is globally stable. The particular structure of RBF nets can actually allow us to conclude more than the
global stability. As z(z,) can never be zero, A4t will not be zero except at the single point es = 0 and Et = 0.
Consequently, et --* 0, E --* 0 (t --+ oo), when the closed-loop system (7) settles down at its equilibrium.

To summarize, starting with finite initial conditions for ef and Et, the updating formulae described in
the preceding section will guarantee both the prediction error et and the weight error Et to converge to
zero. Observe that this convergence property is intimately linked to the positiveness of the functions z(zt),
without which we would not be able to conclude that Et goes to zero as well.

The preceding proof indicates that both ai and cii will have to be chosen to make (8) positive real.
Careful analysis shows that as long as a.i stays within -1 and 1, it will not affect the positive realness
condition. Thus the task reduces to choosing the parameter ci to ensure the positive realness of (8). For all
the simulation examples to be given in the next section, we have fixed c. to be -I for i = 1, 2,. . ., m. This
choice not only guarantees the required positive realness, but also seems to yield good transient response for
a wide range of systems we have simulated.

3 Determination of RBF neural net structure

3.1 Heuristic methods and their drawbacks

A commonly used heuristic approach to RBF neural net approximation suggests that n, pi and ori are closely
related to the concept of data clusters generated by zt samples in Rkm+ l . In this framework, n is interpreted
as the number of the data clusters within a pre-defined compact set, and pi, ai as the center, respectively,
the radius of the ith data cluster. The central task is, therefore, to devise an effective algorithm that can
detect the data clusters given a sequence of data.

The idea of data clustering comes naturally when RBF nets are used for data classification. In this context,
given data samples often imply clear separation boundaries among a limited number of data clusters. With
prior knowledge about the number of data clusters (usually known from a classification task itself), the
centers and the radii of these data clusters can be readily obtained using the well-known k-means clustering
algorithm [6].

Our extensive simulation analysis has revealed, however, that the idea of data clusters is not relevant
to the structural parameters of a RBF net in the case of nonlinear signal modeling. Generally, a given
sequence fz, is distributed evenly in a compact operation region of the underlying system, thus there are
no clearly distinguishable data clusters that emerge from the given data samples. Running the k-means
clustering algorithm for the data often results in the supposed centers of clusters wandering around their
initial positions aimlessly. Moreover, we can even build f(.) in (1) in such a way that the centers of the
constituent Gaussian functions are outside the compact set in which (zt} lies.

Our simulation experiments using f(.) built with the Gaussian functions also show that the approximation
error is quite sensitive near the exact RBF centers of the function. A small distance away from the exact
centers, the error is far less sensitive to the location of the centers. Thus, there seems to be of little use
to fine-tune the centers without knowing exactly where they are, which is always the case for our modeling
problem.

3.2 Spatial Fourier theory based structure determination

Note that the nature of the discrete signal modeling problem requires the universal approximation be obtained
using the finite number of function samples only. This obviously raises the question as to whether a given
set of discrete data can adequately represent a nonlinear function. This is the issue that all the heuristic
methods fail to address.

II-275

1.214

0.4-

0 2 4 6 a 10 12 14 16 18 20

Figure 1: A simulation plot of mean-square modeling error versus the width a. Solid line: A RBF net with
42 hidden neurons; dashed line: A RBF net with 13 hidden neurons.

Intuitively, all the data will have to be dense enough in a compact region to allow the reconstruction
of the function in between the data points. Drawing a similarity with the well-known situation of time
signal reconstruction from discrete-time samples, exactly how dense the data samples should be is expected
to be made precise using the idea of frequency domain analysis and sampling theory. The only difference
is that spatial Fourier analysis should be used instead as the nonlinear functions involved in the signal
modeling problem are spatial rather than temporal. Moving along this line, one can further expect that
the reconstruction is feasible for a band-limited nonlinear function with spatially sufficiently close data
samples. A nonlinear function f(.) in general needs not be Fourier transformable, not to mention band-
limited. However, provided that f(.) is sufficiently smooth on a compact set, a suitable truncation can be
introduced to limit f(.) to the compact set in such a way that it is band-limited.

These intuitive thoughts are made rigorous in an interesting work reported recently [7]. By confining the
approximation to a compact set with a proper truncation, and using a sufficiently fine grid of RBF neurons,
[71 shows that the approximation can be arrived at to within a given error bound using only finite number of
function samples that determine the weights [7]. This result forms an important theoretical basis for finding
the structural parameters of RBF neural nets in the context of nonlinear signal modeling. Thus, instead of
trying to rely on heuristics or blind search, the problem of determining RBF neural net structure can be
thought of as setting up a sufficiently fine grid of RBF neurons with their centers located at the crossings of
the grid, the widths chosen using a simple equation derived from the theory. Such a choice then guarantees
the existence of a set of weights so that the approximation meets a pre-specified modeling precision.

In accordance with the theory developed in [7], both A and o can be obtained exactly, given the size
of S and a so-called over-sampling parameter. The corresponding error-bound can then be obtained by
evaluating some Fourier transform related functions. Our simulation analysis indicates, however, that the
recommended theoretical values for A and o do not normally give rise to low mean-square modeling error
for the modeling scheme. In particular, the theoretical value for o- appears to be considerably higher than
it should be for constructing a more accurate model. Moreover, finding the spatial Fourier transform for
a nonlinear function is a time-consuming process, especially for nonlinear functions with many variables,
making the error-bound less useful for practical modeling problems.

To be pragmatic yet keeping in line with the theory, we have introduced certain amendments to help
determine A and a,. The general rule is to set A smaller when the modeling error is required to be smaller.
An empirical relationship between A and o, seems to be

C, = 2A ,,, A.

3

Seeing from our simulation experiences, this choice of a appears to bring the mean-square modeling error

11-276

dose to its minimum (see Figure 1).
Let us summarize the preceding discussions into algorithmic steps for the determination of all the struc-

tural parameters. Note that the function approximation is confined to be within a compact hypercubic or
hyper-rectangular set S E Rl"+ . The existence of S is ensured by the BIBO stability of f(.), and by the
bound on the inputs to the system.

Step I Use {zt) to determine a compact set S to be the region of operation for an underlying generating
system. S should obviously contain the origin of the linear space Rkm+19. The size of S can sometimes
be fixed by the physical nature of a given signal.

Step . Form a uniformly spaced grid in 3, which is preferably symmetrical about the origin. The space
between two neighboring grid points, denoted by A, can be adjusted to change the fineness of the grid,
thus the approximation error of the RBF net. Once the grid is set up, the number of RBF neurons n
is simply the number of grid points, and their centers pi's are the coordinates of the grid points.

Step S Choose a, to be around 2A - A as the widths for all the RBF neurons. The approximation error is
closely related to the width in a way depicted in Figure 1. The optimal a, for a particular modeling
problem normally takes a few rounds of trail-and-error to fix.

4 Conclusions
We have presented a discrete-time nonlinear signal modeling scheme based on neural nets. The key mo-
tivation is to carry over the essence of the linear ARMA modeling to the nonlinear case with the help of
RBF neural nets. In this particular framework, the modeling problem is decomposed into two separate
sub-problems of determining the weights and the structural parameters. The theory of spatial sampling and
the Fourier analysis helps to find the structural parameters in the light of function approximation. Once
the structure is known, a stable recursive algorithm can be readily used to find the weights of the nets. The
convergence of the algorithm is relatively easy to establish compared to other types of neural nets where
convergence often comes as an accidental by-product of a prolonged training process.

References

[1] K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop (1992), "Neural networks for control systems
- A survey," Automatica, Vol. 28, pp. 1083-1112.

[2] L. Hitz and B.D.O. Anderson (1969), "Discrete positive-real functions and their application to system
stability," Proc. IEE, pp. 153-155.

(3] J. Park and I. W. Sandberg (1990), "Universal approximation using radial-basis-function networks,"
Neural Computation, Vol.3, pp.246-257.

(4] K. I. Funahashi (1989), "On the approximate realization of continuous mappings by neural networks,"
Neural Net., Vol.2, pp.183-192.

[5] K. Hornik, M. Stinchcombe and H. White (1989), "Multilayer feedforward networks are universal ap-
proximators," Neural Net., Vol.2, pp.359-366.

(6] J. Moody and C. Darken (1989), "Fast learning in networks of locally-tuned processing units," Neural
Computation, Vol. 1, pp.281-294.

[7] R. M. Sanner and J. E. Slotine (1992), "Gaussian networks for direct adaptive control," IEEE Trans.
Neural Net., Vol. 3, pp.8 37- 8 6 3 .

II-277

Forecasting and Decision-Making using
Feature Vector Analysis (FEVA)

Alok Kumar Victor E. McGee
Thayer School of Engineering Amos Tuck School of Business Administration

Dartmouth College Dartmouth College
Hanover, NH 03755 Hanover, NH 03755

alok@everest.dartmouth.edu vmcgee@tuck.dartmouth. edu

Abstract

A multiple set of discrete time series can be visualized as a set of tracks running along together.
If the data points are connected by a wire diagram then we have a surface. This surface is fuzzy
(influenced by error) and dynamic, in that interrelationships (transient and permanent) are pro-
pogated through time. Our focus is on procedures which can help detect fundmental patterns and
time-varying relationships on such a surface. This paper proposes a new approach called FEVA,
feature vector analysis, where the key idea is to replace each scalar data point with a vector of in-
formation which represents what the point "sees" around itself. The main processing unit consists
of a clustering module to detect patterns in the enhanced (feature vector) data set, and a neural
net simulator to estimate flexible functional relationships. The cluster analysis results are presented
graphically using pattern-grids and the neural net simulator builds a decision surface. These two
visual objects can be used to perform both forecasting and "what-if" analyses. A small but real
illustrative example involving stock market information is used to demonstrate the FEVA approach.

1 Introduction: Time Series Analysis in Business

In the fields of managerial economics and finance the business environment i" measured using a host of
variables that can be classified roughly into two sets: (a) those dealing with the capital markets (returns,
yields, interest rates, exchange rates, etc.), and (b) those dealing with conditions of the economy (leading
indicator variables, production indices, inflation rates, unemployment, etc.). All these time series are
discrete, are measured on different time scales (annual, quarterly, monthly, and even minute by minute
on the stock exchanges) and often have tricky problems to deal with, such as gaps (no activity over the
weekend), unequal chunks (the number of business days in any month varies) and the world time clock
(stock markets around the world are open at different times). The traditional approach to analyzing
such time series has long been single-linear- equation regression models (e.g., the Fama-French [1989]
analysis of the relationship between returns and dividend yields) or multiple-linear-equation econometric
models (e.g., the macro-economic models of the national economy or a single state's economy). Time
lags are introduced to capture possible forward or backward connections, and the parameter values are
determined using global fits to datasets. In other words, the specified linear relationships are assumed
to be unchanged over the whole time period.

If time series are examined one at a time then a large number of extrapolative forecasting methods can
be applied to them (see Makridakis, Wheelwright & McGee [19831). The Box-Jenkins ARIMA models
are a powerful family of models in this arena, and the Census Bureau performs a universal service using
Census X-11 or X-11-ARIMA to create seasonally adjusted series for hundreds of important business
series, including the many candidates for leading indicators of economic well- being.

From our point of view there are problems with these traditional approaches. For example, if a
simple linear relationship is defined and then tested with a multitude of empirical regression runs the
possibility that a nonlinear relationship could do better is never considered. Very often the total time

11-278

period is separated into time intervals (e.g., to avoid the dramatic volatilities of the great depression or
the Black Monday of 1989) and the stability of the hypothesized relationship is tested across intervals.
This is a concession to the possibility that relationships can change over time but within each interval
the fit is global.

We prefer a method that (a) allows any relationships among variables to reveal themselves, (b) allows
relationships to be transient rather than fixed, (c) allows for predictions (i.e., generalizations or forecasts
ahead), and (d) allows for "what-if" analysis (i.e., analagous to the use of econometric models to check
the impact of specific changes).

2 Problem Definition

Our main objective can be summarized as follows:

given a mulyiple set of measurements over time, search for patterns within and across the
time series, determine the strength and duration of interrelationships among them, and train
a neural net to manage the whole picture.

From a systems-theoretic point of view we think of each time series as a sub-system and a set of such
sub-systems constitutes the environment of interest. We want to know how each time series relates
to itself, influences other time series, and is in turn influenced by the other time series. We want to
determine the duration of influence within and across subsets of time series. We want to detect lack of
interaction too. We do not wish to predetermine the functional form of a relationship nor do we want
to prescribe that a relationship is forever.

The key ingredient of our approach is called FEVA, Feature Vector Analysis, and will be de-
scribed in the next section.

After transient patterns have been detected (using classification of the feature vectors) and the
functional interconnections have been estimated (using a neural net model), the FEVA model can be
used both for forecasting and for performing "what-if' analyses. The study of the effects of changing
one (or more) variables on other variables over future time is the standard way of using econometric
models. Similarly, in FEVA models, the concept is implemented by perturbing one or more data points
at specific time points and examining the influence of the propagating wave so created. All identified
transient interconnections (within and across variables) play their roles in the FEVA model output.

3 The Proposed Framework: FEVA

The main idea in FEVA is to replace each data point by a vector of information which represents what
that point "sees around it". The vector is called a feature vector. It is to be created in such a way as
to represent what that single point sees in its local neighborbood, where "local" will be defined in terms
of number of time periods (looking into the future and into the past) and the set of other relevant time
series in its purview. These are judgment calls and will depend upon subject-matter expertise.

The available dataset (measurements on multiple time series over a range of time) is visualized as a
set of side-by-side tracks (as in a running track) and a wire-plot of the data will be seen as a surface.
The surface will usually be divided into a training surface (a subset on the time scale) and a test surface
(to check on the validity of the FEVA model projections).

3.1 The Basic Solution Strategy

The overall strategy is summarized by the block-diagram shown in Figure 1. The main steps involved
in FEVA are:

1. Replace each data point on the training surface by a feature vector.

2. Perform a cluster analysis to identify similar points and regions on the training surface. Construct
pattern grids to display the results.

II-279

Fosr4.R-MocSs _

Figure 1: Main processing units in FEVA: the top-level view.

3. Use several multilayered neural nets to estimate functional relationships and to create links between
the points on the training surface. The training surface with linked points is given a new name:
decision surface.

4. Use the decision surface for both forecasting and "what-if" analyses.

3.2 Illustrative Example

Regional stock markets attempt to link their fortunes to those of the big boards and one procedure
for doing so used to involve commission splitting. When the SEC ruled that commission splitting had
to cease, Business Week reported that this would hurt the regional exchanges. Our example data set
involves 35 monthly dollar volumes on the Boston Regional Exchange and the combined NYSE/AMEX
markets. The time period covered the SEC ruling and therefore it was expected that some change in the
relationship would be evident. See McGee & Carleton [1970]. These data were used to illustrate FEVA.

Given the datasets, the first step of FEVA analysis is to develop a feature vector for each single
datum.

3.3 Pre-processing: Constructing Feature Vectors

FEVA converts scalar data points into a vector of information. The basic idea is very simple and makes
intuitive sense: a single number cannot give us information about relational measures, i.e., it does not
tell us how the point is located with respect to others in the environment. So instead of looking at one
number, we replace it with a vector which holds information about the relative position of the point
with respect to other data points in the environment. This vector is known as the feature vector. It
holds information in a compact form. By introducing additional attributes for each data point, we are
effectively increasing the dimensionality of each point, and we expect that with increased dimensionality,
the features in the data set will be identified more accurately at local and global levels.

Each data point has three types of vision:

" Backward vision: Look at the past history.

" Forward vision: Look into the future.

" Cross vision: Look at how the neighbors are performing.

II-280

problem.
This approach will be useful for analysis of multiple time series when we have no information about

the relationships between them. It will also be useful in cases where we want to find the relationship
between two time series but we expect interactions from still other series.

4.2 Interaction between different domains

Once the feature vectors are constructed, the next step is to find relationships. It is important to define
in mathematical terms what we mean by relationships. Basically, we are looking for similar points,
similar regions (sets of points) or similar time series. We are also interested in studying the dynamics of
interactions (if any) between these domains. This results in a two step process:

" Step 1: Identify similar domains in the multidimensional space.

" Step S: Determine if there exists any kind of interaction between the different domains.

In general, a domain can refer to a point (Dp), a region of points (Dr), or an entire time series (Dt).
These 3 domains will give rise to 9 possible types of interaction among the domains, for example:

1. Dp - Dp interaction: pair-wise interaction.

2. Dr - Dr interaction: interaction between two regions (sets) of data points.

3. Dt - Dt interaction: interaction between two time-series.

5 The Main Processing Unit
The main processing unit consists of the following:

1. Clustering Procedure: for detecting patterns in the data set.

2. Function Estimator: for identifying the functional relationships between the time series.

Self-organizing maps are used for making the clusters and a set of neural nets are used to estimate
the functional relationships. Based on preliminary analysis of different types of data sets, we felt that
self organizing maps (SOM) can be used to perform efficient clustering of any given data set 1.

With all the data points replaced by feature vectors, we define several multilayered n6ural networks to
see if there are relationships among the feature vectors. The first set of neural nets creates links between
the points in individual time-series. Forward as well backward links are created. The second set of
neural nets estimates the interconnections between the various time-series. The forward connections
are used to propagate the effect forward and it is used for forecasting. On the other hand, the cross
connections are used to transmit the effect to other time series in the lateral direction.

6 Visualizing the Results from FEVA

The results from the feature vector analysis are:

* A Set of Pattern Grids

" A Decision Surface

Pattern-grids are the output from the clustering module, and the decision surface is used to visualize
the results from the neural net simulation. We can visualize the entire system as an elastic sheet where
each data point is a node on the sheet. The sheet can be used to visualize the dynamics of the system
and the interactions between the sub-systems. The decision surface can be used to perform "what if"
tests and other kinds of analyses. We can give a small perturbation to one of the data points and observe
its effect on the sheet.

1 We would like to thank the team of T. Kohonen, J. Kangas, and J. Laaskonen who developed SOMPAK; we have
used their package for performing cluster analysis.

11-281

Figure 2: Building the feature vector: looking around and collecting information.

il'm i ei.. iuoSI NYSER/A

I / 10,6

s 7 10.3

7.9 L"

F , 7.% -13, -1^0 0.7, L46 6 18, 14.7, -24~ .1^2A,1^06^,1L2

Figure 3: An example of a feature vector with 11 attributes (for Boston-NYSE/AMEX data).

The data point can thus look ahead or behind on its own time series, it can look sideways at the current
values of other time series, and it can look ahead or behind at other time series. Just what constitutes
a "look" is completely open. Looks can be ordinal ("I am bigger than that datum"), interval ("I am
6 units lower than I was last period"), ratio ("I am 88% of that other variable two periods hence"),
comparative ("my change from period t - 1 to t is less than the change in variable 4 in the interval t to
t + 1"). Figure 2 illustrates the different types of vision and the information gathering step.

Figure 3 shows one example of a feature vector constructed for the Boston-NYSE data. The attributes
of the feature vectors are:

4 Defining Relationships

4.1 Interaction among fundamental variables

Any system can be represented by a set of fundamental and derived variables. There are fundamental
variables which can be measured directly, and there are others which are derived from these basic
measurements through some kind of transformation. The objective is to use the derived variables to
study the interaction between the fundamental variables. But in many instances the derived variables
are not able to represent the dynamics among fundamental variables. They change the nature of the

11-282

fR1tITS
: -1.20 .-8.43. -0.91 -0.77 0 .,_ IIIDVFrN
: -1.11t -9.7/0 .,OUTP11TS

Il2 4.49 -0.7t &0.On -0.27
1.71 -1. 39 -0.9z -7 .
1.t5 - .7% - "-O.fr- -1.65

1tlDS-to-rTS uellits:
aIt : 0.57' -1.01 "'. , 0
E£mch 1OZ : SS!E=M.??fl : iDS - 1.0
C: % THlfCU N TE3 0l4. MT * -- IDA: 13-2-1
lhistan SE ($tOfl) askl WSlEWEX (01O0011
lZANI/'13 12: 15

300--

s E (uN..) against I;loch (aim'l,)

Figure 4: Illustrative Results: using a neural net NN:13-2-1 to fit the Boston dollar volume on the basis
of feature vectors shown in Figure 3.

7 Conclusions and Future Work

We have used data sets from stock markets, foreign exchange markets, and other well known data sets
to validate the effectiveness of the proposed framework. In addition, we have performed tests on single
time-series comparing our results to Box-Jenkins ARIMA models, and we are investigating robustness
with respect to small perturbations in the input data. Potential application areas include: real-time
financial trading, econometric modeling, forecasts in the marketing field.

References
[1] .F. Fama and K.R. French, "Business Conditions and Expected Returns on Stocks and Bonds," Journal of Financial Eco-

nomics, Vol. 25, No. 23-49, 1989.

[2] K. Knight, "A Gentle Introduction to Subsymbolic Computation: Connectionism for the A. Researcher," Technical Report
CMU-CS-89-150, School of Computer Science, Carnegie Mellon University, May 1989.

[3] T. Kohonen, J. Kangas, and J. Laaksonen, "SOM.PAK: The Self-Organizing Map Program Package," Version 1.2, November
1992.

[4] T. Kohonen, "The Self-Organizing Map," Proceedings of the IEEE, Vol. 78, No. 9, September 1990.

[5] B. Koako, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice Hall,
Inc., Englewood Cliffs, NJ, 1992.

[6] S. Makridakiu, S.C. Wheelwright and V.E. McGee, Forecasting: Methods and Applications, John Wiley and Sons, Inc., 1983.

[7] V.E. McGee and W.T. Carleton, "Piecewise Regression," Journal of the American Statistical Association, Vol. 65, No. 331,
11091124, 1970.

[81 J.W. Sammon, Jr., "A Nonlinear Mapping for Data Structure Analysis," IEEE Transactions on Computers, Vol. C-IS, No.
5, May 1969.

11-283

System Identification with Dynamic Neural networks

Jose C. Principe, Mark A. Motter*

Computational NeuroEngineering Lab * Facility Automated Controls
CSE 405 University of Florida NASA Langley Research Center
Gainesville, FL32611 Hampton, Virginia 23681

Abstract

The goal of this paper is to report on the application of several dynamic neural networks to iden-
tify the dynamics of a nonlinear dynamical system (wind tunnel). Several focused architectures
based on both the TDNN (time delay neural network) and the Gamma model were utilized. We
found that the Gamma model outperformed the TDNN architecture for the identification of the
system dynamics. An NARMA model provided the best results.

Introduction

The 16 Foot Transonic Tunnel at the NASA Langley Research Center Hampton, Virginia is a
closed circuit, single return, continuous flow, atmospheric tunnel with a Mach number capability
from 0.2 to 1.30 (1]. The tunnel fans are 34 feet in diameter and driven from 60 to 320 rpm by a
50 MW electric drive system. An air removal system using 30 MW compressor and 10-Foot
diameter butterfly valve provides test section plenum suction. The nominal dynamics vary signifi-
cantly over the operating rangd.The control input is bang-zero-bang (-1,0,+1), and there is signif-
icant transport lag over the operating range. The Mach number computed from pressure
measurements is a relatively noisy quantity [2]. Gain scheduled controllers suffer from sluggish
performance or limit cycle behavior, so human intervention is frequent.

In this work we study the performance of several dynamic neural networks to identify the dynam-
ics of the tunnel in response to the control input at one given operating condition. A dynamic neu-
ral network is a static mapper of the multilayer perceptron (MLP) type extended with a short term
memory mechanism. Here we will be comparing the performance of the TDNN type (time delay
neural network) [3] with the Gamma model [4]. The Gamma model is based on a time lagged
recursive neural network, while the TDNN is purely feedforward [5]. The recurrent parameter of
the Gamma model (the Gamma parameter) controls the effective memory depth of the memory
structure [5]. A large volume of data showing the system response for several control inputs at dif-
ferent operating points is available. The system output is the wind speed measured in Mach num-
ber [2].

System Architecture

The development strategy was to train a dynamic neural network that would produce the same
Mach number measured in the tunnel for a given set of control inputs (Figure 1). The input

11-284

sequence fed to the dynamic artificial neural network (ANN) was the same as the control com-
mands sent to the wind tunnel fan drive system. In this way the ANN will identify the nonlinear
relationship between the control input and the Mach number measurements which measure the
wind tunnel dynamics at a given operating point.

P, / wind - ,

M .. Dynamiccontrol tunnel Dyai

input Mach # Neural Net

Figure 1. The identification setup, and the architecture of the focused Gamma net.
The output of the ANN was compared to the plant output. The error was fed to the ANN and used
to adapt the network weights at each time step, using the backpropagation algorithm [6]. The
Gamma parameter was not adapted in this work. However, several different values of the Gamma
parameter were utilized in order to vary the memory depth of the input layer [4]. After initial
training (20 iterations) all the networks used a variable learning rate for the remaining of the
training. The rule for changing the step size is very simple: if the mse (mean square error)
increased, the learning rate was decreased by 50%. If the mse decreased, the learning rate was
increased by 1%.

The training set consisted of three segments totalizing 150 points (Figure 2). The first segment
with zero control input corresponds to an initial Mach number of 0.54. In this segment the fluctu-
ations due to measurement noise are apparent (samples 0-20 in Figure 2). The second segment
corresponds to the control input of -1 (lower) followed by a sequence of zero inputs sufficiently
long for settling (samples 25-80). The third sequence had a short sequence of +1 pulses (raise),
followed by a sufficient long trailing zeros for settling (samples 85-150). Notice that the network
input is mostly (96%) zeros.

0J0

'42
o

4Wt

- 0 40 a 10 meIm 3 1 0 0qi 40 d O W e 10 01

Figure 2. Input Control (left) and Mach number output time series used for training.
Several dynamic architectures based on the MLP were investigated to identify the system dynamn-
ics. The focused architectures have two hidden layer with varying number of processing elements.

19-285

The input memory structure also varied in size and in characteristics (feedforward or recurrent).
Table I summarizes the different topologies

Table 1:

TDNN #1 TDNN#2 Gamma#1 Gamma#2

input layer 7 64 16 20+20

1st hidden 14 14 14 6

2nd hidden 6 6 6 0

lin. output 1 1 1 1

The Gamma#2 network utilized a double input layer of 20 units each. An integrator (running
average of 60 samples) was placed before the second input layer. Notice that the complexity of the
input layer was offset by a much smaller number of hidden units. The performance of these two
architectures which contain a trade-off in terms of number of inputs/ number of processing ele-
ments in the hidden layer convey information regarding the relative importance of mapping abili-
ties and input signal representation.

Results

After training, the networks were tested in a different window of data. Here we will be presenting
the results regarding all the topologies in Table 1.

TDNN#I
This ANN never learned the task even after 100,000 iterations (Figure 3). The final mse during
training was 0.02.This is to be expected since the memory layer at the input sees zeros for most of
the time, and can not relate the change in dynamics with the input. Therefore, the size of the mem-
ory layer was substantially increased in TDNN#2.

r.51 DNN #1 anud d.ine H" -

M I I \ . i% r\

0 50 100 150 200 250 300 350 400 450

Figure 3. Control input (left) and TDNN#1 output during testing.

TDNN#2
This network has an input memory layer that is able to represent in time the input control until the
next control is applied. The network was trained with 10,000 iterations, and although some
dynamic capability is noticed in the response (Figure 4), the output is still very different from the
system output (mse during training reached 0.004, but oscillated significantly). We conclude that
memory depth is not only the determining factor for this network to learn the dynamic behavior.

1-286

Since the Mach number measurement is noisy, having a lot of input weights creates confusion in
the network, and it never learned the task.

0.kTDNN 0 2 U d dwimd ,ipMeC* ' '--;
il V 505 / J / I

0.495 j %

0 50 100 150 200 250

Figure 4. Control input (left) and TDNN#2 output.

Gamma #1

The memory depth parameter was set at 0.2 giving an effective memory depth of 80 samples [4].
The gamma memory is a dispersive memory kernel, so although the depth of the memory is
increased the resolution is decreased. The network was trained for 5,000 iterations (mse during
training was 0.005 but fast oscillations were noticeable). As Figure 5 shows, some significant fea-
tures of the input were captured by the Gamma#I network. The general shape of the variation of
the Mach number is apparent in the network output. However, there are still spikes that corre-
spond to the occurrence of the inputs. Variation of the Gamma parameter did not varied apprecia-
bly the shape of the network output. The lowpass nature of the Gamma memory seemed to
improve the identification. Also, the network architecture is much more parsimonious when com-
pared with the TDNN of the same memory depth.

0.5 Nawk I Ot o mi dwa.dn d r

0.5

0.4L
0 50 100 150 200 250

Figure 5. Control input (left) and Gamma#] output.

Gamma #2

This network utilized not only the control input (20 inputs) but also an integrated input (20 more
units). The integrated control input was basically a square wave for this case. The gamma param-
eter was set at 0.5, creating an effective memory depth of 40 samples. The network trained much
faster reaching a mse of 0.003 after 5,000 epochs, basically without oscillations. The output of the
gamma net is not very different of the Gamma #1 (Figure 6). However we notice that the steady
state values of the of the tunnel can be much more accurately matched. This is attributed to the
inclusion of the integrated input, which serves as a direct model of one of the tunnel's response
characteristics. We can also conclude that the mapping between input and output can be captured
with only 6 hidden PEs.

In order to improve even further the identification capabilities of the network a more sophisticated
topology was implemented. The input layer of the network was similar to the network Gamma#2
(Gamma parameter of 0.5), but now another gamma layer with 20 taps (and gamma parameter of

11-287

0.5) was placed at the output of the network (Figure 7). These values were then fedback to the hid-
den layer.

- • ,

Figure 6. Control input (left) and Gamma#2 output during testing.

The number of hidden layers is kept at 6, with a linear output processing element. This network
not only is working with the past values of the input, but also with the past values of the system
output. The output of the network was initialized with the value of the first sample of the plant
output (Mach number). This avoids transients and simulates the effect of observing the plant for a
steady state interval (no noise).

net output

control
input

Figure 7. NARMA architecture using a gamma model at input and output.

Another modification that was introduced in this network to boost performance was the change of
the cost function. Instead of the mean square error, the error (difference of the plant output with
the network output) was passed through the inverse hyperbolic tangent function. Only after it was
propagated backwards through the dual of the ANN topology. This procedure resembles an L cc
norm [7], since larger errors will be emphasized during training, just like the Lo- criterion does.
The network was trained for 4,000 iterations and the final mse was 0.001.
This network was able to capture very well the system dynamics as Figure 8 shows. Both the
steady state and the rise/decay behavior of the plant are normally well modelled.

G Netwuk 03 Oma wd delWdn

0.55
I II

0.49'

0 s0 Iao 150 00 50 340

Figure 8. Control input (left) and output of improved NARMA Gamma net.

II-288

Conclusions

This study shows that dynamic neural networks can identify the dynamic behavior of complex
systems such as the 16 feet transonic wind tunnel at NASA Langley. The system was operated at a
single operating point (Mach 0.54). The focused gamma model outperformed the TDNN in this
application. We believe that the best compromise memory depth/resolution of the gamma model
provides the edge. TDNN must have a lot of delays to represent the control input, but then due to
the noisy real world condition, the neural model has too many degrees of freedom (weights) to
adapt properly.

Including an integrated input helped in the model performance, which demonstrates that knowl-
edge about the process can be included in the neural model to improve performance. The best
model for identifying this plant is a nonlinear autoregressive model (NARMA), where both the
past values of the input and output are effectively combined to obtain the network output. With
this topology a reasonable identification of the dynamics was achieved.

In this preliminary study a lot of factors were not considered, such as the training of the gamma
parameter, and the optimal size of the neural topologies. These aspects affect performance, so
they should be handled in the design. It is interesting that the use of a norm resembling the La
norm improved performance, albeit slowing down the training. More research in alternate cost
functions for system identification with neural networks should be pursued. Finally we will like to
point out that the topology might have benefited from inclusion of measurement updates, incorpo-
rating a prediction scheme in the system model. Therefore further work in the prediction with
neural models of systems with exogenous inputs will be pursued.

Acknowledgements:
This work was partially supported by NSF grant ECS #920878.

References
1. Peddrew, K.H., "A user's guide to the Langley 16-Foot Transonic Tunnel", NASA Tec. Memo-
randum 83128, 1981-
2. Mercer, C. E. "Computations for the Langley 16-Foot Transonic Tunner', NASA Tec. Memo-
randum 86319, 1984.
3. Waibel, A. Hanazawa T., Hinton G., Shikano K., Lang K., "Phoneme recongition using time
delay neural networks", Read. in Speech Recognition, Morgann Kaufmann, 393-404, 1988.
4. deVries B., Principe J., "The gamma model - a new neural model for tewmporal processing",
Neural Networks, 5,565-576, 1992.
5. Principe J., deVries B., Oliveira P., "The gamma filter- a new class of adaptive IIR filters with
restricted feedback", IEEE Trans. Signal Proc. 42:2, 649-656, 1993.
6. Rumelhart, D., Hinton G., Williams R., "Learning internal representations by error propaga-
tion", Chapter 8, Parallel Distributed Processing, vol 1, MIT Press, 1986.
7. Fahlman S. ;"Fast Learning variations on backpropagation: an empirical study", Proc. 1988
Connectionist Model Summer School, Ed. Tourtzky and Hinton, Morgan Kaufmann, 38-51, 1989.

11-289

Neural Networks for Predicting Options Volatility

Mary Malliaris Linda Salchenberger
Management Science Department Management Science Department
Loyola University Chicago Loyola University Chicago
820 N. Michigan Ave. 820 N. Michigan Ave.
Chicago, IL 60611 Chicago, IL 60611

Abstract: In this paper, we compare existing methods of estimating the volatility of daily
S&P 100 Index for options. The implied volatility, calculated via the Black-Scholes model, is
currently the most popular method of estimating volatility and is used by traders in the pricing
of options. Historical volatility has been used to predict the implied volatility, but the
estimates are poor predictors. A neural network for predicting volatility is shown to be far
superior to the historical method.

1. INTRODUCTION
The desire to forecast volatility of financial markets has motivated a large body of research during the

past decade (Engle and Rothschild, 1992). Volatility is a measure of price movement often used to ascertain
risk. Relationships between volatility and numerous other variables have been studied in an attempt to
understand the underlying process so that accurate predictions can be made. The ability to accurately forecast
volatility gives the trader a significant advantage in determining options premiums.

Both reseachers and traders use two estimates of option volatility: the historical volatility and the
implied volatility. It is almost routinely reported in various publications of exchanges that these two series
differ, but no significantly better forecasting model of volatility has emerged. The purpose of this research is to
compare these two existing methods of predicting volatility for S&P 100 options with a new approach which
uses neural networks. Neural networks, which have been shown to effectively model nonlinear relationships,
prove to be a superior approach to predicting options volatility in all cases tested and can be used to develop
monthly forecasts.

2. CALCULATING HISTORICAL AND IMPLIED VOLATILITIES
In their seminal work on pricing options, Black and Scholes (1973) assumed that the price of the

underlying asset follows an It6 process

dS/S=gdt+OdZ (1)

where dS/S denotes the rate of return, i is the instantaneous expected rate of return, cr is the expected
instantaneous volatility and Z is a standardized Wiener process ,or dZ is a continuous-time random walk. To
simplify their analysis, Black and Scholes assumed that both pt and a were constants and by using an elegant
arbitrage argument, they derived their call option pricing model. Their formula expresses the call price C, as a
function of five inputs

I-290

C=C(S,X, T, o,r) (2)

where S is the current price of the underlying asset, X is the exercise or strike price, T is the time from now to
expiration of the option, a is the expected instantaneous volatility and r is the riskless short term rate of interest.

Observe that the lt of equation (1) does not appear in (2). The mathematical derivation of the call
option pricing formula as shown in Malliaris (1982) shows that arbitrage requires that the per unit of risk excess
returns between two appropriately designed portfolios must be equal. Making the necessary substitutions in this
arbitrage relationship, the term containing i drops out. With g now out of the picture and with four of the five
remaining variables directly observable, an estimate of the asset's volatility a in (2) becomes the focal point of
attention for both theorists and traders.

There are two main approaches to estimating and predicting the nonconstant a: the historical approach
and the implied volatility approach. The historical approach is the simplest because tomorrow's volatility a,,, is
an estimate obtained from a sample, of a given size, of past prices of the underlying asset. Suppose that the
sample size is n and let

S,_ +, ,S,.1 , S,

denote daily historical prices for the underlying asset. To get an estimate for a,+1, first compute daily returns, r,.,
i=0,...,n-2, where r,1 = ln(Si) - ln(S,-,-,).

For a sample of n historical prices, we obtain (n-I) rates of daily return. The annualized standard
deviation of these rates of return is defined as the historical volatility and can be used as an estimate of a,,,. The
nearby historical volatility uses 30 days of data, the middle historical volatility uses 45, and the distant historical
volatility has 60 laily prices.

An cvious problem with the historical approach is that it assumes that future volatility will not change
and that history wili exactly repeat itself. Markets, however, are forward looking and numerous illustrations can
be presented to show 'hat historical volatility does not always anticipate future volatility and a better estimate
comes from the Black-Scholes option pricing model itself (Choi and Wohar, 1992).

Simply stated, supporters of implied volatility claim that tomorrow's volatility at,, can only be estimated
during trading tomorrow, i. e., in real time. As option prices are being formed by supply and demand
considerations, each trader assesses the asset's volatility prior to making his or her bid or ask prices and,
accepting the consensus price of a call as a true market price reflecting the corporate opinions of the trading
participants, one solves the Black-Scholes model for the volatility that yields the observed call price. When
volatility is calculated in this way, it is called the "implied volatility", with the adjective "implied" referring to
the volatility estimate obtained from the Black-Scholes pricing formula. Unlike historical volatility, which is
backwards looking to past returns, the implied volatility is forward looking to the stock's future returns from
now to the time of the expiration of the option. This implied volatility technique has become the standard
method of estimating volatility at the moment of trading.

3. NEURAL NETWORKS FOR PREDICTION
While there are dozens of network paradigms, the backpropagation network has frequently been applied

to classification, prediction, and pattern recognition problems. Financial applications of neural networks include
underwriting (Collins, Ghosh, and Scofield, 1988), bond-rating (Dutta and Shekhar, 1988), predicting thrift
institution failure (Salchenberger, Cinar, and Lash, 1992), and estimating option prices (Malliaris and
Salchenberger, 1993). The term backpropagation technically refers to the method used to train the network,
although it is commonly used to characterize the network architecture. For details of this method, see
Rumelhart and McClelland (1986). Currently, a number of variations on this method exist which overcome some
of its limitations.

4. DATA AND METHODOLOGY
Data have been collected for the most successful options market: the S&P 100 (OEX), traded at the

Chicago Board Options Exchange. Daily closing call and put prices and the associated exercise prices closest to
at-the-money, S&P 100 Index prices, call volume, put volume, call open interest and put open interest were

11-291

collected from the Wall Street Journal for the calendar year 1992.
Three estimates for the historical volatilities using Index price samples of sizes 30, 45 and 60 were

computed for each trading day in 1992. We also used the Black-Scholes model to calculate implied volatilities
for the closest at-the-money call for three contracts: those expiring in the current month, those expiring one
month away, and those expiring two months away (nearby, middle, and distant, respectively). Thus, we have
approximately 250 observations for six series of volatilities for use in our study.

Comparisons were made between the nearby historical, implied and network volatility estimates.
Because the neural network must have sufficient previous data in order to generalize, these estimates were
developed using each method for June 22 through December 30, 1992. Trading cycles were used as the
prediction periods, with each trading cycle ending on the third Friday of the month.

5. A COMPARISON OF HISTORICAL AND IMPLIED VOLATILITY ESTIMATES
The historical and implied volatility for the nearby contract are graphed together in Figure 1 for June 22

through December 30, 1992. As can be observed, the historical estimate significantly underestimates the
volatility used by most traders, i.e., the implied volatility. Since the historical volatility is an average based on
returns from 30 preceding days, it is not surprising that the estimate smoothes out the peaks, giving a value for
each day which is less variable, and thus less sensitive to daily market fluctuations. The implied volatility for
any given day uses only trading information from that day, not a previous time period, to generate a value.
Thus, the implied volatility is more reflective of market changes.

The average MAD (mean absolute deviation) and MSE (mean squared error) for the entire forecasting
period, from June 22 through Dec. 30 were 0.0331 and 0.0016. The proportion of times which the historical
volatility correctly predicted that the implied volatility would increase or decrease are shown in the last column
of the table. An overall average of the number of times a change was correctly indicated is .4439, i.e., a little
less than half of the time.

Table 1. A Comparision of Historical and Implied Volatilities

Dates of Forecast MAD MSE Correct Directions

Jun 22--Jul 19 .0318 .0012 8/19 = .421

Jul 20--Aug 21 .0292 .0019 11/25= .440

Aug 24--Sep 18 .0406 .0018 12/18 = .667

Sep 21-Oct 16 .0479 .0027 7/20 = .350

Oct 19-Nov 20 .0213 .0008 14/25 = .560

Nov 23--Dec 18 .0334 .0014 8/18 = .444

Dec 21--Dec 30 .0294 .0009 2/6 = .333

6. DEVELOPMENT OF THE NEURAL NETWORKS
To develop a neural network which is capable of generalizing a relationship between inputs and outputs,

the training set selected must contain a sufficient number of examples which are representative of the process
which is being modelled. Therefore, the neural network models developed to predict volatility were trained with
data sets from historical data from January 1 through July 18 and used to make predictions for six trading cycles
beginning with the period July 20 through August 21 and ending with the period from November 23 through
December 31. All prior historical data was used when predicting the volatility for the next trading period.
Predicting the volatility for the next cycle is a rather rigorous test of the forecasting capabilities of the network
since we are asking it to predict volatility for up to 30 days in the future.

There is no well-defined theory to assist with the selection of input variables and generally, one of two
heuristic methods is employed. One approach is to include all the variables in the network and perform an
analysis of the connection weights or a sensitivity analysis to determine which may be eliminated without
reducing predictive accuracy. An alternative is to begin with a small number of variables and add new variables

II-292

which improve network performance. In this research, the latter was used and variables were selected using
existing financial theory, sensitivity analysis, and correlation analysis. Thus, a number of preliminary models
were developed to determine which input variables of the group available in the data set would best predict
volatility.

The first models were developed with variables representing volatility lagged from 3 to 7 periods to
determine an appropriate set of lag variables. Next, other networks were developed and trained to determine
which variables were the best predictors of volatility. The final models include the following 13 variables:
change in closing price, days to expiration, change in open put volume, the sum of the at-the-money strike price
and market price of the option for both calls and puts for the current trading period and the next trading period,
daily closing volatility for current period, daily closing volatility for next trading period, and four lagged
volatility variables. By including both the time-dependent path of volatility and related contemporaneous
variables in our model, we obtained better predictions.

The backpropagation network developed to predict volatility has 13 input nodes representing the
independent variables used for prediction, one middle layer consisting of 9 middle nodes, and an output node
representing the volatility. The cumulative Delta Rule for training was selected, with an epoch size of 16, and
decreasing learning rate initially set at 0.9 and an increasing momentum, initially set at 0.2. The networks were
trained using Neuralworks Professional 1I software from Neuralware.

7. A COMPARISON OF THE NEURAL NETWORK AND IMPLIED VOLATILITY
ESTIMATES

Using historical volatility as a benchmark, we evaluated the performance of the neural network by
measuring mean absolute deviation, mean squared error, and the number of times the direction of the volatility
(up or down) was corrected predicted. These results are shown in Table 2, where comparisons are made between
the volatility forecasted by the network and tomorrow's implied volatility. The overall MAD for the entire
period was .0116 and the MSE was .0001 as compared to 0.0331 and 0.0016 when the historical was compared
to the implied volatility. Furthermore, for each forecasting period, the MAD and MSE were considerably lower,
see Tables 1 and 2. In each of the time periods, the proportion of correct predictions of direction made by the
neural network was greater than that of historical volatility. The overall proportion of correct direction
predictions was 0.794, as compared to .4439 for the historical volatility estimate. This is not surprising since
historical volatility smoothes out the estimate because it is an average of 30 values. The correlation between the
implied volatility and the volatility predicted by the network is 0.85, as compared with 0.31 for the historical
volatility, at the 5% level of significance..

8. DISCUSSION
The results of this comparative study of neural networks and conventional methods for forecasting

volatility are encouraging. Because historical estimates are traditionally poor predictors, traders have been forced
to rely on formulas like the Black-Scholes which can be solved implicitly for the real-time volatility. But these
models are difficult to use and limited since they can only provide estimates to the traders which are valid at that
current time. Furthermore, they fail to incorporate knowledge of the history of volatility. The neural network
model, on the other hand, employs both short-term historical data and contemporaneous variables to forecast
future implied volatility.

The neural network approach has two advantages which make it more useable as a forecasting tool.
First, predictions can be made for a full trading cycle, thus avoiding the problems associated with the need for
real-time calculations. Secondly, and more importantly, the network forecasts, in the cases we tested, were very
accurate estimates of the volatility preferred by traders.

The limitations of neural networks as financial modelling tools are well-documented. Unlike the more
familiar analytical models, a trained neural network does not provide information about the underlying model
structure. It is often viewed as a black box since there are no theory-based methods available to interpret and
analyze network parameters. Neural networks lack systematic procedures for developing network architecture,
selecting training and testing sets, and setting network parameters and thus, are difficult to develop. Explicit
knowledge of the phenomenon being predicted is required to assist in variable selection.

There are several ways to extend this research. While the performance of these networks in forecasting
volatility is superior to the use of historical volatility, improvement may be possible through experimentation
with other variables and network architectures. In this paper, we report results for predicting nearby volatility.

1-293

However, networks for predicting middle and distant volatility have been developed, using different varialbles
and different network architectures.

Table 2. Neural Network and Implied Volatilities

Dates of Forecast MAD MSE Correct Directions

Jun 22--Jul 19 .0148 .0003 16/19 = .842

Jul 20--Aug 21 .0107 .0002 16/25 = .640

Aug 24--Sep 18 .0056 .0001 13/18 = .722

Sep 21--Oct 16 .0127 .0003 19/20 = .950

Oct 19--Nov 20 .0059 .0001 20/25 = .800

Nov 23--Dec 18 .0068 .0001 15/18 = .833

Dec 21--Dec 30 .0039 .0000 5/6 = .833

REFERENCES

F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy
81(1973) 637-654.

]S. Choi and M.E. Wohar, Implied Volatility in Options Markets and Conditional Heteroscedasticity in Stock
Markets, The Financial Review 27(4)(1992) 503-530.

E. Collins, S. Ghosh, and C. Scofield, An Application of a Multiple Neural-Network Learning System to
Emulation of Mortgage Underwriting Judgments, Proc. of the IEEE International Conference on Neural
Networks (1988) 459-466.

IS. Dutta and S. Shekhar, Bond-rating: A Non-Conservative Application of Neural Networks, Proc. of the IEEE

International Conference on Neural Networks (1988) 142-150.

R.F. Engle and M. Rothschild, Statistical Models for Financial Volatility, Journal of Econometrics 52(1992)1-4.

A.G. Malliaris, Stochastic Methods in Economics and Finance, (North Holland Publishing Company, Amsterdam,
1982).

M.E. Malliaris and L. Salchenberger, Beating the Best: A Neural Network Challenges the Black-Scholes
Formula, Proc. of the Ninth Conference on Artificial Intelligence for Aplications (IEEE Computer Society Press,
Los Alamitos, CA, 1993) 445-449.

D.E. Rumelhart and J.L. McClelland, Parallel DistributedProcessing (MIT Press, Cambridge, MA, 1986).

L. Salchenberger, E.M. Cinar, and N. Lash, Neural Networks: A New Tool for Predicting Thrift Failures,
Decision Sciences, 23(4X1992)899-916.

II-294

ILi

ISMUIO me Iteua YOAT1LIT~fl

Amn 22 Uwguh Decmb 3B. 1192

historical

9 27 54 el Los68

Flpwo I

14ETIJI AND IMLUO MX.ATILITIES

jurw 22 throwsh Deceabef 38. 112

.... y

027 1468to

Fiqw. 2

1295

Prediction and System Identification
Session Chairs: Paul Werbos

Guido Deboeck

POSTER PRESENTATIONS

A Least-Squares Derivation of Output Error Feedback for Direct
State Estimate Correction in Recurrent Neural Networks

David R. Seidl & Robert D. Lorenz
Department of Electrical & Computer Engineering

University of Wisconsin-Madison
1415 Johnson Drive

Madison, WI 53706-1691 USA

Abstract - Iterative least-mean square learning algorithms for recurrent neural
networks, such as dynamic backpropagation, have been derived to adapt network
weights, but do not directly correct the state estimate. The network estimate of
the unknown system's state is propagated without direct compensation. This
paper proposes a more general least-mean square problem that produces both
dynamic backpropagation weight adjustment and linear output error feedback state
estimate correction. The resulting topology is that of an extended Kalman filter
with a feedforward network generating the state predictions. The output error
feedback eliminates the need to perform state estimate regulation indirectly
through weight adjustments.

I. INTRODUCTION

Recurrent neural networks, neural networks with dynamic feedback, are of great interest as a
system identification tool because of the general modeling capability afforded, the simplicity of the
components, and the computationally-efficient learning algorithms. The learning algorithms use
gradient-descent to adapt the network weights to minimize the time-averaged squared-error
between the network output and an unknown system. Backpropagation-through-time [1, 2] was
the first approximate gradient-descent algorithm. Exact gradient-descent algorithms for fully
recurrent networks were introduced in [3, 41. Dynamic backpragation, the algorithm for general
intercomections of feedforward networks with dynamic linear systems, was derived in [5,6].

Recurrent neural networks coupled with dynamic backpropagation (DBP) directly address two
system identification issues: establishing a model for the unknown system and establishing a
method for adapting the model parameters. However, the remaining component, determining a
system state estimate, is not completely addressed. Both during and after learning, the next
network state is a function of the inputs, the weights and the current state. The inputs are known;
the weights are adapted through DBP, but no direct correction for error in the current state estimate
is made. In practice, even the optimal approximation to the unknown system's state transition
function will be imperfect making the creation and propagation of state errors inevitable as
discussed in [7]. Consequently, DBP cannot simply find the weights that provide the optimal
approximation to the unknown state transition function; it must also vary the weights to indirectly
perform state regulation. In our experience modeling control systems, -trained" recurrent neural
networks invariably drift once learning is turned off, even if they performed well with learning on.
This is because the state regulation is lost.

The problem of optimal state estimation for a known linear system subject to Gaussian noise
was solved by the Kalman filter in [8]. The Kalman filter forms an open-loop state estimate using
a system model and then forms a closed-loop estimate by adding linear output error feedback
scaled by the Kalman gain matrix. A deterministic least-squares optimization problem that yields

11-299

the same result is reported in 191. The theoretical framework for closed-loop linear observers was
developed in [101. State estimates for a known nonlinear system can be obtained with the extended
Kalman filter (EKF), which uses the nonlinear system model to form the open-loop state estimate
as in [11 and many other references. The idea of using a feedforward network to compute the
state prediction in an extended Kalman filter was first proposed in 1121.

The contribution of this paper is to derive, as a solution to a least-squares state estimation
problem, a recurrent neural network with output error feedback state estimate correction added to
enhance noise rejection and robustness. A variation of the deterministic Kalman optimization
problem in [91 is used to show that a generalization of standard dynamic backpropagation yields
the result referred to here as extended Kalman filter/dynamic backpropagation (EKF/DBP). In the
continuous learning case covered in this paper, optimizing the state correction term results in output
error feedback multiplied by Kalman's gain matrix. Optimizing the weights produces dynamic
backpropagation. The resulting topology, shown in Figure 1, is that of an extended Kalman filter
with a feedforward network generating the next state predictions.u(t) _r-- - ... _;u_1 ~~) xt] - Y(t) -

9 w,,u) 11 (+l) - (tt1 ', . i-) J

+ =1 (t.t) W(a

y~~tA = &)(ibj)
where

xAt E) XIR"1 is~t the stat

u~~Xt)t + Kt sth nu

Figure 1: Recurrent Neural Network with Output Error State Correction

11. LEAsT-SQUARES PROBLEM FORMULATIN

A. Unknown System to be Modeled

The unknown system to be modeled is posed as a nonlinear state equation with a linear output
equation. This is the form utilized in Kalman and dynamic backpropagation problem formulations.

x(t+l1) = 91(x(t),u(t)) I.C. x(O) (la)
y(t) = A&~t (lb)
where
X(W E IR n is the state
y(t) E IRq is the output
uWt E IR m is the input

!I(X,U) E {g E IRn+m -4 IRn : g is continuous) is the state transition function
H/ E IRqV is the output matrix

11-300

A. Recurrent Neural Network Model

The recurrent network equations are separated into the state equations (2) and the embedded
multilayer feedforward network equations (3). The state update occurs in two steps. First, at time
t, the feedforward network 9X which approximates the state transition function , predicts the state
at time t+ I in (2a). Second, at time t+ 1, the state correction term t, which may be a function of
known values of y(t), is added in (2b). This state correction term has not been included in
previous formulations of recurrent networks. When optimized, it provides the desired output error
feedback. Note that t(t) is designed to be variable with respect to time. The weights W are
designed to be constant; their dynamic behavior is an artifact of continuous learning.

1) State recursion equations
+it) = N(W, i(tlt), u(t)) (2a)

k(t+llt+l) = t(t+lit) + t(t+l) I.C. (0-1) (2b)
(wtl) = *(tt-l) (2c)

'(t) = A(tlt) (2d)
where
i(t+ lIt) E Rn is the open-loop prediction of the state based on k(tlt),
i(tt) E Rn is the closed-loop corrected state estimate,
t(t) E Rn is the state correction (or adaptation) term,
9(tt-l) E Rq is the open-loop predicted output estimate, and
9(tlt) E Rq is the closed-loop corrected output estimate.

2) Feedforwa d Network Equations
N(W, (tt), u(t)) = WK aK (3a)

a= S~ W- ao = (u(t))) (3b)

where
Nk = the number of neurons in the kth layer,
Wk E RNk+1 X(Nk+ 1) is the kth layer weight matrix,
SNk [v] applies the sigmoidal nonlinearity to each component of the input vector v

3) Cost Function & Optimization Problem
The quadratic cost function is given in summation (4a) and recursive (4b) forms. The

optimization problem in (5) is to minimize J(W, C(T), t) with respect to W and t(") subject to the
recurrent network equations (3). The problem reduces to traditional dynamic backpropagation if
t(r) is set to zero for all r and R is set to the identity matrix. The problem reduces to the
deministic extended Kalman filter problem if the feedforward network is replaced by the state
transition function and R71(t) and Q (t) are set to the input and output noise covariance matrices.

When t(T) is not set to zero, the quadratic state correction term must be included in the cost
to penalize its use thus providing the incentive for correct next state prediction. This avoids the
problem of allowing perfect output estimation by simply waiting for y(t) then choosing i(tt) to
make y(t) = 9(tit) = M(tlt). In continuous learning, (T) is part of the "fast" dynamics (as
opposed to the slow dynamics of W). Thus, it should be optimized first with the result
substituted back into (2) and (4) for the optimization of W.

11-301

I1 t I1 t

J(W, k(T), t) = jY(TJI)T R(T) Y(TJ) + I Y () T

T=O T=O

= J(W, t(T), t-l) + t(tlt)T R(t) t(t)t) + (4b)
where

y(tlt) = y(t) - 9(tlt) is the output estimate error,
R(t) E IRqq is symmetric, positive semidefinite, and
Q(t) E Rn' is symmetric, positive definite.
minW) J(W, t(T), t) subject to (3) (5)

Ill. MINIMIZATION WITH RESPECT TO C(t)
For brevity, only the filtering problem--r=-t-is considered. In continuous learning, this

suffices since it is impossible to alter previous t(T). However, the smoothing problem, which
allows t(T) to depend on both past and future outputs, may be used in a batch learning situation.

Minimization begins by taking the partial derivatives of the cost with respect to (t). The partial
derivative is set to zero and the equation solved to find the optimal t(t). (The solutions of this
equation are the critical points. All regular points that may be minima can be found among the
critical points. In this case, all points are regular points, a minimum is known to exist, and only
one critical point exists. It is thus the minimum.) Resort to gradient-descent is thus unnecessary.

The partial derivative of the recursive form of the cost function is shown in (6). The first term
in (6) shows that the partial derivative of the cost function inherits a recursive structure. The partial
of (tlt) with respect to t(t) in (7) can be evaluated using (2) for substitutions. However,
J(W,(C),t-1) and t(tIt-1) are not a functions of t(t) so their partial derivatives with respect to t(t)
are zero in (8). The partial of t(t) with respect to itself also in (8) is the nxn identity matrix.

OJ(W,(),t) =J(W,&(r),t-l) _ -(tt)R _) + (t(6)
-(tY)R + +(t) () Q(t(t (6)

Noting tht (tlt) unto)f~t,()i sdt usiue o ~l) hssbttto n h

+)(7)
OW() 0 t) W OW)

a tlt-1) 0()I
0JW,(T,-1 =0Xn - = 0ran In (8)

0 (t OW() OW()
Substituting (7)-(8) into (6) and setting it to zero yields (9).

- Y(tlt)TR(t)H + t(t)TQ(t) = 01xn (9)

Noting that Y(tlt) is a function of t(t), (2) is used to substitute for Y(tlt). This substitution and the

required manipulations are done in (10).
t(t) = O(t)-l Y1TR(t)y(tVt) (10a)

= Q(t)-1 YFR(t) (y(t) - 9&(tt- I) - Yg(t)) (lob)

= [In + Q(t)'9FkCR(t)VqIi WPt)IFR(t)" (yt) -A(tt-1) (000

= K(t). (y(t) - (tlt-l)) = K(t)5y(t-l) (10d)

Using (10d) to substitute for t in (2b) and (4b) yields the modified (2b') and (4b') to be used in
optimizing W.

11-302

t(t+lIt+l) = t(t+It) + K(t+1) y(t+It) I.C. X(01-1) (2b')

J(W, (T), t) = J(W, t(T), t-I) + 7 + (K(t)Y(tt-l)) T Q(t) K(t)Y(t*t-l) (4b')

The recurrent network model (2')-(3) is a deterministic interpretation of the extended Kalman
filter and one-step predictor, where the residual is (y(t) - Y&(tit-l)) and the Kalman gain matrix
K(t) is [In + Q(t)-'iTR(t)Y4-'Q(t)-'#FR(t). When sufficient noise information is not available, a
reasonable choice for R(t) and Q(t) is to set the eigenvalues of the linearized system.

IM. MINIMIZATION WITH RESPECT TO W

By taking the partial derivatives of the cost and the modified network equations (2')-(4') with
respect to the weights and applying gradient-descent, a generalized dynamic backpropagation is
obtained. Setting K(t)=O recovers the unaltered dynamic backpropagation. The process begins in
(11) by taking the partial derivatives of (4b').

OJ(W, (Tr),t) OJ(W, (Tr),t-1) -_(tjt)TR(t)Hat(t,) -[K(t)Y(t#t-)JTQ(t)K(t)fO(tl1)
Owr'aj awt awrj aw'j

I..: J(W,(r),o) = 0 (11)

Ow j

where wrj is the ijth element of Wk the fh layer weight matrix.

The partial derivatives of the state recursions with respect to the weights (12), the partial derivative
of the feedforward network with respect to the state (13), and the partial derivative of the
feedforward network with respect to the weights (14) follow.

1) Partials of the State Recursions w.r.t. the Weights

o (- K(t) r I(tIt-l)) (lt-1) I.C.: O(0i-1) 0nxl (12a)

oi(tit-0 1)=N(WAO(-1Ilt-01,u0-)) 0Ot- 1 I-) + xNW t t-l,~-1) (12b)
Ow kj O tltl wrjj Ow rj

2) Partials of the Feedforward Network w. r.t the State

ON(W, t-lt-l),u(t- 1)) = OaK (13a)od(t-lit-l): " W (t-I t- 1)) Ik1

Oak Oak Oaki1 Oak -SNk' [W k -)](Wak-1 (OlNk',) (13b)

(t-tt-l1) 0aa(_ Ot(t-lit-i) LakJ I0 "k)

Oak_ =o,,,_,,_,, (n'in

a-1 SNk' [Wk-.(')(Wk-1 (,o1,~k-))O(t-1i1 I l0n) (13c)

3) Partials of the Feedforward Network w.r.t. the Weights
ON(W, [t-it- 1),u(t- 1)) =. OaK+ kKI(ija(1)

Owrj = wrj

Oak :Oak Oak_, + SNk Wk-.I(Ik1(k-lNaki* 44 1 (14b)

Ow j Oak-1 aWrj k

II-303

Iao (Oxn

= W(a'V SNk' =Nk1 o a (14c)

where
l(k)ij is the zero matrix with the same dimension as Wk except the ijth element is 1, and5{carl} $1 if {cond}I=true

= if {cond}=false is the Kronecker delta.

These partial derivatives are then used in the gradient-descent iteration of (15), which includes
momentum, to determine the Wk. The weights must be initialized using structural knowledge or, if
no knowledge is available, randomly.

wt0)w t-(6(,()t J(W,(r),t) (15)w rj (t+l1) = wrij (t) - P oJ(&v t + N I w~t(),t

CONCLUSION

This paper has shown that a deterministic least-squares optimization problem, that generalizes
the dynamic backpropagation formulation, yields a hybrid of the Extended Kalman Filter and
Dynamic Backpropagation (EKF/DBP). The new dynamic neural network model includes a state
estimate correction term that has the form of the Kalman gain matrix multiplying the output
estimation error. This term alters the topology from open-loop to closed-loop state estimator.

ACKNOWLEDGEMENT
The authors thank the Rockwell Foundation whose generous support made this research possible.

REFERENCES
[1] P. Werbos, "Backpropagation Through Time: What It Does and How to Do It," Proceedings ofthe IEEE, vol.

78, no.10, Oct. 1990, pp. 1550-1560.
121 D. Rumelhart, D. Hinton, & G. Williams, 'Learning Internal Representations by Error Propagation," D.

Rumelhart & F. McClelland, eds., Parallel Distributed Processing, vol.1, Cambridge, MA: M.I.T. Press,
1986, pp. 319-362.

[31 RJ. Williams & D. Zipser, "A Learning Algorithm for Continually Running Fully Recurrent Neural
Networks," Neural Computation, vol. 1, Cambridge, MA: M.I.T. Press, 1989, pp.270-280.

[41 B.A. Pearlmutter, "Learning State Space Trajectories in Recurrent Neural Networks," Proceedings of the
International Joint Conference on Neural Netwv,*r, IEEE Press, June 1989,11365-372.

[5] K.S. Narendra & K. Pathasarathy, "Identification and Control of Dynamical Systems Using Neural
Networks," IEEE Transactions on Neural Networks, vol. 1, Mar. 1990, pp. 4-27.

[61 K.S. Narendra & K. Parthasarathy, "Gradient Methods for the Optimization of Dynamical Systems Containng
Neural Networks," IEEE Transactions on Neural Networks, vol. 2, no. 2, Mar. 1991, pp. 252-262.

[71 D.R. Seidl & R.D. Lorenz, "A Structure by which a Recurrent Neural Network Can Approximate a Nonlinear
Dynamic System," Proc. of the International Joint Conference on Neural Networks, July 1991, 11 709-714.

[81 R.E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME
(JournalofBasic Engineering), vol. 82D, no. 1, Mar. 1960, pp. 35-45.

[91 H.W. Sorenson, "Least-Squares Filtering: From Gauss to Kalman," IEEE Spectrum, vol. 7, no. 7, July
1970, pp. 63-68.

[101 D.G. Luenberger, "Observers for Multivariable Systems," IEEE Transactions on Automatic Control, vol.
AC-I 1, no. 2, Apr. 1966, pp. 190-197.

1111 R.F. Stengel, Stochastic Optimal Control Theory and Application, New York, Wiley-lnterscience, 1986.
[12] A. Stubberid, H. Wabgaonkar & S. Stubberud, "A Neural-Network-Based System Identification Technique,"

Proc. of the 30th Conf on Decision & Control, Dec. 1991, pp. 869-870.

11-304

Adaptive Inverse Control of Nonlinear Systems Using

Dynamic Neural Networks

D.H. Rao, M.M. Gupta and H.C. Wood

Intelligent Systems Research Laboratory, College of Engineering
University of Saskatchewan, Saskato, Canada, S7N OWO

Abstract

It has been demonstrated by many researchers that an unknown dynamic plant can be made to track an input
command signal if the plant is preceded by a controller which approximates the inverse of the plant's transfer
functim. Precascading a plant with its inverse model provides an unity mapping between the input and output signal
space. This concept of inverse modeling has been referred to as adaptive inverse control. However, the concept of
transfer function is limited to linear systems, and the control algorithms developed under this framework can not be
extended to nonlinear systems. Due to the functional approximation and learning capabilities, the artificial neural
networks can be employed to extend the concept of adaptive inverse control to nonlinem systems. In this paper, two
dynamic neural structures, called recurrent neural network and dynamic neural processor, are used to coerce the
nonlinear systems to follow the desired trajectories based on the principle of adaptive inverse control In the process,
we compare the performance of these two dynamic neural stiuctures as applied to the inverse control problems.

1. Introduction

Adaptive inverse control is based on the idea of inverse modeling. In this scheme, the inverse model of a
plant is estimated and cascaded with the plant, making the overall transer function of the plant and the inverse model
unity [1-12]. If the inverse estimation is good, the error between the targeted and the observed outputs will be very
small since the overall transfer function is almost unity. The major concern in adaptive inverse control technique is
to accurately obtain the inverse model of an unknown plant. The inverse model is, therefore, not expected to be the
exact inverse of the plant but is intended to be a best fit of the reciprocal of the plant tranfer function.

The principle of adaptive inverse scheme is commonly employed in the communication field to arrive at
feasible solutions to 'intersymbol interference' problems. Sending digital data at high speed through telephone
channels, radio channels, and even fiber optic channels often results in a phenomenon called "intersymbol interference'
[7]. Intersymbol interference occurs because of the presence of various frequency components in the source signal,
which may experience different amplitude and phase variations as the signal passes through the channel Fltering the
received signal through an approximation of the inverse of the channel model is the principal remedy [7, 131.
Practicalities that may cause time-varying channel dynamics dictate the use of adaptive algorithms for tuning the
channel equalizers. Equalization in data modems combats this distortion by filtering incoming signals. A modem's
adaptive filter, by adjusting itself to become a channel inverse, can compensate for the irregularities in channel
magnitude and phase response [31.

Traditionally, adaptive or self-tuning filers are developed based on finite impulse response (FIR) structures.
The FIR filters have the advantage of a very well developed theory with regard to stability and convergence analysis.
They have been generally used as they are unconditionally stable and because of the well understood adaptive FIR
algorithms. However, the FIR realizations suffer from the problem of indeterminate order when it is necessary to
model transfer function poles [14]. In particular, when the poles of the transfer function are close to the unit circle in
the z-plane, a high-order FIR filter may be required to meet a particular perfonnm objective [131. The adaptive
inverse control technique proposed by Widrow [1-3] provides only zeros to the controller. He suggested that for
proper application, the plant must be stable and the plant zeros should not be extremely close to the j--axis in the s-
plane or the unit circle in the z-plane. The adaptive inverse control scheme proposed by Widrow involves two modes
of operations: (i) the learning phase that estimates an inverse model of the unknown plant, (ii) the control phase that
involves implementation of the inverse model to make the plant follow the desired trajectory. In other words, this
scheme employs a learn-then-control' strategy.

The primary advantage of an infinite impulse response (111) filter is that it cab perform significantly better
than an adaptive FIR filter for the same number of coefficients [15]. Thkis is a consequence of the output feedback
which generates an infinite impulse response with only a finite number of parameters. A desired response can be
better approximated by a filter that has both poles and zeros (IIR filter) compared to one that has only zeros (FIR

11-305

fiber) [15]. Filters with feedback are particularly appropriate for system modeling (identification), control, and
filtering applications.

Despite these advantages, the major obstacle to the use or 11R filters is the lack of well established and well
understood adaptive algorithms. This is mainly due to the multimodal nature of their performance. The other major
concern is to maintain stability during adaptation so that the poles of the filter do not accidentally move outside the
unit circle causing instability. In general, the properties of an adaptive IIR filter are considerably more complex than
those of an FIR filter, and it is more difficult to predict the behavior of adaptive H1R algorithms 113, 15). An inverse
control scheme called the inverse-dynamics adaptive controller (IDAC) using an IR structure for linear systems was
proposed in [5, 101.

Most of the adaptive algorithms for FIR and 11R filters reported in the literature are dominated by linear
systems theory. There are many problems which require nonlinear dynamics. Artificial neural networks, which are
inherently nonlinear, may be considered as a plausible alternative to the existing linear filters to overcome some of
the limitations of the latter. The functional approximation, parallelism, fault-tolerance and learning capabilities of
neural networks have made them applicable to a diverse set of nonlinear problems. The application of inverse-
modeling to robotic trajectory control using a feedforward neural network in the feedback learning scheme is discussed
in(6, 161.

Dynamic neural networks can offer great computational advantages over purely static neural networks. In
this paper, two such ne'ual structures called the recurrent neural network and the dynamic neural processor (DNP) are
employed to extend the concept of adaptive inverse control to nonlinear systems. A brief overview of these neural
structures is given in the next section. The computer simulation studies are presented in Section 3, followed by the
conclusions in the last section.

2. Dynamic Neural Networks

2.1 Recurrent Neural Network: The dynamic neural networks, also known as feedback or recurrent neural
networks, were first introduced by Hopfield (17, 18]. Unlike the static neural networks, a dynamic neural network
employs extensive feedback between the neurons. The node equations in dynamic networks are described by
differential or difference equations. Neural architectures with feedback are particularly appropriate for system modeling
(identification), control, and filtering applications. A recurrent neural network consists of a single layer network
included in a feedback configuration with a time delay. This feedback network represents a discrete-time dynamical
system and can be described by the following equation

y(k+l) = IF [w(k) • y(k)], x(0) = x0 (1)

where y(k) and y(k+l) represent the states of the neural network at k and k+l instants of time, x0 represents the

initial value, w(k) denotes the vector of neural weights, and IP[.] is the nonlinear activation function. Given an
initial value x0 , the above dynamic system evolves to an equilibrium state if F [. is suitably chosen. The feedback

networks with or without constant inputs are merely nonlinear dynamical systems, and the asymptotic behavior of
such systems depends on the initial conditions, specific inputs as well as on the nonlinear function. Single-layer
recurrent neural networks consists of n computing elements (neurons) with thresholds w i. The feedback input to the

i-th neuron is equal to the weighted sum of neural outputs y, where j = 1, 2, ... , n. Denoting wij as the weight

value connecting the output of the j-th neuron with the input of the i-th neuron, we can express the total input ui of

the i-th neuron as [19]

n
i= J 'w.. x - i 'i= 1,2,.. ,n. (2a)

j*i

In vector form, Eqn. (2a) can be rewritten as: ui =w T y +x i -Woi ,i=1,2,....n (2b)

where wi 6= [wil,wi2' ... winIT and y = [yl,y 2 ... , yn]T . The linear portion of the recurrent neural network can

be described in matrix form as

11-306

U - W y + X - wO (3)

where U Au,u 2 uI, X A [XX 2 I and w A . The matrix W in Eqn. (3),

also called connectivity matrix, is an (n X n) matrix. This matrix is symmetrical, i.e., wi = w, and with diagonal

entries equal to zero, wii -0 indicating that no connection exists from any neuron back to itself. This condition is
equivalent to the lack of self-feedback in the neural structure which guarantees the stability of the network.

2. Dynamic Neural Processor: The dynamic neural processor (DNP) is a dynamic neural network developed
based on the physiological fact that neural activities any complexity are dependent upon the interaction of
antagonistic neural subpopulations namely excitatory and inhibitory. The DNP, thus, comprises of two dynamic
neurons called dynamic neural units (DNUs) [9, 20] which are coupled in a flip-flop configuration to function as
excitatory and inhibitory neurons. The neural dynamics of the DNU can be expressed in the form of a difference
equation as

vI(k) = - b V1(k-I) - b2 v,(k-2) + a0 s(k) + aIs(k-1) + a2 s(k-2). (4)

where s(k) = w s. 0] is the neural input to the DNU, si e n are the inputs from other neurons or from

sensors, wi E n are the corresponding input weights, 0 is an internal threshold, vl(k) e 9t is the output of the

dynamic structure, u(k) e 9 is the neural output, and aff = [ao, a1, a2]T and bfb = [bt , b 2 T are the vectors of
adaptable feedforward and feedback weights respectively. The output of this second-order dynamics, vl(k), forms an

argument to a time-varying sigmoidal function producing the neural output u(k) = 'p [gs vI(k)]' where %P[.] is the

sigmoidal activation function, and gs is the somatic gain that controls the slope of the activation function. The

DNUs are the basic functional elements in the DNP, shown in Fig. 1, with adaptable feedback connections between
the antagonistic subpopulations. The total inputs incident on the excitatory and inhibitory neural units are
respectively

StE(k) wESE(k)+wEEUE(k-1)-WmEuI(k-l) - E, and (5a)

sd(k) = wrs(k)- w.u, (k-l) + W UE(k-l) 01. (5b)

A direct analytical solution for determining the steady-state and temporal behavior exhibited by the DNP is not
possible because of the inherent nonlinearities in the above equations. However, these nonlinear equations can be
analyzed qualitatively by obtaining the trajectories in the uE - u1 phase plane. In this dynamic neural structure, the

feedback weights, WEE ' WiE, WI, wEi, and the DNU parameters, aff, bfb, gs, are the adaptable parameters. The

learning algorithm to modify these weights is derived in detail in [21, 22].

3. Computer Simulation Studies

Consider a single-input-single-output (SISO) dynamic plant that has the following input-output relation
expressed in a canonical form

y(k+l) - f(y(k) y(k-n), u(k) u(k-m)) = f(x(k), u(k)) (6)

where x(k) - [y(k) y(k-n), u(k-1) u(k-mJ "s a state vector, and f(.) is an unknown nonlinear function and
satisfies af(x,u)/au * 0. The canonical form of Eqn. (6) represents a general class of nonlinear systems without
internal dynamics. In the adaptive inverse control scheme, the input-output equation of the neural network that
produces a control signal to the plant is expressed as

(k) = 'P(w(.), x(k), r(k)))

II-307

wher r(k) Is the reference (desired) signal, and w(.) is the vector of adaptable weights of the neural network. Using
learning algorithms, the nonlinear mapping TP(.) can be adapted to approximate the inverse function of the nonlinear
system; that is, (w, x. s) -+ f (x, r), where f 'I (x, r) satisfiesu u

y(k+I) - f(x(k), u(k)) = f(x(k), f -1 (x(k), r(k)) = r(k).

From Eqn. (8) it can be seen that an unknown nonlinear plant can be made to track the desired trajectory by making
the neural network mapping an inverse of that of the plant. This is the intended behavior of the adaptive inverse
control scheme. However, the implicit assumption is that the nonlinear plant under control is invertible. The
invertibility of nonlinear systems is addressed in (23], and a sufficient input criterion for designing a neural network
to learn the system's inverse was established. In the conventional adaptive inverse control, a multi-layered neural
network is trained off-line by comparing the neural network output with the desired system output and the network's
output error is computed which is then used to modify the weights. After the neural network is well trained, the
input of the neural network is switched to the desired system output. Then, the neural network acts as the inverse of
the plant, and its output will drive the system to track the desired trajectory [24]. In this paper, the direct inverse
control approach, Fig. 2, is used where the weights of the neural networks are modified based on the system output
eror.

In this section, we present three simulation examples each one signifying a particular control aspect. The
two-layered recurrent neural network, Fig. 3, is used in these simulation studies. The DNP settings were as follows:
wE - 1.0, wEI = 0.5, wi = 1.0, w1 e = 0.5. The components of the scaling vector w were set to 1.

Example 1: In this example, we consider a general nonlinear plant without internal dynamics represented by the
following equation

y(k) - u3(k) + 0.6 y(k-2) + 0.2 y(k-l)y+ y 2(k-l) (9)

The excitation to the system was a unit step input. The weights of the dynamic neural networks were adjusted for a
duration of 800 learning iterations. The simulation results are shown in Fig. 4. In Fig. 4a are shown the mappings
between the control and input signal space, and the control and plant output space. In the case of the DNP, the unity
mapping between the input and the output signal space was achieved very quickly. On the other hand, the
convergence of the recurrent neural network was very slow; about 5000 iterations were required to achieve the error
tolerance of ± 0.05. The output responses of obtained by the two dynamic neural networks are shown in Fig. 4b.

Example 2: The purpose of this simulation example is to demonstrate the learning and adaptive capabilities of the
neural network-based adaptive inverse control scheme. We consider a nonlinear plant described by the following
difference equation

2 2
y(k) = tia y(k-i) + 1 0. u(k-j) + f~y(k-i), u(kj)] (10a)

isl j=O

with an arbitrary unknown function of the form

[2+cos{I7x(y 2 (k-1) + y 2(k-.2)) }]+u3(k) 1b
[1 + y2 (k-l) + y2(k-2)] (l0b)

with plant parameters 0. = [1.2, 1, 0.8]T and ai = [1, 0.9, 0.7] T . The input to the system was a unit step input, and

the system responses were observed for 800 iterations. The simulation results obtained for this case are shown in
Fig. 5. From these results it can be observed that the DNP converged to unity mapping very fast compared to the
recurrent neural network which took about 4500 iterations to converge.

Example 3: In this example, a linear plant preceded with an actuator having deadzone characteristics was
considered. The plant parameters 0, and cti were the same as in Example 2. The input to the system was a

II-308

sinusoidal signal in the interval [-1,1]. The width of the deadzone used in the simulation studies was 0.2. The
system responses were observed for 1000 iterations. The simulation results obtained for this case are shown in Fig.
6. In the case of the recurrent neural network, the plant converged to the desired signal after about 7000 iterations.

4. Conclusions

In this paper, the concept of adaptive inverse control was extended to nonlinear systems using the two
dynamic neural structures called the recurrent neural network and the dynamic neural processor (DNP). From our
initial findings it can be Inferred that the principle of adaptive inverse control can be extended to nonlinear systems
using neural networks. The DNP was found to be much faster compared a two-layer recurrent neural network. As the
weights of these neural networks were adapted based on the system output error, the off-line training of neural
networks is avoided. However, further investigations are necessary to study the performance of the neural network-
based adaptive inverse control scheme as applied to unstable and non-minimum phase systems.

References

[1] B. Widrow, D. Shur and S. Shaffer, "On Adaptive Inverse Control", 15th Asilomar Conf. on Circuits, Systems and
Computers, pp. 185-189, Nov. 9-11, 1981.

[21 B. Widrow, "Adaptive Inverse Control", IFAC Adaptive Systems in Control and Signal Processing, Sweden, pp. 1-
5, 1986.

[3] B. Widrow and R. Winter, "Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition", IEEE Computer,
pp. 25-39, March 1988.

[4] C.P. Tou, "Inverse Adaptive Modeling of Satellite Communication Channels". IEEE Pacific Rim Conf. on
Communications, Computers and Signal Processing, pp. 471-474, Victoria, June 1-2. 1989.

[5] M.M. Gupta, D.H. Rao and H.C. Wood, "Inverse-Dynamics Adaptive Control: A Neural Network Approach",
Proceedings of ISUMA, Maryland, pp. 189-195, December 3-5, 1990.

[6] M. Kawato, "Computational Schemes and Neural Network Models for Formation and Control of Multi-Joint Arm
Trajectory", in Neural Networks for Control, Eds.. W.T. Miller, R.S. Sutton and PJ. Werbos. MIT Press, 1990.

[7] C.R. Johnson Jr, "Admissibility in Blind Adaptive Channel Equalization", IEEE Control Systems Magazine. pp.
3-15, Jan. 1991.

[8] K.J. Hunt and D. Sbarbaro, "Neural Networks for Nonlinear Internal Model Control", lEE Proceedings-D, Vol. 138,
No. 5, pp. 431-438, Sept. 1991.

[9] M.M. Gupta and D.H. Rao, " Dynamic Neural Units in the Control of Linear and Nonlinear Systems", The
International Joint Conference on Neural Networks (IJCNN), pp. 100-105, Baltimore, June 9-12, 1992.

[10] M.M. Gupta, D.H. Rao and P.N. Nikiforuk, "Neuro-Controller with Dynamic Learning and Adaptation", Int. J. of
Intelligent and Robotic Systems, Vol. 7, No. 2, pp. 151-173, April 1993.

[11] D.H. Rao and M.M. Gupta, "Dynamic Neural Adaptive Control Schemes", American Control Conference, San
Francisco, pp. 1450-1454, June 2-4, 1993.

[121 D.S. Wang, G.B. Yang and M. Donath, "Non-Collocated Flexible Beam Motion Control Based on a Delayed
Adaptive Inverse Control", American Control Conference, San Francisco, pp. 552-559, June 2-4, 1993.

[13] B. Mulgrew and C.F.N. Cowan, Adaptive Filters and Equalizers, Kluwer Academic Publishers, Boston, 1988.
[14] K.J. Hunt, D. Sbarbaro, R. Zbikowski and P.J. Gawthrop, "Neural Networks for Control Systems- A Survey",

Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992.
[15] J.J. Shynk, "Adaptive HR Filtering", IEEE ASSP Magazine, pp. 4-21, April 1989.
[16] R. E. Nordgren and P.H. Meckl, "An Analytical Comparison of a Neural Network and a Model-Based Adaptive

Controller", IEEE Trans. on Neural Networks , Vol. 4, No. 4, pp. 595-601, July 1993.
[171 JJ. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities",

Proceedings of the National Academy of Sciences, Vol. 79, pp. 2554 - 2558, 1982.
[18] JJ. Hopfield, "Neurons with Graded Response Have Collective Computational Properties Like of Those

Two-State Neurons", Proceedings of the National Academy of Sciences, Vol. 81, pp. 3088- 3092, 1984.
[19] J.M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, MN, 1992.
[20] M.M. Gupta and D.H. Rao, "Dynamic Neural Units With Applications to the Control of Unknown Nonlinear

Systems", The Journal of Intelligent and Fuzzy Systems, Vol. 1, No. 1, pp. 73-92, Jan. 1993.
[213 D.H. Rao, M.M. Gupta and P.N. Nikiforuk, *Performance Comparison of Dynamic Neural Processor and Recurrent

Neural Networks", The . of NeuraL Parallel and Scientific Computations, Invited paper, [In press].
[221 D.H. Ran and M.M. Gupta. "A Multi-Functional Dynamic Neural Processor for Control Applications", American

Control Conference, San Francisco, pp. 2902-2906, June 2-4, 1993.
[23] Y.L. Gu, "On Nonlinear System Invertibility and Learning Approaches by Neural Networks", American Control

Conference, Vol. 3, pp. 3013-3017, 1990.
[24] X. Ci and KLG. Shin, "Direct Control and Coordination Using Neural Networks", IEEE Trans. SMC, Vol. 23, No.

3, pp. 686-698, May/June 1993.

11-309

--

a~k) Dmamac ural) Na

2z.I

(k) nGURE 2

a(k)- IN ,)

11. _____ f
L0

-

CamhalSigna

nFIGUREI

0.2--

y (+2)I.

X, el 1.

FIGURE 30.........

Lemming Iteatho

nIRE 0b

1.2.nm ltmtso Laing!tad

FIGURE FIGURE4

11-310

Computing the Probability Density in Connectionist Regression

Ashok N. Srivastavat and Andreas S. Weigendt
tDepartment of Electrical and Computer Engineering

University of Colorado at Boulder
Boulder, CO 80309-0529 USA

srivasan@sebastian.colorado.edu
IDeparment of Computer Science and Institute of Cognitive Science

University of Colorado at Boulder
Boulder, CO 80309-0430 USA

We introduce a non-parametric method for determining the degree of uncertainty in prediction

and show its use in a regression problem.

1 Problem Statement and Network Architecture

Often, it is not difficult to train a network to generate a number- but what confidence can we have in that number?
We would like to compute a probability density whose mean is the target value, and the variance is the confidence.

The problem can be formally expressed in the following manner: given a function f(x_):R n -, R1 . we construct a

neural network which performs a nonlinear regression on f with a vector of inputs x c Rn whose outputs y. Rm
are an estimate of the continuous probability density function p(ylx).

The key idea is to represent a continuum output as a soft histogram. The continuos distribution is approximated
with m classes. In order to create a training set, we sort the data in ascending order and binned them into m bins
with an equal number of points per bin. This approach minimizes quantization errors and shows a method for
recasting the function approximation problem as a classification problem by partitioning the range-space of the
target function.

The mean and variance of the output distribution can be computed directly via

m
A(x) = lYici (1)

i=l

a 2 (_x m 2 [.(x)] 2 (2)

i=l

where 4i is the center of bin i and yi is the activation of unit i. Figure 1 shows the network and an example of
the soft-histogram coding technique (target of 0.24).

II-311

9 Normalized Exponential Output Units I Linear Output
0.24 Unit

Yi 60% 40%

125 Sigmoidai

x I x 2

Fig. 1. Network architecture for probability density estimation

The normalized exponential units (also called soft-max) have the functional form

pi = eh Iiekh. (3)

h, is the total weighted input received by output unit j, 1... m (Rumelhart et al.).
In our experience, learning can be facilitated by having the network perform an additional, easier, task. We added a
linear output unit which performs a direct prediction of the mean ju(.). This additional output focuses the hidden
units to learn the mean. The network has a single hidden layer composed of 25 sigmoidal units, and is trained with
backpropagation minimizing the sum-squared error. All units have biases associated with them.

2 An Example

The network's task is to perform a nonlinear regression on a function of the form

f(x) = g(x) + n(x). (3)

This function is composed of the target function g(A_) corrupted with additive noise n(x). The network reconstructs
g() and estimates n(x) from a finite number of samples of x,f(x). The noise estimate can be interpreted as the
uncertainty, while the estimate of g(A_) can be thought of as the desired output.

In order to be able to visualize an example, we chose to approximate a mapping f(x):R2 -+ R1 . The target
function, g(x), which we chose is shown in Fig. 2 and is composed of Gaussians weighted with polynomials (see
Matlab Users Guide, 1992, pp. 2-98).

The noise model n(x) is a Gaussian random variable

n(A) - N(0,2 (, l " + x2)) (6).

The variance is bounded between 0 and 1 for values of (x ,x2) in the unit square. The training set is composed of
5000 random samples of (xj ,x2) from the unit square and the corresponding values of f.

11-312

151

,

-5=

0.8
0.6 0.8

0.2 0.2 0.4

x2 0 0 X1

Fig. 2. The target function.

9

x2 x

Fig. 3. A surface plot of the mean, a contour plot of the uncertainty surface and

baa

We trained the neural network with a learning rate of 10- 5, which is sufficiently small to avoid artifacts. We used
no momentum and trained the network for 850 epochs. The direct-prediction output greatly reduced the training
time, and it estimated the mean as expected. The output units are weighed equally in the sum-squared error model
since the range of the output units is comparable.

Figure 3 shows a surface plot of the mean of the distribution along with error bars (variance) which indicate the
uncertainty in the prediction for evenly distributed pairs of (x1 ,x2) in the unit square. The error bars are symmetric,
so only the positive portion of the bars are shown. A contour plot of the uncertainty surface is also shown. It
indicates that the uncertainty in the estimate is low near the edges of the surface, but increases toward the center.

II-313

- - I I I7

The uncertainty is highest where the estimated surface is in greatest deviation from the function f(x). Thus, we see
that the uncertainty surface appropriately reflects the regions in which the approximation is in error. Apart from the
added ncetainty n(g). there are other errors reflected in the surface, such as sampling error due to the finite sample
size.

4 Summary

We designed and tested a neural network which performs a prediction and gives a measure of the precision of the
prediction. Outputs consist of a set of normalized exponential units which produce an estimate of the continuous
probability density function p(ylx). The variance of this distribution can be interpreted as the uncertainty in the
classification. The distribution can also be used for calculations of percentiles and higher order moments.

5 Reference
Rumelhart, D. E., R. Durbin. R. Golden. and Y. Chauvin (still in press), "Backpfopagation: the Basic Theory," in
Backpropagation: Theory, Architectures, and Applications, edited by Y. Chauvin and D. E. Rwnelhart. Lawrence ErIbaum

11-314

EXPERIENCE WITH USING A NEURAL NETWORK FOR
FORECASTING TIME SERIES

Pennagaram D. Devika and !..,ke E. K. Achenie
Department of Chemical Lagineering, U-222

The University of Connecticut
191 Auditorium Road

Storrs, CT 06269

ABSTRACT:

Prediction of future values of time series is an important problem both in engineering and in
science. Stochastic model building and forecasting is one of the techniques available for the analysis
of discrete time series in the time-domain. Though these models have proven to be accurate for
forecasting, they have several important limitations such as an a priori guess of model structure.
In this paper, a feed forward neural network implementation is used to predict the future values of
different time series by using past knowledge. The network is trained with statistical features such
as standard deviation. This hybrid neural network model is shown to be better in prediction than
the traditional statistical models.

INTRODUCTION

Prediction of future values of time series is an important problem. The ability to forecast
the behavior of time series hinges on two types of knowledge. The first and most powerful one
is knowledge of the laws underlying a given phenomenon. When this knowledge is expressed in
the form of equations that can, in principle, be solved the future outcome of a time series can
be predicted once the initial conditions are specified. A second, albeit less powerful, method for
predicting future values relies on the discovery of strong empirical regularities in observations of
the time series.

Neural networks represent one of the approaches to implement intelligent thought processes
with a deterministic machine such as a computer. Neural networks have an inherent ability to
generalize based only on a set of training data (Rumelhart, 1986 [51). An artificial neural network
can be trained to recognize a number of patterns. These patterns may be parts of time series,
images, etc. If a variation of one of these patterns, corrupted by noise, is presented to a properly
trained network, the network can reconstruct the original pattern on which it was trained. In
image restoration problems, this technique is used (Timothy Masters, 1993 [61) with great success.
In prediction problems, neural networks have been shown to outperform traditional techniques like
ARIMA (Auto Regressive Integrated Moving Average) models (Timothy Masters, 1993 [6]).

In this paper, a feed forward neural network implementation (Achenie, 1993 [1]) is used to
predict future values of different time series by using past knowledge. The ARIMA models are
fitted using Scientific Computer Associates (SCA) (Liu and Hudak, 1992 [41) statistical package.

FEED FORWARD NEURAL NETWORK ALGORITHM

In a typical feed forward neural network algorithm, (see for example, Achenie, 1993 [11), there
are s layers of neural elements (an input layer, s - 2 layers of neural elements, and one output
layer. The jth layer consists of Mi processing elements. W._..:,kj is the weight associated with the
interconnection between the kj-lth element of layer (j - 1) and the kith element of layer j. The
cumulative input, X is mapped to the output, Y of a processing element by a sigmoidal transfer
function.

A generalized transfer function or proposed by Achenie, 1993 [1] is defined as follows:

Y = o'(X) = (1 + eP(X))- i - C (1)

where P(X) is a polynomial function of X. The following nonlinear program is solved for the
optimal values of Q which is a subset of network parameters, C, W (weights) and parameters

II-315

associated with P(X) to achieve the network training:

N M.

minJ = E E (Yh. - Y.'k.) (2)
n=l k.=1

subject to

Ynk 1q = an,k,

Yn,ki = a(Xn,ki) (3)

X,,i = E Wk ji,kiYki_ (4)
ki 1.. 1 =1

Q1 : Q :5_PP1 (5)

where aA,k = n-th training data set (input to k-th element) and [Q,,, , Qpp-] are bounds on Q.
The performance objective, J is the sum of squares of the deviation of the network output, Y,ko
from the expected or desired output, Ynko. At the solution of the nonlinear program, the expected
and the desired outputs are close to each other. Achenie, 1993 ([1]) has developed a Successive
Programming algorithm for training the feed forward iietwork. In this paper, this algorithm is used
to predict the future values of a chaotic time series, a non-stationary time series (Box and Jenkins,
1976 [21) and a time series collected from a saponification batch reaction.

CHAOTIC TIME SERIES

Ginzberg and Horn [3] considered the following chaotic time series generated by a quadratic
map

Yn = 4Y.- 1 (1 - Y._ 1) (6)

In this paper, the same example is used to generate a series of 268 values. The first 220 values are
used as the training set and the next 48 values are used as the prediction set. The structure of the
network is 4-6-1. The output values are scaled between -0.5 and 0.5. The network is tested with
different kinds of input sets and the performance of prediction in each case is analyzed.

Case 1: The training set consists of four input elements, namely, Yn-4, Y.-3, Y.-2, and Yn-1
and one output element Y.. Network performance on the prediction set is shown in Figure (1).

Case 2: The training set consists of four input elements, nanely, Y,- 4 ,Y 3,,Y,- 2 , and
Or(Yn. 3,Y _2,Y.. 1). a is calculated for only the three values in each training set. Figure (2)
shows the performance of the network on the prediction set.

Case 3: In this case, the training set consists of the same kinds of input elements as in the
second case. However, a is calculated for all the values starting from the first value until the current
three values. Figure (3) shows the network performance in predicting the future values.

Case 4: Finally, the effect of variance is tested. The training set is generated in the same way
as in the second case, except the variance of the three values in each training set is used instead of
the standard deviation. Figure (4) shows the network performance on the prediction set.

Network performance on prediction is good in all the four cases and very good in Cases (2) and
(4) as seen in Figures (2) and (4). In the second and the fourth cases by including the standard
deviation and the variance of the observations in the current window, the network has additional
useful information about the system. Therefore the prediction is very good. On the other hand in
the third case, the useful information provided by the standard deviation is degraded by the effect
of all past information. Hence, the prediction is not as good as it is in the second and the fourth
cases.

11-316

NON-STATIONARY TIME SERIES

A non-stationary time series of chemical process concentration (Box and Jenkins, 1976 [2]) is
used to test the performance of the feed forward neural network algorithm (Achenie, 1993 [1]) in
forecasting the future values. The network is tested with the following different sets of data.

Case 1: The mean is subtracted from the data and the resulting values are used for the
analysis. The training and the validation sets contain four inputs, namely, Ct-A, C8- 1 , C, and
a(Ct-,Ct-,Ct) and one output, Ct+1 . The original time series is divided into two sets, the first
set is used as the training set and the second is used as the prediction set. The structure of the
network is 4-10-1. The input and the output values are scaled between -0.5 and 0.5. Figure (5)
shows the performance of the network in predicting the future values of the time series.

Case 2: Using the difference method (Box and Jenkins, 1976 [2]), first differences of the
original time series are taken and the series is made stationary. This detrended (stationary) series
is divided into two sets, training and validation sets respectively. The same kind of inputs and
outputs are used as in the first case. Neural network performance on the prediction set is shown
in Figure (6).

The statistical model identified for this series is an Integrated Moving Average (IMA) model
of order 1.

xt = z,-1 + et - (0.714)et-l (7)

The future values are forecasted using this model and compared with the actual values in Figure
(7).

The network predicts well when the series is non-stationary (Figure (5)) due to perhaps the
excitation in the series. When compared to the IMA model prediction, network prediction is much
better. Since the detrended data is a mixture of cyclical and random fluctuations, it appears that
the network could not learn them properly (Figure (6)). However, when compared to the forecasting
made by the IMA model (Figure (7)), the network prediction looks better. The IMA model could
predict only one value in the future after which it becomes a constant.

TIME SERIES GENERATED BY A SAPONIFICATION BATCH REACTION

The next example used to test the performance of the feed forward neural network algorithm
(Achenie, 1993 [1]) is a time series of unreacted NaOH concentration collected by conducting an
experimental saponification reaction. This series is divided into two sets. The first set is used to
train the feed forward neural network algorithm and the second set is used for validation.

The saponification reaction (a reaction of a fatty acid with an alcohol to form an ester) that is
carried out in an isothermal batch reactor is:

Isopropyl Acetate + Sodium Hydrozide -o Sodium Acetate + Isopropanol

The neural network is trained with the following kinds of training sets. Each set consists of
five input elements and one output namely, tn- 2 , tn-2, t,, Yn-2, and yn- where t represents the
time and y represents the concentration. The output is yn. The network structure is (5-10-1).
The training file consists of 18 sets. The validation file consists of 15 sets of the same type. The
performance of the algorithm in predicting the future values of the series at temperatures 30 C and
15'C is shown in Figures (8) and (9) respectively. The comparison is made on both the training
set and the validation sets.

The statistical model identified for the series at 30C is an Auto Regressive (AR) model of order
3:

2t - (0.3358)z- - (0.6665)t._2 - (-0.1365)zt_3 = 0.0013 + et (8)

For the series collected at 150C, the statistical model identified is an Auto Regressive (AR) model

of order 1:

xt - (0.8824)zxt_ = Et (9)

Forecasts are made for 17 future values using the above models. The comparisons between the
actual values and the forecasted values are shown in Figures (10) and (11) respectively.

11-317

In this example, once again, the network's performance in prediction competes with the statis-
tical models predictions favorably. One of the reasons for the poor performance of the statistical
model could be the small size of the series. At least 50 or referably 100 values are needed to fit
an adequate statistical ARIMA model. However, the neural network algorithm could predict well
even with such a small series.

CONCLUSIONS

The feed forward network algorithm (Achenie, 1993 [1]) seems to forecast the time series used
in this paper better than the traditional statistical models. It is found that the introduction of
statistical features namely, standard deviation and variance in the network input sets improves the
prediction. In addition, the neural network analysis shows that when short term information about
the process is available to the network, the prediction is significantly better than when long term
information is given. This capablity of the proposed network algorithm in predicting the time series
is expected to be very useful for process design, modeling, etc.

References
[1] Achenie, L. E. K. A Quasi Newton Based Approach to the Training of the Feed Forward Neural

Network. Intelligent Engineering Systems Through Artificial Neural Networks, 3:155-160, 1993.

[2] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.
Prentice Hall, 1976.

13] Ginzberg, I. and Horn, D. Learnability of Time series. IEEE International Joint Conference
on Neural Networks, pages 2653-2657, 1991.

[4] Lon-Mu Liu, Gregory B. Hudak. Forecasting and Time Series Analysis using the SCA Statistical
System. Scientific Computer Associates, 1992.

[5] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning Representations by Back-
Propagating Errors. Nature, 323:533-536, 1986.

[6] Timothy Masters. Practical Neural Network Recipes in C++. Academic Press, Inc. Harcourt
Brace Jovanovich, 1993.

II-318

I
I I I

1 1
a
2

I I
* 5 1
a I .3

Y *1 a

* iFTi' :
1:1" - s.f

* .1

.3 to ~ a
a3. al

a. I- U ~
- I iz

I Liz a

z I I

z

I ____ I
I ~ I *... ;U.h J
U ~ -4. ~

.1 6 U

1.*
d * I

I a.
'a

I I I
1 *1 *1
U *1 I
a4. 1 1

.3 1 1
Ua
-

a

Ni ii
V

WI ''I It
* z p

*8
-

* - a * I
* 3 B

I* I *1 1. ~j
! 4.a

- U B - U

- *4.*** 4. * I
* a a a . 4. **,, . S - b

-.~
I. -'*-~

U 0

.4.
3F,

I * I
ra - 'a

!I- 319

a

U

I I
*1

I a
2

*
6

*1 aa
C.2 C

.2
* . .-

* . I -~

* 4. -

I =

a

*'~ ;ii
I. * 4 . g

6 4

-I *1
SI -~

* * * a - a
CI C

E io E
U C

U
C

U

a..,

o U
* 0
4* .9

I i I
*1 *1I -~

I -,*1 1

I ____ I ____1 . .3
gIl S U.3I 2 1 ~ I U

21 ! LI
- I*~- 3~.a

0

a; ' ~~1 I 'I ! I
a iii a
2 3 4 - Ia 24 *** ** * S * * * * C2 .1
o - -U a UI- 0. 0.

2 2
I 0U

a. V
U

2
.9 C.
'4.

11-320

On-line Learning of a Network with
Gaussian Kernel Functions

Rhee M. Kil and Jin Y. Choi
Research Department

Electronics and Telecommunications Research Institute
P.O. Box 8, Daeduk Science Town

Daejeon 305-606, KOREA

Abstract
Most learning algorithms of artificial neural networks are dealing with the efficiency for the

teaching patterns only. However, when the trained network is applied to the specific task,
the network performance associated with the generalization capacity including the untrained
data becomes more important. From this point of view, we consider a new method of on-line
learning of a network with Gaussian kernel functions. The suggested approach in this paper has
two learning phases, the initial off-line learning phase for the given teaching patterns and the
on-line learning phase for the incoming data. At the initial phase of learning, we estimate the
necessary number of kernel functions as well as the parameters associated with kernel functions
for the given teaching patterns. This process is assumed to be done by the batch process (or
off-line learning). After this initial set-up of network structure, on-line learning for the incoming
data is done by recruiting the necessary number of kernel functions when the incoming data need
to be accommodated to maintain or improve the network performance. To show the effectiveness
of our approach, simulation results for the prediction of the Mackey-Glass chaotic time series
are presented.

1 Introduction
Most artificial neural networks have focused on training the parameters of a fixed network

configuration such as Multi-Layer Perceptron (MLP) (1]. However, it may be an extremely powerful
tool for constructing an optimal network, if a learning algorithm has a capability of automatically
configuring a neural network, in addition to the adjustment of network parameters. Although
attempts have been made to apply the idea of self-recruiting neurons to the automatic clustering
of input samples [2] and to the identification of class boundaries (31, a major effort needs to be
expanded to establish a learning algorithm capable of automatically configuring a network based
on the self-recruitment of neurons with a proper type of activation functions. As an effort of such
approach, a Mapping Neural Network (MNN) [41 using non-sigmoid activation functions, called the
"Potential Function Network (PFN)" (5, 6, 7] was presented. In PFN, the emphasis is given to
the synthesis of a potential field based on a new type of learning called the "Hierarchically Self-
Organizing Learning (HSOL)" [7]. The distinctive feature of HSOL is its capability of automatically
recruiting necessary number of kernel functions. In HSOL, the parameter adaptation was based
on Error-Back-Propagation (EBP) algorithm (1]. However, EBP algorithm does not guarantee
convergence and generally suffers slow learning. In this point of view, a new methcd of parameter
estimation in which linear learning rule is applied between hidden and output layers while nonlinear
(piecewise-linear) learning rule is applied between input and hidden layers, has been suggested [8].
The suggested nonparametric estimation provides an efficient way of function approximation from
the view point of the number of kernel functions as well as learning speed.

The learning algorithms previewed so far are dealing with the efficiency for the teaching patterns
only. Howeve-', when the trained network is applied to the specific task, the network performance
associated with the generalization capacity including the untrained data becomes more important.
From this point of view, on-line adaptation to maintain (or improve) the network performance can
be a good strategy for the artificial neural networks. In this paper, we consider a new method
of on-line learning algorithm for a network with Gaussian kernel functions. Here, the suggested
approach has two learning phases, the initial off-line learning phase for the given teaching patterns
and the on-line learning phase for the incoming data. At the initial phase of training this network,
we estimate the necessary number of kernel functions as well as the parameters associated with

11-321

X(t+ 1)

output layer

C

((P 2 CP hidden layer

**.'input layer

x(t) x(t-1) x(t-N)

Figure 1: Nonlinear estimation network with Gaussian kernel functions.

kernel functions for the given teaching samples. This process is assumed to be done by the batch
process (or off-line learning). After this initial set-up of network structure, on-line learning for the
incoming data is done by recruiting the necessary number of kernel functions when the incoming
data need to be accommodated to maintain or improve the network performance. To show the
effectiveness of our approach, simulation results for the prediction of the Mackey-Glass chaotic
time series are presented.

2 Nonlinear Estimation Network Using
Gaussian Kernel Functions

The network model proposed here is composed of three types of layers: the input, hidden and
output layers. The input and output layers are composed of linear units while the hidden layer
is composed of Gaussian kernel functions. The weighted output values of the Gaussian kernel
functions are summed by the connection between the hidden layer and the output layer in order
to synthesize the desired function. Figure 1 illustrates the schematic diagram of the proposed
network. In this network, learning concerns mainly about the determination of minimally necessary
number of kernel functions and the estimation of parameters of a network. The strategy to decide
the minimally necessary number of kernel functions is to increase the number of kernel functions
incrementally whenever a new kernel function needs to be defined for the further improvement of
network performance, that is, reducing the network errors for the teaching patterns. Note that, for
the network producing multiple outputs, we opt for each output being generated independently by
its own set of kernel functions. This makes learning simpler.

2.1 Off-line Learning Algorithm

For the proposed network, the initial off-line learning algorithm is divided into two learning
processes. They are the process of recruiting the necessary number of Gaussian kernel functions
and the process of parameter estimation associated with Gaussian kernel functions. Each process
of learning algorithm is explained as follows:

Recruiting the necessary number of Gaussian kernel functions
The goal of this learning process is to recruit the necessary number of kernel functions. In this

process, firstly, for the given input teaching pattern, the actual output of a network is generated and
compared with the output teaching pattern. If the error between the actual output and the output
teaching pattern is higher than the predefined error criteria, a new kernel function is recruited at

II-322

the position of the input teaching pattern and the shape of kernel function is decided according to
the minimum distance between the position of a newly recruited kernel function and the positions
of existing kernel functions. In other words, the mean vector, mk+i and standard deviation of
Gaussian kernel function, ak+1 are determined by

mk+1 = xn and (1)
ak+1 01 Min 1Ix, -m, 1I, (2)

i

where x,, represents the training pattern where a new Gaussian kernel function is recruited. In this
case, the output weights of kernel functions are adjusted in such a way that the network generates
same values with the output teaching patterns at the positions of kernel functions. The estimation
of output weights for the exact mapping at the positions of kernel functions is determined as follows:

Let us first define a k x k matrix, 'k as

01 1 01,2 ... ?IP'k02,1 02,2 ... 2,k(3

where Oij represents the output of the jth kernel function for the ith selected input teaching

pattern. That is, Oj = exp(1J1x-maA 2).

Let us also define a k dimensional vector, Yk as Yk = [Y,12, , Y k where y, represents the
ith selected output teaching pattern. Then the output weight vector, c (Cl, c2 ,", Ck]T where
ci represents the output weight of the ith kernel function, is given by

Ck = %Fklyk (4)

since 'I kck = Yk. The k + ith matrix of (3) is given by

[Pk U
= @1 - J] (5)

where - is a k dimensional vector defined by u = [V,k+l, 02,k+l, , 7P ,k+1]T and v is a k dimen-
sional vector defined by v = [4+O1c , 'k+,2, • * ", *IP+l k]T .

The inverse matrix of (5) can be represented by the following form:

A " b

k 1 . .(6)
dT : c

Using the recursive formula of inverse matrix, A, b, c and d can be derived as follows:

A - ~- "~ ~~k+1-- - vT Iiklu (7)

b =lu(8)
-4+,k+1 - vTlu 8

1
C + - vTII-lu and (9)

vT4I'l (10)d'k+l,k+1 - vT ku

11-323

Since

Ck+1 = *k'+lyk+l, (11)

Ck+1 = fcnm, ck+l]T can be determined by

new olCe = ck + bek+1 and (12)
ck+l = cek+l (13)

where ek+1 represents the k + lth error defined by eh+1 = Vk+1 - jk+. Here, yk+l and jk+1 represent
the desired and a.tual outputs of the network for the k + ith teaching pattern respectively.

For the hierarchical recruitment of kernel functions, the error criteria to decide the recruitment
of a new kernel function is reduced as the number of learning iterations increases.

Parameter Estimation
After recruiting the necessary number of kernel functions, the positions of kernel functions rep-

resent the reference points of the teaching patterns, i.e., the network generates the exact values at
the positions of kernel functions. However, this is not so desirable from the view point of interpo-
lation between the positions of kernel functions, and robustness to the noisy teaching patterns. In
this sense, the parameters associated with kernel functions are adjusted in such a way to minimize
the root mean squared error between the desired and actual outputs so as to increase generalization
capability. In this learning process, the parameters of Gaussian kernel functions are adjusted based
on piecewise-linear approximation of a network in the space of the parameters of kernel functions.
This type of parameter estimation is considered based on the assumption that the parameters of
kernel functions are near the optimal values through the recruitment of Gaussian kernel functions
which gives coarse approximation of the given teaching patterns. For more detail description of
parameter estimation, refer to [8].

2.2 On-line Learning Algorithm

The proposed on-line learning algorithm is composed of two processes. The first process is
preparing a new I, 1 matrix of (6) for the calculation of output vector, ck. This process is required
since the I'k matrix of (3) is changed during the process of parameter estimation in the initial off-
line learning. The second process is related to the recruitment of kernel functions for the incoming
data. This process is similar to the recruitment process of the initial off-line learning. In this
process, an additional decision process on the recruitment in which the performances of networks
with and without a newly recruited kernel function are compared for the current data (time series),
is considered to avoid the overfitting problem. The on-line learning algorithm is described as follows:

Step 1 Initialization of a %Ii1 matrix
For the mean vectors of Gaussian kernel functions, i.e., m1 for i = 1, ... , M, where M
represents the number of kernel functions, construct a q,-1 matrix of (6).

Step 2 Recruitment of kernel functions

For the incoming data, apply the following procedure:

" Present a new input pattern, x, to the network.

" Get an actual output of the network, , = 4O(xn).

" Calculate an error of the network, en = Yn - i.

" Check the condition of recruitment:
If e,, > e, (error criteria),
- set-up a new kernel function such that the mean vector, mk+1 and

the standard deviation, aA.+j satisfy (1) and (2) respectively.
- adjust ck+i according to (12) and (13).
- construct y^ by including a new kernel function described above.
- compare the network performances (such as rms errors) of j and Y for the recent data.
- if the performance of y is bettern than that of t, a new kernel function is recruited.

11-324

In this on-line learning algorithm, two strategies can be considered: one is to maintain the network
performance and another is to improve the network performance. In the case of maintaining
the network performance, the error criteria needs to be fixed at the desired level during on-line
learning process while in the case of improving the network performance, the error criteria needs
to be gradually reduced during on-line learning process. However, in the case of improving the
network performance, we have to control the error criteria carefully since the rapid reduction of
error criteria can cause inefficient recruitment of kernel functions.

3 Simulation

The discrete version of the Mackey-Glass (M-G) chaotic time-series [9 is considered for our
simulation, that is,

t + 1) = (1 - a)x(t) + i ,-1-°- r)" (14)

By setting a = 0.1, b = 0.2, and r = 17, a chaotic time series with a strange attractor is produced.
For the prediction of the M-G chaotic time series, the following form of time-series is considered:

:(t + 85) = .f(:(t), x(t - 6), x(t - 12), x(t - 18)). (15)

Similar to the previous work [10], the suggested network were trained with the 500 training data
at the initial off-line learning. The training data of M-G chaotic time series are shown in Figure 2.
The prediction accuracy for the initial off-line learning is measured with the succeeding 500 data.
Here, we consider the prediction accuracy as the normalized root mean squared error to remove
the dependency on the dynamic range of data. For the simulation of on-line learning, we consider
two cases: the first and second cases are respectively intended to maintain and improve the network
performance of the initially trained network during the prediction phase. For the first and second
cases, the prediction accuracies after off-line learning are set as 8.94% (- rms error of 0.02) with
103 kernel functions and 17.86% (; rms error of 0.04) with 31 kernel functions respectively. These
results show efficiency in the sense of the number of kernel functions compared to the similar method
suggested by Moody and Darken [111.2

The error criteria for the first case is fixed at 0.02 while the error criteria for the second case is
gradually reduced from 0.18 to 0.01 at the decrement rate of 0.9. For both cases, the performances
of networks with and without a new kernel function are compared for the 20 recent data (time
series) for the recruitment. In this on-line learning, 14000 data of M-G chaotic time series are
presented to the network. The prediction accuracy of a network is measured after the presentation
of every 500 data. The results of simulation for the first and second cases are shown in Figures 3
and 4 respectively.

The simulation result of the first case show us that 1) the network with on-line learning has
stable level (, 6%) and smaller variations of prediction accuracy as the number of incoming data
increases as shown in datal of Figure 3-(a) while 2) the network without on-line learning has larger
variations of prediction accuracy as the number of incoming data increases as shown in data2 of
Figure 3-(b). In this case, the number of recruited kernel functions increases but becomes saturated
as the number of incoming data increases. The simulation result of the second case show us that
1) the prediction accuracy of a network is improved continuously as the number of recruited kernel
functions increases as shown in Figure 4-(a), but 2) the increment rate of the number of recruited
kernel functions increases also as shown in Figure 4-(b). Hence, in the second case, we better stop
reducing the error criteria at the desired level to saturate the number of recruited kernel functions.

'The normalized root mean squared error is defined by the root mean squared error divided by the standard
deviation of the given time-series, z(-).

2The prediction accuracy made by Moody and Darken's method is about 15% with 500 kernel functions.

11-325

2
1.8
1.6
1.4
1

0.8
0.6

0
0 50 100150200250300350400450500

t

Figure 2: Mackey-Glass chaotic time series for the initial off-line training.

4 Conclusion

In this paper, we have presented a new method of on-line learning of a network with Gaussian
kernel functions. The suggested approach has two learning phases, the initial off-line learning
phase for the given teaching patterns and the on-line learning phase for the incoming data. At
the initial phase of off-line learning, we estimate the necessary number of kernel functions as well
as the parameters associated with kernel functions for the given teaching samples. After this
initial set-up of network structure, on-line learning for the incoming data is done by recruiting the
necessary number of kernel functions when the incoming data need to be accommodated to maintain
or improve the network performance. Through simulation on the prediction of the Mackey-Glass
chaotic time series, we have found that our approach is effective to maintain or improve the network
performance obtained from the initial off-line learning.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed Processing, volume 1,
pages 318-362. MIT Press/Bradford Books, 1986.

[2] G. A. Carpenter and S. Grossberg. Art2: Stable self-organization of pattern recognition codes
for analog input patterns. Applied Optics, 26:4919-4930, 1987.

[3] D. L. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning. Biological
Cybernetics, 45:35-41, 1982.

[4] R. Hecht-Nielsen. Kolmogorov mapping neural network existence theorem. IEEE International
Conference on Neural Networks, 3:11-13, 1987.

[5] M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Avtomatika i Telemekhanika, 25:917-936,
1964.

[6] S. Lee and R. M. Kil. Multilayer feedforware potential function network. IEEE International
Conference on Neural Networks, 1:161-171, 1988.

[7] S. Lee and R. M. Kil. A gaussian potential function network with hierarchically self-organizing
learning. Neural Networks, 4(2):207-224, 1991.

[8] R. M. Kil. Function approximation based on a network with kernel functions of bounds and
locality: An approach of non-parametric estimation. ETRIjournal, 15(2):35-51, 1993.

[9] M. Mackey and L. Glass. Oscillation and chaos in physiological control system. Science, pages
197-287, 1977.

[10] A. S. Lapedes and R. Farber. Nonlinear signal processing using neural networks: Prediction
and system modeling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory,
1987.

[11] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural
Computation, 1:281-294, 1989.

1-326

20 . . . I

"datal"
15 " data?.

prdacc 10

M)
5

0 I I I i I

0 20 40 60 8 0 100 120 140 160number of .¢atterns (10')

1000 , , , ,

800
no. 600
of

unitA400

200

0 I I I I I
0 20 40 60 80 100 120 140 160

number of patterns (101)
(b)

Figure 3: On-line learning to maintain the network performance: (a) represents the prediction
accuracy versus the number of teaching patterns presented to the network. Here, datal and data2
represent the curves of prediction accuracies with and without on-line learning respectively. (b)
represents the number of recruited kernel functions versus the number of patterns.

20

pd151
occ 10

5

0 I I I I I
0 20 40 60 80 100 120 140 160

number of (patterns (101)

10(, , , , , ,

801
no. 600 1
of

unitAO0
200

0 I ' I I I
0 20 40 60 80 100 120/40 160

number of patterns (10)
(b)

Figure 4: On-line learning to improve the network performance: (a) represents the prediction
accuracy versus the number of teaching patterns presented to the network. (b) represents the
number of recruited kernel functions versus the number of patterns.

II-327

Predicting Prediction: Error Bounds for
Feedforward Neural Networks

Stephen Welstead
COLSA Corporation
6726 Odyssey Drive

Huntsville, AL 35801

Abstract

This paper derives an error bound for the output from a three layer feedforward neural network operating on
test data from outside of the training set. Three factors influence the size of this bound: accuracy of the
neural network model on the training data, distance of the test point from the training set, and volatility of
the process being modeled and the network model. Volatility is defined as a bound for the derivatives of
both the process and the network model. Process derivatives can be estimated from the training data. An
example using training and test data generated by the chaotic Henon mapping shows that this error bound
can follow actual errors quite closely. For applications such as time series prediction, such an error bound
can provide some credibility in advance for the output of a neural network predictor.

1. Introduction

The modeling capabilities of feedforward networks, also known as "backpropagation" networks, are well
known. Hornik et al. [Hornik 89] established that three layer feedforward networks are universal
approximators. Thus, given a set of training points produced by a well defined deterministic process, we
can be reasonably assured of fitting a feedforward network to these points with a high degree of accuracy.
Most applications, however, are concerned with the performance of these networks on points not in the
training set. For data representing time series, this process is called prediction, or forecasting. Other
applications use the term generalization to refer to the ability of a network to fit points outside of the
training set. In either case, it would be useful to know in advance how credible the network output is on
these points from outside of the training set. Such knowledge would be useful, for example, in financial
applications, where networks are trained to provide a look ahead to future market conditions.

The purpose of the present paper is to provide error bounds for the output of feedforward networks operating
on test data. This paper is organized into several sections. Section 2 establishes an error bound for general
approximation functions. Section 3 derives the particular form of this bound in the case when the
approximating function is a three layer feedforward network. In section 4, we will look at a numerical
example using data generated by the chaotic Henon mapping. We'll not only see that the expression
developed in sections 3 and 4 bounds the error on the test data, but also that this bound is actually quite
sharp.

2. Approximation Error

Suppose we wish to approximate a function f.R n -+ R. For simplicity of notation, we will assume thatf
is defined on R2, so that the function expression has the form Jx,y) = z. The extension of the results to
higher dimensions is straightforward. We assume further thatf is defined and has continuous first partial
derivatives on a compact convex subset C in R2 . Denote by T c C the finite set of training data:

T = {(xlyl), (xNyN)}.

Suppose that we have a function F:R2 - R, defined on C, that approximatesf at the points of T. F may
be a feedforward network, or it may be some other form of approximation, such as a fuzzy system, or a
polynomial. Let e > 0 denote the error bound on T, that is,

IF(xj,yj) -f(xj,yj)l < e, j = 1, ... N. (2.1)

We assume that F has continuous first partial derivatives on C (this condition is satisfied if F is a
feedforward network with a differentiable activation function).

1-328

Now consider an arbitrary test point (xy) E C (this point may be in T; the more interesting case is when

(x,y) is not in 1). We wish to establish a bound for IF(x,y) -flx,y. Let (xjyj) T. Then

IF(x,y) -flxy)l < IF(x,y) - F(x,y)l + IF(xj.y) -flxj,y)l + !.xjy) - flx,y). (2.2)

Also,

IF(x,y) - F(xjy) < I - (x',y) I IX - xjI

for some x', lying between x and xj, by the Mean Value Theorem. The convexity of C assures that (x',y) E
C. Similarly,

If(x,y) -f (xj,y) I .. (x",y) I Ix - xj I

for some (different) x" also lying between x and xj.

Since dFld and dfl& are continuous on C, they are bounded on mis compact set. We can rewrite (2.2) as

IF(x,y) -fx,y) I < max{Mf,x , M)x x- xj I + IF(xy) -f(xj,y) I (2.3)

where

midX

for (xy) in C.

The second term in (2.3) can be treated similarly:

IF(xj,y) -ftxj.y)l _< IF(xj,y) - F(xj,yj)l + IF(xj,yj) -flxjyj)l + j[Axj,yj) - fxjy)l

< max(MF, y, Mf,y) ly - yj I + IF(xj,yj) -flxj,yj)l.

Here, -- (X~Y) :5 MNFy

2nd

A (X,y)I -Mf,,

for (xy) in C.

We have thus established the following bound for the error:

IF(x,y) -j(xy) ! min {MIx - xj I + My ly - yj I + IF(xj,yj) -. (xj,yj)l }
(x, yj) T (2.4)

wher
Mx = max {MFx, Mx)

Wd
My = max (MFy, Mfy}.

H- 329

The training error tolerance e dominates the third term of the expression inside the brackets on the right side
of (2.4). As such, this training error tolerance is seen to have only a moderate influence on the total error
bound (2.4) (unless, of course, (xy) E 7, in which case the right side of (2.4) reduces to just this single
term). Obviously, we want to make this term as small as possible. However, the error can still be quite
large even when this term is small. Much more influential are the factors Mx and My which we'll call the
volaility factors. These factors are bounds for the derivatives off and F. High volatility from eitherf or F
will contribute to large values for Mx and My. A highly volatile processf is, not surprisingly, likely to
produce large test errors. The system designer cannot control the volatility off, although it is possible
that judicious preprocessing of the data may lessen this effect. Volatility in the model F can contribute to
the overall error if this volatility exceeds that off, and so the system designer should take care not to
introduce undue volatility into the model.

Finally, it should be noted that the volatility factors multiply the terms Ix - xj I and ly - yj I which represent
the distance from the test point (xy) to the training set T. The volatilit, effect can be mitigated by making
these terms small. This can be accomplished by choosing a large training set which covers as much as of
the input space as possible.

3. Derivative Bounds for Feedforward Networks

To compute a form of the bound (2.4) in the case when F is a feedforward network, we need to derive
expressions for dF/dx and dFoy. We assume F is a three layer feedforward network with a single input
threshold node and sigmoidal activation function, as shown in Figure 3.1 (according to Hornik et al.
[Hornik 89] three layers suffice to provide these networks with universal approximation capability).

Hidden Layer

Weightwi h1 I

Input Output

y z

Threshold I A

Threshold hH Output

weights Weights

Figure 3.1 Three layer feedforward network.

Thus,

z = F(xy) = 0(wh 1 (xy) + ... + woh(x,y))
and

hk(xy) = O(XW, k +YWyk + tk)
where

1 +

is the sigmoidal activation function. Using the fact that

(x) = o(x)(- o(x))

and setting

II-330

ar= wlhl(xy) +... + w~thl(x~y)

w e g e t o d h

9 k= I~(3.1)

Note that while lo(a)l and I1 - o(q)l are each bounded by 1, the product Io(a)(1 - O(t)l is actually bounded
by 1/4, since that is the maximum value of the function x(1 - x). Thus, (3.1) can be rewritten as

k= l (3.2)
Similarly, K~i Ia)o~~o(I)wxkI<. I. ' I-- < W,

where

I7XWX,k + Y Wyk + tk.

So (3.2) can be rewritten as

Similarly, WoIk~~ I~4I I wX,kI.
k= 1 (3.3)Similarly,H

I W 0 IW kI1.k = 1
(34)

Note that (3.3) - (3.4) do not depend on the values of x and y, so these are actually global bounds. These
bounds contribute to the volatility factors Mx and My in the error bound (2.4). Note that the number of
hidden nodes H determines the number of terms in (3.3) - (3.4) and so may influence the size of these
bounds, and hence the volatility of the network function.

4. An Example: Prediction Error Bounds for the Chaotic Henon Mapping

In practical applications, the usefulness of an error bound is determined by how close the bound fits actual
error. A bound that cries "wolf' by consistently overestimating by too much loses its credibility. In this
section we'll compute the error bound for a three layer feedforward network trained on data generated by the
Henon mapping:

f(x,y) = (fl(x,y),f2(x,y)), (4.1)
where

f (x,y) = 1 + y - ax2 , (4.2)

f2(x,y) = bx.

It is well known that many values of the parameters a and b produce chaotic mappings [Welstead 89]. In
particular, iteration of the mappingf with parameter values a = 1.4, b = 0.3 leads to the familiar butterfly
shaped strange attractor studied by Henon [Henon 761. This is the mapping that was used to generate
training and test data for the neural network. Starting with the point (xlyl) = (0,0), the point (xnyn), n >
1, is generated from:

11-331

(xn,Yn) =f (Xn-IYn-1).

The first one hundred points generated in this way were used for training, and the next one hundred points
were reserved as test points. The network architecture consisted of two hidden layer nodes, with one input
threshold node, as shown in Figure 3.1, and two output nodes. The first network output node value is
compared with the first output component of the mapping (4.1) for the purpose of computing errors and
error bounds. We are not particularly interested here in how well the network models the training data. It is
known that this type of network can actually reproduce the strange attractor associated with (4.1) given
enough training [Weistead 91]. Rather, we are interested in seeing how the error bound (2.4) compares with
the actual error. With this in mind, the network was partially trained, using the 100 training points, so that
the error bound could be observed for both large and small errors.

Normalization Issues

In any feedforward network application, training data must be normalized before it is presented to the
network. This normalization affects the values of the derivatives used in determining the bound (2A). For
this example, input data values presented to the network are normalized to the range [-5,5], and output data
values are normalized to the range (0.05,0.951. The error bound can be computed either in the original data
"X-Y space", in which case the network function derivatives must be adjusted to reflect normalization, or it
may be computed in the normalized "network space", in which case normalization changes the value of the
original function derivatives. For this example, we'll look at the error and error bound in "network space".
Expressions for the derivatives d1/dx, ofl/dy can easily be derived from the expression (4.2), and
maximum values for these expressions over the training data set can be computed. Normalization
introduces a linear factor of the form

(rF/RF)(R#rj)

where rF and rfare output value ranges for the network and the function, respectively, and RF and Rf are the
corresponding input value ranges.

Volatility Factors

Table 4.1 shows the maximum x and y derivative values computed for the network and the function. These
are the values MFx, MFy, Mfx, and Mfy of Section 2, with normalization effects taken into account as
discussed above. The final line of Table 4.1 shows the volatility factors Mx and My. Note that the
function derivative contributes to one factor, while the network approximation contributes to the other.

Table 4.1 Derivative bounds and volatility factors
for this example.

alax I /ay
Network F 0.1042 0.0560
Function fl g0.3334 0.0285

Max Volatility 0.3354 0.0560

Although here we are using the actual function expression to determine the derivative values in the second
line of Table 4.1, in practice this function expression is usually not available. In this case, these derivative
values must be estimated by looking at differences computed from the data.

Experimental Results

Figure 4.1 shows a plot of the errors and corresponding error bounds for the 100 test points. The scale for
the errors and bounds appears on the left side of this plot. Notice that the error bound, while always greater
than the error, follows the actual error quite closely. The magnitude of the difference between the error
bound and the error is shown at the bottom of this plot, with a separate scale that is displayed on the right
side of the plot. Note that the difference is quite small at times, indicating the bound is fairly sharp. The

11-332

difference is typically an order of magnitude less than the error bound itself, indicating that the bound

supplies useful information about the size of the error.

5. Conclusions

We have derived a bound for the error of a feedforward network operating on test data. Experimental results
show that the error bound closely follows actual error values. The error bound provides credibility for the
output of a network operating on data not seen during training. This is useful in applications involving
prediction, particularly when decisions are based on the output of the network. The system designer may
also be able to influence some control over the size of the error bound by reducing volatility in the network
approximation, for example by using a minimum number of hidden layer nodes, and also possibly using
preprocessing to reduce the volatility of the process being modeled.

References

[Homik 891 Hornik, K., Stinchcombe, M., and White, H., "Multilayer Feedforward Networks are
Universal Approximators", Neural Networks, 2, (1989): 359-366.

(Henon 76] Henon, M., "A Two-Dimensional Mapping with a Strange Attractor", Comm. Math. Phys.
50, (1976): 69-77.

[Welstead 89] Welstead, S., and Cromer, T., "Coloring Periodicities of Two-Dimensional Mappings",
Computers and Graphics 13, no. 4 (1989): 539-543.

[Welstead 911 Welstead, S., "Multilayer Feedforward Networks can Learn Strange Attractors', Proceedings
of lJCNN-91-Seattle, Vol. H, (1991): 139-144.

0.5- 0.5

Error Bound -0.45
0.4-

........ Actual Error - 0.4

0.3- -0.35

-0.3

0.25

0 0.1- 000.0.2•LU

0 ' -- 0.15
S Difference 0.

- 0.1 0.

-0- .1

-0.05

-0.2,
0 20 40 60 80 100

Test Data Point

Figure 4.1 The upper graph (scale on left side) shows the error bound (solid line) and actual error
(dashed line) for the 100 test points. The lower graph (scale on right side) shows the difference
between the error bound and the actual error.

II-333

A Threshold Polynomial Neural Network

Danil V. Prokhorov and Donald C. Wunsch II
Texas Tech University

Department of Electrical Engineering
Lubbock, TX 79409-3102

Abstract

Threshold polynomial neural networks offer fast learning of nonlinear mappings. It
achieves this by dedicating hidden layer nodes to training patterns and using a polynomial
learning algorithm. This paper outlines the architecture and main features of a threshold
polynomial network. The functioning of the network and results of simulation are described.

Design

We have m input patterns from p classes to be recognized. We begin by transforming
the m input patterns Xj into m vectors Yj = {Yl, Y2, ..- , Yn }i- (All Yj are n-dimensional;
the Xj are permitted greater dimensionaity if data reduction is desired in the preprocessing
step.). We will henceforth refer to this preprocessing stage as a sensory subsystem. (Fig. 1.)
The transformation takes the form of thresholding, contrast enhancement, scaling, sampling,
or other desired simplifications. These topics are well known and we will simply assume
binary transformation in the remainder of this paper, with the understanding that the other
transformations could instead be used.

The Yj are fed to next subsystem, the main part of the whole design. This associative
subsystem consists of polynomial neurons which accomplish transformation of n-dimensional
binary space into an m-dimensional space of functions aj(Y) (0 = 1, ... , m; where m is the
number of vectors in the training sample). Choice of aj(Y) are produced in accordance with
the following conditions:

1) If Xi and Xj (i * j) are not linearly separable in the Y space, they must be separated
by a hyperplane in a new functional space a(Y);

2) It is natural to choose such functions of a(Y) that would be adequate to the physical
representation of a problem to be solved.

It was suggested by Timofeev et al in [1] that to solve many applied problems one
should utilize following polynomial form for a(Y):

ak(Yj) = a(Yj,Yk) = (yjl^ykl) & (yj 2 -yk 2) & ... & (yjn-ykn), k = 1, ... ,

where yj 1 is the first component of Y-,
& is the operation of logical conjunction,
^ is an operation determined as follows: 0^0 = 1, 0^1 = 0, 10 =1, 11 = 1.

The polynomial neurons described by (1) above were used to make up the associative
subsystem.

11-334

The final part of the network is the decision-making subsystem. Output neurons
located there have adjustable weights and a hard-limiting nonlinearity. Each output neuron
computes the following function:

Si(Y,u) = F [uil*al(Y) + ui2 *a2(Y) + ... + uim*am(Y)], i = 1, ... , p, (2),

where uj is the adjustable weight of the i-th neuron and

F[z] = +1, ifz > 0, OR-l, ifz < 0.

INPUTS

sensory neurons

polynomial neurons

OUTPUTS

Fig. 1. The threshold-polynomial neural network.

Training and testing

There are two modes of functioning of the network: training and testing.
The threshold polynomial training algorithm converges in one iteration to exactly

identify the training set. This is similar to Probabilistic Neural Networks [21 auc! in marked
contrast to backpropagation and various other models [3]. This similarity is not surprzing,
since Probabilistic Neural Networks also use one hidden node for each pattern in the training
set.

While training, the system arranges the samples in sequence of norm increase (i.e.,
number of non-zero components in the Y vector). Such ordering gives a possibility to
use the following training recursive procedure:

uil =Di(Y1), i = 1, ... , p, j = 2, ... , m, (3)
ui = 0, if B = Di(Yj) * [uil*aj(Y1) + ui2 *aj(Y2) + ... + u0-l*aj(Yjl)] > 0,

11-335

OR
uj = Di(Yj) - [uil*aj(Yl) + ui2 *aj(Y2) + ... + u)-l*aj(Yjl)], if B < 0.

The goal of training is to teach all output neurons to adjust actual outputs Si(Y,u) as close as
possible to the desired ones Di(Y) for every pattern Y in the training sample.

The procedure (3) is straightforward and allows weight computation directly (in a
single run). Furthermore, the training algorithm (3) provides a minimum number of non-zero
integer-valued weights in (2). After completion of the training process every i-th neuron is
active only when the object is from i-th class. Instead of using a separate output neuron for
each of the p classes to indicate result of recognition, one may use simple binary coding of
output neurons. This allows classification with only Log2(p) output neurons.

Testing is similiar to training except for weight adjustment. The object to be
recognized is applied to the inputs and then some output neurons fire indicating the result.

Fig. 2 shows an example of the fixed (post-training) architecture. It may be easily
implemented in an inexpensive reprogrammable board, on a custom-made chip connected
through a parallel interface to a computer, or in software. The main parts of this board are
AND circuits, summing operational amplifiers and weight memory cells. The cells are
simplified due to the integer-valued nature of the weights to be stored. After training, weight
values are fed to the board and perform proper circuit switching in the board.

1 -
2

3

4&

6

8
9

Fig. 2. An example of the fixed network architecture.

Simulation results

The performance of the threshold-polynomial neural net and backpropagation were
compared on a benchmark problem given in [4]. The task was to investigate the generalization
capability of the nets in problem of reproducing of the following nonlinear function:

F = (2/5)*sin(2*pi*Z) + 1/2, Z = i/M, i = 0,...,M, (4).

11-336

It was decided to use binary input and output encoding. The piecewise-constant
approximation was performed for the function (4), followed by transformation of its
values in an integer format. Finally, the ranges of integer-valued Y(Z) and D(F) were from
0 to 127 and from 10 to 89 respectively. The training sample consisted of 64 even pairs
(Y,D). The rest (other 64 odd pairs) made up the testing sample.

The threshold-polynomial net showed errorless recognition of the training sample and
sum of squares of the errors E = 0.0127 while recognizing the testing set. Backpropagation
may be taught to reproduce the nonlinear signal with better precision. However, it takes much
more time for training. The training time of the threshold polynomial net was less than ten
seconds whereas teaching of the backpropagation net required nearly one hour at the same PC
to obtain the equal level of error on the testing sample.

Conclusion

We describe a threshold polynomial neural network architecture. This network is useful in
circumstances requiring rapid learning of approximate categories. Future work includes
comparison with other models, especially the Probabilistic Neural Networks, which share
certain similarities.

References

1 A.V.Timofeev and V.Kh.Pshibikhov, "Algorithms of training and providing minimum
complexity for polynomial recognition system", The USSR Science Academy News
(Technical Cybernetics), 5, 1974, pp. 214-217 (in Russian).

2. D.F.Specht, "Probabilistic Neural Networks and the Polynomial Adaline as
Complementary Techniques for Classification," IEEE Trans. Neural Networks, vol.1,
pp. 111-121, Mar.1990

3. R.P.Lippmann, "An introduction to computing with neural nets", IEEE ASSP Mag., 4,
April 1987, pp. 4-22.

4. S.Nagata, M.Sekiguchi, and K.Asakawa, "Mobile robot control by a structured
hierarchical neural network", IEEE Control Systems Magazine, 4, April 1990, pp. 69-76.

11-337

LINKING OF AN ARTIFICIAL NEURAL NETWORK WITH THE EEIE EXPERT SYSTEM
TO IDENTIFY ENVIRONMENTAL IMPACTS.

Alejandro Pazos. Ph. D. MD. email: ciapazos@udc.es
Antonino Santos del Riego. Post-graduate student. email: ciminino@udc.es

Julin Dorado. Post-graduate student. email: cijulian@udc.es

Laboratory for Biomedical Applications of Artificial Intelligence.
Department of Computer Science. Faculty of Informatic. University of La Corufla. 15071 La Corufia. SPAIN.

ABSTRACT: The reluctance to fully comprehend environmental damage is maintained due to the lack of complete
information and admitting that the contingencies that lead to these environmental changes may never be fully known.
One way of obtaining conclusions from incomplete information is to identify the environmental rules and the general
models. In this paper we describe an Artificial Neural Network (ANN) for the identification of environmental impacts.
The ANN inputs have been codificated providing them a format fora betterconvergence. The results of this identification
will be consistent with the Leopold and Battelle methods [1] for the Evaluation of Environmental Impacts (EEl). The
impacts identified by the ANN will be incorporated into the group of hypotheses that the expert system EEIE [21 will
work with to evaluate these impacts.

INTRODUCTION

The construction of a system to evaluate the environmental impacts produced by the integration of infrastructure and
management projects with the environment is hindered by the following two problems:

1.- The amplitude of this domain, due to the large quantity of Environmental Factors (EF) and actions associated with
the distinct projects in different environments. The solution to this problem consists of handling the formulated
information in a relational data base used by the ANN integrated with the EEIE expert system.

2.- The variability of knowledge in EEl. The appearance of new environmental legislation, as well as the creation
of new manufacturing technologies, cleansing, etc, makes precise knowledge in a given moment very subject to changes.
The EEIE expert systems structure, organized in four abstraction levels, will allow the easy incorporation of new
knowledge into the abstraction level affected, making the rest of the system independent of these changes.

The cases treated by this system are stored in a log file. Then the ANN will be trained with this log file to recognize
the hypotheses suggested by the expert system in previous sessions and thus increase its confidence. It will also learn
the group of hypotheses that EEIE expert system could not infer by itself but were confirmed by the user.

EEIE expert system solves the problems that were carried forward by the Leopold method:
(a). Non-selectivity: That is, it establishes a line of work without identifying either the impacts or their relationships.

The solution to this problem is identifying the main impacts and focusing their objectives.
(b). Non-systematic: This is solved by characterizing the projects impacts in relation to the project, the actions, the

EF, expert knowledge and the previous EEl.

EEIE expert system has three knowledge bases. The first characterizes the projects and subprojects that are to be
evaluated. The second suggests the posible actions that cause the impact starting out from the subprojects and the actions
already established. The third suggests hypotheses of the cause-effect type linking actions from the projects with EF

II-338

to identify the posible impacts. These links evaluate the effect over the EF starting from the direct measures taken from
the environment and suggesting corrective actions that can modify the previous reasoning. The use of this ANN allows

the establishment of a more exhaustive group of impacts and adjusts its level of confidence.

THE NEURAL NETWORK MODEL

Due to the problems already mentioned an ANN allows us to recognize standards amongst the great amount of

information handled in the EEl facing up to the lack of selectivity in the EEl methods [3].

With this in mind an ANN has been trained in a supervised manner using as input data the projects grouped together

by industrial sectors, the principal actions that have caused the impact of these projects, organized by fases, and general

characteristics of the environment affected. The ANN output provides an identifying map of posible impacts of the input

actions over the EF group and its confidence (see Figure 1). The projects must be evaluated according to the legislation

of the European Economic Community (EEC) [4].
In this sense the ANN has a double function, on the one hand, as an identifier and, on the other, as evaluator.

EEC Projects that must
carry out EEl I'

(14 PE's) "

Actions Actions
producing Codification EFs affected by

Impacts Po• the Actions
(9 PEs)

General Environmental

63 PE's 43 PE's 96 PE's

Fig 1.- ANN Architecture for the Identification of Impacts.

Specifically, the objective of the ANN in the system consists in the cuantification of the confidence associated with

the identification of each impact. The input into the ANN is divided in three large groups:

II-339

1.- Separate the projects that grouped together by industrial sectors have tocarry out EEl according to EEC legislation.

The following have been considered:

- Chemical industry (manufacture and treatment of)
* Sulphuric Acid. * Ammonia.
* Titanium Dioxide. * Chlorine, Fluor.

* Pesticides. * Paint, ink, glue and related products.
* Ethylene, propylene and benzene.

- Paper and wood industry.
* Cardboard and wood paste plants. * Celulose.

- Transport.
* Airports. * Roads.

* Railway lines. * Reservoirs and dams.

* Electricity fines.

For its representation 14 process elements (PE) have been used with values of (0 or 1).

2.- Actions produced by the introduction of the projects being evaluated.9 PE have been used to represent 500 actions.

Each action is codified with a binary number of 9 bits. This allows a sufficiently low number of input PE. This solution
can be adopted as the processing is carried out in one action in each operation of the ANN.

With the aim of facilitating the learning process, a study of hierarchical clustering [5) has been carried out with the
aim of grouping together those actions that produce impacts belonging to a similar group. For this the following steps

are followed:

(a). Construct a simetrical action*action matrix and represent in each element of the matrix the number of impacts
that differentiate the actions involved.

(b). Iteratively, the matrix element with the lowest value is chosen and the actions that form its files and columns are

grouped together. Immediately after this the matrix is rebuilt and the new distances are calculated. In this manner the
distance between a group and an action is given by the arithmetic mean between the elements of the new group and the

rest of the actions, building a hierarchy included in a sole group.
(c). Finally, the actions are codified with 9 bits. To do this in the first place we arrange the actions in a consecutive

manner in the order obtained in the hierarchical clustering tree. In second place we assign to each binary codes in such

a way that between the codes that correspond to one action and those that correspond to its immediate neighbours we

always have a distance of Hamming 1, that is to say, their codes vary in only one bit (See table 1).

3.- Characteristics of the environment affected. It uses 40 PE to represent the most representative characteristics.
These characteristics are contained in the following groups:

- Air. - Water. - Earth.
- Vegetation. - Fauna. - Man.

- Processes from the biotic medium. - Perception medium.

II-340

The inputs of each PE are values of (0 or 1) indicating the absence or presence of these characteristics in the

environment under evaluation. The layer of outputs from the ANN is made up of 96 PE representing the 96 EF's taken

into account. Each one of these output PE's cuantifies the confidence that the ANN has in considering that the EF in
question will be affected by the input action.

These values range from (0 to 1). For the hidden layer 43 PE's have been used as this has been the number of PE's

that have best adjusted themselves to the learning process through trial and error techniques.

00 0 0 00000

Block I 0 0
0 0
0 0

Block 2 PWL-----

Inverse of I 1 0
Block 1 41 0 1 0

00 1 0

SInverse of 0 1 1 1

B lo ck 2 .- - 41 1 1 1

Table I.- Codification of Actions with a Distance of Hamming 1.

THE FUNCTIONAL CHARACTER OF THE ANN

Its functional character in the complete system lies in its obtaining of confidence values for the group of impacts

produced by the input action. These actions are supplied bya presession with the EEIE exper* system, which establishes

the group of posible actions that can cause impacts for each project under evaluation. The outputs of ANN obtained for

each action are used by EEIE, establishing the final group of impact hypotheses for their evaluation starting from a

symbolic perspective.

THE ANN'S ARCHITECTURE

The ANN is of the feed-forward type with a back-propagation learning algorithm. The interconnection of the PE's

in the three layers is complete. For the learning process the Delta Generalized Rule [6) has been used. The learning

coefficient has been estab'i-hed taking into account the classification in clusters of the ANN's inputs [71 (Formula 1).

11-341

1,5 T1 - learning coefficient
m - number of clusters

=n. - number of actions in the cluster i

Formula 1.- Calculation of the learning coefficient

A value of m = 9 has been established based on experience, as once this number of clusters has been reached they are

sufficiently homogeneous. To realize the division in clusters we take as our starting point the root node of the hierarchical

tree, taking the two branches as two clusters. From here onwards, and until we reach a total of 9 cliisters, the cluster with

greatest distance is chosen and is divided in its two clusters.

The sigmoidal transference function has been used due to its suitability for the handling of data with values from (0
to 1), which allow the establishment of confidence levels for the impacts.

RESULTS

For the training of the ANN some 13 studies of EEl have been used, which entails 2403 training cases, due to the fact

that each action in an EEl is represented independently from the network, of these some 200 cases have been reserved

for the process of network testing.

Once the training process was finished, the ANN added some 13% additional impacts to those that had been detected

by the EEIE. Furthermore the great majority of these impacts suggested by the expert system were also suggested by
the ANN, increasing in this way its confidence level. The technical parameters of the training can be summarized in:

143000 cycles until a convergence has been achieved with an error level of 0,09. To obtain the convergence a time of

23 minutes was used on a PC-486.

DISCUSSION AND FUTURE WORKS

The ANN presented in this paper deals successfully with the task of identifying the environmental impacts produced

by the actions of certain projects. The inherent complexity of this domain has been reduced both in the input and output

of the ANN. Initially consideration was given to taking as the input layer all the actions under evaluation and as an output

layer the cross matrix formed by Actions-EF. This soution was abandoned due to the huge size of the resulting ANN

and above all due to the difficulty L. making it converge. Finally the already mentioned solution was opted for and the

actions were codified according to their similarities. This codification allows us, on the one hand, to simplify the input,

and on the other, provide a format for a better convergence.

In this sense, another possibility has been explored, the use of positional codification, in other words, good results have

been obtained using inputs that concentrate the activations of the input layer in one zone for inputs with similar outputs.

For example, to obtain the output of two logical functions, these are ordered by similarity (in clusters) and then the

following positional codification is used (see Table 2.).

II-342

The connectionist approach used in this work, is used for the identification of impacts that are to be evaluated later
on through a symbolic approximation. The possibility is therefore left open of training an ANN that will provide as an

output an evaluation of each impact for the group of input actions, that is to say, identify it and cuantify iL

In the present system, it is posible to evaluate 14 different types of projects, of the 70 or so that are contemplated in

EEC legislation. Actually work is being carried out on the eliciting of knowledge and the collecting together of data

to include new types of projects.

FI = (XI V X2) A X3

F2 = (XI AX2) V X3

Positional Codification XI X2 X3 FI F2

10000 0 0 0 0 0

11000 0 1 0 0 0

11100 1 0 0 0 0
01100 0 0 1 0 1

00100 1 1 0 0 1

00110 0 1 1 1 1

00111 1 0 1 1 1

00011 1 1 1 1 1

Table 2.- Example of positional codification

In summary, this work furnishes new advances, both in EEl, making it more exhaustive and increasing its precision,

and in the field of the ANN's, establishing new codifications of the entry data which make the convergence process

easier.

REFERENCES

[1]. D. G6mez Orea. "Evaluaci6n de Impacto Ambiental". Ed. Agricola Espafiola, S.A., 1992. (in Spanish)
[2). A. Pazos, A. Santos, A. Rivas, V. Maojo & J. Segovia. "EEIE: An Expert System for Environmental Impact

Evaluation". Proc. IEEE Eng. Med. Biol. Soc., Vol 2, pp 632-633, 1993.

131. J Rfos, A. Pazos, N.R. Brisaboa, S. Caridad. "Estructura, dindmica y aplicaciones de las Redes de Neuronas
Artificiales". Ed. Centro de Estudios Ram6n Areces, 1991. (in Spanish)

(4]. Salvador GonzUez Fernndez. "Legislaci6n Ambiental I". Compilaciones, 1989. (in Spanish)

[51. Domenico Ferrari, Giuseppe Lerazzi, Alessandro Zeigner. "Measurement and Tuning of Computer Systems". Ed.
Prentice-Hall, pp 82-90, 1972.

(6]. M. Nelson and W.T. lllingworth. "A practical guide to neural nets". Addison-Wesley Publish. CO., 1992.

171. Harry A.C. Eaton & Tracy L. Olivier. "Learning Cofficient Dependence on Training Set Size". Neural Networks,

Vol 5, n' 2, Pergamon Press, pp 283-288,1992.

1-343

An Artificial Neural Network Customer Forecasting Model

Mark Cullen, Kh.Eghtesadi and Dai Vu
Advanced Concepts & Technology
Pitney Bowes
35 Waterview Dr, Shelton, CT 06484
USA

1. Abstract
Attributes of more than 7,000 customers of a product for shipping packages were
analyzed to develop an automated system for predicting new customers. Critical
parameters associated with these customers were identified by principal component
analysis. Based upon these parameters and inter-relationships between them, a prediction
model was developed to prioritize customer lists for the sales force in the field. An
Artificial Neural Network (ANN) was developed to learn and characterize the non-linear
model with an output that reflects the likelihood of a product sale in a percentile form. The
ANN model was integrated in a user-friendly software package that will be used by the
sales force to rank potential new customers. The software was completed and delivered
for pilot testing.

2. Introduction
Today's sales and marketing groups have available to them a massive amount of data
about both their markets and customers. Without appropriate analysis, however, this data
rarely becomes useful information. The more extensive the collected data, the more
difficult it can be to process and transform it into usable information about individual
prospects and customers. Even if the data processing system is quite sophisticated, at
some point its limitations exceed the potential capabilities of traditional modeling
techniques. Advanced data processing systems for forecasting and optimization are
mathematical and computational challenges. Numerically intensive computing is coming
nowadays to the aid in many fields of sales and market forecasting. Advanced modeling,
forecasting and decision support systems will become more critical tools in finding the best
solutions to sales and marketing problems.

One class of non-linear modeling is Artificial Neural Networks [1]. In its simplified form,
an ANN with no hidden layers and linear transfer function approximates the linear
regression model common in statistical approaches [2] to target marketing applications.
With more processing layers and non-linear transfer function, the ANN can solve a broad
range of problems. It has been shown that multilayer feedforward neural networks perform
as a class of universal approximators [3]. This means that the ANN can be used to
discover functional relationships between input and output parameters. They may apply

II-344

effectively to database analysis, to model customer characteristics. For problems where the
data is clean and the relationships are straight forward and linear, a statistical model will
usually provide predictive capabilities. However, such problems are rarely encountered. In
a majority of cases, the data is noisy and the relationships have an unknown degree of non-
linearity. This can be particularly true of database marketing problems. Under these
circumstances, ANN have the advantage of being able to model the relationships and
produce reliable predictions.

The objective of this effort was to develop a method for target marketing that can be used
to predict the potential sales of products to new customers. Specifically:
I) Develop a method to prioritize a list of new potential customers of a product, based
upon features derived from the existing customer database.
2) Develop an ANN model to learn the important feature relationships, and incorporate
this model into a software system for use in the field.

3. Data Analysis and Preprocessing
To develop a prediction model for identifying new shipping product customers, attributes
of more than 7,000 current customers were analyzed. Customer profile parameters were
retrieved from the Dun & Bradstreet database. Distribution of these parameters and their
intcr-relationships were plotted and analyzed. Based upon this analysis four parameters
were identified as primary contributors: sales, number of employees, company age and
employee growth. Principal component analysis [4] was applied to these variables to
determine which have special properties in terms of variances. The analysis transforms the
original set of variables into a smaller set of linear combinations that account for most of
the variance of the original set. The purpose was to determine factors that contribute to
the total variation in the data with as few of these factors as possible. The parameters that
were identified by the principal component analysis were normalized to have a gaussian
distribution. From the original four parameters, three of them were identified (sales,
number of employees, and company age) as the principal contributors. To test the
relevance of other parameters for classifying or segmenting the customer data, the
database was divided into several classes such as: subsidiaries vs. non-subsidiaries, single-
buyer vs. multiple-buyers, manufacturing vs. non-manufacturing, and coastal vs. non-
coastal business locations. Examining the distributions of sales, employees, and company
age for each of the aforementioned classes showed that there was no real significance in
any of these customer segmentation classes, so these additional parameters were not used.
Analysis of the distribution of the three selected variables (sales, number of employees,
and company age) indicated that they were all skewed to the left in histogram distribution
graphs. A common method to cope with this non-normalcy is to apply a non-linear
function to the data. The non-linear function simply transforms the original data and uses
this output as the new input of the model. Two statistical techniques were used to
determine how well the non-linear transfer function normalized the data: the skewness
coefficient which measures the distribution symmetry, and the kurtosis coefficient, which
measures the "fatness" of the tails and bells of the distribution. Values of -0.5 to 0.5 for
the skewness coefficient and -1 to 1 for the kurtosis coefficient were considered

II-345

characteristic of normal distributions. Based upon these two tests, the natural logarithm,
ln(x), was determined to create the best distribution, as it was the only function to have
both skewness and kurtosis values within the desired range for all three variables.
By combining these three parameters a model was developed with an output that reflects
the likelihood of a sale, in a percentile form.. From the three selected parameters, a three
dimensional surface was generated and a "Focus Region" was created (Figure. 1) as the
"best customer profile". The focus region is defined in terms of the value of the standard
deviation a given company's performance is from the mean of each individual parameter.
Table I shows the distribution of the focus region and the values of the associated
customer focus rating parameter.

Standard Deviation (q) Rating Assignment
< 0.5 0.9
<1 0.7
< 1.5 0.5
> 1.5 0.3

Table I: Focus Rating (FR) Assignments

For the sales data, a 0.9focus rating was assigned if the company's sales parameter was
0.5 standard deviation from the mean; a 0 .7 focus rating if the parameter was 1.0 standard
deviation from the mean; 0.5 focus rating if 1.5 standard deviations from the mean, and
0.3 focus rating if more than 1.5 standard deviations from the mean. The same process
was repeated for both the number of employees data and the company age data.
The three coordinate values of this surface were combined into a function to create a
combined Focus Rating parameter as:

FR = f(xl, x2 , x3)

where xj, x2, x3 represents the sales focus rating, the number of employee focus rc
and the company age focus rating, respectively.

4. Artificial Neural Network (ANN) Modeling
A three-layer neural network architecture was constructed with three input units, 24
hidden units and one output unit. The three inputs to the neural network model consist of
a customer's yearly sales volume, the number of employees, and the number of years the
customer has been in business. The output or desired value of the artificial neural network
is the focus rating number. The customer database contains 7320 companies with
complete information for these selected input and output variables. From this database,
6106 records were selected at random to form a training file, and the remaining 1214
records were collected to form a test file. Figure 2 illustrates the topology of the ANN
architecture designed for this application.

1-346

5. Results of Training and Testing the ANN Model
The ANN architecture shown in Figure 2 was trained with the training file of 6101
records, using the backpropagation learning algorithm to modify weights in the network.
Weight connections between units in the neural network were initialized at random to
values between +/- 0. 1. The learning parameter was selected to be 0.4 and the momentum
parameter was 0.15. Error values at the output of the network were accumulated for 100
presentations of the input data before updating the weighted connections in the network.
Input data records were selected at random from the training file, and training continued
for 10,000 iterations. The RMS error measured 0.11 following the end of the training
cycle.

The ANN was then tested with the test database. An example of the prediction capability
of the neural network can be seen in Table II for twenty five records from the test
database. In a majority of the cases, the ANN closely predicts the target value expected
given the three input variables. For the fill test file of 1214 records, the RMS error was
calculated to be 0.12. The result for the entire test database is shown graphically in Figure
3. The predicted focus rating output by the neural network clusters well about the target
or actual value shown as the heavyset line in the graph. A few results show more than
15% deviations from the target value but overall the results are close to the target value.

6. Conclusion
An ANN model was developed to learn the important features of an existing customer
product database. The model may be used by sales force in the field to prioritize potential
new customer lists for more effective target marketing. Future applications of ANN in
marketing may include analysis of existing product marketing approaches and how to
structure new sales and marketing programs to different market segments.

7. References
1. Zurada, J.M., "Introduction to Neural Systems", West Publishing Company, 1992.
2. Hecht-Nielsen, R, "Kolmogorov's Mapping Neural Network Existance Theorem",

Proceeding of the International Conference on Neural Networks, Vol III, IEEE Press,
1987, 11-30

3. Hornik, K., Stinchcombe, M., and White, H., "Multilayer Feedtorward Networks
Are Universal Approximators", Neural Networks 2, 1989, 359-366.

4. Anderson, T.W., "An Introduction to Multivariate Statistical Analysis", John
Wiley&Son, 1984.

I-347

60 (050
50

0

Sls40
4

Sales 3 sales
20 0 0 20

10
41

Em4 ploye30 - Company AgeEmployees 3 2 10 20

1 0

Figure 1: Customer Focus Region Function Diagram

Sales

Employees.-,-Fc
Focus
Rating

Company Age

Figure 2: Architecture of Artificial Neural Network

II-348

1.1.
1

0.-m.li . .

CO) 0 8

0.7J ".......

0.1 ; 0 r.......

0 .3 ". . i. i....... *
0. !....... !.......

0.1i ,-- - -- -

0 200 400 600 800 1,000 1,200 1,400
Company

Figure 3: Artificial Neural Network Performance Characteristics
(o - ANN Output, -Target Output)

Customer XI X2 X3 Actual ANN
Target Output

1 15.8 4.6 2.5 0.84 0.88
2 15.9 5 3.6 0.71 0.68
3 14.5 2.7 3.3 0.76 0.79
4 17.5 5.4 3.6 0.62 0.59
5 14.4 4.4 3.7 0.62 0.63
6 15.4 3.5 3.1 1 0.7
7 16.3 2.6 3. 0.84 0.93
8 23 5.6 4.7 0.21 0.5
9 17.5 6.1 3.3 0.71 0.64
10 15.8 3.9 3.5 0.86 0.92
11 21.2 2.7 4.2 0.36 0,32
12 16.2 3.6 3.5 0.86 0.94
13 16.8 4.9 3.2 0.84 0.87
14 17.7 6.3 1.9 0.48 0.3
15 19.1 5.1 1.9 0.44 0.3
16 21.4 5.1 3.1 0.5 0.51
17 14.9 3.4 1.6 0.68 0.67
18 16 4.2 2.8 1 0.96
19 14.6 2.5 3 0.76 0.81
20 16.3 3.5 3 1 0.99
21 19.3 2 4.1 0.44 0.24
22 14 3 2.4 0.78 0.77
23 15 3 2.5 0.92 0.91
24 14 2.3 3.3 0.76 0.63
25 13.2 2.4 1.6 0.45 0.28

Table I: Sample test data showing input data, focus rating parameters,
and a focus rating output from the trained ANN output

n-349

Fuzzy Curves anJ System Identification

Yinghua Lin
Department of Computer Science

New Mexico Institute of Mining and Technology
Socorro, NM 87801

George A. Cunningham, III
Department of Electrical Engineerin.

New Mexico Institute of Mining and Technology
Socorro, NM 87801

Abstract

We introduce "fuzzy curves" and use them to identify significant input variables. Our method is
computationally simple and identifies significant input variables easily in complex problems.

1 Introduction

A multilayered neural network can approximate any continuous function on a compact set [4], [6], [9], and
a fuzzy system can do this same approximation [81, [13]. Several authors have used neural networks to
implement fuzzy models [1], [5], [71 [121. However, no matter what t - modeling approach, the first step is
to identify the important input variables for the system.

Sugeno and Yasukawa [10] propose a fuzzy approach to model a system from input-output data. They identify
the significant input variables by checking the performance index (e.g. average square error). First, they
build a one input fuzzy system for every input candidate, and the input of the fuzzy system corresponding
to the lowest performance index is chosen as one significant input. Taking this significant input and every
remaining input candidate, they build a set of two input fuzzy systems. The two inputs corresponding to
the fuzzy system that gives best performance measure are considered as two important inputs. They keep
adding one more input variable until the performance index cannot be improved. For N input candidates
the maximum input variable sets to be tested for input variable identification is 22 "

Takagi and Hayashi [11] propose a neural network driven fuzzy reasoning system to analyze the input-output
data. They identify the input variables by eliminating each input variable and checking the performance
index. If the performance index is better when one input variable is removed from the system, then that
input variable is not significant. They have the same N(N+) problem as in [10].2

For a system with hundreds, or thousands, of input candidates N, building N(N+I) fuzzy or neural network2
systems is not practical. To solve this problem, we introduced fuzzy curves. Using the fuzzy curves, we
identify the input variables before modeling the system. The time complexity of our method is linear with
respect to the number of input candidates.

The paper's second sect ion introduces fuzzy curves and describes how we identify the input variables. The
third and fourth sectioas show examples to demonstrate our model.

II-350

No. Z X2 X3 y No. Xl Z2 X3 Y

1 14.9 2.0 9.3 3.8 11 6.9 2.3 10.3 3.3
2 16.6 1.7 5.8 3.7 12 7.4 1.9 9.4 2.8
3 21.3 2.1 9.1 3.0 13 11.3 2.0 8.4 3.0
4 24.3 2.9 7.0 4.7 14 17.6 2.0 8.2 2.7
5 26.6 1.7 4.8 4.1 15 19.5 2.4 6.5 3.3
6 23.2 1.3 4.7 3.1 16 21.6 2.5 5.1 4.9
7 22.2 2.5 4.5 3.1 17 26.5 1.9 6.3 4.8
8 18.1 2.5 5.9 2.5 18 26.4 2.2 8.1 4.4
9 13.7 2.8 7.9 3.3 19 23.1 3.8 4.9 2.2
10 7.7 2.6 9.3 2.3 20 21.1 2.5 5.1 1.8

Table 1: Data points used in An Introduction to Fuzzy Curves.

5 .++ 5 + -+ 5 ,- ++
+ 4 + +

++ + + + +
+ + ++#++ . + + + +

>+3 + + +>3 + >,3 4 ++

2 ++ + 2 + + 2 + +

13 20 2 4 5 10
xl x2 x3

Figure 1: The data points plotted in in zl-y, x 2-y, and X3-y spaces.

2 An Introduction to Fuzzy Curves

We consider a multiple-input, single-output system. We wish to find a relationship between each of the input
variables and the output variable that we can use to determine the significant inputs. We call the input
candidates xi (i = 1,2, n), and the output variable y. Assume that we have m training data points
available and that z,<- (k = 1,2, ... , m) are the ih coordinates of each of the m training points. Table I
shows an example with n = 3 and m = 20.

For each input variable xi, we plot the m data points in xi-y space. Figure 1 illustrates the data points from
Table 1 in the zl-y, z 2-y, and 3-y spaces. For every point in xi-y space, we draw a fuzzy membership
function defined by

pujL-x,) = exp (- (Xik b X)2)()

We typically take b as about 10% of the length of the input interval of xi. Figure 2 shows the fuzzy
membership functions for the points in Figure 1. In Figure 2, the point where pjuk = 1 coincides with Zjk.

We use centroid defuzzification to produce a fuzzy curve ci for each input variable zi by

z=E Psk(xi) . Ik (2)

Figure 3 shows the fuzzy curves ci, c2 , and C3 for the data in Table 1. If the fuzzy curve for given input is

1I-351

55 5

4 4 4AAA
> 3 \ >3 >3A

2 2

10 20 2 4 5 10
xl x2 x3

Figure 2: Fuzzy membership functions in zl-y, Z2-y, and X3-Y spaces.

4- 4 4

. - 3 3.5

3 3 3

2.5 2.5 2.5
10 20 2 4 5 10

xl x2 x3
Figure 3: Fuzzy curves c1 , c2, and c3 .

flat, then this input has little influence in the output data and it is not a significant input. If the range of
a fuzzy curve ci is about the range of the output data y, then the input candidate z, is important to the
output variable. We rank the importance of the input variables zi according to the range covered by their
fuzzy curves ci. The ranges of fuzzy curves in Figure 3 are 1.32 for c1 , 1.24 for c2 , and 0.89 for C3. Hence,
we deduce that z is most significant input, z2 is second, and z 3 is third.

3 A Simple Example

We use a nonlinear system with two inputs, x, and x2 , and a single output, y, defined by

y = (1 +1- 5 - 5cos(2 2)) 2 , 0 < X1,X2 < 3. (3)

We randomly take 100 points from 0 _< Z1,Z2,Z3,Z 4 ,X 5 < 3. x, and z 2 are used by Equation 3 to obtain
100 input-output data, and z3 , z 4, and z5 are dummy inputs used to illustrate input variable identification.

To identify the significant input variables, we draw the five fuzzy curves c1, c2, c3, c4 , and c5 for the five
input candidates z 1 , zX2, Z3, z4, and Z. The five fuzzy curves are shown in Figure 4. From Figure 4 we find
that the ranges of ci, for c1 to cs, are 43.5, 48.3, 11.7, 14.3, and 11.4, respectively. From this, we easily and
correctly identify z and z 2 as the significant input variables for the system.

To test if our model can identify significant inputs for data with noise, we add 10% random noise to xj, z 2 ,
and y after using Equation 3 to obtain data. The ranges of fuzzy curves (from cl to c5) are 45.9, 55.7, 21.2,
23.8, and 14.0, respectively. So our model can identify input variables within noise.

To test if our model can identify two incorporated variables, we change Equation 3 to

(I (l+ x1 -5 cos(2v 3) , 0<5X1, X2, X3<3_-3 (4)

II-352

60

Cl: _ _

50 C2: .'"
C3:.
C 4: - - - -'.

40 C5:

"", .

20-

10.

0t
0.5 1 1.5 2 2.5 3

Figure 4: The fuzzy curves for the non-linear system y (1 + x'- - 5 cos(2x 2))
2.

and
y = (1 + (x 1 £ 4)0. 7 5 - 5 cos(2V'iZ)) 2 , 0 < X1, X2, X3, X4 <3 (5)

Using the same way as we do for Equation 3, we obtain 100 data from Equations 4 and 5 respectively. The
ranges of fuzzy curves(from cl to c5) for Equation 4 are 40.8, 34.6, 30.4, 15.7, and 18.4, respectively, and the
ranges of fuzzy curves for Equation 5 are 27.9, 33.3, 32.5, 27.1, and 17.6, respectively. From these ranges of
fuzzy curves we find that in both cases, our model identifies the significant inputs successfully.

4 More Examples

We also tested our model with real world problems. The data of Box and Jenkins gas furnace is taken from [2].
The process is a gas furnace with a single input (gas flow rate) u(t) and a single output (CO 2 concentration)
y(t). As in [10], we consider the variables y(t - 1)....y(t - 4), u(t -1),..., u(t - 6) as input candidates. We
determine that the significant inputs, listed in order of importance, are u(t - 5), y(t - 1), u(t - 6), u(t - 3),
and y(t - 2). Using these five inputs, we build a four-rule fuzzy-neural system. We use the first 250 data
points as the training data and predict the last 40 points. The results are shown in Figure 5.

The example of the Chemical Oxygen Demand in Osaka Bay is originally in [3). There are 5 input variables:
temperature, transparency, oxygen density, salt density, and filtered COD density. There -re 45 data points.
We find that the salt density variable is not important. We build a four-rule fuzzy-neural system with four
inputs. As [11] and [3], we use the first 33 points as training data and check the results with the later 12
points. Our results are shown in Figure 6.

The data on daily stock prices is from [10 for stock A. It has ten input variables x,. .. , Z0 and 100 data
points. We eliminated the variables X1, X6, X7, and c,. We build a five-rule fuzzy-neural system with six
inputs. The first 80 data points are used to build the system and the later 20 points are used to check the
model. The results are shown in Figure 7.

11-353

60-

0.

0 5s o -
Training Prediction

45[1 -j
0 50 100 150 200 250

Time

Figure 5: Model performance on the Box and Jenkins gas furnace data. We build the model on the first 250
points and predict the next 40. Actual is shown by the solid line -, model by the dotted line -

8-

Training Predictio

06

"0 10 20 30 40
Time

Figure 6: Model performance on the Osaka Bay data. We build the model on the first 33 points and predict
the next 12. Actual is shown by the solid line -, model by the dotted line

01
20 ! Training

C

Ax 0

-20 Prediction

40 20 40 60 80 100
Time

Figure 7: Model performance on the stock price data. We build the model on the first 80 points and predict
the next 20. Actual is shown by the solid line -, model by the dotted line

1-354

5 Conclusions

We introduce the concept of a fuzzy curve and use it to identify the input variables. The time complexity of
our model to identify input variables is linear with respect to the number of input candidates. We test our
model with several examples and our method quickly and easily identifies the significant input variables.

References

[1] H. R. Berenji and P. Khedkar, "Learning and Tuning Fuzzy Logic Controllers Through Reinforcement,"
IEEE Trans. Neural Networks, vol. 3, no. 5, 1992, p. 724-740,

[2] G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control. San Francisco: Holden
Day, 1970.

[3] S. Fujita and H. Koi, Application of GMDH to Environmental System Modeling and Management, in
Self-Organizing Methods in Modeling: GMDH Type Algorithms, (S.J. Farlow, Ed.), Statistics Textbooks
Monographs Ser., Vol. 54, Marcel Dekker, New York, 1984, p. 257-275.

[4] K. Funahashi, "On the Approximate Realization of Continuous Mappings by Neural Networks," Neural
Networks, vol. 2, 1989, p. 183.

[51 S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On Fuzzy Modeling Using Fuzzy Neural Networks with
the Back-Propagation Algorithm," IEEE Trans. Neural Networks, vol. 3, no. 5, 1992, 801-814.

[6] K. Hornik, M. Stinchcombe, and H. White, "Multilayer Feedforward Networks are Universal Approxi-
mators," Neural Networks, vol. 2, 1989, 359-366.

(7] J. R. Jang, "Self-Learning Fuzzy Controllers Based on Temporal Back Propagation," IEEE Trans.
Neural Networks, vol. 3, no. 5, 1992, 714-723.

[8] B. Kosko, "Fuzzy Systems as Universal Approximators." Proc. 1992 IEEE Int. Conf. on Fuzzy Systems,
San Diego, March 1992, 1153-62.

[9] T. Poggio and F. Girosi, "Networks for Approximation and Learning," Proc. IEEE, vol. 78, no. 9, Sept.
1990, 1481-1497.

[101 M. Sugeno and T. Yasukawa, "A Fuzzy-Logic-Based Approach to Qualitative Modeling," IEEE Trans.
Fuzzy Systems, vol. 1, no. 1, 1993, 7-31.

[11] H. Takagi, I. Hayashi, "NN-Driven Fuzzy Reasoning," Int'l. J. Approximate Reasoning, vol. 5, no. 3,
1991, 191-212.

[12] H. Takagi et al., "Neural Networks Designed on Approximate Reasoning Architecture and Their Appli-
cations," IEEE Trans. on Neural Networks, vol. 3, no. 5, September 1992, 752-760.

[13] L. X. Wang and J. M. Mendel, "On Fuzzy Basis Functions, Universal Approximation, and Orthogonal
Least-Squares Learning," IEEE Trans. on Neural Networks, vol. 3, no. 5, 807-14, September 1992.

1I-355

Mathematical Foundations
Session Chairs: Shun-ichi Amari

Daniel Levine

ORAL PRESENTATIONS

Manifolds of Neural Networks and the EM Algorithms

Shun-ichi Amarl

Depivtwent of Mathematical Engineering and Information Physics

Faculty of Engineering, University of Tokyo

Bunkyo-ku, Tokyo 113, JAPAN

Abstract

In order to realize an input-output relation given by noise-contaminated input-output data, it ie

effective to use a stochastic neural network. Such a network includes hidden units whose activation values

are not specified nor observed. It is useful to estimate the hidden variables from the observed or specified

input-output data. Two algorithms, the EM- and emt-algorithms, have so far been proposed for this

purpose. The EAI-algorithmn is an interative statistical technique of using the conditional expectation,

and the em-algorithm is a geometrical one given by information geometry. The em-algorithm iteratively

minimizes the Kullback-Leibler divergence in the manifold of neural networks. These two algorithms

are equivalent in most cases. The present, paper gives a unified information geometrical framework for

studying stochastic neural networks, in particular the EM and em algorithms, showing a condition

which gurantees their equivalence. Examples include 1) Boltzmann machines with hidden units, 2)

mixtures of experts, 3) stochastic multilayer perceptron, 4) normal mixture model, and others.

The full text of the present paper will appear in Neural Networks under the title "Information

geometry of the EM and eim Algorithms for Neural Networks".

Amari. S. (1985) Differential Geometrical Methods in Statistics, Springer Lecture Note in Statistics, 28.

Aiari, S. (1991) Dualistic Geometry of the Manifold of Higher-Order Neurons, Neural Networks, 4,
pp. 443- 451.

Amari, S., Kurata, K. and Nagaoka, H. (1992) Information Geometry of Boltzmann Machines, IEEE

Trans. Neural Networks, Vol. 3, No.2, pp.2 6 0 - 2 7 1 .

Byrne, W. (1992) Alternating Minimization and Boltzmann Machine Learning, IEEE Trans. Neural

Networks, 3, pp612-620.

Jordan, M. I. and Jacobs, R. A. (1993) Higherarchical Mixtures of Experts and the EMI-Algorithm,

Neural Computation, to appear.

Jacobs, R. A., Jordan,"M. I., Nolwan, S. J. and Hinton, G. E. (1991) Adaptive Mixtures of Local

Experts, Neural Computation, 3, pp.79-87.

Neal, R. N. and Hinton, G. E. (1993) A New of the EM Algorithm that Justifies Incremental and Other

Variants, to appear.

11-359

Analysis of the ARTMAP Neural Network Architecture

Michael Georgiopoulos*, Juxin Huang*, Gregory L. Heileman**

Department of Electrical and Computer Engineering
University of Central Florida, Orlando, FL 32816*

Department of Electrical and Computer Engineering
University of New Mexico, Albuquerque, NM 87131**

Abstract

In this paper we analyze the ARTMAP architecture for situations requiring learning of many-to-one maps.
Our point of focus is the number of list presentations required by ARTMAP to learn an arbitrary many-
to-one map. In particular, it is shown that if ARTMAP is repeatedly presented with a list of input/output
pairs, it establishes the required mapping in at most M. - 1 list presentations, where M, corresponds to
the total number of ones in each one of the input patterns. Other useful properties, associated with the
learning of the mapping represented by an arbitrary list of input/output pairs, are also examined. These
properties reveal some of the characteristics of learning in ARTMAP when it is used as a tool in establishing
an arbitrary mapping from a binary input space to a binary output space. The results presented in this
paper are valid for the fast learning case, and for small 3. values, where Pa is a parameter associated with
the adaptation of bottom-up weights in one of the ART1 modules of ARTMAP.

1 Introduction

A neural network architecture that can be used to learn arbitrary mappings from a binary input space
of any dimensionality to a binary output space of any dimensionality was derived by Carpenter et al.
([1]). This architecture was termed ARTMAP in reference to the adaptive resonance theory introduced by
Grossberg ([2]). ARTMAP can only learn mappings of arbitrary binary inputs to arbitrary binary outputs.

In this paper we focus on a fast learning ARTMAP architecture, which is specifically designed to
establish many-to-one mappings, where many inputs from the input space are mapped to a single output
in the output space. This type of mapping is of primary interest in pattern recognition applications. From
this point on, when we refer to the word "mapping" we will always imply a "many-to-one" mapping.

One of the contributions of this paper is the derivation of an upper bound for the number of list
presentations required by ARTMAP to establish an arbitrary mapping between the inputs and outputs of
a list of input/output pairs that is repeatedly presented to ARTMAP. Other useful properties of learning
in ARTMAP induced by its internal dynamics are also described. These properties reveal some of the
characteristics of ARTMAP as it is trained to learn arbitrary mappings from a binary input space to a
binary output space.

2 The ARTMAP Architecture

The ARTMAP neu-al network architecture is described in detail by Carpenter et al ([1)). In this section
we only provide information that is necessary to understand the results developed here. Furthermore, to
facilitate the reader we abide by the notational conventions used in [1]. The ARTMAP neural network
consists of two ARTI modules designated as ART, and ART6, as well as an inter-ART module as shown
in Figure 1. Inputs are presented at the ART, module, while outputs are presented at the ARTb module.
The inter-ART module includes a MAP field, whose purpose is to determine whether the mapping between
the presented inputs and outputs is the desired one. If a = (al,..., am.) denotes a binary vector, the input
to the ARTa module is the binary vector

. . .C .. C

(a,a') = (al,. , . a',.., aM.) (1)

11-360

where
= 1-ai l<i<Ma (2)

This type of transformation, called complement coding, is necessary for the successful operation of
ARTMAP (for more details see [1] page 584). A field of nodes designated as F' receives the input vector
a and produces the input I for the ART. architecture. Hence, Foa acts as a preprocessor to the ARTa
module. The binary input vector I is subsequently applied at the F1 field of ARTa, designated as Fl'. No
such transformation (i.e., complement coding) is necessary for the output 0 which is directly applied at
the F, field of ARTb, denoted as F16. Field Fl' has 2M. nodes, field F1 has Mb nodes, the F2 field of ARTa
(F2) has Na nodes, the F2 field of ART6 (Ft) has Nb nodes, and finally the MAP field Fab has Nb nodes.
Fields F2' and F~b are the fields where compressed representations of the input patterns (the I's) and the
output patterns (the O's) are established, respectively.

We use the index i to designate nodes in the Fl field, the index j to designate nodes in the F'
field, the index k to designate nodes in the MAP field and the F2 field, and the index I to designate
nodes in the F,6 field. Hence, Z = (Z(jW,...,Z{Ma)j) is the vector of bottom-up weights converging to
node j in F2, z' = (zj',... ,Za 2 M)) is the vector of top-down weights emanating from node j in Fa,

Z = (Zk,... , is the vector of bottom-up weights converging to node k in F, z = (zl,... Z M)

is the vector of top-down weights emanating from node k in F2, and finally wi = (wji,..., wjNb) is the
vector of weights emanating from node j in Fa and converging to the nodes of the MAP field Fab.

For the properties of learning that we intend to develop it is important to understand the role played by
the top-down weights emanating from nodes in the F a field. A vector whose components are the top-down
weights emanating from a single node in F ' is called a template of the ARTa module. Consider now an
input I presented to the ARTa module and an arbitrary template of the ARTa module, designated as
z". A component of an input pattern I is indexed by i if it affects node i in the F, field. Similarly a
component of a template z- is indexed by i if it corresponds to the weight converging to node i in the
Fla field. Now that we have assigned indices to the components of I and za, we can clearly define the
set of indices for which the corresponding I or z' components are one. Based on this definition we can
identify two types of learned templates with respect to an input pattern I: subset templates, and mixed
templates. A template z' is a subset of pattern I if the set of indices for which the Za components are equal
to one is either a subset of, or equal to the set of indices for which the I components are equal to one. A
template z' is a mixed template of pattern I if the set of indices for which the z' components are equal to
one is neither a subset, nor a superset of the set of indices for which the I components are equal to one.
Besides the templates defined above, we also define an uncommitted template to be the vector of top-down
weights associated with a node in F a which has not yet been chosen to represent an input pattern. Each
of the components of an uncommitted template is equal to one. With reference to an input pattern I, we
also designate nodes in Fa as subset, mixed or uncommitted depending on whether their corresponding
template is a subset, mixed or uncommitted template with respect to the input pattern I.

We now consider how the ARTMAP architecture is trained to map an input pattern I to an output
pattern 0. Let us present input pattern I at the Fl field, and assume that node J in F a is chosen to
represent the input pattern I. Furthermore, suppose that wjk = 1 for 1 < k < Nb. Then we say that
node J has no prediction. On the other hand if WJK = 1, wJ = 0 for k 5 K, and node K in Fb is the
compressed representation for the output pattern 0, we say that node J confirms I's prediction. Finally,
if WJK = 1, and WjA- = 0 for k $ K, and node K in F2 is the compressed representation for a different
output pattern 6 (i.e., 0 i 0), then we say that node J disconfirms I's prediction.

3 Modeling Assumptions

One of the modeling assumptions required for the validity of the results presented in this paper is fast
learning. Fast learning implies that the input/output pairs presented to the ARTMAP architecture are
held at the network inputs long enough for the network weights to converge to their steady state values.
It is worth mentioning that in Carpenter et al. ([1]) only the fast learning scenario is extensively treated.
Furthermore, a condition needs to be imposed on the ARTMAP network parameters to guarantee the

H- 361

validity of our results. Before we introduce this condition, let us first discuss the various ARTMAP
network parameters.

The network parameters in the ARTMAP architecture are: M', Mb, Oa, /h0, Pa, Pb, p. The parameters
M" and #a are used to define upper bounds for the initial choices of the bottom-up weights in the ARTa
module. Similarly, the parameters Mb and 16 are used to define upper bounds for the initial choices of the
bottom-up weights in the ARTb module. In particular,

1
0 < Z ,(0) < , + M (3)

1

0< Z'(0) < + M (4)
where the parameter M should be larger than or equal to the maximum-size input I (i.e., M > III), and
the parameter M u should be larger than or equal to the maximum-size output 0 (i.e., M a, > I). Note

that Il designates the size of the input I, while 101 designates the size of the input 0. The size of a binary
vector is defined to be the number of its components that are equal to one. For simplicity of the discussion
contained in this paper we choose

a a 6 - b

Z13(0) - a Z(O) = ak (5)
where

a,> >a2 .>N. (6)

a b > a b > ... > ab (7)
The above choice of the initial bottom-up weights forces the ARTa module to choose uncommitted nodes
in F a in the order, 1,2,..., N; it also forces the ARTb module to choose uncommitted nodes in Fb in the
order, 1,2,..., Nb. The initial top-down weights in ARTa and ARTb, as well as the initial weights from
Fa to the MAP field Fab are chosen equal to one.

The network parameters pa, Pb and p designate the vigilance parameters in the ARTa, ARTb and inter-
ART modules, respectively. It is worth pointing out that the vigilance paramneter in the ARTa module is
allowed to increase during training. In particular, pa starts from a baseline value equal to Pa and if an
incorrect map is established between an input pattern I and an output pattern 0, then p, is increased
above its baseline value of Pa.

Finally, the network parameters #a and /b have an effect on the nodes chosen in Fa and Fb to represent
the input pattern I and the output pattern 0, respectively. Specifically, when an input pattern I is applied
at the Fj' field of the ARTa module it produces an input Tja(I) at node j in the F ' field. This input is
given by the following equation:

f a'!II if node j is uncommitted

T]I if node j is not uncommitted (8)04+1Z71

The ARTa module chooses the node in Fa that maximizes T7'(I). That is, node J in F2' is chosen to
represent the input pattern I if Tj(I) = maxj{Ta(I)}. Similar statements are valid regarding the selection
of nodes chosen in F2 to represent the output patterns 0 presented at the ARTb module.

The parameter Mua may assume values in the interval [Ma, oo), while M,, may assume values in the
interval (Mb, oo). The parameters /3a and /3b may take values in the interval (0, oc). The baseline vigilance
parameter fia may assume values in the interval [0, 1] ; which implies that Pa takes values in the interval
[Pia, 1]. Since we are only focusing on many-to-one maps the value of the vigilance parameter Pb is taken
to be equal to one. Finally the inter-ART vigilance parameter p takes values in the interval (0, 1]. Our
results are valid for any set of the parameter values in the aforementioned ranges with the exception of the
parameter /a, which needs to be constrained further to satisfy the following assumption:
Assumption 1:
In the fast learning ARTMAP case, an input pattern I that is presented to the ART,, module chooses subset
nodes first, prior to choosing any mixed nodes.

It is shown in [3] that if /3a satisfies the following constraint, then Assumption 1 is valid.

11-362

II#

/3.5 max {M - 1, 1 } (9)

In review, the results presented in this paper are valid for a fast learning ARTMAP architecture with
parameters Ma , Mub, 13b, Pa, Pa, Pb, and p with values in the ranges prescribed above, and small Oa parameter
values.

Small 3a parameter values correspond to 3a values that satisfy inequality (9), and consequently satisfy
Assumption 1. Before we proceed with the presentation of the results it is important to modify d4ightly
the rules of the ARTMAP architecture.

4 A Modification of the ARTMAP Rules

The results described in the next section are valid under the modeling assumptions of Section 3 and
for the following scenario: We have a collection of input/output pairs designated as (I,0'), (12,O2),
... ,(IN,ON) that we refer to as the input list. We want to train the ARTMAP architecture to learn

the following mapping: I to 01, 12 to 02, and eventually IN to O N . To do so, we present the input
list repeatedly to the ARTMAP architecture. That is, we present P1 to ART,, and 01 to ARTb, then 2
to ART,, and 02 to ARTb, and eventually IN to ART, and ON to ARTs; this corresponds to one list
presentation. We present the input list to ARTMAP as many times as it is necessary for the architecture
to learn the desired map. The order of presentation of the input pairs within the list is not essential,
as long as all the pairs in the list are presented within every list presentation. It is important, for the
aforementioned scenario, to be able to determine when the learning process is completed. Hence, for the
ARTMAP architecture and the aforementioned scenario we have:
Definition 1:
When a list of input/output pairs is repeatedly presented to an ARTMAP architecture, the learning process
is declared complete if every input pattern from the list chooses a node in the F2 field that satisfies the
direct-access, no-learning conditions. A node j in F a chosen by a pattern I satisfies the direct-access,
no-learning conditions if (a) node j is the first node chosen in F' by pattern I, (b) node j is not reset,
and (c) the weights corresponding to node . (i.e., Zja's, zja's, and wj's) are not modified. Conditions (a)
and (b) are the direct access conditions and condition (c) is the no-learning condition.

In the sequel, we present the ARTMAP rule that causes a confusion as to when the learning process
is complete. Furthermore, we state a modification of this rule, denoted as Modification 1, which clarifies
this confusion (for more details regarding this issue see [31).
ARTMAP rule:
If an input pattern I is applied at the F, field, the initial choice in F' is the one node with index J
satisfying

Tj' = max(T)

If more than one node. -s maximal, choose one of these nodes randomly.

Modification 1:
If an input pattern I is applied at the Fl field, the initial choice in F a is the one node with index J
satisfying

Tj = mrax(T')
3

If more than one nodes is maximal, choose the node with the lower index.
It is worth pointing out that Modification 1 of the ARTMAP rules does not alter the capabilities of

ARTMAP to achieve any mapping between a binary input space and a binary output space. However,
if we follow the ARTMAP rules with Modification 1 the categories produced will be different than those
formed if we follow the original ARTMAP rules. From this point on, whenever we refer to ARTMAP we
will assume that the original ARTMAP rules are followed, with the incorporation of Modification 1.

IH-363

5 Results for ARTMAP

The scenario under which the results presented here are valid was described at the beginning of Section 4,
and the modeling assumptions under which these results are true were mentioned in Section 3. The proof
of the results presented below can be found in [3].
Result 1:
Consider a list of input/output pairs, which is repeatedly presented to an ARTMAP architecture. Under
the modeling assumptions of Section 3, and in list presentations > x, where 2 < x < Ma

" a: If an input pattern I chooses a node in Fa with corresponding template size < x - 2, then this

node confirms I's prediction.

" b: Size-(x - 1) templates can not be created in the ARTa module.

" c: Size-x templates can not be destroyed in the ARTa module.

Based on Result 1 we can show that in ARTMAP, under the assumptions of Section 3, learning is
completed by the end of the (Ma - 1)-th list presentation. We state this result below, and we name it
Result 2.
Result 2:
Consider a list of input/output pairs, which is repeatedly presented to an ARTMAP architecture. Under the
modeling assumptions of Section 3, learning in ARTMAP will be completed by the end of the (Ma - 1)-th
list presentation.

If we are dealing with an ARTMAP architecture, whose baseline vigilance parameter Pa is such that
[Mafi] > 1 ([y designates the smallest integer greater than or equal to y), then we can prove results that
are stronger than Results 1 and 2. We state these results below as Results 3 and 4.

Result 3:
Consider a list of input/output pairs, which is repeatedly presented to an ARTMAP architecture with
baseline vigilance parameter Pa, such that [Ma Pal > 1. Under the modeling assumptions of Section 3, and
in list presentations > x, where 2 < x < Ma + 1 - [Maj6j

" a: If an input pattern I chooses a node in Fa with corresponding template size < [Ma Pal - 1 + x - 2,

then this node confirms I's choice.

" b: Size-([Maa] - 1 + X - 1) templates can not be created in the ARTa module.

" c: Size-([Maal - 1 + x) templates can not be destroyed in the ARTa module.

Result 4:
Consider a list of input/output pairs, which is repeatedly presented to an ARTMAP architecture with
baseline vigilance parameter Pa, such that [MaPa] > 1. Under the modeling assumptions of Section 3,
learning in ARTMAP will be completed by the end of the (Ma - rMaa])-th list presentation.

6 Conclusions

In this paper we considered the ARTMAP architecture for the fast learning case, and under the assump-
tion that subset nodes are chosen prior to mixed nodes in the ARTa module. Furthermore, the original
ARTMAP rules were slightly modified in order for us to define, in a meaningful way, the "end of the learn-
ing process" in ARTMAP. Finally, the type of mappings that we focused on were many-to-one mappings,
which are of interest in pattern recognition applications.

The most important result proven was Result 2. Result 2 states that in ARTMAP, and under the
above conditions, learning of the mapping implied by a list of input/output pairs, repeatedly presented to
the architecture, will be completed in at most Ma - 1 list presentations. The parameter Ma corresponds

1-364

to the number of components of the input patterns that are equal to one. For the case where the baseline
vigilance parameter #,. is such that [Mafia] > 1, a result stronger than Result 2 (i.e., Result 4) was proven.
In particular, for large M, values and p values close to one, Result 4 is much more powerful than Result
2. More specifically, if Ma = 1000 and a = 0.8, then Result 2 predicts an upper bound for the completion
of learning a list of input/output pairs equal to 999 list presentations, while Result 4 predicts an upper
bound for the completion of learning a list of input/output pairs equal to 200 list presentations.

Acknowledgments: This research was supported in part by a grant from the Florida High Technology
and Industry Council, in part by a grant from the Division of Sponsored Research at the University of
Central Florida, and in part by a grant from Boeing Computer Services under contract W-300445.

References

[1] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised Real-Time Learning and
Classification of Non-Stationary Data by a Self-Organizing Neural Network," Neural Networks, Vol.
4, No. 5, pp. 565-588, 1991.

[2] S. Grossberg, "Adaptive Pattern Recognition and Universal Recoding II: Feedback, Expectation,
Olfaction, and illusions," Biological Cybernetics, Vol. 23, pp. 187-206, 1976.

[31 M. Georgiopoulos, J. Huang, and G. L. Heileman, "Properties of Learning in ARTMAP," Neural
Networks; to appear.

inter-ART module

ARTa i 7 Fab I ARTb
module€I I b module

1 i

Figure 1: A block diagram of the ARTMAP architecture

11-365

Minimal Training Set Size Estimation For
Sampled-Data Function Encoding

Aleksander Malinowski, Jacek M. Zurada
Department of Electrical Engineering,

University of Louisville, Louisville, KY 40292, USA
e-mail: akmai0l@starbase.spd.louisville.edu, jmzuraO2@ulkyvx.louisville.edu

Abamact A new approach to the problem of a-dimensional function approximation using two-layer neural network Is
presented. The generalized Nyquist theorem Is Introduced to solve for the optimum number of learning patterns in n-di-
mensional Input space. Choosing the smallest but still sufficient set of training vectors results In the reduced number of
hidden neurons and learning time for the network. Analytical formulas and algorithm for training set size reduction are
developed and illustrated by two-dimensional data examples.
1. Introduction

Neural networks as approximators of input/output relationships among many variables are currently under intense
investigation, with emphasis on their approximation capabilities and performance for different network architectures
and learning conditions 111. Generalization and approximation without specifying equations and coefficients are in-
deed very promising features of neural networks, particularly in cases where the unknown model describing a plant
is complex and training data abundant. Due to their ability of generalization, multilayer feedforward neural networks
(MFNN) are commonly used for this purpose [21, [3].

Papers on the subject of approximation using MFNN were published lately [4], [51; however, they do not focus on
the size minimization of the training data set. The frequency-based analysis approach for training set pruning is pro-
posed in 161, with the emphasis on choosing the neuron transfer function such that its frequency spectrum is similar
to that of an approximated function, and no conclusion for sufficiency of reduced training data set size is derived. Pre-
liminary heuristic solutions of this problem along with single variable function examples have been published in [7]
and [8).

This paper offers a generalization of an analytical approach for multidimensional input space. An analytical ap-
proach based on the generalization of the sampling theorem is applied to function approximation using MFNN. An
analogy between time-dependent functions and single variable functions is made and then expanded into multidimen-
sional space. An estimated minimum sampling frequency for MFNN training can then be fok for a required approxi-
mation accuracy. The results can be used for reducing the number of data required in a nebal network training set.
The experimental part of the paper illustrates the use of this method.
2. Sample Data Theorem For Sampling Rate Evaluation

The well-known Sampling Theorem (non-periodic signal case) states that: A functionf(x) which contains no fre-
quency components greater thanfo Hz is uniquely determined by the values off(x) at any set of sampling points spaced
at most 1l(2fo) seconds apart [91, [101. Sampling rates defined for time signals can be extended to other independent
variables so that the generalized theorem for function approximation can be obtained. Each dimension of the transform
will then correspond to one dimension of the original domain.

Obviously, sampling with a certain frequency is needed to restore the signal from the samples taken. However, the
theorem refers to the ideal case where the input signal has a finite high frequency boundary so that it can be accurately
restored from samples taken using the inverse Fourier transform. Real-life signals are not band-limited, and other
mechanisms than Fourier transforms are used for restoring them. The developed algorithm is based on the assumption
that only certain fraction of information about the sampled-data function is necessary for the approximation with re-
quired accuracy.
M.. Continuous Function Case

Let the continuous function to be approximated be given as f(x),
() :)- % where M C RN

" -(X M J I .. ' M A K) X (' M 2 .. X M A) X ... X (X M W N ". ' A M) (1)

and let Bi be the range of the i-th variable xi:
Bi :h xmxi - xjr i (2)

The multidimensional Fourier transform of f(x) is defined in following way as
-VMAZIr XJAKA2 ZMAAW"

1
M4Z1 15542 XAtZJF(0) A I . f(x1 ,xv . xN)e~11 C e222 ... e2-*eN d'ld2 dxN (3)

"MWI xM112
1iMMN

where 9 * 1*1,). . N]

II-366

The criterion for minimum sampling frequency estimation can be formulated in a number of ways. First, the basic
formula for optimization should be defined as a norm evaluating the information density at particular frequencies.
This norm as defined in (4) has a meaning of generalized energy density.Ed~g) & W g2 (4)
We also use function (5) for evaluating the amount of information enclosed by the frequency band 9. In case of a multi-
dimensional band-limited function, the energy, E(Q), can be computed by integrating the generalized energy density
(4) in the frequency domain in spherical [111, or more precisely, ellipsoidal coordinates within an N-dimensional ellip-
soid. For example, in the simplest case assuming that function F has isotropic properties in each dimension
(o-=0wjw 2 =N), this yields

1 2X 2X 2X

E(J J 1 .f f(rc~cs 2 .csN~~wi#cs~.o# f''* aws~sn.Sn#N)2j(.)d# d#l...#N -Id'
,-J0 #1-0#2-0 #N-- (5)

where J(r, *1, , ... , 4yN) is a term resulting from the change of the integration coordinates from cubic to spheric [121.
However, in general it cannot be assumed that the approximated function will have isotropic properties. It may then
be reasonable to choose smaller sampling densities in some dimension. The function (5) becomes more complex due
to different boundaries in each dimension

I 2X 2X 2x

f t* I I f ... J Fv(.Is#cM# 2 .. co#,N1 w2rsm#Icos# 2 .001#,N- 1 ,, . ..n# m2 sW#N-2J(.W1I4 dr

,-O #,-o#2-0 *N-,-o (6)

where J(r, fi, c 2 4N) is a term obtained as previously from the change of the integration coordinates from cubic
to spheric.

Let CNFO called the information rate factor be the fraction describing the required minimum energy content of the
signal sampled with frequency 0, divided by the energy ETOr of the original function (or function sampled with very
high frequency). The information rate factor is a theoretical measure of the information amount needed to approximate
a function with a required accuracy. Function f(x) needs to be sampled with frequency Q satisfying condition (7).

E(D) (7)

where the frequency QMAx " [wl, w2, ... , wN]mAx is high enough, so that

- 0 and E(g~) - (8)

Let us now express the total number of samples in the training set. The number of samples taken per dimension,
Mui, is equal to

MLIOJ - (2Bp, + 1) (9)

The total number of sampled data, ML, can be expressed as
IV

MLou,0.O) ML.j (10)
i-i

The objective is to search among vectors Q which satisfy the condition (7) and minimize the value of ML defined
in (10). The vector GopT" [!= (02..., WN]OpT which is the solution to the given optimization problem contains the
minimum sufficient sampling frequencies in the new training data set. The final sampling interval, Axi, is different
for each dimension depending on the chosen frequency wi.

Ax W 1 (11)

2.2. Sampled Data Function Case
Let us consider data acquired by measuring or sampling a plant characteristic for which no closed form formula

exists. Assume that data is collected with intervals 8x -- bxl, x2, ... , 8xN on 9), so that there is a given data set I'
for estimation

Y* {((Xlt.l X2k2,..,XNJ, YI.k2,_ AN), k, - O.X1, k2 = O.K 2 k. N - O._KN} (12)

where

xiki - xMW, + 6x i ki and Ki = i 1 (13)

The set Y contains the entire information available about the function to be approximated. The final training set after
calculations of minimum sufficient sampling density will be its subset.

Let us redefine the results for continuous functions for discrete data sets. Now the information about the frequency
domain can be obtained using the discrete Fourier transform (DFT) as follows:

11-367

'I jr2 XN 2j 11 i2.._ NIN)

, T17y y ... Z &2,--AN e VN -(14)I J-k2-1 ,N-1

where the vector I is the multidimensional discrete frequency equal to

I' [1, 1-.-N IN nI T , " - (15)

The set . contains the band-limited spectrum of the approximated function due to the finite sampling density in the
data available. Therefore, no information about higher frequency components exist. For this reason, initial sampling
rates QtMAX should be chosen carefully. The value m corresponds to LmAx, where LmAx-j[Ii, 12, .., INImAX is
the maximum discrete frequency in the DFT domain.

LM'rl d. K- _ (16)
T

The norm for information density for discrete functions can be defined as in (17)
Ed(0r ") In(12

(17)
The amount of information which remains after narrowing the sampling boundary is evaluated by (18), where the
summation is performed over the samples from the interior of the multidimensional ellipsoid and corresponds to equa-
tion (6) for continuous data sets.

E(O i 2 (18)

in (18),
{kl k2 k'2 (19)

1G) (] 2 J I ,

Let us note that li is an integer number, and it corresponds to the sampling frequency
(20)

where

. , and i - (21)

and to the final number of samples per dimension, MLI.

2L, B , + 1 (22)

The term ML in (10), which is the number of sampled data tabularized for training, can be evaluated as

L(L) -, (23)

The optimization problem is formulated in a similar way as previously in (10) with constraints (7)
E(l)zg;- CMM (24)

and reduces to the minimization of ML in (23) while satisfying the condition (24). One of solutions is proposed in the
following section.
2.3. Simplified Approach for Estimating Minimum Sufficient Sampling Rates

Equation (18) provides the exact result for the amount of information present in frequency components lower than
1i, 12, .. IN. However, it takes a lot of computational effort to evaluate this function. Therefore, a simplified expression
is shown in (25) below for the multidimensional rectangle inscribed into the multidimensional ellipsoid as is also pro-
posed in [11].

G(4 . IFa I2 (25)
k-i2-1 kN-I

The requirement for sufficient information replacing now (7) and valid after narrowing the frequency boundary re-
duces to

up= a CM o (26)

Function G(l) produces values higher than E() because summation is performed over a larger volume. However, the
difference is not significant because the energy value below the frequency boundary are usually small, and the addi-
tional energy calculated using (25) instead of (18) is not significant. However, if the condition

I-368

F(D pr - 0 (27)
is not satisfied, then the power spectrum has to be evaluated using formula (18).
3. Algorithm For Estimation Of The Information Rate Factor

The last constant which has to be estimated is CFo from equations (7), (24) and (26). This constant defines the
minimum sufficient amount of information after narrowing the function frequency spectrum in terms of its energy.

Let us define mean square average error of approximation, MSE, as

V td()- -2)

MSE * (28)

where P is the number of data entries, d(P) is the known function value for input vector x(P), and o(P) is the value com-
puted by the neural network. Error defined in the sense of (28) is based on the energetic distance between the original
and the approximated function and is also useful for expressing the training termination condition. In order to deter-
mine the value of MSE, it is necessary to know the average power of the original function, PTOT. PTOT can be calcu-
lated from the Fourier power spectrum in the frequency domain either in the x domain using formula (29) for the con-
tinuous case, or (30) in case of discrete data.

zMAXrI 2MIZ2
1MAZrN

f f ... f fAXP 1,x2 XN) 2
JZdX2 ... x

P H I " vl "m2 2
I N (29)

i-I
P

, P-1 (30)

The terms of integration in equation (29) or summation in (30) evaluate the same energy, which is used in the denomi-
nators of conditions (7), (24) and (26).

The required approximation accuracy W links together MSE and PTOT.
MM (31)

The reason for normalizing the variables defined in (28) and (30) is to allow easy comparison of results of training
and to evaluate the quality of the approximation without considering the number of patterns used each time. Finally
we have the relation

CMM =1- I (32)
which links the final condition for training (28) with equations (7), (24) and (26).
4. Algorithm For Finding Milimum Sufficient Sampling Rates

The following algorithm can be used for finding the minimum sufficient sampling rates is based on the theoretical
assumptions presented above:
STEP 1. Sample given function or measure plant characteristics with certain input data step with excessively sampling to sufficient

allow for generalization. f(x) tf(k) (8x is a vector of sampling intervals).
STEP 2. Compute DFT of the sampled function. fk) 0 F)

Note that the upper boundary of the Fourier transform depends on the sampling interval 6x. Condition (8) has to be satisfied.
Therefore, if the sampling interval is too long, the significant part of the frequency response is lost.

STEP 3. If the frequency response is not small enough at the highest frequency in comparison to lower ones, i.e. (8) is not satisfied,
first two steps must be repeated for 5 to 10 times more frequent sampling in the appropriate dimensions.

STEP 4. Complete the information measurement function G() as in (25) and normalize it so that its maximum is equal to 1.
F(l) 0 G0()

STEP 5. Evaluate CrrqO and MSE for particular requirements of approximation accuracy V using (32).
STEP 6. Check for what frequencies function El) from (26) reaches the levels evaluated in the STEP 5.

{1) 4 11: EQ) > Cnio Emr)
STEP 7. Solve forl which produces minimum ML in (23) using the set of 41) satisfying condition from STEP 6.

lor 4 1: ML(l) a min{ML)I} over all 16{I}.
STEP 8. Choose the sampling atelp slightly higher than those corresponding closely to frequencies computed in STEP 7.
STOP.

If there are problems with convergence, the MFNN architecture should be changed or the learning constants de-
creased. If the approximation error after completed training is excessive, sampling steps should be decreased by choos-
ing more severe constraints than given in (32).

II-369

S. Experimental Results
A series of experiments were conducted to confirm the theoretical results and to test the heuristic guidelines pro-

posed for sampling rates. A MFNN with one hidden layer has been used for a single-variable function approximation.
The experiments were performed for approximating one- (7-81, and two-dimensional functions using neural network
architectures with different numbers of hidden neurons and for different final error conditions which provide more
insight into the practical use of the method.

To prevent saturation of neurons and to provide similar conditions for each test, the scaling of input data was per-
formed so that normalized input variables varied form 0 to 1. Since bipolar continuous neurons were used, it was neces-
sary to scale functions to be approximated to the range between -1 and 1. Standard and modified (lambda learning
(13D error backpropagation algorithms were used for learning. Functions were first sampled with very high density
for evaluating the discrete Fourier transform and for evaluating the approximation accuracy after completing training.
Before each training with a new sampling step, a new learning data set was created and network weights were initial-
ized once again. Each training was performed until it reached the MSE error set previously.

Theoretical estimations were compared with frequencies obtained from experiments. As anticipated, there exists
an optimal number of learning points for a given approximation accuracy. This number of points can be eva-
luated from the integral of its Fourier transform (25).

Fig. la shows an example function used for approximation. Fig. lb depicts one quadrant of the frequency domain

3'3 1.00 J2IS

1 t4

1~ 202

S

6 t
35j j

-1 100.94 lollt

-2 039 a.

"$3 P Z."- 2 0.90
LOP 1-.0201 0

a) -i.0-1
.
0

11 b) 12 200200 II 1 1
0

2 2 1012

Fig. 1. Approximated function f(x) as in (33) (a), Fig, 2. Amount of energy ENoRM(I) covered by bounded frequency

and its Fourier transform (b). Pror=l.12. spectrum. f(z) as in (33). Profiles for ENOltm>0.90.

of the magnitude of its discrete Fourier transform. Function values were generated using formula (33) with the sam-
pling interval 6xi=0.005 in each dimension (Kt=K2=400 samples).

A Vz) = I X2 + o.IX ' X , - X.2, - -I . (3 3)Ijx + 5X22x0

The normalized energy function of f(x) given by (33) covered by the frequency I is shown in Fig. 2. The normalized
energy has been computed from the left side of condition (24).

The average power, PTOrT, was calculated for the given function using the formula (30); it is of value PoT:r=l.12.
A MFNNs with 2 inputs, and 20 hidden neurons was trained to the error MSE=0.08 as defined by the formula (28).
W and CMipO were then calculated using formulas (31) and (32), giving the values: W=0.07, and ClNPO=0.9 3 . The
optimum number of samples for each dimension has been found from Fig. 3 by finding the minimum of ML over fre-

12A1 2 1(1 I 11 JA JA 111 1 -!,alE'W/Ult

ML E

400 0 10

301 I1

0a) 28t '2 6- 0__ ____ ___

Fig. 3. Number of samples in learning set in area of Figl. 4. Neural network performance Fig. S. Neural network performanc
nomalized E01,12)>CrNw. f (z) as in (33). (MSE) aflt training in versus sam- (MAX) afte training versus sam-

Pr,,fies fot 0,95 CIN4VO0.93 (a), pling frequencies. MSE=O.O6. f(s) ping frequencies L MSE---O.08. f(x)
and Cue~jo .P3 (b). as in (33). as in (33).

quencies satisfying condition (26) which gives the contour line bounding the domain of solution. This figure shows
the contours for the number of data entries in the training set, ML, for different Ii and 12 which satisfy the condition
(26). The minimum of ML can be seen at 11=4 and 12=8. It can be evaluated from equation (22). This corresponds to
9 samples for variable xt and 17 samples for variable x2.

MFNNs with architectures described above were trained for different numbers of samples in each dimension to
verify the theoretical results. The results of training are illustrated in Figs. 4-8. Fig. 4 and Fig. 5 show the quality of
training in terms of MSE and the maximum error achieved during approximation verification based on a very large

0I-370

testing set (500x500 samples). It can be seen that the error decreases dramatically when l11>2 and 12 >3. This corre-
sponds to 5 and 7, respectively, samples per dimensions.

Fig. 6 shows the number of training steps required for the learning process, while Fig. 7 shows only the number of

50 h" 2 3 4 IS 6 7

0 0 3

Fig. 6. Number of training steps Fig. 7. Number of iterations Fig. 8. Number of training steps
versus sampling frequencies; f(x) versus sampling frequencies; versus sampling frequencies for
as in (33). f(x) as in (33). area of sufficient learning; f(x)

as in (33).

iterations (cycles). After achieving certain frequencies of sampling the function to build a training set, the number of
iterations does not increase or increases only slowly, while the overall number of steps still increases due to the growing

number of data entries.

Fig. 8 summarizes the computational experiment. The number of iterations for the sampling frequencies I providing
accurate learning is displayed. Local minima can be observed for the frequencies !112 and 12=5 for the first MFNN
and for I1 =2 and 12=6 for the second. This corresponds to five and eleven, and five and thirteen samples per dimension,
respectively. This is in agreement with four and eight samples per appropriate dimension. The obtained results are
close enough to those evaluated previously using the derived theoretical algorithm and displayed in Fig. 3.

6. Conclusions

The results of the computational experiments and theoretical studies show that the generalized sampling theorem
can be applied to the approximation problem of a sampled-data function using neural networks. The smallest, but still
large enough for the sake of accuracy data set should be selected, and then network model can be found through training

114-15). Our results indicate that least training sets with only some data from the large measured real-life data sets
are required to obtain successfully trained neural networks capable of accurate approximation of sampled-data func-
tions.

7. References

[1) E. J. Hartman, J. D. Keeler, J. M. Kowalski, "Layered Neural Networks with Gaussian Hidden Units as Universal Approxima-
tions," Neural Computation , 1990, pp. 210-215.

121 S. Shekhar, M. B. Amin, "Generalization by Neural Networks," IEEE Trans. on Knowledge and Data Eng., vol. 4, no. 2, April
1992, pp. 177-185.

[3] Y. Shin, J. Ghost, "Approximation of Multivariate Functions Using Ridge Polynomial Networks," Proc. ofInternationalJoint
Conference of Neural Networks Baltimore, Maryland, June 7-11, 1992, vol. 2, pp. 380 - 385.

[41 R. M. Sanner, J-J. E. Slotine, "Gaussian Network for Direct Adaptive Control," IEEE Trans. on NeuralNetworks; vol. 3, no. 6,
November 1992, pp. 837-863.

151 C.-H Choi, J. Y. Choi, "Construction of Neural Networks for Piecewise Approximation of Continuous Functions," Proc. ofthe
IEEE International Conference on Neural Networks; San Francisco, CA, March 28-31, 1993, vol. 1, pp.428-433.

(61 B. E. Segee, "Using Spectral Techniques for Improved Performance in Artificial Neural Networks," Proc. ofthe IEEE Interna-
tional Conference on Neural Networks, San Francisco, CA, March 28-31, 1993, vol.1, pp. 500-505.

17] J. M. Zurada, A. Malinowski, "Sampling Rate for Information Encoding Using Multilayer Neural Networks," Proc. of Interna-
tional Joint Conference on Neural Networks; Nagoya, Japan, October 25-29, 1993.

181 A. Malinowski, J. M. Zurada, "Minimal Training Set Size for Neural Network-based Function Encoding," Proc. ofthe Confer-
enceArtificialNeuralNetworks in Engineering, St. Louis, Missouri, November 14-17, 1993, pp. 149-154.

19) A. D. Poularikas, S. Seely, Elements of Signals and Systems; PWS-KEN'T Publishing Company, Boston, 1992.
[101 C. L Philips, H. T. Nagle, Digital Control Systems - Analysis and Design, Prentice Hall Inc., New Jersey 1990.
1111 H. C. Andrews, W. K. Pratt, K. Caspari, Computer Techniques in Image Processing, Academic Press Inc. Ltd., London, 1970,

pp. 157-161.

f12) T. M. Apostol, Mathematical AnalysisA ModenApproach toAdvanced Calculus Addison-Wesley Publishing Company, Lon-
don 1957, pp. 270-275.

1131 J. M. Zurada, "Lambda Learning Rule," Proc. of the IEEE International Conference on Neural Networks, San Francisco, CA.
March 28-31, 1993, pp. 1808-1811.

[141 J. M. Zurada, Intoduction toArtiicial Neural Systems, West Publishing Company, St. Paul, Minn., 1992.
[151 J. Hertz, A. Krogh, R. G. Palmer, Introduction to the Theory ofNeural Computation, Addison-Wesley Publishing Company,

1990.

11-371

Constructive Uniform Approximation of
Differentiable Vector-Functions by Neural

Network Methods

Moshe Shoam, Mark Meltser
Faculty of Mechanical Engineering

Technion-Israel Institute of Technology
Haifa, Israel

and
Larry M. Manevitz

University of Haifa Polytechnic University
Haifa, Israel New York, NY

Abstract

A method for constructively approximating any twice differentiable
function in the uniform (i.e. maximal error) norm by successive changes in
the weights and number of neurons in a neural network is developed. This
is a realization of the approximation results of Cybenko, White, Gallant,

Loshno and others. The constructive approximation in the uniform norm
is more appropriate for, e.g. certain robotic applications, and stands in
contrast with more standard methods, such as back-propagation which
approximate only in the average error norm.

Introduction
It is now known that an appropriate neural network can approximate to

arbitrary accuracy almost any reasonable function. On the other hand, learn-
ing methods, most notably "back-propagation" give a gradient descent method
to find the parameters of the network based on examples. However, these two

results are not symmetric; the first result (existence) guarantees arbitrary ap-
proximation in the maximal error norm; while the second result (constructive)
finds an answer by doing gradient descent in the average error norm.

The reason for this, of course, is that the average error is a differentiable
function; so the chain rule, etc. can be used to derive the back-propagation
algorithm. Trying gradient descent on the maximal error function seems a

priori impossible because the function is non-differentiable. However, note that

II-372

if it could be done, for many applications one might expect the approximation
to be superior using the maximal error norm. For example, in many robotics
applications, it is not sufficient that on the average the performance is accurate;
one requires that the maximal deviation be within certain (e.g. safety) bounds.

In this work, we derive a constructive methodology for approximating in the
maximal error norm; thereby in principle solving this problem. To do this, we
apply a somewhat more sophisticated theory of differentiation due to Danskin,
developed in the context of game theory. So in fact, we are able to do a form
of gradient descent on a function since it is differentiable in this more general
sense.

We also approach the question of the appropriate architecture for a problem,
by showing how to increase the number of neurons in the hidden layer in such
a way as to decrease the maximal error.

The establishment of these results suggests the following mechanism. One
starts with a given netwcrk with a relatively small number of hidden neurons.
One then uses our result to follow a gradient descent until a local minimum on
the maximal error function is found. If this error is not sufficiently small, one
then uses the other result to increase the dimension and change the weights in
such a way that the maximal error decreses. One can then continue with the
gradient descent again to reach a local minimum, again increase the dimension,
etc.

Actually, there are other possibilities opened by these results. Since we are
in a gradient descent situation, one can apply analogues of simulated annealing,
or of multiple searches from different starting points. One can imagine mixing
methods that allow some combination of searches for good local minima together
with jumps in dimension. (We have another result giving another suggestion for
increasing dimension.) On the other hand, the current results do not address the
issues of speed of convergence, and of robustness. That is, one has to address the
feasibility of following the recipe given by theorem 5 when one is not precisely
at a local minimum. Experiments are also needed to decide on the proper mix
of continuing to a local minimum in a given dimension and jumping to a higher
one.

Note that this method is not a variant of back-propagation, but a different
gradient descent method. One deals with all of the weights in the network
(from all levels) at once and calculates a direction to decrease the maximal
error directly from the known inputs that currently give the largest error. So
the change in the weights is not done recursively by levels, but all at once. (In
this paper, we developed the formulas for one hidden level, but they are directly
extendible for an arbitrary number of levels.)

We also point out that we are simultaneously arranging to minimize the
maximal error of each of the derivatives. However, our approach here is some-
what different than that of either [3] or [4] because we do not try to obtain the
approximation of the derivative as the derivative of the neural network approx-
imation; but rather as a direct approximation using additional outputs of the

11-373

neural network. In this case, a major virtue of this approach is its simplicity;
there is no need to deal with an analogue of Sobolev spaces appropriate for the
maximal error norm. On the other hand, one needs to know all the derivatives
at the sample data points.

The only result presented here which requires differentiability of the function
being approximated (in fact twice differentiability) is Theorem 5 which depends
on Lemma 2 where the hypothesis is used. In particular the gradient descent
method holds without this hyp.thesis

Since the proofs of the results are somewhat intricate and lengthy, in this
short paper, we omit them and simply state the results. The full paper [7]
should appear shortly.

Our work proceeds as follows: Theorem I is just a restatement of Cybc'iko's
theorem [1]. We then define and prove a slight variant of Danskin's theorem
(Theorem 2) which establishes the necessary generalized directional derivatives
that are needed. Theorem 3 is a technical result establishing how to construc-
tively calculate the gradient. Theorem 4 is included for completeness, and shows
how one can always increase the gradient even if one is not at a local minimum
b increasing the dimension. Theorem 5 shows (using the result of Theorem 3)
how to increase the dimension so that the error always decreases.

Results
Let M,, be a compact connected subset of R ' . Suppose g is a function from

M, to R'. If F is another function on the same domain and range, we can
consider F as an approximation to g and measure the quality of approximation
by one of several metrics. One possibility is the Hilbert norm ig- F11h =
fM. E' 1 [gi(x) - Fi(z)]2dX.

However this norm measures the average error and, as was discussed in the
introduction, one might want to measure the quality of the maximal error. This
is given by the uniform norm 11g - FII = maxZ, EM. ZLI Igi(x) - Fi(x)l .

We now specialize to our specific interest, i.e. we assume that g is continuous
and that F is generated by a neural network (NN-method). To be specific, let
us suppose that F is given by a three level neural network with n neurons on
the first layer and m neurons on the third layer and I neurons on the "hidden"
layer. We assume that each neuron in the hidden layer responds by a simple
sigmoidal f(t) = - r . We can denote the weights by the matrices WM) (aI x n matrix) for the weights between the first and second layer and W(2) (an
I x n matrix) for the weights between the second and the third layer and by

an 1- length vector # the thresholds of the second layer.
Thus our function F = (F,....Fmo) is given by the formula
F,(X, y) =E w2)f(U,(_, Y)),

where u1(x,y) = " W4.xj +i3.
The following vector valued version of the theorem of Cybenko [Cy] guar-

antees that arbitrary good approximations of this sort exist for any continuous

II-374

function in the uniform norm . (We note that this is also known to hold for
larger classes of functions in the Hilbert norm by the results of [8] and [2] etc.)

Theorem 1 (Cybenko) For any continuous vector function g : M - R'

and for any small (> 0 there exists a function F generated by the NN-methodsuch that JIg- FIJ < c

Our goal is to effectivize Cybenko's theorem , i.e. to show how to construct
such approximation in the uniform norm. We repeat that previous constructive
methods have worked in the Hilbert norm.

Thus, given a positive t, we need to determine the free variables W 1 , W2 ,
and J3 so that with these values the approximation is within 4.

We now denote by the vector y all of these free parameters; thus the param-
eters y are chosen from the space R(m+n+l)l , i.e. y = (YI, .. , Y(m+n+1)1) . Note
that the dimension of y is a function of 1; i.e. we allow for the possibility that
the number of hidden neurons changes.

We denote by $(x, y) and 0b(y) the functions
40(z, y) = E' I [g,(x) - Fs(x, y)12 and 0(y) = max-EM, 4(X, y)
Thus, the problem is to find y, minimizing 0. (Since it is easy to see that

there are positive constants CI, C2 such that CIJlg - FIJI < S(y) < C2JJ. - FJI
it follows that 0 as a norm is equivalent to the uniform norm.)

Theorem 1 shows that there exist choices of the parameter y (including the
choice of 1) so that 0(y) is arbitrarily small. The rest of this paper is devoted
to showing how to constructively find the y.

The construction of y is by a form of gradient descent. That is, given a
y we find a y2 with 0(y 2) < 0(yl). However, note that since 0'(y) is not
differentiable the standard gradient does not exist, and therefore none of the
usual mechanisms (e.g. back-propagation) are available to us.

To handle this problem, we follow the analysis originally introduced by J.
Danskin [5] in the theory of max-min. Let y be a direction (i.e. a unit vector)
in the space R(m+n+l)1. We define what we call the Danskin operator in the
direction -.

Definition: The Danskin operator in direction - of 0(y), (D-yO)(y), is

(Dy0)(y) = lim I[0(y + aY) - 0(y)]0+a

Theorem 2 (Danskin) Properties of the Danskin operator:
(i) If (D.y)(y) is negative at y, then 0(y) decreases in direction -y
(ii) For each point y and each direction 7 (D-.qb)(y) exists.
(iii) (D.,)(y) has the value

(D~ 0)(y) = max < 4(z,y),- >.
ZEX(Y)

11-375

[Here X(y) = {r E M, : O(x, y) = 0(y)} is the set of maximal points of the
function 0(r, y),
OY(z,y) = ($y,(z,y),.. O(+.+,),(z,y)) E R (' i'+ ')' is a vector of partial

derivatives 0., (z, y) = (z,y), and

< *y(z, y),-y >= -- 1i+n+)1y(z,y)7i is a scalar product in the space
R(m+,+ 1)1.]

We will need the following corollary as well.

Corollary 1 The Danskin operator (DO)(y) is a continuous function on the
variables I and y.

The following theorem provides the constructive rule for our version of gra-
dient descent.

Theorem 3 Let y' be an arbitrary point in R(m+n+,) with O(y') > 0 and let

ri= maxzEx(O,) 4 iY,(z,Y 1) , qi = minEx(yi) Oy,(z,y')

a1 = Z,.<0 q2 + Eq._O r2

and 02= r,<o r? + Eq.,>o qi

Then exactly one of the following holds:
(i) y' is a local minimum point of 0(y)
(ii) the function 0(y) decreases in a direction yO (we call it an antigradient

of 0(y) in the point y'), which is defined by coordinates

J - if r<0
7= --- if q, 0

0 if q, < 0 < r

Theorem 3 allows us to perform our version of gradient descent construc-
tively, but always keeping the same number of neurons. The next two theorems
tell us how to change the weights when the number of hidden neurons is in-
creased by one.

Theorem 4 Suppose yl isn't a lccal minimum point of 0(y) in the space R(m+n+') ,

and -y0 is an antigradient from the point y' . There exists a direction -Y E
R(m+n+l)(I+l) such that (DyiO)(y 1) < (DyoO)(y 1) . (This direction can be
found constructively.)

In order to consider the correct passage from a local minimum to a better
approximation with an increase in the hidden layer, we need to strengthen
the hypothesis on g to assume that g is in fact twice differentiable. We then
approximate not only g, but also its partial derivatives simultaneously. (This is
necessary for the proof of Lemma 2.)

11-376

Since the previous theorems of course hold in this case, this means that we
will have a constructive method for the simultaneous approximation in the uni-
form norm of both the function and its partial derivatives; under the assumption
that the function is twice differentiable. (For a different kind of approximation
to the function and its partial derivative see the papers [3] and [4].)

Sowenow assumethatgisactuallyoftheformg = (hl,.. .,hP, - O' o8hA _h

where h = (hi,..., hp) is a twice differentiable function.

We now add some notation:A.o(x, y) = g.(z) ,, -) W(2 ... r),

BS(,y) = (u (= 1.... 1) . Then *(x,y) =
EI'L A2(X, y) and

-2A,(x,y)f(ut(x,y)) if i = (s - l)t

4y,(x, y)= -2Bt(x,y)x, ifi = ml+(t-)n+j
-2Bt(x, y) if i = (m + n)1 + t

Lemma 1 If y' is a local minimum point in the space R(m+n+1)l and 0(y') > 0
, then the set oj maximal points X(y') does not include an open subset .

Theorem 5 Let a vector y' be a local minimum point of the function 40(y) in
the space R(-n+n+,)l and let 0(y') > 0 . Then there exists a parameter p > 0,
vectors B = (Bi,...,BI) E R' with Bi > 0 , X = (Al ,Am) E Rm with
11XII = 1, and P = (Pi ... ,P,,+I) E Rn+l such that a vector E R(m+n+l) (Q+l)

with coordinates

Syl_,+, - BtA, ifi = (s- 1)l+t
p A. if i = s(l + 1)
1- yj'_ ifi= m(l+ 1)+(n-)t+j
p if i = (m + n - 1)(l + 1) + j
YL-n, if i = (M + n)(l + 1) + t

P, +1 if i = (r+n+ 1)(+1)

satisfies the inequality O(P) < 0(y') .

In other words the new weights are given by

i,(2) (W(.),t - Bt A, (s l..M; t~ .. i
0 t = pA, (s=1,...,m;t=+l)

0~(,) W {,j (t .. i~j l..n)

P (t=l+ l;j= l,...,n)

6t (t=

11-377

From the preceding theorems we obtain a method for the construction of an
optimal vector of parameters y , Let y be a vector of parameters in the space
R(-+n+l)l .If y is a local minimum point of 0(y) then apply theorem 5 to take
the next update of y a vector in R(m+"+')('+') . If y is not a local minimum
point one can either use theorem 3 to move y to a local minimum point of 0(y)
in R(+n+l)l , or use theorem 4 to choose the new y in R(r +n+l)(I+l) (perhaps
by checking if this choice is better than that via theorem 3 , since theorem 4
does not guarantee a decrease in the value of 0b(y)) .

In more detail assuming y is not a local minimum point one can apply
theorem 3 to construct an antigradient yo .Then letting y(a) = y + cry one
can choose ao so that 0(y(ao)) = min 0(y(a)) . Then let the new y be y(a 0)

If one uses theorem 4 then one sets a direction -1 in R(m+n+l)(I+i) .Let
be

y y on R(m +n +')'
0 on R (m+

n+ l)(I+ I
)

Now we define 9(a) +a-yl and find al such that 0((cv 1)) = min (j(a))
Then one chooses the new y to be (aj) (in the space R(m+n+l)(l+l)) or

y(ao) (in the space R(m+n +I)l) according as O(((al)) or 0(y((ao)) is smallest
Now we can prove the following theorem .

Theorem 6 The above meihod gives a constructive solution of our problem.

BIBLIOGRAPHY
I . G. Cybenko, " Approximation by superpositions of a sigmoidal function
Mathematics of Control Signals and Systems, vol. 2, pp 303 - 314, 1989.
2 . K. Hornik , M. Stinchcombe , H. White , " Multilayer Feedforward

Networks are Universal Approximation" , Neural Networks , 2 , pp 359 - 366
1989.

3 . K. Hornik , M. Stinchcombe, H. White," Universal Approximation of
an Unknown Mapping and its Derivatives" , Neural Networks , 3, pp 551 - 560
,1990.

4. A. R. Galant , H. White," On Learning the Derivatives on an Unknown
Mapping with Multilayer Feedforward Networks " ,Neural Networks, 5, pp 129
- 138, 1992.

5 . J. Danskin , " The Theory of Max - Min" ,Springer - Verlag, New -
York , 1967 .

6. M. Shoham, C. Li, Y. Hacham and E. Kreindler, "Neural Network Control
of Robot Arm", CIRP Annals, 41/1, 1992.

7. M. Shoham, M. Meltser and L. Manevitz, "Constructive Uniform Ap-
proximation of Deifferentiable Vector-Functions by Neural Networks", preprint,
U. Haifa 1993.

11-378

Training of Elliptical Basis Function NN

M. Kokol, I. Grabect
Faculty of Mechanical Engineering

Ljubljana, Slovenia

Abstract
The radial basis function neural network (RBF NN) is extended to the elliptical receptive

fields of neurons. It is shown that an optimal response function of the elliptical basis function
neural network (EBF NN) is the conditional average of the dependent variable with respect to
the independent one. An analytical form of the conditional average is calculated for a special
case when the probability density function (p.d.f.) is represented as a sum of K multidimensional
Gaussian functions.

Learning algorithms are derived from relative entropy discrepancy measure between repre-
sentative and empirical p.d.f. The training is done in batch and adaptive mode.

Two-dimensional examples of approximated regression curves are presented and a compari-
son between radial and elliptical basis function NN is made.

1 Introduction

The idea of a localized basis function neural network was introduced by (Moody et.al., 1989). The
network provides a mapping of an independent variable X to a dependent one y. The topology of
RBF NN can be represented as a three-layer neural network with input, hidden and output layer.
Neurons in the input layer distribute input signals x to the neurons in hidden layer. A response
function of network with K neurons in a hidden layer is

K (o -qi/
= A i (1)i--1 Ui

The localization stems from limited receptive fields of neurons in the hidden layer. Commonly used
is the radial Gaussian basis function

Ri(x -qi) exp -Jim - qill 2/2ao'
7 ai = E ', exp -11m - %112

Here the vector qi and the scalar parameter ai describe the center and the width of the receptive
field of the i-th neuron. In contrast to this, the output neurons have linear activation functions.

Vectorii), "JA (), A(', A(')IIT represents the weights of the i-th output neuron. The performance of
the estimator (1) has been improved heuristically by introducing a linear term (Stokbro et.al.,1990)

Y = (Ai + B -(z -q)))i) (2
i=1

The main intention of this article is to show how a similar improvement can be introduced by a

mathematically more strict procedure of network performance optimization.

*Email: miran.kokolQfs.uni-lj.si
tEmail: igor.grabecQuni-lj.si

I-379

2 Regression model

The estimators mentioned above are special cases of a more general estimator based on localized ba-
sis functions. Thus, our approach generalizes this estimator to the class of elliptical basis functions,
including the Moody-Darken circle estimator as a special case. Accordingly, to introduce it, we
consider the joint-probability density function p(m, V). The optimal, non-parametric mean-square
estimator of a dependent vector variable is the conditional average (Grabec et.al., 1991)

)= E[y . (3)

Here, the joint vector z E ,n+f

V = 11 Ii
is defined so as to distinguish the given input from the estimated output variables. The joint p.d.f
p(z) has to be estimated from a finite number of samples {z 1 , z 2 , ... , ZN} by appropriate smoothing.
Rather than the commonly-used spherical filter function, we utilize here an elliptical, multi-variate
Gaussian basis function, which significantly improves the estimation of the p.d.f. as well as the
conditional average estimators derived form it. The joint p.d.f. is represented by

K
pr(z,Q, __,U)= (21)d/2 U j VlIexp (- (z-QJ)TB(z - Qj)). (4)

j=1

The vector Qi is the position-vector of the center, or briefly, center-vector. The matrix B deter-
mines the receptive field, and the amplitude Ui corresponds to the excitability of the i-th neuron.
The matrices B- have to be symmetric and positive definite. We split the center-vectors and the
matrices into input and output parts

Q= QQI 0,j (5)

(y(6)

By inserting the parametric p.d.f. pr(z) into the conditional average (3), we obtain, after some
cumbersome, algebraic manipulations (Taylor, 1974), the estimator

K

= (Y~ + X(Yx)3-E(T.)j(,T - Q(x) 3)) 'Z(.T), (7)
j=1

where the functions 1Zi(x) have the form

=..(UiI=)iI1/exp (-!(Z - q(.),)T .. (- (x) 1)) (8)

,=, UjiI.(ZZ)jI1/ 2 exp (-!(X - Q ()j)T_ -1,),(a (

This estimator is similar to the one introduced before heuristically (2), but it is derived from very
basic statistical concepts. It is reduced to the form (1) if the matrices B are diagonal: _i = ojd.
A particular elliptic receptive field is oriented in the direction of the greatest concentration of
empirical samples in the vicinity of the basis function center. Accordingly, a network with hidden
neurons having activation functions of the form (8) is called an elliptical basis function neural
network (EBF NN).

11-380

3 The learning rule

Let us consider a sample of N measured pairs of independent and dependent variables (zi, yi); i -
1,2,3...,N. Using this sample the parameters in estimator j(x, C) must be determined during the
training phase. The vector C merges all parameters in the estimator. The radial basis function
neural network is usually learned either by a supervised or by a hybrid method. In the supervised
learning scheme, a mean squared error is defined

N

and minimized on all included parameters (k ; k 1, 2,3,.... Optimization is done by solving a
system of nonlinear equations

04C
0

either in batch or adaptive manner. It is obvious that such minimization leads to a very diffi-
cult numerical problem even in the case of estimator (1). Therefore, an unsupervised learning
method is used for training the EBF NN. This method is based on estimation of the joint p.d.f.
p.(z, Ui, Qi, B-) on the empirical sample zi ; i = 1,2,...,N. For the estimation of the empirical
p.d.f. a Parzen window estimate is utilized. It is denoted by pe(Z)

N

Pe(Z) = 1 1 (z _z,)T(z Z,)
E (2w)(n+m)/2c(n+m) exp 2a 2 (9)

Accordingly, two p.d.f.'s are spanned over the sample space which are denoted the empirical p.d.f.
pe(z, zi) and the representative p.d.f. pr(z, C). They should be as close as possible to the true
p.d.f. which is, of course, unknown to us. However, if the empirical p.d.f. is well defined than it
reflects the major statistical features of the sample space. To guarantee that the representative
p.d.f. would reflect these features too, the two p.d.f.'s should be similar to each other. Therefore,
some measure of discrepancy between p.d.f.'s is to be used. Different measures are elaborated in
detail elsewhere (Kokol, 1993). In this place, a natural measure between p.d.f.'s is applied based
upon information entropy. This measure is relative entropy1 which is defined by the expression

= 0 pl(Z) d(n+m)z.J¢ = op.(z) In p-; - (10)

It is not the first time that relative entropy has been used in the theory of neural networks. The
learning of Boltzmann Machines and the learning of the Haken synergetic neural network is also
based on a relative entropy criterion (Hertz et.al., 1991; Haken, 1990). To give the pr(Z, C) a
meaning of p.d.f., a normalization constraint has to be imposed on excitability parameters

K
i=

The complete relative entropy discrepancy measure is then

p(= 0 () (11)
00 pc.(Z)

on i=1

'It in called sometimes Kuliback information or information gain.

1I-381

-NOE - Il

The constant A is the Lagrangian multiplier. Under the assumption that N is a large number, the
relative entropy measure can be simplified to maximum likelihood criterion

N KAr= np,(zi) +A (1- 1:Uj). (12)

j=1

We further utilize optimization procedures which require the evaluation of the gradients .
Af How-

ever, all mathematical steps are not needed here and the interested reader should refer to (Duda,
1973).

To write results of optimization procedure in concise form, a new function p(z, Q1, Bj, UI) is
first introduced by

U1 UV-i71 exp (-!(z - Q,)TB(z - Q,))p(z, Q,, Bj, UI) = E

-=1 U rjAIexp (-I(z - Qj) T Bjj(z - Qj))

By using this functicB, convenient batch equations for unknown parameters are obtained

1 N

U(t + 1)= - p(zi, Q, Bj, U,)
i=i

.7ji 1 Q U)

-4(+(zi - Q,)(z, - qj)T p(z3, Q1, B, U1)
B 1 (t + 1) UE=j p(zi, Q1, Bj, U,)

The training is a stochastic gradient descent procedure, so it can be done in an adaptive manner.
Using the Robinson-Monro stochastic approximation procedure we get adaptive equations

QI(t + 1) = QI(t) + a(t) p(zt+,Q,, B, BU) B (zt+l - Qi)

_B/(t + 1) B _(t) + B(t)p(zt+B, Q,,_h U,) (B 1 - (zt+1 - Ql)(zt+1 - Q)T)

Ul(t + 1)= Uf(t) + a(t) (p(zt+iQ J ' U -) _ 1_.k, Q&,
U, K k=1 U

The function a(t) depends on a number of iteration steps and must be appropriately selected to
ensure convergence. A simple discussion on how to choose this function can be found in (Traven,
1991).

4 Examples

The localized basis function NN has been trained on simulated samples generated by different
functions, with random noise added. In the examples presented, 500 training points were used.
Small dots in the figures denote training samples, whereas small circles show centers of basis
functions. Large ellipses or circles represent the range of receptive fields of neurons. The regression
curves calculated from (3) are drawn as thick lines. Fig. 1 shows the approximation of a linear

11-382

2- 2- ,-

o 0-

-2 -

-2 0 2 -2 0 2

Figure 1: Linear function approximated by 1 Figure 2: Linear function approximated by 5
elliptical basis function. radial basis functions.

function by just one elliptical neuron. The initial state of training was chosen randomly, and the
training was run on 5 batch iterations. The same function as in Fig. 1 is approximated by 5 radial
basis functions in Fig. 2. Satisfactory interpolation behaviour of approximation is observed, but
this is not valid for extrapolation mapping properties. Generally, a large extrapolation error is
characteristic of all approximations with radial basis functions. A more complicated example is
shown in Fig. 3. A parabolic distribution is approximated by six elliptical basis functions. The
picture is the result of 20 batch iterations from a random initial state. For the sake of comparison,
the same distribution is represented by radial basis functions, as shown in Fig. 4. The widths were
determined by a supervised method based on the minimization of regression error. The regression
curves in Fig. 5 and Fig. 6 are trained on 1000 points. It is obvious that good approximation
curves for different nonlinear functions can be obtained even with very a low number of elliptical
basis functions.

0- 0
.1

-2-2

-4 -4 '"

-2 0 2 -2 0 2

Figure 3: Quadratic function approximated Figure 4: Quadratic function approximated
by 6 elliptical basis functions. by 6 radial basis functions.

5 Conclusions

Comparison of the figures reveals that the performance of the RBF NN can be improved significantly
by introducing elliptical receptive fields of neurons. The probability density function is represented
better between the sample points, and therefore the regression error is reduced, when estimating the

1-383

10. 1.5

0- 0.5-

0

-10 L -0.5
-2 0 2 -5 0 5

Figure 5: Cubic function approximated by 10 Figure 6: Cauchy function approximated by
elliptical basis functions. 6 elliptical basis functions.

conditional average from the elliptical basis functions. However, the method is then computationally
more demanding, especially on account of matrix inversion.

6 References

Duda R.O., Hart P.E.: Pattern Classification and Scene Analysis.
John Wiley & Sons, New York, 1973.

Grabec I., Sachse W. (1991): Automatic Modeling of Physical Phenomena. Journal of Applied
Physics, 69, (6233-6244)

Haken H.: Synergetic Computers and Cognition
Springer-Verlag, Springer Series in Synergetics: Vol 50, Berlin, 1990.

Hertz J., Krogh A., Palmer R.G.: Introduction to the Theory of Neural Computation
Addison-Wesley, Redwood City CA, 1991.

Kokol M. (1993): Modeling of Physical Phenomena by Regression Neural Network. M.Sc. Thesis,
University of Ljubljana - Department of Physics, Ljubljana (In Slovene)

Moody J., Darken C. (1989): Fast Learning in Networks of Locally- Tuned Processing Units. Neural
Computation, 1, (281-294)

Stokbro K., Umberger D.K., Hertz J.A. (1990): Exploiting Neurons with Localized Receptive
Fields to Learn Chaos. Complex Systems 4, (603-622)

Taylor D.L.: Probability and Mathematical Statistics
Harper & Row, New York, 1974

Traven H.G.C.: A Neural Network Approach to Statistical Pattern Classification by
Semiparametric Estimation of Probability Density Functions
IEEE Trans. on Neural Networks, NN-2, (366-377), 1991

1-384

Counting the Number of Functions Realizable with
Two Hidden Layer Networks

Akito SAKURAI
Advanced Research Laboratory, Hitachi, Ltd.

Hatoyama, Saitama 350-03, JAPAN
E-mail: sakurai@hart.hitachi.co.jp

Abstract. We investigate the number of dichotomies realizable with multi-layer neural networks.
For n-real-input two-hidden-layer neural networks with h, units in the first hidden layer and h2 in
the second (h = h, + h2), where the units use the linear threshold function (Heaviside function), we
show that the networks can implement between -- hih2+nha)/2 (N) and " (h2+nhXlgh+21agocgh) (N)

dichotomies for almost any set of N input points but they can implement between 2 Ei
h
2

+nh3 (N-1)

and 2.:ffi0 (N 71) dichotomies for some set of N input points with infinite Lebesgue measure.

1. Introduction

One problem we confront when we applying neural networks to certain classification tasks is how to ensure the
networks' generalization capabilities. Valiant's PAC (Probably Approximately Correct) framework provides
bounds using the VC-dimension ([3],[4]). We obtained the VC-dimensions of multi-layer neural networks of
fixed number of or unrestricted number of hidden layers with fixed number of hidden units ([10],[11], [12])
and conducted experiments on the one-hidden-layer case to determine the validity of the theoretical results.
Suppose that one hidden layer network with h hidden units (linear threshold function units) is trained by
a backpropagation-like learning algorithm for randomly given input points. We found that, although the
VC-dimension and, consequently, the theoretically ensured generalization capability is a function of nh log h,
they behaved as a function of h with slower growth. We imagine that the reason is that, for a large portion
of sets of N < d input points where d is the VC-dimension of the set of neural networks, the number of
realizable dichotomies is far less than 2N, and this makes the solution space small so that many possible
solution exist close to the true one. This stimulated our research on the number of dichotomies of N input
points realizable by a set of networks.

When Cover defined the capacity of single n-input threshold (linear or nonlinear) unit networks (i.e., the
set of a threshold unit with varying weights and thresholds) as the maximal N buch that for any set of
N input points in general position in X n, the network can implement some half of all the dichotomies of
the pointset, he obtained the number of realizable dichotomies as exactly 2 E 0 (N- ') for any pointset
in general position and less than that for any pointset not in general position. Note that the number is
independent of the geometrical position of input points.

For the multi-layer network case, the relative positions of input points are important, since the number
of realizable dichotomies of N points is now not only a function of N but also a function of the geometrical
arrangement of the points. Suppose, for example, that we consider the set of all the n input networks of one
hidden layer with h hidden units and let N, = (1/2)(nh)(log 2 h)(l - O(log log h/log h) - O((log h)/n)) For
some set of N1 points, at least 2 N. p hO/2)nh dichotomies are realizable ([10]), but for another set of N1

points, only 2 = (N-1) < ((1/2)e log2 h)nh dichotomies are realizable ([6],[10]).
In this paper, we summarize the one-hidden-layer case and show new results on the two-hidden-layer case,

which are improvements on the results given by Kowalczyk ([6]) where only the first hidden layer units are
taken into account.

2. Notations

A linear tAreshaold element, hereafter referred to simply as an element or unit, is an element with k inputs
(z1,z2,...,zk), 1 output, and k + 1 parameters (wl,tw2,...,wk),andO which outputs sgn(YjkI..1 wizi -0),
where sgn(z) is the sign function. We consider only a feedforward network composed of threshold elements,
and all the networks we deal with in this paper have only one binary output. The inputs to the network or

11-385

the output from the network are called external inputs or external output to distinguish them from intra-
network inputs and outputs. The depth of a network is the length of the longest path from its external inputs
to its external output, where the length is the number of the elements on the path. We can naturally assign
the depth to each element in a network as the length of the longest path from the output of the element to
the external input, where the length is the number of the elements on the path. The depth of the external
output element is the depth of the network. A hidden layer is a set of elements with the same depth except
for the external element. A point z in Wn is on the output value boundary of a network when in any of its
neighborhoods there exists a point for which the network outputs 1 and another point 0.

A 0-1vector is a vector whose elements are O's and/or 1's. a . b is the inner product of two vectors a and
b. An N-pointset is a pointset whose cardinality is N, and #(P) or JP represents the cardinality of a set
P.

An N-tuple S of N points in IV is in the 0-th order general position or just in general position if there
exists only a non-trivial solution w = 0, wo0 = 0 for the simultaneous equation w .xi = wo (1 <i<n+ 1) for
any {xx,...+,) I C S (where S is interpreted as a pointset). It is in the first order general position if there
exists only a non-trivial solution w=O, wo=0, w1 =0 for the simultaneous equation w .xi = wo (1 <i<n),
w •xn+l = to0 +Wt1 and w •xn+2 = WO +w 1 for any fxl,..,x,+2) C S. The set 9Pj(n,N) C (7ln)N of
all the N-tuples in the i-th general position is open and dense, so that almost all N-tuples are in the i-th
general position. The above definition of gP0 is an extension of one in [6].

A dichotomy of a pointset or tuple S is a {0, 1)-valued function defined on S. A counting function fly(S)
is the number of dichotomies of S realizable by a function set (or a network set) F.

The following property of CP?, similar to the 9Po ([6]) case, holds.

Theorem 2.1. Suppose Y2 is a set of n-input 1-output two-hidden-layer networks with h, units in the
first hidden layer and h2 in the second. Then Ily,(P) as a function of P is constant on every connected
component of CP1 (n, IP).

3. Statement of main results

For the one-hidden-layer case, that is, the case when 71 is a set of n-input -output one-hidden-layer networks
with h hidden units, the upper and lower bounds of the counting function fly, (S) are easily obtained from
our previous results (181,[101, [61).

Theorem 3.1. Suppose h is even. For any pointset S in general position,
nh(Iogh+2og loh)

i=0

min{nh/2, IS1121

fly, (S) 2 t (151).
i--O

Theorem 3.2. For some pointset S in general position,

flr, (S) = 2Z (11 1)
i=O

What we are going to present here is the two-hidden-layer network version of the above theorems. Suppose
that T2 is a set of n-input -output two-hidden-layer networks with hl units in the first hidden layer and h2

in the second.

Theorem 3.3. Suppose hi and h2 are even. For any pointset S in the first order general position,
(hlh 2+nh)(Iogh+21oglogh)

i=O

min{(hlh 2+nh)/2, ISlI2

IHy2(S) >!2 (1Sf).
i=-

U-386

Theorem 3.4. For some pointset S in the first order general position,
hlh2 +2nh

1hl-2 (S) 2gt (and t- 1),
i=0

hh2+nh2~~l

llya,(S) 2 h,1 2 S

In the next two sections we give proof sketches of the above theorems. Before going to our proof, we just
briefly describe some implications of the results. Since a network in F2 contains W = (n + 1)hl + (n + h, +
1)h 2 + (h1 + h2 + 1) st h1h2 + n(h, + h2) weights and thresholds, the above theorem statements may be
thought as implying the following.

1. For almost all pointsets of up to W points, we can find a network to realize any of their dichotomies.
2. For some pointset of up to 2W points, we can find a network to realize any dichotomy in some half of

their dichotomies.

From the results for one linear threshold case, we imagine that we can store about two patterns per connection
(in probability 1/2), that is, we expect that

3. For almost all pointsets of up to 2W points, we can find a network to realize any in some half of their
dichotomies.

holds, but we still have no evidence to support or to reject it.

4. Counting function for almost all cases

We briefly exhibit ideas for our proof of Theorem 3.3. The basic technique used in the proof is similar to
the one used for the one-hidden-layer case in [8]. We are going to confine points whose assigned category is
1 by pairs of hyperplanes. The only complication is that we have to utilize two hidden layers to effectively
generate h1h2 confinements of a single point using h, + h2 hyperplanes. Intuitively, this is done as follows:

1. Divide the input space JV with h, parallel hyperplanes into h, + 1 subspaces. One subspace contains
nh2/2 points, and each of the other subspaces contains h2 /2 points.

2. Use h2/2 pairs of hyperplanes to confine nh2/2 points in the first subspace by confining n points by
every hyperplane pair.

3. Use h2/2 pairs of hyperplanes to confine h2 /2 points in each of the remaining subspaces by confining a
single point by every pair.

Suppose that we are given a pointset P in GPI(n, N) where IP = N and a dichotomy of P = P U Po.
P1 is a set of points which, when input to a network, should produce 1 as its external output. Let us call
points in P1 1-output points. Without loss of generality, we assume jPol _ 1P1 = (hIz 2 + nh 2)/2. In the
following, we show a way to find weights and thresholds for units g1,gi,...,g' in the first hidden layer
(the layer closer to the external input) and units g2, g',.. ,g, in the second hidden layer (the layer closer

to the external output). The weights and thresholds are only implicitly expressed in this paper in terms of
hyperplanes.

When an (n - 1)-dimensional hyperplane H is Ix : w • x = d) for some w, a hyperplane H + c means
Ix : w-x = d+c}. The positive side of the hyperplane is expressed by H + , that is, H+ = {x; w-x-d > 0},
and the negative side H-. < H, L > is a strip H + n L-.

(Step 1) Define h, parallel hyperplanes H 0 , Ho + p , . . . , Ho + Ph,-1 to satisfy the following conditions
where P0 = 0 and pi < pi+I:

nh2/2 1-output points are in Ho ,
< Ho + pi-, Ho + pi > contains h2 /2 1-output points for 1 < i < hi - 1.
Hi's do not contain any points in P.

Let us name these strips So = Ho , Si =< Ho + pi, ,Ho +pi > and Sh, = (Ho +Ph,-) + .

(Step 2) Define h2/2 hyperplanes H1,...,Hh,/2, so that each contains exactly n points in So without
duplication.

11-387

(Step 3) Suppose that 1 < i < hl and 1 < j < h2/2. Define pij so that a hyperplane Hi + pi, contains
one 1-output point in Si without duplication. This is possible because of the first-order general-position
condition.

(Step 4) The c which appears in the following is taken to be small enough that a pair of hyperplanes
designated by 94i and g2i does not confine any points in P other than those specified.

4.1. Let connection weights from external inputs to 9! be such that g! designates HO +- PI-.
4.2. Let connection weights from external inputs to gj- be such that g2 1 designates H, - , and

those to 2 be such that gi2 designates Hi + c.

4.3. Let a connection weight from g,1 to g2,_.. be such that in S, _ designates Hg +2p j - £, and a

weight g! to g2 be such that in Si, g2, designates Hj + pij + c. This can be done by setting both
of the weights as -pij + i-j.

(Step 5) The connection weights from g! to the external output unit are 0, and that from ? is (-1y1+1.
The threshold of the external output unit is +0.5.

This completes the construction of a network (i.e., assignment of weights and thresholds). Since the
functions of units in the network is intuitively clear, we omit the proof of the intended function of the
network.

5. Counting function for some special case

In this section, we prove Theorem 3.4, using a very useful algebraic curve we used in [8], which also plays
an important role in [6]. The curve is represented in a parametric form as c(ti) - (t,t2,... ,tn) in IV, which
has the following advantageous property.

Theorem 5.1. Any set of points on the curve c(t) is in the first order general position.

Let ti be real numbers such that t, < t 2 < ... < tN. and P = {c(ti) : 1 < i < N}. A transition of
a dichotomy P = P U P is an index i such that c(ti) and c(ti+) belong to different categories under the
dichotomy.

We prove the next theorem using the above property and the technique similar to the one in the proof of
Theorem 3.3.
Theorem 5.2. Any dichotomy of P = P UPO is realizable by a network in F 2 if the number of transitions
of the dichotomy is less than or equal to h1h2 + nh2.

(Proof sketch) We may suppose, without loss of generality, that the transitions are {i 1 ,...,i 7 } where
T = h1h2 + nh 2 and ti E Po. We have two cases for n, namely, even n and odd n. Suppose first that n is
odd. The construction procedure is:

(Step 0) Find arbitrary points Pij between ti, and ti,+1 for 1 < j : 5.

(Step 1) Find Ho, Ho + pl,..., Ho + ph,-, (where po = 0 and pi < pi+I) such that
Ho + pi intersects c(t) at only one point and c(oo) E H0+ .
nh2 transitions are in Hj,
< Ho + Pi-1, Ho + pi > contains h2 transitions for I < i < h1 - 1.

Let us name these areas So = Ho, Si =< Ho + pi-, Ho + pi > and Sh, = (Ho + ph,-,)+.

(Step 2) Find hyperplanes H, ... , Hh2 such that
H1 contains _+ c(Pi) for 1 < k < h2 .

The direction of H21- 1 and H21 (where 1 < I < h2 /2) is defined so that < H21- 1 , H21 > contains points of
category 1, that is, c(ti) E P iff c(ti) E H21_, and c(ti) E H2, for i(21-2)" :_ i 5 i2l.+I.

It is easily observed that H+ contains c(oo).

(Step 3) Suppose that 1 < i < h , and 1 < j <: h2 . Define pij so that a hyperplane H, + pij con-
tains one transition point P"&2+(_)&+j (E Si). Clearly Hi + Pij contains no other point of the curve
c(t) in Si. This is because the first-order general-position property holds for any pointset on the curve
c(t). Note that for the adjacent points c(ti,"h+('-) 2 +,) and c(ti1+0,_,) +,+1), if j is odd, the fact that
c(t" '1+h +) 1E (Hi +p -j) and c(th 2 +(.,)&2+j+) E (Hi+pj)+ corresponds to the category assignment

11-388

C(ti..s+(,_,)h +j) E Po and c(ti,, +(,- j),,+, +1) E PI; ifj is even, the fact that c(ti2,_) JA2+,j) E (Hi +psj)+
and C(ti.&2+(.-.),Z+,+l) E (H, + pdj)- corresponds to the category assignment c(ti.&+(._,)h+,) E P1 and
c(t _., + E Po.

(Step 4) Define weights and thresholds as follows:
4.1. Let connection weights from external inputs to g,' be such that g,! designates Ho + pi.-1
4.2. Let connection weights from external inputs to ? be such that g? designates Hj.
4.3. Let a connection weight from 9! to ? be such that in Si, g designates Hi + pij. This can be

done by setting the weight as -pi j + pi-Ij.

(Step 5) The connection weights from gi' to the external output unit are 0, and those from ? are (-1) .

The threshold of the external output unit is +0.5.

This completes the construction of a network (i.e., assignment of weights and thresholds) for the case
when n is odd. Since the function of the units in the network is intuitively clear, we omit the proof of the
intended function of the network.

For the even-n case, we make pairs of units in the second hidden layer. The largest difference between the
proofs lies in Step 2. The new step is as filows:

(Step 2) Find hyperplanes Hl,...,H,%, such that

for odd k (1 < k < h2 - 1), Hk containse(Pio-_1).+I), C(p,(h_,).+,), C(pio,_1).+G), C(Pi(A.-,).+6),. ,c ,(+ ._)cp ,,.,
for even k (2 < k < h2), Hk contains

C(Pi(h_2).+2), C(Pi(k_2). 3), C(P,(o_).+G), c(P,(&_).+'),.. c(Pik_3), c(P,,_ -).
The direction of H 21-1 and H 21 (where 1 < 1 < h2/2) is defined so that < H 21- 1, H 21 > contains points of
category 1, that is, c(ti) E P iff c(ti) E H+ 1 I and c(ti) E H + . for i(21-1)n+1 _< ii 2tn.

It is easily observed that Hk+ contains c(oo).

Other constructions are done in the same way, so they are omitted here. (End of proof)

For a proof of our upper bound, we take very specific points on the curve c, in contrast to the way we
took in (8] where points were taken arbitrarily. Let ti = - -, where -f = 2n+ 2N(N + 2n)! and P = {c(t,)
1 < i < N}. Then the following properties hold:

Lemma 5.3. Suppose that z is a 0-1 vector of length h. If we vary z, we get at most 2h hyperplanes

T e r i t t =0.

Then these hyperplanes intersect with at most h + 2(n - 1) of the total of N - 1 arcs c(ti)c(ti+,) on the
curve c(t).

This lemma can be proved using Lemmas 5.4, 5.5 and 5.6. Lemma 5.4 is proved through a lengthy
calculation of the van der Monde matrix, although proofs for the lemmas are omitted for lack of space.

Lemma 5.4. Let & be an n x n matrix whose (ij) entry is (1 + (c.)j)(z iY. If Vi 0 < z < (1/K)zi+
and YiVj Icii < (2n+,(1 + 1/K)n(-))-' for some K > 0, then det R,6 0.

Lemma 5.5. If h x h 0-1 matrix K is regular, 1 < Idet KI < !.

Lemma 5.6. Suppose that zi,..., zh+1 are 0-1 vectors of length h. If zl,..., zh are linearly independent
and zh+1 = aizi, then Ja, I < hM.

Theorem 3.4 is now obvious. Let the transitions be {il,... ,. }. By Lemma 5.3, r < nhI + h2(hI + 2(n -
1)) < hh 2 + 2nh. Therefore, any dichotomy realizable by Y 2 has at most hI h2 + 2nh transitions, that is,

1T2 2 ((P) 15) 2 (P 1
i=0 (i=0

This completes the proof for the upper bound.

II-389

6. Discussion

This paper, obviously an extension of Cover's ([5]) work, is also an improvement on Kowalczyk's work([6]).

While Kowalczyk considered only the first hidden layer units, we have taken into account all the units in two

hidden layers. Using Bartlett's proof (??) of his lower bound of VC-dimension of the two hidden layer neural

networks, we can derive a lower bound of the counting function which is similar to but weaker than ours
shown in Theorem 3.4. Note that the networks he considered do not have connections which skip hidden
layers, to which our methods cannot be applied.

A great discrepancy between Cover's case and ours appears clearly in the results summarized in Section
3. Cover's one-unit case is simple and clear in two points:

* The counting function does not depend on the geometrical arrangements of input points.

* The counting argument itself is constructivw, so that upper bounds and lower bounds coincide automat-

ically.

One weak point in our results is that Theorem 3.2 and Theorem 3.4 hold only for "some pointsets" of input

points. If we could show that the claims hold for "almost all pointsets" of input points, then we could say
that "for almost all pointsets of input points, we can realize half of all the dichotomies". This remains to be

proven.

7. Iteferences

[1] Bartlett, Peter I.: The sample size necessary for learning in multi-layer networks, Proceedings of

ACNN'93, 14-17 (1993).
[2] Baum, E. B.: On the capabilities of multilayer perceptrons, Journal of Complexity, vol. 4, 193-215

(1988).
[3] Baum, E.B., and D. Haussler: What size net gives valid generalization?, Neural Computation, vol.1,

151-160 (1989).
[4] Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the Vapnik-

Chervonenkis Dimension, Journal of the ACM, vol.36, no.4, 929-965 (Oct. 1989).

[5] Cover, T. M.: Geometrical and statistical properties of systems of linear inequalities with applications
in pattern recognition, IEEE Transactions on Electronic Computers, vol. 14, 326-334 (1965).

[6] Kowalczyk, A.: Counting function theorem for multi-layer networks, to be presented at NIPS*93 (1993).
[7] Mitchison, G. J., and R.M. Durbin: Bounds on the learning capacity of some multi-layer networks,

Biological Cybernetics, vol. 60, 345-356 (1989).
[8] Sakurai, A.: n-h-I networks store no less n-h+1 examples but sometimes no more, Proceedings of

IJCNN92, vol.111, 936-941 (June 1992).
[9] Sakurai, A., and M. Yamasaki: On the capacity of n-h-s networks, Artificial Neural Networks,2, Elsevier

Science Publishers, 237-240 (1992).
[10] Sakurai, A.: Tighter Bounds of the VC-Dimension of Three-layer Networks, Proceedings of WCNN93,

vol.111 540-543 (1993).
[11] Sakurai, A.: On the VC-dimension of Depth Four Threshold Circuits and the Complexity of Boolean-

valued Functions, Proceedings of ALT'93, LNAI 744, Springer Verlag, 251-264 (1993).

[12] Sakurai, A.: On the VC-dimension of Neural Networks with a Large Number of Hidden Layers, to be
presented at NOLTA'93 (1993).

[13] Vapnik, V.: Estimation of D pendences Based on Empirical Data, Springer-Verlag (1982).

II-390

On the Mappings of Optimization Problems to
Neural Networks

Arun Jagota, Max Garzon

Department of Mathematical Sciences, Memphis State University
Memphis, Tennessee 38152 USA

{ jagota.garzonmaehersas.auci .umst. edu

In the past, neural networks have often performed poorly on optimization problems, often because the
mappings are deficient (see 11, 1] for example). This work is motivated by the need to study better the
mappings of optimization problems to neural networks, and builds on some early work in this area [17]. Its
technical roots are in the topic of approximation-preserving reductions in computational complexity theory.

1 Basic Definitions

Definition 1 A function f is called polynomial time computable if the time to evaluate f on any input is at
most polynomial in the size of the description of that input

The following definition is derived from [15, 5].

Definition 2 An (NP) optimization problem is a three-tuple A = (IA, FA,CA) where 1A is the set of
insinc,s of the problem, FA(ia) is the set of feasible solutions of instance i., and cA(i 0 , fa) E R is the cost
of Feasible ,oluwic- f4 E FA(i.) in instance i.. cA is a polynomial time computable function.

The goal is tL find a feasible solution of minimum cost in a given instance i. of problem A.
Throughout this paper, i, denotes an instance of problem X, and f" a feasible solution in i.

Example. The Maximum Clique problem (MC) may be informally formulated as an (NP) optimization
problem as follows. We will use this definition throughout the paper.

INSTANCE: Graph
FEASIBLE SOLUTION: A maximal (not necessarily maximum) subset of the vertices of G that form a
clique (every pair of vertices is adjacent)
COST OF A FEASIBLE SOLUTION: -1 times the cardinality of the clique

Definition 3 A reduction of an optimization problem A = (IA, FA,CA) to an optimization problem B =

(Is, FB, CB) is a pair of polynomial time computable functions (f,g) where f : IA - IB maps instances of
A to instances of B and g is a partial function that maps a feasible solution fh E FB(f(ia)) to a feasible
solution fa E FA(ia). By partial we mean that g is not necessarily defined for every feasible solution of

f(i.). We write the reduction as A -L- B. We write g(i.,fb) to denote the feasible solution in i. that the
feasible solution fb in f(ia) maps to. We write dom(g(i.)) as the set of feasible solutions of f(i.) on which
g is defined and Im(g(ia)) as the image of g on dom(g(i)).

II-391

Computationally, to obtain a feasible solution of an instance i. of problem A, i. may first be reduced to
instance f(i.) of problem B by using f, a feasible solution fb may then be found in f(i.) by using some
algorithm for B, which may then be used to obtain a feasible solution g(fb) of A by using g. f and g are
polynomial time computable to keep this composite algorithm tractable. B may be a neural network using
an energy-minimizing algorithm for example.

In all the two-argument functions such as CA, g and others to be defined later, we suppress the first
argument i. when it is clear from the context.

2 Properties of Reductions

In the following definitions, the term reduction denotes A/ B. For all properties P defined in this section
and later, a reduction satisfies P only if every instance i. E IA satisfies P.

Definition 4 ((17]) A reduction is called total if g is a total function, that is, g is defined on every feasible
solution in the instance f(i.) of B.

A reduction that is not total has some feasible solutions in f(i.) that cannot be converted back to i0 .

Definition 5 A reduction is called onto if g is an onto function, that is, g maps onto every feasible solution
of instance i. of A.

A reduction that is net onto does not represent every feasible solution of i. in f(i.). Perhaps not even the
optimal is represented.

Definition 6 is a slight modification of the one in [17].

Definition 6 A reduction is called order-preserving if, for every distinct pair fb, fb' of feasible solutions in
f(i.) on which g is defined, cB(fb) < cB(fb')==CA(g(fh)) < cA(g(fa)).

Definition T A reduction is called order-reversing if, for every distinct pair fb, fb' of feasible solutions in
f(i.) on which g is defined, CB(f') < CB(f"')==cA(g(fb)) > cA(g(f ')).

Order-preserving and order-reversing are mutually exclusive in that no reduction can simultaneously be
both.

Definition 8 A reduction is called equaliL-preserving if, for every distinct pair fb, fb' of feasible solutions
in f(ia) on which g is defined, cB(fb) = cB(f ')==*CA(g(fU)) = cA(g(fb')).

A reduction that is order-preserving and equality-preserving guarantees that if we "improve" upon a feasible
solution in f(i.) we always get an "improved" feasible solution in i.. If we replace order-preserving by
order-reversing then if we "worsen" a feasible solution in f(ia) we always get an "improved" feasible solution
in ia. Thus, for an order-reversing reduction, we need an algorithm whose objective is to find the poorest.
feasible solution in f(i.), not the best.

Definition 9 A reduction is called k-cost-preserving if every feasible solution in i. of cost < k is contained
in lm(g(f(in))).

In particular, if we can reduce the size of an instance i. while preserving all its solutions of cost < k, then we
have a k-cost-preserving reduction of A to itself which also potentially makes the instance relatively easier
to solve because of its size reduction. Section 7 presents one such reduction.

Definition 10 A reduction A --. B is called invertible if there exists a polynomial time inverse -1 of f

and a polynomial time inverse g-I of g such that B f A is a reduction. B f A is called an inverse

of A It B and is not necessarily unique.

11-392

In the above definition, the invertibility of a given f is a central issue. Since f ' is required to be total,
an f that is not onto, for example, is not invertible. Every g on the other hand is invertible because we do
not insist that g-' be total. Furthermore, g' is not necessarily unique as for a given f. E Im(g), g-'(f.)
may be chosen as any fb such that g(f&) = f.. The second issue is whether the inverses are polynomial time.
Here also it turns out that for most commonly used reductions, a polynomial time inverse g- of g exists.

Let FA(i., k) g FA(i.) denote the set of feasible solutions in instance ia having cost k. Let EA(i.) =
Ek kIFA(ia, k)I/JFA(i.) denote the expected cost of a feasible solution in instance i. under the uniform
distribution on its set of feasible solutions FA(i.).

Let Fa(i., k) = {fb E FB(f(i.))CA(g(fA)) = k) denote the set of feasible solutions in instance f(i.) of
B that correspond to feasible solutions in instance i. of cost k. Let EB(i.) = EL. kIFB(i., k)I/IFg(l(io))I
denote the expected cost of a feasible solution in instance i. under the uniform distribution on the set of
feasible solutions in f(i.).

Definition 11 A reduction is called expected-cost-decreasing if EB(i.) < EA(iO).

If a reduction is expected-cost-decreasing then an algorithm that samples a feasible solution fb of f(ia)
uniformly at random from FB(f(i.)) will return on average a better feasible solution g(f6) of i. than
an algorithm that samples a feasible solution f. of i. uniformly at random from FA(i.). Even if no such
algorithms exist, we can at least say that the reduction improves the distribution of costs of feasible solutions
of i. as measured by the expectations as defined above. Section 7 presents one reduction that is motivated
by this definition.

3 Reductions from Computational Complexity Theory

The notion of approximation-preserving reductions in computational complexity theory is one technical
ancestor of the reduction properties in this paper. Here we list these early definitions in our terminology,
noting that our problems are always minimization ones. We list them for completeness sake and to facilitate
comparisons. Readers may skip this section as later sections do not depend on it. The approximation-
preserving reductions in complexity theory all require that g be total and never discuss whether g is onto or
not.

A reencoding [161 is a reduction that is total, onto, invertible, and for all fb E FB(f(ia)), CA(g(fb)) =
cB(lb).

Let m be an approximation measure defined as follows. When applied to feasible solution f. of instance
ia of problem A, mA(i, fa) measures how good an approximation CA(f.) is to cA(f;), the cost of an optimal
solution f.. mA must satisfy mA(fa) -: 0 and mA(f) = 0 if and only if cA(fo) = CA(fl). A strict
reduction [19] is a reduction that is total and for any approximation measure m, for all fb E FB(f(i.)),
mA(g(fb)) mB(fb). That is, with respect to the measure m, CA(g(fb)) is at least as good an approximation
to CA(J;) as is cB(l,) to cB(f).

Let mr be the approximation measure called relative error, defined as m,(i., f) = ICA(l)-cA(.,)I/c,l(l.

A bounded reduction [19] is a reduction that is total and for all lb E FB(f(i4)), mr(lB) _ e==m(g(fb)) A

k(c) where k : Q+ - Q+ is a computable function. A bounded reduction bounds the relative error by a
function k. The continuous reduction [19] and F-reduction [5] are stronger variants of bounded reduction.

An L-reduction [20] is a reduction that is total and for some positive constants a and i3, cu(f) <

(VCA(fl), and for all fb E FB(fl(i.)), IcA(f*) - cA(g(fb))I< !/
3 Ics(fb) - CB(fb)I.

Define a performance ratio as RA(i, fa) = cA(la)/cA(f). A ratio preserving reduction [22] is a reduction
which is total, and for some constant k = klk 2 , for all lb E FB(f(i)), RA(g(fb)) < kRB(fa).

Let cA(f~jaz) denote the maximum cost of a solution fr. " of i.. Let the structure of an instance i. be
structA(io) = (ao,... ,ak) where k = CA(fGz) - CA(fl) and a, = I{fa E FA(i4)IcA(f."') - cA(J2) = i)l.
A structure preserving reduction [2], with only its main aspect specified here, is one in which structA(ia) =
structB(f(i.)). As defined in [21 however, it is not a reduction in our sense because it does not include a
function g to map a feasible solution of f(i.) to one of ia.

All of the above complexity theory definitions employ approximation measures of one kind or another
as they are motivated mainly by approximability (relative to the optimum) considerations. None of our

II-393

definitions in this paper employ approximation measures as they are motivated by more basic considerations
of whether the reductions preserve certain feasible solutions and their properties. Our considerations are
less important from the complexity theory point of view but perhaps more important for practical problem
solving by reduction (such as by reduction to neural networks).

4 Reductions to Illustrate our Properties

In this section, we illustrate our simpler properties by describing or citing some reductions on which they do
or do not hold. All of these reductions have been used as intermediate ones in mapping certain optimization
problems to neural networks [13, 12].

MVC reduction to MIS. Consider the minimum vertex cover problem (MVC), define its feasible solutions
as the vertex sets V' C V(G) of a given graph G that form a cover (each edge of C is incident on at least
one vertex of V'), and the cost of a feasible solution as its cardinality. The maximum independent set (MIS)
problem on G is the maximum clique problem, defined earlier, on its complement graph G, in which the
edges of G are replaced by non-edges and vice-versa. Consider the following reduction of MVC to MIS.
Given a graph G, construct its line graph H by converting every edge {vi, vi} of G into a vertex vii of H.
Two vertices vi,, vkj are adjacent in H if and only if the corresponding edges eij and eki share a common
vertex in G. It can be shown that a maximal independent set {vi,j,, ... , vij.) of H represents the vertex-
set {vi, ,Iv21, ... , vi., vj,, } of G which is a vertex cover. Thus this reduction is total, equality-preserving,
and order-reversing. It is not onto, however, since only vertex covers with even number of vertices are
representable as maximal independent sets of H. For example, in the graph G = (V, E), V = {v 1 , v2),
and E = {{v,v21, the vertex cover {v 1) is not representable as a maximal independent set of H. This
reduction is not invertible as not every graph is a line graph of some graph.

MAXSAT reduction to MC. Consider the maximum satisfiability problem (MAXSAT) on conjunctive
form boolean formulae, define its feasible solutions as a set of clauses satisfiable by some value assignment
to the boolean variables of a given formula, and the cost of a feasible solution as negative its cardinality.
Consider an approximation-preserving reduction of MAXSAT to MC, described in [4]. We do not describe
the reduction here but illustrate the end result on the following example. Let the formula be 4 = (ul +
t12)(1ii + u2), containing two clauses cl and c2 . The feasible solutions of 4 may be easily checked to be
{cj}, {C2}, and {cI,c2}. Upon reduction, the graph G = (VE) turns out to have the following structure:
V = {ClUl,Clti 2 ,c2u 1 ,c 2u 2 } and E = {{ctul,c2u 2 },{clti2c2ul}}. E is also the set of feasible solutions
(maximal cliques) of MC on GC. For the reduction of any instance of MAXSAT to MC in the above way,
only partly illustrated in the above example, if we strip away the u symbols from a feasible solution of MC
(maximal clique), it can be shown that we get a feasible solution of MAXSAT (set of satisfiable clauses).
Note that the cardinality of the set remains unchanged by this stripping process. (In the above example,
for instance, the maximal clique (cIti2,c 2til) represents the set of satisfiable clauses {eC,c 2}.) Thus this
reduction is total, order-preserving, and equality-preserving. On the other hand, the feasible solution

('j } of the SAT instance in the above example is not represented as a feasible solution (maximal clique) of
its reduced MC instance. Hence this reduction is not onto.

GC reduction to MIS. Consider the graph coloring problem (GC) on a graph G, define its feasible
solution as a coloring of the vertices such that for all vi, vj: {vi, vi} E E(G)=color(vi) i color(vj), and
the cost of a feasible solution as the number of distinct colors it uses. Consider the following reduction
of GC to MIS. Let A(G) denote the maximum degree of a vertex in G. Given an n-vertex graph G,
construct a graph H containing nx(A(G)+I) vertices, partitioned into n disjoint sets V 1,. .. , Vn respectively.
Vt = {cl vi,... ,cA(c)+I v) is the vertex-set of partition i. Vertex cgvi in H represents the assignment of color
c, to vertex vi in G. Each Vi is viewed as a vertical column. H may also be viewed as composed of A(G) + I
horizontal layers L1 ,... LA(G)+I. Li = {civ,... ,civn} is the vertex-set of layer i. We now add the edges
to II. For i = 1 .. , n, Vi is made a clique. For i = 1 A(G) + 1, H[Li], the subgraph of H restricted
to the vertices Li, is made equal to G. It can be shown that this reduction is total and onto. It is not
equality-preserving as it can be shown that all feasible solutions (maximal independent sets) in the MIS
instance have the same size n (hence cost -n) [3, 17, 14], whereas the corresponding feasible solutions in the
GC instance may have differing cost (number of colors used). It is vacuously order-preserving.

II-394

5 Transitivity of Reductions

It is sometimes useful to reduce an optimization problem to another (such as to a neural network) through
a sequence of reductions. For example, in [14] we map some optimization problems in telecommunications
to neural networks this way. It is then useful to know whether properties that hold for individual reductions
in a sequence also hold for the reduction represented by the sequence.

It is clear that if A f*"b B and B 1=" C are reductions, then so is A . C. We now consider
the question of the transitivity of their properties. The following facts are easy to show.

1. If A B and B C are total then so is A .hc(Jo&),_.b(gbc) C, with lm(gob(gb,)') C lr(gb) and
equality holding when gbc is onto.

2. If A f=61o6 B and B fb. C are onto then so is A (- l C, with dom(gmb(gbc)) C dom(gb,)
and equality holding only when g~b is total.

3. If A B and B C are total and onto then so is A C, with Im(g.b(gb,)) =
lm(gab) and dom(gab(gb,)) = dom(gb,).

4. If A fb-6 B and B fb1?b C are order-preserving (equality-preserving) then A C is also
order-preserving (equality-preserving), with dom(gab(gb,)) g dom(gb,) and equality holding when gab
is total.

6 Reductions to Neural Networks

The Discrete Hopfield Network (DHN) [10] is structurally a fully-connected graph with symmetric weights
wii connecting units i and j, and a bias Ii associated with unit i. We assume that the state Si of a unit
is 0 or 1. For more details, see [9]. In this section, we examine some well-known encodings of optimization
problems in DHN, and evaluate their properties in terms of the above definitions. By viewing DHN as the
following (NP) optimization problem, such encodings may be viewed as reductions.

INSTANCE: A DHN instance given by number of units N, weight matrix W, bias vector I
FEASIBLE SOLUTION: A network state S E {0, }N that is a local minimumof E(S) = -1/2STWS-S T I
COST OF A FEASIBLE SOLUTION: The value of E(S) for local minimum S

TSP reduction to DHN. It is well known that the original encoding of the travelling salesperson problem
to DHN [11] is not total and this is one main reason why it has not worked well [1].

Maximum Clique reduction to DHN. The following encoding or essentially equivalent ones are from
[3, 7, 17, 21, 8]. Given an N-vertex graph G, construct an N-unit DHN instance, unit i associated with
vertex vi. wij = -1 if i A j and Ivi,vj) I E(G), wij = 0 otherwise. ii = 0.5. This reduction is total and
order-preserving [17]. It is also easy to check that it is onto and equality-preserving.

Graph Bipartitioning Reduction to DHN.. The graph bipartitioning problem may e defined as follows.

INSTANCE: A graph G = (V, E) with even number of vertices
FFASIBLF SOLUTION: A partition of V into two equal sets

We use the reduction of graph bipartitioning to DHN in [9], attributed to [6]. This reduction employs - 1/1
units. Given an N-vertex graph G, construct an N-unit DHN instance, unit i associated with vertex vi. For
all i, Ii = wi = 0. For i # j, wii = I - 2p if {vi,v,) E E(G), wij = -2p otherwise. A local minimum
corresponds to the partition (VI,V 2) of V where V, = {viIS = 1) and V2 = {viS, = -1).

Proposition 1 For 0 < p < I, this reduction is neither total nor onto.

11-395

Proof: Consider the 4-vertex graph with E = {{vl,v 2 }, v 2 , v3), {vI,v}}. Note that v4 is isolated. It is
easy to check that (1, 1, 1, -1) is a local minimum of the network obtained from reduction. This minimum
corresponds to the partition ({vIV2, v3), {14)) which is not a feasible solution. Consider the feasible solution
f = ({v1 t,V2), 1v, v4)) in the same example. Neither (1, 1,-1,-1) nor (-1,-I, 1, 1) is a local minimum so
f is not represented as a feasible solution of DHN 0.

Shortest Paths reduction to HN. The shortest paths problem may be defined as follows.

INSTANCE: A directed graph G = (V, E) with weights di on the edges (v,,v,) ant two vertices s and d
FEASIBLE SOLUTION: A vertex-disjoint path from a to d

We use the reduction or shortest paths to DHN in [18] which is used to solve routing problems in computer
networks modeled as shortest paths problems. Given an N-vertex directed graph G = (V, E), construct
a 2(P) + I-unit DHN instance with 0/1 units. Unit vii represents directed edge (vi, vi) of G. We add a
distinguished unit v;,. For vd,, I, = e > 0. For all other vij, Iii = -dij. For all vi4, vkl, wjj,, = a if i = I
or j = k; wOil = -a if i = k or j = i; wvi,k = 0 otherwise.

The following proposition has a non-trivial proof, which is omitted. Let dma:=_ maxoj)(dij) denote the
maximum weight of an edge in G.

Proposition 2 For a > dma,/4, this reduction is onto.

It is not clear whether this reduction is total or not.

7 Design of Reductions

In this section we present some new reductions whose design was guided by some of the properties defined
in this paper.

Consider the following reduction of Maximum Clique to itself. Given G and a positive integer k, construct
H as follows:

H .- G
while 3v E V(H) : deg(v) < k - I do

H -H\v)
end

It, is clear that all the maximal cliques of G of size > k are preserved in ff. Hence this reduction is (-k)-cost-
preserving. When V(H) C V(G), this reduction may be useful because the size of the problem is reduced
while all its maximal cliques of size > k are preserved. This reduction may be conveniently realized in a
DHN encoding of Maximum Clique by clamping the units in V(G)\V(H) to zero.

The following reduction is motivated by the property ezpected-cost-decreasing. The idea is to attempt to
increase the number of good feasible solutions more than the number of poor ones.

Maximum Clique Self-reduction. Given an N-vertex graph G = (V, E) construct agraph G2 - (V2 , E2)
where V 2 = V x V and E 2 = {{(vi, vj),(vt,v)){vi,,vk),(vi,vi) E E(G)}. Let the feasible solutions
of Maximum Clique be cliques, not maximal cliques as defined earlier. Define a k-clique as a clique of
size k. It is clear that if I(Vi,,Vi,),(VizlVb), ... , (vi,,vj,)} is a k-clique in G' then {vi 1 ,v 2 ... vi.) and
I I I Vi2l vj,) are k-cliques in G. Arbitrarily, let us associate the first such k-clique in G with the k-clique
in G2. It is easy to see that this reduction is total, onto, order-preserving, and equality-preserving.
Let nk denote the number of k-cliques in G. We state the following without proof, which is easy.

Proposition 3 The number of k-cliques in G2 is k!(nk) 2 .

It is an interesting question how
EMC(G) = -Z knk/ E n

k k

relates to
EMC(G 2) = - kk!(n) 2 /Ek!(nk)

2

h k

II-396

We can construct individual instances of MC for which EMC(G2) < EMC(G). Consider the 4-vertex graph
G = (VE) where E = { {vl,v 2),{V2,v3}, {3,V4),{v2,v4). It can be checked that EMC(G 2) -1.81 and
EMC(G) = -1.66. The larger question however remains open.

We consider a restriction of this question when G is a random graph (an edge slot contains an edge.
independent of other slots, with some constant probability p). On such graphs, E[nh] = (,v)p('). Table 1
calculates some approximate numerical results for EMC(G) and EMC(G 2), where G is a random graph, by
substituting E[nk] for nk in EMC(G) and EMC(G 2).

Table 1: Approximate expected clique size in random graphs and their reduced graphs

N p EMC[G] EMC(G2]

100 0.5 4.72 5.75
1000 0.5 7.47 8.84
100 0.9 16.05 25.90
1000 0.9 32.58 47.26

The results of Table I suggest that EMC(G 2) is less than EMC(G), especially for large p (dense graphs).
This suggests that if G is a random graph, an algorithm that samples cliques from the uniform distribution
on cliques will find a larger clique on average on G2 than on G. Unfortunately, it is not clear if such an
algorithm exists for the MC problem. We conjecture nevertheless that some simple algorithms, such as those
that can be implemented in neural networks, will find larger cliques in G2 than in G. Even if so, this has
to be weighed against the size increase of G 2 . In a neural network encoding of MC, G requires N units
and (N) connections, G2 requires N 2 units and (N) connections. (Many of the connection strengths may
be 0.) Perhaps in future implementations of neural networks the size increase will be less of an issue than
the necessity for t he neural network to emulate a simple algorithm in which case such a reduction would be
potentially useful if such a simple algorithm works better on G 2.

8 Summary and Discussion

This paper is motivated by the need to closely study the mappings of optimization problems to neural
networks. We have proposed certain properties for the characterization of mappings. We have shown how
these properties relate to approximation-preserving reductions from computational complexity theory. We
have examined certain reductions, including those to neural networks, and shown which properties hold for
them and which do not. Finally, guided by some of the properties, we have designed two new reductions.

We hope that this paper will stimulate further work on this topic. There are many other mappings of
optimization problems to neural networks in the literature that can be examined in terms of these properties,
to give some indication of how well they are expected to work. Some of our properties may also be useful,
as we have seen in Section 7, for the design of new mappings of optimization problems to neural networks.

References

[1] S.V.B. Aiyer, M. Niranjan, and F. Fallside. A theoretical investigation into the performance of the
Hopfield model. IEEE Transactions on Neural Networks, 1(2):204-215, 1990.

[2] G. Ausiello, A. D'Atri, and M. Protasi. Structure preserving reductions among convex optimization
problems. Journal of Computer and System Sciences, 21:136-153, 1980.

[31 D.H. Ballard, P.C. Gardner, and M.A. Srinivas. Graph problems and connectionist architectures. Tech-
nical report, Department of Computer Science, University of Rochester, Rochester, NY, 1987.

II-397

[4] P. Crescenui, C. Fiorini, and R. Silvestri. A note on the approximation of the maxclique problem.
Information Processing Letters, 40(1):1-5, October 1991.

[51 P. Crescensi and A. Panconesi. Completeness in approximation classes. Information and Computation,
93(2):241-262, 1991.

[6] Y. Fu and P.W. Anderson. Application of statistical mechanics to NP-complete problems in combina-
torial optimization. Journal of Physics A, 19:1605-1620, 1986.

[7] G.H. Godbeer, J. Lipscomb, and M. Luby. On the computational complexity of finding stable state
vectors in connectionist models (Hopfield nets). Technical report, Department of Computer Science,
University of Toronto, Toronto, Ontario, 1988.

[8] T. Grossman and A. Jagota. On the equivalence of two Hopfield-type networks. In IEEE International
Conference on Neural Networks, pages 1063-1068. IEEE, 1993.

[91 J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-
Wesley, 1991.

[10] J.J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, USA, 79, 1982.

[11] J.J. Hopfield and D.W. Tank. "Neural" computation of decisions in optimization problems. Biological
Cybernetics, 52:141-152, 1985.

[12] A. Jagota. Graph coloring using the hopfield-clique network. In World Congress on Neural Networks,
New York, July 1993. Portland, IEEE.

[13] A. Jagota. Optimization by reduction to maximum clique. In IEEE International Conference on Neural
Networks, pages 1526-1531, New York, March 1993. San Francisco, IEEE.

[14] A. Jagota. Scheduling problems in radio networks using hopfield networks. In J. Alspector, R. Goodman,
and T. Brown, editors, Proceedings of the International Workshop on Applications of Neural Networks
to Telecommvnications, pages 67-76. Lawrence Erlbaum Associates, 1993.

[151 D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System
Sciences, 9:256-278, 1974.

[16] V. Kann. On the approzimability of NP-complete optimization problems. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden, 1992.

[17] J.H.M. Korst and E.H.L. Aarts. Combinatorial optimization on a Boltzmann machine. Journal of
Parallel and Distributed Computing, 6:331-357, 1989.

[181 S. Neuhauser. Hopfield optimization techniques applied to routing in computer networks. In J. Alspector,
R. Goodman, and T. Brown, editors, Proceedings of the International Workshop on Applications of
Neural Networks to Telecommunications, pages 203-209. Lawrence Erlbaum Associates, 1993.

[19] P. Orponen and H. Mannila. On approximation preserving reductions: complete problems and robust
measures. Technical Report C-1987-28, Department of Computer Science, University of Helsinki, 1987.

[20] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal
of Computer ard System Sciences, 43:425-440, 1991.

[21] Y. Shrivastava, S. Dasgupta, and S.M. Reddy. Neural network solutions to a graph theoretic problem.
In Proceedings of IEEE International Symposium on Circuits and Systems, pages 2528-2531, New York,
1990. IEEE.

[22] H.U. Simon. On approximate solutions for combinatorial optimization problems. SIAM Journal on
Discrete Mathematics, 3(2):294-310, 1990.

II-398

Combinatorial Optimization Neural Nets Based on
A Hybrid of Lagrange and Transformation Approaches

Lei Xu
Dept of Computer Science, The Chinese University of Hong Kong, Shatin,NT, Hong Kong

Abstract A novel scheme for combinatorial optimization is suggested via analog constrained optimiza-
tion. The constraints are separated into two parts. One is relieved by Lagrange approach, and the other by
penalty or barrier function. In comparison with the existing Hopfield type networks, the new scheme has
several new features. It is applicable to nonquadratic energy functions, and has reduced needs on externally
controlling artificial weighting parameters. It also provides new potential for improving convergence and
performance. In addition, it supplies a general combinatorial optimization scheme with its special cases
being closely related to statistical physics method, EM algorithm, elastic net and robust PCA.

1. Introduction
Combinatorial optimization takes very important roles in many fields such as computer science and

operational research. Unfortunately, many problems of combinatorial optimization are NP- hard. Since
Hopfield and Tank (1985) proposed to use neural networks for combinatorial optimization, a lot of efforts
have been made along this direction. The detailed reviews of these efforts can be found in many recently
published textbooks, e.g., Hertz, Krogh& Palmer(1991) and Cichocki and Unbehaunen (1993).

Roughly speaking , the existing combinatorial optimization networks share two common features. One is
that they will finally become a unconstrained analog optimization of a quadratic energy function by a Hopfield
type networks. The other is that they transform the constraints into quadratic penalty functions as a part
of the resulted unconstrained energy function. Because these algorithms are either implemented by Hopfield
network or its variants, we use Hopfield Scheme to refer them. This paper propose a novel general scheme
which is no longer confined to the two features. It solves constrained optimization by a hybrid of Lagrange
and Transformation approaches. It separates the constraints into two parts, namely linear-constant-sum
constraints and binary constraints. The linear-constant-sum constraints are treated by Lagrange approach,
and the binary constraints are transformed into penalty or barrier functions. The new scheme has several
advantages. First, it can be used for nonquadratic energy functions, while Hopfield Scheme applies only
to quadratic energy functions. Second, it has eliminated those artificially controlled parameters that are
needed in Hopfield scheme for linear-constant-sum constraints. In other words, the new bcheme ensures
the linear-constant-sum constraints satisfied exactly without an approximate treatment by penalty functions
weighted by parameters controlled heuristically and externally; as a result, its performance and convergence
can be improved. Third, it provides a general scheme which can include Statistical Physics methods (Yuille
& Kosowsky, 1993) as special cases. In addition, its certain special case is also closely related to clustering
by finite mixture model with EM algorithm (Xu&Jordan,1993a&b; Xu, Jordan& Hinton, 1993), as well as
to robust PCA (Xu& Yuille, 1993) and elastic nets (Durbin& Willshaw, 1987).

2. Combinatorial Optimisations As Constrained Optimizations
Many combinatorial optimization problems can be usually formulated into the following types of con-

strained optimization problems

" Type I

minEr(i-)= min E(vul,..',VN),

N
subject to C,: E vi=D, (1)

i=1

Cb : vi is binary, i.e., vi = 1 or vi = 0 for each vi. (2)

with D being a given constant. For example, for the graph bipartition problem (Cichocki and Unbe-
haunen, 1993), EI(v-) and C, become

NN N

E(= E E wij(v + vj - 2v,), C: Z v, = N12, (3)
i=1 j=1 i=1

with N being an even integer number and wij are known parameters.

" Type II

minEr,(V), V={v,,i-1,.-.,N,j- 1,..-,M},
V

11-399

N M

subject to C,'* , U1., , : E % ji,=1.-N

Cb : vi = 1 or v0 = 0 for each vj. (4)

with DKJQI, j = 1,..., M and Dir", i = 1,. ., N being given constants.

We observe some typical examples. The first is the traveling salesman problem with N = M and

N N

Ei(V~ = r~~v i(v,i+i + yi-)
--I yox i=1

N N: = ,..N, = Ij= ,..,N.(5)
i=1 j=1

where d,, are known parameters. The second is the standard linear assignment problem (Cichocki
and Unbehaunen, 1993), for which we have

N M

Eli(6) =
i=1 j=l
N M

C:"': vij = 1,j= ,...,M, G' E: v = 1,i= ,.. .,N. (6)
j=l

with cij being known parameters. The third one is the graph K-partition problem (Cichocki and
Unbehaunen, 1993) with M = K and

N K

Ej,r(v) E ZZ~DJiVikViI

i=1 j~i k=1 Itk
N N

C,'*' : E vij= NK, j=I1,... , M, Cr,° : Evij=l,i=l,...,N, (7)

i=1 j=l

with N = mK and m being an integer.

For each type, we observe that the constraints, that the minimization is subject to, consist of two parts.
One is the linear equality constraints which ensure that the sums of the specific subsets of variables are
equal to given constants. We denote this kind of constraints by C, or C, & Crow , and call them by the
linear-constant-sum constraints. The other requires that each variable takes only binary value 0 or 1. We
denote this constraint by Cb and call it the binary constraint.

3. Constrained Optimizations By A Hybrid of Lagrange and Transformation
To solve the constrained optimizations eq.(2) & eq.(4), the usual way is to change them into unconstrained

optimization problems. For the exitisting optimization neural networks of Hopfield Scheme, the binary
constraint Cb is considered directly by the sigmoid function vi = 0.51 +tanh(,)] or vj = 0.51 +tanh(-l)]
with u uij being dummy variables. The linear-constant-sum constraints C, or C,"' & C,"* are transformed
into some quadratic penalty functions, for examples (Cichocki and Unbehaunen, 1993):

" For the graph bipartition problem, the linear-constant-sum constraint is transformed into the 2nd
term of the following unconstrained energy:

N N N

E())) v - (8)
i=1 j=I J=

* For the traveling salesman problem, the linear-constant-sum constraints are transformed into the 2nd,

the third and the 4th terms of the following unconstrained energy:

N N N N N N

Eli(-) = E dvvzi(v,+it + v,i,) + A E[E vi _ 112 + ! vz E[E V. 1]2. (9)
X= YOX i=l i=1 X=1 x=1 i=1

II-400

In both eq.(8) and eq.(9), X, NA, xg are positive scalars externally and heuristically selected for the amount of
penalty to the cases that the linear-constant-sum constraints are broken. Their values will directly influence
the performance, and the appropriate selection of the parameters is usually a difficult task.

Here, we propose a novel scheme for the constrained optimizations eq. (2) & eq.(4). We tackle the
linear-constant-sum constraints C. or Cc' & C,1 by Lagrange approach instead of penalty functions.

Furthermore, we transform the binary constraints Cb into either penalty or barrier functions instead of
directly introducing the nonlinear tanh(.) function. In other words, we transform the problems eq.(2) &
eq.(4) into the minimization of the following unconstrained energies:

N I N
E(v-)= E1(6) + A(,, - D) + ZP(,)

M N N M N M

E(V)= Ei(V) +EA'j[Ev j-)J°"] + ZA [Evij - Di'*] + - EEP(v,); (10)
j=1 i=1 i=1 j=1# i=. j=-

where A, Ar"O, 07" are Lagrange coefficients which will be determined later. P(v) is a penalty function. It
reaches its minimums at v = 0 or v = 1.

#3 is a positive scalar for controlling the penalty. The smaller is P, the heavier is the penalty for v
deviating from binary values. A set of examples for penalty function are given by

P2(v) = jvjjl - vj1, p> O,q >o. (11)

The above is a hybrid of Lagrange approach and penalty function approach. Similarly, we can combine
Lagrange approach and barrier function approach, which leads us to

N N

E(v-) = E1 (-)+(E vi - D) + I B(v)

M N N M N M

E(V)- Ei(V) + E)A'[vij - D'] + E A',[E v - Dir"] + EE B(vij); (12)
j=1 i=1 i=1 j=1 i=1 j=l

where the parameters are similar to those in eq.(10), and B(.) is a barrier function that is either oo or
undefined beyond the interval [0, 1]. Now, # controls the barriers in such a way that the larger its value is,
the more difficult it is for v to reach its boundary values 0 or 1; when # reduces, v is gradually able to reache
its boundaries. A set of examples for barrier function are as follows

Bi(v) = 1/(Iv'l - vq), B2 (v) = ln[e(1 - V)q], p > 0,q > 0. (13)

Both Bi(v), B2(v) set up barriers at v = 0, 1. B2(v) further forces v defined only on the open interval (0, 1).
One may notice that in eq.(13) we allow q = 0. It seems in this case that only a barrier at v = 0 is set up
and v is seemly free to go beyond v = 1. However, for the cases that D = D"u = 1 as in eqs.(5)(6)&(7),
the cooperation of the barrier functions and the constraints C, will implicitly prevent v to go beyond v = 1.

One disadvantage for the barriers functions eq(13) is that v is not defined at the two end points v = 1
and v = 0, while our original combinatorial problems require v = 1 or v = 0. To overcome this pitfall, we
make integral on B2 (v) to rule out the divergence at 0 and 1

Ba(V) = ln[vP(1 - V)q]dv, p> O, q> O. (14)

One can check that this generalized integral is well defined at 0 and 1, and is defined only within the closed
interval [0, 1]. A more interesting point is that B3(v) is monotonously decreasing from 0 to 1 and reaches its
minimum at v = 1. we see that Ba(v) not only supplies the barriers at two end points, but also penalizes the
deviations from v = 1. For the cases that D = D =" = 1 as in eqs.(5)(6)&(7), the constraints C., Cr° J, Cc'
will prevent all the vi or vi, towards 1 and drive most of them towards zeros. Therefore, this new function
combines the features of penalty and barrier functions together.

We further consider how to solve the problems eq.(10) and eq.(12). We only discuss the solution with
the energy E(V) since E(V-) can be regarded as a special case of E(V) and it can be solved exactly in the
same way. We propose to solve the problems via the following two steps:

11-401

* Calculate 9E(V) _E 11(V) +Am ___

OE(V) ~ OEV) ()Ovi j +~, -r
A + dvij

where 4(vij) can be P(v,,) or B(vij). From 'E(V) = 0, we try to get an equation of the form

Vii = MP(V,),i-, .A 13 0), (16)

with Mp(.) being a mapping function such that 5MP(VMA,' ,)

For example, when 6(.) = B3(.), eq.(15) becomes

_E(V) +E1 (V) +X + Air' - ,,,1] (17)
Dvij - v+l

and a possible choice for eq.(16) is

= aibj e 1 OE1 1 (V) (18)
(- V,,)?/P PO Ov,,

where ai = exp(- =) and bj = °"
0FoFN Il M ro

From E 1i= Dj a and I iji = Di , we get two equations

N M0a =E Mp(V,Ar,Ajc o' ,fl) Dr- =E "A!,j 1#
i=1 j=1

and we solve them to get

=A i (V,3, Di ',Dj7 ,{\jJ}t'),)^OL =A j(V,,D] ,-, (20)

with A"" (.), A"' (.) being certain functions.

For example, when 6(.) = B3(.), eq.(19) becomes

N

bj D7'/{j a,(1 - vjj)-IPerp(- 1 9EII(V).
i= V

M 1OErI (V)i
a, = Di""/{Zbi(1 - v,)-q/Pep(- ; OE(,))}. (21)

j=1

with Ar" = -p)3 In ai, and Aj* = -p# In bj.

* Given p, q, f3, and initialize a set of N x M array of neurons {v °) } randomly by taking values between

[0, 11. Moreover, initialize N + M dummy variables (O)Ar°m,(o) Ajro. Next, we start an iterative process
by eqs.(16)& (20)

(k+ I)Arow -~ A~(V(k),1, co' {()AoL}m*

(k+1)Xoa = A7a(V(k), 3, D o {(k),u)A. }('),

'(3+) M (V(k),(k+1) Arm ,(k+1) W)t7,13), (22)

For example, when 4(.) = B3(.) we initialize M+N dummy variables a °) , b(°) instead of (0)Xo1 ,(0) X)e1,
and use the following recursive equations to replace those in eq.(2 2):

N _ 1 E.(V(k))
bk+l) = D§ /{Ea k)(1 - Zp(v,

=1

11-402

M - ()'OEl (V(k))D~ +1)=qrw/f~b~k)(1 -, v()IPezp(--
j=1

(k+l) _(k+l)b(k+l)(I _v~k.) _qhez 1 OEIt(V00))
vii = "i , - , , p , p j Y (23)

In addition, during the above iteration we can let #(k) to start at a large enough value and then
gradually reduce so that the constraints C., Cr"", Cc~ will be more and more easier to drive most of
neurons towards zeros.

Eq.(22) or eq.(23) define a recurrent optimization network. It is an N x M array of neurons {vi,), and
the interactions of these neurons are made through nonlinear connections specified by the mapping function
Mp. The analog dynamic equations of the network are given by

dow= Arow(V, 0, Diro, Djo 1\col IM_ rw
"d "$\ A '(VD' ",D 73',{~1~dt

SI

E " =-AMo°(V F Dr-, Flcol, o row)N) -\cl
d't -

d , , v M P (V , X \ r o , A e lv j
dtI

N IEtt(V)
dbj -b + Dj't/{ = a(1 - vjj)-9/Pexp(11)

da , D M=l{Zba(1 IEII(V)"-t -i + -1~b~ - vj)-9/PeXP(" pP 4v9%)}1
j=l /1 OEI(V)

dij bj (l - vj)-qlPexp(- p ; -E j V) vi. (24)

A useful variant of eq.(23) can be obtained by ignoring the constraint C ' "1 or cooperating its transformed
penalty function into Err(V), i.e., E,'t(V) = EII(V) +(" l vj- Dr') 2 , such that eqs.(10)&(12) become

M N N M

E(V) = E 1 (V) + \[Zvij - D + (25)
j= i 1 i=1 j=

with Ar7" = 0, i = 1,.,N. In this case, we have a, = 1,i = 1, .. ,N and eq.(23) is simplified into

(1 - 9-1ep-_53 = ~ D (I - v9) -qlPexp(_ 1 &E, I(V¢k))

Here, we have no iteration for Lagrange coefficients since in each step they can be solved explicitly.
From constrained optimization theory (Gill & Murray, 1974), the penalty function approach and barrier

function methods are together called the transformation approach. So we use a scheme of Hybrid Lagrange
and Transformation to denote the above proposed approach.

In order to let the above proposed scheme work, there are two key points to be satisfied: (1) The selection
of 4O(vij) should enable us to get eq.(16). For some 0(vij), we may be not able to get eq.(16); (2) Eq.(16)
should be designed such that Mp(.) becomes a contracting mapping operator. Otherwise the above iteration
may not converge. The two points are closely related to specific task and the selection of 0.

Before closing this section, we observe the proposed methods for two very common combinatorial prob-
lems.

For the linear assignment problem eq.(6), we have. j, and thus eq.(23) becomes

N

b (+l) _7 L .{E ak)(1 _,j)_q/''p-j
pfl

M
a!k+l)= Drow/{Zb.k)(l - v tk))- q e t,-,-pj)-'

j=l

1I-403

V.+. = a+)(l+) _ v(.) ci (27)

For the Traveling Salesman Problem ti 7), we have 0E"(V) = -k , dh(vk,.j+I + vk.. l), and thus

eq.(23) becomes

N1

_ = co I (I- ,, ,-q/ (- dik (v,,j+1 + vk,_)),

M 1

((k+)) +=D uIb rk)(1 - dkv ,qPeZj(+

j = a b (- E) (dk(Vk+ + vk,-1)). (28)

4. Remarks
Due to limited space, we leave further theoretical and experimental analyses or, convergence and perfor-

mance of the proposed approach else, ' re (Xu, 1994). Here, we briefly mention the relations of the proposed
approach to some existing ones.

We consider the case that (.) = bi (.) with q = 0, p = 1. In this case, we have B3 (vi3) = fo" Inv,3 dv,, =

vij In vi - vj. Putting it into eq.(12), we get

M N N M N M N M

E(V) = El(v) + _ vi - 1)7] + FAr- [F vj - DiowI +I + v,3 In v, - vj
J =1 i=1 j=1 i=1 j=1 i=1 j=1

This formula is very similar to eq.(13) in Yuille & Kosowsky (1992), obtained from statistical physics. The
only exception is an extra term/ "= E _ vij. However, when the coristraints C""0, C c are satisfied,
this extra term becomes constant, and has no influence on the original problem. So we see that the scheme
proposed in this paper includes statistical physics method as a special case.

Next, if we replace E,'(V) in eq.(25) by E-,=, Ei.1 v jIj--m 3jI
2 , and let 4(.) = B 3 (.) with q = 0,p = 1.

Then we can show that the optimization of E(V) will result in clustering of {zx}fN into M clusters with
centers in3 , j = 1,.-- , M. This clustering is very similar to clustering by finite mixture model with EM
algorithm (Xu&Jordan,1993a&b; Xu, Jordan& Hinton, 1993). Therefore, the cases of (.) = B 3 (.) with
q 6 0 actually provide new algorithms for clustering analysis. Moreover, the proposed scheme also provides
new algorithms for robust PCA (Xu& Yuille, 1993) and elastic nets (Durbin& Willshaw, 1987) since the two
approachs are closely related to EM algorithm and statistical physics approach. The detailed discussions are
given in (Xu, 1994).

Acknowledgment I would like to thank the support from CUHK by a DIRECT GRANT for Research 93-94.

References

Cichocki.A. & Unbehaunen, R.(1993), Neural Networks for Optimization and Signal processing, Wiley, Pub.
Durbin, R. & Willshaw, D. (1987), Nature, vol. 326, pp689-691.
Gill, P.E., and Murray, W. (1974), Numerical Methods for constrained Optimization, Academic Press.
Hertz, J., Krogh, A, & Palmer, R.G.(1991), Introduction to Theory of Neural Computation, Addison-Wesley Pub.
Hopfield, J.J, & Tank, D.W, (1985), Biological Cybernetics, Vol.52, pp1 41- 152 .
Xu, L., Jordan, M. I. & Hinton, G.E.(1993), " A modified gating network for the mixtures of experts architecture",
submitted to WCNN'94, San Diego, CA.
Xu, L.& Jordan, M. 1. (1993a), Proc. WCNN'93, Portland, OR, Vol. II, 1993, 431-434.
Xu, L.& Jordan, M. I.(1993b), "Theoretical and Experimental Studies of The EM Algorithm for Unsupervised
Learning Based on Finite Gaussian Mixtures", MIT Computational Cognitive Science, Tech. Rep. 9301, MIT, USA.
Xu, L. & Yuille, A.L. (1993), in S.J. Hanson, J.D. Cowan, and C.L. Giles (Eds.), Advances in NIPS 5. Morgan
Kaufmann, San Mateo, CA, 467-474.
Xu,L.(1993), "Multisets Modeling Learning: An Unified Theory for Supervised and Unsupervised Learning", to
appear on Proc. IEEE ICNN'94, invited paper.
Xu,L(1994), "A Novel Approach for Combinatorial Problems: Analog Constrained Optimization, Parallel Computing
and Neural Network Implementation", Tech. Rep., Dept. of Computer Science, CUHK.
Yuille, A.L. & Kosowsky, J.J., (1992), "Statistical physics algorithms that converge", Harvard Robotics Lab., Tech
Rep. No. 92-7. to appear on Neural Computations.

11-404

A Modified & ating Network for the Mixtures of Experts Architecture'

Lei Xu', Michael I. Jordan' and Geoffrey E. Hinton2

1. Dept of Brain and Cognitive Sciences, MIT, USA
2. Dept of Computer Science, Univ. of Toronto, Canada

Abstract We modify the mixtures-of-experts model by utilizing a different parametric form for the
gating network. The modified model is trained by an EM algorithm. In comparison with earlier models-
trained by either EM or gradient ascent-there is no need to select a learning stepsize to guarantee the
convergence of the learning procedure. We report simulation experiments that show that the new architecture
yields significantly faster convergence. We also utilize the new model to perform piecewise nonlinear function
approximation with polynomial, trigonometric, or other prespecified basis functions.

1. Mixtures-of-experts and EM learning
The mixtures of experts model is a modular neural network architecture (Jacobs, Jordan, Nowlan

Hinton, 1991) that solves function approximation problems by adaptively dividing the input space into
regions and fitting separate functions within each region. The model is based on the following following
conditional mixture density:

K

P(yix, O) = -g'(x,')P(yx,Oj),
j3=

P(ylx,Oj) = (2rdetFi)-,exp{- [y- fj(x,wj)]T1 - ' [y- f3(n,wj)]}. (1)

where 0 consists of V, {0j}K, and Oj consists of {wj}K, {rj}K. The vector f,(x, wj) is the output of the

j-th expert net. The scalar gj(x, v), j = 1,..-, K is given by the softmax function:

gj(x, V) = e .(,,)/I e, (x). (2)
i

In this equation, /j (x, v), j = 1,--., K are the outputs of a single feedforward network referred to as a gating
network. In the probability model, the gating net can be viewed as a stochastic gate (switch) which selects
the output of the j-th expert net with probability P(jlx) = gj(z, v).

The outputs of the expert networks in a mixture-of-experts architecture can be utilized in one of the
following three modes:

o(z) = E(yj,E) - Egj(x,v)E(yjz,Oj), [regression function],
j

o(x) = E(ylnOj.), with P(j* = j) = gj(x, ,), [stochastic switching],
o(x) = E(ylz,6j.), with j* = argmax gj(x,v). [winner take all] (3)

The regression function mode is commonly used. Recently, Ghahramani & Jordan (1993) have discussed the
use of the latter two modes for problems involving one-to-many mappings.

The parameter vector 0 is estimated by Maximum Likelihood (ML). That is, given a training set
{y(), x(t)}=l ' we find a E* which maximizes the following likelihood function:

L == In(y()ix1), o) (4)
t

Jacobs, Jordan, Nowlan & Hinton (1991) proposed a gradient ascent algorithm to maximize L. Recently
Jordan & Jacobs (in press) have proposed an Expectation-Maximization (EM) algorithm (Dempster, Laird &
Rubin, 1977) for maximizing eq. (4). They found that EM yielded a considerably improved rate of convergence
when compared to gradient ascent. The readers are referred to Jordan & Xu (1993) and Xu & Jordan (1993)
for a detailed discussion of EM and some new theoretical results.

'The correspondence address: Dr. Lei Xu, Dept. of Computer Sciences, HSH ENG Bldg, Room 1006, The Chinese
University of Hong Kong, Shatin, Hong Kong, Fax 852 603 5024, Email lxu~cs.cuhk.hk

H-405

Given the current estimate E(k), the EM procedure for maximizing eq.(4) consists of two steps.
(1) E-step. First, for each pair {z(t), y(t)}, we compute:

-(Op(jlx(
t) (t))-, v(k))p(y(tI(t), k) ,(5)

Then we form a set of new set of objective functions:

Qe(Oj) - h(k)(y (t) Iz(t)) In p(y(t)1x (t), Oj), j = 1, .. ,K;

Qg(v) = h5))(,/t)I) n (X(t),V(k))(
t j

(2). M-step. Find a new estimate E(k+)= f- (k+1))K V(k+l)} with:

i(+1) argmax Q(j), - K; v+ = argmax Q9 (v). (7)

In certain cases, the maximization in eq.(7) will be able to be performed analytically. In particular,
when fj(z,wj) is linear with respect to 6j (e.g., fj(z,wj) = wT[.T, 1]), max.1 Qj(,j) can be solved by
solving OQj/8j = 0. When fj(x, wj) is nonlinear with respect to wj, however, the maximization can
not be performed analytically. Moreover, due to the nonlinearity of the softmax function in eq.(2), the
maximization max, Qg(v) cannot be solved analytically in any case. For these nonlinear optimization
problems, two possibilities present themselves. One is to make use of a conventional iterative optimization
technique (e.g., gradient ascent) in an inner-loop iteration that performs the maximization. The other
possibility is to abandon the attempt to maximize the function and to simply find a new estimate such that

Q(k+1)) = 1,..., K; Q(1,(k+1)) Q())(

Dempster, Laird and Rubin (1977) refer to algorithms that perform a full maximization during the M step
as "EM" algorithms, and algorithms that simply increase the Q function during the M step as "GEM"
("Generalized EM") algorithms. In this paper we will further distinguish between EM algorithms that
require an iterative inner loop and algorithms that do not require an iterative inner loop, calling the former
single-loop EM and the latter double-loop EM.

Jordan and Jacobs (in press) considered the case of linear 6j (x, v) = vf[x, 1] with V = [vl,... , K]

and semi-linear fj (wf[z, 1]) with nonlinear fj (.). They proposed a double-loop EM algorithm by using the
Iterative Recursive Least Square (IRLS) method to implement the inner-loop iteration. For more general
nonlinear 6j (x, v) and fj(z, Oj), Jordan & Xu (1993) showed that an extended IRLS can be used for this
inner loop. Actually, it can be shown that IRLS and the extension are equivalent to solving eq.(6) by the
so-called Fisher Scoring method.

2. A modified gating net and an alternative EM algorithm
For the original model discussed above, the nonlinearity of softmax makes the analytical solution of

max, Qg(v) impossible even for the simple and useful cases in which 6j3(X, V) = vfT[x, 1] and fj((t) , wj) =
wT [z, 1]. That is, we do not have a single-loop EM algorithm for training this model even when all the max-
imizations related to the expert nets are analytical solvable. We need to use either double-loop EM or GEM.
Although it was shown by Dempster, Laird and Rubin (1977) that both EM (including single and double
loop variants) and GEM will converge monotonically in likelihood, the convergence rates and computing
costs can be quite different. For single-loop EM, convergence is guaranteed automatically without setting
any parameters or restricting the initial conditions. For double-loop EM-e.g., the IRLS loop of Jordan
& Jacobs (in press)-inner-loop iteration can increase the computational costs considerably. Moreover, in
order to guarantee the convergence of the inner loop, safeguard measures (e.g., appropriate choice of a step
size) are required. This can also increase computing costs. For a GEM algorithm, a new estimate that
satisfies eq.(7) is generally obtained by a nonlinear optimization technique. In general, the use of nonlinear
optimization techniques requires external control or extra search to guarantee the satisfaction of eq.(7); this
can slow convergence.

11-406

To overcome this disadvantage of the softmax-based gating net, we propose the following modified gating
network:

gi(z, v) = ajP(zxvJ)/Ec akP(z.v'), Ej aj = 1, aj > 0
P(Ivj) = aj(vj)-'bj(z)expci(vj)Ttj(z)}, bj(z) 0 0, ai(.j) = f bj(z)exp{cj(vj)Tt1 (z))dz (9)

where v = {=oj, Pj,j = 1,.", K}. P(z, vi)'s are density functions from the exponential family. aj(.), bi(.),
cj (.), tj (.) are prespecified functions. ti (z) is a sufficient statistic. The exponential family covers most of
the density functions that are useful in practice. The commonly such density is the Gaussian density:

P(zlvj) = (27r det Ej) exp{- (Z - M)WE' MAL (10)

with vi consisting of mj and Ej.
In eq.(9), gi(z, v) is actually the posteriori probability P(jlz) that x is assigned to the partition corre-

sponding to the j-th expert net, obtained from Bayes' rule:

gj(x,v) = P(jIx) =ajP(lvj)IP(x,v), P(x,zi) = ackiP(xvi). (11)

Inserting this gj(z, v) into the model eq.(1), we get

P(yjz, E) = E aP(zvi) P(yl,, O). (12)
i P(Xz V)

If we directly substitute this P(yIr, O) into eq.(4) and derive an EM algorithm, we again find that the
maximization max, Q-q.') cannot be solved analytically. To avoid this difficulty, we rewrite eq.(12) into an
equivalent form:

P(y, z) = P(ylz, O)P(t,v) = EajP(Xv,)P(y1, Oj). (13)

Assume that the parameters {aj}f, { j}', {j} are already known, then by taking integral over y on the
both sides of eq.(13), we have P(z, v) = Ej a3 P(xIp). This suggests that we can easily obtain the model
eq.(12) from eq.(13)-an asymmetrical representation of joint density.

Therefore, we accordingly modify eq.(4) as follows:

L' =E In PW(), X(t)) = E ln{JE ajP(()vj)P(y(t)Ix(0' j)}. (14)
t t j

After some derivations, we obtain the following two steps of the EM procedure for this ML problem:
(1) E-step.

- ea(k)p((t)l(k))p(y(t)z(), 0 k))(

By letting both the numerator and denominator of eq.(15) be divided by P(z) and utilizing eq.(11), we find
that eq.(15) is identical to eq.(5). In addition, the objective functions Qe(O),j = 1, .-, K are the same as
given in eq.(6). Moreover the objective function Qg(v,) can be further decomposed into

Qjl(vj) = h k)((')Iz(t))lnP(z(')v) j = 1,. K;
t

QC = Z- E h(k)(y(t)I1(t))lnaj, with a = {al,...,aK}. (16)
t j

(2). M-step. Find a new estimate with

= arg max Qj(0), = 1,..,K;

II-407

V k+x) = argmax QR(vj),j= ,...,K;

a(k+i) = argmax Q*, s.t. = 1. (17)
aJ

The maximization for the expert nets is the same as in eq.(7). However, for the gating net the maxi-
mizations now become analytically solvable as long as P(zl j) is from the exponential family. That is, we
have:

(k+1) 1

=k+ -1 h)(y(t) d)). (18)
N 'i

t

In particular, when P(zxvi) is a Gaussian density, the update becomes:

m(.k~ ~ Et h(-y 10) tI h(k(3~ zt)~)

,.k+l) = 1 - h)(yI(t))[zdt) - m(k)][x(t) - mk)]T. (19)

3. Simulation results
To compare the EM algorithm for the modified model to the original model, we conducted a simulation

in which data were generated from a univariate function consisting of two linear segments (see Fig. la). We
used 1000 data points and considered mixture-of-experts architectures with K = 2 expert networks. For the
expert nets, we modeled each P(ylx, O) by a Gaussian with linear fj(z,wj) = wT[z, 1]. For the modified
gating net, the P(z, i'j) in eq.(9) is Gaussian as given by eq.(10). For the original gating net in eq.(2), we
used the parameterization Ph(z, v) = 0 and # 2 (x, v) = vT[z, 1].

The two lines in the scatter plot in Fig.l(a) are the fits of the two expert nets. The fits obtained by
the modified and the original models are almost the same. However, the learning speeds are significantly
different. As shown in Fig.l(b), the modified algorithm requires k=15 iterations for the log-likelihood to
converge to the value of -1271.8. These iterations require 1,351,383 flops (each operation of real addition,
subtraction, multiplication and division is one flop). For the original model, we use the IRLS algorithm
given in Jordan and Jacobs (in press) for the inner loop. In pilot experiments, we found that it usually took
a large number of iterations for the inner loop to converge. To save computations, we limit the maximum
number of iterations by =ma, - 10. (This does not influence the final performance.) In Fig.l(b), we see
that the outer loop converges in around 16 iterations. Each inner loop requires 290,498 flops and the entire
process takes 5,312,695 flops. So we see that the modified algorithm converges approximately 3.9 times
faster than the original algorithm based on IRLS. In fig.1(b), one can observe that the final value of the
likelihood for the original model is slightly better than the modified model; the reason being that eq.(1 4) is
not exactly equivalent to eq.(1 3) for a finite training set.

An advantage of the modified algorithm is the lack of any free parameters. Although the original
algorithm also has no free parameters, we found that the inner loop of IRLS can diverge without a step size.
In our experiments, we found that a small step size of 0.01 was required.

One disadvantage of the modified gating net is that the number of parameters is K(1 + d/2 + d2 /2) in
comparison with (K - 1)d required by the original gating net, where d is the dimension of z.

4. Piecewise Nonlinear Function Approximation
For a single-loop EM algorithm, we need to ensure that the maximization maxe3 Q (0j), j = 1,..., K

given in eq.(6) is solvable analytically. One such case involves linear experts of the form fi (r, wl) = wJT [n, 11,
in which case the mixture-of-experts as a whole implements a smoothed version of piecewise linear approx-
imation of a nonlinear function. This model can be generalized by allowing the experts to be linear in the
parameters but nonlinear in the input---single-loop EM still applies to this case. Assume the following model:

fj(z, Wj) -" 0i'j,(-) + W0 'j = Wj 0j(z), 1], (20)

1-408

with O,4 (z) being prespecified functions of z. The resulting maximization problems for maxo, Q,(Oj),j -
1,-. , K in eq.(6) are weighted least square problems that can be solved analytically.

A useful special case is the one in which O,,j(r) are canonical polynomial terms x 1' .-. xd"', ri _> 0. In
this case, the mixture-of-experts model implements smoothed piecewise polynomial approximations. Another
useful case is the case in which Oij() is fli sinr(rjwx 1) cosa(jrzl), ri > 0. In this case, the mixture-of- experts
will implement smoothed piecewise trigonometric approximations. We can also use hybrids of polynomial,
trigonometric, and other basis functions in different expert nets.

Figs.2(a)&(b) show the results of a computer experiment that studied piecewise polynomial approxima-
tion. The modified model with the EM algorithm proposed in the previous section was used. As shown in
Fig.2(a), we used 1000 training points sampled from a univariate function which consists of two pieces of
third degree polynomials. We consider a mixture-of-experts model with K = 2. For the expert nets, each
P(ylz,Oj) is Gaussian with fj(z,wj) = w3,jz 3 + W2,jZ 2 + wtdz + w0j. In the modified gating net each
P(z, ,) is again Gaussian.

The two curves in the scatter plot in Fig.2(a) are the estimated fits of the two expert nets. As shown
in Fig.2(b), the log-likelihood converges to the value of -608.3 after about k = 5 iterations. The converged
parameters for two experts nets are w, = [w3,iw 2 ,1, w1,1i, wo,1] = [0.7639,0.0422, 0.4321,0.1932] and w2 =
[w3, 2 1w 2,2),W,2w, 21] = [-0.014,-0.6751,0.4321,0.1932]. We see from these values and from Fig.2(b) that
the high order nonlinear regression has been fit quite well.

Figs.3(a)& (b) show the results of an experiment with the same data using the modified model with
linear fj (z, wj) = wT[z, 1]. From the fits in Fig.3(a) or the converged likelihood value, we see that the
approximation is obviously worse than the results obtained in Figs.2(a) & 2(b).

This project was supported in part by a grant from the McDonnell-Pew Foundation, by a grant from
the A TR Human Information Processing Laboratories, by a grant from Siemens Corporation, by grant IRI-
9013991 from the National Science Foundation, and by grant N00014-90-J-1942 from the Office of Naval
Research. Jordan is NSF Presidential Young Investigator. Hinton is a fellow of the Canadian Institute for
Advanced Research.

References

[1] Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977), Maximum-likelihood from incomplete data via the
EM algorithm, J. of Royal Statistical Society, B39, pp. 1-38.
[2] Ghahramani, Z, and Jordan, M.I. (1993), Function approximation via density estimation using the EM
approach, MIT Computational Cognitive Science Tech. Rep. 9304, Dept. of Brain and Cognitive Sciences,
MIT.
[31 Jacobs, R.A., Jordan, M.I., Nowlan, S.J., and Hinton, G.E., (1991), Adaptive mixtures of local experts,
Neural Computation, 3, pp. 79-87.
[4] Jordan, M.I. and Jacobs, R.A. (1992), Hierarchies of adaptive experts, Advances in Neural Information
Processing System 4, J.E. Moody, S. Hanson and R.P. Lippmann, (eds.), San Mateo: Morgan Kaufmann
Pub., pp. 985-992.
[51 Jordan, M.I. and Jacobs. R.A. (in press), Hierarchical mixtures of experts and the EM algorithm, Neural
Computation.
[61 Jordan, M.I. and Xu, L. (1993), Convergence properties of the EM approach to learning in mixture-of-
experts architectures, MIT Computational Cognitive Science Tech. Rep. 9302, Dept. of Brain and Cognitive
Sciences, MIT.
[7] Xu, L., and Jordan, M.I. (1993), Theoretical and experimental studies of the EM algorithm for unsuper-
vised learning based on finite gaussian mixtures, MIT Computational Cognitive Science Tech. Rep. 9301,
Dept. of Brain and Cognitive Sciences, MIT.

11-409

Figure 1, a 1000 samples from y = a, z + a3 + , at =0.8, a2 =0.4,: z E-1, 1.51 with prior at = 0.25 and
if= a'1 +~ I +g ,, = 0.8, a2 =! 2.4,: z (1, 41 with prior oil= 0.75, where z is uniform random variable

and z is from Gaussian N(0, 0.3). The two lines through the clouds are the estimated models of two expert
sets. The ones obtained by the two learning are almost the same. (b) The changes of the log-likelihood as
the Iteration goes. The solid line is for the modified learning. The dotted line is for the original learning
(the outer-loop iteration

'4' 0 i I I 1 31 3 IS

43

3.

4S 0 3 I I 3 2 s 4 0 3 6 1 iI It U 13

Figure 2: Pecewise lierplna appro ximation. (a) 1000 tw ie siatpes foro tw o~ z exer nes (b The + an

moeso w xetnt.()Tecagsof the log-likelihood as the iteration goes.

U-1

Spatial Variation of the Weights of Recurrent Synapses During Equilibrium

Ant6nio C. Roque-da-Silva-Filho
Departamento de Geologia, Fisica e Matemitica

FFCLRP, Universidade de Sio Paulo, Campus de Ribeirlio Preto
Ribeirlo Preto-SP 14040-901

Brazil
E-Mail: antoniorobioag. ffclrp. unp. br

Abstract

A generalized version of Amari's field-theoretic approach to neural networks is used to model a
situation in which the weights of the recurrent synapses across a two-dimensional neural field vary
with time according to a Hebbian type law. Assuming equilibrium, an equation relating the synaptic
weight function to the neuronal receptive field overlap is derived. It is studied in a simple case in
which the weights are isotropic and symmetric.

1 Introduction

An interesting problem which can be tackled by a neural network modeler is the one of
mathematically deriving possible shapes for the recurrent synaptic weight finction, i.e. the fiction
which embodies the properties and characteristics of the lateral connections between neurons along a
given cortical layer. Most neural network modelers assume the lateral weights to be fixed in time:
obeying a Mexican hat type function in the case in which neurons can be both excitatory and
inhibitory at the same time (von der Malsburg 1973; Amari 1977; Hertz et al 1989); or decaying
exponentially and isotropicaly with distance in the case in which neurons can be either exclusively
excitatory or exclusively inhibitory (Wilson and Cowan 1973; Idiart and Abbott 1993). In all cases it
is tacitly assumed that: i) the weights of the synapses made by a neuron have, on the average, larger
values closer to the neuron than far away from it; and ii) the synaptic weight function tends to zero at
great distances. Although being very reasonable, and expected to reproduce qualitatively the
behaviour of real synaptic efficacies these assumptions are imposed ad hoc to the models. However,
this does not need to be so. An opposite point of view would be to take other assumptions as the basis
for a theoretical model, and use this model to derive possible forms of spatial variation for the
synaptic weight fimction. The possible forms obtained could then be adopted in other models, or
motivate experiments to test their validity.

The second point of view mentioned above is adopted in this work. Starting from no a prior
assumption about the shape of the recurrent synapses, an equation for the spatial behaviour of those
synapses is derived from other assumptions regarding neural dynamics.

2 The Model

In this work, Amari's field-theoretic approach to neural networks (Amari 1983; Amari 1990) is
applied to a situation in which the weights of connections between neurons in the same neural field
(recurrent connections) vary with time according to a Hebbian type law (Hebb 1949). The neural
field is assumed to be two-dimensional, and made of either exclusively excitatory neurons or
exclusively inhibitory neurons. An external excitatory input coming from a signal space is applied to
the neurons in the field for a time much longer than the relaxation times of both the excitatory and the

1-411

inhibitory neurons, but much shorter than the respective time constants of synaptic modification. One
can then assume that a near-equilibrium rerie is reached a short time after the external input is
applied, and consider the dynamical variables of the model as constant until the cessation of the
signal (Caianiello 1962; Amari 1983).

The equilibrium value of the recurrent synaptic weight function is given by the equation

= Cf p(&)f[U(2, 9)][U(?', 0)]dO, (1)

where w(o.f') is the weight of the synapses made by neurons at TV with neurons at f; cis a
constant having value +1 for a field made of excitatory neurons, and value -1 for a field made of
inhibitory neurons; p(M) gives the probability distribution for the inputs applied from the signal
space, which is parametrized by n coordinates represented here as 0 for short; f[U(2, 0)] is the
equilibrium firing rate of neurons at 2 when signal 0 is applied (f[U] is a nonlinear function of the
equilibrium membrane potential U); and the integral is to be performed over the whole signal space.
Equation (1) allows the obtaintion of analytic expressions for w(9.9') from assumptions about the
form of finction f[U] and the structures of the equilibrium receptive fields of neurons at 9 and c'.

3 An Analytic Expression for the Synaptic Weight Function

Let us assume that the signal space is two-dimensional as the neural field. Let us also assume that
neurons at 9 in the neural field have circular receptive fields of radius R(2). The receptive field of a
neuron is defined here as the region of the signal space whose signals are capable of driving the
neuron's equilibrium firing rate to its maxim value, assumed to be f[U] = 1. It is also assumed that
signals outside a neuron's receptive field cannot excite it to significant levels of equilibrium activity,
so that one can consider f[U] = 0 when they are applied. These assumptions make (1) read

37 2,') = c f p()dO, (2)

where the integral is performed over the region of intersection between the receptive fields of neurons
at f and T', denoted by RF() r) RF(').

For a special case in which p() = p = const., equation (2) implies that w(F. V) is proportional to
the area of the receptive overlap of neurons at 9 and '. This overlap is schematically represented
at Figure 1. For this case equation (2) implies that

OFF, V') = ¢p R, arcco D2 + _R. +
I2R D

arcco 22 4R2D-(D2+J)2] (3)

where R4 - R(F), R2 S R(9'), and D is the distance separating the centers of the two receptive
fields.This equation can be used to calculate the weight of the synaptic connection between any two

11-412

neurons in the neural field, one at 2 and the other at f', from assumptions about the sizes of R(2)
and of R(f'), and the distance between the centers of these two receptive fields.

Figure 1. A scheme of the receptive fields of neurons at f and 2'. The respective radii are indicated by

R(x) and R(x'), and the centers are separated by a distance D.

4 An Isotropic and Symmetric Weight Function

In this section we will assume that all the receptive fields have the same radius R, and that the
distance between the centers of any two receptive fields depends only on the distance between the
respective neurons along the neural field, i.e.

D = g(If'- fl), (4)

where g is any well behaved function relating distances in the two spaces: the signal space and the
neural field. The above assumptions turn (3) into

W(X) = CP[2R2 arccokR) 2 I4R2_- D2] (5)

where the origin of coordinates in the neural field was placed at 2, and x = If'I is the distance from
origin. In this case co(ff') is isotropic (depends only on the distance IT - f'I) and symmetric, i.e.
al(2,2') = o(f',R). It also is the same function, apart from the signal of C, for the excitatory and
inhibitory neurons, because the radius R was chosen as the same for both types of neuron.
Obviuosly, this is not the most general case but it ilustrates some of the basic features of a general
synaptic weight function.

Equations (4) and (5) allow one to determine the spatial structure of the synaptic weight function
during equilibrium. The hypothesis behind equation (4) is that there is a mapping from points in the
signal space to points in the neural field. This hypothesis is supported by experimental evidence
(Kaas 1987; Knudsen etal 1987). An important property of these so called cortical maps is that they
are topographic: neighbouring cortical ceils respond to neighbouring stimuli. This implies that
function g must be a growing function of its argument, i.e. the greater the value of x the greater the
value of g, and therefore of D.

II-413

We will assume that the relation between points in the signal space and points in the neural field is
topographic, so that D is a growing function of x. Furthermore, in order to simplify the discussion
of this section, we also will assume that

D = x and R 1, (6)

which implies that (5) reads

MW~ = c412 arcco4>) - Y2 4 - 7]. (7)

A plot of (7) is given below, where the product cp was made equal to 1, and only the region for
which both x and ao(x) are positive was considered.

4

3

W 2

0 12

Figure 2. Graph of equation (7) for cp = 1.

The above figure gives the shape of the equilibrium synaptic weight function for the simple case
considered in this section. It shows a function decaying from a maximum value at the origin towards
zero at some point, which defines the maximum range of variation for the function (we are only
interested here in positive values of o). Thus, although simple, the equation derived here displays all
the basic features of the recurrent synaptic weight functions assumed by other authors. The difference
is that in this case an equation has been derived for it, instead of being imposed. This derived
equation could be used in other models, as an alternative to the more commonly used exponential, to
represent the time invariant recurrent synaptic weight function

5 Conclusions

The work of Amari and others on the field-theoretic approach to neural networks has been used to
study neural maps and their properties from a theoretical point of view (Amari 1990; Zhang 1991;
Roque da Silva Filho 1992). The present paper offers a contribution to this effort, by showing how
the continuous model can be used to derive possible expressions for the equilibrium recurrent
synaptic weight function. A general equation - equation (2) - has been obtained relating this
weight function to the receptive field overlap between neurons at two different positions in the neural
field. This equation has been explored here for the simple case in which the recurrent synaptic
weights are isotropic and symmetric: a solution has been obtained showing decay with distance and a
maximum range beyond which the synaptic weight is null. This is in accordance with what is
expected for recurrent synapses, and with the general properties of recurrent synaptic functions
postulated by other authors in their works.

1-414

The derivation of the synaptic weight equation was based on certain assumptions, the most important
of them being: i) the assumption that an equilibrium state is invariably reached a short time after the
application of an external stimulus; and ii) the assumption that the map from signal space to neural
field is topographic. The former allows the obtaintion of an analyf'cally tractable equation, while the
latter guarantees the spatially decaying behaviour of co(x). An assumption other than the topography
of the mapping would lead to a different synaptic weight function, which could describe a non-
decaying spatial behaviour.

Equation (2) might have further implications not studied here, mainly in connection with the so called
percent overlap rule (Sur et al 1980) observed in cortical somatotopy, according to which the degree
of receptive field overlap is linearly related to the horizontal distance between two cortical recording
sites. The integral in the right hand side of (2) is related to the receptive field overlap, and the
synaptic weight function w(2,V') is a function of the distance between two points in the neural field.
Equation (2) could then be used to study the relationship between these two quantities, and the
conditions under which it is linear. This will be explored in a further work. Finally, we would like to
point out that this work has shown a possible way of determining equilibrium values for recurrent
synaptic weights from information about receptive fields. In particular, one could use experimental
data to determine these weights, establishing thus a bridge between experiment and theory.

References

Amari S (1977) "Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields." Biol.
Cybern., 27:77-87.
Amari S (1983) "Field Theory of Self-Organizing Neural Nets." IEEE Trans. Syst. Man Cybern.,
13:741-748.
Amari S (1990) "Formation of Cortical Cognitive Map by Self-Organization." Computational
Neuroscience, EL Schwartz (ed.), chapter 21. MIT Press, Cambridge, Mass.
Caianiello ER (1961) "Outline of a Theory of Thought Processes and Thinking Machines." J
Theor. Biol., 1:204-235.
Hebb D (1949) The Organization of Behaior. Wiley, New York.
Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation. Addison-
Wesley, Redwood City, CA.
Idiart MAP, Abbott LF (1993) "Propagation of Excitation in Neural Network Models." Network,
4:285-294.
Kaas JH (1987) "The Organization of Neocortex in Mammals: Implications for Theories of Brain
Function." Ann. Rev. Psychol., 38:129-151.
Knudsen El, du Lac S, Esterly SD (1987) "Computationai Maps in the Brain." Ann. Rev.
Neurosci., 10:41-65.
von der Malsburg C (1973) "Self-Organization of Orientation Sensitive Cells in the Striate Cortex."
Kybernetik, 14:85-100.
Roque da Silva Filho AC (1992) "Analysis of Equilibrium Properties of a Continuous Neural
Network Made of Excitatory and Inhibitory Neurons." Network, 3:303-321.
Sur M, Merzenich MM, Kaas JH (1980) "Magnification, Receptive-Field Area and Hypercolumn
Size in Owl Monkeys." J Neurophysiol., 44:295-311.
Wilson HR, Cowan ID (1973) "A Mathematical Theory of the Functional Dynamics of Cortical and
Thalamic Nervous Tissue." Kybernetik, 13:55-80.
Zhang J (1991) "Dynamics and Formation of Self-Organizing Maps." Neural Computation, 3:54-
66.

II-415

Competitive Activation, Bayesian Networks, and ART

Frank E. McFadden
Department of Computer Science

University of Maryland

College Park, Maryland 20742

Winner-takes-all (WTA) behavior in a competitive system has been central to theories
of computational map formation in the brain because WTA behavior makes it possible

for a distributed system to make choices. Competitive models have generally relied on
direct lateral inhibition, which requires a very high proportion of inhibitory connections,
whereas the cerebral cortex is dominated by excitatory connections. This article intro-
duces new theoretical analysis of a competitive model proposed by [Reggia, 1985] as an
alternative to direct lateral inhibition. This model, based on competitive activation with
virtual lateral inhibition (CA VLI), is seen to be based on iterative Bayesian updating,

with architectural outlines that closely resemble ART), but with no bottom-up weights
and with rational (multiplicative) error adjustment. CAVLI and ART) are compared
with respect to inhibitory mechanisms, biological plausibility, and scaling.

1 Introduction

The class of neural models described in [Carpenter and Grossberg, 1987] and the paradigm introduced by
[Reggia, 1985] both involve competition among neurons in a field, during a short term memory phase (STM)
while the network approaches equilibrium. In both cases, the activation dynamics during the STM phase
features competition that may result in WTA behavior. Competition in Grossberg's models occurs by direct
lateral inhibition, as typified by population models of mutually predatory species, whereas competition in
Reggia's models occurs by "virtual lateral inhibition," typical of competition among firms producing similar
goods. The latter class of models will therefore be referred to as Competitive Activation based on Virtual
Lateral Inhibition, or CAVLI, to distinguish it from the class of models based on competitive activation with
direct lateral inhibition, of which ART is the best known example. It will be shown that the CAVLI models
are closely related to probabilistic models such as Bayesian networks used in diagnostic modeling. Because
the ART model is well-known, it will not be reviewed here, but the CAVLI model will be described and
analyzed from a new theoretical point of view. The two models will then be compared and contrasted.

2 Theory of CAYLI

2.1 Basic Theory

The central formula in CAVLI models has been one that computes connection strengths indirectly, by
way of a "weight matrix." In order to make the formulation clear, the model shall be stated in terms of
a two layer feedforward CAVLI network, with activations in the first layer denoted by the rn-vector x and
activations in the second layer denoted by the n-vector y. Further, denote the input to node i by Ii, and let
wj represent the connection strength for impulses transmitted from node j (in the first layer) to node i (in
the second layer). As in many neural network models, the input is summed linearly:

m

ri E Zwxij (1)
j=1

II-416

The basic formula that distinguishes the CAVLI models is that used to compute wi,

wij - viyd(t) (2)

where vii is the parameter matrix.' While variations on this basic theme have appeared, the essence of the
CAVLI notion is contained within the basic model defined by equations (1) and (2). Equation (2) is formally
identical to Bayes rule, and the matrix of weights, vii, plays a role that is very similar to that of the topdown
weights in the ARTI model, but there are no independently parametrized bottom-up weights in the CAVLI
model.

An interpretation clarifies the formal identification of the CAVLI model with a simple Bayesian diagnostic
model. The y layer can be interpreted as prior probabilities on a set of mutually exclusive "disorders", and the
x layer as the distribution on a set of "manifestations." Let Y denote the event that disorder i is present, and
Xj the event that manifestation j is present. vi is the conditional probability, P(Xj JYi), that manifestation
Xj will be observed when disorder Y is present (exclusively). It is also assumed that manifestations are
mutually exclusive, and occur in the population with probabilities z i = P(XJ).

It can be seen by substitution that

-P(i) P(Xi Z)Wij --- P(X ly)P(yk)

= P(YIX),

according to the usual derivation of Bayes rule, which holds under the assumption that the disorders Y are
a disjoint partition of the probability space. Thus the forward coefficient wi is the conditional probability
that disorder i is present when manifestation j is observed.

Overall, the model can be regarded as a Markov process in whicl the y(t) vector is modified, depending
on what manifestation is observed at time t, where manifestation j occurs with probability zj. A sequence
of input data, (t) is observed, and the update rule is used to modify the y values. The data vector (t) is
an indicator variable that equals 1 in the component corresponding to the observed manifestation, and 0 in
all other components. Thus

y,(t + 1) = Ii(y(t),(t)), (3)

and the expectation of y(t + 1) conditional on y(t), over the population distribution of manifestations is
given by

m

E(yi(t + 1)) = ji(y(t), ej)z, (4)
j=1

where e3 is the jth standard basis vector.
Equation (4) is the update equation for the basic CAVLI model, and an invariant distribution of the

process defined by equation (3) corresponds precisely to an equilibrium point of the basic CAVLI model.
That is,

E(y(t + 1)) = y(t), (5)

in equation (4) is equivalent to the convergence criterion for the basic CAVLI model defined by equations
(1) and (2), with updates given by

y, + 1) = I,(t). (6)

The activation dynamics of a basic CAVLI model are generally characterized as a Markov process based on
updating of a simple Bayesian diagnostic model, with the process continued until it reaches an invariant
distribution.

1 The letter V is used for this matrix of topdown weight parameters because it suggests "Vorgestalt".

11-417

2.2 Rational Error Adjustment

A unique feature of the CAVLI models is their implicit use of a ratio-based error adjustment criterion. In
the basic CAVLI model defined by equations (1) and (2), with updates given by equation (6), we have

y,(t + 1) = ~y(~, 7
,=i V)t) Xj, (7)

where, for convenience, we have defined
Vi : yVki. (8)

k

Equation (7) implies

Y,(t+) v (t) (9)
j=1 i()

In this equation, we define
Pi = -Di (10)

and
R(t + 1) = Vp(t), (11)

where V is the matrix with entries vii. p(t) is the error ratio vector observed at the input layer and R(t + 1) is
the correction ratio propagated up to the output layer of the network, so that the update rule, by examination
of equation (9), can be expressed in the ratio form

y,(t + 1) = RP(t)y(t). (12)

In the interpretation of the basic CAVLI model as a diagnostic model, V is the distribution on the set
of manifestations that would be consistent with the prior probability distribution on th, set of disorders
and the fixed conditional probabilities coded in the V matrix. The estimate, D, is cumpared with the
observed x and an error ratio is computed. The error ratio is then gated through the weight matrix V up
to the output layer, where it becomes the correction ratio R that is applied to the y vector until the system
reaches STM equilibrium with R = 1 in each component.2 This is a form of resonance between a topdown
transformation of the prior distribution and the observed distribution at the input layer of the network.
As with the ARTI model, the underlying philosophy is that the mental perception is dynamically modified
during STM dynamics up to the point when it reaches sufficient agreement with the observed data.

3 CAVLI Compared with ART1

3.1 Basic Design

Both CAVLI and ARTI are based on resonance between a stored topdown pattern that is communicated
from the output layer to the input layer, and the pattern observed at the input layer. In both cases, the
objective is to minimize the error observed at the input level, and in both cases, a kind of feedback is involved,
explicit in the case of the ARTI model and implicit in the dynamics of the CAVLI model. In this section,
the two mechanisms for achieving resonance will be compared, then they will be compared in terms of the
biological plausibility of their handling of inhibition and scaling properties.

The most unusual characteristic of the CAVLI model is its use of a rational error signal. The STM
adjustments of the CA VLI model are essentially multiplicative, whereas dynamics are additive for most neural
network paradigms. This provides CAVLI with the capability of replicating psychophysical experiments such
as those of [Land, 1986] that established discounting of the illuminant in visual perception. This is because
the basic equations are affected only by the relative intensities of the input components.

2 A precise analysis of convergence is included in [McFadden, 19931.

II-418

An obvious difference between the two models is that the ART1 uses twice as many gating parameters.
Bottom-up weights an topdown weights are both fully represented, with one entry for a forwards connection
and another for a backwards connection between the same node. In CAVLI models, by contrast, all of the
weight parameters function in a topdown fashion, while the connections are nevertheless treated as feedfor-
ward connections. The addition of bottom-up parameters in the ARTI model undoubtedly has advantages
for the stability of the model, and is consistent with the presence of bidirectional connections in biological
systems, but applications of the CAVLI model, such as those of [Sutton, 19921, do not appear to suffer
unduly from the absence of bottom-up parameters.

3.2 Extent of Inhibitory Connections

One of the potential drawbacks of ARTI as a biological model, and of other models based on direct
lateral inhibition, is the large number of inhibitory connections required to enforce direct lateral inhibition.
Anatomical data from [Beaulieu and Colonnier, 19831 indicate that roughly 16% of all cortical synapses are
symmetrical, and this can be taken as a rough estimate of the proportion of inhibitory synapses. The pattern
storage capacity of a basic ARTI module will be estimated, subject to the restriction that the proportion of
inhibitory connections is limited to 16% of all connections present in the module.

In the ART1 model, denote the number of nodes in the F1 and F2 layers by m and n respectively. The
F2 layer has n2 mutually inhibitory connections, including those for self-inhibition. In one realization of the
basic model,' the F1 layer sends m inhibitory connections to the novelty detector, and the nodes of F1 have
m inhibitory connections for self-inhibition. Excitatory connections include 2mn for both the topdown and
the bottom-up gates, plus m from the gain control to the Fl nodes, plus n from the F2 layer to the gain
control, m from the input to the novelty detector, and m from the input to the F1 layer.

Under this counting scheme, the total number of inhibitory connections is n 2 + 2m and the total number
of excitatory connections is 2rnn+ 3m+2n. We consider the ratio r = n/m when the proportion of inhibitory
connections is limited to 16%, as in the study by Beaulieu and Colonnier. Based on our realization of the
ART1 model, the proportion of total connections that are inhibitory is given by

r 2m 2 + 2m r2 m + 2
r 2m 2 + 2rm 2 + 5m + 2rm r 2 m+2rm+5+2r -

In a system with a large number of neurons, such as the brain, it is reasonable to consider m to be large, so
that we can take the limit as m -. oo in (13) to arrive at the equation

r
2

r2 +2r 1 '

which implies that r ; .38.
In summary, it has been shown, based on reasonable assumptions, that if the number of inhibitory

connections in the ARTI module were limited to 16% of the total number of connections, consistent with
the currently known data concerning the proportion of inhibitory connections in the cortex, then the pattern
storage capacity of the F1 layer would be limited to a number of patterns that is roughly 38% of the size of
the F2 layer.

CAVLI models are not subject to a similar restriction because explicit inhibitory connections are not
used in these models. The drawback of the CAVLI formulation is that virtual inhibition has been achieved
indirectly, by way of an allocative mechanism similar to that used in competitive learning. It is unclear what
biological mechanisms might be involved in this process. The CAVLI formula solves the problem of excessive
inhibitory connections, but raises difficult questions of biological plausibility.

3.3 Scaling

Priciples established in psychophysics imply that a perceptual model should scale properly, that is, that its
response should not saturate at very high or very low intensity levels. Data in [Wyszecki and Stiles, 1982],

3 ARTI is often described in more gentral terms, according to which distributed representations at the F2 layer would be
possible, but mutual lateral inhibition is generally assumed in order to make decisions possible for pattern classification.

11-419

for example, show that a Weber-Fechner law holds rather well for photopic (cone) vision in normal ranges
of intensity, without saturation.

For the basic CAVLI model, analysis of scaling is straightforward, since the model with the update rule
y,(t + 1) = Ii(t) is linear in the intensity of the external input. This is not in full agreement with Fechner's
law, which hypothesizes that the response is proportional to the log of the stimulus, but saturation, in any
case, is not a problem.

For the activation rule used in [Reggia et al., 1992], however, saturation is a problem. This rule is

y (W)= I(M - Y(t)) + cy(t), (14)

where yi is the activation of the ith cortical node, ini is input to the node, c, is inhibitory self-decay, and M
is the maximum activation that a node can have. The analysis is similar to that of [Grossberg and Levine,
1975]. Assuming that the dependence of Ii on the y vector can be temporarily ignored, then the equilibrium
equation is seen to be

- M ini
i -Ii- c,

which clearly saturates as Ii grows without limit, with

M
liM Yi = ---
I.0o C,

These effects are analyzed in greater detail in [McFadden, 1993], using implicit partial differentiation in order
to analyze the response pattern of the model for a variety of parameter values.

3.4 Other Points of Comparison

There are several other ways in which the ARTI models differ from the currently known variations of
CAVLI models. Contrast enhancement behavior in the ART models is generally effected by the use of direct
lateral inhibition, and achieved largely by the dynamics within the F2 layer. For the CAVLI model, contrast
enhancement is only meaningful when the transformation of one layer into another is considered. This is a
profound difference, and it is unclear whether this systemic contrast enhancement or the intra-layer contrast
enhancement of models such as ART is more plausible biologically. These effects are analyzed in detail
for small networks in [McFadden, 1993], where it is pointed out that Hebbian learning effects may perturb
contrast enhancement properties.

The novelty detector in the ART module is part of the solution to the stability-plasticity dilemma. This
extra node was used to determine whether a new input was sufficiently similar the the existing set of patterns,
or whether it was necessary to form a new pattern. Novelty detection has not yet been considered for CAVLI
networks, but there is no reason why similar mechanisms could not be tried.

Finally, the handling of input formats is significantly different between the two models. The ARTI model
applied to binary inputs, whereas the basic CAVLI model is not restricted to binary input. The CAVLI
formalism introduces a plausible way of handling continuous input data in a relatively straightforward way.

4 Conclusions

1. CAVLI models, essentially, perform interative Bayesian updating in order to resonate with the output
pattern node most likely to explain an input pattern.

2. The CAVLI mechanism contrasts with ARTI by implictly using a rational error adjustment procedure,
and by using only the topdown weight parameters (without bottom-up parameters).

3. Because CAVLI models do not assume direct lateral inhibition, they are not subject to capacity limitations
that would be imposed on the ARTI model if it were limited to the proportion of inhibitory connections

11-420

estimated for the cerebral cortex; nevertheless, it remains to be seen whether the CAVLI mechanism could
occur biologically.

4. Because the basic CAVLI model is based on a rational error adjustment process, it scales very natu-
rally, but the scaling property cannot be taken for granted in extensions of the CAVLI model.

5. CAVLI models are in most respects addressing the same questions that are addressed by the ART
models, and in a similar way. The CAVLI formulation of an unsupervised learning network has enough
strong points to make it an alternative to ART.

REFERENCES

Beaulieu, C. and Colonnier, M. (1983), The number of neurons in the different laminae of the binocular
and monocular regions of area 17 of the cat. Journal of Comparative Neurology, 217, 337-344.

Carpenter, G. and Grossberg, S. (1987) A Massively Parallel Architecture for a Self-Organizing Neural
Pattern Recognition Machine. Computer Vision, Graphics, and Image Processing, 37, 54-115.

Grossberg, S. and Levine, D. (1975), Some Developmental and Attentional Biases in the Contrast En-
hancement and Short Term Memory of Recurrent Neural Networks. Journal of Theoretical Biology 53,
341-380.

Land, E. (1986), Recent advances in retinex theory. Vision Research, 26, 7-21.

McFadden, F. 1993, Competitive Learning and Competitive Activation in Cor tical Map Formation, Ph.D.
thesis, University of Maryland, College Park.

Reggia, J., D'Autrechy, C., Sutton, G., and Weinrich, M. 1992, A competitive distribution theory of
neocortical dynamics. Neural Comp., 4, 287-317.

Reggia, J. (1985). Virtual Lateral Inhibition in Parallel Activation Models of Associative Memory. Pro-
ceedings of the Ninth International Joint Conference on Artificial Intelligence, Vol. 1.
Los Angeles, CA, 244-248.

Sutton, G. (1992), Competitive Learning and Map Formation in Artificial Neural Networks using Compet-
itive Activation Mechanisms, Ph.D. thesis, University of Maryland, College Park.

Wyszecki, G. and Stiles, W. (1982), Color Science: Concepts and Methods, Quantitative Data
and Formulae. Wiley, NY.

1-421

Robustness of Neural Networks

K. KrishnaKumar

Dept. of Aerospace Engineering, The University of Alabama, Tuscaloosa, AL 35487-0280
e-mail: kkrishna@ualvm.ua.edu

Abstract
This paper analyzes the robustness characteristics of Neural Networks (NN) using linear

systems theory. Robustness is defined as the ability of a neural network to map untrained data
(data not used during training) within an error tolerance. An induced Euclidean matrix norm is
used to derive error bounds for NN with activation functions that predominantly exhibit linear
behavior. Lyapunov stability theory is used to derive bounds on the non-linear variations in NN
with activation functions that exhibit non-linear behavior. A Monte Carlo simulation analysis is
conducted to examine the robustness characteristics of fully and sparsely connected networks. The
following conclusions are drawn based on the above analysis: (a) sparsity in the NN connection
topology is highly desirable to achieve robustness; (b) two hidden layer networks with equal
number of neurons in each layer exhibit very poor robustness; (c) a fully forward-connected
network with sparsity is the most robust and accurate for a given number of neurons; and (d) for
NN with many neurons, highly non-linear activation functions exhibit very poor robustness.

1. Introduction
Robustness of neural networks (NN), defined as their ability to generalize, is an important characteristic

for many applications ranging from simple function mapping to more complicated non-linear process control
problems. Most popular neural networks in use today use multi-layered feed-forward networks with connections
going from one layer to the next. Several investigators have shown the approximating capabilities of these networks
(for example, see Reference 1). Another type of network that has received some attention is the fully-forward
connected network [2,31. KrishnaKumar [3] has shown using empirical results that if this type of network is made
sparse, the networks are more accurate and robust for a given number of neurons. Many other researchers have
shown similar empirical results using sparse multi-layered feed-forward networks (Mozer et al. [4], Rumelhart et
al. [5], and Sietsma et al [6]).

In this paper, we address the general question of how to define relative robustness of different neural
network structures. We assume that the network has been trained to provide a desired accuracy for the training data
set. The question then is simply one of how to relate the given NN structure to certain bounds on its mapping error
for untrained data. We first define robustness given a NN structure and then examine the robustness of layered
networks, fully-forward connected networks, and sparse networks.

The paper is organized as follows. We begin with the definitions of NN structures that are discussed in this
paper. Next, we state the linear systems theo:y results that will be used to define robustness. We then present an
interpretation of NN equations in terms of the linear systems theory and present a Monte Carlo simulation analysis
to examine the robustness characteristics. The following conclusions are drawn based on the above analysis: (a)
sparsity in the NN connection topology is highly desirable to achieve robustness; (b) two hidden layer networks with
equal number of neurons in each layer exhibit very poor robustness; (c) a fully forward-connected network with
sparsity is the most robust and accurate for a given number of neurons.

2. Neural Network Preliminaries
In this paper, without loss of generality, we will assume one input, one output neural networks with N-2

sigmoidal hidden neurons. The hidden neurons could be arranged either in a layered form or in a fully-forward
connected form (Figure 1). A fully-forward connected NN could be seen as a layered NN as shown in Figure 2.
Also, a fully-forward connected NN with the proper connections removed can be made to look like a traditional
single or double layered networks. Since our main concern is one of generalization and not accuracy in mapping,
it is assumed that the user has made a choice of the NN weights via some learning scheme. The equation for a fully-

1-422

forward connected NN is given as:
I-1

x,-#, T~ W, XAl y,=.XI 25fN(1
J-I

ZN - NN output

X, = NN input and the input neuron is a linear neuron
where
Y1 = output of the i'e neuron
w, = weight connecting the i' neuron to the j" neuron.
*g () = non-linear neuronal activation function.

Equation 1 can be used to arrive at layered networks by simply zeroing out appropriate elements of the
weight matrix. This will be illustrated in section 4.

3. Mathematical Preliminaries
3.1 Vector Norm

For any vector x e R" , the Frobenius (Euclidean) norm is given as

Ix,,=xVI+12 I. I2 (2)

3.2 Spectral Matrix Norm

A spectral matrix norm IG, of matrix G c R- is a matrix norm induced by the Euclidean vector norm
and is given as:

+ (3)

i.e., the spectral norm equals the largest singular value of matrix G. Based on the above definitions and using
Holder's inequality [71, we have for a given y=Gx

lyl : IGlx - lyl Y ou[Glxl (4)

Examining the above equations we see that the o.[G] represents the least upper bound for the ratio of the output
and input norms.

3.3 Lyapunov Stability Theory

Let a non-linear perturbed discrete system be
xk+1)--x(k)+h[, z(k)] (5)

where E R' is the state transition matrix, x(k) is the state vector at time step k, and h[k,x(k)] is the non-linear
perturbation in the system. Let the non-linear perturbation be bounded by

lh[k, x(k)] I :st x(k)1, t >0. (6)

i.e., the norm of h does not exceed the norm of x multiplied with a fixed gain t. The system given in equation 5
is exponentially stable if the solution x(k) satisfies the condition [7]

x(k)l, !; PXO)l, exp(k li, p)=P)x(O), p,, p>o Op <l (7)

11-423

where 0 is some positive constant and p, is the degree of stability. An estimate of p. can be derived for the non-
linearly perturbed system using norm-like Lyapunov functions in terms of the non-linear perturbation bound t [7]
as

< 1.0

where A, is the estimate of Pa, !. is the identity matrix, and P e R' satisfies the Lyapunov equation [71
-or"-p= -1. (9)

The above equations imply that the stability margin of the non-linearly perturbed system is governed by
the system matrix -6 and the gain tN Larger tN (smaller A,) implies greater stability.

4. Robustness Analysis of Neural Networks
The neural network equation presented in equation 1 can be interpreted as a non-linear system with x,

representing the inputs to the system and y, representing the outputs of the system. Now, let f be a vector
corresponding to inputs not used during the training. Then the corresponding outputs are given by

1-i

y1=0((w1 j 1! i!W (0)
J-1

Now, let yi" be the desired output and xi- be the input such that
1-iy/, 1 E y-; Iig
J-1

Expanding the right hand side of equation (10) in a Taylor's series form about X., we get the vector equation
t-Y'= A(I-X')+h[)?-X*] (12)

where

h[I-X 'I= the higher order non-linear terms.

It is clear from equation 12 that if If-i is small for a given i-x *1, the NN will be considered robust.
Also, in the above equation, A is the first order derivative matrix. Depending on the type of NN structure, the
matrix will have different entries. Given below are examples of three first order derivative matrices for three types

of NN structures. !n the matrices given below, 4i'= W). It is noted here that the sparsity in these matrices canX()
be created either by zeroing the weights or the slope of the activation functions.

First order derivative matrix for a fully connected NN (1 ingut. 7 hidden neurons, and 1 outout

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
*W 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
*'W31 4,' W32 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Of W41 O' W42 o' W, 0.00 0.00 0.00 0.00 0.00 0.00
49VW51 O'W 52 Of W53 OfW, 0.00 0.00 0.00 0.00 0.00
O'W6, Of W 01 W63 Of WO Ws 0.00 0.00 0.00 0.00

01 W7, 0 ,' W12 4, W9 43 ' W7, 4 W., 4, W, 0.00 0.00 0.00
Of we, O W12 Of W,~ o'w,, Ofw Of , ~ 4I1 -40.00 0.00

I- 424

First order derivative matrix for a single hidden laser NN (U inutL 7 neurons in the hidden layer. and 1

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Of W3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

O' W 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Of W,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Of W61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OfW 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lo W 8 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 4,' W, 2 o' w,, ow,4 O' W, 5 Ww, O Iw, O' w,, 0.00

First order derivative matrix for a two-hidden layer NN (1 inout. 4 neurons in the rfn hidden laver,
neurons in the second hidden layer, and 1 outut)

"0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01 W31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f W3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
00WW4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Of W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 Of W2 Of W3 '01 W6 ',1W6 0.00 0.00 0.00 0.00
0.00 01W7 Of W73 ,1 W7 4 01 W7 0.00 0.00 0.00 0.00
0.00 Of Ws2 Of W83 *'WS. of W3 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 o' wo6 01 W97 'W,, 0.00

Letting t-y'=6y and I-X-'=6X , we get from equation (12)

6Y=A 6X+h[6X (13)

CASE 1: Predominantly linear activations

If h[6X]is small, we can approximate equation 13 as aY=A 6X. Recalling the Holder's inequality for
vector and matrix norms [7], we have

16)i, ! PIS 16XIF. (14)

For an Euclidean norm, MAl,=o=._ 0. This implies that if p is small, the output error will be a small proportion
of the input deviations. In essenc tumerical value of the norm of A defines the robustness of the mapping and
smaller p implies better robustne. gure 4 presents results of a Monte Carlo simulation conducted for various
types of neural network structures. The entries of matrix A were chosen randomly to lie between -I and + 1. In all,
500 samples were generated for each type of NN structure. Sparsity in the network was created by randomly zeroing
out the non-zero elements of the A matrix. Figures 4 and 5 present the mean and standard deviation of the
robustness measure p. Figure 6 presents the number of connections (or non-zero elements in the weight matrix) for
diffetant NN structures used in this study. The following observations are made from Figures 4,5, and 6:

(1) The standard deviation of the robustness measure is small and remains a constant for low sparsity
networks. This implies that the mean of the robustness measure is a good indicator of robustness regardless
of the choice of the NN weights.
(2) As the number of neurons increases, robustness decreases.
(3) Two hidden layer networks with equal number of neurons in each layer exhibit very poor robustness.
(4) Examining Figures 4, 5, and 6 it can be concluded that the fully-forward connected NN with sparsity

H-425

is the best in terms of both accuracy of mapping (due to higher number of available free parameter or
weights. See Figure 6.) and robustness for a given number of neurons. This result was stated in reference
3 using empirical data.

CASE 2: Non-linear activations

Most of the neuronal activation functions in use today exhibit locally linear behavior. For example, the
sigmoidal network has three distinctly linear regions as shown in Figure 7. The analysis conducted above should
be applicable to the three linear regions shown in Figure 7. In the case where the non-linearity cannot be ignored,
we have the following situation:

k[6X],,O, bW bownded as Ih6X1I(I XI (15)

Now combining equations 13, 14, and 15, we get
16YI :g JAI 16X1+(1I (16)

From equation 16 it is obvious that smaller t implies better robustness. Since our interest is to compare
robustness between different neural networks with non-linear behavior, we define robustness in terms of an upper
limit on the allowable non-linear variations, i.e., an upper limit for t. Here we use the Lyapunov stability condition
presented in section 3.3 and define an acceptable upper bound for E as

1.0

and from equation 7, with k=1, we have

18YIF :5 PlaXIF eXP~n O)=IIaXlF P., %ere P >0 0ospl.0 (18)

In the above equation I, is the identity matrix and PA satisfies the Lyapunov equation

AT PA A-Pe=-I. (19)

From equations 17 and 18 it is clear that & is a good measure of robustness for the non-linear mapping as it relates
to the bounds on the NN output presented in equation 13. It is also noted that higher 1, (lower p.) implies greater
robustness. Figures 8 and 9 present the mean and standard deviation of the robustness measure I. From these
figures it is seen that the robustness to non-linear variations in the activation functions is very similar to the linear
cas, i.e., sparsity is important for robustness and the two-hidden layer exhibits very poor robustness. In addition
it is seen that as the number of neurons increases, both the mean and the standard deviation of &N approach zero.
This suggests that for large NN, highly non-linear activation functions are not well suited for robustness.

5. Conclusions
Simple robustness measures for neural networks with linear and non-linear behavior were presented. Using

these measures, robustness of several neural networks were examined using a Monte Carlo simulation with 500
samples for each type of neural network structure. The results of the analysis reinforces the need for sparsity and
the need to use fully-forward connected NN with sparsity instead of the traditional multilayered neural networks.
Also, two hidden layer neural networks were shown to be the least robust among the popular structures currently
in use. Another interesting result is that for neural networks with large number of neurons, non-linear activation
functions are not the best for robustness.

ACKNOWLEDGEMENT
This material is based upon work supported by the National Science Foundation under Grant No. ECS-

9113283 and the University of Alabama Research Grants Commission under Grant No. 1641.

11-426

REFERENCES
[I] K. Hornik, Approximation Capabilities of Multi-layer Feedforward Networks, Neural Networks, 4, (199 1)

251-257.
[21 P. J. Werbos, Back-propagation Through Time: What It Does and How To Do It. Proceedings of the

IEEE, 78 (10) (1990) 1550-1560.
(3) K. KrishnaKumar, Optimization of the Neural Net Connectivity Pattern Using a Back-propagation

Algorithm, Journal of Neurocontputing, 5, (1993) 1-14.
[4] M. C. Moze and P. Sniolensky, Skelebonization: A Technique for trimming the fat from a network* ma

Relevance Assessment, Tech. Rpt. CU-CS-421-89, Department of CornputIr Science and Institute of
Cognitive Science, University of Colorado, Boulder, Co, 1989.

[5] D. E. Rumeihart, J. L. McClelland, and the PDP Research Group, Parallel Ditributed Procesing:-
&plorations in the Microstructure of Cognition. Volume 1: Foundations, (MIT Press, Cambridge, 1986).

[6] J. Sietsma, and R. J. F. Dow, Creating Artificial Neural Networks that Generalize, Neural Networks, 4
(1991) 67-79.

(71 A. Weinmann, Uncertainty Models and Robust Control, Springer-Verlag Wien, New York, 1991.

U Y

input units , hidden units output units

Fig 1. A fully-forward connected NN

MOO Fully connected

So 0s connected
o - - - 60 x connected

UE 20 X connected
U) 10.00 S~ohde ae

W12 3-

2 3 4 HIDDEN LAYERU 01

HIDDE LAE 3Fll onc

.0E 30.00p

3 4 HIDDOUTPU LAYER 0 .0 .. i b b b -- ~--l 1i A

4 HIDDEN LAYER 03 n40.00 Fulconte

E 130.00

Fig 2. A fully-forward connected NN seen as a multi- 000

layered NN
0.00-- -- -- -- --- - d .. i

No. of neurons

Fg I.Mean of pfor various NN structures

I- 427

0.80 2

Fully connected
0- 80 S connected

- - - 60 a connected
----. 40 X connected

E o. 20 x connected Lneor Regio
n

In amo Siqgle hidden layer

In

C
'0.A Linear Region

.o -_

'52 Lie egoj

0.0 Linea Reqon

0 20 40 60 O 1.0 -120 140 160 -0 -5 0 5 10
No. of neurons x

Fig 6. Sigmoidal activation function

0.80
) -Fully connected

:3 one Single hidden layer
S 00,00 Two hidden layers

E 0.60 7 Q) 0.20 Fully connected4 () - Fully0 1 connected

VI:3 - 80 9 connected
Vn - - - 60 a connected

0 ---- 40 x connected

C 4)
, 0.40

....... 20 connected
S0400seem Single hidden layer

0V De 0000e Two hidden layers

o 0.20 0. 1 , '.

0

000 00.05
0 2010L6 6 0 0o120 140 160

No. of neurons

FF 4. Standard deviation of p for various NN M.... s0.00 - 40b 0 6 100 120
strucures0 20 No. of neurons

-21lly coiete 7.' Mean Of ~Nfor various NN structures
•._ _1 Fully connected

4)10000 - 80 Z connected
--- 60 5 connected
- --- 40 S connected

In 20 5 connected 0.10
a s Single hidden layer - Fully connected

0 00000 Two hidden layers 3- 80 % connectedSo0 - - - 60 5 connected
C 6 ---- 40 S connected
C 20 S connected

0 Deese Single hidden layer
o4000 G 0 Two hidden layers

4) 0.06

2000
in:3

... 00.04E -------------.. .a o o
:1 01 Win

Z 60 60 4b 0 6 - ,I 120 140 IS

0 20 4 40 60 80 100 120
No. of neurons

Fig 8. Standard deviation of t for various NN
structures

11-428

Mathematical Foundations
Session Chairs: Shun-ichi Amari

Daniel Levine

POSTER PRESENTATIONS

PERFORMING DIFFERENTIAL AND INTEGRAL CALCULUS
USING RADIAL-GAUSSIAN NEURAL NETWORKS

Ian Flood
Department of Civil Engineering

University of Maryland
College Park,

MD 20742

Abstract - The paper describes a novel means of performing calculus using networks of radial-
Gaussian neurons. The network architecture and training algorithm used for this purpose is
described briefly. Once trained, a network can be converted into a form that provides the
differential or integral of the learned function, by a simple substitution of the type of activation
function used at the hidden neurons. A range of substitute activation functions, for conversion to
first and second order partial differential and integral forms of the network, are derived. Following
this, the technique is tested on a selection of calculus operations. The converted networks produced
in these experiments provide accurate models of the actual differentials and integrals of the function
the original networks had been taught. A method of improving the accuracy of results by training
the original network beyond the region in which the converted networks operate, is described. The
paper concludes by identifying some areas for further development of the technique.

INTRODUCrION

Feedforward artificial neural networks with synchronously operating neurons can be represented in
a functional form that enables manipulation by a variety of mathematical operations, including
rotation, differentiation (see for example Homik et al. [1990]) and integration. Often, the function
resulting from the operation can itself be represented in the form of a neural network. In the case
of differential and integral calculus operations, the subject of this paper, the conversion from the
original network can be effected by a simple substitution of the type of activation function used at
the hidden neurons.

The technique can be applied no matter how many output or input neurons comprise the network.
In the former case, the differential or integral of the function generated at each output neuron will
be provided. In the latter case, the partial differential or integral will be provided with respect to
whichever input required. Moreover, by selecting an appropriate substitute activation function,
second and higher order differentials and integrals can be achieved. It would seem, therefore, that
neural networks offer a powerful automated method for performing calculus. In particular, the
technique could be useful when (i) an analytical solution to the differential/integral of a function is
not available, or (ii) a set of points, suitable for training a network, is all that is known about the
function for which the differential/integral is required.

However, it should be remembered that a converted network will provide the differential/integral of
the function performed by the original network rather than the differential/integral of the function
the original network had attempted to learn. Consequently, there is no guarantee that the converted
network will provide a valid model of the true differential/integral.

A second issue arises from the desire to limit the network to a single layer of hidden neurons. If
more than one hidden layer exists then the differential/integral function becomes unwieldy and
difficult to implement using a simple substitution of activation functions. Ideally, therefore, the
chosen type of network should be capable of providing an accurate model of the original function
with just one layer of hidden neurons.

In principle, the popular backpropagation system [Rumelhart et al, 19861 could be used as a
mechanism for performing calculus operations. However, although a proof exists that these

1-431

devices can model any function of interest using a single layer of sigmoidal hidden neurons
[Hecht-Nielsen, 1989], there are many functions that, in practice, require at least two hidden
layers [Lippmann, 1987]. To overcome this-problem, the radial-Gaussian network architecture
and training algorithm proposed by Flood [19911 was adopted. This system never requires more
than one hidden layer of neurons to model a function and demonstrates a number of other
characteristics well suited to the task at hand. In particular, it is capable of providing highly
accurate models of a function, does not become stuck during training, learns rapidly, and
determines automatically the number of hidden neurons required to achieve a given level of
accuracy for a set of training data.

RADIAL GAUSSIAN NETWORKING SYSTEM

The following provides an overview of the radial-Gaussian network architecture and training
algorithm as relevant to this paper. For a more detailed description of this system the reader is
referred to Flood [1991]. The structure of these networks, illustrated in Figure 1, comprises a
layer of input neurons that perform a normalizing function, a single layer of hidden neurons each
of which implements a radial Gaussian function, and a layer of output neurons that act as simple
summers of incoming values. The operation of these networks can be formalized by the following
system of five equations:

Activation at the y-th output neuron is given by:N

o = L'(1)

where v..y are weights on the links to the output neuron.
Activation at the n-th hidden neuron is given by:

h. = g(s.,z) (2)

'r. = 7 1 (i. cz.) (3)
where s, is a squeezing parameter, c., are offsets on the connections to the hidden neuron;
and go is the following Gaussian function:

gO =e-"l (4)
Activation at the x-th input neuron is given by:

1Z = ai (5)
where a, is a normalizing parameter, and i, is the value input to the neuron.

In its simplest form, training proceeds by
developing one hidden neuron at a time.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER Each successive hidden neuron is trained on
8t1 81 the component of the problem its

1 1V1 predecessors failed to learn, using an error
"1 01 gradient descent technique. Typically,

82 '82 neurons are added as such until the error in
2 2the network (measured on either the training

2 O } patterns or a set of test patterns) reaches an
acceptable level. The system includes a
smoothing technique, adopted in the

aX Oexperiments reported in this paper, based on
xx Y 0Y training the network on three variations of the

problem and taking the average outpuL
Fig 1: Radial-Gaussian Network Architecture

1-432

DIFFEETfIATION

To convert a trained radial-Gaussian network into its first differential form, all that is required is to
change the activation function used at the hidden neurons (given by Equation 4) to the following:

g'O --2s= a¢ 5.,e" (6)

where 4 is the index of the respective input for the partial differential; and 84 , = (a i - c,).

To confirm this, consider the following functional representation of the radial Gaussian network:

= N I e-s - (7)
Differentiating this expression gives:

o!o = -1 N1 v.,,2sa, 4 (a, 4 - ,..e' (8)

which is the same as the original network expression except that it embraces the extra term
-2s,a (ai - c,..). Conveniently, this term can be made part of the activation function of the
hidden neurons as indicated in Equation 6, leaving the rest of the network unchanged.

Through a similar argument, it can be shown that the second differential of this type of network
can be obtained by changing the activation function used at the hidden neurons to the following:

g'() = a, ((2s.,54,)2 - 2s,,)e-f (9)
Similarly, third and subsequent differentials can be obtained by substituting the activation function
used in the original network.

The first problem chosen to demonstrate the technique was that of determining the first and second
differentials of two periods of the sine function. A set of 100 example patterns, evenly spaced
between the limits 0 and 4ic along the input, was established to train the network. Training was
allowed to continue until 50 hidden neurons had been added to the network giving an average
absolute error F of 0.00023 for 1,000 randomly selected test patterns. Figures 2.a and 2.b plot
the output from the first and second differential forms of this network between the 0 and 4n limits.
From these it can be seen that the differential networks provide accumte approximations to the true
differentials (the cosine and negative sine functions respectively) except for some perturbations
near the limits of the training domain (the region in input space where the training patterns are
located). These perturbations are greater for the second differential network and would become
worse in subsequent differentials. Both the first and second differential networks were tested on
1,000 randomly selected test patterns and found to have an average absolute error E of 0.0028 and
0.0753 respectively. One way of reducing the error would be to train the network with an
extended set of training patterns that goes a short way beyond the domain for which the differential
of the function is required. Such an approach is considered in the next example.

1. . 0.0028 - 0.0753 Z. - 0.0014

(a) Rrst Differential (b) Second Differential (c) Firt Integral

Fig 2: Output from Differential and Integral Forms of a Network Taught the Sine Function

11-433

To illustrate partial differentiation, a network was taught the cowboy hat function,

t= sine(447--), for 4 and 4 ranging between -5.0 and 5.0 as shown in Figure 3.a. A set of

121 training patterns was set-up for this purpose, marking the points indicated by the intersections
of the grid lines in Figure 3.a, and the network was trained until it comprised 100 hidden neurons.
The network was then converted to its first partial differential with respect to /. Figure 3.b shows
the actual partial differential of the function:

t2 cos(V(il+i i)22T) (10)

and Figure 3.c shows the output from the partial differential network for 4 ranged between 0.0
and 5.0 and 4 ranged between -5.0 and 5.0. Just half of the function over the training domain
was plotted to reveal the discontinuity in the function at the origin. The network has provided a
good approximation to the partial differential including its discontinuity (having an average
absolute error E of 0.0185 for 1,000 randomly selected test patterns). However, there are once
again significant perturbations in the function near the boundaries of the training domain. A
second network was trained on the same problem, this occasion using an extended training domain
covering the limits ±6. 0 for both 4 and i2. The output from the first partial differential of the
network, for i, iang'j between 0.0 and 5.0 and i2 ranged between -5.0 and 5.0, is shown in
Figure 3.d. It can be seen from this that extending the training domain has reduced the
perturbations at the boundaries of the plot significantly. The average absolute error E between the
±5.0 limits for the same set of 1,000 test patterns, was reduced slightly to 0.0175.

1.0

-1.0

i2

ii

-S.0 -S.0

(a) Cowboy Hat Function (b) Actual Partial Differential
E. M ff 0.0185 E,, ff 0.0175

12 i2

i if

(c) Converted Network Output (d) Converted Network Output with
Extended Training Domain

Fig 3: Examples of Partial Differentiation of the Cowboy Hat Function

II-434

INTEGRATION

As with differentiation, the integral of a network can be obtained by simply changing the activation
function used at the hidden neurons. For networks that operate in accordance with Equations 1 to
5, the substitute activation function for the first integral becomes:

_1 .& e + SMC' _ C_.R ...)(1
3(1!) 5(29 7(3!)

where:

A¢C. = 4t5 -6. = i= -,, (12)

The derivation of the activation function first requires the functional representation of the network
(given in Equation 7) to be reorganized as follows:

0= N iv . e. (13)
The first step in integrating this expression with respect to i, results in:

N _-8 A i €)aai_¢,

1(o.,)di, = .=, va,e AI4(e&c)di4 (14)

The integral term to the right can then be expanded to the following:
Id(e -s(a & - %4))i 4 = JC' (e-s (ai -cc.))dig + J'(e -(agiC-CCA)')dig (15)

It is generally not valid to use a neural network to extrapolate far outside the training domain
[Flood 1991], and thus integration should be made between two limits within or close to this
region. To achieve this, the two values representing the limits of the integration (both of which
should fall on a line parallel to the direction of integration) must be put through the integral network
in turn, and the difference in the results calculated. Consequently, the first integral term on the
right of Equation 15 will cancel and can therefore be ignored. The second integral term on the right
of the equation can be solved by first substituting the following series:s.c(CC. +s4(s.z-c¢") -.) (6

•-' (- n)2 =g1_ s,-(ai ,)2 •? ' s(ai 4 -c,,)' (16)
1! 2! 3!

which when integrated gives:
fig€,' (e-84("?i-"))d i,

= a~4-c,, ,,ai4 c4 ,3 3 S (17)ic,.,3) _ s,(ai - c,,)3 + s,(ai -c 4 ,,)' _s(ai, -c,.) 7

a, 3a, M) 5a,(2!) 7a 4 (3!)
Substituting this into Equation 14 allows the activation function of Equation 11 to be extracted.

Depending on the values 5,.. and s., the expansion term in Equation 11 may not converge.

Fortunately, this occurs at a point where 5,. is sufficiently large that extending beyond it would

lead to little further change in the value of the integral. Consequently, a limiting value for 4%,, can

be adopted to avoid the problem. For the experiments presented here, 5,. was limited to a value
where the activation of the hidden neuron before conversion to its integral form is equal to 0.001,
giving 5, =]-1n(.001)/s,. An alternative approach might be to replace the expansion term
with a look-up table.

To demonstrate integration, the network taught the sine function problem considered in the
previous section was converted into its first integral form. Plotting output from this network for

II-435

limits of integration between a and b, where a=O and b ranges from 0 to 47t, results in the curve
shown in Figure 2.c. From this it can be seen that the network provides a smooth approximation
of the actual integral (the negative cosine plus one). The average absolute error T for 1,000
randomly selected test patterns was found to be 0.0014.

As a final example, the problem of integrating the function given by Equation 10 (see Figure 3.b)
was considered, demonstrating the application of the technique to problems comprising more than

one independent variable. Integrating this

0.0069 function from/4 = -5 to 4 5 should result in
the function shown in Figure 3.a except for
differences due to the exclusion of the term

2,_(o,)d4. A set of 121 training patterns

was set-up on a square grid between the limits
±5.0 and the network was trained up to 100
hidden neurons. The output from the integral
network, plotted in Figure 4, was found to
have an average absolute error T of 0.0069 for

12 1,000 randomly selected test patterns, clearly
demonstrating the validity of the technique.

Fig 4: Output from Partial Integral Network

CONCLUSIONS

The paper has demonstrated the use of radial-Gaussian networks as an automated mechanism for
performing calculus. The technique is straightforward and has been shown capable of providing
accurate results for a variety of operations including first and second order partial differentiation
and integration. Moreover, it is possible to rotate the function performed by the original network,
in the input plane, by simply adjusting the values of the offsets, cx,,, and so the differential or
integral of the function can be found readily in any direction, not just parallel to the input axes.

Further work is required to assess the potential of the system when the data used to train the
original network is unevenly distributed in the input plane and/or includes errors, as might be
expected in many real-world applications of the technique. Consideration should also be given to
the use of an alternative Gaussian-like activation function for the hidden neurons that provides a
more convenient substitute activation function for integration operations.

REFERENCES

Flood, I. (1991). "A Gaussian-Based Feedforward Network Architecture and Complementary
Training Algorithm", Proc. Int. Joint Conf. on Neural Networks, IEEE and INNS, Vol. 1,
Singapore, pp. 171-176.

Hecht-Nielsen, R. (1989). "Theory of the backpropogation neural network." Proc. Int. Joint
Conf. on Neural Networks, Washington DC, Vol. I, pp. 593-605.

Hornik, K., Stinchcombe, M. and White, H. (1990). "Universal Approximation of an Unknown
Mapping and its Derivatives Using Multilayer Feedforward Networks", Neural Networks,
Vol. 3, pp. 551-560.

Lippmann, R. P. (1987). "An Introduction to Computing with Neural Nets"' IEEE ASSP
Magazine, pp. 4-22.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). "Learning Internal Representations
by Error Propagation", in Parallel Distributed Processing, Vol. 1, Rumelhart, D. and
McClelland, J. Eds. Cambridge, MA: M.I.T. Press.

11-436

Path Integrals for Stochastic Neurodynamics

Toru Ohira
Sony Computer Science Laboratory

3-14-13 Higashi-gotanda, Shinagawa, Tokyo 141, Japan

Jack D. Cowan
Department of Mathematics, The University of Chicago,

Chicago, IL 60637

Abstract
We present here a method for the study of stochastic neurodynamics in the framework of the

"Neural Network Master Equation" proposed by Cowan. Ve consider a model neural network
composed of two-state neurons subject to simple stochastic kinetics. Ve introduce a method
based on a spin choerent stare path integral to compute the moment generating function of such
a network. A formal construction of the path integral is presented and the general expression for
many neuron networks is obtained. We show explicitly that the method enables us to obtain the
exact moment. generating function for a single neuron case. Possible directions for the analysis
of many neuron networks as well as an alternative path integral formulation are discussed.

I. Introduction

The "Neural Network Master Equation" (NNME) was recently introduced by Cowan to describe
stochastic neural networks[l]. The NNME is a master equation (2] for neural networks based on the
formalism of "second quantization" for classical many-body systems [3](4]. This formulation of the
master equation enables us to use techniques developed in quantum field theory. Two directions
of analysis have been investigated in previous works. A hierarchy of moment equations is derived
and used to obtain time dependent description of statistical parameters of simple networks[5]. A
Feynman diagram representation of the moment generating function (MGF) of a neural network
described by the NNME has also been proposed [6]. The purpose of this paper is to present another
approach with the NNME. We construct a path integral for the MGF using spin coherent states.
The formal expression of such a path integral for a many neuron network is obtained and the
exact MGF is recovered for a single neuron with self-excitation. Possible directions for the analysis
of networks with many neurons, including results from alternative path integral formulation, are
discussed.

I. Neural Network Master Equation

We first review the Neural Network Master Equation. We assume that neurons at each site,
say ith site, can be in one of two states, either "active" or "quiescent", denoted by two dimensional
basis vectors using the Dirac notation I1, > and 10i > respectively.

i- >= 40 (1)

II-437

We define the inner product of these states as

< lilli >=< OifO, >= 1, < Oi,, >=< Ii0 >= 0. (2)

The transition rate of the ith neuron from one state to the other is given as follows:

Ill, >- 4 O0 >, 1Oi > { , Ii >, (3)

where a is a uniform "decay rate", V. is the weighted stun of all inputs from active neurons connected
to the ith neuron, and 0 is the "activation rate" function. In general, 0 is nonlinear and is assumed
to have the standard sigmoid shape(7].

Let the states (or configurations) of the network be represented by {11 >}, the direct product
space of each neuron in the network.

IQ >= Ivi > { ._ > .. v,%, >, v, = 0 or 1. (4)

Let P[Q, t] be the probability of finding the network in a particular state Q at time t. We introduce
the "neural state vector" for N neurons in a network as

(P(t) >= E P[, t]fl Q>, (5)
Ini

where the sum is taken over all possible network states.
With these definitions, we can write the NNME for a network with the transition rates given

by (3), using the "creation" md 'annihilation" operators, at aid a- in the Pauli spin formalism.

1+ 0 0 j 1 0

These operators anti-commute at the same site (i = j) to satisfy the physical assumption of single

occupancy, and colmute for differing sites (i # j). The NNME then takes the form of an evolution
equation:

tTI(D(t) >= LI(D(t) > (7)

with the network "Liouvillian" L given by:

IN" N. N

L =a - + E(oa - 1)-oEi w)) (8)
i=1 1=1 f 1l"

where n is an average number of connections to each neuron, and wij is the "weight" from the
jth to the ith neuron. Thus the weights are normalized with respect to the average number n of
connections per neuron.

We can derive an equation for the MGF of the network from the NNME using the "spin-coherent

states"[8]:
N N

< ZI =< OExp[i- Za-] I-(< Oil + Z, < 1,l), (9)
i=1 i=1

where the product is taken as a direct product, Z, are complex parameters, and

< Oil =< Oil < O _l < o38... < OVl. (10)

11-438

Introducing one-point and multiple-point moments as

<<v (t) > = E vP[Q, t], <«viv ...(t)> = Z"(tvj ...)P[f2, t], (11)
{n} {n}

it can be shown that the moment generating function G(Z, t) is given as

G(Z, t) =< ZIt(t) > (12)

from which we can recover the moments as

<v(t)> = -- G(Z2, t)g=, <VuVj ... (t)> G (13)"z nOZ, z"'egtl= (3

We obtain the equation for G(Z, t) by simply projecting the NNME onto the spin-coherent
states:

s -G(Z,t) =< 21LI(t) > (14)

III. Construction of a Path Integral

We now describe a path integral representation of the MGF. From Eqs. (7) and (12), we obtain
the following expression for the MGF:

G(Z, tf - ti) = (Z eL ('I-")i-(t = 0)) (15)

It can be shown that with suitable initial conditions and normalization, the MGF G(2,t) equals
the "transition element" T given by [9]

T = (ZffExp(-L(tf - t,)]lZ). (16)

WVe express the transition element T in path integral form using the resolution of identity:

2 - v d2 Z)(19) d) (17)

where the integration is taken over the entire complex plane of Zj. The construction of a path
integral follows closely the derivation in [10].

We first factorize the operator e-L(tfi)- , into the product of the short time operators:

M

e-Lit) = L'I e . (18)

with e = (tf - ti)/M. We now insert the resolution of identity M times between each of the factors

to obtain:

= (idp(,.,)) (2112"")(Z-Afle-Le.I'xf- 1..(23"le- L'e."2-1)... (Ple-Lelfi). (19)

in the limit of M -c and f -- 0, we obtain:

(Z, eL'IZ. -) -(","- (LeL -)2 = (.'2'-1) (El"-') 1 20)

11-439

Hence, we obtain the expression

Af Al Af 1
T = him f dp(z') H(Z'+1 IZ')Exp[-e --'--'J (21)A-l .,= ,=oI .,=o (Z"+lIz ')"

where a) Z') and (ZN +i1 - (2I. We now let 16f '+ 1) f 12l+l) -12'), then

M M (l'16Z') M- I
T= Mr f JI[dp(2')(Z"IZ")l(ZflZM)[T" (1 - .)]Ezp(-e y]. (22)M--- (z.J-) ,

We now asstune that the major contribution to the integral comes from those paths for which 16f")
is of order f. Setting "I1Z = T16Z) , and using Eq. (22), we obtain the continuous expression:

fN d2 Z(
T = ((1 + Zi*Zi) 2)E x p[S], (23)

where the action S is given as

S1 dZ (ZILI_) 1

t. d-r[(1 + z ~z)Z' 7 + (+ In[(911,(t . (24)

The boundary conditions are:

() = I), (Z(tt)I = (I. (25)

Eq. (24) can be put into a more symmetric form via integrating by parts to yield the following:

-j dr[~~~N 1 (dZ dZ' + (Z , .L (jj + I)1g)(g"lZ(f))

t1 (1 + Ziz) (zZ) - (26)

These equations define the path integral form of the transition element T or, equivalently, the
moment generating function G.

IV. Single Neuron Case

We first consider the case of a single neuron with self-excitation. The Liouville operator is given

as follows:
L = a(a+ - 1)a- + p(a- - 1)a + . (27)

The action in this case is:
f _____1 1 .dZ dZ*

- (1 +IZIZ)[(Z - Z-i-) + (Z* - 1)Z + p(l - Z*)]dt

+Iln(1 + Z*(ti)Z t)(1 + Z'Z(t1))I. (28)
2

In this case, we can calculate T exactly using the classical approximation or saddle-point evaluation
[11] of the path integral, in a fashion similar to the free particle in qualtum mechanics. The classical
approximation to the path integral with the action given by (28) yields:

aL = d Of fL dd Of, (29)
OZ dt OZ' OZ* dt OZ

11-440

with
1__1_____ 1

- 1 Z[{ (z t - -Z)}+ a(Z' - I)Z+P(- Z')). (30)
(1 +ZOZ)'2 dt dt

This classical equation of motion leads to equations for Z and Z*:

dZ dZ"
dt (-aZ + p)(Z + 1), d- (a- pZ')(Z -1). (31)

with the boundary conditions: Z(t,) = Z', Z*(t) = Z 1 . Substitution of (31) into (28) leads to
the classical action in the simple form:

if1 1SCL = dt{-p + 5[aZ(t) + pZ*(t)]} + +-1n[(i + Z*(tj)Z)(1 + Zf'Z(tf))] (32)

We cm finally show, via a tedious but straightforward calculation of explicitly solving the clas-
sical equation of motion and of the classical action, the transition element given by T = Exp[SCLI
with the following identification

(1 +Z) ' z Z. (33)

(P+ is the probability of being in the active state at time ti.) gives the exact moment generating
function:

G(Z, tf - ti) = (1 - P(tf - t4)) + ZP(tf - ti), (34)

where
P(t) + (a---P P-(() (35)

We note here that the end point factors appearing in the path integral play a role in obtaining this
solution.

-v. Many Neuron Case

We now consider the many neuron case with L given by Eq. (8). The path integral represen-
tation is given by (26) with

(211,) Iv (Zi* - 1)Zi 1 -, 1 ,((2L2) =:- [(IZ) + (Z(a--1)0,+0(+0'aa~l) (36)

(ZIZ) (=J (Z=Z) i=1

The second term requires a Tpylor expansion for 0, and cannot be written in a concise form.
Here, we proceed with the case O(x) = x (the linear case without self-activation). 'hen

(ZIL!Z) = (z - 1)z 1 IV (1 - Z;) (zz)

(Z1Z) it (1 + Z'4Zi) = i? .=W_ i (I +Z Zi) (1 + Zi

Eqs. (26) and (37) formally define the path integral for the linear case. We note that this path
integral is defined on a curved surface with non-linear factors 1/(I + Z*Z). Because of this, the
algebraic manipulations required to deal with the many neuron case are rather complicated [12].

VI. Discussion

XVe now wish to discuss what can be done with these formal derivations of the spin coherent
state path integral for the NNME. In principle, even for the many neuron case, we can proceed with

II-441

saddle point approximations and other approximation schemes developed for path integrals. The
difficulty associated with a curved surface complicates such calculations. It turns out that we can
alternatively formulate an equivalent path integral using boson coherent states, which circunuvents

this difficulty at the expense of using twice as many variables. h such formulation, we have shown

that we can obtain an equivalent of the mean field approximation via a saddle point approximation

to such a path integral. The corresponding derivation with the spin coherent state path integral

presented here as well as higher order approximation to both formulations of path integrals are

currently being investigated.

References

[1] J.D.Cowan, in Advances in Neural Information Processing Systems 3, edited by R. P. Lippman,

J. E. Moody, and D. S. Toutretzky (Morgan Kaufmann Publishers, San Mateo, 1991), p.6 2 .

(2] N.van Kampen, Stochastic Processes in Physics and Chemistry(North Holland, Amsterdam,
1981)

(31 M.Doi, J.Phys.A 9,1465 (1976)

[4] P. Grassberger and M .Scheunert, Fortachritte der Physik 28, 547, (1980)

[5] T.Ohira and J.D.Cowan, Phys.Rev.E 48, 2259, (1993)

[6] T.Ohira and J.D.Cowan, to be publishe . in Proceedings of Fifth Australian Conference of

Neural Networks, 1994

[7] J. D. Cowan, in Neural Networks, edited by E. R .Caianiello(Springer, New York 1968), p.
181.

[8] A. Perelomov, Generalized Coherent States and Their Applications (Springer, New York, 1986)

[9] M.Doi, J.Phys.A 9,1479 (1976)

[10] J.Blaizot and G.Ripka, Quantum Theory of Finite Systems(The MIT Press, Cambridge, 1986)

[11] M. Swanson, Path integrals and quantum processes, Academic Press, San Diego,, 1992.

[12] H. Kuratsuji, Path integrals in the SU(-) coherent state representation and related topics, Path

hItegrals and Coherent States of SU(2) and SU(1,1) (Singapore) (A. Inomata, H. Kuratsuji,

mad C. C. Gerry, eds.), World Scientific, Singapore, 1992.

11-442

Positional Sharpening in the Boundary Contour System*

Lothar Wieske

University of Hamburg
Department of Computer Science

Bodenstedtstr. 16
D-22765 Hamburg (Germany)

wieske@informatik.uni-hamburg.de

Abstract

This work builds upon die proposal of die Boundary Contour System proposed in [GrossbwgMingolla85] and
[GrossbergMingolla87 as a subsystem of the FACADE architecture introduced in [Grossber90]. We analyse the
positional sharpening capabilities of the competitive layers in the competitive cooperative loop. Positional sharpening
as set up by Grossberg and Mingolla may be seen as a two-stage process, where a threshold-linear signal function
transforms the input and drives the subsequent positional competition stage. We draw the conclusion that positional
sharpening is enforced by thresholding rather than by positional competition.

I Introduction and Motivation

A large part of human and mammal brains is dedicated to visual perception and the combination of locally ambiguo
visual information into a globally consistent and unambiguous representation of the visual environment. So the
question arises, how multiple sources of visual information like texture, stereo, and motion cooperate to generate a
visual percept.

One of the key ideas for the development of the FACADE by Stephen Grossberg and coworkers is the conviction that
modular approaches with special purpose procedures are not very useful for an understanding of real-world vision.
The working hypothesis of the FACADE architecture is, that every stage of visual processing multiplexes together
several key properties of the scenic representation.

The FACADE architecture aims at an explanation of how the visual system is able to detect relatively invariant
surface colours under variable illumination conditions, to detect relatively invariant object boundaries under occlusion
conditions, and to recognize familar objects or events in the environment. More elaborated versions of the FACADE
architecture include processing of stereo and motion. We deal here with the simplified variant defined in [Grossberg90],
where the Feature Contour System (FCS), Boundary Contour System (BCS),and the Object Recognition System (ORS)
are designed in correspondence to the above processing goals of the overal architecture.

Processing of the visual input in retina and LGN relies on local measurements which introduce some amount of
uncertainty into the representation at the corresponding processing stages. The FACADE architecture sets up parallel
and hierarchical interaction schemes that can resolve these uncertainties by means of several processing stages.

*This work was funded by the Gennan Federal Ministry of Science and Technology (NAMOS/413-4001-0)1 IN 101 C 1)

11-443

The following diagramm visualizes the datalow bewteen the subsystems of the FACADE architecture and within the
Boundary Contour System and its competitive and cooperative layers.

FACADE Boundary Contour System

Copno J

Positiornal Co.pnw U PO:.osbal ipe

image frOf MP

The MP stage defines oriented receptive fields for each perceptual location which are sensitive to local contrast in the
intensity function in accordance to the hypercolumn model of the primary visual cortex by Hubel and Wiesel. The
local contrast detectors feed into the competitive-cooperative loop of the Boundary Contour System which generates
an emergent segmentation of boundaries in the scene by means of spatially short-range competitive interactions and
spatially long-range cooperative interactions. Two successive stages of spatially short-range competitive interactions
feed into a cooperative stage with in turn feeds back inbtwo the first competitive stage via an intermediate competitive
stage. Preattentive processing in the Boundary Contour System does not rely on memorized templates or expectancies
but is purely data-driven. Emergent segmentation provides a way to generate boundaries which have no direct physical
correlate in the intensity function but are perceived by human subjects in psychophysical experiments. The Kanizsa
square and the Ehrenstein illusion are prominent examples used in those experiments. The proposal of the Boundary
Contour System aims at an explanation of how those illusory contours are generated by the visual system.

In the first competitive layer a cell of prescribed orientation excites like oriented cells at the same location and inhibits
like-oriented cells at nearby positions. This on-center off-surround organization of like-oriented cells exists around
every perceptual location. In the second competitive layer cells compete that represent different orientations - notably
perpendicular ones - at the same perceptual location. An additional net effect of the first and second competitive
layer is to generate end-cuts. The competitive layers feed into the cooperative stage which defines spatially long-range
interactions for boundary completion. The output of the cooperative stage is enhanced by a further competitive layer
and fed back into the first competitive layer. This feedback allows for the discontinuous completion of continuous
boundaries. (For details see [GrossbergMingolla85],[GrossbergMingolla87].)

2 Positional Sharpening and Positional Competition

In [GrossbergMingolla85] and [GrossbergMingola871 the authors define the following process for the second positional
competition layer to realize the postulate of positional sharpening

Vjjk = h(zjk)

I1 + "(p,q) h(zpqk) • Wpqij

with a circular inhibitory weighting kernel and a threshold-linear signal function.

fW if (p-i) 2 + (q -j) 2 < W02 a
Wpqij =and h(z)=L[z-M

11o otherwise

1I-444

The variables z and v denote the output of the cooperative stage and the subsequent competitive stage. The incdices
ii, and k have the following meaning. The pair < i, j > indexes a perceptual location whereas k is an index to an
orientation band. Since there are no interactions between different orientation bands, we will leave out the index k in
our further considerations. The definition of the first competitive stage is quite similar and uses the same mechanism,
but is not so well suited for an analysis of positional sharpening since it mixes two inputs.

"Functionall, the zij k - jk transformation enables the most favored cooperations to enhance their
preferred positions and orientations as they suppress nearby positions with the same orientation."

3 Analysis of Positional Competition

For an analysis of the positional competition stage and its relation to the postulate of positional sharpening we first state
that the transformation defined in the preceeding section may by seen as a two stage process, i.e. the transformation
given by

= X{h(1)}(x, y)
{T()(z, yh(I) * W(, y)

may be rewritten as the concatenation of two transformations where a point operation (thresholding) is followed by a
positional competition transformation:

T(I) = T2 (T(I)) with {T1(I)}(z, y) = h(I(z, y)) mid {T 2(I)}(x,y) = I(y)
I + (I * Wl(Z, Y)

Before we can analyze positional sharpening we have to clarify our understanding of this notion. We want to relate
two one-dimensional stimuli I, and 12 where 12 is a transformed version of stimulus I,. We assume that I, and 12
are positive unimodal functions having their maximum in t = 0. Defining the meaning of 12 is sharper than I, is a
debatable issue. We start with the definition of the opposite.

Definition 1: Given two positive unimodal functions I, und 12 having their maximum in t = 0, we say that 12 is
broader than I,, if

12(t) T-~ t= 2(t) > I (t) = L for t 6 0

12(0) 11(~o)

The intuition behind this definition is that the function 12 is something like a cheese cover of th. me height for the
function I,, if 12 is broader than I,. (See the illustration after proposition 1.) One alternative for the definition of
"sharper" is the inversion of the above inequality. Other possible definition include the reduction of the full-width-at-
half-height or the reduction of the area under the normalized function. There is no need for a final decision since our
further investigations will show that the transformation T2 as defined above will essentially broaden the input. So all
of the broadening-effect of the overall transformation T is due to the threshold operation T1 for a large class of inputs
and inhibitory kernels.

We establish our results as follows. In proposition I we investigate the behaviour of the transformation 72 for the
one-dimensional case with a Gaussian input and a boxed weighting kernel. We extend this result to the two-dimensional
case and study the transformation of a Gaussian activity distribution under positional competition with the inhibitory
weighting kernel proposed by Grossberg and Mingolla. This extension leads us to a useful lemma which allows us to
draw more general conclusions on the broadening behaviour for the one-dimensional and two-dimensional positional
competition transformatixn in proposition 3 and proposition 4.

11-445

Propouition 1: Given a Gaussian input I (a > 0) and a boxed weighting kernel K (h > 0 and w > 0)

I - -t2 {h tJw

I(t) = G.(t) = exp(- - K(t) = -2) f 0otherwise

the positional competition transformation TK broadens I, i.e. TK (I) is broader than I.

{TK(f)}(t) = f(t)
I + (f) /((t)

o(t) 1+ {I*K)(t) / (

// I

K(t)

Proof of Propositiou 1: We have to show, that

(TK (I)} (t) 1 +- I I* K} (0)
= >1 iflt > O.I(t) I + (I* K}(t)

and we see that {I *K}() > {I K)(t) has to be shown for Itl > 0. With
I * I~t = 1 - ft + w) (t-w

2 2v/- 2erf(2)

we find that this function has a global maximum at t = 0 by differentiating

" (erf(+) - erf(2 w)) = Go(t + w) - G°(t - w)

The first derivative vanishes and the second derivative is negative for at t = 0, but the first derivative does not vanish
for t :A 0, which completes the proof.

Proposition 2: For a Gaussian-shaped input I with o, > 0 and a circular weighting kernel K with h > 0 and w > 0

h/ x 2 +Y 2 <w 2

I(x,y) = I(x) =G,(x) K(x,y) ={ +

1 0 otherwise

the positional competition transformation TK broadens I, i.e. {TK(1))(z, y) = {TK(I)}(z) is broader than
I(Xy) = I(X).

- f(x, y){I-K(f)}(X, Y) = ('Y
I + {f *K}(x, y)

HI-446

1(z) Y) Az- Y) ! Y)

1~~) 1+{II *K)(z, y)

S+I K (x,y)

We postpone the proof of proposition 2 and motivate a useful lemma by simplifying the convolution integral

{I *K)(z y) = I(z -u)J[/ - hd] du=jw I(. -tu). [2.-h -V'wCu2]du

The last integral indicates that the two dimensional transformation with the proposed circular weighting kernel may
be seen as the one-dimansional transformation with a monotone decreasing kernel given by

K(t) f 2 .h. III< w

to0 otherwise

The exte sion to the 2D case motivates an extension of the ID case studied in proposition 1. We may ask whether more
general inhibitory weighting kernels also yield broadening of the input by the corresponding positional competition..
We prepare these generalization by the following lemma.

Lemma 1: Let f and g be positive, even functions which are montone decreasing with distance from the origin, we
require f to be strictly decreasing such that

f E C o g E W1'1

f(t) > 0 g(t) 0 C
ft) = f(-t) g(t) g(-t)
f(I) > f(t 2) (h) 9(t 2) 0 5 t1 < t2

jo M (t). g'(t) dt < 0 V$ E C-0 ,(t) > 0

Then their convolution product 00

{f *g}(t) = L oof(u) -g(t - u)du

takes its maximum in t = 0.

Proof of Lemma 1: We show that {f. g}(0) - {f * g)(t) takes a global minimum in t = 0. So

00

{f *g)(0) - {f*g)(t) =1 f(u). (g(u) - g(t - u)) du

Now

({f * g}(o) - {f * g(t) -j (f(t - u) - f(t + u)). g'(u) du

The sign of this derivative directly depends on the sign of(t - u) - f(I + u). For t > 0 we have f(I - u)- f(t + u) > 0
since f is even and strict decreasing with distance from the origin. If t = 0 the difference is 0. For negative t we
co)nclude that the difference is negative because of the identity f(t - u) - f(t + u) = - (f(ItI - u) - f(ItI + u)).

11-447

So the function {f * g}(O) - {f * g}(t) has an extremum in t = 0, and is strictly monotone decreasing with distance
from the origin, which finishes the proof. V

Proposition 3: Let the stimulus I(t) fulfill the conditions of the function f in lemma 1, and the inhibitory weighting
kernel K(t) fulfill the conditions of the function g. Then the positional competition transformation T

K broadens I,
i.e. TK(I) is broader than I.

{ f)(t) = f(t)
I1 + {f* K}(t)

Proofof Proposition 3: We verify the inequality {I* K)(0) > {I*K}(t) fort # 0 by invoking lemma 1. /

Proof of Proposition 2: Proposition 2 is a special case of Proposition 3. V

Proposition 4: Let the stimulus I(z, y) = I(x) fulfill the conditions of the function f in lemma 1, and the inhibitory
weighting kernel K(r, y) = K(V/W +y2) fulfill the conditions of the function g. Then the positional competition
transformation Tg broadens 1, i.e. { TK (1) 1 (x, y) = { TK (I)) (x) is broader than I(x, y) = I(x).

{TK(f)}(z,y) = A + f

1 + ff*K(zxy)

000Proof of Proposition 4: Transforming th convolution integral

{*K)(--, y) = t. (X - u) .0 K(u, v)] du

we see that the bracketed integral is a function of u which fulfills the properties of the one-dimensional kernel K(t) in
proposition 3 and may use the result reported there. /

4 Conclusion

We have analyzed the positional sharpening capabilities of the Boundary Contour System as a subsystem of the
FACADE architecture. Positional sharpening as set up by Grossberg and Mingolla may be seen as a two-stage process,
where a threshold-linear signal functions transforms the input and drives the subsequent positional competition stage.
We come to the conclusion that the sharpening effect of the positional sharpening process is due to the transformation
by the threshold-linear signal function. A similar analysis has been given in [ElliasGrossberg75] several for other
types of shunting equations.
Acknowledgement. I would like to thank 0. Ludwig and R. Sprengel for fruitful and stimulating discussions.

References

[ElliasGrossberg75] S.A. Ellias and S. Grossberg. Pattern formation, contrast control, and oscillations in the short term memory
of shunting on-center off-surround networks. Biological Cybernetics, 20:69-98. 1975.

[Grossberg90] S. Grossberg. Neural facades: Visual representations of static and moving form-and-color-and-depth.

Mind & Language. 5:411-456, 1990.

[GrossbergMingollaS5] S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Textures, boundaries, and
emergent segmentation. Perception and Psychophysics, 38:141-171, 1985.

[GrossbergMingoaS7] S. Grossberg and E. Mingolla. Neural dynamics of surface perception: Boundary webs, illuminants, and
shape-from-shading. Computer Vision, Graphics, and Image Processing, 37:116-165, 1987.

11-448

Psychological Laws of Choice (the Generlized Matching Law), Psychophysical Perception
(Steven's Law) and Absolute Rate (Herrnsteln's Equation) Can be Derived from Stochastic

Networks

Larrie V. Hutton, Ph.D.
RobiNets Homuncular Solutions

2114 Bank Street
Baltimore, MD 21231

410-327-5765 or e-mail: lvh@connect.win.net

A stochastic neural network, using the ordinary laws of thermodynamics, can develop a representation of what
might be called a state of cognitive equilibrium (Hutton, 1991). If it is assumed that there is a quantal nature to
behavior (and hence cognition) and that inputs are logarithmically transformed, three important and not obviously
related psychological laws, usually treated as empirical generalizations, can be derived from first principles.
Steven's Law relates the subjective impression of a stimulus to its objective magnitude. Herrnstein's equation
relates absolute response rate to absolute reinforcement rate. The generalized matching law makes quantitative
predictions about choice by assuming that a power law describes the relationship between behavioral states and
relative value of alternatives. Assume a neural net with symmetric weights and a stochastic update rule. This
results in relative output probabilities that are determined by a Boltzmann distribution. If inputs are logarithmically
transformed, then the generalized matching law and Steven's Law can be derived from the network equations.
Assuming limited capacity, Hermstein's equation falls out. The results suggest heretofore unreported links between
some apparently unrelated psychological laws, and show the importance of thermodynamic principles to states of
cognitive/behavioral equilibria. They also show a plausible mechanism for the emergence of power law
relationships that is not in any way restricted to treatments of cognitive and other behavioral states.

Behavioral Laws Can Be Derived from Thermodynamic Laws

A neural network model of behavior should be able to reproduce experimentally verified relationships between
input and output in either human or subhuman organisms. It is here shown how three laws, themselves empirical
generalizations, can develop from a very simple neural network that is based on the First and Second Laws of
thermodynamics. The three laws are the generalized matching law, Steven's Law, and Herrnstein's equation.

The generalized matching law (Baum, 1973) relates the relative probability of responding to two alternatives
(BlIB2) to the relative rate of reinforcement (rl/r2). When the relative rates are displayed on a log-log plot and the
resultant linear equation is exponentiated, one obtains

B1 k(J(1)

which is the generalized matching law. The constant k is a bias term reflecting, for example, a position or color
preference. The exponent a, usually 1 or less, can be regarded as a measure of discrimination; e.g., a value of 0
would reflect indifference to the relative value of the inputs. The model presented here assumes that entropy-
preserving transformations tend to push the system toward values of 1.

Steven's Law (Krueger, 1989) is of similar form, but it relates the perceived magnitude of a stimulus to its objective
intensity. Steven's Law is

TI- is, (2)

in which Vp is perceived value and S is objective stimulus magnitude. The constant i is a scaling factor, and 0 is an
index of sensitivity to a specific sensory modality.

11-449

Herrustein's (1970) equation gives predictions for absolute response rates given the absolute reinforcement rate on
a variable interval schedule of reinforcement. like the other two laws, it requires fitting two free parameters (j and
ro) for each organism:

B - (3)
ri +ro

in which B1 is the absolute response rate, r1 is the scheduled reinforcement rate, j is a presumed asymptotic rate,
and r0 reflects reinforcement from sources not under direct experimental control.

(Equation 3 provides quantitative predictions that at first appear counterintuitive. For example, response rate
increases if value injected into the system is response contingent, which increases rl, but it decreases if the events
of value are noncontingent, which increases r2 [Rachlin and Baum, 1972]. An analysis based on superstitious
reinforcement would predict increased responding in both cases. An analysis not taking hypothetical reinforcers
into account would falsely predict a response rate that is independent of reinforcement rate. Nor does a linear
association between response and reinforcer produce the veridical hyperbolic relationship.)

All three equations can be derived from assumptions that are consistent with certain neural networks. Assume that
the inputs are logarithmically transformed (Cornsweet, 1970; Mead and Mahowald, 1988; Hoffman, 1987). This is
equivalent to a system that extracts information about input magnitude (Norwich, 1989), and is also consistent
with Fechner's Law (Krueger, 1989).

Assume further that we have a neural network as shown below in Figure 1. A and B are input nodes, C and D are
output nodes, and E and F are bias nodes. w1 through w5 are symmetric weights connecting the nodes shown. We
assume that w1 and w2 are equal to the logarithms of the reinforcement rates, rl and r2. We might assume that the
weights are scaled in such a way that the threshold stimulus has a value of I (and hence a log of 0), to avoid
negative weights. Although this is more physiologically plausible, it will not make any difference mathematically.
Assume the minimum conductance, or weight, is zero, corresponding to an absolute threshold of detection.

The system described is intended to be a stochastic system at temperature T. The probability that any node will stay

BisE1upuE (inhibitory)

Tw l = ln (rl) lw2=ln(r2)

Figure 1. A simple neural net that will produce outputs consistent with the generalized matching law, Hermstein's
equation, and Steven's Law. Nodes A, B, E, and F are clamped.

1-450

or flip to the "on" position is given by

p(o - ON) - 1 (4)
1 +e ;L

from Hinton and Sejnowski (1986). Because the bias nodes, E and F, and the input nodes, A and B, are clamped,
there are only four possible states of the system (all combinations of C and D on and off). The energies for these
four states are shown in Table 1.

State Node C Node D Energy

A Off Off 0

B On Off (wi+w4)/T

C Off On (w.+w5)IT

D On On (wl +w?+w4 +w5-w3)/T

Table 1. Energy of the four possible states on a Concurrent VI Schedule

The last state, state D, is unlikely because w3 is strongly inhibitory; in realistic situations, this inhibitory role is
played by a changeover delay (COD) between reinforcers (Silberberg and Fantino, 1970). Similarly, state A is
improbable if w1 and w2 are relatively large (recall that w1 and w2 must be at least 1). For example, if w1 = w2 =
3, w4 = w5 = 0, and w3 = 6, the system will spend about 95% of its time in state B or state C.

Of particular concern is the relative probability of states B and C. Although the system is not designed to be a
Boltzmann machine, it does satisfy the requirements for one at thermal equilibrium. Hence, the relative probability
follows a Boltzmann distribution, and we have

PP"'= e[(w,,+w,,)-(w2+-,)]/T, (5)

PC

which corresponds to a negentropy interpretation of information. It follows that

P6 e (6)

Pc e

- re" J (7)

1-451

k elool(8)

(LB)', a-(9)

Thus, we have derived the generalized matching law. Steven's Law follows if we assume that rc is some (perhaps
internal) fixed stimulus, which would make PC constant, so that

-_ (10)
PC ¢I

and

- ir.', (12)

which is the form required for Steven's Law. From this point, it is a simple matter to derive Herrnstein's equation.
Assume that the measured output of the system PB and PC, reflects the "cognitive state" of a system with limited
capacity. Let PB be the target of interest and PC be attentional behavior controlled by all sources other than rB,
with constant sum. Thus,

- r- - 1a-liT-1 (13)PC rc

or

PB rB
- r (14)

Ps + PC r. + rC '

II-452

and

P8 -k rB , (P9+Pc)-constant, (15)
r. +rc

which is Herrnstein's equation. The derivation, however, follows for strictly cognitive states at thermal equilibrium
and need not be restricted to overt behavioral measures.

References

Baum, W. M. (1973). On two types of deviation from the matching law: Bias and undermatching. Journal of the
Experimental Analysis of Behavior, 22, 231-242.

Davison, M., and Kerr, A. (1989). Sensitivity of time allocation to an overall reinforcement rate feedback function
in concurrent interval schedules. Journal of the ExperimentalAnalysis of Behavior, 51, 215-231.

Cornsweet, T. N. (1970). Visual Perception. New York: Academic Press.

Herrnstein, R. J. (1970). On the law of effect. Journal of the ExperimentalAnalysis of Behavior, 13, 109-282.

Hinton, G. E. & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart and
J. L. McClelland (Eds.), Parallel Distributed Processing (pp. 282-317). MIT Press: Cambridge.

Hoffman, J. E. (1987). The psychology of perception. In J. E. LeDoux & W. Hirst (Eds.), Mind and Brain:
Dialogues in Cognitive Neuroscience (pp. 7-32). Cambridge: Cambridge.

Hutton, L. V. (1991). The matching law and Boltzmann distributions. JHU/APL Technical Report RMI-91-019,
Mathematics and Information Science Group, Research Center, The JHU Applied Physics Laboratory,
Laurel, MD 20723.

Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and
Brain Sciences, 12, 251-320.

Mead, C. A. & Mahowald, M. A. (1988). A silicon model of early visual processing. Neural Networks, 1, 91-97.

Norwich, K. H. (1989). The Fechner-Stevens law is the law of transmission of information. Behavioral and Brain
Sciences, 12, 285.

Rachlin, H. & Baum, W. M. (1972). Effects of alternative reinforcement: does the source matter? Journal of the
Experimental Analysis of Behavior, 18, 231-241.

Silberberg, A. & Fantino, E. (1970). Choice, rate of reinforcement and the changeover delay. Journal of the
Experimental Analysis of Behavior, 13, 187-198.

11-453

Neural networks for short term pattern storage
Gregory Francis1

Purdue University
Department of Psychological Sciences
1364 Psychological Sciences Building

West Lafayette, IN 47907-1364

Abstract

An analysis of long-term memory processes indicates a need for short-term mechanisms that store arbitrary
spatial patterns of neural activity for substantial lengths of time. This paper analyzes the short-term
pattern storage properties of generalized on-center, off-surround neural networks. Except for special cases,
such networks cannot store patterns for arbitrarily long lengths of time (to equilibrium). However, bounds of
pattern degradation show that networks close (in a precise sense) to these special cases may store arbitrary
spatial patterns of activity for substantial lengths of time with good accuracy.

1 Introduction

Most neural networks code information by a spatial distribution of neural activity and store spatial patterns
of neural activity for long periods of time by control of connection weights (e.g., Grossberg, 1968; Anderson,
Silverstein, Ritz, & Jones, 1977; McClelland & Rumelhart, 1981; Hopfield, 1982). Learning these patterns
requires sampling the current neural pattern and modifying weight strength so that the network can replay
the same pattern in the future.

A network embedded in a real-time environment requires a careful analysis of the interplay between
short-term and long-term dynamics. Learning in many real time environments and networks requires a
short-term memory (STM) process that stores an item before long-term memory (LTM) mechanisms encode
it. The following situations (at least) require short-term storage:

e When LTM weights change slowly they may not learn the item during its brief physical presence.
In this case a STM process prolongs the spatial pattern coding the item and allows longer LTM
sampling.

* A decision to code an item in LTM may not occur until after the item has disappeared in the
environment (e.g., in a reinforcement learning experiment, Grossberg, 1982; or perhaps during
the hypothesis searches of ART systems, Carpenter & Grossberg, 1987). A STM process stores
the spatial pattern coding the item until other processes reach a decision.

These cases apply to many real-time neural network models, thus there is a need to investigate neural
networks that function as STM processes. This paper extends some of the results discovered by Grossberg
(1973) concerning the pattern storage abilities of on-center, off-surround neural networks. An analysis of
generalized on-center, off-surround networks reveals the duration of accurate pattern storage for a large class
of neural networks that could act as STM processes.

2 On-center, off-surround networks

Grossberg (1973) analyzed on-center, off-surround networks where each cell feeds back onto itself with an
excitatory connection and receives inhibition from every other cell in the network. Grossberg (1973) suggested
that each cell activity obeys a shunting equation of the form:

dxi = -Ax. + (B - x)f(x) - xi Z f(X), (1)

kii

t This material is based upon work supported under a National Science Foundation Graduate Fellowship.

1-454

where f(w) is a strictly monotone increasing function bound on [0, B]. The parameter B, referred to as tie
cell's carrying capacity, represents the number of available receptors on a single cell. The value of xi models
the number of filled receptors; and the term (B - x)f(xi) models how positive feedback fills the receptors
through mass action. The term -Axi models a process that passively empties filled receptors. The term
-xi Ek~i f(xk) models a process that actively empties filled receptors by mass action.

Grossberg showed that depending on the type of signal function, f(w), the network transforms an initial
set of activations (xj(O), x 2 (0), x,(0)) into different equilibrium activations (XI(o). X2() .. x,(oc)). If
f(w) is faster than linear (i.e., f(w) = wg(w) such that g(w) is strictly increasing), then at equilibrium all
activities except those with the largest initial activity equal zero. If only one cell has the largest activity
the limiting distribution is called 0-1, if more than one cell shares the largest activity, it is called locally
uniform; the network is usually referred to as a choice network since it "chooses" to preserve the largest
initial activity. When f(w) is slower than linear (i.e., f(w) = wg(w) such that g(w) is strictly decreasing).
then at equilibriuni'all activities are identical. Such a network produces a uniform distribution since the the
limiting distribution ignores the initial differences between activities.

On the other hand, if f(w) is a linear function (i.e., f(w) = Cw), then pattern variables X1(t)
x,(t) /E7 = x(t) remain constant for all time. That is, Xi(t) = X,(0) for all i and for all time t. Such a
network produces a fair distribution since no activity loses its strength relative to other activities. Finally,
Grossberg (1973) showed that when f(w) was a sigmoid containing a linear part, the network parameters
could be set so that some activities stay in the linear region and exhibit fair pattern storage, while the faster
than linear region squashes smaller initial activities. This type of network removes weak activations (noise)
and stores strong activations (signal). Significantly, if the sigmoid does not contain a linear part, each cell
activity must converge to one of three values (Grossberg, 1973).

Grossberg (1973, 1982, 1987) uses networks with choice and fair limiting distributions (including those
with sigmoid output functions) in many neural models. In particular, a network with a fair distribution
stores any spatial pattern of initial activity for arbitrarily long lengths of time and therefore, acts as an ideal
STM process.

Although Grossberg (1973) uses equation (1) to describe an on-center, off-surround shunting network,
other architectures may have the same mathematical properties. For example, an on-center, off-surround
network of cells with activities obeying the equations

dxi (2-y-_ = -Axi + Bf (xi) - xi E P~zk)(2

k=1

has additive excitation and shunting inhibition (Sperling & Sondhi, 1968) and is mathematically identical
to equation (1). The following section describes generalized on-center, off-surround networks.

3 Adaptation level systems

The equations for an adaptation level system are:

dx-"- =a2 x, 2 ...,x [1 (1 -c x , (3)

where each self-excitation function bi(xi) is compared to an inhibitory state-dependent adaptation level c().
As a generalized on-center, off-surround network, a,()bi(x,) is the on-center input and ai()c() is the off-
surround input. With mild constraints on ai() and bi(xi) and by requiring the system to be competitive,
8c/o&i > 0, Grossberg (1978) proved that the system always approaches a stable fixed point in state space.
Such strong stability properties are highly desirable because an adaptation level system will not undergo
oscillations or chaotic behavior as it changes parameters. Grossberg (1988) and Hirsch (1989) review the
stability of these and other neural networks.

Adaptation level systems include networks obeying equations (1, 2) as special cases by setting ai() xi,
bi(xi) = f(xi)/x1 i, and c() = E'1 f(xk). Grossberg and his colleagues have investigated some variations
of equation (1) in detail. Grossberg & Levine (1975) analyzed networks that obey equations of the form:

= Axi+ (B i- xi)f(xi)- Xif(Xj) (4)

1-455

where each cell has a distinct carrying capacity B,. When the output function f(w) is linear, Grossberg &
Levine (1975) found a closed-form solution for the equations and showed that oly the cell (or cells) with the
largest Bi parameter remained non-zero at equilihriun. For pattern storage, this result implies that slight
deviations in carrying capacity across cells in the network of equation (1) destroy the network's ability to
accurately store arbitrary spatial patterns for arbitrary lengths of time. Similar properties exist for many
adaptation level systems, as the following theorem proves.

Theorem I (Generalization of Grossberg & Levine (1975), Tleorem 7.) If an adaptation level
system defined by the equations

dX- = x,[i - c(xI, X2, ... , X,)] (5)
(it

with an initial state (x1(O).X2(0)..... xn(O)), has a non-zero, bounded limiting distribution and
some Bi are different, then the nonzero values of x,(cc) correspond to the equations with the
largest Bi tern.

Proof: Without loss of generality assune all initial activities are positive. If x,(oc) - 0 - x2 (oc).
then solving equation (5) with dxi(oo)/dt = 0 shows that Bi = B2 . Thus all nonzero limits have
the same Bi term. To prove, by contradiction, that this term corresponds to the maximnal B,,
suppose Bi < Bj and xi(oc) > 0 = xj(oc) so that x,(oo)x (oo) = co. Define variables

R,j(t) = I i j , (6)

and compute the change in R,2 (t) over time as,

dRij - B,- B3 < o, (7)
dt

which implies that R,,(oc) < Rij(0) < co. But this contradicts x(Oo)x7-(oo) = cc. Thus only
the cells with the largest Bi can take nonzero activities in the limit. *

In the case studied by Grossberg & Levine (1975), the Bi terms in equation (4) correspond exactly to
the Bi terms in equation (5). Theorem 1 generalizes their result by allowing c() to be any function that
produces a limiting distribution.

Ellias & Grossberg (1975) investigated another variation of equation (1) of the form:

dxi- = -Ax + (B - x,)Cxi - xi E Dxj, (8)dt
30i

where the on-center function Cw is different from the off-surround function Dw. When the two functions
are identical, the network produces a fair limiting distribution. Ellias & Grossberg (1975) proved that when
C : D, the network becomes either a choice network (C < D) or a uniformizing network (C > D). Thus
small deviations in the cell output pathways destroy the network's ability to store a pattern of neural activity

for arbitrary lengths of time. A similar theorem exists for some adaptation level systems.

Theorem 2 (Generalization of Ellias & Grossberg (1975), Theorem 1.) If an adaptation level
system defined by the equations

dx_ = xdib(xi) - c(xi, x2 _ ... , x,)] (9)dt

with an initial state (xl(0),x2(0),....x.,(0)), has a non-zero, bounded limiting distribution, then
the following is true:

(i) If b(w) is strictly increasing then the limiting distribution is 0-1 or locally uniform.
(ii) If b(w) is strictly decreasing then the limiting distribution is uniform.

1-456

(iii) If b(w) is a constant then the limiting distribution is fair'.

Proof: Without loss of generality assume that the initial activities are all positive and can
be ordered as x 1 (0) < X2(0) K< ... K< xn(0). The network dynamics preserve this ordering since if

xi(t) = xj(t), then dxj/dt = dxj/dt. From equation (6)

d-R-2 = b(x,) - b(xj). (10)
dt

Note that due to the ordering property, dRi/dt never changes sign if b(w) is monotone. When
IRj(oc)j < cc then dRj(oc)/dt = 0, so at equilibrium b(x 1) = b(xj) and when b(w) is strictly
monotone xi(oc) = xj(cc).

(i) Suppose b(w) is strictly increasing and x,,(O) > xi(O). By equations (6) and (10). Rni(t)
is positive and monotone increasing. To prove, by contradiction, that R,,(oc) = oc, suppose
R,,(oo) < oc, and write it as R,,(oc) = In(1 + r), 0 < r < cc. and write

lir x,(t)] e0t- (t [R ' = 0 (11)

as
lin x,(t) - x1(t) (12)

t-*Oc xi(t)

Now, if 0 < Rft)(oo) < oc then x,,(oc) - x,(c) = 0, so for the limit in equation (12) to be
greater than zero, xi(oc) = 0 and then xn(cc) = 0 as well. But the theorem statement assumes
x,,(oc) $ 0, thus it must be that Rni(cm) = cc. Following the above argument, r = c and
x.(oo) - xi(oo) > 0 but bounded. Hence, xi(cc) = 0 and x,,(cc) > 0. If there are m, 1 < m < n,

indices i such that xi(0) = x.(0) then the limiting distribution is 0 - 1 or locally uniform
depending on whether m = 1 or m > 1.

(ii) Suppose b(w) is strictly decreasing and xi(0) > xj(0), then dRdt < 0 and R11(0) _> 0.
Hence, Rij(t) decreases to Rij(oc) > 0; in particular IR~j(cc)I < jR~j(0)j < cc. Therefore,
xi(cc) = xj(cc). This argument applies to all i, j so the limiting distribution is uniform.

(iii) Suppose b(w) is a constant, then dRij/dt = 0, which implies Rij(t) = ln(x 2 (0)/xj(0)) for
all time. Thus, x,(t)/xj(t) = xi(O)/xj(O) for all time. Summing over i and inverting each term
produces Xj(t) = Xj(O). e

In the case studied by Ellias & Grossberg (1975) in equation (8), b(w) = BC - A + (D - C)w, which
is strictly increasing if C < D and is strictly decreasing if C > D. Application of Theorem 2 produces the
results found by Elhas & Grossberg (1975). Theorem 2 also generalizes some of the proofs in Grossberg
(1973).

The analysis of adaptation level systems suggests that the ability to store arbitrary spatial patterns of

neural activity for arbitrarily long lengths of time is possible only for a small subset of adaptation level
systems. In particular, perfect pattern storage is achieved only when t'he cell activities stay within a range

where the on-center term wbi(w) is linear, and when all cells have the same parameters (b,(w) = b3(w)).

Physically realistic networks, where the on-center functions are nonlinear or where they differ slightly across

cells, lose perfect pattern storage. The following section bounds the rate of pattern degradation.

4 Dynamics of short-term pattern storage

In a biological neural system, each cell has unique parameters that determine the cell's activity. If the

differential equations governing cell activities fit adaptation level system equations, the above theorems

indicate that small differences in parameter values prevent the network from accurately storing a spatial
pattern of activity for arbitrary lengths of time (to equilibrium).

As the Introduction indicates, however, the STM process only needs to store the neural code of an item

long enough for long-term memory mechanisms to encode it. Thus, if the network dynamics do not degrade

1-457

the spatial pattern of initial activity too much too quickly, the network can function as a STM process that
meets the demands of the LTM process. The following theorem provides hounds on pattern degradation ill
some adaptation level systems.

Theorem 3 (Bounds on pattern change) In an adaptation level system definled by:

dx, - xj b,(x) - c(x1, x2,. x)], (13)

dt

with art initial state (XI(O), X2(0)....n(O)), let y naxi,, b,(x,) - ini,, bi(x,). Then any

pattern variable Xj(t) is bound by Xj(O)et > Xj(t) > Xj(O)e -.yt.

Proof: Define Rij(t) as above. Equation (10) becomes

dRi,-i = b (x1) - bj(xj). (14)

and it obeys the bounds:
dR < . (15)

dt -

This implies that at time t the following bounds also hold:

- yt + Ri 3(O) < R,3(t) -< -t + Rj(O). (16)

Taking the exponential of each term produces

xi(0) exp(--yt) -< - < exp('yt); (17)

Xj (O) X3 (t M 13(0)

summing over index i, and inverting each term produces:

Xj(0) exp(7 t) > Xj(t) > Xj(0) exp(-yt). * (18)

Thus, each pattern variable changes over time at a rate no faster than -y, which indicates deviations
within the bi(xi) terms either within a cell or between cells. Theorem 3 shows that if the network is not
too deviant ('y small) from the special cases that exhibit perfect pattern storage (7 = 0), then the system
provides good pattern storage for a long length of time. Note that this result holds even if the activities
xi(t) change dramatically, as might occur if the network normalizes total activity (Grossberg 1973).

5 Conclusions

The theorems in this paper characterize the short-term pattern storage properties of a large class of on-center.
off-surround neural networks. In physically unrealistic special cases, such networks can store arbitrary spatial
patterns of activity for arbitrarily long lengths of time. Physically realistic variations on these special cases
have weaker storage properties that exhibit pattern degradation. Networks with small deviations from the
special cases can store arbitrary spatial patterns of activity with little degradation for long lengths of time.
Such networks may be able to act as STM processes that satisfy the requirements of learning systems in a
real-time environment.

References

[1] Anderson, J., Silverstein, J., Ri.z, S., & Jones, R. (1977). Distinctive features, categorical perception,
and probability learning: Some applications of a neural model. Psychological Review, 84, 413-451.

[21 Carpenter, G. & Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural
pattern recognition machine. Computer vision, graphics and image processing, 37. 59-115.

11-458

(3] Ellias, S. & Groslwi g. S. (1975). Patterni formation, conltrast control. mid oscillations in thlt short
terin memiory of shunting on-center off-surrotind networks. Biological CybcYv-nictics. :20. 69-98.

[4] Grossberg. S. (1968). Soine nonlinear networks capable of learning at spatial pat tern of arbitry von]l-
plexity. Proceeding~s of the National Academty of Scicnccs. 59. 368-372.

[51 Grossberg, S. (1973). Contour enfluuuceieiit. short terl cnn emlory. and c((Ist ancies ill reverberating
neural networks. Studies in Applied Mathematics. L1. 213-257.

[6] Grossberg. S. (1978). Comtpetition. decision, and consensus. Journal of Mathemaiftil Anialysis aml
Applications, 66, 470-493.

[7] Grossberg. S. (1982). A psycliophysiohogical theory of reinlforceiment. drive. mot ivation, and att ent iona.
Journal of Theoretical Neurobiology. 1. 268-3G9.

[8) Grosslberg. S. (1987). Coimipetitive learing: Promi interactive act ivat ionl to adap~tive resonance. ('ogue-
tive Science. 11. 23-63.

[9] Grossberg. S. (1988). Nonlinear neural networks: Principles. inechanisins. and architectures. Neural
Networks, 1. 17-6j.

[10] Grossbcrg. S. & Levine, D. (1975). Sole (levelopmnental and attentional bia-ses in the contrast en-
hiancemnt and short terin muemlory of recurrent necural networks. Jo urn tl of Thmeoretical Biology, B53.
341-380.

[111 Hirsch, M. (1989). Convergent activation (lynamnics iii 'onitintuous timhe networks. Neural Networks. 2.
33 1-349.

[12] Hopfield. .1. (1982). Neural networks and physical systems with emnergent collective comiputationl abil-
ities. Proceedings of the National Academry of Sciences. 78, 2554-2558.

[13] McClelland, J. & Riuneliart, D. (1981). Ani interactive activation niodel of context effects ill letter

p~erception: Part 1. An account of basic findings. Psychological Review. 88. 375-407.

114] Sperling, G. & Sondi.i M. (1968). Model for visual lumninance discrinlination mnd flicker detection.

Jounal of the Optical Society of America. 58, 1133-1145.

11-459

Study on the Kinds of Training Difficulty

in Feedforward Neural Networks

Xun LiangZl and Shaowei Xial

1. Department of Automation, Tsinghua University, Beijing 100084, P.R.China
2. Computer Research Center, Peking University, Beijing 100871, P.R.China

Abstract: rraining difficulty in feedforward neural networks has been studied since the
resurge of the Back Propagation technique. By a new way in which symmetry group and
P6lya Theorem are used, this paper discusses how many different kinds of training difficulty
(DKTD) are there to the maximum if the training patterns are binary. The results for the case
of N4 3 are given where N is the dimension of input patterns. We find that the above num-
bers are much smaller than those we usually think intuitively and the ratios of them decrease
greatly as N increases, i.e., 0.444, 0.1605, 0.0236 -. .
Key Words: Feedforward neural networks, training sets, different kinds of training difficulty

1. Introduction

In fedforward neural networks, we assume that the training pattern pairs are binary and let
the input dimension be N and the output dimension be 1. Thus in the input space, there are
2" vertices. Each vertex can be valued 0 or I or -1, where 0, 1 and -1 are the output pattern
values in the training pattern pairs, and -1 denotes that there is no this pattern pair. Thus it

seems that there exsit 3 kinds of training difficulty (see Fig. 1). But, two "different" kinds of
training difficulty may be identified with each other after one training set "rotates' in
the N dimensional space (see Fig.l(c) and (g), or (f) and (h); also see Fig.2(c)- (f), or (g)-

()). That is to say, in the 32" kinds of training difficulty, some are the same in the meaning of

rotation. Hence the number of DKTD is less than 32" . So in Section 3, the DKTD for the
case of N= 1 and 2 are discussed, both intuitively and mathematically, and the two methods
lead to the same results. In Section 4, we deduce the DKTD for the case of N = 3 only
mathematically since it is hard to enumerate the DKTD intuitively. In order to be read
conveniently, Section 2 gives some mathematical preparations about symmetry groups
(Weissbluth, 1978; Elliot & Dawber, 1979) and P61ya Theorem (P6lya, 1937; Graver &
Warkins, 1977; P61ya & Read, 1987). Finally, Section 5 summarizes the whole paper and sug-
gests the further work.

2. Mathematical Preparation

2.1. Point Group and Symmetry Operations
In Section 3 and 4, point group and symmetry operations will be used. Hence in this section,
they will be reviewed briefly.

A point group is defined as a group consisting of elements whose axes and planes of
symmetry have at least one common point of intersection. All possible symmetry operations
for point groups can be represented as a combination of (a) a rotation through a definite an-
gie about some axes and (b) a reflection in some planes.

There are the following symmetry operations which will be used in Section 3 and 4.
E identity transformation.

C. : a rotation through an angle L- about a given axis; n= 1,2,3, .. ,. When n= 1, the
n

11-460

angle of rotation is 2x (or 0) which is simply an identity transformation E.
2. CI .. 2X x) lsoC.=E.

C~ C, **are rotations through 2(-, 3(L).. lo =E
n it

a reflection in a plane, a2 = E.

2.2. P61ya Theorem
Here the formation of P61ya Theorem is changed for applying conveniently to working out
the DKTD.

Let G = {a,,...,a} be the permutation group operating on the p vertices. If these vertices
are painted in q colors, then the different coloring schemes are:

I P 4 / 1(-')
- H:r (I b) k~a~

Le 1G J-1 k-1

where

b is the kth color,

d/(a,) is the repetend number which is equal to i with regard to

the permutation a,, ieG. 0l

3. Different Kinds of Training Difficulty for the Case of N = 1 and 2

Since the purpose of training is to find some hyperplanes to separate the input training pat-
terns which belong to different classes (i.e., output patterns 0 or 1). From this standpoint,
there is no difference while we are training the training pattern sets which can become the
same by rotation operation or can be identified with each other if 0 and I are exchanged in
one set.

For the case of N= 1, obviously the training sets shown in Fig.l(b) and (d), or (a) and
(e) have the same training difficulty, and training (a) is easier than training (b) since the sepa-
rated hyperplane in (a) is easier to be found than does in (b). Therefore we obtain that the
number of DKTD for the case of N= I is 4 (see Fig.3).

For the case of N= 2, by the rotation whose axis is perpendicular to the paper plane and
through the center of the square, Fig.2(a) can become (b), so do the (c) - (f) and (g)- (j). Be-
sides rotation, inversion, reflection and rotary reflection are also operations on the training
sets which can lead to finding the same kind of training difficulty. These point operations will
be seen more clearly in the case of N= 3, and in fact compose Ow group in the theory of
symmetry group. In addition, in the situation of this paper, if 0 and 1 are exchanged in one
training set, which results in that it becomes another, we should also consider that the training
difficulty of the two sets are the same. For example, Fig.2(c) and (g) should be the same kind,
which results in that (c)- (j) have the same training difficulty. Therefore, we obtain that there

are 13 DKTD (see Fig.4) for the case of N= 2 rather than 3 = 81.
In the above, we achieved 4 and 13 intuitively. Now we calculate the two numbers

mathematically by symmetry operations and P61ya Theorem.
To work out the number of DKTD, we have to obtain the concrecte coloring schemes;

then consider that the two sets are the same if exchanging 0 and I in one set results in that it
becomes another; finally enumerate the coefficients of the terms in the polynomial to achieve
the number of DKTD.

For the case of N= 1 (see Fig.5), there are operations E and a which can also be ex-
pressed by the permutations (1)(2) and (1 2) because both groups are isomorphic, provided
that we assign the two vertices the numbers 1 and 2 repectively. It follows that these opera-
tions can be represented by the formations (1)2 and (2) respectively, where in (u)' , u is the

11-461

repetend length and v the repetend number which is equal to u.
Denote 0 by b (blue), I by r (red), -1 by y (yellow), and we have the following col-

oring schemes:
(r+b+y)2 +(r 2 +b 2 + y 2)]=(r2 +b +y 2)+(br+ry+by).

2
We regard r as b, remove the repeated terms, and have: (b2+y2)+(br+by),
where b2 represents that the two vertices are all valued 0, y2 represents that the two
vertices are all no pattern pair, br represents that one vertex is valued 0 and one valued
1, by represents that one vertex is valued 0 and one has no pattern pair (see Fig.3).

We enumerate the coefficients of the above polynomial and also obtain that the number
of DKTD is 4 for the case of N = 1.

For the case of N=2 (see Fig.6), there are operations E , 2C 4 , C 2 , 2a,
20 2 , where a, is a plane through the middle points of the two opposite edges of the
square, 0 2 is a plane through the two opposite vertices of the square. They are also denoted
by the permutations:

one (1)(2)(3X4), two (1 2 3 4), one (1 3)(2 4), two (1 4)(2 3), two (1)(3)(2 4).
These operations can be represented by the formations:

one (1)4, two (4)1, three (2)2, two (1)2(2)1.
Hence the coloring schemes are:

(r + b + y)4 + 2(y4 + b 4 + r4) + 3(r2 +b2+y2)2 +2(y+b + r)2(y2 +b2 +r2)]

-(y"+b4+r4)+2(b 2y 2 +y 2r2 +b 2r2) +(bY3+ y 3r+b 3r+r 3b+r 3y+b 3y

+ 2(bry" + yrb2 + byr 2).

We regard r as b , remove the repeated terms, and have:

(y 4 + b4) + 2(b y2 + b 2 r 2) + (by 3 + b 3r + b3 y) + 2(brY2 + yrb 2).

We enumerate the coefficients of the polynomial and also obtain that the number of
DKTD is 13 for the case of N=2.

4. Different Kinds of Training Difficulty for the Case of N= 3

It is very complex to enumerate the DKTD for the case of N= 3 intuitively because the sym-
metry group is not so evident at this time as before. Therefore we apply the symmetry group
theory and P6lya Theorem.

First of all, we briefly review groups 0 and 0, (Weissbluth, 1978; Elliot & Dawber,
1979).

O group is the symmetry group of proper rotations of a cube. There are 24 elements
in 0 group (see Fig.7).

E : identity.
8C 3 : rotations of ± 1200 about the four body diagonals.
3C 2 : rotations of ± 1800 about the C2 .
6C'2 : rotations of ± 1800 about the six axes C'2
6C 4 : rotations of ± 900 about the C 4 .
Group 0 , is the full symmetry group of the cube. It is composed of the elements

of 0 plus those obtained by multiplication with I. The 48 elements are E , 8C 3 , 3C 2
6C°2 , 6C4 , I , 8S 6 , 3a" , 6cr, , 6S 4 , where

a, : reflection in a horizontal plane which is through the middle points of opposite four
edges of the cube and perpendicular to the C4(see Fig.8);

II-462

o, reflection in a vertical plane which is containing the opposite edges of the cube (see
Fig.8);

I inversion in the origin;

S. rotary reflection. This is a rotation through an angle of La together with reflec-n

tion in a plane perpendicular to the axis. S. is also called an improper
rotation. S2 = I, S.= C,,, = aC ; also la% = C 2 , ICz = ah .

We note that a, and C. commute; other operations that commute arc two rotations
about the same axis, two reflections in percendicular planes.

Thus, we know that the formations of the operations are:
one (1), eight (1)2(3)4, three (2) 4, six (2)4 , six (4)2,
one (2)4, eight (2)'(6)', three (2)4, six (1)4(2)2, six (4)2.

Finally, we calculate the number of DKTD for the case of N= 3.
From the above, the schemes are obtained as follows:

48 [(b+r+y) 8 +8(b+r+y)(b 3 + +y) +13(b 2 +r 2 + y 2) 4
+ Y41)2 +) 2 +)2 2 2 2

+12(b4+r + +6(b+r+y) 4 (b+r + +8(b 2 +r +y 2)(b' +r +y)]7 7

=[(y' +b' +r')+ (yb+y r+b r+b 7 y+r 7 y+r b)6 2 6 26 b26 26t

"3(b 2 y 6 +r y + y r + r +y b + r2 b')s 3 3 5 3 5 3b3

+3(b 3ys +r 3 ys +y rs +b r +y +r 3b 5)

+ 6(b'y 4 + b 'r4 +y'r4)] + [3(br6y + b6ry + bry6)

+ 6(br 2yS + rbyS +yr2b s + ry2b5 + yb2r5 +by2 r')

+ O(br3y +rb 3 y +ry 3 b' + yr3 b' +yb 3 r4 -' by3r4)

" 16(b 2r2y4 +b 2y 2r4 +y r 2 b4)+ 17(b 3 r 3y - , y r +y 3 r 3 b 2)].

We regard r as b , remove the repeated ones, and have:

(y +b)+(y b+b r+b 7 r)+3(b2 y +y b+r 2 b')+ 3(b3'y + y b + r 3b5)

+ 6(b'y 4 + b'r')]+ [3(br'y + bry) + 6(rb y' + ry2 b5 + yrb)

"+1(rb y +ry 4 +yrb 4)+ 16(b 2 r2y + yr 2b 4)+ 17(b y r +y 2 r 3b 3)].

We enumerate the coefficients of the polynomial and obtain that the number of DKTD
is 155 for thecase of N=3.

S. Conclusions and Further Work

In this paper, a new method of estimating the number of different kinds of training difficulty
for the case of N= 1,2,3 is given, under the condition that the input dimension is N and out-
put dimension is 1. These results can be easily extended to the multi-output cases. The
achieved numbers are much smaller than those we usually think intuitively, and the ratioes
decrease greatly as N increases. In summary, we have Table 1.

Unfortunately, we can only give the results for the case of N < 3, which means that it is
far from the engineering applications. Therefore further work includes working out the num-
ber of different kinds of training difficulty for the case of N>4 and clarifying further applied
meanings in practice.

11-463

N 1 2 3 4 5

32N 9 81 6561 43046721 1853020188851841 ..

L 4 13 155

L
2 0.4444 0.1605 0.0236

Table 1. Summary of the numbers of different kinds of training difficulty. The ratios of those

numbers to those we usually think intuitively decrease greatly as N increases.

Acknowledgements

This work was supported by Laboratory of Management, Decision and Information Svw7tems,
Academia Sinica and National Nature Science Foundation 69375003. Thanks are a, A
to Ms. J. Xie for drawing all the figures.

References

Elliott, J. P. & Dawber, G. P. (1979). Symmetry in Pgysics. London: The Macmillan Press
Ltd.

Graver, J. E. & Watkins, M. E. (1977). Combinatorics with Emphasis on the on the Theory of
Graphs. New York: Springer-Verlag.

P61ya, G. (1937). Kombinatorische anzahlbestimmunge for gruppen, graphen und chemische
verbindungen. Acta Math. vol.68, pp.145-254.

P61ya, G. & Read, R. C. (1987). Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds. New York: Springer-Verlag.

Weissbluth, M. (1978). Atoms and Molecules. London: Academic Press.

0-0 0-4 0-- *- He * -- 0 - -

(a) (b) (c) (d) (c) (f) (9) (h) (i)

Fig.1. All the nine training pattern sets for the case of N= 1, where 0 denotes 0, . denotes 1, neither
0 nor @ denotes that there is no this pattern pair in the training pattern set. Hence (a) denotes the
training patterns set (0,0), (1,0)); (b) denotes ((0,0), (1,1)1; (c) denotes ((0,0)); (d) denotes {(0,1),
(1,0)); (i) denotes V; etc.

(a) (b) (c) (d) (e) ()

(9)()) (k) 0)

Fig.2. Some examples of different or identical kinds of training difficulty.

11-464

0-4 0---0 .

Fig.3. Different kinds of training difficulty for the case of N = I.

Fig.4. Different kinds of training difficulty for the case of N =2.

1
0 0 0 -- 0

identity reflection

Fig.5. Symmetry group for the case of N= 1.

identity rotation of ± 90" rotation of 180" reflection reflection

Fig.6. Symmetry group for the case of N= 2.

C3 C4(C 4)
C2

,

Fig.7. Rotations for the case of N= 3. Fig.S. Reflections for the cae of N= 3.

U-465

On The Properties of The State Space of Discrete Neural

Network

Zhang Cheng-fu

Department of Physics, Peking University, Beijing 100871, China

Abstract

The state space of neural network is high dimensional descrete space, a clear understanding of

the space and simple formulas of relevant calculation are nescesary for neural network research.

In this paper, the properties of the space, especially the distributions of density of state p(z)

and conditional density of state p2(zo, zj I z), are discussed. Simple formulas to calculate the

volume of sphere, shell, basin attraction and etc. are given in the paper.

1.Introduction

Recent years, research on neural networks attracts much attention due to its theoretical and

practical values. For artificial inteligence, neural networks are superior to the traditional ap-

proaches mainly in three aspects: associate memoryl -13 1 , constraint optimization [4 - s] and non-

linear mapping 61 . In all of these aspects, the key points are fault-tolerance, generalization and

the probability to find some given states. They are closely connected with the basin of attraction,

the distribution of state densities relative to one or two given states and etc.. Therefore, a clear

understanding of the properties of the space, especially the distributions of density of state p(z) and

conditional density of state p2(zO, s I z), are important.

The state space of descrete neural network (each neuron has only two states, (-1,+ 1) or (0,1)) is

descrete and finite, the total number of states equals 0 0 = 2N
. In principle, the properties of the

space can be expressed by combination number

'N = (N- d)!d! (1)

and its summation and/or multiplication. For example, for a given attractor the basin of attraction

11-466

N

B. = P(d)C. (2)
d=1

Here P(d) is the probability of the states (with Hamming distance d) which belong to the basin.

P(d) could be determined thoretically or by numerical sampling. But practically, the numerical

calculation is very difficult because: I. For large N, Cf,. is a huge number. 2. CN is a steeply

increased function of d. 3. The terms of summation is large.

In this paper, we'll show that the distribution of state densities, the volume of sphere, shell,

basin and etc. can be calculated simply. Based on the formulas, the properties of the state space

are analysed and discussed clearly.,

2. The density of state and the volume of sphere

Given a state, the nniber of states which apart from the state with Hamming distance d, equals

the number of combination Ck. The volume of sphere with radius d, i.e. the total number of states

which apart from the given state < d, is given by the summation of CGN

d
V(d) = E C4N (3)

i=O

As mentioned above, in fact the calculation of V(d) is difficult. We take following procedures to

simplify the calculation and to show the distribution of density of state clearly.

First, all quantities are expressed by reduced ones. The number of states is normarized by the

total number of space fRo = V(N) = 2N . For large network, i0 is a huge number (e.g. if N=100,

110 - 230). Therefore, there are often the cases that the absolute number of states or the basin of

attraction are very large but in fact the efficiencies of the networks are extremely small. The reduced

volume of sphere or basin of attraction not only reflects the efficiency of the network but also shows

the probability to find the sphere or the basin starting from random initial condition. The distance

is reduced by N, i.e. z = diN. The reduced volume of sphere is
Nzv (Z) E c,..
i=o

v(l) = 1.

Second, for large m, the factorial rn! can be expressed by Stirling formula, neglect the terms of

o(1/m), we haveiM

i! : S(m) = vf2i-nmm exp(-m). (4)

H-467

In fact S(m) is a good approximation only if m > I as shown in Tab .L

Table 1.

m t 2 3 - 1.I
S 0.922 0.960 0.973 ..- 0.992

With equation (4), the number of combination can be expressed as

cN %C(N,r) = 2N l - =(I - z)-(z- - 1)Nz (5)

Tab.2 shows that the difference 6etween CNv" and C(N,z) is small only if z > I/N (i.e. d > 1).

In the following we know that the main contribution of volume is come from larger x, therefore

equation (5) is a very good approximation.

Table 2.

x I/N 2/N 3/N 4/N

C(N,z) 1.084 1.042 1.029 1.021 -

Thirdly, for large N, Hte descret.ene.ss of x is unimportant. We take x a.q a continue number, the

summation is substituted by integration, i.e.

d
dIN

~7NN dz

Therefore the volume of sphere is

V(z) = f/N p(z')dz'.

N N z)-(-z-N(X-1 1)Nz"
p(x) = i-C(N,z) = 2rz(l (1 - (6)

Here p(x) is the reduced density of states. From the definitions of p(z) and V(z), it is shown clearly

that they have following simple properties:

1. p(z) = p(l - z) because C'!. = C -
J
.

2. V(.5) = 0.5, V(1) = .

3. V(0.5 + Y) = I - V(0.5 - Y).

Therefore in the following it is enough to restrict the regine of x as N -1 < z < 0.5.

U-468

To show the properties of p(z) clearly, equation (6) can be expressed as

p(z) = vN'a(z)exp{-Nb(z)). (7)

liere

12-rz(l - z)

b(z) = In2(l - z) - zln(z - - I). (8)

The variations of a(x) and b(x) with x are shown in Fig. 1, it is shown that except the point of

x=0 (in the point a(x) approaches infinity), they are normal monotonous decendent functions, i.e.

the variations of a(x) and b(x) are small if dx is small, the Taylor expansion is available for them.

This is very important in the following calculations.

But for large N, p(x) is a very steeply increased function of x, it increases with x exponentially,

while x=0.5 it approaches maximum value p(O.5) = \/2- .

The behavior of p(z) near x=0.5 can be obtained as following. Let z = 0.5 + y with p < 1, make

Taylor expasion of a(O.5+y) and b(O.5+y) and keep to y2 terms, we have

1 e {- I 2
p(O.5 ± y) = 1/2 A-(, - exp(-2-i } (9)

/iA(I .. 4y 2) 2Z

Here A, \-. It means that p(x) is approximately Gaussian around x=0.5 with width A, -

I//N <: I. The larger the N, the narrower the width. Almost all of the states are concentrated in

the thin layer of width - 1 near x=0.5. Apart from the layer, the p(z) is exponentially small.

The fast variation of p(z) with x in the region of r < 0.5 can be seen as following. Let

p(r + 6z) = 2p(z). (10)

Direct expansion of p(+ 6z) is impossible but the Taylor expansion of a(x) and b(x) is possible.

Due to Eqs.(7) and (8), we have

bz = D(z)/N.

In2
D(x) = in(z_ 1

- 1) (1)

The variation of D(x) with x is shown in Fig.2, it is a number of order of one. Therefore p(z) double

its value within a small range 6z -- I/N < 1.

Due to the fast variation of p(z), the usual numerical integration involving p(z) is difficult. A

simple method to calculate the volume or sphere or shell is nescesary.

II-469

For calculation the volume of sphere, let

V(Z) = jI p(x')dz' = p(x)AB(z). (12)

Differentiate equation (12), we got the equation of AB(x)

dV(x) (r) AB(x)
d- p(r)=--A B(Z) + p(r) (13)

Substitute into equation (7), we have

AB() + NA() -) 1) + 2z -'z)J 1 . (14)
"dx +X(N-~z Xnz-2

For large N, the second term in bracket can be neglected. If C--B I < 1, the first term in equation

(14) also can be neglected, therefore we have

a1(x) = [Nln(z-' - 1)1- . (15)

For check the condition, we have
dAB(Z) E(z)d = (16)dz N (16

Here E(z) = 1z(I-)' - 1 ln(x'- _ 1)-2, its variation with x is given in Fig.2. It shown that for large

N and x < 0.4, the condition of Id A I < 1 is satisfied. Therefore the volume of sphere is simply

given by Eqs.(12) and (15). It means that the volume of sphere of radius x is almost concentrated in

the thin outer layer, the width of the layer equals Ag(x) - I/N < 1, the inner regine of the sphere

is almost empty . This property is quite similar with the one of high dimensional Euclidian space.

The volume of sphere in Euclidian space is VE(r) = CNrN , i.e.

VE(r) = j0 p(,')d," = p(r)AE(r).

p(r) =CN Nr ,

= ,.IN oc 1/N. (17)

Compared with the descrete space, AB(z)/AE(x) = F(x) = [xln(x - 1 - 1)] - ', it is a slow varied

function of x and F(r) - 3.6 - 6.8 as shown in Fig.2.

As for the sphere volume of x near 0.5, let z = 0.5 - y, y < 1, from equation (9) we have

0.5 1 I
V~x =V(.5)- .5px)x' = f. p(0.5 - y')dy' = 11 - erf (-Y)]/2. (18)

11-470

Here erf(x) is the error function.

3. The calculation of basin of attraction

The basin of attraction of any given attractors of neural network (reduced by 0l0) is given by
to

V. = / P(z)p(x)dr. (19)IN

Here P(z) is the probability with which the states of distance x belong to the attractor. Usually

P(z) is a slow varied function of x, and can be estimated theoretically or numerically. The upper

limit of integration zo is determined by P(zo) 0. Usually we have z0 < 0.5.

Owing to the fast variation of p(z), the direct integration of (19) is difficult. Noticing the slow

variation of P(r), equation (19) can be expressed by summation of finite terms. Separate the sphere

into n shells, ri, i= 1,2,- .,n, zI = I/N, z, = zo. Therefore

n-

V0 = Z P(zi)V.(-,,xi+). (20)

Here V,(zi,z 5+I) is volume of the shell from zi to zi+I, it equals

V.(.Ti,.i+t) = V(x,+i) - V(z,) = p(Xi+i)An(z,+1) - p(r)As(zd). (21)

Substitute (21) into (20), we have

n-|

V0 = Z-'IP(:) - P(z.+)jV(z). (22)
i=1

Owing to V(z,) increases with ri exponentially, the main contribution of V0 come from the tail part

of P(x) (but P(x) > 0).

It should be pointed out that, for convenience of calculation, the statistics theory of neural

network often assumes thermodynamical limit case, i.e. N - oo, MIN is finite (here M is the

number of storage samples). Theoretical calculation shows that each sample attractor has finite

radius of attraction R. It means that the sample attractors have fairly large basins of attraction.

But as discussed above, if *0 < 0.5 (by definition, R = 2ro, i.e. R < 1, it is always the case), the

sphere volume is exponentially small. Therefore the reduced basin of attraction of sample attractor,

or the efficiency of network, is exponentially small. The larger the N, the lower the efficiency. For

11-471

simple estimate, assume P(r) = I if z < xo and otherwise P(z) = 0. Therefore

V'a= {X)A~z)_ a(zo)
VD = p(o)A O) v/ln(z - 1) exp -Nb(zo)). (23)

For example, according the paper of Krauth et all s] , as o = M/N = 0.5, the radius of attraction

R : 0.2, i.e. zo - 0.1, the total basins of attraction (reduced by Do) of sample attractors MVB are

given in Table 3. It shows that the sample attractors and its basins only occupy a tiny minority of

state space, there are exponentially large number of spurious attractors and almost all of space is

occupied by them and its basins. Therefore, from the point of view of practical purpose, unnescesary

increasing the scale of network is uneconomic.

Table 3.

N 50 100 200 500

MVn 4.3 x 10 1° 3.4 x 10- 's 2.3 x 10 - 34 1.6 x 10-82

4. The conditional density of state

In practical application, it is often useful to know some conditional density of state, e.g. the

density of state relative two given states. Given two states A and B, the distance between them is

do, what is the distribution of states which distance with A is d, (fixed) and the distance with B

is d (variable)? This is the definition of p2 (zo,Xl z). Here zo = do/N, z = d1 /N, z = dIN are

reduced distances, to and z1 are as parameters, x is as variable. In the following we deduce the

explicit expression of P2 and discuss its properties.

Separate the N neurons into two subset (do, N - do). The first subset consists of the neurons

which states are same for A and B, the second subset consists of the neurons which states are

different for A and B. A new state can be constructed as following: starting from state A, flip n1

neurons of first subset and flip n 2 neurons of second subset. The n1 and n 2 should satisfy following

conditions

nt + n2 = di.

(do - ni) + n2 = d. (24)

Therefore we have
1

n= I(d 0 + d - d),

1-472

n2 !(d + d, -do). (25)
2

From the condition do _? it _> 0 and N - do ? n2 0 0, we know that do, d, and d must satisfy

following conditions:

do + d, d> Ido - dii,

do + d, + d < 2N.

Therefore, the reduced conditional density of state can be expressed as

N Cn (26)P2(-TO, -, I X) = do {N-do' (6

Combined with (7),(8) and (25), we have

P.{-oxl I X) a(X 1)n(X 2)exp(-NB(r)). (27)

here

,= (zo + ri - x)/2To,

A' 2 = (z + z - zo)/2(l - to),

(x)= zob(X\) + (1 - zo)b(X 2). (28)

It shows that P2(z) is also a steeply varied function of x. The location of maximum p2 (z) is
dB(z) 0. It gie tha asz=- ox 2TX wie

determr'ed by equation dx 0X

p2 (x) approaches maximum

p2(XO,x 1 I im) = 2rxl- xe z p{-Nb(x)} -
p ((29)

1w,0 j 1 2 z -(1 1)

Now lets calculate the distribution of P2 near the zm. Let z = Xm + y, IyI < 1, make Taylor

expansion of B(im + y) for y and keep to y2 terms, it gives

I 2
exp{- ._ ,(xi) (30)

Here
4zo(1 - Zo)Zi(1 - X1) 1

It means that around r,., p2(z) is Gaussian with width A 2 , apart from the regine, P2(z) is expo-

nentially small.

11-473

If 0 < zo,zi !< 0.5, then the position x,, of maximum P2 satisfies

0.5 > Zm > maz(zo,z,). (31)

As a sample of possible application of above properties, we discuss the selection of initial condition

of TSP (tlhe 'raveling Salesman Problem)(4 -]. For descrete TSP network of n-cities, N - n2 , the

distances of all states of tour (include the shortest tour) from the state (0,0,-- .,0) are to = n/N =

I/n. If we select initial condition randomly, i.e. r, - 0.5, therefore the distance between initial

state and the tour state is most possibly z - rn = 0.5. It is very difficult to enter the tour state

because it requires the tour attractor has a very large basin of attraction. If we select the initial

condition randomly but with restriction zx < I/n, then the distance between initial state and the

tour state is most possibly z t Z, - 2/n. Therefore it is much easier to enter the tour state.

5. The basin of attraction of complex network

Here is a another sample of possible application. Consider a complex network, it consists of two

subnets of N, and N2.Assume there is no coupling between two subnets. Given a attractor, its

basin of attraction in two subnets are known as PI(N,z) and P2 (N2 ,z) respectively, what about

its basin of attraction in the complex network? (N = N, + N2).

According the definition, we have

I f~z-
P(N, z) = E , Cy -P' (.VI, iN,)P(N 2 , (Nz - N, z,)IN2). (32)

i--0

Here i,.. = min{N, Nz). Expressed by integration

P(Nz) = g(NI,N 2, z,z)PI(NI,xl)P2(N2,(Nz - Nzl)IN 2)dz.

= ,,, CdN.-Nl, j)/N2 .N

g(NI,N 2,zI,Z) = N,G- Ni N2 / N. (33)

From Eqs.(6)-(8), function g can be expressed as

g(NI, N2 , zir) = NNiz(I -)V 2rN 2z1 (1 - zt)(z + dj)(l -Z-dl)exp{NB(zI)} " (34)

here d, = (z - zj)Nj/N 2 and

Bi(z, z,) = L-[b(x) - b(z)] + 2 [b(z + di) - b(z)]. (35)

II-474

It can be see clearly that g is a steeply varied function of z1 . As zi = z, Bj(z, X) = 0, g approaches

maxmum. Near the maxmum, let x1 = z + y, jy} < 1, make Taylor expansion of ii(z, z + y) for y

and keep to y2 terms, we have

1 exp{- y2 (36)

Here

1& (I-.a) I

Therefore we have

P(N,z=) P1 (N, r)P2 (N 2 , x)+(P (N1 , x)P 2"(N 2 , x)+P"(N, a)P 2 (N 2 ,x)-2P (N, z)P (N2 , z)].3*

(37)

It means that the main tern of P(N,x) is Pi(N,x)P 2 (N 2 ,), the second term is a small quatity

proportional to 1/N. Therefore

P(N, z) (naz{P, (NI, z), P2 (N2 , z)}

i.e. the distribution of fault-tolerance of complex network is always smaller than the ones of subnets.

Conclusion

In high dimensional descrete space of neural network, the distributions of state densities p(x)

and p 2(XO,Xt I z) are steeply varied finctions of x, its calculation with usaial numerical methods

is difficult. It is shown that they are highly concentrated near Gaussian maximum with width

oc I/vT" < 1. Apart from this thin layer they are exponentially small. The volume of a sphere with

radius z < 0.5 is concentrated in a thin boundary layer, its inner regine is ahnost empty . Simple

formulas to calculate the volne of sphere, shell, basin attraction and ect. are given in the paper.

References

(11 T.Kohonon, Self-organization and Associative Memory. Springer-Verlag, Berlin(1984).

[21 I.J.llopfield, Proc. Natd. Acad. Sci. U.S.A. Vol. 79(1982), pp. 2 5 5 4 .

[3] J.J.|lopfield, Proc. NatI. Acad. Sci. U.S.A. Vol. 81(1984), pp. 30 8 8 .

[41 J.J.llopfield and D.W.Tank,Biol. Cybern. Vol. 52,(1985),pp.141.

(51 D.W.Tank and J.J.llopfield, IEEE Trans. CAS, Vol.CAS 33(5), (1986), pp.5 3 3 .

11-475

[6) D.T.Rumelhart et. al., Parallel Distributed Processing: Exploration in the Microstructure

of Cognition, MIT Press, Cambridge, MA(1986).

[7] R.S.Burington, Handbook of Mathematical Tables and Formulas, McGraw-hill, Inc.(1973).

(8] W.Krauth, J.P.Nadal and M.Mezard, J. Pitys. A 21(1988), pp.2995.

The work is supported by NSFC and by Doctorial Program Foundation of Institution of Higher

Education of China.

11-476

Fig. 1.

3.0 T

2.5

2.0

a (x) 1.

1.0

0.5

0.0 I

0.0 0.1 0.2 0.3 0.4 0.5

x

0.7

0.6

0.5

b(x) 0.4

0.3

0.2

0.1

0.0 I

0.0 0.1 0.2 0.3 0.4 0.5

x

11-477

Fig.2
1.8
1.6
1.4
1.2

D)1 .0
D(x) 0.8 -

0.6-
0.4

0.2 -
0.0 , I

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

x

24

21

18

15

E(x) 12
9

6

3
o I i I I i

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

6
5 -\

F(x) 4

3

2
1 -

0 - I I I I I I I

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

x

11-478

Representation of Number:
A Theory of Mathematical Modeling

John Cristofano
933 Greendale Ave.

Needham, Ma. 02192
Compuserve: 71302,1235

Internet: omo@park.bu.edu

Abstract: In order for mathematics to be used in the modeling of physical events there must exist a definable
mapping between number, which is a mental construction, and dimension, which is a property of a physical
object. In most instances this is trivial. However, in competitive dynamical systems, such as most neural
networks that are used to model biological systems, it is possible for the system to require a different
mathematical representation of number at each time step if there is no a priori way for the system itself to
have an absolute and invariant representation of 'number'. This situation occurs when a change in the
value of a mathematical variable implies, not only a change in the value of some physical dimension but
also a change in the systems ability to measure information and hence its representation of number.
Computer simulations of biological competitive systems are also subject to this criticism because a computer
has an absolute and invariant representation of number, as does the mathematics it simulates; but the
biological system to which the analogy is then made does not necessarily have this same invariance. In
biological systems it is very likely that the state of the system affects its ability to interpret information.

Introduction

Number and Dimension

When mathematics is applied to the description of a real world event the ontological status of 'number' must be
considered in order for a mathematical analysis to be valid. That is, there must be some correspondence, or
mapping, between the symbols on a piece of paper, which represent numbers and operations between numbers, and a
measured occurrence in the world. A correspondence is then established so that symbolic manipulations in an
equation represent changes, or predictions of changes, in a modeled environment.

To clarify the mathematical-physical mapping the applied mathematician must address two questions for any given
context: 1) what does a number represent in the mathematical symbolism and 2) what is the representation of number
in the system being modeled. In brief, a number represents some quantity in the physical world provided that this
number is concatenated with the proper dimension. In contrast to this, the representation of number describes how a
person, or computing machine, intrinsically represents 'number' so that a claim such as "there are 10 units" is
representable. If a computing machine is doing the calculations there is a very precise definition or representation of
what the number means; namely, a certain number of memory locations with a certain potential. If a person is
performing the computations the representation of number is much more complex and leads one into number theory.
This is excursion is not necessary for the present argument'.

The question of how much stuff is being sent is related to what a number represents. For example, if an object
receives 10 volts then '10' represents a quantity; namely, it represents how many volts are being received. The
question of what kind is related to the question "what is a volt". If an object receives 10 volts there must be some
intrinsic mechanism in the object for knowing that it is a 'volt' that it has received and not some other kind of thing,
and secondly that it has received '10' of these 'volts'.

In general, mathematics deals with the quantitative aspect of measurement and leaves the qualitative, what kind,
question as an a priori assumption. For most mathematical modeling this is sufficient. However, this a priori

1 See Carnap. The Logical Syntax of Language for a more formal description of the differenece between number and the representation of
number.

1-479

assumption is not valid for mathematical modeling of a large class of systems known as competitive systems;
examples of which are predator prey problems and competitive neural networks. In systems of this type the state of
the system affects the system's ability to measure and recognize the information being sent and received. This will
be the case unless there is an absolute and invariant mechanism for information recognition and measurement at each
sending and receiving node in the system. Thus, when the object is in a very elevated state the reception of a unit of
input may have a different meaning then when the object is in a very depressed state and receives the same input.
This is a dimensional phenomena that should not be confused with the non-linearity of the system, which is a
numerical phenomena.

What does a number represent?

When mathematics is applied to an object there is always measurement of some property. In any system which
describes the physical world there are about a half dozen basic physical units in use from which all other dimensions
or properties, are derived. Which members actually belong to the primitive properties of objects may be disputed
but there is no dispute about accepting the concept that objects have properties which can be modeled
mathematically. These dimensions are covered in most any introductory physics book.

In any system of measurement the basic units of dimension are axiomatic. Although the dimensions are arbitrary in
the sense that there is an infinite number of fundamental propositions, every system must have some unjustifiable,
fundamental measuring stick against which all other measurement is made. The basic units of dimension are
axiomatic definitions of the concept 'I unit' of a particular kind. For example, I kilogram is defined as the mass of
a specific platinum-iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sevres,
France; one second is the time required for a cesium-133 atom to undergo 9,192,631,770 vibrations, etc. Within
these definitions the quality of the thing, the 'unitness', is described as well as what is meant to say that one has / of
such a unit. 'I kilogram' is an axiomatic statement, 'I second' is an axiomatic statement, etc. There is an infinite
number of ways of defining 'I second' or 'I kilogram'. To produce any physical results one must state these axioms
and then proceed.

Within this context a number represents a ratio of the thing measured to some primitive dimension or combinations
of dimension. For example, a measurement of 2.5 meters is a statement that the thing being measured is 2.5 times
longer than the axiom (definition) 'I meter'. All cardinal measurements are ratios of some combination of the
fundamental units. If the measurement being taken is ordinal, that is, the objects under consideration are being
enumerated such as in a frequency measurement, then there is no dimension per se but merely a social understanding
of what "I member of a given category" is to be. For example there is a generally accepted notion of 'a book' or 'a
dog' and in general of what represents I unit of such things. 'I member of a given category' is a socially dependent
axiom for enumeration. A person can then, within the limits of normal experimental error, simple enumerate the
number of things under observation. Whether one enumerates or takes a ratio measurement there is always a
dimension. In an applied mathematical equation a number represents a ratio relative to a dimensional axiom.

What is the representation of number?

Any time mathematics is used in the physical world 'number' is defined either explicitly or tacitly. Most often little
attention is given to how the system itself could model 'number'. However, if one begins to explicitly define
'number' for any system being modeled certain inconsistencies may be shown2 .

Consider a simply example of modeling the communication between two individuals. Each person is able to send,
receive, and process information about simple mathematical strings. One person may say the phrase "3 + 2" and the
other person would respond with the result, "5". On the surface of it this is an extremely simple model that can be
described mathematically in the following way:

Object Information Sent Information Received
Person A two numbers utterance from B
Person B one number utterance from A

2 An example of a definition of 'number is given by Russell in Principia Mathematica as the class of all those classes that can be put
into one-to-one correspondence to a given class (the number).

11-480

Person A utters two numbers and person B utters the sum. This is modeled quite simply as x + y = z. Given any
number x and y the output from person B is known. Although painfully simply at first glance there is a very strong
axiomatic assumption which is required for x + y = z to be sufficient: Each person must have an exact and invariant
representation of number in the same way that the mathematics used by the modeler does. In the case of 2 people
communicating 'number' has acquired a representation through a social and/or cognitive process so that person A
and person B never need to inquire of the other if their representations are the same. The modeler of this system
interprets the mathematics in a way that number is represented exactly as it is represented in person A and person B
because the modeler himself who performs the mapping from symbols to system.

Mathematical representation of number is number theory. The physical representation of number is a case by case,

system specific issue. These two must correspond in order for a system to be mathematically modeled.

Measuring Objects

Situations analogous to this present themselves in many other types of systems. For example, any time a
measurement is made there must be some mechanism that performs the measurement and reads this number from the
measuring instrument, Usually the mechanism that takes the measurement is the experimenter. The process of
taking the measurement is quite complex and based on a the process of socialization in which the individual comes to
understand what a number is in a commonsense way that reflects the same understanding of number as others in the
community.

If I measure 1.5 inches and I convey this information to another person, this person does not ask me what my notion
of 1.5 is. There is a tacit assumption that each of us has an invariant concept of 1.5 and therefore when I transfer my
information - that I measured 1.5 units - to this other person, he or she will then be able to use this information

exactly as I because our representation of number is identical. This infers that the measurer must have an a priori
concept of number that allows him to read the measurement.

In the case of a person reading an instrument there is a well established, completely consistent notion of number.
This concept, however it may end up being rigorously defined, acts as an axiom in the system of measure and is a
necessary part of mathematical modeling.

Suppose that there is no human around to read the measuring device, but only some primitive biological process; and

that the results of the measurement are then passed on to other parts of the system for further processing. Further
suppose that the modeler only has access to the system's input, output and structure but not to the state of the internal

parts of the system. The crucial question that the modeler must address is how this biological process has come to
determine what the unit is being sent to it and how much of this unit there is any given time.

This is particularly true of models of competitive biological systems such as neural networks, or models of cognitive
processes. The idea in these systems is that the structure is defined, the input is defined and the initial state of the
network is set; a switch is flipped and the system is allowed to run and then at some point the state of the system is
read again. But the mathematics will only work if the biological mechanism has an invariance in the representation
of number similar to that in the mathematical equation.

As an example consider an experimenter who is alone in a room and who has no interaction with other Homo
Sapiens. He is measuring the effects of a substance on his body when taken internally. To keep track of the amount
of substance he is taking he uses part of his body as a measuring mechanism. So, for example, he may take a volume
of substance equal to the volume of his little finger. He then goes about charting the change in his body in relation to
the amount of substance taken. What if the substance is growth hormone so that in essence the measuring stick
changes at each step of the way?

The notion of 'a fingerfull' changes from day to day because the measuring ability of the system changes and so the
representation of number as 'a fingerfull' changes as well. In other words the notion of 'I unit' changes so that what

was once 'I unit' of measure on one day may only be equivalent to '.9 units' on another day; yet the experimenter
will still believe that the dimensional axiom, i.e., 'a fingerfull' has not changed. The unit of measure from the

11-481

experimenter's perspective can be called 'I interpreted unit' and from an absolute perspective simple '1 unit'. The
man in the room measuring the effects of growth hormone is always working with the notion of 'I interpreted unit',
whereas the observer outside the room is always using the notion of 'I unit'. The crucial question when modeling a
physical system is to decide if the concepts '1 unit' and 'I interpreted unit' are always commensurable.

The idea that the state of the system changes the ability of the system to interpret information it sends and receives is
novel in many areas of mathematical modeling but it is a concept several decades old which is encompassed in the
special theory of relativity.

Changes in the Representation of Number and Dimension

Our physical knowledge of any system, which can be mathematically modeled, can only come from some type of
measurement of the system. The act of measuring must be a describable process. If the measuring process is only
implicitly and tacitly assumed and cannot be explicated then the mathematical description lacks justification and
therefore may simply be false even though predictive. Since all measurement is based upon dimensional axioms any
event that alters the axioms, either literally or through lack of unfiltered access to the axioms, cannot be described
using the ordinary mappings between numerical symbols and physical events.

Let Xp be the state of a system as represented or predicted by a mathematical equation. All symbols Xp contain a

numerical part, Xp, and a dimensional part, Xd . Every addend in any equation must have the same dimension d.
This is the fundamental hypothesis of dimensional analysis (you cannot add feet and seconds). Let '&' represent a
concatenation operator for concatenating items such as strings. Thus, for any addend XP,

1) Xp = X p
XP= Xp& X

Let Xm be a measured value. Xm cannot be broken down into a numerical and dimensional part because there is no
sense in which the result of a measurement can be a pure number or a pure dimension, e.g., one cannot measure '3'
and one cannot measure 'volt' but only '3 volts' or in general a ratio relative to a dimensional axiom.

In order for the symbols on paper to have any relevance to the measured values there must be a mapping

2) XP X.

which is equivalent to xn&Xd

A mathematical simulation of a physical event is a mapping between the concatenation of a number and a dimension
to the measurement of the simulated event or object in the physical world. This mapping is assured because both the
measured values and the mathematical predicted values are based upon the same set of dimensional axioms. This is
the case because we assume that every competent experimenter shares the same understanding of the dimensional
axioms and the same representation of number.

Consider the process that an experimenter goes through to determine the state of a dynamical system at a particular
time. Let Sp be the predicted state of the system at the time interval Tp and let S. be the measured state of the system
at the measured time interval T. To demonstrate the validity of a mathematical model a prediction of the system's
state is made; time TP is inserted into the mathematical description of the system and from this is determined the
expected state of the system Sp, that is, J(T.) = Sp. To determine how well the mathematical model works,
measurements of the systems state S. is taken at time T. using appropriate measuring devices.

For example, if one writes '3 seconds' then '3' would be represented by Tp and 'seconds' would be represented by
dT; , where T represents the a description of a time event.

11-482

This need for a numerical/dimensional distinction becomes obvious when using transcendental operators. For
example, consider expressions of the type e' where t is time. If t = I second' then t is composed of the numerical
part 'A' and the dimensional part 'second' It is only a coincidence that, in most cases, one can bifurcate the number
and the dimension from the initial time measurement and operate on the number alone with e and then append the
dimension 'second' after the operation and have a suitable answer. One cannot write et "ofld but only et seconds
where it is understood that the concatenation operator '&' is implied, i.e., e'& seconds.

The measured value Xm cannot be further divided into numerical and dimensional components because Xm is a ratio
based upon an axiomatic description of a certain amount (number) of a particular quality (dimension). It makes no
sense to measure some amount of a certain property.

There are three ways in which a mathematical description of a physical event can become inconsistent: I) XP
changes which implies that the representation of number changes and therefore numerical symbols are treated

differently at different times, 2) Xdp changes which implies that the recognition of a dimension is not the same at all

times, and 3) Xm changes which means that the dimensional axiom upon which all measurements, dimensional
ratios, are based changes.

Consider an experimenter who is determining a relationship between a mathematical model of simple harmonic

motion and the motion of a spring. The goal is to show that measured length of the spring L. at any given time

matches the value Lp predicted value by the equation. Throughout all states of the system the experimenter's concepts

of number Lnp and dimension Lp, never change. No rigorous account of what length is or how numbers are
represented is needed. It is assumed that the experimenter will never make a categorical error and measure some
dimension other then length or use the symbols for numbers inconsistently. The system itself never requires an
internal representation of number or dimension because the experimenter plays this role and plays it invariantly. The
experimenter acts as a link between the mathematics and the physical world; it is the experimenter who is
represented by the mapping function ::.

It is an error to assume that all mathematical models have an invariance similar to the 'experimenter as measurer'
approach above. This is usually the underlying assumption but on closer examination these assumptions are
inconsistent with the purported structure of the system. The quintessential example is the self-organizing system
because all appeals to number and dimension are internal to the system. That is, in the formal description of such
systems there is the tacit assumption that for all states of the system any Xm, which is a measurement of information
sent or received, is absolutely invariant in regard to the categorical representation of number and the categorical
representation of dimension. This assumption, however, must be stated explicitly because it is quite possible that it
is not the case.

In a self-organizing system the measurement of information Xm cannot be based upon an external dimensional
axiom. That is, when information is transferred in such a system the amount and type of information is measured and
recognized by an internal process in the system. It is this internal process of recognition that must be included in the
mathematical model of such a system if the mathematics is to be justified. The mapping operator =* becomes a
physical process when the experimenter is removed from the model.

Computer Simulations

Suppose A and B represent computers which are connected in such a way that information can be exchanged
between them. Every computer has an absolute and invariant measure of the axiom 'I unit' so that the transfer of
information is always of the same kind and always in a ratio to the fundamental dimension. It is necessary to
recognize that it is only humans who operate with pure numbers, the action of a computer is a physical event and
therefore must have an internal measuring process for the transfer of all information.

11-483

In the case of digital computers the kind of information which the system understands is called the 'bit'. The bit acts
as a dimensional axiom in the same way that the dimensions of physics act as axioms. The invariant mechanism for
recognition of this kind of dimension is simply a threshold voltage potential. Regardless of the state of the computer
the information being transferred, the means of recognition and measurement are invariant.

In the case of an eight bit architecture the dimension can be noted as 00000001 so that the axiom *I unit' can be
represented symbolically as '1 0000001'. (The initial "1' can be dropped since it is understood that every
dimensional axiom represents the unit quantity of the unit). 2 bits is represented as '2 & 0000001' where 2 is the

dnumerical part, X , and '0000001' is the dimensional part, Xd.

Although we may generally think of the computer as working with pure numbers it is a physical process and
therefore every represented number has a dimension. When a computer is to simulate an event all dimensions are
mapped to the dimension 'bit', e.g., I volt is represented as I bit, 4 meters is represented as 4 bits. This mapping is
acceptable because the enumerative dimension *bit' and the physical dimensional axioms are invariant so there is
essentially a one-one mapping between all physical dimensions and the bit. However, when the computer model is
used to predict a physical event, especially a competitive system, the bit must map to an absolute and invariant
dimensional axiom in the system for the simulation to be justified. Unless this is done the computer model is merely
a simulation of a mathematical equation.

If A and B are biological systems, such as neurons, then the internal representation of number is a subtle but crucial
point to consider. Suppose that the fundamental unit of measure in such a system is I volt', and 'A volt' in this
system is represented as some biological process that has the capacity to create a potential difference. Without
knowing the specifics of this process there are certain conclusions that can be drawn. First, if the equation is
successful as a means of prediction then there must be an absolute internal representation for number in the
biological system that is independent of the state of the system in the same way that the internal representation of
number in the computer is invariant regardless of the state of the computer. If such a mechanism cannot be found or
reasonably postulated then one is likely to f id that the representation for number will have a functional relation to
the state of the cell. In this case I unit' will need to be redefined through time in the biologic system.
Mathematically this results in a recur.ion in which the dimensional part of each addend contains the operation of the
entire equation. This will be further explicated in a forth coming paper.

Conclusion

The above arguments are not relevant to the mathematical systems themselves but only with the conclusions that are
drawn from them about physical systems. This paper does not make arguments for or against the validity of any
particular model; it is only concerned with the justification for using symbols on paper to map to physical events.
When computer simulations are used to match or predict measured data it is particularly alluring to assume that this
is a partial proof for the correctness of a particular model. However, this alone is simply not sufficient. Epistemic
principles require that any statement about the world requires some sort of justification in order for that statement to
be considered as an increase in knowledge about the world. To simply say "the model matches the data" is not
sufficient justification.

Bibliography

Barenblatt, G. I., Dimensional Analysis, Gordon and Breach, New York, New York, 1987.
Bhaskar, R. and Nigam, Anil, Qualitative Physics Using Dimensional Analysis, Artificial Intelligence, 45 (1990)
73-111.
Bridgman, P.W.; Dimensional Analysis, Yale University Press, Hew Haven, CT., 1922.
Carnap, Rudolf. The Logical Syntax of Language 1937. Translaterd by Amethe Smeaton.
Grossberg, S., Studies of Mind and Brain, D. Reidel Publishing Co., Boston, 1982.
Rumelhart, David E, and McClelland, James L., Parallel Distributed Processing, MIT Press, Cambridge, Ma. 1988.
Russell and Whitehead, Principia Mathematica (1927).

1I-484

An Ecological Approach to Cognition

Paul S. Prueitt
Department of Natural Science and Mathematics

Saint Paul's College, Lawrenceville, VA
prueiU @nnrf.georgetown.edu

Abstract
The human mind recognizes natural kind in its environment and accommodates cultural experiences through
observations on these natural kind. Information on the things of the world are gathered, we suppose, by
feature extraction and clustering. However, perceptions of natural kind are products of complex interactions
between the observer and its external world. Thus, as a principle of considerable importance, we cannot
reasonably isolate learning behavior from the social ecosystem. Using today's advanced computers, we can
model many levels of activity and integrate these levels together, resulting in an ecological approach to
cognition. The foundation for this approach is provided by specifying the evolution equations for transient
neuronal and subneuronal compartments operating within a complex electromagnetic subspace. This
network architecture must also be constrained by quantum field dynamics, as proposed by neuroscientist
Karl Pribram. A framework is suggested to accomplish this hybrid field/network architecture. Of interest to
the author are the dynamics responsible for acquired cognitive disability. To accomplish an ecological model
of acquired cognitive disability, the classical mathematical theory of conditioning is extended by embedding
neural and immune network architectures into a complex dissipative system.

The study of temporal and spatial boundaries in biological systems reveals
informational interfaces that distinguish animate and inanimate systems. Of considerable
importance is the observation that, in ecosystems, transient structures exist at multiple levels of a
hierarchy. A mathematical theory of process hierarchies is needed to capture this observation. The
organization of the process hierarchy in neural systems depends on physiology, protein and
chemical interaction as well as phase coherence in the electromagnetic (EM) spectrum. EM phase
coherence produces transient structures that play active roles in energy manipulation. Potential
manifolds, similar in nature to Hopfield optimizers (Hopfield, 1984) and the associational layers of
parallel distributed processing, also play an active role. In each level, each structure maintains
boundaries between constituents and with environments. Stratification by time scale is also
fundamental to the expression of functional kinetic structures that depend on phase coherence
and/or kinematic constraints; i.e., surfaces colliding with surfaces.

What is transient phenomena for one level of organization are the atoms from which another
level is constructed. At the level of social behavior, it transient phenomena arise from the activity of
an individual in his or her environment. Kugler & Turvey's (1987) thermodynamical treatment of
self-organizing information systems was anticipated by J.J. Gibson (1979) in his analysis of
perceptual structures that arise in animal optical flow. The school of ecological psychology,
initiated by Gibson, has explored the viewpoint that interaction of information sensitive systems
cannot be completely rendered as (complex) collisions between atoms. This school supports the
view that logical entailment; i.e., inference, is not (solely) a product of computational grammars
and that physical entailment; i.e., causality, is not (solely) a product of discrete interactions.

Ecological psychology makes the observation that information is the primary means through
which biological systems influence systems of similar type. Furthermore, it is argued that selection
and intersystem interaction result in the production of structured signals and mechanisms for
interpreting these signals. Pattee (1971), for example, frames the discussion between living and
non-living matter in exactly these terms, and points out that the exceptional coherence of structural
units within a community implies an ubiquity of language-type structures. These structures transfer
information, not data, between units within hierarchical strata segmented by dynamical time scales.
The study of artificial and non-human language structure has motivated a specialized use of
linguistic terms to supplant computational grammars. The use of syntax, semantics and pragmatics
in the discussion of science has an interesting history; which we will defer to others (Pattee, 1977,

11-485

Carello et al, 1987; Rosen, 1985; Kugler et al, 1990.)
The ecological approach has a wide scope that includes generic behavioral phenomena,

not just signaling behavior. For example, the generic nature of perception-action cycles is
examined in the context of language (Kugler et al, 1990.) For Kugler and his colleagues, the
question of signal origin is answered in the language of non-equilibrium thermodynamics.
Emergent structure is seen to have relations (affordances) to the immediate environment from
which it forms, and thus semantics and syntax arise in the physical entailment of the structure's
existence. There are good reasons for supposing that semantic and syntactic forms are set in the
transition forces that create and then break symmetries prior to the creation of emergent structure.
Once created, such forms would be lawful within a finite period of time and act within a closed
compartment, thus models may be amenable to closed form evolution equations with addition and
multiplication. However, the expression of this lawful behavior by individual organisms has
repercussions to the ecosystem and to the organism and this may require elements of catastrophe
theory to explain further.

Semantics and syntax arise and exist within the context of temporal phenomena representable
as a process compartment. In common parlance, a representational account has a pragmatics axis
when reflecting the true relationship between a specific behavior and a supporting set of external
circumstances. At transition points a pragmatic dimension becomes operational allowing a
restructuring that reflects the characteristics of the environment. The pragmatics dimension is
therefore critically dependent on time and circumstance, not only because living systems behave
through a cyclic expression arising from internal dynamics but also because the world itself is non-
stationary. The formation of symbolic constructs enters at exactly the same point that intentionality
can be most efficiently expressed. Intentionality involves the prediction of the future as a function
of expectation and behavioral expression. With intentionality comes expectation and the top down
stabilization of otherwise chaotic systems. It pulls us away from the pragmatic axis while at the
same time producing symbols and assigning meaning to them. These symbolic structures are a bi-
product of the conflict between a self-organized compartment and its environment.

Semantics captures the meaning of internal representations by an appeal to universal types as
experienced by the interpreter. The process of capture is a function of the interface; i.e., pragmatic
in nature. Once captured; however, the semantic value is maintained as part of episodic phenomena
and is dependent on the endophysics of the transient structure. It is thus likely that both
observation and intention are expressed at the temporal interface where structure emerges; i.e., on
the edge of chaos (Kaulfman, 1992.)

Commonality in dynamical behavior observed in stratified and compartmentalized
systems arises from elementary interaction principles, reflecting the underlying organization of
stratified and compartmentalized systems. These principles are reflected in network architectures
and corresponding differential and difference equations (Nigrin, 1993.) Associative learning
enables the strengthening or weakening of connections between subsystems based on contiguity.
Lateral inhibition enables choices between competing percepts, drives, categorization, plans or
behaviors. Lateral inhibition has the ability to automatically transform order relations from a
microscopic scale to a macro scale and thus is used to "read" information from encoded states (as
in ART architectures of Carpenter and Grossberg.) Opponent processing enables search processes
to discard evaluated categories and to address novel stimulus. Neuromodulation enables contextual
refinement of attention based on the systemic needs of a community of local systems
(compartments.) Interlevel resonant feedback enables reality testing of tentative classification or
goal setting. An extended discussion of these principles is given in Levine, Parks and Prueitt
(1993) and in Prueitt, 1993. Also see the introductory text, Levine (1991.)

Neuronal connectivity is only part of the necessary information required to understand how
higher functions arise from the brain. There is organizational complexity both in
functional/structural relations between brain regions and across processing strata where time scale
verses event occurrence delineates levels. Refinements of the "neuronal model" of cognitive

11-486

process are possible by detailing additional biological processes as computational models and by
incorporating advanced theory (Eccles (1993), Edelman (1987), Pribram (1991), Houk and Barto
(1991), Changeux & Dehaene (1989), Hameroff (1987) and Freeman (1991).) Edelman's work is
cited for its derivation neuronal group selection (Edelman, 1987) from the theory of clonal
selection (Burnet, 1958) and natural selection (Darwin, 1859.) Pribram's work is cited for his
early work in neuropsychology (1973) and his more recent work in quantum neurodynamics
(1991, 1993.) Houk and Barto (1991) is cited for the synthesis of a theory of neurodynamics for
in vitro networks, particularly those involved in the expression of motor intentions (i.e., motor
programs.) Changeux's work is cited for his description of indirect (allosteric) dynamics and for
suggesting that a generator of diversity is essential to understanding normal cell function.
Freeman's work has placed the mathematical theory of chaos into a now well established role in
basic pattern recognition research. Hameroff's work allows us to find basement strata;
microtubulin, protein metastable states and quantum fluctuations, to the dynamics of neuronal
processes (Hameroff et al, 1993.) Eccles is cited for demarking a specific mechanism that creates
symmetry at the sub-synaptic level and stating what is now called the quantum metaphor in
clarification of the mind-body problem, Eccles (1993.)

The ecological study of learning behavior explores the nature of learning by
examining both the self and its environment. Immune network research has addressed the self/not-
self recognition issue via the notion of self concept supported by regulatory circuits and thus
represents a different approach than that taken by mainstream artifical intelligence and neural
network research. Self concept regulation is defined in terms of help-suppression circuits (Jerne,
1955; Richter, 1978; Eisenfeld & Prueitt, 1989.) In recent decades, the dynamic circuits of both
immune and neural response have been found to involve several orders of complexity. By the late
1960s, a series of research publications identified that two classes of lymphocytes, T cells
produced in the thalmus and B cells produced in bone marrow, cooperate to produce the generic
antibody response. A review of this early literature on T and B determinants (see Tada, 1984)
reveals that the immunological complementation between T and B lymphocytes is a synergism
arising as a result of antigen (or anti-idiotypic reagent) perturbation of virtual equilibrium. Virtual
equilibria are manifest, in real time, by dynamic circuit responses involving lymphocyte production
and differentiation, field distributions of chemical agents, and EM events.

In the examination of specific factors involved in T and B cell interaction, Tada's analysis
depends on the analogies between self and not-self and between help and suppression. This
analogy uncovers a richer discussion of the regulator effects of major histocompatibility complex
(MCH) encoded structure on T cell selection and B cell differentiation. Help and suppression in
interaction induces a self-organization of field kinetics, and structural mechanics (kinematics) to
produce an endophysics that occurs within closed compartments, but which also create initial
conditions for state transitions at critical points such as birth and death of emergent forms.

Response models based on help-supression, circuit based response mechanisms develop
three types of equilibria. Each of the equilibria define the functional properties of a compartmental
model of immune response when stimulated. In the first compartmental model, immunological
memory of antigen challenges allow a quick response to any future encounter of an agent that
shares the same idiotype. This response is called a memory response. A different type of response
develops when the system is not able to develop a memory response. In this second case, the
mechanism involved in stimulus response has acquired an active inability to respond. This inability
to respond is called tolerance. Tolerance responses develop when a series of low doses of antigen,
doses below d certain threshold, are encountered (low zone tolerance, LZT) or where the system is
paralyzed by a series or very high doses (high zone tolerance, HZT); (Bumet 1958), (Dresser and
Michison, 1968) and (Richter 1979). Both tolerance equilibria are often portrayed as the product of
the immune system's need to recognize self-antigens.

Learned helplessness is often considered to be a global phenomena, influencing every
aspect of a person's life; however, some argue that learned helplessness can become specific to one

11-487

aspect of self concept and not to others. The traditional problems with self concept research have to
do with a disinclination by some researchers to trace environmental stimulus to an effect on internal
states. There is support for an ecological approach to self concept. Gorrell & Bandura (1977) and
Gorrell (1990) point out that self-efficacy has a role in changing specific beliefs about specific
areas of one's life. Our question is about how stimulus is accommodated via message production
and interpretation.

On close examination, an analogy linking all forms of acquired cognitive disability can be
derived from theoretical principles embodied in natural selection (Darwin, 1859), clonal selection
(Jerne, 1955; Burnet, 1959), and neuronal group selection (Edelman, 1987.) Interaction between a
system and its environment corrolates with the emergance of localized phenomena and thus is
related to the system's ability (or not) to choose between options. From this exotic theory comes a
very practical result. A major remediation principle, for non-response syndromes, is an
enhancement of behavioral choice as related to behaviorally relevant tasks seen as novel to the
individual.The present model suggests that we identify a pragmatic (three way) interface between
internal states of self image, local computation from subspace expre.sion, and environmental
constraints. This interface arises during the birth and death of compartmental phenomena formed
through loc symmetry mechanisms.

0

macro-to micro flow

> micro-to-macro energy flow

time
Figure 1: Compartmental formation in stratified systems. Pragmatic, syntax and semantics come
together when the constraints of an environment work against the behavioral subspace to produce a new
set of observables in semantics space.

A compartment is thermodynamically defined as a system with distinct inside and outside;
i.e., it is closed to energy exchanges. Compartments may even become functionally isolated,
causing a temporary violation of classical thermodynamics. This violation is observed as variations
of the probability distribution of likely outcomes (Eccles 1993; Werbos, 1993.) This is a central
issue for theoretical physics and mathematics. Prigogine's theory of dissipative structures provides
considerable insight on the dynamics of interfaces, internal physics and compartmental expression
in an external world (Pribram, 1993 Appalachian Conference proceedings, in progress.) As would
be expected, the discussion by Pribram's group has been centered around the questions of
measurement and observation (Rosen, 1985.)

Several network based computational systems have been combined to define an immune
network/dipole compartment with appropriate gradient fields. Each compartment acts as a
constraint within a dissipative system. The dissipative system has the form:

H(X,dX/dt) = 1/2 m dIL/dt 2 + V(1) + D(d_/dt) + E(X) (1)

where the first term is an energy function, the second corresponding to architectural constraints,
and the last two terms correspond to flows of energy originating from outside the compartment.
Architectural constraints are modeled as connectivity between regional process centers with a
traditional connectionist layered network as well as with non-layered associative connection (as
within a single Grossberg type gated dipole.) Higher order terms, existent at transitions, may be

II-488

modeled with: H(A,d/dt) = 1/2 m dA/dt2 + V(A) + p(xdz./dt) (2)

where p is a polynomial in x and dx/dt. Additional descriptions of the relationship between the
manifolds of an embedding dissipative system will be forthcoming. A discussion of the change in
dimension of the observable x is given in Prueitt & Levine (in progress.)

H is an operator whose domain set is the cross product of a vector representation, x = (x ,
X2 ---.. x,(t), of determinant viability and their time rates of production, dxdL_. The term n(t) is an
integer depending on a specific episode and level in the process hierarchy. In the simplest case H is
the harmonic oscillator. Compartments arise in the process hierarchy that themselves are dissipative
systems constrained by micro/macro influences. A temporally stratified process hierarchy has m
subsystems ISk} where m is an integer dependent on time and observation. Each Sk has the form
of equation (2) but with time variable tk where tk = ak t I, and Iak} is a finite positive monotone
decreasing sequence with a I less than 1. The resulting computational model relies on the selection
of a manifold topology, at ta that is stable only within a finite period; e.g., within the
corresponding episode. The span of the manifold is measured by the continuum of time, t e [ta ,tb.
This representation is degenerate; i.e., one to many, at t. and tb and deterministic within the
compartment. This feature of initial degeneracy allows for a dynamic restructuring of the
observation space at the beginning of each episode.

If a number of concepts have been encoded and associated together and the stimulation of
those concepts are controlled by a help-suppression ensemble in a tolera state, then a sufficiently
novel concept will remain unaffected by a general tolerance of the conceptual type. There will be no
response to stimulation. However, a new attractor subsystem, with a memory equilibrum, can be
created with novel stimulation. As this attractor system is developed, the help-suppression
ensemble controlling the subsystems may achieve a new memory equilibrium rather than remain
linked to the tolerant equilibrium. This is then followed by a global restructuring of the temporal
hierarchy and the accommodation of environmental stimulus.

0,.o, ,_ 0 chain of help - suppression
---------------- /reactions

system / O~c cinput -. z c Coc iX 0@0 0 0

,::% d.%, .p.. .o.j synapses from u sample the
activity of Ynodes

nodes

connected in an competitive field

Figure 2. System input excites one side of a number of dipoles. The pattern of input is then processed
through the dipoles aid into a competitive field that is under he influence of a reward center. Each of the
X5 nodes excite a chain of help-suppression reactions that in turn suppresses the x5 node. The chain has
stable states that cause chaacte-istic memory recall behavior.

The possibility of creating a new attractor basin for concepts that share some commonality
also creates the possibility of reorganizing the way in which memory is maintained. A "flash of
insight" may be a sensory indication of such reorganization. This suggest the design of clinical
trials to delineate the phenomena of Acquired Cognitive Disability (ACD.) We have conjectured
that a sensation comes from an electromagnetic induced resetting of help-suppression ensembles
as part of the process of accommodating new information. The correlation of jerk reflexes with
memory reorganization may lead to experimental confirmation of the existence of a help-

1-489

suppression mechanism involved in memory maintenance and self concept.

References:
Bandura, A (1977.) Self-Efficacy: Toward a unifying, theory of behavioral change. Psy. Review, 84, 191-215.
Berger, D.H, Pribram, K,H,, Wild, H; Bridges, C. (990.) An analysis of neural spike-train distribution:

dExerminants of the response of visual cortex neurons to changes in orientation and spatial frequency.
Eperimental Brain Research. 80) 128-134.

Burnet Macfarlane (1958). The lonal[SeI p 1 gfzx~f ApirM immualxVanderbilt.
Bulsara, A.R. & Maren, A. (1993.)CoupledNeu 1-Deidific Poesses: Cooperative Stochastic Effects and the

Analysis of Spike Trains in K. Pribram (Ed) Rhinkin Neural Networ-,: Quantum Fields and Biological

Caelaudi.KuTlT Peter, and Shaw, Robert (1984). Inadequacies of the Computer Metaphor, in
M. Gzzaiza(ci kh cofsgiincJUM in. pp 229-248. Menlo Park: Benjamin Cummings.

Changeux, J.P. & Dehaene, S. 18. Ner nmodels of cognitive function, Cognition 3, 63-1
Darwin, c. (1895.) n he ai n ecIip.L- k~Lm
Dresser, D. W. and Michison, N.A. (1968). The mechanism of immunological paralysis. Adv_ mmmnzl- 31, 23-43.
Eccies, John (1993.) Evolution of Complexity of the Brain with the Emergence of Concoses in K. Pribram.

(Ed 0 A..y dn* r-WaHillsdale. NJ. TEA
Edelmnan, .(97.NwYr:Bsc S
Eisenfeki J. and Puiz P. (19 . ysteatc Aproach to Modeling Immune Response, Proc. Santa Fe Intitte

onlnQ~Y A Perelson, e.) Addison-Wesle
Freemnant W(19 w h megne of Chaotic D a Basis orCopendgInntnaiyn

Experimental Subjects, .n K. Pribram (Ed) B~hnkingjzraLN Sw rhenigItntoaiyi
Gibson, J.J. 1979.) Mh.eooiaanncj~igul arent. Boston: Hoghton-Mifflin.
GorreilJ. (19 9 one onriuios of Self-Efficacy Research to Self-Concept Theory. Journal of Research and

Develomt in Education 23, 2,
Hameroff, StUar (1987.) UliaeC~tneBonlclrCncosesadNntcnlg, North-Holland,

Amsterdam.
Hameroff, S., Dayhoff, 1. Lahoz-Beltra, R, Rasmussen, S, Insinna, E, and Koruga D. (1993.) Nanoneurology and

the Cytoskeleton: Quantu Signaing ad Protein Conformational Dyaiss Cogitive Substrate, in K.
Pbrain (Ed) Jietbinkin2 e ewrs _un FXids adiooclDta isae.NJ. ILEA

Hopfleld, JJ., (1989).N~u-rons with graded response have collective computational properties like those of two-state
neurons. Proc. Nall. Acad. Sci., 81, 3098-3092.

Houk, J. C. & Barto, A.G. (1991.) Distributed Sensorimotor Learning, in Tutorial in Motor Behavior I, edited by
G.E. Stelmach and J. Requin. Amsterdam: Elsevier.

Jerne, NK. 197. Atibodies and learning: Selection verses instruction. In,Th er ppoAstly g _

Kauffmnan, S.A (193) I ij7 rOxford: Oxford Press,
Kugler, P.N. & Turvey, .. (97)Ifrain a.1lw n h ef-sebyo htmcmvmn

Hillsdale, NJ: LA
Kugler, Peter, N., Shaw, Robert E., Vincente, Kim, I., and Kinsella-Shaw, Jeffer (1990.) Inquiry into intentional

systems 1: Issues in ecological pysics, Psychological Research, Springer-Verlag
Levine, D.S. and Prueitt (1989). Modelng Some Effects of Frontal Lobe Damage - Novelty and Perseveration.

Neural Networks, Vol. 2.
Levine D;Parks,R.; & Prueitt, P.S. (1993.) Methodoloica n Theoretical Issues in Neural Network Models of

Frontal Cognitive Functions. Internaional Joult ofeuscnc 72209-233
Levine, Daniel U91.) Imnaluctmn to nena niiemtmg illdae NJ:ER
Nigrin, Albert (1993.) Nerlhu o I~te RrgifiMCabridge: MIT Press.
Pattee, H.H. (197 1). The nature of hierarchical controls in living matter. In R. Rosen (Ed.) Textbook of

h12LC~ai~anai1=.New York: Academic press.
Pattee, H.H.-(97 D uc and linguistic modesof. complex systems, Inter.Jour. of General Systemts. 3 259-266.
Pribram, K. H. (1973.) Languags of the Brain, exermenta paradoxes and principles in neluoschglogyv Prentice

Hall, New Jersey.
Pribram, K. H. (1 991). 1JlnlncahWL , Erlbaum, Hillsdale, NJ.

Pribram,9 Kar U1ra3 N)eLet or: Quantum Fields and Biological Data, Hillsdale. NJ. LEA
Pribram, Karl (in prgress). Second .alcha Conference Proceedings.
Prueitt Paul S. & Lvine, Daiel (in progress). An Ecological Approach to Learning Behavior.
Prueitt, Paul S. (19a)Ntwork Moels nBeaioa and Cornfutational Neuroscience, invited chapter in N-

Richter, Peter H. (1979). Pattern Formation in te Imune System,Letrso ahC fi inheTI Sec,
Vol 11. 89-107.?

Rosen, Robert (1985). fiia Sytm-Pioan ehdlvc ouainsNw
YorlaPergamon

Tada, Tombo (1984.) Help, Suppression, and Specific Factors, in William E. Paul (Ed) Fundamental Immunology_

Web"1 o3) Quantum Theory and Neural Systems: Alternative Aprochs and a New Design, in K. Pribram. (Ed)
Retinin Nural Networks: Ouantum Fields and Biolia-Dta Hillsdale. NJ. LEA

11-490

Necessary and Sufficient Condition for the Existence of
Neural Network Models for Logic Circuits

Zhong Zhang and Ruwei Dai
National Research Center for Intelligent Computing Systems,

Institute of Automation, Academia Sinica

Abstract
In this paper, a new approach for logic circuit modeling using neural networks is proposed.

Using the Hopfield model, the constrained energy equations are established based on the truth
table of a logic device. Using linear equations theory, the necessary and sufficient condition
for the existence of its neural network is derived, from which the general neural parameter
expression for a basic logic gate is obtained,

I. Introduction

Neural networks have strong potential for applications in many different fields. It is quite attractive
that the parallel computing power of neural networks is used to solve some problems on logic circuits,
such as function verification, test generation and so on. Therefore, it is very important to establish
effective neural network models for logic circuits.

Early in 1986, Abu-Mostafa[1] proposed a simple neural network model for logic circuits in
which each basic logic gate is represented by one neuron and the network has no effective feedback.
This neural model can be used to simulate the logic function of any combinational circuit. In 1988,
Chakradhar et al.[2], using the Hopfield model[4], derived a necessary condition for the existence of
a logic circuit neural network model by introducing the concept of the neural decision hyperplane
from which the bidirectional neural network for the logic circuit is established. This neural network
model can be used in the test generation problem. After that, Fujiwara[4] improved Chakradhar's
model by using a three-valued model to replace the binary model, and proved that it is more
efficient.

In this paper, using the Hopfield model, the constrained energy equations are established
based on the truth table of a logic device. Using linear equations theory, the necessary and sufficient
condition for the existence of its neural network is derived, from which the general neural parameter
expression for any logic gate is obtained. The results show that our approach is very effective.

This paper is organized as follows. Section II gives an outline of the Hopfield neural network
model and the neural representation for logic circuits. Section III gives the existence theorem for
the logic circuit neural network. Section IV describes the neural network for basic logic gates.
Discussion is provided and conclusions are drawn in Section V.

II. Hopfield Model and Logic Circuit Neural Networks

11-491

In this paper, we adopt Hopfield's binary model. A neural network is composed of interconnected
neurons and its behavior is completely deterimined by the specification of the interconnection. Let
Vi(t) denote the state of neuron i at moment t, i.e., Vi(t) E {0,1} for i = 1,2,...,N, where N is
the number of neurons in the network, and each neuron updates its state stochastically at a mean
rate W using the following rule:

N

V4(t + i) = step[Z TjVi(t) + I()
j=l

where step is defined as

I'1 z>0
step(-)= 1 x<O

and Tij is the link weight between neuron i and neuron j, and Ii is the external input of neuron i.
The energy function for the neural network is

1 NN N
E =-2Z E E Tiji V - E IiV + K (2)

ti=1 li~l

where K is a constant. Hopfield has shown[4] that if Tji = Tjj and Tii = 0 for all i, neurons always
change their states in such a manner that the network converges to a stable state and the energy
function for the network is minimized locally at a stable point.

In a logic circuit, every node (signal line) is represented by a neuron and the value on the
node is the state value (0 or 1) of the neuron. Each gate is independently represented by a neural
network and the interconnections between the gates are used to combine the individual gate neural
networks into the entire neural network representing the circuit. The energy function for the logic
circuit has global minima if and only if the neuron states are consistent with the function of all
gates in the circuit, and the energy function has higher energy for all states that are inconsistent
with the function of the gates in the circuit.

III. Existence of Neural Networks for Logic Circuits

A logic device with N terminals (as shown in Fig.1) realizes a logic function as shown in the truth
table in Table.1, in which xi E f0, 1} and m = 2 N -1 . The energy function surface for its neural
network is shown in Table.2.

V v 3 V VN V1

V2 1 0 0 0 z1
V3 0 1 0 0 X2

Logic
Vivsv

Device Xi

VN
1 1 1I Xm

Figure 1: A logic device Table 1: Truth table for a logic device

11-492

V1,V 2 ,... ,VN are state values of neurons corresponding to the terminals of the logic device.
When the state values satisfy the truth table they are called consistent states, otherwise they are
called inconsistent states. If V1, V,..., VN are consistent states, the energy function E = 0. If they
are inconsistent states, the energy function E is a positive constant Ai(i = 1, 2,. .. , m).

Substituting the values of Table.2 in (2), we get a group of nonhomogenous linear equations
as follows:

- F I-1 I- (VVj)Ti, - EN=I i/I, + K = E1
1 N N 2 N2J

- 1i(VEj-] 2V,)Tij F ~=V1 + K =E (3)
I"EN I FN ,[iVnVn -T; . j+ =E

I- 1 (V'%)T, - N Vill + K = E

These equations are called constrained energy equations. There are n = 2 N equations. The link
weight matrix of a neural network in the Hopfield model is a symmetric matrix with zero diagonal
elements (i.e., Tij = Tji,Tii = 0), in which the number of Tij is !N(N - 1), the number of Ii is
N, and there is one K. So the total number of unknown quantities is !N(N + 1) + 1. If these

unknown quantities can be solved by the 2 N equations in (3), then the neural network is obtained.
Therefore, we get the following theorem about the existence of a neural network for a logic device.

Theorem 1 If the constrained energy equations given in (3) are solvable, then the corresponding
neural network exists, and the solution of the equations in (3) gives the fundamental parameters of
the neural network.

From linear equations theory, we know that the necessary and sufficient condition for a set of
nonhomogeous linear equations to have a solution is that the rank of the coefficient matrix of the
equations is equal to the rank of its extended matrix. Thus, we obtain the result that the necessary
and sufficient condition for the existence of the neural network of a logic device is that the rank of
the coefficient matrix of the constrained energy equations is equal to the rank of its corresponding
extended matrix.

IV. Neural Networks for Basic Logic Gates

On the basis of the existence theorem, we can derive neural networks for the basic logic gates.
Consider a 2-input basic logic gate (as shown in Fig.2), whose logic function is given in the truth
table in Table.3, where fx E {0, 1}(k = 00,01, 10, 11) is the function term for logic gate G. Also,
logic gate G has input symmetry, i.e., fG0 = fG'. Its neural network is shown in Fig.3, the
corresponding energy surface is shown in Table.4, where V(i = 1,2,3) is the state value of the

neuron corresponding to the line xi in gate G, and fT= 1 - f .

V1 V2 V3 Vi VN E 11
1 0 0 0 E1

0 1 0 0 E2 X2 Basic
S.X

1 = fG(X2,X3)
S. .Logic

Gate

Figure 2: A basic logic gate

Table 2: Energy surface for a logic device

II-493

When the state values satisfy the truth table, the energy function takes a minimal value
of E = 0, otherwise the energy function has a higher energy value which is a positive constant

Vt V2 V3 EG
-M 0 0 0

Z2 Z3 I = f0(,0) 0
f 1 1 0 0

1 0 o010) __ 1 0
o 1 1 f(1,) f 0 1 E

1 ~ ~~ A ' = A ' 1 fV

Table 3: Truth table for a basic gat,
Fable 4: Energy surface for a basic gtu

On the substitution of the state values of Table.4 in the equations of (3), we get the con-
strained energy equations for gate G as follows:

1 -f°G0 0 0 0 0 0 K 0
1 -(1-f °G) 0 0 0 0 0 KE

1 f1O -1 0 -f o 0 0 12 0
1 -f o 0 -1 0 _fo 0 2 013 "- 2 (4)

1 -(1-fe°) -1 0 -(1-f °) 0 0 T12 (
1 -(l-f °) 0 -1 0 -(1-f1 0) 0 E21 f1 1 -1 -1 -f~1 -- ' To

-f G1 -AI -fG -1 T30

1 -(1-fl-) -1 -1 -(1-fAl) -(1-fAl) -1 '2aE

Through a sequence of elementary transformations, the coefficient matrix and the extended
matrix are foo

oo 'Fl P2 oo
00foo 0P2

0 0 0 0 0 0 1 G -fo_

2;G -1 -1(5)

0 0 0 0 0 0 0 -1E' + E2

2f27C7=E1 G(2f-01) 2

0 0 0 0 0 1 0 f --1 Eg+ 1 2
I-2G

E G - (G + E G)
0 0 0 0 0I 22f" 2- -' - + E 3

The rank of the coefficient matrix is equal to the rank of its extended matrix. The last row gives:

2fGI I-lEG' 2(2 l- 1) EG + E3 -- O (6)
2fG0 I 2fG - 1 G

11-494

in which, E > 0,(i = 1,2,3). Equation (6) is the necessary and .sufficient condition for the
existence of this neural network. If equation (6) is satisfied, then the rank of the coefficient matrix
is equal to the rank of its extended matrix. That is, r = 7 < n = 8 (n is the order of the linear
equations). Thus, the homogeous linear equations have only the zero solution. From the equations
in (5), we get the solution of the nonhomogeous linear equations in (4):

j= 1 EG

- 2
12 13 = '?-- f T - E(

The equations in (7) are a general solution of the neural network for the basic logic gate with
2-inputs. For a specific logic gate, we use its logic function to determine the corresponding function
terms fk, then substitute them into the equations in (7) to obtain the basic parameters for the
neural network. For example, for a 2-input AND gate, fAOAND = fOND = 0, IND = 1. Substituting
this into equation (6), gives

-EAND + 2EAND + EAND = 0 (8)

This is the constrained condition that the neural network has to satisfy. This may be used
to reduce one of constants E ND(i = 1,2,3). From the equations in (7) we obtain the neural
parameters for the AND gate as follows

K=0I -EAND
12 13 = 0 (9)
T 12 = = EAND - EAND
T 23 = EAND - 1(EAND + EAND)

Suppose EA2ND = A, EAND = B. Equation (8) gives EAND = 2A + B, which is the same as
Charkradhar's result[2].

In a similar manner, we can get the neural parameters for 2-input OR, NAND and NOR
gates. However, the cases for XOR and XNOR gates are quite different. For a 2-input XOR gate,

fX°OoR = f VoR - 0, fX&oOR = 1. Substituting into equation (6) gives

EXOR + 2E OR + EXOR = 0 (10)

Because E~on > 0(i = 1,2,3), equation (10) can not be satisfied. Thus, there is not a neural
network with three neurons representing a 2- input XOR gate.

Figure 3: Neural network for a basic gate Figure 4: XOR gate neural network

11-495

Adding a hidden neuron, X4, we try to construct a neural network with four neurons repre-
senting a 2-input XOR gate (as shown in Fig.4). This hidden neuron has an activation value of 1
when both inputs to the gate are 1. In a similar manner, the necessary and sufficient condition for
the existence of the neural network gives the set of constained equations. And then, we can get the
neural parameters for the XOR gate.

V. Discussion and Conclusion

As shown above, we use the Hopfield model to obtain the energy surface and its constrained energy
equations based on the truth table of a logic device. Using linear equations theory, we achieve the
necessary and sufficient condition for the existence of its neural network, from which the general
neural parameter expression for any logic gate is obtained. From equation (6), we can see that the
logic function terms fI affect the existence of the neural network model.

Chakradhar[2] classified the consistent state sets for neurons as three classes:P_m, Pi,oj,
Piothe, and introduced the neuron decision hyperplane to derive a necessary condition for the
existence of the neural network of a logic device. In this paper, on the basis of the truth table, we
classify the neural network states as consistent states and inconsistent states. Then, we introduce
the constrained energy equations, use linear equations theory to derive the necessary and sufficient
condition for the existence of a neural network for a logic device, from which we obtain the general
neural parameter expression for a basic logic gate. Chakradhar's result is merely a special case of
our work.

We have used the method proposed in this paper to implement the logic circuit neural network
simulation system on a SUN 3/260 workstation in C language. The preliminary experimental results
show that our method is feasible, and predict its success[6].

The approach in this paper may be extended to the three-value neural network model[8] for
logic circuits as well as the neural network model for functional level logic circuits.

References

[1] Y.S.Abu-Mostafa, "Neural networks for computing ? ", Neural Networks for Comput-
ing(Snowbird), Ed. J.S.Denker, New York: American Institute of Physics, pp. 1-6, 1986

[2] S.T.Chakradhar, M.L.Bushnell and V.D.Agrawal "Automatic test generation using neural net-
works", Proc. Int. Conf. on CAD, pp.416-419, Nov. 1988

[3] S.T.Chakradhar, V.D.Agrawal and M.L.Bushnell "Neural net and Boolean satisfiability models
of logic circuits", IEEE Design & Test of Computers, pp.54-57, Oct. 1990

14] J.J.Hopfield, "Neural computation of decisions in optimization problems", Biological Cybernet-
ics, Vol. 52, pp.141-152, 1985

[5] H.Fujiwara, "Three-Valued neural networks for test generation", Proc. 20th Fault-Tolerant
Computing Symposium, pp.64-71, 1990

[6] Zhong Zhang, "Simulation of logic circuit neural network and its experimental results", Journal
of Computer Science & Technology, (to be published)

II-496

Hardware Implementations
Session Chairs: Clifford Lau

Ralph Castain
Mohanad Sayeh

ORAL PRESENTATIONS,

Challenges in Neurocomputers

Clifford G. Lau
Office of Naval Research

800 N. Quincy Street
Arlington, VA 22217

ABSTRACT

In the last decade, renewed interest in developing computational models of the
brain, coupled with advances in VLSI technology, has created many opportunities
to realize these computational models in silicon. Along with these biologically
motivated neural chips, artificial neural networks (ANN) have also re-emerged as
massively parallel solutions to previous adaptive learning algorithms. The
advantage of ANN over adaptive algorithms is in terms of much faster
computation and learning. However, to realize that computational power, ANNs
must be realized in VLSI hardware. When algorithms are put on silicon, many
issues have to be addressed, such as what is the circuit architecture, analog or
digital implementations, voltage mode or current mode, general or special
applications, size of the network, learning algorithms, and weight storage.
Several challenges are particularly important to realize the computational power
of neurocomputers, which in the broad sense of the word can mean any computer
architectures based on neural network paradigms. Many neural network chips
and boards, including digital ones, have been shown to be able to perform
extremely fast computations. But, input/output interfaces are still very important
to bring the data in and out of the chips/boards. Another issue is packaging.
Because of the massively parallel nature of neural network architectures, three-
dimensional (3-D) packaging may be necessary to avoid serial data interfaces.
Circuit and computational architecture is another important factor in realizing
high performance neurocomputers. In this paper, the latest research efforts in
neurocomputers, and the challenges facing this community, will be discussed.

11-499

Subthreshold MOS Fuzzy Max/Min Neuron Circuits

Coskun Baysoy and Larry L. Kinney

Department of Electrical Engineering
University of Minnesota
Minneapolis, MN 55455

Abstract- We propose simple feedforward neuron circuits in subthreshold MOS technology that implement multi-variable, soft
max/min functions for analog fuzzy neural VLSI. The circuits have several advantages: extremely low power consumption,
small silicon complexity, fime max/min approximation, and relatively large signal dynamic ranges. "he performances of the
circuits are discussed. The effects of parameter mismatches and temperature changes are analyzed. SPICE simulations are given.

1. Introduction

This work was motivated by a particular neuron model that replaces the sum function of the well-known weighted
summation neuron with max I min functions while keeping its basic structure intact. Such neurons are fundamental
primitives extensively used in neural systems such as in pattern recognition applications [1] and inffuzzy systems as
(weighted) fuzzy set aggregators [21, [9]. A large volume of work has been reported on miscellaneous summation
neuron hardware. Surprisingly, however, only a few multi-input nux I min circuits [31-[5] and to our knowledge
only one 14] in subthreshold MOS circuit regime [61-[8] have been designed with anakg fuzzy neural VLSI systems
in mind. Typically, fuzzy neural information is processed in parallel on a vast network of densely interconnected
neurons. Bare implementability at the neuron level is therefore is not sufficient; the challenge is in monolithic
integration of tens of thousands of neurons, each with equally large number of synapses. Accordingly, efficiency of
integration and the possibility of even achieving such neuron densities on a single chip need to be addressed.

We propose subthreshold MOS, feedforward, n-input max I min neuron circuits containing as low as n +3
transistors. The characteristics of the circuits are independent of device geometries. Considering this property along
with their small transistor counts, the circuits are suitable for VLSI where limited area is one of the primary design
constraints. Achievable integration density in a given area is also limited by the power dissipated by each device.
This is exactly where subthreshold regime operations become precious because, in this regime, a MOS transistor
operates in its off state and consumes practically no power [6]. The circuits exploit the robustness under imprecision,
uncertainty, and noise property of fuzzy neural computing which makes the known impediments of analog circuits
such as inaccuracy less of an inferiority. Fuzzy neural computing is deliberately an approximation, hence allowing
rough definitions of system primitives by overlooking their actual, detailed characteristics. The proposed circuits, to
fine approximations to max I min functions, essentially implement the p - norm operator

U1, (up +up+... +u.P," (0)

defined on non-negative inputs u, by using only e' and ln(x) functions. This transformation defines novel soft
max / min aggregators that yield sharp approximations for surprisingly small p > 0 values, and as demonstrated,
result in simple structures in silicon. The constant parameter p may be set to a desired value from a certain interval.

2. Subthreshold MOS Device Model

The subthreshold region of a MOS transistor (Fig. 1) has been well studied by others, e.g., [61-[8] and the relevant
NMOS equations are given below. With the proper changes in signs, the equations are also valid for a PMOS device.

Subthreshold MOS transistors use diffusion currents due to spatial density gradients of carrier particles (in
contrast to strong inversion currents due to particle drift under an external electric field). Particles travel voluntarily
according to Boltzman law, resulting in the subthreshold drain current modeled by

I_ e v, (1-e v,) VGs<VA (1)

where Vca is gate-to-source voltage, V,, is drain-to-source voltage; V, = kTIq (V, = 25.9 mV at 27°C) is thermal
voltage, T is temperature, q is the charge of an electron, k is Boltzman's constant; ic is the so-called subthreshold

coefficient; and !o is a process, geometry, and temperature dependent constant: I,, = (yW/ tL)C,,,V,2e vTN

11-500

v DD22

(Goh) M M2

... ... +u 2 .

+U I -- iM3 M 4 -

S"--- - --- -----
(Italy) .2 -IS As- . 0. • .5 I

ly) (Sewc.IVA

Iapsu [V.14l

Figure I A typical NMOS transistor. Figure 2 A single-input max neuron and its simulated DC characteristic.

where u is carrier mobility; W and L are channel width and length, respectively; V, is the threshold voltage; and
C. = e. / 1,,, is the gate oxide capacitance where e, is the permittivity of oxide and 1_ is the gate oxide thickness.

The subthreshold drain current exhibits a strong exponential dependence to VGS. The subthreshold slope o)
of 1D - V, curve is conveniently defined and given by

a = =(l) - (2)

dVm ,

The dependence of the subthreshold current to V, is, however, significant only v/hen V,, - 0 V. For V, values
exceeding a few V, - 25.9 nV, (1) with the substitution of (2) can be simplified to

1,= 1 e. < v, (3)

which is valid for drain currents roughly satisfying I) <5 pe,,WV2 / t,,,L. From the circuit design point of view, (3)
provides a clean exponential function with essentially two parameters: I,, and c. The value of i,, (typically,

1019 A < 1_ ! 10-6 A) is not tightly-controlled during fabrication, and therefore, is not useful in circuit synthesis. In
contrast, the subthreshold slope o) L almost constant in neighboring transistors with similar body-to-source voltages
and is available as an adjustable design parameter. In terms of the physical parameters co is given by

K q 1
ca (4)

'ff 2" _2(0, - V,,)

Typical values of Kc range from 0.67 to 0.90 with less than 5% spread [6], [8]. This translates to subthreshold
slope range 25.5:5 co s 35.1 at room temperature with a similar spread. As will be seen later, large values of a) is
desirable. From (4), the theoretical maximum of c occurs at a = q kT = 38.61 at room temperature. This limit
may be approached by decreasing gate oxide thickness t,,, or channel doping N,,, or body-to-source voltage V.,
or the temperature T. Scaling down t,., to the minimum value allowed by oxide reliability constraints also decrease
subthreshokl voltage mismatch and minimize short-channel effects while maximizing the saturation current. The
surface potential 4b, may be replaced by an average value 0, = 0. 5 V.

3. Single-input Max Neuron (Soft Max {x,O) Function)

Subthreshold MOS transistors can be combined to synthesis a large class of two-port circuits having linear and
nonlinear transfer characteristics. A trivial example of such circuits is the half-wave rectifier circuit (Fig. 2) given by
the constitutive relationship u2 = Maxtu1, 0). The subcircuit containing PMOS transistors M, and M2 is the identity
circuit (current mirror) which satisfies 1, = 1, ideally. Supposing V, = OV for simplicity, it follows from (1) that
constitutive relations of M, and M, are I = Ioe" and 12 = loe" (I - e-l/v ') '), respectively. Assuming matched

Io and A) for M3 and M., u2 relates to u, as U2 = (1/ co) ln(e' + e1(' " '1vt)2) provided that the identity circuit is

11-501

ideal. Recall that a) = KI/VT where K can be very close to 1 but it cannot exceed it. Consider the limit case where
K -4 1 so that o -- I/ V,, for which u, - u, relationship reduces to

u2 (u , wo) =ln(e°" + 1) (5)

This is an approximation to u2 = Max(u1 ,O) function in the sense that

Max(u,0} = tim an(e"+ 1) (6)

For a finite o, u2(u,a) is then a soft Max{u1,0) function such that u2(u, o)> Ma.4u,0) C) Fig. 2 shows the
u, - u, plot obtained from a SPICE simulation of the circuit, where (o was about 25.7 for NMOS transistors.

4. Two-input Mar/ Min Neurons

Using the scalar function f(x) = Max(x, 0), two-variable Max and Min functions can be given as

u. = Max(u, u,) = u, + Max{u, - u,0) (8)
:f,, = Min u,u 2) = u, - M {u -u 2, 0) (9)

With the substitution of (6) using the proper arguments, (8) and (9) can be expressed alternatively as

Max(u, ,Uz u, tim I We'"' +e ' "
2

) (10)

Min(u1 ,u } =2) l im - Iln(e"' +e "') (11)

An advantage offered by (10) and (11) is that extensions to n -variable cases are quite straightfoirward through direct
substitutions which again result in simple expressions due to the convenient order of e' and ln(x) functions.

5. Multiple-input Max / Min Neurons

Figs. 3 and 4 show n-input ruax and rin neuron circuits implementing the generalizations of (10) and (11) to n -
variable cases, respectively. Notice first the similarity of their structures: One is obtained from the other through
PMOS for NMOS, and vice versa, transistor substitution and exchanging the supply rails. The circuits consist of n
parallel-connected input transistors, each associated with a variable from the input set (u, u u.). It is assumed
that uk > 0 Vk. As will be seen later, input transistors provide exponential functions mid M, provide the logarithm
function. M, and M2 form an identity circuit which may or may not operate in subthreshold circuit regime. Notice
that if M4 is short-circuited, the multiple-input circuits have the same basic structure as the single-input miax neuron

_ VDD

D
MI M2 14

ui-I u 2 -uP ¢ r) 2M2

M4 MI

VSS - VNS

Figure 3 n -input max neuron circuit. Figure 4 n -input rain neuron circuit.

11-502

circuit of Sec. 3 in that a new input transistor is added for each additional variable (e.g., compare Figs. 2 and 3). M4
circuitry may contain one or more diode-connected series transistors; or it may be a short-circuit. It is added to
simultaneously extend the voltage dynamic ranges of the input transistors and also M,.

Consider the analysis of the max neuron circuit. Suppose for simplicity that Max(u, , . U) >> V, and
Vss = 0 V. Assume that all NMOS transistors match and the identity circuit is ideal, i.e., 1, = 1,, and that the output

current withdrawn from the circuit is negligible compared to the drain current of M 3.Then, the max neuron circuit
satisfies

= n e" ' (12)
k=1

or by solving (12) for u,, we obtain

u. =u In(Iem (13)
0 k=1

provided that all NMOS devices necessarily operate in their subthreshold regions. The right-hand side of (13) is a
multi-variable soft max operator in the sense: Given a set of non-negative real numbers (u1 , u2,..., u.), we have

u . = Maxu l,u2 u.) = im ln(e° 1) (14)
M.-* 0) k=l

Proof. Eq. (14) can be written equivalently as

Y u,e
uL = lim k = li e(_ (15)

k i o

where N = i I u, * u, Vii and n > 1 is the number of u, such that u: = u., Vi. As o--oo, the ith exponential term
of the inner summation becomes either 0 or oo. In the former case, no contribution is made to the inner summation,
and in the latter, the entire kuh term of the outer summation L 0. Hence the result follows.

Similarly, the min neuron circuit satisfies

U.= -lln(Xe-") (16)
0) k=

which approximates u* = Minju , u2 ,..., u.) for a set of non-negative real numbers (U,, 2 u.) in the sense that

u. = lim - In l e-l() (17)
M' _ (0) k=1

The outputs of the circuits always satisfy u, > u__ > 0 and 0< u,, < ti*,,. For the simplest max/ min neuron
circuit (where M4 is a short-circuit), input voltages are limited to the rough interval [0, V,] due to the subthreshold
regime requirement V, < V,. As mentioned before, voltage dynamic ranges can be increased by adding one or
more diode-connected, serial transistors to M,. Each added transistor concurrently modulates both input and output
voltages by the same amount, widening their useful ranges arithmetically. If M4 has r- 1 devices and V. = 0 V,
the useful voltage range extends roughly to [0, rVrh] for the max neuron and to [V , - rVrh,Vb] for the min
neuron. This extension has no effect on the max/min approximations since Eqs. (13) and (16) are free of r.

Fig. 5 shows the SPICE DC simulation results of a 6-input nmx neuron circuit with r = 4 and a 3-input
min neuron circuit with r = 2, respectively. In the ;imulations, all but one input were held at fixed voltages and the
remaining input was continuously increased from 0 to VDD. The bold curves correspond to the output voltages. The
DC characteristics agree well with the theoretical anticipations over a wide portion of the supply voltage range. The
success of the circuits in terms of the closeness of approximations is due to the steep nonlinearity of the ex function.

U-503

U U

i 2.5

I/ 2 It I .

X U t1

0 1i l.e 0 j ... V '..l.. .. I.. I f

0 1 2 3 4 5 0 0.5 1 1.5 2 25 3

Figure 5 Simulated DC characteristics of(a) a 6-inputmax neuron (VD = 5V, V. =0V) and (b) a 3-input min

neuron (VDD= 3 V, VZ =OV). (For PMOS: WIL=414, to. =39.8 mn, N.b=9.28XlO5 1/cm , VI =-0.85 V,

7=0.697 V" 2 ;for NMOS: W/L=4/4, t,, =39.8 m, ' = 6.82x1014 1/cm3, Vjh =0.769 V, y=0.17,4 V'2.]

5.1 Performance Analysis

Closed form formulations (13) and (16) reduce the max/min computation effort to a simple [feedforward] algebraic
calculation. But, so-calculated max/min is only an approximation since exact values are obtained only in the limit
as o) -4 -. This is important because, in terms of the circuits, o is a physical parameter and its range is limited.
Also, we deliberately assumed matched devices in the derivations of (13) and (16); but physical devices never
match. In the following, we investigate the influence of finite (o values and the effects of parameter mismatches and
the temperature changes on the operation of the circuits.

A) Influence of finite w: The relative difference E between u. (w) calculated from (13) and the precise value

= u, (w -4o-) is defined and given by

E= U -'- =l1U+ (o] (18)u. In(m+ . - ' -)

where m > I is the number of u, such that u, = u:, Vi. From (18), the relative difference clearly depends on the
values of input set elements as well as the value of w. Particularly, the difference becomes significant only when
two or more inputs share the same value u:. The worst-case corresponds to the case where all set elements are
equal to each other, for which (18) simplifies to

E",W = 1 (19)
1+ (oU:-

ln(n)

wheie n is the cardinality of the input set {u , u2 U.). Likewise, the worst-case relative difference for the n-input
min neuron circuit is obtained as

E, = 1 (20)

ln(n)

For a finite w, one therefore obtains better approximations on relatively smaller input sets having larger values. The
dependence on n through In(.) function is however weak. Thus, the set size is not really a limitation. On the other
hand, for increased precision the upper portion of available input voltage range should be utilized.

U1-504

B) influence of parameter mismatches: The following analysis is given for the max neuron circuit only. Consider
the case where o is perfectly matched in all NMOS transistors but Io shows the worst-case mismatch Al from the
nominal resulting in the output voltage u(,,. = u,. + Au.. Then, the absolute mismatch Au. can be shown to
be always less than or equal to

1 1+6o
Aus. =-In(-) (21)

where 8. = Al. /I.. For example, if 8o = 0.4 (about its maximum in standard MOS processes), absolute mismatch
in u.. for o = 35 should be below Au.. = 0. 024. Even though the value of 1o is not well-controlled over silicon
processes, the circuit suppresses the Io mismatch effect through In(.) function of (21). Moreover, increasing (o not
only increases the output precision but also reduces the effect of Io mismatch. Next consider the case in which 1, is
matched perfectly while o exhibits Ato worst-case mismatch causing the output to change from u,, to u(,.
To simplify the task without loosing the generality, let us consider this mismatch in the limit as a) - and when
u, = u:,. for all k. The worst-case relative mismatch for the case considered is then given by

- ut,, . . = 28 (22)

UW- 1+8.,
where 6 = Ao / o. For example, for 8. = 0.04 and 8, = 0.01, E. is about 7.6% and 1.9%, respectively. The
effect of o mismatch is more pronounced than that of J. mismatch. However, as mentioned previously, unlike I.,
the value of o is well-controlled over processes. For constant temperatures, a) values are reported [6] to be quite
constant among devices in a single fabrication batch (8. can be well below 5%.) The effect of the mismatches in the
identity circuit is similar to that of 1. mismatch. Finally, the known methods tor improving matching can be utilized.
These include making larger devices of the same size and shape that have similar surrounding structures, etc..

C) Influence of temperature changes and the body-effect: The relative change 8
T = Awo / wT. due to a change

ATI T in temperature is 8T
= - AT / T, i.e., even the smallest changes in T is reflected directly onto w. However,

T may be assumed constant for clusters of transistors in a sufficiently small neighborhood. This is particularly true
if power dissipated on chip is very low. Also, the circuits have the property that there is no so-called body-effect on
the quality of approximations due to identical modulation of source voltages of input transistors and M3 by M,.

6. Concluding Remarks

We presented n-synapse, fuzzy max/nin neuron circuits in subthreshold MOS technology. The proposed circuits
have small silicon complexities (0(n)) and consume very little power--attributes that are essential for high-density
integration. But, they are slower compared to binary standards due to small currents (dis)charging regular device and
layout capacitances. While this trade-off seems apparent, the speed evaluation should, nevertheless, not be attempted
at the neuron level because of the collective and analog nature of fuzzy neural computing at the system level.

REFERENCES

[1] T. Watanabe, M. Matsumoto, M. Enokida, and T. Hasegawa, "A Design of Multiple-Valued Logic Neuron," in Proc. 20th
IEEE Int. Symp. on Multiple-Valued Logic, pp. 418-425, May 1990.

[2] R. R. Yager "Toward a Unified Approach to Aggregation in Fuzzy and Neural Systems," Proc. WCNN'93, Vol. 11, pp.
619-622, Portland, July 1993.

[3] T. Yamakawa, T. Miki, and F. Ueno, "The Design and Fabrication of the Current Mode Fuzzy Logic Semi-Custom IC in
the Standard CMOS IC Technology," Proc. 15th IEEE Int. Symp. MVL, pp. 76-82, May 1985.

[4] C. Baysoy and L. L. Kinney, "Asymmetric Feedback Max/Min Circuits of O(n) Complexities for Analog VLSI Neural,
Multiple-Valued, and Fuzzy Logic Systems," Proc. WCNN'93, Vol. 11, pp. 97-101, Portland, July 1993.

(5] M. Sasaki, T. Inoue, Y. Shirai, and F. Ueno, "Fuzzy Multiple-Input Maximum and Minimum Circuits in Current Mode and
Their Analyses Using Bounded-Difference Equations," IEEE Trans. Computers, Vol. 39, No. 6, pp. 768-774, June 1990.

[6] C. A. Mead, Analog VLSI and Neural Systems, Addison-Wesley, NY, 1989.
[71 T. Grothjohn and B. Hoefflinger, "A Parametric Short-Channel MOS Transistor Model for Subthreshold and Strong

Inversion Current," IEEE J. Solid-State Circuits, Vol. SC-19, No. 1, pp. 100-112, Feb. 1984.
[81 E. Vittoz and J. Fellrath, "CMOS Analog Integrated Circuits Based on Weak Inversion Operation," IEEE J. Solid-State

Circuits, Vol. SC-12, No. 3, pp. 224-231, June 1977.
19] D. Dubois and H. Parade, "A Review of Fuzzy Set Aggregation Connectives," Information Sciences, 36, pp. 85-121, 1985.

11-505

RESULTS FROM A NEURAL NETWORK APPLICATION IN HIGH-ENERGY PHYSICS
USING THE ETANN CHIP

C. Baldanza, F. Bisi, A. Cotta-Ramusino, I. D'Antone,
L. Malferrari, P. Mazzanti, F. Odorici, R. Odoic, M. Zuffa

INFN/Bologna, Via Irnerio 46,40126 Bologna, Italy
E-mail: odorico@bo.infn.it

C. Bruschini, P. Musico, P. Novelli
INFN/Genoa, Via Dodecaneso 33, 16146 Genoa, Italy

M. Passaseo
CERN, 1211 Geneva 23, Switzerland

ABSTRACT

A neural trigger module for fast classification of high-energy physics events, based on the analog neural
microprocessor ETANN by Intel, has been realized. It has been employed in the experiment WA92 at CERN. Task
of the neural trigger is to send events to be analyzed with high priority on a special data stream, the Fast Stream. Its
response time is less than 10 microseconds. The limited precision of the ETANN chip affects the choice of the
neural net architecture, as it is discussed in some detail. Results from the experimental run are presented.

1. Introduction

High-energy physics offers special challenges to neural network applications (Odorico, 1982; Odorico, 1992).
Response times are required to be very short, typically less than 10 lis. Output from the experimental apparatus can
be very complex, of the order of several hundred independent channels. A most often considered task for neural
networks is triggering. Conditions for the particle beam intensity and density of the target may be set up so that
several million collision events occur per second. But only a fraction of them are interesting to record. The trigger is
a device that by making a quick elaboration of the detector output is able to decide whether the event is worth
recording or not. Neural networks can be used as part of the trigger device: they can contribute to the trigger decision
by making a pattern recognition of the detector output. Neural networks become essential in this task when a
significant discrimination of the interesting events, i.e. the signal, from the background can only be attained by
exploiting correlations among the various components of the detector output which are characteristic of the signal.

The neural trigger module, whose realization and on-line running results are presented here, consists of a VME crate
utilizing the analog neural chip ETANN by Intel (80170NX, 1991) which has operated within the WA92
experiment at CERN (Adamovich et al., 1990) during the 1993 run. WA92 is an experiment looking for the
production of beauty particles by a r beam at 350 GeV/c impinging on a Cu target. Interactions are triggered if a
secondary vertex signature is detected by a specially designed hardware processor (the BCP, see below). Only
interactions where this signature is accompanied either by a lepton or by a particle with high transverse momentum
(relative to beam direction) are written onto tape. Task of the neural trigger is to send events to be analyzed with
high priority on a special data stream, the Fast Stream. Target of the neural trigger are events which in addiction to
the primary production vertex also contain secondary C3 vertices, i.e. branching into three particle tracks with sum
of the electric charges equal to ±1. The latter may be originated by the decay of unstable heavy flavor particles, i.e.
carrying the charm or beauty quantum numbers. At the time of running only the ETANN part of the crate was
operational. The training of the ETANN chip was done using 1993 WA92 data, with C3 events certified by the
Trident event reconstruction program. Input to the neural crate was provided by the Beauty Contiguity Processor
(BCP) of Darbo and Rossi (Darbo et al., 1990), which determined tracks and their impact parameters on-line, using
data from the silicon microstrip Vertex Detector. The BCP data, arranged in 5x64-bit hit-maps, were preprocessed
within the neural crate to yield 16 input variables for the neural chips.

fl-506

2. WA92 Trigger Apparatus

The part of the WA92 trigger detector relevant for the input to the neural chips consists of 6 silicon-microstrip
planes of the Vertex Detector (VD), measuring the z coordinates of tracks, where the z axis has the direction of the
magnetic field (bottom-up direction). The last plane is positioned at about 41 cm downstream of the target and has a
square shape with a 5 cm side, centered around the beam. The hit information from the 6 planes is processed by the
Beauty Continguity Processor (BCP) developed by Darbo and Rossi (Darbo et al., 1990), which reconstructs tracks
and their impact parameters (IP), with a global response time of about 40 pzs (Brschini et al., 1992). IP is defined
as the signed difference between the z value of the track extrapolated back to the target-center plane and the beam z
position. The BCP supplies to the Neural Trigger (NT) 5 words of 64-bit each, plus a standard go-ahead termination
word. Each one of the 5 words directly represents the hit-map of tracks on the last (6th) VD layer, divided in 64
bins, for tracks falling within a given IP window. The BCP could supply up to 8 hit-maps, with a resolution which
can reach 256 bits. Data transfer times would be correspondingly increased. Simulation has shown that the
arrangement we eventually employed is adequate for the task and does not lead to any significant loss of
performance.
The BCP also makes a first level decision about accepting the event. Defining as secondary tracks those with IP1 >
100 pam and as primary the other tracks, the Standard Non-Leptonic Trigger (SNLT) requires the presence of 3
primary tracks, 2 secondary tracks and 1 track in the Butterfly Hodoscope with high PT (defined in a detector
dependent mode, roughly corresponding to > 0.6 GeV/c along the z axis). The Neural Trigger considers only events
which have already been accepted by the SNLT.

3. Neural Trigger Hardware

The Neural Trigger module consists of an Extended VME crate (VME9U boards). Its overall structure is shown in
Fig. 1. There are 9 boards in the crate:

one VIC 8250 module by CES, interfacing the VME Bus to an IBM-compatible personal computer;
* one Input Interface Board, interfacing to the WA92 apparatus;
a 4 Preprocessing Boards, with 2 Preprocessing Units each, each unit calculating variables for a given IP

window;
0 2 MAI6 Boards, with one MA16 chip per board; they will be not discussed here;
* one ETANN Board, hosting two independent ETANN chips.

All inputs from the WA92 apparatus enter through connectors in the front panel of the Input Interface Board.
Outputs to the WA92 trigger logic and data acquisition exit through connectors in the front panels of the MA16 and
ETANN Boards.

The VIC 8250 board by CES connects the VME Bus to a VBAT 8218 card, also by CES, installed in the PC.
Specific C++ programs have been developed for configuring, testing and monitoring the crate from the PC. Also,
programs have been developed for simulating on-line running conditions, and having recorded experimental inputs or
simulated inputs passed through the crate with collection of the corresponding outputs.

There are 4 printed-circuit Preprocessing Boards, each one hosting 2 independent Preprocessing Units. Each
Preprocessing Units outputs the input variables to the neural chips for a given IP window. With 5 IP windows,
only 5 such units are actually used. Determination of the input variables is done by calculating them from the 64-bit
hit-maps by means of Look Up Tables (LUT's) implemented on EPROM's. A total of 16 input variables to the
neural chips are obtained in this way. The configuration which was finally adopted for them turned out to be the
optimal one among several attempted in the preliminary studies.

The ETANN chip can operate in 1-layer mode, accepting a maximum of 128 input variables, and in 2-layer mode
with a clocked-back feedback operation, accepting a maximum of 64 input variables. In both cases, it has 64
independent outputs (thus, a maximum of 64 hidden layer nodes in the 2-layer mode). Precision of the chip is quoted
(80170NX, 1991) as being equivalent to 6-7 bits. Operatively, with our set-up, after conversion of the output to a
8-bit digital number (range 0-255), we have found during the experimental run a maximum deviation of 4 units for a
high response, around or above the threshold value of about 146 for triggering, and a maximum deviation of 6 units
for a lower response (likely due to the larger degree of cancellations), when routinely sending a prefixed set of test
patterns chosen so as to uniformly cover the output range. ETANN was serviced by a voltage regulator, stabilizing
its power voltage to within AV < 5 mV, and a temperature controller stabilizing its temperature at 18 'C within AT
! 1 "C.

11-507

Input variables from the Preprocessing Boards are converted to analog signals for ETANN by Digital to Analog
Converters (DAC's). The range of the input variables is 0-16, therefore 8-bit input precision is sufficient. 32
variables can be accepted by the ETANN board, but we found that 16 variables were enough in our application and
we used just them also to save on trasfer time. The 8-bit input is converted to an analog signal from 1.6 to 3.2 V,
with zero corresponding to VREFJ = 1.6 V, as required by ETANN. The output from ETANN, ranging from 0 to 3.2
V, is converted by Analog to Digital Converters (ADC's) to an 8-bit digital number in the range 0 to 255. The
parameter controlling the transfer function slope has been set at VGAIN = 4.0 V. In the iNNTS trainer (iNNTS,
1992), we have set the zero reference value for the output at VREFO = 1.6 V.

Adding to the response time from the chips the time spent in the Interface and Preprocessing Boards and data transfer
(i.e. including the loading time of DAC's), which is 3.2 g~s, one has a total response time for the Neural Trigger
module of 5.8 ps for the single-layer net we have actually used. That would grow to 9.3 I~s for a 2-layer net.

NEURAL VME CRATE

VME9U CARDS
N TART
$BURST
3 CLEANRSTROB5

5 1S." oll NEURAL TRIOOSRG

U

Si.U PRO P P OURA DIT W9 UTU

T 1u 9 R F F O

ro. I e"" E E E E

(I)ST R RU4 RORR

tdP EOOCO 04At 0 0 0 M M

C C , C C

PE OA A

Fig. 1. Schematic view of the Neural Trigger VME crate.

4. Neural Network Architecture and Training

In principle, we could have set as target for the Neural Trigger the direct recognition of beauty particle decays,
defined by simulated events obtained by an event generator with added GEANT simulation of the WA92 apparatus.
However, we refrained from doing that mainly for two reasons: i) although such simulated events were available,
they were suitable for off-line studies, after some event selection, and were not appropriate for quantitative tuning of
a neural trigger, also because of the general dependence of event generators on model assumptions which are
especially critical for the relatively low mass beauty particles and for a complex nuclear target like copper; ii) the
necessity of depending on graphical scanning, with the long waiting times involved, to have indications on the
actual performance of the neural Wigger.

II- 508

Taking into account the effective necessities of the experiment, which required the analysis of many tens of millions
of events to extract the few thousands affordable by graphic scanning, we rather focused on the enrichment in events
which are selected for that sake. Especially interesting, from this point of view, are events with C3 secondary
vertices. branching into three tracks with sum of electric charges equal to ± 1. A C3 vertex is a signature for D -+
Kxx decay, and thus a non-leptonic signature for beauty particles. Certification of these events comes from the
Trident event reconstruction program. By applying the event reconstruction program to real data obtained with a
given experimental set-up, one gets the necessary event training samples to tune the Neural Trigger for enrichment
in C3 events with the same experimental set-up. In this way one avoids altogether dependence on theoretical
modeling and only relies on the event reconstruction program. This is the target we have chosen for te Neural
Trigger. In doing that the Neural Trigger does not act alone, but in conjunction with the first level Standard Non-
Leptonic Trigger (SNLT, see Section 2): only events already accepted by the SNLT are worked out by the Neural
Trigger. By concentrating on SNLT events only, the Neural Trigger can better focus on correlations present within
the events which discriminate signal from background. The SNLT&NT non-leptonic signature has been used to send
events to be analyzed with high priority on a special data stream, the Fast Stream, where they lay together with
events selected by semi-leptonic signatures.

Only input variables simple to calculate with the available hardware were taken into consideration. The basic
strategy in devising them was to have them convey multi-scale information on the hit maps provided by the BCP.
We first considered the maAimum resolution made available by the BCP: 256 bits. By directly studying the
corresponding hit maps for a set of events, however, we saw that 64-bit hit maps were enough. Using such a
resolution had the advantage of reducing transfer times. We then considered variables counting the number of hits
with 1-bit, 4-bit, 8-bit, 16-bit, 32-bit resolutions. We submitted them to significance tests based on Fisher
discrimination (Kendall et al., 1983; Mazzanti et al., 1993). It turned out that the significant variables were those
associated with 1-bit and 16-bit resolutions. The study was made by varying the IP window segmentation.
Eventually, we found that an adequate IP window segmentation was the following one (the BCP allows for a
maximum of 8 IP windows): -200 < IP < 200, 200 < IP < 400, -400 < EP < -200, 400 < IP < 900, -900 < IP < -
400. We found that 16 input variables were adequate according to significance tests based on Fisher discrimination.
Input variables were built by dividing each 64-bit map in 4xl6-bit groups, ordered bottom-up in z, and calculating
the following quantities on them:

KI6MAP(i) = #hits in group i = 1-4 (range: 0-16)

K16 = #groups hit (range: 0-4)

KDW16 = #groups in bottom half hit (range: 0-2)

KUP16 = #groups in top half hit (range: 0-2)

A set of 16 variables extracted from this pool was found to be adequate for the problem at hand.

One can argue against reliance on significance tests based on Fisher discrimination for choosing the input variables,
regarding them as appropriate when discussing the separation of the bulk of the event class distributions but too
insensitive to the tail structure of these distributions, which is in principle relevant in high enrichment applications.
Being aware of that, in our preliminary neural net studies we made several tries with larger samples of input
variables, taken from the wide original pool. But we got no significant improvement of the results.

For the neural net architecture we considered the two options offered by ETANN: a 2-layer or a 1-layer net, the latter
being equivalent to a Fisher discriminant. As discussed at some length in (Mazzanti et al., 1993), the optimal type
of neural net totally depends on the problem at hand. If the two class distributions one has to discriminate have a
gaussian shape with similar correlation matrices, no classifier can outperform the Fisher discriminant. We made
preliminary software studies simulating some of the ETANN restrictions, as represented by the software handling
the iNNTS development system. Specifically, weights and thresholds were requested to stay between -2.5 and 2.5
with input variables limited to ±1. No useful way was found to simulate the limited weight precision. After training
by standard back-propagation, the 2-layer net gave results slightly better (of the order of 20%) than a 1-layer net.
But, after loading the nets on ETANN and having made some chip-in-loop training of the 2-layer net (that is not
necessary for a 1-layer net), we found that the small margin in favor of the 2-layer net evaporated. Looking in detail
at how event patterns were processed in the 2-layer net, we realized that the net had organized itself so that
discrimination between the two event classes was largely due to small differences between the responses of the first
layer which entered cancellations performed by the second layer node. Thus, weight precision had a large incidence
on the results. We found no way of forcing back-propagation to direct the organization of the net to a structure less
sensitive to weight precision. (Procedures to compensate for the limited weight precision by separately changing the
transfer function slopes of nodes (Hoehfeld et al., 1992) are not applicable to ETANN, which has a single parameter,

H-509

VGAN, to control all the. nominally, equal slopes.) We had other reasons pressing us toward a I-layer architecture:
i) simplicity of training, since a 1-layer net. i.e. a Fisher discriminant, requires only inversion of the pooled-over-
classes correlation matrix for that sake; ii) avoidance of chip-in-loop training, which may burn out nodes in
ETANN, the latter being required essentially because of the variance of the transfer functions of nodes, which
becomes irrelevant for a 1-layer net with one output node; iii) increased robustness towards changes in the operating
conditions of the trigger detector, e.g. due to temperature excursions which can change alignments and the level of
electronic noise, since the net is less fine-tuned to details of the shapes of the event class distributions; iv)
shortening of the response time of the Neural Trigger.

In conclusion, we adopted a I-layer net architecture with one output node. Its weights (i.e. the Fisher vector
components) were determined on a conventional workstation by a simple matrix inversion operation and then loaded
on ETANN by means of iNNTS. The procedure was fast and straightforward, in compliance with the strict time
restrictions we had to meet during the experimental run. The training event samples we used consisted of 3000 C3
events and 10000 non-C3 events, accepted by the SNLT. The collection of the C3 event sample required the running
of the Trident event reconstruction program for about 4 days on 3 alphavaxes 3000/400.

WA92 1993 RUN
Rates After Standard Non-Leptonic Trigger

I 1 -1 1 1 1 , 7
1 oO0o0 0o ° 0

"ACC °Oo o ENR 6
0 0.5
Ze.5gO0 -5 W

M

0L 0 z
LU °o -4 0

0 0 00 0Z< --
00

Test Set: 0 2
O 6403 C3 events

0.1 . 246746 Backgr events 0
I I I a I 01

100 110 120 130 140 150

CUTOFF ON NN OUTPUT (0-255)

Fig. 2. C3 event enrichment and acceptance obtained when varying the lower
cutoff on the Neural Trigger output (range 0-255), for the WA92 1993 data.

S. Results from the Experimental Run

The Neural Trigger, after its training was completed, operated for two continuous weeks within the apparatus of
WA92. The results we present are based on a sample of events collected about two weeks after the acquisition of
events used for training. It consists of 6403 C3 events and 246746 non-C3 events accepted by the SNLT and
certified by the Trident reconstruction program. Fig. 2 shows the values of C3 event acceptance and enrichment
obtained by the Neural Trigger when varying the lower cutoff on the neural net output, ranging from 0 to 255 (8-bit
output). The results refer to the output from one of the ETANN chips, the other ETANN chip giving consistent
results.

U-510

Above a certain value the C3 enrichment flattens out when increasing the cutoff on the neural net outpuL Setting
the cutoff to a value corresponding to the beginning of the plateau, one obtains for a C3 event acceptance of 18% a
C3 event enrichment of about 6.5, corresj nling to a rejection factor for the background of about 36. The
enrichment obtained by the Neural Trigger sh ,-u he multiplied by that provided by the SNLT, which is somewhat
larger than an order of magnitude, to get the tots) arichment for C3 events given by the SNLT&NT trigger.

5. Conclusions

A Neural Trigger device based on the ETANN chip has been demonstrated by two weeks of continuous running in
the experiment WA92. Task of the neural trigger was to send events to be analyzed with high priority on a special
data stream, the Fast Stream. That represents the first example of an actual application of neural network technology
to triggering in a high-energy physics experiment. Effects of the limited precision of the analog chip, also associated
with dependence of its response on power voltage and temperature, had to be duly taken into account when designing
the architecture of the neural network.

Acknowledgements

The WA92 Collaboration is gratefully acknowledged for support. A. Benvenuti has suggested the idea of
demonstrating neural network techniques within experiment WA92, and has contributed, together with D. Bollini
and F.L. Navarria, at the early stages of this project. The MA16 project is being made possible by the continuous
support of J. Beichter, N. Bralls and U. Ramacher, of Siemens AG, Munich. C. Lindsey has made us familiar with a
number of features of ETANN. F. Degli Esposti, M. Lolli, P. Palchetti and G. Sola, of the INFN Electronics
Laboratory of Bologna, have given relevant contributions to the hardware development. Mi.. Luvisetto, F. Ortolani
and E. Ugolini have helped us in sorting out a number of problems with C++ programming. One of us, R.O.,
acknowledges useful conversations with R. Battiti about neural net training procedures.

References

Adamovich M. et al. (1990), WA92 Collaboration, CERN/SPSC 90-10 (1990), Nucl. Phys. (Proc. Suppl.) B 27
(1992) 251.

Bruschini C. et al. (1992), 1992 Nuclear Science Symposium, Orlando, Florida, 1992, Conf. Record p. 320.
Darbo G., and Rossi L. (1990), Nuci. Instr. and Meth. A 289 (1990) 584.
Fisher R.A. (1936), Annals Eugenics 7 (1936) 179.
Hoehfeld M., and Fahlman S. E. (1992), IEEE Trans. Neural Networks 3 (1992) 602.
Kendall M., Stuart A., and Ord J.K. (1983), The Advanced Theory of Statistics, Vol. 3, 4th ed. (C. Griffin &Co.

Ltd., London).
iNNTS Neural Network Training System User's Guide (1992), Intel Corp..
Mazzanti P., and Odorico R. (1993), Zeitschrift f Physik C59 (1993) 273.
Odorico R. (1982), Proc. of the 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities,

Snowmass, Colorado, 1982, p. 478; Odorico R., Phys. Lett. 120B (1983) 219; Ballocchi G., and Odorico
R., Nucl. Phys. B229 (1983) 1.

Odorico R. (1992), Invited Talk at the 1992 Nuclear Science Symposium, Orlando, Florida, 1992, Conf. Record p.
822; IEEE Transactions on Nuclear Science 40 (1993) 705.

80170NX Electrically Trainable Analog Neural Network Data Booklet (1991), Intel Corp. 2250 Mission College
Boulevard, Santa Clara, CA 95052-8125, USA.

11-511

VLSI Implementation of a Pulse-Coded Winner-Take-All Network
Jack L. Meador and Paul D. Hylander

School of Electrical Engineering and Computer Science
Washington State University, Pullman WA, 99161-2752

Abstract
'Ibis paper presents a pulse-coded winner-take-all (PWTA) network which employs a unique combination of

presynaptic and lateral inhibition that can be efficiently implemented in VLSI. The manner in which the network not
only selects the winner but also indicates the weight of the decision made is unique among established winner-take-
all networks. A combination of all-or-nothing and graded responses is encoded as a variable rate pulse train
appearing only at the output of the winning unit. The mechanism used is closely related to the presynaptic inhibition
approach introduced in [Yuille 88] with the exception that it is self-resetting and has properties which make it well
suited for electronic realizations using asynchronous pulse-coded circuitry.

Winner-Take-All Functions and Competitive Neural Networks
The winner-take-all (WTA) function plays a central role in competitive neural networks and is related to recurrent

on-center off-surround models of natural neural systems [Grossberg 73]. The WTA function can be computed
sequentially using numerical comparisons, or in parallel using a Hopfield network [Majani 88] or MOS current
conveyors [Lazzaro 88, Andreou 91].

The WTA function is useful because it is an essential component of well established neural networks such as
ART, self organizing feature maps, and counterpropagation networks [Zurada 92]. It also finds use in applications
such as vector quantization and coding, statistical data clustering, and optimization [Hertz 911.

In simple competitive networks, connection weight vectors (or "prototype vectors") are updated to move toward
closely related input vectors. The function of the WTA subnetwork is to determine which of the prototypes is nearest
by some distance measure. A simple competitive learning rule based on the inner product distance measure can be
expressed concisely in terms of a randomly distributed input vector and a set of prototype vectors associated with unit
outputs:

Y=jifWTX>WTX Vj*,
0 otherwise

(1)
A W, = Y,(X - W,)

where Wi and X correspond to the prototype vector for unit i and the input vector respectively. Here, only unit output
Yi is active, so only row i of W is adapted in proportion to learning rate constant ti.In competitive networks the inner
product computation and winning unit computation are distributed across two distinct subnetworks as illustrated in
Figure 1. The focus of this paper is upon the implementation of the winning unit computation independent of others
associated with distance measures and adaptation.

One characteristic of particular importance to the VLSI implementation of WTA networks is area complexity.
WTAs using the Hopfield network organization (Figure Ia) are less practical for VLSI than those using an "inhibitory
interneuron" approach (Figure Ib) since winning unit feedback requires a more complex interconnect. The Hopfield
net approach has O(N 2) area complexity while the use of an inhibitory interneuron requires only O(N) area for N
units. The architecture of the WTA network introduced here uses the more space-efficient inhibitory interneuron
approach.

Computation In The Pulse Probability Domain
Asynchronous pulse coded processing units similar to the axosomal circuits first described in [Meador 911 are the

basic elements of the WTA network to be presented here. The functional organization of a simple axosomal circuit is
shown in Figure 2.

The axosomal circuit operates by cyclically charging and discharging the integrating capacitor C at a rate in
proportion to the instantaneous magnitude of the synaptic current Inet. During the integration phase of circuit
operation, SI is closed and S2 is open. In this state weighted synaptic currents are summed via Kirchoff's current law
to form the input current Inet which is integrated over time on C. With increasing time, the voltage across C
increases, eventually reaching the upper threshold of the Schmitt trigger. At this threshold the output of the Schmitt
trigger toggles, causing SI to open and S2 to close causing C to discharge through R and S2. When the capacitor

1-512

Xi X2 X1X2X

Y, Synaptic Current U

3 Integrating Capacitor
TO

Figure 1. Winner-take-all network organization within Figure 2. Functional structure of an "axosomal circuit"

a simple competitive network: a) Hopfield network for asychronous pulse stream processing. Pulses having
approach and b) the use of a recurrent inhibitory a fixed width of T0 are generated at a rate determined by
interneuron. Inner product distance computations are the magnitude of the synaptic current Inet.
computed in the distinct W subnetwork, independent of
the WTA implementation. wiTN

M1
Yi "

M2L [11!111 I I !!111
Figure 3. The axosomal circuit of Figure 2 controlled Figure 4. Output pulses generated from a continuously

by a simple fixed synapse circuit. The rate at which varying weight with a fixed input having firing
output pulses are generated varies in direct proportion to probability one (continuously firing). The integral of
with the connection weight (which increases with the resulting pulse stream varies in direct proportion to
decreasing voltage Wij in this case) and increasing pulse the input signal integral.
frequency on Xj.

voltage reaches the lower Schmitt threshold, the circuit reverts to the integration state. The width of the output pulse
is dictated by the time constant of the RC circuit, while the rate at which pulses occur depends upon the magnitude of
the synaptic current. The axosomal circuit is effectively a current controlled oscillator exhibiting several orders of
magnitude of dynamic range and essentially mimics the basic firing cycle of most natural neurons [Guyton 861. In
fact, the term "axosomal" is inspired by nature in the sense that the locus of action potential generation typically lies
in the axon hillock region of the neuron soma.

The axosomal circuit of Figure 2 can be used to compute a scaled and weighted summation of pulse probabilities.
When used in conjunction with certain pulse stream multipliers or "synapse circuits," the probability that the output
pulse stream is generating an action potential or is "firing" is proportional to the weighted summation of the
probabilities that input pulse streams are in the action potential state. This is best understood by examining axosomal
circuit behavior in conjunction with a simple fixed synapse circuit such as that diagrammed in Figure 3. In the figure,
Wij is a voltage which represents the weight of the synapse. This voltage is maintained such that MI approximates an
ideal current source that is gated by transistor M2. Several orders of weight magnitude are available if Wij is
maintained in the weak inversion region of MI [Meador 911. Since transistor M2 in turn is controlled by the pulse
stream input signal Xi, the more frequently (inverted) pulses arrive at Xj, the longer M2 remains on, transferring more
charge to the axosomal circuit. Similarly, with increasing weights (decreasing weight voltage in this case), more
charge per pulse will flow. If a continuously varying Wij and a fixed Xj having firing probability one (is continuously
firing) is presented to the circuit the response will be the integral pulse frequency modulation (IPFM) of Wij [Bayly
69, Gestri 71, Sanderson 80] as illustrated in Figure 4.

IPFM yields a pulse stream having a repetition rate which varies in proportion to the integral of the weight

11-513

'ILLLLiL, WuilIJIDJiLL
Wik Xk

Figure 5. Pulse stream firing probability scaling with [. WijXj

binary pulse stream input Xj. Wij is fixed and a variable W

rate pulse stream applied to Xj. The output firing Wij
probability varies in direct proportion with that of the input. lak

Y1

Figure 6. Weighted summation of pulse stream firing
probability for two inputs Xj and Xk.

modulating signal. Since each individual output pulse has constant width and magnitude, the integral of the output
pulse stream varies in direct proportion to the integral of the input. A new constant area pulse is generated each time
the signal integral reaches a multiple of a constant determined by axosomal circuit parameters (equivalent to the area
K in Figure 4). Given this and also that the integral of a binary pulse stream per unit time estimates pulse firing
probability, it is a simple matter to demonstrate that the axosomal circuit can be used to scale pulse stream firing
probabilities, as for example is shown in Figure 5. In this figure, the connection weight Wij is assumed fixed (or
slowly varying) and a variable rate pulse train is applied to Xj. Firing probability scaling can be succinctly expressed
as:

Pr(Y := 1) = K- 1 wY Pr(Xj = I) (2)

where the firing probabilities are sampled over identical time intervals independent of circuit state. K depends upon
C and the Schmitt threshold voltages. It is proportional to the quantity of charge required to raise C's terminal voltage
to the firing threshold voltage.

The extension of this result to a weighted summation of several inputs is straightforward. Parallel synapse
circuits yield a summation of individual weighted inputs via Kirchoffs current law. The firing probability of the
result is simply a scaled, weighted sum of input pulse probabilities:

Pr(Y i = 1) = K-' Xwij Pr(Xj = 1) (3)

This result is presented graphically for two pulse stream inputs in Figure 6. It is important to note that this result
proceeds asynchronously independent of signal timing. This means that under certain conditions a relative phase
shift between the two signals will yield only a minor variation in the overall result. Any deviation from the ideal sum
due to a phase shift is bounded by the accuracy limits established by pulse width and the signal observation interval.

Although the traditional sigmoidal output function is not explicitly represented in Equation (3), it is implied by
the probabilistic signal representation. Just as probabilities are bound by 0 and 1, the response of an asynchronous
pulse coded neuron circuit consisting of the axosomal and synapse circuits presented here saturates at zero and some
maximum firing rate determined by the pulse width TO. A small TO yields a large dynamic range for pulse repetition
rates, increasing the accuracy of the signal representation for constant obervation intervals.
An Experimental CMOS PWTA

This section presents a CMOS PWTA along with experimental measurements verifying its functionality. A
simple variation of the axosomal circuit of Figure 2 is used in combination with 3-bit digitally programmable
synapse circuits in a simple competitive neural network. Test results show that the network correctly matches 4-
element input vectors with their stored prototypes.

11-514

x x
JL V.11

~Figure 8. The programmable synapse circuit consists of
I a 3-bit programmable MDAC. Eight synaptic weight

-- levels are available for testing PWTA response.
Figure 7. Pulse coded winner-take-all system Minimum size devices are used unless noted otherwise

organization, in the diagram.

M
Y,2

X4 X2 X, X

Figure 10. Global inhibition circuitry. One weak

, "'pullup transistor and an inverter are needed for the

Figure 9. CMOS implementation of the axosomal network with transistor M I is repeated for each

circuit. axosomal circuit.

CMOS Circuits
Figure 7 shows a block diagram of the experimental system. The Pulse coded inputs Xo through X3 are

weighted by the programmable synapse circuit array and distributed to the axosomal circuits. The outputs (YO

through Y3) control a global inhibition generator, I. The global inhibition signal feeds back to all the neurons in the

network using an 0(n) architecture like that of Figure 1 a).

The programmable synapse circuits are simple 3-bit MDACS controlled by serial-in-parallel-out registers (Figure

8). These registers are chained together in a bit-serial fashion for simplified interfacing to host hardware. Although
this simple weight I/O organization would not likely be used in more complex systems requiring synapse adaptation,

it does provide a straightforward method for examining the functionality of experimental PWTA circuits. Input

signal Xi gates supply current to M2 - M4 via Ml1. Vref is selected for subthreshold operation with transistor aspect

ratios increasing in powers of two for binary weighting. Dynamic SIPO register R controls which branches are

active to establish eight synaptic weight levels. A layout organization consisting of mirrored pairs of the circuit has

dimensions 318 x 198 microns.

In the axosomal circuit shown in Figure 9, MI and M2 correspond to Si and $2 and M3-M8 form the Schmitt

trigger of Figure 2. In this implementation, the integration capacitance primarily consists of the gate-bulk capacitance

of transistors M4-M. With the aspect ratios given, the threshold voltages of the Schmitt trigger are 1.5 V and 3.0 V

for Vtl and Vth respectively. MI I forms the local branch of the global inhibition generator. Each axosomal circuit

layout has dimensions of 186 x 48 microns.

11-515

2 , I I

The global inhibition signal I controls the switching between integration and firing phases of the axosomal
circuits. Figure 10 shows how the transistors corresponding to MI1 from network axosomal circuits connect together
to compute the OR global inhibition function. When the output of one neuron fires, the I inputs of all axosomal
circuits will be forced high. This will in turn cause all of them to enter the network firing phase, simultaneously
discharging all the integrating capacitors and effecting their simultaneous inhibition.

Network Initialization
Certain initialization conditions must be adhered to for a PWTA network to correctly indicate a winning input

[Meador 92]. In practical implementation terms, these constraints mean that the activation of the winning unit
(voltage across the integration capacitor) should decay toward some value less than Vtl while the activation of all
losing units should decay toward Vti precisely. Furthermore, the losing unit decay rate should exceed that of the
winning unit so that it has converged upon VtJ to a reasonable degree of accuracy when the network exits the firing
phase. Meeting these conditions in the ideal case guarantees that transition boundaries between winning units can be
made arbitrarily precise.

In actual circuits however, a number of error sources conspire against this ideal goal. Variation in threshold
voltages, time delays, and discharge rates between fabricated axosomal circuits means that erroneous decisions can
be made in the region of ideal transition boundaries. Functional simulations have previously shown that two nonideal
effects, namely vascillation and hysteresis can be observed in transition regions where two inputs are too close to
resolve [Meador 92]. Absolute precision is an unreasonable design goal for obvious reasons, so an alternate design
criterion must be developed.

In the case of the network presented here, consistent behavior within transition regions is considered to be more
important than absolute precision. Specifically, the network here has been designed to consistently exhibit hysteresis
within indeterminate transition regions. This behavior occurs rather naturally with a relatively simple circuit since
both winning and losing units approach ground simultaneously, with the losers by definition starting at a lower
activation level than the winner. When the winning activation reaches Vt! the losing activations all are significantly
smaller since the decay rates are large. Thus the current winner will begin the following integration phase with a

higher activation, and will continue to win until some other input reaches a significantly larger value.

IC Test Results
A MOSIS 2-micron CMOS Tiny Chip was used to test an experimental PWTA implementation. The resulting

measurements were obtained using a Tektronix DAS9200 / LV500 digital tester in combination with a Phillips
PM3580 logic analyzer. The tester was programmed to deliver variable duty cycle pulse trains to each of the four
system inputs while the logic analyzer recorded system responses. The network was first programmed bit-serially
with the four prototype vectors [1 7 3 51, [7 1 3 5], [1 7 5 3], and [1 3 5 7] respectively. The vectors were chosen to
have equal magnitude so that true Euclidean distance would form the basis for all comparisons. Pulse trains were
applied to the network inputs having duty cycles corresponding to these four vectors and the system responses
recorded (Figure 11). In the figure, it can be seen that the unit programmed with the matching prototype vector is the

only one to be activated. Another observation made is that although each whining unit fires with about the same
probability for the same winning input magnitude (about 3-5 pulses per 90 uS), the firing is irregular - a consistent,
fixed firing period is not observed. This result most likely arises from parasitic capacitance in the synaptic summing
junction on the axosomal input. Charge continues to accumulate in the summing junction during the network firing
phase, independent of the integrating capacitor within the axosomal circuit. At the begining of the next network
integration phase, the accumulated charge is redistributed onto the integration capacitor, resulting in an apparent
instantaneous increase in net input current. Since all units re-enter the integration phase simultaneously and the
accumulated charge will be greater for the winner than all other units, this will not affect the winning outcome unless
the parasitic capacitance is somewhat larger than the axosomal integrating capacitance. One reasonable way to avoid

such error is to simply use a larger axosomal integrating capacitance. A second, more scalable approach would be to
distribute the switches SI and S2 (Figure 2) throughout the synaptic array, thereby maintaining a constant ratio
between parasitic and integrating capacitors.

Discussion
The PWTA system presented in this chapter has several interesting features which distinguish it from other

previous WTA implementations. One of those is the ability to indicate the strength of input data upon which a
decision is based. Saturating WTA algorithms such as those described in (Majani 88] effectively filter out such

I-516

, , I

DISPLAY Apr 219 1993 C1_ DISPLAY p ;

timing Now Y-s¢ale: 2 x Dial: Moe: S<roll -: Val Timig New Y- *-ae Z , 0-1:- Mlode Scroll R SE Va.

ILLL..U JL I..ULJULJL E r- - n,

2 JLJJUJUU 1J JUULUUL i x2 J LL_!L_!LJLIL LJL CIE
X3 FU_-1 __-- U-i-U- Jf U£Jy1 1 ac ~ X3 JhYF rlP.1UhhJ 7 Li-~

Vo _111 R __ _ _ __ E YO .1L

Y? EC Y2

X=[1 7 3 5], YO activated X=[7 1 3 51, YI activated

DISPLAY Apr 29 199-- DISPLAY Apr 29 199-

Anlo2er I TJdi,: Bus X: .34.9,s R:8 .88. 1 S: .8.?.u' Spe. A yayzer I Tld: 8us .: .34.9-S R. 88I/o S : .88.7s Sp.
Timing e. - Ical.: DI al: Mode: Scroll R-5: -- c-c Vl, Tmng Ne.0 --Scale:E Dla1:F-I M-- ode: Scro R-S: V.al

1 1. - ------.- ,-

I0 OE CE X9 U1JU UE

83 E 03 OFLUJ~jJ U~ U LE

Y2 E]E 2 _ E
Y3 Y~JJ ~ C 3 01____________E

X=[1 7 5 3], Y2 activated X=[i 3 5 7], Y3 activated

Figure 11. Fabricated IC response to matching inputs. In each example the input vector X matches one
of the four stored prototype vectors. In each case, the unit associated with tne stored piototype is the

information. In the presynaptic inhibition algorithm [Yuille 881 the rate at which system state changes is directly
related to input signal strengths. The time required to arrive at a decision can be considered an indicator of the
importance or "weight" carried by the inputs. A larger input signal is interpreted as "significant" so a decision is
made rapidly. If all inputs are small, more time is taken to gather evidence before a final decision is made. The
PWTA algorithm inherits this property from its presynaptic predecessor, but instead indicates input signal strength by
winning unit firing rate.

The PWTA algorithm also inherits a useful input averaging property from the presynaptic inhibition algorithm.
Unit dynamics are such that activation increases monotonically with a filtered average of the input signal. In
electronic implementation terms, this makes it possible to directly process the kind of pulsed input signals employed
in asynchronous-pulse-coded ICs [Meador 91, DeYong 92, Hamilton 92, Moon 92, Watola 92]. Although a
combination of the original O(N) WTA circuit [Lazzaro 1988] with Mead's self-resetting neuron circuit [Mead 1989]
would yield a system that generates pulses, it would not properly process input pulse trains since the current-mode
WTA expects data represented as continuous input currents.

One interesting property of this network is that most power is dissipated only when pulses are generated. With
low input currents (low output firing rates), most of the power is dissipated as Vc approaches Vth during the
transition into the firing phase. Less power is dissipated during the firing phase since much less time is spent
resetting the network than integrating input signals. At higher input currents, the average dissipation of the axosomal
circuits increases with the winning unit firing rate. At zero input current, the inherent charge leakage of MOSFET
.ource/drain connections will cause Vc to tend away from Vth. As a result, the network dissipates very little power
when inputs become quiescent, yet responds instantaneously when nonzero inputs become available, dynamically

adjusting power requirements to suit the input processing needs. This differs significantly from the self-resetting
neuron circuits originally described by Mead [Mead 1989] where continuous power dissipation results from operating
a fixed-threshold inverter in its high gain region.

11-517

In conclusion, the pulse coded winner take all system which has been presented in this chapter not only possesses
useful physical properties that are well-suited for VLSI implementation, but also novel functional properties. Low-
order system layout complexity, compact cell implementations, and dynamic power dissipation combine with the
ability to encode decision itrength to yield a flexible and efficient implementation of an important neural network
function.

References
[Andreou 91] Andreou, A.G., Boahen, K.A., Pouliquen, P.O., Pavasovic, A., Jenkins, R.E. and Strohbehn, K..
"Current-Mode Subthreshold MOS Circuits for Analog VLSI Neural Systems," IEEE Trans. on Neural Networks,

V.2, 215-213, 1991.

[Bayly 69] Bayly, E., "Spectral Analysis of Pulse Frequency Modulation in the Nervous System," IEEE
Transactions on Bio-Medical Engineering, V. 15, pp. 257-265, 1969.

[DeYong 92] DeYong, M.R., Findley, R.L. and Fields, C., "The Design, Fabrication, and Test of a New VLSI
Hybrid Analog-Digital Neural Processing Element," IEEE Trans. on Neural Networks, V.3, 363-374, 1992.

[Gestri 71] Gestri, G. "Pulse Frequency Modulation in Neural Systems, a Random Model," Biophysics Journal
V. 11, pp. 98-109, 1971.

[Grossberg 73]Grossberg, S., "Contour enhancement, short term memory, and constancies in reverberating neural
networks," Studies in Applied Mathematics, V. 12, 213-257, 1973.

[Guyton 86] Guyton, A.C., Textbook of Medical Physiology, 7th ed., Saunders, Philadelphia, 1986.

[Hamilton 92] Hamilton, A., Murray, A.F., Baxter, D.J., Churcher, S., Reekie, H.M., and Tarassenko, L., "Integrated
Pulse Stream Neural Networks: Results, Issues, and Pointers," IEEE Trans. on Neural Networks, V.3, 385-393, 1992.

[Lazzaro 88] Lazzaro, J., Ryckebusch, S., Mahowald, M.A., and Mead, C.A., "Winner take all networks of 0(n)
complexity," Advances in Neural Information Processing Systems 1, 703-711. Morgan Kaufmann, 1988.

[Majani 88] Majani, E., Erlanson, R., and Abu-Mostafa, Y., "On the K-winners-take-all network," Advances in
Neural Information Processing Systems 1, 635-642. Morgan Kaufmann, 1988.

(Murray 91] Murray, A.F., Del Corso, D. and Tarassenko, L., "Pulse-Stream VLSI Neural Networks Mixing Analog
and Digital Techniques," IEEE Trans. Neural Networks, 193-204, 1991.

[Mead 89] Mead, C.A., Analog VLSI and Neural Systems, 193-204. Addison-Wesley, 1989.

[Meador 91] Meador, J.L., Wu, A., Cole, C., Nintunze, N., and Chintrakulchai, P., "Programmable Impulse Neural
Circuits," IEEE Trans. on Neural Networks, V.2, 101-109, 1991.

[Meador92] Meador, J., "Finite precision effects on dynamic behavior in a pulse-coded winner-take-all
mechanism," Proc. Int. J. Conf. on Neural Networks, V.111, 432-437, 1992.

[Moon 921 Moon, G., Zaghloul, M.E., and Newcomb, R.W., "VLSI Implementation of Synaptic Weighting and
Summing in Pulse-Coded Neural-Type Cells," IEEE Trans. on Neural Networks,V.3, 394-403, 1992.

[Sanderson 80] Sanderson, A., "Input-Output Analysis of an IPFM Neural Model: Effects of Spike Regularity and
Record Length," IEEE Transactions on Biomedical Engineering, V.27, pp. 120-131, 1980.

[Watola 92] Watola, D. and J. Meador, "Competitive Learning in Asynchronous-Pulse-Density Integrated
Circuits," Analog Integrated Circuits and Signal Processing,V.2, 61-82, 1992.

[Yuille 89] Yuiile, AL., and Grzywacz N., "A Winner-Take-All Mechanism Based on Presynaptic Inhibition
Feedback, Neural Computation 1, 335-347, 1989.

(Zurada 921 Zurada, J. M., Artificial Neural Systems, Webb Publishing, 1992.

11-518

A Theoretical Study of Training Set Parallelism for Backpropagation Networks on a

Transputer Array

Foo Shou King, P Saratchandran (INNS Member), N Sundararajan

School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 2263

E-mail: ESKFoO@NTUVAX.NTU.AC.S(
Abstract

Training set parallelism and network based parallelism are two popular paradigms for parallelising a feedforward
(artificial) neural network. Training set parallelism is particularly suited to teedforward neural networks with
backpropagation learning where the size of the training set is large in relation to the size of the network. This study
analyses training set parallelism for feedforward neural networks when implemented on a transputer array
configured in a pipelined ring topology. Analytical expression for the training time per epoch (iteration) is derived.
Given a fixed neural network and a fixed number of training samples, using this expression, one can find out the
optimal number of transputers needed to minimise the training time per epoch without actually performing the
simulations. An expression for speed up is also derived. This expression shows that the speed up is a function of
the number of patterns per processor, communication overhead per epoch and the total number of processors in the
topology.

1. Introduction

Backpropagation [1] is one of the most widely used training algorithm for multilayer neural networks. However,
training a network using this algorithm usually takes large amount of processing time on a serial machine. To
speed up the training time, this algorithm is parallelised. There are mainly two paradigms for mapping a neural
network; viz. network based parallelism and training set paradlelism [2]. This study analyses the coimmunication
and computing times, which constitute the training time per epoch, for a neural network simulated on a transputer
array using training set parallelism. Training set parallelism involves distributing the training examples over the
processors, i.e. slice the training set and assign one slice to each processor while keeping a complete copy of the
whole neural network in each processor node. In this analysis, analytical expressions for both the computation and
communication times in an epoch and the optimal number of processors (i.e. transputers) to minimise the epoch
time are derived. This analysis is useful because the derived training time per epoch can be used to predict the
overall benefits of parallelisation. Besides, given a fixed network and a fixed number of training samples, an
estimate may be computed for the optimal number of transputers that minimises the training time per epoch. This
will enable the user to use the correct number of transputers even before getting involved in the simulations.
Experimental results which verify the above analytical expressions are also presented.

2. Transputer Network Topology

In this study the transputers (T805-20) are connected in a pipelined ring topology as shown in Figure 1. The ring
topology is a widely used transputer topology for neural network implementations (4]. In our pipelined ring
topology there is one root or administrative processor and four pipe processors. The root processor is connected to a
host machine (a 486-33 personal computer).

The main concept of a pipeline is that each pipe receives intermediate results or data from its upstream processor,
processes the data, and then sends them down to the next downstrewun processor. After receiving and re-
transmitting the data destined for other downstren tasks, each downstrean task will then process upon its own
data set. Results are propagated down the stream and eventually to the administrator for updating and comparison.
This process continues until a certain criterion is met.

11-519

HOST

Acmiristrator -
t11*K. I Pipee

I Pipe Ape ~ 3 #N Pipe

Figure 1: Pipeline Connection of a Transputer Array

3. Time Components in a Pipeline Implementation

In a transputer network the processors have to perform both calculations and data transfer. The total time spent on
an epoch is thus made up of two parts; viz. communication time and computation time. The time spent on a single

communication Tm consists of a constant part T. and a variable part T,. T j, is the time taken to initiate a

communication process and for our transputer network we measured it as 9R seconds. T,,- is the time taken to

transfer (send or receive) the data over a link and is directly proportional to the size of data. i.e.

T * d * (No. - of_ data_ element)

where r the number of bytes in a single data element and d is the time needed to send (or receive) one byte. We

measured r * d for our transputer array as 2.25p seconds.

The time spent on computation To, also has a constant part To, and a variable part Tt. T is the time spent

on such things like initialising the variables (e.g. weight changes) at the start of an iteration and Ta, is the time

taken to perform the training calculations. Increasing the number of processors in a network, for instance, would

lead to a decrease in T, but not in To,. .

4. Parallelising Backpropagation

In training set parallelism each processor has to simulate the same neural work over a different subset of the
training set and the weights are updated after each epoch (batch learning). When the training algorithm is
parallelised this way, each processo, has its own copy of the entire network and also a copy of the training patterns
allocated to it.

The following steps are involved in executing one epoch of the backpropagation algorithm.

1. The weight changes and bias changes for the current epoch are initialised to zero at the start.

2. After initialisation, the forward pass and the backward pass of the backpropagation algorithm [1] are
performed for each training pattern assigned to the processor. The forward pass involves calculation of the product
sums of weights and activations and sigmoid operations at each neuron in the network. The quadratic error
between the desired and actual output is also calculated. In the backward pass the weight change due to each
pattern is calculated.

3. The total weight change and error due to all the patterns assigned to the transputer are calculated by
accumulating the weight change and error calculated for individual patterns in step 2.

11-520

4. The first pipe processor sends its accunulated weight change and error to its down streun (right)
neighbour that adds its own accumulated weight change and errors and sends the updated sums to its right
neighbour which in turn updates the sums and sends to its right neighbour and so on. The last pipe processor
would thus receive the accumulations of all the processors to its left, adds its own weight change and error and
obtains the total weight change and error tor the epoch. It then adds the weight change to the to the existing weight
values and obtains new vdues for all weights in the neural network. The new weight values are then passed
upstream by each pipe processor except the tirst. In an n transputer network, there will he n - I transfers of
weight change and error and another n - I transfers of weights.

5. At the sune time as the weights are updated, the last processor sends the total error to the root processor
that checks whether convergence is reached.

Assuming that there are only 4 processors present, the timing diagram for one epoch when the sune number of
patterns are allocated to each processor is shown in Figure 2.

A.. A

L,., T , T.,

TT...'.... T-,

TT1.1-T-1 T-1T. TT, T,,T.-

T7 ~7 71-f

Figure 2: Timing diagram when the training set is equaldly distributed amnongst the processor%

The various notations in Figure 2 are explained below.

T',, ' : Time for initialising the weight changes and error.

T P •: Time for the forward and backward pass of backpropagation for all the assigned patterns in the processor.

T&w: Time for sending the weight changes ,and error.

tTh:

TA,. Time for accumu lating the weight changes and errors.

T Fo" : Timrhe ming weight vhues in the last pipe processrr.

TW: Time for sending the updated weights.

11-521

5. Optimal Number of Processors

To find the optimal number of transputers to minimise the epoch time. we initially need to obtain an expression for
the time for one epoch.

From the timing diagramn of Figure 2 the time for an epoch can be written as

T" = Tw,, . + T. + (n - 1)[T,.,, + Tw Il+ (n - I)T,,, + T,, + (n - l)[T.,, + T, l

Since the nunber of weight changes in a neural network equals number of weights. T,fk = T,. .% can he

expressed as T,, = pT,.

where 7. is the time to taken to perform the forward and backward pass for a single pattern aild p patterns are

assigned to the processor. Assuming the training set P is equally divided amongst the n processors p = P / t.

The equation for T" can be rewritten as

" +rw+T. +(nI)TA. +(), (1)T . = 2 (n - 1)[T i., + .T,,f I - , ,) + T -+on-.T A,-

where Trf is the time taken to send all the weights (or weight changes) from one processor to its neighbour.

The time required for each term in equation (1) is analysed and in expression for Tn is obtained in terms of

primitive machine operation times. The resulting expression for T" is given as,
epoch

T-,, =2(n-1)[T,.i +r*d*N.,1]+(F)T +N.b(2 tASSICN+tU +tA +tl +(n-l)*tAA)+(nl)*taAs (2)

where N., is the total number of weights and biases in the neural network. tASSI(N .tM' tA. tAA tAAS are the times
for an a.,signment, multiply, add, compound add, and add & assign operation. The actual derivations can be found
in [3].

Optimal number of processors h can be now found by taking the first derivative of equation (2) with respect to n
and setting it equal1 to zero.

= 2T-.j,+(2rd+tAAS)N"+tAA s (3)

To verify equation (2) above, experiments were conducted based on the encoder problem. The processor network in

the experiment had four T805-20 transputers each with IMByte of external memory. Figure 3 shows the

analytically calculated (from equation (2)) and experimentally obtained values for Tn for a 64-6-64 encoder with

varying training set sizes. The difference in the epoch time in the experimental result is mainly due to using two
dimensional array timings throughout the analytical calculations.

11-522

bwre peEpo Co ip. Isonbetwe themscal mnd bExwwn B3i
Sa "646-d macod w vuy number of Ir*ng panmvns

4N.

I~

Figure 3: Time per Epoch Comparison tr a 64-6-64 Encoder Problem

From equations (2) and (3). we note that given a certain number of training patterns and a certain network size,
there is always an optimal number of truisputers needed for minimising the time per epoch during training. This
result implies that we cannot go on increasing the number of transputers in order to achieve speed up. There will
a1ways come a time when the communication overhead will actually exceed the computation time causing it to he
inefficient to run on a bigger transputer array. The degradation in perfonrnnce (D) of not using the optimum
number of transputers is given by the following equation (expressed in percentage and normalised to the optimal

time per epoch for each encoder configuration): D = [(T)h T / h)1C h

where T n, . is the training time per epoch achieved using n number of transputers

TA is the training time per epoch achieved using the optimal number of transputers n

i.e. when the training time per epoch is minimised

It can be observed from this figure that the slope of the curve is steep before it hits the optimal transputer value
and shallow after this optimal value. Due to the steep change in gradient before the optimal transputer value, a
large improvement in the time per epoch is expected for every additional transputer added to the pipeline system.

450

400 - '-4-2-4*

350

"16-4-16'
300

------- '32-5-32'
250

-200 150 * '128-7-128"

100

0 --

0 2 4 6 a 10 12 14 16 18 20

Nuznbw d lonspuIes

Figure 4: Percentage Change in the time per epoch for a varying number of transputers

5. Speed up

Speed (S) up is the ratio between the epoch time on a single processor, and that on a multiprocessor network. The
time for an epoch on single processor can be obtained by putting n = I and ignoring the conmunication time
component in equation (2).

11-523

S PT +N (
2

tAS, IN + tM + t
A + tAA)

2(n - 1)[T,,,, + rdN,,] + (P)T. + N, (2 tAsu;N + t + tA + t A + (1 - 1 t) + (t - i 4

The maximn achievable speed up on a fixed size transputer network can he foiund by letting P in equation (2)

become very large. In the limit, tin S = it.

Thus for neural networks with large training set the achievable speed up is proportional to the size of the
transputer network. Equation (4) can be used calculate the speed up for any neural network is long its size (i.e.
number of weights and neurons) and the training set size are given. Figure 5 shows the experimental and analytical
speedup comparisons for varying neural network sizes. As shown from this figure. when the training set becomes
larger the speed up approaches n (4 in this case).

4

3

2.,

2

05

0 10 20 30 40 50 60 70

Numbe of Patems

Figure 5: Speedup Comparison for varying neural network size

Conclusion

The Backpropagation Algorithm has been implemented on an array of transnuters connected in a pipeline
architecture. Training set partition is used in parallelising the algorithm. A model to predict the training time per
epoch has been formulated. The analytical expressions for the time per epoch as well as the speed up have been
derived and verified experimentally. With this formulation, given a neural network size and its training set, we can
predict the optimal number of transputers needed for minimising the time per epoch without actually carrying out
the simulations.

References

1] Rwnelhart, D. E., Hinton, G. E., and Williams, R. J., "Learning internal Representations by error
propagation," Nature, Vol. 323, pp. 533-536, 1986
[21 K. Wojtek Przytula, Viktor K. Prasanna, "Parallel Digital Implementations of Neural Networks," Prentice
Hall, 1993
[3] S. K. Foo, P. Saratchandran and N. Sundararajan, "A Mathematical Analysis on A Transputer Based
Implementation of Backpropagation Neural Networks," Technical Report EEE/CSP/9302, Centre for Signal
Processing, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 1993
[4] Weidong Pan and Peter K. Sharpe, "A Simulation of Multilayer Perceptrons Exploiting Training Set
Parallelism," Proceedings of the International Joint Conference of Neural Networks, Vol. 1, pp 183-188, Beijing,
1992

11-524

PRACTICAL APPROACH
TO IMPLEMENTATION OF NEURAL NETS

AT THE MOLECULAR LEVEL

Nikolay G. Rambidi
International Research Institute for Management Sciencies

9, Prospect 60-let Oktyabria, 117312 Moscow, Russia

m~fili for imple tiample neunal net information prow mg devie boed on
chemical and biochemical dynamic media are discusn. is approach givm an oppmbwt to
Conact If i s capable of peforming same primitive opwatiom inprtant for image

Nowadays the general way to design neurochips is to use the wide-spread
traditional semiconductor circuitry and technology. Nevertheless applications of
this approaches to the practical elaboration of neural net devices face considerable
complications (such as nightmare of inter-connections and so on).

Therefore attempts seem to be natural to implement neural nets based on
media fundamentally differnt from discrete semiconductor primitives. Rather
promising among them are the distributed nondiscrete dynamic media showing a
high behavioral complexity.

There are known many different simple biological and biomolecular systems
functioning in different nonlinear dynamic regimes. Between them at different
levels of organization are [1]:

- neural net activity in miocardium (body tissue level),
- dynamics of biological population evolution (cell level),
- biochemical reactions in cells and membranes (supramolecular system

level),
- complicated chemical reactions (molecular level).
It is known that the dynamics of the distributed nonlinear system showing

sufficiently complicated behaviour can be described by the set of nonlinear
differential equations of the type :

NUi(r~t)-F[Uj(r~t). U2(r~t),N..O r~t)] + 2: V [Dik VVY(r~t)
k-i

where Ui is the concentration of i-th component of reactions proceeding in
the system A is a key parameter, Dik are diffusion coefficients.

The complicated behaviour of this system is determined by a nonlinear
kinetics of reactions described by the function F.

11-525

On the other hand, the dynamic media functioning on the basis of nonlinear
processes can be considered as realizations of neural nets where:

- each point of the medium can be considered as a primitive micro-processor,
- sufciently complicated responces to external excitations (optical,

chemical, and some other) are typical, including stepwise reactions,
- short-range local interactions between primitive processors are displayed

(more exactly, in principle each microvolume is coupled with all others by
diffusion, but because of a rather low speed of spreading these interactions
proceed with a delay proportional to the distance between microvolumes).

In the most general form homogeneous neural nets can be described by the
system of integro-differential equations of the type [2]:

Ui(rAt Ui(r~t)

Ui(rt)- + G[-Ti-A+Zi] - - +G-Ti-A+

NC -

+ I I r.t U U2,...UNUm(xt)dx
rn=IJ
Here Gi is the response function for elements of i-th type on activating

signal Zi , Ti is the shift of Gi function, $,. is the function of spatial coupling
between active elements.

These equations can't be represented in general case by the system of
differential equations. Nevertheless, under some conditions these two models
happen to be sufficiently adequate.

It is important that media under consideration (they are known as excitable
media) can be in several stable states.

As is known the responces of the molecular excitable media to the local
elementary excitation can represent:

- travelling wavefront of switching from one stable state into another,
- travelling pulse of excitation,
- formation of time-stable spatial dissipative structures,
- synchronous oscillations between two states.
Chemical reactions of Belousov-Zhabotinsky type were chosen for the

implementation of complicated nonlinear dynamics. The Belousov-Zhabotinsky
type media are complex enough to demonstrate rather complicated behaviour. At
the same time they are simple enough to be investigated by contemporary physical
methods.

11-526

stmuli
controlling

Figure 1. Simplified model
of a biochemical Information processing device.

video camera IBM PC 286 printer

! video monitor

reaction vessel

iuminatlion oa

Figure 2.Schematic representation of the pilot mhardware"
model of an information processing device based on

Belousov-Zhabotlnsky reaction.

11-527

The Belousov-Zhabotinsky reaction is a catalytic oxidation of malonic acid
(or some other organic substance) by potassium bromate or some other oxidizing
agent The mechanism of this reaction is very complex. The most known and
simplified model (the so-called Field-Korosh-Noyes approximation) consists of
five coupled intermediate stages.

The Belousov-Zhabotinsky reaction is convenient for the investigation purpo-
ses. The catalyst in the process of a reaction, when the medium comes from one
stable dynamic state into another, changes its electronic state. As a consequence
the reagent changes its colour (from red to blue or vice versa). Thats why it is
easy to visualize the evolution of dynamic processes.

Excitable media of Belousov-Zhabotinsky type give an opportunity to
construct various in their structure versions of neural nets. For instance, it is
possible to use three-dimensional network of elementary processors combined into
integral system (a restricted volume of Belousov-Zhabotinsky reagent). But the
control of the system and the input-output of information proved to be in this case
too complicated a problem

That's why pseudo two-dimensional system, representing thin layer of
Belousov-Zhabotinsky reagent, was chosen as molecular dynamic processor (see
Fig I). The flow of reaction substrates is the power supply for the processor ;
reaction products being removed from the system. The control of the processor
and the input of data are carried out by physical or physico-chemical stimula acting
on the system. It is rather effective to use:

- electromagnetic, mostly visible light, radiation,
- local electrical fields,
- local input of controlling molecules or ions, and so om
The pilot "hardware" model of information processing system was

constructed (see Fig.2). The processor was a thin (0.5 to 1.5 mm) non-stirred,
light-sensitive catalyst containing reagent layer placed in a reaction vessel in which
spatio-temporal oscillating reaction proceeded. The input of information was
carried out by projecting an investigated image onto the reaction layer surface. The
images of the reaction vessel were detected by video camera. The total video
signal from the video camera was routed into the monitor and to the analog to
digital converter which converts the video signal to digital form. The TV
equipment was integrated into a recording and controlling system based on the
personal computer IBM PC AT-286.

It was found out as results of the experiments performed [3] that in general
case the input of a light radiation (an image) into active medium functioning in

11-528

A B
Figure 3. Computer records Of processes of:

noises removing (A) and contour enhancement (B),
by acive BeousvZhabotiskv media

(14 are consecutive steps of the. prcS tmporal evolution).

11-529

oscillating mode proved to give rise to specific periodic process. Each period of
this process is a sequence of:

- the emerging of the negative image of an input picture,
- the extraction of its contour,
- temporal evolution of the contour,
- the emerging of the positive image of an input picture.
The important information features of these processes are:
- the functioning of the media as memory devices, storing input information

during rather long period of time - not less than 100 periods of the process,
- the disappearance of small non-regular features of an image at some stages

of its temporal evolution that can be used for filtration of the image from statistical
high frequency noises,

- appreciable dependence of the contour evolution process on the state of the
medium and characteristics of an image.

The processes of disappearance of small non-regular features of an image
and of contour enhancement that are important image processing operations are
shown in Fig. 3.

Excitable media proved to be also effective for the segmentation of an image,
repairing defects, and the implementation of Blum type algorithms. Operations
performed by these media are invariant to the size of the investigated image, its
orientation, and displacement on the surface.

Given experimental investigations discussed above it is possible to conclude
that even very simple in their structure dynamic media are capable to perform
important information processing operations. And what is more the complexity of
operations carried out by nonlinear dynamic media can be greatly increased. For
instance, excitable media based on immobilized enzymes having predetermined
enzyme distribution on the solid surface seem to be rater promising. They may
provide both the high behavioral complexity of system dynamics and selectivity of
coupling between chosen points of the medium. These features are indispensable
for the implementation of neural nets having broad information processing
capabilities.

References:
1. N.G.Rambidi, Computer, v.25, No 11, 51-54, 1992.
2. AV.Masterov, M.I.Rabinovich, V.N.Tolkov, V.G.Yakhno, Cooperative
dynamics of excitation and structure formation in biological tissues, IP AN SSSR,
Gorky, 1989, P. 89-104 (in Russian).
3.N.G.Rambidi, AV.Maximychev, A.V.Usatov, Advanced Materials for Optics
and Electronics (in press).

11-530

HIGH-PERFORMANCE I)IGITAL NEURAL NETWORKS:
THE USE OF REDUNDANT BINARY REPRESENTATION FOR CONCURRENT ERROR DETECTION

Vincenzo PIURI, Simone BETrOLA

Department of Electronics and Information, Politecnico di Milano
piazza L. ca Vinci 32, 1-20133 Milano, Italy

Abstract

Efficient implementation of neural networks requires high-performance architectures and data representations, while
practical VLSI realization must include fault-tolerance techniques. Contemporaneous solution of such problems has
not yet been completely afforded in the literature. This paper focuses on data representation to support high-
performance neural computation and on error detection to provide the basic information for any fault-tolerance
strategy. To achieve massively-parallel performances and to guarantee the early verification of computation
correctness, we propose the use of redundant binary representation with a three-rail logic implementation. Costs and
pe;formances are evaluated for different architectural solutions, referring to multi-layered feed-forward networks.

1. Introduction

Artificial neural networks are an attractive solution in several application areas, requiring massively-parallel
computalon, when no algorithmic approach is known or when it cannot be easily formalized (e.g., in signal and
image processing and in real-time control). Wide interest is supported by the availability of reasonably-cheap digital
implementations due to the recent advances in integration technologies and architectural design.
Problems related to defect and fault tolerance are important for VLSI/WSI implementations and in mission-critical
areas. Many authors considered these problems in relation with specific implementations. Intrinsic robustness of the
neural paradigm has been considered in [1], by adopting a behavioral error model and by evaluating the errors effects
onto the neural computation. In [2], redistribution of the computation and information has been discussed to minimize
the influence of faults onto the computation by exploiting the intrinsic fault tolerance of the rctwork. Error detection
and fault localization are the preliminary steps of any defect/fault tolerance technique- for continuous result
correctness, concurrent error detection techniques are required, in particular when high system credibility is
mandatory. An algorithmic approach to error detection has been presented in [3] for some DSP applications; AN+B
[4] and residue [51 codes were considered for data coding. While algorithmic techniques are application-specific,
AN+B and residue codes are general, but costs may be high and performances sirilar to those of architectures
without fault tolerance. Moreover, they usually consider single-bit errors to limit the additional circuit complexity.

In the present paper, we present the use of redundant binary representation [61 realized by means of a three-rail
logic implementation [7], as an effective approach for high-speed computation and concurrent error detection at the
same time. This approach allows in fact to improve the computation parallelism by avoiding carry propagation within
the arithmetic units, while it guarantees that the whole system is strongly fault secure with respect to all unidirectional
stuck-at faults on multiple gate input and/or output lines [6, 7, 8] (i.e., multiple-bit errors are considered). These
additional features are achieved at a reasonable (but not neglectable) cost in terms of circuit complexity: however, the
massive increase of computational capability with respect to traditional solution and the very high detection
capabilities may justify such a complexity increase in several applications.

A very simple model is adopted t,,r the individual neuron: its behavioral description is deffiiid l-,)
= fi (a'i - di) = fi (1 wijXj - i,)', re x, is the output signal of the neuron, (7i = j Wijx j is the sum f the

weighted inputs, i is a threshold value, and fi (.) is an arbitrary non-linear evaluation function.

A direct implementation of such equation implies one-to-one mapping of operators onto digital components: for large
networks, time-multiplexing of some components may be used to reduce the circuit complexity Icr the current
VLSI/WSI integration techniques. Even though we do not make any specific assumption on the technological
implementation, we restrict our analysis to systems adopting fixed-point bit-parallel arithmetics. Without loss of
generality, effectiveness of our technique is discussed for the case of multi-layered feed-forward networks; our results
can be extended to any kind of acyclic network and, with some constraints, to cyclic networks.

Section 2 introduces the coding technique and the arithmetic units for the neural network implementation. Section 3
discusses and evaluates different architectures with concurrent error detection both for one-to-one mapping and for
time-multiplexed systems.

11-531

2. The Fault and Error Models and the Coding Technique

In our research we consider the traditional fault models at gate level [9] both for permanent, transient and intermittent
laults in all components of the neural architecture. In particular, we consider stuck-at faults, stuck-on and stuck-open
faults. Related to such model, we adopt a traditional error model at gate and functional levels 19]: physical faults
appear as wrong bits in the result of the considered unit, if they are not masked by the actual input data. No restriction
is imposed on the bit multeplicity of the error.

The wide classes of faults that we consider may be reduced to unidirectional stuck-at faults on multiple gate output
lines [8], i.e., to faults in which wrong bits are of the same type (all 0 or all 1). Let F be the set of faults: any fault
fj E Fsticks multiple gate output lines at the same value (0 or 1). We assume that faults arise one at a time; (P =
<fl, f2,..., f,> is the sequence of faults fj E F occurring from the initial observation time till the current time. Since,

generally, U =lf i of unidirectional faults is not a unidirectional fault, we assume that any fault cannot change the
value which has already been stuck by a previous fault.
Each digital component G of the architecture implementing the neural network is fault secure with respect to the set
of faults F, if the output is either correct or is a non-codeword for all faults in F and for all codeword inputs. G is self-
testing with respect to F, if there is at least one codeword input that produces a non-codeword output for all faults in
F; G is totally self-checking with respect to F, if it is fault secure and self-testing with respect to F. G is code disjoint,
if it maps codeword inputs into codeword outputs and non-codeword inputs into non-codeword outputs when it is
fault free. A circuit is a totally self-checking checker with respect to F, if it is totally self-checking with respect to F
and code disjoint when it is fault free. G is strongly fault secure with respect to a fault sequence (p with f, E F, if the
output is either correct or is a non-codeword for any subsequence Tk= <fl , f2 ... fk>, with k n, and for all
codeword inputs. G is strongly fault secure with respect to F, if it is strongly fault secure with respect to all fault
sequences whose elements belongs to F. Every totally self-checking circuit is strongly fault secure, while a strongly
fault secure circuit is either totally self-checking or can be easily converted into such a circuit [8]. In [6, 7] it was
proved that arithmetic circuits can be easily designed to be strongly fault secure and totally self-checking by using the
redundant binary representation and the three-rail logic implementation. In particular, in [7] it was proved that
essentially inverter-free circuits (i.e., circuits without inverters but in encoders) with unordered output code space
(i.e., any codeword has not at least one 1 where another codeword has) are strongly fault secure with respect to
unidirectional stuck-at faults on multiple gate input and/or output lines. These reasons suggest to use such codes for
an effective error detection even in the presence of multiple-bit errors and fault sequences.

The redundant binary representation [6] is a signed-digit number representation in the fixed radix 2 with a digit set
{-1, 0, 1}. A n-digit redundant binary integer y is represented by [y.-)Y,- 2 ... YO j, where yi E {-1,0, 1}; its value in

the decimal representation is x'nYi 2'. From these definitions, it follows that an integer can be represented in
several ways: multiple representation allows to avoid carry propagation in arithmetic units and to achieve very high
performances. The above representation and remarks can be immediately extended to the case of fixed-point real
numbers in the full-fractional notation since there is a one-to-one correspondence between such numbers and
integers; therefore, from now on, we will consider only the case of integer data.
To provide error detection capabilities within the redundant binary representation, we adopt the three-rail logic
approach for each digit. It is a traditional l-out-of-3 code which allows to detect the presence of an error in each
digit, separately from the others. Independent checking on each digit is directed to support the maximization of the
computational parallelism introduced by the redundant binary representation. In this approach, we encode each digit
yi by means of three bits: we assign the codeword 100, 010, and 001 to the digit values -1, 0, and 1, respectively. An
output digit is correct if it is one of the above codewords; otherwise, a fault occurred in circuits which generate it.
The result of any neural operator is correct if all output digits computed by such an operator are correct.

Neither the redundant binary representation nor the three-rail logic require any modification of the neural
computation, i.e., they do not affect the neural characteristics of the network (learning, recall, generalization) with
respect to the theoretical definitions. They map the nominal data into the codeword space: in such a space, the neural
computation is performed by applying the modified arithmetic and non-linear operators, suitable for the codeword
space. Results are obtained in the codeword space and, possibly, transformed back into the nominal output space.
Let's consider addition. When two redundant binary integers y and z must be added [6, 7], an intermediate selector
ti E {-1,0} is evaluated for each position i: ti is -1 if yj or zi is equal to -1, otherwise it is 0. Then, an intermediate

11-532

carry ci E{0,1} and an intermediate sum ri E{-1,0} are computed for the i-th bit, by applying the equation:
2ci +ri =yi +zi -2ti +tj-1 . Finally, the sum digit s i E{-1,0,1} is obtained by adding ri and c,-,, without
propagating any carry. Parallel addition can be performed in constant time, independently from the operand length.
In multiplication, the partial products are generated from the n-bit input data: n n-bit numbers are produced [6,71.
Then, they are added together to obtain the final result, by using a cascade of n-I adders; since the computational
time of partial product generation and the computational time of each addition are constant and independent from the
operand length, the total multiplication time is 0(n). For high computation speed, a binary tree of adders can be
adopted [71; the computational time of the multiplication is reduced to 0([log2 n]).
An implementation of the above operations is given in [7]; the arithmetic units presented in such paper are strongly
fault secure with respect to unidirectional stuck-at faults on multiple gate input and/or output lines. In fact, they are
essentially inverter free and their output code space is unordered.

In [10], it has been shown that it is possible to connect strongly fault-secure adders and multipliers in any cascaded
structure by preserving such a property for each arithmetic unit and by granting it to the whole cascaded system.
Whenever no intermediate inverter is introduced in the cascade, conditions granting the strongly fault-secure property
still hold. The use of the above data coding and arithmetic units allows to compute the weighted summation of the
neuron's inputs by means of a circuit which is strongly fault secure with respect to all unidirectional stuck-at faults on
multiple gate input and/or output lines.
As the non-linear evaluation function is concerned, the strongly fault-secure property is strictly related to the specific
function and to the specific implementation. For this functional unit, it is therefore necessary to adopt a design
strategy which guarantees the conditions granting the strongly fault-secure property in order to obtain a strongly fault-
secure implementation of the whole neural architecture. Otherwise, correctness of the computation must be checked
only at the outputs of circuits generating the weighted summation by using the redundant binary representation with
the three-rail implementation; for the non-linear functional unit, a specific solution should be adopted, possibly
without any regard to the coding approach adopted for the linear part.

Each encoder of the nominal neural inputs transforms the binary representation in the corresponding redundant binary
representation: it receives n-bit inputs (each bit x i belongs to {0,11) and generates the corresponding l-out-of-3
codewords. The encoder circuit is composed of n inverters (the only ones allowed in the whole network). Conversion
time is constant and independent from the input length.
Each results computed in the codeword space can be transformed back into the nominal output space of the neural
network by means of a decoder: it generates the nominal output by reducing the multiple representation into the
corresponding unique binary representation. This operation implies propagation of carries through the decoder itself.
To guarantee the strongly fault-secure property in the whole system, also the decoder must be totally self-checking.
An example is given in [7]; it transforms the l-out-of-3 neural result into a l-out-of-2 code representation: the set of
the first bit of each output digit is the final result, while the set of the second bit of the output digits is the one's
complement of the final result. The second set can be used to verify the decoder correctness. It is possible to show
that decoding needs a 0(n 2) computational time.

Error checking implies verifation that the units' outputs belong to the corresponding codeword space. In the case of
adders and multipliers, result's checking may be reduced to correctness verification for each individual digit of the
redundant binary representation, i.e., to verify that each three-bit digit belongs to the 1-out-of-3 code. Similarly,
checking of the decoder's outputs can be obtained by verifying that the each two-bit digit of the decoder's result
belongs to the 1-out-of-2 code. In the literature (e.g., [11]), several totally self-checking checkers have been presented
for m-out-of-n codes: by using such kind of checkers, it is possible to guarantee that the whole neural architecture is
strongly fault secure with respect to with respect to all unidirectional stuck-at faults on multiple gate input and/or
output lines. Thu L omputational time of all this checkers is constant and independent from the input length.

3. The Application to Neural Network Architectures

The use of redundant binary representation with three-rail logic implementation in digital neural networks is based on
the functional units introduced in the previous section to perform the nominal neural computation in the codeword
space; the general structure is presented in fig. 1. Nominal input data presented at the input layer of the network are
transformed into the coded representation by encoders; no encoder is required within the network since all
computation checking can be performed on codewords, directly. Codeword outputs generated by the network's output

11-533

layer can be transformed back into the nominal output space by decoders; no decoder is required within the network
since the whole neural computation is performed in the same codeword space. Internal organization of neurons is
based on adders and multipliers discussed in section 2; the detailed topology depends on the characteristics of data
presentation, i.e., on the possible use of time-multiplexing of some functional units to reduce the circuit complexity
(despite of the computational time). Error checking is performed by checkers placed in the neural architecture
according to the strongly fault-secure characteristics of the non-linear functional units and to the lault localization
features required in the overall structure; checkers are connected also to each output decoder to guarantee the self-
checking property of decoders themselves. In this section we present different architectural solutions that can be
designed by taking into account time-multiplexing, the strongly fault-secure characteristics, and fault localization.

Consider first the basic architecture with one-to-one mapping of the neural operators onto functional units; in each
neuron, we introduce one multiplier for each synaptic product, one register to store each encoded weights, a tree of
adders to compute the weighted input summation, and one non-linear unit for the evaluation function.
If the non-linear function unit is not strongly fault secure, we can check the computation correctness by using the
redundant binary representation and the three-rail logic only for the evaluation of the weighted input summation (see
fig. 2). This checker generates an active error signal whenever the weighted input summation structure produces a
non-codeword output. Let's assume that no error occurred in the weighted summation while it arises in the non-linear
evaluator. If the evaluator output is a non-codeword, the error is detected in the cascaded neurons since the non-
codeword is propagated to the adjacent layer; otherwise, the error is not detected by our technique. To avoid this
drawback, dedicated error detection techniques may be used to protect the evaluator itself, according to the adopted
evaluator implementation; the dotted circuit in fig. 2 allows to generate the neuron's error signal.
If the non-linear evaluation function is strongly fault secure, we can move the checking circuit at the evaluator output
(see fig.3): this checker detects all error in the whole neuron's structure and generates the neuron's error signal.
Localization of the faulty neuron within the neural architecture can be achieved by observing the neuron's error
signals produced by the local error defection technique. To reduce the internal wiring among neurons for error signal
propagation, a dedicated interconnection network can be designed as shown in fig. 4; localization can be performed
by means of a triangularization technique: a faulty neuron belongs to the layer corresponding to the leftmost vertical
error signal which is active and, in such a layer, it is identified by an active horizontal error signal.

In the case of strongly fault-secure non-linear evaluators, we can avoid the checker within each neuron to reduce the
circuit complexity. No checking is therefore executed on the computation performed by each individual neuron.
Computation is checked only at the network's outputs by checkers connected at the decoders by adopting a global
error detection approach. This does not reduce the error detection capabilities of the network since the detection
properties are preserved in the whole architecture. Conversely, fault localization is not possible, since no enough
information is contained in error signals generated at network's outputs; these signals state only if there is an error.

Consider now the case of time multiplexing to reduce the overall circuit complexity. In the literature, several
approaches have been presented to multiplex (partially or totally) the synaptic multipliers and, consequently, the
weighted summation adders. In these cases, only one multiplier is used in each neuron: synaptic weights are stored in
suited registers and are presented sequentially to the multiplier, synchronously with the corresponding neuron input.
One two-input adder is used to generate the partial sum of weighted inputs: the intermediate result is stored in a
register for the subsequent iterations. The interconnection network between adjacent layers must provide the neuron
inputs in the proper order, according to the neural operation.
As in the one-to-one mapping case, verification of the computation can be performed by means of local error
detection. If the non-linear evaluation unit is not strongly fault secure, we can protect only the weighted input
summation by using the redundant binary representation with the three-rail logic implementation (see fig. 5). A
checker is attached to the adder output to observe summation correctness at each intermediate step. Since an error in
the weighted input summation must be detected when an error occurred at least in one partial summation, and since
error masking may occur due to the re-using of arithmetic units and registers, the error signal related to the weighted
input summation must be generated by OR-ing the error signals produced at each iteration. Note that also errors in the
partial summation register are detected.
Dedicated checking of the non-linear evaluator can be introduced to detect errors occurred in such a unit. In this case,
the neuron's error signal is generated by the dotted circuits in fig. 5, connected at the evaluator output.
If the non-linear evaluation unit is strongly fault secure, error checking can be completely performed in the codeword
space. Only one checker is required at the evaluator output to verify if the neuron's output belongs to the redundant
binary representation with the three-rail notation adopted in this paper (see fig. 6). Checking must be executed at each

11-534

iteration of the input addition to avoid error masking due to component re-using. Therefore, the non-linear evaluation
function must be computed at each iteration to provide the datum for error checking; obviously, only the non-linear
output corresponding to the complete weighted input summation (i.e., the output after completion of all synaptic
iteration) must be delivered to the subsequent layer as neuron's output.
In the case of strongly fault-secure non-linear evaluators, we can avoid the checker within each neuron to reduce the
circuit complexity. A global error detection strategy is adopted to check the computation only at the network's
outputs by using the checkers connected at decoders. With this approach, error detecting capabilities are partially
reduced due to possible error masking related to reconvergent paths; besides, fault localization is not possible, since
no enough information is contained in error signals generated at network's outputs.
As in other approaches to concurrent error detection with multiplexed components (e.g., [4, 5]), control circuits for
time-multiplexed buses providing data propagation cannot usually be protected by the coding technique, i.e., they are
the hard-core fo the system.
If the non-linear evaluation finction unit is multiplexed, the same design strategies can be adopted. The resulting
structures are similar to those described above for the different cases of the non-linear evaluator, and have the same
characteristic constraints, since the same properties hold to provide strongly fault security.

Experimental evaluation of the computational performances and of the circuit complexity have shown that the use of
the redundant binary representation with a three-rail logic implementation for concurrent error detection in digital
neural networks is effective and practically realizable.
The detection capability of the coding technique is complete for all faults discussed in section 2, but in the case of
global error detection with a time-multiplexed, strongly fault-secure non-linear evaluation unit (in this case, some
simulations have shown that error detection may be reduced till 95%).
The additional circuit complexity depends on the specific solution adopted and on the operand length. Experimental
implementations at gate level have shown that the number of logic gates (a typical measure of the circuit complexity)
is approximately 75-85% higher than in the nominal architecture with carry propagation within each arithmetic unit;
roughly, we can consider that only 50% is required by the error detection capabilities, while the remaining circuits are
related to the parallelization of the computation at digit level.
As computational time is concerned, experiments have shown that it can be greatly reduced by 50-60% with respect
to the carry-propagating architecture. Therefore, also the computational power (i.e., the product of the circuit
complexity by the square of the computational time) is reduced by 45-55%.

4. References

1. V. Piuri, M. Sami, R. Stefanelli: "Fault tolerance in neural networks: theoretical analisys and simulation results",
IEEE Proc. Compeuro 1991, Bologna, Italy, May 1991

2. C. Neti, M.H. Schneider, E.D. Young: "Maximally fault tolerant neural networks", IEEE Trans. Neural Networks,
Jan. 1992

3. V. Piuri: "An algorithmic approach to concurrent error detection in artificial neural networks", IEEE Proc. VLSI
Signal Processing, Napa, CA, Oct. 1992

4. V. Piuri, M.G. Sami, R. Stefanelli: "Arithmetic codes for concurrent error detection in artificial neural networks:
the case of AN+B codes", IEEE Proc. Defect and Fault Tolerance, Dallas, TX, Nov. 1992

5. V. Piuri, M.G. Villa: "The use of residue codes for concurrent error detection in artificial neural networks", Proc.
WCNN93, Portland, OR, July 1993

6. A. Avizienis: "Signed-digit number representations for fast parallel arithmetic", IRE Trans. Electron. Comput.,
vol. EC-10, Sept. 1961

7. N. Takagi, S. Yajima: "On-line error-detectable high-speed multiplier using redundant binary representation and
three-rail logic", IEEE Trans. on Computer, vol. C-36, Nov. 1987

8. J.E. Smith, G. Metze: "Strongly fault secure logic networks", IEEE Trans. on Computer, vol. 27, June 1978
9. J. Abraham, W.K. Fuchs: "Fault and error models for VLSI", IEEE Proceedings, May 1986
10. V. Piuri, R. Stefanelli: "Use of redundant binary representation for fault-tolerant arithmetic array processors",

IEEE Proc. ICCD'88, Rye Brook, NY, Oct. 1988
11. A.M. Paschalis, D. Nikolos, C. Halatsis: "Efficient modular design of TSC checkers for m-out-of-n codes", IEEE

Trans. on Computer, vol.C-37, Mar. 1988

11-535

EN~CovaaE NEURONDEC0 DW

Fig. I - The overall neural architecture with the strongly Fig. 4 - The error propagating network for error

fault-secure property localization with local error detection

rbrO~ .

rbr(X1) __ rbr(y3 rbr(W2)

3 rbr(W3)
rbrW2- [---"1rbr(X2) rbr(W!)

Fig. 2 - The neuron's architecture with local error Fig. 5 - The neuron's architecture with global error

detection: only the weighted input summation is detection: only the weighted input summation is

protected by the redundant binary representation with protected by the redundant binary representation with

the three-rail logic implementation the three-rail logic implementation

rbr(. r br

rbr(X 1) rbr(W3)

rbr(X2) rbr(W)

rbr(X2)rbrW2" "{- rbr~y) rbr(Xl- -- +rbr(ViXi)" . .

scu uao artial

rbr(W3)-'-- ueatac 1-a

erro signalo

Fig. 3 - The neuron's architecture with local error Fig. 6 - The neuron's architecture with global error

detection based on the redundant binary representation detection based on the redundant binary representation

with the three-rail logic implementation with the three-rail logic implementation

11-536

rbIX f | I I rI)f rrY

The impact of finite precision in the VLSI implementation of Neural Architectures

for image processing

Cesare Alippi'.2 Luciano Brtozzo 3

IDipartmento di Elettronica, Politecnico di Milano, P.za L. Da Vinci 32, Milano, Italy
2Department of Computer Science-University College London, Gower Street, WC I E 6BT, London,U,K.
3SGS-1HOMSON Microelectronics, Via Olivetti 2, Agrate brianza, Milano, Italy

Abstract: In this paper the sensitivity of a feed-forward neural network to weights and inputs
perturbations is studied at a behavioural level. By modeiling inputs and perturbations we construct a
stochastic frame which provides a measure of the loss in performance at the network outputs. A suitable
definition for the signal to noise ratio applied to the output neural signal and to the perturbation, here
induced by a finite precision representation of neural values, provides precision requirements for inputs
and weights. Results are then tailored to image processing and applied to two real-time demanding
applications: ship identification in radar images and defect identification in machined parts of
mechanical objects, the second being realised with a dedicated digital VLSI chip.

1. Introduction

Performance degradation caused by finite precision realisations is a critical issue m developing dedicated
neural VLSI devices for real-time demanding applications (such as the ones involving image processing). In
general, a compromise between the hardware compactness (in terms of a reduced number of bits to
represent neural values for digital implementations) and the induced loss in performance at the network
outputs is required.
A careful analysis must be performed to achieve a fine-tuned architecture.
Only the relaxation phase of a neural network is considered, learning is carried out on a host computer and
only when the appropriate weights have been determined they are loaded into the final dedicated neural
device. Sometimes, digital hardware emulations are envisaged to determine precision requirements and
consider, during learning, some finite-precision constraints. In such emulations learning trajectories in the
weight space are constrained by neural values quantization; they divert from the nominal one (ideally
obtainable with infinite precision devices) and may lead to poor weight configurations i.e., impairing the
generalisation ability of the network. Evaluation limited to hardware emulation does not generally provide a
meaningful measure for the loss in performance caused by neural values quantization; this issue is tackled
by sensitivity analyses. Therefore, both hardware emulations and sensitivity analysis should be taken into
account to build the final hardware architecture.
Validation of the final hardware configuration requires the analysis of two inter-dependent aspects: network
sensitivity and performance distortion. The problem of network sensitivity has been tackled by several
authors. In particular, the sensitivity of madalines to weights and inputs perturbations has been considered
in [Ste90]. There, results were limited to binary inputs and hard limited activation functions. Results were
partly extended in [Pic93] to cover the sensitivity of the outputs of a neural network to errors in its weights.
Sensitivity of inputs and weights perturbations to some class of pertrbations can be finally found in
[A.i93aJ, [Ali93b] where stochastic models for the error generation and propagation are presented. The
second aspect, namely performance distortion, relies on the definition of a suitable figure of merit able to
correctly measure the loss in performance due to neural parameter perturbations, caused, in the context, by
finite precision representations. Such figures of merit generally rely on signal to noise definitions and are
based either on the ratio of signal to noise variances ratio such as in [Pic93], or on the ratio of average
powers ,- suggested in [Dur93].

II-537

In the present paper, results cover perturbations influencing both weights and inputs and are tailored to
image processing applications.
In particular, section 2 provides a statistical framework for modelling perturbations and their behaviour,
while the analysis of the induced and consequent loss of performance is presented in section 3. In section 4
the theoretical frame is then applied to two real world image processing applications: classification of ships
in radar images and defect identification in machined parts of mechanical objects.

2. The error perturbation model

Let us consider a single neuron, whose neural computation involves the scalar product evaluation between
the n-dimensional vectors I (inputs) and W (weights) followed by the activation function mapping to
produce the neuron's output. Let moreover q be the bias variable contributing to the final neural activation
x. Let Sy denote the perturbation influencing the generic y variable which leads to the perturbed variable
yp. With the same notation, by perturbing the bias, the input and the weight vectors, the neural activation
may be expressed as:

X = (w, I) +0= (w, +m"W, I, +SI)+ +3(1)

Let 8x be the perturbed value at the neuron's activation and defined as:

& = x-x, ,I)-(W,,IP)+ - P= (WP; a)+ (sWI)+ 5 (2)

Expectation value E[8x] and variance Var[8x] of the perturbed activation values may be computed by
modelling the input and the input perturbation distributions. Remember that 0, W, Wp and bW are fixed
entities (learning is terminated and the W perturbation fixed) and that there exists a linear relationship in
(2) between weight and input vectors. In particular, each component of the M5W vector, as for go, can be
seen as a random variable uniformly extracted from a symmetrical interval J-a,o]. This model is justified
by the fact that errors generated by quantization techniques such as truncation and rounding are modellable
as a random variable with samples uniformly extracted from the [-2k 2 k] interval, being k the index of the

truncated or rounded bit [Ho1931.
Let us define F(y) as the distribution associated with the random variable y of mean ly and variance a 2y,
and assume that each component of the I and SV vectors are, within the specific vector, independent random
variables having F(I) and F(S) distributions, respectively. The expectation value E[8x] may be simply
obtained by applying the mean opelator El-] to (2):

P3

[(9W, J(u,))+ go = u, 1(3)

while its variance is:

E[[(WS) +(6WI-_J(,,))]21+ Var []--= E[[(W,,5S)+8(6W, T)]2]+Var[601 (4)

U-538

Being J(x) the n-dimensional vector having all the vector components equal to x. The -P vector is
consequently the unbiased input vector. By introducing the Cauchy-Schwarz inequality expression (4) can
be rewritten as:

Var[&] _ E[(W,,61)2]+ E[(6oW,P)2]+ 2 IE[(W,,)]E[(t5W,P)2] + Var[4] (5)

Under the independence assumption between the S1 and V1 components, (5) becomes

12i2 + S +lwl)+a, (6)

In particular, expression (6) may be specialised to cover two interesting real cases where the distribution
for the input errors is always uniform (as we said in the introduction this is the appropriate model for
truncation and rounding quantization techniques) while the input distribution may either be uniform or a
sum of independent gaussian.

1. Both 6I and V-' have components extracted from an uniform distribution defined over the symmetrical
intervals bounded by ot51 and aT, respectively: NI = U(O, a' /3) and T = u(o, a' / 3). The

variance of (6) becomes:

Var[&] -(W la +Wa,)2 +a,. (7)

2. The input error has uniform distribution while the input histogram is gaussian: 51 U(O, a 2 3) and

T = N(O, oh). In this case the variance becomes:

Var[& (! < +w l +l5wl) (8)

Expression (8) may be generalised to cover the relevant case related to image processing, in which the
luminance histogram of the image is composed of a set of independent gaussians. In such case we suppose
each component of the input vector extracted from a random variable whose distribution is the weighted
sum of m gaussian distributions having their own mean values and variances. These requirements can be
modelled as

J " G(p,, 2) where I 1

being the weighting term.
The expectation and the variance can be easily derived:

E[&] = I ,p, 1,5WJ Var[&]< IWPI +W JO2NMI +a"2 (8')
1l Jl [)

The uniform or gaussian distribution hypothesis for the neuron's inputs assumes each component of the
input vector to be real.

11-539

Nevertheless, when images are taken into account, input neurons will receive integer inputs, generally
defined over a byte and bounded between 0 and 255. In this case, the uniform distribution is defined over a
discrete set of elements. Let us thus compute the associated mean and variance values. Let us consider a
discrete random variable z whose elements are uniformly sampled from an integer set containing the first
nz+ 1 elements (elements range from 0 to nz).

The expectation value and the variance of z can be easily computed and lead to

n&n(nz +2)(9:U =--_ _ - n,(9)
2 z 12

These values should be substituted in expressions (7), (8) and (8'). Results thus derived are discussed in the
next section.

3. The Signal to Noise Ratio

In several applications of neural networks to image processing the final neural architecture reduces to a
single neuron that can be seen as a convolver whose optimal weights are identified via learning [Ai93c]
Classification abilities can be functionally implemented with a non linear activation function or with more
classical techniques which, generally, involve definition of a suitable functional or metric to realise
classification. The transformed image via the neuron's convolution already contains fundamental image
features, which will be exploited in the subsequent classification phase (see section 4). The loss in
performance can then be evaluated at the neuron's activation level. By extending Piche's results [PiC93] to
our purpose we define the signal to noise ratio SNR at the neural activation level as the ratio of vari-nce of
the signal (the activation value) and the variance of the noise (the perturbation at the activation level):

Var[x] -2 (10)
Var[&] oi

Expressions for noise's variance, to be inserted in (10), can be derived from (7), (8) or (8'), integrated by
(9), when image processing is taken into account (real variances are close to their theoretical bounds); we
have then to evaluate the variance for the activation signal x.
From now on we consider inputs coming from an image and assuming the first nz+ 1 integer values. We
suppose two distributions for the neuron's activation value: uniform x = U(0, ou) and unknown. For

both models we have to determine the variance.
Moreover, we will suppose, as it happens in most of real applications, a low dimensionality for the input
and weight space. If n is small (reduced fan in for the neuron) the central limit theorem cannot be
successfully applied; the x distribution is consequently not modellable as gaussian and other tools need to
be investigated.

1. If the input distribution is uniform, from (9) we have I = U(P,, a). We obtain that the x dynamic is
bounded by

W. n,= Min(,0 ,<o 0,) n. < x<! Max(y,,>W,) n=M, (1

and therefore the variance, because of the uniform distribution hypothesis, becomes:

H-540

Var[xu]= (WM -W,,) 2 n 12
12 (12)

Finally, the signal to noise ratio, in the case of uniform distributions for inputs and scalar product (see
expressions (6) and (9)) can be express as: (W - W.), n.

'X: 12
SNRu - 1 2 2 (13)

w, , +M5wI V -25 +0

2. When the neural activation distribution is unknown, the final variance cannot be estimated by
exploiting this feature. To solve the problem we can apply the law of the variance propagation to the
(1) and the variance on x becomes Vrt[,] = lwJ I ',(4)

where ci2 is the input variance.

4. From SNR to precision requirements in image processing applications

In this section we will make use of former results to determine precision requirements in two real-time
demanding image processing applications: identification of ships in radar images and defects identification
in machined parts of mechanical objects.

Ships' identification in radar images

The problem is that of identification of ships sailing in instrumental weather conditions with radar images
(164x241 pixels grid defined over a 255 grey level scale). It has been proved that single tuned neurons,
grouped in a single layer, suffice to solve the application [Ali93c]. Weights are determined on a host
computer and need to be quantized while it is required all the 8 bits to represent inputs (and therefore no
errors will be introduced by input quantization). We will focus on the clear weather condition case. The
input frequency histogram can be successfully modelled as a gaussian [Ali93cI where the mean value
coincides with the clutter one (the sea and its turbulences).
The signal to noise ratio (10) may be used to determinc weights precision. The x distribution is unknown
(and therefore expression (14) will be utilised for the signal variance) while expression (8) will be used
since the input distribution is gaussian.
The signal to noise ratio becomes:

SNR = Iwli I w! I'C 31W12 (7 31W(1S VI 2 c; , , °W - +--/n2" a',+1/ 32" :(n--,'+1)2 mb - _n 2 2n 15

having assumed a truncation quantization technique, the same precision for bias and weights and
substituting the expectation value of 15WI2 to the real value. In this application n (the neuron fan-in) is 9,
while the squared weight magnitude is 6.38. As suggested in [Pic93] given a SNR=20db (the variance of
the signal 100 times the variance of the noise) 2 bits (from (15)) suffice to represent the decimal part of
weights, 3 bits for the integer one and one bit for the sign for a total of 6 bits resolution to represent
weights.

11-541

* Defects identificaton in machined parts of mechanical objects

In this application weights are determined off line, on a host computer. No constraints are set on weights
which can be represented with arbitrary precision. This implies that weights are given and no weight
perturbation terms need to be considered. We want to determine the appropriate number of bits to represent
inputs. Inputs can be modelled as an uniform distribution where nz=2 5 5 . The neuron's activation
distribution is not uniform and therefore expression (14) is used to compute the signal variance. The SNR
becomes:

SNR-]
_=3 =n(n z +2) (16)

iw i2 a '67 a 2 ,& 4 2 2 -

3

Given SNR= 20db we obtain nb=4 bits to represent inputs. In our specific application learning was carried
out in a partial emulation which considered 6 bits to represent input data. In such case, assuming a
SNR=20db we obtain nb=4. The input resolution can therefore be further decreased to 4 bits making
feasible an higher input parallelism degree of the chip. In fact, by reducing the input dynamic from 8 to 4
bits, and considering fixed the number of chip's pins, more data per input cycle can be inputted into the
neural device.

Conclusions

In this paper a stochastic frame which models generation and subsequent propagation of quantization errors
in neural computation is provided. Here quantization errors are supposed to be generated by digital
quantization techniques such as truncation and rounding. By introducing a suitable signal to noise
definition, we obtain a technique to set precision requirements for inputs and weights. Results are given at
a behavioural level, are then tailored to a digital technology and applied to two image processing
applications: identification of ships in radar images and defects identification in machined parts of
mechanical objects, the latter being realized in digital VLSI hardware.

References

[Ali93al C.Alippi, Sensitivity ofArtificial Neurons to weights and input quantization: 1. ti- "put neurons case, In
Proc. of WCNN93, Portland, Oregon, July 1993.

[Ali93b] C.Alippi, Sensitivity ofArtificial Neurons to weights and input quantization: 2. the hidden neurons case,
In Proc. of WCNN93, Portland, Oregon, July 1993.

[Ali93c] C.Alippi, Filtering and Clutter/signal classification of ships' radar images with Neural Networks, In Proc.
of WCNN93, Portland, Oregon, July 1993.

[Dur931 J.Durham, EVonColln, .4 measure of Signal to Noise ratio for multilayer perceptrons trained as 0-1
classifiers, In Proc. of WCNN93, Portland, Oregou, July 1993.

[Ho193] J.Holt, J. Hwang, Finite precision error analysis of neural network hardware implementations, In the
IEEE Transaction on Computers, Vol 42, No 3, March 1993.

[Pic93] S.Pich6, The effects of Weight errors in Neural Networks, In Proc. WCNN93, Portland, Oregon, July 1993.

[Ste90] M.Stevenson, R.Winter, B. Widrow, Sensitivity of Feedforward neural networks to weights errors, In IEEE
Transaction on Neural Networks, Vol 1, No 1, March 1990.

11-542

Analog VLSI Neuromorph with Spatially
Extensive Dendritic Tree

John G. Elias and David P. M. Northmore

Electrical Engineering &
Neuroscience Program
University of Delaware

Newark, DE. 19716

Abstract

The architecture of an analog VLSI neuromorph which can receive and process large numbers of pulsatile inputs
via a spatially extensive artificial dendritic tree is described. The artificial dendritic tree is a hybrid VLSI circuit
which has distributed over its length synapses of three types: hyperpolarizing, depolarizing, and shunting. Because of
the distributed nature of the circuit and its natural dynamics, input signals are segregated both spatially and
temporally. In addition, neuromorph dynamics is programmable over a wide range which permits one to match
neuromorph dynamical response with application dynamics. Experimental results are presented that show
"membrane" response of a directionally selective neuromorph preserved over four orders of magnitude in target
speed as neuromorph dynamics is correspondingly changed.

Introduction

Our neuromorphs are VLSI circuits that comprise a spatially extensive artificial dendritic tree [1]-[2], a spike
generating soma, and many spike output pathways, each of which imparts a programmable delay to the spikes
traveling on it. Figure la is a simplified circuit diagram of a short, five-compartment section of silicon dendrite. Each
compartment has a capacitor, Cm, representing a membrane capacitance, two programmable resistors, Rm and R,
representing a membrane resistance and a cytoplasmic resistance, and several MOS field effect transistors that
simulate synapses by enabling transient inward or outward transmembrane current. The resulting potential appearing
at the soma, point S in Figure lb, determines the rate of output spike firing. P-channel transistors (upper) produce
excitatory effects on spike firing by increasing the membrane potential. Inhibition is mediated by two interleaved
populations of n-channel transistors (lower). Half have their source terminals connected to ground and exert
inhibitory effects by lowering membrane potential; the other half have their source terminals connected to a
programmable "shunt" voltage and exert inhibitory effects by pulling the membrane potential towards this voltage.
When this voltage is set near the membrane resting voltage these transistors behave like shunting or silent inhibitory
synapses [3]-[5].

The synapse transistors are turned on (activated) for 50-100 nsec by an impulse signal applied to their gate
terminals. The resultant transmembrane current, which depends on the conductance of the transistor in the on state,
the duration of the gate terminal impulse signal, and the potential difference across the transistor, produces an impulse
response at the soma that may last nine orders of magnitude longer than the impulse signal. The temporal behavior of
the impulse response depends primarily on dendritic dynamics which is programmable over a range of six orders of
magnitude [6. In most of our VL31 implementations, the dendritic branches have sixteen compartments (32
synapses) which are connected together to form artificial dendritic trees (ADTs) like that shown in Figure lb.

II-543

(a W ADT Nb Spike Gewmug Soma

(c) Vr (d) Rm Rm Rm R. R=

M4 ,:

C2 Rn Cm >> C1 Of C2

T _I 3 GND "I

pol I poly2
M 2 R. MI

L Cm Ci _L RR L R

TR R 5 R5 R

FIGURE 1. a) Five compartment segment of artificial dendrite. b) Diagram of VLSI neuromorph comprising a spatially
extensive artificial dendritic tree (ADT), a spike generating soma, and a programmable number of spike output pathways that
connect to synapses on ADTs. Each pathway has independent programmable delay. The ,,zosses on the ADT represent
synapse locations. c) Switched-capacitor implementation of compartmental resistances. Transistors M3 , M4 and capacitor C2
emulate Rm. Transistors MI, M2, and capacitor C1 emulate Ra. Clock signals, 01, 02, 3, 4 permit adjustment of resistance
over a wide range. Vr,, establishes the resting voltage (typically 2.5V). d) Basic VLSI layout. Five compartments are abutted
together to form a short dendrite branch section (synapse circuitry not shown). The rompartmental capacitor, Cm, is
implemented with polyl/poly2 plates and varies between 0.1-2.0 pF, depending on the particular chip design. Construction of
ADTs is done by placing compartments side-by-side until the desired branch length is reached. Branches are then connected
via metal or poly wires to form trees. The spacing between compartments is 2 Itm, and they are aligned such that the inputs of
one compartment connect to the outputs of the previous compartment.

VLSI Implementation

Figure Ic shows the circuit diagram for the programmable axial and membrane resistors in our dendrite
compartment. Switched-capacitors are used to emulate the resistors and provide a means to easily change the
effective resistances. Capacitor C1 switched by transistois M1 and M2 emulates the axial resistor, R, while C2,
switched by M3 and M4 emulates the membrane resistor, Rm. The switches, M l, M2, M3, and M4 , in the open state
have a resistance of about 1012 L, and in the closed state their resistance is about 30 K.L The gate signals, (D1/ 0 2

and 4b3/ 04 do not overlap in the logic 1 state, ensuring that only one switch of each pair is closed at a time. Figure Id
illustrates the basic integrated circuit layout of a five compartment VLSI dendrite section, excluding the synapse
circuitry.

The analog output voltage of each ADT is processed by a spike-generating artificial soma whose output spikes
are delayed by programmable amounts of time before they reach their destination synapses. Our VLSI soma, shown
schematically in figure lb, is a simple voltage controlled oscillator with programmable gain and threshold. Whenever
the soma produces a spike, the synapses that it connects to are activated after a programmable delay which is
specified for each efferent connection. In our present system, each efferent spike can be individually delayed with one
millisecond resolution, from zero to 256 msec.

11-544

M- I - I 'b

--4: I I
08.0

M01oc -90

-00011 -100,
14 - -,.,.

o QC- IrICm

=" - \ " -

4oa0 -1001

60. 20 s20 . ,,d '' ' " v -

40.0

..-9 .-.-- ,A R k9 ... M APW! l ...di p .

9 .0 .a 4990 049 1M 9 ..0 ... 19990 0A 0. 40...0. W0 1....0 P 14... ,.. .. 0

Time (msec)
(C) (d) (e)

- 2(ms

0-T-

------- --- a IM w. I m 9Mr ---- iM ... AMn I".. A..... . . W .MR
Time Time Time

FIGURE 2. Experimental results from ADT-neuromorph to afferent stimulation. a, b) Measured impulse responses at
soma (point S, Fig. Ib) due to activating a single synapse at different locations for 100 nsec. Left plot shows excitatory
results; right is inhibitory. Note that the response lasts over 1,000,000 times longer than the signal that caused it. Insets
show the peak voltage change as a function of synapse position. c) Response from the most distal synapses on a two-branch
neuromorph. Lower curve is single activation. Larger response is from ten activations spaced 0.5 ms apart. d) Response
from closely spaced afferent spikes on a mid-branch synapse. Higher spike densities produce larger voltage changes at
soma. e) response from various synapses to fixed afferent spike frequency. Impulse responses from more distal synapses
overlap to a greater extent.

ADT Basic Electrical Response - Single Synapse Activation

The measured impulse responses after activating a single excitatory or inhibitory synapse at 15 different locations
on an ADT are shown in Figures 2ab (voltages measured at soma, point S in Figure Ib). Although the synapse
transistor is turned on for only 100 nsec, the resulting impulse response may last up to nine orders of magnitude
longer. The duration of the impulse response depends on the ADT dynamics. The peak amplitude of the response is
largest for synaptic activation nearest the soma and diminishes rapidly for sites farther away, while the latency to peak
increases with distance from the soma. These effects of synapse position mimic those occurring in passive dendrites
of biological neurons [7]-[8]. They also illustrate how the ADT structure inherently accords different weights to
synapses: pulsatile afferent signals exert effects in time and amplitude that depend upon synapse position.

II-545

I I

Because of the exponential attenuation n dendrites, a distal synapse by itself (i.e., one that is well beyond a

length constant) contributes little to the soma voltage. However, activating clusters of distal synapses or repetitively

activating the same synapse produces large voltage changes at the soma. Figure 2c shows the resultant soma voltage

after activating a distal ADT synapse once and multiple times. ibis suggests that distal synapses can play an
important role in determining soma voltage and subsequent spike generation when acting together temporally.

The ADT's voltage response to a burst of spikes is shown in Figure 2d for several input spike frequencies. The
response due to each synaptic activation is added to the resultant branch point voltage from past events until the
voltage reaches a maximum value. As the spike frequency grows larger the resultant soma voltage saturates at a

higher value. Similar behavior is observed by activating different synapses one after the other spaced in time. Figure

2e shows the effect of changing the location of the activated synapses for a fixed spike frequency. The impulse
responses from distal synapses (bottom waveform) overlap to a greater extent than those arising from proximal

synapses (top waveform).

Shunting synapses, when activated, exhibit nonlinear behavior that depends on the local membrane voltage near
the shunting synapse [31-[51. When the local membrane potential equals the shunt potential of the activated shunting

synapse there is no change in membrane voltage anywhere along the ADT. Conversely, when the local membrane
potential differs from the shunt voltage, activated shunting synapses pull the local membrane voltage towards the

shunt potential. Figure 3a is a circuit diagram of our artificial shunting synapse. Transistors M, and M2, after
receiving an impulse signal lasting between 50 and 100 nsec, activate the synapse transistor, M4 . The synapse stays in

the activated state until transistor M3, which operates in subthreshold, discharges M4's gate capacitance. The shunting

duration is controlled by a programmable voltage, V.. Figure 3b shows data from an ADT-neuromorph demonstrating
the effects of activating a shunting synapse. In these recordings, a distal excitatory synapse was tonically activated for

74 msec, thus producing a large steady state depolarization. After 25 msec, a single more proximal shunting synapse
was activated for 100 nsec. This was repeated for various values of the shunt duration control voltage, Vs.

(a) " S V(a)- 1 ---- V _ O.
,030 vo ls

Vdd (U 0.28 w Is
Mi ___i

M2 1 . I, ,g0.26 w tsRow* 0
o1"> ' ,_0.24 vc it

M2 C

Col -I
"membrane" 0 IQ_2 vc ts

I : : :: : : :",.20 w: ts

Vs .18 v

GND t1 i ts
.. .h. .t 1 -- -- uVshunt oe zo .o eoo e,. 1.

0.00 l000 40-00 000 0.0 00

Time (msec)

FIGURE 3. a) Circuit diagram of a shunting synapse. M3 operates in subthreshold region to discharge M's gate voltage
whenever it is activated by M, and M2. The shunt transistor, M4, pulls "membrane" voltage towards Vshuat. b) Experimental
recordings from a neuromorph in which an excitatory synapse was tonically activated to produce a steady state
depolarization. After 25 msec, a more proximal shunting synapse was activated. Shunt duration depends on control voltage,
V,, and temperature.

II-546

Multiple Synapse Activation and Variable Dynamics

The activation of an arbitrary set of synapses, both excitatory and inhibitory, in a temporal sequence gives rise to
a complex waveform at the soma representing the summation (not necessarily linear) of individual impulse
responses. The waveform shape depends on the dynamics, the spatial locations of activated synapses, and the
temporal spacing of afferent impulses. If the same pattern of synapses is activated at different temporal rates the
response waveforms exhibit very different behavior. However, variable dynamics allows a synaptic pattern activated

at different rates to generate soma voltage waveforms that are essentially identical in shape over widely different time
scales, analogous to wavelet dilation and contraction. Figures 4a-d illustrates this principle with a directionally

selective neuromorph [9]. In these experiments, a target traversed a one-dimensional sensor array at a constant speed
first in one direction and later in the opposite direction. The directionally selective neuromorph responds by
producing different peak soma voltages for the two directions. The larger voltage is produced in the so called
preferred direction. The waveforms are nearly identical in shape; the main difference is that they span widely

different time scales. Figure 4a corresponds to a target speed of 1000 pixels/sec and Figure 4d is for a target speed of
1 pixel/sec. The same VLSI neuromorph with exactly the same synaptic connections produced all four waveforms;
the only difference was its dynamics.

[7a)bTCo (c) I (d)

I ret reversal o250 mots__

l/3 J = -' r"
.'" I-. -".A 0

0.10 sec 1 I- l.OOsec 1. - lOOsec-- -- lOOsec --

FIGURE 4. Measured soma voltage from directionally selective neuromorph [9] during period in which a target of
constant velocity first moves across a one-dimensional sensor array in the preferred direction and later reverses direction
and moves back across the sensor array with same speed as in the preferred direction. The four recordings correspond to
four different target speeds with a comparable change in dynamics obtained by changing the switching rate of the
switched-capacitors. All synaptic connections between sensor array and neuromorph were identical for each recording.
Nothing was changed between the recordings except for target speed and neuromorph dynamics. a) target speed: 1000
pixels/sec. b) 100 pixels/sec. c) 10 pixels/sec. d) 1 pixel/sec.

Activating Synapses through Virtual Wires

To overcome package I/O limitations, we make use of a multiplexing scheme that we refer to as virtual wires [1].
In this scheme, the outputs of active neurons and sensors (i.e. those that are currently producing a spike or impulse)
cause the synapses that they connect with to become activated after a delay that is specific for each efferent
connection. The process of reading an active output causes that output to return to the inactive (i.e. nonspiking) state.
Virtual wires are formed using three circuits: synapse Row and Column Address Decoding, State Machine, which
determines neuromorph output states, and Connection List, which specifies the locations of synapses and the delay
associated with each connection. Address Decoding is on-chip; the Connection List and State Machine are off-chip.
Figure 5 is a simplified block diagram of our experimental system, which has been implemented on a 6U VME board

connected to either a Sparc Station or, through an adapter, to a PC. Each board accommodates sixteen neuromorph
chips in DIP-40 packages.

11-547

FIGURE 5. Simplified block diagram
of experimental system implemented
on VME 6U board. State Machine
detects the occurrence of neuromorph E_._. I

spiking and makes connection from
spike source to destination synapses
by looking up connections in the SHF IF: Afferent Input Fifo
Connection List. Those connections to SHF: Spike History Fifo
be delayed are temporarily stored in NM: Network Manager
the Delayed Connection Memory until r AC: Afferent Connector
their time has expired, after which STATE so EC: Efferent Connector
they connect to their destination MACHINE DCM: Delayed Connection Memory

synapses. Afferent spikes generated CL: Connection List

by other boards enter through the RD: Row Decoder

Afferent Input Fifo. All spikes CD: Column Decoder

occurring on a board and the time at ___._____SM: Spike Memory

which they occurred are stored in a SA: Synapse Address

Spike History Fifo which is read by SA SO: Spike Output

the Sparc Station processor. SM NA: Neuromoerp Address

ACKNOWLEDGEMENTS

This work was supported by grants from the National Science Foundation (# BCS-9315879) and the University of

Delaware.

REFERENCES

[1] J. G. Elias, "Artificial dendritic trees," Neural Computation, vol. 5, pp. 648-664, 1993.

[2] J. G. Elias, "Silicon dendritic trees," to appear in Silicon Implementation of Pulse-Coded Neural Networks, ed.
J. Meador, Chap. 2, 1994, Kluwer Academic Press, Norwell, Mass.

[31 V. Torre and T. Poggio, "A synaptic mechanism possibly underlying directional selectivity to motion," Proc.
R. Soc. Lond. B. vol 202, pp. 409-416, 1978.

[4] C. Koch and T. Poggio, "Biophysics of computation: neurons, synapses, and membranes," in Synaptic
Function edited by G.M. Edelman, WE. Gall, W.M. Cowan. Wiley-Liss, New York, pp. 637-697, 1987.

[51 C. Koch, T. Poggio, and V. Torre, "Nonlinear interactions in a dendritic tree: Localization, timing and role in
information processing," Proc. Natl. Acad. Sci. vol. 80 pp. 2799-2802.

[6] J. G. Elias and D. P. M. Northmore, "Neuromosphs implemented with switched-capacitors achieve wide-range
variable dynamics," submitted

[7] W. Rall, "Theoretical significance of dendritic trees for neuronal input-output relations," in Neural Theory and
Modeling, R. F. Reiss, Ed., Stanford University Press, pp. 73-79, 1964.

[8] G.M. Shepherd and C. Koch, "Dendritic electrotonus and synaptic integration", in The Synaptic Organization
of the Brain, ed. G. M. Shepherd, Oxford University Press, appendix, 1990.

[91 D. P M. Northmore and J. G. Elias, "Directionally selective artificial dendritic ees," Proceedings of the
World Conference on Neural Networks, Portland, 1993, vol. IV, pp. 503-508

11-548

A Quick Search of Optimal Solutions for Cellular Neural Networks

Sa H. Bang and Bing J. Sheu

Department of Electrical Engineering,
and Signal and Image Processing Institute,

University of Southern California, Los Angeles, CA 90089-0271
sheu@pacific.usc.edu, shbang@okada.usc.edu

ABSTRACT

Hardware annealing, which is a paralleled version of mean-field annealing in analog networks,
is an efficient method of finding the optimal solutions for cellular neural networks. It does not
require any stochastic procedure and henceforth can be very fast. Once the energy of the network
is increased, the hardware annealing searches for the globally minimum energy state by gradually
increasing the gain of neurons. In typical non-optimization problems, it also provides enough
energy to frozen neurons caused by ill-conditioned initial states.

1. Introduction

A cellular neural network (CNN) [1,2] is a massively parallel, locally connected, nonlinear
dynamic system. The ability to seek a stable point in a multidimensional space, at which the gen-
eralized energy function of the network is minimized, makes it possible to use the CNNs in many
optimization-oriented applications such as image or signal processing. Under the mild conditions
[1], the CNN is always stable and finds an optimum output in the steady state. However, the final
result may not be a globally optimal solution in terms of generalized network energy, because
there may exist multiple minima at which the energy is minimized locally. This might, in turn,
cause undesired network operations as long as the objective is to map the input signal in one
space to the output in another space by minimizing the cost function involved.

2. Optimizing Neural Networks

In optimization-oriented applications like nonlinear system optimization problems and feature
recognition tasks, a quick search of optimal solution is highly desirable. It is important to avoid
any local minimum which can result in a sub-optimum solution or completely unwanted result.
Existence of local minima is common in many optimization-oriented artificial neural networks
such as perceptrons and Hoplield's networks. There has been various suggested procedures for
performing the hill-climbing necessary for avoiding getting stuck in the local minima. Frequently
used schemes are simulated annealing and mean field annealing [3] on digital computers.
Simulated annealing is a stochastic optimization method. The Boltzmann-machine technique with
the addition of intentional noises or the simulated annealing technique is quite capable of escaping
the local minima. The mean-field learning method uses a set of deterministic equations instead of
extensive calculation of probabilities at each temperature in the Boltzmann machine. The
hardware annealing is an efficient electronic version of mcan-field annealing in which the
temperature of the network is increased to a predetermined high value and then decreased

11-549

gradually down to a critical low temperature. In fact, the local minima in recurrent associative
networks such as binary or multilevel Hopfield networks [4,51 and cellular neural networks can be
successfully eliminated by applying the hardware annealing directly to the analog neural networks.
It does not include any stochastic procedure. Once the energy of the network is increased by
reducing the gain of neurons, the hardware annealing quickly searches for the globally minimum
energy state.

3. Local Minima in CNN

Figure 1 shows an n x m CNN where n and m are the numbers of rows and columns,
respectively. The Lyapunov function of an n x m CNN is given as [1]

2 i.j kj ,l.j

- I I_ B(i j; k,l1) v,,(t) vk, - E' I v,,, (t)()
ij kJ ij

where A(jj;k,!) and B(i,jk,l) are the feedback and control operators between neuron cell
C(i,j) and its r-th neighborhood cells C(k,1) E Nr,J), Vi,j, respectively. In a simplified form
using vector and matrix notations,

I + T ! ' . '
S v Bv u

2y-V [Ynur,/]----1 Yv-L U yVv-Vh (2)2- A R.,Y2

where v, =[v"y1 I vY2 v~jT, vvk , v.., . . . v..], u =[l ... 1jr , and A is an
n .m x n m real, symmetric matrix defined as

Al A0 Al

0 Al A 0 _

In (3), A0 and A, are two m x m Toeplitz matrices with elements determined by given cloning
template. A0 = Toeplitz(cAO,cAl) and A, = Toeplitz(cAl,cA2), where Toeplitz(a,b) is defined as
the Toeplitz matrix with all a's in the main diagonal, and all b's in above and below the main
diagonal. The input vector v. and the matrix B can be defined similarily. Note that the matrix A
or B is not Toeplitz, but always real, symmetric as long as the cloning templates are space-
invariant. To see how the Lyapunov function of(1) is affected by given cloning templates, initial
state, and input, assume that b = 0 for simplicity and the matrix M is diagonalized by an
orthonormal set of eigenvectors as M = ETAE where A is a diagonal matrix with eigenvalues of
M on the diagonal and E is an orthonormal matrix with the corresponding eigenvectors as
columns. Then the equation (2) becomes

11-550

S1 1 "")
E=- IvMv, =-(Ev)TA(Ev,)=--XA(v). (4)

If Ak > 0, Vk, then M is positive definite and E !- 0 for all vy e [-1,+1]xr, where the equality

holds only at the origin v, = 0, Thus the energy surface denoted by E(vy) is a convex with the

maximum value E.. = E(O) = 0. Since 1v,,4 = 1, 1 < k < nm, in the steady-state, all corners of the

n x m dimensional hypercube are possible minima having the same energy value

= - n x A(i,j;ij)-- .] (5)
=2 k=1 2 L R.

If b * 0, the energy EQ) is maximized at v, = vYO where vYO is the solution of the equation
Mv, = b. Because M is nonsingular when A(i,j; i,j) > 1/R., this equation has a unique solution

vYO = M_'b = , eb (6)k-- A k

where ek is the eigenvector of M associated with the eigenvalue A?. If the location of E.. is
inside the hypercube, i.e., vY0 G [-,+1]xn, then all corners are possible minima as in the case

when b = 0. However, due to the nonzero value of b the energy value at each corner is distinct in
general. If vy0 [-1,+1I]nx, then some of the corners are not equilibrium points. Secondly, let us
consider the case when some of the eigenvalues of M are negative even when the condition

XA, = 1" M(k,k) = n -m (7)
k-I k=1-

is satisfied. In this case, the matrix M is indefinite, and the energy surface is convex in some
directions and is concave in others. This can be readily checked by assuming that only one
eigenvalue, say A,, is negative and vyk = 0, Vk * 1. However, the indefiniteness exists only in a
limited region of the hypercube along the axes of v,* = 0 for some k. It does not occur at the

corners of the cube and, when b = 0 the energy is still given by Eq. (5) in the equilibrium. The
saddle-point occurs at the origin v, = 0 when no input is present. From the above analysis, when
the forcing function b is not zero, there exists as many as n x m minima at the corners of the space
[-1,+1]xm. Furthermore, when the sigmoid function is used as a neuron nonlinearity, the
magnitude of neuron outputs are not exactly equal to one because there always exists a maximum
value of neuron state in the steady state such that 1:< Iv.,,(+oo)5 Iv I]. In this case, the local

minima are still present even when no external inputs or bias are present. Given input v, and
initial state v,(O), the output vector vy moves toward the closest stable point in the boundary

VY = [-1,+1]" and stays there. Because the network always operates toward a direction so that

the energy is decreased as time elapses, the inequality E(+oe) < E(0) must be satisfied where

E(O) =-v. (0)' A- -I v, (0)-v t '(0)[B v.-Ie] (8.a)
2 [R.

and

11-551

E(- _V ,'[A --' v- v'[B v. -Ie] (8b)
2 R.

Here, the constraint conditions Jv.,(0)J < 1, Vi,j, is used. In other words, vy(O) = v.(O) for the

neuron with a piecewise linear transfer function. If E(O) > E(+oo) with more than one elements in
the set {v,), then there exists the same number of local minima that the network can stay in the

steady state.
Another way to examine the existence of multiple minima in the CNN is shown in Fig. 2 (a) &

(b). In Fig. 2 (a), the x-, y-, and z-axis represent the outputs of neuron C(2,2) and C(2,3), and
the corresponding network energy, respectively, in a 4x4 cellular neural network with

R. = 103Q, I = 0 and the cloning templates

T A = 10- 3 x1 2 and T, = 10-3 X 1 . (9)
-1 1 0 00

Here, all neurons other than C(2,2) and C(2,3) have fixed outputs of -1 or +1. Notice that there

are three minima [vy 22,v, 23] =[-1,-1], [+1,-I], and [+1,+1]. Depending on the values of v"(0)

and/or v., the output [v, 22,vy23] will be among [-1,-i], [+1,-i], and [+1,+1] in the steady state.

The point [v. 22, v, 23] = [+1,+11 is obviously the global minimum with the lowest energy value.

Figure 2 (b) shows the contours of the energy function and the trajectory of the output values for
the initial state marked by X. The output [vy22 vvy,231 is attracted to the point [-1,-i], which is one

of the local minima.

4. Hardware Annealing

The hardware annealing is performed by increasing the neuron gain g(t), which is assumed to
be the same for all neurons throughout the network. The initial gain at time t = 0 can be set to an
arbitrarily small, positive value such that 0 5 g(0)<< 1, and after the annealing process for t,
seconds the final gain g(t,) = 1 is maintained until the next operation. Figure 3 shows the result

of hardware annealing for the network and conditions given in Figs. 2 (a) & (b) and g(t) = a t
where a is a constant. In Figure 3 (a), the local minima corresponding to the output [vy22, vy23]
have been removed and the output [+1,+1] which was the global minimum before annealing,
became the only minimum that can exist after annealing. The decrease in the energy by the
hardware annealing is shown in Figure 4 for three different cooling schedules g(t) = a1 t2 (A), a 2 t

(B), and a 3 4 (C) for constant a,, a 2, and a 3. In Figure 5, the corresponding waveforms for

neuron states and outputs are plotted. In both figures, the annealing begins at the normalized
time t = 1. Figure 6 shows the edge detection results of a 64-by-64 CNN for un-annealed and
annealed conditions. Figure 6 (a) shows the original gray-scale image. The sigmoid function is
used as the neuron nonlinearity and the same cloning templates as in [2, Fig. 18] are used.
Figures 6 (b) and (c) show the CNN outputs due to the annealing effect. Here, the image is
applied to the input only and v.(0)= 0. Two networks resulted in the same, correct outputs.

11-552

When the image is applied to both the input and initial state, the output is not correct as shown in
Figure 6 (d). Figure 6 (e) shows the correct output when the annealing operation is applied to the
condition described in Fig. 6 (d). In Figures 6 (0 and (g), the constraint condition Iv,,(0) I< 1,
Vi,j, is removed and random values of the initial state between I and 5 are used. As a result, the
output in Figure 6 (f) contains many neurons that are not able to toggle the states. However, as
shown in Figure 6 (g), the hardware annealing provides enough energy to such frozen neurons
caused by ill-conditioned initial states.

Despite of the time-varying nature of the hardware annealing, the stability of the network is
still maintained. The time derivative of the energy function for any neurons with bounded,
differentiable, nondecreasing nonlinearity is given by

= C c-i dva (t) 2. (10)
dt i dv,4 dtI

Equation (10) indicates that the network is always stable as long as the neuron transfer function
dvjldv, is nonnegative. When applying the hardware annealing method to the CNN, the
quantity (dvjj/dvj,) is also nonnegative although it is a function of time during the annealing
process. Therefore, the hardware annealing does not alter the stability requirements.

5. Conclusions

The hardware annealing is a very effective method of overcoming local minima in the CNN.
Instead of using stochastic optimization as in simulated annealing, or Boltzmann machine, the
proposed method continuously reconfigures the energy surface of the network so that the
network state easily finds the global minimum. In applications other than optimization, the
hardware annealing is also useful. For instance, the constraint condition lv. (0)-< 1 [1] is not

required in the CNN with the hardware annealing because the annealing provides enough energy
to frozen neurons caused by ill-conditioned initial state.

References

[1] L. 0. Chua, L. Yang, "Cellular neural network: Theory," IEEE Trans. Circuits Syst., vol. 35,
pp. 1257-1272, Oct. 1988.
[2] L. 0. Chua, L. Yang, "Cellular neural network: Applications," IEEE Trans. Circuits Syst.,
vol. 35, pp. 1273-1290, Oct. 1988.
[3] C. Peterson, J. R. Anderson, "A mean field theory learning algorithm for neural networks,"
Complex Systems, vol. 1, no. 5, pp. 995-1019, 1987.
[4] B. W. Lee, B. J. Sheu, "An investigation of local minima of Hopfield network for optimization
circuits," in IEEE lnt. Conf. Neural Networks, San Diego, CA, vol. I, pp. 45-51, July 1988.
[5] B. W. Lee, B. J. Sheu, Hardware Annealing in Analog VLSI Neurocomputing, Norwell, MA:
Kluwer Academic Publishers, 1991.

11-553

C1.) Ci C1 .3 -a

.20.A-

C1 C3 i C 3 I4 so

2. 40

* 0 0

0 1 2 2 A . 0 0 5 1 V Y2 .0 . 0 .5 0

(a) 3 minima over [v. 22,v 23l-plane. (a) 1 Global Mfinimum over [v,,]-plane.
(a) An n xm CNN.

0.20

p.4.6.. 3

(b) Block diagram of neuron cell C(i,j) I -*A A A 402 02 0.4 0.0 0 .1 4A 4.0 -A 402 0 02 0.4 0.0 0
C(.. O 00.. C 4 %0" , 4n

Figure 1: Cellular neural network. (b) Trajectory of initial state v.(0) (b) Trajectories of initial state v. (0)

Figure 2: 2-dimensional energy surfaces Figure 3: 2-dimensional energy surfaces
* of a 4 x 4 CNN. of a 4 x 4 CNN with hardware annealing.

'*. (a) 64-by-64 original

.2 gray-scale image.

1.40~~E Eolochd~O EB AE L I v.(O) 0, v.=input

an no annealing. 0 0 with annealing.

__OO.S 1LO\.5
.0, I (b) (c)

Figure 4: N etw ork energy levels IO .= n uti tg I 'O = .= n u
won C 2.i) foron C(22) v,(O) v. input image - v(O) v. input, : ,o --....--

0 (d) (e)

.sL 7---: _ -'
los - 0] . 'Vf) ,EIg)0.5 1 15 2 "0 0.5 I 1.5 2 lETlm. Te.!

000k0 Q2.3) no.4w C(2.4) andl no annealing. vvt nnaig

5I55

s

I I2
-

10 --- _/
----- I, 5 1 ,1 1 s 2Figure 6. Edge detection results of CNN.

-50 0. I 1.2me . t .

Figure 5: Neuron states & outputs

11-554

An Improved Programmable Neural Network

and VLSI Architecture Using BiCMOS Building Blocks

D. Zhang, R. Gu and M.I. Elmasry

VLSi Research Group. Dclanment of Electrical and Computer Engincerng
University of Waterloo. Waterloo. Ontario. Canada N2L 3G I

Abstract
A typical programmable neural network (PNN) inplementation based on inixed analog / digital design tt hate been
proposed in 1//. It this paper, we analY:e its basic circuits, including synapse and iteom. and inptole 1her
performance using BiCMOS technology The corresponding PNN architectutre in VLSI art' derelptd and I1t) kind.
of building blocks, whirh are simpler since digital signals can be direct'ly applied as programntahl' weights, t vu iw
in the architecture. Compared with the previous design, sintulation resuhs. show that tins PNN at, Itciuret t an
provide more accurate weight currents up to 30 litnes, and less si/irton area antdi more tlitig I -aabtil" %h Ihe lo

of2 and 3, respectively.

1. Introduction
Research into neural networks has not only embraced modeling and algorithms. but has also dealt with corresponding
architectures and implementations 12-31. There have been a variety of implementation approaches for neural
networks, including software and hardware, electronic and optical implementations, cc. 14-61. The real promise for
applications of neural networks currently lies in specialized hardware, in particular VLSI implementations 17-81.
VLSI technology can provide full exploitation of the massively paralleled compuling power of neural networks. The
analog VLSI approach is quite attractive in terms of hardware size, power consumption. and speed. With increasing
size, however, designing large integrated analog circuits in VLSI. is a difficult task. On tie other hand digital
processing. which appears to be inferior to analog processing i terms of computati,,Ii density. has advantages of
flexibility in terms of programming for a variety of architectures and learning strategies. as well as simplifying the
task of memory retention. Therefore, a mixed analog / digital approach is a right choice in the implemental ion of
electronic neural systems.
In this approach, local data computation is executed by analog circuitry to achieve full parallelism and to conserve
power consumption. Inter-processor communication is carried out in the digital format to maintain strong signal
strength and to achieve direct scalability in neural network size. Based on this mixed analog / digital approach, a
compact and general purpose neural network with electrically programmable connection weights for each new
problem statement, called programmable neural networks (PNN), can be obtained.
Various PNN implementations have been reported in (9-101. A typical PNN design, i.e.. the binary-weighted
MOSFET analog multiplier approach, was presented by Hollis and Paulos II]. The technique given makes it
possible to achieve low power levels with moderate device width-to-length ratios, and to avoid the use of
components that waste chip area or require special processing. However. our analysis and simulation have
demonstrated that there are some problems in such a PNN implementation, including low accuracy, small driving
capability and large area in VLSI.
In this paper, we will improve the performance of this programmable neural network by BiCMOS technology, and
build the corresponding PNN architecture with our goal as implemcntation efficiency. The organization of the paper
is as follows: In Section 2 we investigate the model of the PNN design. The PNN architecture, including BiCMOS
circuit building blocks and their connection network, are discussed in Section 3. Section 4 shows the simulation
results and analyzes the performances of the architecture. In Section 5 we summarize the conclusions of the paper.

2. Analysis and Design for PNN
The PNN design in Iil is to use MOSFET analog multipliers to construct weighted sums. and to permit
asynchronous analog operation from fully programmable digital weights to neurons, as shown in Fig.I. Digitally
programmable weights are installed with a parallel set of switchable NMOSFETs and they satisfy (W / L) j = 2 (W

/ L)i,j-l. where (W / L)i j represents the binary weighted width-lo-length ratio in the jib bit at the wight i (i = I. 2.

N; j = 0. 1 ... , n). These independent weights are easily programmable and can be stored in RAM. The analog
neuron model in the PNN can be described in the following two steps:
Step i: The Input Voltage * The Weight Current

1D D2=K 410
ID I - ID2 = 2 VIN - (VIN)

11-555

21
for1 lVINl=lVGl -VG21< K

Here K = 0 Cox W / L, where go is the carrier mobility in the channel, Cox is the gate oxide capacitance per unit

area; lo (= IDI + ID2) is the programmed weight current, where ID = K VT VIN
voltage of the current-steering transistor pair. This means that the differential output current is proportional to the
square root of the weight current rather than to the weight current directlv.
Step 2: The Weight Current =* The Output Voltage

+ - V = RL - ID2)j (2)V0 =0 .(I
J

where RL is a linear load resistance. it is shown that the model can achieve low power consumiplj)on witlh niodealc

device area.
Analyzing the model given, we call find soMnc problems in the circuit. The most im iportiant problem is suffer romn
the perturbation of threshold voltage. This is because that in order to save power, V s - V1 should be set to 0.2v
such that the switchable weight currents in the model are designed as smi,i! as possible. In this case. the currents ol
lower-bit binary weights may be comparablc with the error current of high-bit weightls. It can be analy.cd In ;I
schematic figure of current source of switchable NMOSFETs (See Fig.2(a)). Assuming that Qn , is opcrated in the
saturation, Qn2 is in the linear region and Vo2 is less than 0.2v. The current I passing the two NMOS transistors is

1

I = K(Vin 2 - Vtn)Vo2 - 0.5KV o2

= 0.5K(Vin I - Vo 2 - Vtn) 2 (3)
we assume the two transistors have the same K. If differentiating the above equations with the threshold voltage V I ,
and choosing Vin 2 = 2v. Vint = 1.3v. Vt 0 = 0.8v and Vo2 = 0.2v. the error current is

51 = - 0.3KSVtn (4)
The current decreases when the threshold voltage increases and vice versa. Assuming there are 6 bits binary weights
such that K6 = 32K 1 . If 6VtnI = 0.02v. which
is reasonable assumption for the current VLSI Vim
technology, the error current of the 6th bit is -4 P2

equal to 0.006K 6 = 0.192K I . According to Vr__.

[lI, the gate voltage of switchable I V3- - j~ a D2 V,,,
NMOSFET is set to small in order to reduce t U o
power. In this case, the current of the first bit
is equal to 0.5Kl(VinI - Vo 2 - Vt.. =I

0.045K I . Obviously, the error current in the 0--i NI N10 Ni N2

high bit is larger than the weight curreiit inI
the low bit. The problem is especially serious
when the gate voltage is small and the weight
circuits are far apart in the same chip. This
circuit can not work if the perturbation of
threshold voltage exists. We briefly summary B0 B,- , i,, [In I I B.

the problems in the following:
a. The threshold voltage variations may

cause inaccuracy of binary-weighted 0[wegltPr,,,

Vol Vol Fig. I A programmable analog neuron model

Vinl -- QnI Vin1 -- Qn l current source such that reduce the importance of the existence of th

Vo2 T.Clower-bits.
SVo2 :Vin2 J Vo2 b. In order to reduce the power, the control signals of switchable

Vin2 --ir Qn2 Vin2- Qpt NMOSFETs weights is not fully digital signal. Thus. the outside circuit
2. complexity is increased.

(a) (b) c. Silicon area consumption is still a major concern in the circuit design. In
Fig.2 Schematics for comparing order to get reasonable swing at output. the W / L ratio of PMOS PI and

the effect of Vt perturbation P2 should be similar to the sum of W / L ratio of NMOS N I and N2. In
the real application, there are hundreds or thousands synapse circuits

11-556

parallel linked. Thus, PI and P2 should be very large.
Next, we will propose a BiCMOS circuit to overcome these problems. A sig, nificant improvmentc by using
PMOSFETs instead of NMOSFETs can be found in Fig.2(b), where Qp is a current source controller. and Qn I is a

resistance compensator to keep the node Vo 2 at a stable voltage. These two MOS transistors are both operated in Ihe

saturation region. Choosing the suitable W/L ratio, Vo2 is forced to around 1.3v. In our case. (W/L)pt = 8(W/L)n I

Vi 1I and Vin2 are inverted signals. Given Vin2 = 0 and Vin I = 4v, the current 1 passing the two MOS transistors is

I = 0.5K(Vo 2 - Vtp)2 (l + ?LVo2)

= 0.5K((Vin 1 - Vtn - Vo2)2 (l + X(Vol - Vo2)) (5)

Differentiating the above equation and for small X, we got
81 = K(VoI - Vtp)(SVol - 5Vlp) (6)

We can represent R and R' as the resistor of PMOS and NMOS, respectively. Choosing R' = 4R. Vol = 1.3v. and
noting that Vt will increase to 1. 1 v as substrate bias increases, we got

T1 = 0.0 1 K8V p (7)

Compared with Eq.(4), we find that the proposed circuit is 30 times accurate than the previous circuit. The current
tends to remain same if threshold voltage varies. Because of small R / R' ratio, higher-bit tend to operate more
accurately than lower-bit. The physical explanation is: If Vtp increases, the resistor of the PMOSFET. R =I /

XK(Vo2 - VIP) 2 , tends to increase. Hence, the ratio of R / R' increases causes V, 2 increases. Thus, the current I =

0.5K(Vo 2 - Vtp)2 remain the same. The perturbation of Vtp and Vm do not affect the accuracy of current source.
Power consumption is also reduced due to the low mobility of PMOSFETs, i.e., current is only half if the same
layout patterns are kept.
In order to save energy. the gate voltage of the switchable NMOSFETs in Fig.2(a) is kept around 1.3v. In this case.
the gate voltage swing is from 0 to 1.3v. The gate voltage of the swilchable weights is difficult to adjust. Because
we keep the source voltage of the switchable PMOSFETs at 1.3v. full digital signals (0-5v) can e applied to the
binary weights.

3. PNN Architecture
VLSI technology offers a highly advanced implementation medium both at the fabrication and the CAD level if
efficient PNN architecture to be used. In this section. we will develop such a PNN architecture using BiCMOS
building blocks.
Synapse Building Block
The programmable synapse building block, as shown in Fig.3(a), is designed by a simple PMOS / NMOS analog
multiplier instead of the NMOS one in Fig. 1, where complete digital weights are used to obtain high precision and
analog summing to maintain high speed. Using this PMOS / NMOS structure, a small current source at very small
gate voltage can be obtained to provide more accurate weight current. Each weight value, Bk (k = 0, .n), can be.
in serial, received (or sent out) by the ports. Win / Wout. The binary weight for each bit is stored in the
corresponding register, which two opposite outputs. 0 and i, provide the input signals to the NMOSFET and the
PMOSFET, respectively. As a symbol representation of the synapse circuit, an input pair (Vin+ / Vin-). an output
pair (lout+ / lout-) and a weight pair (Win / Wout) are used in Fig.3(b).
Neuron But "'.iz B lok
The neuroi .- iding block is composed of a lo tut
differentiai input amplifier and two cascade
BiCMOS inverters (See Fig.4(a)). The Vil Vill
analog output signals from the synapse
circuits are applied to two inputs. Ut and + tout

U2, respectively. The inputs of the neuron
circuit are connected to Bipolar PNPs which lout

replace PMOSFETs (PI and P2) in Fig. I to
save area and increase the drive. The vil Wou,

BiCMOS inverters are used to achieve 0 0 0
sigmoid functions and their outputs can be 8 B| I ti W2-3I Itt I ISly le
also as the feedback signals to the synapse Synapse.Elem.nt
circuits. Major advantage of using BiCMOS Wotit Win

inverters as the output units is to increase (a) (b)
the drive because the load capacitance may Fig.3 Synapse building block (a) schematic circuit

and (b) its symbol representation

11-557

be very heavy in large scale PNN VD)D

implementation. Its symbol representation
is given in Fig.4(b).
Using these two kinds of building blocks,
synapse and neuron, a regular connection
network, built by M neuron blocks and N on A
x M synapse blocks, can be easily obtained
in Fig.5. There are three connecting paths 1-47 J_

in the network, i.e.,
(a) xi (the ith signal input) =; Vin (all Neuron Element
synapse blocks at ith row); (a) (b)
(b) lout(j) (all synapse blocks at jth Fig.4 Neuron building block (a) schematic circuit
column) := U(j) (the jth neuron block): and (b) its symbol representation
(c) WIN (weight input) = Wij (all synapse
blocks) WOUT (weight output). Y' Y, Y%1

where i= 1,2 N and j = 1,2 ..., M. It
is evident that the connection network can
satisfy the following function:

F (uj)

uj wijxi +,

where F is represented as sigmoid function
and u (See Fig.4(a)) is a linear weighted sum
plus a constant bias term, 0.
The connection network can be used in some ,I)
PNN applications. As two examples,
Hopfield network is implemented by such a
single network, where each output of the WIN
neuron blocks is connected with all inputs of + 4,
m synapse blocks; However, multilayer XN WNI wN2
network with BP learning is by using such at
network as a processing layer p (= 1. 2.
S) and connecting each layer in the defined
rule, just as shown in Fig.6, where Layer S Fig.5 Connection network usimlg the building blocks
is the output layer, 8 is the error signal, and
Dj is the required output of the jth neuron block at Dj

the output layer.(s /(S
4. Experimental Results 5 Wij yj
In order to evaluate the effectiveness of the PNN
architecture, we ran many experiments by using digialI Iwork Layer S
0.81am BiCMOS technology and compared its processor (S)
performance with that of the previous PNN. The S)
results show that the PMOS / NMOS structure in Y"

Fig.3(a) can act as a small self-calibrated current
source which operates at very small gale voltage.
When the threshold voltages (Vp and Vtn) are Wii

varied, they do not affect the accuracy of current BP W

source. The results also show that Vo 2 varies odigital . lo.. twr)k Layer p
within 1% in all round digital weighting Processor (S)
operations. The proposed weight current source is (p)
accurate enough for 6-bit digital programming. S(P)

The advantages of using PNP in Fig.4(a) are to
save the area and increase the drive. As mentioned Fig.6 Multilayer network implementation using BP algorithm
before, the PMOSFETs (PI and P2) in Fig. I
should be designed very large in order to match the
output resistance. Their W / L ratio should be similar to hundreds or thousands times W / L ratios of single NMOS

II-558

NI and N2. The very large PMOSFETs 11o(oly cost area, but
also transfer delayed signal from the drain to the source.
resulting in slow operatling speed. Because ofithe smaller output
resistance of PNP transistors, we usC PNPs instead of
PMOSFETs to save area. The simulation results with 40
weight units show that the output voltage almost stays at [he
lowest voltage when the switchable current does not reach its
maximum with the 20 times minimum size PMOSFET driving I
40 weight units, as shown in Fig.7. If one to ofie relation of
current versus output voltage waveforin is required. lte size of '

PMOSFETs should be chosen around 30 times its minimum 1 J

PNP to do the same job. According to thie 1.ayout rules, area ,,

cost of one minimum size PNP is equal to tthat of 16 x
PMOSFETs. This means that the area cost is reduce by a factor
of 2, The design rules also set the maximum size is 45 times Fig.7 Simulatted result of synapse blocks
minimum for PNPs and 500 times for PMOSFETs. Thus, one
maximum size PNP can drive 1,800 weights, but one £-______

maximum PMOS drive 650 weights. The voltage versus current ,,

transfer characteristics is plotted in Fig.8. For the input voltage , .4

different larger than 0.9v. the output voltages is linear to weight
currents. When the input voltage is full a digital signal. ain
accurate linear relation between output voltage and weight
current is obtained. As the input / output result of the neuron, a
sigmoid function is given in Fig.9.

S. Conclusion I(A
In this paper, we explore a typical PNN implementation based Fig.8 Measured results of programmable synapse
on mixed analog / digital design. The basic circuits, including
synapse and neuron, are analyzed and some performances are
improved by using BiCMOS technology. The correspondulig'
PNN architecture in VLSI are developed and two kinds of4
building blocks, which are simpler since digital signals canl he..........
directly applied as programmable weights. are used in the.
architecture. Compared with the previous design, simuhlion *.

results show that this PNN architecture can provide more ;

accurate weight currents up to 30 times, and less silicon area :-

and more driving capability by the factor of 2 and 3, "-.
respectively. ,. ,......

6. References.
I 1) P.Y. H-ollis and J.J Paulos, 1990, "Artificial neural networks *I . ~ ~

using MOS analog multipliers." IEEE Journal of Sotid-State
Circuits 25, 3, 849-855. Fig.9 The input /output voltage (If he neuron

12) P. Antognetti and V. Miluuinovic (eds.). 1991, Neural
networks: concepts. apptications, and implementations. Prentice Halt. Englewood Cliftfs, New Jersey.

131 E. Sanchez-Sinencio and C. Lau. (eds.), 1992, Artificial neural networks: paradigmns. ipplicahions. and hardware
implemnentations, New York: IEEE Press.

141 i.M.J. Murre. 1993. 'Transputers and neural networks: an analysis of imnplemnentation constraints and performance."
IEEE Trans. on Neural Networks 4. 2. 284-292.

151 R.H. Nielsen, 1986. "Performance liitis of' opiical. etectro-optical. and electronlic nenir4compnuers." Proc. SPIE.
634, 277-306.

161 B.W. Lee and B.J. Shen, 1991, Hardware annealing in electronic neural networks, Boston. MA: Kluwer Academic.
171 B.A. White and M.] Elmnasry. 1992. "The digi-neucogaliibon: a digital neocognilrion neursl ,Ietwujrk model t'0r VLSI,

IEEE Trans. on Neural Networs 3, 1, 73-84.
181 Y. He, U. Cilingiroglu, and E. Sanchec-Sinemcio. 1993. "A high-density and low-power charge-based hammiing

network," IEEE Trans. on Very Large Scale Integration (VLSI) Systems I. 1. 56-62,
191 B.W. Lee and BTJ Shen 1. 990, "A compact and general purpose neural chaip with electrically prog ra n lable

synapses." Proc. of IEEE Custom Integrated Circuits Conf.. 26.6.1-4, Boston. MA.
1101 S. Bibyko and M-. Isnail. 1989, "Issupues in analo~g VLSI and MOS techniques for neuiral computing, " inl Analog VLSI

Implementation of Neural Systems. C. Meamd anid M. Ismail (eds.), Kluwer Academic Publishers: Boston. MA.

11-559

Hardware Implementations
Session Chairs: Clifford Lau

Ralph Castain
Mohammad Sayeh

POSTER PRESENTATIONS

A Parallel Algorithm for Neural Computing

Q.M. Malluhi, M.A. Bayoumi, and T.R.N. Rao

The Center for Advanced Computer Studies
University of Southwestern Louisiana, Lafayette, LA 70504

Abstract: This paper presents a high-performance technique for implementing artificial neural networks
(ANNs) on hypercube-based general-purpose massively parallel machines. The paper synthesizes a tree-
based parallel structure which is embedded into the hypercube topology. This structure is referred to as
mesh-of-appendixed-sheered-trees (MAST). Both the recall and the learning phases of the multilayer with
backpropagation ANN model are mapped on the MAST architecture. Unlike other techniques presented
in the literature which require O(N) time, where N is the size of the largest layer, our implementation
requires only O(log N) time. Moreover, it allows pipelining of more than one input pattern and thus
further improves the performance.

I. Introduction
The area of Artificial Neural Networks (ANNs) is currently experiencing exceptional research efforts in

investigating alternative computing models for real-life applications. A basic ANN computation model has several
characteristics that favor massively parallel digital implementation. These include highly parallel operations, simple
processing units (neurons), small local memory per neuron (distributed memory), and fault tolerance to connection or
neuron malfunctioning [Ghos89]. Therefore, a highly parallel computing system of thousands of simple pi, 'essing
elements is a typical target architecture for implementing ANNs.

Mapping ANNs on general-purpose massively parallel machines has several advantages over special-purpose
ANN architectures. Massively parallel machines provide a fast and flexible medium for experimenting with various
neural computing models and for tuning network parameters for a specific application. Moreover, In many cases,
they provide adequate performance for the application at hand. Cost effective use of hardware is another advantage
since instead of having a dedicated special-purpose ANN hardware, the same parallel system can be shared by very
wide band of users working in various areas.

Several mapping schemes have been reported to implement neural network algorithms on parallel architectures.
Examples can be found in [Brow87, Kung88, Tomb88, Hwan89, Kim89, Zhan89, Wah90, Lin9l, Chu92]. In this
paper, we present a technique to implement the multilayer feedforward with backpropagation learning (FFBP) on
hypercube massively parallel machines. A major advantage of this technique is high performance. The proposed
mapping scheme takes O(logN) time whereas all other techniques presented in the literature require O(N)time,
where N is the size of the largest layer, Another important feature of this method is that it allows pipelining of
more than one input pattern and thus further improves the performance.

The paper is organized as follows. Section II provides some basic definitions and terminology to be used
throughout the paper. Section III explains the mapping procedure and discusses the issue of pipelining multiple
patterns. Section IV compares our technique with other techniques proposed in the literature. Finally, Section V
concludes the paper.

II. Preliminaries and Terminology
In this section we are going to introduce some basic concepts and definitions. In addition we are going

to establish the terminology of the paper. A basic ANN model of computation consists of a large number of
neurons connected to each other by connection weights. Each neuron, say neuron i, has an activation value ai.
Associated with each connection from neuron j to neuron i, is a synaptic weight (or simply, a weight) wiv. The
ANN computation can be divided into two phases: recall phase and learning phase. The recall phase updates
the outputs (activation values) of neurons based on the system dynamics to produce the derived ANN output as a

The authors acknowledge the support of the National Science Foundation and State of Louisiana grant NSF/LEQSF (1992-96)-ADP-04.

11-563

Will W121 w!31 W[Ll

!i Ll

alO] JLl

ajL

Figure 1: An L layers feedforward network.
ST. STI ST, $T3

Figure 2: Recursive construction of sheered trees.

response for an input (test pattern). The learning phase performs an iterative updating of the synaptic weights based
upon the adopted learning algorithm. In this paper we mainly deal with feedforward with backpropagation learning
neural networks which is central to much of the work going on in the field nowadays.

A Multilayer (L layers) feedforward network has the general form shown in Figure 1. The network inter-
connection is such that each node (neuron) in a layer receives input from every node of the previous layer. This
interconnection topology implies that for every layer, say layer 1, there is a weight matrix Wil] of synaptic weights
for the links between layers 1 and 1-1. We will use the index between brackets to indicate the layer number and
a superscript to denote the test pattern number. For example wi ill represents the element in the 1h row and the
fh column of the weight matrix W1i] of the M layer and af[L] represents the activation value for the ilk neuron
in the Ph layer for the p input pattern IP. We will use Ni to denote the number of neurons in layer i. For
notational convenience, the input terminals will be considered as layer number 0. Therefore, No will represent the
number of input terminals.

For input pattern IP = (If, I',. .. , IN), system dynamics for the recall phase is given by,
a,[0] Ifr

ail]= .f(h,[l)= f (wii[la [I - 11).

Each neuron i computes the weighted sum hi of its inputs and then applies a nonlinear function f(hi) producing
an activation value (output) ai for this neuron. For each input F', there is a target (desired) output P. The
backpropagation (BP) learning algorithm proceeds along the following iterative equations for I = L, L - 1, ... , 2,

,5,'[L] = f'(h?[L])(t? - af[L])

6?[l - 11 = i'(hf[l - 11) ji [116jf[l]
i(2)A~wi[l] = 7,?[l]a,'. [- 11

,,,"e-ll] ,V?!dfl] + A,[11.
-j tJ od(1

Definition 1: The zero dimensional hypercube 0-HC is the one node graph. The address (label) of this node is the
null string. The (n+1)-HC can be defined using two identical n-HCs as follows: relabel each node a of the first n-HC
as Oa and each node of the second n-HC as la. Connect each node oa in the first n-HC to the node la in the second.

In other words, the n-HC consists of 2' nodes each is given an n-bit label (or address). Two nodes a and b
are adjacent if and only if their labels differ by exactly one bit.
Definition 2: A sheered tree ST is a tree of 2k nodes defined as follows: STo is the one node tree. ST is
constructed from ST,.i by adding a right-most child to each node in STk.1.

1-564

Figure 2 illustrates the recursive construction of sheered trees. Notice that the depth of STk is k. Moreover,
notice that sheered trees can be grasped in a different wise. Lemma I provides a different recursive definition
of sheered trees,
Lemma 1: STk for k> 0, can be constructed from two copies T, and T2 of STk.i by (1) taking the root of T, as the
STk root and (2) making the root of T2 the leftmost child of the root of T1.

The above result can be seen from the construction process specified in Definition 2. When we go to larger
trees starting at ST, we are actually constructing two identical sheered trees rooted at the two ST, nodes. This
paper makes use of sheered trees in two manners. First, sheered trees are used to broadcast a value from the root
to all the leaves. Second, sheered trees are utilized to sum values in its leaves and produce the result in the root.
Notice that both of these operations can be performed in such a way that a node interacts with exactly one neighbor
at a time. Observe also that for STk, each of these operations requires exactly k time steps.

Ill. Mapping Procedure
In this section we develop a mapping on what we call the MAST architecture. The MAST structure is shown

to be embedded into the hypercube topology. Therefore, the algorithms developed for the MAST can be directly
carried out on the hypercube. The mapping procedure is developed in stages. We start the discussion by describing
the procedure for mapping the recall phase of a single layer on a MAST. After that, doses of complexity are
gradually added by discussing more complex situations and by showing how to enhance the performance of the
given mapping algorithm through processing more than one pattern in a pipelined fashion.

111.1. Mapping the Recall Phase
As a first step, consider the recall phase and concentrate only on the operations of one layer, say layer 1.

That is, we consider only the computation of layer I activation values (ai[l)] 1 < i < NI), from the activation
values (ai[l - 1]1I i < N- 1) of the preceding layer. Equation (1) hints that the operations involved in the
computation are as follows:

I. Distribute aj[l - 1] to all the elements of columnj in the weight matrix W[]. This is done for all 1 <j < NJ-,.
2. Multiply aj[l - 1] and wij for all 1 < i < N, and 1 < j < NI- 1.
3. Sum the results of multiplications of step 2 along each row of W[l] to compute the weighted sums

(h1[l) 1 < i < NI).
4. Apply the activation function f(hill]) for all 1 < i < N1 .

To start with, we suppose that each weight wij [] is stored in a distinct processor WP, (Weight Processor).
In addition, we assume that each of the activation values a [I - 1] of layer I - 1 is stored in processor CAP
(Column Appendix Processor). An output activation value of layer 1, ai[l], will be produced in processor RAP
(Row Appendix Processor).

Steps I through 4 constitute the skeleton of our implementation. As we will see, step I can be performed in
O(log NI) time units using a sheered tree structure. All the multiplications of step 2 can be done in parallel in
the various weight processors, and therefore, step 2 will only take one time unit. The summation of step 3 can
be computed in O(log N1-1) time units via a sheered tree structure. Finally, the function f is applied concurrently
on all the hi values in the different RAPs.

The above discussion implies an architecture illustrated in Figure 3. This architecture is referred to as Mesh-
of-Appendixed-Sheered-Trees (MAST). The N x M MAST, where N = 21 and M = 2', is constructed from
a grid of N x M processors. Each row of this grid constitutes a set of leaves for a sheered tree called RAST
(Row-Appendixed-Sheered-Tree). Similarly, each column of this grid forms a set of leaves for a sheered tree called
CAST (Column-Appendixed-Sheered-Tree). For each RASTICAST, there is an appendix RAP/CAP connected to
the root of the tree. Each of the N RASTs has 2M + I nodes and each of the M CASTs has 2N + 1 nodes.
Summing up and subtracting the grid size, since the grid processors are members of both RASTs and CASTs, we
get the total number of nodes in a MAST = N(2M + 1) + M(2N + 1) - NM = 3NM + N + M.

The algorithm to map the operations of layer I is given in Figure 4. For this purpose we use an Nx N_ I
MAST. We suppose that matrix W~ll is pre-entered into the grid processors (weight processors) so that processor
WP0j stores wij [11 in its local memory. Moreover, the activation values of layer I- I are assumed to be placed into the
CAPs so that aj [1 -"1] is kept in the local memory of processor CAP. We make use of two procedures. Procedure

11-565

1014m)10

(014 0000) 110100 a1011 II lO4 lll01 011001400 O l1101

)I000) I I1001 (O WNli 0ll~ 0001101 {O~l l

{ I 0010I01

11100) lll01: (11101011 MItGMt

S(0l11001 (1~08D 4121100| |O(O|01110) 1 1310 lIM 11O) l111lll) 401Jl1J)

Figure 3: 4x4 MAST.

AST-Bcst(T, v) broadcasts the value v from the appendix of the appendixed sheered tree T to all its leaves. Procedure
AST-SumLeaves(T, v, s) finds the sum of variable v values in the leaves of T and produces the result in its appendix.

In Step I of the algorithm in Figure 4, CAPj, 1 < j < N,- 1 , broadcasts aj(l - 1] through CAST so that, WPij
1 < i < N, receives aj(l - 1]. Then, each WP,, finds the product wij[l]aj[l - 1]. After that, RAST, 1 < i < N1,
is used to sum the product values in its leaves and the result hi[l] is produced in RAP i. Finally, The set of RAPs
compute (ai l] = f(hi[I]) I 1 < i < NI). Step 1 of the algorithm takes log N + 2 time steps because the depth of
the CASTs is log N1 + 2. Likewise, step 3 takes log NI-1 + 2. We assume that computing the product in step 2
takes a single unit of time. In addition, we assume that computation of the function f in step 4 requires one time
unit only. As a result, the total time for the computation of layer 1, T, = log NJ + log N- 1 + 6.

Thus far, we have seen the implementation of one layer. Now we will generalize the above discussion for a
multilayer network. We start at layer I and compute (ai[1] j1 < i < NI) from (a,[O] 11 < i < No). The RAPs
will contain the result of computation. In order to continue the processing for the second layer, we need to place
(ai41i 1 < i < N1) into the CAPs. However, we can alleviate the need for this step by storing the transpose of
W[21 rather than W[2] itself into the grid of WPs and repeating the operations of the algorithm backwards starting
from the RAPs and getting the results (ai[2] 1 < i < N2) in the CAPs. For the third layer, W[3] is stored in the
WPs and we start at the CAPs and get the resultant activation values at the RAPs as we did for layer i. We continue
this way going back and forth from CAPs to RAPs and from RAPs to CAPs until we reach the output layer L.

Thereof, we use an NdxN, MAT where, e and d are the largest even and odd layers respectively. Let
N = max(Ne, Nd) and M = min(Ne, Nd). We initialize the local memories of the WPs by storing
w[1, Wt[2], W[3], W[4], ... in the upper left comer of the WPs grid, that is, if I is odd, wuj[1] is stored into
the local memory of WPi', otherwise, wij [1] is kept into the local memory of WPIi. The CAPs local memories
are initialized to have the ANN input values (I 1 < i < No). After the initialization is complete, we proceed
according to Algorithm I (Figure 4).

Taking L as a constant, Lemma 2 below shows that we can process the recall phase in a time complexity which
is logarithmic in terms of the size N of the largest layer. This is achieved at the expense of using a maximum of
3N 2 + 2N processing units corresponding to an N x N MAST.
Lemma 2: Algorithm I takes less than or equal 2L(log N + 3) time steps.
Proof: Let TRecalI be the total time for computing the output. We have,

L L

TReca = T, = (log N, + log N-I + 6)
i=1 1=1

L

= (log N + log Nd + 6)

< 2L log N + 6L = 2L(log N + 3). 0

11-566

Algoridth I: (RECALL PHASE)
for 1=1 to L do RECALL-LAYER(I) eadfor.

procedure RECALL-LAYER()
If I is odd then

I. for aUll I < j _ N_ I do parbegin AST-Bcst(CAST, a,[I - 11) parend
2. forall<i<N,, I < j < N,- do rbenWP,, finds the product p w,I]a [t - 1l] parend
3. for all 1 <i <N, do pirbql AST-SumLeaves(RAST,. p, hjl) parend
4. for all I i< N, do perbegin RAP, applies the functionfl[hi[]) parend

else I I is even)
Same as Steps 1, 2, 3 and 4 but replace CAST, RAST, RAP and WIP' by RAST, CAST, CAP and WP, respectively

emif
endprecedure.

Figure 4: Algorithm for the recall phase of an L layers ANN.

So far, we have seen how to implement FFBP ANNs on MASTs. Theorem I shows that MAST algorithms
can be directly carried out on the hypercube. The proof of Theorem 1 provides an easy procedure to embed MASTs
into hypercubes.

Theorem 1: The 21 x 21 MAST where, x, y > 0, can be embedded into the (x + y + 2)-HC.

Proof: We will prove this result by assigning (x + y + 2)-bit names (or addresses) to the nodes of an 2 x 2Y MAST
in such away that two adjacent nodes are given addresses that differ in exactly one bit position (see Definition 1).
The proof is an inductive proof that depends on a recursive procedure to construct MASTs. We will divide the
address of a node into three components (class, rowadd, coladd). The component class is a two-bit binary number
identifying the type of a node. The different values for class; 00, 01, 10, or 11 indicate whether the node is an
appendix, a row tree node, a column tree node, or a mesh (weight) node respectively. The components rowadd
and coladd specify the row and column numbers of the node. In fact, restricting ourselves to these addressing
conventions is not necessary for the proof. However, it is useful for practical implementation.

We use induction on x and y. The basis is true for x = y = 1. The basis is shown in Figure 5(a). Suppose that
the 2' x 2y -1 MAST is named as required, we have to show how to expand the MAST along the rows and assign
proper names for the nodes the 2' x 2Y MAST. Consider two copies C and C2 of a 21 x 21- 1 MAST. Rename
each node (s, r, c) of C, as (a, r, Oc) and each node (s, r, c) of C2 as (s, r, 1c). Connect the root of the ith row in
C, to the root of the ith row in C2 for 0 < i < 22. Recall the result of Lemma 1 which indicates that connecting
the roots of two 2Y-1 nodes sheered trees produces a larger sheered tree of 2Y nodes. Now, for each row, choose
one of the two original roots as the root of the newly constructed row sheered tree and ignore the appendix of the
other root. The above construction and naming procedure is illustrated in Figure 5(b). Thus far, we have shown
the expansion along the rows. For the proof to be complete, we have to show the expansion procedure along the
columns which is very analogous. Figure 5(c) illustrates MAST expansion along the columns. 0

111.2. Mapping the Learning Phase
The learning phase is composed of two parts: forward propagation part and backpropagation part. The forward

part is identical to the recall phase whose implementation is provided in Algorithm 1. However, some values in
Algorithm I have to be given special attention as they will be needed later during the BP part. When an appendix
CAPi/RAP receives a weighted sum hi from the root of its tree RASTi/CASTi, it should apply the function f(hi) and
then save hi for future use (see Equation (2)). Similarly, when a WP receives an activation value ai it multiplies it
by the corresponding weight and then saves it because it will be used in the calculation of Aw in the BP part (check
Equation (2)). The BP part is performed in a manner similar to the forward propagation part, going the other way
around. The BP part starts from the appendices CAP,/RAPi containing the computed values (ai[L] 11 < i < NL)
after the forward part and goes backwards. It is not difficult to show that the BP phase can be performed in
< 2L(log N + 5) units of time.

111.3. Pipelining Patterns
In this subsection, we introduce an improvement to the above algorithm by showing how to process more

than one input pattern in parallel. This is done by pipelining up to 2logM + 4 input patterns. Our ability to
pipeline patterns depends on the assumption that links are full duplex, that is, links can carry data in both directions

II-567

(000)) (2000) (1001) (0001)

(0100) (0101)

(1100) (1101)

(OO) (1010) (1011) ((01))

(0110) (1110) (1111) (0111)

(a)

(0. , 1 ("0.r Ifl 01~) lrc

row s eered te i ,n C ow sheered tree inC 2 colums, sheered twe in C, cohlmn sheered tree in C2

(i) (c)

Figure 5: (a) Embedding the 2 x 2 Mast into the 4-HC, (b)
Row-wise expansion of MASTs, (c) Column-wise expansion of MASTs.

simultaneously. In pipelining input patterns we have to be careful not to assign more than one computation to
a single processor during any moment of time. We exploit processors of RASTs/CASTs that are broadcasting
activation values downwards but performing no computation. At the same time, we will be having another pattern
being processed by these processors in the other direction. This, of course, increases processor utilization.

Consider the following scenario: CAPi passes a, [0] downward to the root of CAST starting a recall phase
computation. In the second time step, ai [0] will move further down in CASTi. At that moment CAP sends a?[0]
of the second pattern to the root of CAST startink the recall phase of the second pattern. In the following time
step, we initiate the broadcasting of a?[0] to start the recall phase of the third pattern. The process continues in this
manner. However, there is a limit to the number of patterns that can be concurrently placed in the pipeline. This
limit is governed by the constraint that no processor should ever be doing more than one computation at a time.
Such a situation occurs when a? [1] reaches WPi, coming down RASTI (while performing the computations of layer
2) at the same time when aP[0] reaches WPj while going down CAST (while performing the computation of the
first layer for pattern p). In the very next time step WPy is required to perform two computations. The first is to
multiply a! [11 by wji[2] and the second is to multiply ajP[0] by wi. [1]. We can prove that p >_ 2logM + 5 (proof
is omitted due to lack of space). Therefore, the maximum number of paderns that can be pipelined is 2LogM + 4.

IV. Evaluation and Comparison with Previous Work
In this section we compare the characteristics of our mapping technique with three major techniques in the

literature. The first of these techniques was introduced by [Kung88, Hwan89I. It maps ANNs on the systolic ring
architecture. Extensive work in the literature has since depended on this technique. The second technique (Sham9O]
is an extension of Kung's method in order to make it possible to pipeline M input patterns. The target machine
for this mapping scheme is a two-dimensional SIMD processor array. The third technique [Lin9l] implements
ANNs on fine grain mesh-connected SIMD machines. The mapping is established based on a set of congestion-free
routing procedures. Four characteristics are considered; the number of processors used, the time for precessing one
pattern, the power of pipelining patterns, and finally the time to process k input patterns in a pipelined manner.
The comparison is furnished in the table of Figure 6.

V. Conclusions
This paper has presented a high-performance scheme for implementing both the recall and the learning phases

of the FFBP ANN model on hypercube massively parallel machines. This scheme requires a time complexity of

I1-568

Mapping scheme Architecture no. of time for one pipelining? time for k Patterns
processors pattern (pipelined)

[Kung881 systolic ring O(N) O(N) NO O(kN)

[Sham90] SIMD 2D mesh O(MN) O(N) YES O(kN / U)

[Lin9l] SIMD 2D mesh O(N2) O(N) NO O(kN)

Our approach Hypercube O(N 2) O(logN) YES O(kN / logN)

Figure 6: Comparison with other mapping schemes.

O(logN), where N is the number of neurons in the largest layer. The technique further promotes the performance
by offering the capability to process input patterns in a pipelined fashion. We should note here that even though
the technique has been only illustrated for the FFBP ANN model, the idea can be extended to accommodate other
models such as the Hopfield model, the self-organizing feature maps, and the Boltzmann machine.

References

[Brow87] Brown, J. R. and S. F. Vanable, "Artificial Neural Network on a SIMD Architecture," Proceedings of the
2nd Symposium on the Frontiers of Massively Parallel Computation, pp. 127-136, 1987.

[Chu92] Chu L. C., B. W. Wah, "Optimal Mapping of Neural-Network Learning on Message-Passing Multicom-
puters," Journal of Parallel and Distributed Computing 14, pp 319-339, 1992.

[Ghos89] Ghosh, J. and K. Hwang, "Mapping Neural Networks onto Message-Passing Multicomputers," Journal of
Parallel and Distributed Computing, 6, pp. 291-330, 1989.

[Hwan89] Hwang, J. N. and Kung, S. Y., "Parallel Algorithms/Architectures for Neural Networks," Journal of VLSI
Signal Processing, 1989.

[Kim89] Kim, K. and Kumar K. P., "Efficient Implementation of Neural Networks on Hypercube SIMD Arrays,"
International Joint Conference on Neural Networks, 1989.

[Kung88] Kung, S. Y., "Parallel Architectures for Artificial Neural Nets," International Conference on Systolic
Arrays, pp. 163-174, 1988.

[Lin9l] Lin W., V. K. Prasanna and K. W. Przytula, "Algorithmic Mapping of Neural Network Models onto Parallel
SIMD Machines," IEEE Transactions on Computers, 1991.

[Sham90] Shams S. and W. Przutula, "Mapping of Neural Networks onto Programmable Parallel Machines," IEEE
International Symposium on Circuits and Systems, New Orleans, LA, May 1990.

[Tomb88] Tomboulian, Sherryl, "Overview and Extensions of a System for Routing Directed Graphs on SIMD
Architectures," Frontiers of Massively Parallel Processing, 1988.

[Wah90] Wah B. W. and L. Chu, "Efficient Mapping of Neural Networks on Multicomputers," Int. Conf. on
Parallel Processing, Pennsylvania State Univ. Press, Vol. I, pp. 234-241, 1990.

[Zhan89] Zhang, X., et. al., "An Efficient Implementation of the Back Propagation Algorithm on the Connection
Machine CM-2," Neural Information Processing Systems 2, pp. 801-809, 1989.

11-569

Programmable Synapse and Neuron Circuits in VLSI

for Perceptions and Cellular Neural Networks

Joongho Choi, Bing J. Sheu, Josephine C.-F. Chang

Department of Electrical Engineering (Electrophysics and Systems)
University of Southern California, Los Angeles, CA 90089-0271

Abstract
Although neural networks have the intrinsic property of parallel operations, the traditional computers cannot
fully exploit it because of serial hardware. By using analog circuit design techniques, large amount of parallel
functional units can be accommodated in a small silicon area, and at the same time, the precision requirement
for neural operations can be achieved. A synapse circuit which can perform four-quadrant multiplication has
been designed. Dynamically refreshed weight value storage provides programmable capability. An input-
neuron circuit which performs as a fast buffer and an output-neuron circuit with gain-adjustable capability are
also designed. A prototype system using the designed components has been successfully trained by the Gen-
eralized Delta Rule.

I. Introduction
Very large scale integration (VLSI) technologies are now maturing with emphasis towards submicron

structures and sophisticated applications combining tremendous amount of analog and digital circuits on a sin-
gle chip. Examples are found on today's advanced systems for telecommunications, robotics, automotive elec-
tronics, image processing, intelligent sensors, etc [1-10]. To process large number of data obtained from the
real world in real time requires a sequential digital machine to operate at a speed of more than 1018 floating
point operations per second. Nowadays, researches on digital machines have focused on increasing processing
speeds of functional units and efficiency of hardware utilization by using special techniques such as superscaler
and superpipeline [11]. Communication overheads of multiple data and control paths would seriously reduce
the computing power of a digital system when the number of functional units becomes large. On the other
hand, an analog VLSI hardware with intrinsic capability of massively parallel processing and compact silicon
area provides a method for implementing adaptive systems based on neural models 112]. As a result, analog
VLSI has been recognized as a major technology for future information processing.

With massively parallel processing capabilities, artificial neural networks can be used to solve many
engineering and scientific complex and time-consuming problems. The optimized data structure in a neural net-
work can be realized by an analog neural hardware. A desirable general-purpose machine to implement a bio-
logical neural system must provide some key features such as neuron thresholds and transfer functions, pro-
grammable synaptic weight values and time constants either externally or by the machine itself. In an analog
design, the neuron functions can be approximated by transistor characteristics inherently as opposed to table-
look-up or iterative computations in a digital machine. Synaptic weight values can be either DRAM-type
stored and refreshed [4,6] or EEPROM-style stored [5,13]. The DRAM-type synapse can be quite compact, and
designed without having to access special technology, but an off-chip controller is needed to continuously
update the weights. The EEPROM-style synapse provides the highest possible density, but learning is relatively
slow, and a special technology is need. In this paper, possible VLSI design of neural components for general
neural operations are described and experimental results are also given.

H. General Architecture
The generic neural operation in a perceptron and a cellular neural network consists of a weighted sum-

mation and nonlinear function, which are summarized as,

v f(1w. ivi
i

II-570

where vi and v, are the i-th neuron output and the j-th neuron output, respectively. The synapse value
between the i-th and the j -th neurons is represented by w,, i and f, is the nonlinear function, which is usually
a sigmoid function. This operation describes a feedforward or retrieving process in the artificial neural network
algorithms. Figure 1 shows the block diagram of a multi-layered neuroprocessor chip. It consists of an array
of input neurons, an arra', of output neurons, and the synapse matrix. In order to support the feedback or learn-
ing process, the weight value can be programmable - it can be efficiently updated and reliable maintained.
Synapse value computation can be done by a host processor core or by some dedicated on-chip learning circui-
try.

There have been many researchers for analog VLSI neural networks implementation using various design
technologies [5-10]. Significant numbers of synapses and neurons are included in order to achieve a high com-
putational throughput by using fully massive parallelism.

Il. Major Components
Compact analog components are suitable for exploiting the property of massive processing in an artificial

neural network. In this section, analog circuit design techniques for implementing a general-purpose neural
chip will be discussed.

A. Programmable Synapses

Since the number of synapse cells dominates that of neurons, characteristics of an analog multiplier used
to realize the synapse cell determine the overall accuracy, silicon area, and power consumption of the neu-
roprocessor chip. Several design issues should be considered for performance optimization of the synapse cell.

In order to implement a linear multiplication between the input voltage and the stored synapse weight
voltage, the Gilbert multiplier circuit can be used. All transistors operate in the saturation region. Figure 2
shows the complete circuit schematic of the multiplier used for the synapse cell [10]. PMOS differential pairs
are used to achieve large operational range by reducing the number of transistors stacked between two power
supply lines. The output current is obtained from the difference of two currents, I' and 1-. The input voltage
VIN, i is applied to the NMOS differential pair of MI-M 2, while the synapse weight value Wj, i is applied to
the PMOS pairs of M6-M7 and M9-M10. The differential input and weight values ensure the balanced-
operations of the positive and negative signals as well as can achieve the common-mode rejection. The
differential output current is converted into the single-ended current through the cascode current-mirror stage
consisting of transistors Mt 2 through M 21. The synapse output current can be determined as

ii, = K 1312(v - i)(Wj- w[,)= GmYINiWjj (2)

where K is the current gain from transistor M12(14) to transistor Mr3(15). Here Pp and ON are transconductance
parameters of a PMOS transistor and an NMOS transistor in the differential pairs, respectively. The sizes of all
transistors in a prototype design are also listed in Fig. 2.

The learning algorithms can be performed in the host computer or the companion digital signal process-
ing (DSP) core and the synapse values are stored in the digital memory. Every synapse value is converted into
the analog voltage and loaded into the capacitor of the synapse cell. The synapse value is dynamically stored
on the capacitance which are contributed by the MOS transistor and possibly augmented by the additional
capacitor. Address decoders are used to direct the common signal line to the desired synapse site. Periodic
refresh is required to maintain the accurate synapse weight values [4]. For a given leakage current of 10 pA,
refreshing in every I msec is sufficient to maintain the 8-bit accuracy.

B. Input Neurons

The input neuron buffers the input signal and provides the high-speed driving capability for a large capa-
citive load. An input neuron can be constructed by an operational amplifier configured as the unity-gain buffer.
Since there is a large number of synapse cells to be driven by one input neuron, the equivalent load capaci-
tance to the input neuron might be quite large. Thus, a fast settling response of the input neuron needs careful
design. It is desirable to let the input neuron occupy a compact silicon area and dissipate very low power. Fig-
ure 3 shows the circuit schematic diagram of the designed input neuron which provides the differential input to
the synapse cells. In order to reduce the power consumption in the output branch while maintaining the speed,

11-571

the class-AB output stage is used [14].

C. Output Neurons

The output neuron converts the summed current into the voltage and performs one of several types of
functions such as the thresholding, linear amplification, and sigmoid function. The detailed circuit schematic of
the output neuron is shown in Fig. 4 [101. Summation of the weighted products is naturally done by hard-
wiring according to the Kirchoff's current law. Current-to-voltage conversion is performed by the transresis-
tance amplifier consisting of an operational amplifier and a feedback resistor. Since the output impedance of
the synapse cell is finite, the synapse current is dependent on the output voltage, which is the input node vol-
tage of the output neuron. In the proposed design, this node is connected to the virtual ground of the opera-
tional amplifier to eliminate the synapse current variation.

Since the current summation results from a large array of synapse cells, the transresistance amplifier
should have a sufficient capability to handle a large magnitude of the current for proper linear conversion.
Thus, the operational amplifier includes the source follower as an output stage as shown in Fig. 4(a). In addi-
tion, six transistors are used to implement the active feedback resistor, which can achieve higher accuracy in
the wide operational range and less silicon area [151. The summed current is converted into the voltage
according to the following expression,

M M
VUN. j = Req " 1j., = Dj, / 2

0R(VRF - Vhp) (3)
i=1 i=1

where VRF is the control voltage to tune the equivalent feedback resistance value Req. Here OR and Vh, are
the transconductance parameter and the threshold voltage of transistors MRF 1(2), respectively.

Sigmoid function generation is required for performing the back-propagation learning algorithm. The sig-
moid function is effectively realized by cascading simple inverting amplifiers with the input and feedback
resistors as shown in Fig. 4(b). The voltage gain of the sigmoid function is determined as

VSIG F Req. 2 / Req. (4)

VUN., J 1+(+ Req. 2/Req, 1)/A I (

where A is the voltage gain of the inverting amplifier. Since the resistors are realized by transistors biased in
the triode region, their equivalent resistance values can be controlled,

Req. 1(2) = I / (VR 1(2) - Vth) , (5)

where 1, Vh are transconductance parameter and the effective threshold voltage of the transistors, respectively.
The control voltages, VTHp dnd VTHIN are used to reduce the offset voltage of the sigmoid function generator

due to process-induced nonideal device characteristics. Their values can be set during the chip-initializing
phase. The entire gain of the output neuron are controlled by the gate voltages of the PMOS transistors of the
feedback resistor in the transresistance amplifier (VRF in (3)) and the voltdges of the input and the feedback
resistors in the sigmoid function generator (VRI and VR2 in (5)).

IV. System-Level Considerations and Experimental Results

In our design, the digital synapse weight information in the system memory is periodically converted by
the digital-to-analog converter and written into the analog memory site to maintain the accuracy of the stored
data. If there are M synapse cells in the entire system, the time to write the computed weight value into the
synapse storage, T.p&,, consists of the following item,

Tupdate = M " (Tdata + TDAC + 6R., Cw), (6)

where T&,, is the amount of time for fetching the digital data from the system memory, TDAC is the digital-
to-analog conversion time, R,, is the ON-resistance of the switch transistor, and Cw is the effective storage
capacitance. The amount of time for the synapse value to experience a change equivalent to the 1/2-bit resolu-
tion, AT, must be greater than Tupdr, to fulfill the timing requirement of the system for a reliable refreshing
scheme. Figure 5 shows the numerical examples of the size and accuracy relationship of the synapse matrix for
different values of the storage capacitances.

11-572

A prototyping general-purpose neural network chip consisting of an array of the input neurons, an array
of the output neurons, and the synapse matrix was fabricated in a 2-im double-polysilicon CMOS technology
from the MOSIS Service of USC/Information Science Institute [161. Figure 6 shows the measured DC charac-
teristics of a synapse cell performing linear multiplication. The cell can be arbitrarily accessed by the
rowlcolumn address decoders from the synapse matrix. The differential synapse values in Fig. 6(a), and the
input voltage in Fig. 6(b) ranges from -2.0 V to 2.0 V in a step size of 0.5 V. The operation ranges for the
input signal and the synapse weight value corresponding to a linearity error of less than 1% is -1.75 V to 1.75
V. The small offset current can easily be compensated through the modification of synapse weight value
and/or the use of an additional synapse weight connecting with the output neuron.

Fig. 7 shows the measured dynamic synapse weight value changes as a function of time due to the leak-
age current. The rate of the output current change is about 12.5 nA/sec. For the conductance value of the
synapse cell of 5 uAN, the voltage change rate is 2.5 mV/sec, which corresponds to the time elapse of about
4 seconds for the 1-bit resolution change of the synapse weight value in 8-bit operations.

The measured dynamic range of the input neuron is from -3.0 V to 3.0 V, which is sufficient to drive the
synapse cell. The settling time with 1% error is about 300 nsec for the capacitive load of 7 pF. Measured
result of the linear current-to-voltage converter as a part of the output neuron is shown in Fig. 8(a). This con-
verter can handle the input current level of more than 250 p.A. In the measurement, the active feedback resis-
tance was set to 4 kfl. The measured sigmoid function with various voltage gains of 6.5, 2.8, 0.8 are shown in
Fig. 8(b). The achievable maximum voltage gain is around 2,000.

The system-level experiments were conducted with the fabricated synapse cells in our laboratory in order
to investigate the feasibility of neuroprocessing system implementation. Figure 9 shows the schematic diagram
of the measurement setup, which consists of four synapse cells and a linear current-to-voltage converter as a
simple output neuron. Here, the sigmoid function is not included in the simple learning. The host processor
executes the learning algorithms. An analog-to-digital converter was used to inteiface the output voltage of the
network. Update of the synapse values was performed sequentially by the digital-to-analog converter and the
address control signals. An additional digital-to-analog converter was used for determining the analog input
voltages.

The primary goal of the learning experiment is to compensate the bias which was intentionally added so
that the desired output voltage will return to zero. The bias current was provided by the constant voltage
source Vbi; and the resistor Rbi,,s. The Generalized Delta Rule [17] was used to train the network. Figure 10
shows the measurement results. In the initialization phase (marked A), four weight values were set to be quite
small random numbers. Thus, the summation current is -57.5 jiA and the output voltage is 1.12 V. After the
learning proceeded for a sufficiently long period, the summation current became 0.1 gA, and the output vol-
tage became -1.95 mV which is close to the desired output value.

VI. Conclusion

The design techniques and considerations for implementing VLSI neural components which are suitable
for perceptrons and cellular neural networks have been addressed. The synapse circuit is capable of performing
four-quadrant multiplication, and the output neuron is gain-adjustable. Our on-going effort is to use these com-
ponents to implement a large scale neural system.

References
(1] Y. Arima, K. Mashito, K. Okada, T. Yamada, A. Maeda, H. Notani, H. Kondou, and S. Kayano, "A 336-neuron

28k-synapse, self-learning neural network chip with branch-neuron-unit architecture," IEEE Jour. of Solid-State Cir-
cuits, vol. 27, pp. 1637-1644, Nov. 1991.

[2] T. Watanabe, K. Kimura, M. Aoki, T. Sakata, and K. Itoh, "A single 1.5-V digital chip for a 106-synapse neural net-
works," Proc. IEEE/INNS Inter. Joint Conf. of Neural Networks, vol. 2, pp. 7-12, Baltimore, MD, June 1992.

[3] C.-F. Chang and B. J. Sheu, "Digital VLSI multiprocessor design for neurocomputers," Proc. of IEEEIINNS Inter.
Joint Conf of Neural Networks, vol. 2, pp. 1-6, Baltimore, MD, June 1992.

[4] B. W. Lee and B. J. Sheu, Hardware Annealing in Analog VLSI Neurocomputing, Kluwer Academic Publishers:
Boston, MA, 1991.

[5] M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artificial neural network (ETANN) with
10240 floating gate synapses," Proc. of IEEEINNS Inter. Joint Conf. of Neural Networks, vol. 2, pp. 191-196. 1989.

11-573

(6) C.-F. Chang. B. J. Sheu. W.-C. Fang. and J. Choi. "A trainable analog neural chip for image compression." Proc. of

IEEE Custom Integrated Circuits Conf., pp. 16.1.1-16.1.4, San Diego, CA. May 1991.

[7] P. W. Hollis and J. J. Paulos. "Artificial neural networks using MOS analog multiplier," IEEE Jour. of Solid-State

Circuits, vol. 25, pp. 849-855, June 1990.

[81 B. Boser, E. Sackinger, 1. Bromley, Y. LeCum, and L D. Jackel, "An analog neural network processor with pro-

grammable topology," IEEE Jour. of Solid-Stote Circuits, vol. 26, pp. 2017-2025. Dec. 1991.

(91 S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, "A reconfigurable VLSI neural network." IEEE Jour. of Solid-State

Circuits, vol. 27, pp. 67-81, Jan. 1992.

[101 J. Choi and B. J. Sheu, "VLSI design of compact and high-precision analog neural network processors," Proc. of

IEEEINNS Inter. Joint Conf. of Neural Networks. vol. 2. pp. 637-641. Baltimore, MD, July 1992.

(111 K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-Hill, Inc.: New

York. NY, 1993.

(121 Analog VLSI Implementation of Neural Systems, Edited by C. Mead, Mohammed Ismail, Kluwer Academic Publish-

ers: Boston, MA, 1989.

[131 B. W. Lee, H. Yang, and B. J. Sheu, "Analog floating-gate synapses for general-purpose VLSI neural computation,"

IEEE Trans. on Circuits and Systems. vol. 38, pp. 654-658. June 1991.

[141 R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley and Sons: New

York. NY. 1986.

(15] M. Banu and Y. Tsividis, "Floating voltage-controlled resistors in CMOS technology." Electronic Lett., vol. 18, pp.

678-679. 1982.

(161 C. Tomovich, "MOSIS-a gate way to silicon." IEEE Circuit and Device Mag., vol. 4, pp. 22-23, Mar. 1988.

[17] D. E. Rumelhart, J. L McClelland, and the PDP Research Group, Parallel Distributed Processing, vol. 1. The MIT

Press: Cambridge. MA, 1989. M, V V

&my of awkA fuc#&i66nOWW VS N..--- !------ ----- -- -- -...
\.

WO wIj V.

.

MO M. , Mv M

,,

.....
. ,- -...... .. MMMI

.. .. -- --- LA -,R1 " I , " I " , I " , I " .' '' '

8.0.M4 Ml

.. I M "v' I'1

V , I ," 1 U IA1 . M1 ..8 I,

Sd-(X 14141 2W 13(Y 1 4 IMO 181- 21I 2 1414 M
(k)OLA 1.YER

Fig. I Block diagram of a multi-layered neural Fig. 2 Circuit schematic of a synapse cell based

network. on the wide-range Gilbert multiplier.

20 2

Fig. 6 Measured results on the multiplication
. -2 0 2 2 operation of the synapse cell. (a)

d-leral - f 2 o Synapse current versus input voltage.
iWP ~ M -oei. ona wMag (b) Synapse current versus weight vol-

(a) (b) tage.

11-574

Fig. 3i ~ 241g A ~

sAB olpit s fon

.. m~ostage (a1 ierPurn-o-otg cnetr

Fig. 3 Circuischwemic fcuany venput heurn.miucto enrto crt

IvI

urn [seIcI

RuM, U10gh

Fig. Circuit schematic of a output neuron.

Fig 7 easredresltsof he ynase(a) Linear current-to-voltage converter
Fi.5 Snewight atinccuracyterss tioe (b) Sigmoid function generationcii.

comm on1si gn line.

experiments,~_ _per on tt ftegrudve

II-575

n 5 00I0 50 I I I

1181 Fig. Meaud rcesult of a output uron.

Fig.7 Mesurd rssof th syaps (a) Linear current-to-voltage converer

wi.5 Snewight eetincharact erss sthn (b) Sigmoid function generationcit.

Fig.e 10 Thepse intentonall adde bionemeanb

c rmnsa appear ontpo2h rudvle

5157

An Asynchronous Inter-Processor Communication Based,
Input Recycling Parallel Architecture

for Large Scale Neural Network Simulation

Myung Won Kim, Jong Moon Kim, Yoonseon Song, Youngjik Lee, and Hoon Bock Lee

Research Department, ETRI

P.O. Box 8, Taedok Science Town, Taejon, Korea

Abstract

The SIMD is currently a common architecture for neurocomputers, however, it suffers from
the limited scalability for simulating large scale neural networks in real-time. In this paper we in-
vestigate an asynchronous communication based, scalable parallel architecture called the wavefront
array processor (WAP). We compare the scalabilities of two architectures for simulating multi-layer
perceptrons. We also propose input recycling for a significant reduction of communication time
for the WAP. In addition we describe the architecture of the DNP-II, the unit processor for our
neurocomputer EMIND-TI, based on the WAP architecture.

I. Introduction

Attempts have been made to implement digital neurocomputers by means of the network of pro-
cessors (PEs) each of which perform basic functions such as multiplication, addition for synapse
computation and inter-processor communication for signal transfer between neurons[2, 3, 4, 6, 10].
This approach generally exploits a high degree of regularity and locality intrinsic to neural network
computations, which well maps into the processor network architecture. The entire computational
task of a neural network is divided into subtasks which are distributed to and executed by PEs
in parallel. It is important that neural computation often needs no complicated scheduling and
control of the subtasks. By exploiting such characteristics of neural computation, it is desirable to
implement a cost-effective neurocomputer for simulating large scale neural networks.

The current, most common parallel architectures for digital neurocomputers are the SIMD and
its variants such as systolic array. The SIMD architecture is simple and suits the regularity and
locality of neural computations. However, it lacks scalability due to clock skew and broadcasting
time constraint which prohibit from expanding the system for performance enhancement beyond a
certain limit. The clock skew is the maximum delay between the clock signals that control adjacent
PEs. It is caused by the differences in resistivity and capacitance, and the physical lengths of the
clock lines. Significantly large clock skew may cause inter-PE communication failure. In spite that
broadcasting is a common, global communication scheme of the SIMD, broadcasting time increases
as the processor array grows and it often results performance saturation. Because of such problems,
the SIMD architecture is significantly limited in scalability.

For continuous speech recognition, however, the computation speed of 109 connections per
second (CPS) and the storage of 106 connections are required. More than 1010 CPS and 109 words
of weight memory are necessary for dynamic image processing. In the future, a large size network
consisting of several tens or hundreds of thousand PEs will be required to simulate neural networks
in real-time for complex tasks such as continuous speech recognition, dynamic image processing,
and multi-modal sensory integrated recognition and control. Adaptive control applications based on
neural networks often need on-line learning for real-time adjustment of control parameters, which
requires a high performance of neural network computation. In addition, it is often the case that
training neural networks takes endurably a long time. A high performance neurocomputer is also
needed for fast training of neural networks so that, for a given problem, the user can design an
optimal architecture by way of testing various neural network architectures. In conclusion, however,

1-576

the SIMD architecture should not be efficient for simulating large-scale neural networks because of
its limited scalability.

In our research we investigate a scalable parallel architecture based on asynchronous inter-
processor communication called the wavefront array processor (WAP) for simulating large scale
neural networks. The WAP is considered a systolic array incorporated with data-driven computing.
In the WAP each PE is independently programmed and it communicates with its neighbors in an
asynchronous manner. Unlike the SIMD the wavefront array needs no global clock for controlling the
entire network of proccessors and each PE can even be clocked differently: the clock skew becomes
no longer a problem. Thus, it is possible to construct a massively parallel network consisting of
many PEs.

In this paper we describe the WAP as a scalable architecture for neural network simulation.
In Section I1, we compare the scalabilities of the SIMD and the WAP for simulating multi-layer
perceptrons. We also propose input recycling which significantly reduces the amount of inter-
processor communications for neural computation in the WAP. In Section III, we describe an
implementation of the DNP-II (Digital Neural Processor), our unit processor and the EMIND-II
(ETRI Machine Imitating NeuroDynamics), our neurocomputer based on the WAP architecture.

II. Scalability Comparison of the WAP and the SIMD

In this section we compare the scalabilities of both architectures for simulating multi-layer percep-
trons(MLPs). We consider, as a SIMD configuration, a linear ring of PEs employing the broadcast
bus and the ring bus for communication as in the CNAPS[2]. We also consider, as a WAP config-
uration, an nxn 2-D toroidal mesh of PEs each of which communicates with its four adjacent PEs
in an asynchronous manner.

For simulating a neural network, the SIMD architecture generally employs node parallelism. In
this scheme neural network nodes are distributed to and computed by PEs (a node is computed
by a single PE at a time) in parallel as input values are broadcast. Time-multiplexing is used for
computing more than one node by a PE. The outputs of nodes of a layer, in turn, are broadcast as
the input values to the next layer nodes. Different layers are computed in a time-multiplexing way.

In the WAP mapping, the weight matrix for a layer is divided into subblocks, which are dis-
tributed to PEs. Unlike the SIMD, the WAP adopts node and weight parallelism. A node is
computed by a row (column) of PEs and each PE in the row shares weighted summation for the
node. In this configuration PEs can be divided into two groups of different functions: the synapse
processors(SP) and the cell processors(CP). The SPs compute weighted sums while the CPs com-
pute the outputs of nodes. Parial weighted sums for a node computed by the SPs in a row are
accumulated to the CP in the same row, which then computes the output of the node. Each row of
PEs computes a node in parallel and more than one nodes can be computed by time-multiplexing.
The outputs of a layer computed by the CPs, in turn, are fed into the adjacent PEs for computing
the next layer. Fig. 1 shows mapping of a network layer into the SIMD and the WAP architectures
and Fig. 2 illustrates data flows for computing an MLP layer in the WAP.

2.1 Performance and Scalability

Consider a multi-layer perceptron consisting of L layers each of which has N nodes. The total
comput' ng time for the SIMD in the number of clock cycles approximately is

L-1

while the time for the WAP is

Tw = { [N-'] (t, [A] + ti) + t'n}. (2)
=1

II-577

Here, t. and t, are the unit times for computing a synapse (a multiplication followed by an addition)
in the SIMD and in the WAP, respectively. And ti' is the unit time for accumulation of partial
weighted sums of the adjacent SPs in the WAP. The last term of equation (2) is the time for a
row (column) accumulation of partial weighted sums for a node computed by SPs in a row; it is
necessary to be considered for time-multiplexing layers in the WAP. Also, n 2 = p (the number
of PEs) and [m] represents the smallest integer not less than z. We ignore the time for sigmoid
transformations for outputs because it is relatively small and we assume that pipelining is adopted
for a synapse computation including communication for both architectures. Now, we can generally
assume that

t = and , = m (3)
where ts,,m and ts,, represent the unit times for a data broadcasting and for an internal synapse
computation (the maximum of non-communication "multiply and accumulate" pipeline stages),
respectively. Similarly, t,,, and t,,, represent the unit times for a data communication and a
synapse computation in the WAP, respectively. Because of clock skew and broadcast time constraint
in the SIMD, t. depends on the size of the processor array while t, does not. Since t cmn is
proportional to the size of the SIMD array, we can have t. cm = ap, where a is determined from
chip design and fabrication factors. If we let po = t,c/a, p; specifies the number of processors of
the SIMD array for ta,c.. = ta,cP. In other words, if the size of the processor array exceeds po, t, is
determined by

t - (4)
P0

Fig. 3(a) shows the performances of the SIMD and the WAP for simulating a 3-layer perceptron
of 256 input nodes, 100 hidden nodes, and 42 output nodes, which we have designed for phoneme
recognition. Here, we have t. = 1, t, = 2, and ti' = 1, as complying with our implementation.
Fig. 3(b) illustrates the performance behavior of the SIMD and the WAP for simulating large scale
neural networks. Here, we simulate an artificial 3-layer perceptron of 1280x500x210, which is, in
the number of nodes, a five times scale-up of the phoneme recognition network. The figures clearly
show the limited scalability of the SIMD array compared to the WAP. The performance of the
SIMD reduces significantly when the size of the array exceeds p0, while that of the WAP keeps
improved as the array size grows.

Moreover, if the size of the target neural network is sufficiently large compared to the size of
the processor array, from equations (1) and (2), and [z] = x for large z, we obtain

c c
Ts !- t,- and Tw t- t.-, (5)

P P

where c is the total number of connections of the neural network. From this, we further have the
following asymptotic performance ratio p(Ts/Tw) of the WAP to the SIMD:

tL8 ifp5po and p- P ifp>po. (6)P ~a -t~p0

So far we assume the same clock rate for both architectures, however, for the WAP, we can
use a faster clock rate than that for the SIMD. Different clock rates for two architectures can be
taken into account by appropriately determining the po value. For example, reducing P0 by half is
equivalent to using for the WAP twice faster a clock rate than that for the SIMD. Fig. 5 shows
the asymtotic performance ratio when the size of the target neural network is sufficiently large and
simulation results comply with our approximation. In this simulation we use linear scale-ups of the
phoneme recognition network.

2.2 Input Recycling

Because of handshaking overhead associated with asynchronous communication, it is often the case
that a significant communication cost should be paid for computing neural networks in the WAP.
In the above we consider the WAP architecture in which each time of a synapse computation a

II-578

PE needs an input value sent from one of its adjacent PEs and it causes a significant performance
reduction of the WAP. In this section, however, we describe input recycling which significantly
reduces communication time by exploiting a characteristic of neural computation that an input
value can be used repeatedly for computing nodes by a PE. In input recycling, each PE stores a
set of input data into its separate storage called "input memory" and it recycles the data as many
times as needed for neural computation. In this way a PE can efficiently compute weighted sums
by pipelining and parallel access of the input data and the weight data. For example, if a set of
input data of length I is recycled m times by a PE, the total time for computing the weighted sum
is +t ,R + lmti,,p. The performance ratio 17 of input recycling to no input recycling is given by

=rm, where r . (7)
m + ' twcr.

For the WAP with input recycling, equation (2) is rewritten into

TW =~ {[~± (tvx EL + t') + 4,cm + 'n. 8

And we also have
P rp (9)

for sufficiently large neural networks. In Fig. 3 performance for input recycling is shown in thick
solid lines. It should be noticed that for a sufficiently large neural network the performance of the
WAP with input recycling is very dose to the best performance in dotted line (Fig. 3(b)). As we can
see, performpmce gain increases as m and r increase. In other words, input recycling is useful when
the size of the target neural network is relatively large compared to the size of the processor array.
In this case the necessary communication overhead for asynchronous communication is negligible.
Performance gain for input recycling approaches r when m is large (Fig. 4).

For implementing input recycling a PE needs only a separate memory for input storage. As we
notice in the above, since the performance for input recycling is independent of the size of input
data, the input memory not necessarily be large.

So far, we have discussed feed-forward computation of MLPs. EBP training generally consists
of three, connection involved, most time-consuming stages: forward recall, error back-propagation,
and weight updates. In the SIMD, error back-propagation is executed using the ring bus, which
implements the transpose of the weight matrix. In the WAP, error back-propagation is similar to
forward recall except data flow direction reversed. Weight updates executed in a similar way to
synapse computation in both architectures. Considering these, we still have the similar performance
and scalability behaviors for both architectures.

For simulating other neural network models, we also have a similar scalability characteristic
to that of MLPs. For example, as far as we are concerned with performance, we can consider a
Hopfield network as a 2-layer perceptron with the same number of input and output nodes.

III. Implementation

3.1 DNP-II

DSPs and transputers have been used as the PEs for neural network simulators. Such processors
should not necessarily be cost-effective for computing neural networks because they are originally
designed for different types of computational tasks from neural computation. It is highly desirable
to design a processor well tailored to neural processing. Processor architectures for digital neural
processing have been implemented or proposed including the X1 of Adaptive Solutions[2], the MA-
16 of Siemens[8], and the SPERT of the University of California at Berkeley[9]. However, they are
all processors for the SIMD (or systolic) architecture.

II-579

The DNP-II is a unit processor for our WAP neurocomputer; it is the second generation of
the DNP which has been designed for our first neurocomputer EMIND[51. The DNP-II is consid-
ered similar to the DSP in architecture and function, however, its functions are simpler and more
tailored to neural computation than the DSP. It also facilitates efficient asynchronous communi-
cation exploiting the regularity and locality of neural computation. Its key features include: 1)
40 MHz operating clock; 2) a 16x16 bit parallel pipelined multiplier; 3) four-way 16 bit parallel,
asynchronous communication; 4) 256 words(16 bits a word) of program memory; 5) 128 words of
input memory; 6) 512 words of weight memory. It is also devised with instruction prefetch and
subroutine call capability. Fig. 6 shows an overall architecture of DNP-II. It consists of four major
functional blocks: 1) memory block, 2) control block, 3) arithmetic block, and 4) 1/0 interface
block. The memory block consists of 512 words of data memory and 128 words of input memory.
The data memory is used for storing weights, intermediate results, tables, and initial parameters. It
also has an adder for address generation for flexible data access. There is a separate register(ICR)
containing four sets of increments/decrements for address generation. Each instruction involving
memory access needs to specify one of these sets. The input memory is used to temporarily store
data read in through the communication channel for recycling them.

The control block consists of a separate program memory of 256 words of 16 bits and an instruc-
tion decoder. It contains a counter which specifies the number of repetitions to execute repeatable
instructions. The arithmetic block consists of a multiplier, an arithmetic/logic unit(ALU), and
general purpose registers. The ALU performs addition, subtraction, shifting, and bitwise logic
functions. The communication block consists of four asynchronous parallel I/O communication
units. The block also has a special register(IOPR) which contains four pairs of I/O port numbers.
Each instruction involving I/O communication should specify one of these pairs.

The DNP-II takes a single clock cycle for executing most instructions but two clock cycles
for I/O communication. The instruction set of the DNP-II is optimized for various neural network
models and learning algorithms. The instructions are largely of the RISC type except a few pipeline
instructions. The DNP-II operates basically in 16 bits for arithmetic and logic operations. The
two-stage pipeline multiplier produces a 16 bit product of two 16 bit, fixed-point integers. It also
has a three-stage pipelined instruction of "multiply and accumulate" which multiplies an input
value from the input memory and a from the weight memory, then accumulate the result into the
accumulator.

3.2 DNP-II Array Architecture

The DNP-II array as the parallel architecture for our neurocomputer EMIND-II, consists of 1024
DNP-1I interconnected in a 2-D toroidal mesh. It corresponds to the maximum 512K connection
weights and the peak performance is estimated to be 40 GCPS.

The whole array is composed of four boards each of which mounts 256 DNP-IIs (equivalently,
8x8 DNP-fl chips). It is like the whole 2-D array four-folded. In this case connections between
boards are important because inter-board latency may cause a significant communication overhead
and optical interconnection is considered for the problem. The DNP-II array board, in turn, will
be connected to a host computer via a data interface which provides efficient data transfer to and
from the host. One of the useful features of our architecture is the capability of parallel memory
loading. When data are loaded into the array, data are written into columns (rows) of PEs in
parallel, like a high bandwidth memory with multiple buses. According to our estimation it takes
0.8 ms to load 512K words, the entire memory capacity of the DNP-II array. This allows simulation
of neural networks exceeding the array memory capacity.

We are currently undertaking revision of our first design of the DNP-II to incorporate input
recycling. We plan to integrate four DNP-IIs into a chip, using 0.811 CMOS standard cell technology.
According to our plan, fabrication of the DNP-II chip will be completed in April, 1994 and the
EMIND-II system will be completed in October, 1994.

11-580

VI. Conclusions

Computing neural networks for real world problems which involves voluminous, noisy, and ambigu-
ous data needs a massively parallel architecture of 104 _ 106 PEs at the speed of hundreds of billion
connections per second. However, the network of processors of such a size may cause various prob-
lems such as clock skew, broadcasting time constraint, power dissipation, interconnection latency,
and low utilization.

In this paper we describe a wavefront array processor architecture for real-time simulation of
large scale neural networks. We have shown that the WAP exhibits a high degree of scalability.
We also have proposed input recycling for a significant reduction of communication time. In
addition, the WAP has a great flexibility for mapping neural networks, which often results enhanced
performance. Fujimoto, et al. has proposed a parallel architecture similar to ours and a load
balancing algorithm for almost linear speed-up with the number of PEs[1].

Further investigation should be made to develop a more efficient communication structure such
as a tree of WAPs. The WAP architecture integration using the WSI technology, would provide a
cost-effective solution to the problems of the SIMD, currently a common neurocomputer architec-
ture.

References

[1] Yoshiji Fujimoto, Naoyuki Fukuda, and Toshio Akabane, Massively parallel architecture for
large scale neural network simulations, IEEE Transactions on Neural Networks, Vol. 3, No. 6,
pp. 876-888, Nov. 1992.

[2] Dan Hammerstrom, A VLSI architecture for high-performance, low-cost, on-chip learning Proc.
of IJCNN, Washington, DC, Vol. 2, pp. 537-544, 1990.

[3] A. Hiraiwa, et al., A two level pipeline RISC processor array for ANN, Proc. of IJCNN,
Washington, DC, Vol. 2, pp. 137-140, 1990.

[4] H. Kato, et al., A parallel neurocomputer architecture towards billion connection updates per
second, Proc. of IJCNN, Washington, DC, Vol. 2, pp. 47-50, 1990.

[5] Myung Won Kim, et al., E-MIND: An implementation of a digital neurocomputer and its
application to handwritten digit recognition, Proc. of IJCNN, Beijing, Vol. III, pp. 258-263,
1992.

[6] J. R. Nicholls, The design of the MasPar MP-1: A cost effective massively parallel computer,
Proc. of COMPCON Spring 90, San Francisco, pp. 25-28, 1990.

[7] Tomas Nordstrom and Bertil Svensson, Using and designing massively parallel computers for
artificial neural networks, Journal of Parallel and Distributed Computing 14, pp. 260-285, 1992.

[8] Ulrich Ramacher, SYNAPSE - a neurocomputer that synthesizes neural algorithms on a par-
allel systolic engine, Journal of Parallel and Distributed Computing 14, pp. 306-318, 1992.

[9] J. Wawrzynek, K. Asanovic, and N. Morgan, The design of a neuro-microprocessor, IEEE
Transactions on Neural Networks, Vol. 4, No. 3, pp. 394-399, 1993.

[10] Moritoshi Yasunaga, et al., A self-learning neural network composed of 1152 digital neurons
in wafer-scale LSIs, Proc. of IJCNN, Singapore, Vol. 3, pp. 1844-1849, 1991.

11-581

i4
~~.....................

(a) IMD(b) WAP (2-D torus)

Fig 1: Pardle Architectures anld MLP layer mapping

-.T . .ime (No. of cycles)

hnput - WAP :no in ut yl1

propagation i1000 ' -- WAP : inp9 r"c :cling /= 5800-....... C/P ..

weighted 1: Pl 256 0= 29, 0
e summatio 400 ..P 0 512

200 ".. P0 = 1,024

.p . 1400 ., . .. , ,.

[] SP 7 CPNo. of PEa

Fig. 2. Data Flow for an MLP Layer (a)
int W WAP:no iut yc g

"" 15000 WAP inp r li i

4:: 1 00 IH=0(

0=21 P0 512

2 r=2 5~00 *j 0
inpu 0

100 1000 10000

0 No. of PEa

0 10 20 30 40No. of recycles (in) (b)

Fig. 4: Input Recycling Efficiency Fig. 3: Performance Comparison

11-582

•~~~W inputa I I

Performance ratio (p =Ta/T. : input recycling) Performance ratio (p =T./T.,,: input recycling)

5 .. 18Ps5 ... 128 PEa
4 256P~s- 256 PEs

41
-~ 512 PEs

3 104Ps3 1024 Es

2 P -- 102_ 2Po 256

10 1 1 1,0 L_ I I I I _ II I I 1 1111 1 1 1 f[1

10410 106 Wo 104 105 10610
No. of connections No. of connection.

(a) (0)
Performance ratio (p =TaI T.: input recycl ing) Performance ratio (p =T./T., : no input recycling)

128 PEs
-5

256Ps
-52PEO
- 04PE

Ao 512 P 1

2 W-2

104 105 106, 107 104 105 106 107
No. of connections No. of connections

(b) (d)

Fig. 5: Performance Ratio Comparison

~memory

Fig 6 DP-I R ectur

fil -583CR

Placing Feedforward Neural Networks
Among Several Circuit Complexity Classes ®

Valeriu Beiut '*, Jan A. Peperstraete t , Joos Vandewalle t and

Rudy Lauwereins
t 'a

t Katholieke Uiversiteit Leuven, Department of Electrical Engineering, Division ESAT
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

on leave of absence from "Politehnica" University of Bucharest, Computer Science Department
Spi. Independentei 313, 77206 Bucharest, Romhnia

Abstact - This paper examines the circuit complexity of feeforward neural networks having sig-
moid activation function. The starting point is the complexity class NW defined in [18). First two
additional complexity classes NP4, and itNl4. having less restrictive conditions (than NM") concerning
fan-in and accuracy are defined. We then prove several relations among these three classes and well
established circuit complexity classes. All the proofs are constructive as being built around binary
adders. By relaxing the fan-in condition from logarithmic [18) to (almost) polynomial, the results
show that substantially larger classes of sigmoid activation feedforward neural networks can be
implemented in polynomial size Boolean circuits. This is done on the expense of a logarithmic factor
increase in the number of layers, but having constant fan-in (of 2). The main conclusion is that there
are interesting fan-in dependent depth-size tradeoffs when trying to digitally implement sigmoid
activation neural networks.

Keywords - neural networks, threshold gate circuits, Boolean circuits, circuit complexity.

1. Introduction
In this paper a network will be considered an acyclic graph. It has several input nodes (inputs) and some (at least
one) output nodes (outputs). The nodes of the network are characterized by fan-in (the number of incoming edges)
and fan-out (the number of outgoing edges), while the network has a certain size (the number of nodes) and depth
(the number of edges on the longest input to output path). If with each edge a synaptic weight is associated and
each node computes the weighted sum of its inputs to which a nonlinear activation function is then applied (artificial
neuron), the network is a neural network (NN). A particular case which has been intensively studied is represented
by the threshold activation function; now the artificial neurons are in fact threshold gates (TGs), while the neural
network is nothing else than a threshold gate circuit (TGC). Similarly, a Boolean circuit (BC) is a network of
gates implementing elementary Boolean functions (BFs).

The paper starts by presenting known circuit complexity results and also by defining two new complexity classes
for NNs in Section 2. Two lemmas about adding m words of 0 bits, one for BCs and the other one for TGCs
are proved in Section 3. These results are used in Section 4 to determine relations among the two newly defined
NN complexity classes on one hand, and several of the complexity classes which have also been mentioned, on
the other hand. The main idea of these proofs is to replace the third conversion step (from (181) by one of the
"tree of adders" defined in Section 3. Several conclusions and open question end the paper.

a This research work was partly carried out in the framework of a Concerted Research Action of the Flemish Community,
entitled: "Applible Neural Networks' The scientific responsibility is assumed by the authors.

@ Senior Research Associate of the Belgian National Fund for Scientific Research.

11-584

2. Circuit Complexity

The circuit complexity of a function is the size complexity of the family of minimal BCs, or TGCs, that compute
that function of n inputs [23, 24]. Several well known classes are:

" AC (Nd) represents the class of BFs computed by BCs of polynomial size AND and OR unbounded (constant)
fan-in gates and depth 0 (logkn);

" Tt represents the family of BFs realized by polynomial size TGCs with unbounded fan-in and depth limited
by0 (logkn);

" LT, (LY,) is the class of BFs computed by polynomial size TGCs with arbitrary real weights (bounded by
a polynomial in the number of inputs n) and depth k [8, 191;

" MA is the class of BFs computed by polynomial size, depth k circuits of MAJORITY gates (TGs having
± I weights) [2, 15]; clearly MAJk c L6/, (is a subclass of L /k).

While many results concerning TGCs have been lately discovered or improved [8, 9, 19, 201 and their complexity
discussed [2, 5, 15, 17, 26], little is known for the case of sigmoid activation functions. For placing NNs in the
context of BC complexity the class NNAk has been defined [18] to be those BFs "which can be computed by a
family of polynomially sized neural networks with weighls and activation values determined to b bits of accuracy,
fan-in equal to A and depth h, satisfp ing log(A)= 0 (41-ogn), b logA = 0 (logn) and h logA = 0 (logkn)" ' and:

Nd c: NM ; Ad (1)

has been proven. If NCt c NW follows easily by directly converting the AND and OR gates to equivalent TGs,
the second part NM' cAC is proven in three steps (see [18] for more details):

* negative weights are eliminated, increasing the size by at most a factor of 2;
• the NN with positive weights is converted to a TGC by taking 2b copies of each node; it has the same

bdepth, the size and the fan-in being increased by 2 , while the accuracy has been doubled 2b;
o using techniques of communication complexity [121, the conversion of a linear TG to an equivalent BC,

having depth 21ogA, fan-in 2 + 1o5A and size at most 2Ab + 1o&& + I, is performed.
The overall result is that a NN of size N, depth h, maximum fan-in A and accuracy of b bits can be converted
to an equivalent BC with depth h (21ogA+ 1), fan-in 22b +IgA and size 2. N- 2 b . (2 A)2b+ IogA+ I at most.

Relaxing the fan-in and the accuracy condition, we define:
• NN is the family of polynomial size NNs (N = 0 fpoly(n)]) and depth h = 0 (logkn) which has polynomial

fan-in (A = 0 [poly(n)]) and logarithmic accuracy b = 0 (logn);
o NW., is the family of polynomial size NNs and depth h = 0 (log n) which satisfies slightly more restricting

conditions for fan-in and accuracy: logA = 0 (log1-cn) and b = 0 (log1-6n) for e > 0 a small constant.
Due to the imposed restrictions on fan-in and accuracy the following holds:

NM C NN. c NNA. (2)

For proving relations with other complexity classes we shall use the first two steps from [18], but change the
third step by using plain addition to replace the TGs, thus making the proofs constructive.

3. ADDITION

Some of the adders build of AND-OR bounded fan-in logic gates have (we use delay instead of depth, and gates
instead of size, like in the original articles):

" 2n-1 delay and 5n-3 gates (school method);
" 4logn delay and 35n-6 gates (carry-lookahead adders [101);
" 4logn delay and 14n-logn-10 gates [7];
" 3logn delay and 3nlogn+12.5n-8 gates (conditional sum adders [13]);
" (2+e)iogn delay and (2+e)nlogn+5n gates [251;
" 2logn+l delay and 3nlogn+lOn-6 gates (conditional sum adder [24]);
" 2logn delay and 2.5nlogn+5n-I gates [13];
" 21ogn+2k+2 delay and n (8+ 6/ 2k) gates (prefix algorithms [14]);

for 0 kJ1ou
* logn+7421ogn+16 delay and 9n gates (Krapchenko [24]).

1-585

Lemma I Adding m words of (3 bits each can be done by a fan-in 2 BC having size 0 (m(3) and depth
0 [logm Oog (+ loglogm).

Proof We use a binary tree of adders having size 0 ((3) and depth 0 (logo): m12 adders of size 4 and
depth pIlogo, in the first layer, followed by m/4 adders of size X(03+1) and depth gtlog(I1) in the
second layer and so on until the last (the logm) layer having one adder of size X((+logm--I) and
depth glog(o+logm-l). Here X and pt are constants depending on the adder one has chosen (e.g.
X = 14 and g± = 4 for the Brent and Kung adder [71). By computing the size we have:

logra
iogm I ogm

size (m,3) = Xno -+ + 1 I
i=1 2=1 i=1 2

logm (logm log m 2i-i= Xno m - Ip +- . Ain,-I.: X(1)+ - M
i=2 Ij=i i=M

= o(m - 1) + Xn m -login - 1 0 (Om). (3)
m

The depth is:

log(Xo =

depth(m,o) = g log(+ i- 1) < g logo + (logo3+ logo =

logm-I

= wlogologm + 4 logi = A.log 3logm + wlog[(logm-)!]
i=1I

and using Stirling's formulak! 2k-T-@(k/e) e (where 0 0<1):

depth(m,o) < Wogplogm + glog [e2ltlogm (lo= e l -

= glog(3logm + R log21rjloglogm + logm(loglogmr-loge) + loge

= 0 [logm(logo3 + loglogm)]. (4)

which concludes the proof.

Based on the knowledge that: (i) at least on the order of K2 TGs of fan-in 2 are needed to replace one fan-in
K TG [11, and (ii) the needed accuracy for the weights of a fan-in K TG is on the order of KlogK bits [11, 16],
we can take m = K and 3 = Klog/T, which makes the size 0 (K21ogK), being just a logarithmic factor larger than
the theoretical lower bound Q (K2) [1].

Lemma 2 Adding m words of (3 bits each can be done by a fan-in A TGC having:

size (m,) = o(loem (logo + I0a9") and depth (m,o) = login (logo + loglogm)
ogA logA "

Proof The proof is based on a TG adder [5, 61 of size 0 ((3log3/ logA) and depth 0 (logo/ logA). It has
been shown that for A 0 O9gkn) the weights are polynomially bounded (i.e. the TGC belongs to
Liok&,og) [5]; for A > 0 (logkn) the weights are unbounded (superpolynomial or exponential). Theproof follows the line of Lemma 1 by building a tree of TG adders:

11-586

login login- I

size (m,3) X O(+i- 1)log(I+i- 1) <~- (0b-+)0jlogo + i<
logA logA 1 O

(opo2M + log3M 0 (lOX2M (logo3 + log"~)()
logA (o~I~ 30 logA

The depth is computed as in equation (4):

log(O + i - 1) =_0logm (logo + loglogm) (6)
depth(m,) = logIA 0 1 ogA

which concludes the proof.

4. Neural Network Conversion

As a linear threshold gate does in fact a summation of (some of) the incoming weights, such adders, having fan-in
m=2 bA and accuracy 0 = 2b, can be used in the third step of the conversion from [181.

Theorem I NN' { c MA & + 2 c(7)SNC~ z (7

Proof We use Lemma 1 to convert the TGC resulting after applying the first two steps of the conversion
[181. The TGC has size 2. N- 2 b, depth h, maximum fan-in 2b . A and accuracy of 2b bits. The
equivalent fan-in 2 BC will have size at most (see equation (3)):

2.N- 2 b.x[2b2bA - 2b + 2bA - Iog(2bA) - 11< X.N22b+l A(2b+ 1). (8)

Taking logarithms of equation (8), we can see that the BC is polynomially sized:

logN + 2b + logA + log(2b+l) ++ I O (logn) (9)

if the conditions of NN are met: N = 0 [poly(n), A = 0 [poly(n)] and b = 0 (logn). The depth of
this BC is (see equation (4)):

h .t [log(2b)log(2bA) + log(2bA) loglog(2bA) +...] (10)

which for the same conditions makes the parenthesis 0 (logn loglogn). As h = (log n) we have
the proof that the depth is 0 Oogk+2n). .
This proves that NN, c MAJIog* and NNa c NC +2.

Theorem 2 NNk c NCA1+1(11)

Proof The beginning of the proof is identical with the proof of Theorem 1. The size of the equivalent
BC will still be polynomial (equation (9)), but due to the more restrictive conditions imposed by
NN the parenthesis from equation (10) will be bounded by 0 (log'-En loglogn), which proves that
the depth of the BC is only 0 (log k+ n).
The result that NNk c MAJIO,". and NW.. c Ndk' follows. U

Theorem 3 NN4 c L (12)

Proof We use Lemma 2 with A 0 (logkn) (the weights being polynomially bounded). The size of the
resulting TGC is (see equation (5)).

11-587

2-N-2 b. (b +logA) 2 logb +~ (b + loA)3] X XN2 2b+' (b +logA)2(logb + 'ORA J(13)

Iog I 6b I b

By taking logarithms and considering A = 0 logkn) the previous equation becomes:

logN + 2b + 21og(b + kloglogn) + log (logb + kloglogn (14)

showing that the size is polynomially bounded if b = 0 (logn). The next step is to compute the
depth of this TGC (see equations (4), (6) and (10)):

h log(2bA) log(2b) + log(2bA) loglog(2bA) + hg (b + logA) [logb + log(b + logA)] (15)
logA logA

which for A = logn and b = 0 (logn) makes the fraction 0 (lop).
The weights being polynomially bounded the claim NNd c L, +'n follows (h = 0 (logkn)). U

Theorem 4 Nk, c LT,.-

Proof From Theorem 3 we know that the size is polynomially bounded (equation (14)) for b = (logn).
If now A = 0 (n) the depth from equation (15) will be bounded by 0 (loglogn).
Now the weights are no more bounded so NN, c LT.,-

Putting all these results together and adding some others already known or considered obvious, the following

tree of inclusions is obtained:

gACk (16)

CTC

NC k l c NC +2

U U

N& c NNk c NNL {C:TIoe NN! c

c N~

r) r)
MAJ '. c MAJorg+2

.9n C &og n

5. Conclusions
The paper has examined the circuit complexity of feedforward neural networks and presented a constructive proof
on the lines of [18], by relaxing the logarithmic fan-in condition to a polynomial (or almost polynomial) fan-in
one. The class of sigmoid activation feedforward neural networks which can be implemented in polynomial size
Boolean circuits is thus substantially enlarged, on the expense of more layers, but with a constant fan-in of 2.

It can be observed that there are interesting fan-in dependent depth-size tradeoffs when trying to digitally implement
sigmoid NNs (see also [22]) which should be related to the depth-size tradeoffs TGCs [3, 4, 5, 21].

Still many questions remain open:
" Is it possible to constructively reach the Q (K2) lower bound from [1], or to lower the 0 (K2logK) size of

the tree of adders? This would improve our results by lowering the depth of the circuits.
" Are there any other ways to lower the depth?
" Can the results for BCs be improved by increasing the fan-in? All the results for BCs have been obtained

with gates having the fan-in just 2.

11-588

References

[1] Y. Abu-Mostafa "Complexity in Neural Systems". In C.A. Mead Analog VLSI and Neural Systems,
Addison Wesley, Reading, 353-358, 1989.

[21 A. Albrecht "On Bounded-Depth Threshold Circuits for Pattern Functions". Proc. ICANN'92 (Brighton,
UK), Elsevier Science, Amsterdam, 135-!38, September 1992.

[31 V. Beiu, J.A. Pepersbraete, J. Vandewalle, and R. Lauwereins "Efficient Decomposition of COMPARISON
and Its Applications". Proc. ESANN'93 (Brussels, Belgium), Dfacto, Brussels, 45-50, April 1993.

[41 V. Beiu, J.A. Peperstraete, J. Vandewalle, and R. Lauwereins "Overview of Some Efficient Threshold
Gate Decomposition Algorithms". Proc. CSCS'93 (Bucharest, Rom"nia), vol. 1, 458-469, May 1993.

[5] V. Beiu, J.A. Peperstraete, J. Vandewalle, and R. Lauwereins "Area-Time Performances of Some Neural
Computations". Submitted for publication.

[6] V. Beiu, J.A. Peperslraete, J. Vandewalle, and R. Lauwereins "Optimal Parallel ADDITION Means Constant
Fan-In Threshold Gates". Submitted for publication.

[7] R.P. Brent, and H.T. Kung "A Regular Layout for Parallel Adders". IEEE Trans. Comp., C-31(3),
260-264, 1982.

[8] J. Bruck "Harmonic Analysis of Polynomial Threshold Functions". SIAM J. on Disc. Math., 3(2), 168-177,
1990.

[9] J. Bruck, and R. Smolensky "Polynomial Threshold Functions, AC0 Functions and Spectral Norms". SIAM
J. Comput., 21(l), 33-42, 1992.

[10] P.K. Chang, M.D.F. Schlag, C.D. Thomborson, and V.G. Oklobdzija "Delay Optimization of Carry-Skip
Adders and Block Carry-Lookahead Adders Using Multidimensional Programing". IEEE Trans. on Comp.,
C-41(8), 920-930, 1992.

[11] J. Hong "On Connectionist Models". Tech. Rep. 87-012, Dept. CS, Univ. of Chicago, 1987.
[12] M. Karchmer, and A. Widgerson "Monotone Circuits for Connectivity Require Super-Logarithmic Depth".

Proc. ACM Symp. on Theory of Computing, 20, 539-550, 1988.
[13] T.P. Kelliher, R.M. Owens, MJ. Irwin, and T.-T. Hwang "ELM A Fast Addition Algorithm Discovered

by a Program". IEEE Trans. on Comp., C-41(9), 1181-1184, 1992.
[14] R.E. Ladner, and MJ. Fischer "Parallel Prefix Computations". J. ACM, 27(4), 831-838, 1980.
[15] E. Mayoraz "On the Power of Networks of Majority Functions". Proc. IWANN'91 (Grenade, Spain),

Springer-Verlag, 78-85, June 1991.
[16] P. Raghavan "Learning in Threshold Networks: A Computational Model and Applications". Tech. Rep.

RC-13859, IBM Research, 1988.
[17] V.P. Roychowdhury, K.-Y. Siu, A. Orlitsky, and T. Kailath "On the Circuit Complexity of Neural

Networks". Proc. NIPS'90 (Denver, USA), Morgan Kaufmann, San Mateo, 953-959, 1991.
[18] 3.S. Shawe-Taylor, M.H.G. Anthony, and W. Kern "Classes of Feedforward Neural Nets and Their Circuit

Complexity". Neural Networks, 5(6), 971-977, 1992.
[19] K.-Y. Siu, and J. Bruck "Neural Computation of Arithmetic Functions". Proc. IEEE, 78(10), 1669-1675,

1990.
[20] K.-Y. Siu, and J. Bruck "On the Power of Threshold Circuits with Small Weights". SIAM J. on Disc.

Math., 4(3), 423-435, 1991.
[21] K.-Y. Siu, V. Roychowdhury, and T. Kailath "Depth-Size Tradeoffs for Neural Computations". IEEE

Trans. on Comp., C-40(12), 1402-1412, 1991.
[22] K.-Y. Siu "On the Complexity of Neural Networks with Sigmoid Units". Proc. IEEE-SP Workshop

NNSP-92 (Helsingoer, Denmark), IEEE Press, 23-28, August 1992.
[231 R. Smolensky "Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity".

Proc. ACM Symp. on Theory of Computing, 19, 77-82, 1987.
[241 I. Wegener The Complexity of Boolean Functions. Wiley-Teubner, Chichester, 1987.
[251 B.W.Y. Wei, and C.D. Thompson "Area-Time Optimal Adder Design". IEEE Trans. on Comp., C-39(5),

666-675, 1990.
[261 R.C. Williamson "e-Entropy and the Complexity of Feedforward Neural Networks". Proc. NIPS'90 (Denver,

USA), Morgan Kaufmann, San Mateo, 946-952, 1991.

11-589

On the Design of an MIMD
Neural Network Processor

R. Saeks and K. Priddy K. Schnieder S. Stowell
Accurate Automation Corp. Telebyte Technologies Inc. I.D.E.A.
7001 Shallowford Rd. 270 E. Pulaski Rd. 520 Main St., Ste. 104
Chattanooga, TN 37421 Greenlawn, NY 11740 Waltham, MA 02154

Abstract

The design of a unique MIMD Neural Network Processor is described. The MIMD parallel
processing architecture chosen facilitates the implementation of a wide variety of neural
network paradigms with maximum efficiency. This efficiency is achieved by using an
instruction set which is optimized for neural network processing allowing one to compute
a neuron activation without arranging the weight matrix into linear arrays and/or inserting
"artificial zero weighted connections", using an MIMD parallel processing architecture to
permit neurons with totally different input topologies to be updated simultaneously without
loss of efficiency, and using dual neuron memories to virtually eliminate memory contention
and maintain absolute memory coherence.

1 INTRODUCTION
Although a myriad of neural network applications ranging from financial analysis to signal
processing and robotics have been demonstrated neural network hardware designs have been
aimed almost exclusively at image and speech processing applications [Carson, 1993; Chiang,
1993; Faggin and Meade, 1990; Lazzaro and Meade, 1991; Lyon and Meade, 1988; Meade,
1989; Owechko and Soffer, 1990 & 1993] typically assuming a classical SIMD matrix / vector
multiplication architecture [Hammerstrom, 1990; May, 1989; Morton, 1991; Rudnick and
Hammerstrom, 1989] a dedicated two dimensional multilevel feedforward neural network
architecture, or an analog implementation [Holler, 1989; Kub 1991] The purpose of the
present paper is to outline an alternative MIMD Neural Network Processor architecture
which was designed to implement a wide variety neural network paradigms; including Hopfield
and recurrent networks, functional links, and feedforward networks with sparse and / or non-
uniform topologies; with the maximum efficiency in either a single processor and multiprocessor
environment.

To achieve the desired efficiency we have adopted a design which:
+ uses an instruction set which is optimized for neural network processing allowing one

to compute a neuron activation without arranging the weight matrix into linear arrays
and/or inserting "artificial zero weighted connections",

+ uses an MIMD (multiple instruction multiple data) parallel processing architecture to
permit neurons with totally different input topologies to be updated simultaneously
without loss of efficiency, and

+ uses dual neuron memories to virtually eliminate memory contention and maintain
absolute memory coherence.

11-590

This architecture allows us to implement a relatively simple single processor NNP module
stringing together multiple NNP modules along a dedicated Interprocessor Bus with
computational power (and cost) increasing "almost" linearly with the number of modules.

This architecture facilitates the design of a Neural Network Processor which:
+ can implement multiple interconnected neural networks of differing architecture

simultaneously using 16 bit twos complement binary fixed point arithmetic with up to
8k total neurons and 32k connection weights per module, and

+ is capable of running at 133,000,000 to 160,000,000 connections (byte wide multiply
/ additions) per second per module for a total of a billion plus connections per
second In an 8 processor array,

Each processor in an NNP array is controlled by a separate program written in a "RISC-like"
instruction set supported by a complete software development system including a dedicated
"neural network assembly language".

2 FUNCTIONAL OVERVIEW
2.1 Single Processor Operation
A simplified schematic diagram of the MIMD Neural Network Processor is shown in Figure
1. The key functional components are the 32k by 16 bit Program and Weight Memories (PM

Interproceosor Bus

Figu I r 2..-Schemati Diara of~ 35 M I NerlNtokPoesr

I "--- - I I -- umuigt-r

a~~~6 xllmC lobd

and WM), the 64k by 16 bit Function Memory (FM), the 16k by 16 bit dual ported Neuron
Memory (NM), and the Multiplier/Accumulator (MAC). During normal processor operation

the PM and WM are configured as a single 32k by 32 bit Program / Weight Memory or PWM,

II-591

.. . .~~3 W' Acwk L IIIIi

the NM is linearly subdivided into an 8k neuron memory, and an 8k buffer memory, while the
FM is linearly subdivided into 4 16k function memories used to store neuron transfer
functions.

The instruction set for the processor is made up 4 arithmetic instructions; three multiply /
accumulate instructions used to compute neuron activations, an instruction to pass a neuron
activation (stored in the accumulator) through a transfer function and store the resultant
neuron value; and 5 control instructions.

The most commonly used instructions are the multiply / accumulate instructions which
multiply a neuron value, a1, by a connection weight, wiu (or the neuron value, ak, fetched by
the previous instruction). Since a neural network connection weight is fixed while a neuron
value is a variable w, is included in the multiple / accumulate instructions in immediate form
while a, is indirectly addressed by including its address in the NM's neuron memory in the
instruction. The connection weight is passed directly to the MAC (with an appropriate
delay) while the neuron value is fetched from the NM and then passed to the MAC. The
MAC then computes the product of the weight and the neuron value and adds the result
to the accumulator (with or without first clearing the accumulator) to obtain the desired
neuron activation.

The multiply / accumulate instructions are pipelined over ten clock cycles with a new instruction
executed each clock cycle. As such, once the pipeline is filled an n term neuron activation
may be computed in n clock cycles.
* In the first 3 clock cycle the instruction is fetched from the program / weight memory

and decoded.
* In the 4th, 5th and 6th clock cycles the required neuron value is fetched from the

neuron memory while the connection weight is held in a buffer.
* Finally, in the last 4 clock cycles the product is computed and pipelined through the

MAC with the result added to the accumulator.

It is instructive to compare the type of multiply / accumulate operation used in the MIMD
processor with that used in a typical matrix / vector multiplier. Rather, than including the
connection weight and neuron value address in the instruction such architectures typically
set pointers to the location of the desired weight and neuron value and then execute an
instruction which pipelines a sequence of multiply / accumulate instructions using sequentially
stored weights and neuron values. Although this is ideal for multiplying a full matrix by a
vector, computing a Fourier Transform, or convolution, in the case of a neural network if
there is any topological non-uniformity one typically must insert artiftcial "zero weighted
connections" to fill-in the gaps in the stored weight sequence. This, in turn, results in wasted
multiplications by zero with its associated reduction in processor efficiency. Indeed, the
problem is further exacerbated when one desires to compute several neuron activations in
parallel and must fill-in enough zeros to produce a rectangular weight array. To the contrary
with our indirect addressing architecture one can deal with arbitrarily interconnected networks
without loss of efficiency or pipeline interruptions, even in a parallel processing environment.

U-592

Our remaining arithmetic instruction is used to pass a neuron activation stored in the
accumulator through a transfer function and store the result in the NM's buffer memory. The
instruction includes the address where the resultant neuron value is to be stored and the
number of the desired transfer function stored in the FM and is pipelined over eight clock
cycles.
* In the first 3 clock cycle the instruction is fetched from the program / weight memory

and decoded.
* In the 4th, 5th and 6th clock cycles the address of the new neuron value is computed

and fetched from the function memory while the storage address is loaded into the
FIFO.

* Finally, in the last 2 clock cycles the new neuron value is loaded into the FIFO..

Note, for single processor operation the FIFO is extraneous and simply loads the new
neuron value into the buffer memory. The FIFO is, however, required in a multirocessor
configuration where it holds the neuron value until it can obtain access to the Interprocessor
Bus (IB) after which it loads the neuron value into the specified address in the buffer
memories of all modules on the bus simultaneously. In either case the FIFO outputs the
neuron value to the buffer memory (memories) asynchronously and this data is not required
by any other instructions until the memory interchange / synchronization (inbm) instruction
is executed (usual after all of the neuron values on a given level have been evaluated). As
such, the fact that the pipeline for the "load buffer..." is shorter than that of the multiply/
accumulate instructions does not introduce any pipeline delays.

Finally, it is instructive to comment on the role of the buffer memory. In a single processor
environm-nt its role is to guarantee that the neuron values in the neuron memory are not
changed until all neurons have been updated. Although this normally does not cause a
problem in a feedforward network in a recurrent network the original value of a neuron
value may still be required to update additional neurons after its own neuron value has been
updated. As such, one stores the new neuron value in the buffer memory until all neurons
have been updated and then executes an instruction which interchanges the neuron and buffer
memories after which the next iteration of the process is initiated using the new neuron
values. Moreover, in the multiprocessor case this process guarantees that the local neuron
memories in each processor will remain perfectly coherent; i.e., be identical at all times.

In addition to the arithmetic instructions the MIMD Neural Network Processor has 5 control
instructions for looping, terminating a program, etc. I/0 is handled externally via the
Interprocessor Bus by a "partial I/O processor" or off-line via the Memory Bus MB.

2.2 Multiprocessor Operation
The key to running the MIMD Neural Network Processor in a multiprocessor mode is the
FIFO and buffer memories. First one must initialize all processors with identical neuron
memories and buffer memories. Then the processors run autonomously each with their own
programming and weight set, reading neuron values from their local neuron memory which
is guaranteed to remain coherent with the other processors since it operates in a read-only

II-593

mode. When any processor updates a neuron value it is loaded into its FIFO which requests
access to the Interprocessor Bus and loads the new neuron value into all of the buffer
memories simultaneously via their second port. As such, the buffer memories remain coherent
at all times.

The only point in the process where the parallel NNP's have to wait for each other is when
an iteration has been completed or a neural network layer updated and an instruction to
interchange the neuron and buffer memories is executed. In this case, to guarantee coherency;
i.e., that all processors operate on the same data; each processor must wait until all processors
have executed an interchange instruction at which point the buffer and neuron memories in
all processors are interchanged simultaneously.

3 Instruction Set
The MIMD Neural Network Processor has 9 instructions, each coded into a 32 bit words
stored in the Program / Weight Memory. These include 4 arithmetic instructions for
computing the required activations and neuron values and 5 control instructions.

3.1 Arithmetic Instructions
mula activ addr, weight: Multiplies the neuron value stored in the neuron memory at
address activ addr by the connection weight, weight, and adds the resultant product to the
contents of the accumulator.

mull activ addr, weight: Multiplies the neuron value stored in the neuron memory at
address activ_addr by the connection weight, weight, and loads the resultant product into the
accumulator.

mulap actlv addr. Multiplies the neuron value stored in the neuron memory at address
activ addr by the neuron activation fetched by the previous (mula, mull, or mulap)
instruction

lbtf buff addr, tf: Passes the contents of the accumulator through the transfer function
stored in function memory tf and loads the resultant neuron value into the buffer memory
at address buff addr.

3.2 Control Instructions
lnbm: Signals the other processors in the system that this processor is ready to interchange
its neuron and buffer memories, waits until all other processors in the system have also
executed an inbm instruction, and then interchanges the memories.

lie count: Load the loop counter with count.

djnz label: Decrements the loop counter and if the result is non-zero jumps to address, label,
in the program weight memory.

11-594

fop: No operation.

stop: Stop processing

4 REFERENCES
Carson, J.C., (1993). " 'Silicon Neuron' Seeker: The Application of 3D Artificial Neural

Network (3DANN) to Kinetic Energy Interceptor Mission", GOMAC 1993 Digest,
New Orleans, Nov. 1993, pp. 253-256.

Chiang, A.M., (1993). "CCDD Neural Net VME Board for Pattern Recognition", GOMAC
1993 Digest, New Orleans, Nov. 1993, pp. 277-280.

Faggin, F., and C. Meade, (1990). "VLSI Implementation of Neural Networks", in An
Introduction to Neural and Electronic Networks (ed. Zornetzer, S.F., Davis, J.L., and
C. Lau). San Diego, Academic Press. pp. 275-292.

Hammerstrom, D., (1990). "A VLSI Architecture for High Performance, Low-Cost On-Chip
Learning", Proc. of the Inter. Joint Conf. on Neural Networks, San Diego, pp. 11-537-
ii-542.

Holler, M., Tam, S., Castro, A., and R. Benson, (1989). "An Electronically Trainable
Artificial Neural Network (ETANN)", Proc. of the Inter. Joint Conf. on Neural
Networks, Washington, pp. 11-191-1-196.

Kub, F.J., K.K. Marn, and J.A. Modulo, (1991). "Analog Programmable Chips for
Implementing ANN's using Capacitive Weight Storage", Proc. of the Inter. Joint
Conf. on Neural Networks, Seattle, pp. 1-487-1-492.

Lazzaro, J., and C. Meade, (1990). "A Silicon Model of Auditory Localization", in An
Introduction to Neural and Electronic Networks, (ed. Zornetzer, S.F., Davis, J.L., and
C. Lau). San Diego, Academic Press. pp. 155-173.

Lyon, R.F., and C. Meade, (1988). "An Analog Electronic Cochlea", IEEE Trans. on
Acoustics, Speech, and Signal Processing, Vol. ASSP-36, pp. 1119-1134.

May, N., (1988). "Fault Simulation of a Wafer-Scale Integrated Neurocomputer, Report
CS/E-88-020, Oregon Graduate Center, Beaverton.

Mead, C. (1989). Analog VLSI and Neural Systems, Reading, Addison-Wesley.
Morton, S., (1991). "Advance Data Sheet for the 'A236 Neural Network Module"', Oxford

Computer Inc., Oxford, (July 1991).
Owechko, Y, and B.H. Soffer, (1990). "Optical Interconnection Method for Neural Networks

using Self-Pumped Phase Conjugate Mirrors", Opt. Lett., Vol. 16, pp. 675-677.
Owechko, Y, and B.H. Soffer, (1993). "Optical Neurocomputer Based on Multiple Grating

Holography", GOMAC 1993 Digest, New Orleans, Nov. 1993, pp. 265-268.
Rudnick, M., and D. Hammerstrom, (1988). "An Interconnection Structure for Wafer Scale

Neurocomputers", Proc. of the Connectionist Models Summer School, (ed. Touretzky,
D., Hintin, G., and T. Sejnowski), San Meteo, Kaufmann.

H-595

Neurocomputer Taxonomies

Kjetil NorvAg
NNNR

Moholt Alle 8-14, 7035 Trondheim, Norway

November 29, 1993

Abstract

To be able to compare, classify, and develop better neurocomputers,
a good taxonomy is important. This paper presents earlier approaches to
neurocomputer classification, and presents a new one, more suitable both
for neurocomputers of today and for the future. This taxonomy is based
on taxonomies for existing computer architectures and Philip Treleaven's
taxonomy presented in 1989.

1 Introduction

To be able to compare and easier understand a set of related objects, it is useful
to classify them, according to a taxonomy.

Several taxonomies exists for conventional computer architectures, with
Flynn's taxonomy and the Erlangen taxonomy [6] as the most well-known.
While both of them are able to successfully describe control driven computers,
they give us little help when it comes to neurocomputers. The main problem is
that we can no longer talk about instructions, data and arithmetic logic units.
Therefore, we need another kind of classification. Ideally, it should be possible
to use the same classification schema on all computer system architectures, but,
at least for the moment, this seems impossible.

2 Previous Neurocomputer Taxonomies

Several neurocomputer taxonomies have been proposed, but only one (or rather
modified versions of it) is in common use: Treleaven's taxonomy [9]. Treleaven
saw the neurocomputer as a parallel computer architecture, just as control flow,
dataflow, and cellular arrays are parallel computer architectures. Neurocom-
puters were further divided into subclasses, as shown on figure 1. Treleaven's
taxonomy is the most common in use, and it is suitable for comparison of neu-
rocomputers vs. other computer architectures. Comparing neurocomputers is

11-596

Computer architectures

Control flow Data Flow ... Neurocomputers

Genera l-pu -purpose

Figure 1: Treleaven's taxonomy.

often difficult with this taxonomy. It often gives unprecise classifications, mak-
ing comparison more difficult.

3 A Modified Taxonomy

In my taxonomy, neurocomputers are subgroups, or rather applications, of dif-
ferent computer architectures. This is different from Treleaven's where neuro-
computers are seen as an architecture on its own. As with Treleaven, this tax-
onomy also divides neurocomputers into general-purpose and special-purpose
neurocomputers, but with an additional group: Partially special-purpose neu-
rocomputers.

3.1 General-Purpose Neurocomputers

General-purpose neurocomputers can be divided into standard computers and
co-processors. Standard computers are computers made for general-purpose

computing, and can be further divided into sequential and parallel standard
computers.

Standard computers are flexible, but the flexibility has its cost, both in
economy and performance. With co-processors it is possible to get low-cost
high-performance neurocomputers. Standard computers connected to the co-
processors take care of input and output.

Co-processors are divided by their architectures: Accelerator cards, control
driven co-processors, data driven co-processors, systolic arrays, and reconfig-
urable logic (see figure 2 and table 1). Control driven co-processors can be nat-
urally subdivided from the interconnection networks of the processor elements:
Bus, ring/linear array, mesh, hypercube and reconfigurable topology.

II-597

Co-processors

Accelerator- Control Data driven Systolic Reconfigurable
cards driven arrays logic

Bus Ring/ Mesh Hyper- Reconfigurable
linear cube topology
array

Figure 2: Co-processors.

Subclass Example of neurocomputer

Accelerator cards Numerical co-processors
Control driven, bus TRW Mark III [5]
Control driven, ring CNAPS[1]
Control driven, mesh AAP2 [10] and TI NETSIM [4]
Control driven, hypercube nCube/n, Intel iPPSC/860
Control driven, reconfig. RENNS [7]
Data Driven Q-v 1 [2]
Systolic arrays Warp (31
Reconfigurable logic Perle-0 [81

Table 1: Co-prosessor classes, with examples.

11-598

3.2 Partially Special-Purpose Neurocomputers

Partially special neurocomputers' are neurocomputers capable of simulating
a class of neural networks.

Partially special-purpose neurocomputers are often made from special chips -
neurochips. These chips can be either digital or analog, and are most often
specialized for dotproduct neurons.

3.3 Special-purpose Neurocomputers

Special-purpose neurocomputers are divided by their implementation techno-
logy, just as in Treleaven's original taxonomy: Electronic, optical and molec-
ular neurocomputers. To include earlier neurocomputers, groups for clectro
mechanical and electro-chemical computers could be added.

Until now, most special-purpose computers have been based on optics. Most
electronic implementations have been general-purpose or partially special-
purpose, but a few special-purpose neurocomputers based on electronics exists.
Examples are the WISARD [9].

4 Conclusions

I have now presented a neurocomputer taxonomy, well suited for classifying
neurocomputers of today, and hopefully also tomorrows neurocomputers.

The taxonomy is developed from an implementors point of view, other tax-
onomies might be better descibing neurocomputers for other purposes. For some
purposes an taxonomy even more focused on implementation technology could
be useful.

References

[11 Adaptive Solutions, Inc. CNAPS Server - Preliminary Data Sheet, 1993.

[2] Ali M. Alhaj and Hiroaki Terada. A data-driven implementation of back
propagation learning algorithm. In International Joint Conference on Neu-
ral Networks, 1992.

[3] M. Annatarone, E. Arnould, T. Gross, H.T. Kung, M. Lam, 0. Men-
zilcioglu, and J. A. Webb. The Warp computer: Architecture, im-
plementation and performance. IEEE Transactions on Computers, C-

36(December): 1523-1538, 1987.

'In other taxonomies these neurocomputers are often classified together with the general-
purpose neurocomputers

11-599

[4] Simon C J Garth. A chipset for high speed simulation of neural network
systems. In IEEE International Conference on Neural Networks, 1987.

[51 Robert Hecht-Nielsen. Neurocomp . aya. Addison-Wesley Publishing Com-
pany Inc., 1990.

[61 Wolfgang Hiidler. The impact of classification schemes on Lomputer archi-
tecture. In International Conference on Parallel Processing, 1977.

[7] Olav Landsverk, Jale Greipsland, Jon Gunnar Solheim, Jan Anders
Mathisen, Hikon Dahle, and Lisbet Utne. RENNS - a REconfigurable
Neural Network Server. In International Conference on Artificial Neural
Networks. Elsevier Science, 1992.

[8] Marcin Skubiszewski. A hardware emulator for binary neuiral networks.
Technical report, DEC PRL, 1990.

[9] Philip Treleaven. Neurocomputers. Technical Report 89/8, UCL, London,
1989.

[10] Takumi Watanabe, Yoshi b ,.byama, Toshio Kondo, and Yoshihiro Kita-
mura. Neural network simulation on a massively parallel cellular array
procesc'or: AAP-2. In International Joint Conference on Neural Networks,
1989.

11-600

Temporal Binding in Analog VLSI

Stephen R. Deiss

Applied Neurodynamics, 345 Via Montanosa, Encinitas, CA 92024 (deiss@cerf.net)

Abstract - Binding together perceptions, cognitions and consciousness with time requires a very
clear notion of simultaneity. In aVLSI systems signals are multiplexed for efficiency reasons.
Multiplexed channels skew events in time and add jitter. Neurons responding to those events
may act differently than biological neurons unless simultaneity can be represented. Herein is
examined the concept of simultaneity as it applies in neural networks and how it can be
represented. In doing so a paradigm for understanding neurons is suggested called Relativistic
Neurodynamics.

I. Introduction

Temporal Binding is currently a leading theoretical construct for understanding conscious events
including perception, memory, attention, and cognition [1]. It has been proposed as the
mechanism by which wholes arise from parts in cognition [1,6,16]. Temporal binding has been
observed within the limits of multichannel recording technology today and is a very active area
of experimentation [6,7].

Analog VLSI systems (aVLSI) seek to model real biological networks in their relevant
information processing details, although there is not total agreement on what is relevant
[4,5,12,13,14]. Insofar as consciousness is not merely an epiphenomenon of brain activity, but
rather may correspond with the highest levels of coding and system state at any moment, then
aVLSI has to address the problem of how to model this too. This means that we need to model
temporal binding in neuromorphic systems, and we have to be able to detect it and, preferably,
also measure it.

This is not a straightforward task. The technology of interconnect will not permit use of point to
point axon like communication channels in any cost effective configuration. There are packaging
limitations, routing limits, and connection density limits. We are forced to use time division
multiplexed access (TDMA) channels, and there are a thousand varieties to start from [consider
3,8,9,10,11,15,18]. This creates a problem for the representation of time bound signals that are
linked through some phase relationship, whether a fleeting synchronization or an enduring
oscillation. TDMA channels are, by nature, not real time. Signals are forced to walk the channel
single file, thus, skewing their time of arrival at their destination(s) by a variable amount
compared to what it would be on a dedicated channel.

This gives rise to a bandwidth-synchrony dilemma explored elsewhere [2]. For a given neural
integration time constant, low speed TDMA channels have a tendency to desynchronize

11-601

multiplexed signals, and high speed channels bunch signals in time making them tend to
synchronize. This interferes with the representation of temporal binding, and even with the very
basic notion of correlated inputs for a neuron. Possible solutions are explored in [2].

To better understand this problem so that one might better recognize a solution, it is worthwhile
to explore the concept of simultaneity. In the following section an informal analysis is presented.

II. Simultaneity

Clearly this concept is intertwined with our notions of time and space. Much has been written
about time and space both from the standpoint of our ordinary language concepts and from the
standpoint of the physicist's space-time [17]. Here the notions of time and space are taken as
primitives.

The first observation is that simultaneity is a relative thing in the sense that it depends upon who
is the observer (or what object or process is affected) and the context in which it is being asserted
or denied. For two events to occur simultaneously they have to fall within the same temporal
window. This is something that has to be measured, and no real act of measurement is exact to
an unlimited number of decimal places. The size of the temporal window is established by the
context of the measurement. For example, in some high speed digital circuits, two events might
be considered simultaneous 'for all practical purposes' if they occur within a nanosecond of each
other. However, in a high energy physics data acquisition experiment events might be
distinguishable on a femtosecond interval through a long chain of observations and inferences.
At the other extreme, two congressmen who introduced related legislation within the same month
or even the same year might be considered to have acted simultaneously on beaurocratic time
scales.

What is the proper time scale for neural event messages? The first answer is 'which messages
and who receives them?' One can look at this question from numerous perspectives. From the
perspective of an ionic channel, one time scale applies. At the level of a neuron, more
specifically, an axon hillock, a different time scale of post synaptic potential integration applies.
At the level of a modifiable synapse, another time scale might be more relevant in detecting
correlation between release of transmitter packet and feedback from the postsynaptic neuron
regarding any state change or any global change in state of reinforcement.

All these neurobiological processes are based upon neurochemical mechanisms that have time
constants which operate in relatively narrow ranges governed by electrochemical feedback.
These narrow ranges force a kind of consistency to the behavior of the system as a dynamical
system. There is no multiplexing here. In biological systems time truely is its own
representation. Things take as long as they take as participants in causal chains, and the
underlying physical processes are consistent thanks to the basic uniformity of nature.

All these things suggest that two neural action potentials can be judged as simultaneous if they
both arrive within the neural integration time for the recipient neuron which is listening to the
inputs. Another neuron may view the simultaneity of those action potentials differently because

I-602

of different delays along the axonal pathways feeding it. In fact it might be more accurate to say
that a neuron is not tuned to action potentials. Rather it is tuned to the synaptic current flows that
arise from the action potentials. It has no direct global information about distances traveled
along axons. That global connectivity information directly affects simultaneity from a higher
level perspective, but from the low level local neural perspective, its just the location and timing
of inputs along dendrites and the cell body itself. Simultaneity is relative among neurons, but its
fairly consistent over time. At least that is true from our higher vantage point that includes a
clock.

An interesting thought experiment asks what would happen if the brain's neurons were
interconnected by parallel broadcast optics instead of axon delay lines. In such a small volume of
tissue, and given the speed of optical transmission (c), every connected neuron would feel the
effects of a particular action potential virtually simultaneously (from our point of view). The
receptive field of each neuron would be tremendously altered unknown to the neuron itself. It is
not clear what effect this would have on the information processing aspects of a neural network,
especially on the network system's ability to detect, remember and respond to causal
relationships.

The receptive field of a neuron involves projections from other neural areas. Unlike the optical
system in the thought experiment, action potentials take appreciable time to propagate relative to
the time scale of neural integration. The propagation time is fairly invariant for any given axonal
pathway. The receptive field, therefore, is not just a 3D spatial map. It is a space-time map with
a geometry all its own. Anything that changes the timing along those pathways by adding skew
or jitter would be just as disruptive to the system behavior as it would be if the synapses along
the dendritic tree were allowed to make and break contact at random. Fortunately, this timing
jitter does not occur in real neural systems. However, it can happen in neuromorphic systems
with TDMA communication channels.

Assuming that the important thing about temporal binding is the timing relationship between
action potentials, then it should not matter how the action potentials get communicated as long as
their relative timing is communicated with consistency, the time span of the ordering is wide
enough to allow resolving time differences with a neural mechanism, and the mapping itself is
not moving around.

III. Observability

How can we observe simultaneity in a network to confirm that it is forming temporal bindings?
The first method involves detecting synchronizations just as brains do, with tuned neurons
attached to effectors. This would allow for a large variety of behaviorist style experiments to be
done on artificial networks that are just impossible now in natural networks. However, this is an
expensive solution. One would have to know in advance what bindings were being sought, train
or program the network to detect them, and connect it up so that the detectors could report their
occurance. This approach is not unlike multichannel recording used experimentally today.

11-603

A step back would be to monitor network activity on a color monitor using the experimentor's
own recognition ability to try and capture regularities. However, this would no doubt be a high
vigilance task requiring significant time and training. The reports of observed bindings would be
subjective and hard to support if challenged unless they were very dramatic and tape recorded.

A third and superior approach would be to devise a system that makes time explicit in neural
event messages, filter for events falling within a common widow of phase or oscillation, and
record the activity for offline analysis and display. With explicit time stamps, it should be fairly
straightforward to devise such a binding filter. Once a binding has been detected and recorded,
data presentation can be greatly enhanced and possibly displayed in delayed real time. Since the
data can be recorded, it might also be possible to perform post processing to study the chain of
events that lead up to the binding code.

IV. Coding and Communicating Neural Messages

A family of related encoding schemes falls under the general he',ding of space-time-attribute or
STA codes [2,5,12]. When an axon potential occurs the space-time location is broadcast along
with optional attributes further defining the event. Some of the advantages of such a code are 1)
ease of routing of events through a network using a geometric definition of source location and
for destination receptive fields, 2) use of network transit time and geometric distance from
source to calculate an axon delay after receipt at the destination so the event can be properly
queued, 3) ability to utilize technology's bandwidth advantage to overcome the interconnection
disadvantage, 4) ability to devise solutions to the observability problem, and 5) compatibility
with a number of digital communication media. See [2] for a more detailed description of these
features. In this section the focus will be on how STA coding helps one encode and observe
bindings in aVLSI.

When STA events are tagged with a time stamp as well as their geometric origin, this
information can be used to represent axon delays. When a message arrives at a destination board
or chip, it is passed through by virtue of having an address that matches a receptive field of one
or more neurons on the other side of the gate. This same message can be delayed in time to
represent the axon pathway delay adjusted by the time already lost in transit over the
communication link. As long as there is sufficient bandwidth in the network to ensure that
events always arrive at or ahead of their expected real arrival time counting axon delay, there is
no loss of timing information. Since the delay value is calculated from the geometry, there is no
need for a large amount of storage for these delays. If several neurons inside a chip all receive
projections from a neuron coming from another chip or another board, they each might best be
served by different representations of the axon delay. This can be done either by extending the
above method to the chip level which might be expensive in terms of silicon, or by associating
with each analog synapse an analog one shot timing circuit to insert the proper delay for the axon
path to that synapse. Such a lumped representation of delay incurs a silicon penalty that can be
traded off against loss of the finer representation of time accuracy.

With STA coding the observability of binding in the aVLSI system is a tractable problem. The
simplest method would be to record all event traffic as it flows. This data can then be analyzed

11-604

offline. If there is a single common bus or channel serving the entire system, the data could
possibly be examined, filtered and binding data displayed online. The filtering logic would
maintain an ordered list representing a span of recent event history from which bindings could be
selected out and displayed when they meet the criterion for simultaneity which is that both occur
within a system specified time window. When more than one channel is involved, the data have
to be converged at some point to detect bindings in this manner.

With this kind of data collection and analysis capability in the neuromorphic system, it should
produce a fruitful interplay between theory and experiment. No where else is it possible to
obtain correlation statistics over such a range of neural activities to arbitrary levels of precision,
nor possible to unwind the clock and look at actual causal sequences, if necessary.

V. Conclusion

There appears to be no limits to what abstractions human intelligence is capable of encoding and
modeling all the way from quarks to quasars. Perhaps this is in part because human intelligence
is rooted in that same physical world and governed by the same dynamical system principles. It
is suggested here that some of the notions used to understand physical space-time such as relative
simultaneity may also have a place in understanding neurodynamics.

There is lots to be learned in this search for a Relativistic Neurodynamics not least of which is to
identify what the invariances are in nervous systems. It is the author's hope that this proves to be
much more than an overextended analogy.

VI. Acknowledgements

The author thanks the following members of the 'Idyllwild Collaboration' for their continued
interest and feedback as these ideas develop: Rodney Douglas, Mike Fisher, Christof Koch, John
Lazzaro, Misha Mahowald and Tony Matthews.

References

1. Crick F., Koch C., "Towards a Neurobiological Theory of Consciousness," Seminars in the
Neurosciences, 2:263-275, 1990

2. Deiss S., "Connectionism without the Connections", in press, ICNN, IEEE, 1994.

3. Deiss S. et. al., "Neural Systems Interface (IEEE MSC Study Group Report)," request from
author, Encinitas, CA, 1989.

4. Douglas R., Mahowald M., "A Constructor Set for Silicon Neurons," in press, MRC, Oxford,
UK, 1993.

5. Douglas R. et. al., "Neuromorphic Analog VLSI," in press, MRC, Oxford, UK, 1994.

U-605

6. Eckhorn R. et. al., "Coherent Oscillations: a mechanism of feature linking in the visual
cortex," Biol. Cybern., 60:121-130, 1988.

7. Gray C.M., Singer W., "Stimulus-specific neuronal oscillations in orientation columns of cat
visual cortex," PNAS 86:1698-1702.

8. IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture,
IEEE, 802-1990.

9. IEEE Standard for Scalable Coherent Interface (SCI), IEEE 1596-1992

10. IEEE RamLink; IEEE P1596.4 Draft, IEEE, 1994.

11. IEEE Standard Backplane Bus Specification for Multiprocessor Architectures. Futurebus+,
IEEE 896.2-1991.

12. Lazzaro J. et. al., "Silicon Auditory Processors as Computer Peripherals," NIPS 5, Morgan
Kaufnann, 1993.

13. Mahowald M., VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and
Function, Dissertation, Caltech-CS-TR-92-15, 1992.

14. Mead C., Analog VLSI and Neural Systems, Addison Wesley, 1989.

15. Rambus Inc., Rambus Technology Guide, Rev .90 - Preliminary, Rambus, Mountain View,
CA, 1992.

16. Shastri L., Ajjanagadde V., "From simple associations to systematic reasoning: A
connectionist representation of rules, variables and dynamic bindings using temporal synchrony,"
Beh. Brain Sci., 16:417-494, 1993.

17. Taylor E., Wheeler J., Spacetime Physics, Freeman, 1963.

18. VME64 Draft Specification, 1993, VITA, Scottsdale, AZ.

11-606

High Performance Compressor Building Blocks
for Digital Neural Network Implementation

D. Zhang and M.I. Elmasry

VLSI Research Group, Department of Electrical and Computer Engineering
University of Waterloo. Waterloo, Ontmio. Canada N2L 3G I

Abstract
In this paper, a diital neural networks (DNN) implementation approach based on complex complementary pass-
transistor logic (C4PL) is presented. Some types of 3-2 compressor designs in C2PL are discussed and a number of
experiments are conducted to optimi:e their performance. Based on the 3-2 compressors, two typical building blocks
in DNN implementation, i.e., 4-2 and 7-3 compressor, are developed. Example of the application is given to
illustrate the effectiveness of the approach.

1. Introduction
There have been a variety of implementation approaches for neural networks, including software and hardware,
electronic and optical. discrete component realizations, and so on. The real promise for applications of neural
networks currently lies in specialized hardware, in particular VLSI or WSI implementations that achieve high levels
of computational performance with modest development effort 11-31.
Typically, the high interconnectivity and relatively low precision needed for signals in neural networks are well
tailored to an analog approach 14-51. With increasing neural networks size, however, designing large integrated
analog circuits, based on VLSI implementation, is a difficult task. On the other hand digital processing, which
appears to be inferior to analog processing in terms of computational density, has advantages of flexibility in terms
of programming for a variety of architectures and learning strategies, as well as simplifying the task of memory
retention. There is still a development tendency to implement neural networks in VLSI using digital technology 16-
7].
Numerous studies have shown that the complexity of DNN does not stem from the complexity of its nodes but
rather from the multitude of ways in which a large collection of these nodes can interact 171. As an example. for a
fully connected layered network with two layers and n neurons per layer. each neuron is required to form an inner
product of n elements using I-bit binary input lines and m-bit weights (e.g.. m= 16). where carry propagation is an
expensive operation in digital arithmetic of the inner product. Thus. a key problem for implementing high
performance, high capacity DNN is to build effective compressors to reduce the impact of carry propagation.
CMOS digital circuits can be used in such data compressor building block implementation due to high noise
immunity, operation at a wide range of power supply voltages, low power dissipation. relatively high speed. and
compatibility to other logic families 181. There are many logic design styles to choose from in implementing
CMOS digital circuits. Some typical logic design styles are preudo-NMOS CMOS logic, CMOS non-threshold
logic (NTL), cascode voltage switch logic (CVSL). differential cascode voltage switch logic (DCVS), differential
split-level logic (DSL), and Zipper CMOS logic [8]. These logic styles achieve different tradeoffs in speed power.
and area. The highest speed logic families also tend to consume the most power. The most compact tend to be slow.
Complementary pass-transistor logic (CPL) proposed by K. Yano. ct al. in 191 seems to offer modest performance, is
compact, and low power. The CPL circuit is twice as fast as conventional CMOS because of lower input capacitance
and higher logic functionality. However. CPL design needs more area in silicon like conventional CMOS one due to
the mixed interconnection, as well as CPL implementation must take into account noise margin and speed
degradation caused by mismatched input signal level and the logic threshold voltage of the CMOS driver, both
fluctuating independently with process variations 1101.
In this paper, a new member of CPL family. called complex complementary pass-transistor logic (C2PL), will be
presented for implementing compressor building blocks in DNN. The basic C2PL model is defined in Section 2.
Applying this model to 3-2 compressor design, Section 3 discusses some typical C2PL circuits and their
performances. Section 4 provides two types of building blocks, 4-2 compressor and 7-3 compressor, in DNN
application. In Section 5 we summarize the conclusions of the paper.

2. C2PL Model

1-607

A basic CPL schematic structure consists of complementary inputs / outputs, an a az Z'
NMOS pass transistor logic network, and CMOS output inverters, as shown in

Fig.l. where complementary input space is defined as: V. = V(G) + P(D), i.e.. gate a

input space j0.(G) = w*. I'. ' I and drain input space V(D) = a. a'.
z, z' 1. and complementary output space as Q = I A. A' ...Z. Z' 1. The pass
transistors function as pull-down and pull-up devices. Thus PMOS latch can be
eliminated, allowing the advantage of the differential circuits to be fully utilized.
However, the output inverters are necessary because of amplifying the output
signals, shifting the logic threshold voltage and driving the capacitive load 191.
Note that the NMOS pass transistor logic network is built by some logic layers to'
shown in Figl. where each achieves a given logic function. Assuming that these
logic layers are symbolized as Li (i = 1,2 n), and n is the number of the layers
in the network. CPL structure is limited in the following: (1) Only the NMOS pass
transistor logic network is used; (2) All complementary gate inputs receive data A A' Z Z'

from the input space 9-(G); (3) The complementary drain inputs of each layer Fig. I Basic CPL structure

receive data from previous layer except for L1 . Obviously, these limit CPL to
design flexibly in various applications.
The basic concept of C2 PL is to regard each logic layer in a network as an independent layer which they can be built
by NMOS or PMOS/NMOS pass transistor logic, and eliminate the limit conditions in CPL. This means that both
complementary drain and gate input for logic layer Li may receive data from either R or previous layer Li_ 1"and the
complementary outputs of each layer can be connected to its next layer directly or the corresponding output units.
CMOS or BiCMOS driver. It is evident that CPL is a special example of C2 PL.

3. 3-2 Compressor Design
3-2 compressor is a basic arithmetic unit in DNN implementation. We can separate it into two parts: the logic
design part and the output driver part. Their designs in C2PL are discussed in the following:

Let the complementary input space V. { a, a', b. b'. c. c' }, and the complementary output space Q = I S. S', C. C'
}. S (sum) and C (carry) for a 3-2 compressor can be represented as

S = (a E c) b' + (a E c)' b (I)
C = (a E c) b + (a E c)' c (2)

where E is a XOR operator. We can extrac: two basic cells. (a e c) and (a 9 c)'. from E4.(I)-(2). Let F = a e c.
Thus, the equations can be rewritten as S = F b' + F' b and C = F b + F c.
Using C2PL to design such a 3-2 compressor. a simple logic structure can be obtained in Fig.2(a). Note that in) the
structure two logic layers are needed. where their input / output spaces are 1 = Ia. a'. c. c') Q I= I F, F) and V-2
= IF. F. b. b'. c. c') / Q2 = I S. S'. C. C'). respectively. Only two bb) a(a) c(c)
types of logic cells. i.e. T = a ' + a'D and Q = (xi + o'X.are used in
the design (See Fig.2(b)). Analyzing the logic structure in Fig.2(a),
two useful features can be obtained in the following:
I. Only two complementary inputs in R are required in the first logic (a)

layer. This feature is superior in multi-layer design. It can be proved in
Section 4. S F= + Fh c
1. The complementary output space QJ of the first logic layer are M .

directly used as the gate input space R 2 (G) to the newt layer. S (S,) C)(b)
Obviously, this causes noise margin and speed degradation by
mismatched inputs. 13,13 X X,
To reduce the effect generated by the last feature and improve the a
performance of the compressor. some effective approaches in CMOS
circuit design should be adopted to provide current paths for any full-
down or pull-up operation. As an example, two typical C2PL 3-2 ' 1? '

compressors, called C2 PL(l) and C2 PL(2). are given in Fig.3. where ' = CE' + CL13 f1 = CEO + dX
their second logic layers are the same, but PMOS latch and Fig.2 (a) 3-2 compressor logic structure
PMOS/NMOS device approaches are used in the first layer, and (b)its two basic cells

11-608

respectively. If we take CMOS driver as c ' a &" a c a L a

their output unit, the entire 22 and 24 -F -
transistors are required in each compressor. a a
A number of experiments using 0.8pm
BiCMOS technology have been achieved to bW b b' b c Wb' W b b b* b c W c'
optimize these compressors, and some useful I j I
results are: I -j I J I L -n-
(i) The optimum gate width ratio betweenL

logic layers, = Wup / Wdown, is at the
ratio of about 2. as shown in Fig.4.

(ii) The optimum gate width ratio between s S C C

PMOS and NMOS in output driver, = (a) (b)
Wp / Wn, exists at the ratio of about Fig.3 Two C2PL 3-2 compressors in (a) C2PL(I) and (h) C2PL(2)
1.25 (See Fig.5).

Note that the ratios given above are
different from CPL and ordinary CMOS 1.45

drivers in [91 because we adopt a power- .--- C2PL(1) 1 C2PL(1)
delay product as our measurement, which 1.35 m C2PL(2) ' C2PL(2)

is more reasonable than a single delay 1 -
time. 1.25

2. Output Driver Design
An output driver buffers the 1.15

2

complementary outputs generated in the I
logic design to drive the capacitive load. °5 -.0
Depending upon the interconnection I0
wiring capacitance in practice, we can use Z 0,95

one of the following three ways in
output part: (1) Directly drive the load .0 111 21 0 11 5 11) 2 (I -
without any buffer (Note that in this case Wup/ Wdnwn Wp / Wn
two PMOS latches must be attached to Fig.4 The gate width ratio. Fig.5 The gate width ratio.
the last logic layer): (2) Use a CMOS
buffer as a driver, as shown in Fig.6(a): =Wup/Wdown 0 = Wp / Wn

(3) Use a BiCMOS buffer as a driver for
large capacitive load. (See Fig.6(b))

Based on the types of drivers given (e.g., none.
CMOS driver and BiCMOS driver), some
simulation results for diflerent loads. e.g.. the

S() SW') S(C) worst delay time and power dissipation. can be
obtained. Considering their product. i.e.. power-

S((C) delay, as shown in Fig.7. a 3-2 compressor
S(C) (C') with no buffer is available when the output load

((b) is less about 0.25pf. but one with BiCMOS(a) (b) driver can be selected for lage load.

Fig.6 The output units (a) CMOS driver and (b) BiCMOS driver

To compare the performance between the CPL 3-2

compressor in 191 and the C2PL 3-2 compressor in Fig.3, CMOS Driver
generally, area, power and delay estimations given by the No Buffer
design are three most important measures. In this section, E- BiCMOS Driver .
we will analyze these measures and some experimental
results are given, where the CMOS drivers are used in both T
C2PL and CPL 3-2 compressors. I ;
The circuit simulations are performed using the O.8Fp device CD

parameters at a supply voltage of 5V. The worst delay 0 -

time, 7, refers to situations where the inputs are such that 0
circuit operation is slowest and the dynamic power. P. j.0 0.2 0.4 0.6 0.8 1.0
resulting from charging and discharging the capacitances in Output Load (pt)
the circuits is given as Fig.7 Performances analysis for different loads

11-609

P =Cload'(Vcc) 2 .f (3) 1.2 , • , ,
where Cioad is the total capacitance -a-0- CPL 0--- CPL
in the circuit, Vcc is the supply f C2PL(l) -iA- C2PL(1)

voltage and f is the operating C2PL(2) C2PL(2)

frequency. The simulated 2 (P) of
three 3-2 compressors, i.e.. the
CPL, the C2 PL(I) and the - 1

C2 0.8

0.58ns (1.89mw) and 0.55ns

C2

(1.78mw). The simulated power- 0.8

delay product, " x P. as a function 0.6

of supply voltage and output load
are shown in Fig.8 and Fig.9.
respectively. The C2 PL 3-2 0.4 . 0.

compressor, especially C2 PL(2), is 20 3.0 4.0 5.0 0.00 0.10 0.20

about 10% less power-delay product Supply Voltage (V) Output Lad (pf)

than the CPL 3-2 compressor Fig.8 Simulation for supply voltages Fig.9 Simulation for output loads
mainly due to less transistor and
smaller input capacitance. Table I Comparison of 3-2 compressors between CPL and CPL
Layout results for different 3-2 compressors TlC pso- mr re e P nC
have been obtained in our group. Without the CPL C2 PL(l I C2PL(2)
output driver, the areas required for these types # of transistors 28 22 24
of compressors based on the 0.8lp design rule the worst delay time 0.56ns 0.58ns 0.55ns
are 1245.44,m 2 for CPL. 865.18pm 2 for power 1.95mw 1.89mw 1.78mw
C 2 PL(I) and 867.57iim 2 C 2 PL(2).[area 1245.44m2 865.181,m 67 m

Obviously, the area of C2 PL 3-2 compressors
can be reduced by about one-thirds.
The results mentioned above are summarized in Table I. It is
shown that C2 PL 3-2 compressor have the lower area
complexity in silicon and the smaller power while
maintaining the same high computing speed.

4. Typical Building Blocks in DNN
Using C2 PL 3-2 compressor as a basic cell. two typical L

building blocks in implementing DNN, i.e., 4-2 compressor
and 7-3 compressor, can be designed in Fig. 10, where some (a) (b)
output drivers between the layers can be saves, and the (a) (b)
longest data flow paths in the blocks are shown in Fig.10 Typical compressors for (a)4-2 and (b)7-3
dash line. Based on the feature obtained in the Table 2 Comparison of 4-2 compressors
previous section, the numbers of the required logic Power _____ # Tranlayers to pass the longest data flow paths are 3 for 4- 2t Po8w 0.73n #6Ta02 and 5 for 7-3, respectively. C-PL(3)

These two types of compressor building blocks in CPL(2) 1.97mw 0.70n 46
C2 PL are comparable in power. delay and number of CPL 2.66mw 1.07n 56
transistor to the same building blocks in both CPL IEEE paper I I I1 2.Imw 1.70n 58and conventional logic 111i-121. Their comparisons
are shown in Table 2 and Table 3, respectively. Here,
C2pL(3) is built using full PMOS/NMOS device approach. The results show us that the building blocks in C2PL
can offer the highest performance in VLSI design.
As an example in DNN application, we assume that a perceptron sums the 1010 data inputs, each with one bit. A
reduction process is to use 7-3 compressor to reduce the initial 1010 row matrix to a matrix with no more than three
elements in each column [131. The whole process is shown in Fig. 11, where 252 7-3 compressors and 6 processing
stages are needed. Based on the different logic designs in Table 3. the required parameters (i.e.. power. delay andI

number of transistor) are: 0.66w. 9.3n and 27.216 (C-PL(3)): 1.14w. 10.44n and 28.224 (CPL). and 0.69w. l8n and

11-610

28,224 (Conventional Logic (CL)). This means that Table 3 Comparison of 7-3 compressors
power and delay in C2PL are only about half as much Power Delay
as one in CPL and in CL. respectively. ,CPL(3) 2.61mw 1.55n 108

5. Conclusion C2PL(2) 3.37mw 1.45n 94
In this paper. we present a DNN implementation CPL 4.54mw I.74n 112
approach based on a new logic design style, called -IEEE papr [12 2.74mw 3.On 112
complex complementary pass-transistor logic -

(C2 PL). Applying the C2 PL model to
compressor designs, some types of 3-2 Column 9 8 7 6 5 4 3 2 1
compressor are developed and a number of
experiments are conducted to optimize Matrix 0 1010

their performance. As an example of DNN
application, two typical building blocks, 144-146
i.e., 4-2 and 7-3 compressor. are discussed. 144
Compared with CPL and conventional Matrix 1

61 -7:3 144 144 146

logic, our simulation results show that the 207:3 20-7 21 7
C2 PL compressors in DNN have the best 24 24 21
performance in power, delay and number 2') 2(1 21
of transistor. Matrix 2 20 41 65 45 2i

25 -7:3 2-7:3 5-7:3 9-7:3 6-7:3 3-7:3

8 10 -- il 9 3
6. References 2 5 9 6 '3

(11 J.MJ. Murre. 1993, "Transputers and Matrix 3 2 5 6 3
Neural Networks: An Analysis of 12 -73 2 7 22 25 20 12 3
Implementation Constraints and i-7:3 3-7:3 3-7:3 3-7:3 2-7:3
Performance," IEEE Trans. on Neural 2 .01 4 . 7 3 2 3
Networks 4, 2. 284-292. I 3 3 3 2

121 R. H. Nielsen, 1986. "Performance Matrix 4 , .0' 3 3 2

Limits of Optical, Electro-Optical, and 5 -7:3 I 6 7 10 12 5 2 3
Electronic Neurocomputers," Proc. 1-7:3 1-7:3 1-7:3 1.7:3 1-7:3
SPIE, 634, 277-306. 1 1 4 6 1 2 3

[31 B.W. Lee and B.J. Sheu, 1991, 1 ! I
Hardware Annealing in Electronic Mati0, 1 4o I """ "

Neural Networks, Boston, MA: Kluwer Matrix 5 i 3 3 3 6 7 1 2 3
Academic. .3 1-7:3 1-7:3 1-7:3 1-7:3 2-7:3

(41 C. Mead and M. Ismail, 1989. Analog I 1ll I I 1 2 3
VLSI Implementation of Neural I 1 1 - 1 1
Systems, Kluwer Academic Publishers. 1 .0_ 1

Boston / Dordrecht / London. Matrix 6 2 122 3 3 2 1 I 2 3
(51 P.W. Hollis and J.J. Paulos, 1990, Fig.II Reduction process in the bit matrix

"Artificial Neural Networks Using MOS
Analog Multipliers," IEEE Journal of
Solid-State Circuits 25, 3, 849-855.

(61 B.A.White and M.I.Elmasry, 1992. "The Digi-Neocognitron: A Digilal Ncocognitron Neural Network Model for
VLSI". IEEE Trans. on Neural Networks 3, 1, 73-85.

171 J.B. Burr, 1991, "Digital Neural Network Implementation", in Neural Networks. Concepts, Applications, and
Implementations, Prentice Hall. 237-285.

18] M.I. Elmasry (ed.), 1992, "Digital MOS Integrated Circuits II with Applications to Processors and Memory Design",
New York: IEEE Press.

191 K. Yano, et al., 1990, "A 3.8-ns CMOS 16xl6-b Multiplier Using Comnpleintnnary Pass-Transistor Logic". IEEE
Journal of Solid-State Circuits 25. 2, 388-395.

110] A.P. Chandrakasan. S. Sheng and R.W. Brodesen, 1992, "Low-Power CMOS Digital Design". Ibid, 27, 4. 473-483.
[111 J. Mori, et al., 1991, "A 10-ns 54x54-b Parallel Structured Full Array Multiplier with 0.5-mm CMOS Technology",

Ibid. 26, 4, 600-605.
[121 E. Hokenek, R.K. Montoye and P.W. Cook, 1990, "Second-Generation RISC Floating Point with Multiply-Add

Fused", Ibid. 25, 5. 1207-1213.
[131 D. Zhang. G.A. Jullien. W.C. Miller and E. Swariziander. 1991. "Arithmetic for Digital Neural Networks". 10th IEEE

Symposium on Computer Arithmetic. Grenoble, France, 58-63.

11-611

Coprocessors for special neural networks
KOKOS and KOBOLD

H. Speckmann, P. Thole, M. Bogdan, W. Rosenstiel
University of Tiibingen

72076 Tiibingen, Sand 13, Germany

Abstract

In this paper we present a system for accelerating special kinds of neural networks. It is a hardware
supported system consisting of different parts. A special-purpose neural coprocessor is connected to
a personal computer (PC) by a special, asynchronous interface. Two different neural coprocessors
are available, KOKOS, a coprocessor for Kohonen's selforganizing map, and KOBOLD, accelerating
backpropagation with online learning.

1 Introduction

Large CPU-times for training large data sets to neural networks and the impossibility of real-time
evaluation constitute a serious obstacle for practical applications of neural networks. Software
simulations on MIMD-computers, e.g. transputer networks [15], or on SIMD-computers (we are
using MasPar with the language Parallaxis [1]), bring up the performance. For some general
concepts which have many applications specialized hardware may further improve the performance.
Two of these concepts are the selforganizing map (SOM) which has been introduced by T. Kohonen
[8] and the multilayer network with online learning backpropagation introduced by Rosenblatt [12].

These networks are used with many applications, requiring different architectures. So in multi-
layer neural networks the number of neurons, layers and connections depend on the special appli-
cations. As far as the SOM is concerned the topology of the net and the number of components
and processing-units (PUs) are varying and there is no satisfying theory saying which parameters
are to choose for which application. So a system implementing the SOM should include tools for
verifying the learning results.

2 The system configuration

The whole system consists of three main parts. A neural coprocessor (KOKOS, KOBOLD) is
connected to a personal computer (PC) by a special interface. The coprocessor calculates the
parallel parts of the neural algorithm, has a modular structure and is scalable for the different app-
lications. In addition to the asynchronous communication the interface has the ability to interpret
complex commands and controls the neural coprocessor to simplify the programming of the neural
coprocessor. The PC holds the software implementation of the serial parts of the neural algorithms,
controls the neural coprocessor and evaluates the learning results.

2.1 KOKOS: A coprocessor for Kohonen's selforganizing map

For our implementations we use a modified version of Kohonen's algorithm [14]. The concept of
the SOM is to map a high dimensional space to a lower dimensional space while preserving the
topology of the high dimensional input space. This describes the SOM's algorithm for 2-dimensional
output space, but higher dimensional output spaces are possible. Our hardware realisation is not
restricted to any dimension of the input or the output space because the structure of the map is
not hardwired.

1-612

The hardware implemented learning in KOKOS works as follows: The PC determines randomly
an input vector from the input data set and delivers it to the neural coprocessor which rapidly
finds the position of the processing unit (PU) with the minimum euclidean distance to the input
vector. With the coordinates of the nearest PU the PC calculates the excitation matrix for the
map holding the adaptation factor for each PU and the coprocessor calculates the adaption of each
PU.

In [13] we discussed the two possibilities of parallizing the SOM, neuron parallelism, leading to
the architecture of an array processor and synapse parallelism, leading to the architecture of the
vector processor. Weighting up the pros and cons of the two concepts we choose the last concept
because it is easier to control, has less effort of hardware and the search for the minimum distance
is avoided.

As you see in figure 1, the neural coprocessor consists of the following parts, n so called 'Memory-
and-Arithmetic-Boards' (MAB), [log nl stage adder tree and the controller of the coprocessor. In
our prototype we use eight MABs and a three stage adder. Each MAB holds the arithmetic and
memory necessary for learning one input vector component. So you can process one input vector
for one PU in parallel and store the weights of the whole SOM with the neural coprocessor. The
arithmetic of the MAB is pipelined.

To determine the PU with the minimum euclidean distance to the input vector you calculate
the partial distances in the MAB arithmetic SUB-MULT pipelines. The outputs of the pipelines
are added to the whole distance by the adder tree, which is organized as a three stage pipeline.
For adaption the adaptation factor is loaded into every MAB and according to equation (2) we
calculate adaptation using the MAB's SUB-MULT-ADD pipeline.

For many applications eight components are not suif-fient. But with the coprocessor's ability
of time multiplexing every number of vector components can be handled. The only restriction is
the finite memory size of the MAB's. The restriction is that the number of PU's multiplied by the
degree of time multiplex must not exceed 216.

..

4 Memory and Arithmetic Board Adder Tree

ana and Contrl Bus Cnrle -

Figure 1: The architecture of KOKOS

2.2 KOBOLD: A neural coprocessor for backpropagation with online learning

In contrast to other implementations [10, 11] our concept allows different extensions and has a
special communication structure. The neural coprocessor consists of several subprocessors (SP). As
shown in figure 2 each SP represents one column of the neural network. Using several subprocessors
in linear order we can build a network of an arbitrary size. In the actual version the number of SPs
is limited to 128. Although most applications don't use more than four layers we implement eight
layers per subprocessor [3]. This gives the ability to construct recursive nets or 4 layer networks
with 256 neurons per layer.

The SPs are connected by an optimized , ,, atriirtir. shown in figure 3. Generally needed

11-613

2 I

I I

Fig r e . t......... otc r s

"

o -- - - - I J.

Layer 3 2

Neural S

subprocessor

Figure 2: The topology of the coprocessor

data, forward propagation of the output Xj of the previous layer and the backpropagation of the
error 5j, is distributed by using a synchronous global bus. Additionally a local bus connects each SP
with its direct neighbours. This bus is used for distributing the connection weights wij in forward
and backward mode. The data turns around in a ring in one direction. Each data has included
its target adress. So each subprocessor checks the incoming data for its adress. If it is relevant it
is stored. Otherwise the dat2 will be sent to the next subprocessor. Own results will be inserted
into the dataflow. If a data returns to the sending subprocessor an error signal occurs. The whole
system is dataflow controlled, this means that a neuron calculates its weighted sum as soon as all
necessary inputs are available.

Ring architeure for Wji-data

Neural Neural Neural Neural

subprocessor subprocessor subprocessor subprocessor

Bus for Xj and Sj

Figure 3: The topology of the busses

The SP's arithmetic is optimized and pipelined. According to [7] 16 bit precision is needed.
Though 8 bit precision is sufficient for forward propagation, backpropagation's convergence is gua-
ranteed with 16 bit resolution. In [61 it is shown that the limited precision of integer performs
calculations in most applications as well as floating point. So we choose integer arithmetic because
it can be implemented faster and easier. The sigmoid function and its derivation is implemented

1-614

E LSA-Bus IOld! c e, Co

Read FifO - d

Figure 4: The architecture of the asynchronous interface

by a lookup table.

2.3 The special interface

The asynchronous interface reduces the communication requirement as follows. Data is buffered in
2 FIFOs, one for reading data from the PC and one for the opposite direction. The flow of control
is reduced by connecting the neural coprocessor to a command interpreter interpreting complex
PC commands to easier commands understandable by the coprocessor. The interface is connected
to the PC-EISA bus (IEEE B996). As you can see in figure 4 the interface consists of 5 main
parts. The command interpreter demultiplexes the 16 bit data from the PC to 45 bit data for the
neural coprocessor. The read and write FIFO consist of a RAM where the adress is generated by
a counter. The decode unit and the register unit control the communication of PC and interface,
like connection to the PC boards and interrupts.

3 Hardware implementation

For the implementation of the coprocessor and the special interface we use off-the-shelf elements
and FPGAs. Off-the-shelf elements were used for building fast arithmetic like multiplier and the
adder tree. Irregular structures like a subtractor with different datapathb for calculating the eu-
clidean distance and adaptation necessary for KOKOS, controller and command interpreter, were
implemented with XILINX FPGAs. This concept yields to a fast and flexible prototype.

4 Results and conclusion

We compared KOKOS to a software implementation running on a SISD-computer (SUN 4). The
virtual selforganizing map consists of 60x60 PUs learning 10000 vectors with 8 components. The
following table shows the results we obtained:

Implementation MCIt PS

Sun Sparc 2 1
MasPar MP 1 (16 K) 11 (best case)
KOKOS (4 MABs) 16 (clock frequency 10 MHz)

The algorithm written in C achieves a learning rate of nearly 1 MCUPS. The MasPar MP 1
with 16 K processors achieves 1 MCUPS [2] in best case. Our implementation achieves about 16
MOUPS for the same application running with a clock frequency of 10 MHz.

II-615

is~~~~~~~~~~~~~ reue ycnetn h erlcpoesrtoacmaditrrtritrrtn ope

In the next table different concepts of different online backpropagation concepts are compared
concerning their performance, two software simulations on SISD computers, one on a SIMD compu-
ter (MasPar) [9], one neurocomputer (CNAPS [5]), and one net of digital signal processors (MUSIC
[4]).

Hardwareimplementierung MCUPS
PC 0.47
Sun Sparc 10 0.146
MasPar MP 1 (16 K) 176 (best case)
CNAPS (512 PNs) 1900
MUSIC (60 DSPs) 246
KOBOLD (128 SPs) 122 (worst case)

So KOBOLD is factor 260 faster as a PC and factor 835 faster as a SUN. Although our system
will be cheaper than MUSIC 20 or MasPar it is much faster.

Therefore both coprocessors KOKOS and KOBOLD are useful for learning and for fast, online
evaluation. The hardware implementation with programmable gate arrays ensures the system's
flexibility to different requirements of the various applications.

References

[1] 1. Barth, T. Briunl, S. Engelhardt, und F. Sembach. Parallaxis version 2 user manual. Tech-
nical Report 2/91, University of Stuttgart, 1991.

[2] H. Bayer. Massiv parallele Simulation der selbstorganisierenden Karten von Kohonen auf
einem SIMD-Rechner. Diplomarbeit, Universitit Stuttgart, 1991.

[3] M. Bogdan. Kobold, a neural coprocessor for backpropagation with online learning. Diplom-
arbeit, University of Tiibingen, 1993.

[4] A. Gunzinger, U. Miiller, W. Scott, B. Biumle, P. Kohler, H. von der Miihll, F. Miiller-Plathe,
W. von Gunsteren, und W. Guggenbiihl. Achieving supercomputer performance with a DSP
array processor. In International Conference on Supercomputing, Minneapolis, 1992.

[5] D. Hammerstrom. A VLSI Architecture for high-performance, low-cost, on-chip learning . In
IJCNN Seattle, 1991.

[6] J. Holt und T. Baker. Backpropagation simulations using limited precision calculations. In
IJCNN Seattle, 1991.

[7] J. Holt und J. Hwang. Finite precision error analysis of neural network electronic hardware
implementations. In IJCNN Seattle, 1991.

[8] T. Kohonen. Selforganization and associative memory. Springer Verlag Heidelberg New York
Tokyo, 1984.

[9] N. Mahe. Entwicklung eines parallelen Simulatorkernes ftir neuronale Netze auf der MasPar
MP-1. Diplomarbeit, Universitit Stuttgart, 1991.

[10] S. Mackie. A parallel vector processing chip architecture for neural networks. In Micro Neuro,
1993.

[11] D. Naylor, S. Jones, D. Myers, und J. Vincent. Design and application of a real-time neural
network based image processing system. In Micro Neuro, 1993.

[12] F. Rosenblatt. Principles of neurodynamics. Spartan Books, Washington DC, 1962.

11-616

(13] H. Speckmann, P. Thole, und W. Rosenstiel. Hardware implementations of Kohonen's selfor-
ganizing feature map. In IJCNN Bejing, China, Seiten III 183-187, 1992.

[14] V. Tryba. Selbstorganisierende Karten: Theorie, Anwendung und VLSI-Implementierung. VDI
Verlag, 1992.

[15] A. Ultsch und H. P. Siemon. Exploratory Data Analysis: Using Kohonen networks on trans-
puters. Technical report, Universit.t Dortmund, 1989.

11-617

Circuit Implementation of the Multivalued
Exponential Recurrent Associative Memory

Ren-Jiun Huang and Tzi-Dar Chiueh

Department of Electrical Engineering, Room 511
National Taiwan University

Taipei, Taiwan 10617

Abstract

In this paper we describe a circuit implementation of the multivalued exponential re-
current associative memory (MERAM) proposed previously. Major components of the new
model, including a similarity-measure computation circuit and a weighted average circuit,
are developed. These components as well as a weight-storage capacitor are arranged in
a basic building block, called MERAM cell. HSPICE simulation results of the MERAM
model storing three patterns confirm the functionality of the propose circuits.

1 Introduction

Many VLSI implementations of the Hopfield model with either programmable or fixed synapse
weights have been proposed. However, it is also known that the Hopfield model, as an asso-
ciative memory, has a storage capacity of 0.15N. Successful attempts to greatly increase the
storage capacity have been developed previously [1]-[2]. Furthermore, a high-capacity asso-
ciative memory that processes multivalued patterns, called multivalued exponential recurrent
associative memory (MERAM), was also proposed (3]. In this paper, we present a CMOS
circuit implementation for MERAM.

Assume that S1, u = 1, 2,.., P are M-component patterns stored in a MERAM, the motion
equation is given by

pi ~ + 1)1)
EP,~ alk(S'S(t))

where Ob(Su, S(t)) denotes a similarity measure between a memory pattern, S u, and the current
state, S(t), and S(t + 1) is the next state. Major operations in Equation (1) include similarity-
measure computation between two M-component vectors, weighted average computation of P
inputs, and a nonlinear component, a'O. In the following section, we shall present circuits that
implement these functions.

2 The Basic Building Block of The MERAM Model

The block diagram of the MERAM model is shown in Figure 1. A similarity computation
block is used to find all similarity between the current state (input) and the P memory vectors.
This is followed by a module that compute weighted average of these memory vector, using the
exponential of the corresponding similarities as weights. In order for easy VLSI implementation,
a repeatable MERAM cell is designed. This basic building block contains three elementary
circuits to be discussed in the following.

11-618

2.1 Similarity Computation Circuit

To compute the similarity-measure between the input pattern and stored patterns, a similarity
computation circuit as in Figure 2 is designed. This circuit is derived from the "bump" circuit
proposed by Delbfick [4]. When V1 t

ot is much smaller than V and V2 and the absolute magnitude
of the differential input voltage Vi, is small, both M1 and M2 operate in the linear region.
The output current I.t is given by

1 2)
Iot = -(Iss - -2K d) (2)

Equation (2) actually computes a similarity measure that is based on the Euclidean distance
between two components. If M copy of these circuits are joined at the output nodes, a similarity
measure that is proportional to a constant minus the squared Euclidean distance between two
M-component vectors can be computed.

2.2 Weighted Average circuit

Figure 3 shows a weighted average circuit [5] composed of simple transconductance amplifiers.
Each amplifier supplies a current proportional to the difference between the two input voltages.
The contribution of each input to the output voltage is weighted by the transconductance of
the corresponding amplifier. The output voltage is given by

Vot = GiV
EIIGi

where Gi is the transconductance of the ith amplifier. In weak-inversion region, Gi depends
exponentially on the bias voltage of the current source transistor. Therefore, the actual weights
are exponentials of whatever the bias voltages are. If the bias voltage is made proportional to
the similarity measure current, then the exponential function as well as the weighted average
process is achieved by this circuit alone.

2.3 Current-To-Voltage Converter

Figure 4 illustrates an I-V converter previously proposed (6], which transforms similarity mea-
sure currents to bias voltages used in the weighted-average circuit. The transfer function of
the I-V converter is

R Vut _ 1
Ii. K{VDD + mVr/(2 - m) - 2VT.I(2 - m)}

where m is a constant typically in the range 1.1 to 1.35. By adjusting control voltage Vb, we
get different V and hence different resistances to accommodate varying pattern widta.

2.4 MERAM cell

Figure 5 shows the basic building block of the MERAM circuit, which includes a similari-
ty computation cell, a transconductance amplifier for weighted average, and a weight storage
capacitor and its access switch. Figure 6 illustrates a layout plot of the MERAM cell. The com-
plete MERAM structure including an address decoder and an off-chip weight-refresh structure
is depicted in Figure 7.

1-619

3 Simulation Results

Suppose that the patterns stored in the MERAM are

{ Pattern 1 : (1 1 1) '
Pattern 2 (-1 0 1) .

Pattern 3 (1 -1 0)

HSPICE simulation results of this MERAM circuit are shown in Figure 8. Initial state,
(Vi1 Vi2 Vi3)=(0.5V 0.5V O.5V), is applied to the circuit. At time 5fts, the input switches
are closed and the MERAM is allowed to run. In 6As, the MERAM settles to the correct
pattern, the first memory pattern (1 1 1).

4 Conclusion

In this paper, an expandable basic building block of the multivalued exponential recurrent
associative memory is presented. This basic building block contains three simple subcircuits.
Regular structure and low transistor count characteristics made this design amenable to VLSI
implementation for a high-capacity multivalued neural associative memory.

Acknowledgement
This work is supported in part by the National Science Council, Taiwan, ROC under Grant
No. NSC83-0404-E-002-060.

References

[1] T. D. Chiueh and R. M. Goodman, "High-capacity exponential associative memory," in
Proc. IEEE Int. Conf. Neural Networks, San Diego, CA, vol. 1, 1988, pp. 153-160

[2] T. D. Chiueh and R. M. Goodman, "Recurrent correlation associative memories," IEEE
Trans. Neural Network, vol. 2, pp. 275-284, Mar. 1991.

[3] T. D. Chiueh and H. K. Tsai, "Multivalued associative memories based on recurrent
networks," IEEE Trans. Neural Network, vol. 4, no. 2, pp. 364-366, Mar. 1993.

(4] T. Delbiuck, ""Bump" circuits for computing similarity and dissimilarity of analog volt-
age," Proc. of the International Neural Network Society, Seattle, Washington, 1991.

[5] C. Mead, Analog VLSI and neural systems. Addison-Wesley, Reading MA, 1989.

[6] Z. Wang, "Current-controlled linear MOS earthed and floating resistors and their appli-
cation," IEE Proceeding, Pt. G, vol. 137, no. 6, pp. 479-481, Dec. 1990.

11-620

X2L MI M22C

*~~M Mesre Aerg

Xm Sp Ym VItss

elou

X2 i mi arty 2V W it eY2Vl u

Mb1
Exponentialout]V

VSS

Figure : We ightedavere crcuit.d Figure : Cuilrret-tco-votageo conrtert.

el-6.

Fiuev aic bLdn blc fteMRA iue6 aou ftebsc ulgbok
circuit

RAMRA

+A i1 ~ iM
VWwl VW(M)

Vo(1 Vo(M)A V(M
Figure 7:Arhtetueo h EA hp

11-62

clock __ _ _ _ _ __ _ _ _ _ ____

Vck [V]
c' -

. -

0.

-2.0 -

Vo IV] :i:o I I-.

o.K -

0..on- Vo3 - /* Vo2
200. ON -

0. [- -- - -- - -- i

10o[uAI 26Aso 2u

2ao.ou Iol |

2o.ou- Io2 Io3
LSO.OU -

I~.7UL.J. . .J I I I I
',,.27?, 2.0 .0 ,.0 9.0 10.0 12.0 14.0

5. Time [us] 15.0

Figure 8: Simulation results of a MERAM with three patterns, each with three components.

II-623

Hybrid Chip Set for Artificial Neural Network Systems

B. A. Alhalabi and M. A. Bayoumi

The Center for Advanced Computer Studies
University of Southwestern Louisiana, Lafayette, Louisiana 70504

Abstract: This paper proposes a complete self-contained chip set for ANN systems based on back-propagation
model with on-chip learning. We mixed both technologies, digital and analog, as to combine the best of the two
worlds. Our system which is constructed from two distinct chips, SynChip and NeuChip, performs the entire
neural computations in analog mode. Interface and communications with host and 1/0 systems is totally digital. A
representative system of 3 layers and 100K analog (16-level) synapses per layer would require 300 SynChips and
40 NeuChips and sustain a performance of 31.46 x 105 CPS. Moreover, such a system acquires direct input and
output ports with a bandwidth of 12800 digital bits or 3200 analog channels.

I. Introduction
Artificial neural networks, ANNs, have demonstrated an unparalleled potential for tackling nonlinear

applications such as vision, recognition, optimization and speech. This magnificent processing power is manifested
from the attempt to emulate the brain structure whose recognition capability (distinguishing Steve from Dave) far
surpasses the computation capability (adding piles of numbers). The success in neural networks field is substantially
bounded by the efficiency of performing the basic ANN computations.

An artificial neural network is a collection of a large number of neurons and their associative weights and the
interconnect. Different models develop from different interconnect topologies, the characteristics of the constituent
elements and the learning algorithm. Nevertheless, All ANNs share a basic characteristic; They are parallel in
nature and for any ANN implementation or algorithm to be meaningful, a large number of processing elements
must be utilized. The following is the most experimented neural model.

1. Feed-Forward Network with Back-Propagation Learning
This network consists of L layers and each layer has N neurons. (N may vary from layer to another.) Typically,

each neuron receive inputs from all neurons in the preceding layer. Each input is multiplied by the corresponding
weight and all the products are added up. Then, a nonlinear function (activation function) is applied to the sum
to generate the neuron output (activation value). These activation values are the inputs to the following layer. If
the computed output differs from the desired one (precomputed), an error vector is calculated and back propagated
through the network in reverse order. On the way, weight are updated gradually in such a way to minimize the
error vector as it reaches the input layer. A recursive procedure that uses a set of test inputs and their predetermined
outputs is called a training session. For our chip set design, we will utilize the feed forward neural networks model
with back learning due to its widespread applications and implementations [9..Nord92].

We will use the index between brackets to indicate the layer number and a superscript to denote the test pattern
number. For example wai [4 represents the element in the gih row and the ell column of the weight matrix W[1 of
the P'h layer and a'[J represents the activation value for the ith neuron in the th layer for the tA input pattern I.
We will use Ni to denote the number of neurons in layer i. For notation convenience, the input terminals will be
considered as layer number 0, thus, No will represent the number of input terminals.

For input pattern /P = (Iff, I, . . . ,No), the system dynamics for the recall phase is given by,

ai[01- ip eq. I

a,[4= f(hi[O) = f(Wj[fa [I - 1]). eq. 2

Each neuron i computes the weighted sum hi of its inputs and then applies a nonlinear function f(hi) producing
an activation value (output) ai for this neuron. The function f is usually a sigmoid function.

The authors acknowledge the support of the National Science Foundation and State of Louisiana grant NSF/LEQSF (1992-96)-ADP-04.

1-624

For each input IP, there is a target (desired) output f. The backpropagation (BP) learning algorithm gives a
prescription for changing the synaptic weights in any feedforward network to learn a training set of input-target
pairs. This type of learning is usually referred to as "supervised learning" or "learning by teacher". The learning
phase involves two steps. In the first step, the input is presented at the input terminals and is processed by the
ANN according to the recall phase equations. In the second step. the produced output is compared to the target
and an error measurement value is propagated backward (from the output layer to the first layer) and appropriate
changes of weights are made. The second step proceeds along the following iterative equations:

6'[L] - f'(h'[L])(t ' - a[Lj) eq. 3

6 ['(h1'[])Z6P[1+ 1jwL+ 1] for 1= L- 1 2,1 eq. 4

= qp[Lqa l- 1eq. 5

= wj[4 +AW 1[1 eq. 6

2. Analog and Digital Design Issues

Researchers have undertaken two technological disciplines to build or map their ANN implementations: Digital
and analog. In digital paradigm, early researchers' emphasis was the efficiency of new algorithm to map ANN into
general purpose huge digital machines with massive parallelism power such as the Connection Machine and MassPar.
The more enthusiastic digital researchers focussed on building custom VLSI chips to implement ANNs that offer
competitive performance and yet much less cost than the giant counterparts. These two digital directions have been
extensively studied and compared and many references for representative proposals are enumerated in [9..Nord92].
Whereas, in analog paradigm, researchers claim that digital implementations with both expensive general-purpose
machines and specialized custom chips are still too slow for many real-time applications (13..Spie921. To achieve
the reasonably-comparable high speed and small size of the brain, many researchers have concluded that ANNs
should be implemented with analog building blocks [II..Schn9 I].

In spite of the advantages of digital systems such as programming flexibility, computational accuracy, and
noise immunity, their inherit drawbacks due to their sequential nature (13..Spie92] make them far less emulative
to the brain parallel power than analog counterparts [12..Shim92]. For example to sum 1024 numbers using the
fastest tree adders will still take ten time units. In contrast, analog systems with their natural temporal processing
capabilities can sum all these numbers in one time unit using one current-summation Op Amp. Another example
is the sigmoid function which can be implemented by an integrating Op Amp with an equivalent area size of a
digital flip flop. Whereas, in digital systems a huge look-up table is required which is too costly to be replicated
for each neuron [Ill.Schn9l].

Analog architectures however, have some drawbacks, the greatest of which is storing the weight coefficients
and maintaining their analog level [5..Hasl91]. Many researchers have already devised efficient architectures to
overcome these inherent analog difficulties [10..Saty92] [2..Bar92] [12..Shim92] [13..Spie92]. Several of these
proposed analog architectures have been already fabricated and tested and fascinating results were obtained
[3..Bose9l] [l..Arim92] [12..Shim92].

Moreover, the classical problems of the analog components have been progressively solved due to the latest
advances in VLSI technology and research. For instance, to maintain the charge value on a capacitor representing
a synaptic weight, researchers have developed several methods for refreshing [7..Lee92j (4..Eber89] [6..Hoi1891
[L..Arim92]. Also, the limited accuracy of analog elements is not problematic due to the fact that neural networks
are tolerant to the errors of the individual elements. That is because the network output is the aggregate response
of too many constituent elements to and it is less likely to be distorted by minor element degradation [3..Bose91]
(I ..Schn9l] [8..Mont92]. In the past three years, several researchers have proposed analog neural networks
occupying a total silicon area of few square inches with performance equivalent to digital systems with 10'2_10t3
FLOPS processing power [13..Spie92].

II. Hybrid Systems and an Optimal ANN Chip Set
The hybrid system, we are proposing, is a complete self-contained ANN system for back propagation model.

We mixed both technologies, digital and analog, as to combine the best of the two worlds. During the discussion of

11-625

the system components, the following points must be kept in mined. In the figures, the solid lines represent digital
signals, whereas the doted lines represent analog signals. Moreover, all directive clauses such as horizontally,
vertically, left to right, and top-down, are relatively in tact when you look at a particular layer of the system such

that SynChip, NeuChip, SynMod, and NeuMod labels are read straight.

1. General Organization
The proposed architecture is based on two distinct chips: SynChip and NeuChip. These two chips may be

cascaded in a regular-grid fashion to build an ANN of any arbitrary input, output, and layer sizes as illustrated in
Fig. i. The example of Fig. 1 shows a network of two layers the first of which consists of 3x2 SynChips and 2
NeuChips and the second of 2x2 SynChips and 2 NeuChips. Layer 0 has only NeuChips (in this example 3). To
expand the input bandwidth of the network, more columns (1 NeuChip and 2 SynChips) may be appended to the
left side of the network and with each new column, 128 digital (32 analog) direct inputs are added. Same analogy
applies to the expansion of the output bandwidth at the right side of the network. Moreover, with the input and
output bandwidth remains the same, the network can be expanded vertically to increase the size of the synaptic
weight matrix for higher accuracy and greater memorization capacity. This is done by appending more rows (I

NeuChip and 5 SynChips) to the bottom of the network.

The chips are connected side to side for simple Printed Circuit Board or Multi Chip Module fabrication.
Furthermore, the SynChip is necessarily square as to appropriate the side-to-side connection with the NeuChips
from both top and right sides as shown in Fig.l. Expansion with this simplicity and readiness would have been
impossible in digital systems as will be elaborated on latter.

2. SynChip and NeuChip
The block diagrams of the SynChip and NeuChip and their interconnection relationships are depicted in Fig.2

which is a close look of a SynChip and its neighbor NeuChip of Layerl of the network of Fig. 1. The digital host
bus (DataAdd) runs between the chips to pass the necessary signals to all NeuChips and SynChips in the same row.
These bus lines are the only exception to the localization of the system interchip connectivity. Note that the top side
of the SynChip (Fig.2) mates directly to the bottom side of another SynChip and to the right side of the NeuChip.
Also, the right side of SynChip mates directly to the left side of another SynChip and to the left side of the NeuChip.

The NeuChip (Fig.2) consists of 32 analog neuron modules, NeuMod (Fig.4), and a digital control block,
NeuLogic. The SynChip consists of an array of 32x32 analog synapse modules, SynMod (Fig.3), a digital control
block, SynLogic, a voltage reference of 16 levels, and 32 refreshing blocks, RefMod. The circuitries of SynLogic

and NeuLogic (white blocks in Fig.2) are pure digital, whereas, all other blocks are mostly analog. This mixture
of technologies allowed us to integrate the small size of analog functional units with the convenient control and
interface of conventional digital host computers. The following is a detailed description of these two chips and
their constituent building blocks.

Through the right side and from the host bus (DataAdd), the SynChip receives some digital signals (solid
lines) such as address and data. These signals are used by the SynLogic block and passed to the adjacent SynChip

through the left side. Also (looking at Fig.2), the SynChip receives horizontal control lines (HorCont) from the
NeuChip of the same layer and vertical control lines (VerCont) from the NeuChip of the previous layer. Note that
the HorCont and VerCont lines respectively propagate horizontally and vertically throughout the entire matrix of
SynChips within the same layer. Derived from these signals, DataAdd, HorCont, and VerCont, the SynLogic of
every SynChip generates and stores all local and global addressing signals, configuration parameters, and modes of
operation. The outputs of the SynLogic block (Fig.2) are the RefCont bus and a set of 32 SynCont busses. The
RefCont signals connect to all 32 vertical refreshing modules (RefMod) to provide the proper refreshing control.
Each RefMod is responsible for refreshing the synapses of the 32 SynMods to its left. Each SynCont bus connects
to the 32 SynMods in the same column.

Besides the digital control signals, the SynChip has two sets of analog lines (dotted lines in Fig.2): 32
horizontal analog lines (HALI-i-32) and 32 vertical analog lines (VAL1-j-32). The HALs are all physical analog
wires which run horizontally across each SynChip from left to right and from one SynChip to another till they

mate directly to the left side of the NeuChip within the same layer. Same thing for the VALs except that they
run vertically to mate directly to the right side of NeuChip of the previous layer. Both HALs and VALs are
bidirectional analog lines which either collect current signals from SynMods and inject them into the NeuMods, or
take voltage signals form NeuMods and distribute them to SynMods.

11-626

The NeuChip comprises the NeuLogic and the 32 NeuMod bl4cks as depicted in Fig.2. The NeuLogic which
encapsulates all digital control circuitries receives DataAdd signals from the host bus as well as a special signal
(Scanin) from the NeuChip of the previous layer. The NeuLogic blocks are responsible for the generation of all
addressing signals; They generate the HorCont busses from the left side to control all the rows within the same
layer, and the VerCont busses from the right side to control all the columns of the next layer. Note that one
NeuChip controls one complete row of SynChips within the same layer and one complete column of SynChips of
the next layer. In addition to the HorCont and VerCont addressing signals, the NeuLogic generates a special signal
(ScanOut) which connects to the ScanIn line of the succeeding NeuChip. Tl:, ScanIn/ScanOut sequence from
one NeuChip to another within the same layer and from one layer to another is our new technique for sequential
initialization of all the layers in the system (see the hair line connecting all NeuChips in the 2-layer system of
Fig. 1). As will be detailed latter, this technique eliminates the need for L.n off-chip global addressing hardware.

3. NeuLogic and SynLogic
The NeuLogic of the NeuChip encapsulates the digital control of the system initialization, interchip addressing,

and various modes of operation. System Initialization is a sequence of host operations which, for each NeuChip,
downloads a unique identification label to a dedicated register called LAY-ROWCOL. The 3-bit LAY part of
this register identifies the number of the layer to which this NeuChip belongs. The 8-bit ROWCOL part of the
identification register holds one number that serves two purposes. On one hand, it identifies within the same layer,
the row number of the SynChips matrix to which this particular NeuChip is associated. On the other hand, it
identifies the column number within the next layer. These two numbers, LAY and ROWCOL, once loaded in the
initialization sequence, remain unchanged throughout the entire system operation until the system is reset. During all
modes of operation, they are used for chip address decoding purposes. For the network of Fig. 1, the addresses are:

L, N0 , N1, N2 = 2,3,2,2,
and the LAY-ROWCOL binary values are:

000-00000001, 000-000000010, 000-00000011
001-00000001, 001-000000010
010-00000001, 010-000000010.

Have all the LAY-ROWCOL registers been initialized, every SynChip of the system is now uniquely
addressable. Note that the maximum system configuration is 8 layers and 256x256 SynChips per layer (64Meg
synapses per layer). The host accesses any SynChip by placing the layer, row, and column numbers on address
lines A23-21, A20-13, and A12-5, respectively. The least significant five bits of the host address, A4-0, are used
to identify a column of SynMods within the SynChip. This would enable the host to load/unload data to/from 32
synapses at a time. A SynChip requires 32 bus cycles to complete the weight load/unload process.

The CONFIG register is used to hold the system configuration information such as setting the NeuChips of
any layer to act as input, intermediate, or output stage, or to accept/produce analog or digital direct inputs/outputs.
Moreover, the CONFIG register holds the information which identifies the mode of operation such as Recall, Learn,
Load, Unload and others. When A25A24=10 , the host can write to the CONFIG register of all NeuChips of one
layer identified by A23-21, but when A25A24=1 1, it writes to all CONFIG registers of all NeuChips of the system.
All these configuration informations are decoded to generate the neuron control bus, NeuCont, which is passed
to all the NeuMods of the NeuChip (Fig.2). The control signals, NeuCont and SynCont, orchestrate the switches
inside the NeuMods and SynMods and the final settings of all switches determine the state of the ANN system.
The system can be configured for ten different neural operations

The CONFIG register of the SynLogic of the SynChip is just a copy of that of the NeuLogic and it is loaded
in the same fashion. The Addressing Logic block takes the VerCont and HorCont busses, the low address lines
(A4-0), and the configuration bits (CONFIG register) to generate the necessary control signals inside the SynChip.
The Refreshing Logic block generates the sequential refreshing control signals fed to the DEC blocks. The RefCont
bus signals generated by decoder DEC, identically control the switches in all RefMods (Fig.2). Similarly each
SynCont bus generated by decoder DECj, identically control the switches in all SynMods of column j.

4. SynMod, Synapse Module
The synapse module is illustrated in Fig.3. The solid hexagons labeled SSl-8 (synapse switches) are all

unidirectional (except SSI and SS4) passive analog switches each of which is controlled by a dedicated digital
control signal (not shown in the figure for clarity) from the Switches Control block. These digital control signals
are level-sensitive (high=on and low=off).

II-627

The VALj line (Fig.3) carries the activation value a,[- 1] as a voltage level from the previous layer and
passes it vertically to all SynModsl. 32j) in all SynChips within the same layer. This activation value and the
weight value w,,, stored in capacitor Cw, are presented by SS7 and SS2, respectively, to the voltage multiplier
ajwi, (Fig.3). The multiplier acts as a current source and its output whose value is proportional to the inputs
voltage levels passes to the HALi line via switch SS6. The HALi line horizontally collects all current contributions
{a,[L - 1wi ui[1} from all SynMods6 32-il) of all SynChips (Fig. i) within the same layer and present the accumulated
current to the corresponding NeuMod which is a current-summing OpAmp (Fig.4). Thus, in the recall mode of
operation. SS2, SS6, and SS7 are on and the data flows into the SynChips as voltages via the VAL lines and
flows out as currents via the HAL lines.

In the learning mode of operation, SS5 and SS8 are on instead of SS6 and SS7 as to allow data to flow
backward; Error signals bi(/] (Fig.3), coming from the NeuChips of the same layer, flow into the SynChips as
voltages via the HAL lines, get manipulated, and flow out as currents {64[]u,,j[]} via the VAL lines. These
currents which are the product outputs of the individual 6 ,wj voltage multipliers accumulate vertically on the VAL
lines and finally get added up in the NeuChips of the previous layer. (See the current input at the right side of the
NeuMod in Fig.4.) The third voltage multiplier in the SynMod calculates the weight update value Awj = a,6,rq
which is the product of the activation value of previous layer, error value, and learning factor. The product output
is added (by the Adder Block) to the original value of the weight and the new weight value is determined. Then,
switch SS3 comes on to update the Cw voltage level. (Note that SS3 inhibitively turns SS2 off.)

The triangular block labeled Buff is a voltage buffer which helps the weight capacitor Cw retains its voltage
level against charge sharing with other functional units. The ,l block represents the learning factor Shich is a
constant generated at the SynChip level and distributed to all SynMods in the SynChip. Capacitor Ca is utilized to
temporarily store the last activation value when the mode of operation is switched to learning. Switch SS4 and the
RefVolt horizontal line are utilized by the refreshing mechanism to refresh the synaptic weights as will be explored
latter. Finally, SSI is provided to load/unload the weight value to/from capacitor Cw.

If the system has been previously trained and all synaptic weights are known, they may by downloaded
from the host to the SynChips and stored in the analog capacitors. Note that the subscript of the weights (e.g.
w(32r.31x32c+s-1)[l]) represent the weight index in the weigh matrix of layer [I] as a whole. For example, w278 517[21
will be downloaded to Cw of SynModi j = SynMod22 s (Fig.2) of the SynChip in row r-9 and column c= 17 of layer 2.

5. NeuMod, Neuron Module
The neuron module, NeuMod, is illustrated in Fig.4. Note that in contrast to the SynMod, the HAL and

VAL lines of the NeuMod do not pass throughout the module from side to side; They are two different signals.
The summation block hi = aiwt, is a current-summing OpAmp which adds up all currents {aj[- 1]wj.[}

J

accumulated on the HALi line. The sum is passed through the nonlinear function block f(hi) to compute the
activation value a[1] for the next layer. This activation value is presented as a voltage level on the VALi line via
switch NS8 (Fig.4). Therefore, in a normal recall mode, only NS, and NS8 are turned on. However, if there is a
desire to monitor the activation values of any layer (I] by the host, switch NS6 may be turned on and the analog
value aj [1] is digitized by the ADC block and its 4-bit representation is read off the 4-bit data lines D(4i-4)-(4i- 1).
Note that the data bus of the host is 128-bit wide allowing the host to read all of the 32 4-bit activation values
from the 32 NeuMods in one NeuChip in one bus cycle. (See the data lines at the left side of the NeuChip of
Fig.2.) Moreover, in some cases, it might be desired to obtain the activation value af[1] through NS6, ADC, DAC,
and NSIO instead of directly via NS8.

In the learning operation the d.4 flow is reversed as the error signals propagated backwards: at every VALi
line, a set of currents {6j[1 + 1]tnj[l + 11} accumulate and pass to the summation block o%, = 6j 6w, via NSI2.

I

The sum, then, passes NSI I to the multiplier 6. = f'(hi)e1j to generate the error 6.[1] which is outputted at
HALi via NS2. Note that the multiplier obtains the value f'(h) from the f'(hi) block whose input value hi
was temporarily stored in capacitor Ch during the recall phase. Switch NS3 turns off in the learning phase to
retain the Ch voltage level.

Loading/unloading the synaptic weights to/from the capacitors from/to the host is done via the HAL line
and switches NS4 and NS5. The ADC and DAC are connected back to back through the 4-bit register, L \TCH,
which is connected to the host data bus. Switches NS7 and NS9 are provided to monitor and control the values
of the error signals.

II-628

III. Conclusions
In this proposal, we adopted analog technology in developing algorithms and architectures for a self-contained

neural processor. The trntire ANN computations within the proposed modules are performed in analog. These
analog operations of the processor core provide a natural implementation of neural models as it loosely emulates the
information flow of the brain. Moreover, digital circuits are employed to facilitate the interface and communications
with conventional digital hosts. Combining both technologies provided the optimal chip set design for neural

systems. The main features of the system are:

* Complete system-level integration for feed-forward model with back-propagation algorithm.

" System based on two distinct chips, synapse and neuron chips. The chips are especially laid out and sized
for cascading on regular grid to readily form networks of any size including a whole-wafer level.

* The synapse chip has lk analog synapses with automatic host-invisible macroscopic refreshing scheme.

" The neuron chip has 32 analog neurons with special hardware to support back propagation learning signals.

" All ANN computations (multiplications, additions, and sigmoid functions) are done in analog.

" The system supports multiples of 128 (one synapse chip) direct digital inputs. Also, direct digital outputs
are provided as multiples of 128. These 1/0 lines can be clustered into any standard word-length format.

" On-chip full learning hardware mechanism.

" System may be configured to operate synchronously or asynchronously

" The host can monitor any part(s) of the system by reading its neural values.

• In the recall operations, pipelining is possible and it allows a throughput of one pattern per bus cycle.
Whereas in training operations, pipelining is not allowed, however, training requires two bus cycles, one to
recall the pattern and one to learn its desired response.

Bibliography

[11 Y. Aima and M. Murasaki. A refreshable analog vlsi neural network chip with 400 neurons and 40k synapses. IEEE
Journal of Solid-State Circuits, vol.27(no.12):pp.1854-1861, December 1992.

[2] B. L. Barrapco and E. S. Sinencio. A modular t-mode design approach for analaog neural network hardware implementations.
IEEE Journal of Solid-State Circuits, vol.27(no.5):pp.701-713, May 1992.

[3] B. E. Boser and E. Sackinger. An analog neural network processor with programmable topology. IEEE Journal of
Solid-State Circuits, vol.26(no.12):pp.2017-2025, December 1991.

[4] S. Ebberhardt and T. Duong. Design of parallel hardware neural network systems from custom analog vlsi 'building block'
chips. International Joint Conference on Neural Netwoks, vol.ll:pp. 183-189, June 1989.

[5] P. Hasler and L. Akers. A continuous time synapse employing a refreshable multilevel memory. International Joint
Conference on Neural Netwoks, vol.l:pp.563-568, July 1991.

[6] M. Holler and S. Tam. An electrically trainable artificial neural network (etann) with 10240 "floating gate" synapses.
International Joint Conference on Neural Netwoks, vol.ll:pp.191-196, June 1989.

[7] B. W. Lee and B. J. Sheu. General-purpose neural chips with electrically programmable synapses and gain-adjustable
neurons. IEEE Journal of Solid-State Cir- ',ts, vol.27(no.9)'pp. 1299-1302, September 1992.

[81 A. J. Montalvo and P. W. Hollis. On-chi4 rning in the analog domain with limited precision circuits. International Joint
Conference on Neural Netwoks, vol.l:pp. 196-201, June 1992.

[9] T. Nordstorm and B. Svensson. Using and designing massively parallel computers for artificial neural networks. Journal
of Paraller and Distributed Computing, vol. 14:pp.260-285, 1992.

(10] S. Satyanarayana and Y. P. Tsividis. A ,econfigurable vlsi neural network. IEEE Journal of Solid-State Circuits,
vol.27(no.1):pp.67-81, January 1992.

[Ii] C. Schneider and H. Card. Cmos implementaion of analog hebbian synaptic learning circuits. International Joint Conference
on Neural Netwoks, vol.l:pp.437-.442, July 1991.

[121 T. Shima and T. Kimura. Netro chips with on-chip back-propagation and/or hebbian learning. IEEE Journal of Solid-State
Circuits, vol.27(no. 12):pp. 1868-1876, December 1992.

113] J. V. Spiegel and P. Mueller. An analog neural computer with modular architecture for real-time dynamic computations.
IEEE Journal of Solid-State Circuits, vol.27(no. 1):pp.82-92, January 1992.

11-629

>-~~
V

VALj * -. VAL)

61 jllj wij 111)

Ho
E

0~

.HI' z

U A
CA

0

V..

rl coo co

VA VU

Layer 0

11-630

A Neural Network VME-module for recognizing AC Current

Demand Signatures in Space Shuttle Telemetry Data

Robert 0. Shelton
Information Technology Division, Software Technology Branch (PT4)

NASA Johnson Space Center, Houston, iX, USA

Sdlve Hultberg and Thomas Lindblad
Department of Physics (Frescati)

Royal Institute of Technology, Stockholm Sweden"

Abstract: An implementation of an analog neural network trained to identify
signatures from the AC electrical power system on the Space Shuttle Orbiter is
described. This demonstration project shows that a small stand alone system in the
form of a VME-module can be designed, constructed and tested within days, provided
a proper set of training vectors are available.

1. Introduction

In the Mission Control Center (MCC), situated at the NASA Johnson Space
Centerin Houston TX [1], controllers visually monitormanycritical systems on the space
shuttle orbiterby means of paper strip chartdisplays. In some cases, such as the Electrical
Generation and Integrated Loading (EGIL) system, the controllers must recognize
signatures of various events by inspection of the strip chart. Events here are transient
signals produced by startup of various devices such as fans, pumps, etc. Each event
produces a fairly unique signal. The EGIL controllers must optimize the use of fuel for
power generation. It is imperative that the state of the system, i.e., which loads are
present, be known at all times.

With the introduction of the Real-Time Data System (RTDS) [21, which makes
over 1400 shuttle telemetry channels available on conventional work-stations at the
Johnson Space Center (JSC) as well as other NASA centers, it is now possible for
researchers to tap into real-time data in order to develop advanced automation techniques.
The EGIL signatL.res provide an ideal situation to test advanced pattern recognition
methods . If successful, the method would contribute significantly to improve the
efficiency in an operations environment. To this end, a UNIX-based application was
created by a group in the Software Technology Branch of NASAIJSC 13].

) Fotnedly the Mann Siegbahn Institute of Physics

11-631

Fig 1. Photo of the Endavour shuttle.

The application [3] can read any RTDS channel and includes a screening
algorithm which captures EGIL events, and several pattern recognition algorithms
which process these events. The algorithms tested to date include cross correlation, a
fuzzy Bayesian classifier, a back-propagation neural network classifier, a "binary"
neural network and a basis function classifier. This application has run in the MCC as
well as on distributed RTDS work-stations, during three shuttle flights [4]. The
classification methods are evaluated post-flight by comparing results to controller logs
and by consultation with EGIL controllers. Although the original purpose of the project
was to construct a software pattern recognition and signature analysis tool-kit for MCC
controllers, the issues related to building the MCC applications are quite general. It is
easy to imagine situations where it would be useful to be able to recognize similar
signatures without using a UNIX work-station, but rather to incorporate advanced
neural-based pattern recognition algorithms into application specific analog circuits
(ASIC). ASIC devices are considered to be the logical next step toward the creation of
"smart" sensors - devices which combine measurement and low-level interpretation/
pattern recognition. The fact that it was possible to go from a data set to an operational
classifier in silicon in a matter of days makes a strong case for the practicality of such
an approach.

1-632

FIg. 2. Schematic drawaing of the neural network used in the present investigation. There are
60 inputs, 30 hidden neurons and 9 output neurons. Note that each active layer has a bias

neuron (two top circles).

2. Collection of Sample Signatures

The current flows in the three three-phase AC electrical busses on the shuttle
orbiter are monitored at a rate of 10 Hertz and these values enter the shuttle telemetry
frame that is fed to the Real-Time Data System (RTDS). The data acquired by the EGIL
application consists of 9 streams (three busses by three phases) of real values, each stream
arriving at 10 Hertz. To apply pattern identification, it is necessary to perform figure-
ground segmentation, i.e. define events in a form suitable for processing by pattern
recognition algorithms, and implement a segmentationprocess to extractevents from the
data stream. As is normally the case for such problems, the event detection scheme for
the EGIL signatures is highly domain-specific. In particular, the definition of an event
is driven by two opposing requirements. The window should be large enough to
characterize the event, but sufficiently narrow to provide timely identification for the
EGIL controllers. Initial experiments demonstrated that there is no value for which both
conditions are completely satisfied. The value that was adopted (6 seconds) was chosen
as the largest delay acceptable to the controllers. In practice, most events are well
characterized by a relatively short - less than 2 seconds - start-up transient followed
by a steady-state load. Other events, such as door activation sequences, thatdo not follow
such a profile must be treated as series of shorter events, and the final recognition of the
sequence is performed by logic that follows the window-based pattern recognition. This
situation is similar to the problems with recognition of continuous speech in which
phoneme-based pattern recognition is followed by logic that understands the context of

II-633

phonemes in a sequential grammar. Once the window size is determined, it is only
necessary to determine a condition that signals the beginning of an event. Since the
events for which pattern recognition would be required are all start-up signatures of
devices being turned on, a simple slope-threshold event detector was implemented.
Specifically, a smoothed value of the first derivative of the current was computed and
compared to an experimentally determined threshold. When the estimate of the rate of
change of any phase of any bus exceeds the threshold, an event is opened on all three
phases of that bus. The 180 values corresponding to 6 seconds of 10 Hertz data on three
phases of one bus comprise an event. Some events, such as motor starts, are characterized
by three similar patterns on each phase, while others, such as lighting events, only show
demand on a single phase. In either case, it is reasonable to process events one phase
at a time. Finally, to eliminate as much context sensitivity as possible, an estimate of the
background (pre-event) current on each phase is subtracted from the values before they
are processed by the pattern recognition algorithm. Examples of events are shown in fig.
3 and a list of events considered are given in table 1.

8

6

4

2

0
0 10 20 30 40 50 60

6

4

2

0 1O 20 30 40 50 60

8

6

2

0
0 10 20 30 40 50 (,)

Fig. 3. Examples of three different AC current signatures sampled at 10 Hz. The horizontal
axis corresponds to 60 channels equal to 6 seconds.

II-634

10 Soon: $d-160 Error: 0.00OUCBodk: 246 EpacClock: is
Moule 2 not Dome: w-maIt Output 0.lmw: 0

10 Pair:

1 44J~44...

0 4 S 1 230 34 33id 1 j60444 1 4S sa So s0

Trat: Software

Error:
0

INPUT
Lu]..

0 4 4 12 16 20 40 44 4 52 56 60

L " OUTPUT

L5 TARGET

Hardware/CIL
-A ERROR

0 4 0

Fig. 4.Example of a test vector during simulation using the DynaMind code (top) and during the
hardware run (bottom). In the latter case an analog voltage of 0 to 3 volts is presented to eaci of
the 60 inputnodes. The9outputnodes will have avoltageclose to 3 voltson the nodecorresponding
to the pertinent event, while all other nodes output voltages are close to zero volts.

II-635

IDnal Signal origin, etc

0 Conventional toilet (WCS)

I Vacuum cleaner

2 Flood lights (I phase), Multi urine fan

3 Cabin fan

4 Gallery fan

5 CO. recycling system (RCRS)

6 Propellant valve

7 Water pump

8 Termal impact printer, Multi Commode fan

none Undefined

Table 1. The various origin of the selected AC-signals considered for identification in the
present investigation. Examples of the type 1, 2 and 6 signals are shown in fig. 3

3. Neural Network Architecture and Training

Following ie selection of the training vectors as described above a total set of
nearly 1500 training pairs was available. Each set consisted of 69 floating-point numbers,
such that 60 of these served as input values while 9 represented expected outputs. We use
80 percent of these for training and 20% for testing the neural network. This is a
straightforward and quite general procedure. Since we have60inputnumbersand9 output
numbers, the network will have exactly those numbers of neurons for the input and output
layers, respectively (cf. fig 2). The input numbers are normalized to the range -1 to +1
corresponding to 0.0 anips to about 8.5 amps and rearranged to the iDynamind format [5]
using a shortC++ program. The 9 outputs will represent the events given in table 1. During
training a "-0.8" ("+0.8") value will represent a "high" ("low") bit.

The training proceeded in two steps. Firstly, we simulated the network with the
iDynaMind [5] code anda fairly "classical" backpropagation. The network had 30 neurons

1-636

in the hidden layerand sigmoidransferfunctious(cf. fig.4). Following some 3000 epochs
of training, during which the learning rate was changed interactively frum 0.20 to 0.12,
all the data in the training set produced the proper answers By this we mean that there
was one and only one of the 9 outputs that yielded an output larger than "0" while the rest
of the outputs remained negative. Clearly, the criteria could be chosen differently, and in
the vast majority of cases we have "very binary" outputs, i.e. one output is close to "0.8"
while die restof the outputs are close to "-0.8". This is discussed in ref [8-10]. Anexample
of a test vector (as well as the result) is shown in the top part of fig. 4. Although this is
a very representative case, there area few 1/0-vectors where two events (mainly no. 4 and
6) come very close, when presented to the present network. The total average square error
is, however, very small (0.1%).

The second pan of the training is referred toas "chip-in-loop" orCIL training and
involves presenting the ETANN 80170 chip with the actual analog input data and reading
the outputs. The chip will be presented with avoltage in therange 0- 3 volts corresponding
to the "-1" and"+l" above. In areal implementation, these values correspond tocurrents
in the range of 0.0 to 8.5 amps. The CL training is performed using the Intel ETANN
development system [46] .The same set of more than 1000 training vectors were used
butnow thetraining proceeds more slowly. After several hours and 300epochs, an average
error of 0.20% was achieved and the training was terminated. A subsequent test using
those 1/O-pairs not included in the training show that in all cases but five, the neural
network will identify the proper event. AGain we have some problems with events 4 and
6. Most likely these events are too few in the training set and this problem could be
overcome by including more examples of both events. Generally speaking though, it is
quite cear that the system behaves very well and returns the proper event in 99% of the
cases. The bottom partof fig. 4 shows, asanexample ofthehardwaretest, the same vector
as mentioned above.

4. Hardware implementation

After the CL training above, the chip is placed on a double-height VME-card as
shown in figs. 5 - 6. This card is based on the ELTEC SAC-8 module [7] and has been
used previously [8-10] in connection with other NNW implementations. The VME-
module has two parts of which the top one is a rather straighforward design of a 68070
micro-computer. This system is shown in fig. 5 and has a kernel-code in EPROM making
it possible to execute a code down-loaded to the RAM or permanenly residing in the
EPROM. The lower half of the module contains a piggy-back card with the ETANN
mountedon the VME-boardontopofeight8-folddigitaltoanalogconveners. This piggy-
back card connects to the motherboard by means of two 96 pole Euo-connectors. Rows
"a"and"c"ofoneoftheseconnectorscarrydteinputsignals,whiletheoutpusareavailable
on the other connector (the control signals are available in the middle "b" row of the
connector). In this way, it is possible to use a short flat cable to connect a 64 pole input
front panel connector to the ETANN piggyback card (fig. 6). The discriminators and
interface electronics are mounted on the VME-board in essentially the same way as in refs
[8-101. The only major difference in the present implementation is that we are using 60
inputs rather than 64 and that we use 9 outputs, representing the 9 possible classes. The
analog to digital converters employed at the outputs in refs [8-10] ae thus not necessary.

11-637

Instead a simple logic decoder is employed (lower right corner of fig. 5).The 60 analog
inputs are also directly available from the front panel of the VME-module using a short
flat-cable to the ETANN piggy-backcard. This means that the card can be used with inputs
either directly with analog signals in the range of 0.1 to 3.0 volts or from the VME-system
following conversion of the digial data as mentioned above. The response of the neurons
is determined by three voltages V.., V,a, and V=.,, which get their values by the code via
DACs (cf. fig. 4). The neuron response is approximated by a tanh function

f(x) = 3.0/[1.0 + exp(x)] + 0.06 volts, (1)

where
x,=- wb(V, - 1.6) + Z w,(Vb- 1.6), (2)

and where wand w are weights. In eq. (2) we have used values of the three reference
voltages corresponding to 3.3, 1.49 and 1.6 volts, respectively.

After signals are presented to the hidden layer (cf. fig. 2), the outputs of this layer
are available atthe chip output pins. These signals will, however, be the input to the output
layer and this processing is controlled with several clock signals generated by the
software. The processing of the hidden layer takes about 3 ps and of the output layer
approximately 5 ps, i.e a total of 8 ps is required for one input.

r.-----------------------------------

mlGem

I~ LOCAL 8

Flg.$. Block scheme of the VME-module showing the ETANN stand-alone implementation. The
top part is a commercial 68K based computer, which connects to the user-specific part (bottom).
Note that inputs to the ETANN can be either from the VME-bus, the RAM memory (in the case
of which 60 DACs are used) or from a front panel connector (analog inputs).

11-638

uETIrc mum

Fig. 6. Photo of the semi-custom VME-module shown as a block scheme in fig. 5. The proprietary
bus is available on the connector joining the 68070 computer part and the ETANN part. The
ETANN chip is mounted on a piggy-back card with analog inputs/outputs available (on rows a and
c) of a Euroconnectors. The former ones are made available to a 64 pin front-panel connector
through a short flat cable.

We are using a cross-assembler code and a special program to download this code
in Motorola S-format Although we download the code over the VME-bus, the "kernel"
also supports downloadingviathe RS-232 frontpanel serial interface. Theexecutable code
resides from address 1000 (HEX) and is then started by typing "Go 1000" on the terminal
(connected to the aforementioned front panel serial port). Depending on the code
previously downloaded, the ETA14N will take inputs either from the dual-ported RAM
belonging to the 68070 system or from the analog inputs. When used in the latter mode,
nothing but the power supply is required for the VME-module. However, if data is
presented in digital form, another VME module is expected to place the input vectors in
the dual-ported RAM of the present board or, alternatively, this can be included in the
assembler code of the 68070 CPU. A photograph of the VME-module is shown in fig. 6

5. Summary and conclusions

The main goal of the present investigation has been to show that it is possible to
design, train and implement an analog neural network (the ETANN 80170) on a semi-
ready "standard" VME-module using very few extra components and that it requires very
little time for special design. Clearly the neural network in the present case is not a very
complicated one. However, we feel itis atypical one and well suited for the analog ETANN
chip. Furthermore, the use of a cross-assembler running on a PC/386/486 has made the
software development for the targeteasy and conveniently located on the same "platform"
as the ETANN development system (INNTS).

11-639

6. Adcnowedgenients

The authors would like to acknowledge the support of the Carl Trygger Foundation
and the Swedish Research Council for Engineering Sciences (TFR). Comments by Clark
S. Lindsey on the manuscript is appreciated.

References

1. Orignal signature clasification by Ms Lynn Fox (priv. comm); flight controller,
MCC, JSC, NASA, Houston TX

2. J. Mutatore, et al., "Real-Time Data Acquisition at Mission Control",
Communication of the ACM, 33:12 (December 1990), pp 18-31.

3. David G. Harnmen, Travis A. Moebes, Robert T. Savely and Robert O. Shelton:
"A Strip ChartPattern Recognition Tool Kitfor Shuttle Operations", Proceedings
of American Institute of Aeronautics and Astronautics, San Diego, October, 1993

4. 80170NX Electrically Trainable Analog Neumal Network, Intel Corp, 1993 (March)

5. iDynaMind User's Guide Version 3.0, NeuroDynamX, Boulder, CO. 1992

6. INNTS User's Guide Version 3.0, Intel Corp., Santa Clara, CA, 1992

7. ELTEC Elektronik, GMbH, Mainz, Germany, SAC-700/800 User's manual

8. B. Denby, Th. Lindblad, C.S. Lindsey, Gfta Szekely, J. Molnar, Age Eide, S.R.
Amendolia and A. Spaziani, Nucl. Instr. Meth. A335(1993)296-304

9. J. Molnar, G. Sz&ely, Th. Lindblad, C.S. Lindsey, B. Denby, SR. Amendolia and .
Eide, to be published in ICFA Instnmentation Bulletin spring 1994.

10. Tommy, Akkila, Tom Francke, Thomas Lindblad and Age Eide, An analog
neural network hardware solution to a Cherenkov ring imaging particle

identifier, Nucl. Instr. Meth. A327(1993)566-572

11-640

Image Restoration and Compression by Neurochips

Harold Szu and Joseph Landa

Physics Dept., American University, Mass Ave. NW, Washington DC 20016
NSWC Dahlgren Division, Code B44, Silver Spring/White Oak MD 20903-5640

Abstract

Real time implementation of the Wiener filters for noisy TV imagery restoration is given at the
pixel level employing a massive parallel neurochip. Furthermore, mimicking the human visual
system, we use the Maxican hat Wavelet Transform (WT) to compress the TV imagery and then we can
efficiently restore those dominant scales information for channel distortion in satellite and/or
fiberoptics communications. We have coined the name Wiener-Hopfield Neurochip for such a class of
LMS restoration neurochips which can solve a large class of filtering in the digital domain.

1. Introduction

Why should we use the artificial neural network (ANN) technology for image processing in the
first place?

Since ANN is a mature technology, various application neurochips are availible (1-41. Since
the set of data that a high definition television (HDTV) has is about a few million pixels changing in
time (with a 30 Hz frame rate), then each pixel is closely matched with the discrete nature of simple
neuron processor in time, and the architecture of massively parallel ANN matches naturally with the
liquid crystal projection style circuitry board. Since the input and the output relationship can not be
certain in all cases (e.g. due to the propagation medium fluctuations), and since an adaptive echo
cancellation may be necessary (e.g. due to the impedance mismatch discontinuity at the electrical and
fiberoptical connectors), then a hardware implementation of a distributive, and fault-tolerant ANN
algorithm becomes desirable. In this paper, we point out that Hopfield-like neurochip is available,
that happens to be designed by input currents and output voltages. Therefore, we have mathematically
mapped the image domain Wiener filter to ANN's, where the corrupted image pixels i(x,y) are
proportional to the input currents and each neuron output is the voltage proportional to the restored
object v(xy).

In this paper, we have used the Fourier transform to derive the Hopfield neural network model
for Wiener-like image restoration processing. Then, at the fixed-point dynamics level of Hopfield-like
neurodynamics we can implement the image restoration Wiener filter in the image domain for the real
time operation. This is possible because the Hopfield dynamics is a linear equation which allows us to
use Fourier de-convolution theorem to transform the product of Fourier amplitudes into the correlation
operation, i.e. matrix vector multiplication in the image domain.

We wish to address several technology issues for image restoration and compression tasks.
Since the major impact of these tasks will be in the Broad-band Integrated System of Digital Networks
(B-ISDN) for the picture phones (with on-line fax printers) for interactive telecommunication and
teleconference at home/office, one would ask-

*How inexpensive a neurochip can be designed for enhancing image display?
eCan the modulation transfer function of HDTV display be modeled and then adaptively

measured realistically ?
* Will the TV noise--flicker, fractal 1/f, be modeled and adaptively measured in real time ?

11-641

Obviously answers to these are research beyond the scope of current report. Instead, we assume
that all these answers are affirmative, and the need of neurochip designs and implementations is a
critical component for real time image processing in the image pixel domain, rather than using the
traditional Wiener filter in the Fourier Transform domain, for which it requires to transform the image
twice- back and forth wasting the time and resource.

2. Mathematical Definitions of Wiener Filters and Wavelet Transforms

We assume a shift-invariant and time-independent point spread function (psf) s(xy) and an
additive noise of zero mean (for modeling a noisy TV except the shift-variant and multicative noise
case).

i(x,y, t)= s(x,y), ,o(x,yt) + n(x,yt); <o(x,yt)n(x,y,t)>=0 (1)

where the ensemble average is denoted by the angular brackets (when in erbodic systems it can be
replaced by the time average), and the double star denotes the double convolution in the image pixel
domain. Then, the least mean square (LMS) filter has been derived and known as the Wiener filter
w(x,y) [5J which convolves with the corrupted image i(x,y,t) gives the estimated object v(x,yt)

< I o (x,y,t) - v(x,y,t) 1 12> = min. w.r.t. w(xy) (2).
We will give the derivation in the Fourier domain, so that we can implement it in the image domain by
ANN. First we introduce the TV scanning coordinate ar the two dimensional (2-D) domain which is
one dimensional space-filling curve, say lexicographic scan line-by-line, or the Peano curve preserving
the local proximity relationship [61 at point p denoted by p real numbers or integers

p <--> p = (Xp, Yp). (3)

This paper's theme is that the LMS restoration Eq(2) of any linear and shift-invariant integral
Eq(1) is equivalent to each other mathematically and can therefore be solved by implementing a
Wiener-Hopfield (W-H) Neurochip whose design is given for the first time. In order to illustrate this
point, we have chosen the image compression by the Wavelet Transform (WT) as another test problem
in additional to the real time image restoration, Eq(1,2). Since the WT has been adopted by FBI for a
lossless finger-print compression (having the 27/1 compression ratio record and better than the
traditional JPEG DCT scheme), then with the availability of W-H neurochips the WT shall become
more popular in the teleconference and video community.

A mother wavelet V(x) that can mimic the human visual system complex cell response function
is known to be the difference of Gaussian (dog) or Mexican Hat model used early by computer vision
researchers, Marr, Adelson & Barr, Mallat [71

V(x) = (1- ix 12) exp(- Ix12 /2) (4a)

lW(f) = f dxexp(-2nifx)y(x) = 4 f2 If12 exp(-2ntlf12) (4b)

Eq(4b) indicates the Laplacian Pyramid Paradigm based on the Laplacian operator: A <--> 4n2 If 12 is

a band pass filter under a Gaussian window that is useful for the curvature detection under a fixed
resolution scale. The completeness condition that insures such an admissible mother wavelet 'I(f) is
that the power spectral density (PSD) must be inversely-linear bounded [7,81

Jdf II T(f) 112 / I f I = Const. < 00. (4c)
which implies no d.c. frequency component, i.e. a zero integrated area for a "little" oscillatory wavelet
such that the total area vanish and decay rapidly in a compact support.

T(f=o) = J dx 4(x) = 0. (4d)
The daughter wavelets are the affine scaled and shifted version 4Iab(X) = V((x-b)/a) of the mother

wavelet (x). For integers j and k, a dyadic daughter (meaning a factor of 2 in scale) is given as follows:

11-642

411,k(p) = 2-j/2 AV(2 "J p - k) (5a)

Additional tight frame condition is required (71 to turn the admissible mother into a complete
orthonormal (CON) set written in terms of the Kronecker delta, using the Dirac notation for the dual
space, bra vector < I, to the ket vector, I >. Then, the following outer product matrix is diagonal
because of CON:

Xjk INjk> < Vj'k' I = 8 j,j 8 kk' (5b)

The inverse Wavelet Transform of a p-scanned image is obtained from Eq(5)

I i(p)> = 'jk IVjk> <Wj'k' Ii(p)> + Jr(p)> (6)
When a reduced set of the inner product wavelet coefficients <Wy'k, i(p)> indicated by the prime over

the summation sign is used to keep the image up to a certain resolution scale and the remainder i(p) -
I i(p)> = Ir(p)> is a low pass residue which is somewhat like the noise of EqOl). Thus, WT can

accomplish an image compression which is digitally equivalent to the sub-band coding method or
known as Quadrature Mirror Filter (QMF) method for data compression[7]. This image wavelet
compression can be embedded into the W-H neurochip because of such a mathematical isomorphism.

3. Wiener-Hopfield Neural Networks In Fourier Domain

The corresponding upper case letters denote the Fourier amplitudes in the Fourier frequency
domain (fx, fy), Eq(1) becomes, after invoking the Fourier deconvolution theorem [111:

I(fxfy' t) 0 S(fx fy) O(fxfy, t0 + N(fxy (7)

The estimated object spectrum is defined by

V(fx, f t) W(fx,f) I (fx, fy, t) (8)

where W is the celebrated Wiener filter such that the estimated V, which will be the ANN neuron
outputs, must be as closely as possible to the true object spectrum 0 in the LMS sense

E = (1/2) < (V - O) (V* - O*) > = minimum (9)
Since V*=W*I*, where the superscript * denotes the complex conjugate, one finds by the partial
differentiation aE/aW* = 0, the important orthogonality principle for the error correction update rule
used in any stable algorithm:

<(V-O)I*> = 0 (10)
Eq (10) says when the data I* used can no longer narrow down the error (V - 0), the filter becomes the
best. Using this orthogonality principle, we can replace unknown V with 0, after multiplying Eq(8)
with r: V r=w I 1*, taking the average,<V r>=W <I I* >, and then replacing <V *> with <0 Ir>, the
Wiener filter is obtained:

W = <0 I* > / <1 I* > (1

We wish to make a comment to other well known filters in image processing. Using Eq(7), we can rewrite
the Wiener filter Eq(11) as follows:

W = S*/{11SII 2 + = S-1/{+E/ IIS11 2) (12)
where e is defined to be the noise to object PSD ratio:

e = <11N112>/<1IOI 12> (13)
Clearly, the Wiener filter Eq(12) is reduced to the Vander Lugt matched filter S* in optics in the limit

of large noise e >>I, and also to the Inverse Filter S- 1 in the opposite limit of no noise [5]. Substituting
Eq(l1) into Eq(8) gives the restored object

11-643

V - j<0l*>/<II*>)I (14)
Formally, if we denote the above Eq(14), factor-by-factor, as a = {b/cid. Since image PSD c= I I*>* 0,
then for reasons of easy implementation one can remove the denominator by multiplying the resulting a
with a nonzero cgives ac = bd, which suggests that the minimum of the scaler constant E - (1/2)1 ac -

bx 12 gives the desired output a. Likewise, multiplying the image PSD through both sides of Eq(14)
forms a quadratic energy function E for the restored spectrum V:

E(V) = (1/2)(<II*>V- <01*> 1)2 (15)
For arbitrary object spectrum, the Hopfield-like energy function is normalized

H(V) - E(V) / < 110 1 12> = (1/2) (W' V - S* I 2 (16a)
where W' is the object-normalized image PSD, the inverse Wiener filter, see Eq(12),

W' = (I ISI 12 + p) (16b)
The Hopfield-like neural dynamics is given by a local gradient descent, or fixed point dynamics. Let I
be the discrete index (along the space-filling scanning curve on constant wavelet fidelity Q=f*/Bf
patches on Fourier domain f*=center freq. and 8f=r.m.s. freq. spread): I <--> f I = (fx, fy) "

aUl /at = - aH/DVI= - mW mVm + Il (17)

where synaptic interconnect weight is the square of the object-normalized image PSD

Wim (I IS,1112 + l)2 81,m (18)

and the external input to the ANN is derived from the given image spectrum II

I I (I iS1 II2 + e) S 1 1 (19)

and neuron net input is

UI = Tm WlmVm + 61 (20)

and the sigmoidal output is

V1 = G (U1) = 1/ 1 + exp(-U 1)1 (21)

Coneec Theorem; Given image data 11 , such a system converges, because of the monotonic logic

Eq(20) (dVl /dU l)>0, and the quadratic real energy slopes (a H / a V1)2 derived by chain rules: dH /dt=

, (a H / V1) (dV I/dUl) (dU l /dt) and replacing the last factor by the gradient descent Eq(17),

dH (V1 V 2,...Vn)/dt = - 11 (a H / D V1)2 (dV1 /dU1) < 0 (22)

Our convergence proof is independent of any detail of the energy function H which may vary in video.

4. Image Domain Hopfield-like Neural Networks

Image domain dynamics is the Fourier Transformed of Eq(17), because of linear v(x,y,t).
v. (t) = v(x,y,t) (23)

1

u1 (t) = iv(t) + Oi (24)

ui /at = - V w. + i i(t) (25)

11-644

where the index i is stepping over the Peano scanning curve p i = (xi, yi), and

the cyclic index in the weight matrix is the well known Toeplitz matrix wi.j owing to the Fourier

convolution theorem 1111.
We have mathematically mapped the image domain Wiener filter to Hopfield-like ANN's,

where the synaptic weight is the square of the object-normalized image PSD, and the corrupted image
pixels i(x,y, t) are proportional to the input currents and each neuron output is the voltage proportional
to the restored object v(x,y, t). Such a Hopfield neurochip exists, and given in Fig. 1.

VdA

vi
"~ V'bb2 V b"

(a) (b))

VoutV

V2

(c) (d)

Fig 1.

Fig. 1 shows analog CMOS implementations. Fig. 1(a) shows a CMOS diff. amp. circuit at -11+1 V
power supplies which is used to generate the sigmoid nonlinearity. Fig. 1(b) and Fig.1 (c) are synaptic
multiplier (c.f. Mead's Gilbert) and the wide-rage four quadrant Gilbert synaptic multipliers
respectively. These circuits are used to maintain the values of the weight matrix wij. The trans

impedance amplifier circuit shown in Fig. 1(d) is used to convert the diff. current to a single end voltage
output to a neuron. Although Hopfield neurochip interconnect pattern is well known and not shown
here for it requires no weight change at the lattice intersection, we expect a slow change of weights
may occur at the Video rate image processing, and therefore we have adapted our circuit design from
Mead and the weight change circuitry used in "back prop" [1]. Numerical and SPLICE simulations of

I1-645

~b in VVImll~lllllll mm

TV pictures have either been or will be presented [9-201.
Acknowledgement

H. Szu wishes to acknowledge the Seed and Venture Fund from NSWC Dahigren Division.
References

1. Yiwen Wang,(U. Minn.)"Analog CMOS Implementation of Backward Error Propagation,"
ICNN-1993, pp. 701-706, March 28, 1993, San Francisco (IEEE Cat. 0-7803-0999).
2. E. Lange, E. Funatsu, K. Hara, and K. Kyuma, "Artificial Retina Devices--Fast Front Ends for
Neural Image Processing Systems," IJCNN-93 Nagoya, pp.801-804, Oct. 1993.
3. Y. Nitta, J. Ohta, S. Tai, K. Kyuma,"Optical Neurochip for image processing," IJCNN-93
Nagoya, pp. 805-808, Oct. 1993.
4. M. Oita, S. Tai, K. Kyuma,"A novel model of two-dimensional image associative memory for
optical storage," IJCNN-93 Nagoya, pp. 809-812, Oct. 1993.
5. H. Szu, "Matched filter spectrum shaping for light efficiency," Applied Optics, Vol. 24, pp.
1426-1431, May 5, 1985.
6. H. Szu,"Neural Networks based on Peano Curves and Hairy Neurons," Telematics and

Informatics, Vol. 7, pp. 403-430, 1990.

7. Ingrid daubechies Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics.

Philadelphia, Pa. 1992

8. H. Szu, Y. Sheng, J. Chen," Wavelet Transform as a bank of matched filters," Applied

OpticsVol. 31, pp. 3267 -3277, July 1992.

9. Y. Sheng, D. Roberge, H. Szu, "Optical Wavelet Matched Filters for Shift-Invariant Pattern

Recognition,"Opt. Lett. Vol.18, No. 4, pp. 299-301, Feb 15, 1993.
10. H. Szu, X-Y. Yang, B. Tel fer, Y. Sheng, "Neural Network Wavelet Transform for Scale-Invariant

Data Processing," Phys. Rev. E, Vol. 48, No. 2, pp.1 4 97 -1501, Aug. 1993

11. J. Goodman, Introduction to Fourier Optics, McGraw Hill, NY, N.Y., 1986

12. H.H. Szu, B. Telfer, S. Kadambe, "Neural Network Adaptive Wavelets for Signal
Representation and Classification," Optical Engineering Vol.31, pp.1907-1916, Sept. 1992.
13. B. Telfer, H. Szu, R. Kiang, "Classifying Multispectral Data by Neural Networks," Telematics
& Informatics, Vol. 10, No.3, pp. 209-222, 1993.
14. X. Yang, H. Szu, Y. Sheng, H.J. Caulfield,"Optical Haar Wavelet transforms of Binary

Images," Optical Engineering Vol. 31, pp. 1846-1851, Sept. 1992.

15. G. Rogers, J. Solka, C. Priebe, H. Szu, "Optoelectronic Computation of Wavelet like-based

Features,"Optical Engineering Vol. 31, pp. 1886-1893, Sept. 1992.

16. H. Szu, "Why the Soliton Wavelet Transform is useful for Nonlinear Dynamic Phenomena,"

Proceedings of SPIE , Vol. 1705, pp. 280-288, 1992.

17. M. Bodruzzaman, X. Li, K. Kuah, H. Szu, B. Tel fer,"Speaker recognition Using Neural Network

and Adaptive Wavelet Transform,"Proceedings of SPIE Vol. 1961, Orlando April, 1993

18. B. Telfer, H. Szu, A. Dubey, N. Witherspoon, "Detecting Blobs in Multispectral Electro-Optical

Imagery Using Wavelet techniques," Proceedings of SPIE Vol. 1961, Orlando April 1993.

19. H. Szu, L. Zadeh, C. Hsu, J. Dewitte, G. Moon, D. Gobovic, M. Zaghloul, "Chaotic Neurochips

for Fuzzy Computing", Proceedings of SPIE, Vol. 2037, San Diego, July, 1993.

20. H. Szu,"Auto. Fault Reco. by Image Corr. N. N.techniques,"IEEE TransIE-40,197-207, 1993

U-646

VLSI Implementation of the Hippocampal Dentate Gyrus

Oscal T.-C. Chent, Theodore Berger t , Bing J. Sheu*

*Department of Electrical Engineering, mc-0271
tDepartment of Biomedical Engineering, mc-1451

University of Southern California, Los Angeles, CA 90089.

Abstract -. The VLSI implementation of a mathematical model of the functional properties of
the hippocampal formation has been developed. The hippocampal formation is a brain system which
performs the cognitive functions of learning and memory. The design scheme of analog cellular neural
network has been extensively applied. The architecture of the proposed hardware implementation has
a topology highly similar to the anatomical structure of the hippocampus, and the dynamical proper-
ties of its components are based on experimental characterization of individual hippocampal neurons.
The prototype chip with 9 neurons in a two-dimensional 3x3 mesh array occupies a silicon area of 4.6
mm x 6.8 mm and was fabricated in a 2-po double-polysilicon CMOS technology. According to the
SPICE-3 circuit simulator, the response time of each neuron is around 1 IL sec which is much faster
than that of the biological neuron.

L Introduction

Algorithms based on neural network paradigms have been demonstrated to be useful in signal process-
ing and pattern recognition tasks. In order to effectively address complex real world problems, the neural
networks must be scaled up, or modularized, and then must be efficiently implemented in hardware. In gen-
eral, a neural network module consists of a large collection of simple processing elements. These simple
processing elements execute mathematical algorithms to collectively carry out information processing
through their responses to stimuli. There are technological constraints to the scale size and capacity of
neural network hardware. In contrast, biological networks which incorporate features of real neurons and the
connectivity of real neural networks have been shown to exhibit theoretical advantages in dimensional scal-
ing and processing time. In order to develop a hardware implementation of the proposed model [1], the role
of cellular and circuitry characteristics in the computational basis of hippocampal memory function have
been studied.

Rapid advances in silicon fabrication and design technologies, especially the advent of very large-
scale integration (VLSI) circuits, have made possible the implementation of engineering and biological
neural networks. There has been much research in the area of analog neural network hardware implementa-
tions for various applications of adaptive signal processing. Lyon and Mead [2] described an analog elec-
tronic cochlea for speech recognition. Koch et al. [3] reported a real-time chip for rudimentary computer
vision and robotics. Moore et al. [41 presented the VLSI implementation of an artificial neural system for
color constancy. Salkinger et al. [5] developed the analog neural processor for high-speed character recog-
nition. Sheu et al. implemented a motion sensor chip [6] and a neuroprocessor for self-organization mapping
[7]. Many cellular neural network (CNN) implementations have been reported [8,91. In addition to CMOS
technology, various design and fabrication technologies such as BiCMOS [10], field-programmable gate
array (FPGA) [11], and charge-coupled device (CCD) [12] also have been used for efficient construction of
neurocomputing systems.

The custom VLSI hardware for neuron network applications can be constructed by the digital or ana-
log design approaches. In the digital approach, a higher resolution and less noise-sensitive can be achieved.
However, the silicon area and power consumption is higher than those of the analog design. On the other
hand, an analog design can have many properties in common with real neural tissue. Analog computation
can allow many neurons to collectively perform complicated functions in real time. Due to the regular and
local connections among neural cells, the architecture of analog CNN circuitry is well-structured and the

This research was partially supported by ONR under Grants N-00014-92-J-4111.

IU-647

operation speed is independent of the network size. Usually, current saturation problems can occur in large-
dimensional, global-connected neural networks. This effect can be alleviated by using the local-connected
networks, such as CNN, or the networks with a small volume of interconnections. The analog CNN design
scheme has been extensively studied for the proposed neural memory systems.

IL Nonlinear Systems Model of the Hippocampus

The dynamic properties of individual hippocampal neurons were characterized experimentally using a
nonlinear systems analytic approach [13J. Experiments were conducted using in vitro slice preparations of
the hippocampus of New Zealand white rabbits. The primary afferents to the hippocampus, perforant path
axons of the entorhinal cortex, were stimulated with a random interval train of electrical impulses: a series
of 4064 impulses with a Poisson distribution inter-impulse intervals. The mean inter-event interval (A) was
500 ms, with a range of 1-5000 ms. Throughout random train delivery, electrophysiological activity was
recorded intracellularly from single granule cells of the dentate gyms, which receive excitatory input from
perforant path axons.

The nonlinear input/output properties of granule cells were defined as the kernels of a functional
power series expansion:

y(t) = Go + Gl[hl,x(t)] + G2fh2,x(t)] + G3[h3,x(t)] + (1)

where y(t) is the output of dentate granule cells, (G) is a set of mutually orthogonal functions, and (h) is a
set of kernels which characterize the relationship between the input and output:

G0(t) = 0, (2)

G, = fh,(E)x(t-)dT, (3)

G2(t) = 2jfh2(,r+A)x(t--)x(t-A-'r)dAd'r, and (4)

G3 = 6Sfh3(tz+AIT+A2)X(t-)x(t--Ai)X(t-T-Ai-A2)dAidA2dT. (5)

The train of discrete input events defined by x(t) is a set of 8-functions. The first, second and third order
kernels of the series are obtained by the process of orthogonalization using cross-correlation techniques
applied to point process events [14].

The first order kernel, h,(r), is the average of all evoked granule cell responses occurring during train
stimulation as shown in Fig. 1(a). The second order kernel, h2(r,A) as shown in Fig. l(b), represents the
modulatory effect of a preceding stimulus occurring A ms earlier on the number or probability of granule
cell activation by the most current stimulation impulse, where r is the cell activation latency. The third
order kernel, h3(rA1,A 2) as shown in Fig. l(c) represents the modulatory effect of any two preceding stimuli
occurring A, ms and A2 ms earlier on the number or probability of granule cells activation by the most
current stimulation impulse. In total, the kernel functions represent a complete characterization of the func-
tional properties resulting from the interaction among whatever system of neural elements is studied, and
provide a basis for predicting the activity of those elements in response to any arbitrarily selected stimulus
condition.

I. Biologically-Inspired Neural Network Implementation

The proposed neural network is based on the biological neural input/output and interconnection
models. All neural operations are performed asynchronously according to biological neural functions. The
neural network is a dynamic system which will be trained according to the stimuli. Potential applications are
in the areas of data storage, classification, and understanding. Generally, the VLSI implementation of one
neuron cell includes some fundamental circuit components such as synaptic input drivers, synaptic weight
memories, and a output function generator.
(a) Synaptic input driver:
A synaptic input driver buffers the input signal voltage and provides the driving capability for the neuron
operation. Thus, a fast settling response of the synaptic input driver is highly desirable. In addition, the
synaptic input driver should occupy a compact silicon area and consume low power because many synaptic
input drivers are required in a large network.
(b) Synaptic weight memory:
The main function of the synaptic weight memory is to achieve a linear multiplication and to provide reli-
able storage of the weight value. Since the number of the synaptic weight memories is a dominant factor in

1-648

a VLSI neural network chip, the careful design of the synaptic weight memory is crucial in achieving the
compact silicon area, minimized power consumption, and large dynamic range. In some analog designs of
the synaptic weight memories [15,161, the weight value is stored on the capacitor and can be modified by
injecting (or extracting) some charge onto (or from) the capacitor. The electrical charge on the capacitor
represents the weight value. When the signal from the synaptic input driver is "low", the output current is
produced by the bias voltage (corresponding to the reference zero). When the signal from synaptic input
driver is "high", the output current is dependent on the synaptic weight value. Thus, the current output is
the product of the synaptic weight value and the binary input. However, the charge retention is a major
design issue in analog weight storage. It needs to be carefully addressed because the weight value might be
decayed due to the leakage current in the reverse-biased pn-junction. For some applications, a periodic
refreshing is required.
(c) Output function generator:
The output function generator needs to accumulate all synaptic weight currents and generate a specific out-
put result based on the summed current. Thus, the current-to-voltage converter is a major component of the
output function generator. The transimpednce amplifier consisting of an operational amplifier and a feedback
resistor can provide the current-to-voltage conversion. The transimpedance amplifier ought to have a
sufficient capability to handle a large magnitude of current for proper linear conversion. The feedback
resistor can be implemented by six active transistors for high accuracy and occupies a much smaller silicon
area than a passive resistor (16]. According to the neural function, the voltage result from the converter can
be appropriately transformed through another analog circuitry, or can be used as a output result for a linear
neural output function.

IV. VLSI Implementation of the Nonlinear Model of the Dentate Gyrus

The response properties of the granule cells have been analyzed by using the time-series neural model.
The output of a neural cell can be described with the estimated kernel functions. The hardware implemen-
tation is used to realize the Eq. (1). Figure 2 shows an architecture design of a neural cell, which is a hybrid
analog/digital design. Before the operation of neuron function being performed, the signal RESET is issued
to set the contents of input latch and shift registers to the V,. The input signal X is pipelined into the input
latch. The previous input sequence is stored in the shift registers. The signal CLKI is used to control the
data shifting among the input latch and shift registers. The timing relationship in the neural model is
mapped into the relationship of space connection in the shift registers. The signal READ is used as a
enable signal for memory access. It controls the period of memory access which is determined by the
response time of the analog current-sum circuitry. The AND gate functions are used to generate the memory
access signal. From timing diagram shown in Fig. 3, the processing of the neural cell can be divided by
three different operations: (a) shift the previous data and latch the incoming data, (b) generate memory'

access signals, fetch the memory data, and generate the output result, and (c) refresh the memory cell.
The hl, h2, and h3 are stored dynamically in the analog memory cells which can be implemented by

using the modified Gilbert multiplier. The circuit schematic of the compact and wide-range Gilbert multi-
plier for the neuron memory cell is shown in Fig. 4(a). By using the SPICE-3 circuit simulator, the linear
characteristics between the synaptic voltage pair (W,,+ and W,._) and output current can be achieved. The
measured dc characteristics of the synaptic weight memory is shown in Fig. 4(b). Since the memory for
synaptic weights is implemented by using the gate capacitances of MOS transistors, periodical refresh is
required to prevent the leakage current through the diffusion-to-substrate junction from changing the stored
value. From the measurement on charge retention characteristics, a refresh cycle of around 0.1 sec is
sufficient to retain the 8-bit accuracy [15]. Each updating or refreshing the data is performed while the
correct memory address is provided. A decoder is required to decode the memory address in order to gen-
erate the control signals for the pass transistors. The input data will be stored in the synaptic weight
memory through pass transistors. The refresh operations can be overlapped with the operations of the neuron
function.

The currents from the synaptic weight memory will sink to the I-to-V converter which is an opera-
tional amplifier with a linear floating active resistor feedback. Figure 5(a) shows the circuit schematic of I-
to-V converter for the operation of the current summation. The measured characteristics of this I-to-V con-
verter is also shown in Fig. 5(b). Due to the operation range of I-to-V converter, the total current from the
synaptic weight memory is limited. According to Fig. 5(b), the 500 pA is the maximum total current. In
the Fig. 4(b), the linear current range of memory cell is adjustable by using different voltages, VN. Empiri-
cally, the contribution of higher order kernels can result in output values that range from -100% to +400%
of the magnitude of the h, value. Since the currents are proportional to the values of hl, h2, and h3, the total

11-649

current will be within four times the current from the hi memory cell. Therefore, the N can be a large
number, if the physical layout routing and propagation delay issues can be efficiently implemented. If the
500 ILA is the maximum operation current in the I-to-V converter, the h, memory cell can provide the 125
ptA with the maximum data resolution. The total current from the h2 and h3 will be within -250 pA to 375
paA so that the circuitry of I-to-V converter still performs in the linear operation range.

A set of 9 neurons is arranged in a two-dimensional 3x3 mesh array. Each neuron connects with its
four neighboring neurons and has a physical size 1,000 X x 1,200 X, with the number of stored time units
equaling four (N=4). Figure 6 shows a layout of a complete neuron with a decoder for refreshing address.
According to the SPICE-3 circuit simulation, the functionality of a neuron with 11 synaptic weights can be
correctly addressed. The total response time is approximately 1 1.ts. The 3x3 neuron array with some testing
modules, as shown in Fig. 7, was fabricated in a 2-pim double-polysilicon CMOS technology through the
MOSIS Service of USC/Information Sciences Institute at Maria del Rey, CA.

V. Conclusion

A mixed analog/digital approach is one of the good choices in the implementation of electronic neural
systems. The local data computation is executed by analog circuitry to achieve full parallelism and to
minimize power consumption. Interneuron communication is carried out in the digital format to achieve net-
work scalability by using an array of neural chips. The proposed VLSI implementation of a nonlinear
model of the hippocampus will not only facilitate for efficient emulation of biological systems or simulation
of neural network paradigms but also produce useful knowledge and results for scientific and engineering
applications.

VI. Acknowledgments

The authors would like to thank Dr. Joongho Choi for discussion on the detailed circuit design. Mr.
Choi Choi provided the experimental and analytical results of the hippocampus. Mr. Tony Wu and Mr.
Vincent Wang helped on the layout of some circuits.

Reference

[1] T. W. Berger, J. L. Bassett, "System properties of the hippocampus," Learning and Memory: The Bio-
logical Substrates, I. Gormezano, E. A. Wasserman (Eds.), Hillsdale, New Jersey: Lawrence Erlbaum,
pp. 275-320, 1992.

[2] R. F. Lyon, C. A. Mead, "An analog electronic cochlea," IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 26, no. 7, pp. 1119-1134, July 1988.

[3] C. Koch, W. Bair, J. G. Harris, T. Horiuchi, A. Hsu, J. Luo, "Real-time computer vision and robotics
using analog VLSI circuits," Advances in Neural Information Processing Systems 2, Editor: D.
Touretzky, pp. 750-757, Morgan Kaufmann: San Mateo, CA, 1990.

[4] A. Moore, J. Allman, R. M. Goodman, "A real-time neural system for color constancy," IEEE Trans.
Neural Networks, vol. 2, no. 2, pp. 237-247, Mar. 1991.

[5] E. Safkinger, B. E. Boser, J. Bromley, Y. LeCun, L. D. Jackel, "Application of the ANNA neural net-
work chip to high-speed character recognition," IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 498-
505, May 1992.

[6] J.-C. Lee, B. J. Sheu, W.-C. Fang, R. Chellappa, "VLSI neuronprocessors for video motion detection,"
IEEE Trans. on Neural Networks, vol. 4, no. 2, pp. 178-191, Mar. 1993.

[7] W.-C. Fang, B. J. Sheu, 0. T.-C. Chen, J. Choi, "A VLSI neural processor for image data compres-
sion using self-organizing networks," IEEE Trans. on Neural Networks, vol. 3, no. 3, pp. 506-518,
May 1992.

[8] L. 0. Chua, L. Yang, "Cellular Neural Networks: Applications," IEEE Trans. on Circuits and Systems,
vol. 35, no. 10, pp. 1273-1290, Oct. 1988.

[9] T. Roska, L. 0. Chua, "The CNN universal machine: an analogic array computer," IEEE Trans. on
Circuits and Systems - II: Analog and Digital Signal Processing, vol. 40. no. 3, pp. 163-173, Mar.
1993.

I-650

(10] T. Morisbita and Y. Tamura and T. Otsuki, 'A BiCMOS analog neural network with dynamically
updated weights," Tech. Digest IEEE Inter. Solid-State Circuits Conf.. pp. 142-143, San Francisco,
CA, Feb. 1990.

(III E. K. F. Lee and P. G. Gulak, "A CMOS field-programmable analog array," IEEE Jour. Solid-State
Circuits, vol. 26, no. 3, pp. 1860-1867, Dec. 1991.

(12] A. M. Chiang and M. L. Chuang, "A CCD programmable image processor and its neural network
applications," IEEE Jour. Solid-State Circuits, vol. 26, no. 12, pp. 1894-190 1, Dec. 199 1.

(13] T. W. Berger, G. Barrionuevo, S. P. Levitan, D. N. Krieger, R. J. Sclabassi, "Nonlinear systems
analysis of network properties of the hippocampal formation," Neurocomputation and Learning: Foun-
dations of Adaptive Networks, J. W. Moore, M. Gabriel (Eds.), Cambridge, MA: MIT Press, pp. 283-
352, 1991.

(14] H. Krausz, "Identification of nonlinear systems using random impulse train inputs," Biological Cyber-
netics, vol. 19, pp. 217-230, 1975,

(151 B. W. Lee, B. 1. Sheu, Hardware Annealing in Analog VLSI Neurocomputing, Kluwer Academic Pub-
lishers, 1991.

(16] J. Choi, S. H. Bang, B. J. Sheu, "A programmable analog VLSI neural network processor for com-
munication receivers," IEEE Trans. on Neural Networks, vol. 4, no. 3, pp. 48"-95, May 1993.

180

0x

0 0 ill 4 016 1; 4 I; hi

(a) -3

0.> 40

(b) 2 cell

-0.2-4 WO%-

44 .140%

0.330 1" 11

(c) Fig. 2 The VLSI architecture of a neural cell.

Fig. 1 Ihe kernels for dentate granule cells in
vitro, Insets: temporal characteristics of the
input represented in each order kernel.
(a) First order kernel.
(b) Second order kernel.
(c) Thir order kernel.

11-651

U Y

~.-.---i
M's3

We.S fal
4 MI.

l-I iWl u as V00

REA MI

one meamy CeCU ueae Ves1 M

((a)

Mew" Adam

Fig. 3 Timing diagram.
1

UOUT hLAI

2
2 2 VI 2

V. VouT M Fig. 4 Synaptic weight memory.
ma. (a) Circuit schematic of the compact and

M2 I tpA! 500 wide-range Gilbert multiplier.

(b) Measured dc characteristics.
M U4 (b)

(a)
Fig. 5 Output function generator.

(a) Circuit schematic of I-to-V converter with
linear floating active resistor.
(b) Measured characteristics of I-to-V converter.

bill RESET

b3(1,2READ

x
-- / CLKI ..

w- Fig. 7 Prototype 3x3 neuron array.

Fig. 6 Layout of a complete neuron with N equaling four.

11-652

Skeletonization of Arabic Characters Using a Neural
Network Mapped on Maspar

Majid M. Altuwaijri, Rafic A. Ayoubi, and Magdy A. Bayoumi.
The Center for Advanced Computer Studies

University of Southwestern Louisiana
Lafayette, Louisiana 70504

ABSTRACT

In this paper, we employ a back-prop neural network for skeletonization of Arabic characters to be used in an
Arabic character recognition system. The neural network is trained to learn the thinning algorithm which is a variation
of the parallel algorithm proposed by Zhang and Suen. Zhang and suen's algorithm was modified so that dots are
thinned into single pixels. The neural network as well as the binary image are mapped on a massively parallel machine
(Maspar) in order to speed up the skeletonization process.

1. INTRODUCTION

Skeletonization (or thinning) is a procedure which transforms a pattern to a skeleton of a unit width. It permits a
simpler structural analysis and more intuitive design of recognition algorithms. Skeletonization is essential in a broad
range of problems in image processing, such as character recognition, inspection of printed circuit boards,
chromosome shape analysis, the reduction of the required memory space for storing the essential structural
information of the patterns, and the reduction of the required processing time.

Generally, for a skeletonization algorithm to be effective, it should ideally compress data, eliminate local noise, and
retain significant features of the pattern. Although there is no formal definition of a skeleton, there appears to be a
general agreement that a good skeletonization algorithm must meet the following requirements:

1. preserve the connectivity of skeletons.
2. converge to skeletons of unity width.
3. approximate the medial axis.
4. achieve a high data reduction efficiency.

There are two approaches for skeletonization: iterative approach and noniterative approach.

> Iterative thinning algorithm in which pixels on the boundary of the pattern are deleted successively until only a
skeleton remains. This approach can be further classified into two classes namely: sequential and parallel.
• In sequential algorithms, the pixels are examined for deletion sequentially in each iteration, and the deletion of

a pixel depends on the result of the previous iteration as well as on the pixels already processed in the current
iteration.

• In parallel algorithms, deletion of pixels depends only on the results of the previous iteration.
> Noniterative algorithms produce a certain median on the center line of the pattern directly in one pass without

examining all pixels individually. Most of these algorithms were designed heuristically.

The autons acknowledge dhe suppon of the National Science Foundation and State of Louian grant NSF/LEQSF (1992-96)-ADP-04.

]I-653

Although the skeletonization has been a very active research area, IF EF MF 3F IF T MF BF
few articles addressed the thinning of Arabic characters. Due to the F

characteristics of Arabic characters, they do not allow direct "p , - , I L. L I
application of the techniques developed for other languages such as J, &k .,-
Latin and Chinese, for example, applying some thinning algorithms
to an Arabic character with a single dot will produce a skeleton with
a small straight line for the dot. This is not allowed in Arabic since t - .A. a % : ,
many Arabic writers represent two dots by a small straight line. Some , -,,at e ,
of the characteristics of Arabic characters are the following: U

1. Arabic is a cursive type language written from right to left. J . J L ,
2. It has 28 letters each of which has 2 to 4 representations 'A L f 3 . ._ a

depending on the position. J J. L J I L L
3. Characters may have a dot, two dots, three dots, or a zigzag

associated with the character and can be above or below or f -
even inside the character. ,

In this paper, we have modified the parallel thinning algorithm & %0

proposed by Zhang and Suen[l] so that dots are thinned into just 1F ' -'

single pixels. We have employed a neural network for skeletonization sl W -t 4 VV %OL -.d 0.
of binary images. The network is trained to learn the proposed
thinning algorithm. Fig 1. Arabic characters in all its forms (end form

EF,rmiddele form MF, begnnming and Isolated
In order to speed up the thinning process performed by the neural
network, The network is mapped on a massively parallel machine
(Maspar). In section 2, we describe some preprocessing techniques. In
section 3, we present the proposed thinning algorithm. In section 4, we
show how the thinning algorithm can be implemented using a neural
network. In section 5, a brief description of the Maspar is given. In "
section 6, the mapping procedure of the neural network on the Maspar
is shown.

2. PREPROCESSING .

The first step in skeletonization is to acquire a digitized image of the (a)
text using a suitable scanning system. Text image is then converted to a
binary matrix of zeros and ones. The ones will represent the dark
characters on a light background.

As in any type of data acquisition system, noise errors will occur on the

input. Smoothing is needed to eliminate the noise from the text image. (b)

Each pixel is set to I if and only if the number of I pixels in the eight
neighbors exceeds a given threshold as in figure 2.

3. THE THINNING ALGORITHM
(c)

In this section we will describe the proposed thinning algorithm which
is based on the algorithm developed by Zhang and Suen[l]. The
deletion of a pixel depends on the 8-neighbors of the pixels which are Fig2 Arabic word with noise. (b) Result of

labeled as shown in fig. 3. Assuming that the pattern points have value smoothing. (c) Result of thinning.
I and background points have value 0, the thinning algorithm consists

II-654

of successive passes of four basic steps applied to the contour points of the pattern. In the first step, p is deleted if the
following conditions are satisfied:

>- step 1
Z,: 2 < N(p) < 6.
Z, St) = I.
Z3 : XjX3X7 = 0.

Z4 XIXSX7 = 0.

where N(p) is the number of black neighbors of p and S(p) is the number of 0-I transitions when the neighbors are
traversed in clockwise order. Conditions ZI and Z2 ~mnains the same in all the four steps. Couditions Z3 and Z4 are
replaced by their 90° rotations in the second step, by their 180 rotations in the third step, and by their 270
rotations in the fourth step.

" sten 2
Z3 : X3X5X7 = 0.
Z4: XIX5X7 =0.

> ste 3 X4 X3 X2 Fig 3. Neighborhod atanger-t
- used by the thinning algorithm.

Z3: XIX3X5 = 0 X5 p X]

Z 4 : X.XIX7 = 0. X6 X7 X8

,e4
Z3: XX3X7 = 0.
Z4: XIX3Xs = 0.

" Condition Z, ensures that p is not an end point and also avoids causing erosion into the pattern. Condition
Z2 ensures that the deletion of p would not break the connectedness of the pattern.

" Condition 7; and 7 of step I deletes pixels on the south and east boarders as well as north-west corner
pix,

* C.-,tions 7 and 4 of step 2 deletes pixels on the south and west boarders as well as north-east corner
pixels.

• Conditions 7 and 7 of step 3 deletes pixels on the north and west boarders as well as south-east corner
pixels.

dr-o L~

Fig. 4. Skeletons of some Arabic characters using the proposed thinning algorithm Note tot the dotsre oorectly

thin ed ito oe pixel eac

11-655

Conditions 74 and Z of step 4 deletes xflI
pixels on the north and east boarders asn
well as south-west corner pixels. y = F(O + w[i] x[i])

Figure 4. shows the result of applying the above t=1
algorithm to Arabic characters. Note that the x121

dots are thinned into a pixel. Y

4. THINNING USING ANN

x~nJ

In this work, we have employed an Artificial
neural network for the thinning of Arabic Fig 5. Structure and fimtion of a neuron model.

characters. The network is trained to learn the
thinning algorithm.

We have implemented a back-prop model with p
one hidden layer. The 8 neighbors are used as
the input of the neural network. Since the neural
network has to decide whether a pixel is
deletable or not (i.e., two-class problem),
therefore, a single output node is needed. Four
nodes in the hidden layer are found to be
sufficient. The ANN used for thinning Arabic Hidden Layer
characters is shown in fig. 6. Since a pixel has
eight neighbors, the total number of possible
training pattern is 2 , In the proposed algorithm,
there are 4 steps in each iteration. Thus 4
different ANN's are needed, but due to Ilmput Layer

symmetry, only one ANN is sufficient.

XI X2 X3 X4 X5 X6 X7 X8

.MASPAR ARCHITECTURE
Fig 6. The network used for thinning of Arabic characters.

The MASPAR MP-1 system is a massively
parallel SIMD computer system. It consists of
two major components: the Front-End (FE), and the Data Parallel Unit (DPU). The FE is a DECstation 5000 which
runs ULTRIX operating system. The DPU consists of two components: The Array Control Unit (ACU) which
controls the interaction between the FE and the Processor Element (PE) array. It also performs singular data
calculations within the DPU. The PE array consists of 1024 to 16,384 arithmetic processors, together with associated
registers and RAM.

The PEs are arranged in a two-dimensional mesh where each PE has eight neighbors (N, E, W, S, NE, SW, SE, SW)
including those at the edges of the PE array (i.e. wraparound connections are supported). There are two types of PE
communications: Communication between the PEs and the ACU, and communication between different PEs in the
PE array. Communication between the PEs and the ACU takes place over a special ACU/PE bus. Communication
between PEs in the PE array can be via X-net or the Global Router. In this paper, we are only interested in the X-net
communication.

X-net allows communication between any one PE in the array that lies in a straight line from the sending PE in one of
eight possible directions.

All PEs perform the same instruction at the same time. However, a subset of the PEs could be disabled. The set of
PEs that are enabled at any given time is called the active set.

11-656

6. MAPPING ON MASPAR

In our method, we map each pixel of the binary image on one PE of the Maspar PE array. The mapping is based on
the 2-dimensional cut-and-stack. This is to ensure that the neighboring pixels are mapped on neighboring PEs. The
image is divided into blocks of size nxproc * nyproc (the size of the PE array) where each block is mapped onto the
PE array (fig. 7). If we assume the size of an image is X*Y where

X=m* nxproc+ a and

Y= n* nyproc+b

then the number of blocks is determined as follows:

1. m * n if X and Y are multiple of nxproc and nyproc.
2. (m+1)*n if Y is multiple of nyproc.
3. m*(n+ 1) if X is multiple of nxproc.
4. (m+ 1)*(n+ 1) if neither is multiple.

Recall that the weight matrices of the neural network are 8x4 between the input and hidden layers and 4xl between
the hidden and output layers. In our approach, the same neural network will be mapped on each PE., hence each PE
will contain a pixel of the image as well as the thinning neural network. This strategy allows each PE in the active set
to perform a sequential recall with no inter-PE communication. Thus, we can achieve a maximum of N concurrent
recall phase operations.

Since the image is binary, the eight neighboring pixels can be stored in an 8-bit vector P. Thus, the matrix-vector
multiplication of W*X between the input layer and the output layer is reduced to an addition operations as shown in
line 8 of the algorithm delete.

We can distinguish two cases: the first case is when the image size KxL is less than the PE array size MxP. the
second case is the opposite of the first case.

X
I i

Y

Fig 7. 2-D Cut-and-Stack layout

Case 1: In this case, each pixel is mapped onto one PE such that all the eight neighbors of each pixel are neighbors on
the physical PEs. We assume that there is no wrap around along the edges of the 2-d mesh. The following algorithm
performs a4iequential recall phase on each PE:

11-657

1. algorithm delete
2. do whilem rpixels to delete
3. for all pixels which are ON pardo
4. get the eight neighbor pixels and store in P
5. forj = 0, 3 do /* no. ofhidde nodes *
6. for i =0, 7do /* no. of input nodes */
7. if (P(i) = I) then
8. sum = sum + Wl(j,i)
9. endif
10. enddo
] . apply sigmoid function to sum and store in outll1)
12. eddo
13. for i -0, 3 do
14. sum = sum + outl(i) * W2(i)
15. enddo
16. apply sigmoid function to sum and store in out
17. if (out=1)the /* pixel is deletable *
18. pixel =0
19. endif
20. endpardo
21. endwhije

Case 2 In this case, data is mapped onto PEs in layers using 2-d Cut-and-Stack as explained above. The same
algorithm of case 1 is repeated for each layer.

7. CONCLUSION

The main objective of this paper is to develop a fast and accurate thinning algorithm for Arabic characters to be used
in Arabic character recognition. The used thinning algorithm is a modification of the parallel algorithm proposed by
Zhang and Suen[l] so that dots are thinned into single pixels. This is very important because applying the original
algorithm to an Arabic character with a single dot produces a skeleton with a small straight line for the dots which is
not allowed in Arabic since many Arabic writers represent two dots by a small straight line. This creates a conflict
situation in the recognition phase.

We have trained a back-prop neural network to learn the thinning algorithm. The network takes the eight neighbors
of a dark pixel as an input and outputs the result of the thinning algorithm. In order to speed up the thinning process,
we have mapped the neural network on a massively parallel machine (Maspar).

The algorithm were tested and proven to be very fast and can be used in a real time character recognition system.
Some of the results were shown in fig. 4.

REFERENCES
1. T. Y. Zhang and C. Y. Suem, "A fast algorithm for thinning digital patterns," Comnmu. ACM, Vol. 25, no. 3, pp. 236-239, 1984.
2. R. Krishnapuram and L. F. Chen, "Implemenation of Parallel Thinning Algorithms Using Rcurrent Neural Networks," IEEE

Trans. Neural Network, Vol. 4, no. 1, Jan. 1993.
3. L. Lam, S. W. Lee, and C. Y. Suen, "Thinning Methodologies- A comprehensive Survey," IEEE Trans. PAMI, Vol. 14, no. 9,

Sep. 1992.
4. S. A. Mahmoud, I AbuHaiba, "Skeletonization of Arabic characters Using clustering based skeletonization algorithm (CBSA),"

Pattern Recognitio Vol. 24, no. 5,pp. 453-464, 1991.
5. J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the themy of Neural Computation. Redwood city, CA: Adison Wesley,

1991, lecture notes, Vol. i.
6. T. Blank, "The Maspar MP-I Architecture," Proc. IEEE Compcon Spring 90, IEEE, pp. 20-24, Feb. 1990.
7. PC. Gonzalez and P. Wintz, Digital Image Processing. Reading, MA: Addison Wesley, 1987, ch. 8.
8. M. M Altuwaijri and M. Bayoumi, "Arabic Text Recognition Using Neural Net'ork," To be published in the ISCAS 1994

London, England, 30 MAY-2JUNE.

11-658

Biological Neural Networks
Session Chairs: Thomas M, .enna,

Joel Davis

ORAL PRESENTATIONS

Odor Processing in the Insect Olfactory System

Wayne M. Getz
Department of Environmental Science, Policy and Management

University of California, Berkeley, CA 94720

Abstract

The central problem in insect olfaction is to identify the quality of an odor stimulus impinging on the anten-
nae of an individual, given that odor stimuli are often borne on highly turbulent airflows and sometimes are
embedded in noisy odor backgrounds. From the literature, it is evident that the response of olfactory recep-
tor cells of olfactory generalist insects (e.g., worker honey bees) are highly nonlinear in response to changes
in odor concentration and odorant blend (synergistic and, especially, inhibitory phenomena are ubiquitous).
Thus it appears beyond the capabilities of linear filters to extract general odor quality information from
receptor input. The question is: what sort of neural network is required, given the spatio-temporal structure
of natural odor stimuli and empirical measured response behavior of receptor neurons in the insect antenna,
to successfully extract odor quality information? Here I will formalize some of the essential features of the
odor perception problem, as well as review what is know about the network architecture of olfactory neurons
in the antennal lobe of insects. I will contrast critical differences between pheromonal and non-pheromonal
detection subsystems and identify physiological and anatomical issues that need to be resolved to gain a
fuller understanding of receptor input integration and feature extraction in insects.

Introduction

Olfaction in insects has been widely studied in the context of pheromone detection (for reviews see Kaissling,
1987; Masson & Mustaparta, 1990), and less so in the context of odor detection (for review see Smith & Getz,
1994). The insect antennal lobe, the part of the insect brain receiving input from olfactory receptor afferents,
has a number of underlying architectural features in common with the vertebrate olfactory bulb (Boeckh et
al., 1990-onvergence of a large number of receptor afferents onto many fewer glomerular neuropil structures
from which relay neurons project to convey olfactory information to higher processing centers of the brain).
Thus some understanding of the function of these underlying architectural features may provide insight into
olfactory processing in all organisms. To date, the insect antennal lobe has not been extensively modeled
(but see Linster et al., 1993), although the vertebrate olfactory cortex and various olfactory processes have
been modeled (Baird, 1986; Bower, 1991; Freeman and Skarda, 1985; Getz, 1991, Getz and Chapman, 1987;
Hopfield, 1991; Li and Hopfield, 1989; Schild and Riedel, 1992; Skarda and Freeman, 1987; Wang et al.,
1991).

A number of critical questions need to be addressed at all levels of olfactory information processing,
before we have a clear picture of the basic elements of olfactory coding and perception. Some of these
questions relate to the nature of the stimuli, to receptor transduction, and antennal lobe computations.
The olfactory computations performed by the insect antennal lobe can be characterized by the relationship
between the output from the antennal lobe (the firing patterns of the projection neurons) and the input
stimulus impinging on olfactory sensillae located on the antenna of the insect. Generating this input-output
relationships are the response characteristics of the receptor neurons embedded in these sensillae, as well as
computational properties of the antennal lobe network itself.

Unlike visual or auditory stimuli, olfactory stimuli are highly noisy: they contain much less spatial
information than visual stimuli, and much less temporal information than auditory stimuli. Visual and
auditory stimuli are directly quantifiable in terms of amplitudes and frequencies of wave forms over time and
space, and the response fields of associated receptors have natural metrics in terms of stimulus frequencies
and amplitudes. In contrast, olfactory stimuli can only be characterized in terms of the concentrations of
component odorants making up odor blends, while receptor responses may be ordinated with respect to
odorant concentration, but (in general) have no natural ordination with respect to their response to different
odorants. Further, odor stimuli are transported on air plumes that exhibit turbulent structure so that

11-661

stimulation of an insect antennae, for example, may be highly variable among neighboring sensillae and
with respect to time for a particular sensillum. This presents a problem that can only be effectively dealt
with through various types of integration processes at different levels of neuronal processing. In fact, this
spatial and temporal variation may provide a mechanism for an odor stimulus to be extracted from a noisy
background (Getz, 1991).

Receptor neurons, located in special antennal hair-like (sensillae trachoidea), peg-like (sensillae basicon-
ica), or plate-like (sensillae placoidea) structures, depending on the species of insect, can be either "spe-
cialists" or "generalists" (Schneider, 1987). The former refers to neurons responding to one or a very few
odorants (typical of pheromone receptors - Kaissling, 1987; Masson and Mustaparta, 1990), the latter
to neurons responding to one or more classes of odorants such as aliphatic alcohols, aldehydes, keytones,
monoterpenes, etc., (Akers and Getz, 1992 & 1993; Den Otter et at.,1980; Fujimura et al., 1991; Kafka, 1987;
Ma and Visser, 1978; Sass, 1978; Selzer, 1984; Vareschi, 1971). Studies of generalist receptors have typically
employed suites of single compounds, often presented at single concentrations, in an effort to define reac-
tion spectrum classes among populations of receptor neurons. The degree to which each neuron specializes
with respect to a set of n specified odorants can be quantified using an appropriate breadth responsiveness
measure such as (c.f. Giradot and Derby, 1988; Smith and Travers, 1979) H = -i n p , log p,, where
pi is the proportional response of the neuron in question to the ith odorant (i.e., the relative levels of the
responses to the odorants are normalized so that En P, = 1). A number of insects, including the honey
bee (Vareschi, 1971; Getz and Akers, 1993), and the cockroach (Seizer, 1984; Fujimura et al., 1991) have
broadly tuned receptors with highly nonlinear responses as functions of concentration and odorant blend.

Very little is known about the anatomy of arborizations of olfactory receptor neuron afferents other than
these afferents are uniglomerular (in both insects and vertebrates-Boeckh et al., 1990). In honey bees, the
antennal nerve containing these afferents splits into several fiber bundles, each of which arborize in glomeruli
in different regions of the honey bee brain (Arnold et al., 1985; Flanagan and Mercer, 1989a; Gascuel and
Masson, 1991). Also, in male moths it has been recently demonstrated that different classes of specialized
pheromonal receptors arborize in different sub-regions of the antennal lobe macroglomerulus (Hansson et at.,
1992). The broad spectrum response of honey bees placodes, and also cockroach trachodes (different cells in
the same cockroach trachode respond to different odorants sets of odorants) suggests that different receptor
neurons in the same sensillae should arborize in different glomeruli in the antennal lobe. This appears to be
the case in honey bees (D. Brilckner, personal communication).

The antennal lobe of an insect essential contains a neural network that receives input from the receptor
neurons and produces output in neurons that project from the glomeruli of the antennal lobe to higher centers
of the insect brain. In the honey bee and cockroach, for example, the typical glomerulus gives rise to one
uniglomerular projection neuron, while large atypical glomeruli give rise to several uniglomerular projection
neurons. In the cockroach, only the male has a large glomerulus (called the macroglomerulus-see Boeckh
et al, 1990). It gives rise to approximately 15 projection neurons (Ernst and Boeckh, 1983). In honey bees,
drones have four large glomeruli (called macroglomerular complexes), queens have one, and workers none
(they have about 166 regular glomerli--see Masson and Mustaparta, 1990). The firing patterns across
these uniglomerular projection neurons provide a convenient representation of the output of the antennal
computation. Odor responsive multiglomerular projection neurons also exist (Fonta et al.,, 1993), but they
invade only the "core" not the "periphery" of the glomeruli where they can feedback information to the
intrinsic neurons (Malun, 1991a & b). Thus these multiglomerular projection neurons are not an intrinsic
part of the computational network, but rather appear to be passive collectors of output that may relate to the
intensity of input in a multiglomerular region of the antennal lobe. Hence they do not appear to influence
the uniglomerular projection neuron output and need not be considered, at least in the initial stages, in
modeling this output.

Formalization of Problem

Following my earlier work (Getz and Chapman, 1987; Getz, 1991), I assume for all systems that an appro-
priate odor space fl can be identified consisting of r odorants (pure compounds) O., p = 1,. . ,r so that the
instantaneous concentration at time t of an odor stimulus at the rth odor sensillum, n = 1, ... , k, is repre-
sented by the vector c.(t) = (c., (t),... , c,,(t))' (' denotes vector transpose and f/ is the positive quadrant
of WR0). The instantaneous overall concentration of the stimulus at the rth sensillum is e,(t) =j'- cr(t),

11-662

while the instantaneous quality of this stimulus can be characterized by the direction of the vector c,(t) in
fl. Further, when odor concentrations are not extraordinarily low, it is reasonable to assume that, although
c.(t) may be highly variable with respect to time across the k different sensillae on the antennae of the
insect in question, all receptor neurons (RNs) within the same sensillum are subject to the same instanta-
neous stimulus c.(t). It is also useful to define an odor stimulus C(t) with respect to an individual insect
as the matrix C(t) = (ci(t), .. . , cA(t)), where k is the number of olfactory sensillae on both antennae or, if
necessary, over the whole body of the individual in question.

Using this notation, we can define the quality of an odor stimulus in a number of ways. For example, if
for some suitably small e > 0 we can show that for any times t, and t 2 E [0, t.] and sensillae r., and n2 the
columns of a stimulus C(t) satisfy

* (,1 (t2) (
IIc,)(tI)1111C,(t2)l 11

(where fl I is the usual Euclidean sum-of-squares norm), then the elementwise average over all columns
in C(t), denoted by e(t) = (4(t),...,4(t))', can be used to represent the quality and concentration of the
stimulus C(t) over the sampling interval t E f0, t,]. Of course, we would not want to refer to a stimulus as
a having the feature of quality unless inequality (1) holds for e > 0 sufficiently small. (The appropriate size
for e depends ultimately on the resolution of the system in question. The higher the resolution, the smaller
e needs to be).

Every stimulus Ci(t) induces a response pattern in p suitably selected output neurons projecting from
the antennal lobe of higher centers of the insect brain (e.g. the set of uniglomerular PNs projecting to the
mushroom bodies of the protocerebrum). We will assume that this response pattern can be represented
by a time-dependent vector of firing rates O,(t) = (Opi(t),..., O,(t))'. We assume that the vectors Oi(t),
i = 1, n, contains an extractable feature over some sub-interval 1t,t 2 1 C t0,t.) that is invariant for all
i whenever the stimuli Ci(t) i = 1,... ,n have the same odor quality and the same concentration (i.e., the
average of the stimuli Ci(t) over time and space are the same to a tolerance of e). A formal statement of the
problem of antennal lobe function in the context of odor perception in insects is that the average quality and
concentration of an input stimulus Ci(t) over a natural sampling period [0, t,) (e.g., a sniff cycle-see Getz,
1991) be represented in terms of some invariant feature in the PN firing rates /,(t) over some sub-interval
Itl, t2l C [0, t.

Nonlinearities in Receptor Neuron Input

Receptor neurons are highly nonlinear in their response to both odor concentration and odor quality. The
typical response of an olfactory receptor neuron to an odorant is to be inactive or exhibit a background
spiking rate below a certain threshold and to respond linearly to the logarithm of concentration over several
orders of magnitude of concentration until saturation and ultimately depression (adaptation) of the spiking
rate ensues. With respect to odor quality, however, the response to mixtures of odors often deviates frormi
an interpolation of the response to the components of the mixtures when components and mixture are
stochiometrically equivalent (Akers and Getz, 1993; Getz and Akers, 1993, in press).

The instantaneous spiking rate & (c) of the nth receptor, as a function of its current input stimulus c, can
be modeled using ideas from chemical kinetic theory to calculate the proportion of activated receptor proteins
of different types and then to express R,(c) in terms of negative exponential (to account for inhibition) and
logarithmic (to account for excitation) functions to account for the response of internal cellular processes
(i.e., second messenger cascades associated with ligand-gated ion channels) to receptor activation (Getz and
Akers, in press). In particular, suppose each receptor neuron has the genetic potential to express p types
of receptor proteins. Assume that the total density of receptor molecules on a receptor cell (and assuming
the same membrane surface area for each cell so that total numbers are the same) is a constant fi. Further,
suppose that the ,cth RN has its own unique partition of fs into p subclasses of receptor molecules, each at
density u., ir = 1,... ,p, so at

p

f U(2)

If the binding constant of odorant 04 with receptor protein of type w is h,, (this constant is the ratio of
association to disassociation rates-see Getz and Akers, in press) and the instantaneous flux of molecules

11-663

impinging on the Kth RN is c.,(t) = (c 1(t), ... , c(t))', then the number of bound receptors y,, of type 7r
in the rth RN is (Beidler, 1962; Getz and Akers, in press)

1 + 'pl C~hw
For a set of weighting constants a,, ir = 1,... ,p, the variable

p
Z.(c.) = t a-ry-(C) (4)

X=I

can be regarded as a "membrane depolarization activity index" (e.g., if a, = 2a 2 > 0, then twice as many
type 2 receptor proteins need to be activated as type I receptor proteins to get the same level of membrane
depolarization; or if al = -a2 > 0, then activated type 2 receptor proteins are linked to spike inhibiting
pathways and one-for-one they cancel out the effect of each activated type 1 receptor protein - see Getz
and Akers, in press, for a discussion of this modeling approach and Michel et aL., 1991, for an example of
channels inhibiting the firing of chemosensory receptor cells in lobsters). The actual firing or spiking rate
R(c) of the icth receptor can then be modeled in terms of the activity index z,,(c,) defined in expression
(4) using the following general spiking function s(z) that applies to all neurons whose "activity index" has
value z (see Getz and Akers, in press, for a more general formulation of this model)

s(z,) = -< -b _< bK (5)

s(z,) = i+b 4 (109 z >b 3

where b2 and b3 are threshold values for the onset of inhibition and excitation respectively with respect to
the background firing rate § and the constants b, and b4 are "shape" functions relating to how steeply the
background rate respectively falls or rises per unit change in the activity index zK. The instantaneous spiking
rate of the Kth neuron to stimulus c,(t)) is now given by

R(cK(t)) = s(zK(cKt))). (6)

Hence equations (3)-(6) provide a method for generating input activity in the k RNs in terms of the th
RN stimulation profiles ca(t)), ic 1 ... , k, if the parameters in these equations can be estimated from data
such as that reported in Akers and Getz (1993).

Structure of the Antennal Lobe

The olfactory receptor axonal inputs to the antennal lobe arborize in the glomeruli (Figure IA), which
are grape-like neuropil structures enclosed by a sheath of glial cell process (Masson and Mustaparta, 1990;
Homberg et al., 1989; Gascuel and Masson, 1991; Boeckh et al., 1990). These arborizations synapse almost
exclusively with neurons that interconnected several glomeruli, but remain intrinsic to the antennal lobe.
All intrinsic neurons (INs-also referred to as local interneurons) identified thus far appear to be inhibitory
(they are GABA-ergic-but see Michelson and Wong, 1991), although it is thought that excitatory intrinsic
neurons may exist (Linster et aL, 1993; in the honey bee brain, for example, only 5% of the almost 10,000
intrinsic neurons are GABA-ergic-Gerd Bicker, personal communication). The intrinsic neurons synapse
with the dendrites of neurons that project in tracts (lateral and medial ACTs, etc.) from the antennal lobe
to higher centers of the insect brain. These projection or relay neuron dendrites, in turn, synapse back
onto the intrinsic neurons before they exit a glomerulus (Figure IB) (Malun, 1991 a & b), thereby forming
excitatory-inhibitory feedback loops that could well parallel aspects of the mitral-granule cell interactions in
the vertebrate olfactory bulb (e.g., see Li and Hopfield, 1989).

Besides providing the backbone to the glomerular network, a network of intrinsic neurons informationally
link all the glomeruli (Figure IC). At this point, it is not know if some or all intrinsic neurons have input
regions in one glomerulus and output regions in several others, or are bi-directional in terms of current

11-664

flow. Some of these intrinsic neurons are symmetric in the sense of arborizing with the same intensity in
all the glomeruli they invade, while others have the asymmetry of arborizing intensely in only one of the
glomeruli and less intensely in others (Mercer and Flanagan, 1989; Fonta et al., 1993). It is not clear which
are the input and output regions of these sensory neurons or even whether bi-directional current flow occurs.
Further, it is not know exactly what parts of the intrinsic neuronal membranes are active or passive, although
the glomerular interconnection segments are known to spike (Flanagan and Mercer, 1989).

Network Equations

A standard approach to modeling a feedback network of the type described in the previous section is to
regard the voltage changes v,, in the ilth neuron as space-clamped and write down the electrical circuit
equations (Hopfield and Tank, 1986; Simpson, 1991)

dv,7(t) +

dt %V1t :1PV~ ') 4)(7)

over appropriate ranges for the indices 17 and C. The parameters %, are the reciprocals of the product of
the appropriate implicit membrane capacitances and resistances, the parameters w,g are a measure of the
synaptic strength between the i7th neuron and all neurons presynaptic to it, and f(: R+ -- IR+ are sigmoidal
response functions that relate post-synaptic voltage changes to current flow across the synapses as a function
of the voltage gradient across the synapse. The terms v° in equation (7) allow us to account for a background
or spontaneous levels of activity (e.g., in some of the PNs and INs) that is not due to network inputs, while
the time delays Tr, allow us to account to some extent for finite transmission times in neurons and across
synapses.

The intrinsic interneurons (IN) (Fig. 1C) require special treatment because of their unusual spatial
structure. In particular, if we assume that current can flow in either direction along the interconnecting
segments then, for a particular IN arborizing in g glomeruli, and letting -y = 1, ... , g denote the g segments
of this neuron that arborize in the g glomeruli and -y = g + 1, ... , 2g represent the g "spoke" elements that
connect the g glomerular elements to a central point (just below the soma of the neuron in question - Fig.
1C), then the voltage v., of the space clamped element in the -fth glomerulus is

d u (t)
dt= -c"v(t) - #,(v,+,(t) - v.(t)) + Ewmyf(v (t - r)) + v4(t) "7 = 1.... ,g, (8)

where the index C ranges over all the neurons synapsing with the segment of the neuron in question, v9+,(t)
is the voltage in the segment contiguous to the -yth glomerulus, and the term A3(vg+"(t) - v,(t)) relates
to voltage changes due to the current flow induced by the voltage gradient between the two segments in
question. In keeping with the convention that the direction of current flow is from the positive to the
negative, it follows that current flows out of the -yth glomerulus whenever v7 (t) < v, (t) and vice versa.
Since the element g + -y is connected only to the element -y and the central hub (just below the soma) of the
neuron in question (Fig. 1C), its dynamics are governed by the simpler equation

=- a9*,v 9+7(t - ,(v5 t - v,+(t)) + M = 1,...,, (9)dt

where vjh is the voltage at the hub of the neuron in question, and the term /8_,(v,(t) - v.(t)) relates to
voltage changes due to the current flow induced by the voltage gradient vh(t) - Vy(t).

The voltage at the hub, v5 (t), is easily expressed in terms of the voltages v.+7 (t), -y = 1,...,g, using
Kirchoff's circuit law that currents entering and leaving a point must sum to zero; viz.,

v9+=(W = - ,1 131g+, (10)

where the parameters # are the parameters/fl, multiplied by the appropriate conductance values requiredto convert voltages in each of the elements into current flows.

1-665

. . . . ', , , I I I I1

Analysis

With the inputs characterized by equations (2) to (10), and the network dynamics modeled by equations (7)
to (10), we can investigate the computational properties of the antennal lobe model presented here based
on architectural features (i.e., which of the synapse parameters w,, are negative, zero, or positive) and
system parameter values. Supervised and unsupervised learning procedures (Simpson, 1990) can be used to
select values for the synapse parameters wt, the former requiring that we define some performance measure
relating to the invariance among projection neuron firing patterns Oi(t) over some sub-interval ItI, t2 l C 10, tJ
in response to stimuli Ci(t) i = 1,... ,n that have the same odor quality and concentration. Other system
parameters can be obtained either from biological data (Linster et al., 1993) or optimization of network
performance.

References

Akers, R. P. and W. M. Getz, 1992. A test of identified response classes among olfactory receptors in the
honeybee worker. Chemical Senses 17:191-209.

Akers, R. P. and W. M. Getz, 1993. Response of Olfactory Sensory Neurons in Honey Bees to Odorants
and their Binary Mixtures. J. Comp. Physiol. 173:169-185.

Arnold, G, C. Masson, and S. Budharugsa, 1985. Comparative study of the antennal lobes and their afferent
pathway in the worker bee and the drone (Apis mellifera). Cell and Tissue Res. 242:593-605.

Baird, B., 1986. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory
bulb. Physica D. 22:150-175.

Beidler, LM, 1962. Taste receptor stimulation. Prog. Biophys. Biophys. Chem. 12:107-151.
Boeckh, J., P. Distler, K. D. Ernst, M. Hosl, and D. Malun, 1990. Olfactory bulb and antennal lobe. In:

D. Schild (ed.), Chemosensory Information Processing. Springer-Verlag, Berlin, pp. 201-227.
Bower, J. M., 1991. Piriform cortex and olfactory object recognition. In: J. L. Davis and H. Eichenbaum

(eds.), Olfaction: A Model System for Computational Neuroscience, The MIT Press, Cambridge,
Massachusetts, pp. 265-85.

Den Otter, C. J., M. Behan, and F. W. Maes, 1980. Single cell responses in female Pieris brassicae
(Lepidoptera: Pieridae) to plant volatiles and conspecific egg odours. J. Insect Physiol. 26:465-472.

Ernst, K. D. and J. Boeckh, 1983. A neuroanatomical study on the organization of the central antennal
pathways in insects: III. Neuroanatornical characterization of physiologically identified response types
of deutocerebral neurons in Periplaneta americana. Cell Tissue Res. 229:1-22.

Flanagan, D. and A. R. Mercer, 1989. Morphology and response characterstics of neurones in the deuto-
cerebrum of the brain in the honeybee Apis mellifera. J. Comp. Physiol. A 164:483-494.

Fonta, C., X.-J. Sun, and C. Masson, 1993. Morphology and spatial distribution of bee antennal lobe
interneurones responsive to odours. Chem. Senses 18:101-119.

Freeman, W. J. and C. A. Skarda 1985. Spatial EEG patterns, non-linear dynamics and perception: the
neo-Sherringtonian view. Brain Research Reviews 10:147-175.

Fujimura, K., F. Yokohari, and H. Tateda, 1991. Classification of antennal olfactory receptors of the
cockroach, Periplaneta americana L. Zool. Sci. 8:243-255.

Gascuel, J. and C. Masson, 1991. A quantitative unltrastructural study of the honeybee antennal lobe.
Tissue and Cell 23:341-355.

Getz, W. M., 1991. A neural network for processing olfactory-like stimuli. Bull. Math. Biol. 53:805-823.
Getz, W. M. and R. P. Akers, 1993. Olfactory Response Characteristics and Thning Structure of Placodes

in the Honey Bee Apis mellifern. Apidologie (to appear).
Getz, W. M. and R. P. Akers, in press. Partitioning nonlinearities in the response of honey bee olfactory

receptor neurons to binary odors. Biosystems.
Getz, W. M. and R. F. Chapman, 1987. An odor discrimination model with application to kin recognition

in social insects. International J. Neuroscience 32:963-967.
Giradot, M.-N. and C. D. Derby, 1988. Neural coding of quality of complex olfactory stimuli in lobsters.

J. Neurophysiol. 60:303-324.
Hansson, B. S., H. Ljungberg, E. Hallberg, and C. Lofstedt, 1992. Functional specialization of olfactory

glomeruli in a moth. Science 256:1313-1315.
Homberg, U., T. A Christiansen, and J. G. Hildebrand,1989. Structure and function of the deutocerebrum

in insects. Annu. Rev. Entomol. 34:477-501.

11-666

Hopfield, J. J., 1991. Olfactory computation and object perception. Proc. Nat]. Acad. Sci. USA 88:36462-
36466.

Hopfield, J. J. and D. W. Tank, 1986. Computing with neural circuits: a model. Science 233:625-633.
Kafka, W. A., 1987. Similarity of reaction spectra and odor discrimination: Single receptor cell recordings

in Antheraea polyphemus (Saturniidae). J. Comp. Physiol. A. 161:867-880.
Kaissling, K. E., 1987. R. H. Wright Lectures on Insect Olfaction. Edited by Konrad Colbow, Simon Fraser

University, Burnaby, British Columbia, Canada.
Li, Z. and J. J. Hopfield, 1989. Modeling the olfactory bulb and its neural oscillatory processings. Biol.

Cybern. 61:379-392.
Linster, C., C. Masson, M. Kerszberg, L. Personnaz, and G. Dreyfus, 1993. Computational diversity in a

formal model of the insect olfactory macroglomerulus. Neural Computation 5:228-241.
Ma, W. C. and J. H. Visser, 1978. Single unit analysis of odour quality coding by the olfactory antennal

receptor system of the Colorado beetle. Entomol. Exp. Appl. 25:520-533.
Malun, D., 1991a. Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomeru-

lar projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron micro-
scope study. Histochemistry 96:197-207.

Malun, D., 1991b. Inventory and distribution of synapses of identified uniglomerular projection neurons in
the antennal lobe of Peiplaneta ameriana. J. comp. Neurology 305:348-360.

Masson, C. and H. Mustaparta, 1990. Chemical information processing in the olfactory system of insects.
Physiological Reviews 70:199-245.

Michel, W. C., T. S. McClintock, and B. W. Ache, 1991 Inhibition of lobster olfactory receptor cells by an
odor-activated potassium conductance. J. Neurophysiol. 65:446-453.

Michelson H. B. and R. K. S. Wong, 1991. Excitatory synaptic response mediated by GABAA receptors
in the hippocampus. Science 253:1420-1423.

Sass, H., 1978. Olfactory receptors on the antenna of Periplaneta response constellations that incode food
odors. J. Comp Physiol. 128:227-233.

Schild, D. and H. Riedel, 1992. Significance of glomerular compartmentalization for olfactory coding.
Biophys. J., 61:704-715.

Schneider, D., 1987. Plant recognition by insects: a challenge to neuroethological research. In: V. Labeyrie,
G. Fabres, and D. Lachaise (eds.), Insects-Plants, Funk, Dordrechts, Netherlands, pp. 117-123.

Seizer, R., 1984. On the specificities of antennal olfactory receptor cells of Periplaneta americana. Chemical
Senses 8:375-395.

Simpson, P. K., 1990. Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementa-
tions. Pergamon Press, Elmsford, New York, p. 210.

Skarda, C. A. and W. J. Freeman 1987. How brains make chaos in order to make sense of the world.
Behavioral and Brain Sciences 10:161-195.

Smith, B. H. and W. M. Getz. 1994. Non-pheromomal olfactory processing in insects. Annu. Rev.
Entomol. (to appear).

Smith, D. B. and J. B. Travers, 1979. A metric for the breadth of tuning of gustatory neurons. Chemical
Senses 4:215-229.

Vareschi, E. 1971. Duftunterscheidung bei der Honigbiene - Einzelzell-Ableitungen und Verhaltensreak-
tionen. Z. vergl. Physiol. 75:143-173.

Wang, D., L. Buhmann, and C. von der Malsburg, 1991. Pattern segmentation in associative memory. In:
J. L. Davis and H. Eichenbaum (eds.), Olfaction: A Model System for Computational Neuroscience,
The MIT Press, Cambridge, Massachusetts, pp. 213-224.

Caption to Figure 1
The basic organization of the multiglomeruli model of the antennal lobe is illustrated in terms of the receptor
neuron (RN) inputs, the glomeruli (G) connected together by intrinsic neurons (IN, also know as local
interneurons), and the projection neuron (PN) outputs. B: Details of the architecture of the neural network
within each glomerulus and the flow of information, as indicated by the arrows. C: A representation of the
2g-segmental of an IN which arborizes in g glomeruli

11-667

AA

G G-

PN

-4W ory yap

I$a

C G1 u

Ggcmd

11-low

A Class of Functions for the Adaptive Control of the Cerebellar Cortex
P. Chauvet*, G.A. Chauvet'"

"Institut de Biologic Thdwique, Universitd d'Angers, 49100 Angers (France)
"Department of Biomedical Engineering and Program for Neuroscience,

University of Southern California, Los Angeles, CA 90089 (USA)

Abstrat,
A class of functions is proposed, which could describe the adaptive control of the closed loop

involving the cerebellar cortex. The mathematical model of the cerebellar cortex is a basic biologically
constrained neural network regarding the connectivity around the Purkinje cell. The output of a neuron is
the transformation, by a linear or non-linear firing function, of the summation of weighted inputs.
Covariance learning rules are used for synaptic weights. It is assumed that only synapses between parallel
fibers and Purkinje cell are modifiable, and that the climbing fiber transports an error signal, closing the
loop between the output and the inputs of a unit. Asymptotic stability is then shown for an isolated linear
unit and the same results are given with conditions on several parameters for a non-linear unit.

1. Introduction
It is now well admitted that the cerebellum, and specifically the cerebellar cortex, plays an

important role in the adaptive control of movements. This control is achieved through a closed loop that
involves on one hand, climbing fibres and mossy fibres as inputs, and on the other hand, the Purkinje cell
axon as an output. The last decade has also shown the importance of the cerebellar cortex in the learning
and memorization of space trajectories (see Chapeau-Blondeau and Chauvet, 1991). Although different
authors have proposed models to describe the cerebellar function (see Tyrrel and Willshaw, 1992),
adaptive control is not yet quantitatively well understood, nor is the implication of its neuro-anatomical
structure in the capacity to leam motor coordination. In previous papers, we introduced a basic local circuit
of the cerebellar neural network called a Purkinje unit (Chauvet G.A., 1986; Chauvet P. and Chauvet G.A.,
1993). This basic local circuit was an open-loop neural network biologically constrained, i.e. having: (i)
a real connectivity, (ii) specific activating or inhibiting synaptic properties, (iii) an anatomical hierarchical
structure.

The aim of this paper is to mathematically prove the existence of a class of functions that could
describe the adaptive control of the closed loop involving the cerebellar cortex, in which the climbing
fibre, as is widely admitted, propagates the error signal.

2. Model of the Purkinje unit
Let us recall the definition of the local circuit called "Purkinje unit' (Chauvet G.A.,1986). A

Purkinje unit consists of one Purkinje cell, the single output system of the cerebellar cortex, with some
of the neurons connected to it in the cerebellar cortex, and with the closest Golgi cell. A granule cell
denoted gc is in a specific unit numbered k if: gc has synapses with the Purkinje cell k of the unit k, the
distance between gc and the Purkinje cell k is the smallest distance between gc and any Purkinje cell it
contacts, and gc has synapses with the Golgi cell k. The basket and stellar cells included in the unit k are
those which are contacted by the granule cells of the unit k and which are connected to the Purkinje cell
k. It is possible to separate this unit into two subsystems: the granule subsystem and the Purkinje
subsystem. Figures 1 and 2 show the two components of a Purkinje unit.

The output S of a neuron is considered to be equal to a short-term mean frequency. This is given
as a function of its inputs by:

S - F[s + 'w.EJ

The real('w.E) is the scalar product between w and E, where w is the vector of n synaptic weights wi and
E is the vector of n inputs E, . so is a basic activity. We consider for F two kinds of function: a "linear"

II-669

function, where F is the identity on positive real values and zero on negative real values; a non-linear but
cotiwousfinctiomdefined byasigmod: F(s) -(1 +e') "1 withqO. Tben, the output SofalayerisF[s + WE]
where W is the matrix of the synaptic weights.

2.1 The granule subsystem
The granule subsystem includes a layer of g granule cells and the Golgi cell. The subsystem's

inputs are: a pattern U of m elements 1 or 0 that represent information propagated along the m mossy
fibers; the external context X, representing activities propagated along the parallel fibers connected with
the Golgi cell but that do not issue from this unit; the
activity V on the climbing fiber. The output of the
granule subsystem before the transformation by F is the
vector x and after the transformation it is the vector X of -- . X,
g activities X, along the parallel fibers, which are the
outputs of the granule layer. ,-X+2 1

Equations that give x and X as a function of
time, inputs and parameters are now established. All the Granule

synaptics weights are positive because the excitatory or cell cell
inhibitory effects of synapses are included in signs: lae
between the elements of the following equations. The [.- U."
Golgi cell is excited by parallel fibers X via the synaptic ---- ---

vector I , by X, , by mossy fibers U via the synaptic ... NosY fi
vector a. and by climbing fiber. Then, denoting as z its Figure I : The granule subsystem.

output before transformation by F, and Z its output after
transformation by F:

Z(t) = F [z(t)] = F [z, + a_.X(t) + 'AL.U + rXP) + r1TV)] (l.a)

The granule cell layer receives excitatory impulses from mossy fibers U by the way of synaptic
matrix S, and inhibitory impulses from the Golgi cell by synaptic vector Y :

X(t) = F[x(t) I =F , +SU- 2.Z(t) I (L.b)

We then obtain in the linear case, when F is taken to be equal to the identity, the expressions of
Zand X:

z) = Z(= Zo + 1a .X(t)+ +.UE +Ho()

(Id + G)X(t) =X + SU - Ho()c5c (2)

where Y

and Ho(t) ql.Xq() + n.V(t) Y
W:.. W:l nI Basketl

2.2 The Purkinje subsystem , :*: F Steate
The Purkinje subsystem includes a layer of b V. W.: w. cell layer

basket or stellate cells, and one Purkinje cell. It
receives as inputs: the vector X of activities X, .------- ---1
which is the output of the granule subsystem; the -- -- --
external context X,. and Xd , which are activities -
propagated along parallel fibers connected, XI...X X

Figure 2 : The Purkinje subsystem.

II-670

respectively, with the basket cells by sysnapses y, , and with the Purkinje cell by the synapses p, ; and
the climbing fiber V. The output activity along the Purkinje cell axon is the main output of the unit, and
it is denoted as Y. y is the output of the Purkinje cell before transformation by F.

Equations that give y and Y as a function of time, inputs and parameters are now established. The
basket cell layer, denoting as w its output before transformation by F and W after transformation, is
excited by parallel fibers via the synaptic matrix G,:

W() - E Iwt)] - E + ,x(+ .,X.,(t)] (3.a)

The Purkinje cell is inhibited by b basket cells via synaptic vector pb ' excited by the g parallel

fibers of the granule subsystem via synaptic vector p. , and by the climbing fiber:

Y(t) - F [y(t)] - F (p, + '_q) .X) - 'fW(t) +P'VQ) + ,IXdt) I (3.b)

We then obtain in the linear case:
Y(t) =y(t) = Yo + '2(t) .X(t) + H(t) (4)

where Yo - GZ) - ,t) -

and H(t) = pjt)Xdt) - !b.I X ,(t) + p(t) .

We assumed that only the synaptic weights between the parallel fibers and the Purkinje cells,

called ;,, are modifiable in the cerebellar cortex. The long-term variation of synaptic efficacy p, for the
synapse in the Purkinje cell that receives the input Xi is assumed to depend on the difference between the
signal and its long-term mean value, which itself depends on the molecular calcium concentration in the
presynaptic terminal. Then, it is shown (Chauvet G., 1986) that:

±-t(t) ,, VA, (x,(O ,)) (YO - i(O) (5

dt

for 1<i.g, where a, is a plasticity coefficient, Y'and~are the long-term weighted means of X and Y which
take into account a memory effect (Sejnowski, 1977). We choose the continuous mean, for a given
function S of time:

I f' S -] T(e - 1)
3(t) =1.M (t-)e a with M= ,T>O.e

This average satisfies the following properties: (i) if S - 1 then 3' 1 ; (ii) 07T W2 = a3, + b7 2 , with

ds dreal a and b ; (iii) c,.-0) < S) -5(t) < C2-(0) , with positive real cl and c2. This third property is of great
dt dt

importance in the following.
Since p. and G. do not depend on time, we can write:

dp. (5)
dt

where pi is the i-th component of p!*

1H-671

23 The dimbing fiber loop
The Purkinje unit presented here is not only included in a network of Purkinje units but also in

a global sensory-motor loop. This loop connects the outputs Y of Purkinje units to the signals V via
various deep nuclei and sensory systems. It is supposed (Ito, 1984) that V transports error signals. Then,
for one Pukinje unit we write:

V(t) i Yt) - Y I d (t) (6)
a(t) IF) dW I

where a and b are functions of time, Y(t) is the output of the Purkinje unit at time t, Y" the target that the
cerebral cortex has to reach for a given input _U.

3. Conditions for adaptive control during the learning phase

3.1 Study of the linear case
We study the stability of an isolated linear Purkinje unit: then, we consider that the transfer

function F is the identity, and that inputs X,, X,. and Xd are constant. We introduce two new variables

called X and f, defined by:

x - + G)- 1XD +(Id +G)-'SU -%X(Id +G)-' o (7.a)

At) 2 Y(t) - p'V(t) + 11' sip(t) V) (7.b)
i-I

where s is the i-th element of the vector [ld +G]- a. ? is the output of the Purkinje unit when V is not
taken into account in the model. Then:

At) -- YO + F-(t). - Y.x +p'X4

We now seek to calculate the derivative of V with respect to time as a function of f . We rewrite
equation (6), adding four terms, under the form:

S I sp((8)
dt) 1 Yt a(t) V()~ 1 Yf)Q ~...)Q

7T -a) 70 b ;) dM di j-1 ', 1 dt
If we put:

I

a(t) - p, -1t, spi(t) , b(t) = 1 , (9)
',,I

then we have
At) = Y(t) - a) V(t) (1O.a)

dY 1 dY (y ~)dV M s # dVt)(.b

Finally, we obtain from (8):

.d (t 0 1 (_[f . _ Y . 8t +Sc dp. i (t) V Mt (
-:-I at _dt i1 (t

We come back to equation (5). Using the property (iii) for the weighted average, we have:

, X()).() <Y)- (12)
di 0) !9 !d2i 0

11-672

But, using equality (iO.b) and replacing the derivative of V by (11):

.i(X(t) -X#))(a(x,(,) -Xim)(YQ) -Y) (13)
dt

We intrduce an energy function called E, given by:

EQ~.:) Y.Y~g r~i +p2 (14)

The derivative of E with respect to p is:

then, replacing the derivative in (13):

ai(XQ() -Y ())() XQ) -. ,(t) E (16)
di i

Noting that:

x,() -7X,) = -qs,(iv) -V(I))

and from inequalities (12) we obtain:

-c, p,(t) (Pt) < -C 2 P#) (pt) (17)

with: p,{t) = - a, I 1,s, V(t) - V(t) When the error V decreases, the difference between V and V goes toward
i

zero and is negative, because of the third property of the weighted mean. Then p, is positive and goes
toward zero: the two values framing the derivative of p, with respect to time follow the gradient method
and the vector p converges toward a vector which minimizes the energy function E.

3.2 Study of the non-linear case
We give here only an outline of the proof of stability for an isolated non-linear Purkinje unit, then

with the transfer function F equal to a sigmoid. First, the vector X appears in the two members of
equations (1). Then this equation admits one and only one solution X if the function which associates with
X the right member of (1) is a contraction, by application of the fixed-point theorem. After some calculus,
we find that the output of the granule cell subsystem, and then the output Y of the Purkinje subsystem,
is well defined if and only if:

1 < 8)

where the matrix norm has to be chosen, knowing that all the matrix norms on the real values are
equivalent.

Second, with this condition (18), it is possible to show that if a(t) and b(t) in V are defined by:
* b,

a() -FItYI(p, Pis) with pi -F't2] ji

M ~ i-I

b(t) -F I[At)]I

then the loop is asymptotically stable and the energy function E defined by (14) reaches a minimum. To

1-673

demonstrate this result, it is necessary to linearize the system of equations (1) and (3). It is easy to verify
that we retrieve functions a and b of the linear case if F is equal to the identity, replacing F' by unity.

2.A

synaptic .-... - - - Y(t)
efftacy -2/

0. ____

0 3 2 4 8 0 7 1 2 3 4 £ 6 7

time time
Figure 3: Effect of adaptive control V(t)

Fig. 3 shows a numerical simulation of the model presented in this paper, in the linear case.
Conditions are those resulting from the mathematical analysis, and the goal Y" is taken to be equal to one.
We see on the graphics (right) V passing from 2.0 to 0.0, Y passing from approximatively 1.5 to 1.0 and
from 0.35 to 1.0. Then, the error goes toward zero when Ygoes toward r. The evolution of the variablesp,
is shown on the left graphics.

4. Conclusion
A Purkinje unit has been defined using the real connectivity around a Purkinje cell. Each neuron

is formal and its transfer function is a sigmold or the identity. A function measuring the error between the
output of a unit and a goal provided by the cerebral cortex and the sensory-motor system is proposed for
the climbing fiber V. Mathematical conditions of stability have been stated in linear and non-linear cases
during the learning phase, the closed-loop system performing a minimization of an energy function E by
adaptation of synaptic weights between the parallel fibers and the Purkinje cell.

Necessary conditions of convergence for a network of Purkinje units without delays between units
have been determined (Chauvet P., 1993). In a network with delays between units, the same condition of
stability has been found for one unit plus a set of sufficient conditions on those parameters that are
included in the global connectivity. The study of the global net, using this hierarchical approach, allows
us to demonstrate and to anticipate certain aspects of behaviour at the higher level from the study of the
lower levels, specifically from interactions between Purkinje circuits and their own individual properties.

References
Chapeau-Blondeau, F., Chauvet, G.A. (1991), A neural network model of the cerebellar cortex performing
dynamic associations, Biological Cybernetics, 65 267-279.
Chauvet, G.A. (1986). Habituation rules for a theory of the cerebellar cortex, Biological Cybernetics, 55
1-9.
Chauvet, P., Chauvet, G.A. (1993). On the ability of cerebellar Purkinje units to constitute a neural
network, Proceedings of the World Congress on Neural Networks, Portland, July 11-15, 1993, WCNN'93.
Chauvet P. (1993). Etude d'un rdseau de neurones hidrarchique A propos de la coordination du mouvement,
PhD Thesis, Universitl dAngers.
Ito, M. (1984). The cerebellum and neural control, Raven press, New York.
Sejnowski, TJ. (1977). Storing covariance with nonlinearly interacting neurons, J. Math. Biol., 4, 303-321.
Tyrrell, T., Willshaw, D. (1992). Cerebellar cortex: its simulation and the relevance of Marr's theory, Phil.
Trans. R. Soc. Lond., B 336 239-257.

II-674

Distribution of Gamma and Beta Oscillations in Olfactory and Limbic Structures
during Olfactory Perception in Rats: Evidence for Reafference

Leslie Kay
Graduate Group in Biophysics, University of California. Berkeley

129 LSA. UCB, Berkeley, Calif. 94720
Email: lmk2@garnet.berkeley.edu

Keywords: gamma, beta, oscillations, reafference, olfaction, entorhinal cortex, dentate gyrus, olfactory bulb

This report presents preliminary evidence of a physiological candidate for reafference in olfactory perception. In
this case reafference is the directed "tuning" of a primary sensory area in the brain to receive an expected stimulus.
Local field potential recordings from some of the structures in the olfactory and limbic processing areas -- olfactory
bulb (OB), prepyriform cortex (PPC), entorhinal cortex (EC), and dentate gyrus (DG) -- show three related
phenomena. The first is the transmission of the "primary" olfactory bulb burst (60-100 Hz) through these
structures. The second is the apparent handshaking burst (at a lower frequency than the primary burst frequency)
transmitted from the EC back to the PPC and OB and forward from the EC to the DG. The third is a brief period of
activity in the beta range (12-25 Hz) just before and possibly assisting in the state transition of these structures into
the primary burst, which occurs at the end of an inhalation. The beta activity described here seems to arise in the EC
and is transmitted along the same temporal path as the handshaking burst. This activity may be a mechanism for
pushing forward the state change of the dynamical system, while the handshaking burst may provide either a
reinforcement or fine tuning to the primary olfactory bulb burst.

INTRODUCTION

The mammalian olfactory system is a complex dynamical system, which exhibits chaotic
activity and self-organization (1,2,3). Freeman and Viana Di Prisco (4,5) have shown that in
response to a meaningful stimulus the olfactory bulb (OB) produces a distinguishable spatial
pattern of amplitude of a common wave form during the olfactory burst (gamma range, 40-100 Hz)
when an animal identifies the stimulus. Recently these findings have been extended to other
primary sensory cortices (6): prepyriform cortex (PPC), visual cortex, auditory cortex, and
somatosensory cortex. This report presents preliminary findings describing a possible central
mechanism controlling the perceptual state of the system.

In the olfactory tract many structures interact in the initial processing of sensory
information during perception [Fig. 1]. The olfactory bulb (OB) receives input from the olfactory
nerve and projects, via the lateral olfactory tract, to the anterior olfactory nucleus (AON), the
olfactory tubercle, the prepyriform cortex (PPC), and the entorhinal cortex (EC). The PPC also
projects directly to the EC and back to the OB via the medial olfactory tract (MOT). From the
caudal portion of the EC arises the perforant path through the subiculum and into the dentate gyrus
(DG) of the hippocampus (HPC), and the HPC projects back to the deep and superficial layers of
the EC. The EC then projects back to the PPC and AON (7). Boeijinga and Lopes da Silva
previously showed that the EC is involved in odor sampling in cats (8,9).

The EC is a prime candidate for controlling recognition in sensory cortical areas. It receives
input from all sensory areas, provides the major input to the limbic system, receives the major
output from the limbic system (via the subiculum), and projects back to all the sensory areas. It is
most implicated in olfaction, especially in lower mammals where there is a monosynaptic
connection from the OB to the EC, but it is connected to other sensory areas through higher level
cortices.

The controlling mechanism, termed here "reafference," is a mechanism by which a higher
brain structure "tunes" the primary sensory cortex to receive and recognize an expected stimulus,
thus referring to the historical use of the term (10). This phenomenon in a dynamical system may
consist of a rise in the gain of a neuronal population, enabling a specific state change, or even a
transmission back to alter an already existing pattern of activity.

II-675

AB ~=~AON de-==k- 4e- EC

CA
Figure 1. Schematic of connections in olfactory processing. Transmission away from the OB is along the lateral
olfactory tract (LOT). Transmission towards the OB is along the medial olfactory tract (MOT). Abbreviations:
OB-olfactory bulb, AON- anterior olfactory nucleus, PPC- prepyriform cortex, EC-entorhinal cortex, DG-dentate gyrus
of hippocampus, CA-Ammons horn of hippocampus.

MATERIALS AND METHODS

Surgery
Adult male Sprague-Dawley rats (450 gm) were anesthetized with pentobarbital intravenously and surgically

implanted stercohaically with bipolar electrodes in the OB, PPC, EC, and DG. A pair of stimulating electrodes wasplaced in the LOT to atssist in placing recording electrodes. AMl electrodes were on the left side of the brain.
Reference and Von leads were attached to stainless steel screws implanted in the right side of the dorsal surface of
the skull. Surgical techniques and animal handling were in accordance with the NIH guidelines for the care and use
olaotoyanimals.

Recrdin recovery (2 days) initial recordings were made to determine that good bipolar recordings were possible.

The animals were then trained in a classical conditioning odor identification task. (Animals were deprived of water
for 24 hours prior to conditioning experiments.) Two odors were delivered: with odor A (peppermint) water was
given after 2 sec; with odor B (ban~aa) no water was given. Trials were interspersed with delivery of plain air to the
odor chamber. Simultaneous recordings (I msec sampling, band pass 1-300 Hz) were made from all four recording
electrodes and odor delivery was timed to begin at 3 seconds after initation of each 6 second record. Water delivery
(when appropriate) began at 5 seconds. Records were digitized, stored, and analyzed on a Macintosh H fx computer.
The experiment has been successful so far with two animals, and all data presented here are from one animal.

Analysis
Record Selection. Records were divided into three groups: Those where the rat correctly identified the odor,

those recorded at the beginning or end of a conditioning session without odor delivery (motivated controls), and those
recorded when the rat was in an unmotivated state (unmotivated controls).

Processing. Data were filtered at two different pass bands, 35-160 Hz and 5-35 Hz and prestimulus (1.5-3.0
sec) and odor delivery (3.5-5.0 sec) segments.

Power Spectra. Estimates of auto and cross spectra were performed using the fast fourier transform (FF1) of
the auto and cross correlation estimates, respectively, with application of a 512 point Hamming window. Averages
were then taken of the spectra over seven records.

RESULTS

Qualitative description of field potentials
Figure 2 shows four samples of data each 1 second long: 1) a record where the rat was

resting; 2) a control record where the rat had been deprived of water, but no stimulus was
presented (motivated control); 3) a prestimulus segment of an odor delivery record (motivated
prestimulus); 4) a segment of the same record during odor delivery but before the reward period
(odor A). Motivated prestimulus and odor delivery records look similar, but the number of OB
bursts is higher during odor delivery, because the rat is sniffing at a higher rate.

Identification of possible reafference signals
Data were filtered at two different pass bands to assess the characteristics of both high

frequency (35-160 Hz) and low frequency (5-35 Hz) activity. Figure 3 shows an example of one

11-676

Motivated Control
CB

FMV

Motivated Prestimulus

CB;
Cx

EDII

Figure 2. Sample data from four different behavioral states. The top four traces are from the resting rat.
The next four are frm a control period at the beginning of a conditioning session where the rat had been
deprived of water for 24 hours. The third set is from the prestimulus period of an odor delivery and reward
record. The fourth set is front the same record during odor A delivery but before the water reward.

CB

a;O
ED

3.6 3.8 4.0 4.2 4.4
seconds

Figure 3. Top four traces are same data as Odor A above filtered at band pass 35-160 Hz. Bottomn four
are the same data filtered at 5-35 Hz. Arrows indicated temporal dispersion of activity along the pathways.

11-677

record during odor presentation. The raw data are compared with the same data filtered at the two
pass bands. While the high frequency burst is evident in the raw data, arising at the crest of the
respiratory wave at the end of inhalation, it is only after filtering out lower frequencies that
transmission of the burst through successive olfactory and limbic processing structures becomes
evident. In addition, there is a second burst after the first, which appears to be passed back from
the EC to the PPC and OB and also forward to the DG. The frequency of the second burst is
lower than that of the first, often 2/3 to 3/4 the original frequency.

The low frequency pass band shows a different phenomenon. Before each of the two bursts
coincident with the crest of the respiratory wave in the raw data the low band shows a brief period
of activity (one cycle, approximately 20 Hz in this record) passed along from the EC to the PPC
and OB and also to the DG. This momentary rise in amplitude of the background activity of the
OB just before a burst may serve the purpose of pushing the OB into a state change whereby it can
create the burst of activity coherently over the OB, indicating a perceptual state (1).

These phenomena occur often during the presumed odor recognition period and occasionally
during prestimulus control periods. In unmotivated animals they occur extremely rarely.

Spectral analysis
Averaged auto and cross spectra are shown in figure 4 for the OB with the other structures.

These show that the sharing of both the high and low frequency components is prominent,
deviating from the 1/f slope of the log-log power spectrum, which is characteristic of the
background activity of these structures (1). The only apparent difference between these spectra
and those estimated from the prestimulus period is a slight narrowing in the burst frequency peak.

DISCUSSION

Freeman described bursting in the gamma range (30-70 Hz in rabbits and cats, 50-100 Hz in
rats) in the OB (10) and Bressler showed that this high frequency activity is correlated with

100 O 104- _ OB-PPC
10 10

lop- "" ". . .10'

10 - 10 -

10 100 10 100
Hz Hz

10 ' -0O-EC 00 8-DG

102 6 ------

100 100 -

10-2 10
.2

_

10 100 10 100

Hz Hz

Figure 4. Log-log plots of averaged auto spectrum of OB and cross spectra of OB with PPC, EC, and DG.
High frequency peak corresponds to burst frequency, low frequency peaks from interburst activity. Averaged spectra
from 7 1.5 sec segments recorded during odor delivery (odor A). Data band pass filtered at 5- 160 Hz. Power spectra
estimated using a 512 pt Hamming window. Dashed lines are standard deviation.

1-678

episodes of like activity in the PPC (12,13). Recently Bragin, et al (14) reported seeing gamma
frequency in the HPC (in the CAl area) and DG, which seemed to be driven by or to originate in
the EC.

I show here that some of the high frequency activity seen in all four structures is tied and
apparently driven by the burst in the OB. Other high frequency activity may be initiated in the EC
at a lower frequency than the OB burst and transmitted in both directions along the olfactory and
limbic processing tracts. This may be either a "handshaking" arrangement or an adjustment to or
reinforcement of the first burst in the OB. The transmission of the lower frequency cycle of
activity in the beta range before production of the high frequency burst may be seen as a state
change facilitator, similar to what has been postulated for the lower frequency (1-4 Hz) activity of
the respiratory driving force (1).

Auto and cross spectra show a strong coherence of both high and low frequency components
between the OB and all the structures studied. However, the low frequency activity described here
may not be present ina spectral analysis as it is a transient and sporadic phenomenon, and these
spectra are estimated from time segments much longer than the period of interest. Other work in
progress (15) suggests that coherent theta activity (5-10 Hz) is increased significantly among all
four structures during the odor delivery periods, so this too may play a role in odor recognition.

CONCLUSION

Viewing sensory processing in the mammalian brain as a dynamical system requires some
suspension of the notion of compartmentalization of function. One must also question the idea of
packets of information representing sensory objects being passed, compared, and processed by
each structure. However this report shows that some passing of activity does seem to exist in this
system. High frequency bursts (50-100 Hz) are passed from the OB all the way into the DG, and
a putative handshaking burst is transmitted back, beginning in this subset of structures with the
EC. The EC also sends a lower frequency (12-20 Hz), short duration "stimulus" through the
system back to the OB. Rather than passing information, these signals can be viewed in the
dynamical sense as tuning mechanisms, which enable the OB and other structures to enter a
perceptual state.

Experiments are currently underway to further verify these results and to explicated their
functional and behavioral significance.

Acknowledfments. The author thanks Walter J. Freeman for guidance and Theoden Netoff for invaluable
assistance in surgical procedure. This work was supported by NIMH grant MH06686, Office of Naval Research
grant ONR-N63373 (Nonlinear Neurodynamics of Biological Pattern Recognition), and USPHS grant GM07379
(Systems and Integrative Biology Training Grant).

REFERENCES

I Freeman, WJ., Tutorial on neurobiology: from single neurons to brain chaos, International Journal of
Bifurcation and Chaos, 2 (1992) 451482.

2 Freeman, WJ., Strange attractors that govern mammalian brain dynamics shown by trajectories of
electroencephalographic (EEG) potential, IEEE Transactions on Circuits & Systems, 35 (1988) 781-783.

3 Skarda, C.A. and Freeman, WJ., How brains make chaos in order to make sense of the world, Behavioral and
Brain Sciences, 10 (1987) 161-195.

4 Viana Di Prisco, G., and Freeman, WJ., Odor-related bulbar EEG spatial pattern analysis during appetitive
conditioning in rabbits, Behav. Neurosci. 99 (1985) 964-978.

5 Freeman, WJ. and Viana Di Prisco, G., EEG spatial pattern differences with discriminated odors manifest
chaotic and limit cycle atractors in olfactory bulb of rabbits, Brain Theory, Ed. G. Palm and A. Aertsen,
Springer-Verlag, Berlin (1986) 99-119.

6 Freeman. WJ. and Barrie, J., Spatio-temporal patterns of visual, auditory, and somesthetic EEGs in perception
by trained rabbits, Society for Neuroscience Annual Meeting Abstracts 1993.

7 De Olmos, J., Hardy, H., Heimer, L. The afferent connections of the main and the accessory olfactory bulb
formations in the rat: an experimental HRP study, J. Comp. Neurol., 181 (1978) 213-244.

8 Boeijinga, P.H. and Lopes de Silva, F.H., Differential distribution of beta and theta EEG activity in the
entorhinal cortex of the cat, Brain Research, 448 (1988) 272-286.

1-679

9 Bocijinga, P.H. and Lopes de Silva, F.H., Modulations of EEG activity in the entorhinal cortex and forebrain
olfactory ei during odour sampling , Brain Research, 478 (1989) 257-268.

10 Gfisser, O.-J., Hiszorical remarks on the ideas involved in the reafference principle, Society for Neuroscience
Annual Meeting Abstracts 1993.

11 Freeman, WJ., Mass Action in the Nervous System, New York, Academic Press, 1975.
12 Bressler, Si.., Relation of olfactory bulb and cortex. 1. Spatial variation of bulbocortical interdependence, Brain

Research, 409 (1987) 285-293.
13 Bressler, S.L., Relation of olfactory bulb and cortex. II. Model for driving of cortex by bulb, Brain Research,

409 (1987) 294-301.
14 Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., and Buzsaki, G., Beta frequency (40-100 Hz) patterns

in the hippocampus: modulation by theta activity, Society for Neuroscience Annual Meeting Abstracts 1993.
15 Kay, L, unpublished results

1-680

James S. Schwaber
E.I. duPont Company
Wilimington, Delaware
Title: COMBINING CELLULAR DYNAMICS, SYSTEMS DESCRIUnONS AND
COMPUTATIONAL METHODS FOR REVEALING SENSORY INTEGRATION
FUNCTONS IN CARDIO-RESPIRATORY BRAINSTEM CIRCUITS
Abstract: System's level function must be shaped by the neuronal dynamics which arise from
fundamental nonlinearities in cellular properties. Computational modeling is a natural, even
necessary, handmaiden to understanding these processes. The cardiorespiratory nucleus of the
solitary tract provides a useful model system to combine cellular, systems, and computational
methods to understand sensory processing and integration. This approach is proving useful, for
example in understanding the apparently non-additive response of second-order baroreceptor
neurons. However, it also has highlighted unresolved issues of the function of the
cardiorespiratory control systems. In addition, use of membrane channels in neuron models has
pointed up important issues for the interpretation of the significance of conductances to neuronal
behavior. Neuronal behavior does not appear to arise from unique, specific parameter values.
Consequences for experimental design, data interpretation, and more broadly for understanding
neural systems (!) will be discussed.

1-681

Modeling the Baroreceptor Reflex Neural Network

Performing Blood Pressure Control in Mammals

LA. Rybak, J.S. Schwaber, and R.F. Rogers

Neural Computation Group, The Experimental Station, E.I.DuPont de Nemours & CoWilmington, DE 19880-0323
Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104

Abtract A model of the baroreceptor reflex is considered. The model includes first-order neurons
(baroreceptors) and second-order NTS neurons, and is incorporated into a generalized model of blood pressure
control. The developed model is based on some known physiological data and on the hypothesis of barotopical
organization of the baroreflex neural network. The results of modeling are discussed.

Introduction

The baroreceptor vagal reflex is an important part of the cardiovascular control system. It may be defined
as the biological neural control system responsible for the short-term blood pressure regulation. A simplified scheme
of the baroreceptor vagal reflex circuit is the following. Baroreceptors, typical mechanoreceptors located in the great
arteries (Le. the aortic arch and the carotid sinuses), provide the sensory information to the system by transducing
arterial pressure into action potential trains. Baroreceptors provide input to second-order neurons in the nucleus
tractus solitarii (NTS) located in the lower brainstem 181. Via a network of interneurons, the second-orderimurons
affect motor neurons which in turn control heart rate and total peripheral resistance and thus blood pressure [6]. The
responses of the first-order neurons (baroreceptors) are well described as highly sensitive, adapting neurons that
encode each pressure pulse with a frequency-adapting train of spikes on the rising phase of pressure [1,101. One of
the mysteries of the identified baroreflex related second-order neurons in NTS is that in spite of receiving direct
monosynaptic inputs from the first-order neurons, they do not show any pulse-rhythmic activity that contains the
frequency component corresponding to cardiac frequency. They do not respond to each heart beat and probably
perform a low pass filtration of their input signals [91. Inhibitory interactions in the NTS network of second-order
neurons probably play the important role in this process, as well as in the functioning of the baroreflex neural
network in general. This is confirmed by the findings of inhibitory postsynaptic potentials (IPSP) in the
barosensitive NTS neurons [81 and by the experiments in which the behavior of these neurons was investigated in
the conditions of blocking GABAergic synaptic inhibition [111. Recent investigation [9] revealed two groups of
barosensitive presumed second-order NTS neurons called "silent" and "active" neurons. A typicai response of a
neuron from the second group to induced blood pressure challenges is shown in Fig. 1. Analysis of neuronal
responses in this group allows us to assume and underline some behavioral properties of these neurons, that were
employed in the development of a neural model of early stages of the baroreflex:

(i) These barosensitive second-order NTS neurons respond to blood pressure changes with an expressed
burst of activity whose frequency is much lower than the frequency of cardiac cycle.

(ii) The character of their responses allows to assume that they are inhibited just before and after the
bursts

(ii) The bursts of these neurons are the sources of regulatory signals to the object of regulation (the heart),
which in turn provide compensatory changes of blood pressure by changing cardiac output

(iv) Possibly, each of these neurons responds to pressure changes and provides the above regulation in a
definite static and dynamic range of these changes.

Model

The developed baroreflex model was based on two main hypotheses. The first hypothesis, one of
"barotopic" organization, has been offered earlier [121. It consists in the supposition that individual baroreceptors'
pressure thresholds (below which they are silent) are topically distributed in a working area of the pressure space,
and that each second-order barosensitive neuron receives inputs from the first-order ones, whose thresholds lie
in a definite small area of pressure. There are some anatomical [2, 31 and physiological 191 data which support this

1-682

supposition. The second hypothesis assumes that projcctions of the first-order neurons onto second-order ones are
organized like ON-center-OFF-surround receptive fields in the visual and ote sensory systems. It means that each
group of the second-order neurons gets "lateral" inhibition from neighboring neural structures tuned to higher and
lower levels of blood pressure. This assumption id derived from the above statement (ii) and corresponds to general
principles of organization of sensory systems.

The scheme of the considered neural network model of early stages of the baroreflex consisting of the
fiut- and second-order neurons is shown in Fig. 2. The network is incorporated into a generalized model of the
system for blood pressure control. The first order neurons get the excitatory input signal that is proportional to the
blood pressure. These neurons are arranged sequentially with respect to increasing pressure threshold. The second-
order neurons get synaptic excitation and inhibition from the first-order ones as it is shown in the Fig. 2. In the
considered network, the lateral inhibition between the second order neurons was organized by the direct synaptic
inhibition from "the periphery of the receptive field". A more biologically realistic version is the lateral inhibition
via inhibitory intemeurons. It also would be interesting to consider a reciprocal inhibition between the second
order neurons. We left the investigation of the above versions of inhibition for future study and have considered the
simplest version shown in the Fig. 2. Parallel outputs of the second-order neurons are integrated, and via an
intermediate subsystem (DT), provide negative feedback to a subsystem for blood pressure generation. This
subsystem simulates the heart and vessels. It operates under the influence of an uncontrolled input signal that
causes a deviation of the mean pressure from the setpoint.

Simulation of single first- and second-order neurons considering the membrane currents and conductance
dynamics has been performed earlier [121. Here. for the purpose of network modeling, we employed a simpler
spiking neuron model that describes the dynamics of neuron spike frequency well without taking into account
biophysical details. The developed single neuron is a modification of some models described earlier [4. 5, 71.

The dynamics of the neuron membrane potential V have been described by the following differential
equatioa:

c* ± V = g *(V, - V)+ g, *(E~y. - V)+ g,,,*(E, - V)+gHp*(E -V)+
dt

where C is the membrane capacity; V, is the rest membrane potential; Ew,, and E, are correspondingly the

reversal potentials for the excitatory and inhibitory synaptic currents; Ec is the potassium reversal potential; g.

and g.Y, are the conductances for excitatory and inhibitory synaptic currents, which are opened by action

potentials (AP) coming from synaptically connected neurons; g~m, conductance for potassium current, that is

opened by AP generating in the neuron itself, go is the generalized rest conductance; I is the input signal defined

by blood pressure. For first-order baroreflex neurons, which do not get synaptic inputs, we considered that

and g. equal to zero. For the second-order neurons. I =0.

In models of the considered type [4, 5, 71 it is usually accepted that g. is constant, and g, ,g and

gAHp depend on time, but do not depend on the membrane potential. It is considered that the neuron generates AP

at the moments of time when its membrane potential reaches or exceeds a threshold. Dynamics of the threshold H
in our model have been described as follows:

d
-H*H =-Ho +H, + Ad*(V-V); (2)

dt

H =H. 4(H - H.)* exp(- -). (3)

Equation (3) describes fast changes of the threshold just after the AP that is generated in the neuron at a moment
t,. Other words, it describes the dynamics of refraction. In accordance with this equation the threshold H jumps
from the current level H, to the very high constant level Hm at the moment to , and then decays with the time

constant rzf. Equation (2) describes the slow adaptive dynamics of the current threshold level, H. The degree of

adaptation is defined by the coefficientAd. H, is the rest level of the threshold. r'lo is the time constant of

adaptation.

11-683

I II I I! I I t II i1! ! ,, , , ,

Fig. 1. Typical response of an "active" second-order neuron to increasing mean arterial blood pressure (ABP).

Fig. ~ ~ -n 2Sceeothmode

The~~~~~~~~~~ dyamc ofg, ,cnutneaedsrbda ollows

I PRESSURE
IN

P lint

I-''
and

VESSELSN

Fig. 2. Scheme of the model.

The dynamics of g9AH* conductance arc described as follows:

g, = gaffp * exP(:-:L) • (4)
TAWP

It increases by the constant value g.p at the moments t, and then decays with time constant rAa. The changes
in g4 ,,p result in a short-time hyperpolarization after each AP. The equations (2) and (3)/(4) define
correspondingly slow and fast interspike dynamics of the neuron excitability and slow and fast dynamics of AP
frequency.

The output activity of the neuron Yis defined as follows:

Y= V+(Am -V)* f(t-1), (5)

where Am is the AP amplitude, and f =1, ift = Io and 0 otherwise.

II-684

Sympic potentials in the target neuron, that recall its excitation or inhibition, result in the model from
clam. of 4AXMoP inzgly g., and gk,, of that neuron.. These changes are defined by the output variable of the
aooarenery.

y = y.* exp(-'), (6)

were y. and ry are the parameters that define the normalized amplitude and decay time constant synaptic

conductances changes of the target neuron.
Incoming synaptic signals are integrated at the neuron in accordance with synaptic weights and types of

synapses.
g., =k.*_a.,*y,;

1 (7)
g,, = ki* aj*yi.

where a. and a, are correspondingly the weights of excitatory and inhibitory synaptic inputs from

the neuron j; k, and k, are coefficients.
The rest levels of thresholds H of the first-order neurons in Fig. 2 increase from one neuron to another

with some threshold step All,. The input signal to all first-order neurons depends on the pressure P, I = fp(P).

In the first approximation we have considered that f,(P)= k, * P, where k. is a coefficient. The synaptic inputs

from the first-order neurons to the second-order ones correspond to Fig. 2. The outputs of the second-order neurons
are summarized at the input of the intermediate subsystem, the dynamics of which are described by the differential
equation

d I.,l = -Imt + k.,-yj
Sdt

Dynamics of blood pressure are described by the following equations:

P= P + P.* exp(- --);
Tp (9)

PdT*-P. =-Pin+ P no+ft-k* *1l,,

The pressure decays from a current level P to the level P, with the time constant TP. At each moment t,, when

P reaches Pn (Pm > P) it jumps up on P, (that simulates the pressure changes resulted from the head bits)
and then again decays. P. changes with the time constant T .The rest level for P. is Po (setpoint). The
changes made by an uncontrolled influence, P, and compensate by the feedback from the intermediate subsystem.
k. is the coefficient of the feedback.

Modeling Results

The modeling was carried out with IBM PC computer. Differential equations were numerically solved
using the MacGregos method [71. Fig. 3 shows the responses of four first-order neurons (baroreceptors) with
different blood pressure thresholds (the four upper rows; thresholds increase from the bottom to the top) to the
increasing mead blood pressure (the bottom row). These neurons demonstrate the adaptive type of responses and
respond with the spike to each pulse of the pressure. Fig. 4 and Fig. 5 show the responses of four first-order
neurons (the 2nd-5th rows) and one second-order one (the upper row) to the pressure dynamics (the bottom row).
Because of barotopical distribution of thresholds the first-order neurons start to respond to increasing mean blood
pressure sequentially. In these figures the central two first-order neurons (3rd and 4th rows) excite the second-
order neuron, but the other two inhibit it in accordance with the scheme in Fig. 2. In Fig. 4 the feedback control
loop is broken off (kb=O), and mean pressure increases during the time of Paction. In the Fig. 5 the feedback

11-685

I I III I 1111 Inn III ii I

..... ii i i i i i i i i i.

Fig. 4. Responses of four first-order and one second-order (at the top) neurons (the feedback control loop is broken).

Fig. 5. Responses of four first-order and one second-order (at the top) neurons (the feedback control loop is closed).

11-686

control loop is closed, and the second-order neuron performs the regulation of the pressure. The scond-order
neuron demonstrates low frequency spike bursts like its real prototype (Fig. 1). The behavior of the second-order
neuron in the model corresponds in the first approximation to the behavior of real neurons and ansrs to the
above statements (i)-(iv). It supports the hypotheses which the described model is based on. Future experimental
and model investigation of structural and functional organization of the network of the first- and second-order
neurons will allow to evaluate and revise this model and to understand the role the second-order neurons in the
baroreflex.

One of the most interesting features of the considered model is that each second-order neuron responds to
changes of the mean blood pressure and provides its response only in a definite static and dynamic range of these
changes. The set of the second-order neurons controls the pressure via some sequence of control actions of
individual second-order neurons that is formed automatically and adaptive to dynamics of pressure changes. Thus,
the set of second-order neurons may be considered to be a set of interacting controllers. Each of these contmllers
dominates and provides control in a definite range of changes of the controlled parameter. Together they perform
some kind of adaptive schedule control This type of adaptive control is interesting from the control theory point of
view, and may be applied for the control of some complex nonlinear processes.

References

1. Abboud, F.M., and Chapleau, K.W. Effects of pulse frequency on single-unit baroreceptor activity during
single-wave and natural pulses in dogs. J. Physiol., 1988, 401,295-308.
2. Bradd, J., Dubin, J., Due, B., Miselis, R.R., Monitor, S., Rogers, W.T., Spyer, K.M., and Schwaber, J.S.
Mapping of carotid sinus inputs and vagal cardiac outputs in the rat. Neurosci. Abstr., 1989, 15, 593.
3. Donoghue, S., Garcia, M., Jordan, D., and Spyer, K.M. Identification and brainstem projections of aortic
baroreceptor afferent neurons in nodose ganglia of cats and rabbits. J. Physiol., 1982, 322, 337-352.
4. Getting, P.A. Reconstruction of small neural networks. In Methods in Neuronal Modeling (C. Koch and I.
Segev, eds.), MIT Press, 1989, 171-194.
5. Hill, A.V. Excitation and accommodation in nerve. Proc. R. Soc. London, 1936, B 119, 305-355.
6.Karemaker, J.M., Neurophysiology of the baroreceptor reflex. In The Beat-By-Beat Investigation of
Cardiovascular Function (R.IL.Kitney and C. Rompelman, Eds.) Claredon Press, Oxford, 1987, 27-49.
7. MacGregor, R.J. Neural and Brain Modeling. Acad. Press, Inc., 1987.
8. Miflin, S.W., and Felder, R.B. Synaptic mechanisms regulating cardio-vascular afferent inputs to solitary tract
nucleus. Am. J. Physiol., 1990, 259, H653-H661.
9. Rogers, R.F., Paton, J.F.R., and Schwaber, J.S. NTS neuronal responses to arterial pressure and pressure
changes in the rat. Am. J. Physiol. (in press).
10. Seagard, J.L., Brederode, F.M.van, Dean, C., Hopp, F.A., Gallenberg, L.A., and Kampine, J.P. Firing
characteristics of single-fiber carotid sinus baroreceptors. Circ. Res., 1990, 66, 1499-1509.
11. Suzuki, M., Kuramochi, T., and Suga, T. GABA receptor subtypes involved in the neuronal mechanisms of
baroreceptor reflex in the nucleus tractus solitarii of rabbits. J. Aut. Nervous Syst., 1993, 43, 27-35.
12. Schwaber, J.S., Paton, J.F.R., Rogers, R.F., Spyer, K.M., and Graves E.B., Neuronal model dynamics predicts
responses in the rat baroreflex. In Computation and Neural Systems (F. Eekman and J. Bower, eds.) Kluwer
Academic Publications, 1993, pp. 89-96.

11-687

Circuit Model of Neuronal Inhibition
and Sustained Excitation

Michael D. Levine, D.Sc.

ONR-ASEE Postdoctoral Fellowship Program
Naval Research Laboratory

Washington, DC 20035

Abstract

A circuit model of the postsynaptic membrane of a neuron is developed for simulation of inhibition and
sustained excitation. The model is simulated using SPICE (Simulation Program with Integrated Circuit
Emphasis). The circuit uses MOSFETs (metal-oxide-semiconductor field-effect transistors) as an analog of
the conductance of receptor-gated ion channels in the postsynaptic membrane. Transmitter-receptor
binding activity serves as the input to the system and is simulated by an electrical signal. In the model,
sustained excitation is a result of biochemical feedback from the postsynaptic to presynaptic neuron. ibis
feedback can miintain the release of excitatory neurorausmifter. Postsynaptic inhibition is then
demonstrated as a plausible mechanism for limiting the duration of sustained excitation in the nervous
system within individual neurons.

1. Introduction

Long-term potentiation (LTP) is a sustained postsynaptic excitatory response to presynaptic
stimulation. During LTP a neuron may undergo physical changes that promote neural growth
and new connections between neurons, which are essential in learning and memory. Under
pathological conditions, such as in epilepsy and stroke, prolonged excitation can lead to
degradation of neurons [1]., Inhibition is an important mechanism for preventing toxic effects of
prolonged excitation [2].

In-vitro electrophysiological experimentation suggests that sustained excitation occurs in
hippocampal neurons [3]. A hypothetical model of sustained excitation, based on an adaptation
of a more complex neurobiological description [1], is shown in Figure 1. The model does not

PostsynaptIc

Presynaptic Membrane

End-terminals
NMDA
ReceptoL5ejn

S~econd 1
Glutamate Ca.. Messenger

System

Ca++ Dependent I-
Protein Kinases" -

Figure 1. Model of a synapse with NMDA receptors, showing feedback mechanism for sustained excitation.

II-688

include the voltage-gating mechanism of NMDA receptors, which has been well characterized in
other studies [4-8].

In this model, the neurotransmitter glutamate binds with NMDA receptors. The binding
causes the opening of ion channels and a subsequent influx of calcium into the postsynaptic
neuron. The increase of intracellular calcium activates a second messenger system, which is
characterized as a series of biochemical reactions. These reactions result in the synthesis and
release of calcium-dependent kinases by the postsynaptic neuron. The protein kinases diffuse
from the postsynaptic cell to the presynaptic neuron, and activate the release of glutamate at the
presynaptic end-terminals. This biochemical feedback-activated release of glutamate sustains the
transmitter-receptor binding activity and excitable state of the postsynaptic neuron.

2. Circuit Model of Sustained Excitation

The circuit model of the postsynaptic membrane consists of the membrane capacitance, ionic
conductances, and Nernst potentials [9] with a component representing the biochemical
feedback. A schematic of the circuit is shown in Figure 2.

V ,8 Vk(

f

Gfca v Gca

Figure 2. Circuit model of postsynaptic membrane with feedback. NMDA receptor-gated calcium channels are
represented by MOSFETs. Conductance Gica is a function of the initial transmifler-receptor binding activity, which
is represented by Vgca. Conductance Gfca is function of feedback component Af.

An important parameter in this model is the calcium conductance. The calcium conductance
is described by two variables Gic. and Gfc., which are respectively associated with the initiating
and sustaining periods of excitation. In the initiating stage, Gic. is a function of the glutamate-
NMDA receptor binding activity. During sustained excitation, G&. is primarily controlled by
the biochemical feedback.

In the circuit, the variable conductances are physically represented with MOSFETs (Metal-
Oxide-Semiconductor Field-Effect Transistor), in contrast to using a mathematical model [10.
The MOSFET is a suitable analog, because it functions as a voltage-controlled variable
conductance in the linear operating region, where

Gds = W u Cox (Vg - Vt) I L. (1)

Gd, is the drain-to-source conductance, W the channel width, L the channel length, u the carrier
mobility, C0 x the oxide capacitance, V the variable input gate voltage, and Vt the threshold
voltage. In simulation, Vg is the variale input and V, = 0.

II-689

The transmitter-receptor binding activity is the synaptic input to the system that controls
calcium conductance G11 . Binding activity is a chemical reaction represented by the gate
voltap. Modeling of the binding activity entails transformation from a chemical to an electrical
description, as elucidated in the following steps.

First, the binding activity is characterized by the chemical reaction of glutamate and NMDA
receptors, where

k,
Glutamate + NMDA /-- Glutamate-NMDA.

k2

k, is the rate constant for the forward reaction and k2 the rate constant for the reverse reaction.
During the initial binding activity the number of open calcium channels Nc. is approximated as
a function of the rate constants, where

Noc. = Nca (I - exp(-klt) + exp(-k2t) u(t - tin)). (2)

Nc is the total number of NMDA receptor-gated calcium channels, and u(t - t.) is a Heaviside
function representing an offset between the forward and reverse reactions. Next, the
conductance of the calcium channels is approximated as a function of the rate constants, where

Gjc(t) = Nca (1 - exp(-klt) + exp(-k 2t) u(t - tm)) Gocma. (3)

G., is the conductance of a single open calcium channel. Finally, the gate input voltage applied
to elicit a MOSFET conductance of Gica is

Vgca(t) = Gka(t) L I (W u Cox). (4)

The strength of the biochemical feedback is a function of the excitatory state of the
postsynaptic neuron, specifically the membrane potential Vm(t) and the strength of the feedback
gain Af. In this model, the biochemical feedback drives the sustained excitatory calcium
conductance Gf., where

Gfca = W u Cox (Vm(t) Af)/L. (5)

3. Circuit Simulation

The circuit in Figure 2 is simulated using SPICE (Simulation Program with Integrated
Circuit Emphasis). Strong, moderate and weak excitations are modeled as a function of the
feedback component Af. Wherever possible, the parameters in the simulation are based on
biologically feasible values. In the case of a hypothetical parameter such as the feedback gain,
values are chosen for demonstration of the biological effect.

In simulation, weak excitation is obtained with Af = 10, moderate excitation with Af = 100
and 160, and sustained excitation with Af = 170 and 270. The simulation parameters for input
binding activity are k, = I kHz, k2 = 1 kHz, t. = 800 usec and G. = 50 pS. The membrane
capacitance is C. = I nF and the potassium conductance is Gk = 2.5 uS. The Nernst potentials
are V. = 50 my and Vk = -90 my. The physical and design parameters for the n-channel
MOSFET are L = 15 um, W = 2 um, u. = 600 cm 2N-sec, and oxide thickness to, = 100 nm. The
forcing function applied to the input gate is 5 volts.

The simulation input Vva(t) applied in all cases is shown in Figure 3 (a). The membrane
potentials associated with weak, moderate and strong sustained excitation are shown in
Figure 3 (b). SPICE simulation illustrates the sustained excitation of the membrane potentials as
a function of the feedback gain. For the cases of moderate and strong sustained excitation, the
membrane potential is characteristic of transient and long-term memory storage respectively.

1-690

G 4.0OV-

tB

V
a
I 3.OV.t
a

2. OV

1. OV

Ov
05 2MS 4ms 6ms Dms lOinS

TIme

Figure 3 (a). SPICE simulation waveform representing the initial synaptic inpt of transmitter-receptor binding
activity. The input is applied as Vgca to the circuit in Figure 2.

M 50mY

e
At=- 270

b

r

n At, 170

P OV .. .
0

t At - 100 At- 160
e
nt'

I Af - 10

-50mV. .

-lOOmV-

Os 2ms 4ms 6ms 8ms loms

TIme

Figure 3 (b). SPICE simulation waveforms representing the postsynaptic membrane potentials elicited for different
strengts (Af) of feedback. Sustained excitation is shown for Af = 170 and 270. Transient or short-term changes in
membrane potential are shown for Af = 10, 100, 160.

4. Sustained Excitation and Inhibition

Inhibition in the central nervous system limits excessive excitation that can lead to
excitotoxicity [1]. Excitotoxicity can arise from excessive influx of calcium and prolonged
membrane depolarization. This condition causes metabolic changes in the neuron leading to cell

1-691

injury and death.
GABA (gamma amino butyric acid) is the primary inhibitory neurotransmitter in the central

nervous system. The binding of GABA with GABA receptors causes the opening of chloride
channels, followed by an inhibitory postsynaptic potential. The binding reaction is

k3
GABA + GABA receptor ' - - = GABA-GABA receptor.

k4

k3 is the rate constant for the forward reaction and k4 the rate constant for the reverse reaction.
The conductance of the chloride channels is approximated as a function of the rate constants,
where

Gcjft) = Nc1 (1 - exp(-k3t) + exp(-k4t) u(t - ti)) Gocl. (6)

Gcl is the conductance of a single open chloride channel and Nc1 is total number of transmitter-
gated chloride channels.

The inhibitory effects of GABA limit excessive excitation. GABA receptors have been
colocated in some of the same neurons as NMDA receptors [2]. The implication is that
inhibition of sustained excitation occurs in certain neurons.

A circuit model composed of excitatory and inhibitory components is shown in Figure 4.
The simulation parameters for the inhibitory channels in this model are k3= 2 kHz, k4 = 1 kHz,
t. = 800 usec, Goc = 30 pS, and Nemst chloride potential VI, = -100 my. The physical and
design parameters for the p-channel MOSFET are L = 15 um, W = 2 urn, Up = 600 cm 2/V-sec
and t. = 100 nm. The forcing function applied to the gate is -5 V. All other simulation
parameters have been defined in the preceding section.

The excitatory and inhibitory inputs for simulation are shown in Figure 5 (a). The onset of
the inhibitory input is 30 msec after the initiation of the excitatory input. The output membrane
potentials are shown in Figure 5 (b). Simulation illustrates how inhibition limits the duration of
sustained excitation.

VC2 VC1 Vk

Vg9f Gicak k CMci

Figure 4. Circuit model of postsynaptic membrane with glutamate and GABA receptors for simulating inhibition
and sustaiud excitation. Inhibitory transmitter-gated chloride conductance is represented by MOSFET Gc].

11-692

G 4. OV
a
t
0

V
0

I 2.OV.t
a gc
0

2.0v,

vo

-4. OV
Os 20ms 40ms 6Oms BOms lOOms

T ime

Figure 5 (a). SPICE simulation waveforms representing excitatory and inhibitory inputs applied respectively as
Vgca and Vgd to the circuit in Figure 4.

M 50mV

m
b
I

P OV-
0p

0
n

a

-50mv

05 20as 80g 01M 86 100=mm

Thut

Figure 5 (b). SPICE simulation repeenting the postsynaptic membrane potential, which consists of sustained
excitation limited by inhibition.

5. Discussion

Individual neurons possess intrinsic physical mechanisms for preventing pathological effects
on the nervous system. The circuit model of sustained excitation and inhibition provides a
framework for interpreting and understanding these mechanisms. A challenge in developing this
framework is selection of appropriate circuit elements as analogs to specific neural parameters.

11-693

In the model, the MOSFET serves a suitable circuit analog to the variable conductance of a
group of ion channels. The input gate voltage is shown to describe the activity that controls
the variable calcium conductance. The circuit simulates the effects of sustained excitation and
inhibition on the postsynaptic membrane potential.

From a computational perspective, most artificial neural networks utilize nodes based on an
over-simplified model of the neuron, consisting of a summation and threshold. The non-linear
characteristics of sustained excitation and inhibition could serve as a model for a more versatile
element in the next generation of neural networks. The implementation of the model in SPICE
provides an important step towards realization of neuronal functions in hardware.

References

[11 Kandel E., J. Schwartz, and T. Jessel, Principles of Neural Science, Third Edition,
Elsevier, New York, 657-658 and 1019-1024, (1991).

[2] Collinridge G., and R. Lester, "Excitatory Amino Acids in the Vertebrate Central Nervous
System", Pharmacological Reviews, 42, 143-209, (1989).

[3] Gustafsson B., and H. Wigstrom, "Physiological Mechanisms Underlying Long-
Term Potentiation", Trends in Neuroscience, 11, 156-162 (1988).

[4] Jahr C., and C. Stevens, "A Quantitative Description of NMDA Receptor Channel
Kinetic Behavior", Journal of Neuroscience, 10, 1830-1837 (1990).

[5] Jahr C., and C. Stevens,, "Voltage Dependence of NMDA-Activated Macroscopic
Conductances Predicted by Single Channel Kinetics", Journal of Neuroscience, 10, 3176-
3182 (1990).

[6] Kitajima T., and K. Hara, "A Model of the Mechanisms of Long-Term Potentiation in
the Hippocampus", Biological Cybernetics., 64, 33-39 (1990).

[7] Mel B., "NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron",
Neural Computation, 4, 502-517 (1992).

[8] Zador A., C. Koch, and T. Brown, "Biophysical Model of a Hebbian Synapse",
Proc. NatI. Acad Sci. USA., 87, 6718-6722 (1990).

[9] Hodgkin A., and A. Huxley, "A Quantitative Description of Membrane Current and Its
Application to Conduction and Excitation in Nerve", Journal of Physiology (London)., 117,
500-544 (1952).

[10] Koch C., and I. Segev (editors), Methods in Neuronal Modeling : From Synapses to
Networks, Chapter 3, MIT Press, Boston, (1989).

Acknowledgments

The work of the author is supported by Joel Davis, Ph.D. of the Office of Naval Research and
Tomos ap Rhys, Ph.D. and Charles Bachmann, Ph.D. of the Naval Research Laboratory in
Washington, DC.

11-694

Steady-State and Transient Properties of a Neural Network for

Hexapod Leg Control

D. Micci Barreca and H. O)men

Department of Electrical Engineering
University of Houston

Houston, Texas, 77204-4793 USA

Abstract. We present a neural network model inspired from the cockroach Periplaneta Americana for
leg control. The model consists of a central rhythmic pattern generator and a sensory-motor network. We
show that it exhibits various behavioral properties observed in cockroaches: It produces a continuum of stable
gaits ranging from metachronal to tripod. The changes in the duration of protraction retraction phases for
various walking speeds follow closely the behavioral data. It is shown that the network is insensitive to the
initial position of the legs, in that it can achieve rapidly a coherent phase relationship regardless of the
initial conditions. In addition, this transient property also extends to situations where rapid changes occur
in the walking speed: The network can reorganize its phase rapidly during fast accelerations as well as fast
decelerations.

1 Introduction
Experimental studies on deafferented insects (where leg receptors are severed) support the theory that gait
patterns are centrally generated, but modulated by sensory feedback. Therefore, it is assumed that a central
pattern generation system, probably located in the thoracic ganglion, is responsable for the production of
rhythmic commands which drive the stepping of each leg. This central system also provides coordination
among the legs, which results in stereotyped walking patterns. Sensory feedback from leg receptors, although
not essential for the production of gaits, allows the animal to adapt its walking patterns to the environmental
conditions (e.g., during walking on irregular surfaces).

In this article we propose a neural network model for leg coordination and sensory-motor integration
for a six-legged structure. The model is inspired by the neurophysiological and behavioral findings from the
cockroach Periplaneta Americana [Pea72],[PFW73],[Pea76].

2 Model Description

2.1 The Central Rhythmic Pattern Generator (CRPG)
The oscillator for each leg: During walking, each leg follows a rhythmic pattern of activity consisting of
stepping (protraction) and stance (retraction) phases. In order to model the central control of the rhythmic
activity of each leg, we used the nonlinear oscillator network proposed by Ellias and Grossberg [EG75] (see
also [MCP93]). This model takes the form of a simple neural network consisting of two nodes, called the
excitatory node (EN) and the inhibitory node (IN). The dynamics of the system is described by the following
two shunting equations:

i = -Az + (B - z)(I + f(z)) - (C + z)g(y), (1)

j = E((D - y)[z]+ - y), (2)

with [z]+ = maz(z, 0), where z denotes the activity of the EN and y denotes the activity of the IN. The
excitatory input node EN receives an external signal I. It has been shown that within a range of values
of this external input, the network exhibits stable oscillations whose frequency depends on I [EG75]. Ac-
cordingly, I will be called the command signal and will represent the signal that controls the walking speed.
The activity of EN within a single period of oscillation consists of an active (depolarization) and a passive
(hyperpolarization) phase. In order to map these complementary phases to the complementary protraction
and retraction motor activities, the following behavioral observation will be taken into consideration: In
insects, the ratio between the duration of the protraction and the retraction phases is frequency dependent
[Wil66]. In particular, when the stepping frequency increases the duration of the retraction phase decreases,
while the protraction phase maintains an approximately constant duration [Wil66. Such a property can
emerge from the oscillator network by using the positive phase oscillation in the EN to drive the stepping
phase (protraction) of the leg movement. During the negative phase of the oscillation, the stance phase

II-695

(retraction) is assumed to take place. A stereotyped positive elongation, independent of the overall fre-
quency, can be obtained by strengthening the self-excitatory connection in the oscillator. In fact, if the
self-excitation signal function f(is selected so that f() >> I within the range of values of I that gener-
ates rhythmic activity, the positive elongation of the oscillator will be determined mainly by the feedback
signal and therefore will be fairly independent of the driving input .

Coupling between the oscillators: In order to generate a structurally stable coordinated walking pattern,
the oscillators should be coupled to achieve a global phase relationship. The coupling will be guided by
behavioral data on the general properties of the phase relationship among the legs in the cockroach: It
has been reported that (i) adjacent legs never step simultaneously; (ii) during slow walking speeds the
order of stepping proceeds from back to front [Hug52],[Wil66]. To incorporate the first property, inhibitory
interactions between the EN nodes, controlling adjacent legs, are introduced as shown in Figure 1. Such
inhibitory connections prevent adjacent legs to step simultaneously. The IN node of an oscillator makes an

LlTr RIGHr

INN ENN
,MDDLE MX

Figure 1: the Central Rhythmic Pattern Generator. Open and solid synaptic symbols represent
excitatory and inhibitory connections respectively.

excitatory connection with the EN node of the oscillator controlling the ipsilateral leg positioned "in-front"
to incorporate the second property. Since the activity of the IN is a delayed version of that of the EN, a
delayed excitation is established from one oscillator to the successive one.

Comparison with other models: The proposed model differs from Graham's model [Gra77] and its more
recent variations [Bee90], in both the type of oscillator used and in its coupling scheme. In particular, we use
direct inhibitory and excitatory connections that enable our model to achieve a rapid phase reorganization
in response to sudden changes in walking speed. The proposed model uses the same type of oscillator
as the model proposed by [MCP93] for gait control in cats. A main difference between their model and
ours is that the [MCP93] model uses a switch between coupling connectivities controlling different gaits.
In our model, different gaits emerge from a single coupling scheme. As a result our model is capable of
producing a continuum of stable gaits as exhibited by cockroaches [Wil66. On the other hand, the model
proposed by the same authors for human gait [PCG93 control uses a fixed connectivity scheme as in our
model. However, our model uses both excitatory and inhibitory connections while their model is based
on inhibitory connections between the oscillators. The excitatory connections in our model produce an
entrainment in the oscillators.

2.2 Sensory-Motor Network (SMN)

The second part of the model consists of the circuit that transforms the centrally generated motor com-
mand signals into motor activities. This circuit also integrates sensory feedback and therefore is called
the sensory-motor network (SMN). Two fundamental aspects characterize the motor behavior observed in
freely walking cockroaches. First, the levator and depressor motoneurons, driving respectively the pro-
traction and retraction phases, exhibit complementary activity [Pea72I,[PFW73],[PI73]. Second, sensory
feedback from two groups of receptors, the hair plate and the campaniform sensilla, modulates the motor
activity [Pea72,[PFW73,[PI73],[Pea76]. In order to generate two complementary activities from the EN
node of the oscillator, the EN output of the oscillator feeds into a gated dipole circuit [Gro72] as shown

II-696

HP Cs

Type.1 Type-l

l i I I I I I I I I I ,

XLC XDC

LC DC

Figure 2: The sensory-motor network. Open and solid synaptic symbols represent excitatory and
inhibitory connections respectively.

in the bottom of Figuie 2. The gated-dipole consists of two opponent channels, referred to as the levator
channel (LC) and the depressor channel (DC). The inverse-U shaped positive phase of the EN's activity is
used as a velocity command signal and fed into the levator channel of the gated dipole. Since the duration
of this phase is designed to be approximately constant, the duration of protraction will also be approxi-
mately constant. The duration of the retraction, however, varies with the walking speed. Since the walking
speed is controlled by the external input 1, a signal proportional to I is fed to the depressor channel of the
gated dipole. As one can see from Figure 2, this signal is conveyed by a "shunting node" which receives an
inhibitory signal from EN. This signal turns off the input to the depressor channel during the protraction
phase. The output neurons of the gated dipole, denoted by XLC and ZDC, are analogous to the non-spiking
interneurons Type-I and Type-II found in the third thoracic ganglion [Pea72]. They provide the comple-
mentary velocity command signals to the motoneurons. The layer following the output of the gated dipole
consists of neurons that integrate sensory feedback with these velocity command signals.

The hair plate receptors are modeled by a sensory neuron (HP) which is sensitive to the forward angle
position. In particular, the HP will be gradually activated while the leg approaches the maximum forward
position. The HP has projections to the motoneuron cells, inhibiting the levator motoneuron and exciting
the depressor. This sensory loop controls the final part of the protraction phase, preventing overstrokes of
the leg. Pearson found that deafferention produced an uncontrolled protraction resulting in exaggerated
stepping movements [Pea72].

The campaniform sensilla (CS) sensors are mainly excited during the retraction phase. The activity of
these receptors is correlated with the intensity of the load supported by the leg. Since the CS excites the
depressor motoneuron which drives the retraction movement, a positive feedback loop is produced during
the first part of the retraction phase. However, since the movement of the body will reduce the amount of
load carried by the leg, this positive loop will not cause instability.

The motoneuron cells model the actuators of the motor system controlling each leg. Levator and
depressor motoneuron cells receive input from the output cells of the gated dipole and directly project
to the corresponding muscles. The Type-I cell excites the levator motoneuron and inhibits the depressor
motoneuron. The Type-II cell has opposite projections. Since levator and depressor bursts represent velocity
commands, motoneurons are described as non-leaky shunting integrators of the incoming signals to generate
position commands. The mutual inhibition between the motoneuron cells ensures that the total activity is
normalized (reciprocal innervation principle).

Another important effect elicited by the CS is the inhibition of the central pattern generator system.

11-697

This particular reflex can explain why walking patterns are also load dependent. For example, when the
insect is climbing a hill or drags a small weight, the stepping rate decreases. When the insect is walking on
rough surfaces, the stepping rate of each leg depends on its load and the stepping pattern becomes irregular.
In our system, this modulation effect of the CS receptor has been modeled with an inhibitory pathway from
the CS back to the EN of the corresponding oscillator in the CRPG.

3 Simulation Results
The model consists of a system of nonlinear ordinary differential equations. The equations can be found in
[Bar93]. For the simulations, we used the Runge-Kutta-Fehlberg algorithm to solve the system numerically.

In a first set of simulations we studied whether the model could reproduce the empirically observed
relation between the durations of protraction and retraction. The result is illustrated in Figure 3. The plot
in Figure 3 shows the duration of the protraction and retraction phases as a function of the external input
I. Since the walking speed is approximately an increasing linear function of the control signal I, the curves
can also be interpreted as the protraction and retraction durations as a function of walking speed. For low
values of the external input, the duration of the positive phase of the oscillation (protraction) is substantially
shorter that that of the negative oscillation (retraction). When the value of the external input is increased,
the frequency of the oscillation increases. The decrease in the period of the oscillation mainly results from
the shortening of the duration of the negative elongation, for the positive oscillation maintains almost a
constant duration. The plot in Figure 3 shows the duration of the protraction and retraction phases for
increasing values of the external input. These curves strongly resemble those obtained from experimental
measurements during insect walking [Pea76],[Cha82].

Duration of Protraction and Retraction versus I

16 -'

12

4

1 4 -, ' _____

* I

0 0.2 0.4 0.6 0.a 1 1.2 1.4 1.6

Figure 3: Duration of protraction and retraction as a function of I

In a second set of simulations, we studied the the steady-state phase relationship between coupled
oscillators. We found that the model is capable of generating a continuum of phase relations ranging from
the wave (metachronal) gait at low speeds to tripod gait at high speeds. Three of the gaits are shown in
Figure 4. The plots in the left column of the Figure show the activities of the velocity command neurons (EN)
of the CRPG. Simulations of the CRPG network were conducted on a three-oscillator system, representing
the three ipsilateral legs. In this case, contralateral inhibition is not taken into consideration. The behavior
of the total (six-oscillator) network is shown in the right column. In these plots, a bar represents the
duration and timing of the protraction of a leg. The six legs are denoted by LH, LM, LF, RH, RM, RF
for left-hind, left-middle, left-fore, right-hind, right-middle, and right-fore respectively. The first row in the
Figure shows the metachronal gait produced by the model. During this gait, the rear oscillator is triggering
a wave of protractions going from back to front. Increasing the value of the external input, the time interval
between the end of one wave and the starting of the next one decreases. This is because the duration
of the retraction part of the oscillation decreases more rapidly than the duration of the protraction part.
Consequently, the next stepping of the hind leg tends to be anticipated, and eventually overlaps in time
with the stepping of the fore leg. When the overlap occurs, one obtains the tripod gait as shown in the third
row of the Figure. The middle row shows an intermediate gate within the continuum from metachronal to
tripod. Overall, these results show that the network can generate and maintain a continuum of stable gaits
ranging from metachronal to tripod gaits.

11-698

15 .

•

i : , lni -

. 0,. --

.~ddl.

LF~l

, M ----

... \ 3M- -- -
~IN

I --

-0. I/ .-- I

-, 5 t0 5 30 35 40 45 50 0 5 10 05 20 25 0 35 40 45 50

h'M -

Figure 4: Metachronal gait (up), Tripod gait (bottom) and an intermediate gait (middle) produced
by the model

11-699

.I•-.I I I il

In the next set of simulations, we studied the transient behavior of the network. First, we examined the
ability of the network to establish a stable phase relationship from arbitrary initial conditions. We found
that the CRPG is able to induce a stable phase relation independently from the initial state of the system.
A three-oscillator system was simulated with initial conditions such that the stepping was initially out of
order. Figure 5 shows that, after a small number of steps, the oscillatory pattern converges to the correct
phase relation. Similar behavior has been found for the six oscillator network.

WA. stb- Zxtoon tro xortcvrt Ritll Ptae
1.5

ihi d
0.5 ! N

0 10 15 20 25

TJiss

Figure 5: Insensitivity to initial conditions

We then analyzed the transients of the network in response to rapid changes in the control input, i.e.
rapid acceleration and rapid decelerations. To simulate a fast acceleration, we varied the external input by
a step increase and found that the system immediately reorganizes the stepping pattern from metachronal
to tripod without any apparent loss of synchronization (Figure 6). A rapid deceleration is simulated by-__1

2 0 5 5 I 50 5 0 25 7 7
F Fgure 5:i Is st t it transiti conitos

W sthen analyzse the otransiens. of the netork inrepose to Grai hange iG n atenro inoptie.
Brai aeer0,ao fandrai dece rations. Ton siae a fassto ayclroato wvaried the eslteral ipThby
aprinresed and founemdoe that sffrmtheisystembmmediatel reorganizes the pingpatternronmeactronain

ton tioditout anrty appaente lossnihbrn ofshoilatos (Figure 6) Ahw rapid deceleration si utednb

LIIII-70-

LH

2330 35 40 45 So 55 50 65 70 is
Tip.

Figure 6: Fast gait transition for the six-oscillator CRPG

a step decrease in the control signal. In the model proposed by Graham [Gra771, and later adopted by
Beer (BeeQO], a fast decrease in frequency can cause a loss of synchronization among the oscillators. The
proposed CRPG system does not suffer from this problem. The reason for the loss of synchronization in
Graham's model is that oscillators are not continuously coupled. Moreover, the coupling is not mutual.
In the CRPG the oscillators are continuously mutually coupled, thus a rapid variation of the activity of
one oscillator directly influences its neighboring oscillators. Figure 7 shows a rapid deceleration occurring
without any loss of coordination; the stepping pattern rapidly shifts from tripod to metachronal gait.

11-700

BI, fa decaitaton hee~ osc~i1tors network

.aY I I

/. 11/Ri

25 30 35 40 45 50 55 60 65 10 15

Timi

Figure 7: Rapid deceleration in the CRPG

In all the previuos simulations, the behavior of the network has been illustrated directly from the output
of the CRPG. This is because when the animal is walking on a flat surface, sensory feedback does not play
a strong role and the SMN closely follows the command signals from CRPG. Figuro. 8 shows the activities
of a levator burst neuron and the corresponding levator and depressor motoneurons in the SMN. Figure 9
shows the activities of CS and HP neurons during the walk. As one can see from this Figure, since the
animal is walking on a flat surface, the sensory signals maintain their morphology in time.

Dap-o~o. noton",on3
0.9 g/ 8ot Notl earo

0.$

S 0.$

0.4

0.3

0.2

0.1

o I ' '
0I

0 5 10 15 20 25 30 35 40 45 5
Tim

FFuire 8: Activities of the levator motoneuron and depressor motoneuron cells during walking on

a fltsurface

4 Concluding Remarks

We have shown that the proposed neural network is capable of generating a continuum of stable gaitsranging from metachronal to tripod. In addition, the transient behavior of the network shows that it is
capable of achieving a stable phase relationship among the sgas from CRPGhe initial position of the legs
as well as undergo rapid phase reorganization in rapid accelerations and decelerations.

An important aspect of the model, which remains to be explored, is its ability to cope with complex
terrains. This will require either a hardware implementation of the system or a sophisticated simulation

environment capable of emulating complex terrains.

U-701

... . . . - = - , m ,m m m m m m

0.07

Wf1lr Plot. -

0.04

0.05

0.04

0.03

0.02

0.01

0
0 5 10 10 20 25 30 35 40 45 50

Figure 9: Activities of the HP and CS receptor cells during walking on a flat surface

Our future work will also include the integration of this network with sensory (visual) and sensory-motor
gate networks [OM921. Such an integration will enable to control the command signals directly from visual
inputs and thereby achieve a closed environment-sensory-motor feedback loop.

Acknowledgements
H. 6Omen is supported in part by grant R29-MH49892 from the National Institute of Mental Health

and a grant from NASA-JSC.

References
[Bar93] D. Micci Barreca. A neural network model for leg coordination and sensory-motor control. Mas-

ter's thesis, University of Houston, 1993.

[Bee9O] R.D. Beer. Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology.
Academic Press, San Diego, CA, 1990.

[Cha82] R.F. Chapman. The Insects: structure and function. Harvard University Press, Cambridge, MA,
1982.

[EG751 S.A. Ellias and S. Grossberg. Biological Cybernetics, 20:69-98, 1975.

[Gra77I D. Graham. Biological Cybernetics, 26:187-198, 1977.

[Gro72] S. Grossberg. Mathematical Biosciences, 15:253-285, 1972.

[Hug52] G.M. Hughes. Journal of Experimental Biology, 29:267-284, 1952.

[MCP93] S. Grossberg M. Cohen and C. Pribe. In Proc. of the World Conf. on Neural Networks [WCNN'93],
1993.

[OM] H. Ogmen and M. Moussa. Biological Cybernetics, 68.

[PCG93] C. Pribe, M. Cohen, and S. Grossberg. In Proc. of the World Conf. on Neural Networks
[WCNN'93], 1993.

[Pea72] K.G. Pearson. Journal of Expperimental Biology, 56:172-193, 1972.

[Pea76] K.G. Pearson. Scientific American, 235:72-86, 1976.

[PFW73] K.G. Pearson, C.R. Fourtner, and R.K. Wong. In Smith S. Stein R.B, Pearson K.G. and Redford
J.B., editors, Control of Posture and Locomotion, pages 495-514. Plenum, New York, 1973.

[P1731 K.G. Pearson and J.F. lies. Journal of Experimental Biology, 58:725-744, 1973.

[Wi166] D.M. Wilson. Annual review of Entomology, 11:103-122, 1966.

1-702

Flexible Motor Control by Forebrain, Cerebellar, and Spinal Circuits

Daniel Bullock'
Cognitive and Neural Systems Department, Boston University

111 Cummington Street, Boston, MA 02215
danb@cns.bu.edu

Abstract: This paper reviews the theoretical picture that has emerged from a series of studies by which
my colleagues and I have attempted to understand the interacting neural networks that may account for
several dimensions of flexibility in primate sensory-motor control, especially voluntary arm control. These
modeling studies have been guided by both psychophysical data and detailed information on biological
neural networks. Many aspects of known anatomy (connectivity) and physiology (membrane and other
transduction properties, excitatory or inhibitory sign of action) have now been incorporated into a
comprehensive model. The model is built up from several distinct network modules, which correspond to
forebrain, cerebellar, and spinal circuits. The behavioral range of the theory now includes key aspects of
the following competencies: variable speed trajectory generation, size and speed scaleable handwriting
production, independent control of joint angle and joint stiffness, automatic gain control of stretch (error)
feedback, automatic force-pulse generation for velocity command tracking, self-organization of timing and
gain of context-conditioned feedforward movement commands, self-organization of a 3-D egocentric
coordinate system for representing external target locations, and self-organization of a direction-to-rotation
mapping that allows efficient use of redundant degrees of freedom during visually-directed reaches.

1. A framework for understanding sensory-motor control: Generation and realization of
desired trajectories.

Figure 1 presents an abstract scheme for a sensory-motor control system modeled on primate
data. In the upper left section, labeled VITE or DIRECT, is a desired trajectory generator. There
is abundant evidence that such a generator exists in distributed form in the primate forebrain
(Bullock & Grossberg, 1991). As abstracted here, this generator takes a speed scalar and two
vectors as inputs. One vector is a representation of a target position and the other is a
representation of current arm position. Given such inputs, the generator continuously computes a
difference vector and uses it to dynamically create a trajectory sufficient to gradually update arm
position in the direction of the target position. The overall rate of position command updating is
controlled by the speed scalar, and the desired velocity profile is smooth and bell shaped. In the
VITE model (Bullock and Grossberg, 1988, 1991) updating can proceed wholly in joint
coordinates. In the DIRECT model (Bullock, Grossberg and Guenther, 1993), the target's
position is initially compared with the end-effectors position in 3-D spatial coordinates. This
comparison yields a desired direction of movement, which is combined with information about
current limb configuration to compute joint rotations adequate to move the end-effector in the
desired direction. In either case, the output of the modeled generator is a series of desired joint
positions and velocities, i.e. desired joint-space kinematics.

Supported by the Office of Naval Research (ONR N00014-92-J- 1309).

II-703

target arm
position position speed CEREBELLUM
vector vector scalar

context

desired trajectory
generator pre-emptive

error
VITE or DIRECT corrector

FLETE stiffness

scalar

al
opponent-channel i

force generator ,

actual t ijectory

position, velocity
error sensors

Figure 1. A scheme to explain primate data on sensory-motor control

The remainder of Figure 1 depicts elements that work to realize the desired joint-space
kinematics. In the lower section, labeled FLETE, is an opponent-channel force generator. This
force generator consists of opponently organized pairs of muscles, sensors embedded in muscles
and joints, and neural circuitry specially designed to regulate the balance of forces created by
opponent muscles. The FLETE model began (Bullock & Grossberg, 1989) with an explanation
of how known spinal circuitry might function to assure Factorization of muscle LEngth and
muscle TEnsion, which is necessary for independent control of joint angles and joint stiffhess.
Figure 1 shows four kinds of inputs to the FLETE model: desired joint-space position and
velocity signals carried by the descending pathways labeled alpha and gamma, a stiffness scalar,
feedbacks of position and velocity errors, and learned error-preempting inputs based on past
experience with similar contexts. The stiffness scalar (Humphrey and Reed, 1983) allows the
system to exhibit a variable neuro-mechanical resistance to perturbations of the trajectory,
whereas the position and velocity feedbacks work largely to compensate for the inertial properties
of the arm itself

Unfortunately, long feedback lags render high gain position and velocity feedbacks
incompatible with stability. The performance cost associated with low gain feedback can be
largely avoided without sacrificing stability if the system is augmented with a high gain

11-704

feedforward controller that is slowly adapted by error feedback over a series of performance trials
(Grossberg & Kuperstein, 1986; Kawato, Furukawa and Suzuki, 1987). This second key
element for realization of desired trajectories is shown on the upper right of Figure 1. In our
model this adaptive, preemptive error-corrector consists of cerebellar and epi-cerebellar circuitry.
The cerebellum and closely related nuclei such as the inferior olive are known to be recipients of
many kinds of descending and ascending motor-system signals, and Figure I shows this nexus
receiving four kinds of inputs: the desired joint-space trajectory, the stiffness control scalar,
context-specifying signals, and joint-space feedbacks of position and velocity errors. In pertinent
modeling studies (Bullock, Contreras-Vidal and Grossberg, 1993a, b; Bullock, Fiala and
Grossberg, 1994; Contreras-Vidal, 1994), this module learns to reduce its error-feedback inputs
by conditionalizing its outputs (to the force-generator) on predictive context signals that include
desired kinematics signals.

In summary, Figure 1 schematizes a set of interrelated hypotheses about the design of the
generators of voluntary movement. Forebrain circuits are responsible for generating desired
trajectories and translating them into kinematic commands in joint-space coordinates. These
circuits allow effective parallel control of many muscular degrees of freedom, and allow voluntary
speed adjustments that leave spatial properties of the trajectory invariant. Joint-space error
feedbacks generated in the muscles are used reactively at the spinal level to improve the arm's
tracking of the desired trajectory. The cerebellum uses preprocessed versions of the same
error-feedback signals to gradually learn how to augment the net descending command so that
errors are progressively reduced for similar movements in similar contexts. Such cerebellar
learning is one of the processes constitutive of skill development. Thus in skill development there
is a gradual shift in the balance between reactive and predictive control and a corresponding
redistribution of signal flows within the system. The ability of an internally differentiated system
to undergo such a gradual shift during on-line performance was referred to as autonomous
supercession of control in Bullock and Grossberg (1991). I will now summarize the body of
results that have accumulated within the broad framework defined by Figure 1. The
forebrain-relevant results will be discussed with respect to data on the basal ganglia and motor
cortex, because the points of contact between model and neurobiological data are clearest for
these areas. The cerebellar and spinal modeling results will be used to indicate the kinds of
detailed hypotheses that can be advanced within a comprehensive model that makes dense contact
with neurobiological data on specialized brain circuits.

2. Some heuristics of forebrain trajectory generation.

To allow time to assess expected consequences internally -- a hallmark of deliberative
voluntary movement -- or to optimally coordinate the movement with external events, it is critical
to separate central response activation from response execution. Thus it is important that any
model of voluntary movement allow response priming.

To minimize reaction time once the primed response is to be executed, it is necessary to
pre-compute the dimensions of the response in motor coordinates. In the VITE model,
precomputation of the dimensions of a response can occur at the difference vector stage. Vector
cells in motor cortex are primable, and can be interpreted to code response dimensions in motor
coordinates (Caminiti, Johnson and Urbano, 1990).

11-705

To release a primed motor response for execution, it is then necessary to send a gating signal
that gives the primed response access to the effector apparatus. In the VITE model this gating
signal is called the GO signal. Progressive damage to an in vivo GO pathway would produce
movement slowing and ultimately an inability to execute planned movements. Parkinson's disease
shows a similar progression, and because it is known to result from basal ganglia lesions in the
substantia nigra pars compacta (Jankovic and Tolosa, 1993), we propose that a gating signal is
generated in vivo by a circuit consisting of the basal ganglia and perhaps its thalamic targets.

To modulate movement speed (and duration) without afiecting direction, it is sufficient to use
a variable-magnitude, multiplicative gating signal. In VITE, this variable-magnitude GO signal
acts by multiplying the difference vector. Evidence indicates that some motor cortex cells may
carry a desired velocity corresponding to such a product.

To avoid both ballistic movement onsets and slow exponential homing, it suffices to give the
movement gating signal a slow onset and gradual buildup. In the VITE model, this is
accomplished by making the GO signal grow gradually during movement. In vivo, lesions to the
subthalamic nucleus of the basal ganglia produce hemi-ballism (Jankovic and Tolosa, 1993).

Finally, to maximize across-speed generalization of learned torque-generating commands,
Newtonian considerations (Atkeson & Hollerbach, 1985) indicate that steady-state,
gravity-compensating torques must be learned separately from dynamic, inertia-compensating,
torques, and that normalized desired velocity profiles should be approximately invariant. Such
approximate invariance is characteristic of VITE profiles, and the desired position signals and
desired velocity signals generated within VITE provide a basis for separate learning of static and
dynamic torques.

These heuristics of the original VITE model have been carried forward in two recent papers
devoted to variable-size, variable-speed handwriting production. The first paper (Bullock,
Grossberg and Mannes, 1993) presented the VITEWRITE model of cursive handwriting
production, and showed that it was capable of generating a full cursive alphabet from a very
highly compressed code. The model also exhibits various well-known psychophysical
characteristics such as a velocity-curvature tradeoff and isochrony. The second paper
(Contreras-Vidal, Stelmach and Teulings, 1993) showed that the VITEWRITE model could be
applied to explain the progressive micrographia characteristic of the handwriting of patients with
Parkinson's disease.

The DIRECT model (Bullock, Grossberg and Guenther, 1993) also respects VITE heuristics,
but introduces a design that allows enormous flexibility in the way that mechanical degrees of
freedom are recruited to realize a desired trajectory specified in 3-D spatial coordinates. As such,
it represents a neurally plausible solution to the problem of computing rapid solutions to the
inverse kinematics problem when there are redundant degrees of freedom and variable constraints
on those DOFs. The same network also solves the motor equivalence problem, and explains how
primates can use tools as end effectors without relearning inverse kinematic mappings. The key
insight of the DIRECT model is that the learned mapping from spatial to motor coordinates is a
(spatial) DIrection to (joint) Rotation Effector Control Transform, rather than a (spatial) position
to (joint) configuration transform. A second paper on DIRECT models (Fiala, 1993)
demonstrates one biologically plausible way of ensuring that DIRECT-generated velocity profiles

11-706

-- desiredy-MIN trajectory

pf cf 68M1 spindle
Olive

Renshaw

Purkinje

T RedN.

velocity DC - s -trajectory

command DCNaN

Figure 2: Two sites for gain control by release from inhibition in a model of cerebeflo-spinal interactions.
pf = parallel fibers in cerebellar cortex; cf = climbing fibers in cerebellar cortex; DCN = deep cerebeHar
nuclear cell in nucleus interpositus; Red N. = Red Nucleus.

have the same bell-like shape seen in VITE trajectories and in human movements (Nagasaki,
1989).

These recent extensions respecting the original VITE heuristics suggest a number of strong
hypotheses regarding the organization and self-organizational tuning of forebrain circuits, but
much work remains to be done to test these hypotheses and to elaborate improved versions of the
models that incorporate more detailed aspects of forebrain cell types, physiology and anatomy. I
now turn to recent developments in the domain of cerebello-spinal interactions. In this case,
much greater anatomical and physiological detail have already been incorporated into the model.

3. Speed scaling and adaptive cerebellar control of Renshaw cell and motoneuron gains.

Figure 2 illustrates a hypothesis recently elaborated in Bullock, Contreras-Vidal, and
Grossberg (1993b). Namely, that for purposes of stability and economy of effort, the path for
velocity commands through the cerebellum is "normally closed" by Purkinje inhibition of nucleus
interpositus cells (site I in the figure), while the gain of excitatory signals through the motoneuron
stage (site 2 in the figure) is low due to Renshaw cell inhibition of alpha-motoneurons. To enable
fast and forceful movements, these conditions must be transiently reversed. Spindle receptor
signals representing trajectory errors are preprocessed in the inferior olive and guide long term
depression (LTD) of active parallel fiber to Purkinje synapses. Such LTD opens the gate on the
trans-cerebellar sidepath, and allows velocity commands to simultaneously excite motoneurons
and inhibit Renshaw cells. This learned feedforward control hypothesis significantly extends the
proposal by Hultborn, Lindstrom and Wigstrom (1979) that descending inhibition of Renshaw
cells could control the gain of motoneuron response to excitatory inputs. The hypothesis is also

II-707

consistent with research showing that nucleus interpositus influenced areas of the Red Nucleus
(site Red N. in the figure) often show velocity-like responses during limb movements in
well-trained subjects (Martin & Ghez, 1991) and that stimulation of Red Nucleus can facilitate
motoneurons while simultaneously inhibiting Renshaw cells (Henatsch, Meyer-Lohmann,
Windhorst, & Schmidt, 1986). Computer simulations have confirmed that learning by this circuit
greatly enhances the arm's ability to dynamically track the desired velocity command.

References
1. Atkeson, C. and Hollerbach, J. (1985). Kinematic features of unrestrained vertical arm movements. Journal of
Neuroscience, 5:2318-2330.
2. Bullock, D., Contreras-Vidal, J.L., and Grossberg, S. (1993a). Cerebellar learning in an opponent motor
controller for adaptive load compensation and synergy formation. Proceedings of the World Congress on Neural
Networks (Portland), IV, 481-486. Hillsdale, NJ: Erlbaum Associates.
3. Bullock, D., Contreras-Vidal, J.L., and Grossberg, S. (1993b). Speed scaling and adaptive cerebellar control of
Renshaw cell and motoneuron gain. Abstracts of the Society for Neuroscience, 19(2): 1594.
4. Bullock, D., Fiala, J., and Grossberg, S. (1994). A neural model of timed response learning in the cerebellum.
Neural Networks, in press.
5. Bullock, D., and Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and
speed-accuracy properties during trajectory formation. Psychological Review, 95: 49-50.
6. Bullock, D., and Grossberg, S. (1989). VITE and FLETE: Neural modules for trajectory formation and
postural control. In W.A. Hershberger (Ed.), Volitional action. Amsterdam: North-Holland/Elsevier, pp.
253-298.
7. Bullock, D., and Grossberg, S. (1991). Adaptive neural networks for control of movement trajectories invariant
under speed and force rescaling. Human Movement Science, 10: 3-53.
8. Bullock, D., Grossberg, S., and Guenther, F. (1993). A self-organizing neural model of motor equivalent
reaching and tool use by a multi-joint arm. Journal of Cognitive Neuroscience, 5: 408435.
9. Bullock, D., Grossberg, S., and Mannes, C. (1993). A neural network model for cursive script production.
Biological Cybernetics, 70: 15-28.
10. Contreras-Vidal, J.L. (1994). Neural networks for motor learning and regulation of posture and
movement. Doctoral Dissertation, Boston University.
11. Contreras-Vidal, J.L., Stelmach, G.E., and Teulings, H-L. (1993). Neural network control of handwriting:
Application to Parkinson's mocrographia. IFAC Symposium on Biomedical Engineering.
12. Fiala, J. (1993). A network for learning kinematics with application to human reaching models. Boston
University Technical Report CAS/CNS-93-055.
13. Grossberg, S. and Kuperstein, M. (1986). Neural dynamics of adaptive sensory-motor control: Ballistic eye
movements. Amsterdam: Elsevier.
14. Henatsch, H.D., Meyer-Lohmann, J., Windhorst, U., and Schmidt, J. (1986). Differential effects of
stimulation of the cat's red nucleus on lumbar alpha motoneurones and their Renshaw cells. Experimental Brain
Research, 62: 161-174.
15. Hultborn, H.M., Lindstrom, S., and Wigstrom, H. (1979). On the function of recurrent inhibition in the spinal
cord. Experimental Brain Research, 37:399403.
16. Humphrey, D.R., and Reed, D.J. (1983). Separate cortical systems for control of joint movement and joint
stiffness: Reciprocal activation and coactivation of antagonist muscles. In J. Desmedt (Ed.), Motor control
mechanisms in health and disease. New York: Raven Press, pp. 347-372.
17. Jankovic, J. and Tolosa, E. (1993). Parkinson's disease and movement disorders, 2ed. Baltimore: Williams
and Wilkins.
18. Kawato, M., Furukawa, K., and Suzuki, R (1987). A hierarchical neural-network model for control and
learning of voluntary movement. Biological Cybernetics, 57: 169-185.
19. Martin, J.H. and Ghez, C. (1991). Task-related coding of stimulus and response in cat red nucleus.
xperimental Brain Research, 85: 373-388.

20. Nagasaki, H. (1989). Asymmetric velocity and acceleration profiles of human arm movements. Experimental
Brain Research, 74: 319-326.

11-708

UNDERSTANDING HANDWRITING MOTOR IMPAIRMENTS IN PARKINSON
DISEASE THROUGH NEURAL NETWORKS

Jos6 L. Contreras-Vidal l , Hans-Leo Teulings, and George E. Stelmach
Department of Exercise Science and Physical Education

Arizona State University
Tempe, AZ 85287-0404 USA

Abstract

A neural network model of handwriting generation is used to explain Parkinson's micro-
graphia, a motor impairment characterized by a progressive decrease in letter size, handwriting
baseline, and a general slowness of movement. The goal is to understand the neurophysiolog-
ical and neuropharmacological bases of this disease, and its effects on movement production.
Simulations support the view that the basal ganglia are responsible for (1) defining the degrees
of freedom used during a movement task, (2) controlling the build-up of signals that modulate
global movement speed and size, (3) rapid resetting of these signals upon movement completion,
and (4) spatiotemporal modulation of these gating signals. Parkinson's disease is simulated in
terms of these gating signals, and the results correspond with the clinical observations demon-
strating the predictive value of the model.

1 Introduction
During the past 10 years, the study of handwriting has become a substantial part of motor control research
[21], [23]. The emergence of handwriting in studying motor control is due not only to the advances in
movement recording techniques, but also to the realization that handwriting is a highly practiced skill that
exhibits complex control strategies that can be precisely analized. Handwriting constitutes a motor task that
is very well suited for studying the neuromuscular control system as it has limited contribution from factors
such as visual and propioceptive feedback, friction, visco-elasticity, gravity, inertia, speed, or movement
amplitude.

Furthermore by studying motor impairments associated with handwriting, it is possible to gain insights
about how the motor load is distributed across brain structures, and how these structures cooperate in
specifying and generating handwriting movements. A well known handwriting impairment is micrographia,
a motor impairment associated with Parkinson's disease (PD) [16].

Figure 1 shows a handwriting sample from a PD subject at different times during the intake cycle
of medication. Although motor variability in Parkinsonian handwriting can be large across subjects, this
example illustrates the main characteristics of this motor impairment. In particular, PD subjects show a
progressive decrease in letter size, an increase in movement time, and a change in handwriting baseline. The
magnitude of these effects may depend on the stage of the disease and the medication cycle.

At the level of the spinal cord, in normal handwriting, the electromyogram (EMG) is essentially unimodal
and restricted to a small portion of the total movement time near or just before the beginning of the
movement. EMG activity in the antagonist group is not observed until the time there is a reversal in the
direction of the same component of the movement. On the other hand, in PD patients, the data suggest an
impairment in force amplitude and the rate of force development (dF/dt) [22], [29]. Teulings and Stelmach
(1991) have suggested that this force-amplitude impairment is caused by impaired discharges of motor units
[24]. Wierzbicka et al., (1991) propose that prolongued contraction times, segmentation of force profiles,
and the failure to generate adequate initial bursts in the agonist EMG may be due to delays in motoneuron
recruitment, abnormally low discharge frequency of motoneuron, or lapses in firing rates [29]. Furthermore,
these investigators show that PD patients are capable of increasing the EMG and dF/dt with target amplitude
like normal subjects, but the increased agonist EMG and dF/dt are less at any target level than needed to
produce a fast response during isometric elbow flexor muscle contractions. In particular, these data suggest
that this motor impairment is due to an improper scaling of motoneuron output. It has also been suggested
that micrographia is caused by a slow build-up and release of force in PD subjects [31]. A slow dF/dt in PD
subjects prevents them from reaching appropiate force amplitudes within the short duration of a stroke.

'Supported by a Flinn Foundation Grant. On leave from Monterrey Institute of Technology, Mixico.

11-709

(A)

(C)

Figure 1: Handwriting examples of Parkinsonian handwriting at different times during the intake cycle of
medication. The subject writes: "They wrote ellehell at the". (A) Full effect of medication; (B) few minutes
after medication intake; and (C) before medication intake. Each line represents approximatelly 20 seconds of
writing, except in (A) where the subject took 12 sec. Note the changes in writing baseline and the progressive
decrease in letter size, and slowness of handwriting generation. Due to the medication the loss of writing
speed and size are recovered. The movements of the pen above the paper are also shown.

The aim of this paper is to define more precisely the neurophysiological locus of this movement impair-
ment through a comprehensive neural network model of handwriting generation. In the next section, the
biomechanics of handwriting will be presented. Next, the neural retwork model of handwriting generation
first proposed by Bullock et al. will be reviewed and expanded to account for micrographia [6]. Finally,
simulations will be presented in the case of normal and Parkinsonian handwriting that support the hypothe-
ses that basal ganglia impairment prevents 1) build-up of gating signals that control the degrees of freedom
needed during handwriting, 2) rescalability of these signals to control variable movement speeds and sizes, 3)
rapid resetting of these signals upon movement completion, and 4) on-line amplitude and time modulation.

2 Biomechanics of handwriting

Although in handwriting the output is a graphic 2D pattern, the trajectory is not generated by a two degrees-
of-freedom (DOF) system. The number of DOFs involved in handwriting is much larger, involving every joint
from the shoulder to the fingers. Even restricting the biomechanical model of the handwriting apparatus to
the hand, seven DOFs remain (three DOFs for the wrist and lower arm, and four DOFs for the index finger;
thumb and other fingers merely help holding the pen). For the sake of simplicity, a three DOFs system is
used to model the three main groups of synergies: vertical wrist rotation (supination/pronation), responsible
for movements in the X (longitudinal) axis; finger extension/retraction, responsible for movements in the Y
(transversal) axis; and horizontal wrist rotation, responsible for the left-to-right progression within words [30].
In fact, the geometrical model of the hand is simplified by assuming that the X-Y axes form an orthogonal
system (Figure 2A). Larger movements of the pen across the page or in a blackboard are achieved mainly
by movement of the upper arm but they are neglected here.

During normal handwriting, each successive movement within a letter unfolds ballistically and the actual
trajectory is strongly determined by physical factors rather than under active control. For this reason it is
important to include in any handwriting model the biomechanics and dynamics of the hand and the writing
device (e.g., pen). The biomechanics can be simplified by decomposing the dynamics of the plant along the
transversal and longitudinal axes of movement as follows (Adapted from [30]):
Longitudinal axis of movement

d2 1d 2 (d) 2)o]
+-[F - (k(t) + -Jf[(Z) + - clX(

ml_ IMdt dt

Transversal axis of movement

d[F 1b d bd +) 2 + d
-t y = MI + M2 [Fy - ((k(tl + bi + b2)")2 + (d)2)O5I- (ci + c2)Y] (2)

II-710

(A) (C)
L L GO GPO

R GO BASAL GANGLIA

XI
-y TPV ?

x V 0va

(B) BASAL GANGLIA VITE

V
I

L &--- 6

T

ET0
E CULTAETR Mnbftary

PWIKVZOY FORCE

Figure 2: Neural network of movement control as applied to handwriting. (A) The geometric model of the
three DOFs hand: finger extension or retraction, which moves the pen along the transversal axis (Y), vertical
wrist rotation (supination/pronation), which moves the pen along longitudinal axis (X); and horizontal wrist
rotation (R), which provides the left-to-right progression within words along the longitudinal axis (X). (B)
Neuromuscular control system of handwriting for each DOF. A stage associated with the basal ganglia
specifies the degrees of freedom, in terms of parallel GO (speed) and GRO (size) scalar signals accordin,;
to the demands of the task. A stage associated with motor cortex (VITE) specifies the desired kinematics
of the movement in terms of position and velocity [7]. The outflow signals from VITE are processed by a
neural network of the spinal cord (FLETE) that rotates the joints by changing the balance of muscle forces
across the joints [5]. (C) Neural network representation of the neuromuscular control system depicted in
(B) showing an opponently organized, spino-muscular circuit (lower part) receiving descending signals of
two types from a trajectory generator (upper part) and other sites presumed to be located in the higher
brain. In the theory, the balance between signals emerging from neuron pools A, and A 2 sets desired joint
angle, while the signal P sets desired joint stiffness. Signals VI G and V2G set desired shortening/lengthening
velocities for the opponent muscles during movements. The lower circuit's structure is based on anatomical
and physiological studies of the spinal cord circuitry [5].

11-711

where (z,y), (x, y), and (!Ex, 1y) represent the position, velocity, and acceleration of the hand and pen
along the longitudinal and transversal axes respectively; mi and m 2 are the inertial loads of the hand and
fingers respectively, including the mass properties of the pen; k(t) is a time-varying friction coefficient; f()
represents a static friction function to account for reaction forces that oppose movement onset; (b, Ax, (b, +

b2)-y) and (clx, (c, - C2)y) represents the muscle viscosity and muscle stiffness along the longitudinal and
transversal axes respectively; and F. and Fy represent the muscle forces (or torques) that act to move the
hand. A further simplification can be made if the friction and muscle viscosity and stiffness are neglected. In
this case, the acceleration of the pen along the longitudinal and transversal axes of movement are proportional
to the muscle forces generated.

3 Neural network model of handwriting generation

Empirical and neural network evidence suggests a multi-module model of handwriting movement control
(6], [251, [281. In the simplified model, the highest-level module is the (1) motor memory, containing the
abstract description of the handwriting letters (e.g. relative stroke sizes). Before execution, the appropiate
letter descriptions are extracted from motor memory by the (2) retrieval module. The extracted sequence
of movement descriptors forms the motor program, where the movement parameters still have to be speci-
fied. The muscle-independent scale parameters (e.g. overall speed, size, and force) are specified in the (3)
parameter-setting module. The muscle-dependent parameters (e.g. limb, orientation, and degrees of free-
dom) are specified in the lowest level module, which forms the (4) muscle-initiation module. This symbolic
model of movement control can be formally specified in terms of neural networks of the basal ganglia, motor
cortex, and spinal cord schematized in Figure 2C.

In the neural network of Figure 2C, a subcortical structure associated with the basal ganglia provides
multiple gating signals that specify the degrees of freedom used during movement execution. These signals
are known as GO signals that code movement onset and movement speed. Another type of signal (GRO)
specifies the size of the movement [6]. Experimental evidence supports the existence of these gating signals.
It has been found that neurons in the putamen tend to have a linear relation to the amplitude (a GRO signal)
and speed (a GO signal) of movement [9]. Alexander and DeLong (1985) found that amplitude, velocity, and
acceleration of movement increase monotonically in microstimulation-evoked movements in the putamen [21.

These gating signals are part of the global parameter-setting stage in the model. The motor program
contains normalized directional commands that code individual strokes' direction and amplitude. It has
been suggested that stroke-length ratios are most likely parameters to be stored in the handwriting motor
program [27]. This conclusion is based upon the observation that the vertical stroke size is highly invariant
across replications in comparison to stroke duration or peak acceleration. The spatial character of the motor
program is also supported by the observation that if a stroke has a greater size than planned, the subsequent
stroke, which is in the opposite direction, will automatically have a greater size than planned, so that the
disturbing effect of the previous stroke is corrected [27]. These corrections have not been found for stroke
durations.

In the model, a graphic motor-pattern store prescribes the sequence of strokes and also the relative sizes
required to perform the allograph. This code is stored in a graphic motor-pattern buffer awaiting movement
initiation. This buffered movement code needs to be completed with the expected scale and speed scalars
before it can be released by a sequential controller in a first-in, first-out fashion. This completion takes place
in the par,,Lmeter setting stage in a central trajectory formation module. This module known as Vector-
Integration To-Endpoint (VITE) takes spatio-temporal disjoint commands from a sequential controller at
times when a velocity peak in a given synergy is obtained. The VITE module receives information about
the target position vector for the pen (TPV) from the sequential controller. The TPV can be rescaled by
a GRG signal to specify a smaller or larger than usual letter size. The difference between the TPV and
the PPV is computed continously in the difference vector stage (DV) that provides information about the
direction and magnitude of the movement. The output of the DV is gated multiplicatively by the GO signal.
Improper onset and amplitude scaling of the GO signal would result in a delay and slowness of movement as
seen in Parkinsonian subjects. The product DV*GO is the desired velocity to launch the sequential motor
commands. Note that the inhibitory feedback from the PPV to the DV stage drives the DV towards zero as
the PPV approaches the TPV (Figure 2).

1-712

To generated smooth curvilinear strokes, the VITE model processes new motor commands at discrete
times, e.g. at times when one or more velocity traces reach a maximum [6]. Detection of one or more
peak velocities trigger read-in of a new movement command from the buffered graphic motor-pattern code
containing the directional commands for each degree of freedom used by the handwriting apparatus. The
order and timing of the motor commands determine the curvature of the movement.

Each degree of freedom is controlled by its own VITE circuit, each with an independent GO signal.
Bullock and Grossberg have hypothesized that the basal ganglia is the source of this signal [7]. Recent
experimental data of the basal ganglia indeed support the existence of parallel motor channels through the
basal ganglia [1], [18]; e.g. through neurochemical compartmentalization in the striatum, pallidum, and
substantia nigra that could allow finely individuated control under normal physiological conditions [14].
Furthermore, the data suggest that these pathways are somatotopically organized in a parallel fashion [11].

Basal ganglia has been implicated in the selection or gating of the DOFs or joints involved in multijoint
movements [13]. This task would involve learning or adaptation of the motor program. This adaptability
could provide a basis for explaining the strategy of PD patients who stiffen the wrist joint (leaving it outside
from the programmed movement) in order to reduce tremor. The adaptive preference to use mainly fingers
for handwriting by PD subjects is supported by that fact that the pyramidal system controlling the fingers
is not affected by PD, whereas the extrapyramidal system that controls the wrist is affected by PD [8].

In the model, each synergetic group of muscles acting to rotate a joint forms a DOF. The VITE modules
provide the outflow motor commands to the spinal motoneurons that innervate the opponent muscles crossing
the joint. Rotation of the joint is performed by changing the balance of muscle forces across the underlying
joints. In [5] a neural network of the spinal cord has been analized. The model follows closely the anatomy,
neurophysiology, and neural components of the spinal circuitry. The model known as the FLETE circuit
stands for Factorization of LEngth and Tension, and has advanced the hypothesis that the spinal cord has
evolved to achieve position-code invariance, or the ability of the system to mantain a given position, while
varying joint stiffness. The FLETE model provides access to variables that can be readily associated with
experimental measurements such as joint stiffness (P), muscle forces, joint position, velocity, and acceleration,
and motoneuron activities. In this paper, we focus in the kinematics of normal and Parkinsonian handwriting.

4 Simulations
Neural network simulations were performed to study normal and Parkinsonian handwriting. Figure 3 shows
simulations of the sentence " They wrote ellehell" for (A) normal and (B) a motor system where PD impair-
ments have been implemented. The buffered graphic-motor pattern consisted of a sequence of 109 motor
commands that fully specify the production of the 17 connected letters in the handwriting sample (Table
1). This buffer was completed by specifying the global movement speed (GO) and handwriting size (GRO)
scalars.

The simulation of the Parkinsonian handwriting was performed as follows. The sigmoidal GO signal
that specifies the global speed of the movement was decreased in amplitude to simulate a slowdown of the
movement as seen in Parkinsonian subjects. Also the scalar factor given by the GRO signal was recursively
decreased during the execution of the movement (e.g. negative feedback). The effects of these signal manip-
ulations were to decrease the letter size progressively, to change the handwriting baseline, and to increase
movement time.

Figure 3 also depicts the velocities for each degree of freedom illustrated in the geometric model of the
handwriting apparatus shown in Figure 2A. The velocity along the longitudinal plane from the horizon-
tal wrist rotation (VR) is responsible for the left-to-right progression (within words), and for some of the
horizontal displacement of the pen within a single character.

Figure 4 shows an analysis of the simulated handwriting in terms of longitudinal and transversal velocities,
tangential velocity, and accelerations of the pen. By assuming small dynamic effects of the system during
handwriting production (e.g. friction, viscosity, and inertia), it is possible to associate the acceleration of
the pen to the muscle forces generated by the spinal circuitry during the production process. From the
simulation by the Parkinsonian neural network, we see that the peak forces (e.g. accelerations) are smaller
than in the normal case. Also a progressive decrease in peak force is observed.

11-713

(A) N ,

IN(B) PD v~ V

YV N V

10(B) PD VV V vA

0 2 owc

Figure 3: Neural network simulation of handwriting. (A) Normal handwriting of the sentence "They wrote
ellehell". (B) Parkinsonian handwriting. Note the progressive decrease in letter size, and the change in
writing baseline. The velocities for each DOF (Vx, Vy, and Vr) are shown for the world ellehell. Movement
time in the Parkinsonian simulation (PD) is increased with respect to the intact system (N). Keys: a,
movement onset; b and c represent end of movement for the normal and Parkinsonian cases respectively.

References

[1] Alexander, G.I.M., & Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: Neural
substrates of parallel processing. Trends in Neuroscience, 13:266-271.

[2] Alexander, G.E., and DeLong, M.R. (1985a). Microstimulation of the primate neostriatum. I. Physio-
logical properties if striatal microexcitable zones. Journal of Neurophysiology, 53:1401-1416.

5] Bullock, D. and Contreras-Vidal, J.L. (1993). How spinal neural networks reduce discrepancies between
motor intention and motor realization. In K. Newell and D. Corcos (Eds.), Variability and Motor
Control, Champaign, Illinois: Human Kinetics Press, pp. 183-221.

[6] Bullock, D., Grossberg, S., and Mannes, C. (1993b). A neural network model for cursive script produc-
tion. Biological Cybernetics. In Press.

[7] Bullock, D. and Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants
and speed-accuracy properties during trajectory formation. Psychological Review, 95:49-90.

[8] C6te, L., & Crutcher, M.D. (1985). Motor functions of the basal ganglia and diseases. In E.R. Kandell
and J.H. Schwartz (Eds.), Principles of Neural Science, (pp. 523-535). Amsterdam: North Holland.

[9] Cruther, M.D. and DeLong, M.R. (1984b). Single cell studies of the primate putamen. 1I Relations to
Direction of movement and pattern of muscular activity. Experimental Brain Research, 53:244-258.

[11] Flaherty, A.W., and Graybiel, A.M. (1991). Corticostriatal transformations in the primate somatosen-
sory system. Projections from physiologically mapped body-part representations. J Neurophysiol, 66,
1249-1263.

[13] Golani, I. (1992). A mobility gradient in the organization of vertebrate movement: The perception of
movement through symbolic language. Behavioral and Brain Sciences, 15, 249-308.

[14] Graybiel, A.M. '1984). Neurochemically specified subsystems in the basal ganglia. In Evered, D., and
O'Connor, M. (Is.), Functions of the Basal Ganglia, London:Pitman, pp. 114-144.

[161 Margolin, D.I. and Wing, A.M. (1983). Agraphia and micrographia: Clinical manifestations of motor
programming and performance disorders. Acta Psychologica, 54, 263-283.

11-714

They wrote ellehell
X Y R X Y R X Y R
4 -10 0 20 100 0 25 100 0
0 0 5 0 0 0 0 0 -4
4 10 0 -5 -100 0 -10 -100 0
0 0 0 0 0 4 0 0 6
0 0 -5 20 100 0 25 200 0
4 -200 0 0 0 0 0 0 -4
0 0 -4 -5 -100 0 -10 -200 0
0 0 0 0 0 4 0 0 6
0 0 8 20 100 0 25 200 0
15 200 0 0 0 0 0 0 -4
0 0 -4 -5 -100 0 -10 -200 0
2 -200 0 0 0 0 0 0 6
0 0 0 10 100 0 25 100 0
10 100 0 0 0 0 0 0 -4
0 0 4 2 -20 0 -10 -100 0
-20 -100 0 0 0 6 0 0 6
0 0 5 -10 -80 0 15 200 0
2 100 0 0 0 5 0 0 -4
0 0 -4 0 0 0 2 -200 0
-10 -100 0 0 0 2 0 0 0
0 0 6 10 100 0 10 100 0
20 100 0 0 0 10 0 0 4
0 0 0 0 0 0 -20 -100 0
-5 -100 0 0 0 -10 0 0 5
0 0 4 -10 -100 0 25 100 0
20 100 0 0 0 10 0 0 -4
0 0 0 10 100 0 -10 -100 0
-5 -200 0 0 0 0 0 0 6
0 0 -2 0 0 5 25 200 0
5 100 0 -5 -10 0 0 0 -4
0 0 6 0 0 8 -10 -200 0
2 0 0 25 100 0 0 0 6

0 0 -4 25 200 0
10 -200 0 0 0 -4
0 0 6 -10 -200 0
25 100 0 0 0 6
0 0 -4 0 0 0
-10 -100 0
0 0 6
0 0 0

Table 1: Motor code for the production of the sentence They wrote ellehell. X,Y, and R define the 3 DOFs
for the hand.

11-715

(A) (U)

.O.0.SjJfll .00013

+0.0711 AA .0. 42 AA

-0.0712 .VM V -0.042I

0.0.0415

.0.0147
.0.0315 A fW

-0.037ft ~lAX -. 0103

.0.217 I022

-0.1911 VV -0""G~

Uime

Figure 4: Analysis of the simulated handwriting showing longitudinal (Vx) and transversal (Vy) velocities;
tangential velocity (Vt) of the end-point (pen); and accelerations (Ax,Ay). The acceleration are propor-
tional to the net muscle forces generated by the synergies moving the hand and pen in the longitudinal and
transversal axes. Note the smaller peak amplitudes for the Parkinsonian (B) than for the normal hand-
writing (A). Also note the progressive decay in amplitude in the acceleration profiles in the Parkinsonian
handwriting.

[181 Parent, A. (1990). Extrinsic connections of the basal ganglia. Trends in Neurosciences, 13:254-258.

[21] Rosenbaum, D.A. (1991). Human Motor Control. New York: Academic Press.

[22] Stelmach, G.E., & Worringham, C.J. (1988). The preparation and production of isometric force in
Parkinson disease. Neuropsychology, 26, 93-103.

[23] Teulings, H.L. (in press). Handwriting movement control. In S.W. Keele and H. Heuer (Eds.), Hand-
book of Perception and Action. Vol. 3: Motor Skills. London: Academic Press.

[24] Teulings, H.L., and Stelmach, G.E. (1991). Control of stroke size, peak acceleration, and stroke duration
in Parkinsonian handwriting. Hum Mov Sci, 10, 315-333.

[251 Teulings, H.L., Thomassen, A.J.W.M., & Van Galen, G.P. (1983). Preparation of partly precued hand-
writing movements: The size of movement units in writing. Acta Psychologica, 54:165-177.

[27] Teulings, H.L., & Schomaker, L.R.B. (1993). Invariant properties between stroke features in handwriting.
Acta Psychologica, 82:69-88.

[28] Van Galen, G.P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science,
10:165-191.

[29] Wierzbicka, M.M., Wiegner, A.W., Logigian, E.L., and Young, R.R. (1991). Abnormal most-rapid
isometric contractions in patients with Parkinson's disease. J Neurol, Neurosurg, and Psychiatry, 54,
210-216.

[30] Wing, A.M. (1978). Response timing in handwriting. In G.E. Stelmach (Ed.), Information Processing
in Motor Control and Learning, (pp.153-172). New York: Academic Press.

[31] Wing, A.M. (1988). A comparison of the rate of pinch grip force increases and decreases in Parkinsonian
bradykinesia. Neuropsychology, 26, 479-482.

II-716

A Neurocomputational Theory of Hippocampal Region
Function in Associative Learning

Catherine E. Myers & Mark A. Gluck
Center for Molecular and Behavioral Neuroscience

Rutgers University, Newark, NJ 07102

Abstract

Brain function can be elucidated both by top-down connectionist
models, which attempt to account for behavior, and bottom-up
models which are constrained by the anatomy and physiology of
brain regions. We have previously presented a top-down model
of hippocampal-region processing in associative learning which
accounts for a range of conditioned behaviors in the intact and
hippocampal-lesioned animal. In turn, this top-down model can
be instantiated by smaller, bottom-up modules which each
represent processing in one specific structure. A bottom-up
model has been developed for the parahippocampal region, and
suggests the way in which that subregion might contribute to the
overall processing of the hippocampal region. The resulting
model combines both top-down and bottom-up constraints,
addressing both behavioral data and physiological observations.

Introduction

Connectionist network models are becoming increasingly useful as tools
for the understanding of the neural bases of learning and memory. Such
models can operate at many different levels. At one extreme are the top-down,
behaviorally-motivated models which seek to reproduce learning phenomena
without any particular attention to how such functions might be implemented
in the brain; at the other extreme lie bottom-up, physiologically-driven
models which closely mimic the anatomical and physiological structure of
brain regions, in an atte'pt to quantify how they might process information.
Often, these two paths are pursued independently; we believe however that
there is much to be gained by attempting to combine the top-down and bottom-
up approaches, resulting in models which characterize overt behavior but are
implementable via processes known to exist in the brain (c.f., Gluck &
Granger, 1993).

A great deal of empirical and theoretical study has centered on the
hippocampal region, a series of structures in the brain which are implicated
in learning and memory in humans (Scoville & Millner, 1957; Squire, 1987)
and animals (Misking, 1982; Squire & Zola-Morgan, 1983). Hippocampal-
dependent memories are especially marked by their accessibility to conscious
recollection while the hippocampal region appears not to be critical for the
formation of skills or habits which are formed incrementally over time (c.f.,
Squire, 1987). Lesions of the hippocampal region have been shown to disrupt
performance in a wide range of tasks ranging from spatial learning to
intermediate-term memory to contextual ing and more. What is
lacking, however, has been a computati ecscription of the functional role

11-717

of the hippocampal region, such that lesion to the region would result in the
observed impairments.

We have presented a top-down theory of hippocampal-region function
which can be implemented via a connectionist network model and which
successfully accounts for a wide range of conditioned behaviors in the intact
and hippocampal-lesioned animal and human (Gluck & Myers, 1993). More
recently, we have considered a bottom-up, physiologically-motivated model
which can instantiate some of the processes implicit in the top-down model
(Myers, et al., 1994/submitted). The convergence of these two models provides
strong support for this account of hippocampal-region function and shows
how the top-down and bottom-up approaches can interact and inform each
other.

A Top-Down Connectionist Model of Hippocampal-Region Function

We have recently presented a computational theory of hippocampal-
region function in associative learning which emphasizes an information
processing role in the representation of stimulus information (Gluck & Myers,
1993). Central to this account of hippocampal-region function is the idea of a
stimulus representation, the pattern of activity evoked by a stimulus input.
This representation is presumed to be distributed over many elements, which
could be neurons in a brain or nodes in a connectionist network. Within this
conceptual framework, learning about various stimuli is equivalent to
associating the representations they activate with the appropriate behavioral
outputs. This conceptualization can be illustrated in terms of learning in a
standard multi-layer connectionist network: inputs are mapped to a
representation in the hidden layer nodes; associations are then formed
between these representations and an appropriate output.

In this way, learning about one stimulus will generalize to other stimuli
as a function of how similar (or overlapping) their representations are. If the
representations of two stimuli are very similar, then associations which have
accrued to one stimulus mnd to generalize to the other. If the
representations are ver) milar, then associations will generalize only
minimally. From this pe. : ctive, we can see how learning will be facilitated
if the representations are biased by two constraints. First, stimuli which are to
be associated with maximally different output should have minimally
overlapping representations, to lessen generalization between them. We have
called this constraint representational differentiation. Second, stimuli which
co-occur and therefore should have maximal generalization, should have
similar representations. We have called this a bias to compress the
representations of co-occurring, mutually redundant information.

The core of our proposal is that the hippocampal region has the ability
to construct new stimulus representations which are biased by these two
constrains of differentiation and compression (Gluck & Myers, 1993). Other
regions in the cerebral and cerebellar cortices, which are presumed to be the
sites of long-term memory, may not be able to form these new representations
themselves; these other regions can, however, adopt the new representations
formed in the hippocampal region.

11-718

This theory can be instantiated, and tested, with a simple connectionist
network model (Gluck & Myers, 1993). A "hippocampal" network, on the right
in Figure la, learns to map from inputs representing the stimulus to outputs
which reproduce that stimulus, plus a prediction of future reinforcement.
This network contains a narrow hidden layer, and therefore is forced to form
representations in that layer which compress redundant information while
preserving (or differentiating) information which predicts the desired
outputs (c.f., Hinton, 1989). A second "cortical" network, on the left in Figure
la, represents a highly-simplified model of some aspects of long-term memory
in cerebral and cerebellar cortices (Gluck, et al., 1994/in press). This network
is assumed to be trained only by applications of some correlative learning rule
such as LMS (Widrow & Hoff, 1960), which is related to known mechanisms of
biological plasticity (c.f., Gluck & Granger, 1993; Donegan, et al., 1989).
Therefore, on its own, the cortical network cannot form new stimulus
representations in its hidden layer (see Rumelhart, et al., 1986). However, we
assume that it can acquire the representations formed in the hippocampal
network and then, independently, learn to map from these representations to
an output which is interpreted as the system's behavioral response.

A hippocampal lesion is simulated in this model by disabling the
hippocampal network (Figure lb). The cortical network remains intact, but
can no longer acquire new representations in its hidden layer. It can still
form new associations, by training its upper layer of weights, which map from
existing hidden layer representations to the output. Together, the intact model
of Figure la and the lesioned model of Figure lb have been shown to
accurately predict a wide range of learning and generalization behaviors in
the intact and lesioned animal (Gluck & Myers, 1993). For example, it explains
why intact but not lesioned animals should show such effects as latent
inhibition, sensory preconditioning and reversal facilitation, and why

(A) Cordcal Netwk IlippocampaH on (B) CoJ Nework
Network

" * 0eRpon

,, ,#

Figure 1. The top-down hippocampal-region model. (A) In the intact model, a
"hippocampal" network forms new stimulus representations in its hidden
layer which are biased to compress redundant information and differentiate
predictive information. These new representations are provided to a "cortical"

network which is assumed to be the site of long term storage, and which learns
to map from the representations to an appropriate behavioral response. (B) In
the lesioned model, the cortical network can still learn new responses based on
existing representations, but can form no new representations (After Gluck &
Myers, 1993).

11-719

electrical disruption of hippocampal processing should impair simple
learning more than outright removal of the hippocampus (Gluck & Myers,
1993). This model also suggests that new stimulus representations in the
hippocampal region should incorporate information about the context of
learning, and therefore correctly predicts that intact animals might often be
more sensitive than lesioned animals to a sudden change of context (Myers &
Gluck, 1994/submitted).

The top-down model described above manifests many of the behaviors of
intact and hippocampal-lesioned animals, and provides a computational
interpretation of hippocampal-region function. It does not, however, address
how this function might arise from the biological substrate. In the next
section, we discuss a bottom-up model of processing in one component of the
hippocampal region, and show that it instantiates one of the core components
of the top-down model.

A Bottom-Up Model of the Parahippocampal Region

The top-down hippocampal-region model described above suggests that
the hippocampal region is responsible for forming new stimulus
representations which are biased to compress redundant information while
differentiating predictive information. These two biases can be dissociated
and performed serially: so that the hippocampal network shown in Figure la
can be recast as a pair of networks, one each to implement representational
compression and differentiation. These two networks could then operate
serially to re-code stimulus representations. The resulting model retains many
of the behaviors of the original intact model of Figure la.

Cortical Parahippocampel-
Network n Region Model

I (Unsupervised

o-NF m pression)

Stimulus Input

Figure 2. Integrating the top-down model of Figure]a with a bottom-up model
of parahippocampal region processing results in a new hypothesis about
distribution of function among structures of the hippocampal region (Myers,
et al., 1994/submitted). Inputs are first processed in an unsupervised
clustering network, based on the physiology of the parahippocampal region.
The resulting compressed representation is next processed by structures
(probably the hippocampal formation) which differentiate predictive
information. The resulting representation is provided to the cortical network
as in the original top-down model of Figure Ia.

11-720

Might these two representational processes likewise be localized in
different anatomic substrates of the hippocampal region? One possible
mapping is proposed by a bottom-up model of the parahippocampal region,
which forms a primary input (and output) for the hippocampus itself. This
bottom-up model takes into account many of the anatomical and physiological
properties of the parahippocampal region, specifically superficial entorhinal
cortex, and is derived from an earlier model of the highly similar superficial
olfactory cortex (Ambros-Ingerson, et al., 1990). An emergent property of this
bottom-up model is the ability to perform unsupervised clustering on its
inputs, based on similarity and co-occurrence. As a result, we have
extrapolated from this bottom-up model to hypothesize that the entorhinal
cortex (or, more broadly, the parahippocampal region) performs
representational compression. Other structures, such as the hippocampus
proper, could then perform differentiation on the resulting representation.
The final output, biased by both compression and differentiation, could then
be provided back to cortical structures for long-term storage.

This hypothesis, illustrated in Figure 2, has several implications for
interpreting recent empirical studies. In particular, it predicts that while
lesions of the complete hippocampal region should fully eliminate the ability
to form new stimulus representations, more restricted lesions may result in
more selective representational deficits -- to the extent that these restricted
lesions do not disrupt input and output pathways to other hippocampal-region
structures. Some experimental evidence shows that such a circumscribed
lesion of the hippocampus does not destroy parahippocampal processing (e.g.,
Jarrard & Davidson, 1991; Zola-Morgan, et al., 1992). And where appropriate
data is available, behaviors which are expected to depend on representational
compression in the parahippocampal region are in fact not disrupted by
hippocampal lesion which leaves the parahippocampal region intact (Myers,
et al., 1994/submitted).

Conclusions

This hypothesis about division of function in the hippocampal region
was suggested by an integration and comparison between two types of model:
one which incorporates physiological and anatomical detail of a brain
structure, and another which inferred an information-processing function
for a more diffuse brain region based on a wide range of behavioral studies
comparing intact and lesioned animals. The most important conclusion to be
drawn from this analysis is that there is great potential for the integration of
these two modelling approaches. In this case, the top-down and bottom-up
models combine to provide an account of hippocampal-region function which
is stronger and more convincing than either model individually. This
convergence of top-down and bottom-up methodologies is, we feel, a promising
development, and suggests that both approaches -- along with further
empirical studies -- can contribute to the development of a unified
understanding of hippocampal-region function in learning and memory.

Acknowledgements

This research was supported by NIMH National Service Award 1-F32-MHl0351-
01 to CEM and by the Office of Naval Research through the Young Investigator
Program and grant N00014-88-K-0112 to MAG.

11-721

References

Ambros-Ingerson, J., Granger, R., Lynch, G. (1990) Simulation of paleocortex
performs hierarchical clustering. Science 24, 1344-1348.

Donegan, N., Gluck, M. & Thompson, R. (1989) Integrating behavioral and
biological models of classical conditioning. In: Computational models of
learning in simple neural systems. Vol. 22. Psychology of Learning and
Motivation (Hawkins, R.D., Bower, G.H., eds.) New York: Academic Press, pp.
109-159.

Eichenbaum, H. & Buckingham, J. (1991) Studies of hippocampal processing:
Experiment, theory and model. In: Neurocomputation and Learning:
Foundations of Adaptive Networks (Gabriel, M. & Moore, J., eds.) Cambridge,
MA: MIT Press.

Gluck, M.A., Goren, 0., Myers, C. & Thompson, R. (1994/in press) A hierher-
order recurrent network model of the cerebellar substrates of response
timing in motor-reflex conditioning.

Gluck, M., & Granger, R. (1993) Computational models of the neural bases of
learning and memory. Annual Review of Neuroscience JA, 667-706.

Gluck, M. & Myers, C. (1993) Hippocampal mediation of stimulus
representations: A computational theory. Hippocampus, 3(4), 491-516.

Hinton, G. (1989) Connectionist learning procedures. Artificial Intelligence,
49, 185-234.

Jarrard, L., & Davidson, T. (1991). On the hippocampus and learned conditional
responding: Effects of aspiration versus ibotenate lesions. Hippocampu .L,
107-117.

Mishkin, M. (1982) A memory system in the monkey. Philos. Royal Society of
Lon (il., 298, 85-92.

Myers, C. & Gluck, M. (1994/submitted) Context, conditioning and hippocampal
re-representation.

Myers, C., Gluck, M. & Granger, R. (1994/submitted) Dissociation of
hippocampal and entorhinal function in associtive learning: A
computational approach.

Rumelhart, D., Hinton, G. & Williams, R. (1986) Learning internal
representations by error propagation. In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol 1 (Rumelhart, D. &
McClelland, J., eds.) Cambridge, MA: MIT Press, pp. 318-362.

Scoville, W. & Milner, B. (1957) Loss of recent memory after bilateral
hippocampal lesions. Journal of Neurology. Neurosurgery & Psychiatry, 2k,
11-21.

Squire, L. (1987) Memory and -ai. New York: Oxford University Press.
Squire, L. & Zola-Morgan, S. (1983) The neurology of memory: The case for

correspondence between the findings for man and non-human primate. In:
The Physiological Basis of Memory (Deutsch, J., ed.) New York: Academic
Press.

Widrow, B. & Hoff, M. (1960) Adaptive switching circuits. Institute of Radio
Engineers. Western Electronic Show and Convention. Convention Record, 4,
96-194.

Zola-Morgan, S., Squire, L., Rempel, N., Clower, R., & Amaral, D. (1992).
Enduring memory impairment in monkeys after ischemic damage to the
hippocampus. Journal of Neuroscience, 12(7), 2582-2596.

1-722

STIMULUS CONFIGURATION, CLASSICAL CONDITIONING, AND SPATIAL LEARNING:
ROLE OF THE HIPPOCAMPUS

Nestor A. Schmajuk
Department of Psychology: Experimental

Duke University, Durham, NC 27706, U.S.A.

Abstract
Schnmjuk and DiCarlo (1992) presented a neural network model that describes complex classical

conditioning paradigms as well as spatial learning. In the context of the network, the hippocampus is assumed
to control (a) stimulus configuration in cortical regions, and (b) stimulus selection in subcortical areas. According
to the model, whereas aspiration or colchicine-kainic acid lesions of the hippocampus eliminate both cortical
configuration and subcortical stimulus selection, ibotenic acid lesions of the hippocampus abolish only conical
configuration. The model correctly describes most of the effects of hippocampal aspiration and ibotenic acid
lesions in both classical conditioning and spatial learning paradigms.

The S-D model
Schnajuk and DiCarlo (1992) proposed a neural network (the S-D model) that describes classical

conditioning and spatial learning. In the framework of the S-D model, the hippocampus modulates (a) stimulus
configuration in neocortex, and (b) competition in subcortical regions. Configuration refers to the combination
of simple stimuli into a complex stimulus, which represents a pattern of stimuli that better predicts the future than
its individual constituents. Competition refers to the selection of the stimulus best predicting the future from
among different simple and complex stimuli.

The S-D model (Figure 1) is a multilayer network that (a) incorporates a layer of "hidden" units
positioned between input and output units that internally codes configural stimuli, (b) includes inputs that are
connected to the output directly and indirectly through the hidden-unit layer, and (c) employs a biologically
plausible backpropagation procedure to train its hidden-unit layer (see Rumelhar., Hinton, and Williams, 1986).
In contrast to models of classical conditioning that describe behavior on a trial-to-trial basis, the S-D network
describes behavior in real time. This description is formalized by a set of differential equations that depict
changes in the values of neural activities and connectivities as a function of time (see Schmajuk and Blair, 1993;
Schnajuk and DiCarlo, 1992).

Figure 1 shows a network with one input layer, one hidden-unit layer, and two output layers. Each input
unit's activation represents a temporal trace of a conditioned stimulus (CS, and CS2) or the context (CS,) in the
case of classical conditioning, or the visual angle of a spatial landmark in the case of place learning. Input units
form direct associations, VS, VS, VS,, with the first output layer. In addition, input units form associations, VHM,
with the hidden-unit layer. In turn, hidden units form associations, VN,, VN,, VN, with the first output layer.
The output activities of the hidden-unit layer are assumed to code configural stimuli denoted by CN,, CN, CN,.
Unit activity in the first output layer is summed in the second output layer to generate the output of the system,
given by I, CS, VS, + 1; CN, VN. The output of the network represents the prediction of the unconditioned
stimulus (US) in time and space. In the case of classical conditioning, the temporal course of this prediction is
reflected in the topography of conditioned response (CR). In the case of spatial learning, the output represents
the spatial distribution of the prediction of the location of the US.

Figure I shows that a CS, accrues a direct association VSj with the output units, and becomes configured
with other CSs in hidden units, which are assumed to reside in cortical areas. Stimulus configuration is achieved
by adjusting CS-hidden unit associations VHl, and hidden units become associated with the output through
modifiable weights VN,. Figure 1 also shows an "error network", assumed to reside in the hippocampal
formation, which performs two different functions. First, it regulates the associations VHl of simple stimuli with
the hidden units, by computing hidden unit error signals EH,. This is accomplished using a biologically plausible
backpropagation procedure (Schmajuk and DiCarlo, 1992). Second, it regulates connections VS and VN, by
computing the aggregate prediction of the US, B = Y CS, VS, + ; CN, VN. VS, and VN, associations are
controlled by a delta rule that reduces the output error, EO = US - B, between the aggregate prediction and the
actual value of the US.

Hippucampal Lesions. Schmajuk and Blair (1993) suggested that the effect of (a) aspiration, or (b)
colchicine-kainic acid lesions of the hippocampal formation (HF, comprising the dentate gyrus, CAI and CA3
regions, subiculum, and entorhinal cortex) can be simulated by removing or disconnecting the "Hippocampal
Formation" block in Figure 1. This manipulation produces important changes in the performance of the model.
First, the aggregate prediction of the US, B = Y, CS, VSj + ; CN, VN,, is no longer computed. B controls
competition among CSs and CNs to gain association with the US. In the absence of B, CSj.US and CN-US
associations are independent of one another, yielding impairment in paradigms such as blocking, conditioned
inhibition, and negative patterning. Second, removal of the hippocampal formation block prevents the computation

11-723

of biddn oaut arm ignals, EHi1 and therfore no new configurations are formed in association cortex. However,
previously stared configurations are nom modified.

The effect of lesoning dfe hippocampus pr (HP. comprising CAI and CA3 regions) with ibotenic
acid can be described by removing or disconnectig the block labelled "Jfippocamps Proper" in Figure I
(Schauk and Blair. 1993). Removal of this block prevents the computation of hidden unit earor signals, Eli,
so tdot no new stimulus configuraitions are forned in association cortex. It is important to notice that, since
previously stared configuration are not disrupted following lesions of die hippocampus proper, these lesions
should not impai tasks which do not require changes in cortical unit contigurations. By contrast, tasks which
require retraming of cortical hidden units should be impaired.

- 990Wii The effect of extensive cortical lesions (CL) can be described by rmoving the block
labelled -Coeex- in Figuit 1. Removal of this block eliminates all hidden units, preventing the formation of new
configurations and disrupting previously stared configurations. Cortical lesions impair tasks which require
cnf!guration,. but preserv tasks which only require competition among stimuli.

Computer Simulation
Figures 2 to 10 show simulated results of the effects of HF, HP, and CL lesions in many classical

conditioning paradigms as well as in place learning in a Morrs wate maze. Brief descriptions of each simulated
protocoal are provided in the figure captionis.

Table 1 compares simulations obtained with the S-D model with different experimental results. References
to the experimntal data listed in Table 1, as well as a detailed explanation of the simulated results, can be found
in Schmajuk and DiCarl (199) and Schanajuk and Blair (1993).

Table L Simaulttons obtained with the S-D model compared with different experimental results.

HF HP CL

Paradigm Data Model Data Model Data Model

Delay Conditioning +'0 + ? + 0 0
Trace onditioning +,0,- + ? 0 0 0
Extinction 0.- ? 0 0
Explicitlynpaired Extinction 0 ~
Acquisition Series - ? ?
ExtinctionSeries - ? - ? -

Blocking 0,- - ? 0 0 0
Overshadoiwing 0,- - ? 0 ? 0
Discrimination
Acquisition 0 0 0 0 0 0
Reversl - ? 0 + 0*
Conditioned Inhibition 0 1 0 0 0
Feature-positive Discrimination
Acquisition - - 0 0 0 0
Retention - - 0 0 0 0
Coniditional Discrimination - - 0 0 ? -

Differential Conditioning - - ? 0 ? 0
Negative Patterning
Acquisition - - 0 0 ?
Retention - - ? 0?
Positive Patterning
Acquisition ? - 0 0 ?
Retention ? - ? 0 ?
Context Switching - ? 0?
Place Learning
Acquisition - -- - 0,- -

Retention - 0 0-

Note. -= Deficit, + Facilitation, 0 No effect, ? no available data, fails todescribe the data.

11-724

U L

MD.. .N 's

Trialsu to Crterio

cc

cc

12r.

Figure1 2.im ere . .uae tra- t- acqisiio ci ro (.I fo norl HP H..., an ... ca....ses......

I0

Figre L BAcungiandnOSershiawng Peiaks Co acuipsitioudeni(.8 for normnal, HP, HF and C L cases oedb

CS2afer 0 einored SCA trils foloig1 enocdCtil n h aeo lcig n 0CI
CS2~~~~~~0 reore t.al in.hecu .o.oerhaowng

so --.2.

LM cqisiiolE

Trials to Criterion

20.........

to.

Normal H ~ HF CL
Group

Figure 4. Discrhmbuinao Acquisition and Reversal. Trials to criterion for normal, HP, HF, and CL cases.
Criteriorl was reacied when the CR generated by the reinforced stimulus was at least twice as large as the CR
generated by ti.~ umreinforced stimulus. The asterisk indicates that HF case failed to achieve reversal within 20

CR Amplitude

so-

40.. . .

20

Normal HP HF CL

Group

Figure 5. Conditioned Inhibition. Peak CR amplitude for normal, HP, HF, and CL cses evoked by CS, and
CS,-CS, after 20 reinforced CS, trials alternated with 20 nonreinforced CS,-CS trials.

Ca EM1 ca EM2 Ca08-05

CR Amplitude

100

40

20[

0-
Normal HIP HF CL

Group

Figure 6. Feature-Positive Dicrimination. Peak CR amplitude for normal, HP, HF, and CL cases evoked by
CS,, CS., and CS,-CS2 after 75 reinforced CS,-C52 trials alternated with 75 nonreinforced CS, trials.

11- 726

CR Amplitude

so ..

40

Normal HIP HF CL

Group

FIgure 7. Conditional Discrimination. Peak CR amplitude for normal, HP, HF. and CL cases evoked by CSI,
CS2, and serial presenttation of CS,-CS, after 75 reinforced serial CS,-C 2 trials alternate with 75 nonremnfored
CS, trials.

11111 Cal EM Ca2 G cat-cu:

CR Amplitude
100 M rr -.

so.

2 0

Normal HIP HF CL
Group

Figure 8.Negative Patterning. Peak CR amplitude for normal, HP, HF, arld CL cases evoked by CS,. CS. , and
CS,-CS, after 100 reinforced CS, vials, alternated with 100 reinforced CS, trials, and 100 nonremnforced CS,-
CS2 trias

CR Amplitude

go-

40 -

20................

Normal HI P CIL
Group

Figure 9. Positive Patterning. Peak CR ampliade for nornal, HP, HF, and CL cases evoked by CS, CS,, and
CS,-CS after 60 nonreinforced CS, trials, alternated with 60 nonreinforced CS, trials, and 60 reinforced CS,-
CS2 trials.

I- 727

NORMAL HP

0

... 00
*00~QO.000000O

000000000O
0000000:0966

000000000000
00000

0000...

HF CL
000

000000
0000 00
000000

*fl......000
0

0.

a...................

Fgure 10. Place Learning Acquisition. Simulated prediction of t location of the hidden platform at different
points in the Momris water maze after 20 trials, for normal, HP, HF, and CL cases. The large circle represents
the boundary of the Morris tank, four spatial landmaiks are represented by solid boxes, and the asterisk indicates
the location of the hidden platform. The magnitude of the network's prediction of the location of the platform
at each point in the pool is represented by the sizes of the small circles.

Table I shows that the model is able to describe the effects of HF, HP, and CL lesions on acquisition
and extinction of delay and trace conditioning, acquisition and extinction series, blocking, overshadowing,
discrimination acquisition and reversal, feature-positive discrimination, conditional discrimination, differential
conditioning, contextual effects, acquirition and retention of positive patterning, and acquisition and retention of
negative patterning. Importantly, the model describes the effect of HF, H, and CL lesions on acquisition and
retention of place learning. Table I indicates that the model has difficulty simulating the effect of HF lesions
in explicitly unpaired extinction and conditioned inhibition. Also as indicated in Table 1, the model makes
numerous novel predictions about the effects of HP on many learning paradigms.

In addition to simulating behavioral effects of brain lesions, the model also describes hippocampal activity
in normal animals. Because the model suggests that the hippocampus computes aggregate predictions of
environmental events in time and space, it correctly predicts that hippocampal activity reflects the topography of
the CR during classical conditioning and the spatial location of the US during place learning.

In sum, the present paper suggests how different regions of the hippocampal formation and the neocortex
might participate in both classical conditioning and place learning.

References
Rumelhart, DE., Hinton, G.., & Williams, RJ. (1986). Learning internal representations by error

propagation. In DE. Rumelhart & JL. McClelland (Eds.), Parallel Distributed Processing: Explorations in the
Microstucture of Cognition. Vol. 1: Foundations (pp.318-36 2). Cambridge, MA: Bradford Books, MIT Press.

Schmajuk, NA., & Blair, H.T. (1993). Stimulus configuration, spatial learning, and hippocampal function.
Belavioural Brain Research, 59, 103-117.

Schmajuk, NA., & DiCarlo, J. (1992). Stimulus configuration, classical conditioning, & hippocampal
function. Psychological Review, 99, 268-305.

1-728

FEEDBACK REGULATION OF CHOLINERGIC
MODULATION AND HIPPOCAMPAL MEMORY

FUNCTION.

Michael E. Hasselmo and Eric Schnell

Dept. of Psychology, Harvard University 33 Kirkland St.,
Cambridge, MA 02138 hasselmo@katla.harvard.edu

ABSTRACT

Acetylcholine may set the appropriate dynamics for learning within cortical structures,
while removal of this modulatory influence may set the appropriate dynamics for recall. Here we
use a combination of computational modeling and brain slice physiology to explore the role of
cholinergic modulation in the hippocampal formation. A computational model of the feedback
regulation of cholinergic modulation in hippocampal region CAl was developed, with an empha-
sis on the putative heteroassociative memory function of the Schaffer collaterals projecting from
region CA3 to region CAI. Feedback regulation of cholinergic modulation in the model allowed
the network to respond to novel patterns with strong cholinergic modulation, allowing accurate
learning, and to respond to familiar patterns with a decrease in cholinergic modulation, allowing
recall. This function required differences in the suppression of synaptic transmission at CAI syn-
apses arising from region CA3, when compared to CAl synapses arising from the entorhinal cor-
tex. Experiments in brain slice preparations of the hippocampal formation confirmed this
prediction of the model.

INTRODUCTION

A number of models of hippocampal function have focused on the possible autoassociative
memory function of hippocampal region CA3 [Marr, 1971; McNaughton and Morris, 1987;
McClelland et al., 1992; Levy, 1989; 1990] and the possible heteroassociative memory function
of the Schaffer collaterals from region CA3 to region CA1 [Levy, 1989; 1990; McNaughton,
199 11. However, these models have not accounted for the fact that associative memory models
require very different activation dynamics during learning versus recall. To prevent recall of pre-
viously learned associations from interfering with the learning of new associations, modifiable
synapses must not be the predominant influence on post-synaptic activity during learning. In
many models of associative memory function, the associations being stored in the network are
clamped during learning (Kohonen, 1984; Anderson, 1983; Hopfield, 1984; Amit, 1988) to pre-
vent the spread of activity across previously modified synapses.

Previous research in this laboratory has shown that the effects of cholinergic modulation
may set the appropriate dynamics for storing new information in cortical networks (Hasselmo et

11-729

al., 1992, 1993; Hasselmo, 1993a, 1993b; Hasselmo and Bower, 1993). Acetylcholine has a num-
ber of different physiological effects in cortical structures. In the piriform cortex, acetylcholine
has been shown to selectively suppress synaptic transmission at intrinsic but not afferent fiber
synapses [Hasselmo and Bower, 19921. In addition, cholinergic modulation suppresses the neu-
ronal adaptation of cortical pyramidal cells (Hasselmo et al., 1993), and enhances long-term
potentiation of synaptic potentials (Barkai et al., 1993). In computational models of piriform cor-
tex, application of the selective cholinergic suppression of synaptic transmission during learning
prevents recall of previously stored information from interfering with the storage of new informa-
tion (Hasselmo et al., 1992, 1993; Hasselmo, 1993a, 1993b). Simulation of the cholinergic sup-
pression of neuronal adaptation and the cholinergic enhancement of synaptic modification
enhances the rate of learning in the network (Hasselmo et al., 1993).

If the level of acetylcholine determines the appropriate dynamics for learning or recall, this
requires some mechanism for feedback regulation of cholinergic modulation. Cortical regions
must be able to set the appropriate level of cholinergic modulation dependent upon the novelty or
familiarity of a particular input pattern. We have explored possible mechanisms for the feedback
regulation of cholinergic modulation in a simulation of the interaction between the hippocampus
and medial septum. Modeling results show that heteroassociative memory function can be
obtained with self-regulation of learning and recall. However, this heteroassociative memory
function depends upon the effects of acetylcholine within region CA I. In particular, effective
heteroassociative memory function depends upon stronger cholinergic suppression of synaptic
transmission in stratum radiatum than stratum lacunosum moleculare of region CA 1. Experi-
ments in brain slice preparations show that this prediction of the model holds true.

METHODS

Computational modeling: The feedback regulation of cholinergic modulation was explored
in a computational simulation of hippocampal region CA1. The simulation contained representa-
tions of entorhinal cortex layer III and regions CA 1 and CA3 of the hippocampus. As shown in
Fig. 1, the simulation incorporated both the perforant pathway input from entorhinal cortex, ter-
minating in stratum lacunosum-moleculare (s. 1-m) of region CAI, as well as the Schaffer collat-
eral input from region CA3, terminating in stratum radiatum (s. rad) of region CAl. These inputs
influenced the activity of pyramidal cells in region CAl. The summed output of all neurons in
region CAl decreased the level of cholinergic modulation arriving from the medial septum.

Simulations evaluated how the cholinergic suppression of synaptic transmission influenced
the self-regulated heteroassociative memory function of Schaffer collateral synapses. Thus, in
these simulations, activity patterns were induced sequentially in the entorhinal cortex and region
CA3. When the Schaffer collaterals showed effective heteroassociative memory function, they
could store associations between the activity in region CA3 and the coincident activity induced in
region CAl by input from the entorhinal cortex. The recall of these associations could be tested
by inducing activity in region CA3 alone and evaluating how close the activity spreading into
region CAl resembled the activity previously provided by input from the entorhinal cortex.
These results are illustrated in Fig. 2.

Cholinergic modulation: The level of cholinergic modulation in the network determined a
range of parameters in region CA 1. In particular, different amplitudes of cholinergic suppression
of synaptic transmission in s. 1-m and s. rad were explored. In addition, the cholinergic modula-
tion of neuronal adaptation was simulated as a change in the threshold of a threshold linear output

11-730

function. In addition, cholinergic modulation enhanced the rate of synaptic modification and
caused suppression of inhibitory synaptic transmission.

E a Entorhinal
Entohina corex)cortex

.".
Hippocampus Dnaegrs-Rgo

NelnCAI egion CA3 Ala1

A c h

9~(0 -:CR)Medial septum] ,E_, :.'(IC)

Feedback regulation of Yg(CAla i) ACh

cholinergic modulation Medial septum

Figure 1. A. Schematic representation of the circuitry of the hippocampus with feedback regula-
tion of cholinergic modulation from the medial septum. Anatomical evidence suggests that activ-
ity in region CAl and region CA3 can inhibit activity in the medial septum, and thereby
downregulate cholinergic modulation. Dotted lines represent cholinergic modulation. B. Basic
components of the model focusing on input to region CAI. Entorhinal cortex input was repre-
sented by the identity matrix, while connections from CA3 to CAI were modifiable and started
with random initial connectivity. The summed output of region CAI decreased the level of cho-
linergic modulation from the medial septum. The best heteroassociative memory function of syn-
apses from CA3 to CAI was obtained when cholinergic suppression was stronger on the input
from CA3 than on the input from entorhinal cortex.

Brain slice experiments: Computational modeling generated a specific prediction about the
relative magnitude of the cholinergic suppression of synaptic transmission in s. 1-m and s. rad.
This prediction was tested in brain slice preparations of rat hippocampal region CAI by analysis
of the influence of the cholinergic agonist carbachol on synaptic potentials elicited by stimulation
of s. 1-m and s. rad. These experiments utilized techniques developed for the comparison of s. 1-m
and s. rad synaptic potentials in slice preparations (Colbert and Levy, 1992).

RESULTS

In the computational model, feedback regulation of cholinergic modulation allowed the net-
work to respond to novel patterns with appropriate dynamics for learning and to respond to famil-
iar patterns with appropriate dynamics for recall. The function of the model is summarized in Fig.
2. When the pattern pair was novel, cholinergic modulation remained high, allowing appropriate
dynamics for learning. When the pattern pair was familiar, the output of the network decreased
cholinergic modulation, thereby setting appropriate dynamics for recall. Thus, the testing of het-
eroassociative memory function did not involve a separate stage of testing recall, but could be
performed by presenting only the CA3 component of previously learned pattern pairs

11-731

Entorhinal Cortex

s.1-m. i:

0 ~~ *' + a i g 3s

S < . < < . . < < <<

A m. m . . .

6m r RAN Ii I I' IIN lo',"

CAo ,,, < llllW, J ll1.. l iIJlikj,,ll..
A C

Figure 2. Left. Basic components of a simplified model with 3 neurons in each region (simula-
tions were also performed with 30) neurons in each region). The model focused on obtaining
effective heteroassociative memory function on the connections from region CA3 to region CA 1.
Right. Activity in the network during each simulation step. Size of black squares represents the
activity of the 3 neurons in each region of this simple example. In the bottom row, level of cho-
linergic modulation (ACh) is plotted. During steps 1 to 5, input to region CA3 is presented alone.

Cholinergic suppression prevents spread of activity to CAl1. Steps 6-10: Presentation of activity
in both CAl and entorhinal cortex (EC) causes sufficient activity in CAl for learning. As syn-
apses from CA3 are strengthened, activity in CAl increases enough to suppress cholinergic mod-
ulation. The network thereby makes a transition from learning to recall. Steps 11-15:

Subsequent presentation of CA3 input alone now causes sufficient activity in region CAl1 to
decrease cholinergic modulation, allowing recall in response to this familiar input.

The simulation demonstrates that effective heteroassociative memory function of the con-
nections from region CA3 to CAl can be obtained with feedback regulation of cholinergic modu-
lation. However, this heteroassociative memory function depended upon cholinergic suppression
of synaptic transmission being stronger in s. rad (at the synapses of the Schaffer collateral input
from region CA3) than in s. 1-in (at the synapses of perforant path input from entorhinal cortex).
This difference in magnitude of cholinergic suppression meant that during learning, entorhinal
cortex activity could strongly influence the pattern of activity in region CAl1, while cholinergic
suppression prevented interference due to the spread of activity across previously modified syn-
apses from CA3. Thus, the model generated an experimentally testable prediction about the rela-
tive magnitude of cholinergic suppres of si pic thansmisson in s. rad and s. 1-i.
Extracellular he orng in brain slice preparations of hippocampal region CAl demonstrated that
perfusion of the cholinergic agonist carbachol more strongly suppressed synaptic potentials

11-732

in~~~~~~~~ bot CA and eoiia cotx(Qcue ufcetatviyi A o erig ssn

recorded in s. rad than in s. 1-m, as shown in Fig. 3.

S. Lacunosum-Moleculare S. Radiatum

Control

_J 200jA' J 200 V
5ms 5ims

Carbachol
(1O0tM) -" ._"" _-- --

Wash - -

Fig. 3. Laminar differences in the cholinergic suppression of synaptic transmission in hip-
pocampal region CAI. On the left, synaptic potentials were elicited in stratum lacunosum-molec-
ulare (s. 1-m) in control conditions and during perfusion with the cholinergic agonist carbachol.
At this concentration, carbachol suppressed synaptic potentials on average by 40.1% (n=13). On
the right, synaptic potentials elicited in stratum radiatum were more strongly suppressed by cho-
linergic modulation. Carbachol suppressed synaptic potentials in s. rad by an average of 89.1%.

DISCUSSION

Feedback regulation of cholinergic modulation in the hippocampal formation may set
appropriate dynamics for learning in response to novel stimuli, and appropriate dynamics for
recall in response to familiar stimuli. In simulations, effective associative memory function
depends upon stronger cholinergic suppression at the synapses of the Schaffer collaterals in CAI
than at the synapses of the perforant path. Brain slice experiments demonstrate this predicted dif-
ference in magnitude of cholinergic suppression in region CAl. Thus, the interaction of the hip-
pocampus ,nd septum may be vital to the effective memory function of the hippocampal
formation. This provides a theoretical framework for linking the considerable behavioral evi-
dence for a role of acetylcholine in memory function (Kopelman, 1986; Hagan and Morris, 1989)
to the neurophysiological evidence for the effects of acetylcholine within cortical structures (Has-
selmo and Bower, 1992; 1993). The physiological mechanisms explored in these simulations
concern some of the similar issues considered in adaptive resonance theory (Carpenter and Gross-
berg, 1993).

Amit DJ (1988) Modeling brain function: The world of attractor neural networks. Cambridge,
U.K.: Cambridge Univ. Press. [1]

Anderson, JA (1983) Cognitive and psychological computation with neural models. IEEE Trans.
Systems, Man, Cybern. SMC-13: 799-815.

Barkai E, Horwitz G, Bergman RE, Hasselmo ME (1993) Long-term potentiation and associative
memory function in a biophysical simulation of piriform cortex. Soc. Neurosci. Abstr. 19:

11-733

376.3.
Carpenter GA, Grossberg S (1993) Normal and amnesic learning, recognition and memory by a

neural model of cortico-hippocampal interactions. Trends Neurosci. 16:131-137.
Colbert CM, Levy WB (1992a) Electrophysiological and pharmacological characterization of

perforant path synapses in CAI: mediation by glutamate receptors. J. Neurophysiol. 68:1-8.
Hagan, JJ and Morris, RGM (1989) The cholinergic hypothesis of memory: A review of animal

experiments. In Psychopharmacology of the Aging Nervous System, L.L. Iversen, S.D.
Iversen and S.H. Snyder, eds. New York: Plenum Press, p. 237-324.

Hasselmo, M.E. (1993a) Acetylcholine and learning in a cortical associative memory. Neural
Comp. 5: 22-34.

Hasselmo ME (1993b) Runaway synaptic modification in models of cortex: Implications for
Alzheimer's disease. Neural Networks in press.

Hasselmo ME, Anderson, BP and Bower, JM (1992) Cholinergic modulation of cortical associa-
tive memory function. J. Neurophysiol. 67(5): 1230-1246.

Hasselmo ME and Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent
fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol. 67(5): 1222-1229.

Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218-222.
Hasselmo ME, Barkai E, Horwitz G, Bergman RE (1993) Modulation of neuronal adaptation and

cortical associative memory function. In: Computation and Neural Systems II (Eeckman F,
Bower JM, ed). Norwel, MA: Kluwer Academic Publishers. In press.

Hopfield, J. J. (1984) Neurons with graded responses have collective computational properties
like those of two-state neurons. Proc. Nad. Acad. Sci. USA 81: 3088-3092.

Kohonen T (1984) Self-organization and Associative Memory. Berlin: Springer-Verlag.
Kopelman, M.D (1986) The cholinergic neurotransmitter system in human memory and demen-

tia: A review. Quart. J. Exp. Psychol. 38: 535-573.
Levy WB (1989) A computational approach to hippocampal function. In: Computational models

of learning in simple neural systems (Hawkins RD, Bower GH, ed), pp. 243-305. Orlando,
FL: Academic Press.

Levy WB, Colbert CM, Desmond NL (1990) Elemental adaptive processes of neurons and syn-
apses: A statistical/computational perspective. In: Neuroscience and connectionist theory
(Gluck MA, Rumelhart DE, ed), pp. 187-236. Hillsdale, NJ: Lawrence Erblaum Assoc.

Marr D (1971) Simple memory: A theory for archicortex. Phil. Trans. Roy. Soc. B B262:23-81
McClelland JL, McNaughton BL, OReilly R, Nadel L (1992) Complementary roles of hippocam-

pus and neocortex in learning and memory. Soc. Neurosci. Abstr. 18: 508.7.
McNaughton BL (1991) Associative pattern completion in hippocampal circuits: New evidence

and new questions. Brain Res. Rev. 16:193-220.
McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information stor-

age within a distributed memory system. Trends Neurosci. 10:408-415.

11-734

Biological Neural Networks
Session Chairs: Thomas McKenna

Joel Davis

POSTER PRESENTATIONS

LTP learning rules and categorization:
effects of physiological parameters

Karl Kilborn
Center for the Neurobiology of Learning and Memory, and

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Richard Granger
Center for the Neurobiology of Learning and Memory, and

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Long-term potentiation (LTP), the current leading candidate biological mechanism for learning,
has as physiological parameters a step size (the amount by which a single potentiation episode
increases synaptic efficacy) and a ceiling (the level at which further potentiation results in no
further increase). Recent findings have identified endogenous agents that modulate these two
parameters of LTP 1 . A statistical model of a cortical network was used to predict the effect these
parameters have on categorizing input patterns. Results show that a larger step size (i) leads
to faster learning and (ii) causes the network to form narrower (more restrictive) categories.
Furthermore, results show that a larger ceiling (i) leads to slower learning and (ii) causes the
network to form more general (less restrictive) categories. The effects of step size and ceiling
interact, and their relationship to category breadth is highly nonlinear. Settings of the ratio of
step size to ceiling are identified that optimize the tradeoff between generalization and learning
rate.

1Aral, A. and Lynch, G. (1992) Factors regulating the magnitude of long-term potentiation
induced by theta pattern stimulation. Brain Research 598: 173 - 84.

1-737

An Artificial Neural Network Architecture for Multiple Temporal Sequence Processing

S.L. McCabe*, M.J. Denham**
* Control Engineering Dept., Royal Naval Engineering College, Plymouth, U.K.

** School of Computing, University of Plymouth, Plymouth, U.K.

Abstract

An lapetant feature of the auditory system is its ability to perceive acoustic temporal sequences from many
simultaneous sound sources. Various charaderistics of te acoustic signas trigger the formatdon and sequential
bnegraton of a number of 'streams'. An ard4cial neural network system to perform streaming and acoustic
sequence recognition is osdined The influences of attention and memory on the streaming process are also
considered It is koped that tAese investigatons wil be a useful step towards intelligent sensory processing.

Introduction

The perception of temporal sequences is fundamental to human intelligence. Both external and internal states
change continuously with time and our brains have evolved the ability to recognise relationships between current
and previous events and to generate expectations of future states. Artificially intelligent machines require a similar
capability. A number of artificial neural network schemes have been devised to tackle this difficult problem, but
are generally quite limited in scope. The principal feature of the human auditory system is its ability to perceive
acoustic sequences and to distinguish many simultaneous sound sources. The auditory system manages this even
though the signals and their numerous reflections generally overlap in frequency space and time. The system has
therefore to cope with multiple temporal sequence processing, and requires mechanisms for separating the various
streams, and for switching attention from one stream to another. These techniques could usefully be applied to
signal processing in noisy environments, for example speech recognition in a crowded room, music cognition,
target tracking, failure prediction and general sensory processing.

The Auditory System

Acoustic signals enter the auditory system via the auditory sensory organ, the cochlea, whic cated in the inner
ear. The cochlea performs a spectral analysis of the acoustic signal by means of a cou.. pair of vibrating
membranes, the basilar and tectorial membranes; von B&&sy showed that the position of maximum vibration on
the basilar membrane is a monotonic function of the frequency of the signal [Handel83]. Located on the basilar
membrane in the organ of Corti are the inner and outer hair cells; the outer hair cells form an active non-linear
coupling mechanism between the two membranes, the inner hair cells are the principal source of the afferent
signals. The frequency components of an acoustic signal are conveyed by the positions of the active inner hair cells
and by the phase locking of their responses to the appropriate frequency component; there is place and temporal
coding of the signal [Daloss88]. The way in which the intensity of the various frequency components is encoded is
not clear since the mean firing rate of auditory nerve fibres saturates over a 40dB range while intensity levels can
be perceived over a 120dB range. However, onset firing rate and synchronisation do seem to have an adequate
dynamic range, although adaptation is so rapid that this effect is usually masked. In addition, the existence of
nerve fibres with staggered thresholds may mean that a group of nerve fibres could together encode the full
intensity range (Smith8].

The afferent path from cochlea to auditory cortex passes through a number of relay stations, and is characterised by
a large fan-out and conservative transmission [Pickles85l. The principal organising parameter of auditory
processing is frequency, and tonotopic maps are found throughout the auditory system. Other important
organisational features are binaural (for encoding spatial locations), and temporal (based on envelope variations or
modulations). The tonotopic organisation appears to be hardwired, while binaural and temporal maps show large
differences between individuals and are therefore probably learnt by experience [Brugge85], [Schreiner88]. The
afferent path actually consists of two principal channels, one which is tonotopically organised, and the other which

11-738

is not [Bruggegg). The tonotopic path is characterised by accurate transmission, short response latencies, sharp
tuning curves, insensitivity to anaesthesia, and little or no learning. The non-tonotopic path, on the other hand,
contains neurons with longer response latencies and broader tuning curves. It is modified by learning and affected
by anaesthesia, and combines with other sensory modalities in the thalamus. In general, there appears to be an
inverse relationship between the accuracy with which neurons encode stimuli and their plasticity IWeinberger88].
The two pathways finally come together in the cortex where they overlap to some extent. (There is also an efferent
path which provides extensive feedback connections between the various auditory stages [Pickles85.)

The first relay station on the path from ear to cortex is the cochlear nucleus. The ventral cochlear nucleus performs
very accurate and rapid transmission of the original signals, but also contains cells with broader tuning curves and
large dynamic ranges, onto which signals from neurons with a wide range ot characteristic frequencies appear to
converge, and other cells which are sensitive to rapid changes in intensity. The dorsal cochlear nucleus responds
mainly to the dynamic parts of the acoustic signal, and contains cells with non-monotonic rate-intensity functions,
and sensitivity to modulation, onset or offset. In addition, noise suppression, response sharpening and the
formation of new functions are achieved by means of inhibitory connections [Handel83]. Sound source localisation
is accomplished in the superior olivary complex, where interaural time and intensity differences are decoded by
means of a correlation analysis of converging signals from the contralateral and ipsilateral ears [Brugge88]. The
inferior colliculus receives binaural signals from the superior olivary complex (inuching space localisation
information), as well as complex responses (such as amplitude modulation information) from the contralateral
dorsal cochlear nucleus. The central region of the inferior colliculus is both tonotopically and temporally
organised, containing iso-frequency sheets with concentric rings of characteristic modulating frequencies. It is
thought that this arrangement may provide the basis for residue pitch extraction [Schreiner88j. The principal
thalamic nucleus involved in auditory signal processing is the medial geniculate nucleus. Tonotopic, binaural and
temporal organisation are found and maintained in specific projections to tonotopically organised areas of the
auditory cortex. Non-tonotopically organised sectors, particularly the medial division of the medial geniculate,
integrate auditory information with that from other modalities and exhibit extensive and rapid learning
[Weinberger88j. This area has widespread influence, projecting to all auditory cortical fields and can therefore
generate widespread 'recruiting' responses [Herkenham85J.

Clearly extensive pre-processing occurs in the auditory system. Since most discrimination tasks can be
accomplished without the auditory cortex, the prime role of the auditory cortex may be in detecting similarity and
in grouping sets of stimuli which have a common origin, i.e. auditory object recognition [Whitfield85J; a complex
activity requiring the association and temporal integration of disparate signals. Other tasks which involve the
auditory cortex include the transfer of knowledge, ordering of stimuli, prolonging the effects of short stimuli, and
auditory memory and consciousness. The auditory cortex consists of a number of different fields and contains
multiple representations of the acoustic information. Some areas have frequency maps, and binaural bands, but so
far no maps encoding modulation information have been found in the human auditory cortex (although they have
in the bat). The human auditory cortex has not been extensively mapped which is perhaps why a clearer idea of its
organisation has not been established, however, it has been suggested that many more maps, particularly frequency
transition combination maps, will be found [Suga88. (Frequency transitions are important in speech processing
and spatiotemporal trajectories in transition combination maps could be used to encode speech patterns.) Temporal
resolution decreases towards centre in the auditory system, and sensitivity to modulation frequencies only up to
about 28Hz are found in the cortex [Schreiner88], (corresponding to the range for rhythmic perception). The left
and right cortices have different auditory specialisations, the left being devoted to language processing, and the
right to the more prosodic aspects of speech and music [Zatorre93].

Streaming and Multiple Sequence Recognition

The auditory system is capable of processing many simultaneous signals, each of which may have complex wave
patterns, overlapping frequency spectra, and numerous (delayed) reflections, depending on the environment. The
system is able to distinguish the various sources, establish their locations, and interpret their informational content.
The complexities of auditory scene analysis are resolved by means of 'auditory streaming'; the sequential grmuping
of components of the acoustic signal into a number of co-occurring subsets. Psychological tests suggest that there
are automatic, preattentive as well as higher level, attentive streaming mechanisms at work (Bregman90J.

11-739

Principal factors determining the assignment of sounds to different streams are pitch proximity, timbre, spatial
origin and pitch trajectory; pitch proximity being the dominant one. The tendency tr segregate streams increases
with presentation rate, abrupt rather than smooth changes in pitch, and inconsistencies between pitch changes and
previously received pitch contours. (For example, if a series of tones alternating between high and low pitch are
received, i.e. H L H L ..., then at a low presentation rate the subject will perceive a single oscillating sequence, but
as the rate increases the sounds will eventually be perceived in two separate streams, one consisting of H 11 II...
and the other L L L...) An important feature of higher level auditory processing is the perceived invariance of pitch
and time interval relationships; the structure of a pitch pattern is perceived to be the same if shifted along the pitch
axis, as long as the ratios between the pitches remain the same; similarly for timing shifts. It is useful to visualise
sound in terms of three psychological dimensions, relative pitch, loudness and time. Whenever a sequence is
translated along the relative time axis, then the amount of change tolerable in the other dimensions without
provoking stream segregation is dependent on the time period [Jones76J.

Primitive preattentive mechanisms are automatic, unlearned and data driven [Bregman90]. They partition the
sensory input, operate over short time spans and exhibit improved performance with increasing presentation rate.
The extraction of pitches from the incoming frequency spectra appears to be the principal component of
preattentive streaming, the basic assumption made by the organism being that frequencies which form part of the
same harmonic spectrum are likely to come from the same source. The pitch or fundamental frequency of a
complex tone is the frequency of repetition of the wave form. The spectral balance or timbre of a sound is affected
by the relative amplitudes of the associated harmonics, but these are not normally perceived separately.
Frequencies are usually interpreted as belonging to the same fundamental pitch if they are integer multiples of the
fundamental (to within about 4%); even if that fundamental frequency is not contained in the signal. At a different
time scale (< 20 Hz), periodicity or a regular pulse is also used as a clue to indicate a common source. If the phase
and intensity changes of a number of frequencies are synchronised, then they tend to be associated with the same
stream. Rhythmic or temporal integration of the incoming signals is important for good perception, and enables
the listener to generate expectancies and to perform temporal 'chunking' [Jones76]. Spatial clues are also used in
preattentive streaming, but these are overridden by pitch clues if they are in conflict [Bregman9O].

Higher level streaming involves attention, auditory short term memory and stored knowledge, and only operates on
one stream at a time. It spans longer time periods and mainly acts to sharpen the focus of a primitive stream, but
performance degrades with increasing presentation rate. Sequential integration is achieved within streams and
emergent properties including rhythm, melody and speech generally only occur within, and not across, streams
[Bregman90]. The effect of attention on the streaming process can be easily demonstrated by the marked difference
between the minimum pitch separation necessary for streaming and the maximum separation beyond which
integration is impossible [Bregman90].

Intended Functionality of the Neural Network Processing System

An architecture for a system able to distinguish and track an arbitrary number of simultaneous streams contained
within an acoustic input signal is proposed. The output from the system is the attended stream, where attention can
be switched from one stream to another. Included in the system is the capacity for learning, recognising and
reproducing the resultant temporal patterns, essential if memory is to influence the streaming process and if the
system is required to detect novel or unexpected pattern progressions. Another important feature is rhythmic
perception, used both for generating within stream expectancies and as a global feature linking mechanism,
allowing the synchronisation of a number of streams within a global context. In accordance with psychological
results, initial streaming of the signal is achieved by means of the preattentive grouping mechanisms of pitch
proximity and timbre. At this stage only a monaural system is proposed and spatial localisation is not considered.

Although such a system could have widespread use, it is thought that a more tractable experimental domain may
be that of music cognition. In this context the identity of the various streams is known and the role of rhythm in
generating temporal expectancies and as a feature linking mechanism is clear. Novel patterns and pattern
progressions and unexpected rhythmic changes can easily introduced and explored. Similarities between music and
the prosodic aspects of speech, which almost certainly guide the streaming of speech signals, make this domain
particularly relevant.

11-740

Processing Stages

The initial processing stage, corresponding to the
cochlea, receives the incoming acoustic signals and . m

which frequency is coded by both place and timingpdcsaotiayoer stfsgl__
and is discretised in terms of equal spacing of a
logarithmic frequency scale. The firing rate of each Mj~ ~ nosse supesnm ask
channel should be proportional to the amplitude of st. 2

the corresponding frequency component, and phase n n * arkes an

locked to it. Various schemes for producing these o gune"

spike trains are being investigated, including M- sa-s
Fourier and wavelet transforms, however, it is n -- /
intended at present to generate the signals by ' n wh
modelling the mechanical aspects of the cochlea and ISt - t(1URM, ta- Rfr ,flO)

the inner hai cells as interacting and overlapping r---- timbr mask fa ec
banks of low-pass and band-pas filters [Lyon881, Pic __-- ,
and to concentrate on temporal coding methods. A Yj n wit hint.nst gr ps

noise suppression mask, generated from competitive
interactions in the next stage, will be used to
improve resolution and enhance or suppress various 5 attende strea

frequencies. Complications of intensity coding, such -

as adaptation and saturation will be ignored, unless
it becomes apparent that these are necessary for r
onset detection and synchronisation.

The tonotopically organised set of signals will then 75 > AteninCntj

be processed in ways suggested by the operations of
the cochlear nucleus, where various dynamic aspects
of the signals, such as onset, amplitude and Fig re 1. Outline oftheprocessing sages involved in
frequency modulation coding are extracted. The mmA/ipk taoraseqmenceprcervi.
actual processing required will be determined by the
information needs of later processing stages. A serious problem to be addressed when splitting the acoustic signal
into a number of processing paths, some of which are intrinsically slower than others and require longer time
windows for extracting the relevant information, is how to synchromse them. Therefore, as far as possible,
superimposing additional information on the original signal, (e.g. enhanced onset markers), will generally be
preferred. Information necessary for noise suppression can be found by lateral inhibition and competition amongst
different frequency channels and used to suppress those frequencies considered spurious, to enhance significant
frequency components, and to influence initial coding in the previous stage. Preparations for pitch extraction are
also required, particularly the enhancement of fundamentals, (a mask, produced in the next stage, for enhancing
candidate fundamental frequencies, could be useful). Amplitude modulation may be an important pitch cue, but
other useful methods include the detection of periodicity in the interference firing pattern of groups of
phase-locked frequency channels, or the enhancement of the subharmonics of each active frequency.

Processing analogous to that in the inferior colliculus will be used to enhance the outputs corresponding to the
'best' modulating frequencies. The arrangement of iso-frequency sheets and concentric modulating frequency
sensitivity thought to underlie the pitch extraction mechanism, can be modelled as a characteristic-frequency /
modulating-frequency map; competitive interactions within each iso-frequency column can be used to generate
output signals modulated by the dominant modulating frequency for each frequency channel. Firing patterns,
synchronised to the perceived fundamental frequency, will allow groups of associated harmonics to be identified,
however, complications, caused by the simultaneous production of the same pitch from more than one source, will
have to be resolved. The power of fundamental frequencies appears to be enhanced at the expense of the associated
harmonics [Bregman90j; the creation of a mask to enhance fundamental frequencies in proportion to the
intensities of the harmonics will have a similar effect. The resulting output signals, while still understood to be

IH-741

tonotopically organised will only encode carrier frequencies in terms of place and the spike trains will be
modulated by the associated fundamental frequency.

The modulated frequency channels will then be processed by coincidence detectors in order to identify the pitch
groups and their associated timbres and intensities; onset markers and modulation frequencies will used as the
determining grouping cues. Relationships between the frequency and intensity of the various harmonics in a pitch
group determine its sound quality and may therefore be used to characterise the various sound sources. This
necessitates the extraction of relative pitch information and the production of pitch invariant masks. (The ratio of
the interspike intervals for the channels concerned carries the information required, but since the frequencies may
no longer be phase-locked to the carrier frequencies by this stage, either the relative relationships may have to be
extracted sooner, or some of the carrier frequency information must be retained in the signal.) A mechanism for
associating the characteristic pitch patterns with each group also has to be devised. The intensity of each pitch
group is probably best encoded in terms of the mean firing rate of the fundamental.

The pitch/intensity and timbre patterns found will then be processed to form sequential associations between the
various signals. Sequential associations can be formed by means a pitch/intensity map which is activated at
appropriate places by incoming signals. If this activation spreads gradually with time before dying out, new inputs
falling into previously sensitised areas could become associated with previous signals, (unless other clues, like
timbre, distinguish them). Signals falling outside existing sequential integration regions would trigger the
formation of new streams. Psychological results demonstrating the dependence of streaming on timing, pitch and
loudness transitions could be accommodated by this procedure. This method can also be used to ensure that signals
which satisfy expectations generate smaller responses than those which don't; the response activity resulting from
signals falling into existing integration areas could be suppressed by presensitisation, while those signals falling
into unsensitised areas and resulting in new streams could generate greater responses. The timbre patterns of
previous and current signals falling into the same integration region should also match for sequential association to
occur. In effect there may be a number of such regions which can overlap, but which are characterised by different
timbre patterns. By default everything will be included in the output, but by sharpening the focus of attention onto
restricted areas of the map, output could become restricted to a particul- stream. The focus of attention could be
manipulated externally and switched from area to area or used to scan the map for interesting or particularly high
activity. It could also be increased in size to include large areas of the map in relatively inattentive states, or
reduced for very sharply concentrated attention in localised areas. Connection strengths between the nodes in the
map will determine the shape and trajectories of the expanding sensitised regions, and could be modified by
memory-derived expectations. Alternatively the connections could remain fixed and the focus of attention could be
manipulated by memory.

The attended stream will then be processed in a variety of ways in order to generate pattern and timing
expectations or to signal novelties or failed expectations. In order to achieve this, storage of the temporal sequence
of patterns in the attended stream will be required. To be useful, the correct timing patterns will need to be
preserved by the process and disambiguation of complex sequences will also be required. Generally methods which
are based on the use of dynamic neurons retain timing structures best [Reiss92], [Taylor92]. The problem of the
recognition and recall of temporal sequences will also have to be solved if many patterns are to be stored in the
same network and used to generate expectations. A suitable system could be based on the approach described by
[Wang9O], but their simulations only demonstrate recognition and recall of single sequences and it is not clear
what happens when more than one sequence is stored. Rhythmic perception will be necessary to generate timing
expectations, this process could also be used to adjust patterns to different presentation rates while maintaining the
correct timing ratios. Another important psychological effect of rhythm is to produce variations in emphasis or
significance, which could prove useful in the temporal pattern matching context. Finally, it is intended to
reconstruct an acoustic signal from the components of the attended stream, providing an effective way to monitor
the performance of the system.

Conclusion

An artificial neural network architecture, based on aspects of the mammalian auditory system, has been proposed.
The system will be able to process complex signals and form a number of separate, temporally integrated, streams.

11-742

Attention and memory will also be used to manipulate the streaming processes. Work is in progress on
implementing the structure described, using a variety of leaky integrator and pacemaker neurons. It is intendcd to
present further details of the implementation in the near future.

References
[Bregman9Ol Bregman, 'Auditory Scene analysis', MIT Press, 1990

[Brugge85] Brugge, J.F., Reale, R.A, 'Auditory cortex', in Peters, A., Jones, E.G., ed.s, 'Cerebral Cortex Volume 4:
Association and Auditory Cortices', Plenum Press, New York, 1985

[Brugge88] Brugge, J.F. 'Stimulus coding in the developing auditory system' in Edelman, G.M., Gall, W.E.
Cowan, W.M., (eds), 'Auditory function', John Wiley & Sons, 1988

[DallosS8] Dallos, P., 'Cochlear neurobiology: some key experiments and concepts of the past two decades' in
Edelman, G.M., Gall, W.E. Cowan, W.M., (eds), 'Auditory function', John Wiley & Sons, 1988

[Handel83l Handel, S., 'Listening: An introduction to the perception of auditory events', Bradford Books/MIT
Press, Cambridge, MA, 1983.

[Herkenham85] Herkenham, , 'New perspectives on the organisation and evolution of nonspecific thalamocortical
projections', in Peters, A., Jones, E.G., ed.s, 'Cerebral Cortex Volume 5', Plenum Press, New York, 1985

[Jones76J Jones, M.R., 'Time our lost dimension: Toward a new theory of perception, attention and memory',
Psychological ,mview, 83, pp323-355, 1976

[Lyon88] Lyon, R.F., Mead, C., 'An analog electronic cochlea', IEEE transactions on Acoustics, Speech and Signal
Processing, 36, ppll19-1134, 1988

[Pickles85] Pickles, 'An introduction to the physiology of hearing', Academic Press, 1985

[Reiss92] Reiss, M., Taylor, J.G., 'Storing temporal sequences', Neural Networks, 4, pp773-787, 1992

[Schreiner88] Schreiner, C.E., Langner, G., 'Coding of temporal patterns in the central auditory nervous system' in
Edelman, G.M., Gall, W.E. Cowan, W.M., (Cds), 'Auditory function', John Wiley & Sons, 1988

[Smith88J Smith, R.L., 'Encoding of sound intensity by auditory neurons' in Edelman, G.M., Gall, W.E. Cowan,
W.M., (eds), 'Auditory function', John Wiley & Sons, 1988

[Sugag8] Suga, N. 'Auditory neuroethology and speech processing: complex-sound processing by combination
sensitive neurons', in Edelman, G.M., Gall, W.E. Cowan, W.M., (eds), 'Auditory function', John Wiley & Sons,
1988

[Taylor92J Taylor, J.G., 'Temporal sequence storage', Proceedings of the 1992 International Conference on
Artificial Neural Networks (ICANN92), Vol. 2, pp 841-845, 1992

[Wang90] Wang, D., Arbib, M.A., 'Complex temporal sequence learning based on short term memory',
Proceedings of the IEEE, Volume 78, No 9, September 1990

[Weinberger8g8] Weinberger, N.M., Diamond, D.M., Dynamic modulation of the auditory system by associative
learning' in Edelman, G.M., Gall, W.E. Cowan, W.M., (eds), 'Auditory function', John Wiley & Sons, 1988

[Whitfield85] Whitfield, I.C., 'The role of the auditory cortex in behaviour, in Peters, A., Jones, E.G., ed.s,
'Cerebral Cortex Volume 4: Association and Auditory Cortices', Plenum Press, New York, 1985

[Zatorre93l[Zatorre93l Zatorre, R.J., Halpern, A.R., 'Effect of unilateral temporal-lobe excision on perception and
imagery of songs', Neuropsychologia 31(3), pp221-232, 1993

II-743

Modeling of the Three-Phase Respiratory Rhythm Generation

J.S. Schwaber and LA. Rybak

Neural Comnputation Group, The Experimena Station, E.L DuPont de Nemours & Co, Wilmington, DE 19880-0323
Departn-Ft of Neurowcimae, University of Pennsylvania, Philadelphia, PA 19104

AbutracL In Richters theory of the origin of the three-phase respiratory rhythm the oscillations in the
respiratory network are provided by both specific interconnections and individual properties of neurons of several
respiratory groups. Several versions of the neural architecture capable of autonomous generation of the respiratory
rhythm and reproducing of specific activity patterns of real neurons of dilferent groups have been developed.
Results are analyzed and compared with physiological data. Some prediction are considered.

Introduction

It is known that the basic respiratory rhythm in mammals that controls and coordinates the behavior of the
whole respiratory system is formed by neural networks located in a relatively small area of the medulla in the
brainstem. For many years the neural mechanism of respiratory rhythmogenesis has been among the most popular
subjects of experimental investigation and computational modeling A huge amount of data has been accumulated.
Nevertheless, many mysteries remain. It should be noted that most neural network models of respiratory
rhythmogenesis [1,2,3,7] are based on relatively simple continuous model of a single neurn. Current intracellular
data from single respiratory neurons 16,101 in concert with the development of new computational approaches to
simulation of complex, more realistic neuron models [111 now provide an opportunity to develop more realistic and
predictable neural models of respiratory rhythmogenesis. These models can allow investigating of the significance
and contribution of both network and intrinsic neuronal properties in respiratory rhythmogenesis mechanisms.

We have based our models on the network hypothesis for origination of the respiratory rhythm using Richter's
theory of a three-phase respiratory cycle [8,91. In this theory the respiratory cycle consists of three phases:
inspiration, post-inspiration and late (stage II) expiration. The oscillations in the respiratory network are provided
by both specific interconnections and some individual properties of neurons of several respiratory groups. Initially,
the respiratory neurons were classified into five types depending on the part of the respiratory circle in which they
shows a specific burst of activity. These types (groups) of respiratory neurons were: early inspiratory (early-I),
ramping inspiratory (ramp-I), late inspiratory (late-I), post-inspiratory (post-I), and stage II expiratory (E-2)
neurons. The e-I neumon shows an adapting burst (with a decrease of spike frequncy) during the inspiratory phase.
The ramp-I neuron is also active during the inspiratory phase. It shows an unique burst pattern: a single (probably
Ca4+) spike, then a delay, and than an augmenting increase of spike frequency. The late-I neuron gives a short
burst at the end of the inspiratory phase. The post-I neuron shows an adapting burst during the post-inspiratory
phase. The E-2 neuron is active in the late expiratory phase and shows a pattern of augmenting activity at least in
the beginning of its bursL In Richter's theory the switch between inspiration and postinspiration emerges by the
following way [8,91: (1) Because of the excitatory synapses of the ramp-I neuron onto the late-I neuron, the
increasing activity of the ramp-I neuron excites the late-I neuron at the end of the inspiratory phase. (2) The latter
inhibits the early-I neuron, which in turn disinhibits the post-I and E2 neurons (3) The two latter are connected
with mutual reciprocal inhibition, but the post-I neuron is excited first. Because of the postulated mechanism of
this switch, the adaptation of the activity of the early-I neuron is not a key feature for the switch. The switch
between postinspiration and expiration emerges as a result of the reciprocal interactions between the post-I neuron
and the E2 neuron, and because of adaptation in the burst pattern of the post-I neuron. Thus, the feature of
adaptation of the post-I neuron is very important for the switch. The switch between expiration and inspiration
(expiratory off-switch) is most interesting but poorly understood. The only explanation of this switch in the
framework of Richters initial scheme might be based on the reciprocal interaction between the E2 and early-I
neuron, and on adaptation in the burst pattern of the E2 neuron. But this does not correspond to the convention (in
the temy, based on some data) that the E2 neuron should demonstrate an augmenting and not an adapting burst of
activity. To overcome this contradiction we have either to assume that the E2 pattern actually shows adaptation, at
les at the end of the expiratomy phase, or to alter the initial five-neuron Richter's scheme by including additional
neural elements and offering a different expiratory off-switch mechanism.

U-744

Modeling Results

Our goal was to investigate the contribution of both network and individual neuronal properties to respiratory
rhythm generation. First, we decided to develop a simplified neuron model, with spiking and tunable dynamics, to
explore directly the role of dynamics in rhythm generation. At the same time, we recognized the need to constrain
the behavior of our simplified neuron model to the domain of the possible, and to be congruent with known data - a
role best served by the Hodgkin-Huxley type neuron models. In order to compare the simulation results based on
the different single neuron models, we developed a simulation package which allowed the incorporation of single
neuron models of different (simplified and Hodgkin-Huxley) types into the same neural network architecture. The
matrix of interneuronal connections and method of simulation of synaptic potentials were used the same. In
developing our neural network models we have tried to find the matrix of connections that produces the required
behavior with both types of single neuron models.

The Model I for a single neuron was developed as an extension of spiking models [4, 51. The main differential
equation for the neuron membrane potential corresponds to the Hodgkin-Huxley formalism. It has just three items
on its right side which corresponds to two synaptic conductances (excitatory and inhibitory) and one AHP
conductance. The synaptic conductances are opened by each action potential coming from other neurons. They
form an excitatory or inhibitory postsynaptic potential, and so change the membrane potential. The AHP
conductance is opened just after the spike in the same neuron. It forms an afterhyperpolarisation following each
spike that decays with some time constant. The spike is generated when the membrane potential exceeds a
threshold. After each spike the threshold jumps up from a resting level to some higher level. Then it decays with
some time constant. This simulates the dynamics of neuronal refractivity. An additional differential equation
describing the slow dynamics of the resting level of the threshold is used to provide the adaptive changes of the
threshold and correspondingly the adaptive character of neuronal r,'sponses. The augmenting type of activity of
some neurons (the ramp-I, sometimes the E2) is based on the increase of AHP amplitude during the inhibition
preceding the neuronal burst.

The Model 2 neuron was developed in the typical Hodgkin-Huxley style. The following types of ionic channels
were included in the model: fast sodium (Na); delayed potassium (K); transient potassium (A); calcium L (CaL);
calcium T (Ca,); calcium-dependent potassium (AHP); and passive (leak). Adaptive neuronal activity is based on
the combination of CaL and AHP currents. A combination of AHP and increased CaT currents allowed us to
reproduce the typical augmenting pattern of the ramp-I neuron including: Ca++ spike, delay and increase of spike
frequency. Thus, in both above models the specific activity patterns of respiratory neurons, adaptive and
augmenting, are based on intrinsic properties of neurons.

Four schemes of the basic respiratory network have been simulated. The mechanisms for switches between
inspiration and postinspiration, and between postinspiration and late expiration are the same in all four schemes,
corresponding to the above description. The differences between the schemes consist in different hypothetical
mechanisms for the expiratory off-switch.

In the first scheme, the expiratory off-switch emerges as a result of the reciprocal interaction between the E2
and early-I neurons, and because of the adaptive burst pattern of the E2 neuron. This does not correspond to the
idea that E2 neuron should demonstrate an augmenting but not an adaptive burst of activity. There is only a small
increase of frequency at the start of E2 bursts. The dynamics of activity of neurons of this scheme is shown in Fig.
1 ab.

The second scheme has the same structure of interneuronal connections, but differs in the weights of synaptic
connections. The expiratory off-switch emerges in this scheme because of a second burst of the post-I neuron at the
end of the late expiratory phase. Unfortunately, in this version we also need adapting E2 activity to provide the
switch between the pattern of the E2 neuron and the second burst of the post-I neuron. The dynamics of activity of
neurons of this scheme is shown in Fig. 2 ab.

The third scheme is based on the use of an additional pre-inspiratory (pre-I) neuron. In this scheme the
expiratory off-switch emerges like the switch between inspiration and postinspiation. The E2 burst has the purely
augmenting character (the E2 and ramp-I are the same in this scheme). The pre-I neuron plays the role similar to
that of the late-I in the switch between inspiration and postinspiration. It is excited by the increasing spike
frequency of E2, and then terminates the E2 burst by strong feedback inhibition. The E2 in turn disinhibits the
early-I and ramp-I neurons. The dynamics of activity of neurons of this scheme is shown in Fig. 3 ab.

1I-745

a b

tv4

I'I t

Fig. 1. The dynamics of activity of different respiratory neurons of the first network scheme
in the process of generation of the thee-phase respiratory rhythm:

a corresponds to the simplified model of single neuron (Model 1);
b corresponds to the Hodgkin-Huxley style model of single neuron (Model 2).

The fourth scheme was based on the use an additional hypothetical early-E2 neuron. The early-E2 and E2
neurons works in parallel (like the early-I and ramp-I ones). But, the E2 neuron (the same as the ramp-I neuron)
shows an augmenting burst pattern and give the expiratory output to expiratory motoneurons. The early-E2 in
contrast has an adapting pattern and provides the expiratory off-switch like the E2 neuron do in the first scheme.
The dynamics of activity of neurons of this scheme is shown in Fig. 4 ab.

The dynamics of the three-phase respiratory rhythm and the activity patterns of respiratory neurons in all the
above models look very similar to experimental data. The various schemes give a series of explanations for the
genesis of the respiratory rhythm and set the tasks for further experimental investigations.

A very interesting point in analysis of the above modeling results is the comparison models based on the I-st
and 2-nd single neuron models. This comparison shows that the models based on the simpler single neuron Model
I gives in some casm produces more realistic dynamics of nwuronal mermbrane potentials than the models using the
Hodgkin-Huxley type Model 2. This gives us guidance on how to improve the Model 2 by emulating performance
features of the Model 1.

II-746

NqN

tJ

Fig. 2. The dynamics of activity of different respiratory neurons of the second network scheme
in the process of generation of the thre-phase respiratory rhythm:

a corresponds to the simplified model of single neuron (IModel 1);
b corresponds to the Hodgkin-Huxdey style model of single neuron (Model 2).

Reference [1l U Bassler. Biol. Cybern., 1986, 370, 433-456. 121 SN Botros and EM Bruce. Biol.
Cybern.. 1990, 63, 143-153. [31 S Genian and M Miller. J App!. Physiol, 1976, 41, 931-938. 141 PA Getting. In:
Methods in Neuronal Modeling (Eds. C Koch and I Segev), Cambridge: The MIT Press, 1989, 171-194. [51 Ri
MacGregor. Neural and Brain Modeling. Acad. Press, San Diego, 1987. 161 S Mufin et al. In: Neurogenesis of
Central Respiratory Rhythm (Eds. A Bianchi and M Denvait-Saubie), Lancaster, U& MTP, 1985, 179-182. 171 M
D Oligvie et al. Am. J. Physlol., 1992, 263, R962-R-975. [81 DW Richter and D Ballantyne. In: Central Neurone
Environment (Eds. M Schiake et al.) Bern Springer, 1983, 164-174. 191 DW Richter et al. News Physiol. Si.,
1986, 1, 109-112. 1101 DW Richter et al. J. Neurophysuol, 1975, 38, 1162-117 1. 111) WM Yamada et al. In:
Methods in Neuronal Mdodeling (Eds. C Koch and I Segev), Cambridge.- The MrT Press 1989, 97-133.

JI- 747

a b

F I

Fig. 3. The dynamics of activity of different respiratory neurons of the third network scheme
in the process of generation of the three-phase respiratory rhythm:

a corresponds to the simplified model of single neuron (Model 1);
b corresponds to the Hodgkin-Huxley style model of single neuron (Model 2).

1-748

a b

fI

Nz.

Fig. 4. The dynamics of activity of different respiratory nazroqs of the fourth network scheme
in the process of generation of the three-hase respiratory rhythm:

a corresponds to the simplified model of single neuron (Model 1);
b corresponds to the Hodgkin-Huxley style model of single neuron (Model 2).

11-749

Phase Modulation in Oscillatory Model Neurons
F. James Elsenhart and Peter F. Rowae

Group in Neurosciences" and Department of Biology4, University of
California, San Diego, La Jolla, CA 92093

Oscillations are important in many neural systems. Often these systems can be modeled by
networks of simplified model neurons based on limit-cycle oscillators. Here we investigate how
current pulses modulate the oscillatory phase of one kind of simplified model neuron. We
describe several kinds of phase modulation observed, and we explain these phenomena
mathematically using phase-plane analysis. Similar analyses may help to explain modulatory
phenomena in real oscillatory neural systems.

1. Introduction

Oscillations are important in many neural systems. In the crustacean stomatogastric ganglion (STG),
coordinated oscillations in a network of motor neurons control the chewing behavior of the stomach
(Harris-Warrick et al. 1992). In jamming avoidance response of electric fish, phase and amplitude information
from the electrosensory system modulates the oscillatory discharges of the fish's electric organ (Heiligenberg 1991).
And in mammals, there is evidence suggesting that phase-locking between oscillations in different cortical areas
contributes to perceptual feature binding (Engel et al. 1990). However, in none of these systems do we really
understand how the physiological properties of individual cells interact to produce the behavior of the entire
system. In part, this is because our experimental methods are clumsy, and we can't observe all of the properties that
we would like to. But it is also because even those properties that we can observe are too complex to produce an
intuitive understanding of how the systems work.

One way to deal with this complexity is to build simplified neural models. Simplified models include some
physiological properties of a system and ignore others. For instance, they may assume that a cell is a single
isopotential compartment, or they may lump some currents together. The hope is that a simplified model that
includes the right physiological details will replicate the behavior of a system in a way that makes it easy to
understand. Fitzhugh (1960, 1961) used a simplified model to analyze and explain the behavior of the
Hodgkin-Huxley equations, as did Rose and Hindmarsh (1985) for bursting in thalamic neurons. On the systems
level, Rowat and Selverston (1993) have recently used a network of simplified neurons to model the oscillations in
the gastric mill network of the lobster STG.

In this work, we investigate phase modulation by current pulses in simplified oscillatory model neurons. Work
in several systems, including the STG (Ayers and Selverston 1977), electric fish (Kawasaki and Heiligenberg
1988), and Aplysia (Pinsker 1977a, 1977b), has shown that current pulses can modulate the phase of oscillatory
neural systems. Such modulations presumably help the system respond to sensory input representing changing
environmental conditions. Here we show that the oscillatory phase of a simplified model is also modulated by
current pulses. Because the model is so simple, we are able to explain many of the modulatory phenomena that we
observe mathematically. If these phenomena occur in real systems, then similar explanations may hold for them as
well.

2. Model Cells

Our model cells are based on those used by Rowat and Selverston (1993) to simulate slow-wave oscillations in
the gastric null network of the lobster STG. In an in vitro preparation, Elson and Selverston (1992) have shown
that gastric mill oscillations continue with approximately unchanged phase relationships in the presence of
tetrodotoxin, which suppresses action potentials. Accordingly, the oscillations must be based on graded synaptic
transmission, as has been shown to occur in the pyloric network of the STG (Graubard et al. 1983). Rowat and
Selverston (1993) simulated the gastric mill oscillations using a network of simplified model cells. Each cell was
assumed to act as single isopotential compartment with two voltage-activated currents, an N-shaped fast current
and a linear slow current. These assumptions can be used to write an equation for the membrane voltage of a
model cell like that used by Hodgkin and Huxley (1952) to describe the action potential of the squid giant axon:

tm- " + 'Ia, + ,low + 1 = Iinj, (1)

11-750

, • I I I H I I m i i

where t, is the membrane time constant, V is the membrane potential, las, is the fast current, Ia,,, is the slow
current, i.,,n is the synaptic current, and Ikj is the injected current. /fa is assumed to be an instantaneous function
of the membrane voltage V, given by the piecewise-linear function

F(VI +A/ for V< -A/o f

V-A - for V> A f/a (2)
(I - at) V otherwise,

where Af and of are parameters that determine the shape of the function (see figure I). The I- V curve for 'fast has
a region of negative resistance, which makes the cell electrically excitable. 1,k, is equivalent to the state variable q
, which is described by the equation

§ qt = q + q (V), (3)

where the steady-state current q-(V) is given by

q.-(V) = crV. (4)

a is a parameter that determines the slope of the function q-(V) (see figure 1). The synaptic current into a
postsynaptic cell is given by

S(Vpr, VPs,) = Wf(Vpe)(Vpost - Epo.,), (5)

where W is the synaptic weight, f(Vm) is given by the threshold function

AI for V.> 0
f 0 otherwise, (6)

and Ept is the synaptic reversal potential.
Each model cell can now be summarized by equations for its two state variables, V and q. Rewriting (i) yields

the equation

TmL + F(V) + q + S = Iij (7)

for V. The other state variable, q, is described by (3).
Rowat and Selverston (1993) found that their model was robust for a wide range of parameter values. For each

of the experiments described here, the same values were used: m = 0.25, t., = 5, Af 1, ay = 3, 0 = 0.2, and
E,, = -4. Different values of af and W4 were used for each
experiment. These are noted below. I q_(V)

3. Phase-Plane Analysis A f

One way to analyze a system of differential equations is by
a graphical method called phase-plane analysis (see Jordan Al
and Smith 1987). A phase-plane is a two-dimensional < -
representation of the state of a system. Figure 2a shows a _' , V

phase-plane for a single oscillatory model cell. The state V
variables V and q are plotted on the axes, and the state point, 1-Ai-f.)
which represents the current state of the system, moves
through the phase-plane as a function of time. Information
about the behavior of such a system can be gained by plotting Figure 1. Steady-state I-V curves for the fast and slow current-.
the nullclines for the state variables. Nullclines are curves on
which one of the state variables does not change. The V
nullcline can be found from (7) by setting dVIdt = 0. Solving for q gives q =li - S - F(V), which reduces to
q =-F(V) for a single cell with no injected current. On this curve, V does not change, so the state point moves
vertically, in the directions indicated by the arrows. Similarly, the q nullcline can be found from (3) by setting

11-751

I-() Lii yl rjcor ftesaepit.()Vwv)r s ucino ie

q qqnukkbn
VOwlCine vwh

'Kf

Figure 2. (a) Phase-plane for a single model cell with arrows showing the direction in which the state point moves along the nuliclines and in regions
1-4. (b) Limit cycle trajectory of the state point. (c) V waveform as a fujnction of time.

dqldt=O. Solving for q yields q=q,(V)=O, V.On this line, q does not change, so the state point moves
horizontally, as shown by the arrows. The point where the two nullclines intersect is a fixed point. Since both
dVldt = 0 and dq/dt = 0, the state point cannot move from the fixed point if it ever winds up there. However, for an
oscillatory cell the fixed point is unstable, so small perturbations move the state point away from it.

When the state point is not on one of the nullclines, its behavior can still be predicted from the phase-plane
diagram of the system. The V and q nullclines divide the phase-plane into four sections, numbered 1-4 in figure 2a.
Since dV/dt and dqldt change continuously, the direction in which the state point moves must change continuously
as well. This means that the state point must move diagonally in sections 1-4, roughly as shown by the diagonal
arrows in figure 2a. The actual steady-state trajectory that the state point follows over time is called a limit cycle
(dotted line in figure 2b). This limit cycle is attracting because small perturbations move the state point back
towards it. When viewed as a function of time (see figure 2c), this means that the voltage waveform of the cell
oscillates in a slow wave pattern.

4. Methods

The phase modulation behavior of a single cell and pairs of cells connected by reciprocal inhibition were
analyzed by injecting them with simulated EPSPs and IPSPs at various phases in their oscillatory cycles. Phases
were measured relative to the upward (increasing) zero-crossing of the voltage waveform for each cell, scaled
between 0 and 1. Current pulses were applied at least every 0.1 phase units, and all current pulses lasted 0.2 time
units. In single cells, phase shifts were measured by comparing the upward zero-crossings of a cell's post-pulse
voltage waveform to its anticipated upward zero-crossings (based on the pre-pulse average period) without a pulse.
The difference between these signals was then scaled to produce a phase shift between 0.5 (a half cycle phase
advance) and -0.5 (a half cycle phase delay). In pairs of cells, current pulses were applied to one cell, and both cells
were allowed to settle into a steady phase shift, which was measured as before. In all cases, both cells settled to the
same phase shift because reciprocal inhibition tends to make them oscillate 1800 out of phase with one another.
This seady state phase shift was then taken as the phase shift for the two cell pair.

Computational results were generated with a neural simulation system called "The Preparation" (Rowat and
Selverston 1993) which represents model cells using systems of differential equations. The Preparation
continuously integrates a model, displays on-line graphical output, and allows parameters to be changed without
restarting the model. Integration is done by the LSODA package (Petzold and Hindmarsh 1987), which uses
automatic method switching when equations become stiff.

5. Results

5.1 Regions of Phase Advance and Phase Delay

Single cells and pairs of cells both showed broad regions of phase advance and phase delay. Figure 3a shows
the phase response of a single oscillatory cell (of = 1.8, W= 0) for various size EPSPs (iq = 5,3, and 1). For
stimulus phases less than about 0.2 or greater than about 0.7, EPSPs produced phase advances. Figure 3b illustrates
why this happens. At these stimulus phases, the state point lies in the bottom half of the phase plane (q < 0). The
equation for the V nullcline is q = lij- F(V), so an EPSP shifts the V nullcline upward from its original position
(solid line) to a new position (dashed line) further from the state point. Since the state point moves faster when it is
further from the V nullcline, it moves more during the course of an EPSP than it would have if the V nullcline were
in its original position (dotted arrow). This additional movement produces a phase advance.

II-752

• • • i I iiII i | i

I . i I I I

0.25 0.5

.~~-.. . J ° .m .

0o0 0.2 0.4 06 O6 1.0 0.0 02 0.4 0.0 0.8 1.0

(a) ' .b =.I (b) (c)

Figure 3. Phase response curves for single cells pertued by simulated EPSPs (a) and IPSPs (c). (b) gives a phase-plane explanation for the phase ad-
vances seen in (a).

For stimulus phases between abou. 0.2 and 0.7, EPSPs produced phase delays. This happens for reasons
analogous to those for phase advances. At these intermediate stimulus phases, the state point lies in the upper half
of the phase plane (q > 0). When the EPSP shifts the fast nullcline up, it moves closer to the state point or even past
it for large EPSPs. This causes the state point to slow down or reverse directions, producing a phase delay.

Similar results were obtained for IPSPs. Figure 3c shows the phase response of the same cell for Ijy = -5, -3,
and -1. The phase space for a single cell is symmetrical for rotations of 180', so IPSPs produce the same phase
shifts as EPSPs, except that the stimulus phase is shifted by 0.5 phase units. This shift corresponds to a rotation of
1800 in phase space. The effect of IPSPs on the V nullcline and state point is analogous to that of EPSPs.

5.2 Type 0 and Type I Phase Response Curves

Winfree (1980) describes two types of phase response curves that occur in
oscillatory systems, both of which were seen here. Type 1 phase response \ q
curves have a topological winding number of 1. This commonly occurs when a -N
stimulus produces a small phase shift, so the new phase remains close to the \,
original stimulus phase. In phase response graphs like those above, type 1
curves are represented by continuous responses, like those for lij = 1 (figure
3a) and Iiij = -1 (figure 3c). These responses occur with moderate EPSPs and (a)
IPSPs, where the magnitude of the pulse is too small to move the V nullcline
very far. As shown in figure 4a, this means that the state point only moves a \ q '
short distance before it runs into the V nullcline again. Thus, small pulses
produce small movements of the state point and, accordingly, small phase \-

shifts.
Type 0 phase response curves have a topological winding number of 0.

This usually happens when a stimulus produces a large phase shift, so that the
new phase is relp -,ly independent of the original stimulus phase. In phase (b)
response graphp ike those above, type I curves are represented by
discontinuous responses, like those for 1l,,j = 3 and 5 (figure 3a, near a Fgure 4. EPSPs generaing (a) type l and (b)

stimulus phase of 0.7) and lj'i = -3 and -5 (figure 3c, near a stimulus phase of type 0 phase response curves.
0.2). These responses occur with large EPSPs and IPSPs that move the V
nullcline far from the state point. As shown for an EPSP in figure 4b, this allows the state point to move all the
way from the left arm of the V nullcline to the right arm during the duration of a pulse. This produces a large phase
shift, and the state point winds up in almost the same place no matter where it started from.

5.3 Effects of Reciprocal Inhibition

Pairs of cells connected by reciprocal inhibition do not produce phase response graphs exactly like those for
single cells. In order to study how reciprocal inhibition affects pairs of cells, we tested endogenously oscillating
cells (of = 1.8) with various size synaptic weights. Figure 5a summarizes the results for moderately sized EPSPs
(Irnj = 3). With a synaptic weight of 0, the two cells operate independently, so the results are the same as for a
single cell. With larger synaptic weights, two trends become apparent. First, the responses are relatively unchanged
at stimulus phases of 0.4 or less. This happens because the unstimulated cell has V < 0 at these stimulus phases, so
it is below the synaptic threshold from equations (5) and (6). Consequently, it exerts no synaptic influence on the

11-753

stimulated cell. Second, the responses are dampened at stimulus 0
phases of 0.5 or greater. In part, this is because the unstimulated
cell is active for these stimulus phases, so synaptic inhibition from it 0.25

opposes the effect of the EPSP. However, for small synaptic a ---
0weights, this opposition probably has little effect. Instead, the .

dampening is likely due to the cells' tendency to "split the 0.25

difference" for any sudden phase shift. A sudden phase shift in one
cell breaks the 1800 separation between the phases of the two cells. 0 0 1, 1 0, 0

Because they are connected by reciprocal inhibition, the cells Shtomo. Phw.

reestablish this 180" separation cooperatively, with each one (a) W 0 W.o0 . w.0., 0 w., I
pushing the other. As a result, they split the difference in any O'_
sudden phase shift. This effect is strong enough that, even for
synaptic weights as small as 0.01, reciprocally inhibitory cells have 0,

type I (continuous) rather than type 0 (discontinuous) phase 2
response curves. Similar results were seen with IPSPs (see figure 0 _-
%.,/li,j = -3). -02

5.4 Phase Modulation in Non-Oscillatory Cells
.0 02 0.4 05 O' 10

.Lk central pattern generator like the gastric mill network of the (b)

lobster STG can produce oscillations even though its individual F-w0-oo w.o .o w., 1
cells are not endogenous oscillators (Elson and Selverston 1992). In Figure 5. Effects of synaptic inhibition of phase modulation
order to study how the oscillatory properties of individual cells for (a) EPSPs and (b) IPSPs.
affected phase modulation, we tested reciprocally inhibitory pairs of
cells with a fixed synaptic weight (W=0.5), a fixed sized IPSP
(lin1 = 3), and various sizes of of (from 0.0 to 3.0). When a1 > 1, cells are endogenous oscillators, and the state
point approaches the oscillatory limit cycle more quickly as O]- gets 0.5

larger. When o_ < 1, cells are not endogenous oscillators, and the
state point approaches the fixed point at the origin faster as of gets 0.2

smaller (see Rowat and Selverston 1993). As is shown ir figure 6, a ' '

pair of cells produced qualitatively similar phase response curves 0

for all values of (f. One curious phenomenon is that both strong
oscillators (of= 3.0) and strong non-oscillators (of = 0.0) show
large phase advances at a stimulus phase of 0.7, while cells with -os.

intermediate values of oif do not. More work is needed to explain 0.0 02 O.4 0.6 0.8 1.0

these responses. _- oo.o- -fd 0.5-* St . sf1.- o , .5 - of-3.0-

6. Condusions Figure 6. Phase response curves for endogenously non-
oscillating (sf-< 1) and oscillating (sf > I) cells. "sf" stands

This work has shown how four kinds of modulatory phenomena for "sigma sub F'.
can occur in simplified model neurons stimulated by current pulses:
(1) regions of phase advance and phase delay, (2) type I and type 0 phase responses, (3) effects of reciprocal
inhibition, and (4) phase modulation in non-oscillatory cells. Two questions are now important. First, do real
oscillatory neural systems exhibit these phenomena? If so, then simplified models designed to mimic their
individual connectivities and dynamics may be able to make quantitative predictions about their phase response
characteristics. Second, do the explanations for these phenomena in simplified neural models hold for real systems
as well? If so, then the simplified models would seem to be good approximations of the real systems. More work is
needed to address these issues experimentally.

Acknowledgements. PFR was supported by the Office of Naval Research #N0014-91-5-1720, the National
Institute of Mental Health #NH-46899, and the National Science Foundation #IBN-9122712.

11-754

References

Ayers, J. L. and A. I. Selverston (1977). Synaptic control of an endogenous pacemaker network. J. Physiol., Paris
73:453-461.

Elson, R. C. and A. I. Selverston (1992). Mechanisms of gastric rhythm generation in the isolated stomatogastric
ganglion of spiny lobsters: Bursting pacemaker potentials. J. Neurophysiol. 68:890-907.

Engel, A. K., P. Konig, A. K. Kreiter, C. M. Gray, and W. Singer (1990). Temporal coding by coherent
oscillations as a potential solution to the binding problem: Physiological evidence. Preprint from Nonlinear
dynamics and neural networks, eds. H. G. Schuster and W. Singer.

Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43:867-896.
Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical J.

1:445-466.
Graubard, K., J. A. Raper, and D. K. Hartline (1983). Graded synaptic transmission between identified spiking

neurons. J. Neurophysiol. 50:508-521.
Harris-Warrick, R. M., E. Marder, A. I. Selverston, and M. Moulins (1992). Dynamic biological networks: The

stomatogastric nervous system. Cambridge: MIT Press.
Heiligenberg, W. (1991). Neural nets in electric fish. Cambridge: MIT Press.
Hodgkin, A. L. and A. F. Huxley (1952). A quantitative description of membrane current and its application to

conduction and excitation in nerve. J. Physiol. 117:500-544.
Jordan, D. W. and P. Smith (1987). Nonlinear ordinary differential equations. Oxford: Oxford Press.
Kawasaki, M. and W. Heiligenberg (1988). Individual prepacemaker neurons can modulate the pacemaker cycle of

the gymnotiform electric fish, Eigenmannia. J. Comp. Physiol. 162:13-21.
Petzold, L. R. and A. C. Hindmarsh (1987). LSODA: Livermore solver for ordinary differential equations, with

automatic method switching for stiff and nonstiff problems. Lawrence Livermore National Laboratory,
Computing and Mathematics division, 1-316. Livermore, CA.

Pinsker, H. M. (1977a). Aplysia bursting neurons as endogenous oscillators: I. Phase-response curves for pulsed
inhibitory synaptic input. J. Neurophysiol. 40:527-543.

Pinsker, H. M. (1977b). Aplysia bursting neurons as endogenous oscillators: I1. Synchronization and entrainment
by pulsed inhibitory synaptic input. J. Neurophysiol. 40:544-556.

Rose, R. M., and J. L. Hindmarsh (1985). A model of a thalamic neuron. Proc. R. Soc. Lond. 225:161-193.
Rowat, P. F. and A. I. Selverston (1993). Modeling the gastric mill central pattern generator of the lobster with a

relaxation oscillator network. J. Neurophys. 70:1030-1053.
Winfree, A. T. (1980). The geometry of biological time. New York: Springer-Verlag.

11-755

Neurosolver: A Neural Network Based on a
Cortical Column

ANDRZEJ BIESZCZAD

Systems and Computer Engineering, Carleton University, Ottawa, Canada KIS 5B6

Abstract: In this paper a neural network based on a model of a biological cortical column is presented The cortical column

has been found to play the fundamental role in information processing in the cerebral cortex. The model of the column presented

in this work displays similar functionality. The stress is laid on the cooperative behavior of many artificial columns

interconnected in a network. The network is capable of recording trajectories of time related events. Those recorded trajectories

let the network use time dependencies to perform breadth-first searches. The device can solve stimulas-response type problems

in a given domain and because of that is called Neurosolver The Neursolver can use a context update mechanism to perform

dynamic searches.

1.0 Introduction
The cortical column, the "module-concept", has been proposed as an anatomical entity by Szentagothai [1]. Later,
Mountcastle [2] and Zeki and Shipp [31 enriched the hypothesis by describing the functional context of the cortical
column. Ballard in [4] was the first to propose the model that clearly identifies three distinct parts of the column: the
upper, the intermediate and the lower divisions. Burnod in [51 proposed the concepts of a columnar call and action
tree and the use of the trees to explain the functionality of the cortex.
A modified version of the Burnod's model of the cortical column has been used as a processing element of a neural
network architecture that we call the Neurosolver. The Neurosolver is capable of computing solutions to problems in
a given, well defined domain thro, gh traversing trajectories that encode temporal relationships between the objects in
the domain. The recollection mechanism produces solutions to presented problems in a for n of sequences of patterns
of network activity. The topographical relationships of the objects of the domain are used (. icitly, because the prob-
lem of creating such maps has been settled by others, for example Kohonen [6].
Cho, Rosenbloom and Dolan in [71 have reported their work on Neuro-Soar that has similar to the Neurosolver objec-
tives. Their approach is, however, completely different from the one presented in this paper.

2.0 Architecture of an artificial column

2.1 Connectivity
The column and its connectivity, as illustrated in Figure 1, are inspired by the neurobiological data. The column has
two divisions. upper and lower. The Upper-Upper connections carry signals between the upper divisions of two col-
umns. The Lower-Upper connections, in turn, carry signals from the lower division of the sender to the upper division

of the receiver. In addition to the external connections,
or °Ar" okmewm there are two internal connections. The Upper-Lower con-

Oxtw, ua inpit nection transmits the activity from the upper division to the
lower division. The internal Lower-Upper connection is

Ernit k ,Lowur.op e used to inhibit the upper division by high activity in the
- " Llower division. The activity of the lower division consti-

tutes the output of the column.
'In spite of many similarities, there are important simplifi-

Eideffl wtW cations made in comparison to the biological cortical col-
FIGURE 1. The connections of the artificial column. umn.

2.2 Functionality
The artificial column is a three-state device. If there is no input activity and no sustained internal activity from the
past, the column is inactive. The interpretation of the inactive state from the information processing perspective is that
the concept represented by the column is not present in the current computing context. There is no output activity
whatsoever from a column in that state.
The upper division of the column can be activated by action potentials from other columns, incoming through the con-
nections from both, upper and lower, divisions, and from the external, cortical, afferents. The input activity of the
upper division is calculated according to the following formula:

inputAclty actionPotenial * connecionStrength

where activeConnections are those from the columns that have not be-'n recently activated directly by this column.

II-756

That rule prevents creation of self-exciting pairs of columns.
After the input activity is integrated in the upper division, action potentials are sent to other columns. The pattern
with which the activity diffuses throughout the network depends on the strengths of the connections. The activity in
tu9 division is also transmitted to the lower diviskon. The Upper-Lower channel does not have any resistance,

)so the lower division gets exactly same level of activity as
the upper one. The activity of the lower division is not

Gtransmitted anywhere until the threshold level is reached.
F, mmIf that happens, it is said that the column fired. Then, the

activity is distributed by the means of action potentials to
the receiving columns. The strength of a specific connec-
tion determines how big influence on the receiver the fir-
ing of the column will have.

FIGURE 2. Setting the goal (a) and its satisfaction (b). Both the lower and upper divisions receive external affer-
eats. These afferents play an important role as the inputs

to the system. The cortical afferents are incoming to the upper division, and the thalamic afferents are incoming to the
lower division. The cortical input can be used to express goals by activating the upper division of the column that rep-
resents a specific, desirable state, feature or concept. The persistence of that activity denotes the goal to achieve - the
desire to satisfy. The goal is reached when the activity is suppressed. That will happen when the column fires. The fir-
ing of the column can also trigger some external action. Figure 2 illustrates that process.
The upper division of the column is a vehicle for processing abstract data through the changes to the ac' -tterns
depicting concepts or sequences of concepts. On other hand, the lower division is in touch with the phy, rid as
represented by the activity of the sensors.
The upper division is the integrating part of the column, since it correlates signals from other columns. The lower
division is the decisive component of the column. It determines whether the concept is perceived and controls the out-
put that may, in turn, alter the environment. Ultimately, the lower division is a vehicle that drives the behavior of the
column toward the goal satisfaction.
After firing, the column becomes insensitive for some time. No input activity, neither thalamic nor cortical, is
accepted. That prevents two mutually connected columns from firing in an oscillating manner.

2.3 Adaptivity

There are two rules of how the connections are modified depending on the patterns of changes in the activity of a col-
umn and the columns that transmit signals to and receive signals from that column. The first rule (the feedback rule)
states that if a specific column fires, the strengths of all of the Upper-Upper connections to the columns that fired
directly before are increased. That process is illustrated in Figure 3. Column B is the focus of our attention in the
example. Columns A and C are connected to B. At a certain
point in time, let us say t, column A fires; columns B and C a) b)
do not. In the next tick, W+, column B fires. According to the
adaptation rule, column A fired directly before column B,
the connection to the upper division of column A from the
upper division of column B is strengthened. The connection A B C A B C
to column C stays the same or is, at least relatively, weak- FIGURE 3. The adapting process of an
ened. Upper-Upper connection.

It is important to note that after the connection strengths are modified, it will be more likely that activity in the upper
division of column B will cause changes in the activity of column A rather than in column C.
The second adaptation rule (the feed forward rule) says that the strengths of all Lower-Upper connections are
increased between the columns that fire now and those that fired just before. Figure 4 illustrates that process. In the

a) b) figure, there are again three columns: A, B and C. Column B
I - +4 fires at the time t and sends the action potentials to columns

A and C. At the time t+l, column C fires. The adaptation
process increases the strength of the connection between the

A B C A B C lower division of column B and the upper division of column
FIGURE 4. The adapting process of an C.

Lower-Upper connection. The implications of the feed forward rule of adaptation' are
similar to those stated for the feedback rule: after the modifi-

cation, firing of column B will have bigger impact on the activity in column C than in column A.
Both adaptation rules work at the same time. For the clarity of the description they were separated in the examples.
The ability of a column to adapt the strengths of the connections with other modules depending on the patterns of net-
work activity will be analyzed from the network's perspective later on.

2.4 Connection strength

One of the premises of this work was to design a formula for the strength of a connection that would allow an input
pattern to be recorded fast. A probabilistic approach was proposed for the column by Burnod [5), but the learning rules
presented in this paper are different.

11-757

To determine the strengths of the connections, certain statistical parameters are recorded for every division of each
column, let us say C, and every connection, CiCj. When the activity of a division increases from low to high, then the
counter CUP is increased. Another counter, Cis, is increased for each column that has sent action potential to the inputs
of the column in question, so it counts the global influences on the column. The third statistical parameter, C.,
counts all receivers that fired as a consequence of receiving action potentials after this column fired. A counter of
influences, CiC . is maintained for each connection. It is increased each time the connection carries an action
potential from ?he presynaptic column, the transmitter, that has fired to the postsynaptic column, the receiver, that
fires as a consequence. These statistical data are used to calculate the strength of both, the incoming and outgoing,
connections.
There are several probabilities calculated for the purpose of computing the strength of a given connection. In the fol-
lowing formulas, A and B are presynaptic and postsynaptic, with respect to the connection in question, cortical divi-
sions respectively.
* The probability indicating how likely the change of the activity of the presynaptic division from low to high is to

generate a successful action potential (i.e., such that it will take part in influencing the postsynaptic division):

ABcons
AB

cons5 A
up

* The probability of how inclined the action potential carried through the connection is to increase the activity of the
postsynaptic division:

AB
in B

in

" The probability of how prone the postsynaptic division is to change its activity from low to high upon reception of
any action potential from any input:

B
p - p

up B
in

• The probability of how likely is the action potential that is carried over the connection after the presynaptic divi-
sion's activity moves from low to high to change the state of the postsynaptic division:

ABcons
out B

out

* The probability of how prone the post-synaptic division is to influence other columns after changing its state from
low to high:

B= -- up

uP2 B
out

The strength of the Lower-Upper connection is calculated using the first three coefficients:
0AB = PconsinPup

The strength of the Upper-Upper connection may be computed using the same formula but with the first and two last
coefficients instead:

PAS = Pcon*PoW1'Pup2

There is a number of alternate ways to combine Pn,. Pi, Pup, Pu and PUP2 in the formulas for the strength of the
connection. For example, for the Upper-Upper connection it might be advantageous to just use pAB = Peon1.
The strength of the connection between the upper and lower division is fixed and its value is 1. Consequently, any
activity in the upper division is transmitted to the lower division. The strength of the connection in the opposite direc-
tion is also fixed to -1. If the activity in the lower division exceeds the threshold, the activity in the upper division is
suppressed.

2.5 Thresholds
Each division of a column has a number of activity thresholds:

" a low activity threshold defines the inactive state,
" a high activity threshold defines the active state and
" an output threshold indicates the minimum activity that can be transmitted in the form of an action potential to

the receivers through the output connections.
All activity thresholds in the model have been fixed; i.e., they are not adaptive. The output threshold of the upper
division is 0. The output threshold of the lower division is the same as the high activity threshold. The latter deter-

11-758

mines when the column fires, because the lower division is the output component of the column.

3.0 Neurosolver - a network of cortical columns

The Neurosolver is a device that is capable of recording the behavior of any physical system or object. The object can
be observed by the system of sensors that detect its state. The states and, more importantly, the patterns of their
changes are input to the neurosolver. The neurosolver modifies its inter-columnar connections according to the adap-

tation rules. On the other end, each column has a determined meaning
~ and may output signals that afflict the manipulators ready to alter

some aspect or aspects of the observed object. The recorded informa-
tion may be used to activate required actions of the manipulators as
presented by the goal. It is a certain state of the object, a point in the

@the path in that space that leads from the current state to the goal state
through a number of intermediate states. In the course of that activa-
tion, some of the columns involved fire and control the manipulators
in the same way as it was observed and recorded in the past. Through
the sequence of the manipulations, the required state of the object is
achieved. The goal has been satisfied, the problem - solved: that is the
origin of the name of the device: neuro-solver.
The Neurosolver starts to interact with the subject system as a tabula

FIGURE 5. A neurosolver in action. rasa. It gains all its experience, and problem solving capabilities,
tnrougn tne intercnange ot me sensory ana manipulation control data with the system through the inputs and outputs.
There is no separate learning cycle - the Neurosolver learns while servicing the system, though at the beginning there
is not much it can do.
There is evident similarity of the behavior of the Neurosolver to that of classical problem solvers that use problem
space representation like GPS [8] and its successor SOAR [9].

e In the further parts of this section of the paper, the mechanics of
the problem solving capabilities of the neurosolver are

A_ explained. To better visualize the behavior of the network, all
considerations involve a simplification that each goal is ini-
tially given as an activation of a single column. Usually, any
complex problem requires a distributed representation.

3.1 Architecture

FIGURE 6. A cross-section of a neurosolver. The inter-columnar connectivity follows the scheme described
for a single column. Figure 6 illustrates the connectivity for a

number of columns that are shown in a cross-section of the neurosolver. The neurosolver has a matrix architecture, as
illustrated in Figure 7. Each node is connected, through lower-upper
and upper-upper connections, to its neighbors in eight directions on
the plane: vertical, horizontal and diagonal.
The behavior of such regular architecture is easier to illustrate than
more complex variants.

3.2 Learunng
The initial strength of the connections in the neurosolver is zero, that
is no activity can be propagated from one column to others. When
the sensors start to communicate the sequences of events occurring
in the observed system, the connections between firing columns are
adjusted according to the adaptation rules. That process is illustrated
in Figure 8.1n the cross-section of a part of a neurosolver there are FIGURE 7. A top view of a Neurosolver
four columns: A, B, C and D. The initial strengths of the connections between all of the columns are zero. However,
when, for example, column A fires and that is followed by the firing of column B, then the upper-upper connection
between B and A is strengthened using the feedback rule. Additionally, the value of the strength of the lower-upper
connection between A and B is increased as well using the feed forward rule. If column C fires next in the sequence,
than the connections between B and C are modified in the same way as between A and B. Column D is the next to fire
in the illustration. Again, the connections between C and D are modified appropriately. After some time depending on
the learning schema used, two chains are recorded as shown in Figure 9. When using the probabilistic learning rules,
the chains are formed just after one presentation of the sequence. The hebbian schema usually require more time to
form the associations.
The first chain links the upper divisions of the columns through the upper-upper connections. It is created in the
reverse direction to that of the firing columns. If the firing of column B is treated as a consequence of the firing of col-
umn A, than spreading a low level activity from B to A may be understood as a call, or a search, for the reason of B fir-

/-759

ing. The same reasoning applies to all columns in the chain. Therefore, if D is activated at a low level and that activity
is propagated to C to B to A, than that is a search for the reasons of D
fing. If D represents a desired state of the observed system, than

0 ABCD is one of the possible paths to satisfy that goal. The chain that
is generated between the upper divisions is, therefore, called a call
chain.

0 The increasing strength in the lower-upper connections between A,
B. C and D, constitutes another chain. That is called an action chain,
because if any of the column of the chain gets highly activated, it will
cause the next column in the chain to fire as well. That type of chain
requires many more repetitive presentations of the input sequence*than the call chain.

3.3 Call trees - a breadth-first search
3.3.1 A call tree

* When a goal node is activated, like node G in Figure 10, its activity

spreads along all chains that were recorded. It is not a single call
FIGURE 8. Learning a sequence. chain created anymore; it is a call tree. The activity will spread in

steps into all directions that may be the solution to the problem.
The nodes that are already in the active call tree are shadowed. CALL
The arrows that are outlined indicate the recorded direction of the .' ... I"
call - the connections that were strengthened in the past due to X
the columns firing in the opposite direction. One of the chains, or
paths, of the tree has been labeled. Column G is the goal, that is ACTION
the root of the call tree. Each of the subsequently activated col-
umns, A, B and C, becomes a subgoal to achieve the main goal
G. In Figure 10, column D is activated as the next subgoal and FIGURE 9. Two learned chains.
added, in that way, to the chain GABCD. In the same step, many
other new leaves are added in the same way to the tree.

0 0 0 0 0 0 0 0 3.3.2 Triggering the resolution

0 0 0 0,000 The activity initiated by the goal column spreads
0 0 4 ..0 a (1 000 throughout the network until one of the columns in the

tree fires. That may happen due to the sensory input, as
0 0 1 0 0 illustrated in Figure 11, or through the accumulation of

. sufficiently high activity in the upper division caused by
0 cro - 0 o"i) 0 action potentials arriving through several cortical inputs.
0 00 0 0 >

(, 0 0 0 A a Although the activity may continue to spread out along
" o other branches of the tree, the propagation in this particu-

0 0 0 gh 0 0 0 co lar chain is terminated. The external input to the firing
column means that there is an observation made now or a
clue, or an axiom, set a priori, that indicates that this path

000 00000 may lead to achieving the goal. The firing column, col-
umn D in Figure 11, is called the trigger of the solution to

0 0 1 0 0 a 0 0 the posed problem.
Note that the use of an eye and a hand in the figures is

0 0 ._ _v ., . 0 only a means to better visualize the processes occurring
0 0 W 0 0 in the neurosolver. The reader should consider those sym-

A O Dbols to be representations of any type of sensations and
0 do actions. For example, the trigger can be just a state of
0 O 00 0 0.a A a mind that is sufficient to trigger an action along the path

toward the solution of the problem. The effector that is
0 0 0 0 0 0 represented by the hand can range from a robot arm to a

voice synthesizer explaining the solution to the user
0 00 0 0 0 0 0applying pre-built rules associated with each node.

FIGURE 10. The construction of a call tree.

3.3.3 The resolution path
The trigger of the problem resolution, the column that fires first in the search path, is, subsequently, shut down. The
firing and shutting down of column D means that the subgoal represented by that column has been satisfied. If the
Lower-Upper connection to the next node in the tree in the direction toward the root, from D to C in Figure 12, is
strong enough, the action potential that it carries to the recipient sums up with the sustained expectation activity in the

11-760

receiver and may cause the next column to fire. That is shown in the figure: column C fires. Similar processes occur
now in column C. There might be a connection from the firing column to the effectors, so in addition to perhaps trig-
gering the firing of the next column in the search tree, the 0 o 0 o o 0 0
firing of that column might have some impact on the
observed system because of the changes to the activity pat- 0 0 0 0. 0 0
terns of the output of the neurosolver that impact the effec- o o 0
tors. In that way, a part of the overall task has been carried 0 0 - - 0 0 0

3.3.4 Sensory-guided resolution O - 0 ? g 0
It may happen, that the Lower-Upper connection between 0 00 0 0 O a A

the firing column and the target columns in the call tree are
weak. None of them can fire. In that case, the system cannot 0 0 0 0 0 0
decide what the next step in the resolution of the problem
should be. The resolution is suspended waiting for further 0 00 0 000
clues. The activity can again be spread throughout the net- FIGURE 11. The resolution trigger.
work in an attempt to search for the dues. The explorations may lead to partial resolutions being found in other parts
00000000 of the call tree. That may affect the system. For example,

one of the columns in the original path that was not getting
0 0000000 sufficiently high signals might suddenly receive a thalamic

0 00input and finally fire. The implication is that the clue the
neurosolver has been waiting for has been found. The reso-O O ~~ *O O lution may proceed further in this branch.

, If the Neurosolver is unable to solve a task or has some

O6 0 0 0 0 doubts about the next step in the solution, the activity pat-
0 terns may be interpreted as requests to update the context

0 0with a new or more detailed data. That may be considered
000 00 0 Oas one of the external actions controlled by the Neuro-

solver. That action may include explorations in search for
000 00 0 0 new data.

FIGURE 12. The resolution.

3.3.5 The goal satidaction
When a column fires, and is shut down by the inhibition action described before, the activity in its upper division, of
course, disappears. Subsequently, all columns that have been activated by the firing column in the call tree will also
shut down as the result, unles, they receive input signals from other sources. Actually, the whole sub-tree of the call
tree with the inhibited column as its root is shut down.

3.4 Action trees

Sometimes, certain sequences of events occurring in the system and corresponding changes to the patterns of colum-
nar activity happen very often. As a consequence, the strength of the connections from lower to upper divisions of the
columns involved grow considerably in the direction of the firing sequence. The connections become so strong that
they are able to induce a high level of activity in the recipients in the chain even without any expectation activity. Each
of the columns involved realizes a part of a certain action by outputing action potentials to the effectors, so the chain
generated in that way is called an action tree.

4.0 BIBLIOGRAPHY
I l I Szentagothai, J., "The module concept in cerebral cortex architecture", Brain Research, 1979.
[21 Mountcastle, V. B., "An organization principle for cerebral function: the unit module and the distributed system".
In "The Mindful Brain", Schmitt, F. 0., MIT Press, Cambridge, 1978.
[31 Zeki, S. and Shipp, S., "The functional logic of cortical connections", Nature, Vol.335, pp. 311-317.
[41 Ballard, D. H., "Cortical connections and parallel processing: structure and function", Behavioral and Brain
Sciences, 1986.
[5) Burnod, Y., "An adaptive neural network: the cerebral cortex", Masson, Paris, 1988.
161 Kohonen, T., "Self-organization and associative memory", Springer-Verlag, Berlin, 2nd edition, 1988.
[7] Cho, B., Rosenbloom, P. S. and Dolan, C. P., "Neuro-Soar: A neural network architecture for goal-oriented
behavior", Proceedings of Thirteenth Annual Conference of the Cognitive Science Society, Chicago, Lawrence
Erlbaum Associates, 1991.
18] Newell A. and Simon, H. A., "GPS: A program that simulates human thought', in Feigenbaum, E. A. and Feld-
man, J. (Eds.), "Computer and thought', McGrawHill, New York, 1963.
Laird, J. E., Newell, A. and Rosenbloom, P. S., "SOAR: An architecture for general intelligence", Artificial Intelli-
gence, Vol. 33, pp. 1-64, 1987

11-761

On the Relation between Topology and Geometry

in Biological Neural Networks

G. A. Chauvet

Institut de Biologic Worique, Universitd d'Angers, 49100 Angers (France), and
Department of Biomedical Engineering and Program for Neuroscience

University of Southern California, Los Angeles, CA 90089 (USA)

Abstract: Coupling of topology and geomevy, i.e. of connectivity between structures of the nervous tissue and their
anatomy, is investigated in biological neural networks. It is shown that a function called the synaptic density-
connectivity function plays a central role in the description of the dynamical processes. The topology of the neural
network, i.e. the functional organization, is described in terms of non-symmetric functional interactions. The
continuous geometry imposes non-local dynamics described in terms of fields at each level of the functional
organization. Learning rules are discussed in the framework of this theory.

Introduction
Most studies of biological neural networks involve learning in a network of neurons assumed to

be automata for a given connectivity (15-171. A major reason for using automata theory is the case of
implementing the learning algorithms on digital computers. These "formal" or "artificial" neural networks,
are based on two specific nervous properties, synaptic modifiability and non-linear spatial summation of
inputs. However, biological constraints are now commonly introduced in neural networks [1,2,5]. We
discuss a basic aspect of a new approach published elsewhere in more mathematical terms [6,7].

The Hierarchical Organization of Biological Neural Networks

Functional organization
From receptor-channel complexes to groups of neurons, the structure of the nervous tissue is

hierarchically organized: each group contains neurons, each neuron contains synapses, each synapse
contains receptor-channel complexes (RCC). However, the reality is sometimes more difficult to describe.
For example, the cerebellar cortex contains groups of neurons corresponding to microzones, and composed
of a certain number of Purkinje units defined by several cell types, such as granule, basket, star and Golgi
cells. Each of these cells have synapses, and each of these synapses have receptor-channel complexes.

Thus, it is clear that the simple structural hierarchy presented above does not correspond to the
actual functional hierarchy: some synapses are modifiable and result in learning rules, others are not
modifiable; some neurons have specific electric properties, others have different properties due to the
different values of the parameters in the Hodgkin-Huxley equation for ionic transport, moreover, the
extracellular space is not necessarily homogeneous. It is therefore more convenient to bring together the
structures (groups, neurons, synapses, RCC) that are involved in a given physiological function. Such a
classification of nervous structures (called structural units) gives rise to the functional organization [8] of
the biological system.

One problem is to define properly the physiological function. Because it corresponds to the
dynamics of the corresponding structural units, the time scale of the process plays an important role. The
level of organization is defined by the time scale in such a way that the global dynamics result from the
patial dynamics decoupled in time at each level. For example, there are at least two time scales for the

II-762

synaptic efficacy p: the short-term modifiability pr in the long-term time scale {T} of the activity, called
"instantaneous", and the long-term modifiability p, in the long time scale {ti, e.g., the Long-Term
Potentiation (LTP). Thus, there are two levels of functional organization, one for the activity and the
synaptic efficacy pr, the other for the synaptic efficacy p, [9]. To each of them corresponds a collective
behaviour of structural units described by the dynamics at this level. We have called En" these lower-level
structures, the physiological function being the long-term synaptic modifiability. They involve all the
structures that participate in this time variation of p, , e.g., extra- and intra-synaptic channels and receptors,
chemical pathways incorporating cAMP, cytoskeleton. We have proposed to call these structures
"synapsons". At the higher level, denoted as E9, we find all the structures that participate in the emission
of an action potential, i.e. the synapses with short-term modifiability pr, and the extra-synaptic channels
and possible receptors in this short time scale. This level E" is the neural network. Of course there exists
the lowest level, the molecular level, called Em', which is constitutes a structural unit in EA , and which
is possibly defined by another time scale. The proposed functional organization of the neural network is
described in Fig. 1.

MUons

N,_ N, Since the structural organization differs

, , - 'V , \ from the functional organization, it is important to
/ ,,'. / , ' determine the levels of functional hierarchy which

du S,%s E7 are related to the dynamics through the time

/r -. scales.

% ", .. Non-symmetric functional interactions
.3 .An analysis of the functional organization

S // \ , C , shows that it can be decomposed into a set of

non-symmetric interactions between the structuralmohc-tim

Figure 1: Functional hierarchy for the neural network units, sources and sinks, at each of the levels in
the hierarchy [81. In Ew , a neuron acts on
another through the synapses in the same time

scale. More specifically, in the framework of the present formalized description, the set
E {s,a=l,n} of n, synapsons s. constitutes the l-neuron. The collective behavior of Er", the

source, is to produce an action potential IF, that acts upon another set EAp a {s2,a=l,n2} ofn2
synapsons, the sink, i.e. a 2-neuron set, that produces an action potential Tl2 (Fig.l). Therefore, the set
of neurons E m, which is a real neural network localized in a space denoted the r -space, constitutes a
third level of organization. In other words, a structural unit of the neural network (the neuron) is
composed, at the lower level, of the structural units that are represented by one set of synapsons, with non-
symmetric functional interactions between them due to their connectivity. These interactions couple the
two levels of organization, because one neuron is connected to other neurons via their synaptic
connections, i.e. the units of the second level directly connect (regarding their topology and not their
possible distance) the units of the first level. The transport of the signal membrane potential between two
neurons I and 2 can be expressed by:

(1) ' 2 = V412(y)

Due to the construction of the functional organization, the same schema applies to the lower level:
a structural unit of the synaptic network (the synapson) is composed, at the lower level, of the structural
units that are represented by one set of intra- and extrasynaptic channels and cytoplasmic chemical
parthways, with functional interactions between them due to their connectivity. The transport of the signal
between two synapsons s, and s2 is described according to the equation:

(2)

11-763

where 01 is the postsynaptic potential that0 2(s2) = P12(0,;s,)
results from a sequence of phenomena such
as transmitter release in the synaptic cleft, binding with postsynaptic receptors, and ion channel activation.
The couplings between the two levels of organization E and e is described by the following equation
deduced from (1) and (2):
(3) 412 = F [(0a.),, (0.) 2 ; Pz12, 2]

where r2 represents transformations in the 2-neuron, and (0,). is the postsynaptic potential at the
synapson a in the i-neuron.

In conclusion: (i) the description of the dynamics in the framework of the functional organization
leads to introducing dynamics at each level of the hierarchy defined by the time scale of the processes;
(ii) This abstract formulation, in terms of non-symmetric functional interactions, leads to the determination
of equations (2) and (3); (iii) the functional organization is described by a directed graph in which the
nodes are the structutral units and the oriented edges are the non-symmetric functional interactions. This
graph, called the (O-FBS, Organization of the Formal Biological System) , represents the topology of the
neural network.

The Continuous Geometry of Biological Neural Networks

Interpretation in terms of fields
In the previous section, equations (2) and (3) formally described the transport of the interaction

from a structural 1-unit to another 2-unit in each level of the functional organization. Only the topological
data were concerned, i.e. the fact that the interaction is emitted by the I-unit and acts upon the 2-unit.

WObviously, structural 1- and 2-units of the
neural network E£ are located in physical space,
at some points r, and r2 respectively, and

80UM sk"structural 1- and 2-units of the synaptic network
are located in physical space, at some points

HI (oerto) rV1T, S, and s2 respectively. Therefore, equations (2) and
(3) become:

W~ripT)rWKT, (4) 0 2Ws = P2IS

Figure 2: Representation of the fields,# (5) 'P2(r) = V 12 ['P(r) ; P,2, r 2 1

This equation expresses the membrane potential at
r2 as the result of the transport of the membrane potential I' at r,, under the influence of some
transformations r2 in the 2-neuron, and P,2 in the synapses.

The geometry of the nervous tissue is thus included in the formulation. However, the finiteness
of the velocity of the signal propagation has an influence on the dynamics whenever structural units are
at definite locations in physical space. This involves delays which are related to the time scales at each
level of organization.

Now, equations (4) and (5) may be interpreted as follows. For example, taking equation (5),
because the action potential 'I' at r, is unidirectionnaly transformed into another action potential '2 at r2
(under certain physiological conditions), we can say that some variable V at a point r and at time t is

11-764

transported to another point at a later time (due to the finiteness of the velocity) under the effect of a non-
symmetric operator H. depending on a source r. The same interpretation for equation (4) is valid. Thus,
we have the same formulation at each i-level of the functional organization:

(6) H ' 'V(r, t) = 11'Vr, t)

In terms of field theory, the field a(rt) is propagated from one point to another in physical space under
the effect of H (Fig.2). Therefore, what is observed at point (r2,t) results from what was emitted at point
(rxt) where t2 = t,+ r2-rl|/v and v is the velocity of the interaction. Since the space of synapsons is
structurally included in the space of neurons, and since two time scales are functionally attached to these
spaces, a hierarchical functional system is defined by the two field variables 14O)(r,t), soma membrane
potential, and V')(rt), synaptic efficacy. This formalism generalizes to n levels the descriptions already
offered for one level [3,12-14,201.

Consequence of the continuous geometry: non-locality

However, a basic difficulty appears in this continuous formulation: what is the field variable at
a point r ? As discussed in (7), because of the functional hierarchy, a point such as r does not exist. The
point r is a volume in physical space, where the phenomena involved in the emission of the field variable
14(r,t) occur. The schema of the propagation from one point to another (Fig.2) is, in reality, an interaction
between two volumes (Fig.3).

In physical space, the location of a
structural unit at r is denoted by x, (Fig.3) and
the location of units at the lower level by x,
Since the structural unit is not reducible to a point
from which the interaction originates, it is difficult
to locate x, and x,. This fundamental incertitude
raises conceptual and technical difficulties in the
use of a field theory in biology. We have chosen
to represent the biological structure in "spaces of

, zr ., Xro / X units", i.e. r-space and s-space with the above
"/, notations, which are the abstract spaces where the

functional process occurs. The field variable
r s5Paof uts rO r "soma membrane potential" evolves from r to

Figure 3: Non-locality: interaction between volumes in r+dr in the continuous r-space, i.e. between two
the physical space, NOT between points infinitesimally close neurons, considered to be

points. But, the structural unit "neuron" is not
reducible to a point because other different

structural units "synapsons" exist in the neuron.

This fact is crucial, because it imposes that H be a non-local operator. The existence of non-
locality appears to be a general fact in biology, due to the hierarchy and the geometry of the biological
system. The non-local term can be determined by writing the balance equation at each of the levels [71:
it represents all the inputs from the sub-levels, i.e. the transport of the field variable in the physical space
from x, to ,+dx,. The action potential resulting at level 2 from membrane potential is propagated from
one axon hillock to another, which means that x, is its coordinate. In the same way, the synaptic efficacy
is propagated from one synapson to another, which means that x, is its coordinate.

In conclusion, taking into account of both the continuous geometry and the functional hierarchy
of the nervous tissue leads to considering non-local dynamics for a description of the processes. We call

11-765

the corresponding dynamical system (D-FBS for Dynamics of the Formal Biological System).

Relation Topology-Geometry in Biological Neural Networks: Density-connectivity

Let us use the following notations: ro denotes the present point in the r-space; r, denotes the
points where presynaptic neurons are located. Subscript i is used to represent the rank of the synapse
relatively to r). For e:. ample, neurons at r, are connected to neurons at r. via a monosynaptic pathway,
neurons at r2 are connected to neurons at ro via a disynaptic pathway, i.e. with neurons at r, via a
monosynaptic pathway. Points r,, r i are points such as r, in r-space, r, r,' are points such as r2 , etc
(Fig. 4). When the subscript for an afferent neuron points is not specified, a monosynaptic pathway is
assumed.

Non-ocal Functlonal Int1cn V T, T, T.-d/v T.
LEVEL 2 The "local postsynaptic membrane potential" is
Tlmen

SPACE OF NEURONS denoted as 0(s,t) at a point (s,t) in the space of one
, ,, r, neuron at (re,T) and corresponds to a presynaptic

neuron at (r,T). The "local somatic depolarization' is
denoted as IV(ro,T) at the axon hillock at (roT o) in
the space of neurons. With these definitions, a general
definition of sypaptic efficacy between presynaptic

LEVEL I neurons in r and postsynaptic neurons in r0 at

SPACE OF SYNAPSES synapses in s(r, rd is p(s,t). This expression for p

lnms depends implicitly on the mechanisms for pre-synaptic
D.(r,r,) - p efficacy with <iV>(t), and on the mechanisms for

Figure 4: Notations for a polysynaptic pathway post-synaptic efficacy with c1 . The "instantaneous
local somatic activity" X(ro,Td in the time scale {T)
is deduced from q by a non-linear, generally sigmoi'd

input-output function F :

(7) X(roTo) a X(<V(ro,To)>) = F(<V(ro,To)>(T))

Therefore, the passage from one level of organization (synapse) to a higher level (neuron) with q and p
as local somatic depolarization and local synaptic efficacy respectively, leads us to our considering the
,#-field and the p-field as varying in two different spaces whose points are denoted by (r) and (s,t)
respectively. A given space at one point of a given level is a point for the next higher level. This is the
hierarchical structure due to the continuous geometry.

x (s',r;r,) The role of topology, i e., the connectivity,
, Dp D. (r,r,) UD ,(r',r,) may be seen as follows. Non-local potentials depend

W(r',') D. (r,rj S on membrane receptors and neurotransmitters: the
W(r.,Tj postsynaptic potential at s in the neuron localized at ro,

r ro ,which is connected with neurons at r, results from

other synapses localized at s' on the same dendritic
W(r,T) D. (rsr tree, due to the activation of neurons localized in r'

(Fig. 5). These heterosynaptic effects depend on two
p(s,r;r) anatomical functions: (i) the synaptic

Figure 5: Definition of the spaces of units: spaces density-connectivity x(s Ixr1; rd which is defined in a
of neurons (axon hillocks) and synapsons. space D,(r1','d and constituted by the density of

synapses localized at s(r',r) in the neurons at r0,

11-766

which are connected with a certain probability to the neurons at r'. (ii) the density of neurons p(r') at
r' which is defined in space DR(r) , the recombination of subspaces D(r'r) when r' varies. It is
possible to describe this field effect as a distance effect with a mathematical potential kernel function
U,(s, t.s, ,; 4m) where the variables: presynaptic efficacy and postsynaptic efficacy 11 are
considered as parameters that are defined at the lower level. The interaction operator is:

(8) H10 = ic~' (,Ussts.' 1)(s1.r1;rd dsdrl

where

s m sr. ro)
DR(r) = UD(r',ro)

It

Thus, U. is a function which has to include the set of phenomena which occur at s' and act upon s
(Figs.5). For example, the passive conduction implies an attenuation of potential between these two points
[18]. The potential 0 is modified (84D) due to a variation in the number of activated receptors that
occurs as a consequence of biochemical dynamics. The derivation of non-local expressions for Iandp
results from the expression of non-local interaction operators such as (8) [6].

In conclusion, coupling between topology and geometry in the nervous tissue is made up by the
synaptic density-connectivity function that plays a crucial role in the non-local dynamics. Specifically, the
learning rules are involved in the non-local interaction operator, i.e. the source of the field, because they
are produced by the dynamics at the lower levels. The present formulation provides means of deducing
the learning rules from the molecular level.

Discussion and Conclusion: On the Structure of Learning Rules

Neural field equations: We have shown [6] that the neural field equations at each level of the functional
organization may be written:

(9-1) 0p(st) = V,(D 'V(st)) + p(r ') ,, 0 o(s ',t')(s',r';r)A(ss')ds'dr' +P(st)

(9-2)
v(roTd V,(D ',(ro.To)) + P(r)I(r.) 0P(s4)(srr)B(ro.Tor.T)dsdr + r,(r,7)

where D' and D' are the diffusion coefficients, A and B are the "propagators", i.e. the space and time
functions that describe the non-local transport Thus, in these equations: the first terms represent the
dision transport through the extra-unit space, extracellular space for neurons, and membrane and
cytoplasm for synapsons; the second terms are the non-local sources of the fields, i.e. represent the
propagation through the intra-units space; the third terms represent the local sources. Learning rules are
expressed in Eq. (9.1) through the sources, local and non-local, which involve the dynamics at the lower,
molecular level.

Suppression of the geometry: connectionnist neural network. The geometry can be suppressed by choosing
the density of neurons and the density-connectivity of synapses as Dirac functions that concentrate all the
neurons at one point, and by suppressing the delays between neurons, i.e. an infinite velocity of

11-767

propagation: p(r') =8(r' -r)and x(s',r'; rd =8(sI -s) which implies: A(s,s') =-I and
B(roTor,7) = 1. Assuming an appropriate non-local interaction operator, i.e. certain dynamics in the
sources, we can retrieve the classical continuous equations that describe the neural network [10,11]. Thus,
we have here the means to define new learning rules, or at least interpreting the form of Hebbian learning
rules [4,19].

Acknowledgments: The author is very grateful to the Conseil Gdndral de Maine-et-Loire and to the DRED

(France) for having supported this research, and to Pr. T.W. Berger for very helpful discussions.

References

1. Ambros-Ingerson, J., Granger, R., and Lynch, G. (1990): Simulation of paleocortex performs hierarchical
clustering.. Science, 247:1344-1348.
2. Berger, T.W., Harty, T.P., Barrionuevo, G., and Sclabassi, RJ. (1989): Modeling of Neuronal Networks Through
Experimental Decomposition. In: Advanced Methods of Physiological System Modeling, edited by V.Z. Marmarelis,
pp. 113-128. Publishing Corporation,
3. Beurle, R.L. (1956): Properties of a mass of cells capable of regenerating pulses. Philos.TransfR.Soc.Lond.,
668,240:.8-94.
4. Brown, T.H., Kairiss, E.W., and Keenan, C.L. (1990): Hebbian synapses: Biophysical mechanisms and algorithms.
Annu.Rev.Neurosci., 13:475-511.
5. Chapeau-Blondeau, F. and Chauvet, G.A. (1991): A neural network model of the cerebellar cortex performing
dynamic associations. Biol.Cybern., 65:267-279.
6. Chauvet, GA. (1993): An n-Level field theory of biological neural network. J.Math.Biol., 31:
7. Chauvet, G.A. (1993): Non-locality in biological systems results from hierarchy: Application to the nervous
system. JMath.Biol., 31:475-486.
8. Chauvet, GA. (1993): Hierarchical functional organization of formal biological systems: a dynamical approach
I. An increase of complexity by self-association increases the domain of stability of a biological system.
PhiI.Trans.R.SocJ,ond8, 339:425-444.
9. Chauvet, G.A. (1993): Hierarchical functional organization of formal biological systems: a dynamical approach.
U. The concept of non-symmetry leads to a criterion of evolution deduced from an optimum principle of the (0-FBS)
sub-system. Phil.Trans.R.SocLond.B, 339:445-461.
10. Cooper, L.N. and Scofield, C.L. (1988): Mean-field theory of a neural network. ProcNatlAcad.Sci., USA,
85:1973-1977.
11. Easton, P. and Gordon, P. (1984): Stabilization of hebbian neural nets by inhibitory learning. Biol.Cybern.,
51:1-9.
12. Griffith, J. (1963): A field theory of neural nets. I-. Bull.Math.Biophys., 25:111-120.
13. Griffith, J. (1965): A field theory of neural nets. I-. BulI.Math.Biophys., 27:187-195.
14. Grossberg, S. (1969): Some network that can learn, remember, and reproduce any number of complicated
space-time patterns, I. J.Math.Mech., 19,1:53-91.
15. Hopfield, JJ. (1982): Neural networks and physical systems with emergent collective computational abilities.
Proc.NatlAcad.Sci., USA, 2554-2558.
16. Hopfield, JJ. (1984): Neurons with graded response have collective computational properties like those of
two-state neurons. Proc.NatIAcad.Sci., USA, 3088-2092.
17. Peretto, P. (1984): Collective properties of neural networks: a statistical physics approach. Biol.Cybern.,
50:51-62.
18. Rail, W. (1962): Electrophysiology of a dendritic neuron model. BiophysJ., 2:145-167.
19. Sejnovski, TJ. (1977): Storing covariance with non-linearly interacting neurons. J.Math.Biol., 4:303-321.
20. Wilson, H.R. and Cowan, J.D. (1972): Excitatory and inhibitory interactions in localized populations of model
neurons. Biophysi., 12:1-24.

11-768

Average firing-rate of a compartmental model network with randomly
distributed synaptic background activity.

Paul C. Bressloff

Department of Mathematical Sciences, Loughborough University of Technology,
Loughborough, Leicestershire LE1l 3TU

Abstract. The ensemble-averaged response function of a compartmental model neuron
with randomly distributed synaptic background activity is calculated using a coherent
potential approximation. This is used to determine the steady-state firing-rate of a
recurrent neural network. The firing-rate is found to decrease as the mean level of
background activity across the network is increased; a uniform background (zero
variance) leads to a greater reduction than a randomly distributed one (non-zero
variance).

1. Compartmental model neuron.

Consider a compartmental model neuron [1] that consists of a chain of 2M+1 dendritic
compartments labelled m = 0, ± 1,...,±M together with a single somatic compartment. The
passive membrane properties of each compartment m may be represented electrically in terms
of an equivalent circuit consisting of a membrane leakage resistor Rm in parallel with a

capacitor Cm, with the ground representing the extracellular medium (assumed to be an

isopotential). The electrical potential Vm across the membrane is measured with respect to the

resting potential, i.e. the potential when there is no current flowing across the membrane. The
compartment is joined to its immediate neighbours in the chain by the junctional resistors
Rm'n_ 1 and Rmnm+1. We shall also assume that each compartment contains two groups of

identical synapses, one excitatory and the other inhibitory. The time evolution of the membrane
potential is then given by

CmdVm- =- m + Vn-Vm +Em(t4S(e) Vm(t)]+Irn(t)[s(i) Vm(t)] (1)
CMdt R m - Rm<n;m> mn

where Em and 1m are respectively the net rates of excitation and inhibition of the mth

compartment, and S(e), S(i) are the corresponding membrane reversal potentials with S(e) > 0

and S(i) < 0. Here <n;m> indicates that the summation over n is restricted to immediate
neighbours of m. Note that more complex dendritic geometries can be modelled by taking the
compartments to lie on the nodes of a tree. However, for the purposes of this paper it will be
sufficient to consider the simpler one-dimensional lattice. A major simplification of the model is
to view the soma as a point processor that is isopotential with the dendritic compartment
nearest to it. The latter is chosen to be at the centre of the chain so that the membrane potential
of the soma satisfies V a V0 . (This choice allows us to ignore end effects in the large chain limit).

If V(t) is slowly varying, then one can approximate the instantaneous firing-rate f(t) of the
neuron by a sigmoid function f(t) = F(V(t)) = fmaX/(1+exp(-g(V(t)-i)) for some gain g and

threshold K. The maximum firing-rate fmax is determined by the absolute refractory period.

It is convenient to rewrite equation (1) in the form

11-769

dt n QmnVn(t)- Am(t)Vm(t)+ Bm(t), (2)dt n

where Am(t) = Em(t) + Im(t), Bm(t) = S(e)Em(t) + S(i)Im(t), and

Qmn --- r+ k mn+ , n m =Rmem, 'Rm (3)
Ti <m-;m> m'm <m.;r> mm,

We shall refer to Am(t)Vm(t) as a shunting term since it arises from the voltage-dependent

contribution to the synaptic input of equation (1). It is clear from equations (2) and (3) that one
can interpret the shunting term as an input-dependent modification of the membrane time
constant m, i.e., 1Am - 1/m + Am(t). Integrating equation (1) with respect to t leads to the

Volterra integral equation (cf. Poggio and Torre [2])

t
Vm (t)= nGmn(t)Vn(O)+ Jdt'y nGrn (t- t')[Bn(t')- An(t')Vn(t')], t0 0 (4)

0

where Gn(t) = [etQ]mn. We identify Gnm(t) as the membrane potential response function or

Green's function of the dendritic chain in the absence of shunting. That is Gmn(t') determines

the membrane potential of compartment m at time t in response to a voltage-independent input
current stimulation of compartment n at time t-t'. A simple analytical expression can be derived
for the Green's function of an infinite uniform chain. The uniformity condition is imposed by
setting Rm = K C m = C, Rm,m+1 = Rm+i,m = R', ' = RC, t = R'C. Then expanding the matrix

etQ in powers of t, and using results from the theory of random walks on a lattice one finds that
[3]

Gmn(t) = [etQ n- -e d-k(m-n)e-t((k) 1 -cosk)(

Note that this expression can be generalized to the case of more complex dendritic topologies [4].
Equation (4) has the formal solution

t

Vm (t) = n Gmn (t,O)V n (O) + f dt' dnGmn(t, t')Bn (t') (6)
0

where Gni is the so called renormalized response function defined by the Dyson equation

t

Gmn(t,t') = Gmn(t - t') - fdt" kGmk(t - t")Ak(t")Gkn (t",t') (7)
0

Note that Gmn reduces to Gmn when the shunting terms An(t)Vn(t) are absent from equation
(4). The right-hand side of equation (7) may be expanded as a Neumann series in Ak(t) and

Gn(t), which is convergent for bounded continuous functions Ak(t) [2].

1I-770

2. Low-firing rates in a recurrent compartmental model network

In the presence of shunting the membrane potential Vm satisfying equation (6) is a nonlinear

function of the excitatory and inhibitory inputs Em and Im . As pointed out previously (5,31, this

feature is important since a recurrent network of such neurons can operate in a regime of self-
sustained firing in which the neurons are firing well below their maximum rate fmax; this is

consistent with what is observed in real cortical systems. (Standard associative networks, on
the other hand, consist of neurons whose membrane potential or activation state is linear in
inputs so that they tend to fire at their maximum rate [61).

To illustrate this point in more detail, we shall follow the discussion of Ref. [3] and

determine the steady-state value V' of the membrane potential at the suma in the case of the
infinite uniform dendritic chain with time-independent inputs. We shall take the pattern of
input stimulation to be in the form of non-recurrent lateral inhibition .That is, an input that

excites the mth compartment also inhibits all other compartments in the chain so that In =

En,*mEn. We also choose a pattern of excitatory stimulation for which (i) E0 = 0 (no direct

stimulation of the soma), and (ii) En = anE, for n * 0 with En Oan = 1 (fixed relative distribution

of excitation across chain). Finally, we restrict our discussion to the case of shunting inhibition,

S(i) = 0. In other words, the inhibitory inputs only contribute to the modification of the time
constant Am and not the effective external input Bm .Under these assumptions we see that

Am= E and Bm = S(e)amE. Since Am is time-independent, we have Gun(t,t') = dinn(t-t')

Taking the limit t -+ -c in equation (6), leads to the result that the steady-state potential

Vcc at the soma (m = 0) is

V- (E) = S(e)E an An(0;E) (8)
n*O

where G1 m(s;E) is the Laplace transform of Gnn(t), and we have indicated that G depends

explicitly on E. To determine qm(s;E) we Laplace transform equation (7) to obtain (in matrix

form)

((s) 1G(S) (s + E) (9) m

I + G(s)E (s + E) -Q

where 7 is the unit matrix and G(s) is the Laplace transform of G(t), equation (5). In deriving

equation (9) we have used the fact that G(s), is equal to the inverse matrix (sI-Q)-1 . Moreover, it
can be shown using equation (5) that for a uniform, infinite dendritic chain

Go n (E) = T 1 1+()2 - 1 (10)
X+(E X ()2 ~2

It follows from equations (9) and (10) that (0E) = G(E), and hence that the steady-state is a

nonlinear function of the input rate of excitation E. For low levels of excitation E, V' is
approximately a linear function of E. However, as E increases, the contribution of shunting

inhibition to the effective time constant becomes more and more significant and Vcc eventually

1-771

begins to decrease with V(E) -+ 0 as E -oo.

Now consider a population of excitatory neurons each of which has the pattern of
stimulation as described above with the net excitatory rate E impinging on an individual
neuron being determined by the average firing-rate <f> of the population. For a large
population, a reasonable approximation is to take PE = <f> for some constant P. Within a mean
field approach the steady-state behaviour is given by the self-consistency condition PE =

F(V'(E)), where F is the sigmoidal function and VM(E) satisfies equation (8). Using graphical

methods [5,31, it can be shown that there are two stable solutions, one corresponding to the
silent state E = 0 and the other to a state with a firing-rate well below fmax" On the other-hand,

in the absence of shunting Va°E) is a linear function of E and the second stable state has a
firing-rate close to fmax" Since the network settles into a state of a low firing-rate in the

presence of shunting one can take the output function F to be approximately linear. Such a
linearization will greatly simplify our subsequent analysis.

3. Synaptic background activity.

Suppose that a given neuron in the population has the same pattern of input stimulation as
before except that there is now an additional random background contribution to the inhibitory

rate Im -+ Im + 4m, with the km distributed randomly across the population of neurons

according to the probability density p(4) where p is site-independent. (For simplicity, any
correlations between 4's at different sites are discounted, <mn> = 0 for m * n). The steady-

state membrane potential at the soma of an arbitrary neuron in the population is now given by
equation (8) with G (s;E) determined by Laplace transforming equation (7) and performing a

series expansion,

Gmn Gn , Gmk(E + tk)Gkn + IGmk(E + k)Gkk'(E + k')Gk'n (11)
k k,k'

Note that here Am = E + km is site-dependent so that there is nolonger a simple relationship

between G and G. We wish to calculate the average firing-rate of the network. Using mean-field
arguments we have <f> = P3E for some 03 where E satisfies the self-consistency condition PE =

<F(V'(E))>t. The evaluation of the ensemble average over 4 is a non-trivial problem for a

nonlinear function F such as a sigmoidal. However, progress can be made if we assume that the

firing-rate is a linear function of V' (see previous comments) such that PE = a<(V(E))>4 + (p. for

constants a,q. As we shall show below, approximate expressions for the ensemble average of q

can be obtained using Green's function techniques familiar from the theory of disordered
crystalline solids [7].

At first sight it would appear that one could determine < G > by performing an ensemble
average of the right-hand side of equation (11) term by term. However, the resulting series
cannot be resummed exactly. The simplest and crudest approximation is to replace each factor

4m by the site-independent average .This leads to the so called virtual crystal approximation

(VCA) where (0;E) = G(E+ t). In other words, statistical fluctuations associated with the
random synaptic inputs are ignored so that the ensemble averaged Green's function is
equivalent to the Green's function of a uniform dendritic chain with a modified membrane time

constant, I/ - 1/i + E + t. When we attempt to take into account statistical fluctuations we

run into the difficulty that there are no restrictions imposed on the summation over site indices
so that an element tn may appear several times in the same product. For example, if a

1-772

particular term in the series expansion of equation (11) involves 42 then ensemble averaging

will lead to a contribution A = <k2 >, and in general the variance of 4 will be non-zero implying A
* t2. Thus the ensemble average of the series will lead to successively more complex

contributions from successive terms whose sum cannot be calculated exactly. Hence, various
approximation schemes have been developed to improve upon the VCA formulation.

The most effective single-site approximation scheme in the study of disordered lattices is
the so called coherent potential approximation (CPA). In the context of our neural network
model, this scheme involves taking each dendritic compartment to have an effective (site-

independent) background synaptic input i(E) for which the associated Green's function is

G (O;E) = $E+ X(E)). The self-energy term -(E) is assumed to take account of any statistical
fluctuations (at least at the single-site level), which leads to a self-consistency condition for

i(E) of the form [71

-4 i(E)) -p(4Wd= 0 (12)
1+ (4m - (E))G00(E + i(E))

This is an implicit equation for that can be solved numerically to obtain i(E) as a function of
E. A particularly simple choice for the distribution of the random background activity is to

assume that each dendritic compartment receives either an input 4A with probability PA or an

input 4B with probability PB = 1- PA. (cf. the tight-binding alloy model of disordered solids [7]).

Then equation (12) reduces to the algebraic equation

(+ E) og(E + E)) (13)1+ (tA + 4]3 -V E))Goo(E + :(E))'

which can be evaluated by iterative substitution in the denominator.

Once the self-energy i(E) has been determined from equation (13), the average firing-rate
of the network can then be found by numerically solving the mean field equation

PE = aS(e)Ej:nanon (E + 1(E)) + p. The required non-trivial solution is denoted by E*. The

results are displayed in figure 1 where the steady-state firing-rate f, f = OE*, is plotted for a

range Of AB values and an = 8n, 1. The firing-rate and the inputs E*, 4A,B are all measured in

units of I/, and the constant p is set to zero for simplicity. Two particular cases are considered.

The first is the variation of f with the mean t = PA4A + PBB for fixed variance 02 =

PAPB(4A-{B)2 , as shown in figure la for 0' = 0.01 and P' = 0.015, where 5' = P/aS(e). It can be

seen that the firing-rate decreases as the mean activity across the network increases. The

second case is the variation of f as a function of 32 for fixed t. Here the firing-rate increases as
the variance in the distribution of activity across the network increases, see figure lb.

4. Discuasion.

We conclude from the above results that (i) synaptic background activity can influence the
behaviour of a neural network and, in particular, leads to a reduction in a network's steady-
state firing-rate, and (ii) a uniform background reduces the firing-rate more than a randomly
distributed background. The main underlying mechanism of these effects is shunting, which
leads to an input-dependent modification of the effective membrane time constant of a neuron.

11-773

This feature has recently been observed experimentally [8,91, where variations in background
synaptic activity were found to produce a range of values for the time constant between 5-80ms.
The possible consequences of this from the viewpoint of temporal pattern processing have been

explored elsewhere [10, 3].
One simplification of our analysis was to take the firing-rate to be a linear function of the

membrane potential at the soma. A partial justification of this is that, in the absence of
background activity, the network settles into a state that has a relatively low firing-rate
corresponding to the linear regime of the sigmoid function. A fuller treatment would need to

evaluate ensemble averages of the form <F(V0)>4. One approach is to perform a perturbation

expansion in powers of the gain g leading to higher order terms such as < 0 > ; these can then

be evaluated using an extension of the CPA formalism presented here. Another possible
application of the CPA formalism is analysing the response to sinusoidal inputs. One is now
concerned with Fourier rather than Laplace transforms so that E is replaced by i'o where co is
the frequency of response. Consequently, the self-energy contribution becomes complex leading
to a non-trivial modification in both the phase and amplitude of response.

(a) 0.07- a j'-.01 (b) 0.05 -

0.06 0
0.5 f'=0.015 0.04- a

f_ 0.04 0 fr 0.03 a

0.03 0 S(e) 0

0.02
a

0.01 0 0.01 o0.01 o

0.00 .00, ,,*, 0.00 , , •

0 1 2 3 4. 5 6 0 10 20 2 30

Figure 1. Firing-rate f (in units of f 1) as a function of (a) the mean level of background activity
for fixed variance (A = 1), and (b) the background variance at a fixed level of mean activity

(=1).

References.

[1] W. Rail, In Neural Theory and Modeling, ed. R. F. Reiss. (Stanford: Stanford University
Press) pp. 73-97 (1964).
[21 T. Poggio and V. Torre. In: Lecture Notes in Biomathematics, 21, 89 (1977).
[3] P. C. Bressloff and J. G. Taylor. Phys. Rev. E. 47, 2899 (1993).
[4] P. C. Bressloff and J. G. Taylor. Biol. Cybern. 69 (1993).
[51 L. F. Abbott. Network 2, 245-258 (1991).
[6] D. J. Amit, Modelling Brain Function, (Cambridge: Cambridge University Press, 1989).
[7] J. M. Ziman, Models of Disorder (Cambridge: Cambridge University press, 1979).
[810. Bernander, R. J. Douglas, A. C. Martin, and C. Koch. Proc. Natl. Acad. Sci. U. S. A. 88
11569-11573 (1991).
[91 M. Rapp, Y. Yarom, and I. Segev. Neural Computation 4, 518-533 (1992).
[101 P. C. Bressloff. Network, 4, 155 (1993).

11-774

Cumulative Learning in a Scaffolded Neural Network

Rose Paradis and Eric Dietrich
Program in Philosophy and Computers and Systems Science(PACSS)

Binghamton University
Binghamton, New York 13902-6000

Abstract
The scaffolded network is a network of neural networks whose objective is to
test the hypothesis that the learning of complex concepts requires both a
developmental progression and multilile perspectives of input data. The
scaffolded network model incorporates three kinds of basic neural network
architectures: a recurrent cascade net, a Kohonen net, and a recurrent Elman
network and is motivated by physiological and psychological models. It is
tested by teaching it simple mathematical concepts and functions and then com-
paring output and intermediate results with studies from developmental psy-
chology. This design attempts to extend neural network capabilities to a more
robust approximation of the cognitive phenomenon of cumulative learning.

Introduction

We define cumulative learning as the process of learning new concepts based
on a foundation of concepts and categories either previously acquired or
innate. Cumulative learning is an inherently developmental process: It occurs
as the organism or system develops from an infant to an adult. An example of
cumulative learning is the elaboration of the concept of number that a child
acquires as she begins to learn basic arithmetic.

Cumulative learning contrasts with one-shot learning in which the system
learns a single concept or non-hierarchical group of concepts used for discrim-
inating a limited set of inputs. One-shot learning has commanded far more
attention in Al and cognitive science than cumulative learning (see Bates and
Elman, 1993). But one-shot learning takes for granted background and con-
ceptual information that should have been learned first to serve as a basis for
further learning. Using one-shot learning, machines will not be able to learn
complex concepts because such concepts are combinations of simpler concepts
arranged in intricate hierarchies. We believe more attention should be paid to
cumulative learning if we are ever to have robust theories of learning and
development in humans and other animals, and if we hope to build machines
that learn any of the complexities of the world that we come to know.

11-775

In this paper, we describe an architecture we call the scaffolded neural
network that appears to learn cumulatively. Our working domain is early
arithmetic, i.e. the numerical competencies learned by young children.

The Scaffolded Network Architecture

The scaffolded network comprises three neural networks: a recurrent cas-
caded correlation network (based on Fahlman and Lebiere, 1990), a Kohonen
network (based on Kohonen,1984) and a recurrent network (based on Elman,
1990). The network is called 'scaffolded' because though it is hierarchically
structured, Information does not flow linearly through the system from the
bottom Input layer to the top output layer. In a standard linear format, the
output of layer N is input to layer N+I, and the layers share information only
in this way. In our scaffolded network, the layers do indeed share input-
output information in the standard way, but they also share information from
their hidden layers, which represents learning and calculation in progress.
Furthermore, the information flow is.not always from layer N to layer N+1:
layer N also gets feedback from layer N+1 as well as from more distant non-
consecutive layers (see figure 1).

The scaffolded network's architecture is based on a physiological, functional
model of the brain developed by Paul MacLean (1991). MacLean's model, called
the triune brain model claims that there are three major assemblies of
mammalian brains called the "Reptilian" system, the "Limbic" (or
Paleomammalian) system, and the "Neocortical" (or neomammalian) system (the
R, L, and C complexes). MacLean's model is evolutionary and functional; the
R, L and C complexes are not anatomically precise. Devotion to implementing
the exact neuroanatomy of the brain is misguided at this stage of modeling
high-level cognitive processes such as cumulative learning. First, making an
anatomically correct model Is beyond the capabilities of current computers.
Secondly, definitions of systems based on anatomy only appear more precise
than those based on functionality: we don't know the precise anatomy of the
brain nor the precise roles of many known components. A strict, bottom-up
perspective, therefore, is not warranted at this time. A functional approach
provides the best level for formulating theories of high-level cognitive proc-
esses.

On MacLean's model, the three major divisions of mammalian brains have
evolved and expanded from the ancestral structures found in reptiles, early
mammals, and recent mammals. The R complex acts as an initial basic
processor, performing learning tasks that are associative and autonomic, and
then passing this data onto the other complexes. The L complex plays a
different role than the R complex in that it is a regulator of function in the 1
and C complexes, acting as controller at some times (clamping or activating
regions of the R and C complexes) and an assistant at other times (enhancing
the computational power of the R and C complexes). The C complex provides
a higher level of learning capacity than the R complex, gathering data from
the other two complexes and using the information to do more sophisticated
functions such as problem solving.

1-776

The scaffolded architecture mimics the relationships of the triune brain,
having three identifiable networks that perform functionally like the R, L and
C complexes: the recurrent cascade network, the Kohonen network and the
recurrent network (see Figure 1). Each network in the scaffolded model has
different input, hidden and output nodes, and acts on different aspects of the
information presented. The recurrent cascade network is analogous to the R
complex. It takes all the training data as input and constructs associations
between them. Output from this network is passed to the Kohonen network;
hidden layer information is passed back to itself and intermittently to the
recurrent and the Kohonen nets. Because this network compresses input
information necessary for progressive learning sequences, the information that
is sent to the other networks is not sent on every cycle of its processing.

The recurrent cascade network is in a class of ontogenic neural networks that
develop their architecture as they learn instead of requiring the user to
specify the architecture before training. Hidden units are added to the
network during training one at a time and then do not change. This architec-
ture is also fairly fast, and corresponds to properties of the R-complex where
simple associative learning takes place fairly rapidly and is relatively resistant
to change. Lavond, McCormick, Clark, Holmes, and Thompson (1991) have
demonstrated the importance of the R complex structures in simple learning
and memory.

The Kohonen network is the director of information, acting like a switchboard
to send information to the appropriate network, and corresponds to the L
complex. This network uses an unsupervised learning algorithm and assigns
information to the other two networks in a way that echoes the L complex.
Input to this network is from the hidden layer output of the cascade network,
hidden layer information from the recurrent network and affect input.
Because the L complex is, among other things, the emotional modulator of the
other complexes, vastly simplified affect input to the Kohonen network is also
included in order to simulate the interest-driven aspect of learning.

The recurrent Elman network is the high-level component that can process
sequentially ordered information with a memory of previous experience. It is
based on a network architecture similar to that of Elman (1990), and corre-
sponds to the C complex in the triune brain model. This network gathers
information about what is being done in the other two networks, and uses this
along with its own historical data to determine the output for the entire
system. This is the network where actual calculations or strategy determi-
nation takes place. The input to this network consists of hidden unit data
from the cascade network, data from its own hidden layer, and output data
from the Kohonen network. Together, this input gives the recurrent network a
broad picture of all the activity that is occurring in the entire scaffold, corre-
sponding to the neocortical ability to estimate actions based on environmental
effects and to anticipate future events based on past experience. The hidden
layer input from the cascade network provides inhibitory information and noise
to the input layer of the recurrent Elman network. The inhibitory information
allows the Kohonen network fine level control of the Elman network. (This
corresponds with the nature of cortical information, in which most of the data

11-777

is inhibitory(Kandel and Schwartz, 1991).) The noise keeps the Elman
network from settling into false minima.

The scaffolded network is based on the triune brain functional model because
this model most closely captures our intuition that learning complex concepts
requires viewing input data from many different perspectives. Also, from a
developmental perspective, specific connectivity in an organism may be deter-
mined by a competition for resources that leads to a specialization in a partic-
ular area. Each network included in the scaffolded network attempts to
approximate this developmental aspect, learning by a series of incremental and
recurrent changes. The scaffolded network is not meant to just be a variation
of other artificial neural networks that can learn some numerical concepts.
The network is a vehicle through which we are arguing that complex concepts
must be learned in a developmental, multi-perspective approach.

OCAIMLED NETWORK MODEL

'Elmsa' NEiTS Outut
Recrrent HIddNT

Input

Inpu

Recurrent I MNfe In=

-- Ihlblorv LInko

Figure 1.

1-778

Training the network: learning early arithmetic

Our domain for the scaffolded network is early arithmetical development, pri-
marily based on the work of Robert Siegler (1982, 1991, in press). Addi-
tionally, background numerical competency information has been taken from
Ashcraft(1993), Gelman and Gallistel (1986), McCloskey (1993) and Piaget
(1952). The scaffolded network will be trained following the progression of
developmental steps that Siegler and others have found that children go
through on their journey to arithmetic competence. According to Gelman and
Gallistel (1986), a child obtains representations of numerosity (a measurable
numerical quantity) by counting, which requires certain counting principles.
The counting principles are the one-one principle, the stable-order principle,
the cardinal principle, the abstraction principle and the order-irrelevant prin-
ciple. The concept of number is taught to the scaffolded network, following
this developmental progression of numerical competency that has been found in
animals and children. It appears crucial for children to go through such a
sequence for learning these concepts: this may also be the case for machine
models of this ability.

The individual networks are not trained separately; rather, the entire scaffold
is trained as a single network. If the networks were to be trained individ-
ually, then the hidden layer information, along with inhibitory and excitatory
information from the output layers would not be available as additional informa-
tion for the networks during training. This would preclude the individual
networks from having access to the incremental representations and recycled
information while the network is learning. Training the network as a whole
allows the scaffold network to use earlier information by re-describing it inter-
nally. Karmiloff-Smith has presented this as representation redescription:
the 'process by which information implicit in an organism's special purpose
responses to an environment is repeatedly recoded and made available to serve
a wide variety of ends' (Karmiloff-Smith, 1992). All networks in the
scaffolded network are involved in its learning and development, and each step
redescribes incoming information in this developmental process.

Conclusion

The scaffolded network is an experiment in cumulative learning: the kind of
learning in which complex concepts develop by building on simple concepts and
categories that are learned first. It is fairly uncontroversial that cumulative
learning is the primary way complex concepts are learned. What's been
missing is a way to model cumulative learning. Our contribution to this enter-
prise is the architecture and learning algorithm of the scaffolded network,
which is based on our hypothesis that concept learning requires both a devel-
opmental progression and multiple perspectives of input data.

Finally, the scaffolded network incorporates insights, data, and hypotheses
from neuroscience, developmental psychology, and connectionism. Such inter-
disciplinary endeavors are probably essential if we are ever to have robust
theories of learning and robust learning machines.

II-779

REFERENCES

Ashcraft, M.H. (1993). "Cognitive Arithmetic: A Review of Data and
Theory". In S. Dehaene (ed.), Numerical Cognition.
Cambridge, MA: Blackwell Press.

Bates,E.A. and Elman,J.L. (1993). "Connectionism and the Study of
Change". In M.H. Johnson,(Ed.). Brain Development and Cognition.
Cambridge, MA : Blackwell Press.

Elman, J.L.(1990). "Finding Structure in Time". Cognitive Science, 14,
170-211.

Elman, J. (1991). "Incremental learning, or The Importance of starting
small", Technical Report 9101, Center for Research in Language, Univer-
sity of California, San Diego. March,1991.

Fahlman, S.E. and Lebiere,C. (1990Y. "The Cascade-Correlation Learning
Architecture". In D.S. Touretzky,(Ed.). Advances in Neural Informa-
tion Processing Systems 2. San Mateo, CA:Morgan Kaufmann.

Gelman,R. and Gallistel,C.R. (1986). The Child's Understanding of Number.
Cambridge,MA : Harvard University Press.

Kandel,E.R., Schwartz,J.H., and Jessell,T.M. (1991). Principles of Neul d
Science, Third Edition. New York, NY:Elsevier.

Karmeloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective
on Cognitive Science. Cambridge,MA: MIT Press/Bradford Books.

Kohonen, T. (1984). Self-organization and Associative Memory.
Ber!in: Springer-Verlag.

Lavond,D.G., McCormick,D.A., Clark,G.A., Holmes,G.T. and
Thompson, R. F. (1991). "Effects of ipsilateral rostral pontine reticular for-
mation lesions on retention of classically conditioned nictitating membrane
and eyelid responses". Physiological Psychology, 9,335-339.

MacLean, P.(1991). The Triune Brain in Evolution. New York, NY:Plenum
Press.

McCloskey, M. (1993). "Cognitive Mechanisms in Numerical Processing". In S.
Dehaene (ed.), Numerical Cognition. Cambridge,MA: Blackwell Press.

Piaget, J. (1952). The Child's Conception of Number. New York, NY:Norton
Press.

Rummelhart,D.E. and McClelland,J.L. (Eds.) (1986).
Parallel Distributed Processing. Volume 1: Foundations.
Cambridge, MA: MIT Press.

Siegler, R.S. In Press. "Variation, Selection, and Cognitive Change". In G.
Halford and T. Simon (Eds.), Developing Cognitive Competence: New
Approaches to Process Modeling.. Erlbaum Press.

Siegler, R.S. (1991). Children's Thinking. Prentice-Hall, Inc.
Siegler, R.S. and Robinson, M. (1982). "The development of numerical under-

standings". In H.W. Reese and L.P. Lipsitt (Eds.), Advances in child
development and behavior, 16, 242-307. New York, NY:Academic Press.

11-780

Endoneurology:
virtual Imaging of neural ensemble signals

by quantum - neurodynamics

Gustav Bernrolder
Institute for Zoology, University of Salzburg

A-5020 Salzburg, Austria

Higher level brain functions can be composed from the most basic or quantum-level,
provided by the train of actlon-potentials. Here, I propose an '!nslght-our view of
endogenous brain function in close analogy to the concepts of quantum-electro-
dynamics. 'Images' are created In concert with progressive modifications of an
emerging neural population code and become causally associated with functional
Issues.

Airtempts to understand how the brain models the world roughly divide Into
two tin streams: correlation of physo-anatomical findings with behaviour (e.g.
event-related It, .iging, Grinvald, et al., 1991; Rose, 1991) and relating the structure of
self-organizing models to the brains anatomy and function (e.g. ART networks for
learning, Carpenter & Grossberg, 1993). Because of the inventive fascination behind
recent progress, visualization techniques emerging from both approaches are
presently at the center of attention. Despite this prevailing enthusiasm, one key
problem has been largely overseen: functional imaging, ranging from reconstructive
tomography to optophysiology, at Its best highlights the spatially selective
distribution of neural activities. The artificial construction of simulation models leaves
behind pure suggestions on how the brain might accomplish given tasks. To this
point there is no causal explanation on how and why neurolmages, as those
observed for Isomorphic or functionally segregated representations of visual space,
(Bonhoeffer & Grinvald, 1993) relate to an orchestrated spread of the neural code
residing within the spike train of functionally engaged cells. This is also true for 'seeing
the mind" approaches, seeking individual differences of component mental
operations in terms of PET or MRI localizations (Posner, 1993).

A conceptually plausible explanation for the mentioned constraints may be
found within at least two natural restrictions In the study of brain function: 'Outside-in
views' of the brain typically expose the result of (unknown) coded equivalents of
external circumstances. Coding involves early functional segregation, together with
higher order, topical and confluent convergence (e.g. Zek, 1990 for visual systems),
and, at progressive stages, cooperative neural ensembles distributing the code
"non-topographically" (e.g. Eichenbaum, 1993 comments Wilson and McNaughton,
1993). Causal relevance of outside-in views therefore critically depends on the
interpretation of unknown design principles in order to pertain imaging information
to cells that causally control cerebral action. A goal far beyond reach at this
moment. The second restrictive issue relates to the chronic absence of a coherent
neurotheory that composes higher level phenomena from the only mechanistic
microfactor provided, the train of action potentials.

II-781

Here I propose an 'insight-out', virtual view, synthesizing higher level brain functions
from unit or 'quantum' signals provided by the spatio-temporal changes of voltage
pulses or action-potentials. I argue that the suggested quantum-neurodynamcal
model coherently uncovers neural computation underlaying the formation of
spatially construed neural activities. Further, the model rationalizes most empirical
evidence available for Issues such as sensory representation, perceptual learning
and recognition. Importantly, Images, In this approach, are being created In
concert with progressive operational modifications of the neural population code.
Thus 'Images! become causally associated with neural computation and finally
reflect the neural equivalent of the 'external problem'.

Dissociated brain levels- the endo-perspectve:
A strong line of evidence supports the view, that in the brain operational
modifications usually 'overlay' sensory and motory representations. For example,
experience dependent perceptual Improvement gradually 'overlays place coded
representations at the level of maps during perceptual learning (Karni & Sagi, 1993).
These configurations may become dissociated by unfolding the underlaying
transformational conflguration. Supportive empirical evidence for this idea has also
come from the dissociation of visual Jrocessing domains In the primate prefrontal
cortex (F.A.W. Wilson, et al., 1993).

Al A2 Figure 1

if Dissociation of operational
if modifications from

undarlaying sensory
representations.
An initially overlayed
topography (Al) is unfolded,
preserving intrinsic
feedforward (fl) and feedback
(fb) connections, into the
situation A2.
External observes (EO) have
access to the transformed

TT images (square symbol).
In BI the unfolded module is
exposed to an external object
Immediate transformation by

BI <-J B2 the operator (T) changes its
representation, whereas a
sensory deprived module (B2)

R images intrinsic
transformation only.
Here, operational changes are
assumed to change any
pattern rom white to grey.
Noticc, the set differnce for
BI and B2, as outlined in B3,

B3 uncovers those neural
activities that relate

I isomorphically to the external
situation.

II-782

Operalonal levels and Implementation:
The present strategy revolves around signal propagation and exchange between
the dissociated levels 0 and 0, that is intrinsic and observed levels (1-0 levels). Both
levels remain bidirectionally interconnected with continuous adjustment taking
place in terms of bottom up and top down modifications of signals (this formally
resembles the two level topology of Artificial Resonance Theories (ART, reviewed by
Carpenter & Grossberg, 1993). In a simplified version, the basic assumptions of the
model involve the following steps with constructive dependence among the various
levels of realization:

1-3: signal propagation and coupling
1-2: representational principles at the level of maps (signal segregation and

Integration)
i-1: systems or circuit level, extending over multiple anatomical 'compartments'
I: behavioural (level of motoric expression)

1-3: Confined to single cells, the neural code resides in space-time changes of
essentially Identical signals provided by the train of action-potentials (APs).
Disregarding possible contraints imposed by higher level issues and external
observers (a set point for the present approach), every AP can possibly be
connected to everything else. Thus probabilistic propagation permeates the
quantum level, awating macroscopically construed appearance only during higher
level compositions.
We associate probabilities to the propagation of APs between two locations A,B by

P(A-B) := Iz1 2

with z = r. exp (i.z) and r denoting the modulus of the complex number z. It Is
relevant to see this probability being attributed to the spatial spread of APs, rather
than to operative mechansim associated with input-output relations of neurons
(which will be denoted as 'coupling'). Coupling probability reflects a transition
between different states of neurons,

P(BIB2) := CB(At;Aa;R;S/N)

depending on several pre- and postsynaptic parameters such as spike frequency
(At) and timing (Aa) characteristics of synaptic input, together with signal/noise (S/N)
conditions of the involved response threshold (R). This part of the model relates to
previous studies on the probabilistic response of neurons at activated Input sites
(Katz, 1969; Taylor, 1972 and more recently Otmakhov, et al, 1993). Reflecting on the
(1-3) level, there are no connective constraints imposed on the spread of signals.
Every signal has an amplitude to go anywhere. However, as coding principles
emerge from multiple stage compositions of many signals, P(A-*B) becomes related
to CB and higher level issues. Inherent to the lowest Q-3) level, there is an intrinsic
susceptibility of P(A-B) to higher level modifications provided by its dependence

on the signals 'interval', [(A-B) 2 - (t2-tl) 2] in space-time. That is, for a given discharge
rate At-, the distance the signals travels to the next coupling event, heavlly

determines (r. e la) in terms of a rotation of z (Figure 2). Naturally, this affects timing
characteristics of presynaptic coupling parameters in the above sense.

II-783

(1-2) level modifications become consistently available from a stepwise expansion of
P(A-.B) Into a series of terms, such as

7, r mj . e -1(2. YaJ + 2.cp)

It
where 4 denotes a 'coupling constant attributed to local transmission (it also
reflects At and c(max)) and expansion extends for J=1, ..,m 'state (or cells) and total
time t (as measured by the codes own timing q / 2.At). Note that whenever the
expansion Increases (with m), non-direct paths contribute more to the final
(population) vector zA.B. In essence the above equation totally accounts for all
transformationlal changes Involved In the cooperative transmission of signals among
several populations of neurons, albeit the following levels are essential to 'construct'
a nervous system.
Figure 2 demonstrates the basic operations involved at the (1-2) level (for a very
simplified, 1-dim activity map, propagating signals (3 spikes) along 3 different path-
lengths and one 'coupling' unit. The example only gives a 'first order- bottom up
population vector', with no feedback modifications.

out Figure 2

,-.t_ =vector The propagation of 3 spikes along
locations (A,B) and time t. Coupling

compensates for time differences of
t,. -- .- P the emitted signals (virtually by

no\\ c . adjusting the pathlength). During
\\al\ I ,propagation, the vector -z-

representing the spike, rotates
A clockwise as time progresses. In

Iaddition to rotation, any type of
"' coupling (postsynaptlc activation)

also shorthens the signals amplitude.
-. ,. ' The coupling effect 'focuses' signals

Cto one point In space-time. There, a
population vector Is built up by the

I_ _ _ _ sum of 3 complex numbers,
representing the spikes. The

ABlocation modulus of these numbers Is
reduced by the succession of events and coupling (multiplication of z). it Is assumed that the
coupling effect Is irnited by the plasticity of the transforming cell layer. Thus, signals that take a longer
spatial path (doffed lines) may remain partialy or completely uncoupled. For a given time of
observation (t) these signals are spread at different locations. Thus, the main contribution to the
population or ensemble signal -z- Is made by the more direct paths. In optical analogy, the signal Is
'mirrored' between A and B, but the signals spatlo-temporal attributes leave behind traces at the
mirrors-level. Note, as time passes during spike emission, the signals change by a counterclockwise
rotation of z. This Is where temporal Issues of the neural code Qntervals between successive spikes)
exert their dramatic effect on forming spatial activity maps. The 'races' left behind by the 'most
probable' paths at the coupling layers, start to exert strong propagating effects after repetition (i.e.
top-down transformation of the Input Image A). For example, only parts of the code need to enter
the path after prolonged exposure to become efficiently 'mirrored' to Identical space-time locations
after prolonged exposure. This phenomenon Is basically self-organized and relates to learning and
memory. The example In Figure 2 leaves out multiple sources for simplicity (signals happening
concomitantly, e.g. from arrays of neurons forming a map, would be multiplied during their spread). In
'real nervous systems' all possible paths for signal spread become spatially confined by the
connective topology among neurons. However, the basic principles remain the same.

1-I) level Introduces connective organization to the spatial spread of signals. This
level Imposes connective topology to smaller neuronal ensembles, emerging from
lower level operations. To complete the view at this level, the processing
architecture of functionally defined systems (such as vision) determine the

1-784

exponential expansion of the population code at the (1-2) level. In particular, late
stage reconvergence for ascending, perceptual systems as those established for the
primate cortical visual system (Young, 1992) essentially contribute to final modelstic
coherence. Present realizations Involve the anatomic repertoire available for the
birds visual system.
I-level Issues deal with motodc responses to environmental changes (behaviour).
Ralher than simulating neural responses, the endo-perspective will, consequently,
create respones to changes, that Is, synthetize all previous levels Into artifical devices
that respond to 'exo-states. Along this line, the construction of robots completes
the excursion. One additional aspect, concerning the dissociation paradigm
outlined In Figure 1 at the behavloural level, should be mentioned. If, for
perceptually guided motoric responses, the stimulus deprived module (Fig.1, B2)
becomes subtracted from the stimulus exposed situation (Rg.1, B1), we can register
those motodc expressions that are related to sensory representation. For example,
the results of McLennan and Horn on the role of the IMHV In early learning responses
of the chick (McLennan & Horn, 1992) reveal stimulus specific changes after
subtracting naive from trained responses, Indicating that only novel stimuli Induce
'representative activities' In the left IMHV. These effects become only appearant
from the 'dissociative or endo-perspective'.

Taken together, this short outline demonstrates the basic Ideas behind a new theory
of 'quantum-neurodynamics' that coherently composes high-level brain functions,
such as perceptual presentations, learning and memory, from the most basic or
quantum level, provided by the train of action potentials. In a beautiful analogy to
quantum-electro-dynamics (Feynman, 1961), 'real-macroscopic' Issues emerge from
organizational constraints provided by the brains anatomy. The stepwise
composition of basic operations consistently discerns those issues of brain function
that have received most attention - timing and plasticity, perceptual exposure
learning and memory. Some aspects of the proposed model parallel issues found in
self-organizing and resonance theories, e.g. the relevance of time with respect to
plasticity. However, as opposed to previous efforts, this attempt does not require
any 'external assumptions', but exposes 'internal processing characteristics' that
naturally link to those behavioural impressions that emerge from hitherto 'outside-in'
views. The more extensive version of this paper should allow a coherent
connunication of the basic principles, together with Imaging demonstrations from
the 'endo-perspective'.

References
Bonhoeffer, T. & A. Grlnvald (1993) J. Neurosci 13(10) 4157-4180
Carpenter, G.A. & St. Grossberg (1993) TINS, 16(4) 131-137
Elchenbaum, H. (1993) Science, 261, 993-994
Grinvald, A. Frostlg, R.D.; Siegel, R.M., Bartfeld, E. (1991)

Proc. Nail Acad Scl USA 88, 11559-11563
Katz, B. (1969) Liverpool Univ. Press
Karnl, A, & D. Sagi (1993) Nature, 365, 250-252
Otmakhov, N., A.M. Shirke & R. Mallnow (1993) Neuron, 10, 1101-1111
Posner, M.1 (1993) Science, 262, 673-674
Taylor, J.G. (1972) J. Theor. Biol. 36, 513-528
Wilson, F.A.W., S.P. 0. Scalaldhe, P.S. Goldman-Rakic, (1993) Science, 260, 1955-1958
Wilson, M.A. & B.L. Naughton (1993) Science, 261, 1055-1058
Young, M.P. (1992) Nature, 358, 152-155
Zekl, S. & S. Shlpp (1988) Nature, 335,311-317

11-785

Pre-Conditional Correlation between Neurons in Cultured Networks

Guenter W. Gross and David C. Tam

Centerfor Network Neuroscience
Department of Biological Sciences

University of North Texas
Denton, TX 76203

E-mail: gross@nervous.cnns.unt.edu
dtam@brain.cns.unt.edu

Abstract
Multi-channel spike train analysis is applied to extract dynamical interactions

of firing activity in spontaneously active monolayer neuronal network in cell culture. A
pre-conditional correlational analysis is used to determine the conditional probability
of firing of these neurons based on the preceding firing of another neuron in the network.
Using this pre-conditional interspike interval analysis, we are able to determine the
excitation coupling between the firing of neurons in this network and the timing
relationship between the firing of spikes in various neurons of the network. The
analysis also reveals which neurons in the network are not coupled.

1. Introduction

Networks of biological neurons cultured on multi-microelectrode plates (MMEP) are
routinely obtained to study the dynamics of the interactions among neurons (Gross, 1994; Gross
and Kowalski, 1991, Gross et al, 1993; Tam and Gross, 1994b). In this paper, we will study the
conditional coupling between neurons in a biological neuronal network. Other spike train
analytical techniques were recently developed: (1) detection of specific conditional interactions
among neurons (Tam et al, 1988; Tam and Gross, 1994a); (2) logical conditional correlation
among neurons (Tam, 1993a); (3) spatio-temporal correlation among neurons (Tam, 1993b, c;
1992a, b); (4) time-delayed neural network equivalence of cross-correlation computation (Tam,
1993d); and (5) artificial neural network implementation of enhanced cross-correlation
computation (Tam, 1993e). In this paper, we will specifically address how the firing
probability in neurons is dependent on preceding action potentials from other neurons in the
same network. With this analysis, we are able to detect the probabilistic conditions under
which the firing of one neuron is coupled to the prior firing of spikes in another neuron. We
anticipate that the dynamical interactions of neuronal activity patterns in these networks can be
revealed with this analysis. The accompanying paper (Tam and Gross, 1994b) will address the
interactions between neurons based on the conditions subsequent to the firing of a neuron to
deduce the inhibitory coupling between them (Tam, 19930 which would otherwise not be
revealed with conventional pre-conditional correlation analyses.

II-786

2. Methods
2.1. Cultured Monolayer Neuronal Networks

Li h hl. W I I,

t, M"". dlJ. . 1 , 1: 0,

"r
11111- H 11A ... Figure 1. Cultured network of mouse spinal neurons grown on a 64-

[I. channel electrode plate. Conductor width: 8 gm; conductor material:
indium-tin oxide; spacing between craters - rows: 200 ltm, columns: 40

Neurons obtained from the spinal cord of embryonic mice
were cultured on the multimicroelectrode plate (MMEP) surface.

, L ., L 6 _These neurons formed a network on the 64-channel electrode plate
." r,-r r 1, 'r r T 177' (see Fig. 1). The steps involved in the preparation of MMEPs and

the concomitant culture methods have been described in previous
.. publications (Gross and Kowalski, 1991; Gross et al, 1993).

P- . .Multielectrode recording was performed with a computer-
controlled 64 channel amplifier system. Preamplifiers were
positioned on the microscope stage to either side of the recording

.... .. I .chamber. The amplifier bandwidth was usually set at 500 Hz to
6 KHz. Activity was displayed on oscilloscopes and recorded on
a 14 channel analog tape recorder. Spike data from active
channels were also integrated (rectification followed by RC

Figure 2. Display of 13 integration with a resulting time constant of 300ms) and
channels of simultaneous displayed on a 12 channel strip chart recorder. Simultaneous
electrical activity recorded action potential data was sampled at 40 kHz. Individual action
from neurons in the cultured potentials generated by neurons were isolated and discriminated
network (before spike based on the spike profiles. Once discriminated, the spikes
discrimination), generated from individual neurons were recorded in the computer
as spike train signals. These spike trains were used to investigate the dynamical coupling
between neurons in the network. A 160 msec sample of 13 channels simultaneously digitized
electrical activity from the network is displayed in Fig. 2.

11-787

2.2. Pre-Conditional Correlation

To determine the various pre-conditions under which the firing of one neuron may be
influenced by the firing of another neuron in the same network, we performed cross-interspike
interval analyses (Tam et al, 1988), which allowed us to determine conditional probabilities of
firing for a reference neuron based on the firing of other neurons.

The conditional cross-interspike interval (CISI) statistic estimates the conditional
probability of spike firing at a particular interspike interval (ISI) after a spike has occurred in a
reference neuron given that another neuron has fired at a specific time prior to the firing of the
reference neuron (Tam et al, 1988).

Let spike trains A with a total of NA spikes and B with a total of N spikes be
represented by:

NA
M(t) - 6(t - t.) 1

and
N,

f(t) - 6(t - b) (2)

where t. and tb are the times of occurrence of spikes in spike train A and B, respectively and
6(t) is a delta function representing the time of occurrence of spikes.

Let us select spike train A as the reference and spike train B as the conditional spike
train, then CISI statistics can be constructed by:

NVA _'

C(r.. ,) . 6(t. - t - t)6(t - tb - ry) (3)

for all t. and tb that satisfy lb S t. < ta..

The relationships of the pertinent spike intervals used in the CISI scatter plot are
illustrated in Fig. 2. The pre-cross interval between two neurons is represented as y in the xy-
scatter plot, and the post-interspike interval of the reference neuron is represented as x.

Conditional
Spike
Train

Reference I Y x

Spike '
Train : ~INN

Pre-Cross
Interval T

Reference
spike

Figure 3. Schematic diagram illustrating the relationships of the cross interval and interspike
interval in the spike trains being analyzed.

II-788

3. Results

Multi-channel spike trains (Fig. 2) recorded from the network shown in Fig. 1 were used
for this analysis. Although 64 independent electrodes were available for the monitoring of
network activity, we only stored 14 simultaneous channels on analog magnetic tape. We will
limit our discussion to four neurons. Figure 4 shows the CISI scatter plots of the firings of
neuron #7 used as the reference neuron, relative to the preceding firing of neurons #3, #5 and #6
respectively. The vertical bands of points in the CISI scatter plot show that the next spike firing
probability of the reference neuron #7 is independent of the firing of spikes in the conditional
neurons #5 and #6 (see Fig. 4B and C). But the next spike firing probability of the reference
neuron #7 is dependent on the preceding firing of neuron #3, as revealed by the horizontal band
of points in the Fig. 4A. Specifically, the firing of neuron #3 at a 3 msec interval before the firing
of neuron #7 (horizontal band) is more likely than any other time interval. In other words, the
firing of neuron #7 is coupled with neuron #3, when the latter fires 3 msec before neuron #7.
Such coupling is not revealed for neurons #5 or #6.

A BC
Neuron #3 - #7 Neuron #5 -4 #7 C Neuron #6 4 #7

25 25 : 25

.. .:..

Q0

B ~ ~ 2 0 " ps nterspike msec
interval

Figure 4. Pre-conditional interspike interval scatter plots of reference neuron # 7 relative to the
firing of neurons #3, #5 and #6.

To identify whether such coupling between neurons #3 and #7 was reciprocal, we used
neuron #3 as the reference neuron in the next analysis. The CISI plots (Fig. 5) show that the
firing of spikes between neurons #3 and #6 is independent, as indicated by the vertical bands
of points (see Fig. 5B). The density gradient of points in the vertical band of Fig. 5A suggests
that the subsequent firing of spikes in reference neuron #3 is somewhat dependent on the firing
of neuron #5, with higher probability of firing when these two neurons are firing within short
time intervals. The coupling relationship decreases as the firing intervals between them (i.e., the
cross-intervals) increases. Finally, the relationship between firing of spikes for neurons #3 and
#7 is not as strongly coupled as the reciprocal case seen before. That is, the probability of firing
in neuron #7 does not increase when neuron #3 fired 3 msec before #7 as in the previous case
(i.e., there is no horizontal band of points at 3 msec pre-cross interval). But the CISI scatter
plot reveals a dense cluster of points at the 1 msec pre-cross interval. This suggests that when
neuron #7 fired 1 msec before the firing in neuron #3, neuron #3 was much more likely to fire

Fgain at 3 msec (i.e., with a 3 msec interspike interval). This phenomenon reveals that when
neuron #7 fires 1 msec before neuron #3, neuron #3 will tend to fire another spike (consecutive
firing) at 3 msec interspike interval. Thus, this analysis reveals that the coupling between
neurons #3 and #7 is not symmetrical, but reciprocal with different firing probabilities.

11-789

A B CNeurqn #5 #3 Neuron #6 4 #3 Neuron #7 4 #3
2525 25

I. **. " • •U

• 0""I

4.4

,,..s: • . ./. .. .
•id

3post-interspike 2 msec
interval

Figure 5. Pre-conditional interspike interval scatter plots of reference neuron # 3 relative to the
firing of neurons #5, #6 and #7.

4. Summary

Pre-conditional interspike interval analysis was used to extract the dynamical coupling
between neurons in a network of cultured neurons. This statistical analysis of the conditional
probability of firing in neurons based on the preceding firing of other neurons in the network
demonstrated the existence of some interesting coupling phenomena among neurons in the
network. (1) It revealed which neurons were coupled in their spike firings and which were not.
(2) When the firings between neurons were coupled, it revealed under what conditions they are
coupled. (3) The analysis also showed which timing relationships of firings between neurons
were more likely to fire than other time intervals. (4) It also revealed how the preceding firing of
one neuron was related to the firing of the first and second spike firing probability (i.e., the
consecutive firing conditions).
Acknowledgments

This research was supported in part by the Hillcrest Foundation and the Texas
Advanced Technology Program (to Dr. Gross) and ONR grant number N00014-93-1-0135 (to
Dr. Tam).
References
Gross, G. W. (1994) Internal dynamics of randomized mammalian neuronal networks in

culture. In: Enabling Technologies for Cultured Neural Networks. (T. McKenna & D. A.
Stenger, eds.) Academic Press, San Diego. (in press)

Gross, G.W., and Kowalski, J.M. (1991). Experimental and theoretical analysis of random
nerve cell network dynamics. In: Neural Networks: Concepts, Applications, and
Implementations, Vol 4, (P Antognetti and V Milutinovic, eds), Prentice Hall,
Englewood, New Jersey, pp. 47-110.

Gross, G.W., Rhoades, B.K., and Kowalski, J.M. (1993). Dynamics of burst patterns generated
by monolayer networks in culture. In: Neurobionics (H.W. Bothe, M. Samii and R.
Eckmiller, eds). Elsevier Press, Amsterdam, pp. 89-121.

Tam, D. C. (1993a) A new conditional correlation statistics for detecting spatio-temporally
correlated firing patterns in a biological neuronal network. Proceedings of the World
Congress on Neural Networks, July 1993. Vol. 2. pp. 606-609.

Tam, D. C. (1993b) Novel cross-interval maps for identifying attractors from multi-unit neural
firing patterns. In: Nonlinear Dynamical Analysis of the EEG.- (B. H. Jansen and M. E.
Brandt, eds.) World Scientific Publishing Co., River Edge, NJ. pp. 65-77.

Tam, D. C. (1993c) A multi-neuronal vectorial phase-space analysis for detecting dynamical
interactions in firing patterns of biological neural networks. In: Computational Neural
Systems. (F. H. Eeckman and J. M. Bower, eds.) Kluwer Academic Publishers, Norwell,
MA. pp. 49-53.

11-790

Tam, D. C. (1993d) Computation of cross-correlation function by a time-delayed neural
network. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 3.
(Cihan H. Dagli, Laura I. Burke, Benito R. FernAndez, Joydeep Ghosh, eds.), American
Society of Mechanical Engineers Press, New York, NY. Vol. 3. pp. 51-55.

Tam, D. C. (1993e) A hybrid time-shifted neural network for analyzing biological neuronal
spike trains. Progress in Neural Networks (0. Omidvar, ed.) Vol. 2, Ablex Publishing
Corporation: Norwood, New Jersey. (in press)

Tam, D. C. (19930 A new post-conditional correlation method for extracting excitation-
inhibition coupling between neurons. Society for Neuroscience Abstract. Vol. 19, p.
1598.

Tam, D. C. (1992a) Vectorial phase-space analysis for detecting dynamical interactions in
firing patterns of biological neural networks. Proceedings of the International Joint
Conference on Neural Networks, June 1992. Vol.3 pp. 97-102.

Tam, D. C. (1992b) A novel vectorial phase-space analysis of spatio-temporal firing patterns
in biological neural networks. Proceedings of the Simulation Technology Conference.
Nov., 1992, pp. 556-564.

Tam, D. C., Ebner, T. J., and Knox, C. K. (1988) Cross-interval histogram and cross-interspike
interval histogram correlation analysis of simultaneously recorded multiple spike train
data. Journal of Neuroscience Methods, Vol. 23, pp. 23-33.

Tam, D. C. and Gross G. W. (1994a) Dynamical changes in neuronal network circuitries using
multi-unit spike train analysis. In: Enabling Technologies for Cultured Neural Networks.
(T. McKenna and D. A. Stenger, eds.) Academic Press, San Diego, CA. (in press)

Tam, D. C. and Gross G. W. (1994b) Post-conditional correlation between neurons in cultured
neuronal networks. Proceedings of the World Congress on Neural Networks (this
volume).

11-791

Post-Conditional Correlation between Neurons in Cultured Neuronal Networks

David C. Tam and Guenter W. Gross

Centerfor Network Neuroscience
Department of Biological Sciences

University of North Texas
Denton, TX 76203

E-mail: dtam@brain.cns.unt.edu

gross@nervous.cnns.unt.edu

Abstract

A new conditional spike train analytical method is developed to estimate the
post-conditional probability of firing of spikes in neurons to reveal both excitation and
inhibition coupling between firing times. This method allows us to determine how the
spike firing probability density function is related to the conditional probability of
firing of another neuron in the network subsequent to the firing of a reference neuron.
When this analysis is applied to the firing patterns of neurons in a cultured network, it
revealed that some of the neurons have excitatory coupling whereas other neurons
display inhibitory coupling. The coupling between these neurons is also found not to be
reciprocal.

1. Introduction

The accompanying paper (Gross and Tam, 1994) revealed the excitation coupling
relationships between the firing of spikes in neurons in a network of biological neurons cultured
on multi-microelectrode plates (MMEPs). These cultured networks are now routinely used to
study the dynamics of the interactions among neurons (Gross, 1994; Gross and Kowalski, 1991,
Gross et al, 1993; Tam and Gross, 1994b).

In this paper, we present a new post-conditional probability spike train analysis
technique to extract the inhibition coupling between neurons in a network (Tam, 19930.
Conventional spike train analysis methods have been frequently used to demonstrate excitation
coupling (or positive correlation) among neurons. These analytical techniques include the cross-
correlation analysis (Perkel et al, 1967) for detection of specific conditional interactions among
neurons (Tam et al, 1988; Tam and Gross, 1994a), logical conditional correlation among neurons
(Tam, 1993a), spatio-temporal correlation among neurons (Tam, 1993b, c; 1992a, b), time-
delayed neural network equivalence of cross-correlation computation (Tam, 1993d), and
artificial neural network implementation of enhanced cross-correlation computation (Tam,
1993e).

We will address how the firing probability of a spike immediately following a reference
spike is dependent on the conditions of firing in other neurons after the reference spike. This
post-conditional statistical analysis will be able to detect the conditions under which spiking
may be suppressed by the intervening spike in another (conditional) neuron. Thus both the
excitatory and inhibitory dynamical interactions of activity patterns in these networks can be
revealed with this analysis. The accompanying paper has addressed the interactions between
neurons based on the conditions prior to the firing of a neuron to deduce the excitatory coupling
between them.

II-792

2. Methods
2.1. Cultured Neuronal Networks

Spike train data for this analysis was obtained from neuronal networks growing on
multimicroelectrode plates (MMEPs). As in the accompanying paper (Gross and Tam, 1994),
the tissues were obtained from the spinal cords of embryonic mice. The electrical signals
generated by the neurons were amplified and discriminated to obtain the spike trains as
described earlier.

2.2. Post-Conditional Correlation

The firing of spikes usually implies that the neurons are excited enough to reach
threshold and generate action potentials. But if a neuron is inhibited, the membrane potential of
the neuron may not reach threshold. The conditional suppression of spike firing cannot be
easily demonstrated with conventional spike train analyses.

The post-conditional probability spike train analysis provides a new way to extract the
conditional probability of firing if firing generation in a neuron is reduced relative to the firing of
another neuron in the same network. Thus, it will provide correlational statistics that will allow
us to detect subtle inhibitory coupling between neurons.

The post-conditional cross-interspike interval (PCISI) statistic estimates the conditional
probability of spike firing at a particular interspike interval (ISI) after a spike has occurred in a
reference neuron given that another neuron has fired at a specific time after the firing the
reference spike in the reference neuron (Tam, 19930.

Let spike trains A with a total of NA spikes and B with a total of NB spikes be
represented by:

N,

MAt) - I 6(t - t.) (1)

and
N,

fs (t) - . 6(t - tb) (2)

where t. and tb are the times of occurrence of spikes in spike train A and B, respectively and

b(t) is a delta function denoting the occurrence of spikes.

Let us select spike train A as the reference and spike train B as the conditional spike
train. CISI statistics can be then constructed by:

NA -1

C(rr) TO . 6(t, 1 - t. - ?)6(t. - tb - -ry) (3)

for all t. and tb such that t. : tb and t. < to ,.

The construction of the PCISI scatter plot is illustrated in Fig. 1. The post-cross interval
between two neurons is represented as y in the xy-scatter plot, and the post-interspike interval
of the reference neuron is represented as x.

11-793

'Post-Cross

'Interval

Conditional
Spike
Train 'y

Reference -
Spike
Train

Post-
Interspike Interval

Reference
spike

Figure 1. Schematic diagram illustrating the relationships of the post-cross interval and
interspike ir-terval in the spike trains being analyzed.

3. Results

Figure 2 shows the post-conditional cross-interspike interval scatter plots of the firings
of neuron #7 (the reference neuron) conditioned on the succeeding tiring of spikes in neurons #3,
#5 and #6 respectively. The prominent bands of points parallel to the diagonal line indicate
synchronized firing between these neurons.

The 45 degree diagonal line is the coincidence line, indicating that a pair of neurons is
firing in synchrony. Lines parallel to the diagonal line indicate the firing between the neuron
pair is offset by a specific finite time interval. Parallel lines above the diagonal indicate the
conditional neuron fires a spike after the second spike firing in the reference neuron. In that
case, the reference neuron will fire two consecutive spikes before the conditional neuron fires the
next spike, and the consecutive firing of spikes are not affected by the intervening firing of
another neuron. Parallel lines below the diagonal line indicate the conditional neuron fires an
intervening spike between the first and second spike of the reference neuron. The diagonal line
of points in Fig. 2B indicates that neurons #7 and #5 tend to fire in synchrony occasionally.

The vertical band of points in the PCISI scatter plot indicates the independence of firing
of spikes between the neuron pair, since the probability of firing of the consecutive spike in the
reference neuron does not vary with the firing times in the other conditional neuron. When the
independence of firing intervals between these neuron pairs is compared with the pre-
conditional probability statistics discussed in the accompanying paper (Gross and Tam, 1994),
both techniques show the independence of firing between neurons #7 and #5, and neurons #7
and #6. The previous method showed that the prior firing history of the conditioning neurons
#5 and #6 does not have any effect on the probability of firing of another spike for the reference
neuron #7. The current method also shows that subsequent firing of the conditional neurons #5
and #6 firing within the interspike interval period of the reference neuron #7, does not have any
effect on the probability of firing of the second spike, except for occasional synchronous firing
between neurons #7 and #5 as indicated by the diagonal line of points in Fig. 2B.

11-794

A B C ern6#Neuron #3 - #7 2 Neuron #5 - #7 2NPuwon #6 - #725 ;,• • 25 ". "25 ..

. 0.

:."..

U25 D Zpost-interspi~e 25 msec

interval

Figure 2. Post-conditional interspike interval scatter plots of reference neuron # 7 conditioned on
the firing of neurons #3, #5 and #6.

When neuron #3 is used as the reference neuron for the post-conditional cross-interspike
interval analysis, the dependence relationship between these neurons is revealed to be congruent
with those revealed from the previous analysis, i.e., for those pairs of neurons that are found to
be coupled in their firing times using the pre-conditional correlation analysis are also found to
be coupled using the post-conditional correlation analysis. That is, proximity in firing times
between conditional neuron #5 and reference neuron #3 occurs more often than longer duration
intervals (denser gradient of points with shorter cross-intervals in Fig. 3A). The firing intervals
between neurons #6 and #3 are relatively independent as indicated by the vertical band of
points (Fig. 3B). Dense clusters of points are found in Fig. 3C, suggesting a coupling
relationship between the firing times of these two neurons (#3 and #7). Specifically, the
probability of firing 3 msec interspike interial for the reference neuron #3 is higher when neuron
#7 fires 1 msec after the reference spike or 4 msec after it. This suggests that neuron #3 tends to
lead the firing of neuron #7 by I msec.

Ahe Bern# sue Nsterfrne ernrte or-ondiioalcrs-itespk

2 Neuron #5-u #3 2 Neuron #6u#3 C moron l #3

point (Fi .3B. Des lseso onsaefdi i. 3C ugetigaopln

0. r

2 5 posterspike2 isec
interval

Figure 3. Post-conditional interspike interval scatter plots of reference neuron # 3 conditioned on
the firing of neurons #5, #6 and .

We will look at the relationship of another pair of neuron to reveal inhibitory coupling
between them. Figure 4 shows the PCISI scatter plot for neuron #11 as the reference
conditioned on neuron #10. A diagonal band of points slightly above the 45 degree diagonal
can be seen. Furthermore, most of the points lie above the diagonal line with only a few points
lying below the diagonal. This suggests that the firing of the next spike for the reference neuron
#11 is less likely if neuron #10 fired before this next spike, implying suppression of firing
probability (or inhibition). In other words, the firing of another spike in neuron #11 occurs only
when neuron #10 fired after the second spike, but not between them. This strongly suggests
that there is an inhibitory coupling relationship between the firing of spikes in these two
neurons.

11- 795

Neuron #10 4 #11
2* " "'... ."

interval

Figure 4. Post-conditional interspike interval scatter plots of reference neuron # 11 conditioned
on the firing of neurons #10.

Summary

A new post-conditional spike train analysis is introduced to detect both excitatory and
inhibitory coupling of firing times between neurons. This method allows us to reveal how the
probability of the next firing in a reference neuron is dependent on the timing of firing in another
(conditional) neuron after the current spike in the reference neuron. When the analysis was
applied to the spike trains recorded from a network of cultured neurons, it revealed the
excitation and inhibitory coupling between specific pairs of neurons as well as those neurons
that are not coupled in the network.

Acknowledgments

This research was supported in part by ONR grant number N00014-93-1-0135 (to Dr.
Tam) and the Hillcrest Foundation and the Texas Advanced Technology Program (to Dr.
Gross).

References
Gross, G. W. (1994) Internal dynamics of randomized mammalian neuronal networks in

culture. In: Enabling Technologies for Cultured Neural Networks. (T. McKenna & D. A.
Stenger, eds.) Academic Press, San Diego. (in press)

Gross, G.W., and Kowalski, J.M. (1991). Experimental and theoretical analysis of random
nerve cell network dynamics. In: Neural Networks: Concepts, Applications, and
Implementations, Vol 4, (P Antognetti and V Milutinovic, eds), Prentice Hall,
Englewood, New Jersey, pp. 47-110.

Gross, G.W., Rhoades, B.:K., and Kowalski:. J.M. (1993). Dynamics of burst patterns generated
by monolayer networks in culture. In: Neurobionics (H.W. Bothe, M. Samii and R.
Eckmiller, eds). Elsevier Press, Amsterdam, pp. 89-121.

Perkel, D. H., Gerstein, G. L. and Moore, G. P. (1967) Neuronal Spike Trains and Stochastic
Point Process. II. Simultaneous Spike Trains. Biophysical Journal, 7: 419-440.

Tam, D. C. (1993a) A new conditional correlation statistics for detecting spatio-temporally
corelated firing patterns in a biological neuronal network. Proceedings of the World
Congress on Neural Networks, July 1993. Vol. 2. pp. 606-609.

Tam, D. C. (1993b) Novel cross-interval maps for identifying attractors from multi-unit neural
firing patterns. In: Nonlinear Dynamical Analysis of the EEG.. (B. H. Jansen and M. E.
Brandt, eds.) World Scientific Publishing Co., River Edge, NJ. pp. 65-77.

Tam, D. C. (1993c) A multi-neuronal vectorial phase-space analysis for detecting dynamical
interactions in firing patterns of biological neural networks. In: Computational Neural
Systems. (F. H. Eeckman and J. M. Bower, eds.) Kluwer Academic Publishers, Norwell,
MA. pp. 49-53.

11- 796

Tam, D. C. (1993d) Computation of cross-correlation function by a time-delayed neural
network. In: Intelligent Engineering Systems through Artificial Neural Networks, Vol. 3.
(Cihan H. Dagli, Laura I. Burke, Benito R. Femndez, Joydeep Ghosh, eds.), American
Society of Mechanical Engineers Press, New York, NY. Vol. 3. pp. 51-55.

Tam, D. C. (1993e) A hybrid time-shifted neural network for analyzing biological neuronal
spike trains. Progress in Neural Networks (0. Omidvar, ed.) Vol. 2, Ablex Publishing
Corporation: Norwood, New Jersey. (in press)

Tam, D. C. (19930 A new post-conditional correlation method for extracting excitation-
inhibition coupling between neurons. Society for Neuroscience Abstract. Vol. 19, p.
1598.

Tam, D. C. (1992a) Vectorial phase-space analysis for detecting dynamical interactions in
firing patterns of biological neural networks. Proceedings of the International Joint
Conference on Neural Networks, June 1992. Vol.3 pp. 97-102.

Tam, D. C. (1992b) A novel vectorial phase-space analysis of spatio-temporal firing patterns
in biological neural networks. Proceedings of the Simulation Technology Conference.
Nov., 1992, pp. 556-564.

Tam, D. C., Ebner, T. J., and Knox, C. K. (1988) Cross-interval histogram and cross-interspike
interval histogram correlation analysis of simultaneously recorded multiple spike train
data. Journal of Neuroscience Methods, Vol. 23, pp. 23-33.

Tam, D. C. and Gross G. W. (1994a) Dynamical changes in neuronal network circuitries using
multi-unit spike train analysis. In: Enabling Technologies for Cultured Neural Networks.
(T. McKenna and D. A. Stenger, eds.) Academic Press, San Diego, CA. (in press)

Tam, D. C. and Gross G. W. (1994b) Post-conditional correlation between neurons in cultured
neuronal networks. Proceedings of the World Congress on Neural Networks (in press).

HI-797

NEURAL NETWORK TRAINING
VIA A PRIMAL-DUAL INTERIOR POINT METHOD

FOR LINEAR PROGRAMMING

Theodore B. Trafalis and Nicolas P. Couellan
School of Industrial Engineering

University of Oklahoma
Norman, OK 73019

Abstract : We propose a new training algorithm for feedforward supervised neural networks
based on the primal-dual interior point method for linear programming. Specifically we
consider single layer networks where the error function is defined by the Li-norm and the
activation function of the output layer is linear. Because of the special structure of the problem,
our problem is equivalent to solving a block-structured linear system of equations.

1JN1MODUCTION:

The training phase of a supervised feedforward Artificial Neural Network (ANN) can
be defined as an optimization problem. ANN are often complex, involving many nodes and even
more connection weights. This results in a large scale optimization problem. The purpose of this
paper is to propose a new method of training for large scale ANN using the most recent
techniques of optimization. There are various non-linear optimization methods that can be used
for training of ANN [Hertz, Krogh and Palmer (1991)1. One of those is the gradient descent
method on which the backpropagation method is based [Werbos (1974), Rumelhart, Hinton and
Williams (1986)]. A major drawback of the current learning algorithms is the long training
(learning time) for large scale problems [Shepanski (1988)]. Recent breakthroughs of interior
point methods (IPM) for solving large scale constrained optimization problems [Lustig et al.
(1992), Gonzaga (1991, 1992), Anstreicher et al. (1990)] suggest that IPM can be used to develop
new fast learning laws in ANN which can enlarge the set of problems which can be solved
successfully. Some new ideas along these lines have already been studied such as Training of
ANN by a Logarithmic Barrier Function Adaptation Scheme [Trafalis and Sieger (1993)].

This paper will explain an interior point primal-dual approach of training an ANN. In
order to convey the idea, we will deal with a single layer neural network where the activation
function of the output nodes is linear. The use of the Ll-norm will allow us to transform the
original minimization problem into a linear programming problem having a block-matrix
structure. Then we apply the algorithm of the Primal-Dual interior point method for linear
programming to update the weights. Since our linear programming problem has a special
structure, we simplify the updating equation of the weights to improve the Primal-Dual
algorithm.

This paper is organized as follows : Section 2 discusses the optimization problem,
Section 3 discusses a primal-dual interior point method training approach, Section 4 gives
computational results and Section 5 is the conclusion.

2. STATEMENT OF THE PROBLEM

Consider a single layer artificial neural network (See Fig. 1).
Let:
x be the input vector x (xl,x2,...,xn)
b be the desired output vector b = (blb2,...,bm)
wij be the connection weight from the ith input component to the jth neuron

II-798

Auuimptio:
1- In our case we do not introduce the threshold inputs.
2- We are studying the case of supervised training where we know the desired output

vector b for each input vector x.The objective is to minimize the sum of the errors between the
cunt and desired output with respect to the weights wij.

3- The weights are not constrained.
4- We use the Li-norm to define the error function.
5- The function f is the activation function for all the neurons of the layer. In the

following we will consider a linear activation function.
X1

bi

xA .J Output

JillJ
Input Single layer

Figure1.

The minimization problem is as follows:

min IN -, wvz

Note : The values xi and bj are known and the variables are the weights wij.

3,. A tTP AITT TNPROR PODU- 33&TIOM : APPROACH-

In order to convey the idea of our approach we consider the one-layer case where the
activation function is linear.

For simplicity we consider the identity function as the activation function. Then the
probiembewmes:

rnin -wH

By defining e = j-WJwX ij, it is easy to show that the problem is equivalent to

the following:

I/-799

J-i

subject to
(0)

el>-tn-y wqx, for j 1,...,M
iI

e2>-bj+±Wqxj forj=1,...,m
iW1

This linear problem has the following form:
(D) max -dTz

st
ATz + s=f
s20

Where:

z=(e) with eE R, w e R = =* z e R" '

d = 01)where 1 (1,1,..1) e R

0 =(0, 0,...,0) e R'

f-=(b) with be R'

s eR2m slack variables

"1 x1 ... x.

1 -Xl ... XI

It is easy to see that (D) is the dual problem of (P) defined as:
(P) min fTy

st
Ay=-d
ykO yeR2m

Next we are going to find the optimal solution of (0) by using the following iterative
plocedure: zk+1 . zk + cx dk where dzk is the search direction of the primal-dual algorithm
(Lustig, Marsten and Shanno (1991)]. Specifically dzk is given by:

() (AYkSkI(AT) dzk - ASk-1 e - YkSke)
where: e = (1,1, -., 1)

11-800

Yk- diag (Yk, Yk2, -, Yk~m)

and lk is the barrier paramter at the kth iteration.
The equation () defines a limnr syem of equations which depends mostly on the

matrix AYkSk-IAT , Next we are going to study the structure of the matrix AYkSk'IAT.
After some calculations (matrice multiplications), we can show that AYkSkIAT has

the following form:

I Urn,

-1FT
AY S1 A F

Hgme2
This m trix has a block-structure. The blocks are defined as follows:

Yka + Yk) 0
8k1 Ok(m.i)

C=

0 z + Y lz
L ~sI Sk2.

DI --- xYA - x1 .a . .ii- m . J] 4,.T
S1 [xS. k(.p S1 Ykui'0

11-801

X, Y + , Yk(.,+p

EI = jE1..,fl

s, SkS,+x k,+
F1

- ,Yk(+j),
L s. s,,l,...,J

SW SW 5 kmmj

The block-structure of the matrix is very useful in order to develop an algorithm to
solve equation M'). Equation (') can be solved by solving m Independent systems of linear
equations. Each system of equations can be solved In a very efficient way by using fast
algorithms like LU-decomposition, QR factorization. Then the equation (-) would be solved in
a time m.T where T is the time to solve each system. The use of a parallel computer having at
leat m processors would be the most efficient way to solve ('). The m systems would be solved
simultaneously and then the time required would be T instead of m.T.

The matrix AYkSkIAT Is not really a block-matrix because of the first m rows and
columns but by a simple transformation It would be easy to get a block-structured matrix.
Specifically, if we exchange for example the fiat column with the mth column, we can combine
block E1 with the block F1 to form a bigger block (See Fig. 2). A similar permutation can be done
with the rows. Proceeding in the same way for all the blocks, we can have a real block-
structured matrix.

The matrix AYkSk -1AT is also a sparse matrix which means that we can represent it in
a very efficient way in memory. In order to minimize the memory size required to store the
matrix, we can store only the non-zero components and their coordinates in the matrix.

- -lO AL;

In this part we will show some results obtained by running the Primal-Dual algorithm
(code OB1 [Lustig, Marsten and Shanno (1991)). The algorithm used does not contain the
Impovenut that we have introduced in the previous part related to the special structure of
our problem. Next we present three simple examples to illustrate the use of a primal-dual
interior point algorithm for the training of a single layer ANN. The computational results give
the behavior of our method when the ANN has to recognize only one pattern.-11 1

ImobkM I problem 2 problem 3

1-802

problem 1: F oblemn2: problem 3:
Ininel mcmi
at at at
w~l + w12- el:% -w11 +w12-elS-l -w1i1 - w12-el55-l

Table 1 gies the results of the runnof the code O111 with the above

Problem I 0.62538580 E -10 0.13199070 E +03 0.44076M4 E .e02 10
Pinblem k2 1 0.2538580 E -10 I0.73359710 E .02 I0.73359710 E .02 10

Pblem 3 0.62538580 E -10 0A3663567 E +(U 0.13123054 E .03 10
Table 1

The interior point method gives very accurate results in a short time. The value of the
error is very small (order IE-lO) which means that we could use the interior point method for
problems that are not classification problems and even for problems which require good
accuracy. Since the interior point methods have the advantage to converge in polynomial time,
we plan to extend our approach for the multi-layer cas and for large scale problem. This is
important for ANN training because the number of neurons can be very large (for example a
small problem of pattern recognition using a matrix IWxO may have hundreds of weigths). The
results that we have achieved by running the previous examples do not have a lot of practical
significance but they show us that the use of interior point method could be promnising for the
extension of this algorithm to a multi-layer ANN scheme.

&CNLSINQ N D B IR SPARK

In this paper we have developed a primal-dual interior point approach to train a one
layer ANN by transforming the optimization learing problem into a linear programming
problemi. We are currently investigating the extension of our approach in a multi-layer ANN.
Our method would be applied to ANN having a linear activation function at the output layer
and the sigmnold function for example at the hidden layers. We could use ideas from the

backpopagtion algorithm to backpropagate the error from the output layer.

AOKNOWLEDG&IEN:
The work has bewesmupported by the FIP grant 3C39210G3 Research initiation Award.
We 'Werba for his enouagmnt and for poing the problem.

Aniboldicer IL M. D. Dan Halog, Raw C and Tarkaly T., (1990) 7A long Step Bdane Method for Convex Quadratic
PoamnW, Tehfd lapi 90.M 53, Delft University 'of Tduilmogy, Deift Netherlands.

Gonzaga.CC I),%g Step Path-followIng Methods for linear programming, Parts I & T, SIM pmusul of
Opirene 1, 265-280.

Gmwnaga. C C (1992), "Path-foalwing Methods for linear Programming", SIAM REVIEW, 34, No.2Z 167-224.
Hat J., Krogh A, and Palmer R. G, (1991 Jutradctim to sk Tawy of Neura Canmatm, Redwood Cty, CA.

Addiuon-Wesley-
Lustig, L I., Maree R. E., and Shianno D. F., (1991) Computational Experience with a Primal-Dual Interior Faint

Method for I near Programming', Lbnear Atombra .d Its Applkatiaus, 152Z 191-222.
Lutig, L J., Marston K L ,and Shanm D. F., 0992) -Interior Faint Methodis for linear Programming: Computational

State of the Artr, TwamicuI Rqwd SOR 92-17, program in Statistics and Operations Research Department of
civi Engnein and Operation Resarch, Princeton University, Princetoni, N 065K4

Rumebat D. 3. lnm . . and Williams K., (1966) Leang Internal Rer dettons by, Error Propaptiosr, in
DXL Rumelbart and J.L Mc~lelland (Ed.) PwM~ Dksrvutudoasi b Exzkioxs in the Micrasorv
of Cagniau, 1, Fousidations, MIT Press.

Saepmwb 1., (1965) "lat leaning in artidal neral networks: Muhtilayer peceptro training using optimal
estimat&on, Prnordings of do IEEE Inmationel Cawfencsem M- A al)Jetwor, 1, 465472, San Diego:

Traftlis T. 3B, and Sieger D. 3B, (1993) 'T1raining of Multilayer Feedfoeward Artifrcial Neural Networks by a
logarithmic Barrier Ftuntion Madptatlon Scheme-, IutIllgmt Engfisewui Systms Thruugk Artiia
Neural Network, Vol. 3, Editors : CM.L Degl,LL Burke, I.K Fernandez and) JGhosh, 16-173.

Werbas P., (1974) 'Beyond regression: New tools for prediction and analysis in the behavioral sclences PhD. Thesis,
Conmuittw om Appik dl aeW Harvard University, Cambridge, MA.

11-803

BTO]Uae CAPACITY 0F QUANTUM UEURAL rmWOuS

Alexei Sansonovich

University of Arizona
Applid Math. Program
Mathematics bldg. #89
Tucson, AS 85721f USA

Quantum mechanical counterparts of traditional
neuronet models together with new retrieval
paradigms are defined and studied analytically
and numerically for their ability to recognize
patterns. Depending on the values of
parameters, storage capacity of QNNs can vary
from zero up to the classical limit. Parallel
processing of a quantum superposition of
patterns is possible.

Introduction

As dimensions of computing elements become smaller and smaller,
quantum effects inevitably come into play. For arrays of quantum
dots or molecular-level elements quantum corrections may be so
significant that it makes sense to think in terms of quantum
mechanical (QM) computer models (Feynman, 1986; Lloyd, 1994)
rather than in terms of errors or quantum corrections to
classical models. This remark primarily concerns such parallel
architectures as neural networks.

On the other hand, models of quantum neural networks (QNNs)
may be related to information processing in living organisms at
the molecular level (Samsonovich et al., 1992; Hameroff et al.,
1992).

The class of the QM models that we are going to introduce
have not been investigated at all or at least in the aspect of
neuro-like behavior. However, the number of mathematical models
that have been tested for ability to retrieve or to classify
patterns is huge, and it seems strange that none of them was
purely quantum (quantum spin glass and related models usually are
considered prom physical point of view without respect to
information processing: see for example Goldschmidt, 1990; Ray et
al., 1989). Combination of words "quantum" and "neural" rarely
occurs in literature (Lewenstein & Olko, 1992; Pribram, 1993),
and never in connection with an exact solution of a
quantum-mechanical problem.

11-804

Models and retrieval paradigms

We define a QNN model in general as a network of n nonlinear
oscillators (or localization centers) at each node, that can be
physically connected to any other oscillator. The Hamiltonian is
a nonlinear Hermitean function of creation and annihilation
operators of all nodes, it is independent of time and preserves
the number of quanta. Some modifications can be applied further.

0 T HOPIELD* Quantum mechanical counterpart of the
traditional Hopfield model (Hopfield, 1982) can be defined by the
Hamiltonian

H = fl Enaia - CE a+a - lZij ijalajaia (1)

where a + , a are boson creation and annihilation operators; c and
are some positive constants - parameters of the model; diagonal
elements of W are supposed to be negative and large in absolute
value in order to neglect multiple occupations, and the
off-diagonal elements are computed according to a simplified
Hebbian rule:

w.. = x % , j zixi = m, x i a {0,1}. (2)

A weak interaction with a thermostat, another set of oscillators,
that preserves the number of quanta in the network, can be added
to the model.

The recognition paradigm consists in:
i) formation of the initial psi-function of the network
containing m quanta - the input pattern;
ii) it's quantum evolution and relaxation to a local minimum;
iii) measurement of resultant occupation numbers - the output
pattern.

We will be interested in the limiting case of n tending to
infinity with m/n << 1, fixed. The first question is the
multiplicity of the ground state of the model (1), (2) in this
limit (see also Ray et al., 1989; Goldschmidt, 1990).

First, in the case of just one stored pattern the ground
state problem can be solved analytically. Hamiltonian (1) can be
reduced to the Hamiltonian of a linear chain, where index k
corresponds to half-Hamming distance from the stored pattern:

Hkk, = wk6 kkl - k 6 k-l'k - ak+16k+l,k (3)

ak = e k v m-k+1 V n-m-k+1 (4)

wk= [(m) _ (2-k)] - e k (n-2k) (5)

The continuous limit solution at small k is the exponent:

Psi0 = X- exp(-k/w), w = a(1,e), (6)
7/c > 2 Vn/m-1. (7)

11-805

The last inequality (which is actually more complicated in it's
precise form) is the condition for existence of a localized state
near the stored pattern. Therefore, the existence of the
localized states (localized in the Hilbert space of states with
number states taken as the basis) depends on behavior of the
parameters (, e when n goes to infinity. If c is negligibly
small as compared to ?, we have the classical limit. In the
quantum case patterns can be stored until the smallest Hamming
distance between patterns becomes of the order of the
localization radius a.

QUANTUM BOOLEAN NET. Another interesting example of a purely
quantum system that is capable of pattern recognition is quantum
Boolean net: each node is connected to k<<N other nodes. The
interaction part of the Hamiltonian is constructed in such manner
that it takes one quanta from the preceding node and sends it to
the current node only if the occupation numbers of the k
neighbors match one of the stored patterns. Otherwise it does not
work. Note that links in this model are not symmetric, however,
this is a Hamiltonian model.

As numerical modeling shows, if the number of quanta in the
system is not big enough and the input pattern is far from stored
patterns, then nothing will happen, that means, the input state
will remain localized, or there will be few local transitions
back and forth. But if the input pattern is close to the stored
pattern, and if the number of quanta exceeds a certain limit,
then some quanta will jump, continuously changing the pattern
around the "attractor", which is the stored pattern. In this case
recognition means delocalization instead of localization, and it
can be detected as appearance of quasicontinuous spectrum of
states in the system, or as global conductivity. If now
interaction with thermostat is added, then Bose condensation at
the "attractor" is possible.

OUANTUM PERCEPTRON. The last model that we briefly discuss here
is a quantum analog of a layered feed-forward neural network. Now
the Hamiltonian is time-dependent, so that each link in the
network is directed and interactions occur at given moments of
time only. Roughly speaking the model can be viewed as a four
dimensional Feynman graph with fixed topology and geometry,
possessing some internal freedoms that are be computed under
given boundary conditions. Some other fixed internal variables as
well as the structure of the graph itself serve as memory of
this network.

Thus, quantum perceptron is a QM model on a Feynman graph.
By the way, it would be interesting to consider a nonlinear field
theory model where these graphs appear in perturbation series,
thus making one more connection between continuous nonlinear
field models and neural networks with discrete subunits. However,
this is beyond the scope of this paper.

Quantum perceptron seems to be an interesting model because:
i) it does not require dissipation or pumping for information
processing;
ii) it can be truly quantum, i.e., it can process a quantum

11-806

superposition of patterns at once.
The last circumstance allows to utilize advantages of the

quantum way of computations that can lead to qualitatively
different computer characteristics (Feynman, 1982; Rujan, 1988;
Samsonovich, 1991).

Final rnaarks

Apart from their possible implementations, QNN models may be
related to information processing that occurs in the cytoskeleton
(Hameroff et al., 1992; Samsonovich et al., 1992). This will be
the subject of another paper.

Aoknovledqements

I am grateful to Alwyn Scott, Stuart Hameroff, Thom Kennedy,
Judith Dayhoff, Stephen Grossberg, Thom McKenna for valuable
discusions.

References

Feynman R.P. (1982) "Simulating physics with computers",
Int.J.Theor.Phys. 21.467.

Feynman R.P. (1986) "Quantum mechanical computers",
Found.Phys.16.6.507.

Goldschmidt Y.Y. (1990) "Solvable model of the quantum spin glass
in a transverse field", Phys.Rev.B 41.7.4858.

Hameroff S.R., Dayhoff J.E., Lahoz-Beltra R., Samsonovich A.V.,
Rasmussen S. (Nov.1992) "conforomational automata in the
cytoskeleton", Computer, p.30.

Hopfield J.J. (1982) Neural networks and physical systems with
emergent collective computational abilities. PNAS 79.2554.

Lewenstein M., Olko M. (1992) "Storage capacity of "quantum"
neural networks", Phys.Rev.A 45.12.8938.

Lloyd S. (Jan.1994) "A potentially realizable quantum computer",
CNLS Newsletter, Los Alamos Natl.Lab., 97.1.

Pribram K.H., editor (1993) "Rethinking neural networks: quantum
fields and biological data", Lawrence Erebaum Assoc. Pub.,
Chapter 2.

Ray P., Chakrabarti B.K., Chakrabarti A. (1989) "Sherrington-
Kirkpatrick model in a transverse field: Absenie of replica
symmetry breaking due to quantum fluctuations", Phys.Rev.B
39.11828

Rujan P. (1988) "Searching for optimal configurations by
simulated tunneling", Z.Phys.B 73.391.

Samsonovich A., Scott A., Hameroff S. (1992)
"Acousto-conformational transitions in cytoskeletal
microtubules: implications for intracellular information
processing", Nanobiology 1.457.

Samsonovich A.V. (1991) "Molecular-level neuroelectronics", in:
Lazarev P.I. (ed.), "Molecular electronics", Kluwer, p.241.

Weisbuch G., Stauffer D. (1987) "Phase transitions in cellular
random Boolean nets", J.Physique 48.11.

11-807

Motion Interpretation of Trochoidal Paths*

Irwin K. King Michael A. Arbib
kin&Qcu. cuhk. hk arbib~pollux .usC. edu

Department of Computer Science Center for Neural Engineering
The Chinese University of Hong Kong University of Southern California
Shatin, New Territories, Hong Kong Los Angeles, CA 90089-2520

Abstract
This paper presents a simulation of neural networks for motion interpretation of trochoidal

paths generated by points placed on a rotating disc translating in the frontoparallel plane of
the visual field. We posit this motion interpretation process involves two mechanisms: first
the extraction of relative rotational motion with respect to a moving point and second the
presence of an attention mechanism that tracks the common motion. Specifically, the paper
demonstrates simulation results for rotational motion extraction from trochoidal paths. We
construct our neural network according to the directional and speed sensitivity profiles observed
in neurophysiological data in the first stage of the network. The layer of neural network which
is sensitive to the intermeditate spatiotemporal pattern of rotational motion is then assembled.
Lastly, we show that without an attention mechanism the perception is insufficient to elicit a
translating wheel perception. However, with an attention mechanism to track the center of the
rotation, the rotating wheel is perceived readily.

1 Introduction

An object in motion produces different families of absolute motion trajectories with different points
on it surface; however, often it could have a simple relative motion interpretation.' This phe-
nomenon is demonstrated in Duncker's original experiment [5]. By placing light sources on a
rotation and translating wheel in the frontoparallel plane, different trochoidal paths are formed
with different points on the rotating disc despite that they are all rotating and translating at the
same time with respect to the center of the wheel.

Several trochoids are possible with this type of configuration for motion interpretation (see
Fig. 1). When only a single point is placed at the rim of the wheel, a cycloidal trajectory is
observed. Its absolute motion generates no percept of a rotating wheel as shown in the solid line C.
However, when the center point, e.g., the translatory line A, of the wheel is shown superimposed
on the same cycloidal path generated by the point on the rim of the wheel, an impression of a
rotation wheel is immediately available despite the fact the the point on the rim continues to trace
out a cycloidal path.

*The research described in this paper was supported in part by a grant from the Center for Neural Engineering
at USC, Los Angeles, CA (M. A. Arbib, principal investigator).

'The statement goes against the approach of motion interpretation based on measuring the absolute motion of
moving objects. In biological organisms, it seems that relative motion interpretation is more important, relevant, and
effective for the interpretation of moving objects than the absolute motion measurement.

11-808

6 " a i a l I I i lil i H

Figure 1: Trochoidal paths generated by different points on a disc which is rolling along on a straight
line along the frontoparallel plane. The disc in this case is moving from left to right. The line A is
the path traces out by the center (hub) of the rotating wheel, line B traces out a curtate cycloidal
trajectory by a point between the center and the rim, line C traces out a perfectly cycloidal path,
and line D etches a prolate cycloidal path by a point which lies outside of the rim of the wheel.
Dashed lines E and F are two lines that are also translating lines superimposed with the cycloidal
line C. However, they both are off-center points undergoing translatory motion.

Nonetheless, when the translatory point at the center of the wheel is moved to some external
points off-center or outside of the rotating wheel, e.g., the dashed lines of E and F, subjects will only
observe two independent motion paths with the same common motion. 2 The result indicates that
it is necessary but insufficient to use the common motion of the object to interpret its movement.
More importantly, it is far more crucial to fixate the attention mechanism at the correct point,
i.e., the center of the rotation for a coherent interpretation than other off-center points in order to
extract the underlying motion structure.

To explain the above observation, we hypothesize that two mechanisms must cooperate in
order to produce the coherent translating rotational motion interpretation. First, an independent
mechanism to detect in-place rotational motion is needed. This is backed by neurophysiological
finding reported in [11, 10] where neuronal cells sensitive to intermediate motion such as contraction,
expansion, and rotation were found in the MST area of macaque monkeys.

The other mechanism needed involves the tracking of the common motion in a meaningful way in
order to obtain the relative motion within the common motion framework. Attention mechanism is
natural for the visual system to locate meaningful moving points for the interpretation of the relative
motion. Neurophysiological and psychophysical findings were reported in [4, 9, 8] to suggest that
attention mechanisms can be used to extract relative motion for irvariant motion interpretation.

2 Model Defined

To mimic plausible biological circuitries, our model is constructed in several stages. The first stage
of the neural network is composed of motion detection cells as shown in Fig. 2 (a). The basic
motion detection circuit follows the convention of the Elementary Movement Detector (EMD)
proposed in [1, 2]. The information from the motion detection layer is then segregated and fed
into the next layer to form a slab of a uniform motion selective layer shown in Fig. 2 (b). These
layers are directional and speed sensitive with the sensitivity profiles shown in Fig. 2 (c) and (d).
The connection masks in these layers are statically hard-wired in order to produce the profiles.

2When the point is within in the perimeter of the rotating wheel but not at the center, the perception of a rotating
wheel seems to decrease gradually according to the distant away from the center. The interplay between common,
absolute, and relative motions is discussed in [31.

11-809

(a) (b) (c) (d)

Figure 2: (a) A simple EMD network based on the spatiotemporal integration of two receptors R,
and R4. (b) a slab of EMDs which assemble into a row of directional selective cells. (c) and (d)
are the angle and speed profile of the neural network respectively.

Each layer has a specific orientation of preferred motion direction and its unique temporal delay
constant to control the range of speed selectivity. The maximum neural activities in one specific
layer corresponds to a stimulus moving in the preferred direction and also within the range of the

preferred speeds. This is set by adjusting the size and the weight of the masks. The larger the
mask, the larger the range of speed the layer can accommodate.

Previously, the author and colleagues have presented a plausible neural network for rotational
motion extraction (6]. Moreover, neural networks for visual reversal and invariant motion perception
was also dealt in [7]. The basic construction of the rotational circuit integrates the output activities
of the distributed coding when perceiving a rotational motion from different layers in a sequential
manner (see [103 for the plausible biological circuitries). The output of the rotational sensitive
network contains excited neural activities at the center of the rotation motion.

Currently, we do not have a formal model for the attention mechanism. Instead, we simulate the
effect of the attention mechanism via software through tracking a moving point. The functional
property is performed by updating the position of the point undergoing the translatory motion
whether it is the center or some points off-center of the rotational motion. A rotational sensitive
mask is then dynamically coupled and shifted in time for the interpretation.

3 Simulation Results

The simulation was conducted on Unix workstations using the Neural Simulation Language (NSL)[12].
The size of the input is an array of size 15 x 60. Two trials are performed in 50 time steps (0 to
5.0 second in 0.1 second increment) for the wheel to make about two and a half rotation across the
visual field.3 The input to the neural network contains both the cycloidal motion with an external
point either with or without the attention mechanism being activated. Figure 3 shows that without
the attention mechanism, the activities in the rotational sensitive layer is unaffected by the stimulus
since the network sees no rotational motion when the attention mechanism is solely focused on the
point itself so the integration for rotation motion does not exist. However, when the center point
which is translating horizontally with the common motion is presented along with the attention

3A typical run of a single trial takes about 4 to 5 minutes on a SPARC Classic workstation.

II-810

i* 1I I4 PO I' 's PI. I' I PAiO

(a) (b) (c)

Figure 3: Simulation results for a rotational sensitive layer without the attention mechanism. The
layer shows difficulties in integrating a consistent interpretation with different regions of the network
activated in an incoherent manner.

*.p1, 1mW ,W U W~rO ., Ul*C,. yl ZS -, WUI U

II 4 OKJ IISl ~alS mm~l 1: 114 1"JOG I M lf Jm/OKO 1. J"a Iles M-15 J e~B

(a) (b) (c)

Figure 4: Simulation results for a rotational sensitive layer with the attention mechanism. The re-
sult shows that the rotational network with the attention mechanism proffers a coherent integration
which renders a consistent motion interpretation of the rotational motion.

mechanism focused on the translating point, the neural activities in the rotational sensitive layer
contains high activities indicating the presence of a rotational motion as shown in Fig. 4.

In the figures, there are two layers indicating the output. For the cycloidal path in Fig. 3, we
only show the rot-center layer. The rot-foa layer as shown in the bottom of Fig. 4 is omitted for
the first case since it does not have any activity at all when the attention mechanism is switched
off.

Figure 3 shows that no integration is apparent. The neural activities are distributed without
a coherent activation. However, Figure 4 illustrates that once a full revolution is made, a distinct
activation at the center of the rotation, in this case is also equivalent to the point of focus, is
apparent.

4 Discussions

The software implementation of the attention mechanism is very similar to a shift circuit that
dynamically displaces the rotational sensitive network to the focal point which is the center of the
rotating wheel for the proper interpretation of relative motions [8]. This also explains why the
perception of the r -tation decreases when the external translatory point is placed to locations that

II- 811

are off-center since the rotational sensitive layers will receive less integration when the focus is
off-center.

The simulation further demonstrates that it is the invariant motion features with respect to
the center of rotation that are most meaningful and should guide the subsequent interpretation
process. However, we have not deal the problem of how the attention mechanism attends to the
correct point. Although we speculate that the attention mechanism takes the point with the most
simple trajectory that matches the common motion as the point of interpretation of relative motion,
further studies will be needed to verify the above conjuncture.

5 Conclusion

From the simulation result, we conclude that two mechanisms must cooperate to elicit the percept
of a rotating wheel when presented with trochoidal paths. First, a neural connection mask capable
of extracting rotational motion path is needed. Second, an attentional mechanism must cooperate
with the rotational motion sensitive network to dynamically track and integrate the relative motion
path into a consistent motion perception of the movement.

References
[1] H. B. Barlow and Richard M. Hill. Selective sensitivity to direction of movement in ganglion cells of

the rabbit retina. Science, 139:412-414, 1963.

[2] H. B. Barlow and W. R. Levick. The mechanism of directionally selective units in rabbit's retina.
Journal of Physiology, 178:477-504, 1965.

[3] James E. Cutting and Dennis R. Proffitt. The minimum principle and the perception of absolute,
common, and relative motions. Cognitive Psychology, 14:211-246, 1982.

[4] R. M. Davidson and D. B. Bender. Selectivity for relative motion in the monkey superior colliculus.

Journal Of Neurophysiology, 65(5):1115-33, 1991.

[5] K. Duncker. Uber induzierte bewegung. Psychol. Forsch., 12:180-259, 1929.

[6] I. King, J. Liaw, and M. A. Arbib. A neural network for the detection of rotational motion. In
International Joint Conference on Neural Networks, volume 1, pages 707-712, Seattle, WA, 1991. IEEE
Computer Society.

17) 1. King and M. A. Arbib. A neural network model for extracting visual motion reversal invariant events.
In International Joint Conference on Neural Networks, Beijing, 1992. IEEE Computer Society.

[8] B. A. Olshausen and D. C. Anderson, C. H.; Van Essen. A neurobiological model of visual-attention
and invariant pattern-recognition based on dynamic routing of information. JOURNAL OF NEURO-
SCIENCE, 13(11):4700-4719, 1993.

[9] D. Regan. Visual processing of four kinds of relative motion. Vision Res., 26(1):127-45, 1986.

(10] K. Tanaka, Y. Fukada, and H. A. Saito. Underlying mechanisms of the response specificity of ex-
pansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the
macaque monkey. J. Neurophysiol., 62(3):642-56, 1989.

[11] K. Tanaka and H. Saito. Analysis of motion of the visual field by direction, expansion/contraction, and
rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey.
J. Neurophysiol., 62(3):626-41, 1989.

[12] Alfredo Weitzenfeld. NSL - Neural Simulation Language version 2.1. Technical report, University of
Southern California, 1991.

II-812

Principles of Neural Computation
from the Evolution of Neural-like Systems

Alan M. Horowitz
Department of Mathematics

Thackeray Hall
University of Pittsburgh

Pittsburgh, PA 15260
horowitz(}neurocog.lrdc.pitt .edu

Abstract: Biologically realistic, neural-like systems were evolved in computer simulations
to solve a variety of life-like dynamical problems. Problem-independent properties of the
networks were found which suprisingly also prevail in real nervous systems. These include
inequalities between inhibitory and excitatory parameters, and the tendency of neurons
to cluster into feed-forward inhibitory and other biologically common circuits. A simple
scheme for connecting the neurons, based on idealized axons and dendrites was found to
have advantages over full connectivity, because of its relative sparcity in connections and
parameters and superior scaling behavior with network size.

While an enormous wealth of detail has accumulated from research in neurophysiology,
general principles are scarce. One way to look for them, which bypasses the complexity
of real nervous systems, is to evolve idealized neural-like systems in computer simulations.
While the feasibility of developing control systems by this approach has recently been
demonstrated [1,2], no attempt was made to make detailed links to neurobiology. The
results from the simulations reported below (or in greater detail in ref. 3) suggest that
biological features, beyond the minimal features commonly incorporated till now, can be
useful in man-made networks, and conversely that evolved properties of artificial networks
may shed light on neurophysiology. That this two-way exchange between real and artificial
networks can be more fruitfully exploited is the main thrust of this paper.

The dynamics of the networks, given by the following equations, are generalizations
of those popularized by Hopfield [4], Grossberg [5] and others:

1 + AV(Vi - Vr) = JB!,ni + Jaenaory,i , (1a)

Jyn,i = #EE(VE - Vi) E wjiE,j + gIE(Vl - Vi) - wkimi,k (b)

jEE kEI

rnE,i(t) = (E(V(t)) - AEME. (lc)

Neurons are exclusively excitatory (E) or inhibitory (I). In eq. 1 neuron i is E. If it were
I, replace (§EE, g IE) by (#Ej, #1j) and in eq. 1c, E by I. In eq. 1, V corresponds to
membrane potential, J-Yn to incoming synaptic current, and Jsensory to external input,
while V and 1/Av correspond to the membrane resting potential and relaxation time,
respectively. Units are defined such that Vr = -1 and AV = 1, while VE and V were fixed
to 0 and -1.3, respectively. The function, u(V), corresponding in biology to firing frequency,

11-813

is a threshold-type function of V as depicted in Fig. la. Biological motivation for this
form can be found in ref. 6. The synaptic weights wij, restricted to the interval [0,1], are
time-independent: there is no synaptic plasticity. The nets acquire their problem-solving
abilities through evolution of parameters between generations.

(a) (b)

.. ...a x
Vr th Vst

FIGURE 1. (a) The neuron output function; (b) The Axden scheme for wij.

In networks used by Hopfield [41 and Grossberg [51, synaptic transmission is instanta-
neous: re(t) = a(t), instead of dynamical as in eq. 1c. I found that, except for problems
requiring very fast processing, the evolution procedure was more efficient on networks with
dynamical transmission, apparently due to the presence of the 2 extra time scales (1/AE
and 1/AI), enabling more versatile temporal behaviors with less fine-tuning of parameters.

To remain of practical interest, the parametrization and evolution procedure must
scale well as the network size and problem complexity is increased. The paramneters scaling
with network size specify the wij. Full or naive connectivity, with an independent wij for
each pair of neurons, entails N' parameters and connections for N neurons. In real nervous
systems the number of connections scales more like N, since the number of connections
a neuron makes is usually independent of the total number of neurons. I empirically
compared the naive scheme to a scheme abstracted from neurobiology, which I call the
Axden scheme.

In the Axden scheme the neurons sit on the nodes of an N., by Ny rectangular lattice,
(N = Nr x N.). When the axon field of neuron i intersects the dendritic field of j as
shown in Fig. 1b, the weight is defined as

wii = I - dii 2
R .(i) + Rd .()

For each neuron there ae 4 real-valued architecture parameters: X, y, R.., and Rde. -That

makes 4N in total. The number of connections is also linear in N assuming the optimal
values of R.a. and Rden, are independent of N, or at least approximately so. The linearity
in N of the number of parameters and connections gives the Axden scheme two strong,
practical advantages over the naive scheme. For one, optimization schemes converge faster
with fewer parameters. Secondly, in a simulation, the computer time required to integrate
the equations of the network is proportional to the number of connections.

The task of the evolution procedure is to maximize the fitness F, a functional of the
network output, by varying both the dynamics parameters (Vth,E(), Wsat,E(l), O'min,E(l),

AE(I), 9EE, #1E, §EI, #II), and the architectural parameters (xi , yj , Rax,i, Rden, i for the
Axden scheme, or wij for full connectivity). This was do- with a simulated annealing

1-814

a

algorithm, based on small stochastic variations of the parameters (correlated with pre-
viously successful variations), augmented with sporadic "mutations" of the architectural
parameters. The neuron-type (I or E) of the interneurons (non-I/O neurons) also evolves.
Between each generation, there is a small probability to flip the neuron-type at any given
interneuron site.

A typical run consists of a few thousand generations (i.e. evaluations of F), beginning
with random architecture. Usually multiple runs, with different random number seeds,
were required in order to find, and be confident of having found, the global maximum.

An application

The application presented here is a life-like variational problem in one space dimension.
A point-like bug is free to move along a line. "He" begins at z = 0. Food sits to the right,
at x = 4.8. The bug loses energy (E) due to his motion and gains energy when he eats. He
must stop to eat. The problem is to evolve bugs to maximize the fitness F = AE/At-fuf,
where AE is the net change in energy from t = 0 until At when the food is eaten, and uf
is the final velocity when food is reached: uj = 0 is achieved in the limit 0 -+ oo. The
results below are with /3 = 1. To maximize F the bug must adjust his velocity u as a
function of time to get to the food quickly, but without expending too much energy.

Newton's law for the bug's motion is t = 2(arR - aL), where O R and OL are the output
functions of the right- and left-propelling motor neurons, MR and ML. The rate of energy
loss due to motion is defined as E = -10(c + r). The food supplies AE = 5.

(a) (b)oooo

FIGURE 2. (a) Architecture used for the application; (b) Statistically significant connec-
tions found. Filled circles are inhibitory.

0.9.

01.7

0.6
0.5
OA
0.3
0.2 lf

IJI

0.1 mowr [-wn -o'vuf

FIGURE 3. Speed and outputs of MR and ML vs. distance for the fittest bug found.

The net predominantly used on this problem had 12 neurons, as shown in Fig. 2a. The
geometrical properties of this network are of course only relevant for the Axden scheme.
To emulate olfactory input, the input to the sensory neuron S increases as the distance d
to the food decreases: Jeeneors - 3/(d + 1).

11-815

Fig. 3 shows u(x), aR(x), and aL(X) for the best network-produced solution to this
problem (F. = .449). Note the approximate left-right symmetry of the plots, coming from
the time-reversal symmetry of the problem. That the network found a solution with this
symmetry strengthens the case for this being the optimal solution.

a. VI =-1.3 b. V=-2.0
Par. Iit. Av. St. dev. Av. St. dev.
Vth,E -.99f
Vm, -.95f
Va=t,E -.20 -.08 .23 -.05 .22
V,.,, -.20 -.06 .23 -.10 .22

O'min,E .lOf
,0,mm,, .10 .48 .22 .38 .21

AE .70 .99 .65 .71 .42
AI .70 .44 .32 .50 .29
#EE .80 .74 .34 .81 .37
gE .80 1.21 .50 1.10 .52
gEj .80 1.06 .45 .98 .31

.80 .88 .55 .91 .45
TABLE 1. Averages, standard deviations and initial values of evolved dynamics parameters
for 2 values of V. An 'f' means 'held fixed'. The data comprises 52 and 39 parameter
sets for V = -1.3 and -2.0, respectively. Assuming normal distributions, the statistical
uncertainties in the averages can be obtained from the standard deviations by dividing by
v or

Networks with neurons connected with the Axden scheme gave comparable results
to fully connected networks. Also, the results depended little on network size, based on
simulations with 8, 12 and 20 neurons. The evolution procedure converged slower on
average with fully connected nets, by tens of percent, which is not much considering the
relatively large number of connection parameters (144 on a 12 neuron net, compared with
48 with the Axden scheme). The CPU time for a 12 neuron net was about a factor of 2
higher with full connectivity.

Different sets of parameter values can produce nearly optimal fitness values. It is
important to know what the important parameters are, and what trends can be discerned
in the values. Table 1 gives the averages and standard deviations of the final parameters of
successful runs - F, > .4 for all of them - differing only by random number seeds (and thus
initial architectures). The values of Vth,E, Vth,l, and amin,E were fixed to values gleaned
from previous runs. In all 6 applications, Vth,E and amin,E, and in this application Vth,l
as well, were the most sensitive parameters: they had the smallest standard deviations.
Fixing them improved the probability of a run being successful, in this case by a factor of
3 or so. The contents of Table 1 will be discussed further below.

The connectivity

The connectivity of 125 successful Axden-connected nets with F > .4 was examined.
On average, each neuron synapsed to 4.8 others. Of the interneurons, 55% were inhibitory.

1-816

In 124 of the nets the sensory neuron S directly excited the right-propelling motor neuron
MR, and in 123 also inhibited it via at least one I neuron, as shown in Fig. 2b. This
so-called feedforward inhibitory circuit is ubiquitous in biological nervous systems. The
statistical significance of these and other connections were assessed by comparing their fre-
quency with that in the same 125 nets but with randomized axon endpoints and randomly
permuted interneurons. For more details see ref. 3. Fig. 2b summarizes the results for the
most commonly occuring and statistically significant connections found in the 125 nets.
Note that: 1) input to E interneurons from S also preferred to be in the form of feedforward
inhibition; 2) the antagonistic motor neurons MR and ML preferred to mutually inhibit
each other via pathways with one I interneuron; 3) the preferred path from S to ML went
through a single E interneuron, which served to delay the excitation to ML.

Other applications
I now list the other 5 applications on which extensive simulations were made:

1) a one-dimensional food-finding task, the same as above, except there is drag on the
bug, and uf is unconstrained. This is a simpler problem. The optimal u(t) was
produced by a network with only 4 neurons.

2) a two-dimensional food-finding task. The bug, confined by a circular wall, was evolved
to track 3 pieces of food in random configurations. This was the most elaborate
and lifelike application. Because of the variability of the environment (i.e. the food
configuration), the fitness had to be averaged over several environments. The bug had
right and left retinal neurons and a visual field 340 wide, received sensory input when
against the wall, and had motor neurons for forward motion and rotation. The most
highly evolved bug had 20 neurons.

3) balancing an inverted pendulum by applying forces to the cart on which it is hinged.
This is a popular test problem for control methodologies. The fitness is defined as
- f dt 02(t), where 0 is the deviation from vertical. Networks were evolved to balance
poles of any length, as well as to simultaneously balance two poles on the same cart.

4) differential equation solving. The fitness is a functional F of the output aout of a
chosen neuron, as well as of 6o.t. The condition that F be extremal is equivalent to
the condition that o.ut satisfies a second order differential equation. To gauge the
accuracy of the method, I made simulations only for a quadratic functional, where
Fm. and o.t could be computed analytically. Within 5000 generations the network
attained attained 5 and 4 significant digit accuracy in Fma. and a0 out, respectively.

5) oscillatory function-fitting. As is well known, a 2 neuron system, an E and I neu-
ron coupled together (with self-connections allowed), can oscillate. The system was
evolved so that the output of the E neuron fit various waveforms (sinusoid, sawtooth
and square wave).

Network properties and neurobiology

Table 1 reveals statistically significant inequalities between averages of corresponding
E and I parameters. These inequalities also occurred in the other applications even though
the initial E and I parameters in each run were set equal. Comparing Tables la and lb one
sees that one contribution to the E-I asymmetry comes from the asymmetric positioning
of reversal potentials: in la, V is closer to V than is VE, the consequences of which can

II-817

be understood from the factors of (V - V(E)) in eq. lb. However even with symmetric
positioning as used in Table 1b, the inequalities remain. It is intriguing that the inequalities
also hold widely in biological nervous systems, especially those which, like the artificial
systems, have both a clean division between E and I neurons, and E input and output.
The inequalities are now listed, along with biological support, mostly from the mammalian
nervous system (neurobiological facts not cited can be found in ref. 7 or 8):

1) AE > Aj: the time scale (1/Aj) for the action of I transmitter is longer than for
E. This was observed in all applications except for the 2-neuron oscillatory system,
where Ae \I. In the brain, the predominant I transmitter is GABA, the effects of
which are longer lasting (through receptor channels A or B) than the most common
mediating (as opposed to modulating) E transmitter, glutamate. In the spinal cord,
the synaptic action of the glycine-emitting Ia inhibitory interneurons is likewise longer
than, though sometimes comparable to that of E neurons [9].

2) #IE > gEE: synaptic coupling to E neurons is stronger from I than from E neu-
rons. This was observed in all applications except the pole-balancing problem, where
gE -" §E. The inequality is manifested in real nervous systems by the tendency of
I synapses to land closer to the cell bodies and axon hillocks of E neurons than E
synapses [10]. This E-I asymmetry was observed in the simulations, not only in terms
of the §s, but also directly in terms of the wij within the Axden scheme, where the
asymmetry is topological as in biology.

3) 9E1 > gEE: synaptic coupling from E neurons is stronger to I than to E neurons. This
was observed in all applications except the pole-balancing problem, where #E1 P §EE.

In cortex, for example, most of the E synapses on E neurons (pyramidal and stellate
cells) are on dendritic spines, whereas on I neurons they are directly on dendritic
shafts. Presumably synapses on shafts have higher efficacy. Also, E synapses can land
directly on the soma of I but not E neurons [10].

4) 0 m ni > Omin,E: the output level at and near threshold is higher for I neurons. This
was observed in all applications. In reflex circuits in the spinal cord, for example, the
fastest spiking cells, the Renshaw cells, are inhibitory. The same is true in the cortex:
the smooth (I) cells spike faster than pyramidal (E) cells [11].

5) Vt,E < Vt,I: E neurons are easier to excite than I neurons. This was observed in
all applications. It is not suprising, since if the inequality were reversed, it might be
hard for the network to generate any activity; there could be too much inhibition.
In some applications Vth,g < V, meaning that E neurons were active even when
V = Vr. In guinea pig cortex in vitro [12] and in anesthetized cat cortex [13], the
frequency of spontaneous E postsynaptic potentials (EPSPs) was observed to exceed
that of spontaneous IPSPs by a large factor (10 in the cats), providing some indirect
corroboration of inequality 5, at least in effect. More direct evidence, reported in
the same papers, comes from experiments with injected current. As the current was
increased, the level of EPSP activity increased until the onset of a long duration,
strong hyperpolarizing IPSP, presumably via GABAB channels.
While inequality 5 may be realized in the cortex it is not a general rule of neurobiology.

For example, the circuit which controls saccadic eye movements, contains tonically active
I cells (the Pause cells). However this circuit also violates the condition under which the

1U-818

inequality was observed, namely that sensory input is excitatory. The fact that information
from input to output is carried by E signals almost certainly contributes to the above
inequalities, as does the need for I input to a neuron to follow E input.

Another network feature, besides parameter inequalities, common to all applications,
was the tendency of the input neurons to feedforward inhibit (i.e. simultaneously excite
and, via one interneuron, inhibit) E neurons, including the output neuron, as shown in
Fig. 2b. Feedforward inhibition is ubiquitous in real nervous systems, especially in sensory
pathways. It ensures that E signals are followed by proportional I signals.

Besides feedforward inhibition, other biologically familiar connections were found to be
statistically significant, such as reciprocal inhibition between antagonistic motor neurons,
as in Fig. 2b. In the differential-equation solving problem, a so-called synaptic triad -
feedforward inhibition, but with feedback to the I neuron - was found.

The Axden scheme performed comparably to full connectivity on all problems, except
on the most difficult problem, the 2-dimensional food-finding problem, where it was supe-
rior - in 40 runs with fully connected networks starting from random architecture, no good
solutions were found, whereas in 10 runs with the Axden scheme, 3 produced bugs able to
efficiently track the food. It is reassuring that a scheme for connecting the neurons based
on axons and dendrites is at least as computationally effective as full connectivity. The
latter is cumbersome and unnecessary.

In conclusion, evolving biologically realistic networks appears to be a promising way
to get insights into real nervous systems, and at the same time may lead to useful devices.

References
1. Beer, R.D. and Gallagher, J.C. Adaptive Behavior 1, 91-122 (1992).
2. Husbands, P., Harvey, I. and Cliff, D. in: Proc. third IEEE Int. Conf. on Artificial

Neural Nets (IEEE press, 1993).
3. Horowitz, A.M. Technical Report MTH-93-9/25.
4. Hopfield, J.J. Proc. Natn. Acad. Sci. 81, 3088-3092 (1984).
5. Grossberg, S. Neural Networks and Natural Intelligence (MIT Press, Cambridge,

1988).
6. Kleinfeld, D., Raccuia-Behling, F. and Chiel, H.J. Biophys. J. 57, 697-715 (1990).
7. Kandel, E., Schwarz, J. and Jessel, T. Principle of Neural Science (Elsevier Press,

New York, 1991).
8. Shepherd, G. The Synaptic Organization of the Brain (Oxford University Press, New

York, 1990).
9. Burke, R.E., and Rudomin, P. In: Handbook of Physiology, Section 1: The Nervous

System, Vol. 1. (ed. E.R. Kandel). pp 877-944 (American Physiological Society,
Bethesda, 1977).

10. White, E.L. Cortical Circuits (Birkhiuser Press, Boston, 1989).
11. Connors, B.W. and Kriegstein, A.R. J. Neurosci. 6, 164-177 (1986).
12. Connors, B.W., Gutnick, M.J. and Prince, D.A. J. Neurophysiol. 48, 1302-1320

(1982).
13. Creutzenfeldt, O.D., Lux, H.D. and Wantabe, S. in: The Thalamus (eds. D.P. Purpura

and M. Yahr). pp 209-235 (Columbia University Press, New York, 1966).

11-819

