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Fuzzy Logic and Soft Computing: Issues, Contentions and Perspectives

Lotfi A. Zadeh*

Abstract

The past few years have witnessed a rapid growth in the number and variety of applications of fuzzy
logic, rangir'g from consumer products and industrial process control to medical instrumentation, infor-
mation systems and decision analysis. The foundations of fuzzy logic have become firmer and its impact
within the basic sciences - and especially in mathematical and physical sciences - has become more
visible and more substantive.

The other side of the picture is that the successes of fuzzy logic have also generated a skeptical and
sometimes hostile reaction. The crux of the position of skeptics is that fuzzy logic is overrated or wrong
and that anything that an be achieved through the use of fuzzy logic can also be achieved through the use
of conventional techniques.

Most of the criticisms directed at fuzzy logic are rooted in a misunderstanding of what it is and/or a
lack of familiarity with it. In many cases, what is not recognized is that the term fuzzy logic (FL) is actu-
ally used in two different senses. In a narrow sense, fuzzy logic (FLn) is a logical system which is an
extension of multivalued logic and is intended to serve as a logic of approximate reasoning. But in a
wider sense, fuzzy logic (FLw) is more or less synonymous with the theory of fuzzy sets (FST), that is, a
theory of classes with unsharp boundaries. In this perspective, FL = FLw, and FLn is merely a branch of
FL. What is important to recognize is that today the term fuzzy logic is used predominantly in its wider
sense. It is in this sense that any field X can be fuzzified - and hence generalized - by replacing the
concept of a crisp set in X by a fuzzy set. In application to basic fields such as arithmetic, topology, graph
theory, probability theory and logic, fuzzification leads to fuzzy arithmetic, fuzzy topology, fuzzy graph
theory, fuzzy probability theory and FLn. Similarly, in application to applied fields such as neural net-
work theory, stability theory, pattern recognition and mathematical programming, fuzzification leads to
fuzzy neural network theory, fuzzy stability theory, fuzzy pattern recognition and fuzzy mathematical
programming. What is gained through fuzzification is greater generality, higher expressive power, an
enhanced ability to model real-world problems and, most importa-ntly, a methodology for exploiting the
tolerance for imprecision - a methodology which serves to achieve tractability, robustness and lower
solution cost.

Although there has been a great deal of progress in our understanding of fuzzy logic and its poten-
tialities, there are many issues that remain to be addressed. One such issue is that of the induction of
fuzzy rules from observations. Although some successes have been achieved through the use of neural
network techniques and genetic algorithms, there are many problems in this realm that remain to be
solved. Other important issues relate to the problems of interpolation, commonsense knowledge

*Computer Science Division and the Electronics Research Laboratory, Department of EECS, University of

California, Berkeley, CA 94720; Telephone: 510-642-4959; Fax: 510-642-5775; E-mail:
zadeh@cs.berkeley.edu.
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Self-organization in a simple brain model

Dimitris Stassinopoulos and Per Bak

Brookhaven National Laboratory

Upton NY 11973 USA

Preben Alstrom

The Niels Bohr Institute

Copenhagen 2100, Denmark

Abstract. Simulations on a simple model of the brain are presented. The

model consists of a set of randomly connected neurons. Inputs and outputs

are also connected randomly to a subset of neurons. For each input there is

a set of output neurons which must fire in order to achieve success. A signal

giving information as to whether or not the action was successful is fed back

to the brain from the environment. The connections between firing neurons

are strengthened or weakened according to whether or not the action was

successful. The system learns, through a self-organization process, to react

intelligently to input signals, i. e. it learns to quickly select the correct output

for each input. If part of the network is damaged, the system relearns the

correct response after a training period.

How does the brain work?

Two points of view as to where to look for the "secret" are often expressed:

1). The truth is in the detail. The brain consists of neurons. Once we

understand the mechanism of the single neuron, we understand in principle

everything. Thus, we must put emphasis on measuring the properties including

the flow of chemicals, electrical potentials and pulses etc. at the synapses,
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axons etc. This traditional view has been very successful in science, most

noticeably in particle physics where all matter has been reduced to a few

quarks and gluons.

2) The truth is in the complexity. The brain has billions of neurons, each

connected to thousands of other neurons. Once you have enough neurons,

properly connected, intelligent behavior emerges by some magic. It has even

been said that the brain must necessarily be so complicated that it can not

possibly be understood by the brain. How then can we possibly generate a

theory which deals with all these elements? Even to write down the map of

the brain would require libraries of books.

Let us look into these two point of views. Let us compare with the way we

would "understand" a man-made object, namely a computer.

First, following the strategy of looking into the details, we would take the

computer apart and study its smallest parts. We would measure the char-

acteristics of the transistors, that is, how the various currents and potentials

depend on each other. We would have to understand the quantum mechan-

ical properties of the materials, silicon etc, on which the transistor is based.

Clearly, this will lead nowhere. Without any idea about the function that the

transistors perform, no insight emerges. The computer engineer couldn't care

less about how the transistor works - it is irrelevant for his purposes.

Second, although it is a popular view that a computer works because of its

vast number of circuits, it is not so. The world's largest computers work the

same way as the smallest pocket calculator. It simply has more storage, more

processors, more input-output devices etc.

Thus, neither of the two points of views are correct for the computer, and

most certainly they are not correct for the brain either. In order to understand

the computer, one has to understand the principles by which the elements are

put together. Whether the elements are of one type or another, whether they

are of electrical, optical, or mechanical nature is irrelevant as long as they

perform the correct function, that is for instance to carry out a simple logical
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operation such as an "AND" or "OR" logical operation on two bits. One does

not have to explain the complete system with its myriads of connection to

understand the computer. The truth is not in the intricacies. A computer is

basically a simple device, sending numbers or bits from one location to another,

and performing trivial operations with pairs of those numbers.

The same, we argue, goes for the brain. The goal must be to understand

the principles by which the neurons interact. This doesn't mean that the

study of the hardware, such as the flow of Ca++ and Na+ ions at the synapses

and axons, is irrelevant, in the same sense that the feasibility of constructing

transistors is not irrelevant for the computer, but simply that this study can

be decoupled from a general study of the mechanisms of the brain.

There is, however, one major conceptual difference between understanding

the computer and understanding the brain. The computer was built by design.

An engineer put together all the circuits etc. and made it work. In other words,

with no engineer, we have no computer. However, there is no engineer around

to connect all the synapses of the brain. One might imagine that the brain

is ready and hard-wired at birth, with its connections formed by biological

evolution and coded into the DNA. This does not make any sense. Evolution

is efficient, but not that efficient. The amount of information contained in the

DNA is vastly insufficient to specify all neural connections. The structure has

to be self-organized rather than by design.

Thus, in order to understand the brain, we must understand the principles

by which it organizes itself, presumably through its interaction with the envi-

ronment. In order to be biologically feasible, those principles have to be simple

and robust. In analogy with the computer, once those principles are under-

stood there might be little qualitative difference between the smallest lobster

brain and the human brain. If we are lucky, the difference is quantitative

rather than qualitative. This "evolutionary" conjecture has not gained much

acceptance; not because of lack of plausibility but because it failed to meet the

immediate challenge it raises: to prove by demonstration the existence of such
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a simple and plausible model.

Conventional attractor neural network models (For reviews see Amit' and

Hertz et a!2 ) work in two modes: a learning mode where the strengths of the

neural connections are computed and a retrieving mode where the network

recognizes input signals, i. e. provides the same pattern for several similar

input patterns. More advanced models use complicated back-propagation al-

gorithms which continuously update the connections by a computation not

performed by the neural network itself. These models have been important in

constructing technologies for pattern recognition, and emphasis has been on

maximizing their capacity for learning, without regards to questions raised in

realistic modelling of brain function. From its birth, a real brain is "on its

own" in an environment that constantly changes with no outside agent to turn

switches between learning mode and retrieval mode.

Recently, Alstrom and Stassinopoulos 3 addressed some of these points in a

new class of neural networks, denoted adaptive performance networks. The central

idea is the introduction of a global evaluative feedback signal, a dynamic thresh-

old, and a reinforcement rule with no need of further computation. Here, we

address the question of how can we get intelligent behaviour not through engi-

neering but through self-organization. We shall demonstrate that this type of

network can be trained to react "intelligently" to external sensory signals. In a

fashion analogous to the behaviorist techniques used in the training of animals

we introduce our system with a set of external signals each of which rewards a

specific action. The system learns to recognize all signals and choose the cor-

responding rewarding action. "Learning" and "retrieving" are two aspects of

the same dynamical process. It must be. Individual neurons don't know what

is globally going on; they perform their thing automatically, without concern

to whether they contribute to a learning or a retrieving task. Only an outside

observer is able to identify what is going out as "learning" or "retrieving" by

inspecting its behavior.

The goal of any scientific theory or model is to capture the essential el-
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ements of experiments or observations in nature. Here we wish to model

intelligent behavior at its simplest. To be concrete, consider the situation in

which a system provides food to a "monkey" if the correct button is pressed.

Which button is correct depends on whether a red or a green light is on. This

signal, which is shown to the monkey, is all the information the monkey has

in order to figure out which is the right button at every instant. The monkey

learns the correct reaction after a "learning" period of trial and error. If the

outside world changes, i. e. the "correct" buttons are switched, the monkey

should be able to modify its behavior. The monkey is able to learn progres-

sively more complicated patterns. The ability of a model to mimic this process

of learning "intelligent" responses (leading to satisfaction) to outside signals

is denoted "artificial intelligence".

We start by visualizing our model-brain in its embryonic state: a network

of neurons with random connections. Little genetic information is needed

to construct such random networks. Sensory signals are fed into the brain

randomly. The neural output, such as stimulation of muscle fibers, is also sent

randomly. The environment responds to the action directed by the brain's

output by rewarding (or not rewarding) it. The result is fed back to the brain

through a global signal, which could be a change in the level of a hormone or

an increase in the blood-sugar content. There is no mechanism by which the

information can be fed back selectively to the individual neurons.

In our picture the interplay with the environment is essential in organizing

the brain's ability to explore and become more experienced, allowing it to

react intelligently. In order to represent this, our model interacts with the

"outer world" in three different ways (Fig. 1). There is i) an input signal

giving information aboit the state of the outer world; ii) a resulting action

by the system toward the environment; iii) a global feedback signal indicating

whether this action was successful or not in accomplishing the goal. Our model

is necessarily grossly oversimplified; its sole purpose is to demonstrate certain

simple general principles.
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We have studied two network topologies: a layered one and a random one.

In the latter model, both inputs, outputs, and internal connections are completely

random. N neurons are each connected randomly to C other neurons. The

neurons can be either in a firing state, ni = 1, or a non-firing state, ni = 0. The

input to the i'th neuron from other neurons is hi = E J,,jnj, where the summa-

tion is over the C interacting neighbors. Initially, the j's are randomly chosen

in the interval 0 < J < 1. The neuron fires if the input exceeds a threshold T.

The interactions with the environment are implemented as follows.

i) The sensory signal is represented by an additional contribution, h' to

the input signal of a number of random neurons. These various branches can

be thought of as different features of the input signal such as sound, shape,

color, smell, position, size, etc. Different inputs are represented by different

sets of random input neurons (see Fig. 1). ii) The output signal is the firing

state of a set of randomly selected output neurons. For each input signal, the

action is considered successful if one or more specific but randomly selected

neurons, belonging to the set of output neurons, are all firing. iii) If the action

is successful, a positive reinforcing signal r << 1 is fed back to all firing neurons.

If the action is unsuccessful a negative signal is fed back. The reinforcement

modifies all connections between firing neurons Jj --+ J.j 4+ [rJij(1 - J.,j) + h]n nj

, where n' denotes the state of the i'th neuron at the next time step and h

is a random noise between -ho and h0 . The inputs are normalized, Jj,

J,,, + JI,jl Ej JI'j.

Thus, if the action is successfull, all connections between firing neurons are

reinforced, whether or not they participated in delivering the correct output; if

the action is unsuccessful, the connections between firing neurons is weakened.

In addition to the above input-output functions, the model has a global

control mechanism for the activity (Alstrom and Stassinopoulos) for the total

number of firing output neurons, A. It is important that this be kept to a

minimum. If A exceeds a value A0 the threshold T is reduced, while if A is

smaller than AO the threshold is increased, T -4 T + 6sgn(A - A0 ). Thus, if
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there is no output, or the output is too low, the system is "thinking", that

is its sensitivity is increased until an appropriate output is achieved. If the

system is "confused", i. e. there is too much output, the sensitivity is lowered.

Modulatory chemicals released into the brain help performing this function for

the real brain, in addition to participating in the formation of the synapses,

the J's discussed above.

At each time step the system is updated in parallel following the algorithm

above. The performance P of the network is defined as the average success

rate over 250 successive time steps. Figs 2-6 show the results for a number of

different tasks.

In the layered version, the neurons are arranged in rows, with each neuron

firing to the three nearest neighbors in the next row. Inputs are random, but

output neurons are those in the bottom row. At each time step the system is

updated in parallel following the algorithm above.

First, the "monkey" experiment defined above was simulated. A layered

network with 256 neurons was studied, with C = 3 (i7o = 0.01,r = 0.1). Two

input signals, each with 16 random input neurons, were chosen. For each

input, a pair of output cells was defined in the bottom row. The input signals

were switched every 2000 time steps (or when complete success, meaning that

the selected output neurons were active while all other neurons were not, has

been achieved over 250 consecutive steps). Figure 2a shows the performance

versus time. First, there is a period which we can identify as a learning period

in which the success rate is low and oscillating. Eventually the networks locks

into a state where success is obtained very quickly in response to the switching

of inputs. In this phase, the system reacts intelligently to the input signal.

It switches quickly back and forth between the two correct outputs. The

transition from the learning phase to the retrieval phase is quite abrupt. We

emphasize that no outside switch was activated at this point. Figure 2b shows

a similar curve for the random-topology case. Again a sharp, self-organized

transition from a learning mode to a retrieval mode is observed.
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What happens inside the network during the learning phase? Through a

complicated self-organization process, the system creates internal contacts or

connections between selected parts of the input signal and the correct output

cell(s). The process can be thought of as the formation of a river network

connecting output with input. When the output is incorrect, the river flow

is reduced at existing connections. When the flow is correct, the flow is rein-

forced. When there is too little output, the river beds are widened.

The state of the system after completion of the learning phase cannot be

calculated by means of a simple algorithm. (The synapses are formed by self-

organization rather than design). The "fast" dynamical switching between one

connection pattern and another under switching of the outside signal in the

."retrieval" phase following the long learning phase is quite complicated. Figure

3a,b shows the firing patterns for the red and green responses, respectively.

Figure 4 shows a movie of the switching process from the "red" response to the

"green" response. The switching takes place through ten intermediate steps.

We doubt that any engineer would come up with such a solution. If we were

free to construct the network "by design" we could obviously come up with a

much simpler and efficient solution. The memory lies in the conservation of

parts of the river beds from previous correct connections.7

The system has self-organized into a state where the change of "water

supply" at random positions causes a fast conversion to the correct output. In

the learning phase the system is very sensitive to the relative small changes in

input- in that sense it is chaotic. No such dynamical switching takes place in

conventional neural networks where connections are essentially hard-wired in

the retrieval mde.

Figure 5 shows the response to "'damage" of the network. After --150000

time steps, a block of 30 neurons was removed from the network. After a

transient period the network has relearned the correct response, carving new

connections in the network. In other words, instead of using some features

of the input signal the system learns to use other features. Think of this as
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replacing "vision" with "smell". The memory is distributed and robust,8 as it

should be in order to represent real brain function. The new firing patterns

are shown in figure 3c,d.

Figure 6 shows the situation where a third input (and corresponding pair

of output cells) was added after the first two responses had been learned. After

a transient period where the system is confused and the success rate is low,

the network eventually learns the three appropriate responses. Figure 3e,f,g

shows the firing patterns after the three inputs have been learned.

A brain working according to the principles illustrated here requires a min-

imum of biological complexity - it is a relatively simple organ without much

structure. Little information is needed to construct the simple network with

essentially arbitrary connections. The correlations that control the switching

behavior of the system hint to the fact that 'it is not only the well developed

"riverbeds", and where most of the activity takes place, that are important for

the function of the network but also the relatively silent regions in between'.

Evidence of this can be seen in the rather complicated landscape of the Jijs

(Fig. 3h,i). The landscape is strikingly rugged. This is somewhat counterin-

tuitive. One might have expected well-carved riverbeds and isolated switches.

Seemingly, this configuration which from an engineering point of view is more

efficient, it is not compatible with the self-organization process.

In conclusion, we have constructed a simple model simulating aspects of

brain function. The build-up of the Jj landscape is due to a self-organization

process. We suggest that simple robots performing "intelligent" tasks can be

constructed following the principles outlined here.
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Figure captions

Figure 1. Block _iagram of brain model. Each signal is represented by

random inputs to a number of neurons. For each signal, here red or green, there

is a combination of one or more output neurons (shaded circles) which must

fire in order to achieve success. The environment feeds back a signal indicating

whether or not success was achieved, a) Layered network; b) Random network.

Figure 2. a) Performance vs. time for layered system with two input signals

which are switched every 2000 time units or when the system is consistently

successfull. After a training period during which the network self-organizes,

the system entei -n intelligent state with fast switching between the correct

outputs. b) Same for random network.

Figure 3. Firing patterns. a,b) The two sets of input neurons are colored

red and green, respectively. For the red input, output cells 10 and 15 of

the bottom row must be triggered simultaneously to achieve success; for the

green input the output cells 7 and 12 must be triggered. The yellow squares

indicate neurons which are firing for the two inputs in the fast switching mode.

c,d) The same as above but in the case where the system has relearned the

correct response after removal of a block of 30 neurons (shaded area). Note

the difference from the original response. e,fg) Same as above, but with three

inputs. The response of the two original inputs (e,f) is different from the

original one (a,b). h,i) The configurations of J.,js pointing to the right, for the

two cases discussed above (a-b, c-d). The different values are depicted with a

rainbow-color map ranging from black and dark blue for the lowest values to

red for the highest.

Figure 4. Movie showing the "fast" switching between the "red" response

and the "green" response. The transition takes place through ten complicated

steps.

Figure 5. Performance for the layered system, but with 30 neurons dam-

aged after 150000 time steps. The system has relearned the correct response

after 210000 time steps.
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Figure 6. Same system as shown in figure 2a, with a third input added

after 150000 steps. After a confused learning period, the correct output for all

three inputs is learned after 450000 time steps.
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New Progress Towards Truly Brain-Like Intelligent Control

Roberto A. Santiago Paul J. Werbos
BehavHeunstics, Inc. (BHI) Room 675, National Science Foundation

335 Paint Branch Drive, College Park, MD 20742 Arlington, VA 22230
(301)585-9220 (703)306-1339

Abstrac

This paper gives the details on an unpublished portion of the WCNN plenary given by the second author.
The talk will review the reasons why the brain is a neurcontrller 11-3].

Neural network designs of practical use in control engineering can serve as subsytems of other control
designs, implicitly dn g or existing controllers, track a desired traiectorv or reference model, and
ootimize oerformance over time[2,4,51. Optimization provides the most general and powerful capabilities,
across a wide range of applications, even for tracking. Industry use of optimization designs has
expanded greatly, and includes some very crucial applications; however, the designs used until now were
either limited to batch, off-line learning, or were limited to small or medium engineering problems,
around 10 controls, to be used efficiently. Other designs which do not account for delayed impacts of
action are even more limited. All of these function unlike the human brain which routinely handles large
complex control problems.

This paper reports the first simulations of Dual Heuristic Programming (DHP), the first of a family of real-
time optimization architectures explicitly designed to scale to very lame numbers of controls. These first
tests use an old benchmark problem, the cart-pole balancer, which does not test the scaling capabilities;
however, they do show that DHP works as well or better than older designs on small problems, and they
offer practical experience which supplements the design in [4]. The next tests, now started, involve a
hybrid electric car at the University of Maryland, important to the "Clean Car" Initiative currently being
pursued by the Clinton Administration.

Introduction and Context
Neural network control designs for optimization have seen a tremendous expansion in indutr in the
past two or three years. Industry has long known how to solve simple trackng problems, such as how to
keep a chemical plant working without blowing up, how to design a car capable of running, and so forth.
The big challenges now involve reducing enerov use or waste or pollution or cost, even while continuing
to track a dynamic process; and develoging control for very tricky systems, mainly nonlinear systems
with complex delayed effects of actions. The first of these goals can be met by using optimization
Ibnigue, applied to minimizing a performance measure which combines tracking error plus measures
of cost or pollution, etc. Both goals can be met by using optimization designs, like DHP, which account
for the delayed effects of action, and allow for noise and non-lineadty.

As an example, Neurodyne[4] has recently developed a medium-scale optimization design for electronic
fuel injection in cars. This design i; far more advanced and brain-like than the usual state of the art.
Based on preliminary data, Arthur D. Little predicts this design will yield ultra-low emissions and a
significant improvement in fuel economy, with a simple retrofit of existing cars. Real tests on a GM
Saturn are planned for this year.

The switch to more advanced cars, which do not require gasoline or internal combustion engines, the
main theme of the President's "Clean Car" initiative, will also require better control. Even today, the main
reason why car companies say they cannot easily accommodate proposed laws requiring the sale of
electric cars is the problem of cost. High-efficiency AC or brushless DC motors are easy to get, for about
$1,000, but existing controllers have unacceptable losses (circa 25%) and cost about $7,000. Optimal
neurocontrol can reduce these losses, and allow the use of high-throughput-per-dollar neural chips, such
as, perhaps, the Motorola chip, designed with the car market in mind.

Working neural net designs for optimization fall into two categories: direct optimization, as in Model-
Predictive Control[4], widely used in the chemical industry; and agoroximate dynamic Droaramming
(ADP), which includes "reinforcement leaming* designs as a special case. Direct optimization is usually
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based on some form of backpropagation Some authors simply calculate derivatives through a plant
model at one time, without adding in the cross-time terms required to calculate the exact, total gradient.
This sometimes works on simple tracking problems, but it breaks down on problems like the benchmark
biomass or ecological management problems, or on other problems which essentially require planning[7].
To calculate the cross-time terms exactj, one must either use true backpropagation through time, which
is essentially an off-line method, or use forward methods whose costs do not scale well for large
problemsM7]. Nevertheless, Feldkamp's group at Ford has achieved impressive results using direct
optimization[7], as has Hrycej at Daimler-Benz.

The reinforcement learning designs most popular in academia do not scale well to medium-size
engineering problems; however, Neurodyne and Accurate Automation Corporation have developed
medium-scale ADP-based designs which have had a recent explosion in applications this past year,
including flight tests proving improved thrust in an F15, semiconductor fabrication in collaboration with
Texas Instruments, the first prototype for an airplane capable of flying to earth orbit, clean car work, and
so forth. A large-scale method in the same family could permit even better performance and a wider
range of applications, after the details are worked out.

DHP is the highest member of the ADP family under real development (GDHP is more capable but is
currently not in any real world development or application). DHP answers the need for even better
performance on a wide range of problems, especially large scale problems. At BehavHeuristics, work is
underway to develop DHP for real world applications varying from the financial markets to real-time
optimal control for large problems[81. The remainder of this paper will describe the simulations to date,
starting out by defining the test problem in detail. These simulations do not represent an optimal
implementation of DHP but are the first real working examples.

Definition of the Pole Balancer Proble,

The Cart Pole Balancer (CPB) problem provides a unique dynamic for testing adaptive control systems.
While it does not test the scaling properties of DHP it does offer a foundation from which to exploit these
scaling properties, having proven its performance is up to par or better for current standards. Equations
for a CPB emulator are widely available [e.g. 9], so they will not be discussed here.

For sake of clarity we will define the problem as follows:

1. Let C = an adaptive controller
2. Let P1 = a pole of length I1, weight wl, and radius rl
3. Let P2 = a pole of length 12, weight w2, and radius r2
4. Let E represent the environment (in this case the track)
5. Let X represent the cart on the track
6. C controls X in E so that P1 is balanced upright on X starting from an unbalanced

position
7. Let C converge.
8. Replace P1 with P2 and start from an unbalanced position.
9. Let C converge.
10. Return to P1 and start from an unbalanced position.

Success with the CPB problem is defined as the ability to generalize across the domain of the problem
so that C can remember how to control X to balance P1 in step 10 without having to train again. The
dynamics of changing the pole in the environment provide a non-linear property which has posed a
challenge to neural and classic controllers alike.

To approach the CPB problem from the viewpoint of DHP we must define the control signal u(t), the
state vector R(t), and a generalized utility function U.

The control signal u(t) is a single value which represents an acceleration in the positive or negative
direction of X on E. The components of R(t) can be summed up as follows.
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Position of X -1.1 to +1.1 meters R,(t)
Velocity of X -1 to+ 1 meters/second R2(t)
Acceleration of X -.5 to + .5 meters/second 2  R3(t)
Position of P -P/2 to +P/2 radians R4 (t)
Velocity of P -P/4 to +P/4 radians/second R5(t)
Acceleration of P -P/4 to +P/4 radians/second2  R6(t)

The measurements of P are with respect to the pole standing straight up on X. Notice that at no point is
there any information given concerning the nature of the pole. An important stipulation of the problem is
to create this controller without giving it the length, weight, and radius of the pole. The controller may
only learn and adapt to a dynamic system by making inferences from its behavior.

Finally, a utility function, U, must be defined. Thought was given to the choice of utility measure to be
used with this problem. DHP does not require that U be finely crafted, to the degree required for
Lyapanov functions but it is important that it express a desired performance. The lead author first
consulted with a friend experienced with juggling and other balancing tricks who provided some useful
insights. Though large velocities are generally unacceptable in balancing tricks, large accelerations are,
so long as the acceleration comes in small spurts. In other words a juggler will use small accelerations of
his palm to keep a broom balanced on end. Also, in observing the broom, the juggler never takes time to
measure a broom; instead, he observes the top of the broom in order to get the feedback he needs.
These factors come together to provide the following utility function.

U(t) - a*abs(R1(t))/1.1 + b*(1-abs(R 2(t))/(2*abs(R3(t)) -
c*sin(R4(t) + P/2) + d*(1-sin(2*R5(t) + P/2)/sin(2*R6(t) + P/2)

The variables a-d are weighting components for the utility function. The utility function above varies
from previous approaches to this problem where a utility of some sort was passed only when failure was
reached. This definition of the problem is much too constraining and bears little resemblance to brain-
like leaming. With R(t), u(t) and U in hand we are ready to start designing and implementing the DHP
controller.

Dual Heuristic Proaranmmin
To understand adaptive critics we must first step back and understand the components of dynamic
programming, the goal of adaptive critics. Dynamic programming in the general sense is a function that
is supplied a model and a utility function for some system to be controlled. A value, J, for every time, t,
is output. The nature of J is such that maximization of J over a short horizon insures maximization of
utility over the long horizon. In other words this J is a secondary utility function which makes the job of
optimizing over an infinite time horizon much simpler[4].

The problem with pure dynamic programming centers around the complexity of the equations to
calculate J. J in large problems can take massive amounts of computational power to calculate. For this
reason the adaptive critic architecture was designed to approximate a J function (or some part of a J
function). This can be done efficiently and effectively by neural networks. In essence, this is the core of
all adaptive critic architectures.

The simple approach to the adaptive critic would be to directly approximate a J function with a neural
network and maximize it for J(t) to J(t+1). This is the strategy behind HDP[4]. This is similar to
backpropagation of utility except the adaptive critic as stated above provides a more accurate target for
adapting the action network. In this case the action network is adapted to maximize J. This is not done
directly but by propagating changes first through a model and then back to the action network. This will
become clearer in the section on implementation of DHP to this problem.

The drawback to HDP is that the critic only outputs a single J value that correlates to utility. This value
when propagated back tells us how badly we did, and therefore allows us to change our weights in the
action network to maximize it, but it makes no reference to which u(t) from the action needs to be
changed and how. For a controller with numerous controls, above 10 that is, the action network
becomes more difficult to converge.

1-29



DHP is designed to approximate the derivative of the Bellman equation[4], used in dynamic
programming to calculate J, with respect to R(t) as understood by the model. The model is then used to
calculate the change in each control component to maximize J. This is quite different from HDP whose
critic outputs dn approximated J value. Instead the DHP critic outputs the derivative value of J with
respect to each R(t). This value will be referred to in this paper as L(t). L(t) indirectly provides
information about each component of u(t).

The DHP Architectr

The DHP controller is made up of four components: a critic network, a model network, an action network,
and a utility function. Notice that the first three components are networks while the last one is just a
discrete function for measuring utility which we defined above. Each network can be adapted using any
supervised learning method. The important functional component of DHP is the ability to backpropagate
values from the output to the input. In other words, given a certain output what is the required input to
the network. For convenience, dual subroutines have been developed which provide a generalized way
of doing this backpropagation across many systems. These methods can be found in Chapter 10 of [4].

Each component of DHP has a very specific purpose. The action network outputs a u(t) which is the
control signal that is adapted to maximize J. The critic network is adapted to output L(t) values which
maximize U over the long or infinite horizon. The model network is meant to accurately predict the state
of the system at t+W, R(t+l), given R(t) and u(t). U is used as the source for modifying the critic network.
The way each of the networks is adapted is the core functionality of DHP.

The next three sections are devoted to the detailed explanation of how to adapt each network. Once
these are understood the application of DHP to the CPB problem becomes trivial. The following diagram
and set of equations which have been slightly modified from Chapter 13 of [4) are presented to help the
reader with this discussion. Note that the F_ notation regards a feedback calculation. Details of this
notation can be found in [4] as well.

Implementation of DHP
CRITIC Calculating Ljarget in DHP

1. Obtain R(t), u(t) and R(t+1)
R(t+l) , L0+l) 2. Obtain L(t+1)

MODEL UTILITY 3. Calculate F-u(t) = FUu(R(t),u(t)) +........ ----- F_fu(R(t),u(t),L(t+ 1))

4. Calculate L target = FJR(R(t),u(t),L(T+1)) +
F UR(R(t),u(t)) + FAR(R(t),F_u(t))

ACTION 5. Adapt critic network with L target
7 "6. Adapt model network using the observed R(t+1)

.. .......... V...................7. Adapt action network using FRu(t)
~./ " L-' •.arge

It is the hope of both authors that this explanation will promote the development of new applications of

DHP for real world problems.

Adaptina the Action Network

I. Generate an action u(t) based on R(t) through the action network
2. Generate a prediction R(t+1) with the model network using R(t) and u(t)
3. Generate L(t) by inputing R(t+1) to the critic network
4. Use a dual subroutine through the model network to calculate the changes to u(t) that would

produce the changes in R(t+1) suggested by L(t), these changes are also known as F_u(t)
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5. If your utility function uses any u(t) to calculate a utility value it is then necessary to calculate
the derivative of U with respect to each component of u(t). From this calculation a change in
u(t) can be determined. Add that to the F-u(t) as generated above.

6. Using these changes to u(t), adapt the weights in your action network

Adwan the Nodw
The main inputs to the model network are R(t) which is the current state of the system and u(t) the
control signals that are taken in response to R(t). Adaptation of the model network is based on predicting
R(t+l) and then observing the state and correcting for errors. Having a very robust model network is key
to a good DHP architecture. If a complete model is available it is possible to use a system of equations
instead of a neural network. If this is the case, which in reality it rarely is, you can apply the chain rule
for ordered derivatives to that system of equations to make the same calculation as is being made with
backpropagation.

Adao~na the CriUc Networ

The plan to change the adaptive critic is such that when we predict we are going to see this state R(t) we
return the proper values with respect to J. Technically speaking we want to make calculations for R(t-1)
such that when the model network sees R(t-1), it outputs an R(t), which the critic network has been
adapted this time to output L(t+l). By waiting and watching the resulting state from u(t), we can observe
our error in optimization. More importantly, the critic network will learn to make changes the previous
step to arrive at the utility and J value found at t+1. The analogy would be "Now that I know that taking
the first left gets me home faster than the second left, when I come down this street again I will get over
to the left so I will be prepared to take the quicker route." We do the following calculations to adapt the
critic network. These steps are the equivalent of 4 and 5 in the diagram above.

1. Use "1() adjusted by L(t), which was calculated using R(t+1), and using a dual subroutine to
calculate the changes in the values of R(t). We will call these changes in R(t), L_targetl

2. Calculate the change R(t) with respect to utility (in other words take into account how utility
changed) and treat these values as Ljtarget2.

3. Calculate the change in R(t) with respect to F-u as calculated above and treat these values
as L target3.

4. Calculate LJarget = L.Jargetl + L._target2 + L.target3
5. Use this as the target for training the critic network. The condition under which this network

is being trained can be stated "When the critic is input an R that matches this R(t) I will
respond with the changes as specified in L.Jarget".

The Arnllcaton of DHP to the Cart-Pole Ptob4,m
Application of DHP to the CPB problem should be straightforward at this point. The utility function has
been specified and the components of u(t) and R(t) have been described which will set up the
architecture of each network. There are several tricks involved in training a DHP network. These tricks,
for lack of space, will not be described here but can be discussed with the primary author.

The largest concern with this implementation was the model network. The model network needs to be
robust enough to learn the behavior. Time lagged recurrence was used along with several other training
methods including the adaptive learning rate. These methods are spelled out in chapters 3 and 10 of [4].

The results of the experiment were conclusive. The DHP controller was able to handle the dynamics of
the CPB problem. The following chart is a report of the results. A simple backpropagation network and a
backpropagation of utility network were also tried on the same set of poles. The first number represents
the amount of times the pole fell before success was found. Success was defined as balancing the pole
for 30 minutes. The second number represents the average cycle count for all the iterations that failed.
One cycle is equivalent to one second on the problem.
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Pole Backpropagation Backpropagation of Dual Heuristic
Through Time Utility Programming

P1 40/925 42/821 43/86W
P2 36/913 46/857 47/861
P1 35/896 41/879 37/943
P2 42/901 36/913 36/1007
P3 40/853 32/842 39/1095
P1 38/941 29/985 28/1121
P2 41/1002 28/1003 27/1219
P3 39/944 23/921 26/1311
P4 39/883 44/831 30/1269
P1 43/872 30/947 16/1327
P4 41/885 42/833 21/1211

AVG 39.5/910.5 35.7/893.8 31.8/1111.8

As can be seen the DHP controller had much more success. The trend in the data suggests that the
controller was converging upon an optimal strategy for all types of poles. In fact, further poles were
tested with the DHP controller and the failures continued to decrease and the amount of time the
controller could keep the pole balanced increased on those trials. These results are not included in the
table because this data was not collected from the other two networks.

Overall, the DHP network showed much improved performance on this problem when compared to other
network architectures. The average failures were much smaller and the average balance time was much
higher than the other two architectures. Further expansion with the scaling properties in DHP will be
used on the University of Maryland project. If this performance can be maintained as the controller is
scaled to larger problems it will mean a great advancement in real-time control technology.

More robust leaming was found using the adaptive critic technique. In particular DHP offers the insight
into a problem that other control strategies have lacked. Its adaptability for changing situation needs
seems to be far more abundant than other architectures. Obviously this was a first-of-its-kind experiment
and further research is necessary. Regardless, the performance of this DHP experiment shows that
great possibilities exist in controlling and optimizing highly non-linear parallel systems.

An extension of this project is being made to apply the DHP architecture to a hybrid electric vehicle at
the University of Maryland. The car uses an electric motor supported by an internal combustion engine.
Optimization of this type of car to get the most mileage out of its fuel would mean substantially lowered
emissions and fuel consumption without loss of performance.

In closing, the adaptive critic family of neural networks has just started to be explored. With higher and
higher demands being made in industry for optimization for anything from profit to purity of product, DHP
promises to deliver in many industries. With the rise of faster computers and specializing in efficient and
accurate networks, it is easy to surmise that the new era of efficient, adaptive, and optimal controllers
are just around the comer.

1-32



1. P.Werbos, The brain as a neurocontroller, in K.Pribram, ed, Origns, Proc. of the 2nd Appalachian
Conf., INNS Press, 1994.
2. P.Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political
Forecasting, Wiley, 1994.
3. P.Werbos, Neural networks, consciousness, ethics and the soul, WCNN94 Pric., INNS
Press, Edbaum, 1994.
4. D.White & D.Sofge, eds, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
Van Nostrand, 1992
5. P.Werbos, Elastic fuzzy logic,J. of Intelligent and Fuzzy Systems (Wiley), Vol.1 .No.4,1993.
6. Small Business Innovation Research 1994, NSF Program Announcement
7. P.Werbos, How we cut prediction errors in half by using a different training method,WCNN94
Proc.,INNS Press, Erlbaum, 1994.
8. K. Otwell, S. Hormby, W. Hutchinson, A Large-Scale Neural Network Application for Airline Seat
Application,WCNN94 Plroc.,INNS Press, Erlbaum, 1994.
9. A. Wieland, Evolving Controls for Unstable Systems, IEEE
10. P. Werbos, Backpropagation Through Time: What It Does and How To Do It, Proc. of the IEEE, Vol.
78, No. 10, 1990

*The views herein are those of the authors, and do not in any way represent NSF or BHI.

"**BHI holds patents pending for DHP, Elastic Fuzzy Logic[5], and many related techniques developed by
Werbos for the first time in [4], as well as a corrected version of GDHP, a "next step" beyond DHP.

1-33



Biomedical Applications of
Neural Networks

Session Chairs: David G. Brown
John Weinstein



APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO MEDICAL IMAGE
PATTERN RECOGNITION

Shih-Chung B. Lo, Jyh-Shyan J. Lin, Matthew T. Freedman, and Seong K. Mun
Radiology Department, Georgetown University Medical Center, Washington, D.C. 20007

ABSTRACT

Three neural network models were employed to test our databases in the experiment. The first method was a pattern match
neural network. The second one was a conventional backpropagation neural network. The third method was a "backpropagation
trained neocognitron" in which the signal propagation is operated with convolution calculation from one layer to the next. In
the convolution neural network (CNN) experiment, several output association methods and trainer imposed driving functions in
conjunction with convolution neural network are proposed for general medical image pattern recognition. An unconventional
method of applying rotation and shift invariance is also used to enhance the neural net performance.

We have tested these methods for the detection of microcalcifications on mammograms and lung nodules on chest
radiographs. Pre-scan methods were previously described elsewhere. The artificial neural networks act as final detection
classifiers to determine if a disease pattern is present on the suspected image area. We found that the convolution neural
network, which internally performs feature extraction and classification, achieves the best performance among the three neural
network models. These results show that some processing associated with disease feature extraction is a necessary step before a
classifier can make an accurate determination.

I. INTRODUCTION

Various image processing techniques have been proposed for the detection of disease patterns. With each of these methods
there is a trade-off between increased sensitivity and decreased specificity. By setting less stringent criteria on the above
algorithms, the sensitivity of the detecting programs can be increased. However, when using any of these methods to detect
subtle diseases, we must use addition methods to decrease the number of false positives. For this reason, several investigators
have attempted to use various advanced image processing and artificial classifiers to improve the disease detection [1-51.

Many artificial neural network models have recently been applied to diagnostic imaging research [6-71. The main tasks of
these research efforts are aimed at assisting radiologists either in the accuracy improvement of quantitative measures or in the
improvement of sensitivity and specificity for a disease detection. In diagnostic imaging, the neural network techniques
incorporated with image processing methods have become a major research trend in the field of computer-aided diagnosis.
Medical diagnoses involve very sophisticated decision-making processes. We will limit our studies to the recognition of image
patterns. In this paper, we will also discuss characteristics of some disease patterns in clinical images and their implications on
the neural network classifications.

II. MATERIAL AND METHODS

A. Disease Patterns on Proiection X-Ray Images
Projection radiographs shown on films are generated by the transmission of x-ray beams through a patient. The resulting x-

rays, of varying intesity, form a radiographic image. For many years, this technique has been used as a diagnostic procedure for
initial or primary examination of a disease associated with physical tissue changes. The major drawback of projection
radiography is that x-ray beams project the original anatomical three-dimensional objects onto a two-dimensional image. In
other words, each pixel intensity on the image represents a total x-ray attenuation integrated from a line passing through the
patient. Bone and soft tissue, and many abnormal changes of tissue can be distinguished from one another in an x-ray image
because they attenuate x-rays differently. However, subtle abnormalities superimposed on various normal tissues and bones are
difficult to discover. The disease pattern recognition on these images, which requires a professional training, is quite different
from that of the character recognition or other image pattern recognition. The degree of difficulty is not easy to measure.
Qualitatively speaking, the ratio of signal and structure noise in the task of disease pattern recognition can be very small.
Consider a local suspected area that may or may not contain a disease pattern, s(xy) e S. This local area often contains some
background information resulting from normal tissues, b(x,y) e B. The t,'al intensity function denoted as f(xy) is given by:

f(x,y) = s(x,y) + b(xy) ... (1)

In general, four situations are possible in a suspected area: (i) high signal to background ratio (s/b) representing an obvious
case, (ii) s(xy) << b(x,y) representing a subtle case, (iii) s(xy) = 0 and b(x,y) - s'(x,y), where s' e S, and (iv) s(x,y) = 0 and
b(x,y) is not similar to any disease pattern. Most cases falling in situation (ii) result in true-negatives. Cases associated with
situation (iii) may produce a false-positive determination by a classifier.
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Figure 1. Left 64 patches were used for the training and right 64 patches were used for the testing.
Each patch on the upper 4 rows contains a nodule. Each patch on the bottom 2 rows contains an end-on vessel.
The remaining patches contain image profile from other lung and rib structures.

Figure 2. Left 64 patches were used for the training and right 64 patches were used for the testing. Only center portion of
each patch, 16x16 out of 32x32 pixels, was used in the study. Each patch on the upper 4 rows contains at least a
microcalcification. Each patch on the bottom 4 rows contains at least a local maximum spot.
Patches at block numbers (1,5), (5,5), (7,5), (9,5), and (2,7) contain a film defect in each block.

Pattern match and backpropagation, two commonly used pattern classifiers, were employed to compare the performance on
the detection of clustered microcalcifications selected from mammograms and the detection of lung nodules extracted from chest
radiographs. Regions of interest, formatted at 32x32x12 bit, normal or abnormal, were extracted by the corresponding methods
previously described [3-41. Both geometrical pattern and relative intensity of a local area on a radiographic image are important
information in a radiographic reading. The background trend of each ROI was removed to eliminate low frequency variation.
However, the background structures (i.e., radiographic image of bone on chest image, vessels, and large soft tissue differences)
remain in each ROT. No normalization procedure was taken, because normalization can mix a disease pattern with a non-disease
pattern. For example, (a) small nodules and end-on vessels and (b) microcalcifications and film defects will not be
distinguishable. Since many disease patterns are superimposed on background structures, supervised training was chosen for the
study. (So far, we have not experienced a successful unsupervised training technique with our database.)

A. 1. Disease Pattern Characteristics of Microcalcifications and Lung Nodules
One must realize that the larger the nodule the higher the contrast of the nodule profile on the radiograph. Small rounded
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objects possessing high contrast are most likely end-on vessels. On the other hand, film defects are highly contrast independent
of size. However, the gray value differences between the peak of microcalcifications and local background tissue are somewhat
proportional to the size of the calcifications on mammograms. See Figure I for examples of end-on vessels and true nodules.
Several image blocks shown on Figure 2 demonstrate the difference between microcalcifications and film defects. All image
blocks are randomly selected from our database and processed by a histogram expansion for the display purpose. It is essential
to use a sufficiently small digitization to preserve the disease pattern. Potential problems of using a large digitization spot for
acquiring mammographic images are: (a) the edge of a small film defect can be blurred and (b) very small microcalcifications are
not actually digitized.

B. Neural Networks
B.1 Associated Memory Based Pattern Match Neural Networks for Disease Detection
A classifier takes a feature vector and produces a classification. The core portion of pattern match classifier searches for the

close pattern in the memory. If no pattern match is found in the memory, a new pattern is created and stored for that particular
classification in the memory during the training. Several neural networks belong to this type of pattern match: (a) adaptive
resonance theory (ART) and its extensions (i.e., ART-2, ARTMAP, etc), (b) learning vector quantization (LVQ), (c) restricted
coulomb energy (RCE), and (d) Dynamically Stable Associate Learning (DYSTAL) [8].

We used the processed image block (i.e., patch) as the input feature vector. Feature vectors of this kind were "highly
contaminated" by background structures, which are difficult to be separated from disease patterns. It is obvious that this was not
an optimal way of using pattern match. Extracted features representing various aspects of disease patterns, if there is a way to
extract them, are desirable for a pattern match technique. Since DYSTAL was originally designed with image input, we tested it
on our database in comparison to other neural networks of which some internally possess feature extraction procedures.

B.2. Backpropagation Neural Network Technique for Disease Pattern Recognition
Sometimes it is difficult to compare one type of neural network to another. In this subsection, we would like to use the

well-known backpropagation (BP) neural network to investigae its performance with (BP/IH) and without (BP/OH) a hidden
layer. We expect that the hidden layer would serve as a feature extractor. The same training and testing data sets, which again
were "highly contaminated" and used in the pattern match neural network, were entered into the BP neural network.

B.3. Convolution Neural Network for Disease Pattern Recognition
The above BP neural network arrangements did not emphasize the local signal interactions, which are more important than

non-local interaction in a general image pattern recognition. We, therefore, included a convolution neural network (CNN) in the
experiment. The structure of the CNN is a simplified version of the neocognitron [9-10]. We used only a 2-level structure and
eliminated all the complex-cell layers. Nets between two adjacent layers were selectively interconnected across groups. We
modified the neocognitron network structure and used a convolution constrained backpropagation method for the training.
Figure 3 shows the fundamental structure of this neural network.

Hidden layer 1 Hidden layer 2(N matrices) (M matrices)

tQ output units

Inpu unis .detection for
• ° NO

- detection forY = °YES
N groups Fully"
of kernels M groups ;ll

of kernels connected

Figure 3. Artificial convolution neural network for disease pattern recognition

In the CNN signal processing, each group in the receiving layer gets signals from a group of weights (e.g., kernels). For
the forward signal propagation, the resultant of the weighting factors of the kernel convoluting the element values of the front
layer is collected onto the corresponding matrix elements of the receiving layer. This operation accounts for the major difference
between convolution type neural network and regular fully connected neural network. We used a 7x7 convolution kernel for
each layer. Each hidden layer consists of 10 groups. The output layer has 10 nodes (2 categories) which were fully connected to
the second hidden layer.
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C. Training of Neural Networks

C. 1. Classification Invariance of Matrix Operations
In general, medical image patterns possess either a circular symmetric shape (e.g., nodule) or lack a fixed geometric pattern

(e.g., calcification). In such cases, image pattern recognition does not call on top-down or left-right as classification criterion.
Therefore, we can take advantage of this characteristic as an invariance. In other words, we can rotate and/or shift the input
vector two-dimensionally and maintain the same output assignments for the training. This method may have two effects on the
neural network: (i) to instruct the neural network that the rotation and shift of the input vector would receive the same
classification result; and (ii) to increase the total number of training samples which is expected to enhance the performance of
the neural network. In this study, we only rotated each suspected image block 8 times for input to test our hypothesis. Four of
the rotations are: 00, 900, 1800, 2700. In addition, we also flipped over (left-right) the original image matrix and used the same
rotations again to obtain 4 additional rotations.

C.2. Modification of Backpropagation Training for the CNN
As indicated in section A.1, a high signal of a feature can result from a negative object. Therefore, we used a Gaussian-like

activation function for the cumulated signal propagation between input layer and the first hidden layer. The purpose of this
activation function is to treat both low and high cumulated signals as false features that would eventually facilitate the
calcification process in the following layers. This Gaussian-like activation function would not be appropriate for the BPNN
using an image block as the vector described in B.2. In the conventional BPNN, fully connected rather than locally connected
networks were implemented.

We used the sigmoid activation function for the forward signal propagation for all layers other than the first hidden layer and
applied backpropagation training for the adjustment of weights between any two adjacent layers. The main difference between
conventional weights and kernel weights is that the former are independent and the latter are constrained by grouping. By
looking at the CNN processing, one may find that signals are filtered and modulated as in a circuit system. Signal propagation
from one layer to the next is composed of: (a) an adaptive convolution combiner and (b) activation functions (Gaussian-like - eq.
(2) - and sigmoid - eq. (3) functions for the first hidden layer and for other layers, respectively) which are given below:

4 x exp > -< [kz(uv; n) x S,.I(i-uj-v; m)]<
S,(ij; n) = ...(2)

1 + exp -. , [kx(u,v; n) x S,.I(i-uj-v; m)])

and S 1(ij; n)= (3)
1 + exp , [k.(uv; a) x S-I(i-uj-v; mi)]

where Sx((ij); n) represents signal at node (i, j), nth group, and x layer. kx((u,v); n) denotes a weighting factor value at net (u,
v), nth group, and connecting from x-1 to x layer. m4n represents those in group m that connect to group n.

C.3. Backpropagation Neural Network Trained by Radiologists
In the study, we modeled radiologists' diagnostic rating (i.e., the probability of a disease existing in a suspected area.) and

incorporated it into the neural network training. In fact, when a radiologist determines a specific probability of a disease pattern
in an image area based on his/her training and experience, this probability would be accompanied with a variation (or a standard
deviation). An asymmetric output association distribution is shown in Figure 4. The use of asymmetric fuzzy assignment
attempted to instruct non-disease cases toward low value nodes and to push disease cases toward high value nodes. With this
fuzzy assignment for the output nodes in the training, the relation between adjacent nodes is established. This supervised
training can be generally applied to any situation where an association of outputs is necessary.

boundary between true &
fatlse nodules for training

Radiologist's judgment D: 0 1 2 -s 6 7 8 9
(scaled disease probability)

Output node 0 D ' ' - 1 I3 3
d: 0 1 2 3 4 , 5 6 7 8 9

Figure 4. Fuzzy output association is constructed by a Gaussian and a trainer imposed repulsive function
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D. Classification of Output Values in the Testing
Corresponding to the grading system arranged in the training, a polarized (linearly weighted) function is given as an

indication. In practice, we can define a normalized disease detection index (NDDI) for the judgment of a suspected area:

0, [ X n - no+ 1)] (4)MDDI = ,n. I ode, 2 ..4

N -E [ O.] x N -1

,eo 2

where n denotes the node in the output layer, no is the node number of the least likely true node, On is the output value at node
n, and N is the total number of output nodes. Hence a nodule detection index of 0 indicates a definite non-nodule and a nodule
detection index of 1 or greater implies a definite nodule case determined by the neural network. The calculated NDDIs were
evaluated by the receiver operating characteristic (ROC) analysis to measure the performance of the neural network.

III. RESULTS

A. Detection of Clustered Microcalcifications
After the pre-scan process by the computer program, 38 digital mammograms provide 220 true and 1132 false subtle

microcalcifications. For the neural network studies, we divided the mammograms into two sets: 19 images (containing 108 true
and 583 false image blocks) for training and another set of 19 images (containing 112 true and 549 false image blocks) for test.
We did not ask radiologists to rate image blocks in the training set. Therefore, only 2 output nodes with 8 rotated input patches
were used. Neither output association nor trainer imposed function was employed. In this study, we also found that the use of a
small image block of 16x16 resulted in the best accuracy in the detection of clustered microcalcifications.

Table I. Performance of neural networks in the detection of clustered microclacifications.
Neural Networks DYSTAL BP/OH BP/1H BP/CNN

Az(Area under the ROC curve)0.8.7 086,"9

Detection Accuracy
(% true-positive detection) 70... 70 75 90

(# false- positive per image) 4.3 4.5 3.5 0.5

Table I shows the results of using three neural networks. DYSTAL and BP/OH, acting as classifiers, receives the lowest
performance. The best performance index (Az) was 0.90 when the determination was based on individual microcalcifications and
was improved to 0.97 when the determination was based on the clustered microcalcifications using CNN. In the latter method,
suspected clusters including I or 2 spots were rejected and the average NDDI taken from the clustered spots was used for the
ROC evaluation. This is because the detection of clustered microcalcifications is more clinically significant than individual
calcifications, since the clustered microcalcifications (3 or more) are a strong indication of breast carcinoma in radiological
diagnosis.

B. Detection of Lung Nodules
Our training image blocks were extracted from 13 chest radiographs containing multiple nodules. The pre-scan process was

performed first to locate the center of the island and isolate the image block for training. A senior radiologist selected 51 true
nodules, 54 end-on vessles and 60 non-nodules areas. Each original and its 7 "brother" image blocks share the same score vector
(probability of a disease and output association) pre-determined by the radiologist. During the training, the original and its 7
"brother" image blocks are entered as a group in the same sequence.

The test set was collected from 31 images containing 95 nodules and 258 non-nodules and was confirmed by biopsy or by
follow-up showing growth of the nodule. Table II shows the performance of using different neural network techniques and
corresponding enhancement methods (i.e., Fuzzy output training).

Table II. Performance of neural networks in the detection of lung nodules.
Neural Networks DYSTAL BP/OH BP/lH BP/CNN BP/CNN/FUZZY

Az
(Area under the ROC curve) 0.56 0.58 0.68 0.82 0.88

Detection Accuracy
(% true-positive detection) 60 60 70 80 80
(# lalse-positive per image) 7 6.8 5 4 2.5
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These comparison studies in the of both diseases imply that pattern classifiers such as DYSTAL and BP/0H can not
function alone to analyze "highly contaminated" image blocks (patches). Once the feature extraction procedure was added, the
performance of the neural network increased as evidenced in the results of BP/1H, BP/CNN, and BP/CNN/FUZZY in Tables I
and II. We also learned that the convolution for two-dimensional feature extraction and fuzzy training guided by radiologists'
determination were successful methods to improve the disease detection. With the neural network used in this studies, we could
not isolate which procedure, the feature extraction or the final classification, in the CNN was improved by the training.

IV. DISCUSSION AND CONCLUSIONS

Medical image pattern recognition using extracted features for input has been proposed in the detection of disease patterns
[6]. Since only a small number of inputs are used (as compared to 16x16 input signals for CNN), computation can be much
less for the training As long as the features of a disease pattern are well-defined and can be quantified as values or vectors, many
neural network techniques should be able to classify the features. On the other hand, the CNN can internally extract features of
disease patterns and is capable of distinguish non-disease from disease patterns. A potential advantage of using the CNN is that
once we are able to analyze the trained kernels, feature extraction can be specifically defined not only by the users' experience but
also by the confirmation of the CNN.

In this study we have utilized CNN in conjunction with several effective training methods: (i) providing a radiologist rating
scale for the training of neural nets, (ii) introducing the neural network with the classification invariance of input matrix
operations, (iii) use of output association functions to fuzzify the radiologists' determination and to establish the relationship
between adjacent output nodes, and (iv) rendering trainer imposed functions to enhance the performance of the neural network.
We found that the performance of CNN in detecting both diseases improved significantly by administering these training
methods.

This paper has demonstrated that feature extraction from disease patterns is a necessary procedure before a finial
determination can be made by a classifier. Pattern classifier including newly developed neural networks would not be able to
distinguish "highly contaminated" feature vectors.
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Abstract

We have been developing methods for the computerized detection and classification of
lesions in digital mammographic images. In general, the methods involve preprocessing of the
image data, extraction of suspected lesions from the background surround, extraction of features of
each suspected lesion, and then a merging of the features into a decision regarding the suspected
status of the potential lesion. We have investigated artificial neural networks (ANN) for use in
merging the feature data. In our detection scheme for mass lesions, the ANN is used to merge the
features in order to distinguish true-positive detections (actual lesions) from false-positive
detections. In our classification scheme, the ANN is used to merge the features into a decision on
the likelihood of malignancy (i.e., likelihood of being cancerous). This paper provides a brief
overview of the detection and classfication schemes along with application of ANN in merging the
image feature data.

Introduction

Mammography is currently the imaging examination used in the early detection of breast
cancer. The task of radiologists in breast cancer diagnosis includes the visual localization of
potential abnormalities on mammograms and the classification of them with respect to malignancy.
In the detection task, 10% - 20% of cancers are missed by current mammographic interpretation
methods (1). With regard to the classification task, although general rules for the differentiation
between benign and malignant breast lesions exist, only 10 to 20% of masses referred for surgical
breast biopsy are actually malignant (2-4). In addition, it has been reported that second reading of
mammograms does improve sensitivity for cancer detection (5). Thus, there exists a potential role
for computerized image analysis, in the early detection of breast cancer, as an aid to supplement the
human observer (radiologist), allowing the final diagnostic decision to be made by the radiologist -
- thus the term "computer-aided diagnosis" (6-9).

Various investigators have been developing computerized schemes for the analysis of
mammographic images (10). These schemes combine computer vision methods with artificial
intelligence techniques in their attempts to detect clustered microcalcifications and masses.

Methods

a) Computerized detection of mass lesions

We are developing a computerized scheme for the detection of masses in digital
mammograms (11-14). Based on the deviation from the normal architectural symmetry of the right
and left breasts, a bilateral-subtraction technique is used to enhance the conspicuity of possible
masses. The scheme employs two pairs of conventional screen-film mammograms (the right and
left MLO views and CC views), which are digitized. After the right and left breast images in each
pair are aligned, a nonlinear bilateral-subtraction technique is employed that involves linking
multiple subtracted images to locate initial candidate masses. Various features are then extracted
and merged usi-ig an artificial neural network in order to reduce false-positive detections resulting
from the bilateral subtraction.
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The features extracted from each suspected mass lesion include geometric measures,
gradient-based measures and intensity-based measures. The geometric measures are lesion size,
lesion circularity, margin irregularity, and lesion compactness. The gradient-based measures are
the average gradient (based on a 3 by 3 Sobel operator) and its standard deviation calculated within
the specified region of interest. The intensity-based measures are local contrast, average gray
value, standard deviation of the gray values within the lesion, and the ratio of the average to the
standard deviation (15). The features were normalized between 0 and 1 and input to the a back-
propagation, feed-forward neural network (16). The ANN's structure consisted of 10 input units,
one hidden layer with 7 hidden units and one output unit. In this task, the output unit ranged from
0 to 1, where 1 corresponded to the suspected lesion being an actual mass (i.e., a true-positive
detection) and 0 corresponded to the suspected lesion being a false-posiitve detection (and thus,
allowed to be eliminated as a suspect lesion-candidate). Based on the performances of the ANN as
a function of iteration, in terms of self-consistency and round robin analyses, the optimal number
of training iterations was determined.

ROC (receiver operating characteristic) analysis (17,18) was applied to evaluate the output
of the ANN in terms of its ability to distinguish between actual mass lesions and false-positive
detections. The output values from the ANN for actual masses and for false-positive detections
were used in the ROC analysis as the decision variable. BasX.ally, the ROC curve represents the
true-positive fraction and the false-positive fraction at various thresholds of the ANN output. In
ROC analysis, the area under the ROC curve (Az) can be used to indicate the performance of the
measure in question with respect to the specified task. A larger area under the ROC curve (to a
maximum of one) corresponds to better performance. ROC analysis was used a an index of
performance in determining the "optimal" number of input features, the "optimal" number of
hidden units, and the "optimal" number of training iterations of the ANN.

b) Computerized classification of mass lesions

Our earlier work (19) showed that a back-propagation, feed-forward artificial neural
network could merge human-extracted features of mammographic lesions into a likelihood of
maliganncy at a similar level of that of an expert mammographer. In the study presented in this
paper, however, ANN is used to merge computer-extracted features of mass lesions into a
likelihood of malignancy.

The method takes as input the center location of a mass lesion in question. Next, the lesion
is segmented from the breast parenchyma (background) using an automatic region growing
technique and various features of the lesion are extracted (20). The automatic lesion segmentation
involves the analysis of the size of the grown region as a function of the gray-level interval used
for the region growing (21). Many of the extracted features are determined from a cumulative edge-
gradient-orientation histogram analysis (2 1), modified for orientation relative to a radial angle (20).
Input to an ANN consists of four features from the gradient analysis along with the average gray
value within the grown lesion. The gradient measures include the FWHM (full width at half max)
of the cumulative edge-gradient-orientation histogram calculated from pixels within the lesior and
its neighboring surround, and from just pixels along the lesion margin. These measures
correspond to the presence of spiculation, which is a sign of malignancy in the visual interpretation
of mammographic masses. The ANN's structure consisted of 5 input units, one hidden layer with
4 hidden units and one output unit. In this task, the output unit ranged from 0 to 1, where 1
corresponded to the lesion being malignant and 0 corresponded to the lesion being benign. Use of
ROC analysis with self-consistency testing and round-robin testing was employed as discussed in
the previous section.
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Results

For the detection scheme, each clinical mammogram was digitized into a matrix,
approximately 2K by 2K in size with 10-bit quantization, and then spatially averaged to a 512 by
512 matrix for input to the detection algorithm (pixel size of approximately 0.5 nun). In the self-
consistency analysis, the ANN achieved an Az of 1.0 and in the round-robin analysis, the ANN
achieved an Az of 0.92 in distinguishing actual masses (true positives) from false-positive
detectios. In an evaluation study using the 154 pairs of clinical mammograms (90 pairs with
masses and 64 pairs without), the detection scheme yielded a sensitivity of 95% at an average of
2.5 false-positive detections per image.

The classification method was evaluated using a pathologically-confirmed database of 95
masses (57 malignant and 38 benign), of which all but one had been sent to biospy. The
mammograms in the database had been digitized to a pixel size of 0.1 mm. Using the five input
features, an Az (area under to the ROC curve) of 0.83 was obtained in the task of distinguishing
benign from malignant masses using a round-robin method for evaluation. However, we found
that by using a rule-based decision on one of the features (FWHM) based on its correspondence to
visual interpretation methods, prior to use of the ANN, the performance increased yielding an Az
of 0.90.

Summary

We have found the conventional back-propagation, feed-forward artificial neural network
to be useful in the merging of mammographic image feature data into decisions concerning true-
positive vs. false-positive detections and malignant vs. benign status. It is necessary though to
appropriately structure and train the ANN including analysis of individual features, optimization of
the number of hidden units, use of an optimal number of training iterations to avoid loss of
generalizability and appropriate means for evaluation (such as ROC analysis).

We are currently incorporating the ANN into an intelligent mammography workstation,
which we are developing for use as a "second opinion" in breast cancer screening.
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ABSTRACT
A computer-aided diagnosis (CAD) scheme has been developed in our laboratory for the detection of

clustered microcalcifications in digital mammograms. In this study, we apply a shift-invariant neural network to
eliminate false-positive detections reported by the CAD scheme. The shift-invariant neural network is a multilayer
back-propagation neural network with local, shift-invariant interconnections. The advantage of the shift-invariant
neural network is that the result of the network is not dependent on the locations of the clustered microcalcifications
in the input layer. The neural network is trained to detect each individual microcalcification in a given region of
interest (ROI) reported by the CAD scheme. A RO is classified as a positive ROI if the total number of
microcalcifications detected in the ROI is greater than a certain number. The performance of the shift-invariant
neural network was evaluated by means of a jack-knife (or holdout) method and ROC analysis using a database of
112 ROIs as reported by the CAD scheme when applied to 34 mammograms. The analysis yielded an average area
under the ROC curve (Az) of 0.92. Approximately 55% of false-positive ROls were eliminated without any loss of
the true-positive ROIs. The result is considerably better than that obtained in our previous study using a
conventional three-layer, feed-forward neural network. The effect of the network structure on the performance of the
shift-invariant neural network is also studied.

I. INTRODUCTION
Breast cancer causes 44,000 deaths per year in the United States. Mammography has been proven to be the

primary diagnostic procedure for the early detection of breast cancer.l Between 30% and 50% of breast carcinomas
demonstrate microcalcifications on mammograms, and between 60% and 80% of the carcinomas reveal
microcalcifications upon histologic examination. 2 "4 Therefore, clustered microcalcifications on mammograms are
an important sign in the detection of breast carcinoma. To give radiologists a "second opinion" in detecting clustered
microcalcifications on mammograms, a computer-aided diagnosis (CAD) scheme based on filtering and feature
extracting techniques has been developed in our laboratory. 5 ,6 The CAD scheme identifies small regions of
potential clustered microcalcifications that are then indicated on the digitized mammogram. In an analysis of 78
mammograms, 85% of the true clusters were detected with 2.5 false-positive detections per image, (false-positives
are those which do not actually contain clustered microcalcifications). Generally, it is desirable to improve the
sensitivity of the CAD scheme in order to detect the most subtle cases. However, as the sensitivity increases with
the current CAD scheme, the false-positive detection rate will also increase. To improve the overall performance,
therefore, we have applied an artificial neural network to eliminate some of the false-positive detections indicated by
the CAD scheme. 7 The neural network used in our previous study was a conventional three-layer, feed-forward
neural network with a single output unit. The power spectra of the regions of interest (ROI) indicated by the CAD
scheme were used as the input to the neural network. The neural network was trained to classify positive or negative
ROIs with its output value of I or 0, respectively. In our previous study, about 20% of the false-positive
detections could be eliminated by the neural network without any loss of the positive detections.

In this study, we attempt to improve the reduction of the number of the false-positive detections of the
CAD scheme by applying a novel shift-invariant neural network 8 ,9 which contains higher generalizing ability than
the conventional neural network. The performance of the shift-invariant neural network is evaluated quantitatively
by means of ajack-knife (or holdout)10 method and receiver operating characteristic (ROC) analysis 1 1' 1 2 using the
same database used in our previous study.7

I. METHOD
In this study, the ROIs indicated by the CAD scheme are first preprocessed with background-trend

correction and normalization, and are then entered to the shift-invariant neural network. The shift-invariant neural
network is trained to detect each individual microcalcification in a given ROI. A ROI is classified as a positive ROI
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if the total number of microcalcifications detected in the ROI is greater than a certain number; otherwise the ROI is
classified as a negative ROI. Finally, the performance of the shift-invariant neural network is evaluated.

A. Shift-invariant neural network
1. General concept

Our shift-invariant neural network is a layered feed-forward neural network with local, spatially-invariant
interconnections as illustrated in Figs. I(a) and (b).8 ,9 The basic structure of the shift-invariant neural network is
similar to that of the Neocognitron model developed by Fukushima et al. 13, 14 However, the shift-invariant
neural network developed by Zhang et al8,9 for image processing is a feed-forward neural network without the lateral
interconnections and feedback loops that are included in the Neocognitron. Furthermore, error backpropagation
(EBP) is used as the training algorithm in the shift-invariant neural network. The shift-invariant neural network has
been shown to be a powerful tool for pattern recognition and image processing. 8 ,9

hidden layers receptive field
input of unit aSougtpu

receptive field

of unit b x

groupp in group q in

groups Abt layer (/+l)th layer

(a) (b)

Fig. 1. Illustration of (a) shift-invariant neural network; (b) shift-invariant interconnection between two groups.

In Fig. 1(a), units in the input layer and output layer correspond to pixels of the input and output
"images", respectively. Units in any single hidden layer are divided into groups as has been employed in the
Neocognitron. Each unit in a subsequent layer is connected with the units of a small region in each group in the
preceding layer. Each small circle shown in Fig. l(a) illustrates a small predefined region called the receptive field
for the unit in the subsequent layer. 13 To obtain the shift-invariant responses, connection weights between any two
groups in two layers are constrained to be shift-invariant.8 ,9 Figure l(b) illustrates the shift-invariant
interconnections between two groups in two layers. As shown in Fig. I(b), each unit (unit a or b for example) in
one group of the subsequent layer receives input from the small region centered at the corresponding unit (unit a' or
b'). The distributions (or patterns) of connection weights for any units within a group are identical for all units in
that group. In general, if W(ij;xy) denotes the connection weight between the unit at the location (i, j) in the
preceding layer and the unit at (x, y) in the subsequent layer, the shift-invariant connection weights can be
formulated as follows:

W(ijx,y) = W(i-x,j-y) (1)

Consequently, the interconnection between the units in two groups can be considered to represent a spatial filter
with the connection weights as its elements and with a size corresponding to that of the receptive field.

In the case of multigroup and multilayer neural networks as shown in Fig. 1(a), units in the same layer but
belonging to different groups have the same size of receptive field, but different patterns of connection weights. 8 , 9
To avoid the effect of edges in input images, the number of units in each group of subsequent layer is reduced
depending on the size of the receptive field. Assume that the number of units of a group in the lth layer is N x N
and the receptive field size in the (1 + I)th layer is M x M, the number of the units of the group in the
(I + l)th layer will then be9

No. of units =(N-M+ !)x (N-M+ 1). (2)
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We define the input of the unit (x, y) by NlP(xy), the connection weights by W'p,q(xy) and the output of

the unit by Ot p(x,y), where
1 = (1,2,...L), the layer number,
p = (1,2,....'P), the group number in the Ith layer, and
q = (1, 2, ... P1+1 ), the group number in the (/+l)th layer.

With the feed-forward propagations of signals in the network, the outputs in the subsequent layer are given by
summation of "filtered" patterns, which are obtained by convolution of the patterns in different groups of the
preceding layer with a number of filters (or connection weights), followed by pointwise thresholding,9 namely,

p
1

NJ' (Xy)= 0 ,(XY) *W;(XY), (3)
p=I

1+1 1+1 1+10q (xy) =^ (xy) + bq ), (4)

where the symbol * denotes the operation of convolution andflx) is the sigmoid-like activation function to denote
the pointwise thresholding. bl+lq is a constant (or the bias of the sigmoid-like function). In this study, except for
units in the input layer, we use a bipolar sigmoid-like function given by

f.x) = 2 -1. (5)
l+exp(-x)

The activation function of units in the input layer is linear function.
The conventional error-back-propagation algorithm 15 (EBP) is modified for training with the shift-invariant

interconnections. 8 ,9 The training error related to the differences between the desired outputs and the actual outputs
for all the input training images is determined by

E = Y (T'(x,y) - O'(x,y)) 2, (6)
i x~y

where Ti(xy) denotes the desired output image and Oi(xy) denotes the actual output inlage, of the neural network
for the training input image i.

2. Training for detection of individual microcalcifications
The shift-invariant neural network is trained to detect each individual microcalcification. For an input ROI

containing microcalcifications, the desired output image (of the ROI) of the network was given such that the output
of a unit in the output layer is 1, only if the corresponding unit in the input layer is at the center of a
microcalcification, a "training free" zone around the center of the microcalcification, and -I otherwise (see the input
and desired output images shown in Fig. 2). The pixel values of pixels in these training-free areas will not be forced
to learn a certain value during the training procedure. In other words, the neural network will be allowed to produce
any output values within these regions. This method makes training of the neural network easier and faster, because
we have found in our initial study16 that it is difficult to enforce the neural network to make the same output value
for various microcalcifications that are different in sizes and shapes.

In this study, a cross-validation technique for training and testing of the neural network is employed in
order to avoid overtraining problem occured in our initial study. 16 Using this technique, image data in the database
are divided into two randomly selected groups, namely, the training and the validating (or testing) sets. The
network is trained by the training set and tested by the validating or testing set at intervals of a certain number of
iterations. The training of the network is terminated just before the performance of the network for the validating set
decreases.

B. Database
The digitized mammograms used in this study were obtained by digitizing conventional screen-film (Kodak

Min R/OM) mammograms using a Fuji drum scanner system with a pixel size of 0.1 xO. 1 mm 2 and a 10-bit gray
scale. ROls used in this experiment were the same as those employed in our previous study. 7 A total of 112 ROls
of 55x55 pixels (about 5.5x5.5mm 2 ) were selected from 34 digitized mammograms. Among them were 56 positive
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ROls, i.e., ROIs that contained clustered microcalcifications and 56 false-positive ROls that contained false-positive
clusters as reported by the CAD scheme.

All of the locations of the centers of microcalcifications, which were used as "desired output images" in the
training of the neural network, were identified by an expert mammographer.

C. Classification of clustered microcalcifications
The output image of the shift-invariant neural network for a given input ROI image is first thresholded to

yield a binary image at a certain threshold pixel value. The borders of "white" areas in the binary output image is
then traced using a four-connectivity-region growing technique. Once borders are traced, "white" areas are segmented
from each other. Each isolated "white" area is counted as one "detected microcalcification". If the number of
"detected microcalcifications" in the output image is equal to or greater than a certain number (cluster criterion), the
input ROI is considered to be a positive ROI, i.e., a ROI with clustered microcalcifications; otherwise, the ROI is
considered to be a negative ROI. Both the optimal threshold pixel value and the cluster criterion were determined
empirically using ROC analysis as described later in Section III.

D. Evaluation
The performance of the neural network was evaluated using a jack-knife method and ROC analysis. i In

order to compare the performance of the shift-invariant neural network to that of the conventional neural network
used in our previous study, the same holdout ratio for training and testing were used as in our previous study. For
each category, i.e., positive or false positive ROls, one half of the cases were selected randomly from the database
for training, and the other half were used for testing of the trained network. This evaluation method was repeated
several times by randomly changing the cases for training and testing to examine the effect of case selection on the
overall performance. In this study, since training is very time-consuming, only five repetitions of training and
testing were performed. For each of the five testing data, the true-positive fraction (TPF) and the false positive
fraction (FPF) of the classification decisions of the trained network were calculated at various threshold pixel values,
while the cluster criterion was assigned to two. ROC analysis 2 0 was used to analyze independently the results
obtained from the five testing data sets. ROC curves were obtained by fitting the TPF and FPF data using ROCFIT
program developed by Metz et al. 1 1,12

The average area under the ROC curve, Az, and the average minimum FPF at the TPF of 1.0 for the five
data sets are employed as measures of the performance of the network. In addition, the standard deviations of the Az
and the minimum FPF (at TPF=1.0) are considered as indicators of the generalization of the result. Generally,
larger Az and smaller standard deviation indicate greater overall performance of a network. Also note that the lower
the FPF (at TPF=1-.0), the larger the number of false-positive ROIs that can be eliminated by the network while
preserving all of the positive ROls.

III. RESULTS
The effect of the structure of the neural network (i.e., the number of layers, groups and the size of the

filter in each layer) on the overall performance was studied. Eight different structures were investigated in our
experiments. For simplicity, we kept the filter size constant throughout all of the layers within each network. In
order to compare the results of our previous study,7 the output image size of the shift-invariant neural network was
chosen to be 31 x31 pixels (odd number of pixels is preferred for the determination of a "center" pixel of a ROI) while
the input ROI size is determined by the structure of the network based on Eq. 2.

All of the structures were trained and tested with the five different combinations of the 56 positive and 56
false-positive ROIs in our database. Table I gives the average Az values and their standard deviations as well as the
minimum FPF at the TPF of 1.0 for the various structures evaluated. Here we use codes to describe the network
structures. The code 12117, for example, indicates that it is a four layer network with one group in the input
layer, two in the second layer, one in the third layer, one in the output layer, and that the filter size in each layer
is 7x7. It should be noted in Table I that the structure 1211_7 has the largest Az and the smallest standard deviation
among all of the structures investigated. In Table I, the structure 12117 has the lowest FPF (at TPF=1.0) except
for the structure 1211_5. However, since the difference between the FPFs (at TPF=1.0) obtained with 1211_7 and
1211_5 is very small and the difference between Az values is considerably larger, the network structure 1211_7 was
considered the best structure for our further studies.

1-50



Input layer 1st hidden layer 2nd hidden layer Output layer

"truth"
Fig. 2 Illustration of input testing ROI, output image, responses in hidden layers and the desired output image.

1.0 A.. .

Network groups Filter size Az FPF
11_7 1,1 7x7 0.85 ±0.03 0.64±-0.08 shift-invariant neur

111_7 1,1,1 7x7 0.89-±0.05 0.44-±0.21 ",,etwork (Az =0.92)-
121_7 1,2,1 7x7 0.88 ± 0.03 0.54 ±0.15 0.5 ,/ cnventionalneura

1111_7 1,1,1,1 7x7 0.91-±0.03 0.58-±0.13 tw z
1211_7 1,2,1,1 7x7 0.92-±0.02 0.42-±0.10
1211_5 1,2,1,1 5x5 0.89_±0.03 0.41 ±-0.10
1211_9 1,2,1,1 9x9 0.87-±0.03 0.63±0.21
1321_7 1,3,2,1 7x7 0.89-±0.04 0.45-±0.20 0.0

0.0 0.5 1.0
False Positive Fraction (FPF)

Table I Performance the neural networks with various structures. Figure 3. Comparison of ROC curves.

As an illustration of how the 1211_7 network works after training, Fig. 2 shows a ROI from the testing
set as detected by the CAD scheme, the corresponding desired output image, and the actual responses of the units in
each layer. It appears in Fig. 2 that microcalcifications in the processed images in groups I and 2 of the second layer
are enhanced and suppressed, respectively. Microcalcifications appear to be clearly identifiable in the third layer,
and are further enhanced in the final output layer.

Figure 3 shows the comparison of the average ROC curves for distinguishing positive ROls from false
positive ROls obtained in this study and our previous study. It is apparent that the shift-invariant neural network
performs noticeably better than the general neural network approach used in our previous study. With the shift-
invariant neural network approach, about 55% of false-positive ROIs identified by the automated computer scheme
can be eliminated without any loss of true-positive ROls. With the conventional neural network used in our
previous study, however, only about 20% of false positive ROls can be eliminated while preserving all of thepositive ROIs.

By using the "training free" zone and the cross-validation techniques, the performance of the shift-invariant
neural network is also improved comparing to the results reported in our initial study. 16

IV. DISCUSSION AND CONCLUSION
The improved performance of the shift-invariant neural network approach compared with that of the

conventional neural network used in our previous study is related to the following facts. First, the original ROI is
used as the input (i.e., spatial domain analysis), so there is no loss of information before input to the neural network
if the preprocessing can be ignored. Second, the connection of units in the shift-invariant neural network are
localized, i.e., an unit is only connected with the units within a small region in the preceding layer. Therefore, a
local variation, such as artifacts in the input image, does not affect the output of the units whose receptive fields do
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not include the local variation.8,9,13,1 4 In addition, the final decision of classifying an input ROI as positive or
negative is based on whether the number of detected microcalcifications is above a given criterion, regardless of the
exact number and the distribution of microcalcifications within a cluster. Therefore, the shift-invariant neural
network approach to the detection of clustered microcalcifications is independent on the shape of the clustered
microcalcifications.
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Abstract
Background. The TNM staging system has been used since the early 1960's to predict breast cancer patient
outcome. In an attempt to increase prognostic accuracy, many putative prognostic factors have been identified.
Because the TNM stage model can not accommodate these new factors, the proliferation of factors in breast
cancer has led to clinical confusion. What is required is a new computerized prognostic system that can test
putative prognostic factors and integrate the predictive factors with the TNM variables in order to increase
prognostic accuracy.
Methods. Using the area under the curve (AUC) of the receiver operating characteristic, I compare the accuracy of
the following predictive models: pTNM staging system, principal component analysis, classification and regression
trees, logistic regression, cascade correlation neural network, conjugate gradient descent neural network,
probabilistic neural network, and backpropagation neural network.
Results. The pTNM staging system's accuracy is .720. Logistic regression (LR) and both the probabilistic neural
network (PNN) and the backpropagation neural network (BPNN) are significantly more accurate than the pTNM
staging system, using just the TNM variables (.762, .759, and .768, respectively). Adding variables further
increases the prediction accuracy of LR and both PNN and BPNN (.776, .777, .779, respectively). Adding the new
prognostic factors p53 and HER-2/neu increases the backpropagation neural network's accuracy to .850. These
results generalize across breast cancer data sets and to a colorectal cancer data set.
Conclusions. Computerized prediction systems are more accurate than the current look-up table system. The
backpropagation neural network is consistently more accurate than the best conventional statistical models.
Artificial neural networks are able to combine prognostic factors to further improve prognostic accuracy. Artificial
neural networks are robust across data bases and cancer sites, they can perform as well as the best traditional
prediction methods, and they can capture the power of nonmonotonic predictors and discover complex
interactions.

INTRODUCTION

For over thirty years measuring cancer outcome has been based on the TNM staging system (tumor size,
number of lymph nodes with metastatic disease, and distant metastases). There are several problems with this
model. First, it is not very accurate, for breast cancer it is 44% accurate. Second its accuracy can not be improved
because predictive variables can not be added to the model. Third, it does not apply to all cancers. In this paper I
compare the most powerful computerized prediction models, including artificial neural networks.

Artificial neural networks (ANN) are a class of nonlinear regression and discrimination models. They do not
have a priori biological reality. ANNs are being used in many areas of medicine, with several hundred articled
published in the last year. Representative areas of research include anesthesiology, radiology, cardiology,
psychiatry, and neurology. ANNs are being used in cancer research including image processing, analysis of
laboratory data for breast cancer diagnosis, and the discovery of chemotherapeutic agents.

It should be pointed out that the analyses in this paper rely upon previously collected prognostic factors.
These factors were selected for collection because they were significant in a generalized linear model such as the
linear or logistic models. There is no predictive model that can improve upon linear or logistic prediction models
when the predictor variables meet the assumptions of these models and there are no interactions. Therefore the
objective of this paper is not to outperform linear or logistic models on these data. Rather, our objective is to show
that, with variables selected by generalized linear models, artificial neural networks can perform as well as the best
models.

There is no a priori reason to believe that future prognostic factors will be binary or linear, and that there will not
be complex interactions between prognostic factors. In fact, we will present evidence that suggests that cancer is
a complex system; that future prognostic factors will be nonmonotonic and they will exhibit complex interactions. A
further objective of this paper is to demonstrate that artificial neural networks are likely to outperform the
conventional models when there are unanticipated nonrnonotonic factors or complex interactions.

METHODS
Data

The Patient Care Evaluation (PCE) data set is collected by the Commission on Cancer of the American College
of Surgeons (ACS). The ACS, in October 1992, requested cancer information from hospital tumor registries in the
United States. The ACS asked for the first 25 cases of breast cancer seen at that institution in 1983, and it asked
for follow up information on each of these 25 patients through the date of the request. These are only cases of
first diagnosis of breast cancer. Follow up information includes known deaths. The PCE data set contains, at best,
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eight year follow-up. We chose to use a five year survival end-point. This analysis is for death due to breast cancer,
not all cause mortality.

For this analysis cases with missing data and those who are censored before five years, are not included so
that the prediction models can be compared without putting any prediction model at a disadvantage. We randomly
divided the data set into training/testing and validation subsets of 5,169, and 3,102 cases, respectively.
Models

In this study we are examining the relative prognostic accuracy in predicting five year survival of the most
important predictive models. The goal is not to try to determine the maximum predictive accuracy obtainable for a
specific cancer site (that is the subject of a future work). The TMN stage model used in this analysis is the
pathologic model (pTNM) based on the 1992 American Joint Committee on Cancer's Manual for the Staging of
Cancer. The pathologic model relies upon pathologically determined tumor size and lymph nodes. This contrasts
with clinical staging which relies upon the clinical examination to provide tumor size and lymph node information.
To determine the overall accuracy of the TNM stage model I compared the model's prediction for each patient,
where the individual patient's prediction is the fraction of all the patients in that stage who survive, to each patient's
true outcome.

Principal component analysis is a data reduction technique based on the linear combinations of predictor
variables that minimizes the variance across patients. The logistic regression analysis is performed in a stepwise
manner, without interaction terms, using the statistical language S-plus, with the continuous variable age modeled
with a restricted cubic spline to avoid assuming linearity. We will show that logistic regression is identical to a two
layer neural network with a logistic transfer function and a maximum likelihood criterion function. Two types of
Classification and Regression Tree (CART) analyses are performed using S-plus. The first was a 9-node pruned
tree (with 1 0-fold cross validation on the deviance), and the second was a shrunk tree with 13.7 effective nodes.

There are many types of neural networks. The most commonly used neural networks in medical research are
multilayer perceptrons that use backpropagation training. Backpropagation training consists of fitting the
parameters (weights) of the model by a criterion function, usually square error, using the gradient descent
optimization function. In backpropagation neural networks the error (the difference between the true outcome and
the predicted outcome) is propagated back from the output to the connection weights in order to adjust the
weights in the direction of minimizing the error. The first practical multilayer perceptron trained with
backpropagation was developed by Werbos, independently derived by Parker, and further developed by
Rumelhart, Hinton, and Williams and Sejnowski and Rosenberg. We have used three neural networks that differ in
their method of training. One neural network is simple gradient descent by the delta rule, where the weights are
updated after each epoch (an epoch is one presentation of all the patients). The second neural network is
stochastic gradient descent, where the weights are updated after each case is presented rather than after each
epoch. The third neural network, called Ouickprop (S.E. Fahlman), is one of a number of methods that
backpropagates the second derivative of the error through the network, i.e., it uses the rate of change of the
change in error. All the multilayer perceptron neural network training in this paper is based on the squared error
criterion function unless otherwise stated, and backpropagation refers to gradient descent.

All outcome analyses, except for PCA, CART, cascade correlation, and conjugate gradient descent, were
performed twice. The second analysis was performed independently by a different researcher who did not know
the first researcher's results. There were no significant differences between the two researcher's results. All
results are based on the validation data set.
Accuracy

Predictive accuracy depends on three factors: the quality of the data, the predictive power of the
prognostic factors, and the prognostic model's ability to capture the power of the prognostic factors. This work
focuses on the prognostic model's ability to capture the power of the prognostic factors.

The measure of comparative accuracy is the area under the curve (AUC) of the receiver operating
characteristk (ROC). Generally, the AUC is a nonparametric measure of discrimination. Square error summarizes
how close each patient's predicted value is to its true outcome. The AUC measures the relative goodness of the
set of predictions as a whole by comparing the predicted probability of each patient with that of all other patients.
The computational approach to the AUC that employs the trapezoidal approximation to the area under the receiver
operating characteristic curve for binary outcomes was first reported by Bamber, and later in the medical literature
by Hanley and McNeil. This was extended by Harrell to continuous outcomes.

The AUC is calculated for the predictive scores of each algorithm in order to compare their average accuracy in
predicting outcome. The AUC is independent of both the prior probability of each outcome and the threshold
cutoff for categorization and its computation requires only that the algorithm produce an ordinally-scaled relative
predictive score. With n levels of outcome, the AUC estimates the average probability, over all possible n-tuples of
patients with differing outcome levels, that an algorithm will assign sequentially higher scores in the proper order.
In terms of mortality, the AUC estimates the average probability, over all possible pairs of patients with differing
outcome, that an algorithm will assign a higher mortality score to those who died compared to those who survived.
The AUC varies from zero to one. When the prognostic score is unrelated to survival time the AUC is .5,
representing chance. The further the AUC is from .5 the more correct the prediction model is at predicting which of
two patients will live longer. The AUC is calculated in the following manner. All pairs of predictions are examined.
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Pairs with different outcomes and different predictions are tested for concordance or discordance of outcome with
prediction, pairs with different outcomes and the same prediction are "ties", and pairs with the same outcome are
not counted, regardless of prediction. The area under the curve of the receiver operating characteristic can be
interpreted as the sensitivity averaged over all specificities, alternatively it can be interpreted as the specificity
averaged over all sensitivities.

RESULTS

All results are based on the independent variable sample not used for training/testing (i.e., the validation data
set), and all analyses employ the same validation data set. Using the PCE breast cancer data set, we can assess
the accuracy (AUC) of the pTNM stage model in terms of five year survival (Table 1).
Table 1. PCE 1983 Breast Cancer Data: 5 year Survival Prediction

Accuracy, TNM Variables.

PREDICTION MODEL ACCURACY* SPECIFICATIONS

pTNM Stages .720 0.l,IIA,IIB,IIIAIIIBIV
Stepwlse Logistic Regression .762 no Infaractions
F robablllsllc Neural Network .759 bandwldth = 6s
Backpropagalion Neural Network .768 3-8-1"

The area under the curve of the receiver operating characteristic. The standard error for all methods is less than .01.
The number of input nodes, hidden nodes, and output nodes, respectively.

The probabilistic neural network is slightly less accurate than logistic regression, the backpropagation neural
network was slightly more accurate than logistic regression, and all three models are significantly more accurate
than the pTNM stage model, using just the TNM variables (all SEs are less than .01, p < .01 for all models
compared to pTNM model).

We can examine the accuracy of several prediction models using the most powerful of the predictor variables
available in the data set. Table 2 shows the accuracy results for each model.

Table 2. PCE 1983 Breast Cancer Data: 5 Year Survival Prediction, 54 Variables.

PREDICTION MODEL ACCURACY* SPECIFICATIONS

pTNM Stages .720 0,lA,ItB,IIA.IIIB,IV
Principal Component Analysis .714 one scaling Iteration

CART, pruned .753 9 nodes
CART, shrunk .762 13.7 nodes
Stepwise Logistic regression .776 with cubic splines

Fuzzy ARTMAP Neural Network .738 54+F2a, 128-1

Cascade correlation Neural Network .761 54-21-1
Conjugate gradlenr descent Neural Network .774 54-30-1

Probabilistic Neural Network .777 bandwldth = 16s
Backpopagatlon Neural Network .779 54x40x1

The area under the curve of the receiver operating characteristic. The standard error tor all methods Is less than .01.

Adding variables to the prediction models does improve accuracy. Principal component analysis, with one scaling
iteration, has an accuracy of .714. Two types of classification and regression trees (CART), pruned and shrunk,
demonstrate accuracies of .753 and .762, respectively. Logistic regression with cubic splines for age has an
accuracy of .776. In addition to the backpropagation neural network and the probabilistic neural network, three
types of neural networks are tested. Fuzzy ARTMAP's accuracy is the poorest at .738. Cascade-correlation and
conjugate gradient descent have the potential to do as well as backpropagation. The PNN increases its accuracy
to .777 and the backpropagation neural network's accuracy increases to .779. All models except PCA are
significantly more accurate than the TNM stage model (SEs are less than .01, p < .01 for all models compared to
the pTNM model)

DISCUSSION

For predicting five year survival, several computerized prediction models are more accurate than the TNM
stage model using just the TNM variables. The backpropagation neural network is consistently more accurate than
the best prediction models, and adding additional variables does increase its accuracy.

We will not present a detailed statistical analysis of these predictive models in this paper. Rather, we will focus
on their ability to discover new prognostic factors, especially those that are either nonmonotonic (not constantly

1-55



increasing or constantly decreasing), or whose prognostic value (the ability to improve predictive accuracy)
depends on their interaction with other factors.

There is no reason to believe that all future prognostic factors will be monotonic. Thus, we would like the new
prognostic system to be able to capture the predictive power of nonmonotonic prognostic factors. Because the
models used in the past to test putative prognostic factors for prognostic value can not discover nonmonotonic
factors without knowing in advance the shape of the nonmonotonic factor and adjusting for that nonmonotonic
factor prior to the analysis, we must illustrate the features of a nonmonotonic prognostic factor rather than describe
an existing nonmonotonic prognostic factor. An example of a very simple nonmonotonic prognostic factor is a
laboratory value such as white blood cell count that predicts death at both its low and high values. Table 3 shows a
comparison of the accuracy of four prediction models when a simple artificially generated nonmonotonic
prognostic factor is added to the TNM variables in the PCE data set.

Table 3. PCE 1983 Breast Cancer Data: 5 year Survival Prediction
Accuracy, Nonmonotonic Variable Added to TNM Variables.

PREDICTION MODEL ACCURACY* SPECIFICATIONS

pTNM Stages .720 0.,I,IIA,.11,IIA.IIIBiV

Logistic Regression .762 no interactions

Probabilistic Neural Network .935 band width = 0.1s

Bacpropgalton Neural Network .948 4-20-1
The area under the curve of the receiver operating characteristic. The standard error tor all method Is less than .01.

Since the pTNM stage system can not, by definition, be expanded we have included its accuracy only for
comparison. Logistic regression does not capture the predictive power of this simple nonmonotonic prognostic
factor, its AUC is .762. Both the PNN and the backpropagation neural network are able to capture the predictive
power of the nonmonotonic factor, their AUCs are .935 and .948, respectively.

We can use these data to demonstrate the fact that a multilayer perceptron neural network without a hidden
layer, with a logistic transfer function and using as its criterion function maximum likelihood is identical to logistic
regression. In the above four variable analysis the logistic regression model has an AUC of .762, a two layer neural
network using the maximum likelihood criterion function has a AUC of .761. It should be noted that a two layer
neural network using square error as its criterion function, rather than maximum likelihood, produces a result that is
very close to, but not identical with, that produced by logistic regression. The AUC for the two layer neural network
using square error is .754. It is also the case that a two layer neural network with a linear transfer function is identical
to linear regression. Neural networks can do everything that linear and logistic regression can do, and they can do
much more.

A good method for determining if there are important nonmonotonic variables or complex interactions is to
compare the results of a two layer neural network (or logistic regression) with those of a three layer neural network;
if the three layer neural network is significantly more accurate then there are either nonmonotonic variables or
complex interactions, or both.

Complex systems are typically dominated by nonmonotonicity or interactions between their components.
Cancer is primarily a genetic disease, and it is a complex system. Cancer genes do not act in isolation; oncogenes,
suppresser genes, and genetic mutations cause cancer though the complex interaction of the genes and their
products. A cascade of genes is required to produce a cancer. Thus, we can not assume that a gene or its product
will have an independent prognostic value before it is combined with other genes and/or their products, or that
gene interactions are binary, or that there will only be a few simple genetic interactions. Further, we can not specify
in advance of the analysis what complex genetic interactions will occur. We need to capture these complex
interactions because the prognostic value of the genes and their products can depend on their interactions.
Because neural networks with sufficient hidden units can approximate any continuous function to any degree of
accuracy, they can, without a priori specification of the important variables, discover these complex interactions
and learn the variables that are important.

Neural networks are able to capture the power of nonmonotonic prognostic factors and they are efficient
discoverers of complex interactions; thus they are appropriate for the description of complex systems and for the
characterization of their effects.

Neural networks often have a large number of parameters (weights), but overfitting (loss of generalization by
fitting the patterns in the test data too precisely) can be prevented by keeping the weights small, which reduces
the effective number of degrees of freedom. Methods for accomplishing this include penalizing large weights, or
stopping the iterative fitting algorithm before the weights have grown to their full size. It is often the case that,
when one of these methods is used, predictive accuracy is better than it would be if we simply used a smaller
model and fit the data without restriction. When a method is used that reduces the weights that are not being
increased by the input variables, the weights to the hidden layer shrink, and when there are only linear
relationships present, the hidden layer weights approach zero and the neural network approximates a linear
model.
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ABSTRACT

A novel multistage artificial neural network (MSANN) is proposed for detecting micro-calcification clusters
(MCCs) in digital mammography. Two algorithms with Kalman filtering are used for training the MSANN. A new
nonlinear decision method is introduced to improve further the performance of the classification. The experimental
results show that the sensitivity of this classification / detection is 100% with the false positive (FP) detection rate
of less than 1 MCCs per image for limited database of images with biopsy proven MCCs, and show that the ANN
detector has the different ability of detection by changing its architecture and parameters. . The proposed methods
are automatic or operator independent and provide realistic image processing times as required for breast cancer
screening programs. Full clinical analysis is planned using large databases.

1. INTRODUCTION

The importance of mammography for early detection of breast cancer has been well demonstrated in
clinical trials and mammography currently offers the best cancer control strategy since the cause of breast cancer
is still unknown. The aims of computer assisted diagnosis (CAD) methods are the automatic extraction or detection
of suspicious areas in digital mammogram such as micro-calcification clusters (MCCs). These methods serve as a
"second opinion" to assist radiologists in performing a clinical diagnosis [1-2].

CAD methods previously reported for digital mammography includes both statistical and non-statistical
approaches. Bayesian classifiers, back-propagation (BP) artificial neural networks (ANNs), binary decision ames and
asymmetry measures have used for either MCC or mass detection. The reported results on MCC detection from
digitized screen film mammograms do not exceed 85% sensitivity for less than 1 FP cluster per image [5].

In this work, a novel multistage ANN with the improving nonlinear detection is presented which consists of
two stages, the "detail network" stage and the "feature network" stage. Two algorithms with Kalman filtering (KF):
the back-propagation algorithm (BP) with KF [6] and the augment-Lagrange-programming based algorithm (ALP)
with KF [7], were employed in training the network. In addition, the function and performance of the AN4 are also
discussed. The preliminary ANN classification results for twenty images (512*512 pixels) indicate that this pattern
recognition (PR) method yielded 100% sensitivity with less than 1 FP clusters per image.

2. MULTISTAGE NEURAL NETWORK AND ITS TRAINING

2.1 Multistage Neural Network with the Nonlinear detection [8]
The Multistage Neural Network is depicted in Figure 1. In this architecture, the first stage is called the "detail

network" where all pixel values of a original image is used as its input; while the second is known as a "feature
network" where the actual output from the first stage of network and a set of features extracted from the

* Baoyu Zheng is with the Department of Telecommunication Engineering, Nanjing University of Posts &
Telecommunications, P. R. China; At present, is a visiting Professor at the H. Lee Moffitt Cancer research center
at the University of South Florida.
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original image are used as its inputs. In our study these features including average, variance, average-energy and
energy variance of input image-blocks, of which the variance and the energy-variance are defined by:

M N 1/2

at [ E•' E [x (i, j) -ag]1 )
Mxi=1 j=l

and

M N 1/2

evar=[ 1-.. [x(i,j)2-eavg]2] (2)MxNil J-1

respectively, where avg and eavg are the average and the average-energy of a input image-block x(ij),
i=1,2..MJ=,2..N, respectively. Two of these features, such as average and energy-variance, are used as inputs
of the second stage of ANN, other features are then used as detection parameters which will be discussed later.

In this multistage architecture, each stage is three layer feed-forward ANN with a hidden layer, in which the
output of a neuron (unit or node) is an integrated sum of weighted inputs. Its output is shaped by a sigmoid-like
function and servers as input to the next layer of neurons. By use of training algorithms the nev-' network can be
trained to certain states. The output is given by the following equation:

1 -exp ( -E.• wixi )
output= (3)1 +exp - i wixl)

where x, and wi are the input and its weight. It has been shown that this structure can form a good approximation
to any continuous boundary. The output of the se 'nd stage of the ANN can be used as the decision value for
classification. In order to improve the reliability and the accuracy of the detection, when we apply the MSANN for
the detection of MCCs, the output of ANN at the second stage is modified as

I -exp (- i wix + V)
output2= (4a)

1 +exp ( -E wjxj + v)

for v>t, and

-exp( -Xi wixi) 1-exp (-v)ou tpu t2 = (4b)
1 (-Ep WiXi) 1 +exp (V)

for v<t, where t is threshold value and v is the variance or the energy-variance. The variance is known as the
detection parameter because it affects the detection reliability. If the variance is used as the input of the "featurL
network", we select the energy-variance as the detection parameter, alternatively, if the energy-variance is used as
the input of the network, the variance is taken as the detection parameter.

The above modification is based on the fact that in digital mammogram, the areas with micro-calcification
clusters and their surrounding normal tissues have the different intensity such as their average, variance, energy and
its variance in which the variance or energy-variance potentially plays a more significant role. Generally, the
variance ( or energy-variance) of the former is more than that of the latter.

2.2 Network Training [6][7]
Two algorithms, the back-propagation algorithm with Kalman filtering (KF) [6] and augment Lagrange

programming (ALP) with KF [71, were employed for training the proposed multistage neural network. The former
is based on a generalized delta learning rule. And in the latter the training algorithm is regarded as an augmented
Lagrange programming problem ( an equality-constrained optimization problem) in which the back-propagation of
errors is replaced by iteration of state variables (outputs of neurons) corresponding to Lagrange-multipliers. Updating
of weights and state-variables can be performed in parallel. As a result, its convergence rate is very fast. Another
attractive feature of the ALP.-based algorithms is that in training different layers of the ANN are totally mutual-
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independent. Therefore, it is specially suitable for parallel processing and has significantly better convergence
properties than conventional BP algorithms.

Using the above algorithms, the first-stage and the second-stage of the network are sequentially trained. The
input, which can be the original image or an enhanced image, is provided to the input layer of the first-stage neural
network. The actual output of the first-stage neural network, which has been trained, and a set of features such as
variance and energy from the original image, are provided to the input layer of the second-stage neural network. Its
output corresponds to the output of whole network. The desired output is provided to the output layer at each stage
during the training process.

In both the BP algorithm with KF and the ALP-based algorithm with KF, the update for the weights is based
on the following equations[6]:
Output layer weight:

W, (t) =W, (t-1) +k, t (d,-yo)) (5)

and hidden layer weight
Wj (t) =Wj (t-1) +kjejuj (6)

with the Kalman gain vector :

ki( TR- ( t-)xj_1 ( t)(7
b+xr-l 0t R31 ( t-1) Xj_j ( t)

and the update equation for the inverse matrix :
Rj1 0t = [lT-kj t) xT_ (T j t-1))/bj

(8)
where I is an identity matrix, x is the input at each layer, d. is the desirable output, and y. is the actual output. b,

is a "forgetting" factor, u, is the convergence rate , and e, is the back-propagation error which is replaced by
iteration of state variables corresponding to Lagrange-multipliers in the ALP-based algorithm.

Contrary to the standard BP algorithm which minimizes the mean-squared error with respect to the weights,
we minimize the mean-squared error between the desired output and the actual output with respect to the summation
outputs (inputs to the nonlinearities) in our study. Error signals, generated by the BP algorithm or state variables
corresponding to different Lagrange-multipliers created by the ALP algorithm , are used to estimate values at the
summation outputs that will improve the total network error. These estimates along with the input vectors to the
respective nodes, are used to produce an updated set of weights through a system of linear equations at each node.
These systems of linear equations are solved using a Kalman filter at each layer. Training patterns are run through
the network until convergence is reached. The advantages of the above algorithms are:

*Rapid convergence property.
*Low training error(high training accuracy).
*More suitable to large scale networks.
*More suitable to parallel processing.

The last two properties are more promising for the ALP-based algorithm. Table I shows the parameters and the
convergence performance of the above approach. As a comparison, the recent results of Wu [4].

Table I Parameters of networks for the classification of micro-calcification

Type of Number of Number of Number of Number of iterations
approaches input units hidden units output units

____________ BP [4] BP with KF ALPwithKF

Spatial 64 (8x8) 5 1 >5000 640 560
domain

1024(32x32) 15 1 1000 160 120

4096(64x64) 50 1 ------ 80 80
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The above results are obtained without taking into account parallel processing. If the parallel processing is
considered, the ALP-based algorithm will have better performance. Also according to our experiments, when number
of input units is larger such as 64 (8*8) pixels, the BP algorithm will have very poor convergence performance, while
our algorithm still have good performance for a set of random-selected weights even when number of input units
is 4096 (64*64) pixels.

3. RESULTS AND DISCUSSION

3.1 Experimental Results
We first select two types of regions-of-interest (ROls) from the enhanced mammogram where a hybrid filter

with nonlinear filtering and wavelet transform was used to enhance the micro-calcifications [3]: one which includes
calcification and one which includes only normal tissue. Once input data are normalized to the range of 0 to 1, the
image are processed by the ANN with the nonlinear decision. The "decision" of whether there are or not MCCs in
a given region of the image depends on the output of the ANN with the nonlinear decision. In the detection of
MCCs, a moving-window, whose size is the same as the training block, is moved one by one on a give image. If
the output is more than a given threshold, emperimentliy selected, the output is identified as MCCs.

A preliminary evaluation of the proposed methods was performed on twenty subimages (512x512 pixels)
selected from full digitized mammograms, containing biopsy proven MCCs, perform . The location and geometry
of each clusters were determined by an expert mammographer based on visual readings and biopsy results. A truth
file was thus established for each of the twenty images, which was used to determine the true-positive (TP) and false-
positive (FP) rates of the algorithms. A cluster of three or more calcifications per cm3 (areas of about 95x95 pixels
on the digital images) was a FP, if it was not identified in the truth file.

The ANN classification results indicate that this PR method yielded 100% sensitivity of less than 1 FP clusters
per image. The classification time for a 512x512 image less than one minute on a SUN SPARC station 2 computer.
The advantage of using two stage ANN was demonstrated by also using single stage ANN. The sensitivity of the
classifier with the single stage dropped to about 85 % for the same FP detection rate of MCCs per image.
Representative results for two clinical cases are shown in Figs. 2: (a) the original mamimogram, (b) the MCC
detection result for the two stage ANN, which is the best detection result corresponding to (a), (c) the detection result
for the single ANN, and (d) the detection result without the ANN. The second stage ANN structure therefore plays
a significant role in this classification scheme.

The advantage of using enhanced data as inputs to the ANN was demonstrated by also using the unprocessed
images as inputs to the network. The sensitivity of the later dropped to 81% for the same FP detection rate as the
enhanced images. So, the enhancement also plays a significant role in this classification scheme.

3.2 Discussion on the Function and Performance of ANN
Artificial neural networks (ANN) have been shown to be very useful and effective alternatives for implementing

intelligent systems in Biology and Medicine, such as adaptive pattern classification and recognition. It has been
proved that they perform better and quicker than conventional methods in situations where noise and uncertainty is
present. A crucial aspect concerning the network performance is the ability of the network to classify correctly input
data, which were not included in its training set. Good ability is a result of appropriate network design. A small
number of interconnection weights should be generally used for this purpose, and any prior knowledge about the
problem should be included in the network architecture. In our study, the variance (or energy-variance) in (4a) and
(4b) just provides such a critical information.

Our recent studies concerning ANN design, indicate that structured neural network classifiers are especially
useful when applied not only to a set of features extracted from images, but also to image pixel values, and indicate
that the detection accuracy of ANN is strongly dependent on architecture of the neural network and its parameters,
specially for the second stage of network. This is because the sensitivity of the different network architecture to
parameters is different and the network parameters are obtained for a specified training set. The effect of the network
parameter and its parameters upon the detection performance is also shown in Fig. 2, in which (b) and (e) show the
detection accuracy for the different network architecture, (b) and (f) show the detection accuracy corresponding the
different network parameters for the same training accuracy. It is obvious that their performance is very different
for both different network parameters and the different network architecture.
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4. CONCLUSION

In this study, a novel multistage ANN with the improving nonlinear decision was applied to enhanced images
in order to recognize patterns that may include micro-calcification in digital mammogram. Experimental results have
shown that the new approach has the higher sensitivity of classification and the lower FP detection rate than
previously reported [61, and indicated that the ANN detector have the different ability of detection by changing its
architecture and parameters.

It is the intent to apply these methods to the full digitized images, for both diagnostic and screening image
databases, for full clinical evaluation using standard receiver operating characteristic (ROC) analysis [4]. The
practical impact of the proposed methods is the fact that they are fully automatic or operator independent with
realistic training/classification times or real-time analysis if parallel hardware is used.
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Abstract
Trends of activities in biomedical application of neural networks in Japan are overviewed.

Many efforts are being made in various levels and ares in field of biomedical engineering to
realize intelligent medical systems using the neural networks.

1. Introduction

Neural networks as a new technology have been utilized to make applications of real world

problems. This new technology is based on parallel distributed processing and regarded as an

alternative approach to artificial intelligence (Al) among conventional rule-based approaches. It

is well known that the rule-based approach suffers from some problems such as 'the explosion of

number of cases'. Because of such problems, the artificial intelligence in biomedical engineering

field has not yet been employed for practical use sufficiently, especially in the medical diagnosis.

Neural networks are expected to make a breakthrough for such bottleneck problems, and many

efforts are being made in various levels and fields towards the creation of the true intelligent

machines.

In this article, such recent activities in field of biomedical engineering in Japan are summarized.

First, activities of related Japanese institutes and societies are introduced, and then, issues are

classified into the several groups and described respectively.

2. Activities on neural networks in Japanese biomedical engineering

Japanese Neural Network Society (JNNS) already held the 4th annual conference where the

wide varieties of advanced applications and neural networks theories were discussed. The Insti-

tute of Electronics, Information and Communication Engineers (IEICE) has the group societies

on Neuro-Computing, and Medical Electronics and Bio-Cybernetics, and each has more than

ten meetings per a year. Furthermore, the Institute of Electrical Engineers of Japan (IEEJ)
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has systematically investigated on Vision Neural System Engineering under the special group

(chaired by S.Usui) for the last three years.

Particularly, two years ago, Japanese Society of Medical and Bio-Engineering organized a

professional group on Neuro-Information Processing in Medical Engineering (chaired by S.Usui),

which treats applications of the artificial neural networks in medical and bioengineering areas,

and they also hold bimonthly meetings on related fields. The issues enumerated in the following

sections are taken mainly from the papers reported in NIPME meeting of JSMBE, because they

cover most of important neural network related applications in Japanese Biomedical Engineering.

3. Biomedical engineering applications

One of the aims of biomedical engineering is to provide a complete automatic medical system

(medical tests, diagnosis, therapy, care etc.). To achieve this, there are so many problems to

be observed and solved. Consequently, it is natural that the field of biomedical engineering

includes both scientific and technological aspects. From scientific point of view, it is ordinary

way to construct and improve models of the phenomena in order to elucidate an interesting

natural one. On the other hand, in the technological and engineering viewpoints, it is required

to concentrate on making applications using such models. In general, achieved level of the

application has tightly been related to the plausibility of the model. Therefore, the situation

where researchers in both sides work and publish their results in the same field, is important for

higher progress. Especially in the field of biomedical engineering, the situation is different from

other fields because the artificial neural networks themselves are one of the biological organism

models, called nervous system. These models are not imported from other fields but produced

within the field.

Generally, we can say that the areas of interest in Japan can be divided into the three categories

1) artificial neural networks, 2) artificial organs and 3) diagnosis. We will review them in the

following sections.

4. Artificial neural networks

Although the neural networks are expected to make a breakthrough, as mentioned above, the

principles of parallel distributed processing on which the neural networks are based, and/or the

properties of the neural networks have not been established firmly. Therefore, various theoretical

problems are investigated as much as application studies. In biomedical fields in Japan, many

researchers also publish their theoretical works. However, attention is not only focused on the

theoretical exploration. Wide scale of the neural network architectures and learning techniques

gives possibility of a practical use. Let us briefly list some well-known activities in this sphere.

Neocognitron, the artificial neural network proposed by Fukushima, is constructed for a spe-

cific task such as image pattern recognition. Through unsupervised learning process, neocogni-
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tron gets ability to recognize the input pattern. Neocognitron has been investigated with inputs

represented only two gray-levels, and examined how it responses to the multi-level input images

(Miura, Takeuchi, Suzuki), and further, to the fractal images (Murata, Wakabayashi, Matsui).

Multilayer feed-forward neural networks which are trained by back-propagation supervised

learning algorithm, have ability to approximate arbitrary continuous nonlinear mapping. Due

to the universal property, this type of the networks is most widely accepted in Japan. However,

some problems have been remained such as requiring of long time for learning, local minima,

difficulties in determining the network structures, implementation of variable weight on hard-

ware. To produce useful applications, these problems should be overcome, and the properties of

this type of the network should be clarified in practical use.

For example, the fluctuated-threshold effects in the multilayered neural networks are observed

(Iwami, Tanaka, Matsui). The Kick Out learning algorithm (Ochiai, Toda, Usui) of neural

network is widespread in use to construct a forward dynamics model of human arm (Kawato),

prediction model for carp's EEG (Toda, Usui) and so on. It is pointed out that use of AIC

(Akaike Information Criterion) for determining network structure has no reasons (Hagiwara,

Toda, Usui). Simulation analysis was made on shapes of local minimum (Horikawa). A method

for estimating AR(autoregressive) parameters by the neural network referring to the preceding

time-course was proposed (Hatakeyama, Uosumi, Ono).

Other types of the networks are also in investigation such as : nonlinear mapping approxima-

tion with radial basis function(RBF) (Suzuki et al.), a hysteresis associative memory with ideal

information storing-recalling function (Jinno, Saito, Yana), genetic algorithm generated medical

data examples (Hasegawa, Arakawa, Kishi).

5. Artificial organs

5.1 Artificial densory systems

Sensory organs of human or animals are entrances to a huge information processing system

such as the brain and thus have highly sophisticated organizations. Researchers in this area are

concentrated to construct the models for each organ. In this subsection we will introduce the

studies classified into the two categories: the visual system and other systems.

5.1.1 Visual system

Visual system is understood to treat more than 80% of total amount of information in sensory

inputs to the brain. In this area, many studies elucidate this significant information processing

system from the early stages up to the higher central stage.

The classical apparent motion is analyzed using the neural network model (Kita, Sekine,

Nishikawa). A feature extracting model on brightness perception with lateral inhibition are
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constructed (Tsukada, Sasaki, Yagi). There is a proposal of the neural network model of a motion

detection taking recruitment into account (Unno, Uchida, Shimodaira). Further, mechanisms of

information integration in the middle vision are investigated (Inui, Yamashita).

5.1.2 Other sensory systems

The evidence that on the current level of knowledge the visual system represents the largest

information source did not decrease the interest of researchers in other sensory systems. We

can also find exciting works related to this domain : the function of extracting inter-aural time

difference(ITD) and inter-aural level difference(ILD) in auditory nervous system described by

a pulse neuron model (Kuroyanagi, Iwata), the artificial neural network model of the taste

nervous system in rats (Katayama et al.), an expression of the odor sensory quantity by the

neural networks (Sakuraba, Nakamoto, Moriizumi).

5.2 Artificial prothesis

Artificial legs, arms and other prothesis for handicapped people play very important role in

these days. There are several papers on artificial prothesis using the neural networks: a learning

control method of a biped locomotive robot (Murai, Kurematsu, Kitamura), an electromyogram

pattern recognition system for hand control (Hiraiwa et al.), a control system of optic axis by

automatic selection of control laws (Kuwano, Wakamatsu, Suda), identification and control of

circulatory system driven by artificial heart (Kondo et al.).

6. Medical diagnosis

Medical diagnosis totally depends on reliable measurement for medical tests. Since every step

of diagnosis requires intelligent processes, the neural network approach is mostly used in these

areas.

6.1 Measurements

6.1.1 Data compression, restoring and inversion

Multilayer neural networks are utilized for a data compression system of electrocardiogram

(Ngasaka, Iwata), and for noise elimination of heart rates data acquired by central monitoring

system in a neonatal intensive care unit (Kishi et al.).

The restoration of positron density distribution (the images obtained from positron emission

CT) (Kinoshita et al.), or damaged simple X-ray images (Doushita et al.) with the multilayer

neural network are discussed. Scattered photon in single photon emission CT is also estimated

by the neural networks (K.Ogawa).

Multilayer neural networks or the network inversion techniques are shown to be efficient for the

certain inverse problems such as source localization in actual magnetic encephalogram(MEG)

data (Kiyuna et al.), and positional estimation in multi-sensor systems (Ogawa, Sase, Kosugi).
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6.1.2 Measurement and recognition of images

Since medical images contain much useful information for diagnosis, the machines are required

to recognize the images as well as medical doctors. That is one of the wide range of neural net-

work applications which takes an important place in the current research. It can be denoted by

the number of related studies such as : segmentation of internal organs (Sakamoto) or extracting

3D shapes of vocal tract and nasal cavity from magnetic resonance images(MRI) (Matsumura

et al.), characterization of parenchymal patterns for MR images of patients with liver disease

(Yoshino et al.), topographic measurements of the retinal fundus and the neural information

processing (Yoshimura), classification of white blood corpuscle (Oshino, Yamamoto), extracting

features of stained cell images (Okii, Kaneki, Ono).

Furthermore, the several authors developed the methods for classification of human faces : a

self-producing classification method applied for a large number of human faces (Inaba, Kato,

Akazawa) and a correlation analysis of human face (Kimura, Nakayama).

6.1.3 Classification of biological signal

There are many kind of biological signals for medical diagnosis, such as electroencephalo-

gram(EEG), electromyogram(EMG), electrocardiogram(ECG) etc. These signals are used for

estimating of the states of alive organs, and adequately classified signals are required for diag-

nosis. Let us introduce some recent works :

"* A certain hybrid neural network for classification of time series data (Fujimoto et al.).

"* A pattern association network for recognition of mental activity by EEG (Ivanisuky).

"* A multilayer feature mapping for recognition of sleep states by EEG analysis (Shimada,

Shiina, Saitou).

"* A pattern classification for EMG by neural networks (Mori, Tsuji, Ito).

"* Spectral analysis and neural network analysis of abnormal ECG (Uosumi, Suzuki, Ono).

"* Recognition of ECG using Self-organizing neural network (Suzuki).

"* Recognition of P-, QRS-, and T-wave in ECG by neural network (Motoki, Suzuki).

"* A personal computer system for ST-segment recognition using neural networks (Suzuki et

al.).

"* A new parameter for diagnosis, a nonlinear measure of time series using neural network is

proposed, and carp's EEG is analyzed by the nonlinear measure (Toda, Usui).

"* Estimation of the fetal weight using multilayer neural network (Shigemitsu, Inaba, Kubo).

"* Constructing a nonlinear model of the Pc,, control system by neural network (Fukuoka et

al.).

"* Analysis of amino acid sequence by neural network (Iida, Mamitsuka).
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6.2 Integrative Diagnosis

Generally, the final diagnosis is established by integrating of the test results. However, highly

complicated decision making processes are required through processing of enormous number of

medical data. Neural networks have a capability to be powerful tools in these situations.

Neural networks are used for real-time diagnosis whose specific character is structural con-

vertibility to descriptive rules and learning personality (lida). There is an integrative evaluation

method of awake EEG based on quantitative EEG interpretation by means of neural network

(Nakamura et al.).

Several practical researchers have constructed diagnosis support systems on workstations or

personal computers; for motor functional disorders in upper limb using the neural networks

(Motoki et al.), also for mental medicine using probabilistic logic neural networks: mSDN versus

Al and Bayesian statistics (Iida et al.), and for chronic liver disease using the artificial neural

networks (Oguri et al.).

7. Conclusion

Trends of activities in field of biomedical application of the neural networks in Japan were

overviewed. As can be seen in these reviewed studies, the neural networks, also in Japan, are

prevailing in sphere of biomedical engineering. One of the remarkable properties of the neural

networks is that they can treat so wide class of data, such as binary, categorical, time series,

images etc., while other conventional models do not have such a property. Since biomedical

engineering usually treats such data, it can be said that the field conquests a good position to

make the neural networks more fruitful.

1-68



Biomedical Applications of Neural Networks:

VEP's, Cardiology, Neurology

by

Evangelia Micheli-Tzanakou

Rutgers University Biomedical Engineering

Piscataway, NJ 08855-0909 USA

(908)932-2037/3155

e-mail: etzanako@galdalf.rutgers.edu

1-69



Introduction

Computer assisted modeling and simulation of complex systems is of growing inportance in bhiniedical
engineering. To construct models of multi-dimensional non-linear systems is, in many areaw, all extrqumily difficult
and time consuming task. Analytical models have, more than often, to be ba1sed on highly simplified a-s.,smpinis
and they often exclude a large number of other factors because the dependencies and relationships are not always
clearly apparent. Because of these difficulties scientists and engineers often employ simulations ba-sed on
observations, clinical data, physiological measurements and other types of data. Neural Networks (NNs) and Fuzzy
logic offer an important alternative to analytical approaches. In general one expects NNs to learn their alloted tasks
independently - simply by use of examples or training data. As training data previously observed values of
different physiological measurements such as brain waves, cardiovascular functions and neurological disorders are
used. In classification tasks, measured values are graded either as normal or faulty.

Another method of handling multi-dimensional non-linear systems is fuzzy logic. With fuzzy logic non-linear
interrelations can be formulated explicity and in a familiar way. Fuzzy logic is used extensively in control
engineering. Fuzzy logic, like NNs, can be used for modeling and for classification purposes. While the emphasis
with NNs lies on a system's own discovery of interrelations on the basis of training data, fuzzy logic concentrates on
the use of existing statistical knowledge rather than exact data. Fuzzy NNs combine these two approaches.

In order to further simplify computational expertise, some preprocessing of data may be used, where
characteristic features of the signals are used as imputs instead of the signals as a whole. Methods that can be used
for preprocessing include Fourier Transforms, Wavelet transforms and Karhunen-Loeve expansion. In this paper,
work on Visual Evoked Potentials, cardiac infarction detected by echocardiography and its prediction of mortality
are examined, as well as the role that education plays in future neurological disorders such as Alzheimer's disease.

I. Detection of Multiple Sclerosis from Visual Evoked Potentials

Most of the NNs training methods are supervised in nature. A supervised system must rely on an accurate
and quantifiable label of any input pattern, and generally requires a significant number (at least several hundred) of
training example patterns. In using neural networks for the analysis of medical signals there is usually not available
a certain pattern label, and if available, the degree of abnormality cannot easily be specified. Perhaps more
importantly, there is usually not the luxury of a large volume of training data.

An unsupervised training method does not rely on the accuracy of any external experts, but analyzes only the
statistics of the patterns and how they relate to one another. It is therefore not sensitive to errors from a clinical
diagnosis. Consequently, it is expected that an unsupervised system will be able to provide a more accurate
generalization with fewer training patterns. In this application, both a feature extracting and a clusterining module
were trained through the control of the optimization routine ALOPEX [1]-[5]. Upon convergence, the feature
extractor implements a Karhunen-Loeve feature extraction [6] and the clustering module performs a modified
version of Fuzzy c-Means clustering [7]. For a more detailed discussion of the methods of design of the system, the

reader should refer to other works [8].
Multiple Sclerosis is a chronic progressive disease of the central nervous system, the symptoms of which vary

greatly from person to person. One of the most commonly afflicted areas is the visual system, with manifestations of
varying degrees of blindness, nystagmus, strabismus, ptosis, and hemianopia, and problems with night and color
vision (usually blue/yellow and red/green).

A Visual Evoked Potential (VEP) can be described as the resultant electrical signal of a large section of the
brain arising from a visual stimulus. Most data collection systems average the signals from many stimulus

presentations to improve this signal to noise ratio.
The original 512 point sampled waveform was reduced to a 6 feature set by a feature extraction network. The

value of 6 features was chosen by plotting the converged neuronal output variance of each cell in the feature
extraction network against the number of features chosen. When this is done, as in Figure 1, the curve shows
diminishing information return when using more than 6 features. Interestingly, this value agrees with another study
using the Karhunen-Loeve expansion with VEP signals [9]. When the patterns are clustered with the ALOPEX

modified Fuzzy c-Means (FCM) algorithm, the use of an entropy cluster validity measure showed an optimal
solution for separation of the patterns into two clusters (Figure 2).

With an appropriate selection of a threshold, the entire population of definite MS (DIS) patients can be
separated from the control subjects. The unsupervised system is contructed with linear feedforward elements. This
simlplifies the reconstruction of cluster centers which were determined by the ALOPEX modified FCM routine as
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input patterns. In this way, the reasoning of the system can be analyzed. Figure 3 illustrates the cluster prototype
centers reconstructed as input patterns for each of the Black/White patterns. It is clear that there are significant
differences between the waveforms which are identified by each cluster, and many of these discrepancies are from
portions of the waveforms which up to now were largely ignored or considered irrelevant in clinical diagnosis with
VEP. This could aid physician training if additional experiments are conducted to deduce whether these
discrepancies are real and diagnostically relevant.
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H. Reflected Ultrasound for Myocardial Infarction

Myocardial infarction is the No. I cause of adult mortality in the USA. Patients who suffer acute myocardial
infarction develop a scar in the left ventricle, which is located on a portion of the left ventricular wall. It is possible
to study the scar using modalities such as X-ray, CT and MRI imaging, but these modalities are not as practical
since they cannot image in real-time. Ultrasound imaging is more commonly available and is noninvasive.
Hlowever, it is often difficult to obtain satisfactory tissue images from these patients. One reason is that there is
excessive scatter of ultrasound when it travels through heart and lungs. At present, ultrasound imaging equipment is
built to get pleasing images. During the processing of ultrasonic signals and imaging some useful information is lost.
Ultrasonic tissue characterization uses all the information before it is lost [10]-113]. In this study we use the
myocardial echogram to study myocardial infarction by modifying the structure of a perceptron combined with a
feedback algorithm ALOPEX, which is used in the analysis of distribution of gray levels of M-mode ultrasonic
images. An area of interest is selected on the anterior or posterior wall of the septum of the left ventricle during a
whole cardial cycle. This area is then normalized to the size of 30 * 10 and sent into the neural network. After
training the neural network with subjects having myocardial infarction, normal subjects and subjects having very
noisy images, we test it with unknown subjects. This neural network can be updated with new data continuously.
The ALOPEX algorithm is used in the feedback. ALOPEX shows a very strong convergence. During the retraining
it has shown powerful flexibility. It overcomes local minima very easily due to an added random noise.

In this study we use a multilayer perceptron with nonexclusive outputs, and we also use noisy images to train
our neural network in order to eliminate human-preprocessing. 35 normal subjects, 18 scar subjects and 16 noisy
subjects (total of 189 templates) are used in the training and 55 subjects are used in the testing. The testing results
are shown in Tables I and 2. For different cutoff values (0.2 and 0.3) these results show that the method works well,
but not so well for scar patients. The reason is that there are not enough scars in the training set.

C(itoff Nt,rmi;,l Ify1iki. Akin. ta I),-k,,1 .- S.t , Clatoff Normal Itypuoki. AkM i,.-ti Di-kai,.- S, ..r
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Norl,,;I 122 5 4 1! 4 NoTstn 128 6 4 4
T, :etis~g stg
Unk nuw n 48 7 2 11 U ,k: , , 40 6 T es 4i

Table I T,'sting T.,I., with 11.2 C-It,,' V',Ia." Table 2 Tc.stizug Table with 11.3 Coit•ftf V;,lew.'

III. Vital Status after Myocardial Infarction

Patients who survive the acute phase of a myocardial infarction (heart attack) have an increased risk of
mortality persisting up to 10 years or more. Estimation of the probability of being alive at a given time is
important to the patients and their physicians, and is usually ascertained by the use of statistical methods. We have
employed artificial neural networks to achieve this goal.

A large database MIDAS (Myocardial Infarction Data Acquisition System) including all 49,250 myocardial
infarctions that occurred in the state of New Jersey in 1986 and 1987, with follow-up as long as five years, was used
in the development and testing of the neural networks. Nineteen variables of the MIDAS database that were
associated with vital status, by univariate statistics, were chosen as input variables to the network. These were: sex,
age, diabetes mellitus, arrhythmia (irregular heartbeat) congestive heart failure (weak heart), stroke, peripheral
vascular disease (of the legs), hypertension (high blood pressure), pulmonary disease, liver disease, chronic kidney
disease, anemia, cancer, obesity, occurrence of previous myocardial infarction, coronary bypass surgery, percutaneous
transluminal coronary angioplasty, and two insurance classifications associated with low resource utilization (self-pay
and Medicaid).

Single and multi-layer neural networks, using ALOPEX with input patient variables of the MIDAS data set
were used to predict six month mortality. Because the information included in the database is not sufficient to allow
the exact prediction of vital status (dead or alive) in all patients with 100% accuracy, we developed a neural network
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able to categorize patients according to the probability of dying within a given period of time, rather than predicting
categorically whether a patient will be dead or alive at a given time in the future.

We observed that there were many instances where two or more patients had identical input characteristics
while some were dead and some alive at the end of the study period. For this reason, it is difficult to train a
standard neural network. Since there is no unique output value for all input cases, the network has difficulty
converging to a unique set of solutions.

To alleviate this problem, a conflict resolution algorithm was developed. The algorithm takes templates with
identical input vectors and averages each of their input characteristics to produce a single case. Their output values
of vital status are averaged, producing, in effect, a percent probability of mortality for the particular set of input
characteristics. In addition, 10 output nodes were used in the final layer, each corresponding to a range of percent-
chance of mortality. (E.g. Node 1: 0 - 10%, Node 2: 10 - 20%, etc.). The output node containing the correct
probability value was set to a value of I.C, the others to 0.0. In this manner, the network should be able to provide
percent-probability of mortality, and also resolve input case conflicts.

The neural networks constructed to predict vital status of patients with acute myocardial infarction were able
to categorize cases with a fair degree of success. Although their accuracy was not 100% this probably cannot be
achieved with the limited information contained in the database. On the other hand, this method of classification of
patients was based on easily and cheaply obtainable information that is routinely collected on all patients who are
hospitalized for heart attacks. A formal comparison of the accuracy of neural networks and standard statistical
techniques [14] may ascertain the practical usefulness of neural networks in these applications.

Further improvement of the performance of the neural networks may be obtained by additional training and
the use of different network architectures.

This work has implemented two new modifications to the standard neural network methodology, i.e., conflict
resolution by averaging the expected outputs corresponding to identical input cases and assignment of a measure of
reliability to the output based on the number of cases with a given input vector that were used in training the
network.

IV. Educational Effects on Future Neurological Disorders

Recently the concept of brain reserve capacity (BRC) as an explanation of threshold theory [15] has come
under much study. While there is no direct measure of BRC, it is assumed to be indirectly associated and
proportional to general intelligence and educational level. Threshold theory attempts to explain observed instances
of the brain's robustness to central nervous system disease and aging. A study by Zhang, et al. (16] linked low
education levels to an increased prevalence of dementia. The possible protective effect of higher education on
symptom progression in Alzheimer's Disease was also reported by Stern [17]. Many other studies support a
quantitative threshold at which clinical symptoms are manifested, yet little is known about this threshold. It is
believed that brain reserve capacity may alter the threshold level.

Much of our knowledge about biological systems is derived from the study of simple models, a practice
applied to several fields of engineering and is applicable to the study of the brain as well. A neural network model
capable of reproducing some aspects of brain function, namely pattern recognition and classification, is presented.
The model is studied in both unimpeded and increasingly impaired states, representing normal and aged effects. The
performance of each of the networks, representing various levels of education or BRC, are compared.

In order to mimic the effect of education, a neural network was trained (or educated) to various levels of
response. Testing of each network's performance occurred under identical test conditions. Each network was
presented noisy images and correct recognition was examined. Figure 4 shows the results averaged over 100 trials.
The four curves represent the various levels of training; that is, with 50%, 60%, 70% and 80% maximal learning.
The x-axis corresponds to the amount of gaussian distributed noise applied to the input patterns, while the ordinate
reveals the number of targets correctly identified. Input training patterns were binary vectors of length eight.

While the plot of Figure 4 clearly shows that increased training improves the network's ability to recognize
noisy patterns, how does increased training effect a network's susceptibility to a progressive decline, as that seen in
aging, and presumably dementia? Progressive deterioration of the network was modeled as a random noise
disruption of the stored weights. Gaussian noise added to the weights, with increasing standard deviations, represent
this progression. The greater the amount of noise applied to the learned sets of weights, the more inaccurate they
become. Note that initial constraints restricted the learned set of weights to values between -1 and 1. It was found
that this damage reduced the networks' robustness by degrading its ability to perform the same recognition task.

Figures 5 and 6 show these results for two different standard deviations of the Gaussian noise imposed on the
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weights of the trained network. Notice that for higher education levels, the network is more resistant to damage.
These results show that lower education levels suffer more from degradation of weights, than do the higher trained
networks (Compare starting points of Figs. 5 and 6).

The plots of Figures 5 and 6 show the progressive impairment. By comparing these results to Figure 5
(undamaged) it is evident that higher "education" makes the system more robust to this type of damaging. All
curves demonstrate loss of recognition ability with increasing impairment, yet the 50% and 60% curves show a
markedly sharper decline that do the 70% and 80% networks. From these results, there appears to be a threshold
training level, between 60% - 70% where the system suddenly becomes more robust.
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Figure 4 Recognition vs. Noise on Input Patterns
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Figure 5 Progressive Impairment Model---Early Stage

While the network is simple, it is by studying the simple that we learn more about the complex. Our ability
to show that the level of training can act as a deterrent for memory loss in a progressive deterioration is potentially
important. Our results support those of Zhang [16] in a study of The Prevalence of Alzheimer's Disease in China.

The model presented here seems to indicate that there exists a minimum threshold education that is necessary
to gain this benefit. The results show little or no difference among 50% or 60% training, nor is there a great
difference among 70% and 80% trained. Hlowever, there is a large difference between the 60% and 70% trained
network under progressive deterioration. Further work includes finding if there is indeed a threshold within this
region, and to study what happens at that point and why we see a great increase in the robustness of the system.
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Abstract

The control of multi-joint arm movements requires of the central nervous system (CNS)
to perform complicated transformations from the desired behavioral goals into appropriate
neural commands to the muscles. Although, little is known about the control algorithms
used by the brain in performing these transformations- the picture emerging from a series of
behavioral and modeling studies is that of a hierarchically organized system whereby higher
levels are involved in planning desired spatial hand trajectory plans while lower levels are
concerned with their execution. Here we discuss evidence for this view provided by several
recent studies of motor adaptation to various kinds of external perturbations unexpectedly
introduced during arm reaching movements. To further investigate the nature of the in-
ternal motor representations subserving human arm trajectory formation a neural network
model was developed and its main underlying hypotheses and predictions are described.
Finally, the implications of these two studies with regard to tile internal organization of
arm movement generation processes will be discussed.

1 Introduction

Traditionally, motor control studies have focused on anatomical and physiological questions and
on single-joint movements. Over the last decade, however, it has become increasingly clear, that
to gain deeper insight into motor control, the problems underlying the generation of multi-joint
movements and the "computations" performed by the brain in the solution of such problems
must also be investigated. Since motor behavior is fundamentally multi-dimensional and might
be alternatively represented in muscle, joint, or end-effector spaces, two fundamental questions
in motor control research are in what space(s) or coordinate frame(s) are motor behaviors
represented and what rules govern the selection of particular movements among the infinite
number of possible ones.

Experimental observations of human unconstrained point-to-point reaching movements have
indicated that these movements are characterized by straight hand paths and symmetric bell-
shaped velocity profiles that tend to remain invariant, despite variations in movement direction,
speed, and initial position (Morasso, [17]; Hollerbach & Flash, [14]). These kinematic features
of reaching movements were accounted for based on optimization theory (Flash & Hogan, [8]).
Following an idea originally suggested by Hogan [12] in the single-joint case, the smoothness of
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multi-joint arm movements was quantified in terms of the integral of squared jerk of the hand
in space as follows:

Cj = _2 J0 ý(( - )3z )2 -+ ( 3) )dt(l

where r"1t) = (z(t), y(t)) is the vector of hand position and t1 is the movement duration. It
was then suggested that among all possible hand trajectories that join some specified initial
and final positions, the motor system selects to generate those trajectories that minimize the
above cost function. Such trajectories follow spatial straight hand paths and have symmetric,
bell-shaped velocity profiles. The minimum-jerk model was also shown to successfully account
for curved, obstacle-avoidance and drawing movements (Flash and Hogan [8); Viviani and Flash
[21]. The main tenet of the model was, however, that arm motions are planned in terms of
hand trajectories in extrapersonal space.

To execute any desired motion plan, appropriate joint torques and muscle activation patterns
must be generated. One possible way that this can be done is by first transforming the desired
hand trajectory plans into appropriate joint rotations by solving the inverse kinematics problem.
Then, the necessary joint torques can be derived by solving the "inverse dynamics" problem.
Given the complicated dynamic interactions existing between the moving skeletal segments
during multi-joint movements, and the complexities involved in the need to distribute the
necessary joint torques among a highly redundant set of muscles, it was hypothesized that the
motor system must have developed alternative means and control schemes for motor execution
that do not involve explicit joint torque and muscle force computations. One such scheme is
the so called equilibrium trajectory model (Feldman,[4]; Hogan, [13], Flash, [5], Bizzi et al.,
[2]). According to this model, the viscoelastic properties of muscles might play an important
role in allowing the motor system to bypass the need for explicit torque computations. Thus,
movements are generated by gradually shifting the limb equilibrium position, along the desired
motions while the equilibrium positions are internally coded by specifying the appropriate
neural activities to sets of agonist and antagonist spring- like muscles. Alternatively, the recent
progress in neural network research, has led to a renewed interest in the possibility that while the
motor system may not solve from scratch the inverse kinematics and dynamics computations
each time a new movement is about to be generated, successful solutions to these problems
are embedded into the synaptic connections between the elements of biological cortical and
subcortical networks which are enrolled in various motor functions. (e.g, Alexander et al.,[1]).
According to the "hierarchical approach" to human arm trajectory control expressed above and
elsewhere (e.g., Flash [6)), the motor system is hierarchically organized and desired behavioral
goals are gradually transformed into actual movements following a step-by-step transformation
whereby higher motor levels specify the desired motion plans while lower levels are concerned
with their execution. Recently, an alternative view was suggested (Uno et al., [20]). Thus, while
it was again postulated that the motor commands are directly calculated from the goal of the
movement, represented by some performance index, by contrast to the minimum-jerk model,
Uno et al. ([20]) have postulated that the underlying criterion for movement selection involves
the optimization of the rate of change of joint torques. This latter objective of performance is
critically dependent on the dynamics of the musculoskeletal system. Thus, while according to
the minimum-jerk model, kinematic motion plans are selected independently of the movement
dynamics or external load conditions, according to this alternative model, substantially different
hand trajectories are expected to be generated for movements performed in different regions
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of the workspace, or under different load conditions. These two alternative classes of models
would also have substantially different predictions with respect to the characteristics of the
movement output following load adaptation.

Motor adaptation studies

In a recent study (Flash and Gurevich, [101; Gurevich, [11]), the question of what is learned
during load adaptation was examined. For this purpose an experimental paradigm was used
whereby static elastic loads were unexpectedly introduced during human reaching toward visual
targets. While the first few movements immediately after the application of the load were
misdirected and missed the final target, following a relatively small number of practice trials (
5-7) in the presence of the load, the movements tended to converge toward the ones seen in the
unperturbed case, i.e., to follow straight hand paths with symmetric velocity profiles (Flash and
Gurevich, [7]). These observations have therefore indicated that human arm trajectories tend
to obey the same kinematic plan independently of the external force conditions thus supporting
the idea of separate levels of trajectory planning and execution. Similar conclusions were
arrived at in another recent study (Shadmehr and Mussa-Ivaldi, In Press) whereby velocity-
dependent force fields were used to perturb the movements and the perturbed trajectories
performed in the presence of the new force fields were again found to converge toward the
ones seen in the unloaded case. In a third related study, Wolpert et al. ([101) have used
altered visual feedback conditions that caused an increase in the perceived curvature of aiming
movements achieved through computer manipulations. The increase in the perceived curvature
of the unconstrained point-to-point movements led to significant corrective adaptation in the
curvature of the actually produced movements; the hand movements became curved, thereby
reducing the visually perceived curvature. These results have therefore again suggested that
arm trajectories are planned in extrinsic visual space and are incompatible with assumptions
of the minimum-torque change model or similar models assuming movement generation based
on the optimization of dynamics-based objectives of performance or ones which are based on
intrinsic coordinates (e.g., joint angles, muscle forces, etc.).

2 Learning from spatial deviations: a neural network model

In a recent study (Jordan, Flash and Arnon, In Press) a somewhat different approach to mod-
eling point-to-point reaching movements than the one used in the minimum-jerk [8] model was
taken. The motor control system was assumed to prefer motions of the hand along straight
paths in space. In attempting, however, to account for the temporal aspects of the movements,
the characteristic velocity profiles were hypothesized to implicitly arise from the dynamical
properties of the hardware subserving the generation of reaching movements, namely the arm
and muscle dynamics, including muscle activation-contraction properties. and the dynamics of
the neural networks that transform movement commands into muscle activations. The model
was implemented as a neural network that learns to performi moveme.ts by correcting errors
between the desired and actual performance, the errors being the spatial deviations of the hand
from straight paths. The network was based on a general approach to motor learning known
as "distal supervised leariiing" (Jordan and Rumelhart, [16]).
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A fundamental problem in motor learning theory concerns the nature of the corrective feed-
back that is available to the learner. In many motor learning problems corrective information
is not provided directly to the learner in terms of motor command errors. Rather, desired
behavior is specified in terms of the outcome of movement as assessed by various sensors. This
general problem has been referred to as the problem of the "distal teacher" in motor learning.
One possible way for transforming a distal sensory error (e.g., in the limb spatial position) into
signals for correcting the proximal motor commands is by making use of forward models of
the kinematics and dynamics of the controlled plant (Q16]). The role of the forward models is
essentially that of providing a mechanism for transforming distal sensory errors into proximal
motor errors. The forward models must themselves be learned by correcting the error between
predicted sensory outcomes and actual sensory outcomes. Once those models have been par-
tially trained they can be used to train the controller. The composite system, composed of
the controller and the forward models is trained based on the difference between the desired
sensation and the actual sensation. While the composite system is being trained the forward
models are held fixed and only the controller is altered.

Modeling and simulation

The model that we implemented ([91) generated neural inputs to a set of muscles, thereby
producing joint torques for the arm. The model consisted of a cascade of neural networks,
beginning with the central controller which received as inputs the initial and the desired final
hand positions. The outputs of the central controller were fed to a muscle dynamics network
which provided a forward model of the muscle activation-contraction dynamics. The outputs of
the muscle network, which represented predicted muscle forces, were then fed into the network
representing an internal forward model of the two-joint arm dynamics. The outputs of this
forward dynamics network corresponded to the predicted joint accelerations. They then were
integrated once to yield joint velocities and twice to yield joint positions, which were then fed to
the network designated as the forward kinematics network, which transformed predicted joint
positions and velocities into predicted hand positions and velocities. Finally, the hand position
outputs were fed back to the central controller network, thus providing recurrent feedback that
drove the network forward in time based on recurrent algorithms developed by Jordan (Q151) to
deal with trajectory formation problems. The overall network was provided with inputs only at
the first time step and was allowed to run for the entire duration of the movement. Additionally,
outputs of several of the forward models were fed back either to other forward models or to the
central controller.

All of the forward models in the chain, with the exception of the muscle model, were trained
separately prior to the training of the controller using the backpropagation algorithm ([18]).
The muscle model was designed based on the form of the differential equations describing
biological muscles. Various architectures were tested for the central controller. In the final
design, however, the network was composed of one layer of input units, one layer of output
units, and two layers of hidden units. The inputs to the central controller consisted of the
initial hand position and the desired final hand position. The latter inputs were set at tba
start of each movement and remained fixed throughout the movement. The former inputs were
updated via the recurrent feedback by the output of the entire composite network. Each hidden
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unit was provided with a recurrent loop onto itself, and there were direct connections from the
input layer and from both hidden layers to the output layer. This internal connectivity provided
additional dynamics to the controller and was found to be important in the simulation studies.
Finally, there were four outputs of the central controller network which provided neural inputs
to the four muscles.

Because the controller and the musculoskeletal system are dynamical systems, errors at the
final time step can be caused by poor choices of actions at any of the earlier time steps. To deal
with this temporal credit assignment problem, the "backpropagation-in-time" algorithm was
used (Rumelhart, Hinton, & Williams,[18]). The existence of the forward models did not alter
the manner in which the backpropagation-in-time was performed. Errors were passed backward
through the forward models and the controller at each time step and only the weights in the
controller were actually changed at the end of this process. That is, only the controller was
adjusted so as to minimize the performance error.

The effects of using several types of performance errors were tested. We found that requiring
of the arm to reach the target with prescribed end-point position, velocity and acceleration is
inadequate for the purpose of generating human-like trajectories in the case of two-joint planar
movements. Thus, an algorithm whereby errors in the path of motion of the hand were utilized
in the training of the network was developed. A desired movement was assumed to be specified
as a path in Cartesian space. The continuous path was approximated by a sequence of equally-
spaced via points. Errors were then generated as spatial discrepancies between these via points
and the path of the actual motion of the hand. These errors were provided continuously to the
network during the course of the movement. Our goal in developing this via point algorithm
was to avoid making assumptions that the learner has prior knowledge of the specific times that
the via points should be reached. This is consistent with our assumption that the training data
specifies the desired paths of movements, not their trajectories.

The via point algorithm which we developed is closely related to the "elastic net" algorithm
of Durbin and Willshaw (13]). The algorithm associated to each via point a window in space.
During the course of motion, when the hand passes through the window associated with a
given via point, an error vector is generated. The window dropped off smoothly as a Gaussian
function in space, thus the magnitude of the error vector was modulated as a function of the
distance in space of the hand from the center of the window. Moreover, the spatial dimension of
the window was decreased over the course of learning. Specifically, the modulated error vector
at time t was given by the following expression:

e(t) = • s(t)e--x-x(t)I 2 (xi* - x(t)), (2)
iEvia

where x! is the spatial center of the window associated with the ith via point, s(t) is a temporal
modulation function, and a is a scale factor. The sum in this expression is taken across all of
the via points defining a given movement. Note that the via point centers are not indexed by
time-the position of the hand (x(t)) is compared to all via points at each moment in time.
We assume that the spatial scale factor a decreases during learning, starting from a large value
and decreasing as the performance improves. We also assume that the modulation function
s(t) is a triangular-shaped function that activates the via point windows (synchronously) at
the beginning of a movement and turns them off at the end of a movement. All of the via points
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are allowed to pull the hand toward the desired path at each moment in time. The magnitude
of the pull diminishes for via points that are far away. In the central region of the path there
are essentially equal numbers of via points on both sides of the hand position, thus the pull
from far-away via points and tend to cancel. Away from thle central region, however, there
are either more via points ahead of or behind the hand position. Consequently, tile via point
algorithm has an effect of either accelerating or decelerating the hand ill the direction of the
target. Thus, the via point algorithm has a natural and sensible effect on both the spatial and
temporal aspects of the motion.

In the experiments conducted to examine the network performance, the network was trained
to generate 32 trajectories, 16 for each of two initial positions. After the performance reached
a criterion on these training trajectories, the weights of the controller network were fixed and
its generalization performance was evaluated on a novel set of trajectories. The network was
trained to perform reaching movements towards static targets with small final errors and small
spatial deviations from the straight line connecting the initial and final targets. The model was
then used to predict the internal neural commands and muscle activation patterns that might
be involved in the generation of the smooth ("mininmum-jerk") movements observed in humans
and monkeys while reaching towards visual targets. At its final design stage and following
training it was found that the entire network generates smooth biological-like movements and
that the neural commands to the muscles obey the same temporal activation patterns to those
experimentally observed in human subjects during reaching movements.

These results have therefore indicated that rather than utilizing explicit smoothness costs,
trajectories resembling minimum jerk trajectories might result from the inherent smoothing
properties of the neural controller, the muscles and the arm mechanics. Such smoothing prop-
erties arise from the time constants of these systems and tend to regularize the trajectories
acquired by the controller. The via point algorithm also smoothed the motions. This occurred
because the error vector provided by the algorithm changed smoothly at nearby points in space.
We also relied on the via point algorithm to constrain the spatial properties of the movements,
in particular to yield quasi-straight line movement. Our hypothesis was that these two con-
straints alone are sufficient to produce human-like movement. That is, we hypothesized that
the temporal properties of trajectories are constrained by two factors: the explicit constraint of
producing straight-line paths of motion in conjunction with the implicit smoothing properties
of the dynamical systems underlying the movement.

3 Summary

In this article, two recent studies dealing with motor learning and adaptation in the context
of human arm reaching movements were discussed. The result from our load adaptation study
[7]) and those of others ([19], [10]) have indicated that in the performance of the motor task of
reaching toward visual targets, the motor system aims at achieving very particular kinematic
plans for the movement trajectories regardless of the external load conditions. A neural network
for reaching movements was then presented. Given that the model was shown to successfully
predict realistic arm trajectories and muscle activation patterns, this may provide evidence
in support of idea that during unconstrained reaching movements the motor system aims at
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achieving straight paths for the hand and that the typical observed bell-shaped velocity prmuile
is an emergent feature of the control system. Moreover, the neural network modeling work has
emphasized the significance that internal models of arm kinematics and dynamics may play
in motor learning and adaptation. Finally, neural network models of the kind presented here
may subserve further investigations aimed at probing into the internal motor representation
underlying the control of multi-joint motor behavior and might be useful in various biomedical
applications such as the development of adaptive control methods for neuroprostheses.
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Abstract

The PAPNET® Cytological Screening System is designed to increase both the accuracy
and efficiency of screening cytological specimens, in particular the cervical (or "Pap")
smear. The system provides a semi-automated means of detecting cervical smear
abnormalities which can be missed by conventional manual screening methods. The
PAPNET system includes both image processing and neural network classifiers to select
128 of the most abnormal cellular scenes from each smear. These scenes are evaluated by
a trained cytologist who makes the final diagnosis.

The paper describes current medical practice and the challenges in automating this
process. The PAPNET system's architecture and major functional elements are described.
Special considerations for training and evaluating the neural networks used to classify the
complex scenes found on Pap smears also are discussed.

The Pap Smear and Cervical Cancer Detection

The Papanicolaou-stained cervical smear has long been recognized as one of the greatest
advancements in cancer prevention. Since its introduction 40 years ago as a method of
screening for abnormalities of the uterine cervix, the "Pap" smear has been instnrmental in
reducing cervical cancer mortality by more than 70% in the United States'. These smears
are screened in pathology laboratories by trained cytologists who microscopically examine
slides to detect evidence of this disease or its precursors. Such evidence is found through
morphological changes in some cells on the smear. The pre-cancerous phase progresses
slowly and if found early usually can be treated effectively.

Manually screening Pap smears is a fatiguing, tedious and error-prone task. Up to 100
smears, each containing 50,000 to 400,000 cells, can be examined by a cytotechnologist
each day. Habituation is difficult to avoid, as over 90% of all smears are normal. On a
smear which does contain evidence of disease, a very small number (typically 1/10th of 1%
or less) are actually diagnostic. Screening is akin to searching for a needle in a haystack
where most haystacks have no needles. These factors contribute to a false-negative rate
(proportion of true positives called negative) estimated to be from 20% to 40%.

lCancer Facts and Figures 1993. American Cancer Society, p13

1-84



The nature of Pap smear screening and its ubiquity (an estimated 70 million taken in the
U.S. annually), make automating some or all of the process an attractive option.
Historically, computerized classification of the cells found on Pap smears has proven to be
a difficult task. It is difficult even to reliably segment objects (cells and clusters) in the
complex and overlapping scenes intrinsic to these smears. In practice, smear preparations
vary greatly in staining, thickness, background and the presence of artifacts.2 Finally,
many stages and degrees of abnormality exist which must be reliably distinguished from
the overwhelming number of "normal" cells which suffuse even "positive" smears. For
these reasons, development of automated systems has been a great challenge.

The PAPNET Cytological Screening System

The PAPNET System serves as an adjunct to current medical practice by automating the
search for potentially abnormal cells on the smear. These selected cells are then
interpreted by a trained cytologist. The complete system includes two units: a Scanner
which is located in a central processing facility and a Review Station located in the
pathology laboratory. The Scanner uses both conventional image processing techniques
and neural networks to identify 128 of the most abnormal appearing cellular scenes on
each slide. Digital color images of each scene are recorded by the Scanner. These images
are then viewed on the Review Station by a cytologist who "triages" each slide as either
"Negative" or "Review", with the later indicating the need for anicroscopic examination.

The Scanner includes an automated microscope with a robotic arm for loading and
unloading slides. After loading, the image processor is used during the low magnification
pass over the slide to produce a map ioentifying areas of cellularity. Next, during the
medium magnification pass over the mapped areas, the centers of suspicious cells and
clusters are marked by the image processor so that the neural network can assign a score
to each marked object. The score reflects its resemblance to the "abnormal" objects used
to train the network. During the final, high magnification pass, color images are stored of
the 64 single and 64 cluster cell scenes with the highest neural network scores.

The image processor uses size, shape and color to identify suspicious cells and clusters
while eliminating those which look "normal" or are deemed to be artifacts. Separate
neural networks are used to score single cells and clusters. Both are feed-forward, back-
propagation networks created through supervised training on positive (abnormal) and
negative (normal) libraries. The libraries consist of gray-scale images which are used as
inputs for the networks.

The PAPNET system is currently in use in the United States as part of several clinical
investigations. Abroad, it is being used for the routine screening of cervical smears.

2Mango LJ,: Computer-assisted Cervical Cancer Screening ri,? i, Neural Networks. Cancer Letters, In
Press 1994.
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PAPNET System Design Objectives

The PAPNET system addresses three major design objectives:

1. Use the conventionally stained Pap smear
2. Maintain sensitivity to the variety of diagnostic cells encountered
3. Maintain the throughput rate required for practical use

The conventionally stained Pap smear presents severe challenges for computerized
analysis. As described above, the typical smear contains hundreds of thousands of cells,
may of which overlap or are massed into dense clusters. A wide variety of cell types,
artifacts and debris are frequently present. The age of the patient, unrelated disease states,
as well as how and when the sample was taken can have a substantial effect on the number
and type of cells on the smear. Staining can vary greatly from laboratory to laboratory and
from batch to batch within a laboratory. Such highly variable, natural scenes present
tremendous difficulties for standard algorithmic pattern classifiers.

The progression and presentation of the disease states themselves are also highly variable.
Disease progression is usually a relatively slow process with cells evolving from normal to
atypical to dysplastic to pre-invasive and then invasive states. In the early stages of this
process, the size and darkness of the nuclei increase. Also, the ratio of the nuclear to
cytoplasmic area increases. As the disease develops, the nucleus progressively fills the
cell, while the cell size decreases. In the final stages, the nucleus can be easily mistaken at
typical screening power for debris or white blood cells. An automated system should be
sensitive at each step in the disease progression. Such nonlinear changes can easily
confound simple classification schemes.

Most fundamentally, the interpretation of cytological abnormality cannot be defined
absolutely by a standard set of rules. Many types, stages, and degrees of abnormality exist
representing a disjoint set of morphologies. In many cases, equally well-trained and
experienced cytologists can arrive at different diagnoses which cannot be adjudicated by
any objective analysis of the available data. This subjectivity is a very problematic aspect
of cytology, presenting many gray areas which cannot be precisely defined. But such
definition has been a prerequisite for developing useful automated cytological systems. 3

For a practical system, there is a limit to the scale and complexity of processing applied to
solve these problems. There are many sophisticated image processing and classification
techniques developed for research environments which can be useful for such difficult
subject matter. Unfortunately the computational load imposed makes them unsuitable at
the present time for practical application. Digitizing a Pap smear at a useful resolution can
yield many gigabytes of image data. Even with special purpose hardware. processing
resources must be husbanded and directed at the most likely targets.

3Mango LJ, and Herriman JH: The PAPNET' Cytological Screening System. Compendium oil the
Computerized Cytology and Histology Laboratory. In Press 1994.
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Hierarchical Classification

The PAPNET system architecture includes a series of classifiers, which work together to
meet the objectives of the application. These are:

1. Primary Classifier - Algorithmic image processor
2. Secondary Classifier - Neural network
3. Ultimate Classifier - Cytologist

Because of the inherent difficulty of completely automating the process, the cytologist
must remain the system's ultimate classifier. The objective thus becomes automating the
search for abnormality, not making an automated diagnosis. By directing the cytologist's
attention to the most likely areas of abnormality, the effects of habituation are minimized
while the (still unmatched) abilities of the trained human interpreter are enhanced. The
productivity of the cytologist can be greatly increased, since the 128 cellular scenes chosen
can be reviewed in about 1 minute vs. 5 minutes for conventional microscopic screening.

Owing to the difficult job the automated portion of the system must perform, neural
networks were chosen for use as the secondary classifier. They excel at robust pattern
recognition and are ideally suited for the highly variable nature of the Pap smear Neural
networks "learn" the same way cytologists do - by generalizing from "training sets". The
non-linear relationship between cell morphology and disease state can be accommodated
much more easily with neural networks than traditional algorithmic or rule-based systems.
The neural networks use gray-scale images as inputs, as these were found to be more
effective for classification than image feature sets.

Conventional image processing algorithms were chosen for use in the primary classifier for
reasons of efficiency. Neural network algorithms are computationally intensive and would
require prohibitive resources to analyze every area (or even each object) on a slide. Since
most objects on the slide are not diagnostic (even on a "positive" slide), the image
processor is used to focus the neural networks where they are most efficiently used. Since
image processing algorithms can be readily accelerated with available hardware, this is a
practical approach. The image processor reduces the hundreds of thousands of objects on
the slide by an order of magnitude or more by eliminating objects which can be confidently
classified as "normal" (i.e. non-diagnostic).

Neural Network Development

The performance in a given application of a neural network depends on the type of
network used, the libraries used for training and the training methodology. Through
experimentation, it was found that a standard back-propagation architecture yielded the
best results.
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Because of the highly variable nature of both the positive and negative universes
encountered by the neural networks, large libraries were used for training They were
initially built by cytologists from example cells culled from several different laboratories'
slides. Once the first libraries were completed, the supervised method was used to train
the network. During the training session care was taken to avoid overtraining the neural
network by constantly monitoring its performance against a test library.

Test set performance, in conjunction with statistical error measurement served to assess
the balance between minimizing the classification error rate and maximizing generalization.
Once it completed training, the neural network would be used on actual slides and its
performance evaluated. If the results were unsatisfactory, misclassified objects from the
test slides were added to the negative libraries. The positive libraries were expanded by
adding correctly classified objects from the test slides and or by manually adding positive
examples from the slide which were missed. The final libraries contained many thousands
of cells taken from hundreds of slides.

The system test process was difficult and time consuming because many slides had to be
scanned, with the results accumulated and interpreted. Because of the nature of the
application, this interpretation was largely subjective in many cases. During development,
it was often found that "improvements" to the neural networks that made them sensitive to
certain "difficult to find" cells made the networks much less sensitive to other cells which
were correctly classified before. Fine-tuning the networks was an empirical and heuristic
process. This is probably not a unique situation for neural network developers.

The great imbalance between the number of positive and negative cells in a positive smear
poses special concerns for the PAPNET system's automated classifiers. Even "obviously"
positive smears frequently contain over 1000 negative objects for each diagnostic cell.
Since diagnostic cells can vary so much in their morphology, a danger exists in "losing" all
of the cells by making the neural networks too specific. On the other hand, since a trained
cytologist reviews all of the 128 images produced by the system, only a few (as little as
one) of the images presented need to be diagnostic for the system to be successful.

The solution to this somewhat unusual set of sensitivity and specificity constraints is to
present examples across the entire range of abnormality. The classification cascade's is
designed such that no stage could unintentionally block out all of the diagnostic cells. The
neural classifiers are not trained to maximize the number of positive cells, but to
accommodate the cost of rejecting fewer negative objects by preserving diversity.
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Clinical Trial Results

The PAPNET Cytological Screening System is currently being used to analyze
conventionally prepared cervical smears in a variety of investigational studies. Several
large clinical trials, involving a total of more than 60,000 smears have been completed or
are currently in progress.

The system may be particularly useful in rescreening cervical smears because of its
sensitivity to the types of cytologic abnormalities typically missed by manual screening.
Such cases usually contain few abnormal cells, the very small cells characteristic of
advanced disease or abnormality manifested exclusively as clusters or fragments.

For example, in a recently published study from the Netherlands4 the system was shown to
detect cancer cells in smears which were repeatedly misdiagnosed during manual
screening. Ten archived false-negative smears from patients with histologically proven
invasive cervical carcinoma were selected for rescreening by two pathologists; 10 smears,
which were true-positive for invasive carcinoma, were used as controls in addition to 10
true-negative smears. Boon el al showed that during PAPNET-assisted rescreening, all
false-negative cases were detected by PAPNET, displaying abnormal cells or abnormal
epithelial fragments, and all of the smears studied were subsequently reclassified by both
pathologists as suspicious or carcinomas.

4Boon ME, Kok, LP: Neural Network Processing Can Provide Means to Catch Errors That Slip Through
Human Screening of Pap Smears. Diag. Cytopath. 1993
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Abstract

Data compression system using neural networks for long time ECG recording has been designed. BPNN
(neural network trained by back propagation) and PCANN (neural network which computes principal
component analysis) are used for data compression. We have compared their performances with existing
methods SAPA and TOMEK in our previous study. MIT/BIH Arrythmia database was used for evaluation.
Observing the reproduced waveforms, BPNN and PCANN had almost the same performance, and they
were superior to SAPA and TOMEK concerning the accuracy of reproduction. The reproduced waveforms
were clinically eveluated by 10 cardiologists. 10 kinds of waveforms, which were selected by a cardiologist,
were presented to the cardiologists. They gave the score I to 5 to each reproduced waveform according to
whether the waveform had serious problems which will influence diagnosis. We summed up the scores and
investigated the relationship between the summed scores and PRD, CC and the compression rate. Finally
we discuss the design of the hardware implementation utilizing a DSP.

1 Introduction
Holter monitoring system provides the function of long time ECG recording and is useful to detect cardiac
disorders and arrhythmia, which are often hard to detect by usual short time ECG recording. Existing
Holter monitoring systems are utilizing an analog magnetic tape for storing ECG data. However the use
of an electronic device like an IC memory card is expected instead of the magnetic tape in the future. By
replacing the magnetic tape with the electronic device, improvement of stability, durability, reliability and
ease of maintenance can be realized. However, some data compression technique is still required to use the
IC memory card, due to the large volume of digitized ECG data.

We proposed a data compression technique using neural networks. In the previous papers[I][2], we evalu-
ated the performances of BPNN (neural network trained by back propagation) and PCANN (neural network
which computes principal component analysis) in our system from several points of view. We compared their
performances with the existing methods. Both BPNN and PCANN showed better results than the others.
They showed 1.1 to 1.4 times higher compression rates than the others to achieve the same accuracy of the
reproduction (13.0% of PRD (Percent Root-Mean-Square Difference) and 99.0% of CC (Correlation Coeffi-
cient)). Observing the reproduced waveform (RW), BPNN and PCANN had almost the same performance,
and they were superior to the others. But one question was remained through the experiments. When we
observed the RWs which processed by different methods, we noticed the extremely different RWs even though
their estimated accuracy by PRD and CC were almost equal. So our question is whether the criteria for
evaluation like PRD, CC really reflect the error rate which will influence diagnosis.

Here we try to give one answer to the question. We mainly discuss the clinical evaluation of the RWs
reproduced from the compressed data processed by some compression methods. To evaluate objectively, we
asked 10 cardiologists to judge the accuracy of the reproduction. They gave the score I to 5 to each RW
regarding whether the RW had serious problems which will influence diagnosis or not. We summed up the
scores and investigated the relationship between the summed scores and PRD, CC and the compression rate.
Finally we discuss the design of the hardware implementation utilizing a DSP.

2 Neural Network Model and Principle of Data Compression
The architecture of BPNN is shown in the left part of Fig. 1. This network consists of 3 layers (input, output
and 1 hidden layer). The point of this architecture is the hidden layer where the neurons are limited to very
few number than that of input and output layer. The input and the output layer have the same number of
neurons. BP[31 is used as the learning rule. PCANN has quite similar shape to BPNN except for the bias
neuron. PCANN has no bias neuron. The connection weights between hidden and output layer wjA are the
duplication of wij. Learning algorithm of PCANN is described in Ref.[4].

1-90



in

AD Conversion

_____ e Pre Process

R-Wave Detection

NkHNonIthm. Inteovi Samling
Daom Range Tranbstion

Hidden Layer Yj I ufe

Buffer

t it t t tt t r i l l Evaluation

IC MemoryI

Figure 1: (Left) Architecture of BPNN. (Right) Functional block diagram of the ECG data compression

system.

In BPNN and PCANN, the data compression principle is the same. Both input and output layers deal
with one heart beat period of the ECG waveform. Learning is carried out to give the network the ability
to reproduce the same waveform as the input one on the output layer. Before the compression starts, wj
are recorded for later reproduction. By recording the activation levels of the hidden neurons instead of input
data (which are equal to original waveform) while processing, data compression is carried out. The input
waveform can be reproduced only from the recorded connections and activation levels of the hidden neurons.
The compression rate is approximately given by the ratio of number of neurons in the hidden layer to that of
the input layer.

3 ECG Data Compression System Using NN
The functional block diagram of the ECG data compression system is shown in the right part of Fig. 1. The
detail of the algorithm is described in Ref.[2]. The important feature of the system is that the system has 2
NNs which work in parallel. While NNL is compressing the data, NN2 continues to learn with the current
data in the buffer and keeps the latest connection weights, which follow the latest changes of the waveform.

Data compression process is progressed as follows. The well-trained connection weights of NN2 are dupli-
cated on NN1 and are also stored to the IC memory before the compression starts (4). After the compression
work starts, if the accuracy of RWs is kept, the activation levels of hidden neurons are recorded ((2)-.(3))
instead of the original waveform (1). Sudden disturbed waveforms may appear, and in that case the original
waveform is recorded ((1)-.(3)). When the waveform changes and the changes are continuously appeared,
RW's error may increase and the signal for the weight replacement is generated. As a result, the connection
weights of NN1 are replaced by those of NN2, and the new connection weights are stored to the IC memory
again (4). The replaced new connection weights are well-trained by NN2 and can follow the latest change of
waveform. Thus NN1 can keep the accurate reproduction and a proper data compression is always carried
out.
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Table 1:10 symptoms list included in test data sets.

[XNo. Symptom Dataflie ITime
S-1 Paced beat MIT102 01:00
S-2 Isolated QRS-like artifact MIT105 17:58
S-3 1.tft bundle branch block beat MIT109 01:00
S-4 Aberrated artial premature beat MIT113 08:29
S-5 Premature ventricular contraction MIT119 01:00
S-6 Normal beat M1T119 01:30
S-7 Right bundle branch block beat MIT124 01:00
S-8 Nodal (junctional) premature beat MIT124 05:08
S-9 Fusion of ventricular and normal beat MIT124 10:30

S-10 Ventricular flutter wave MIT207 00:45

L~L~~&222~Org
0 1 2 3 4 •ll"C] 0 1 2 3 4 ( ]

(1)

(3 (3)

Figure 2: Comparison of the original waveform and the reproduced waveforms. Org: original, (1): BPNN-2,
(2): PCANN-5, (3): SAPA-8, (4): TOMEK-11. Numbers after the name of method correspond to the index
in Fig. 3.

4 Clinical Evaluation
4.1 Method
We used MIT/BIB Arrhythmia Database for evaluation. This database includes 48 sets of various ECG
waveform from the normal one to many kinds of arrhythmia. We asked the cardiologist to choose the typical
waveform examples which represent the usual case of Holter recording. As a result 10 examples were selected.
Table I shows the 10 symptoms included in the examples.

For each example, 12 RWs (4 methods: BPNN, PCANN, SAPA[5] and TOMEK[6], x 3 different error
thresholds) were generated. One set of data which were presented to the cardiologists for evaluation consisted
of 10 sheets. Each sheet included 1 symptom and consisted of 13 waveforms, where first one was the original
waveform and the others were the RWs. The RWs were randomly arranged and presented to the cardiologists.
The examples of the original and the RWs are shown in Fig. 2. Figure 2(Left) shows the examples of normal
beat and Fig. 2(Right) shows the examples of arrhythmia.

When we asked the cardiologist to choose the typical examples, we also asked how accurate the RWs were
so that they will aid in proper diagnosis. According to the answer to our question, we could know that the
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Figure 3: Compression rates versus PRD, CC, Score in BPNN, PCANN, SAPA and TOMEK.

cardiologist's requirement was high, and changed the error threshold to the smaller value than the one in the
previous study. As a result almost all the RWs achieved under 11.0% of PRD and over 99.3% of CC.

Figure 3(a) shows the relationship between the compression rate and PRD. Similarly Fig. 3(b) shows the
relationship between the compression rate and 7f. Each curve indicates a different method, and each point
on one curve is the average of 10 sym,, -is ano indicates the result with different error threshold. If the
points and the curve of one method are er to the origin of the graph, the results of the method are better
than the others. It can be seen from the results that BPNN, SAPA and TOMEK have the same level of
performance. That is, they are placed on almost the same curve. PCANN showed slightly bad performance.
It is placed above the others.

To evaluate the RWs clinically, we asked 10 cardiologists to judge the accuracy of the reproduction. One set
of data which consisted of 10 symptoms were presented to the cardiologists. For each symptom, one original
waveform and 12 RWs were presented, as described before. We randomly presented the RWs to avoid the
cardiologists' preconception, so that they could not know by which method each KW was processed. We asked
them to give the score 1 to 5 to each RW depending on how serious problems which would influence diagnosis
were found in the RW. Eac~h score's meaning was as follows.

5 : No problem which influence diagnosis, acceptable.
3 : Minor problems are seen, acceptable or not, depending on the case.
IL : Serious problems which influence diagnosis, not acceptable.

Scores 2 and 4 were only used in the case that the cardiologists hesitated to make a decision of 5 or 1. They
meant that the K•W was a little better or worse than score 3. We also requested them to leave the comments on
the data sheets regarding the points which they evaluated as good, bad, insuffcient, not acceptable, or must
be improved. From those comments, we can know the cardiologists' way of thinking and their requirements.

4.2 Result
We summed up the scores for each RW. Table 2 shows the result. One KW can get the swore 10 to 50. "Total"
in the table shows the summed score of 10 symptoms, and means the total performance of the method with
a certain error threshold. The number 1 to 3 added to the name of method, for example B"1" or P"2",
means different error threshold. The Number I is the cawe of large error threshold, and in that case the
compression rate become high but the score is low. Number 3 is the opposite case. Figure 3(c) shows the
relationship between the summed scores and the compression rate. Difference of the results was considerably
large between PRD, CC and the cardiologists' score. That is, according to PRD and CC, BPNN and PCANN
were evaluated as the same level to the middle range of the result of SAPA and TOMEK. On the other hand,
the cardiologists evaluated that BPNN and PCANN were equal to the highest level of accuracy of SAPA and
TOMEK. Regarding this result, we can say that PRD and CC evaluate one side of the waveform, and they are
not completely the same to the cardiologists' evaluation. In the cardiologists' evaluation, BPNN and PCANNwere superior to SAPA and TOMEK.

Analyzing the comments for the RWs, the cardiologists' evaluation about each method became clear. From
their comments, BPNN and PCANN have similar characteristic about reproduction and SAPA and TOMEK
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Table 2: Scores for each reproduced waveform.

Symptom BI B2 B3 P1i P2 P3 S1 I S2 IS3 11 TI T2[ T3]
S-1 47 46 43 40 37 39 17 22 40 13 17 29
S-2 37 42 38 42 42 42 12 20 28 12 13 23
S-3 42 42 43 41 42 45 14 15 29 12 13 17
S-4 40 39 39 45 42 45 18 37 39 15 29 42
S-5 41 42 42 39 40 37 25 30 44 21 27 48
S-6 39 41 40 32 37 44 18 22 48 14 14 37
S-7 40 39 39 32 34 35 18 25 41 13 22 34
S-8 35 40 39 35 40 40 27 32 41 22 25 33
S-9 45 40 44 43 34 44 19 21 48 19 19 38

S-10 41 41 41 41 40 41 33 41 50 19 29 43
I Total 1 4071412 1408 1 3901 388 1412 1 201 1265[ 408 11 1601 20813441

Note: BI-B3: BPNN, P1-P3: PCANN, S1-S3: SAPA, T1-T3: TOMEK.

are also similar about reproduction. All methods can completely reproduce the peak amplitude of R wave
and R-R interval. The difference mainly appears on P wave or T wave or sometimes QRS complex, and the
delicate shape or curve of those waves were pointed out. In BPNN and PCANN, the typical opinions were
about P wave, for example "lack of P wave", "faked P wave", "hard to find the start and end point of P
wave", "change of P wave's shape", and so on. However this result means that no serious problem exists on
the other part. The accuracy of P wave should be improved in BPNN and PCANN. In SAPA and TOMEK,
the typical opinions were about poligonal shape, for example "not curved ST-T", "hard to find P or T wave",
"different starting of QRS complex", and so on. P wave and ST-T were pointed out many times. They need
delicate curves to be reproduced, and hence the poligonal shape may especially stand out.

5 Hardware Design
We are designing the hardware implementation. Figure 4 shows the fundamental design of the ECG Data
Compression System. We planned to use the DSP designed for cellular phone as the processing unit. This
type of DSP requires low electrical power consumption and includes an A/D converter. We will utilize the
A/D converter for the preprocessing of the digitized data. The system consists of 3 boards, which are the
main board, the analog board and the display board. The main board has the DSP, ROM, SRAM, IC memory
card interface, and such, on it. The analog board has an ECG amplifier and a DC power supply. The display
board has an LCD display module and switches. The system can transfer the data to a computer via serial
interface. The DSP works continuously when the system is turned on. The total requirement of the electrical
power is not small, even if we use a model with low power consumption. The life of the existing battery is
not so long. It will be difficult to make the system work the whole day at the present time. The development
of long life and compact battery is expected.

6 Conclusion
We presented the result of clinical evaluation and the hardware design of ECG data compression system using
neural networks. BPNN and PCANN are used for data compression. We generated the RWs by BPNN,
PCANN, SAPA and TOMEK. The RWs were clinically eveluated by 10 cardiologists. 10 kinds of waveforms,
which were selected by a cardiologist, were presented to the cardiologists. They gave the score 1 to 5 to each
RW regarding whether it had serious problems which will influence diagnosis or not. We summed up the scores
and investigated the relationship between the scores and PRD, CC. Regarding the result, we can say that PRD
and CC evaluate one side of the RW, and they are not completely the same to the cardiologists' evaluation.
In the cardiologists' evaluation, BPNN and PCANN were superior to SAPA and TOMEK. Analyzing the
cardiologists' comments, the characteristics of each method became clear. They pointed out that the problem
of BPNN and PCANN is about the P wave, and the problem of SAPA and TOMEK is about their poligonal
shape. Finally we discussed the design of the hardware implementation utilizing a DSP.
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ABSTRACT: Clinical applications of neural networks are frequently hampered by a paucity of available data. In
this study we examine the effect of training set size on network performance for a simple classification task.
Following the work of Wagner et al' for classical statistical (likelihood-ratio) classifiers, this is done within the
context of adding a new, perhaps very noisy or highly correlated feature to an existing input data set. Results are
similar to that of the previous study, demonstrating that for small data sets, additional noisy/correlated features
degrade network performance. Sophisticated statistical resampling techniques including the "jackknife," Fukunaga-
Hayes group jackknife, and "bootstrap" to remove small-sample bias and estimate performance variation are
examined and found to offer significant advantages.

INTRODUCTION: Limited patient number often is a significant constraint in the study of medical decision making
for a particular clinical condition. Especially in the initial stage of algorithm development, insufficient data is usually
a significant problem. Two approaches to improving decision performance are to seek additional features from the
existing patients--even though these features may be much noisier or be highly correlated with the original features--
and to use more sophisticated statistical techniques to wring further information from the data at hand. These
approaches have been studied by Wagner et al. for conventional statistical decision rules'- and have been extended
in a recent paper3 and the present investigation to include neural network techniques.

Shortage of patients lea-ds to both incomplete training and incomplete testing-and to a conflict with regard to how
best divide the patient population between these two phases of a study. We are concerned here only with the first
phase: Given a training population of size N (denoted 2N in references I and 2) divided equally between the two
classes, how close to ideal performance can be achieved?

METHODOLOGY: The type of detection task used in this study is illustrated in figure 1. Two feature vectors are
to be separated, one centered at the origin, 0 (0,...,0), and the other at the unit vector, 1 (1I....1). The original feature
vector is two dimensional, and a third feature is added to "improve" performance. The vectors are Gaussian
distributed with equal covariance matrices and therefore are ideally separated by a linear surface (line, plane--or
hyperplane for a higher dimensionality task). Notice in figure 1 that the perceived improved separation of the two
Gaussian clouds for the 3D case is accomplished because the length of the I vector is 4In, where n is the number
of dimensions (In this and the following similar 3D figures, the ordinate is the third feature dimension, and the
abscissa is the positive diagonal between the other two dimensions). For the equal-variance, zero-correlation case
(covariance matrix C = I in figure 1) the ideal decision surface is the plane perpendicularly bisecting the line
segment joining the centers of gravity of the two clouds (or more accurately, the family of planes perpendicular to
that line corresponding to decision surfaces that generate the entire receiver operating characteristic (ROC) curve for
this task).

Five different cases were considered. The first two of these, cases A and B, are the 2D and 3D identity matrix
covariance cases shown in figure 1. Cases C and D exemplify the addition of correlated features, where C,3 = C,
= .75 and -.75 respectively, and case E represents addition of a very noisy feature, with variance C33 = 10.

Two types of neural networks were used in this study. The first is a standard back propagation (BP) neural network
with either of two architectures: a simple two layer (3-1 nodes) "perceptron" and a slightly more complicated
network with 10 nodes in a hidden layer (3-10-1 nodes). The BP network has been described by many sources.'
It was run without a momentum term and with target goals of 1 and .9 rather than 0.0 and 1.0 in order to increase
the "fluidity" of the weights during training. Values surpassing the target goals were not allowed, however, to
contribute to the sum of squares error. The second type of neural network is called DYSTAL. It is a vector
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quantization scheme in which class vectors or "patches" are determined during the training phase.6 The class of
whichever patch is most similar to a given test vector is assigned to that test vector. A simple least squares similarity
measure was used both in the trainipg phase to control the number of patches and in the test phase to determine class
assignment.

Figure 1. One standard deviation surface of Gaussian clouds for 2D case A (left) and 3D case B
(right). Ideal decision surface indicated by dashed line. For the 3D case, the figure is a cross
section in the feature 1 = feature 2 plane.

The area under the ROC curve, A, was used as the measure of observer performance. The most obvious way of
calculating A, would be to use the decision function on the test data many times, varying the decision function
threshold to change the operating point (values of sensitivity and specificity) and tracing out and integrating under
the ROC curve. Instead, we use the fact that the percentage correct for a 2 alternative forced choice (2AFC)
experiment is directly equal to A2.4 The test set of 10,000 "patients" is divided into 5000 pairs of normals and
positives, and a 2AFC experiment is performed on these 5000 pairs to obtain the percent correct and hence Ak.

For comparisons between observers, relative efficiency is a useful concept. To obtain efficiency, A, is transformed

to a corresponding detectability index d. thrcugh the relationship

da =

where V is the inverse Gaussian distribution function. The efficiency is calculated as the ratio of the squares of
the d, values of the two observers. Because the simple signal-known-exactly (SKE) task used here can be solved
exactly, we are privy to the ideal observer solution, so efficiencies are given relative to that optimal observer.

Three statistical techniques were used to estimate the small-sample bias and measurement variance of Ak. These are
the jackknife, the Fukunaga-Hayes, and the bootstrap techniques. The first and third of these are described in a
cogent work by Bradley Efron,7 and the second is given in a paper by the named authors.8

The jackknife is a technique which uses the results for N patients and the set of N results for N-I patients (leaving
one out each time) to predict the asymptotic behavior of a curve--assumed to have a 1/N dependent bias term. Thus,
denoting the value of Ak for N patients as AN, we easily derive the expression A, = NA,-(N-I)AN_1, where the
overbar on AN. indicates that we are using the average of the N estimates of A,.I. The variance estimate is given
by the following formula:

N

(1);E (AN-1 ()-9
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The Fukunaga-Hayes technique estimates the asymptotic results from values at N and N/2 rather than at N and N-i.
In this technique both the normal and positive classes are arbitrarily divided into two groups, resulting in four
normal/positive pairings. It could also be referred to as a "group" jackknife, e7xcept that only four of the many
possible ways of grouping N things N/2 at a time are used. The IN bias dependence is also still assumed, yielding

A, = 2 AN-AN/ 2 .

The bootstrap technique takes the given data set as an estimate of the true probability distribution of the data.
Additional patients are then generated by selecting, with replacement, from this data pool. Thus up to NN different
data sets of size N may be generated. Of course N of these will simply have the same patient N times, and many
of them will only have members of one class. Bizarre as that may seem, the bootstrap technique has been found
to give remarkably good results for estimating the variance of the desired statistic:

M

B ! (AB(1  -AB)

where M is some large number (here 100) of data sets of size N drawn with replacement from the data pool. andAB
is the average of the A,(,, values.

RESULTS: Values of ROC area Ak and efficiency relative to the ideal observer were obtained for networks trained
on 200 separate realizations of N patients and tested on the 10,000 patient test set. Results for cases A and B are
shown in figure 2, along with data from reference I for the classical statistical decision function. The best neural
network results were for a single patch for each class for DYSTAL and for the simple perceptron architecture for
BP. The agreement among the three techniques is remarkable. Note that the classical method involves explicit
matrix inversion and therefore could not be carried out for very small numbers of patients, whereas the neural
network appeared to experience no difficulty even when network parameters (BP) were far underdetermined. We
believe that pseudoinverse techniques could be used to extend the domain of the classical method into this area as
well. Of course the variance for small numbers of patients becomes extremely large.
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Figure 2. ROC Area (left) and Efficiency (right) estimates as a function of number of patients.
2D Case A: dotted line - BP network, open circle - DYSTAL, open square - classical statistical
decision rule of reference 1. 3D Case P: solid line - BP, solid circle - DYSTAL, solid square -
classical result. The horizontal dotted lines are the asymptotic ideal results for each case.
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Figure 3 displays the performance of the two BP architectures for case B. It is noteworthy that the best performance
is obtained for quite small reductions in the error term, further reductions being associated with overtraining "to fit
the noise" and reduction in observer performance. The figure also illustrates how for the vastly underconstrained
training of the second network, the BP solution serendipitously converges to nearly the correct solution before
gradually degrading.
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Figure 3. ROC Area estimates as a function of training time (iterations) for the 3-1 node BP
network (solid curve) and the 3-10-1 network (dotted curve). Total sum of squares error (tss)
normalized to I for the "chance" observer (output = 0.5 for all input).

Results for highly correlated and anticorrelated features, cases C and D, were also calculated and found to follow
a similar pattern. The neural network results were somewhat better than the classical results (lower bias) for the
positive correlation case and worse for the negative correlations. It is noteworthy how much difference the sign of
the correlation makes, with the ideal observer results lying at A. = .85 and .98 respectively. This at first appears
very surprising; however, the relationship between the respective Gaussian clouds is very different in the two cases,
as shown in figure 4.

Figure 4. Representation of one standard deviation surface of Gaussian clouds for positive
correlation Case C (left) and negative correlation Case D (right). Ideal decision surface indicated
by dashed line.
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Figure 5. Left: One standard deviation surface for Gaussian clouds of 3D Case E. Ideal decision
surface indicated by dashed fine. Dotted line indicates plane perpendicular to line connecting cloud
centers. Right: Efficiency estimates as a function of number of patients. 2D Case A: dotted line -
BP network, open square - classical statistical result. 3D Case E: solid line - BP, interrupted line -
modified DYSTAL, solid square - classical result, solid circle - DYSTAL.

Figure 5 illustrates network performance when a very noisy feature is added to the first two "clean" ones. For this
case (E) the networks perform less well than the classical technique, and DYSTAL with our simple least squares
similarity measure appears to fail badly. BP is significantly depressed and does not give convincing evidence of
approaching the 2D result let alone surpassing it for the very modest gain envisaged by the ideal observer. An
indication of why DYSTAL is failing is given in the depiction of the Gaussian clouds for that case. Note that the
ideal observer decision surface is no longer nearly perpendicular to the line connecting the centers of the two clouds.
This difficulty is resolved by modifying the similarity measure by dividing each squared term by the estimated
variance for the respective feature. As shown in figure 5, with this modified similarity measure, DYSTAL's
performance is greatly enhanced.
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Figure 6. A, and its standard deviation for Case B. Left solid line - BP, open circle - jackknife
estimate, closed circle - Fukunaga-Hayes estimate. Right solid line - simulation results, open
circle - jackknife estimate, closed circle - bootstrap estimate.
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Figure 6 contrasts the performance of the jackknife and Fukunaga-Hayes techniques for elimination of the bias. Both
seem to give quite good results on average for even very small numbers of patients. The error bars for a single
realization, however, are quite large, especially for the jackknife technique. Both techniques are essentially
extrapolation techniques, and there is much more error involved in extrapolating from two points which are very
close together than from two widely separated points.

For the variance estimates from the jackknife and bootstrap methods a very similar situation exists. Both methods
on average give good results for the variance (or its square root as shown in figure 5); however, the single
measurement error in these estimates are very large. Once again, the jackknife gives a variation in the standard
deviation of a factor of 2 or more greater than that of the bootstrap technique.

SUMMARY: For simple detection tasks neural networks can give quite good performance, even in regimes for
which the classical decision function can't be calculated--and even when their weights and biases are severely
underconstrained by the available data. The addition of very noisy features is evidently detrimental to network
performance, however, more than for the classical methods.

Of the three statistical techniques studied here, the Fukunaga-Hayes method appeared to be superior to the jackknife
for estimating the value of Ak. Similarly, the bootstrap gave better results than the jackknife for estimating the
variance of A1. These appear to be promising methods for small sample bias elimination and variance estimation,
respectively.
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ABSTRACT

The sequence of actions that medical students performed while solving computer-based
problems in immunology were electronically captured and used to train artificial neural networks
for the rapid classification of subsequent students' strategies on these problems. Such networks
could categorize problem solutions of other students as successful or non-successful >85% of the
time. These same neural networks however, performed poorly when classifying experienced
immunologists' successful problem solutions, suggesting an ability to distinguish novice from
expert performances. These results indicate that appropriately trained neural networks can be
useful tools which, based on performance, can distinguish levels of expertise in a knowledge
domain and perhaps provide new evaluation opportunities in education and training

1. INTRODUCTION

Most medical and other educational curricula currently contain non-lecture learning
experiences which emphasize active, self-directed learning that are presented to the students in a
variety of small group and problem-solving formats1 ,2. In evaluation, however, the multiple-
choice question format often dominates and efforts to develop innovative learning experiences
have not always been paralleled by the development of comparable evaluation tools which more
closely mirror alternative forms of learning.

The IMMEX Project at UCLA has focused on developing electronic learning and
evaluation tools for revealing the strategies of students while engaged in problem-solving. We
have constructed computer-based problems in immunology, infectious disease, surgery and other
disciplines based on the general problem-solving paradigm of a starting condition, a goal
condition, and the resources to transit between these states 3,4 . We have started from the premise
that while it is relatively easy to determine whether or not students solve problems, it is more
difficult to evaluate student strategies during the problem-solving process, particularly when
large numbers of student perfon 'ances are being collected.

One source of this difficulty is the variability of problem-solving strategies. Such
strategies at the student and physician level can be very diverse. In our problem setting, in over
6,000 student problem performances, few (0.1-0.5%) of the students have employed the same
strategy to solve a problem. This variability presumably depends on the knowledge, the
representation of the problem and the experience of the problem solver. In the latter regard, it is
well documented that experts recognize features of problem situations that novices do not and
this results in a different process of understanding and search of the problem state5 .
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However, despite this strategic diversity at the individual student level, when the
performances of large numbers of students are viewed on a series of problems, subtle, more
general features can be associated with successful performance of any particular problem4 ,6 . We
have recently shown that artificial neural networks trained on a large number of student
performances can recognize these subtle features of problem solutions7, and can classify new
student performances as successful or non-successful -90% of the time. More importantly, the
use of this software approach can begin to reveal the learning processes of students in complex
domains.

In this study we wished to determine how artificial neural networks trained on novice
problem performances, which presumably consist of basic forward and backward chaining
strategies, would classify the performances of expert immunologists which presumably would be
more schema driven.

2. The IMMEX Problem-Solving Format

The approach is based on the cognitive principles of having a starting condition (i.e.
Case History), a goal condition (i.e., Diagnosis) and the access to the information (i.e. patient
laboratory tests) needed to transit these conditions 8. While this is a simple form of problem-
solving, it is also powerful in that it is applicable to a broad number of disciplines and
educational levels and can function as a useful prototype for other problem-solving situations.

Each problem starts with a patient history that contains sufficient information for the
generation of hypotheses regarding the possible immune defect involved. Students performing
these problems then may access additional information and laboratory tests from 50-70 different
menu items which can be used to verify/reject hypotheses. When they are confident of the
patient's immune defect a diagnosis can be made. The details of the software and its
implementation have been described in detail 6,9 .

3. Analysis of Pooled Student Performances by Search-path Mapping

During the problem-solving, a transaction database records the student's selection of
information, time, score, diagnosis, etc. This can be accessed by search-path mapping software
which displays each student's sequential requests for more information. Therefore, each
individual (Figure 1) or group (Figure 2) problem-solving performances may be reconstructed.
In reconstructing the problem-solving process the search-path mapping software displays
rectangles which represent the potential test selections available to the students and then lines
interconnect the sequence of tests selected. In determining the criteria for display, Structured
Query Language (SQL) queries are made to this database in the form "Select choices from tests
where case = "IMMUNOLOGY #23" and name="J1l" for an individual search-path map or
"Select choices from tests where case="IMMUNOLOGY #1" and solved=TRUE" for group
search-path maps. In response to these queries, lines connect the tests selected with the lines
originating from the upper left hand corner of the 'from' test and extending to the lower center of
the 'to' test. For group search-path maps, the thickness of the lines is proportional to the number
of students making that selection.

The search-path maps of groups of students who successfully solve problems reveal
elaborate patterns of test selections which are different for each problem.
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4. Construction and Training of Artificial Neural Networks with Student Performances

Multi-layer feed-forward artificial neural networks were trained to recognize these group
problem-solving patterns using over 400 performances of students who successfully solved one
or more of seven different problems. The training data for the backpropagation neural
networks 10 was obtained from individual student problem-solving performances which for the
most part were collected under examination conditions.

Mk Query/ Adew Lines

1 ILL- ... IE'IElu

.... .. .......... L

IMMEX::ANALYSIS Softwarem.

Individual search-path maps connect the sequence of tests chosen by a student while solving a problem.
'This student started the problem (lower left), selected T-Cell Proliferation as the frwst test, FACS TcR/CD3 as the
second test. etc. until the completion of the problem (DEFECT).

Figure 2 Group Search-path Map for

C63 Students Solving the CD3

Complex Problem. Group search-path
•tt, •I •maps display the test selections made

S• by all the students satisfyinga

particular query to the database, e.g.
whether or not a problem was solved.
In this analysis, the identity of the

i individual student is lost, but the

I pattern of what it means to correctly
solve a problem emerges. This pattern

Sis different for correct solutions for
each problem and forms the basis of the
neural network approach for analyzing

_ Low__6 students' successful and non-successful
solutions
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As students progress through the problems the sequence of their test selections is recorded in the
form of classifying characteristics. For instance, in Figure 1A, the classifying characteristics
would be "Start To T-Cell Proliferation", "T-Cell Proliferation To FACS TcR/CD3", "FACS
TcR/CD3 To TcR Alpha/Beta Chains" etc. All training data were drawn from the test selections
of students who successfully solved a problem, and these were obtained for each of seven
immunology case simulations. This process resulted in a total of 533 classifying characteristics.

INPUT HIDDEN OUTPUT

T CELL PRO TO IgG mRNA
Figure 3. Architecture of the

IgG mRNA TO IgM mnRNA Neural Network. The neural
network constructed consisted of

No K533 input neurons (one for each
0 & *KAP classifying characteristic), 40
o 0 hidden neurons, and seven case-
o o>0 MHC specific output neurons, which
o 0 were fully interconnected by
0 0 IL-2 weighted links; the momentum
0 N=20 was 0.9, the learning rate was 0.6,
o CD3 and the network was trained to a

N=533 0.005 sum of errors7

etc

During testing, an individual student's test selection is presented to the neural network and the
output weights collected. The output weights range from 0 (condition is absent) to I (condition
is present). This process is repeated for each test selection made by the student until the
completion of the problem, resulting in a series of output weights for each problem which can be
displayed as histograms. Test selections made by a student that are not represented in the 533
classifying characteristics are skipped by the analysis. Successful performances are indicated by
high output weights for the relevant problem and low for the other problems. Unsuccessful, and
false negative performances are indicated by low output weights across all problems. The
correspondence between the search-path mapping and the output weights from the artificial
neural network trained to recognize successful problem-solving performances across 7 problems
is shown in Figure 4.
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Figure 4. Comparison of the outputs of IMMEX::ANALYSIS search-path mapping and IMMEX::NEURAL
which provides an interpretation of the analysis output. These figures follow the progression of one student as
tests were selected during problem-solving. The lines connecting the boxes show the sequence of the student's tests.
The histograms show the cumulative output weights returned from a trained neural network as each of these test
selections were presented to the network.

5. Artificial Neural Networks Trained wvith Successful Performances of UCLA Students
Poorly Predict the Performance of Experts, but Accurately Predict the Performance of
Other Students

Anonymous problem performances by experienced immunologists were collected over
a 3-day period at the 1993 American Association of Immunologists meeting. Requests for
additional information by workshop attendees indicated that 76% held the title Assistant
Professor or higher and provides an indication of the level of expertise. During the workshop,
224 problem performances were collected. Forty-six of these performances were not completed
and these data were not further analyzed. Of completed problems, there were 123 performances
resulting in correct solutions and 55 instances in which the diagnosis was missed. This
frequency of solutions (69%) was slightly higher than that of UCLA second-year medical
students under testing conditions (3021450 or 67%) this past year. Of these 178 immunologists'
performances, 87 were on problems in which student performances were used to train artificial
neural networks. These performances constitute the experimental data for this study.
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CONTINGENCY TABLES

STUDENTS'
PERFORMANCE

TRUE + TRUE -
+ 46 2

NETWORK
CLASSIFICATION

17 47

IMMUNOLOGISTS'
PERFORMANCE

TRUE + TRUE -

+ 23 1
NETWORK

CLASSIFICATION
43 20

Table 1. Coatingency Tables of Student and Immunologists Problem Performances as Classified by Student-
Trained Artificial Neural Network Classification of These Performances.

The sensitivity for the individual problems performed by the immunologists was: Bare Lymphocyte
Syndrome (27%), CD3 Complex Deficiency (13%), Beta-2 Microglobulin Defect (25%), Recombinase Defect
(27%), and IL-2 Promoter Defect (75%). Varying the neural network output weight decision threshold values
between 0.45 and 0.65 for the true positive performances did not produce significant differences in the above
classifications. The student and immunologist distribution of true positive and false negative performances were

significantly different (Pearson X2 = 18.46 P<0.0005).

True negative performances of both the students (47/49) and immunologists (20/21) were
accurately detected by the artificial neural networks trained with student performances (Table 1).
The neural networks identified 33/44 (75%) true positive performances of second-year UCLA
medical students and 18/26 (69%) true positive performances of first-year George Washington
University medical students, all of which were obtained under testing conditions. Thus
subsequent student performances when presented to the trained neural networks, were correctly
classified as having solved or not solved a particular problem >85% of the time.

In contrast, only 23/66 (35%) of the immunologists' true positive performances were
identified by the student trained neural networks. These results indicate that the sequence of
actions employed by immunologists in solving the same problems are not well encapsulated by
neural networks trained on students' successful problem performances.

6. CONCLUSIONS

These studies indicate that appropriately trained artificial neural networks may be useful
educational tools which can be used not only for routine (and rapid) evaluation of student
problem-solving performances, but also which can be used to discriminate between novice and
expert performances.

This introduces the concept of performance-based evaluation for complex problem-
solving situations and suggests approaches which can encompass many disciplines, capitalizing
upon the advances in technology and information science. As one future extension, with
acquisition of a sufficient number of immunologists' problem performances it may be possible to
train artificial neural networks based on these experts' performances. In an evaluation setting
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then, student "passing" would consist not only of solving a series of problems, but by solving
them with a strategy better represented in the expert neural network rather than the novice-trained
neural network.
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ABSTRACT

A new class of filters called neural filters and hybrid neural networks (NFHNN) is proposed for
the restoration of of 1remmstrahlung radiation from pure beta emitters of different beta particle
energies ( Y-90, P-32), as required for quantitative measurement and in-vivo management of
antibody therapy. The neural filtering (NF) can perform optimal noise removal and the hybrid
neural networks (HNN) are well suited to solve the image restoration schemes in nuclear
medicine. Order statistic neural network hybrid filters (OSNNH) is a special case of the
NFHNN. Its restoration performance is quantitatively evaluated by investigating the relationship
between the externally measured counts from sources of P-32 and Y-90 at various depths in
water. Evaluation of phantom and patient filtered images demonstrates that the proposed new
class of filters avoids ring effects observed in other restoration filters for both radionucides.

L INTRODUCTION

The use of HNN's for gamma camera imae restoration is proposed topartly compensate for
image degradation due to photon scattering and photon penetration effects through the cam=ra
collimator. The particular clinical model involved is the quantitative -masurement of
lremmsthlung radiation from pure beta emitters ( Y-90, P-32), as required for the in-vivo
Management of antibody therapy. The restoration problem of bremstrahlung detection is
particularly difficult because of: (a) the enhanced scatter and penetration effects due the wide
energy range of brematrablung photons and (b) the poor conversion efficiency for beta emitters
that degrades signal to noise ratio of the images. Image restoration filters have been proposed for
single phoon detection to partly compensate for image degradation and have met with limited
success. Methods proposed have included the Wiener filter, the Metz filter and constrained
Least Squares filter that generally require an a priori knowledge of the system' s response
futncdon and an estimate of the noise power spectrum [1]. These filters generally involve two
componens, a low pass filter for noise suppression and an inverse filter for deconvolution.
These filters have had limited success because the inverse operation often makes the restoration
an ill conditioned, unstable, or singular problem. When the Wiener filter is applied to
bremastrahlung images, the combined influence of the degraded system response and the high
noise content introduces greater instability in the deconvolution that results in ringing artifacts
and an over-compensation of the system response function [1, 21. Alternative methods for image
restoration are therefore necessary for imaging beta emitters using a gamma camera.
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H. THE ALGORITHM OF NEURAL FILTERS AND HYBRID NEURAL NETWORKS

The architecture of the NFHNN is based on the motivation that NF can perform optimal
noise removal and a HNN can be used for deconvolution. Virtually all image restoration
schemes can be posed as the solution to some particular optimization problem. Hopfield neural
network is often used to solve the problem [2-51. The difficulty in using Hopfield neural network
for this purpose is that the iteration procedure may often be trapped into a local minimum, which
usually corresponds to an invalid solution. Moreover, the values assigned to the parameters of
an energy function can greatly affect the convergence rate of the iteration. The hybrid neural
networks are better suited to solve the optimization problem [7].

In nuclear medicine, the blurred image Y can be considered as the sum of the operation
of the 2-dimensional blur matrix H on the object X and the statistical noise n:

Y = HX+n (1)

where Y, X, and n are lexicographically ordered 1-dimensional vectors and H is the matrix
resulting from the point spread function samples. In the ideal case of zero noise (n=O), the
problem of image restoration corresponds to the existence and uniqueness of an inverse
transformation. Both existence and uniqueness are important. If the inverse transformation does
not exist, then there is no mathematical basis for asserting that X can be exactly recovered from
Y. Problems for which there is no inverse transformation, i.e., i"' does not exist, are said to be
singular. On the other hand, Ir' may exist but not be unique; i.e., there may be more than one
MIf. Finally, even if /W exists and is unique, it may be ill-conditioned, by which it means that
a trivial perturbation in Y can produce nontrivial perturbation in X. That is, there exists e, which
can be made arbitrarily small such that

if'( H+a }=X+ 15 (2)

when 5>>e, P is not arbitrarily small and is not negligible. Thus, an ill-conditioned problem is
one in which inherent data perturbations can result in undesirable effects in the solution by
inverse transformation. Note that image restoration problems of this class are at best and are
frequently singular. However, gamma camera images, and bremsstrahlung images in particular,
are contaminated by various kinds of noise processes. The presence of noise means that a
"proper" solution for the object distribution must be selected from within an infinite family of
candidate solutions. In reality, there is no proper solution but only solutions derived from various
combinations of available a priori information and desired performance criteria. One of the most
essential problems is the fact that image restoration is an rn-conditioned problem at best and a
singular problem at worst. In the proposed NFHNN filter, the neural filter removes the noise
before the HNN performs image restoration. The hybrid neural networks are then well suited to
solve the optimization problem [7]
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A. Neural Filters

The neural filter, shown in Fig. 1, is defined as follows:

M-i
H(U)Di G(WMXm-Wo ) (3)

M-I

where x' is the input array on threshold level m defined as follows:

1, ifXf >1
Xi = TOW. = (4)

0, otherwise

for m=l,2, "'" , M-1.

W' and W0' are the weight matrix and the threshold of the neuron on threshold level m,
respectively. Wn is defined as

Wm1 W- 2 ... W- N

= (5)

W40 -M t .W rN

Although the neuron function o(.) could be any function, we win focus on a sigrmoidal function
in this work. According to the mapping property of a neural network with sigmoidal functions
[6], a sigmoidal function can approximate all filters, such as weighted order statistic (WOS)
filters, stack filters and linear FIR filters. One intuitive explanation for this is that for large
incoming weights, the sigmoidal function is at "high gain" state and can approximate the unit
step function. For small weights, by using a sigmoidal function, one can get an approximation
to linear functions. Any neural filter with a sigmoidal function which has the same neuron with
linear activation function on each threshold level reduces to a linear FIR filters. The adaptive
neural filtering under the mean absolut error (MAE) criterion and under the least mean square
(LMS) criterion, the adaptive LMS generalized stack filtering algorithm and the adaptive LMS
generalized weighted order statistic filtering algorithm were derived elsewhere [6]. The smoothing
order statistic nonlinear filtering, as an example of neural filters, was succesfuily used in [2].
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B. Hybrid Neural Networks

Given the view of the infinite family of solutions that can be generated from a noisy, ill-
conditioned solution, the selection of a specific solution from the family must be guided by some
criterion or a set of criteria. Analysis and numerical formulation of a criterion is a topic discussed
in optimization theory. Virtually all image restoration schemes can be posed as the solution to
some particular optimization problem. In the hybrid neural network model, shown in Fig.2, the
optimization problem which minimizes a discrete objective function is converted into an
optimization problem which minimizes an energy function of the network. The HNN presented
here contains two parts: one is a Goal network a&. another one is a Constraint network. The
Constraint network models the constraints of an optimization problem and computes the updating
value of each neuron such that the energy function monotonically converges to satisfy all
constraints of the problem. The Goal network points out the direction of convergence for finding
an optimal value for the cost criteria. These two subnets ensure that the hybrid neural network
finds a feasible as well as an optimal solution. Based on the model of the hybrid neural network,
the image restoration problem in nuclear medicine can be considered as

Mnimize XTRX (6)
Subject to (Y - HX)T(Y - HX)I < (7)

where R is a linear operator defined in [2]. The goal network corresponds to Eq.(6) and the
constraint network corresponds to Eq.(7), which is also a hybrid restoration process that is both
a deterministic and stochastic optimization problem. The structure of the neural network given
in [2] is a sub-section of the hybrid neural networks.

II. EXPERIMENTAL RESULTS

Volume sources of P-32 and Y-90, each 3.75 cm diameter, were imaged at 10 cm depth
in a water tank, with a 5 cm air gap between the tank and the collimated gamma camera. The
two beta particle energies of P-32 and Y-90 generate a bremsstrahlung energy spectrum with
different photon energy ranges and varying degrees of image degradation and image noise level
as shown in Figure 3 (a) and (d), respectively. Y-90 shows greater image degradation due to its
higher energy beta particles, and a smaller Signal-To-Noise ratio due to a lower level of activity
in the source..

The restored images of P-32 and Y-90 are shown in Figure 3 (c) and (f), respectively.
Stable restoration was obtained for both beta emitters with improvement in resolution indices for
the volume source but the extent of restoration was dependent upon both the SNR and the
radionuclide, as ebserved for the weaker Y-90 source. Alternative filters such as the Metz or
Weiner filters are unstable for highly degraded images such as those found with bremsstmlihung
imaging [2]. Further work using Y-90 sources is planned.
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IV. CONCLUSIONS

The preliminary data suggests that the NFHNN may be potentially useful for quantitative
measuremenS of beta emitters proposed for antibody therapy. More experimental data are
required to determine differences in the effective linear attenuation coefficient for both isotopes
and the stability of segmentation with different source strengths and depths in water [2]. The
NFHNN should also prove to be useful for imaging of single photon emitters at high photon
energy to compensate for the image degradation due to photon scattering or photon penetration
through the collimators of the detectors used.
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Abstract-Functional Electrical Stimulation (FES) is efficient for the restoration of the paralyzed muscu-
lar faculties. For the fine control, however, stimulation parameters should be adjusted for each electrode-
muscular system because of their big variance in characteristics. This paper, focussing on these problems,
shows an artificial neural network approach for this type of problem.

1. Introduction

Functional Electrical Stimulation (FES) is an efficient and powerful method for the restoration of the motor
functions of the paralyzed upper and lower extremities, and is also widely used in several fields, for example,
the restoration of the motor function of the upper extremity function (which has not been realized by usual
medical method) of the quadriplegic patient [1] [2]. Percutaneous electrode was used to localize specific
electrical stimulation to individual muscles. There were serious problems. Typical one is that there is no
effective general solution for obtaining suitable stimulation patterns for multi-channel neuromuscular system
because of the big variance in the input(stimulation)-output(response) characteristics. We could make good
clinical success in the FES application by using an approximation method based on the measured multi-
channel electromyography (EMG signals) of the normal volunteers [11 [2]. But this was not a fundamental
solution for this problem.

In this paper, another basic approach for fine control of muscle system by artificial neural networks will
be discussed as a promising new strategy toward further improvement of the multi-channel FES system.

The characteristics of neuromuscular system are non-linear and have big variance. Actual muscle is the
congregation of multiple motor units, and the maximum tension and the threshold of each motor unit are
variant. How can we control each motor unit ?

Thoma et al. reported on the method to stimulate fascicles selectively by using the "epineural fixa-
tion"(1987) [3]. Grill and Mortimer reported on the selective stimulation for the medial gastrocnemius and
lateral gastrocnemius/soleus muscles by using a single multiple contact nerve cuff electrode(1993) [4]. So
we assume here it is able to activate motor units selectively. On such assumption, we think that the control
object constituted of the elements which have big variance had better be controlled by the neural network
constituted of many neurons. One of such basic neural network structure may be CMAC (Cerebellar Model
Arithmetic Computer) which was proposed by Albus(1981) [5]. In this paper, we apply it to the control
model of the neuromuscular system with big variance. This neural network is trained so that the desired ten-
sion is observed at the output of muscle which is constituted of motor units with big variance. In this training
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we introduce a new cost function to maximize the number of recruited motor units. By this maximization,
small muscle tension can be generated by small motor units which are considered to have comparatively
large controllabilities and fatigue resistant characteristics.

2. Control of Object Constituted of Multiple Motor Units

2.1 Model and Learning Algorithm
Figure I is the simulated model with the control object constituted of the elements which have big variance.
Here, G, P, M units are the first layer, the second layer and the motor units, respectively. The input is the
desired tension Td (0 '-- Td '4 100). The number of G cell is 100, and the input-output characteristics of
j-th G cell Gj (0 I-- j =-- 99) is defined as

YGý = € (0. 1 (Td - j)) (1)

where O(x) = min(max(x, 0), 1) (see Fig. 2).
The number of P cell is 100, and the input-output characteristics are sigmoid type.
The number of the motor unit M is 100, and the input-output characteristics of the k-th motor unit Mk

(0 'at k -- 99) are
YMk = Tmaxk fM(YPk - O) (2)

where YMk is the output of the k-th motor unit, Tmaxk is the maximum tension of the k-th motor unit
(0.3 4 Tmaxk - 3.0), Ok is the threshold of the k-th motor unit (0.4 ;Ok 0 0.6), and fM(x) = 1/1 + exp(-30x)
(see Fig. 3).

On the other hand, we defined as follows the cost function E to be reduced.

E = E, + rE 2  (3)
1

E, (T - Td)2 (4)
2

99

E 2  -- YPi (5)
imo

where r is the positive constant, and T = E99 YMk. To reduce E, means to reduce the error between input
and output. To reduce E 2 means to increase the total quantity of electrical stimulation, i.e., to maximize the
number of recruited motor units.

We used the back-propagation algorithm for the learning of the network assuming that the characteristics
of all electrode-motor unit pairs had already been measured.

G P M

":t 1.0

Td T "

0 0 j 100

Input (Td)

Figure 1. Model with the control object Figure 2. Input-output characteristics of j-
constituted of the elements which have big th G cell.
variance.
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Figure 4. Input-output characteristics after

Figure 3. Input-output characteristics of learning for each value of u ra.
the motor units(M). The characteristics of
the 10 motor units are shown in figure.

2.2 Simulation Result

Figure 4 and 5 are the simulation results for each value of r. Fig. 4 shows the input-output characteristics
after learning, and Fig. 5 shows the firing pattern of motor units for each input Td.

It can be seen from Fig. 4 that the muscle output T equals to the desired tension Td except for the case

of r = 1 and small Td. On the other hand, it can be seen from Fig. 5 that in case of r = 1, motor unit with
small maximum tension tend to fire mainly for small desired tension (this can be partially observed also in
the case for r = 0). The reason is that if only a few motor units with large maximum tension were recruited,

the input-output characteristics would result in sigmoid type.

3.0 3.0 - 3.0 :

2.0 2.0 ....... 2.0 .....--

S.......":........ .". ... : . . . ........ " .........j E--
1.0 1.0 ............. 1.0

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Input (Td) Input (Td) Input (Td)

(a) Before learning. (b) After learning at r = 0. (c) After learning at r = 1.

Figure 5. Firing pattern of motor units. Solid line shows the area of input (Td) that caused the motor unit
activated above 80% of its Tmax. (a)Before learning. The value of the weight is random value between
0.0 and 1.0. (b),(c)After learning. In figure, a line indicate that a motor unit fire for each input Td.
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3. Conclusion
In this paper, we assumed to be able to activate motor units selectively, and proposed a neural network ap-
proach for efficient control of the neuromuscular system with big variance toward further improvement of
the FES. We considered the static motor control, and applied the idea of CMAC to this system. We used
the error between input and output and the quantity of electrical stimulation as the cost function, and could
activate mainly the motor units with small maximum tension. But there will be another cost function appli-
cable. Besides, to use the back-propagation algorithm for the learning of the neural network, we assumed
that we have known the characteristics of all motor units. So in case of using our approach, it is necessary
to examine the characteristics of motor units by local stimulation. In actual muscle control,muscle fatigue
and tonic/phasic characteristics are also important, which were neglected in this study. These problems on
muscle dynamics should be further studied.
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Abstract

Neural networks show promise in prediction tasks where a time-history of one
nr more parameters is used to predict future measurements of a system. Prediction
tasks arise in biomedical engineering as well as domains such as systems control,
signal processing, and financial analysis. Neural networks allow close matching of
system properties without the requirement to know the underlying physical and
mathematical equations that govern the system to be predicted. Dynamic networks
with time-delays and recurrent loops are especially appropriate for time-series pre-
dictions. We have researched applications and properties of an adaptive time-delay
neural network (ATNN) with an adaptation scheme for both weights and inter-
nal time-delays as well as configurations with recurrent loops from output to input
units. The high performance of this network on sample problems indicates that it
is appropriate and promising for biomedical applications.

1 Introduction

Time-series prediction is a task that is highly applicable to a variety of problems in
biomedical engineering. Situations where one or more parameters are monitored over
a period of time are common, and typically a prediction of the future values of those
parameters is highly useful. For example, patient monitoring is done to alert doctors
of changes in measured parameters such measurements associated with breathing, brain
activity, or heart beat. A cogent prediction paradigm could potentially alert doctors
that a dangerous situation is about to arise before the actual measured parameters show
the danger signs explicitly. A neural network that can detect a combination of shifts in
parameters that are not detectable by eye would be highly useful in such a situation.

We have selected a neural network for time-series prediction that has a configuration
and learning rule that is highly appropriate to prediction problems. This neural network,
called the Adaptive Time-Delay Neural Network (ATNN), has a feed-forward architecture
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with time-delays on its interconnections [1-31. The time-delays can have arbitrary values
and the lengths of the delays are adapted during training. The weights are also adapted
according to a schedule that alternates changes in weights with changes in time-delays so
as to learn the prediction problem from a time history of data.

We have tested this neural network configuration on a set of alternative data types,
including a chaotic series and a smooth trajectory. In some cases the network was config-
ured in a feed-forward manner, with the output being a function solely of a time-history
of data. In other cases, a recurrent connection was allowed from the output units to the
input units, so that a past history of the network's own predictions was used in future
prediction scenarios. Prediction performance was high on both types of problems.

We conclude that the ATNN is a promising approach to time-series prediction prob-
lems, including those that occur in biomedical engineering. With its ability to adapt time
delays, information from particular points in the past can be brought to bear on a pre-
diction of future scenarios. Prediction of parameters that are monitored in patients can
be of use in clinical situations as well as in researching and understanding the complexity
of the underlying physiological subsystems.
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ABSTRACT

We survey and classify 386 articles published since the beginning of 1991 on artificial
neural networks in the biomedical sciences. Many of the studies address clinical problems;
others address issues in laboratory research, particularly in neurophysiological modeling.
Among the clinical subspecialties, oncology, cardiology, respiratory medicine, infectious
diseases, neurology, and psychology are well-represented. Applications to medical
imaging include analysis of the images themselves and analysis of descriptors derived from
those images. Likewise, applications to electroencephalograms (EEGs) and
electrocardiograms (EKGs) sometimes take as input the signal itself, sometimes derived
parameters. The molecular biological applications include numerous methods for
predicting recognition motifs in nucleic acids and secondary or tertiary structures in
proteins. The diversity is impressive, but we are still groping for guidelines that can help
us decide when an artificial neural network is really the best available technology for the
problem at hand.

INTRODUCTION

In the last few years, the literature on artificial neural networks in biomedical science has literally
exploded. To survey that literature, we did a combination of keyword and mesh heading searches
in Index Medicus and in the UnCover database of the Colorado Alliance of Research Libraries
(CARL Systems, Inc., Denver, CO). The resulting databases were consolidated in a library under
Endnote Plus (Niles and Associates, Inc., Berkeley, CA). Extraneous references were deleted to
arrive at a final compilation of 386 articles. Not captured by this approach are books and many
meeting publications (including those from WCNN). A classification scheme was developed
organically in Excel spread-sheet form as we went through the abstracts and/or publications.
Then, to achieve uniformity in classification between entries examined at the beginning and end of
the process, we went through them all a second time. Table 1 shows the first and last parts of the
final working spread-sheet. The categories we generated have several characteristics worth noting:

(1) They are grouped thematically;
(2) They are not mutually exclusive;
(3) They are highly subjective.
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RESULTS AND DISCUSSION

This is a polyglot literature -- written in mixtures of medical jargon, computer-speak, cognitive
theory, and various other dialects. Included are occasional dollops of psychobabble, neurobabble,
and sociobabble. Contributions runs the gamut from the highly sophisticated and innovative to
those that represent little more than classroom learning exercises that somehow found their way
into print. Each biomedical subspecialty seems to be entitled to one editorial that asks the rhetorical
question "What are neural networks?" followed up by a full-length paper that answers the question
in tutorial form. We count 25 contributions that seriously attempt to compare the outcome of
neural network analysis with that from one or more statistical methods. There are 29 that, in our
subjective opinion, develop innovative neural network architectures, learning strategies, or
statistical analyses.

Table 2 lists some totals for overall categories. Given the origins and continued associations of the
field, it comes as no surprise that almost half of the publications (176) relate to the neurosciences.
Of those, 32 focus on clinical neurology, and 141 involve neurophysiological modeling. (In the
latter category are some that simply invoke connectionist paradigms; these could have been omitted
from the review if we had taken a strict-constructionist view of what constitutes an artificial neural
network.) Forty publications relate to cancer and 40 to cardiovascular disease but, astoundingly,
only I to AIDS. In all, 169 involve clinical aims broadly construed; of those, 108 are based on
actual clinical data.

Table 2. Highlights of a classification of 386 publications since the beginning of 1991 on
artificial neural networks in the biomedical sciences. Categories are not mutually exclusive.

Oncology 40 Clinically-oriented 169
Cardiology (including vascular) 40 Using clinical data 108
Respiratory medicine 12 Cytology, pathology, clinical lab 54
Infectious diseases 5 Imaging (MRI, CT, ultrasound, etc.) 44
Clinical neurology 32 Protein structure analysis 32
Psychology 28 Nucleic acid sequence analysis 9
Cognitive sciences 22 QSAR studies 7
Neurosciences (as models) 141 EEG analysis 12

EKG analysis 10

Abbreviations: MRI, magnetic resonance imaging; CT, computerized tomography; QSAR,
quantitative structure-activity relationship (among small chemical compounds); EEG, electro-
encephalogram; EKG, electrocardiogram.

Applications in molecular biology are booming: 32 studies use artificial neural networks to predict
protein secondary or tertiary structure; 9 predict nucleic acid sequence motifs or secondary
structures. Molecular biology is an arena in which the networks appear quite often to outpace the
competing methodologies tried. In some of the 44 publications on medical imaging, networks
process the images themselves; in others, descriptors of the images constitute the input. Similarly,
the 12 studies on EEG analysis and 10 on EKG analysis are divided between those in which
networks analyze the tracings and those in which the analyses are done on derivative quantities.

A loaded question -- that will not be answered here: "In how many of these studies were neural
networks used to address biological problems, and in how many were biomedical problems used
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to develop or demonstrate neural networks?" And linked to that: "In how many studies did neural
networks achieve better results than could be achieved by other statistical techniques (linear, non-
linear, or non-parametric)." In our own research, we often find ourselves asking the latter
question.
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Abstract
An Artificial Neural Network was developed to predict breast cancer

from mammographic findings. Radiologists read the mammograms and
filled out a list of eight findings. These findings were encoded as features
for an Artificial Neural Network (ANN). Results from biopsy were taken as
truth in the diagnosis of malignancy. The ANN was trained on a set of
patient records and was tested on a set for which the radiologists'
diagnosis was indeterminate. Performance for the network was evaluated
in terms of sensitivity and specificity over a range of decision thresholds
and was expressed as an ROC curve. The trained network was evaluated
on a subset of patients for which the radiologists' diagnosis was
indeterminate. With an optimal threshold, the neural network performed
with a diagnostic accuracy of 0.84. This performance suggests that an
artificial neural network may be used as a diagnostic aid for prediction of
breast cancer.

Introduction
Breast cancer is a serious health problem with an estimated 182,000

new cases diagnosed in the US this year. An estimated 46,000 women will
die from this disease in 19931. Mammography remains the most sensitive
technique for early detection of breast cancer. While mammography alone
is a sensitive test, a significant fraction of those patients referred to biopsy
do not have a malignancy. While specific, biopsy is an invasive, costly, and
emotionally stressful procedure. In an effort to reduce the number of
benign cases which are sent to biopsy, we have investigated an artificial
intelligence technique to predict the outcome of biopsy from radiographic
findings.

A variety of medical tasks have been successfully performed using
such networks including analysis of EKG patterns 2 , decision-making in
pathology 3 , texture analysis in ultrasound 4 , lesion detection in SPECT
images 5 , image boundary detection6 , differential diagnosis from chest
radiographs 7, 8, prediction of pulmonary embolism 9' 10, breast cancer
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analysis' 1 , and decision-making in mammography1 2 . Here we presenz an
ANN which has been trained to predict breast malignancy from
mammographic findings for indeterminate (difficult) cases.

MATERIALS AND METHODS
The ANN for malignancy prediction was implemented as a

backpropagation architecture with one hidden layer and a sigmoid
activation function. Input feature values were the radiographic findings
assigned by the radiologists. These findings were assigned numerical
values as described below. The network was trained to predict biopsy
results.
Training

The network was trained using a backpropagation supervised
training algorithm. The training set included examples which represented
the full range of possible inputs so that the network will correctly classify
any new input set.
Case Selection

The training and testing sets were selected from mammograms with
corresponding biopsies. The pool of cases consisted of 203 cases (62
malignant, 141 benign) randomly selected from those examinations which
were verified by surgical biopsy during the interval between January
1991 through May 1992. Craniocaudal, mediolateral oblique, and
(optional) magnification views had been obtained by x-ray screen-film
technique. Radiologists read the films and entered the radiographic
findings on forms. Malignant or benign outcome from surgical biopsy was
also recorded.
Defining the Features List

The checklist findings entry form consisted of a list of eight
radiographic features. Numerical values were assigned to these features
such that a radiographic finding which was known to have strong
correlation with malignancy was given a high numerical value. In
addition, the radiologist assigned an overall impression of malignancy on a
scale from one to five (l=benign; 2=probably benign; 3=indeterminate;
4=probably malignant; 5=malignant).
Constructing the Neural Network

A backpropagation neural network (fig. 1) with one hidden layer was
created for the classification task.
The input layer consisted of 8 nodes which represented the eight
(numerically ordered) radiographic features from the data entry form
(excluding the overall radiological impression): mass size, mass margin,
asymmetric density, architectural distortion, calcification number,
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calcification morphology, calcification density, and calcification distribution.
INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

mass size
mass margin

asymmetric density
architectural dist. diagnostic

calcification # outcome
caic. morphology

calc. density
calc. distribution

Fig. 1 Architecture of neural network for predicting biopsy results from
radiographic findings.

The hidden layer consisted of 16 nodes. The number of hidden nodes was
chosen by trial and error from the range between 5 and 25 nodes. The
output layer consisted of a single node representing diagnostic outcome;
0.0 for benign and 1.0 for malignant. After a series of trials the training
parameters were optimized: number of nodes in the hidden layer=16,
learning coefficient=0.5, momentum coefficient=0.4, and training
interval=300 iterations. The network was implemented on a desktop
computer (Macintosh Quadra 950: Apple Computer Inc., Cupertino Ca)
using commercial software (Neural Ware Inc., Pittsburgh PA).
Training and Testing the Network

The performance of the network for indeterminate cases was
examined. First, a testing set of 32 difficult cases that the radiologist had
called "indeterminate" (25 actual benign, 7 malignant) was selected from
the original 203 cases. Next, the network was trained on a set with equal
population of benign and malignant cases (55 malignant; 55 benign). This
training set was sampled from the 171 remaining cases (203 total - 32
testing) by using all 55 of the malignant cases plus 55 randomly selected
benign cases. The training was "supervised"; for each case the network
was provided with both the input of radiographic findings and the
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corresponding biopsy diagnosis. For training, the value of the output node
was 0.0 if the biopsy pathology was benign and 1.0 if the result was
malignant. The network was presented with the testing set after 300
iterations of training and produced a predictive value for malignancy
between 0.0 and 1.0. The performance of the network was evaluated by
ROC analysis.

Results
A histogram for the trained network is shown in fig. 2 for the 32
indeterminate cases only. All of these cases were sent to biopsy.

Neural Network Output
1 2 1 1 1 1 1 1 1 1

1 0 ............................................................•6 bi •; •..............................................
M malignant by biopsy

0[M benign by biopsy..

o 8 ........................................... .......... .....P .....................................................

Ca

0 ................................................ .............. ............................... .

.... ................ ..... ................................

oz 4t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output from neural network

Fig. 2. Histogram for the output values of the trained network for the
indeterminate category.

An ROC curve for the performance of the trained network on the
indeterminate cases shows good performance for the ANN (fig. 3) with an
ROC area index of 0.86.
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Neural Network Performance
for Indeterminate Cases

0.8-

0
I-LiO 6

U- 0.6

A =0.860 0.4 z
C-0_

0.2

0
0 0.2 0.4 0.6 0.8 1

False Positive Fraction
Fig. 3 Performance of network for the indeterminate category.

Discussion
The radiologists' estimate of probability for malignancy determines

the recommendation of biopsy for a patient. Indeterminate lesions are
sent to biopsy depending on the presence of other patient factors such as
previous history of breast cancer or positive family history. To use the
results from a neural network, a decision threshold must be set. In breast
cancer prediction, The cost of a false negative prediction is much larger
than the cost of a false negative. With a threshold of 0.6, this network
would have sent all 7 of the malignant cases to biopsy but only 5 of the 25
benign cases (Sensitivity = 1.0, Specificity = 0.80). With this optimal
threshold, the neural network performed with a diagnostic accuracy of
0.84. It is important to note that these indeterminate cases are the very
difficult cases. This difficulty adds to the significance of the network's high

13accuracy
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Our study suggests that numerical decision-making techniques such
as artificial neural networks may have a useful role in improving the
accuracy and consistency of medical diagnosis.
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ABSTRACT
Neural network recognition of mammographic lesions are studied. Digitized
mammograms containing circumscribed and stellate lesions are used for training an
ART II network. Texture quantification via fractal analysis method provides a data
representation for lesion detection and classification enhancement.

Introduction
The primary of goal of any radiological service is to process cases in the most accurate and efficient way.
Most types of cases in radiology are difficult to automate due to the usual problems associated with
machine vision: translation-rotation invariance, inconsistent image brightness and inconsistent quality of
radiographs. Mammography provides a class of case which can take a board certified radiologist 15-20
minutes to arrive at a diagnosis from viewing the six radiographs associated with each case. The cost,
however, is fixed and the task tedious. Any aid that provides lesion detection or recognition would be a
asset in a clinical setting. From the machine vision standpoint, mammography provides some positive
points by having high quality x-rays and the multiplicity of views. Mammography provides a tractable,
self-contained problem in that other medical aspects of the subject do not affect the differential diagnosis,
only the choice of treatment. Mammographic surveys require three radiographs at different angles on both
sides. These six views are inspected and cross-correlated for possible lesions. When a particular type of
lesion is hypothesized, other radiographic indicators are sought to determine if the lesion is benign or
malignant. These indicators may not be on the same radiograph or at the same scale as the lesion. A
frequent indicator of malignancy are micro-calcifications. These are often hidden in the "noise" of the
overlying tissue or in lesions themselves and by their nature require magnification to ascertain their
cluster density. This search for micro-calcifications and their evaluation slows the diagnostic process. The
neural network approach to micro-calcification classification will be addressed elsewhere.

Previous work [1] [2] [3] has demonstrated recognition and texture quantification of mammographic
lesions of both the benign and malignant types. In [2] a texture quantification scheme was implemented
using ftctal analysis. In [3] ART II was used to recognize gray scale images of individual lesions. It's
limitation was the collapsing of categories for types of lobular lesions. Specifically, lobular lesions of the
circumscribed and uncircumscribed type were place in the same category. This limitation is overcome
here by the inclusion of the symmetric adaptive thresholding scheme of Ryan and Winter to the F2
activity equation of ART 11. In addition, fractal analysis is used with ART II for detection and
classification of lesions. The texture of a lesion is often proportional to the malignancy. Here, the texture
is quantified by the fractal dimension.
The possible classifications of breast masses are numerous, the most common being abscesses, duct
ectasia, fat necrosis and fibrocystic disease such as epithelial cysts; adenosis of various types, intralobular
or extralobular fibrosis and tumors. Mammographic lesions fall into several basic categories that are used
in this study: lobular and stellate. These two categories occur in a range of sizes and shapes and must be
recognized in a variety of overlying parenchymal structure. However, they are sufficiently consistent in
shape, density and scale as to provide a trackable problem for first steps in neural classification of breast
morphology. It should be noted that much of the literature for autor .ted diagnosis of mammograms is
concerned with finding only the microcalcifications: the primary r itnographic signature of cancer. An
automated mammographic system will also need to classify all the morphological aspects of each case in
order to discount a possible differential diagnosis.
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The process of lesion detection proceeds by placing left and right mammograms side by side and scanning
downward, comparing left and right views. Both views are compared on a region by region basis with the
texture differences driving the saccade. Differences in the parenchyma (breast structure) must be
considered and often complicate the search for lesions. Figures 1 and 2 show a case with multiple lesions
on the left and the opposing null mammogram on the right. The texture quality of both views, including
the ductal pattern is often inconsistent with the presence of pathology. This basic method is used here. The
inspection system scans in the comparable region from both views and then computes the fractal
dimension and the fractal histogram. These distributions are inspected for significant differences and
provide the first indication for tagging as an area of interest. Areas of interest are then scanned by ART
I/SAT for lesion classification.

The lobular and stellate lesions considered here are typical in mammography. A class of lobular lesion is
the fibroadenoma which is homogeneous in density with a contour that is ovoid to lobular. A stellate
lesion may or may not have a central mass but conveys itself on the mammogram as have wisps in a radial
pattern from the central point of the lesion. Mammograms containing circumscribed and stellate lesions of
different scales were digitized for use in this study. Examples of cases are shown below with Figure 1
containing two stellate lesion in the upper half and a lobular lesion just below center. The defining
morphology is more apparent in the edge detection view of Figure 3.

Fig. 1 Left view showing stellate and lobular Fig. 2 Right view null.
lesions.

Fig 3. Edge detection of Fig 1 showing stellate Fig 4. Edge detection of Fig 2.
stellate wisps outside the two masses.
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Fractal Analysis
Neural networks often perform better with data representations other than the raw data. Radiological
assessments are often driven by textures that the radiologist has correlated through training to pathology.
This is also true of mammographic analysis where the texture of a structure is often indicative of
malignancy and a trigger to closer visual inspection. To investigate the ability of texture as a data
representation for an ART II network, a fractal analysis was performed.

Mandelbrot has developed a novel class of functions know as fractals whose dimension provides a good
estimate of surface roughness. A fractal is defined as a set for which the Hausdorff-Besicovich dimension
is strictly larger than the topological dimension. For example, a smooth surface has fractal dimension that
is equal to the topological dimension and a "hilly" surface has a fractal dimension >> topological
dimension. Fractal are an appropriate mathematical framework to study the nonuniform and complex
shapes found in radiographs. Pentland [41 presents findings that support that most natural surfaces are
spatially isotropic fractals and the intensity image of these surfaces are also fractals. In addition, Pentland
[4][5] has outlined a method of performing fractal analysis and discussed it as a path for texture analysis.
Lundahi et. al. [61 has applied a slightly different method of calculating the fractal dimension to images of
healing human calcaneous. Mammographic lesions exhibit varying degrees of texture which are an aid in
their classification. In addition, the mammographic diagnosis of malignancy is related to the edge
roughness of a lesion.

The method used for calculating the fractal dimension of digitized images is based upon the relationship
between the fractal dimension and the power spectral density. Pentland's technique consists of first fimding

the power spectral density (PSD) and then use the relation PSD = kfe -2H - to calculate D=2-H for the
fractal dimension. The power spectral density is calculated and a least squares fit of log(PSD) vs. log(f) is
performed to determine the slope H and the dimension D. Thus each location of the image is assigned a
dimension which is rotation invariant. The fractal dimension D=-2-H is then plotted as a 64 gray level
image. Pentland's approach also supplies a degree of scale invariance (8:1). This is supposed to provide a
texture scale-invariant representation of objects in the scene such as lesions. Hence, an ART 1/SAT could
perform lesion identification utilizing the fractal analysis data representation. To implement Pentland's
algorithm here the digitized mammograms (256x256x64) pixel images used here, the power spectral
density is calculated for 8x8 patches.

In addition to scale invariance, the fractal model provides texture edge detection. This occurs when the
dimension at a location is less the topological dimension. Hence, areas of uniform fractal dimension
represent uniform textures and appear as a constant a gray level in the fractal image. Hence, scenes
having subtle differences in their boundary, such as between a smooth desert and a lake, have a
recognizable edge in the fractal image.

For the mammogram problem fractal analysis was done in two parts. First on whole views containing
lobular and stellate lesions and then on magnified sections of the areas containing these lesions. The
fractal histogram of all cases were inspected and a pattern found. In the null lesion cases, the histogram
shifted to above dimension 2.0. When a single or multiple lesions were present the histogram centered
around dimension 2.0. This pattern held for multiple scales as indicated by Figures 5 and 6. Figure 5
concerns the histograms of the entire view for both lesion presence and null cases. Tmam10 contains a
large fibroadenoma while Tmaml2 contains smaller fibroadenoma. In contrasting the histograms of the
lesion and null cases it is seen that the undisturbed parenchymal of the null cases produce the higher
fractal dimensions. Hence, lesions in this study are simply displacing the more complex textures. Figure 6
displays the histogram for magnified areas of interest containing lesions and the same respective region in
the opposing mammogram. The clear differences suggest using the histogram as a lesion detector for
determining areas of interest for classification or for driving a saccade for finding other areas of interest.

1-135



250C 1 " l;i-t3 0•0 1• t .

200C - 250C -
200C

150C -
150C

1oo 0
100

50 50

200

10 1000

0oil- 250C-

1 1 Procto, o*me..Io•" 5  3 1 1 pc~,0 e OD.r,.,oe"5  3
Fig.5. Fractal histograms of whole mammograms with lesions and null conditions.

Fibn~od:lnomn. TI 0 Nulli TI 1

4C150C-

200

1000

1 1 012, 3 1 2 s0, 3

Fraactl men . Ion Iroctal, Die n.io
Fig. 6. Fractal histograms ofwole mammgramse with o lesions and null condtion.

A M fa nT Null Ar1•.
2000 A.00 A

0 2 a 4 0 I 2 3 4
FrssiDmanio F-d Oimneion

Previous use of ART II to classify lesions produced mixed results and often misclassified types of stellaze
lesions into the fibraeoa catgory [13]. The problem was traced to the standard ART [I model
recoding category nodes to smaller input patterns. To alleviate this problem the work of Ryan and
Winter's symmetric adaptive thresholding modification of ART I was adapted. In short, the 1P2 equation
of ART H was changed to:

dy/dt = -Ay + (1-y)[z(y)+,,piZij - Xul-qI] - (C-y),Xg(y)

where the - XuIl-qI] is the symmetric adaptive thresholding that is added to the excitatory term. Here, ). is

the parameter that controls the category size, I is the normalized magnitude of the input, q is the pattern
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size and u is the time that the node i is activated. With this modification the network was able to
distinguish all stellate lesions from fibroadenomas.

Classification System
The flow of detection and classification was divided among two ART II/SAT networks: one for classifying
the fractal histogram of a local region acting as the lesion detector and the other to classify the region for
lesions if an appropriate histogram had been detected.

Fractal Histogram -- ART II/SAT - AOI-. ART II/SAT -- * Lesion Id.

I L- I -

Parenchyma Found

In the simulation program a conditional statement decides whether to activate the lesion classifier or not..
For a fully integrated neural architecture a gated dipole could be used. This system worked effectively for
the 6 cases studied here. The images of these cases were digitized as 256x256x64 grey levels for both the
whole mammogram and the magnified lesions. For lesion sizes considered here (l-2cm) this was adequate
for both the fractal analysis and classification. However, it is inadequate for microcalcification studies.
Further results concerning the classification of microcalcification clusters in relation to morphology using
1024x1024x256 grey levels in 14 complete cases will be reported elsewhere.
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ABSTRACT
Automated recognition of QRS complexes of electrocardiograms (ECG) has been a focus
in medical equipment development for a number of years. Preprocessing of these often
noisy time series has been subjected to the standard linear techniques before submission
to a pattern recognition algorithm. Here, methods from nonlinear dynamics are applied
to noisy electrocardiograms of different pathology before submission to two neural
architectures. A radial basis function network with adaptive center allocation is used to
learn cases of ECG. In addition, an ART II - Masking Field architecture is used to scan
and classify ECG to recognize changes in the QRS complex.

1.0 Introduction
Automated recognition of electrocardiograms (ECG) is a concern in the both the intensive care and long
time care of cardiac patients. Patient requirements include detection and recognition of ECG transients
and changes in cardiac pathology. Detection is often based on previous knowledge of a stable patient's
ECG and distinguishing new characteristics occurring in the time series. These characteristics can be
indicative of transient or permanent pathology requiring immediate clinical attention.
The frequency and trend of a particular sequence of complexes is also relevant. Here, two networks are
used to perform these separate functions. A standard radial basis function network and RBF network
modified for adaptive assignment of centers is used to learn the ECG time series and act as a state change
detector. A scanning ART II-Masking Fields architecture is used to learn patient's ECG. The Masking
Field architecture is modified with the symmetric adaptive threshold method of Ryan and Winter for
enhanced subset recognition. The intra-inter cluster competition of Masking Fields is able to recognize the
combinations of waveforms present in the QRS complex which indicate distinct pathologies.
Recent characterization methods of time series analysis from nonlinear systems have been applied to
ECG. The initial focus was to relate observed nonlinearities to cardiac pathology. This included studies of
the occurrence and sequence of bifurcations before and after fibrillation. Some of these nonlinear signal
processing methods have import to efficient RBF network input vector construction. Previous experience
has shown that using time delay vectors used to reconstruct attractors from a scalar time series as input
produces faster training and prediction of RBF networks. That is, the network is learning the attractor. In
addition the appropriate embedding dimension for the attractor reconstruction from an often noisy time
series must be determined. The methods to provide the choice of time delay, embedding dimen-ion and
noise reduction are discussed below.

2.0 Attractor Reconstruction Using SVD
Attractor reconstruction from a time series is done via Taken's theorem. This method recontructs the
attractor by plotting time delay vectors in phase space with x=-[x(t), x(t+t), x(t+2i)] begin the vector. Each
element of the vector is taken from the scalar time series and incorporates the time delay r to create the
embedding vector. This method requires choosing a time delay interval for sampling the time series. This
choice of time delay can be determined by using Fraser's mutual information method [1] [2]. The mutual
information is calculated over a range of delay values and the delay corresponding to the first minima of
the mutual information is chosen for the reconstruction. This assures that the points of the attractor are
maximally independent. In addition the attractor reconstruction must be done in the appropriate
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dimension representing the dynamics. The embedding dimension can be determined by inspecting the
singular spectrum of the system. This approach, due to Broomhead and King [41, calculates the singular
value decomposition of the covariance matrix XT X whose entries are the time delay vectors. The number
of singular values above the noise floor represents the appropriate dimension for attractor reconstruction.
An additional befenit is the noise reduction performed by using the new basis vectors determined by the
largest singular vectors and reploting the attractor.

Fig. 1. Four type of ECG waveforms studied. Fig. 2. Takens embedding of time series in Fig 1

Fig.3. Normal and noisy ECG. Fig 4. Singular values of ECG of Fig 3.

Fig. 5 Attractor of normal ECG with noise. Fig. 6. Attractor after SVD applied twice.
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3.0 RBF Network
Two RBF architectures were tried for learning the various ECG states: the standard RBF of Moody and
Darken [6] and the adaptive RBF network outlined by Mel and Omohundro [7]. These networks have had
success in learning various nonlinear time series. The RBF network is a connectionist type gradient
descent network consisting of two layers. The first layer consists of radial basis functions (termed centers)
to which an input vector is submitted. The basic idea is to modify the network such that the centers cover
the input space where the high frequency components occur. In this way the network as learns the
attractor of the dynamical system in the most efficient manner. Both networks were trained on a time
series containing 100 QRS complexes of the same pathology. A separate RBF network is trained for each
pathology.
Both networks were able to learn the various ECG's with mean predictive error of 5.OE-3 for a covering of
100 centers. There was little gain in the adaptive network in its ability to lower the prediction error.
Prediction intervals from 1 to 20 where tried with corresponding adjustments of the learning pararmeters.
With these results, a hardware implementation seems feasible with the caveat that a network for each
pathology would have to be used. The exception to this would be the long term monitoring in which a
patient's ECG was initially learned and only the detection of an abnormal situation is sought.

4.0 ART II - Masking Fields
An alternative to learning the dynamics of the time series is to use a network architectu:e that classifies
according to patterns of subset waveforms. Normally, in evaluating an ECG the clinical setting by
scanning the ECG time series and noting the subpatterns the PQRST complexes. The occurrence of a
single form for a short period of time can indicate a transient pathology such as an infarct. A network
architecture should be able to provide a translation invariant classification. This can be done by an ART
II network that scans the ECG, building up categories of subpatterns of the PQRST complexes. Such a
scan pattern is seen in Fig. 7. The F2 output pattern can then be feed into a Masking Fields network for
classification. The advantage of this network combination is clear: a change in subset pattern of an ECG
can be classified immediately as opposed to having to wait for a cumulative prediction error comparison
between RBF networks. In this way alarms can be set for the occurrence of a clinically relavant transition.
An example would be the decrease of the amplitude of the T wave signaling hypercalcemia.
The ART II-Masking Fields approach relies on the reliable subset detection amd classification. ART II
merely has to classify the subset patterns to provide category node pattern as input to Masking Fields. This
is easily done for the ECG cases studied here.

,. * 4 0. . . . 10 S

Fig. 7 Subset scanning intervals
Howvere, a design problem arose with the Masking Fields ability to learn distinct subset patterns.
Individual patterns could be learned but the inter-cluster and intra-cluster competition blocks out the
learning of multiple patterns. Hence, the required recognition of different subset combinations could not
be realized. Various methods were tried to rectify this until the adaptation of Ryan and Winter's symmetric
adaptive thresholding scheme produced stable learning. In short, the normal F2 activity equation is
modified by adding the term: - Xiui(U - qi) to the excitatory term of equation (A25) of [8]. Here, X. is the

1-140



parameter that controls the cluster size, I is the normalized magnitude of the input, q is the pattern size
and u is the time that the node i is activated. Once the modification was implemented, Masking Fields
could learn combinations of ECG subsets whose number is limited only by the size of the network. Below
is an example of how three common conditions are classified by first subset classification then Masking
Fields. The three Masking Field inputs are easily separated even though there exists common subsets.
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5.0 Summary
Methods of nonlinear dynamics provide the appropriate dimension and input vector size for RBF
networks. The proper time delay -T is determined from the first minima of the mutual information.The
time delay then becomes the appropriate choice for constructing the input vector to an RBF network or
any network whose role is to learn the dynamics of the system. In addition the ability of ART class
models were studied and found to be an effective classifier within the scope of a stable ECG. It should be
noted that this study was not done for a sufficient range of noise levels such that a firm conclusion to its
utility. However, the ECG in a typical ICU situation utilizes a three lead system. This produces little noise
except with patient movement
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Abstract
A large-scale neural network application for airline seat inventory management has been

developed by BehavHeurnstics, Inc., and is in daily use at USAir, Inc. on 150 user workstations.
This paper discusses a variety of issues related to the application, including knowledge
engineering, scale-up, non-stationary domains, multi-network architectures, and the requirement
for improved algorithms such as have been developed at BehavHeurlstics.

Introduction
BehavHeuristics has pioneered the application of neural networks in the field of airline

"yield management," or seat inventory control, implementing systems for airlines from Europe to
Australia and integrating with a variety of reservation systems over the past several years.
BehavHeuristics' current generation Airline Marketing AssistantP (AMA) product integrates two
neural networks for forecasting passenger demand and "no-shows" with mathematical
optimization and analysis algorithms, an advanced graphic user interface, and a networked
relational database. The system, which is heavily customized for each airline and has been twice
redesigned from the ground up, is in daily use by as many as 150 revenue analysts on networked
486 PC workstations at USAir, the largest such installation to date by any vendor.

This paper focuses on a sophisticated, large-scale application of advanced neural
network technology. Therefore, knowledge of general feed-forward neural network concepts and
processing, as well as alternate statistical, econometric and process control models, is assumed.
Advanced neural network techniques, such as recurrent networks and multi-net architectures, are
described thoroughly in the references. Proprietary algorithms developed by BehavHeuristics are
discussed in terms of their capabilities in comparison to standard techniques. This paper details
some of BehavHeunstics' proprietary advancements, characteristics of the yield management
problem and how they relate to a neural network solution, and plans for further technology
development and deployment.

Technology Overview
BANKET'nA (BehavHeuristics' Adaptive Network Knowledge Engineering Technology)

embodies a set of proprietary neural network algorithms to learn non-linear mappings between
independent and dependent variables via supervised learning, as well as to discover optimal
responses to input data via reinforcement learning. 1 The underlying functionality provided by
BANKET is conceptually similar to that provided by backpropagation, with significant differences
in performance with regard to learning dynamics and processing time.

BANKET has been under development since 1983 and has been tested and enhanced
extensively during development of a variety of business-decision applications including flight
crew training scheduling, credit risk scoring, stock portfolio selection, and optimal seat allocation,
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as well as passenger demand and no-show forecasting. In contrast to the prevalent practice of
providing generic toolkits and consulting services, BehavHeunstics has developed and marketed
high-end, vertical applications based on neural network technology, thus gaining corporate
experience in how to scale-up, enhance, exploit, and integrate the strengths of the technology to
achieve success in the marketplace. The most recent release of BANKET provides the following
capabilities:

"* Standard representations for boolean, categorical, continuous, bounded-continuous, and

periodic input data,

"* Uni-directional functional mappings that can be arbitrarily non-linear,

"* Learning algorithms which generate minimal network architectures, including the dynamic
addition and deletion of both nodes and arcs, while simultaneously adjusting weights,

"* Output in the form of both mean and standard deviation (expected process error) at each
network firing,

"* Continuous adaptation to non-stationary dynamics without the necessity of refitting
historical data,

"* An integrated Temporal Differences technique for utilizing incremental information for
training prior to output target availability,2

"* Learning algorithms which are not gradient-based and are not subject to problems of local
minima when used in standard feedforward mode,

" Learning rates based solely on noise rejection and generalization requirements, rather than
approximating the infinitesimal learning rate required by pure gradient descent methods,

"* A training process which requires a minimal number of data samples - 7 passes to reliably
learn the exclusive-or mapping - and does not require even a single pass over all of the
available airline daily booking data to achieve forecast accuracy,

"* Configurations for minimizing any one of a predefined set of error measures, loss
functions, or inverted utility functions when learning (custom functions are easily
implemented),

"* Internal node and weight structures which are easily interpreted and directly manipulable by
the application customer without the need for post-hoc sensitivity analysis,

"* Adaptations to multi-scale periods during historical random sampling which can then be
locked against drift during on-line adaptation in non-stationary domains,

" Sparse matrix efficiency for very large networks in software only - the USAir application
uses a 70,000 nodeI250,000 weight network and fires in less than one-half second on a
486 PC.

BANKET also incorporates a number of capabilities that are not used in the current
airline application, but have been used in other applications and are being investigated for use in
AMA, including:

* Time-Lagged Recurrence for adding full NARMEX (Non-linear AutoRegressive Moving-
average with EXogenous variables) and Kalman filter modeling performance,

e Multi-Network configurability (HDP, DHP, and their variations 3,4) for providing
"approximate dynamic programming" capabilities for optimization of control decisions over
time.

A prototype version of AMA contained an adaptive critic-style network, in combination
with a model network, to generate the values for each of a fixed set of discrete seat allocation
actions. While successful in an early prototype, this technique is not in the current version but is
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being redesigned for inclusion in future releases. These issues are discussed further in the
context of the problem domain below.

Airline Yield Management
Airline yield management is the allocation of passenger seats to different fare categories

on individual flight departures. This field concentrates on maximizing revenue by reserving a
sufficient number of seats for late-booking, high-fare passengers while attempting to fill the
remainder of the available capacity with earlier-booking, discount-fare passengers. Fare
categories, or classes, are used to segment the market and can number as few as three and as
many as 26. They usually include a variety of restrictions such as 7 or 21-day advance purchase
and overnight or over-weekend requirements. The non-linearity of the booking patterns and the
non-stationary nature of the air travel market require sophisticated forecasting and optimization
approaches to gain the maximum possible revenue. The criticality of the forecasting module in
these systems cannot be overstated. Saving one extra seat for a last minute full-fare passenger
per flight (who actually shows up) can provide incremental revenue in the tens of millions of
dollars per year, with negligible incremental expense.

The BANKET forecast accuracy has been proven in several data trials and overall
revenue benefits from an early version of the AMA system were greater than 5% in a controlled
test against expert analysts at a European airline during a 6-month period - despite the market
instability caused by the Desert Storm military operation. 5

Inventory Optimization Process

The seat inventory optimization process, regardless of the specific technical approaches
used, consists of a forecasting process followed by a seat reallocation process. The forecast
approaches and measures are discussed below, followed by an intuitive analysis of the industry
standard Expected Marginal Seat Revenue (EMSR) algorithm for setting seat allocations.

Passenger Forecasting

Unconstrained demand to come: This refers to the mean raw demand which is yet to
materialize, irrespective of seat allocation constraints. That is, how many passengers will make
reservations in a fare class given an unlimited availability of seats, and who haven't already
done so.

Variability of demand to come: This measure is necessary to specify the process error,
or the normal variation in bookings assigned to noise and not predictable by any available
indicators. AMA generates a specific variance forecast for each separate mean forecast (which
does not presume a normal distribution.)

No-show bookings: This refers to the number of passengers who have purchased
tickets but will not claim their seats at departure. AMA generates net no-show forecasts by
individual fare class as a percentage of bookings.

Variability of no-show bookings: This measure is in the same scale as the no-show
forecast and provides a measure of process error in the no-show behavior.

There are a variety of forecasting approaches in use in the airline industry for these
purposes. Most use sophisticated time series models to isolate the trends and patterns in the
data and to extract from these patterns a forecast of future market behavior. These techniques
are limited due to their requirement that booking histories for each flight must always be
available, their inaccuracy in times of rapid change (the air travel market is notoriously non-
stationary) as well as their inability to generalize these changes across similar markets. In
contrast, a causal method (or a process identification model as formulated in control theory) can
be used to develop a mathematical relationship between the series being projected and the
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actual independent variables that impact it. As well established in control theory, a stationary
process model can theoretically be converted to an equivalent input-output model (i.e., pure time
series), however, the implied assumption of a stationary market makes this translation invalid. In
addition, airlines constantly modify their flight schedule, inhibiting the usefulness of any
technique which requires extrapolations from past booking behavior on the same flight.

In contrast, a causal model seeks to understand why the demand is occurring by
quantifying the relationship between demand and any factors that might explain its movements.
Since correlations do not necessarily imply causality, domain knowledge is necessary to
determine which independent variables are appropriate to use. A major strength of a causal
model is that it can immediately adjust its estimates based on changes in the predictive factors,
prior to any observed effect. A well-designed causal model can also provide a forecasting tool
and a simulation environment in the same system, which is ideal for airline revenue analysts.
This approach lends itself to prediction of new markets before any actual flight data is available,
where time series techniques require pre-existing schedules. The most widely used causal
modeling techniques in airline forecasting are multiple regression and, to a lesser extent, the
more powerful Box-Jenkins techniques which combines regression, time-series information, and
past model performance. At least one airline is known to use a Kalman filter technique on a
mainframe, which reportedly took two years to develop.

One of the main drawbacks of the explicit modeling techniques is that they require the
model builder to know a priori which factors will influence demand and how those factors will
interact with each other. While model builders can make an educated guess as to the factors
influencing airline demand (day of week, time of day, city-pair, business or leisure market,
competition, season, special events, etc.), they may not be able to build a realistic model that
accurately reflects how these factors interact. Identifying the non-linear combinations is very
difficult since they change over time and each market (origin-destination pair) has unique
dynamics. The neural approach, while still requiring extensive knowledge engineering to
determine the relevant causal factors which are cost-effective to capture, alleviates the airline
analyst from having to build (and continually rebuild) the model by hand.

Where the flight schedules are relatively stable, the most powerful and complex
traditional techniques, e.g., NARMEX methods and Kalman filters, can - in the hands of a
skilled practitioner - make optimal use of both time-series and causal independent variables.
The recently popularized advances in time-lagged recurrent networks (which actually have been
around but misunderstood and under-appreciated since Werbos originally discovered them in the
early 70's ), combine the automatic learning of neural networks with the computational power of
these techniques, providing the best of both worlds. However, whether the incremental accuracy
provided in the time series data, which is frequently non-existent anyway, is worth the cost of
obtaining it in this application is not clear at this time.

Expected Marginal Seat Revenue Algorithm

The EMSR algorithm is an industry standard for calculating optimal seat allocations
given the ticket price and the set of forecasts for each fare class. The algorithm starts with all
seats unassigned (except any which are currently booked), computes the expected marginal seat
revenue (fare times the probability of booking the next seat) for the next seat in each class, and
assigns a seat to the class with the highest value; repeating until no seats remain unassigned.
There are additional costs associated with overbooking (when predicted no-shows do show), and
additional complexities with overlapping flight segments, which are also factored in.

The original AMA prototype used a neural network to learn to predict the value of adding
each incremental seat to each fare class. This network was very similar to an adaptive critic
network trained by the temporal differences technique as originally defined by Barto, Sutton, and
Anderson. 7 There was no need for a network to generate a control action, since each of a limited
number of actions were explicitly evaluated. After this system was trained, the weights were
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examined and found to provide behavior virtually identical to the EMSR algorithm, albeit
somewhat more robustly. Because of issues regarding user acceptance of such a novel
technology (AMA was first marketed in 1987 and first installed in 1989), and the unclear benefits
of the neural approach in that form, an EMSR optimization algorithm was substituted instead.

However, there is an implicit assumption in the EMSR approach which prevents it from
achieving true optimal seat allocations over time. That is, each optimization assumes that no
reoptimizations will occur before departure, even though individual flights are actually
reoptimized 15 to 30 times during the booking cycle. A true time-dynamic solution, as provided
by dynamic programming, would learn the expected materialization rates and set more
aggressive allocations knowing that they could be adjusted later. For example, more seats might
be allocated for high-fare passengers early in the booking cycle, if it were known that they could
be reallocated later when the danger of rejecting needed low-fare passengers became too great.
The original network implementation did not capture the complete time dynamics since it too
implicitely assumed that each allocation was final. However, BehavHeuristics is currently
researching a multi-network, DHP-class neural network architecture to directly implement an
approximate dynamic programming solution for this problem. This example illustrates the
domain understanding that usually develops only after years of working within an application
area.

Performance and Scale-up
The USAir application has several characteristics which effect performance in

convergence and processing time. It has, for example, an average of over 2 segments (one
stop) per flight, 10 booking classes, 4 forecasts per class, 70,000 nodes, and 250,000 connection
weights. We have found, with our sparse matrix neural network algorithms implemented in
software and with no custom hardware acceleration, that AMA on a 486 PC can achieve the
processing speeds and converge during the training regimen illustrated in Table 1.

Based on the implementation of continuous daily training, the AMA forecast model can
be recalibrated nightly to maintain currency. This has enabled the forecasts to adjust, in days
rather than weeks, to such dramatic market shifts as those caused by the Desert Storm
operation, competitors going out of business and changes in industry or carrier fare structures.
The daily training data is a random sample (without replacement) of the previous weeks booking
data. The weights which are effected by inputs from cycles longer than one week (i.e.,
seasonality) are locked after historical training and not allowed to drift during on-line training.
Thus, historical retraining must be performed on a periodic basis.

How would this compare to standard backpropagation? For comparison purposes, we
can assume the same network size and processing speeds for a traditional backpropagation
system implemented in software. While we have not seen any published research suggesting
that backpropagation systems having such large volumes of data available will require fewer
than 500 or so passes through the data set, if we assume that only 10 passes will be required,
over one-year of processing time will be required for historical training. Unless every parameter
and option is specified perfectly the first time, several years (or decades) of processing time will
be required to Calibrate and train the backpropagation system. BANKET's ability to converge
after processing only 50 to 80% of a large data set in a single pass is crucial to its feasibility for
real-world applications. Additionally, the data I/O accounts for over 20 percent of total
processing, forcing a strong lower bound on processing speeds, especially for algorithms which
require dozens of passes through the data.
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Table 1: AMA Processing and Training Speeds

On-line Forecast Process per Flight - Processing Time

Forecast demand, no-shows, and variances 1 second

Forecast, optimize, perform various booking and statistical 9 seconds
calculations, read from and write to the database

Training Process -Data Trials

2 years historical data for 5,000 flight segments per day 500 000 trials

Most Recent 6 months 1,200,000 trials

Ongoing Daily Calibration 16,000 trials per day

Training Process -Processing Time

Basic Training (non-epoch) 1.1 seconds per trial

Historical & Recent Learning 3 weeks

Ongoing Daily Calibration 4.5 hours per day

Summary
Large-scale decision-support applications of advanced neural network technology are

demonstrably feasible and marketable. However, as with any advanced technology, skillful
application and a thorough understanding of the requirements of both the users' needs and the
problem domain are required.
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NeuralWare, Inc.
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Abstract

In this presentation, we describe NeuCOP, the Neural Control and Optimization
Package. It combines nonlinear, neural network process models with nonlinear
optimization techniques to achieve multivariable, adaptive, closed-loop control.
This controller first determines economically optimal, steady-state operating
levels for the process. It then drives the process to these levels and maintains
them in the presence of measured and unmeasured disturbances.

We describe the process of modeling, simulating, and commissioning NeuCOP
for control of an industrial, hydrocarbon processing unit. The results we present
demonstrate the control action as NeuCOP optimizes production objectives,
satisfies operating constraints, and reduces the overall variability of the process
responses.
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ABSTRACT
The control of paper machine quality parameters is a multi-faceted problem that the machine tender has faced since
paper making became a continuous process. When the stock preparation and paper machine are taken as a whole, the
dynamics and chemistry of the control problem are high-dimensional and highly nonlinear. In addition, the controls
exhibit an inherent sensitivity to external perturbations such as consistency variations, broke rates, recycle addition,
etc. Coupled with these continuous control problems is the fact that many of the final parameters associated with
product quality are measured in the laboratory using samples that are only collected at reel turn-up.

This paper demonstrates the use of adaptive process modeling techniques to develop a robust process control model
that operates in real time and addresses all of the issues mentioned above. Data collected during a two month period,
June 1- August 1, 1993 on the No. 4 Paper Machine at Packaging Corporation of America's Tomahawk, WI mill was
used to build the model. A standard software package was used to generate the control model that provides continu-
ous values, for control purposes, of both CMT (a paper crush property) and porosity over the entire time span of
building each paper machine reel. The model produced by the software package embodies a Focused Attention Neu-
ral Network (FANN), which provides a way to take into account the case of correlated inputs and unmeasured exter-
nal influences by projecting attention onto the control variables by implementing an intermediate model of the state
variable dynamics. Figure 1 shows a simplified schematic of the process from which measured values were taken to
build this model

BACKGROUND

The control of paper machine quality parameters is a problem that traditionally has fallen into two categories: indirect
control and model-based control.

In the first case, laboratory measurements are made using samples taken from a reel after turn-up. Adjustments are then
made to certain regulatory controllers in an attempt to affect these final quality parameters. There are inherent problems
with this type of control in that the samples taken to the lab are from a small portion of the reel (the last 50-100 wraps)
and it is assumed that the laboratory results are constant for the entire reel. When changes are made to the regulatory
controls, the chosen manipulated variables are those that each machine tender considers to be key to controlling the
particular quality parameters. This is normally done based upon the machine tenders experience and his own best
guess.

The second approach is to use first-principles and/or statistical modeling [1-3] techniques. However, many processes
(continuous and batch) exhibit characteristics that make these modeling and control techniques difficult [4]:

1. Non linearity or uncertainty in the first-principles model.
2. High-dimensional multivariate sensory inputs and control variables that may display complicated or detrimental

interactions.
3. Inherent, variable time-delays.
4. Inadequate and uncertain measurements.
5. Plant safety and environmental constraints.
6. Unmeasured or uncontrollable changes in external variables such as feed consistency variation, outside tempera-

ture, barometric pressure, etc.

I- 152



First principles modeling is most appealing because it is based upon applied mathematics, chemistry and physics.
However, basic development of this type of model requires an extensive understanding of the process along with the
capability to reduce that understanding to a comprehensive mathematical representation. Even when employing
broad simplifications to make the mathematics tractable, this approach often requires man-years to develop an ade-
quate model. Because of the limited fidelity of such models, they often do not work well in practice due to idiosyncra-
sies in the real-world machine dynamics. Even though, in many cases, first principles models have proven to be
effective in their operation and results, the maintenance of the complex mathematical models demands the same level
of capability and understanding as needed to develop the original models.

Statistical modeling is another methodology that requires specialized knowledge. An in depth knowledge of statistical
methods along with a good understanding of the techniques for the design of experiments is necessary to successfully
build models of this type. These experiments are usually required to gather data for the statistical model and can be
very expensive and time consuming. In most cases they require that the process be perturbed over wide ranges of
operations. Also, with the statistical models, a high level of support is required for the long term maintenance and
support of the model.

Both of the above modeling approaches necessitate a long range commitment on the part of the user. This is a require-
ment if the life of the model is to last past the transfer or retirement of the developer.

The use of existing historical data to gain insights into the process dynamics before doing design experiments can be
a much better approach. In fact, in many cases the experiments may not be necessary.

NEW APPROACHES TO CONTROL
Artificial neural networks [5-7,11-13] represent a set of powerful mathematical techniques for modeling, control and
optimization that "learns" process dynamics directly from historical data. The features that make neural networks
ideal for exploiting historical data can be summarized as follows: Neural networks are non linear regression algo-
rithms that can model high-dimensional systems and have a very simple, uniform user interface; they work well for
both batch and continuous processes; and, they can be used in either static or dynamic modeling.

Recent advances in the mathematics and understanding of the mechanisms of learning, coupled with the power of
modem inexpensive computers, allows the building of artificial neural networks to be used for adaptive modeling and
control of manufacturing processes.

NEURAL NETWORKS FOR PREDICTION
The process of training a neural network to predict, optimize and control processes can be divided into two stages:
model building and optimization control. The first stage is equivalent to the classic prediction (or forecasting) prob-

Xl(jjý ý Process al(t) • t

X2t t ak(t • t

X2 Actual Outputs

tt
Xn(t " tt IIY l(t•"'f t"• v"t

Process Inputs
Process model Predicted Outputs

Figure 1. Neural network for predictive model of process dynamics. It is assumed that there is a physical process that has
multiple inputs xl(t), x2(t)..... x,(t) (such as pressures, temperatures, flow-rates, etc.) and one or more interesting output param-
eters a1(t),....ak(t) (such as yield, impurity, etc.). The neural network learns the process dynamics from historical data so as to
predict outputs y1(t)... Yk(t) that closely match the actual outputs a2(t),....ak(t)
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lems. As an example for this paper, the problem is to predict quality parameters for a paper machine reel from the past
historical data of the process variables as shown in Figure 1. To test how well the prediction scheme works, a portion
of the historical data is used to train the model. When the model has finished learning on this data set, it is tested using
the remaining data to determine how well it can perform on data it has never seen. The measure used to determine
how well a model is trained is a term called Relative Error. Train Relative Error is the total error for a complete pass
through the training data and the Test Relative Error is the total error for a complete pass throughout the test data. The
lower these errors are, the better the model is. A Relative Error of 0.0 indicates that the model predicts the data per-
fectly. A Relative Error greater than 1.0 indicates that the model is worse than a model that constantly predicts the
mean of the data. R-squared is a standard error measure commonly used in linear regression. The relationship
between Relative error and R-squared is:

R-Squared = 1 - (Relative-Error)
2

After training is complete, if the Train and Test Errors are close, relatively low and the model predicts accurately on
the test data, the model is said to be generalized. This method has already been demonstrated in the past for brown
stock washer systems [8], TMP refiners [9] and paper machines[10].

ADVANTAGES OF THE NEURAL NETWORK APPROACH FOR PREDICTION
The neural network "learns" a fully nonliner high-dimensional response surface of the machine dynamics from the
process data. The reader is directed to several articles in the literature on the use of neural networks and the back
propagation algorithm [11] that describe the main function. It is assumed at this point that there is some familiarity
with the neural network approach.

The neural network uses very simple functions in the hidden layers (typically sigmoidal), but it combines these func-
tions in a multi-layer nested structure, and it has been shown that any function can be approximated by the neural net-
work [12]. The main advantages of the neural network approach are:

1 . Neural networks require little human expertise; the same neural network algorithm will work for many differ-
ent systems.

2. Neural networks have nonlinear dependence on parameters, allowing a nonlinear, more realistic mode.

3. Neural networks can save manpower by moving most of the work to the computer.

4. Neural networks typically work much better than traditional rule-based expert systems on these types of prob-
lems because the important relationships and rules are difficult to discern, or the number of rules can be over-
whelming.

5. Neural networks are relatively insensitive to noise.

CONTROL AND OPTIMIZATION OF THE MACHINE DYNAMICS

Once the predictive model is constructed and trained, the model is used to extract useful information about the pro-
cess. The model can be used for predicting future behavior of the process to determine when it will go outside accept-
able ranges, to determine the most sensitive variables for affecting the outputs, for gaining process understanding, or
for establishing new setpoint recommendations. However, to make the correct set point recommendations the model
has to do more than predict -- it has to learn the causal relationships within the process, which is a more difficult task.
For example, if CMT (a paper cruch property) is the control parameter, it is important to learn the effects of time, con-
sistency variations, broke rates, recycle addition,, etc. on the prediction of CMT, but it is just as important to learn
how consistency variations, broke rates, recycle addition, etc. affect time.

Several methods have been proposed on how to "invert" the plant dynamics, i.e. predict the inputs required to achieve
the desired output. These include direct inversion, or learning an inverse of the process by placing the outputs as
inputs to the model and the inputs as outputs to the model. Except for the most trivial linear non-redundant systems,
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Figure 2. Structure of the neural network controller proposed by Barto [ 101. The neural network model of Figr is
trained by backpropagation to minimize the error between the output of the net y(t) = y(c(t),W) and the output f the
process a(t) by adjusting the weights W, then the weights are "frozen" to fix the rqodel of the process. The desired output,
d(t) of the process then entered into a control error functioa, E = 2 (d(t) - y(t))h and the control network learns how to
adjust the process control parameters to achieve the desired output by performing gradient descent to the control variables
c(t) in the model y(c(t),W).

this direct.inversion method is not recommended due to the non-invariability of a multi-variate process [13]. Other
authors have suggested a more traditional approach to control -sing the predictive model generated by the network in
a predictive feed-forward loop. For example, Barto [13] suggests back propagation of the errors through the trained
model to generate targets for training a control model as shown in Figure 2.

Although the strategy proposed by Barto is useful in special circumstances, it has been found to be inadequate for
real-world applications for several reasons. First of all, in real world applications, there are always correlations in the
input data. For example, one variable, rush drag, is highly correlated to a number of other variables (slice opening,
flow and reel speed). If there is a perfect correlation, then the n.,del will learn to pay attention to one variable or a
combination at random depending on the initial (randomly chosen) weights of the neural network. In this case elimi-
nating the dependent variable resulted in a more accurate model. Second, and perhaps more important, even if the
variables are not highly correlated, the model may learn to pay attention to a variable that is not controllable. Many of
the variables in a process are measured, or "state," variables that are dependent on the settings of the actual controlled
variables. It is commonly found that the neural net-
work may pay attention to these state variables
instead of the control variable. It doesn't do any
good to have a control model that recommends that Controls/Exte nals
one of these state variables be controlled to a pre-
scribed value if there is no direct control to achieve Outputs
that value. Third, most of the standard paradigms Model

available do not take into account time delays, dead
times or other critical factors in process dynamics
that are essential to a proper control strategy. Nor States Ji,
do they take into account constraints that may be Model Predicted
put on the variable ranges. Initial StatesIStates
To surmount the problems of correlated inputs and
control problems that include state variables, a
more comprehensive paradigm that focuses atten- Figure 3. Control strategy showing an intermediate prediction of thetion of the state variables onto the control variables state variations as a function of the control variables to give a faithfulrepresentation of the plant dynamics and focusing attention on the con-
while taking into account real constraints was used. trols.
Figure 3 shows the structure of a Focused Attention
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Neural Network (FANN)[14] that projects attention onto the control variables by building an intermediate model of
the state variable dynamics on the control variables. When the FANN is used, the model faithfully represents the
behavior of the state variables as the controls are changed. This is essential for modeling the causal effects in the plant
and to achieve the proper control strategy. Figure 4 demonstrates a recent case on a paper machine where CMT was
predicted and controlled. Plotted are the actual measured values for CMT and the CMT value as it would be under
direct control.

In this case, the model is even able to operate under the influence of unmeasured external perturbations. This is possi-
ble because the state variables contain inherent information about the external perturbations, and, as long as the per-
turbations are slow with respect to the process dynamics, the controls can be changed so as to compensate for the
perturbations. A good example would be the effect of chip moisture.

CONCLUSIONS
This paper discusses a very important principle that needs to be incorporated into control strategies using neural net-
works to achieve proper results. The standard approach proposed in many cases does not account for the case of cor-
related inputs or control problems including state (dependent) variables. However, the Focused Attention Neural
Network (FANN) solves this problem by projecting attention onto the control variables by building an intermediate
model of the state variable dynamics on the control variables. Where as most of the variables in a real-world applica-
tion are measured rather than directly manipulated, this is an extremely important consideration in real world prob-
lems. The added benefit of this approach is that the effects of unmeasured external influences can be inferred from the
state variable information and compensated for by appropriate changes in control settings. This can be done because
the state variables contain inherent information about these external influences, and, as long as the perturbations of
the external variables are slow with respect to the process dynamics, the controls can be changed to compensate for
the disturbances.

It should be noted that the models created here are fully dynamic nonlinear models that learn without any first-princi-
pies information; the models learn to predict and control directly from the data.

80 .0 ................................. ..... ................................ .... .........
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Figure 4: CMT Under Model Control
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Sensor Data Analysis Using Autoassociative Neural Nets
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Abstract

Autoassociative neural nets have many potential applications. In this paper, a new structure
for an autoassociative neural net is proposed. The new structure is based on nonlinear principal
component analysis. The use of autoassociative neural nets with the new structure for sensor
validation and missing sensor replacement in a distillation example is discussed.

1 Introduction

All advanced control applications relys on having valid sensor data. When flawed data are used, the results
can be bad performance and even unsafe operations. This raises the problem of sensor validation. From
time to time certain sensors may become unavailable because of sensor failures or maintenance activities.
If the data provided by a sensor are essential for process operation or control, it is important to have an
estimated value if the sensor becomes unavailable. Such problems of sensor data analysis have grown in
importance because in recent years chemical processes have been more tightly designed. A first principle
model of a process combined with statistical methods and optimization techniques can be used to estimate
sensor values. But, in practice a first principle model is very difficult to get, and such methods have
the disadvantages of being computationally intensive and as a result often they are not used in on-line
applications.

Autoassociative neural nets provide an alternative method for sensor data analysis. An autoassociative
neural net is a multi-layer feed-forward neural network whose input and output layers have the same
dimensions. An autoassociative network uses the identity mapping as its objective function. Usually, at
least one of its hidden layers is smaller in dimension than either the input or output layer, and this small
dimension layer is called the "bottleneck layer". Kramer (1992) discussed autoassociative neural nets, and
pointed out that five layers are necessary for such nets in order to be able to model nonlinear processes.
The application of autoassociative neural nets in monitoring process conditions has also been reported
(Peel et al., 1991). Since there are five layers in an autoassociative neural net, the training can be very
difficult. Another problem for an autoassociative neural net is that the theoretical meaning of the outputs
of its bottleneck layer is not clear. Nonlinear Principal Component Analysis (NPCA ) (Dong & McAvoy,
1993) solves these two problems. Since autoassociative neural nets based on NPCA consist of two three
layer neural nets, training is easy. The outputs of the bottleneck layer are nonlinear pnncipal components,
and they have a clear interpretation in theory.

*Tb whom all correspondence should be addressed
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In this paper, the method of using an autoassociative neural net based on NPCA for sensor validation
and missing sensor replacement is discussed. The organization of the paper is as follows. We first briefly
introduce the concepts of Principal Component Analysis (PCA) and NPCA, and discuss the relationship
between PCA, NPCA, and autoassociative neural nets. Then the techniques of sensor validation and missing
sensor replacement using autoassociative neural nets based on NPCA are illustrated. The techniques are
applied to a distillation process.

2 PCA, NPCA, and Autoassociative New- -4 Nets

The concepts of linear and nonlinear principal components can Ix ;trated in Fig. 1. The data points
are two dimensional so they may be more easily visualized. Fig.l a ,vs the concept of a linear principal
component. The linear principal component line minimizes the sum of all the orthogonal deviations between
the straight line and the data. A data set X which contains n samples of m variables can be expressed in
terms of I linear principal components with I < m as

X = TPI+ E (1)

where T = t1, t2, ... ,t is defined as principal component scores, P is defined as principal component
loadings, and E is the residual data. The principal loadings determine the directions of principal component
lines, and the principal scores are the coordinates of the respective points on the principal component lines.
Fig.lb shows the concept of a nonlinear principal component. The nonlinear approach is the same as the
linear principal component approach, except that it summarizes the data with a smooth curve which is
determined by nonlinear relationships among all the variables. This smooth curve minimizes the orthogonal
deviations between the data and the curve. A data set X which contains n samples of m variables can be
expressed in terms of I nonlinear principal components with I < m as

X = F(T) + E (2)

where T = [ti, t2, ... ,ti] is defined as the nonlinear principal component scores, and F is defined as the
nonlinear principal component loading function.

There is a close connection between principal components and autoassociative neural networks. The
key point of an autoassociative neural network is the "bottleneck layer" , which a layer of hidden nodes
smaller in dimension than either the input or output layer. The concept of an autoassociative neural network
is similar to principal components : using a lower dimension to explain maximum information. For a
linear autoassociative neural network which has linear nodes and three layers , it has been proven that if
the outputs of its bottleneck layer are the PCA scores, this autoassociative neural network is optimal (Baldi
& Hornik, 1989; Bourlard & Kamp, 1988). Here optimal means that this autoassociative neural network
keeps maximum information among all networks with the same structure. It is very interesting that the
best linear autoassociative neural net is just like a linear PCA filter, and the dimension of its hidden layer
is the number of principal components. In the NPCA method proposed by Dong and McAvoy (1993), the
neural network NPCA models form a nonlinear autoassociative neural net. Its structure is shown in Fig. 2.
There are two three layer neural networks. The first three layer network maps from the data space to the
nonlinear principal component score space, and the second three layer network maps from the nonlinear
principal component score space to the data space corrected by the nonlinear principal components. If we
put them together, they form a five layer autoassociative neural net. This autoassociative neural net works
like a nonlinear PCA filter, and the dimension of its bottleneck layer is the number of nonlinear principal
components.
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3 Autoassociative Neural Nets for Sensor Data Analysis

The two neural networks in the new autoassociative network structure can be trained separately, so the
training is straightforward. Any appropriate algorithm, e.g. backpropagation (Werbos, 1977; Rumelhard
et al., 1986) can be used fur training. In this work we use the conjugate gradient learning method (Leonard
& Kramer, 1990; Fletcher & Powell, 1963) to train the neural network because of two nice features of this
method: (1) the learning speed of the conjugate method is much faster than that of general backpropagation;
and (2) the learning rate constants are calculated automatically and adaptively. Another issue is to determine
how many hidden units are required for each three layer network. In this work, a cross-validation scheme
(Stone, 1978; Stone & Brooks, 1990) is employed.

After determining the architecture and appropriately training an autoassociative neural net, the network
can be used for sensor validation and missing sensor replacement. Our approach is the same as that proposed
by Kramer (1992). We assume that the training data set contains enough information to cover the range
of good process operation. The resulting autoassociative neural net is an appropriate model for all good
sensor data. If there is no faulty sensor the output X' should be close to the input X. If the ith sensor
fails, then x4 will differ significantly from the xi. Sensor validation can be accomplished by monitoring the
differences between the inputs and the outputs and using them to check for sensor failure. Sensor validation
with gross errors is more complicated than sensor failure. We will discuss this case in Section 5. If the
important sensor data become unavailable due to sensor failures or maintenance activities, missing sensor
replacement is necessary for the continuity of operations. Because the process variables expressed by sensor
data are correlated, an autoassociative neural net contains information that allows replacement of missing
sensors with values estimated from remaining sensors. As discussed above there are two mappings in an
autoassociative neural net. The first is from high dimensional data space to lower dimensional score space
, and the second is from lower dimensional score space to high dimensional corrected data space while
keeping the maximum variation of the original data space. So for a missing sensor in the data space, the
most likely value for this sensor is the value that minimizes the squared difference between the input data
space and the corrected data space. Let X be an input vector, X' the output of the autoassociative neural net,
and Xk is the value of the missing sensor. The missing sensor replacement involves finding the value of xk
that:

min(X - X') 2  (3)
xk

The problem given by eq. 3 is a univariate optimization problem. During the optimization, the values of
the remaining sensors are fixed at their measured values. If there is more than one missing sensor at a time
the problem becomes a multivariable optimization problem. The solution is still straightforward.

4 Application to a Chemical Process

A distillation column is used for studying the method proposed in this paper. The column is a high purity
column which separates an ideal mixture with 41 trays and with the feed on tray 21. The characteristics of
the column are : relative volatility= 1.5, reflux ratio=4.29, feed composition--0.50, top composition--0.99,
bottom composition=0.01. A solution for distillation rating is obtained by using the Smoker equation
(Tolilver & Waggoner, 1982). In many distillation control schemes tray temperatures are used to estimate
top and bottom compositions (Mejdell & Skogestad, 1990), in a so-called inferential control. If some sensors
are unavailable, missing sensor replacement can be used for controlling product purity. Further, the tray
temperatures are highly correlated. Therefore, this process is a good candidate for applying autoassociative
neural net techniques.

In this work we assume there are six temperature measurements at trays 5, 10, 15, 24, 30, 36. For the
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feed concentrations varying between 0.4 and 0.6, top composition varying between 0.981 and 0.999, and
bottom composition between 0.001 and 0.019, we get 100 temperature samples. The NPCA method is used
to analyze the data, and two nonlinear principal components can explain 98.96% of the variation of the data
set. By means of the NPCA analysis , we get tabular data which consist of the original data set, the nonlinear
principal component scores, and the data corrected by the two nonlinear principal components. The detailed
procedure can be found in (Dong & McAvoy, 1993). The tabular data are used to train the two three-layer
networks. Cross-validation is used for determining the number of the hidden nodes in the two three layer
networks. Nine hidden nodes are best for both two three layer networks. So the final autoassociative neural
net is 6:9:2:9:6 architecture.

We use the Squared Prediction Error (SPE) to monitor the difference between the input and the output
of the autoassociative neural net. The SPE is given by:

SPE(i,j) = (x(i,j) -_x(i,j)')2  (4)

where i is the sampling time, j is the number of process variables, x(ij) isj process variables at time i, and
x(ij)' is a prediction of the autoassociative neural net. If the LVh sensor fails, then SPE(i, L) will have an
abnormal change. For a failure sensor, its output is usually zero, or a drifting signal. If we simulate sensor
two as the failed sensor, then SPE(i, 2) is around ls, while the SPEs of other variables are only around 101.
After the failed sensor is detected, the next step is missing sensor replacement. The objective function for
missing sensor replacement is given by:

OBJ(i) = (E(x(i,j) -_x(i,J)') 2) 0"5  (5)

where n is the total number of process variables. At every sampling time we estimate the value of missing
sensors using:

min(OBJ(i)) (6)
x(ik)

where x(i, k), k = ki, k2 , ... are missing sensor inputs.The multivariate optimization is implemented using a
quasi-Newton method and a finite-difference gradient method (Dennis & Schnabel, 1983). Because we can
get estimated values at every sampling time, the method can be easily used on-line. Fig.3 shows the results
for one missing sensor. Fig.3.a is the result when sensor 2 fails and Fig.3.b is the result for sensor 5. Fig.4
shows the result for two missing sensors at the same time. Fig.4.a is for sensor 1, and Fig4.b is for sensor
five. The results for both one missing sensor and two missing sensors are very good. Fig.5 shows the result
of three missing sensors at same time, where the three missing sensors are sensor one, three and four. Even
when three sensors are missing at the same time, the result is still acceptable.

5 Discussion and Conclusions
A new structure of an autoassociative neural network based on NPCA is presented, and its application for
sensor validation and missing sensor replacement is discussed. The work presented here has been restricted
to steady-state only. The work of sensor validation in this paper is just for the simplest case, where the
sensor fails totally. Sensor validation with gross error is more complicated than this simplest case. For gross
error detection and removal, a robust autoassociative neural net approach (Kramer, 1992) is applicable. The
detailed procedure for robust autoassociative neural nets based on NPCA is currently being studied. The
results on a distillation column show that the proposed method gives excellent results for on-line sensor
replacement.
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a smooth curve.
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Rectification of Packed Distillation Column Data via Subset Identification

Randall S. Barton and David M. Himmelblau
Dept. of Chemical Engineering, University of Texas, Austin, TX 78712

Abstract

Internally recurrent neural networks (IRN) are used to rectify simulated noisy
process data from a dynamic, nonlinear packed distillation column. IRN's are shown to be
capable of rectifying relevant subsets of the process measurements, as well as the full vector
of process measurements. Experimental results are presented to demonstrate that IRN's are
able to model the deterministic dynamics of a complicated process using noisy measurements,
and reduce the uncertainty In those measurements significantly.

1. Introduction

Studies in data rectification are concerned with developing techniques for obtaining an accurate estimate of the true
state of a process from the often noisy, corrupted measurements taken from that process. The rectified process data,
or possibly rectified subsets of process data, are hopefully better suited for making decisions which directly or
indirectly affect the performance of the plant or a process, such as occur in control. This paper applies IRN's to the
rectification of dynamic data from a realistic, nonlinear process (a packed distillation column), and investigates the
feasibility of rectifying relevant subsets of measurements from this process.

2. Background

Techniques for rectifying steady-state process data are well developed and are not reviewed in this paper [5].
However, processes that are characterized as "steady-state" in practice continually fluctuate about a nominal steady-
state operating point. Therefore, the potential utility of rectification techniques which take into account process
dynamics is obvious. For a dynamic, nonlinear process, traditional approaches to solving the rectification problem
recast the steady-state formulation as:

Minimize: 0(y,, Y,, y,-, - ,-,") Subject to: f(i,, x,, u,, t) =0
9, h(x,, =0 (1)

g(x,, t) 2 0

where * is a generalized objective function, x, is a vector of state variables at time t, y, and Y, are the actual
measurements and rectified measurements respectively, f is a dynamic process model, g is a vector of inequality
constraints (including bounds on the variables), and h is a vector of known equality constraints. The model
constraint equations f are typically dynamic differential equations. Almost all previous methods proposed in this area
rely on an accurate model of the physical system which may not be available and/or may be too expensive to
develop.

3. Data Rectification using Artificial Neural Networks

Because of their abilities (1) to realize complex nonlinear functional mappings from inputs to outputs, (2) to "learn"
these mappings from examples of historical process data, (3) to incorporate process dynamics, and (4) to make use
of relatively low development costs, certain neural network architectures have shown promise as tools for dynamic
process modeling and system identification. Karjala et al., 1992, were the first to propose the use of recurrent neural
networks for dynamic data rectification and to compare the ANN approach to more traditional methods of rectifying
dynamic data [3]. They demonstrated that recurrent networks were capable of learning process dynamics in the
presence of noise and of making significant reductions in the noise level of their predictions given noisy inputs. In
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fact, for a simple nonlinear system (a draining tank), an internally recurrent (Elman) neural network was shown to
perform better than more traditional dynamic data rectification methods [I].

In this work Gaussian transfer functions were used in the hidden layer of the [RN. As shown in Fig. 1, the
ERN uses internal feedback from the hidden layer to itself to incorporate process dynamics. This feedback, in effect,
integrates the signal to the hidden nodes providing the network with internal states and a form of memory. This
allows a single input vector of process variables at time t to be used to predict the process variables at time t+ 1 (or
further into the future). For real plant data, the true values of the measured variables are not known and, thus,
optimal target patterns for network training are not available. By reposing the problem as a time series prediction
problem and using an IRN to predict the current set of measurements based on past measurements, the lack of
optimal target patterns can be avoided.

Figure 1: Internally Recurrent Neural Network Figure 2: Packed Distillation Column
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4. The Deterministic Process Model

A dynamic model of a packed distillation tower called the VE model was used as the "true" process in this study.
A. A. Patwardhan developed this simplified dynamic model from first principles to simulate the separation of binary
chemical mixtures [6]. The VE model consists of five differential equations and nine algebraic equations. We
considered the deterministic VE model to be an exact description of the real process states at any given time so that
the rectified data values could be compared with the "true" data values, an end that cannot be accomplished for a
real process. This is the easiest way to demonstrate that the proposed rectification procedure is effective, and thus,
build confidence that the procedure will work on actual process data.

Fig. 2 indicates the six variables which were deemed to be "measured" and were to be used for rectification.
The feed composition, xr and flow rate, feed, are assumed to be measured disturbances. The manipulated variables
are the vapor boil-up rate, vbr, and the distillate rate, dist. The distillate composition, xd, and the bottoms
compositior rb, are the controlled variables, and they are considered to be the most important ones for the purposes
of data rectification in this work.

5. Experimental Methods

The VE model of the packed distillation column was used to generate simulated process data in a highly nonlinear
operating region. The training and testing sets for this work each consisted of -7500 points sampled at intervals of
four minutes [4]. The deterministic inputs and outputs from the column were corrupted with zero-mean Gaussian
noise to simulate noisy process data to be rectified, and the IRN's used for rectification were trained and tested on
this corrupted data as would be required in any real situation.

For data rectification of all six variables simultaneously, the network input is a vector of all the process
measurements y, both inputs and outputs, at time t. The network outputs a prediction of the same process
measurements 9,., one time step into the future (at time t+1). Thus, the neural network rectifier acts as a one step
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ahead predictor of all the process inputs and outputs. In this work, the networks were trained to rectify all of the

process measurements simultaneously as well as various subsets of the process measurements.

6. Experimental Results and Discussion

To present our results, we need to define three types of residuals: the measurement residual, the apparent residual,
and the true residual. The measurement residual vector evaluated at time t+ I is defined in Eqn. 2:

Measurement Residual Vector. m,* ÷ y, ÷1 - d ,1. (2)

where y,+, is the vector of simulated process measurements and d, is the vector of "true" values obtained via the
VE Model. The simulated measurements y to be rectified were produced by adding noise to the deterministic "true"
values d. In this work, additive, zero-mean, Gaussian noise was used to approximate actual process measurement
noise. Two different noise levels were examined, 3% and 10%, as defined by:

% Noise Leveli = [(q, * Rangej) * 100J (3)

where Range, is the range of the ih process variable. ov, is the standard deviation of the measurement residuals mA
between the simulated process measurements y, and the "true" values dc. for the it' process variable, evaluated over
the entire data record, as shown in Eqn. 4:

= (4)

The mi's can be thought of as measurement errors and form the components of the measurement residual vector m,+,
at each time step with i = 1, ..., p, where p is the number of process variables being rectified and T is the total
number of time steps in the data record.

The network was trained using the noisy simulated measurements y. The network input was y, and the
target output for the network was y,÷,. The network outputs a prediction 9,÷, of the process variables one time step
ahead and 9,÷, is deemed the vector of rectified process measurements. The differences between the elements in the
vector of rectified values 9,+, and the respective elements in the simulated process measurement vector y,+, are called
the elements in the apparent residual vector a,,•,, and are the network prediction errors that are minimized during
network training:

Apparent Residual Vector a,., = y,. 1 - 9, +, (5)

The difference between the predictions from the network 9,,, and the "true" values of the deterministic process
variables d,÷, are defined as the vector of true residuals r,,÷, and are error measures which are useful for evaluating
network performance:

True Residual Vector. r,÷, =9, - d,.1  (6)

The standard deviation of the true residuals for the i? process variable evaluated over the entire length T of the data
record was used for evaluating network performance, and is defined in Eqn. 7:

, 9r2(,
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A comparison of a., and a, provides a quantitative measure of network rectification performance as is defined in Eqn.
8:

P, = [(q , - ', * O l] * 100 (8)

where p,, is the percentage change in the standard deviation of the "measurement" error in the id process variable
as a result of data rectification.

We are interested in obtaining unbiased estimates of the process variables and achieving a reduction in
uncertainty (variance) by rectification. The results for the estimation of the true values of the process variables by
several rectification experiments are given in Figs. 3 - 6. Each plot shows the "true" values dk, the simulated process
measurements yi, and the rectified process measurements 9i determined by the neural network plotted against time
at 4 minute intervals, for the in process variable. The code for the networks in Figs. 3 - 6 indicates the number of
nodes in the first (input) layer, the second (hidden) layer, and the third (output) layer.

Fig=e 3: Rectification of All 6 Column Vaables, 3% Noise Figure 4: Rectification of Al 6 Column Varables, 10% Noise
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Figs. 3 and 4 show the rectification of the distillate composition measurements (x,) when all six column variables
were rectified simultaneously. The noise in the simulated measurements was at the 3% level in Fig. 3 and the 10%
level in Fig. 4. Figs. 5 and 6 show the rectification of the distillate composition measurements (x,) when a subset
of only the two control variables (x,, xb) were rectified. The noise in the simulated measurements was at the 3%
level in Fig. 5 and the 10% level in Fig. 6.

Figure 5:. Rectification of 2 ControUed Variables, 3% Noise Figue 6: Rectification of 2 Controlled Variables, 10% Noise
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Table 1 summarizes the results for the reduction in uncertainty (variance) found in this study. Cols. 2 and 3
represent rectification of all six process variables simultaneously using a 6-9-6 IRN. Cols. 4 and 5 represent
rectification of a subset of three process variables (xd, dist, vbr) using a 3-9-3 IRN. Cols. 6 and 7 show the results
of rectifying a subset of the two control variables (xg, Xb) with a 2-4-2 [RN.

Table 1: Percentage Change In Standard Deviation of "Measurement" Errors, p,

6-9-6 IRN 3-9-3 IRN 2-4-2 IRN

Variable 3% 10% 3% 10% 3% 10%
Noise Noise Noise Noise Noise Noise

x .-18.1 -51.9 -13.8 -48.3 -12A -50.6

dist .23.3 -62.2 -4.4 -52.3

vbr +0.2 -49.6 + 1.3 -48.9

Xb .29.2 -56.6 -24.4 -55.2

feed +43.8 -36.3
__xr___ +2.0 -50.7

Table 1 draws attention to three important results. First, the measurement noise in the two control variables, x, and
xb, was significantly reduced in all cases, including rectification of only subsets of variables. The reduction is highest
when all of the column measurements are rectified together ,uri decreases slightly as smaller subsets of
measurements are rectified. Second, it is difficult to rectify the inputs to the process because the inputs were step
changes. The network cannot predict a random step change as is clearly illustrated by the performance on the feed
variables, feed and x. at the 3% noise level. This behavior has been reported before and is common to all dynamic
rectification techniques attempting to rectify random step changes in process variables [2], [3]. The performance is
better for the two manipulated variables, dist and vbr. These variables are subject to rate of change constraints.
They undergo only approximate step changes which provide the network with more information and facilitates better
network performance for these variables. Third, the measurement noise reduction was greater at the 10% noise level
than at the 3% noise level. However, higher measurement noise levels in the simulated process measurements used
to train the networks tend to increase the bias irn the network estimates f of the true process variables d. This bias
is most evident as a time delay between the actual process and the network estimates. As the process measurements
become noisier, it becomes more difficult for the [RN to distinguish actual dynamics from random fluctuations. The
network has to delay prediction until the evidence indicates that the process is actually changing.

7. Correlation Analysis

An examination of the correlations among the true residuals r and the apparent residuals a can be useful in
determining the adequacy of the neural network models. With an ideal model, the following properties should bold:

E[rý_,-*r.J =0 ; *0 E[a_,- * a] 0 ;0 ()*0

E[r•] =I; =0 I E[•a] =I ; 'r=0 (9)

where E is the expectation operator and v is the integer time step difference. Eqn. 9 defines two normalized
autocorrelation functions for the true residuals and the apparent residuals. They indicate that the residuals for the
i1h process variable at each time step should be uncorrelated with the residuals at any other time step. Normalized
autocorrelation functions for x, and dist were calculated using Eqn. 10:

Tiu * To • ,,1 (10)

1-171



where T, are the residuals of interest (true ri or apparent a•) for the ie process variable and 0 ! ,(,r) < 1. Again, T
is the total number of time steps in the data record and c is the integer time step difference.

Figure 7: Autocorrelatiom of True Residuals - x, Figure 8: Autocorrelation of Apparent Residuals - x,
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Figs. 7 and 8 show the normalized autocorrelation functions of the true residuals and the apparent residuals,
respectively, for xd when all six column variables were rectified simultaneously at the 3% noise level. There is
significant correlation of the true residuals ri out to -5 time steps as shown in Fig. 7. This indicates that the network
is not modeling the true process exactly. This is because the network has not been trained on the true values d as
they would not be available in practice. In Fig. 8, the autocorrelation function of the apparent residuals indicate very
little significant correlation between residuals at different time steps, and is much closer to the hoped for ideal than
are the autocorrelation function of the true residuals. This outcome demonstrates that the autocorrelation function
of the apparent residuals can give a misleading indication that the network is modeling the process well. However,
this is the best that can be done given the noisy simulated measurements used for training the network.
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ABSTRACT

This paper outlines the development of an on-line predictive model of a complex industrial unit using a
neural network approach. This work was the result of a collaborative project between the Department of
Chemical Engineering, University of Sydney, and a local oil refinery. The final implemented model of the
catalytic reformer was developed through a number of phases. The initial phase comprised the
identification of the important process variables from an original set which were expected to be of
significance to the catalytic deactivation process. This step reduced the dmenionality of the modelling
task. The final model was a multilayer feedforward network with adaptive capabilities and an input
structure providing 'pocess memory" capabilities. The modelling system was developed as an on-line
strategy with an interface to a commercial distributed control system (DCS) to obtain real-time plant data,
and to present results to operations personnel Preliminary performance of the model has been very

1. INTRODUCTION

The development of accurate mechanistic models of industrial processes can be a difficult endeavour. In
practice, most systems encountered in industry are non-linear to some extent and the development of a 'Tirst
principles" model based on a detailed knowledge of the physics and chemistry of the process is generally
time consuming, and in some cases impossible where unknown or changing mechanisms exist. An
alternative approach to model building is to employ only plant input/output data. Neural networks, (
Rumelharn and McClelland, 1986 ) which have a well established ability to learn complex non-linear
functional relationships, provide one promising method of developing "black box" models for complex
industrial processes.

A reforming unit changes the molecular structure of the heavy straight run naphiha (HSR) feed stock,
which has a low octane rating, producing a high octane reformate suitable for petrol manufacture. A
catalytic reforming unit consists of a number of reactors and heaters, together with a product separator. A
semi-regenerative reformer processes feed stock for a time and then shuts down for regeneraion of die
catalyst which can retain its usefulness over multiple regenerattions and has an ultimate life of some seven
to ten years.
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A model for the catalyst deactivation in a reforming unit can be used as the basis for an on-line
optimisation strategy, determining the required operational parameters to achieve desired end of run
deactivation at the scheduled time. Such a scheme would ensure that maximum performance is achieved
from the catalyst for each regeneration performed. There is substantial economic benefit in the successful
implementation of such a model-based scheme. A typical flowsheet for a reforming unit is illustrated in
Figure 1.
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Figure 1: Reforning unit flowsheet.

2. PROCESS ANALYSIS

The initial phase of the model development involved the analysis of historical plant data to ascertain what
variables were important, and whether the results of the various data analyses reflected what was known
about the plant from operating experience. Over 700 sets of data were available for analysiL

The overall process constitutes two distinct dynamic systems. Firstly, the dynamics of the reactors which
have time constants of the order hours, and secondly the long-term dynamics of the catalyst deactivation.
The focus of the desired model is on the long-term effects of catalyst deactivation.

A number of sampling frequencies were tWialled and that which gave the optimum compromise between
performance and practical limitations turned out to be daily sampling. The data obtained and used in model
development thus represented the daily steady-state condition of the plant. The collected data was daily
averaged data from the control system (combined with spot sampling from laboratory results ). The data is
not dynamic in terms of short-term behaviour, but in terms of the catalyst deactivation which is of the order
months, daily data adequately reflects this longer term dynamics. In effect, this stage attempted to find an
adequate sampling rate which resulted in minimal information loss with respect to observed process
behaviour. Too fast a rate could introduce spurious behaviour while too slow a sampling rate could result
in loss of process information.

Conventional linear correlation techniques, ( Manly, 1986 ), as well as non-linear sensitivity analyses and
non-linear principal component analyses using neural networks, were used to evaluate the relative
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Importance of the original set of process variables. This step reduced the dimensionality of the modelling
task by establishing the most important process variables.

The process analysis began with a set of thirteen possible input variables thought likely to be of
significance to the single output which was required to be predicted
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Figure 2: Data correlation and principal component analysis results.

Typical results from the linear analyses performed are shown in Figure 2. The data correlation matrix
shown as the left bar graph in Figure 2 suggests that approximately half the variables are strongly linearly
related with the designated output which is the first variable in the bar graph. Similarly, the cumulative
principal components shown in the right bar graph of Figure 2 show that six principal components account
for over 80% of the total variance, which suggests that a reduced set of variables are able to adequately
describe the process behaviour. The linear results suggested that a reduced number of variables,
apprximately half the original input set, accounted for most of the variation in the data and thus would be
the most appropriate to employ in any model building.

Both non-linear analysis techniques used rely on neural network technology for their 1mplemetation Non-
linear principal component analysis (NLPCA) was implemented by training a feedforward neural network
to learn the ientity mapping, ( Kramer, 1991 ). The network comprises input and output layers, and three
bidden layers. The fist hidden layer maps the inputs into a lower dimensim which is the output of the
second hidden layer. The third hidden layer attempts to reconstruct the original inputs from the lower
dimensional output of the second hidden layer. The main differece between PCA and NLPCA is that the
latter involves non-linear mappings between the original and reduced dimemion spaces. If any no-liea
correlations between variables exist, NLPCA will describe the data with greater accuracy and/or by fewer
factors than PCA.

The NLPCA analysis showed that only two principal components were required to reconstruct the inputs to
the same accuracy as the PCA analysis. This implied that non-linear correlations existed between the
varables.The significance of individual process variables on the non-linea principal components extracted
by the NLPCA was evaluated by obtaining the fist-order partial derivatives Cie the Jacobin matrix) of the
feedforward neural network model of the input-output feature space. The Jacobian obtained from this
neural network model is a scaled version of the true Jacobian and, therefore, needs to be "unscald". To
compare the effects on a consistent basis, the relative change of each process variable on the output was
calculated. Subsequent scaling by maximum values allows the relative importance of the variables to be
tracked as a percentage, the Relative Perturbation Value (OPV), throughout a run ( Van Der Walt et al,
1993).
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Additionally, sensitivity analyses can be undertaken by first training a feedforward network to develop an
input-output model of the process, from which first order partial derivatives can be obtained The inputs to
the network are all possible variables affecting the process and there is a single designated output. In an
analogous fashion to that used for the NLPCA, the Jacobian is unscaled and calculated with respect to the
relative change in the inputs, to compare the effects of the inputs on the output on a consistent basis.

The non-linear analyses were consistent with the results from the linear analyses, with approximately half
the variables accounting for most of the variation in the data. However, some variables which showed weak
linear correlations displayed large non-linear interactions. Figure 3 shows the relative effects of two
variables on the output throughout a run. Variables giving rise to no significant effect over a number of
rims were regarded as unnecessary for modelling purposes.
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Figure 3: Unscaled Jacobian sensitivities of the output with respect to relative inputs.

3. MODEL DEVELOPMENT

From the process data analysis it was determined that use of just six of the original thirteen variables
should be sufficient to provide an accurate model of the reformer.

As noted previously, the process is dynamic in the long-term as a consequence of the deactivation of the
catalyst. This changes the reformer response to identical process inputs throughout the life of a run. This
time depndent behaviour presents a modelling problem, as simila inputs are required to yield dissimilar
outputs at different times. Therefore, some estimate or measure of "catalyst quality" was required to
effectively set the level of catalyst activity within the model. In effect, the model required the ability to

exhibit "process memory" to estimate the current extent of catalyst deactivation. In order to evaluate
various candidate models for this required behaviour, a pulse input change was introduced into each model.
After the pulse, the system output should lie above its unperturbed response. A rmmber of different model
types were Investigated - linear and non-linear ( linear in its parameters ) regression models, as well as
multilayer feedforward, tapped delay feedforward, and recurrent neural networks.

The linear models were unable to display the required process memory type behaviour. Their response to
pulses resulted in behaviour qualitatively quite different to that observed on the plant. Figure 4 Illustrates
the behaviour of the linear model when subjected to an input step pulse starting at unm length 100 and
finishin atim length 200. Also shown, as a refrence, is the unperturbed behaviour.
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Figure 4: Linear model response to an input step pulse and unperturbed response - REF.

Both recurrent neural network models and feedforward networks with extra inputs consisting of past values
of the inputs ( ie tapped delay feedforward networks ) were also developed in an attempt to incorporate
some memory of the catalyst condition into the model. Neither of these models performed in a manmn
consistent with known plant behaviour. Problems caused by longer training times and local minima were
also encountered for these models.

The final model framework was a multilayer feedforward network with adaptive capabilities and an input
mucture providing process memory capabilities. As well as the identified key process variables in the
model input space, integrated terms developed from a mechanistic knowledge of catalyst deactivation were
also included as model inputs, the latter effectively permitting the model to estimate the level of catalyst
activity. It is important to note that the neural network itself was used to determine the relative importance
of the integrated variable contributions.

The behaviour of the final model with respect to an Input step pulse starting at run length 100 and finishing
at run length 200 is shown in Figure 5, as is the unperturbed response of the model.
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Figure 5: Final model behaviour subject to an input step pulse and unperturbed response - REF.
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4. MODEL IMPLEMENTATION

Initially, the model was tested off-line to evaluate its behaviour with respect to available historical data and
with what expelienced plant personnel would expect. Finally, it was implemented as an on-line strategy
with an interface to a commercial distributed control system (DCS) to obtain real-time plant data, and also
as a means of presenting results to operations personneL The model is continuously adapted to conform to
the latest process information. Extensive checking and filtering are performed on all DCS data. A method
for the determination of the relative importance of plant data to be included in the model training set has
also been developed to deal with the issue of long sequences of data with little variation, which can lead to
model degradation with time. Tibs method relies on the calculation of a norm between successive points and
the comparison of current points with those in an historical data buffer.

5. CONCLUSIONS

This work cleady demonstrated that a successful industrial application of neural network technology is as
much about detailed data analysis, correct model structure selection, the right choice of development tools (
this project made extensive use of the Matlab package ) and how best to integrate the final model with
commercial DCS hardware, as it is about the actual development of the network model itself.
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ABSTRACT
This work explores the use of artificial neural networks (ANN's) as an online tool for

quality monitoring of parts produced from an injection molding process. The method of approach
is to train a back propagation network (BPN) to associate part quality with the measurement
profile, or pattern, produced from a pressure sensor placed in the mold cavity. In this study, part
quality is defined as final part length. Results presented show that the ANN is successful in
predicting part quality based on pressure sensor pattern analysis. Further, these results show that
the ANN outperformed the statistical technique now widely practt ed by the injection molding
process industry for predicting part quality.

INTRODUCTION
Injection molding is a high volume, low cost manufacturing process in which plastic pellets

are formed into useful components. As shown in Figure 1, plastic pellets are drawn into the
barrel of an injection molding machine via a rotating screw. Plastication occurs through shear
forces imparted by the screw combined with thermal energy from surrounding heater bands. The
screw retracts during plastication and is then driven forward to inject the plastic melt into a mold
at the end of the barrel. The screw continues to hold pressure for a period of time while the melt
packs and cools in the mold. When the part or parts are sufficiently cool, the mold opens and
they are ejected. This cycle, which ranges from less than a minute to several minutes depending
on the size of the parts, then repeats.

Difficulties in producing precision parts in large volumes arise because slight variations
in processing conditions can cause significant changes in part quality. Detecting deviations in part
quality based on process data and then adjusting conditions to restore desired quality are complex
tasks due to the multivariable, nonlinear nature of the injection molding process.

Although it is true that many production molding machines operate under closed loop
control with regard to individual process parameters such as barrel temperature and injection
velocity, there is no automatic feedback with regard to the quality of the parts produced. The part
quality feedback which does exist is from routine product sampling and inspection following
traditional statistical process control (SPC) methods. Quality control via set point adjustments
is then left to operator experience. -

t Author to whom correspondence should be addressed
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Recent trends to improve manufacturing capability include SPC of discrete process
parameters such as peak mold cavity pressure, plastic melt temperature and injection time.
Applying SPC methods to measured process parameters permits the development of automated
online methods, and as a result, the quality of injection molded parts continues to improve.

This work seeks to facilitate this continuous improveiic!nt by developing improved
methods for online part quality monitoring and control. The method of approach is to train a
BPN to associate part quality, defined in this work as part length, with the measurement pattern
produced from a mold cavity pressure sensor.

PART QUALITY MONITORING
Online quality monitoring and control requires the determination of part quality from

measurable process parameters. SPC methods assume that if the process parameters being
monitored are all within a specified number of standard deviations from a mean value, then the
part being produced is of acceptable quality. One disadvantage to this approach is that only
discrete data samples, collected at a few specific points in time during injection, are used to
predict the part quality. A second disadvantage is that parameter interactions are not considered,
resulting in false part rejections or acceptances.

A more comprehensive approach would be to develop a mathematical model incorporating
machine settings, polymer properties and mold geometry and then to predict part quality
characteristics using this model. While sophisticated models which describe the injection molding
process do exist, they are far too computationally expensive to be used on the plant floor for
monitoring and control purposes.

An alternative approach is to develop a neural network model which is trained to predict
part quality from measured process data. By training the neural network on real data, the
nonidealities of the process are included in the part quality model without requiring extensive
analysis and mathematical modeling. In addition, once the network is trained, real-time operation
can be achieved as a result of the relatively low computational load of this type of model.

Recently, Haeussler and Wortberg (1993) developed a neural network that relates discrete .

sensor information to part quality. However, since there is a great deal of evidence that suggests
that complete data profiles contain significantly more information about part quality than do a
few discrete values (Frech and Meyer, 1982; Wu and Chen, 1990), this work explores the
application of ANN's to the pattern recognition of compete data profiles.

For this investigation, mold cavity pressure profile is used for predicting part quality.
Cavity pressure is known to be directly related to part quality and, in fact, one of the simplest and
most effective SPC techniques uses peak cavity pressure to predict part quality. As shown in
Figure 2, which contains actual pressure profiles used in this study, the mold cavity pressure
sensor trace consists of an initial rise, a peak value, a transitional region, a packing pressure
plateau, a "knee" bend and, finally, a pressure decay. These features correspond to mold filling,
completion of fill, transition to mold packing, mold packing, gate freezing and mold cooling.
Indeed, the complexity of the pressure profile alone suggests that the entire pattern should be
considered as a complete picture or snapshot rather than selecting one or two discrete values
from the profile to represent the injection behavior.

GENERATING THE TRAINING/TEST PATTERNS
In this work, a BPN was trained for the pattern recognition task. To produce the training

and test mold cavity pressure patterns, three experiments were conducted on a Toyo Ti55G 2,
which is a production quality injection molding machine.
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Experiment 1 was a Box-Behnken designed experiment (e.g. Mason et al., 1989) in which
the ram velocity was varied between 20, 40 and 60% of machine capabifity, the hydraulic hold
pressure was varied between 1.73, 2.75 and 3.45 MPa and the barrel temperature was varied
between 293, 299 and 304 °C. The middle values for each sequence are considered the baseline
conditions. A three parameter designed experiment with three values for each parameter, when
using the Box-Behnken approach, results in 15 combinations or experimental conditions. Three
of these 15 are repeated experiments at the baseline conditions.

Ten pressure trace pattern were collected at each of the 15 conditions of Experiment 1.
Cavity pressure data was collected at a rate of 25 Hz over a period of 14 seconds beginning at
the start of injection for each shot using a high speed data acquisition system. A portion of the
resulting pressure profiles are shown in Figure 2. The length of the parts were mei ured using
a hand caliper.

Experiments 2 and 3 were designed to gather information on transient process behavior
caused by typical process disturbances such as variations in material characteristics. The baseline
plastic was a mineral reinforced nylon sold commercially as Minion 10B40. The first disturbance
material introduced was a 100% first generation icgrind, created by grinding parts molded from
virgin material back into pellet form and then using that material as feed to the process.

Other disturbances included a 50/50 virgin/first generation regrind mixture and a virgin
material contaminated with non-reinforced nylon. During an experiment, virgin material was
introduced before and after each disturbance to return the process to steady state. 161 and 192
pattern sets were collected from Experiments 2 and 3, respectively. The primary difference
between these experiments was the sequence in which the disturbance materials were introduced.

The input patterns for the BPN were created from this data using a multi-step procedure.
First, the patterns were shifted in time to locate the maximum cavity pressure for each shot at
0.12 sec. This normalizes the data by eliminating lag variability introduced from the hydraulic
actuation system. Second, unscaled pressure transducer data ranging from 0-10 volts were used
directly rather than scaling the signals between 0 and 77 MPa. Finally, every point between 0 and
0.25 seconds and every tenth point thereafter up to 9 seconds was used, thereby reducing the
number of points in a given profile from 350 to 28. The resulting patterns were "front-loaded"
in this manner to focus on significant features found during the relatively short injection period.

The BPN outputs were generated from the part length measurements corresponding to
the input patterns. Surface finish and part thickness are a few examples of other quality
parameters that could have been evaluated. Part lengths were reduced to values between -1 and
1 to correspond to a sigmoidal network output. To do this, the maximum, minimum and mean
values of the part length training data were determined. Then, using algebraic transformations,
the part length data was centered around a mean of 0 and scaled between -0.5 and 0.5 such that
the farthest point did not exceed a distance of 0.5 from the mean.

BPN TRAINING
Once the network pattern space was defined, a 28-4-1 BPN was constructed (Caudill,

1988; Rumelhart and McClelland, 1986). The 28-4-1 network consists of 28 input nodes, 4 hidden
nodes and 1 output node. The initial weights for the network were randomly generated values
between -0.01 and 0.01. The nonlinear activation function chosen for this network was the
hyperbolic tangent function with limits [-1,11. In addition, the more efficient conjugate gradient
technique was used during training to determine weight adjustments rather than the generalized
delta rule. For more details on BPN construction, see Cooper et al. (1992).

The network was trained using every other pattern obtained during Experiments 1 and
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2, and the complement was used as the test set to monitor BPN convergence. That is, the sum
of squared error (SSE) of the test set was evaluated along with, but independently of, the training
set. When a point was reached where improvements in training set SSE did not result in
corresponding improvements in the test set SSE, no additional BPN weight adjustments were
made and the BPN was considered converged.

Convergence occurred at approximately 2000 iterations. Further training would only have
resulted in memorization of the training set and a loss in generalization of the input/output
relationship. Data from Experiments 1 and 2 were used in an effort to develop a model well-
suited to both steady state and transient conditions. An independent evaluation of the network
performance was then made using data from Experiment 3.

Since the value of this approach depends on the BPN's diagnostic performance as
compared to current monitoring techniques, the network performance was compared to an SPC
model based on the current industrial approach of using peak cavity pressure. The SPC statistical
model was generated from the data collected at the baseline conditions.

A given part was considered acceptable if, in the SPC model, the peak pressure for a
particular sample was within the specified pressure range or if, in the neural network model, the
part length predicted was within the specified length range. The actual part length was then used
to determine the fraction of defects correctly identified by each method.

ONLINE QUALITY MONITORING
Figure 3 shows part length predictions for Experiment 3 data plotted along with actual

part length. As shown, the BPN predicted the data quite accurately. Discrepancies are visible in
the contaminated region; however, the model did predict the correct trend of shorter part lengths
and it is assumed that these parts would still be rejected, regardless of the error in this region.
Sample 54 is an outlier. The input pattern was shaped differently from any of the training
patterns. A pre-screening procedure may have prevented this error from occurring.

The only other significant model mismatch occurred in the region of 100% regrind. This
mismatch may have been caused by insufficient representation of this disturbance type in the
training set. The sample of regrind used in Experiment 2 (150 g instead of the usual 500 g) was
too small to generate the same response as a full barrel of regrind. Once again though, the
direction of the trend was correct. BPN's are very capable of interpolating between known input
patterns but, as evidenced here, are not reliably in extrapolating outside these patterns. In
general, however, the BPN model performed very well.

Figure 4 shows the result of the benchmark test. As shown, the BPN outperformed the
SPC peak cavity pressure model in terms of correctly accepting and rejecting parts. In the ± 1
to ± 4 standard deviation range where typical production limits are set, the BPN model identified
a higher percentage of defects than was observed with the SPC model. Beyond the ± 4 standard
deviation range where only distinct outliers are detected with such loose limits, the BPN
performed similarly to the SPC model.

CONCLUSION AND FUTURE GOALS
The BPN trained in this work was successful in predicting part length based on mold

cavity pressure profiles. In addition, the BPN demonstrated superior part quality prediction
capabilities when compared to SPC. This suggests that ANN's based on complete data profiles
can be applied effectively in the injection molding industry to improve quality monitoring. Future
work will focus on demonstrating the capabilities of this monitoring technique online and on
incorporating the technique into a viable closed loop quality control scheme.
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Abstract. This paper addresses the issue related to the modeling of a nonlinear process using neural
networks. Three network architectures, namely the multilayer perceptron (MLP), the resilient
propagation network (Rprop) and the radial basis function network (RBFN) are applied to real-time
identification of a waste water neutralization process. The results of these identification methods are
presented and compared for each neural network model. In addition these networks are implemented
in a model predictive control environment and their performance is discussed. 'he results show
that the network structures are applicable for modeling the system, the radial basii function model
improves the approximation and the control task.

Key Words. Identification; neural nets; pH control; predictive control.

1. INTRODUCTION

System identification can be described as the art and science of building mathematical models of
dynamical system and signals based on observed inputs and outputs. An expression for the examined
system's behavior has to be derived. During the last decade identification of dynamical nonlinear
systems based on observed input-output data has become important (Ljung, 1993). Conceptually this
approach results in learning a certain pattern from the training set and then applying that pattern
to new data. Modeling a system can be posed as the problem of learning an input-output mapping.
The system involved may be nonlinear and complex. The identification or prediction of time series
of these systems is the leading application area for neural nets to control problems. For the neural
network two different types of mapping structures are available: global mappings and local mappings.
Two network structures both belonging to the class of feedforward networks are considered here. The
multilayer perceptron (MLP) belonging to the first class has proven to be suitable for these problems.
In general, the learning speed for networks using global mappings is slow since they are normally based
on a backpropagation which is an iterative error-gradient learning algorithm. The backpropagation
algorithm is capable of training a MLP on nonlinear mappings, but convergence is not guaranteed due
to the local minima embedded in a typical error surface. In order to speed up the training procedures.
several other training methods for the feedforward architecture have been developed (e.g. resilient
propagation, quickpropagation).

An alternative architecture for implementing nonlinear multivariate input-output mapping is the radial
basis function network (RBFN) which belongs to the group of local mappings. In this case, the input
space is divided in localized receptive fields around center points. The architecture of a RBFN is
similar to the feedforward neural network. It consists of three layers of nodes: the input, the hidden
and the output layer. The activation of the hidden units is' computed by applying a radial basis
function to the Euclidian distance between the input pattern and the center vector. The performance
of a radial basis function network is determined by the two parameters associated with each RBF:
the proper selection of the RBF centers based on the available data points and the width controlling
the amount of overlapping.

In this paper, these neural network based models are used for the identification of a pH neutralization
process and their abilities to predict nonlinear time-series are shown. A chemical plant effluent is
simulated by mixing two components, sodium bicarbonate and sodium hydroxide, with time-varying
amounts. Sulfuric acid is used to neutralize the feed stream in a continuous stirred tank reactor. The
control goal is to add the exact amount of 112 SO 4 in order to neutralize process waste stream by
knowing only the pH of the stream.
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2. SYSTEM REPRESENTATION

2.1. Feedforward Neural Network

The multilayer perceptron (MLP) consists of interconnected processing units that are organized in
layers. After summation of the weighted inputs, a nonlinear function, in this case the sigmoid function
is used as the activation in each node. The structure of a three layer feedforward neural network
consisting of three input and one output units is shown in Figure 2.1. In this research two different
algorithms have been applied for training of the feedforward neural network using the sigmoid function
as the nonlinearity. The goal of the training procedure is to find proper weights of the network
that minimizes the sum of the squared errors between the network prediction y = tiý. ... -N]F

and the desired output y = [YI ...... yN]T. First, an enhanced backpropagation algorithm including
batching and step size optimization is utilized (Leonard and Kramer, 1990). It has been shown
that feedforward neural networks with one layer of hidden nodes and trained with backpropagation
are universal function approximators (Hornik et al., 1990). For the second learning procedure an
algorithm called resilient propagation is used (Braun and Riedmiller, 1992). Resilient propagation
(Rprop) is an adaptive learning algorithm taking the local topology of the error function into account.
An update value Aij is calculated for each weight adjustment according to the following equation:

C . At-i) if aE (t-1)
•j 19- t '1  > 0

Aiit)= l -# o~,,A~t-l) if 8---KE 0-1) <1)

0 else

where a and 0 are constants such that 0 < 3 < 1 < a. The update value is provided with a sign

depending on the gradient 'E-'. In this case the weight step is determined simply by the sequence of
awsi

the sign of the error function derivative. This turns out to be a reliable information about the local
error function. In case of a sign change of the partial derivative the previous update step of the weight
is reverted. The update values and the weights are changed in a batch mode, i.e. after each cycle
of presenting the whole data set. The resilient propagation algorithm can be characterized as a very
robust and fast learning algorithm (Braun and Riedmiller, 1993).

2.1. Radial Basis Function Network

Radial basis functions (RBF) have been proposed as an alternative architecture for generating mul-
tivariate, nonlinear input-output mappings. They are traditional techniques for strict interpolation
in multidimensional space. The generalized form of radial basis function is applicable to the network
structure. The radial basis function network (RBFN) uses local mappings to construct the input-
output space. It can be regarded as a feedforward neural netwcrk with three layers, namely an input,
a hidden layer with the RBF nonlinearity and a linear output layer. With each node of the hidden
layer a parameter vector, the center, is defined. Instead of evaluating just the weighted sum of the
inputs, the Euclidian distance between tht -put pattern x and the center vector c is computed. The
possible choices for input and activation fuactions for FNN and RBFN are shown iii Table 2.1. The
input of the hidden node is defined as q, V(q) denotes the nonlinearity associated with each hidden
node and o, is the width or spread parameter for the Gaussian function.

Table 2.1: Comparison of a multilayer perceptron and radial basis function network

Network Node input Activation
MLP (sigmoid) q = xrw i(q) = (1 + e-')-
RBF (general) q = ilx- ell . (q)

RBF (Gaussian) q = -- x - ell . o(q) =

RBF (thin-p.-s.) q = lix - wil . p(q) = q2 logq

Besides the Gaussian and the thin-plate-spline function shown in the table, other possible choices
ire the multiquadratic and the inverse multiquadratic functions. The performance of a radial basis
function network is determined by the parameters associated with each RBF. The proper selection of
the RBF centers based on the available data points is very important in order to reflect the whole
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input space. If the Gaussian function is selected as the nonlinearity, a second parameter associated
with each center is the width a. which controls the amount of overlapping. An optimal mapping of
the input to the output space would be the one that maps the probability density distribution (PDF)
in the most accurate manner trying to preserve the local structures.

In this research two different methods for the placement of the RBF centers are compared. In the first
approach, the initialization is done by choosing the centers evenly spaced over the whole input space.
During the training procedure the centers are adjusted based on a gradient descent method. For the
second procedure we selected a cluster analysis on the basis of Euclidian distance. Several clustering
algorithms are available and applicable for the selection of the center vectors: k-means clustering.
medoid and centroid methods (Kaufman and Rousseeuw, 1990). The clustering procedure applied in
this research is based on the k-means method. The initial centers xc are selected based on the mean
values of the input data. The center vectors represent the mean of value of each cluster. For each
data-vector xj of the input space, the dissimilarity dj, to each temporary center xc is calculated.
The vector xj is assigned to the nearest cluster and the mean of that cluster is updated. For the
identification procedure in this paper, the thin-plate-spline function has been chosen as the basis
function. The weights between the hidden and output layer are calculated using the gradient descent
method.

3. WASTE WATER pH NEUTRALIZATION

The previously described neural network structures have been applied to the identification of a pH
neutralization process. This operation is very challenging with respect to identification and control
since the process is of nonlinear nature and shows time-variant process gains. The described behavior
is generated by sudden changes in the chemical decomposition of the waste water. Using this system
the identification performance of the previously described networks structures are compared. In the
following, the radial basis function network trained with the clustering procedure is called RBFN-1.
the second approach is called RBFN-2.

3.1. Identification Results

The pH waste water neutralization process is simulated using the model described by Pr6ll and Karim
(1993a). A training set consisting of 700 input-output data pairs has been created by varying the feed
concentration according to a pseudo random with random amplitude sequence. Additionally, a test
set of 300 data pairs has been generated in order to evaluate the learning and generalization abilities
of the networks. The input vector x in this neutralization process consists of the pH value of the feed.
d(t) = pHfeed, the pH value of the tank y(t) = pHtank and the manipulated variable at each time
step u(t) = VH2 SO4 . Several tests suggested that the input vector x = [y(t-1), y(t-2), y(t-3), d(t-l),
u(t-1)]T is the most appropriate choice. This result was also obtained using the cross-correlation and
the auto-correlation tests. For the multilayer perceptron the number of hidden nodes was set to 8
based on the crossvalidation procedure described by Werbos ef al. (1992). A satisfactory solution as
shown in Figure 3.1 was achieved after 15 training cycles. For strong gradient changes of the function
small deviations are present at low and high pH values. For the second neural network structure based
on the RPROP learning algorithm the identification result is shown in Figure 3.2. As can be seen in
this case also, the error variance increases for local maxima and minima. The overall performance of
the resilient propagation network is surprisingly good keeping in mind the simplicity of this learning
algorithm.

The radial basis function networks - RBFN-I and RBFN-2 - have been trained with the same data
set using the aforementioned training procedures. For both cases the number of hidden nodes \'h has
been varied and the optimal solution with respect to the training procedure and the approximation
accuracy has been found as V-h = 15. The first RBF based network has been trained using the
clustering procedure for the centers and the gradient descent algorithm for the weights connecting
the hidden and the output layer. The overall performance is comparable to the FNN and RPROP
method. According to Figure 3.3. the RBFN-1 model is more accurate in regions of low and high pH
values. For the last identification procedure the centers are initially evenly spaced and then adapted
based on the gradient descent method. The result is shown in the next Figure 3.4. Compared to the
previously shown results the overall error has been reduced significantly. To achieve this accuracy, a
more time consuming learning algorithm compared to the RBFN-l and RPROP has to be adopted.
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Algorithms based on gradient descent are known to be extremely slow and tedious especially if they
are applied for the entire weight space. Both radial basis function networks show more appropriate
approximation abilities than the feedforward neural network using the sigmoid function. This is not
surprising since the RBFNs have a guaranteed learning procedure, while backpropagation can get
stuck in local minima (Broomhead and Lowe, 1988). The resilient propagation has similar problems
dealing with the nonlinearity of the input space, but has the advantage of a short learning time. The
standard square error (SSE) of all four modeling methods is shown in Table 3.1. While the SSE for
the MLP, RPOP and RBFN-1 is of the same order of magnitude, it has been reduced significantly
for the RBFN-2. The error for the radial basis function based on gradient descent training method
is shown Figure 3.5. The autocorrelation function applied to the modeling error shows an acceptable
white noise signal which indicates the quality of the model.

Table 3.1: Comparison of the standard squared error

Network RBFN-1 RBFN-2 MLP RPROP

SSE 0.05098 0.02602 0.05575 0.05865

4. MODEL PREDICTIVE CONTROL

In order to control the neutralization process the in the previous section described neural network
models are implemented in a model predictive control environment (Proil and Karim, 1993b). The
structure is shown in the Figure 4.1. As in conventional MPC, a nonlinear programming problem
(NLP) has to be solved every time step. This NLP is given by the multistep, quadratic cost function

mai J= I (eTree,) + j (Au(t + j)TrAu(t+ (2)

u(t),U(t+1),..,U(t+No- 1) tj=0

where ej is the error vector at time (t + j), Np is the prediction horizon, Nc the control horizon,
and rd is the estimated maximum time delay of the process. r. and r, are weighting matrices. A
detailed description of the neural network based model predictive controller is given by Pr6ll and Karim
(1993b). The solution to the nonlinear programming problem is based on the modified Marquardt
algorithm which incorporates boundary constraints by penalizing the objective function.

4.2. Closed loop control

Exemplary the multilayer perceptron and the radial basis function network (RBFN-1) have been
implemented into the MPC environment. The feasibility of using FNN and RBFN in nonlinear time-
varying closed-loop control systems are verified and the performance are evaluated. For the closed-loop
operation 1000 discrete time steps have been used. The control horizon was set to 1 and the prediction
horizon equal to 6. On the pH measurement a noise with zero mean and a standard deviation of 0.03
pH units has been superimposed. The weighting factors were obtained by a heuristic rule. For both
neural network models oscillations are visible at time step I = 250 and t > 800. These are due to the
shift of a very steep titration curve (t > 700, no buffer in the feed stream). Comparing Figures 4.5 and
4.6 it is noticed that RBFN based MPC shows a slightly superior performance than the multilayer
perceptron based MPC. The SSE of the offset between the setpoint and the real output is less for
RBFN than for MPC using MLP. The manipulative input for the RBFN based MPC controller is
shown in Figure 4.7. The figure for the manipulated variable in the case of MLP is similar.

5. CONCLUSIONS

In this paper, four different neural networks have been applied for the identification of a waste water
neutralization. These identified models have been implemented into a model predictive controller.
It has been shown how these networks can he used to estimate and implement nonlinear mappings
applied to time series. The performance of the RBFNs for the presented system is superior compared
to the multilayer perceptron. The effect on the closed-loop control experiments has been shown.
However, both model structures have been trained off-line. An opportunity to update the networks
with respect to the parameters and the network structure is desirable and is addressed in future work.
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Abstract
Currently plmular neurocontrol approaches exhibit one common problem: substantial application-
specific development is involved with each. Neural networks must be trained, essentially from
scratch, for every application. Retraining or adaptation is also necessary for handling process drifts
and changes in performance criteria. We discuss an approach for generic neurocontrol: the same, pre-
developed neural network can be used for a wide range of applications. No application-specific
training or adaptation is necessary; instead, application-specific aspects are provided as input to the
network. We refer to these neurocontrollers as 'Tarametrized Neurocontrollers." Some results are
presented for a PNC that includes a dynamic (recurrent) neural network.

Introduction
A common shortcoming of most neural network applications to control systems is the need for extensive
application-specific development. This is true for both neural network modeling approaches (e.g., 121),
in which case a network must be trained on appropriate data gathered from the process, and for the use
of neural networks as controllers, which require the optimization of the neural network controller
based on a process model (e.g., [51), the actual process (e.g., [1I), or an existing controller (e.g., 161).

The attendant expense in time and computation is a significant barrier to widespread
implementation of neurocontrol systems, and compares unfavorably to the implementation cost for
conventional control. For example, with the multiple-input multiple-output linear controllers that are
now widely used in the chemical process industries, once the (linear) model is identified, the controller
design is straightforward. Also, simple SISO linear control schemes such as PID controllers enable the
use of the same control law in domains as diverse as building, process, and flight control systems.

The number of successful neurocontrol applications is growing, but the overall impact of the
technology is still small. We assert that the high implementation cost of current approaches is a
primary factor. In principle, nonlinear control systems-we believe nonlinearity is the key feature that
distinguishes neural from conventional control--can benefit innumerable applications, but a
considerable increase in development time and effort will often be an unacceptable price.

We describe a "generic" neurocontrol approach: neural network controllers that are developed off-
line ar.d can subsequently be used for a variety of applications--both different processes and
performance criteria. No application-specific training or adaptation is required. We refer to these
controllers as "Parametrized Neurocontrollers" (PNCs). The concept has been presented before [8-
suggested for supplementary reading]. Here we provide further elaboration and further, although still
limited, experimental results, in this case with PNCs based on dynamic (recurrent) neural networks.

Parametrized Neurocontrollers
The key to the PNC concept are external inputs that inform the neurocontroller about specifics of the
process and control criterion. Thus relevant aspects of the application are provided as input to a PNC
(Fig. 1). These inputs are parameters that relate to parametrized process models and control criteria
and are in addition to dynamic inputs such as the setpoint, error signals, and meaured or estimated
process states. The two types of external inputs make PNCs generic in two distinct ways: the process
model parameter estimates p facilitate application to different processes and the control parameters
Pc allow different performance criteria to be accommodated.

The convenience of application of PNCs is obtained at significant, but off-line, computational cost.
Where current neurocontrol approaches require the training of a neural network for an individual
application (a process or process model and a performance criterion), PNCs are trained for a family of
applications (Fig. 2). For each weight vector w generated by the training algorithm (a nonlinear
optimization algorithm), a number of closed-loop simulations are conducted. These simulations sample

1-191



spaces of proess models PM, control performance criteria, input signals, and process model parameter
estimation errors. The cost function (w) that the training algorithm attempts to minimize is computed
as some function (e.g., the average or the maximum) of individual cost function evaluations from each
simulation (see 18,91 for some details).

The computationally intensive development buys on-line simplicity. Once optimized, the neural
network can be implemented as a hardwired module in a controller which can then be installed and
used on any process, and for any criterion, within its design space. The memory and processing
requirement imposed by PNCs are minimal: on the order of 100 weights and 100 arithmetic operations
respectively for the admittedly simple experiments we have conducted so far.

Nonlinear Control for Linear Processes
To develop a PNC for a variety of processes, an appropriate space of process models must first be
identified. This space determines the class of applications for the PNC. Where the target processes
are sufficiently similar in terms of the physical phenomena involved, and where these phenonmena
are well-understood, a parametrized first-principles nonlinear model can be used. But such cases are
rare and cannot form the basis of a truly generic control design approach. In most of our work, we have
adopted a simpler and more broadly applicable solution. In ignorance of known common nonlinearities,
we assume none. PNCs designed for linear process models are likely to be the most generic.

The wisdom of developing neural network controllers for linear process models may appear
questionable, but in fact nonlinear control can provide significant benefits even for this seemingly
simple case. We note two in particular.
1. Enhanced robustness. A nonlinear controller can provide less sensitivity to process changes such as
due to equipment wear, changes in ophrating, nts, and disturbances. For robust performance, the
optimal controller for a linear process nown to be linear only for some special cases 13,71.
2. Control of Arbitrary Response Feat, s. Linear controllers are often designed to minimize cost
functions, but synthesis procedures are limited to quadratic or other analytically convenient forms.
Thus performance parameters such as weightings on output tracking and control energy can be used to
adjust system response. In practice, however, control engineers and operators are often concerned with
practical response features such as settling times, rise times, and maximum overshoots. A nonlinear
controller can allow direct control of such features.

Dynamic Neural Networks as PNCs
All but the simplest feedback controllers are dynamic devices: the control output is a function of
historical information and not just the current process output. With neurocontrollers, dynamics are often
handled externally by providing, as input to the network, past samples of the process output or some
history-sensitive features of the output such as the integral or derivative error; the neural network
itself is a conventional feedforward architecture that implements an algebraic mapping.

Dynamic neural network (DNN) models-neural networks with built-in dynamic elements-are an
attractive alternative to such preprocessing solutions. An appropriately designed dynamic neural
network controller would not require the prior determination of the number of process output samples
that must be presented or the relevant dynamic features that must be computed.

Here we present some preliminary experimental results with hybrid SISO PNCs that consist of a
fixed PI (proportional-integral) controller and a dynamic neural network. The process space the PNCs
are designed for are linear first-order models. The PNCs allow direct control of the dosed-loop settling
time through a "desired settling time" input dsr. The overall controller output u is the summation of
the P1 output and the DNN output:
U - UPI + UNN.

The P1 controller is described by the linear dynamical equation

upi a KCe + KiJedt
where KC and KI are the proportional and integral gains respectively of the PI controller and e is the
error between the setpoint and the current process output. For the neural network, we have adopted a
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continuous-time dynamic model [41. The network consists of n internal dynamic units with outputs yi,
and the neural network output is a linear weighted sum of the unit outputs:

isn
UNN = lqiyi + q0.

i-l
The yj's are sigmoidal functions of the states xi of the units. We have chosen a computationally

more efficient sigmoidal form than the logistic curve or the hyperbolic tangent.
=+ IxiI

Each unit evolves according to a first-order dynamic equation with external inputs e and dsT:

T -=-Xi + X j 0 i + jo +p1e+p2dST,i=

from some given initial conditions M0). The network parameters to be optimized thus consist of the
output weights qi, the inter-unit weights wj,, the input weights pi, and the unit time constants Ti. In
these experiments we used five unit DNNs; the total number of modifiable parameters was 51.

The optimization criterion was the average squared error between the desired settling time and the
actual settling time (ie., as observed in closed-loop simulation). Both quantities were scaled between 0
and I over a range of reasonable values. The average was computed over 200 closed-loop simulations
with different randomly determined dST values, setpoint changes, controller initial conditions, and
parameter estimation errors. For a more realistic PNC, the simulations would also cover a space of
process model parameters. With a linear first-order process however, generality in process model space
can be more simply achieved by appropriately scaling the dynamics and the output of a controller that
is designed assuming a single process model.

To calculate an accurate settling time, the simulated dosed-loop has to be in steady-state when the
setpoint change is made. With the nonlinear controller in the loop, steady-state can only be ensured by
running the simulation. The random initial conditions constitute a disturbance to the closed-loop. We
require the dosed-loop to settle to the original setpoint within a certain duration (1000 time steps in
the experiments reported here), at which time the setpoint is changed and the settling time can be
computed. The design procedure thus imposes a constraint on disturbance rejection while regulating the
settling time. A prohibitively high cost function value is returned if the disturbance is not rejected.

We designed PNCs under two conditions: a nominal design in which the PNC had perfect
parameter estimates available, and a robust design for which parameter estimation errors of up to 10
percent were injected. The performance of the optimized PNCs was then evaluated over a range of
estimation errors. As shown in Fig. 3, the nominal design is superior for low estimation errors but
degrades less gracefully. The robustness is manifested in higher values of estimation error, not in the
design range--in fact, the nominal design performs better until around 15%. Figure 4 shows sample time
responses for the robust PNC for low, intermediate, and high settings of dsT (with perfect parameter
estimates). Both disturbance rejection and setpoint tracking responses are shown.

As is apparent from the figure, effective control of the settling time is achieved with the one tuning
knob. However, the responses shown are unsatisfactory in one important respect. In general, settling
time and response overshoot are complementary features. Overshoot is the cost typically paid for fast
settling, and PID controllers allow-indirectly--for reducing the overshoot by increasing the settling
time. The PNC shows the opposite correlation: the overshoot increases with increased settling time.

This observation highlights one aspect of our approach. The PNC concept permits a flexibility in
control design that has not hitherto been attempted to our knowledge. This flexibility has some
adverse implications. The design procedure, coupled with the near-universal nonlinear dynamical
system modeling capabilities of neural networks, can lead to controllers that satisfy all explicitly
specified requirements but in unexpected and non-intuitive ways. PNC design imposes more of a burden
on appropriate problem specification than conventional control design. In the example above, the cost
function should incorporate a weighted overshoot penalty. When this is done, the desired inverse
relation between settling time and overshoot is obtained.
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ABSTRACT

In this paper, we present the development of a neural network (NN) based model to predic "'e Melt Flow
Index (MFI) on a propathene reactor, from other available measurements. The MFI is a. isure of the
average molecular weight of a polymer and represents an important product quality specification.

1. INTRODUCTION

The work reported in this paper is one of the projects being undertaken as part of a collaboration between ICI
(Australia and the UK), and the Universities of Sydney (Australia) and Newcastle (UK) into the potential for
applying neural network technology within ICI worldwide. The eventual aim of this work is to provide a
prediction of the MFI that is robust enough to be used as part of a closed-loop control scheme. Attempts by
previous workers to produce a mechanistic model of this reactor have been singularly unsuccessful.

There are two main potential advantages to the use of neural networks for such model development. Firstly,
they can provide an accurate approximation to most dynamic systems (Narendra and Parftsarhy, 1991). In
addition, the available computer hardware and network training algorithms are now such that a fit to the
available training data can be achieved in a reasonable time (Hush and Horne, 1993).

Data preprocessing and NN structural analysis pertinent to this plant have been presented in previous papers
(Agamennoni et aL, 1993 and 1994). The NN prediction scheme was developed to predict the M•W variation
one hour into the future. Two different schemes were studied for this purpose. The differmce between the
two schemes is in the number of input variables considered. In the first scheme, four input variables together
with an averaged present value of the MFI form the input set. In the second scheme, six inputs are used, with
a special data compressor being employed for four of the inputs in order to reduce the number of tapped delay
inputs.

2. PREDICTION SCHEME

The NN based prediction scheme was developed to predict an averaged MFI variation, which may be
mathematically expressed as follows,

l 2

AMFI(t) = XMFI(t +60+ 10 *k)- YMFI(t- 10 *k) (1)
k-1 knO
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where t is time in minutes and AMFI is an incremental change between the actual MFI and the MFI one hour
ahead. The sampling time used was 10 minutes and averages of three samples were used to reduce the effects
of measurement noise.

A prediction erro E(t) may be defined as the difference between the AMP! value and the NN output:

E(t) = AMFI(t)- NN(t) (2)

2I Prediction Scheme 1

Figure I shows the architecture of the first prediction scheme. The average of the last three MFI
measurements, as well as the feed flowrate to the reactor, the average temperature (ic the average of all
available temperature measurements in the reactor), the reactor hydrogen concentration and the central probe
temperature (ie the single most representative available temperature) are used to predict the average of three
MFI values one hour into the future.

Propylene feed T D

Horiz=1S
u(t)

T D u(t-1)
Average Temp. T D u(t-2)

uort)1 UW oriz ut2

HydrgenConcent T DNN (t-Horiz)Hor--5 I__ - 4:NN(

T DCental Probe em. "--z'• (t-V I Ho riz )

I A Vt-Horiz+k)

Hod*zkO

"TD isa tapped delay unit and Horiz the number of samples backward, while AV is an averaging unit.
NN 46:$:$:1 is a feedforward network with 62 inputs (4*15+2), 5 neurons in the input layer, 5 neurons in
the hidden layer and I output.

Figure 1: Prediction Scheme 1.

The data set available had 1170 sample points. The first 870 sample points were used for training and the
remainder for testing. The network was trained using a bap aa based algorithm with the following
features:

(a) Random selection of a subset of the training patterns. A new training set of 400 sample points was
randomly selected fiom the first 870 available samples every 30th epoch.

(b) Individually adapted learning rates (Jacobs, 1988). Each parameter wi (ie both weights and biases) has
its own adaptive learning rate, Iri and in each epoch k is adjusted as follows,
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h(k)*kinc if -L doesn't change sign.

liý(kride ifC~echanges sign.

where e is the sum of squares error E(t) defined in eqn. (2). The learning factor was automatically adjusted
between 0 and I with Irin = 1.05 and Irde = 0.75. while the momentum factor was fixed at 0.95. Differat
size neural networks were tried, with that shown in Figure 1 being the smallest that allowed us to achieve an
acceptably accurate approximation.

Figure 2 shows the measured MFI and the output from the NN. It is important to note that the NN output is
very close to the measur-ed value for the furs 130 testing samples, that is up So a sample aumber of 1000.
Beyond this point, it should be realised that the prediction scheme is being asked to predict MFI values in a
range considerably above the levels seen by the network during training.

I 12 0

I eDM

~NN oqpt

Sam$ imuber (10[nin.J eac)
Figure 2: Measurea MFI and predicted (one hour ahead) value for scheme I.

7nf Teuf
1E I

25=o

a 15m-

MRj iwUok

10.qmq"nmw(0lhleh

Figure 3: Absolute error (IEI) between the measured and (one hour ahead) predicted MFI values.

Figure 3 shows the absolute value of the prediction error, as defined in Equation. 2. During the firs 150 mea

samples (ie 25 hours of operation]), the error in the prediction is always below 2 MFI units, while the
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absolute value of AMFI, as defined in Equation 1, reachs values close to 4 MFI units in the first half of test
samples and 8 MFI units in the second half of test samples (see Figure 4).

1A MR I

II

* II

0ý ZZOO 4.00O 45O0 MOO 1 0040 1 ZOO

Sample number (10[min.] each)
Figure 4: Absolute value of the incremental change AMFI.

2.2 Prediction Scheme 2

In an attempt to improve the accuracy of the NN based prediction scheme, additional inputs were introduced
into the model. However, to maintain the number of inputs at an acceptable level, a compression scheme was
implemented. The process variables that are known to directly affect the MFI may be classified into two
groups:

(a) High level relationships: The hydrogen concentration and the central probe iempertmure.
(b) Medium level relationships: The feed flowrate to the reactor, the amount of reaction activator added to

the reactor. the catalyst shot rate and the average reactor temperature.

Inputs belonging to the first group (along with the average of the last three MFI measurements) were fed
directly to the NN as before, while inputs in the second group were 'compressed' using an auto-associative
network (see Figure 5) before being fed to the predictive NN (see Figure 6). Auto-associative networks use an
architecture composed of an input layer, a number of hidden layers and an output layer in the manner of a
typical feedforwaud network. The hidden layer in the middle is called the bottleneck layer. The network is
trained to produce the identity matrix, that is, to produce idemtical input and output patterns In this way, a
compression of the information is produced in the bottleneck layer. The size of the bottec layer may be
considered as the number of nonlinear principal components required to describe the system.

4"ttlenc 4pboulmeeck
layerlayer

pu outputscompreed outputs

a) Training: The network is trained to reproduce the
identity, i.e. input=output, b) Compression: half of the previous network

Figure 5: Auto-associative networks for (a) trainingand (b) data compression.
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Figure 6: Prediction scheme 2.

Use of the second scheme allowed us to improve the approximation of the MF dynamics during the training
phase (see Figures 7 and 8 for sample points up to 870, and compare with Figures 2 and 3). Fo the &am 25

test samples (about 4 hours of operation), the second scheme also shows better performance than the first
scheme. However, the test results beyond this point are not as good as those obtained with theptim
scheme. Overfitting of the traininig data appears to be degrading the behavior of die networ with respect ID

long-term prediction. As with the first scheme, the second approach fails to predict the largest changes
during the test phase where the network is being exposed to MFI values beyond those seem durmg traming.

'I 'I CD-MRMn

NN mtput

I CD D

e. .,A

Sunple number (10[mm.] mau)

Figure 7: Measured MFI and predicted (one hour ahead) value for scheme 2.
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Figure 8: Absolute error (RD) between the measured and (one hour ahead) predicted MFI values.

3. CONCLUSIONS

The results of a study regarding the possible development of a neural network based model to predict the
MFI of the product from a propathene reactor one hour into the future, from meamsred operating vaiables,
have been presented.

Two schemes were used to provide a prediction of the MFI into the near future. Both schemes showed that it
is possible to produce a good prediction of the MFI behaviour one hour ahead. With the first scheme, it was
possible to predict the variation of the averaged MFI, within an acceptable hor, during a ow day s period
without having to retrain the network. It should be noted that during this day's prediction the MFI gradully
increased to values considerably above those seen during the training period. However, to maintain
prediction accuracy over longer periods of time, it is felt that an adaptive scheme (rather than periodic
retraining) would be a more practical option.

ICI Australia operations personnel are currently considering the practicalities of employing such an estiuator
for the MFI in both open and closed-loop modes.
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Abstract In this paper an earlier inferential approach is extended to nonlinear systems. A statistically based neural
network modeling approach, NNPLS (neural network partial least squares), is used to develop the inferential models.
Application of the inferential approach to the Tennessee Eastman industrial test process is investigated. Control of both
the product flow and compositions is improved with the inferential control.

1 Introduction
The Tennessee Eastman Control Problem is a realistic and complicated plant-wide process control test problem

(Downs & Vogel, 1993). With 41 measurements, 12 manipulated variables and a large range of operation, the Tennessee
Eastman process can be used to study many topics in basic and advanced control. A number of studies have be carried
out on the Tennessee Eastman process (Ricker, 1993a; Ricker, 1993b; Lyman & Georgakis, 1993; Banerjee & Arkun,
1993; McAvoy & Ye, 1993; Ye et al., 1993b; Ye et al., 1993a). A base decentralized PID control system has been designed
for the process which can stablize the system, reject all disturbances, follow all setpoint changes, and which also can move
the process to different operation regimes (McAvoy & Ye, 1993). Control for the process can be improved by adding
advanced control on top of the base control system. One problem for the process is that due to some unmeasurable
disturbances the product flow rate and compositions have large variations under the base control. How to improve the
control of nonlinear systems for unmeasurable disturbances is a general problem in chemical plants.

This work will provide a method for reducing the variation of the product properties, or the key controlled vari-
ables, for nonlinear systems with unmeasurable disturbances and apply the proposed control approach to the Tennessee
Eastman test plant. An inferential control structure was proposed by Ye et al (1993b) which used PLS (Partial Least
Squares) models and applied them to the Tennessee Eastman process at one operation point. With the inferential control
approach the variations of the product flow rate and compositions were decreased for some unmeasurable disturbances.
In that work linear models were used for the single operation point. This work is an extension of the above work to
nonlinear systems in which multiple operation points are considered and nonlinear neural network modeling techniques
are applied. In another project, Ye el al. (1993a) applied an optimal averaging level control approach to the Tennessee
Eastman process. The optimal averaging level control made significant reduction in the variation of the product flow.

Recent research has shown the powerful function of neural networks in nonlinear systems modeling (Bhat et al.,
1990; Piovoso & Owens, 1991; Billings et al., 1992; Qin & McAvoy, 1992). Qin and McAvoy (1992) proposed a method
combining neural networks with PLS named NNPLS (Neural Network Partial Least Squares). In neural network
modeling the preselected input and output variables are often correlated. By integrating statistical analysis methods
and neural neural networks as is done in NNPLS, input and output data are analyzed before the data are used to train
neural networks. In this way, the training time is reduced and model accuracy is improved. NNPLS will be used for
modeling in this work.

In the next section, the Tennessee Eastman process and the base control system will be introduced first, and then
the optimal operation poin. ; for different product ratios and optimal averaging level control will be discussed. After
that, the inferential feedforward/feedback control with the NNPLS models is presented. The results of the inferential
control for the Tennessee Eastman process at the different optimal operation points are given and compared with the
results of the base control and the optimal averaging level control.

"To whom all correspondence should be addressed.
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Figure 1: The Tennessee Eastman process and the base control system

2 Overview of the Tennessee Eastman Problem

2.1 Tennessee Eastman process and base control system
Fig. 1 is a schematic of the Tennessee Eastman process with the designed base control system. The are five unit

operations involved in the process, the reactor, separator, stripper, condenser and compressor. Two main reactions
take place in the process to produce liquid products H and G from gaseous reactants A, C, D and E. There are three
operating modes for G/H ratios at 50/50, 90/10 and 10/90.

A systematic approach was used to design the base control system (McAvoy & Ye, 1993). The base control system
has 1 single loop, 9 cascade ioops and 1 cascade ratio loop. A selector control system, which is not shown in Fig. 1, is
also designed for rejecting a disturbance which shuts down one of the key manipulated variables, the A feed stream.

2.2 Optimal operation points
In the Tennessee Eastman test problem (Downs & Vogel, 1993) only one base operation is given for G/H ratio at

50/50. Ricker (1993b) calculated the optimal steady state operation minimizing the total cost of the plant for different
product ratios with G/ll at 90/10, 50/50 and 10/90. However one problem with his results is that some valves are at
there low or high limits, which decreases the degrees of freedom of the system. Another problem is that at the optimal
operation points, the purge stream is too small for the process to meet the material balance at steady state for some
disturbances.

In order to get optimal operation points at which the base control system still can reject all the disturbances, the
optimization was done differently with some constraints employed. It was found that the stripper steam cost in the test
problem is almost three times higher than a reasonable steam cost, which results in the steam valve always being at its
low limit at optimal points. Because the steam flow with a reasonable cost has a small effect on the total cost of the
process , the steam valve is fixed at 50% open. Another constraint is that the recycle valve is fixed at 20% open. In this
way at the optimal points the loop pairings of the base control system are still appropriate according to relative gain
analysis (McAvoy, 1983). The last constraint for the optimization is that the steady state value of the B composition
in the purge is small enough for the process to satisfy a material balance when it undergoes a step reduction in the B
composition in the C feed from 0.005% to 0.002%. The number 0.002% is determined based on the disturbance size
given in the test problem. With all the constraints, the optimal operation points for G/H at 90/10, 50/50 and 10/90
are calculated. I

'The optimal operation points (steady state values and valve positions) are available in electronic form. Contact by
E-mail: nyycl@eng.umd.edu.
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2.3 Optimal averaging level control
An optimal averaging level control approach was applied to the Tennessee Eastman process and control of the product

flow rate was improved significantly (Ye et al., 1993a). Similar results are obtained when the optimal averaging level
control is applied at the optimal operation points. The variation of product flow rate is greatly reduced. However it
is found that the variation of the product compositions is increased when the optimal averaging level control is added
to the process. In other words, the improvement for the product flow rate is achieved at the expense of the product
compositions. The inferential control presented in this paper will improve the control for both the product flow rate
and product compositions.

3 Inferential Model Development
The random disturbances of the compositions in the C feed flow cannot be measured and they have large effect on the

product properties. Unmeasurable disturbances causing large changes in product properties is a very common problem
in chemical processes.

Often these unmeasurable disturbances affect some other variables, such as pressures, temperatures and valve
positions in a plant faster than they affect the products, which are the variables one really wants to control. If one
can build a steady state model to predict the unmeasurable disturbances from the pressures and temperature etc.
and another steady state model to predict product properties, the controller moves for the product properties can be
calculated based on the two models by compensating for the disturbances while keeping the product properties constant.
The model for predicting the disturbances can be written as

d = Fi(ym,ul) (1)

where d is the predicted disturbance vector, ym represents the measurement vector which involves temperatures and
pressures and ul consists of the controller moves which include valve positions and the setpoints of the cascade inner
loops except the controllers for the product properties. The model for predicting the product properties is

y = ;(u 2 , d) (2)

where ý are the predicted product properties, u2 are the manipulated variables of the product properties. From Eq. (1)
and Eq. (2), one can calculate values of u2 to keep ) constant for the predicted disturbances d.

In earlier work (Ye et al., 1993b), an approach is proposed to use one model to directly predict the controller moves,
u2 , for eliminating the disturbances and keeping the product properties at their setpoints. The model is

U2 = G(y,, ul) (3)

The output of Eq. (3) is equivalent to the results calculated from Eq. (1) and Eq. (2). However it is much simpler to
just build one model and use one model to directly calculate u2 .

For a linear system, Eq. (3) can be a linear model. For nonlinear systems, nonlinear modeling techniques should
be used. Another aspect which has to be considered during modeling is the correlation among the input variables in
Eq. (3). The dimension of y.. and ul is usually very large and the variables in y,,r and ul are highly correlated. The
NNPLS modeling approach (Qin & McAvoy, 1992) combines neural networks with partial least squares. It is a nonlinear
modeling approach and at the same time deals with the correlation problem in the input and output variables. For
the Tennessee Eastman process with G/H at 50/50, 10/90 and 90/10, a nonlinear model is needed for predicting the
controller moves. The NNPLS models are used in this work instead of the linear PLS models used in (Ye et al., 1993b).

3.1 Input and output variables
For the Tennessee Eastman process with the base control system, the model outputs u2 are the D and C feed setpoints

which are manipulated variables for the product flow and product composition ratio. yr involves the total feed to the
reactor, separator temperature, separator pressure and stripper pressure, which are the measurements not being used
by the base control system. ul consists of the A feed flow setpoint, E feed flow setpoint, purge rate setpoint, separator
underflow setpoint, stripper steam flow setpoint, reactor cooling temperature setpoint, separator cooling temperature
setpoint and compressor recycle valve. The setpoint of the G/H ratio is added as another input variable representing
different operating conditions.

1-203



Figure 2: The inferential feedforward/feedback control with neural network models

G in - 90 1
1

0 = - o50/ 150 = 10l90
Flow G Plo. G I Flow G

a&*e control 0.393 0.0676 0.537 0.113 0.522 0.0336
Base + Aver•n a evel control 0.184 0.131 0.205 0.12 0.214 0.088
Bate + Averayg e + ancrenam contro .0660 0.0470 0.118 0.129 0.126 0.0363

Table I: Standard deviation of product properties with different control schemes

3.2 Data for modeling
Input and output data are collected for training and testing the NNPLS models. Disturbances with different sizes

are added to the process when all the loops in the base control system are closed. For each disturbance, the process
converges to a steady state and the input and output variables of the model are recorded. Data are generated at the
three optimal operation points with different G/H ratios. A total of 720 data points are calculated.

3.3 Model training and testing
Two separate models are used for predicting the D feed and C feed setpoints. For the D feed setpoint, all 13 input

variables are used. For the C feed setpoint, the inputs are the A feed setpoint and G/H ratio setpoint only. Analysis
was carried out for selecting the input variables for the C feed (Ye et al., 1993b). It is still true for the NNPLS models
that the A feed setpoint is the dominant variable affecting the C feed. The G/H ratio, which is retained as a input for
the C feed, reflects the different operating modes.

One third of the data are used for training and the rest for testing. Both the models have three factors. Adding
more factors does not have much effect on model accuracy. The model for the D feed has 8 hidden nodes and for the C
feed 3 hidden nodes. Both models can capture more than 80% of the total variance in the training and testing data.

4 Inferential Feedforward/Feedback Control
The developed inferential models are added to the base control system. This forms an inferential steady state

feedforward control system. A diagram of the feedforward/feedback control for the Tennessee Eastman process is given
in Fig. 2. Since the D and C feed setpoints calculated by the steady state models could have relatively fast changes,
first order filters are used to slow down the changes. In the statement of the Tennessee Eastman problem, constraints on
the rate of change for both the C feed and D feed were given. The C feed could not have significant frequency content
in the range 12 to 80 hr-1 while the D feed could not have significant frequency content in the range 8 to 16 hr-'. The
first order filters are designed according to their constraints. The transfer function of the first order filter for the D feed
is 1/(0.56(hr)s+l) and for the C feed is 1/(0.36(hr)s+l).

5 Results
The inferential feedforward/feedback control is implemented on the Tennessee Eastman process together with the

optimal averaging level control (Ye et al., 1993a). The process is operated at the three optimal operation points. The
disturbances considered during modeling are the random fluctuations of compositions in the C feed flow. Control results
for the product flow rate and product compositions G are shown in Fig. 3 and Fig. 4, in which the results of the
inferential control are contrasted with the results of the base control and optimal averaging level control. Comparison
of the standard deviation of the product flow rate and product compositon G among different control schemes is given
in Table I. For product flow rate the standard deviation is reducted 78% from the base control to the inferential
control, and 42 % from the optimal averaging level to the inferential control at 50/50 G/H. The corresponding results are
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83% and 64% at 90/10 G/H, and 74% and 41% at 10/90 G/H. Improvement with the inferential feedforward/feedback
control using the NNPLS models is significant for the product flow.

Fluctuations in the product composition G are increased with the optimal averaging level control. By adding the
inferential feedforward loop, variation in the product composition is reduced. This is because the optimal averaging
level control only considers the flow rate, while the inferential feedforward/feedback control takes both the flow and
compositions into account.

6 Conclusions
An inferential feedforward/feedback control structure using NNPLS neural network models is proposed in this paper.

These neural network models can capture disturbance information faster than the feedback loop can and control for the
unmeasurable disturbances is improved.

The inferential control is applied to the Tennessee Eastman process at the optimal operation points for the product
G/H ratios at 90/10, 50/50 and 10/90. The inferential control has reduced the variation in the product flow rate over
that produced by optimal averaging level control. The unmeasurable disturbances, the random fluctuation in the C feed
compositions, only cause very small changes in the product flow with the inferential control, while with the base control
the change is significant. The inferential control approach also has improved the control of the product compositons
which was degraded when the optimal averaging level control was applied to the process.
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We consider a simplified (one-dimensional) version of the coupled Thalamus-Nucleus
Reticularis Thalamus-Cortex system. We simulate on computer the injection of current into selected
columnar portions of this system. We propose a model for the control of conscious sensory aware-
ness, and show that the results of our simulations are consistent with the experimental predictions
of Libet (1982) on the study of neuronal functions for conscious sensory experiences.

1 Introduction

Recently, consciousness and the control of consciousness have become an important topic of study
in the cognitive sciences. We find in the neurobiological literature, however, that these topics have
been the subject of attention by neurophysiologists for some time now. Primarily, in this paper, we
are interested in the important set of results obtained by Libet (1982).

It is known that much of the activities and responses of the waking human brain
proceed without conscious effort on the part of the individual, and without subjective experiences
being directly associated with them. To study conscious sensory experiences (and, generally, subjec-
tive experiences) with respect to neural actions that ultimately determine them therefore requires
an ability on the part of the experimenter to be able to manipulate neuronal dynamic activity in a
controlled manner. Libet (1982) stipulates that direct intracranial electrical simulation of neurons in
a conscious human subject is one of the very few approaches available for such purposes. Even then,
the risks inherent in such an approach, as well as the different responses that electrical stimuli can
elicit, restrict the possible scope of such experiments. Furthermore, any direct electrical stimulation
of neurons has to be acceptably brief, thereby further restricting the scope and effectiveness of the
experiment to only those neuronal activities that were initiated within this brief duration of the
stimulus.

One finds that electrical stimuli, in general, initiate (or alter) three distinct types
of cortical cerebral functions:

* The "excitable" effect in the cortex, where some overt functional response is elicited. Examples
include the electrically recordable primary evoked potential of the primary cortex, which is
followed by slower event-related potentials over wider cortical regions, which are related to
cognitive aspects of the sensory response.

* The "interference" effect observed in the excitable cortex, e.g. the masking of normal peripheral
sensory inputs when electrical stimuli are applied to the primary sensory cortex. Typically, it
is observed that interference requires a larger electrical stimulus than that needed to initiate
a sensory experience (which has a definite threshold).

* The "modularity" effect, e.g. enhancement of somatic sensation or complex psychological
changes occuring as a result of electrical stimulation.
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In the next section, we describe the results obtained by Libet (1982) in the light of
these identifiable cortical cerebral functions. We also give a mathematical analysis of his results and
propose a model base on this and earlier work by us that justifies Libet's observations. In Section
3, we present results obtained by us by computer simulation that give credence to our model.

2 Relationship between injected current and sensory re-
sponses

It has been possible to study the responses identified in the previous section and identify some
of the important parameters that elicit a conscious sensory experience following direct neuronal
stimulation. Specifically, we are interested here in the temporal factors that govern the relationship
between such sensory experiences and their underlying neural activity. The relevant parameters in
this case turn out to be the peak current (the intensity I) and the train duration (TD) of a train of
pulsed stimuli of some brief period < 0.5 milliseconds. Libet's work involved the application of I at
just the threshold level needed to produce conscious awareness (e.g. of skin being touched). When I
is adjusted for each -D, it is found that there is a minimum intensity Inin below which no sensation
is reported no matter how long 7D is made. Conversely, Immi elicits no response at all unless it is
repeatedly pulsed for at least an average of 0.5 seconds. This large value of TD was termed by Libet
the "utilisation rD", and was observed to be independent of changes in the pulse frequency v or
other stimulation parameters. For rD smaller than the utilisation TD, the required Imin begins to
grow rapidly (see Figure 1 in Libet (1982)).

Libet's empirical observations have been subjected to their first (as far as we know)
mathematical analysis in Taylor (1993). Consider Figure 1, which shows the qualitative behaviour
of the relationship between I and TD, as observed by Libet. We can identify two distinct regions in
Figure 1, namely region A and region B.

In region A, we see that the minimum time for conscious awareness (TD) decreases
as I increases. For fixed firing frequency v, the quantitative results obtained by Libet show that

I2 = constant. (1)

For varying v, this is modified to
VI2 rD = constant, (2)

oc E,

where E is the total electrical energy being delivered.
In region B (for TD _Ž 0.5 seconds), we have

I (X V-1, (3)

or, equivalently,
VI2 = constant, ()

Oc P,

where P is the electrical power supplied.
We conclude, as in Taylor (1993), that consciousness requires a minimum energy to

be switched on, but a minimum power for its continuation. The condition on E (consistent with the
'time on' proposition of Libet) to achieve consciousness is, simply,

E > o, (5)

where 0 is an appropriate threshold. This, together with earlier work on the global control and
growth of activity on the cortex modulated by the underlying nucleus reticularis thalamus (NRT)
acting as a Fourier filter (Taylor & Alavi 1993), enables u,. to present a model with the above
property. Qualitatively, we propose that:
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The uniqueness of consciousness arises from competition between areas of cortical
activity controlled by a sheet of (inhibitory) NRT neurons.
We do not intend to repeat here the mathematical analysis of our model, details of which can be
found in Taylor & Alavi (op.cit.), nor the anatomical or more general description of it, first presented
in Taylor (1992).

3 Simulation Results

3.1 The Simulation Model

The sinmulation model we investigated is illustrated in Figure 2. It is essentially one-dimensional,
which corresponds to lines of thalamic, NRT and cortical neurons. It is useful for simulation purposes
to think of the boxed subsystem in Figure 2 as a single module that can be linearly replicated (with
bidirectional lateral links among the NRT units). This allows the size of the simulation to be scaled
to suit the available computing power.

Within each module, we have inter-unit signal flow as specified by the arrow-tipped
curves. Every tip labelled with a '+' signifies an excitatory signal, while every '-' corresponds to an
inhibitory signal. Within every module, the time evolution of each neural unit's voltage is determined
by integrating the following set of equations (they were described in more detail in Taylor & Alavi
(1993)) with the notation it = Ou/Ot:

1 1r
fic(r) = - uc(r)+ 1 VC(rr')fT(UT(r')) (6a)

TC rc,

i'N(r VN(=) 11 [WNECIir')fctt~r' + TVNE'(r,r')VT(UT(r'))

N N, (6b)

+W/VN (r, r')gN('N (r'))] + dendro-dendritic terms

Tr(r) vr(r) + 1 1: wJN(r,r')gN (vN (r')) + IWToI(r) (GO

TT r' TT

1 ~~1 E E, [l , 1) (6dtT(r) -- -- uT(r) + Y' CE(rr')fc(uc(r)) + WTT(rr)9r(VT(r))] + -1(r)
TT TT d L ~TT

Excitatory neurons are assumed to be at a coordinate position r (using the same
coordinate frame for thalamus, NRT and cortex) on the thalamic and cortical sheets and to have
membrane potentials labelled uT(r) and uc(r), and sigmoidal outputs fi(ui), (i = T and C, re-
spectively), with threshold Oi and temperature Ti. Inhibitory neurons in the thalamus and on the
NRT (with the same coordinate positions) have membrane potentials denoted by vT(r), vUN(r), with
similar sigmoidal outputs gT, g9N to the other neurons. Connection weights from the j'th excitatory
(inhibitory) neuron at r' to the i'th excitatory (inhibitory) neuron at r are denoted by WiqE (r, r'),
WP~(r r'), J|f.(r,r'), |4/(rr)

Within a computing context, of course, a discretised version of these equations
has to be integrated over some suitable small time step (we used the Runge--Kutta fourth-order
integration routine). Such a scheme entails in practice that we replace the hard-limiting non-
linearity by a smooth analytical function. We adopted (in the actual simulation code) the following
form, as used by La Berge et al.(1992):

f(XA) = hAY(XA - OA)11 - exp {-#A(XA - OA)}], (7)

where hA is a scaling parameter, Y(o) is the step function, OA is the threshold for unit A and OA is

its inverse temperature.
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3.2 Simulation Results
In Figure 3, we plot the result., " one of our actual simulation runs. The x-axes of these plots
represent the spatial positions of a fine of 100 neurons. The y-axes represent OUT(uT) and OUT(VT)
for the cases of the thalamic excitatory and inhibitory neurons respectively, and user-scaled' raw
voltage output from the UN and Uc excitatory neurons in the NRT and cortex respectively. Time
delays for signal propagation between neurons were set to zero. The simulation was allowed to
proceed as follows: a small input (of critical height2 h, = 7.33) is first allowed to propagate from
the thalamus to the cortex from neuronal columns 60 to 90. The cortex is allowed to settle down
into its stable state of activity (which represents a stable sensory experience). At this point (within
to steps of integration), a stronger input (of height hin > 7.33) is injected in the neuronal columns
20 to 50. This corresponds to an injected electrical stimulus. The stimulus was observed to destroy
the established stable activity on the cortex an-] replace it with new activity representative of the
new stimulus. The time taken to destroy the original activity completely, T, is recorded. Figure 4
shows this process diagramatically. In Figure 5, we plot the values of T obtained against hin. The
qualitative agreement with Libet's experimental observation (cf. Figure 1) is clear.

4 Conclusions

The thalamus -NRT-cortex comples model is in agreement with the results of Libet and his col-
leagues (1982) that conscious awareness, produced by application of electric current by direct cor-
tical stimulation satisfies electrical energy (to turn on) and power laws (to stay on). We interpret
such agreement as itself experimental support for the thalamus-NRT-cortex model of conscious-
ness. This model is part of the 'relational mind' approach to consciousness of one of us (Taylor
1991, 1992), and needs to be augmented by activity in other areas, such as working memories, etc.
However, the part of the model involved with the thalamus-NRT-cortex complex not only seems
supported by what is the most relevant available quantitative data, but also can be extended to
include further data on timing assessments associated with the phenomenon of 'bacward referral of
time', also associated with Libet. Both the original data and the extension to temporal features lead
to extensive predictions of further experimental features; these may be able to be tested in the near
future (Villa 1993).
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'As a result, the vertical scales in any of the plots are not in proportion. This, however, is not a concern, since we
are interested in the general behaviour of the system rather than particular values of output voltages.2 Note that the height of the input is proportional to the incoming current. The critical height is simply the smallest
input that survives the journey to the cortex.
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Steps Toward a Neural Theory of Self-Actualization
Daniel S. Levine

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408

Abstract
The qualitative psychological notion of self-actualization, due to Maslow, is understood mechanistically as an optimal
state that is available to, but not always reached by, a neural network. This is described in terms of a Lyapunov
(energy) function for a submodule of the network, combined with a supervising node that sends a signal if the energy
function for the submodule's current state is higher than the energy function for other imagined states. Suggestions
are made for parametric variations that determine to what extent the network will change its state if the current state
is found not to be globally optimal, even if it is optimal for a smaller subnetwork. Speculative analogies are drawn
between parts of the network and functions of the amygdala, prefrontal cortex, and midbrain noradrenergic system.

The Problem
As neural network models increase their power to explain human cognition, it is natural that neural network

theory will incorporate some great insights of qualitative psychologists. Werbos [321, for example, traced the origin
of the network notion of back propagating errors to insights of Sigmund Freud about cause and effect, and others
have noted that Freud also anticipated Hebbisn learning. Other researchers [14, 28] have developed schemes for
sensory-motor coordination that incorporate Jean Pisget's notion of circular reaction. Along these lines, the purpose
of this article is to suggest ways to understand in neural network contexts the idea of self-actualization due to
Abraham Maslow (e.g., [25, 26]). This term was intended by Maslow to mean human functioning at the highest
possible level. He devoted much detail to characteristics of self-actualizing people - and those of average people
in temporary episodes of self-actualization known aspeak experiences - and space does not permit a comprehensive
list of these characteristics here. We will deal with one of the most important, namely, that such people tend to
resolve ambiguities in a way that synthesizes conflicting interests within the mind rather than deciding between them;
hence, typical dichotomies such as serious versus playful, masculine versus feminine, strong versus generous, rational
versus emotional, are bridged by innovative solutions to problems.

Maslow is among those who believe that human behavior is not necessarily, or even much of the time,
optimal. How much behavior is in fact optimal by some criterion is a source of lively debate in the social as well
as biological sciences; for implications of that debatein neural network theory, see [191, Chapter 7, or the book in
progress edited by Levine and Elsberry [20]. Yet even apart from that debate, a mechanistic description of what
constitutes optimal behavior (in the broad sense, including concepts and beliefs) is becoming possible. The dynamical
systems language of local and global energy minima, and perhaps some variant of simulated annealing, affords
insight into the nature of optimality in the brain and mind. The heterogeneity of the database about self-actualization
or its absence means that the discussion herein will largely be abstract. It will, however, make some very tentative
suggestions about involvement of specific brain areas and transmitter systems in the processes discussed.

Global Versus Local and Part Versus Whole
Simulated annealing [13] is widely used to move a system out of a suboptimal local minimum of an energy

function, and closer to an optimal global minimum. In Fig. 1, 1 propose an alternative to simulative annealing, one
that seems related to human introspection. The basic needs of the organism are encoded by a competitive (on-center
off-surround module) as in Cohen and Grossberg [3]. By the Cohen-Grossberg theorem, that network has a Lyapunov
function V and always approaches a steady state that is at least a local minimum of that function. My proposal is
to supervise this competitive module by a 'world modelere module, possibly analogous to part of the prefrontal
cortex (cf. [12D. The world modeler makes "copies' of various possible states of the need subsystem and calculates
the Lyapunov function for each. If V of the current state is larger than V of some other project state, this sends a
signal to a 'negative affect" module that in turn sends random noise back to the need subnetwork, that can move
it out of an unsatisfying local minimum in much the same manner as in a Boltzmann machine.

The scheme of Fig. 1 is a first approximation, but must be expanded to include context-dependent biases
among needs. Another of Maslow's ideas is the hierarchy of needs. Basic survival needs like safety or food tend to
be satisfied first, then needs for love or belonging, and finally needs for development of full potential. A homeless
person, for example, tends to be less bothered by a job that stifles his or her creative potential than is an affluent
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person. Hence, there must be a scheme whereby a few overwhelming needs suppress perception of mismatch from
a global energy minimum in the state of other needs. Maslow [25, p. 26] says, and Hofstede [11] confirms, that this
hierarchy is not a strict all-or-none progression. Some personalities and cultures can more easily than others accept
dissatisfaction in a lower-level need in order to try to resolve the *whole picture." Leven [15] states there are three
major styles of problem solvers: *Danlzig" or direct solvers who try simply to achieve an available solution;
"Bayesian' solvers who play the percentages and try to maximize a measurable criterion, and 'Godelians' who use
both intuition and reason to arrive at innovative solutions. Hence, any neural model of self-actualization and the
hierarchy of needs is subject to immense parametric variations representing personality differences. But an overall
schema for selective attention to a subclass of needs - that is, limited capacity consciousness - is within our reach.

NEGATIVEAFFECT

CV
FUNCTION

NOISE

V FU C1 N
+ CA CU NS

WORLD
MODELER

NEEDS

FIg 1. Alternative scheme for simulated annealing. If the current state of the Cohen-Grossberg-based needs module
has a larger energy function than some alternative state detected by the world model module, this generates an error
signal at the negative affect module, which in turn sends noise to perturb the needs module.

Selective enhancement among drives is used in a network model [17, 21] for simulating mood changes in
consumer preference. There are many possible neural network schemes for selective enhancement of nodes in a
module via neuromodulation from a source outside the module. The idea of an unsatisfying local minimum may at
times need to be reconfigured as a minimum for an energy function over part, but not all, of the needs module. If
a subset B of the need set N suppresses the other needs excessively, the contribution of nodes in N-B to the
calculation of the energy function V is also weakened. This is because, in [3], V has the form

VV) E f b,(y)d(y) dy + cjkd1(xj)dk(xk),
1.1 a 2 j,k..1
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where the cp are positive constants and the dj are monotone nondecreasing differentiable functions. This equation
shows that f the system is in a state the primarily differs from an optimal state in those node activity variables vi
for which I E N-B, the affective error signal from this mismatch will be weakened.

The system of Fig. 1 is subject to regulation cm many levels. The two main processes to be regulated are
(1) the competitive needs module itself, in which tonic signals can move the module's behavior toward either
"winner-take-all' or stable coexistence; (2) the gain from the negative affect error signal to the production of
"simulated annealingn noise. Detailed neuroanatomical identification of the nodes and their various controllers and
modulators is premature, but some provocative suggestions can be made. Either the needs module or the error signal
may be identifiable with a part of the amygdala, an area of the limbic system that has been implicated in calculations
of emotional valuation [6, 29]. The prefrontal cortex has extensive feedback connections with the amygdala. The
effects of fronto-amygdalar connections, in addition to those arising from the "world modeler' module of Fig. 1,
could include control of the gain of the "noise' signal from the "negative affect' module. This suggestion comes from
the dinical suggestion (e.g., [27]) that frontally damaged individuals can express frustration when their actions are
ineffective, but this frustration does not lead them to change their actions.

The amygdala (particularly its central and basolateral portions) is also heavily innervated by noradrenergic
(NA) projections from the locus ceruleus [7]. In addition to enhancing novel or significant or significant inputs [10],
NA plays a role in generating cognitive attributions and beliefs. Individuals that are generally deficient in this
transmitter tend toward learned helplessness and lowered confidence in their ability to affect events [16, 301. A
milder form of learned helplessness, with an intermediate NA level, could generate a passivity about satisfying the
needs in the set N-B (see above) if those in B are already met. In other words, the person may feel confident only
about satisfying a limited set of needs. In the network of Fig. 1, NA signals could directly affect the competitive
needs module, making its dynamics more winner-take-all with a low NA level, more coexistent with a high NA level
Grossberg [9] showed that tonic excitatory signals can have a uniformizing effect on activities in a competitive on-
center off-surround network. The NA signal could similarly tonically arouse the needs module, as shown in Fig. 2.
Larger NA moves this module toward equilibria that satisfy a greater number of needs.

Sef-actualization and Information Processing
Now that a tentative theory of interactions and choices between drives (Maslow's "hierarchy of needs') has

been outlined, let us look further at what constitutes satisfaction of a 'self-actualization drive.' The discussion in this
part continues and extends that in Levine, Leven, & Prueitt [231. We return to the point of Maslow [25, 261 that
self-actualization1 involves creative synthesis of previously conflicting concepts or beliefs. Fig. 3 depicts a continuum
of human behavior from the most 'disintegrated' to the most 'integrated.' Decisions based on winner-take-all choices
to act strong or generous, playful or serious, and so forth, are more effective than decisions made by people with
frontal lobe damage. Also, choices are based on rational judgment are more effective than choices based on
entrenched habits. But if the claims of both conflicting entities (eg., "strength' and 'generosity') are strong enough,
still more effective choices (even if riskier ones) are available from syntheses of the two alternatives. This leads to
new ways of acting and thinking, such as combining generosity and strength into being powerful so as to empower
others, or playfulness and considerateness into "an it harm none, do as you will." Since these high-level syntheses
involve a blend of rational, intuitive, and instinctive processes, that is, all of MacLean's "three brains' [241, they
should, as Fig. 3 suggests, engage the prefrontal cortex which is the chief communicator between the three brains.

Different degrees of self-actualization lead to different ways to resolve ambiguity. Wegner and Vallacher
[31, p. 124 M], for example, report studies of general impressions people formed about women who 'acted innocent"
and yet were known to be sexually promiscuous. Most people adopted either the univalent strategy of resolution
(she's 'good' or 'bad,' not both), the aggregative strategy (she's 'a bit of each'), or the integrative strategy (she's
"confused' - an answer which ties the paradox together). The integrative strategy involves an ability, and decision,
to transfer to a higher level in conceptual space if no decision made at a lower level is satisfactory. Levine [18]
described one possible way to implement ambiguity-dependent interlevel switching in an adaptive resonance theory
(ART) network. The original ART [21 always comes to a decision as to which of several categories an input pattern
belongs to, regardless of the ambiguity in the arriving information. This is based on a parameter called vigilance that

1 Maslow's abbreviation for self-actualization, SA, is also the abbreviation for simulated annealing! Since this
is a synchronicity, we owe a debt to Carl Jung as well as to Maslow.
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measures how closely an input must match a stored prototype to be considered part of the category that prototype
encodes. Levine's extension, shown in Fig. 4, includes two separate vigilance parameters, one for "certain match"
and one for "possible match." If "possible match" occurs to more than one category but certain match to none,
control is transferred to a different level. Such a transfer also occurs in the mortgage underwriter simulations in [3].

+ + :+ +

LOW NA HIGH NA
FIg. 2. Effect of noradrenaline (NA) level on an on-center off-surround module, such as the needs module of Fig.
1. Dark circles indicate nodes with positive asymptotic activity.

Previous models [5, 231 posited rule-coding neurons in the prefrontal cortex. The choices between rules in
those networks, however, were within one level (e.g., sorting cards on the basis of color versus shape of design).
The prefrontal cortex also seems to make choices between levels, that is among types of rules. Examples of rules
which need intact frontal lobes to be learned effectively are (1) choose whichever object is the most novel [231; (2)
alternate moving to the left and right [81; and (3) press each one of several panels once, regardless of order [1]. The
greater the level of self-actualization, in general, the higher the level of rules that will tend to be chosen. This
depends on the lower vigilance levels r. (the numbers that connote probable, but not certain, match) in Fig. 4. These
vigilances in turn, I believe, depend on complex interactions between the neurotransmitters noradrenaline and
serotonin; these are beyond the scope of this article but related experimental results are found in [101.
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Neural Nets, Consciousness, Ethics and the Soul

Paul J. Werbos"
8411 48th Avenue, College Park, Maryland, USA 20740

ABSTRACT

The problem of consciousness -- like other questions about the nature of mind and the purpose of life --

has been with us for millennia, and a serious effort to understand this problem must draw on what has been learned
in many disciplines, many cultures, and many centuries. Neural net research does provide something new and critical
here: it is a novel effort, already showing success, to develop a more complete understanding of the phenomenon
of intelligence and mind, precise enough to be replicated on electronic computers, yet fully consistent with what we
see in the brain and in experiments on overt behavior. A deeper understanding of intelligence and the mind has
immediate implications for the problem of consciousness, and related psychological issues.

This paper provides a global summary of these implications, as seen from the viewpoint of existentialism,
Confucianism, and linguistic analysis -- established philosophical traditions which should not be ignored here.
Among the six issues discussed are the subjective sense of existence, the levels of intelligence, the foundations of
ethics, alternative states of consciousness, the soul, and the role of quantum theory. In all cases, the paper presents
candid personal views which may be regarded as heresies by a significant fraction of the community. The paper
argues that neural network research can indeed yield important insights into all of these questions, but that it does
not provide a basis for overthrowing earlier views in philosophy or for resolving the debate about the existence of
the soul; instead, it may help us to understand, unify, sharpen and deepen some very ancient insights.

INTRODUCTION

In 1992, a prominent speaker at the annual conference of the European Neural Network Society declared
"an open season on the problem of consciousness." The "problem of consciousness" is a very old problem, and one
may legitimately ask why we would suddenly spend so much energy in revisiting it at this time. There are at least
two legitimate answers to that question: (1) that fundamentally new insights, developed by the neural network
community in interdisciplinary research, let us address the problem of consciousness at a higher level; (2) that a
relaxation of certain cademic taboos - restricting analysis to overt behavior only (as in classical behaviorism) or
to linguistic analysis only (as in some university philosophy departments in the US and UK) may now permit us to
face up to issues which it was hard to address ten or twenty years ago. These answers lead, however, to further
questions: (1) If insights from neural network research are so useful, then why are so many of the new manifestoes
on consciousness written by people with limited knowledge of the real frontiers of the field (i.e., of those aspects
which are most relevant to higher intelligence?); (2) Where is there serious philosophical depth in this discussion,
above and beyond the classical Anglo-American approach?; (3) Just what is the problem of consciousness anyway?

This paper will draw heavily on current neural network research, as one might expect, but it will also draw
on traditions like existentialism and Confucianism, which have critical contributions to make. I do not have enough
space here to explain all the vicissitudes and varieties of existentialism or Confucianism; however, these traditions
are very important as an antidote to some of the more extreme and parochial approaches to philosophy which have
existed in the past in some American universities. Twenty years ago, the leading theory of ethics in the Anglo-
American philosophy departments was a theory attributed to Rawls which proceeded entirely by performing a
semantic analysis of the word "justice" and of what it should mean (based on assorted assumptions about what good
definitions for a word should be), building up to strong recommendations for what policy makers should do all across
the board. (Bear in mind that the problem of ethics refers to the problem of purpose and goals in human life; it
requires a lot more than just coming up with a formula to keep lawyers happy.) This episode reminds me of a
meeting I once attended at the Census Bureau, where famous world-class statisticians proposed to develop a measure
of value or utility, for use in allocating federal funds, by simply doing a factor analysis of a complete set of available

*The views herein are purely my personal views, oversimplified in places to make a point. They certainly do not
in any way represent the views of any of my employers past and present, one of whom remains a close friend and
supporter even though he is totally aghast at section 5.
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data series collected by the Bureau. This situation would have been very amusing, except that billions of dollars of
federal funds have actually been allocated on the basis of formulas derived in such ways. See [21 for a discussion
of assorted ways that value measurements have been developed in the government.

Nevertheless, I would agree with the Anglo-American school on at least two basic points: (1) that it is
foolish to invest too much energy in worrying about words like "consciousness" until we develop some sort of clear
idea of what it is that we are worrying about, an idea of what the word is supposed to mean; (2) that language, in
general, does play a deep and central role in philosophy[l].

So what, then, is the "problem of consciousness"? There are at least 6 different kinds of questions that
people appear to be asking under this general rubric:

1. How is it possible -- objectively - that human beings meet the dictionary definition of "consciousness" -
- a basic sense of awareness, which allows them to respond to what they are aware of?

2. How is it possible that human beings have a subjective feeling that we do in fact Exist. given that we have
the various capabilities discussed under questions 1 and 3?

3. How is it possible that human beings show additional capabilities, such as intelligence or emotions or
creativity, which we commonly tend to associate with our consciousness?

4. What is it in the brain that distinguishes between states of "consciousness" versus states of
"unconsciousness" like sleep?

5. Can the human mind -- in its widest scope -- be explained entirely in terms of atoms and neurons, or do
we need to invoke some sort of "soul" to explain the full range of our experience?

6. Can the human mind be fully explained in terms of algorithms or Turing-machine concepts (generalized
to ipclude continuous variables), or must we invoke concepts of quantum computing[3]?

This paper will present my personal opinions on these questions. The reader should be reassured that I am
aware of the idiosyncratic nature of my views, and that my strategic goals in the neural network field 14-71 are
sufficiently explicit that they leave no room at all for any kind of bias against anyone who can advance those goals,
regardless of their views on these questions. Because of page limits, this paper will simply explain what my views
are, and cite other papers which explain the critical details.

1. THE OBJECTIVE QUESTION OF AWARENESS

Question number one is hardly a problem at all, from an objective point of view - even though it is
probably the most semantically correct interpretation of the "problem of consciousness." Not only human beings, but
all animals on earth show some degree of awareness of their environment. Awareness -- in a literal, objective
interpretation of the word -- simply refers to the ability of organisms to input and respond to data from the
environment. There is no great mystery in explaining why that phenomenon should evolve (i.e. can confer an
advantage to survival), and no great mystery in seeing that there are neural circuits capable of providing that simple
capability.

2. THE SUBJECTIVE SENSE OF EXISTENCE

From a very strict existentialist point of view, it is nonsense to try to "explain" our own subjective sense
of existence. Our subjective sense of existence or awareness is our starting point. the foundation on which we build
everything else. This question is analogous to a question which novices ask of physicists:"Dr. Einstein, can you
explain why R=T in general relativity? What underlying phenomena give rise to that equation? What kind of ether
do electromagnetic waves travel in?" The point is that Einstein was looking for the lowest level of physical
description, that level which inherently cannot be explained as the working out of something more fundamental. Both
Einstein and the existentialists were very active in questioning and revising their views of what exists at the most
fundamental level, but they still maintained an effort to build everything else up from that level.

From an objective point of view, we may twist the question around, and ask how it is that organisms could
evolve a sense of their own existence as such. Marvin Minsky answered this years ago, by simply pointing out that
there are evolutionary advantages in organisms developing models of the self and insights to describe their own
thinking. Once again, there is no real problem here from an objective point of view. When we ask whether other
human beings have a sense of their own existence, we are essentially just asking the objective question; the answer
is obviously "yes." (It would still be "yes" even if other humans were actually just programs in a vast virtual reality
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game, so long as those programs demonstrated the pertinent objective capabilities.) From an objective point of view,
one may go further and argue that sane, self-aware organisms will naturally tend to accept the existentialist view of
taking their own existence and awareness as a starting point, because this is an honest reflection of how their natural
thought-processes work. (See section 3.)

From a strict Anglo-American point of view, neither of these answers is entirely satisfactory, because they
seem to assume that there really do exist organisms on earth, that there is such a thing as biological evolution, etc.
If we limit our thinking to nothing but the manipulation of words, without ever grounding ourselves in any sort of
direct perception of reality, then we can in principle permit any fantastic combination of words to emerge from our
mouths. From such a viewpoint, we could just as well worry deeply about issues like why the sun appears to rise
every day; after all, can we be really sure that the earth revolves about the sun. Even if we accept that there is
always some distant degree of uncertainty here (as is appropriate, from an existentialist point of view), it would seem
silly to invest a huge amount of emotional energy on quirky little hypothetical contingencies which are poorly
integrated into the rest of our concerns and which we have no way to account for in any case.

I do not believe that all American philosophers adhere to the extreme viewpoint I am arguing against here;
in fact, I will not spend any further time on that particular species of philosophy here. Also, I do not mean to
downplay the issue of how we know that the sun is likely to rise tomorrow; studying that issue is quite different from
actually worrying about what to do (or how to answer intellectual questions) in case the sun actually does not rise
to tomorrow. See section 10.4.6.4 of [8] for a discussion of how old questions, like the question of the sun rising
tomorrow, do in fact get assimilated into more far-ranging theory in the neural network field.

3. INTELLIGENCE, EMOTIONS, CREATIVITY AND ETHICS

In most of my research, I have found it preferable to address the issue of "intelligence," rather than the issue
of "consciousness," because it expresses more exactly where the hard-core scientific issues really lie. My view of
intelligence is itself somewhat controversial, and some psychologists would argue that it is far too narrow; however,
even my view requires us to include creativity as an attribute of intelligence.
For technical reasons, the existence of emotions turns out to be necessary as part of any system which possesses even
a crude modicum of intelligence[l]. This is one case where neural net theory does indeed have something to say
about conventional views of the mind: contrary to popular wisdom, as expressed in Star Trek etc., intelligent androids
and the like cannot be devoid of emotional systems, because emotional systems are a necessary component of
intelligent systems [1,9]. Backpropagation itself originated in 1974 as a surprisingly direct translation of Freud's
concept of "emotional energy" or "psychic energy" into mathematics; those concepts are also the basis of the most
powerful neurocontrol systems in engineering applications today[5].

In a formal sense, I would Cefine an "intelligent system" as a system capable of maximizing some kind of
measurement of utility or reinforcement or performance or goal-satisfaction (with or without prior knowledge of bow
that measure is defined as a function of other variables) over time in an environment whose dynamics are not known
in advance, so that the system must learn both the dynamics and a strategy of action in real time through experience.
It must be a generalized system, capable of adapting to "any" noisy, nonlinear environment, if given enough time
to adapt. (See [8, chapter 101 for more precise concepts to replace the word "any.") This definition implicitly includes
the ability to solve complex problems which, in turn, implies some degree of creativity.

Neural net designs now exist, on paper, which appear fully capable of meeting this definition [1,8] (though
there are a few points where the approach is clear but the details have yet to be worked out[6,71). Some
psychologists would complain that human beings are not totally rational or optimal; however, realistic neural net
designs have imperfections which are similar in many ways to those of humans, ano very simple reinforcement
learning designs can fit both "operant" and ""classical" conditioning[4].

Classical views of intelligence have often assumed that intelligence is either a binary variable (either you
have it or you don't) or a continuous variable (everything from microbes to superhumans has a certain degree of it).
A careful examination of the real-time optimization designs now available[8J suggests, instead, that intelligence is
more like a quantized or discrete variable. (Continuous variables like brain size and metabolic level also have some
significance, contrary to what is politically correct; if they were irrelevant, evolution would have settled on a zero-
cost zero-weight brain.) For example, even with simple supervised learning networks -- which probably exist as local
circuits in the brain[41 -- there are fundamental, qualitative differences between local designs based on fixed
preprocessors, feedforward designs with adaptable hidden units, and simultaneous-recurrent networks adapted by
simultaneous backpropagation; these yield distinct quantum levels of capability in approximating functions[61.

1-223



At a more global level, Bitterman[10] demonstrated years ago that there are basic, qualitative differences
between intelligence in different classes of vertebrates. These differences have clearcut links to the qualitative
differences in the gross cellular architecture between brains from different classes of vertebrates. These differences,
in turn, can be related to clearcut differences which exist between different levels of design in artificial neural
networks; for example the "error critic" design in [8, chapter 13] requires something like a merger of limbic (critic)
cortex and general (neuroidentification) cortex, which does in fact underlie the historical evolution of neocortex in
the mammal, whose removal (according to Bitterman) generates the removal of processing capabilities which happen
to be related to error critics. To an engineer, it is astonishing that anyone would simply assume qualitatively
equivalent behavior from well-designed systems with radically different components and structures; however,
behaviorist dogma historically made it very difficult to study these basic realities. (A cynic might argue that the
behaviorists were trying to defend themselves against the charge that experiments with animals might not tell us
directly about humans. Another explanation is that behaviorists were trying to save the world from the dangers of
racism -- including racism against snails and microbes.)

What would it take to achieve a quantum level of intelligence which can truly adapt to "any" environment,
up to the full potential of the universal Turing machine? In [8, chapter 13] and ill], I argued that full Turing
machine capabilities require the use of explicit symbolic reasoning. The naive next step is to conclude that human
beings - who seem capable of symbolic reasoning -- represent a quantum step in the evolution of intelligence, above
other mammals. From the viewpoint of everyday experience, this would seem highly probable, at first.

On the other hand, formal symbolic reasoning is a reasonably recent phenomenon. Jim Anderson, in
analyzing how humans learn arithmetic, has argued that humans possess "two" learning mechanisms: (1) a highly
developed and fine-tuned "sensory" system, shared with other mammals; (2) a "buggy alpha test version" of formal
symbolic reasoning. After all, if symbolic reasoning is the foundation of human technology and civilization, how do
we explain the fact that human technology and civilization is only a few thousand years old? The obvious answer
(elaborated on in [1]) is that humans represent a recent unstable transitional life-form which has only recently
evolved just enough capability for symbolic reasoning to let it muddle through a few technological design problems,
on a one-in-a-million basis (which is still enough to start a technological civilization, when there is a culture available
to disseminate new ideas, as has been observed even in chimpanzees). We ourselves are the "missing link" between
the mammalian and the symbolic levels of intelligence. Perhaps there will never be such a thing as a fully perfected
symbolic reasoner, but it is clear that humans have not exhausted whatever potential does exisL

One might then pose the problem of consciousness as follows: Are human beings really "conscious" or
"intelligent"? Perhaps not, in the larger scheme of things.

In [1], I suggest that simple wiring changes, related to the balance between the waking state and the
dreaming state, might be central to human abilities in symbolic reasoning. (These, in turn, might be related to the
unique wiring of the human NRTP[121 as discussed by John Taylor.) If so, there is little doubt that such capabilities
could be wired into a computer as well. Computers could be made "conscious" or "intelligent" at a level beyond that
of human brains today, if we were crazy and suicidal enough to want to do this.

In my view, the biggest single symptom of our lack of evolution is our inability to master the most
fundamental aspects of symbolic reasoning: the ability to accurately articulate our true goals and values, in a way
which is totally in harmony with the presymbolic aspects of our thought, and allows us to master symbols instead
of being mastered by them. In crude language, the problem is that we lie to ourselves. (In psychiatrists' terms, we
overuse denial as a defense mechanism.) We lack the ability to simply articulate -- in a direct, honest way -- the
information coming to us from all of our feelings and our everyday experience of life. My examples of Anglo-
American philosophers and statisticians, in the Introduction, are not isolated examples. To use symbols effectively,
humans must learn even the most basic things, the hard way, like dogs learning to walk on two feet. It is natural for
humans to learn symbolic reasoning, when they have enough time and help and intelligence, but the process can be
',1r1 difficult. The basic foundation of Confucian ethics -- to learn to know oneself, and to be "true" to oneself --
may be viewed as a remarkably clear expression of (and aid to) that learning process. In this view, the mark of a
sane human being is an attitude towards life which includes a kind of total openness to the empirical data which
comes to us from our senses and from our emotionally-charged feelings, and an easy two-way communication and
harmony between the symbolic and nonsymbolic aspects of our intelligence. This is very close, of course, to the
Freudian ideal of "sanity."

From a more formalistic point of view, Confucian ethics may be justified as follows. As Bertrand Russell
pointed out long ago, there can be no logical, operational answer to questions like "What should we do with our
lives?," because the word "should" does not have any operational, objective content. However, there can be an
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operational answer to the question:"What would I do if I were wise? What 'answers' to the problems of ethics would
satisfy me -- put me in a state of stable mental equilibrium in accepting these 'answers' -- if I fully understood
myself, my feelings, and my environment?" These questions are inherently meaningful and operational because they
address the I, the self, which can be understood -- in part because of neural network research[l]. Using these
questions as the foundations of ethics leads one directly to the pursuit of "integrity," as defined by Confucius.

This section should not be interpreted as an endorsement of all the secondary ideas which have evolved in
Confucianism over the years. Confucianism -- like Christianity, Marxism, Islam, Buddhism, and Western science -
- has accumulated its share of obnoxious barnacles, due to the universal existence of power-seekers, opportunists
masquerading as zealots, gullible followers and groupthink.

4. STATES OF "CONSCIOUSNESS" VERSUS "UNCONSCIOUSNESS"

There is a radical difference between the concept of consciousness as "wakefulness" and the concept of
consciousness as "intelligence."

Neural network theory already provides some insight into the reasons why intelligent organisms must have
multiple states of consciousness. For example, in [8,131, I argue that some form of "dreaming" or "simulation" is
essential to the efficient adaptation (or effective foresight) of advanced reinforcement learning systems. After Sutton
and I had long discussions of that paper (cited by Sutton) at GTE in 1987, Sutton actually performed simulations
(described in [14]) demonstrating this point empirically. This interpretation of dreaming is basically equivalent to
the theory developed independently by LaBerge[151, who is arguably the leading dream researcher in the world
today.

As noted in the previous section, I have also suggested how an intermediate stage of consciousness, linked
to hypnosis[l], may be important to human abilities with language. Deep sleep (and its sub-states?) remain a mystery,
but there are new possibilities for linking that phenomenon to neural network research[61. More research is needed
here, especially to pin down the link between neural net models and brain circuits, but there is good reason to expect
success in this work, if sufficient effort is applied.

5. WHAT ABOUT THE SOUL?

Up to this point, I might hope that any truly rational scientist, reviewing the evidence carefully, would at
least respect the views I have expressed. From this point on, I have no such illusions.

Sections 3 and 4 argued that everything we associate most energetically with human consciousness --
intelligence, emotions, creativity, dreams, and so on -- can be fully understood in terms of classical neural network
models, consistent with the Turing theory of computation, and consistent with neuroscience[4]. By Occam's Razor,
this suggests that the hypothesis of a "soul" is totally unnecessary and should be abandoned. This is clearly a highly
rational conclusion to draw, and I remember believing in this conclusion very intensely back at ages 8 through 19.
However, on a purely personal basis, I have come around to the view that something like a "soul" -- a part of the
mind and the self which cannot be reduced to atoms and neurons -- is in fact necessary in order to explain the full
range of human expenence.

Based on past experience, I would predict that most readers will feel a fair amount of surprise at seeing that
last sentence in print. A good number of readers -- including some very creative and prominent people -- will quietly
voice agreement with that sentence, but will wonder where we go from here. A few canny old psychiatrists may even
snigger: "So someone else has discovered that you need Jung as well as Freul to come to terms with the full
spectrum of human experience. So what else is new?" A few psychologists will immediately leave the room, for fear
that the physi ists will denounce them as practitioners of voodoo and steal all their federal funding if they are seen
consorting with people who express such views. (These fears are not entirely based on fantasy, either.) A very few
readers will actually feel honest, subjective uncertainty about the issue, and really seek evidence for and against.
(That was my stance in 1969-71, the period when I really first developed backpropagation, ADAC and other
beckpropagation-based critic designs, though I only published [161 then.) A fair number of very articulate readers -
- including many powerful administrators, if any of them still attend INNS meetings -- will instantly think about two
question: (1) Has an eccentric lunatic just walked into the room? Is this another Eccles[17]?; (2) If we make room
for the discussion of the soul hypothesis on an equal footing with the "standard" alternative, do we risk losing the
insights we get from neural net research and unleashing forces of sheer craziness and illogical thinking which could
overwhelm us?
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There is no way that a paper this brief could seriously resolve the concerns of all these groups. However,
I would like to make some comments regarding the last two concerns.

Back in 1964, when I first read Hebb's ideas about this, I found myself in complete agreement with his
views. Hebb was trying to explain the idea of Occam's Razor, which we now understand more precisely [8, chapter
10]. He described how prior expectations -- which encourage us not to invoke "expensive" assumptions which
complicate our underlying understanding of the universe -- are important in science, above and beyond empirical data
as such. As an example, he pointed towards the laboratory work in parapsychology. He argued that most scientists
would probably agree with the conclusions of that work, if they judged the statistics as they do with most scientific
papers they read. However, because those conclusions have a huge improbability"cost" apriori, we would still tend
to disbelieve them, if we take a balanced look at prior and empirical information. Based on section 3, I would take
this a step further: I would argue, even now, that all of the laboratory data we have now regarding human abilities,
from problem-solving through to parapsychology, is still not convincing enough to justify the soul hypothesis.

In fairness to the parapsychologists, I should confess that I do not know that literature enough to draw strong
conclusions. There is an analogy here between parapsychology and the study of ancient history: it requires reliance
on a huge body of secondary sources, many of them quite willing to stretch the truth in favor of diverse biases (some
in favor and some against), so that it would take a huge effort to make a truly judicious analysis. Even if one did
all that work, one should recall the example of Aristotle, who produced a wonderfully judicious resolution of the
scientific issues of the time; judicious or not, it was dead wrong. Thus even if the results from parapsychology were
very clearcut, the average scientist could not afford to know enough to find a compelling reason to believe them.

Given this situation, how could I - or any other scientist, thinking for himself or herself -- give any
credence at all to the soul hypothesis?

In my own case, the answer lies in direct, personal observation of what I see around me. I do not expect
all rational scientists to agree with me, because they do not share the same base of experience. But I do not accept
the idea that I myself, in formulating my own views, must discard any personal experience which has not been
socialized through the laboratory. I like to believe that my interest in the human mind, and my acceptance of the
existentialist/Confucian viewpoint back in 1964, was the real case of my making these observations -- which I did
not allow myself to accept for several years.

Just how strange and eccentric is it to be open to the soul hypothesis based on personal experience? Years
ago, the National Science Foundation commissioned a major study of the underlying values of the American people,
through the National Opinirn Research Center (NORC) at the University of Chicago, a leading center of excellence
in surveys and sociology and the like[19]. One of the difficult issues they addressed was the nature of beliefs and
experience related to the soul hypothesis. They discovered that personal experiences played a far greater role than
they had expected beforehand. Even more surprising, they found that the percentage of people claiming such
experience increased monotonically with education and other measures of success. The investigators have reported
[19] the great surprise they encountered when they presented this result to their review board. A skeptic on the board
pointed out that their statistical results would predict that 70% of that very board (composed of PhDs) would have
answered "yes" to a highly inflammatory-looking question. After this, 70% of the board did in fact come forward,
reluctantly, and validate the prediction -- to the great surprise of everyone in the room. My own views of the soul
hypothesis and the relevant experience are considerably more complex and idiosyncratic than what was reported in
[19], but the bottom line is still this: whether I am a lunatic or not, I am certainly not such an eccentric one (except
perhaps in my willingness to articulate taboo ideas, when my session chair asks me to address a controversial issue).
There are many serious, technical people who take the soul hypothesis seriously, and they merit equal time on this
issue.

Would these statistics be different for people who -- in addition to being well-trained -- are highly
independent, creative thinkers, the kind of people who have demonstrated more than anyone else their ability to
ignore conventional wisdom (both parents and peers) and arrive at their own viewpoint? It is interesting to go back
and consider the four greatest physicists of this century, the four pioneers who rebuilt the very foundations of modern
physics -- Einstein, Schrodinger, Heisenberg and DeBroglie. Einstein often used the word "God," and is often alleged
to have been a mystic; however, in what I have seen of his writings, I see no reason to believe that this was anything
more than the erudite but firmly "secular" theology I have seen very often, expressed in similar ways, at the local
Unitarian church. On the other hand, records of the conversations between Schrodinger and Einstein make it very
clear that Schrodinger was deeply interested in things like Sufi mysticism - something which is far more than mere
allegory. Heisenberg consistently described his physics in Vedantic terms, and invited well-known yogins to expound
their views at the Copenhagen Institute. DeBroglie is said to have been a follower of Bergson's vision of collective
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intelligence, which would appear to be a close relative of Teilhard de Chardin's views. All in all, the 70% figure
would seem to be in the ballpark here.

Would the soul hypothesis per se undermine the effort to understand the mind in a scientific way? On the
contrary, one might argue that efforts to totally repress this idea (or to hand it over as a monopoly to television
preachers) would be as conducive to sanity as any other kind of gross repression of thought.

The greatest abuse of the soul hypothesis has come from power seekers who try to use it as an excuse for
making other people follow their orders in a blind, unthinking manner, without opening themselves to personal
experience, to mathematical or scientific efforts to understand that experience, and so on. The formulation I am
proposing here would still start out from the Confucian/existentialist point of view; that view clearly argues that we
should try to be true to our entire self -- including both the brain and the soul. If neural network mathematics is
useful in understanding the general phenomenon of intelligence -- regardless of the hardware that implements this
intelligence -- then it should, in principle, be useful even in explaining other forms of intelligence. So far as I can
tell, in my own experience, this does appear to be the case. A highly condensed summary of my more specific
thoughts along these lines as of early 1993 may be found in [1,20,21]; however, consideration of the sixth and final
issue has begun to modify some of the details of my thinking here. It would be impossible to summarize all of that
here, and many readers would not be interested in any case; however, I should note that I agree with the classic
Bayesian view, that it is sometimes most rational to maintain a set of models of what is going on -- very concrete
and coherent models -- and to act on the basis of a probability distribution, which honestly reflects one's uncertainty.
If ever there was a situation requiring decision making under uncertainty, it is his one.

6. QUANTUM COMPUTING, MIND AND SOUL

Penrose, in a famous new book[31, argues that the human level of intelligence -- whatever it may be --
cannot be reduced to any sort of Turing-machine algorithm. He argues that quantum-mechanical effects are crucial
to how the brain works, and that quantum mechanics cannot be reduced to mere Turing-machine computation.

As discussed in section 3, I do not really see evidence for any specific capabilities in the human brain which
require such a hypothesis. The technical literature on quantum computing has indeed proven that quantum systems
yield a qualitatively new kind of computing, which leads to a new kind of universal model more general than the
Turing model; however, it also includes little basis for confidence that this model of computation buys us anything
very useful, or anything relevant to the brain[22]. (The examples found in that literature are mainly inspired by the
Copenhagen interpretation or the many-worlds interpretation of quantum mechanics.) Penrose has collaborated with
a group looking for quantum effects in the form of coherent photon propagated inside of microtubules(231; important
as the microtubules may be[4,9], even to computing, I am disturbed by some of the puns I have heard, suggesting
that "coherent" photons would naturally explain the "coherence" of our sense of self.

Nevertheless, looking more closely at this issue, I can see some real possibilities. There are many different
interpretations of the real significance of quantum theory; even if only one interpretation can be objectively true, they
are all close enough that they give some valid intuition about the phenomena themselves. One interpretation which
I have developed[241 is the idea that quantum effects can be explained by assuming that causality runs forwards and
backwards, symmetrically, in quantum experiments. Thus, when people use special crystals to demonstrate basic
quantum effects, there is a kind of settling down through a resonance between past and future -- like a Hopfield net
or a simultaneous-recurnent net[9], but without the need to wait for convergence through iteration in forwards time.
Even if the human brain has no such capabilities, I can imagine a possibility (with 20% probability?) that this could
be used to increase the power of optical neural networks. It is questionable that humanity would benefit much from
such technology, but the intellectual issue is worth resolving.

One reviewer has asked for a simple example of backwards causality in quantum physics. The simplest
example I know was discussed in my 1974 paper on quantum foundations (cited in [25]), based on the account of
nuclear exchange reactions in Segre's book Nuclei and Particles. Suppose that you could design a cannon which,
without any electronic control system could generate the following capability: whenever an enemy rocket is about
to come up over the horizon, it will automatically swivel into exactly the right angle, and fire at the exact time, so
that it will hit the target exactly when the target first appears over the horizon, even if the target is fired after the
cannon must fire to meet it If anyone ever built such a cannon, one might attribute it to magic or precognition, or
suspect over-the-horizon radar and cheating. But neutrons, shooting pi mesons out to oncoming protons, have
displayed exactly such a "precognition." The conversion of the oncoming proton to a neutron proves that charged
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mesons are exchanged. More relevant, but complicated, examples (involving optics and Bell's Theorem) are cited
in [251. Behavior like this may sound mysterious, but it is fully consistent with the model of a universe governed
entirely by partial differential equations.

Taking this further, one might even imagine that Penrose's concepts might be relevant to the style of
computing used by "soul," even if they are not relevant to the brain. This leads to interesting thoughts concerning
the role of time and causality which are far beyond the scope of this paper[24].
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ABSTRACT

Three applications of artificial neural networks (ANNs) are described and their use in image processing is noted.
They involve the solution of new constrained optimization problems that arise in distortion-invariant detection filters,
the design of the weights for an analog accuracy neural net with noise and non-ideal components, and the use of
square-law nonlinearities (that exist in optical detectors) and complex-valued weights to inherently produce higher-
order decision surfaces. Emphasis is given to ANN techniques to design shift-invariant and distortion-invariant
correlation filters. The specific case detailed is low-level vision detection of all objects in a scene independent of
distortions and contrasts.

1. INTRODUCTION

The three applications we discuss employ several of the key properties of artificial neural networks (ANNs):
their ability to solve difficult optimization problems, their fault tolerance, and their use of nonlinearities. The
examples chosen arise in image processing, but should be of use in other applications also.

The first ANN (Section 2) is used to design correlation filters to locate multiple classes of objects in clutter with
distortions and contrast differences present. These are referred to as detection filters. Since shift-invariance is
required (the locations of the objects are not known), a correlator is used and the neural net is used to design the filters
for this system. This application is given major attention. The second ANN (Section 3) application arises when the
ANN hardware can support fast basic operations such as matrix-vector multiplications, but cannot support complex
decision making steps or learning algorithms; and when the hardware (and data) has analog accuracy, nonideal
components and noise. This situation arises in many analog VLSI and optical neural nets using off-line learning. The
third application (Section 4) is only briefly noted. It concerns the use of new nonlinear functions (simple square-law
detectors) that are inherently available optically (or digitally) and how they and complex-valued weights can
inherently provide more complex decision surfaces that improve recognition rates and learning times, while using
fewer hidden layer neurons resulting in better generalization.

2. SHIFr-INVARIANT DISTORTION-INVARIANT CORRELATION FILTER DESIGN

A major use of ANN algorithms, architectures and hardware occurs in image processing. In the initial low-level
vision stage, one of the first steps required is to locate the positions of all possible objects of interest in a scene. This
is referred to as detection. Each of these regions of interest (RO1s) is subsequently further processed to determine the
class of object present in each ROL. This is a formidable problem since the number of objects and their locations are
not known (the purpose of this first stage is to estimate these). A conventional neural net approach requires one input
neuron for each pixel in the scene (perhaps N1 = 5002 neurons). Since the locations of the object(s) are not known,
shift-invariant interconnections are required. With NI input neurons, this requires N1

4 interconnections (which is
quite excessive). The problem is further complicated by the need to handle all distorted versions of each object. This
can be trained into the ANN weights (but now a large training set and long learning times are required) or the number
of interconnections can be increased (this has significant hardware effects). A preferable hardware architecture, when
shift-invariance is required, is the use of a correlator. This is now feasible with digital signal processing chips. To
accommodate objects with different distortions, distortion-invariant filter designs are used. When objects in many
different classes can be present in clutter, sets of filters and different levels of computer vision are used.

Figure 1 shows a simplified correlator block diagram and a new role for neural net techniques in such scene
analysis problems. The 2-D correlation of an input scene f and a filter h is performed by inverse Fourier transforming
(FTI) the product of the Fourier transform (FT) of the input F and the conjugate Fourier transform H* of the filter.
The FT and correlation provide the shift-invariance required and such a correlator architecture is in fact a shift-

1-231



invariant neural net [1]. We consider the use of an ANN to design the filter functions to be used in the correlator.

fx,y) F(uv)INPUT FT X FT` f~h

SCENE

TRAININGsT] H*(uv)

FIGURE 1: ANN design of distortion-invariant detection filters.

For the case considered, the detection filter is comprised of a set of Gabor filter functions. In polar FT format, a
Gabor filter function (GF) is [2]

Gn (x, Y) = exp [-N (x 2/a2 + y2/b) ] exp [j2rowrCos(0- )]. (1)

The correlation of an input image f with Gn gives a 2-D analog output whose value at each point in f can be viewed as
the amount of a given radial frequency (o at orientation * present in a local area, defined by (ab), about each input
pixel in the input scene f. We construct our detection filter from a number of different GFs; each choice of the n =
(a,b,4o) parameters results in a new Gn. To avoid the need to apply a number of different Gabor filters and analyze a
number of separate 2-D analog outputs, we form one composite filter that is a combination of a number of Gn.The
problem we consider involves detecting many different classes of objects in a variety of distortions in the presence of
clutter. Gabor functions are attractive for this since they provide the best joint space and frequency description [31,
because they are excellent texture descriptors [4], and because they are biologically motivated [3]. To formulate the
problem for an ANN solution, we consider a set of training images ST of some of the true class objects and a small set
of training images sc of representative clutter. The detection filter is a macro Gabor function (MGF) that is the sum of
a number of different GFs

MGF = XWnGn. (2)

To solve for the combination coefficients or weights wn, we develop a criteria function E. The filter is Q(w. where the
columns of the matrix _Q are the Gn and the vector w is the weights w. used to combine several different G. into one
macro filter. The peak value of the correlation of this filter with an input 1 is the vector inner product sTGw. We
require this output to be dT = 1 for objects and dc = 0 for clutter. With the different training images s as columns of a
matrix , the criteria function to be minimized is

E = 051IsT7 (3)

where the elements of the vector d are dT= I or dc = 0 depending on the s.
This is thus a constrained optimization problem. The ANN used is shown in Figure 2. The P1 input neurons are

the training images, the Pt-to-P2 interconnections are the Gn functions, the number of hidden layer neurons at P2
equals the number of GFs chosen, the desired value of the P3 output neuron is I or 0. The ANN must select the Gabor
function parameters n = (a,b,cr), for each On and it must select the combination weights w to minimize the criteria
function. We achieve this by adapting both the P1 -to-P2 weights (the Gn functions and their parameters) and the P2 -to-
P3 weights (their combination coefficients _y). This is quite different from other ANNs used to calculate the Gabor
coefficients used to compactly represent an image for data compression [5].

We initiate the neural net with an approximate set of initial Gn functions [6]. We initially use: four G. with 0=
00, 900,450 and 1350, to allow detection of objects in different scales and orientations; one Gn with co = 0, to allow
the dc level of the filters to be adapted to enable detection of low contrast objects and rejection of bright constant
background regions; and one G, with to = 2a/3 and a = b = 15 pixels, this detects clutter well) and an initial set of
weights y (chosen to give d = I for the broadside view of the largest object and nearly a zero-mean filter). The ANN
algorithm then adapts these initial weights and Gn parameters to produce the final filter. We present the training set to
the input neurons and adapt the weights w from P2-to-P3 . We then repeat the training set several times and continue
to adapt the P2 -to-P3 weights (for a fixed set of G. parameters or P1 -to-P2 weights). We repeat adapting the wn
weights P2-to-P3 for K iterations. We then repeat the training set and perform one adaptation of the On parameter
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FIGURE 2: Neural network to determine filter parameters and weights for the MGF detection filter.

weights from P1 -to-P2. We then adapt the w weights for another K iterations. For each adaptation of the P1 -to-P2
weights, we thus perform K adaptations of the P2-to-P3 weights and we repeat this cycle L times (for each of L
adaptations of the P1-to-P2 weights). We then select the set of G, functions and parameters and the associated set of w
weights that yields the lowest value for the criteria function and synthesize our filter from the associated Gn and wn
weights.

The P2 -to-P3 weight update rule we use for the w is a conjugate gradient algorithm with periodic restarts [7]
(since this is much faster than a gradient descent or delta rule). Since it is monotonically convergent, we perform K
adaptive iterations of it for each set of Gn weights from P1 -to-P2 -Adapting the P1 -to-P2 weights (i.e. selecting the
Gabor features to use) is more difficult. We use a similar algorithm and calculation of the step vectors by the chain
rule. This involves calculation of the derivatives of Q. with respect to each of the Gabor parameters (a,b,oWr). We
choose the step sizes so that we produce a change in each of the Gabor parameters by about 1% for each of the L
iterations. Since this portion of the adaptive algorithm is less numerically stable, we use only one adaptation of the
Pl-to-P2 weights, we then adapt the P2 -to-P3 weights for K iterations and then return to adapt the Pl-to-P2 weights for
one iteration, etc.

We used K = 40 and L = 100 iterations and found adequate solutions in all cases. Table 1 shows the final five
Gabor functions and their parameters (columns 2 to 4) and their combination weights (column 5) chosen by the ANN.
The first three G,, have orientations at about 00 (horizontal) and at two diagonals (about 450 and 1290). The fourth G4

function controls the dc value of the filter and the last G5 function models the clutter. These choices in Table 1 could
not be arrived at by ad hoc methods and thus such ANN design methods appear very attractive for this and similar
problems.

Filter (a,b) o0 wo

GI (21,19) 1.11/80 1.690 0.009835
G2 (37,12) 2.04/80 45.510 0.01657

G3 (29,15) 1.42180 128.390 0.01242

G4 (85,29) 0 -- -0.005064
G5 (15,15) 1/10 00 -0.00007775

Table 1: Optimized parameters and weights for MGF

Figure 3a shows a typical input scene considered. It contains 8 objects in high clutter (the targets lie in the
horizontal strip below the clutter region. The objects on the left have much higher contrast than those on the right.
The database investigated contained six different classes of objects, with 21 different aspect distorted views of each
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(covering a full 3600 in aspect), in a variety of representations and contrasts. Our initial purpose was to achieve high
detection rates PD. For the 610 objects in 95 scenes tested, we located 604 for an excellent PD = 99% detection
performance rate from this filter. Fusion with other detection algorithms [81 reduced false alarms. Figure 3b shows
the detection output for Figure 3a. As seen all objects are located with only 4 false alarms. This is quite significant
given the low contrast, high clutter, and large number of classes and distortions considered.

(a) Input (b) Detection Output

FIGURE 3: Typical detection result.

3. HANDLING ANALOG WEIGHTS. NOISE AND NON-IDEAL COMPONENTS
Brief mention is made of this ANN application. It uses a Ho-Kashyap [9] ANN for pattern recognition. This

ANN has the largest storage capacity and yields the best performance in the presence of input noise. Earlier work [ 101
showed how to select its design parameter ; to provide good results with different bit accuracies in the neuron values
and the weights. We have recently modified tis algorithm to involve: training of the ANN on quantized data (of given
bit accuracy), calculating weights quantized to a given bit accuracy, and preprocessing the training set to include
nonideal input and hidden layer neuron responses. This new ANN synthesis technique yielded even better results.
With N input neurons, we were able to store M > 1.5N sets of input vector data (in general position) and to recognize
all M input vector data with a P, > 95% correct recognition rate. This is quite near the maximum storage possible [ 111
of M = 2N (which only reached as N - *, thus our results with N = 16 neurons are nearly ideal).

4. NEW NONLINEAR NEURON FUNCTIONS
Different neuron nonlinearities are well-known to significantly improve performance. We have considered a

simple square-law detection nonlinear neuron transfer function. When this is used with complex-valued weights
ý. = w.. + jv.., we find that each neuron describes a general hyperquadratic decision surface. For the case of three
input neurons (x1 , x2,and x3 = 1), the outputs for two hidden layer neurons are

fl (A) = Iv lx + ,12x2 + x3 12, f I2 (A) =1 2ixi +, 22x2 + x3 112  (4)

and their decision surface f, = f2 has the general form

ax 1
2 + bx 2

2 +cx 1X2 +dxI+ex2 +f = 0

Thus, such neuron nonlinearities can produce any piecewise hyperquadratic surface. They achieve this inherently and
this can significantly reduce training time and the number of hidden layer neurons required, thus improving
generalization and the performance of ANN classifiers.
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ABSTRACT

Mathematical concepts underlying the Functional-Link approach are described
Motivation, strategy, mathematical ideas and perspectives of the approach are discussed
It is shown that the Functional-Link approach is based on an integral representation of
the fiinction to be approximated and on evaluation of the integral by the Monte Carlo
method While the architecture of the Functional-Link allows the use of simple linear
learning, the use of Monte Carlo technique provides an opportunity for accurate and
efficient representation, with respect to the dimension of the input space. Thus the
Functional-Link approach seems to be a reasonable compromise between complexity of
learning and efficiency of representation. The approach opens new possibilities for
enhancing the efficiency of representation by making use of methods of variance
redection known in the theory of the Monte Carlo method

1. Introduction

This paper is in the nature of a qualitative discussion of the mathematics of the
Functional-Link (FL) net approach to the task of function approximation, in the context of
neural-net computing. The purpose of this discussion is

(a) to describe the motivation for developing the FL method,
(b) to state the essence of the strategy of the approach,
(c) to present a sketch of the mathematical proof of the universal approximation capability
of the method,
(d) to relate the FL approach to the growing body of works establishing ties between
mathematics and neural-net computing, and finally,
(e) to present some conjectures regarding the potential for future developments along the
lines of the FL approach.

" Supported in part by the Air Force Office of Scientific Research (F33615-90-C-5944)
and Wright Laboratory, Materials Directorate ( F33615-87-C-5250)
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These matters are covered in the following sections of this paper. In addition we
present a summary of the results of computations which compare the performance of the
FL net with that of the more traditional Backpropagation algorithm [1], demonstrating the
vastly improved computational efficiency of the FL approach.

2. Motivation and Strategy

With the help of retrospection, it is possible to explain the motivation and strategy
for developing the Functional-Link in simple terms.

To establish context and to provide focus, we concern ourselves with the task of
function approximation using a single-hidden-layer Perceptron, the computation of which
can be diagrammed as shown in Figure 1 (a). There are two layers of linear links, only the
hidden layer nodes are nonlinear, and the nonlinear transformation is specified explicitly to
be that of the sigmoidal activation function.

It is known that such a computational net can serve as a universal approximator of

continuous functions from K ERd, K is compact, to R [2]-[4]. However in

constructing the approximation, all the parameters ,6j, w1 , bj need to be learned, and that

can be a task of high computational complexity, so much so that the learning might not be
achievable in practice.

Inspired by the work on high-order nets by Giles and his collaborators [5] and by
the earlier work of Nilsson [6] on the benefits of nonlinear preprocessing of pattern space,
one of the present authors (Y.-H. Pao [7]) suggested initially that not all of the hidden-
layer nodes need be restricted to sigmoidal activation transformation, so that the network
of Figure I (a) might be modified and augmented to be like that of Figure 1 (b). In
addition, the appeal of the new nonlinear functional-links lay in the fact that they did not
have to be learned: no parameters had to be learned.

This approach remained an ad hoc practice until experience was accumulated with
use of the Random-Vector version of the Functional-Link (RVFL) net. An illustration of
that net is shown in Figure 1 (c). It appears to be identical to that of Figure 1 (a), the
conventional Perceptron, except for the critical differences that in the RFVL net the

learning of the upper layer linear weights {1,1} is separated from the formation of the

functional links g(wjx - bj), and in fact none of the parameter values. {wj,{bj} need

be learned. Accounts of use of that mode of the FL have been published [8]-[10]. The
pragmatic result is that the approach is indeed efficient in learning.

The objective of our work is to increase computational efficiency without
sacrificing accuracy. The strategy is to parametrize the functional form of the node
transformation and to use a continuous distribution of that transformation, in contrast to a
possibly large but discrete number of such nodes. The gain in efficiency comes about
through use of statistical evaluation of the resulting integral over the space of hidden-layer
parameters. Our work has led us to understand that we are not confined to the
traditionally used sigmoidal activation function but can generalize our approach to a wide
variety of functional forms. Correspondingly the term "Random-Vector" is to be
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interpreted quite generally in accordance with the context of the functional form of the
link transformations.

Because the central point of our approach is evaluation of a multiple integral by
the Monte Carlo method, all techniques for enhancing the efficiency of the Monte Carlo
method (for example, through variance reduction) can be used for enhancing the efficiency
of the RVFL net, after some modification.

3. Sketch of Mathematical Proof

In this section we formulate our main result and give a sketch of a mathematical
proof for it. The result, stated in the Theorem, says that (1) the RVFL net is a universal
approximator and (2) gives an estimate of the error of representation, which tends to zero
with n -+ co (n is number of basis functions ) independent of d, dimension of input space.
Although the rate with which the error tends to zero can be made sufficiently larger, we
avoid optimization over the space of the internal parameters of the activation function,
thus attaining a reasonable compromise between complexity of learning and efficiency of
representation.

Below we give first a qualitative explanation of our proof and then more detailed
description of each step of it.

d

In the first four steps of our proof we use a product 1g'(wi (x - y,)) instead of
i=1

sigmoidal function g. The former can be considered as an approximation of a d -

dimensional rectangular window located at a point y = (Y, I Yd) with a resolution

determined by a parameter w = (W,,...wd). Thus in step 1, a continuous function f is
represented as a limit of an integral over the space of parameter y with an integrand which
is window transformation of f. Our idea is that summation over discrete set of parameters
should be replaced by the integration over continuous parameter space. In accordance
with this idea we add integration over parameter w in step 2. Therefore, after the first
two steps, we can approximate our function by an integral over space of parameters

(y, w). This integral representation gives us opportunity not to include parameters (y, w)
in optimization procedure but to choose them randomly using Monte Carlo method to
estimate the integral in step 3. An estimate of the error of representation, given by formula
(2) of the Theorem, can be made in step 3 as well. Step 4 is a standard step: since we can-
not expect to know the value of the function f at all of the points considered in the
representation, we replace those values of f by indefinite coefficients which should be

d
found by optimization. In step 5 and step 6 we replace the window g'(wi (x - yj )) by

i=1
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a single unit output g wi (x - y, , traditionally used in neural-net computing. This is

done for the cosine-squasher g in step 5 and for any differentiable sigmoidal g in step 6.

The RVFL net is a d-dimensional function f defined on the unit cube Id, = [0; 1]

n
i(x) = 2:pjg(wjx -bj)

j=1

where g is a differentiable sigmoidal function, Aj e R, wo r Rd are uniformly distributed

in [-W;W]d for some W > 0 and are independent random vectors, bj = oj~j, ýj are

uniformly distributed in Id and are independent random vectors, j = 1,... n.

Following Leshno et al. [ 11], we denote wo = (n,, Ao),... o~nb,-bn.,W),, where

p = (/,...f-n ) as a parameter of the net and A = { co} as a set of all possible parameters

of the net. Let C(Id) is a set of all continuous functions on id, f = f. Then our main

result can be formulated as a theorem.

THEOREM

For any f(x) E C(Id) and any c > 0 a RVFL net f,,, eo c A, can be found such that

If (x) - f.(x)I < , X ld , (1)
and with probability P arbitrarily close to I

If (X) - f, (X)I < Cf,g~d,P / Vr , X Eld. (2)
Thus (1) is a statement about the universal approximation capabilities of the RVFL net,
while (2) is an estimate of the error of representation which, surprisingly independent of
dimension d of the input space, tends to zero with n -> 00,allowing us to avoid
considerably the curse of dimensionality. Below we give a sketch of the proof divided in
several steps.

STEP 1. We proved [12], that f can be represented in the form

d

f(x)= lim...lim Jf(y)rH ,g'(w,(x, -y,)i)y,
W1-+0_W,_+0 d =1

where dy = dy1 ... dy.
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This formula can be considered as a representation of the function f as a sum of d-
d

dimensional windows 1Idg'(w,(xi - ye)) with very high resolution, determined by the
I-1

high values of parameters w 1,... wd. The formula can be easily proved by changing

variablesy, to zi = wi (xi - yj ),i = l,...d.
STEP 2. Making use of the 1VHospital rule [13] we transform previous formula to the form

f(x) = lim...lim m ,-j-dwff( y)(wg(w,(x, -y,))dy,W,-+-=-W.-+-= WU D , Id =

where D = [0,W1d.
Thus function f is represented as a sum of windows with a continuous spectrum of
locations and resolutions.
STEP 3. We evaluate the integral in STEP 2 using the Monte Carlo procedure[14][15].
This is the central point of our approach. It is well known [16][17] that the Monte Carlo
method is one of the most efficient techniques in approximate calculation of multiple
integrals. The essence of the method is that integral evaluation is made through calculating
the average value of the integrand instead of evaluating a sum of elementary volumes.
Thus the curse of dimension can be ameliorated. We then have

f ( ) = 1 0 f d , x

J=1 J=1

where coj = ( 9,... jd), j = ( j,= 9,...n,

with estimate of accuracy given by formula

f~~x)-J d ~)J~g'(a,(X, - c))1 f rl ,fgd I f-

I J=l 1=1

STEP 4. We replace f (G) /Wd by indefinite coefficients aj,determined by optimization,
thereby having formula

fx) W aj, g'(w,(x, -
1=1 1=1

STEP 5. Applying STEP 3 and STEP 4 to a special choice of g, the cosine-squasher
function [18], we obtain a representation of the RVFL net in the form
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n d,
ST(X) bj

with estimate of accuracy of representation of the function f by the RVFL net, given by

formula (2). Vectors o,,j = 1,...d are distributed in [-W;Wr instead of [o;Wr since
we transform product of cosines into a sum.

Thus theorem is proved for this particular choice of sigmoidal function.
STEP 6. Approximating each one-dimensional cosine-squasher by a neural net with any

fixed differentiable sigmoidal activation function and predetermined parameters {w,b}
[12][19] we complete the proof

4. Relating the Functional-Link Approach to Recent Works on the
Mathematics of Feedforward Neural Networks and Some Perspectives

Recently a number of papers have been published expanding on the results of [2]-
[4] about the universal approximation capabilities of feedforward neural networks. Among
them are [11][12],[19]-[28]. The main direction of these works is to determine the most
general conditions on activation function so that one layer feedforward neural network
(nonlinear Perceptron) can serve as a universal approximator for continuous functions
with different domains and different metrics. At the same time some restrictions were
made in order to facilitate the problem of learning. For example Chui and Li [26] proved
that the nonlinear Perceptron can be taken in the form

Z c(i, k)g (ix +k)
(ik)E)

where i EZd, k r Z,
that is, the internal parameters (parameters of the hidden layer) can be chosen only from
the set of integer numbers.

Hornik [271 proved that if g is analytic and nonpolynomial on the degenerate
open interval B then the nonlinear Perceptron can be taken in the form

n+1,8 jg(wjx + b),
J=1

where b EB and g(k)(b)* 0,k = 0,1,2,...,

wE E Aj = 1,...n and A should contain a neighborhood of the origin.
Leshno et al.[l1] proved that if g is locally essentially bounded and not

polynomial on the domain il then for every compact K r 0, f r C(K) uniform universal
approximator for f can be taken in the form
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Zl,Ojg (,j wjx + Oj ), ApOj E R, wj E A, j = I,....n,

J='

and A c Rd is such a set that there does not exist a nontrivial homogeneous polynomial
vanishing on A.

The last result actually states that the number of internal parameters can be
reduced considerably without losing the universal approximation feature. Thus it should
be not surprising that in the Functional-Link net we have only two internal
parameters(W and the fiducial probability P ).

Another direction of research is represented ,for example, by papers of Barron
[29], Jones [30],White [31]. In particular in Barron's paper it was shown that neural
networks can serve as universal approximators for continuous functions more efficiently
than traditional functional approximators, such as polynomials, trigonometric expansions

or splines.The error of approximation tends to zero with the rate 0(1 /n) for specific class

of functions in the nonlinear Perceptron compared with 0(1 / %-n) in the RVFL net. But in

the RVFL net we learn only external parameters, while in the nonlinear Perceptron all,
external and internal, parameters are subjected to learning. Thus RVFL net seems to be a
reasonable compromise between complexity of learning and accuracy (and therefore
complexity) of representation.

It should be pointed out again that approach presented here allows us to use
numerous techniques of variance reduction known in the approximation of multiple
integrals by the Monte Carlo method. Thereby we will be able, after some modification,

to reduce constant Cf,g,d,p and, therefore, to enhance accuracy of representation without

losing simplicity of learning.

5. Explanation of the Use in Applications

The RVFL method has been used in several tasks by the present authors and their
research collaborators, and by other researches, all with favorable results.

As an example, in principle the thickness of film created by Molecular Beam
Epitaxy can be monitored through optical ellipsometry. Given the (complex) refractive
index of the substrate and the film thickness, it is possible to calculate the values of the
ellipsometry measurements. But even when given the requisite ellipsometry measurements,
it is very difficult to obtain accurate estimation of the (complex) refractive index of the
deposited film and of the film thickness. This task of inversion of a complex functional

relationship (y/ 0,A0 , 9V1,A 1) -+ (n,k,do,d1) was carried out using a system of RVFL nets

with good results. In this task the input variables are two pairs of Y/ and A angular
measurements and there are four outputs, n and k (real and imaginary parts of the

refractive index respectively) of the film, and two film thicknesses do and d,. Each of the

1-242



nets were trained with 104 training patterns (constituting a very sparse set of training
patterns in 4D space) and excellent generalization was achieved.

An example of the excellent results attainable is shown in Figure 2, where we
compare the refractive index, n , with the actual known values. The error is less than
0.1%.

Training for 104 training set patterns with a consultation system error of less than
10-4 could usually be achieved in about 6 hours on a SPARC 10 workstation, whereas
training was never satisfactorily achieved with Backpropagation.

Our experience with the use of the RVFL approach in dealing with a number of
other tasks confirms our judgement that this approach is indeed of high efficiency and of
reasonable accuracy. Some features of those tasks and our experiences with those learning
tasks are summarized in Table 1.

Table 1. Comparison of Learning Efficiencies of the Functional-Link (RVFL) and
Backpropagation (BP) Methods.

RVFL B P

TASK Vari- Training Time Itera- Vari- Training Time* Itera-
ables Patterns tions ables Patterns tions

Terminated
Ellipsometry 7 30,000 17 Hrs 5,000 7 30,000 after 24 > 104

(Sparcll) Hrs

Character 5 2,000 6 Hrs 250 5 2,000 Terminated > 106
Recognition (PC 486) after 96

Hrs
Chemical
Product 16 2,628 1 Hr 125 16 2,628 Terminated > 104

Formulation (Sparcll) after 12
1 1_ Hrs

Underwater 31 385 5 Hrs 1000 31 385 Terminated > 101
Acoustics (PC 486) after 50

Hrs

* Ended because of failure to achieve comparable accuracy
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Abstract
This paper describes the application of neural networks to the problem of recognizing
ground clutter signatures in WSR-88D weather radars. The motivation is the fact that
meteorologists can look at weather radar displays and very quickly recognize ground
clutter with high accuracy. Current automatic recognition techniques that perform well
rely on large maps that must be updated frequently for best results. An implementation
of a local receptive field texture-based feature used in conjunction with standard Doppler
moment estimates is described. When implemented with a neural network, the
application of this feature set is shown to provide classification performance approaching
that of meteorologists, without the high memory overhead or frequent operator
intervention of current methods.

1. Introduction
A new generation of Doppler weather radars is currently being installed across the
United States - the WSR-88D (Weather Surveillance Radar, 1988 Doppler). The Doppler
capability improves the ability of meteorologists to forecast the weather and to more
accurately estimate the amount of rain and snow falling on various watersheds. This
helps provide more timely flood predictions and accurate water management.

The WSR-88D detects many different targets - for example, precipitation, insect and
seed tracers in clear air, clouds, isolated point targets, and ground clutter. These
WSR-88D systems have built-in ground clutter filtering which reduces artifacts
introduced when radar energy bounces off of buildings and hills. This clutter
suppression reduces contamination from stationary objects on the ground, but also
causes real meteorological information to be lost when stationary storms are scanned.
For this reason, the ground clutter filters are typically only used for the regions close to
the radar where fixed ground clutter contamination is a serious problem.

As these systems are being installed across the country, another problem related to
ground clutter has become more apparent. When the humidity and air density of layers
of the atmosphere vary, the change in refractivity causes the radar beam to bend
differently. Sometimes it bends up, which causes confusion about the height of storms.

"The National Center for A.tmospheric Research is operated by the University Corporation for Atmospheric
Research, under sponsorship of the National Science Foundation.
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The much worse problem is that when the beam bends down it causes ground clutter
echoes to appear further away than normal. This "anomalously propagated" (AP) radar
beam is responsible for substantial distortions in precipitation estimates.

This AP looks different than "weather" when viewed on a display. Thus, meteorologists
can account for the contamination when making their forecasts. Computer algorithms
that calculate precipitation rates and give automatic warnings are not currently able to
recognize the AP and remove it, so the automatic warning systems produce false
warnings and inaccurate precipitation estimates. The problem of ground clutter
contamination has been studied before [1, 2, 31, and other approaches to AP detection
proposed [5, 61. [1] compared fixed ground clutter with anomalously propagated
ground clutter, and found that their spatial gradients are more similar to each other than
either is to precipitation. Thus, we emphasize recognizing fixed ground clutter with the
intent of extending the result to AP.

Previous work [3] on seasonally updated static maps of ground clutter residue provides
the performance baseline for this analysis. These maps work well for detecting ground
clutter residue that results from normal propagation of radar beams. The data storage
and processing requirements of that approach motivate this effort to discriminate clutter
residue from weather, using only the spectral moment estimates from a patch of range
cells, near the cell that is being tested.

Previous work [41 using neural networks for discriminating ground clutter from weather
used the spectral moment estimates from one range cell at a time as classification
features. See Figures 1 and 2 for plots of SNR vs velocity that show the problem of
discriminating clutter residue from weather. The previous result was that obvious
weather (wind speed above 3 m/s) and obvious noise (returned signal to noise ratio
below 0 dB) were readily detected. It was also found that high-signal, low-velocity
weather could not be reliably discriminated from ground clutter. This paper extends the
previous work by adding features based on spatial variability along a radar beam radial.

Weather SNR vs Velocity Clutter Residue SNR vs Velocity
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Artificial neural networks are used for this study based on the realization that a radar

meteorologist examines multiple features like signal strength, Doppler velocity, and
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Doppler spectrum width simultaneously (i.e. switching a display quickly between the
different moment estimates) in order to make accurate classifications. This ability to
combine the influence of multiple features simultaneously over large areas at a glance
is difficult to match with current algorithms.

The neural network training process finds multidimensional discrimination thresholds
that result in optimum classification performance. Neural networks provide good noise
immunity, which is important when dealing with noisy measurements of physical
phenomena. The networks can be adapted to varying conditions in the field by adding
problematic data samples to the training set and retraining.

2. Radar Data Description
The data obtained from the radar are in the form of spectral moment estimates that are
sampled in range, azimuth, and elevation. The data for this project are provided by the
Mile High Radar (MHR), which is a prototype of the WSR-88D systems previously
described. The range resolution of the Mile High Radar is 225 meters per range cell, and
the beam width is just under 10. The spectral moment estimates are used as follows:

0th moment -- Signal (in dBM)
1st moment -- Doppler velocity (in meters/second)
2nd moment -- Doppler spectral width (in m/s)

This base data is written to 8mm tapes at the rate of about 300 megabytes per hour, or
more than 7 gigabytes per day. A very small amount of the available data was used for
this analysis. The data for the training and test sets were obtained from 360* scans at
a single elevation. Each scan covers a disk with a radius of 148.5 km (660 range cells of
225 meters) with an azimuthal resolution of 10. This results in a total of 237600 range
cells of data per scan. Of the -20 to +80 dB dynamic signal to noise range, only range
cells above +6 dB were used. The remainder were thresholded out so the network didn't
need to learn about noise. Homogeneous data sets of 9 range cells were chosen at
random from the 1000+ sets that passed the 6 dB minimum SNR threshold test.

The clutter training and test sets were obtained on 21 December 1992 (MHR tape
M21Dec92) on a clear day (no precipitation) at an elevation of 0.5'. This scan has many
range cells contaminated with fixed ground clutter residue with up to 55 dB signal to
noise (after removing 55 dB of clutter with narrow bandwidth notch filters). The
mountains return very strong echoes affected by weather because of blowing snow.

The weather training and test sets were obtained on 15 June 1992 (MHR tape M92303),
on a stormy day with >30 dB SNR weather echoes. These weather samples were chosen
because of an unusually large patch of near zero velocity precipitation, and also because
there was no anomalous propagation visible in this scan. Other scans from the same day
showed enough AP to contaminate the data sets.

The generalization performance of the trained neural network is then tested with
samples from MHR tape M93240, which is a 0.5' scan obtained on 30 August 1993, that
contain both heavy precipitation (scattered thunderstorms) and strong ground clutter.
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The spatial returned power gradients have been proposed as a useful discrimination
feature [1]. One measure of the spatial gradients is a quantity we call texture. The
texture is a measure of smoothness based on the RMS value of the first difference
between range cells separated by the specified spatial lag. Statistical analysis of the
textures of both SNR and spectrum width provide significant discrimination between
precipitation and fixed ground clutter. See Figure 3 for an example of the texture of
spectrum width at lag 2 for weather and clutter residue. The texture of the Doppler
velocities is not used because it was found to have very poor discrimination ability.

M93240: Frequency of Occurrence for Texture of Spectrum Width, lag 2
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Figure 3

The results presented below were obtained by processing the spectral moment estimates
from nine adjacent range cells along a radar beam radial to produce multiple statistical
features which can then be used as inputs to a neural network. The features that are
provided to the neural network are as follows:

Mean Velocity (m/s)
Mean Signal to Noise ratio (in dB)
Texture of Signal to Noise (dB)
Texture of spectrum width (m/s)

The mean and texture of SNR and spectrum width are calculated with range lags of 1,
2, and 3 range cells, and their discrimination ability is compared with that of single
range cell features. All use a window size of nine range cells (2025 m) with the
classification determined for the center cell.

3. Neural Network Architecture Description
The neural network to be used in this analysis is based on the Aspirin/MIGRAINES
neural network simulator [7, 8]. Given a high level description of the desired network
(number of inputs, outputs, hidden units, number of layers, and activation functions),
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the Aspirin parser produces 'C' language code that can be trained and tested off-line and
then integrated into a production system.

The network that was used has 3 inputs, 15 hidden units, and a single continuous output
that is treated as binary. The activation function in the hidden and output layers was
a sigmoid.

4. System Implementation
300 samples each of clutter residue and weather were used to form the training set. 1000
samples each of clutter residue and weather were used to form the test set. These
samples were drawn from the same scans used to create the training set. Thus, the
performance on this data set gives an indication of whether the training process has
overfit the network to the training data set, but gives little indication of how the network
will perform on different data sets. An additional 10,000 samples each of weather and
clutter residue from M93240 were used as a cross-check to verify the generalization
performance of the trained network.

5. Results
The occurrence frequency of correctly classified samples is shown in Table 1, with a
value of 1.0 being perfect classification (relative to the clutter residue map [3]). The
actual score is followed by the possible score (e.g. 270/300). Note the relatively poor
generalization on the M93240 weather set for the network trained with the single range
cell features as compared with the multi-cell based texture features.

Clutter Weather

Single Training Set .84 (251/300) .94 (283/300)

range cell Test Set .83 (763/915) .94 (913/971)
method M93240 Set .84 (8428/10000) .74 (7403/10000)

Nine Training Set .90 (270/300) .95 (285/300)

range Test Set .89 (894/1000) .94 (945/998)
cells, lag 1 M93240 Set .93 (9277/10000) .88 (8779/10000)

Nine Training Set .91 (272/300) .94 (283/300)
range Test Set .89 (887/1000) .94 (941/1000)
cells, lag 2

M93240 Set .91 (9129/10000) .89 (8912/10000)

Nine Training Set .90 (271/300) .94 (283/300)
range Test Set .88 (876/1000) .94 (945/1000)
cells, lag 3

M93240 Set .92 (9159/10000) .88 (8843/10000)
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6. Summary
A neural network trained with pure examples of weather and fixed ground clutter
residue can correctly classify more than 85% of the samples from a mixed data set. The
texture at lag 2 did the best job of correctly classifying weather that the network had not
seen during training, and the texture at lag 1 was best at detecting clutter residue. A
high rate of correct detection of weather is crucial since there is typically 5 to 10 times
as much weather as clutter residue in cases of interest from the Mile High Radar.

Use of this texture feature combined with the seasonal clutter residue maps could be a
useful addition to the WSR-88D radars. Future extensions to this work could include
adding elevation and azimuth texture information, additional spectral moments, and
maps of the terrain slopes that could be illuminated by anomalous propagation.
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This sepot descibes operational test and evaluation of two neural network applications that were in•eprted
into die Intelligent Mondonng System (IMS) for automated prcesung and mtaprqazmo of regional seismic darn.
Also reported is dhe result of a preliminary study on the applicawon of neural networks to regional seismic event
identification. The first application is for initial identification of seismic phases (P or S) recorded by 3-component
stions based on polanzation dam and CoOeZXL This neural network performed 3-6% beuer than the current rule-
based sysem when ested on damn oboned from the 3-component IRIS stations in the former Soviet Union. This
resuled in an improved event bulletin which showed that the number of analyst-ver•bed events that were missed
by the automated processing decreased by mome t•n a factor of 2 (about 10 evenuiweek). The second opera-
ioval test was conducted on the neural network developed by M=T/Lincoln Lalimamory for regional final phase

idenfication (e.g., Pn. Pg. Sn. Lg., and Rg). This neural network performed 3.3% beta than the rule-based sys-
tem in IMS station prm:xsing. However, for the final phase identificauoas obtained after network proce=ssMg
(where data horn all stations are combined), the gpun dropped to about 1.0%. It is likely that this could be
reapined by using the neural network phase identificauon confidence fictors ui dhe network processtig. Finally.
outf preliminary study on the application of neural networks to identfy repgoma seimnc event on the basis of
coda shape gave about 80% accuracy on data recorded at GEXESS. In general. the neural network cassiier ual-
ized the coda decay rate which was lower for the earthquakes than it was for die explosions. although ther was
substanitial overlap.
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of Neural Network Applications for Seismic
Signal Discrimination", Tech. Report:
PL-TR-92-2218 fIIA, Phillips Laboratory
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;. )stract
Nonlinear system identification is one of the major topics of interest in today's neural network research.
In this paper we present a special problem of great relevance in the context of nuclear fusion
applications: the identification of the plasma boundary in a machine of the tokamak type from the
knowledge of magnetic measurements provided by properly located sensors. The problem is not only
solved by means of neural networks of different topologies and by introducing suitable criterion
functions but also deriving an interpretation of the internal representation of the model. A careful
analysis of this model can suggest important consideration about two problems of great interest in
nuclear fusion research: the fault tolerance and the minimisation of the number cf sensors.

1.INTRODUCTION.
Plasma shape identification is concerned with extracting information about the geometry of a

plasma column in the vacuum chamber of a tokamak machine by pruzessing a set of measurements
provided by sensors located in the proximity of the chamber walls. As a result, it can be considered a
pattern recognition problem.

The tokamak is by far the most common experimental device in nuclear fusion research based
on the concept of magnetic confinement. The axisymmetric configuration here analysed is the ASDEX
Upgrade [1], however the methods proposed are appliable to other than the considered machine. On the
other hand, for the ASDEX-U case several results of identification, by means of other methods, are
currently available [2] and useful for comparative analyses. Axisymmetric plasma column are usually
described by a number of parameters which can be related to one another.

In the special case of a circular plasma with high aspect ratio the number of parameters defining
the equilibrium is restricted to three[3].Furthermore, these conditions enable us to derive formulae
describing the equilibrium without knowing the profiles of current and pressure in the plasma cross-
section. We have already treated this case with very good results[4,5]. In the more difficult, but also
more practically relevant, case of elongated plasmas , the number of parameters needed to
satisfactorily describe the equilibrium is larger, but always finite. In addition, we have not at our
disposal analytic solutions of the equilibrium equations and some relevant parameters are related to the
actual current density distribution inside the plasma. Once selected the parameters of interest, the aim
of each possible identification procedure is to derive approximate expressions relating shape
parameters to measurements. In order to control in real time the evolution of a discharge, the estimation
of the parameters has to be carried out in a matter of ms For this reason a neural network (NN)
approach seems appealing. The use of NNs for sensory processing presents at least three advantages:

i) the functional form relating the set of plasma parameters to the measurements is defined by the
NN model and is implicitly non linear;

ii) a proper topology of NN allows to easily recover parameters linearly related to the
measurements;

iii) the regression model can be obtained off-line by means of a proper database and once trained
the NN can work in real time. The problem under study is equivalent to that, commonly encountered in
computer vision, of approximating a surface from noisy and sparse data [6]. Indeed, we treat an inverse
problem, ill-posed in the ense of Hadamard that can be stabilized by proper techniques, in particular by
restricting the class of solutions to those involving a limited number of free parameters.

The major aim of this work is not to show the reliability of the method, already demonstrated in
[7,8], rather to understand how NNs models solve the problem, possibly exploiting the concept of
regularization introduced in the model, either implicitly or explicitly.
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2.PLASMA SHAPE IDENTIFICATION IN TOKAMAK DISCHARGES.
The identification of the plasma boundary starts from the knowledge of a set of measurements

performed in properly located points by means of selected sensors. We limit ourselves to magnetic
measurements, i.e. the poloidal flux and/or the 0 component of the poloidal field. The sensors (flux
loops and magnetic probes) are located along some contour of the vacuum chamber. Actually, in our
simulations, the database of patterns needed for the training and the once-off linear regression is
generated by means of an equilibrium code which represents a numerical model of the experiment.
Each record of this database includes both the values of the physical quantities of interest and the
related measurements. The criterion used to generate the sample cases is described in detail in [7],
anyway the simulations are carried out aiming to cover the entire range of possible states of the
physical system. For this reason a pseudo-random variation of the code parameters has been applied
using the Monte Carlo method. A preliminary linear statistical analysis of the database was made by
using NAg routines in order to compute mean values, stan ard deviations, maximum and minimum
values, self-correlation and cross-correlation matrices and finally a linear regression model. Each
record of the database consists in 31 flux measurements and 8 plasma parameters which are supposed
well characterising the equilibrium. The only configuration of plasma here treated is the X-point one,
where the plasma boundary is defined by the flux line where a null point of the field occurs. A model
interpolating all of the possible configurations is now under study. The plasma i ..,meters here
considered are the following: R- and Z- coordinates of the X-point, Rxp,Zxp, poloidal beta, Bp,internal
inductance, Li, major and minor radius, R,a, elongation, k, and triangularity, Tr. Fig. I shows a typical
lower X-point configuration, the arrangement of magnetic sensors and the geometric plasma parameters
for the Asdex-Upgrade machine. It is worth noting, in view of the comments on section 3, that the
elongation parameter is related to the (Zup-Zlow/Rout-Rin) ratio, and the triangularity is :-elated to the
difference (R-Rxp). The poloidal beta and internal inductance of the plasma are determined by the
current density profile.The uncertainties in estimating these parameters are related to the elongation:
the prediction can be good for sufficiently elongated plasmas, as those considered in our database. In
the next section we. kxplain how to solve these problems using the multilayer NNs.

3.NEURAL REPRESENTATION AND SOLUTION OF THE PROBLEM.
The neural network model that we use is tb- multilayer feedforward one with a hidden layer of

neurons with sigmoidal activation functions and a linear output layer. The number of inputs and
outputs is fixed by the problem as formulated in sect.2. The number of hidden neurons is related to the
number of cases of the training dataset (700), to the required generalization capabilities measured by
means of a test dataset (300 cases), and finally to the complexity of the non linear mapping to be
interpolated. In principle one can improve the approximation capabilities of the model increasing the
number of terms of the series expansion : this strategy is not appropriate if the number of free
parameters of the model is not related to the number of constraints (size of the dataset). Because we use
a learning procedure based on gradient descent, a global minimum is unlikely to be found: the local
minima generally reached can be consistent with the training data but not always with the actual
problem. By considering a fixed network size (in our case 31x12x8), one can ask for the number of
training samples required to achieve good generalization. The theoretical response is given by the
Vapnik-Chervonenkis dimension (VCdim) [9]. One can roughly relate VCdim to the number of weights
of the input-hidden layer in the case of hard-limiting nonlinearities. Our dataset size is larger than the
number of weights of the entire network; however, this number seems less than of what required from
a theoretical viewpoint. Neverthless, we have found good performance in solving our problem. A cross-
validation like technique is here applied to avoid overtraining of the data. The results of the
identification procedure are reported in Tab.I.

The reasons of the good performance of the NN model can be related to the regularization
techniques implicitly introduced in the model that indeed reduce the effective number of free
parameters of the network [10 ]. First of all, specifying the network architecture introduces per se some
degree of regularization. Furthermore, by using sigmoidal nonlinearities the degree of smoothness of
the solution space is high. A priori knowledge of the problem allows to introduce some other
constraints, in such a way reducing the ill-posedness of the inverse problem. In this paper, for example,
we show that the introduction of a direct link between input and output has a very beneficial effect.
Indeed, the accuracy of the estimation of the plasma parameters is better than what given by a standard
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NN(see Tab.I). In addition, the linear regression can be preliminarly carried out via statistical analysis,
and then the learning step reduces to the determination of only the deviation from the linear
behavior[5]. This can be accomplished by a reduced size NN with a hidden layer of only 8 neurons. It
is worth noting that this can also reduce the run time of the network in the forward-only operation. The
learning algorithm we have used is the standard backpropagation with learning rate,i , starting from Tl

=1, and then decreasing to avoid oscillation around the minimum. The reduction of ri is also related to a
proper scheduling of the momentum term.

The effect of the introduction of a linear term can easily be understood by analysing the pattern
of the weights of two NNs (with and without direct connections). Figs. 2* and 3* show the so called
Hinton diagrams for the trained NNs.We can interpret these maps by considering three kind of hidden
neurons (HNs): i) feature detection HNs, ii) fine tuning I-INs, iii) features correlating I-INs [5]. In short,
some HNs detect a special feature in the pattern of input, other HNs tune the estimate inside the class
selected by feature detection HNs. Finally, features correlating HNs learn relationships among output
parameters: let us considerfor example, HN12 in fig.2. HN12 activates high values of elongation,
which generally implies low Zxp. Furthermore, HN12 drives very low values of triangularity which
derive from Rxp>>R. In the case of fig.3, the linear term is devoted to the feature detection process and
to some extent to the features correlating process. The fine tuning process is instead performed by the
nonlinear HNs. It is clear that in presence of only negative small weights the activations of HNs are in
any case very small as requested by the correction process. Figs. 4* and 5* show the patterns of
activations for two sample cases of the test dataset: the described effect of the regularization via
introduction of a priori knowledge is here evident.

Rxp Zxp Bp Li R a K Tr

Standard 2.95 3.42 3.31 2.49 1.97 2.19 2.62 3.47
NN
NN + Linear 2.92 2.41 2.19 2.84 1.40 1.15 2.08 2.15
Connections I I I I I I

Tab.o -Accuracy of the estimation in terms of full scale percent error.

4.FAULT TOLERANCE VS. MINIMISATION OF THE SENSORS.
Taking a glance to fig.2, it is not surprising that the corresponding NN is anything but fault

tolerant. HNs 8 and 12,and inputs 2, 21, 26, 27 and 30 embodies most of the information concerning
the plasma position and shape. The NN with direct linear connections is more fault tolerant w.r.t. the
HNs having assigned to the linear term the task of rough classification of the input vectors. The role of
the inputs is yet unchanged, so the resulting NN is not fault tolerant w.r.t. the inputs. On the other hand,
one of the main objectives of current research in tokamak reactor concerns the minimisation of the
number of sensors to be placed inside the chamber. In addition, it would be of high interest to have
some hints which lead to the possible exclusion of terms not sufficiently significant from the
regression. The analysis of the latter point of view is carried out in [7]. In this work we would like to
add some considerations about the fault tolerance. In particular, by a proper choice of the error function
to be minimised during the training step, one can discourage the learning algorithm from seeking
solutions with very large weights and/or weights which deviate too much from the initial weights [11].
Actually, we attempt again to regularize the solution by adding a term to the cost function related to
the complexity of the model [12 1. In our case we choose the following error function:

E(w) = ,No(yj(w)_dj)2 N. W

0 j=2 i=I

where the first term is the standard squared error criterion measuring the distance from the data,
and the I parameter is a small positive constant used to decide the relative importance of the two terms.
This technique is simply embodied in the standard backpropagation algorithm and is commonly known
as weight decay method. The resulting trained NN exhibits better fault tolerance properties (see fig.6*)
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also continuing to perform the estimation satisfactorily. A more skilled technique that ensures uniform
fault tolerance is reported in [13]. The rationale behind this approach is to make all FINs equally
relevant in the NN. In short, in the NNs framework it is possible to select strategies which match the
problem we have to cope with.

5.CONCLUDING REMARKS.
We have discussed the equilibrium parameters recovery for non-circular plasmas using NNs.

Special emphasis is given to the interpretation of the NN representation of the problem. Indeed, a
suitable analysis allows to exploit NN approach to deal with the problem of optimal selection of
magnetic measurements. In particular, a method has been proposed which allows to manage in the
training phase the trade-off between fault tolerance and minimisation of sensors. In our case the
introduction of measurement noise can be viewed as a regularizing effect in the same way as the one
described in sect.4. This improves the robustness of the NN and consequently its fault tolerance.
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Fig. I - The test case geometry
(ASDEX-U Tokamak).
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Abstract

Classifying roads in remotely sensed imagery has been the target of several contemporary research
efforts. Detecting these features in Landsat Thematic Mapper imagery is of consequence for both
agricultural assessment and urban planning. In our previous work, we showed that road pixels
could be distinguished by their spectral signatures in raw Landsat TM images using both Multilayer
Perceptrons and Learning Vector Quantization. In this work we show that this ability is robust in
harsh environments and seasonal lighting variations.

1 Introduction
In 1982, the Landsat 4 satellite was placed into sun-synchronous orbit around the earth. A primary
instrument on board this spacec.aft is the Thematic Mapper, or Landsat TM. This instrument scans a
ground swath of 185 km perpendicular to the satellite's direction of motion, and is capable of resolving
ground areas of 30m on each side. The data is sampled and quantified to 8 bits/pixel in each of seven
spectral bands, ranging from infrared to visible light.

While primarily designed for agricultural assessment, Landsat TM imagery has been used to monitor
the environmental impact of human activities including the analysis of urban and population growth,
identifying regions for urban development, and monitoring the environment. Several of these activities
require the identification of human-imposed structural features, such as roads, residential areas, and
industrial developments. Changes in these features over time can be used to estimate urban growth,
verify census data, and monitor the accuracy of cartographic databases. Since these features are typically
smaller than the resolution of the Landsat TM, they present a challenging problem for computer vision
systems.

Road discrimination is a subset of the problem of land-cover discrimination. Several investigations
have addressed road surface classification either independently, or as a part of a more general classification
scheme [1-5]. These efforts focus upon the use of knowledge-based systems to identify roads. The
resulting systems typically organize the identification process into several distinct phases, including:
image filtering, segmentation, applying inference rules to identify candidate road pixels, using geometric
inference to extract linear features, and final candidate classification. The principal focus of these efforts
is the identification of structures with linear geometry as potential roads.

These knowledge-based systems perform well at the expense of a considerable investment in the
development of application specific image manipulation software, geometric analysis routines, and expert

rule bases.
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2 Neural Network Road Identification

Several investigators have explored the strengths and weaknesses of neural networks when specifically
applied to remotely sensed land use analysis. Benediktsson et al. [6], McClellan et a). [7], Ryan et al.
[8], and more recently Heermann et al. [9] all describe the application of neural networks to Landsat
TM imagery. The consensus of these investigations indicates that the neural networks perform at a level
competitive with other statistical techniques.

In our previous work [10, 11], we showed that road pixels could be distinguished by their spectral
signatures in raw Landsat TM images using both Backpropagation trained Multilayer Perceptrons (MLP)
and Learning Vector Quantization (LVQ1 and LVQ2). Since the MLP performed slightly better (see
Tables 1 and 2) we chose it for this investigation.

The fact that a single pixel exceeds the width of most roads coupled with the observation that many
man-made materials (and some natural phenomena) exhibit spectral characteristics which are similar to
roads [9] suggests that the classification process should include not only the spectral characteristics of
the pixel being classified, but the spectral characteristics of the surrounding pixels as well. Including this
contextual information allows the neural network to train on both the spectral and spatial properties of
the input data.

Figure I shows a neural network organization that incorporates both spectral and spatial information.
In this diagram each box represents seven fully-connected input units, one for each of the seven spectral
bands corresponding to a pixel in the Landsat TM image. Based upon an empirical analysis [10, 11], we
chose to use twenty hidden units for this investigation.

The training set was selected from Landsat TM imagery for the Joliet, Illinois region shown in
Figure 2. This mid-summer image contains a representative selection of both rural and urban features
including agricultural, residential, and industrial areas. As a consequence, it also contains a variety
of surfaces, ranging from small rural roads to multi-lane highways. The training set consisted of 552
samples selected to incorporate a wide range of image features. A battery of tests, including histogram
analysis, Euclidean cluster analysis, Sammon mapping, and Principal Component Analysis were applied
to the training set [11]. These tests show no readily apparent segmentation boundaries.

The neural network was trained on a Silicon Graphics Iris 4D 210 and applied to the image. Figure
3 shows the resulting classification. Tables 1 and 2 presents a summary of the results based on manually
classifying a typical region [10,11]. Note that highway intersections and residential streets are identifi-
able. It should be observed that of the pixels that were misclassified as roads, many were rectangular
surfaces such as building roofs and parking lots or areas in which small clouds intersected roads. There
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Figure 2: Landsat TM: Joliet, Illinois

were also several pixels that represent private roads, such as driveways. These were considered to be
non-road pixels for these experiments.

An analysis of the networks weight and activation values revealed that the network developed a
representation for contrast. Figure 4 shows a Hinton diagram of the weights associated with the inputs
from the classified pixel (center) and its nine neighbors. In this diagram the columns represent the
seven spectral bands, with the last column being the weights to bias units. There is one row per hidden
unit. Generally, excitatory weights in the pixel being classified have the corresponding weights in their
neighbors inhibited. The relatively large weights in bands one through three (visible) and band four
(infrared) suggest that these bands may be the most significant for extracting road information, which is
consistent with human observation [12]. For a more detailed analysis of both performance and internal
representation see [11].

3 Harsh Environments

A useful technique should also be robust. In this section, we describe the results of applying the neural
network to structural environments requiring both spectral and spatial information. We demonstrate
that, with minor adaptation, it has the ability to perform under adverse conditions, such as metropolitan
Chicago, and to be able to perform across geographic regions and seasonal illumination variations.

3.1 Metropolitan Chicago

Figure 5 shows the Landsat TM image of metropolitan Chicago, Illinois. Since a single pixel typically
represents a non-homogeneous ground surface region, the detection of features in a densely homogeneous
image is much more difficult for both man and machine. Figure 6 shows the results of applying the neural
network trained on the Joliet region to metropolitan Chicago. While most major highways are detected
in this image, the ability of this network to discriminate fine detail in this region is limited.
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Figure 3: Joliet Roads

To determine if the network's ability to incorporate spatial information depends upon the size of
the neighborhood, the spatial context was extend to include both a pixel and its 24 closest neighbors.
This network was then retrained using the 552 Joliet sample set and applied to both the Joliet and the
metropolitan Chicago images. Figure 7 shows the resulting classification for the Chicago image. Note
that major roads are visible, concrete roads and airport runways are not classified as roads, and most
buildings are not misclassified as roads.

3.2 Regional Variations

Another indication of robustness is the performance across images from different times and regions.
Differences in terrain can render the classifier ineffective (e.g. shadows cast by mountains obscuring
road surfaces). Lighting differences can also play a role. While the Landsat TM is sun-synchronous,
seasonal changes can cause dramatic differences.

Figure 8 shows the Landsat TM image for Washington D.C., a November image. Note that the overall
level of illumination reaching the sensor array is diminished. Since the training set was selected from
the Joliet image, we would like to have the Washington D.C histogram match that of Joliet. Applying
the standard image processing routine of histogram matching (13-15] results in the image shown in Fig.
9. Histogram matching is an approximation, in this case the resulting image is both brighter than the
original and is closer to the Joliet prototype.

Figure 10 shows the result of classifying this histogram matched image with the Joliet trained neural
network. The classifier retains much of its ability to distinguish surface properties such as airports and
buildings, as well as to reasonably classify road surfaces. Note that the misclassification of the river
water can be attributed to density variations visible in Figure 9 possibly due to deposits in the water.
This is similar to the phenomenon described by Heerman, who showed that clouds could alias as urban
features in Landsat TM imagery [9].
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Table 1: Road Identification Results

Architecture Pixels Correct Omitted %

MLP 791 707 84 89.4

LVQ1 791 596 195 75.4

LVQ2 791 596 195 75.4

Table 2: Non-Road Identification Results

Architecture Pixels Correct Incorrect %

MLP 15593 15276 317 98.0

LVQ1 15593 14793 800 94.9

LVQ2 15593 14793 800 94.9

4 Summary

We have demonstrated a neural network that can be trained to discriminate road surfaces based on
spectral information from raw Landsat TM imagery. This system performed at a level consistent with
other contemporary approaches, and has the advantage of operating on raw input without the need to
establish an application-specific rule base. Equally important, this discrimination capability is robust
across metropolitan regions and seasonal illumination variations.
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Figure 6: Metropolitan Chicago, 9 Neighbors
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Figure 7: Metropolitan Chicago, 24 Neighbors

Figure 8: Landsat TM: Washington D.C.
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Figure 91 Washington D.C. Histogram Matched

Figure 10: Washington D.C. Histogram Matched and Classified
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Compact, portable systems capable of quickly identifying contaminants in the field are of great importance
when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine
and develop new technologies for environmental restoration and waste management at the Hanford Site (a
former Plutonium production facility). In this paper, three prototype sensing systems are discussed. These
prototypes are composed of sensing elements, data acquisition system, computer, and neural network
implemented in software and are capable of automatically identifying contaminants. The first system
employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system
employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The
third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In
these systems, the neural network is used to identify the composition of the sensed contaminant. With a
neural network, the intense computation takes place during the training process. Once the network is
trained, operation consists of propagating the data through the network. Since the computation involved
during operation consists of vector-matrix multiplication and application of look-up tables (activation
function), unknown samples can be rapidly identified in the field.

1. INTRODUCTION TO-THIEPROBLEM is that most of the intense computation takes place dur-
Enormous amounts of hazardous waste were gener- ing the training process. Once the ANN is trained for a

ated by more than 40 years of plutonium production at particular task, operation is relatively fast and unknown
the Hanford Site. There are an estimated 1700 waste samples can be rapidly identified in the field.
sites distributed around the 560 square miles of south-
eastern Washington that comprise the Hanford Site.1  2. SENSOR DATA ANALYSIS
This waste includes nuclear waste (e.g., fission prod- feature values labeled patterns
ucts), toxic chemical waste (e.g., carbon tetrachloride, (measurements: electrical (e.g., chemical composition,

rE rese wavelwnith, etc. isot identification etc.)
ferrocyanide, nitrates, etc.), and mixed waste (combined 0 Sensio System
radioactive and chemical waste). The current mission at
the Hanford Site is environmental restoration and waste Network
management.

As part of this mission, the Pacific Northwest
Laboratory is exploring the technologies required to per- Figure 1. Sensor system combined with an ANN.
form environmental restoration and waste management There are many real-time (rapid response) and
in a cost effective manner. This includes the develop- remote sensing applications that require an inexpensive,
ment of portable, inexpensive systems capable of real- compact, and automated system for identifying an object
time identification of contaminants in the field. The ob- (e g., target, chemical, isotope). Such a system can be
jective of our research is to demonstrate the potential in- built by combining a sensor array with an ANN. A
formation processing capabilities of the neural network buic systembis sensorgure 1.paradigm in sensor analysis. The initial portion of this generic system is shown in Figure 1.

The quantity and complexity of the data collectedeffort involves the development of three prototype sys- by sensor arrays can make conventional analysis of data
tems, where each prototype combines a sensor array difficult. ANNs, which have been used to analyze
with a neural network. These prototypes are discussed complex data and for pattern recognition, could be a
in this paper. better choice for sensor data analysis. A common ap-

Artificial neural networks (ANNs) are used in a proach in sensor analysis is to build an array of sensors,
wide variety of data processing applications where real- where each sensor in the array is designed to respond to
time data analysis and information extraction are re- a specific analyte. With this approach, the number of
quired. One advantage of the neural network approach sensors must be at least as great as the number of ana-

This research was supported by the Northwest College and University Association for Science (Washington State
University) under Grant DE-FG06-89ER-75522 with the U.S. Department of Energy.
Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under
contract DE-AC06-76RLO 1830.
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lytes being monitored. When an ANN is combined with sensors (Sensors I I and 12: 5KD-5) arc used to monitor
a sensor array, the number of detectable analytes is the conditions of the experiment and are also fed into the
generally greater than the number of sensors.2  ANN.

A sensor array is composed of several sensing ele- The prototyped ANN was constructed as a multi-
ments, where each element measures a different prop- layer feedforward network and was trained with the
erty of the sensed sample. Each object (e.g., target, backpropagation of error algorithm by using a training
chemical, isotope) presented to the sensor array pro- set from the sensor data base. 8 The parameters used to
duces a signature or pattern characteristic of the object. train this ANN are listed in Table I. This prototype was
By presenting many different objects to the sensor array, initially trained to identify 8 household chemicals: ace-
a data base of signatures can be built up. From this data tone, correction fluid (White Out), Duco cement, glass
base, training sets and tcst sets are generated. These sets cleaner, isoproponal alcohol, lighter fluid, rubber
are collections of labeled patterns (signatures) represen- cement (Naphtha and Hexane), and vinegar. Another
tative of the desired identification mapping. The train- category, "none", was used denote the absence of all
ing sets are used to configure the ANNs. The goal of chemicals except those normally found in the air. This
this training is to learn an association between the sensor resulted in 9 output categories from the ANN. Figure 3
array patterns and the labels representing the data. illustrates the network layout.

When a chemical sensor array is combined with an
automated data analysis system (such as an ANN) to Table 1. ANN Training Parameters
identify vapors, it is often referred to as an artificial Type: Backpropagation in batch mode
nose. Several researchers have developed artificial Architecture: 12-6-9 feedforward
noses that incorporate ANNs for use in applications in- Activation: Logistic
cluding monitoring food and beverage odors, 3 auto- Learning Rate: 0.01
mated flavor control, 4 analyzing fuel mixtures, 5 and Momentum: 0.9
quantifying individual components in gas mixtures.6  No. of Epochs: 15000
Several ANN configurations have been used in artificial Sensor Inputs
noses including backpropagation-trained feed-forward R In A-_
networks, Kohonen's self-organizing networks,
Hamming networks, Boltzmann machines, and Hopfield Correetion Fhuidf
networks. D C

3. CHEMICAL VAPOR SENSOR SYSTEM Glass Clea
Chemical Chemical Identified

Vapor Sensor Array Chemical TMS_88 s a

NeuralKD-5 Li"OIp (10S %•(1)•( 0 Network S KD-5 )Rubber CemenL

Figure 2. Chemical vapor sensing system.
The first prototype system, shown in Figure 2, iden- Fig. 3. ANN used to identify household chemicals.

tifies and quantifies chemicals vapors. It employs an
array of nine tin-oxide gas sensors, a humidity sensor, During operation, the sensor array "smells" a vapor,
and two temperature sensors to examine the environ- the sensor signals are digitized and fed into a computer,
ment. Although each sensor is designed for a specific and the ANN (implemented in software) then identifies
chemical, each responds to a wide variety of chemical the chemical. This identification time is limited only by
vapors. Collectively, these sensors respond with unique the response of the chemical sensors, but the complete
signatures (patterns) to different chemicals. During the process can be completed within a few seconds. Figure
training process, various chemicals with known mixtures 4 illustrates both the sensor response and the ANN clas-
are presented to the system. In the initial studies, the sification of the system for a variety of test chemicals
backpropagation algorithm was used to train the ANN to presented to the prototype.
provide the correct analysis of the presented chemicals.

The nine tin-oxide sensors are commercially avail- 4. OPTICAL SENSOR SYSTEM
able Taguchi-type gas sensors obtained from Figaro Co. The second prototype system, shown in Figure 5,
Ltd. (Sensor I: TGS 109, Sensors 2 and 3: TGS 822, employs an array of optical sensors and identifies the
Sensor 4: TGS 813, Sensor 5: TGS 821, Sensor 6: TGS composition of chemical dyes in solution. Light is
824, Sensor 7: TGS 825, Sensor 8: TGS 842, Sensor 9: passed through the dye solution and into an array of
TGS 880). Exposure of a tin-oxide sensor to a vapor seven optical sensors. Each optical sensor consists of a
produces a large change in its electrical resistance. 7 The silicon detector covered by a narrow bandpass interfer-
humidity sensor (Sensor 10: NH-02) and the temperature ence filter and is sensitive to a specific wavelength of
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Sensor Values ANN Output Chemical Optical Identified

None Lamp Dye Sensor Array Chemical

*N e uro ,IIo
Figure 5. Optical sensor array system.

1 2. RADIATION SENSOR SYSTEM
123456789101112 1 23456789 Energy Identified

Acetone Unknown Spectra Isotopes
cetoneObject

lGamma-Ray F Neural
Ile t---Spectrometer I Network

Detector L J
(Nal, Ge)

Figure 6. Gamma-ray spectrometer with ANN.

The third prototype system, shown in Figure 6,
1 2 34 5 6 7 89101112 1 2 345 6789 contains a portable gamma-ray spectrometer and is used

to identify and quantify radioactive isotopes. The
Glass Clea gamma-ray spectrometer consists of a sodium iodide6(Nal) crystal, photomultiplier, pulse height analysis

circuit, and multichannel analyzer. There are 512 chan-

nels of data produced by the spectrometer. All 512
channels are fed into the ANN. The ANN is configured

as an optimal linear associative memory 9 where each
neuron implements a linear activation function. There is

1 2 34 5 6 7 89101112 1 2 345 6 789 a single processing layer in the ANN where the number
of output neurons is equal to the number of isotopes

Ruber em nt being identified (8 in this case). This ANN is shown in
Figure 7 and described in Table 2.

One feature of this approach to gamma-ray spectral

analysis is that the whole spectrum is used in the identi-
fication process instead of individual peaks in the spec-
trum. For this reason, it is potentially more useful for
processing data from lower resolution gamma-ray spec-
trometers (like those employing NaI detectors). 10

4 78 10123
Table 2. ANN Training Parameters

Vinegar Type: Optimal Linear Associative Memory

3 Architecture: 512-8 feedforward network
Activation: Linear

Input Layer Output Layer
(1/channel) (1iisotope)

Channel I
Channel 2 Na22
Channel 3 -- n0

1234 56 7 89101112 1 2 34 5 67 89 Channel 4 Mn5
Fig. 4. Sample responses and ANN classifications. The Channel 5 Co5 7

numbers correspond to sensors and ANN outputs that _ • C0o60

are shown in Figure 3. Channel 507 Cs 137

Channel 5098

light in the visible and near-infrared spectrum. The out- Channel 511 Ra2 6

put of each sensor provides an input to the ANN. By Channel 512 i Th 232
examining the absorption of the liquid at different Fig. 7. ANN used to identify radioactive isotopes.
wavelengths, the ANN is able to identify and quantify This system was trained with the spectra of 8
the dyes. Initial tests with this system have just begun. radioactive isotopes: Sodium (Na 2 2 ), Manganese
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(Mn 5 4 ), Cobalt (Co5 7), Cobalt (Co60), Cesium (Cs 137), bined a gamma-ray spectrometer with a neural network
Europium (Eu! 5 2-154 ), Radium (Ra22 6 ), and Thorium and was used to identify radioactive isotopes.
(Th23 2 ). The spectra of these isotopes are illustrated in Initial results demonstrated the pattern recognition
Figure 8. Operation consists of presenting an unknown capabilities of the neural network paradigm in sensor
sample to the system, generating a gamma-ray spectrum, analysis. These prototypes also demonstrated several
and passing the spectrum to the ANN which produces a advantages of this approach over conventional analytical
classification of the unknown sample. The values on the techniques including compactness, portability, real-time
output neurons are proportional to the quantities of each analysis, and automation. Further work will involve
radioactive isotope found in the sample. Figure 9 illus- comparing neural network sensor analysis to more con-
trates an example of the classification and quantification ventional techniques, exploring other neural network
of a sample composed of equal amounts of Cobalt60 and paradigms, and evolving the preliminary prototypes to
Cesium 137 . The resulting classification by the ANN field systems.

correctly identifies the composition of the sample as be- 7v REFE NCES
ing composed of equal quantities of both isotopes.

Na22  MnM C0 5 7  I. Barbara Goss Levi, "Hanford seeks short- and long-
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2. B.S. Hoffheins, Using Sensor Arrays and Pattern
Recognition to Identify Organic Compounds, MS-
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C060  C17E12541989.
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Abstract

We present a novel method of detecting changes. such as erosion or deforestation, from time sequential
pairs of remote images. After preprocessing the images and obtaining a difference image. we use a neural
network-based system to adaptively threshold the difference image and resolve areas of pixel intensity
with a terrain classifier which combines information in the original images. The result is that we detect
precisely the types of changes in which we are interested, without being "distracted" by changes due to
noise or natural within-terrain variability of pixel intensity.

1 Introduction
The objective of our research has been to design an automateed system for detecting changes in lhe environ-
ment, based upon time sequential remote sensor images of the same area. Our approach was to apply image
processing techniques to the original digital images in order to compensate as much as possible for errors
due to registration (i.e.. a given pixel in the second image does not necessarily correspond to the pixel in
the identical position in the first image), as well as variations in pixel intensity due to illumination changes,
clouds, and certain natural variabilities inherent in certain types of terrain that are not of importance for
analysis purposes. At the same time, it is recognized thatl preprocessing will not necessarily correct all of
these errors, so the system was designed to be robust to errors due to registration or pixel intensity variability,
as well as other types of noise.
The basic premise is to take the two images and subtract on,' from the other, creating a difference image.
Ideally, any non-zero pixel intensities in the difference image would indicate that a change in tlhe environment
had occurred. Of course, the problems of registration and other types of noise will also result in contributions
to the difference image. Also, there will be certain types of changes in the image that are characteristic of
certain types of textural terrain (trees or grasses, for instance) that are not. of much interest. Thus, the
problem is to determine what features in the difference image are representative of meaningful changes in
the environment such as deforestation, erosion or pollution; and which features are due to noise or various
pixel intensity variabilities.
Our system runs a window over the difference image and computes the average pixel intensity within the
window. If the pixel intensity exceeds a given threshold, the corresponding windows in the two preprocessed
original images are compared, through the use of a neural network based terrain classifier. As described in
the following sections, this system determines if any change has occurred in the window based on the results
of the terrain classifier.

"*'his work was performed tuder Army Contract No. DACA76-93-C-0005. under subcontract to SEA CORP.
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2 Overview of Algorithm

This section outlines the basic steps of our algorithm. These steps are detailed in sulbsequent sect ionl.

"* Preprocessing - image registration and normalization

"* Generate smoothed difference image

"* For each pixel above a fixed threshold, classify the texture in the corresponding regions from hoth
preprocessed images.

* A pixel is interesting if the texture classifications differ.

"* If the ratio of interesting to uninteresting pixels in a given region is greater than some threshold, thent
the region is interesting.

3 Image Preprocessing

This section describes the image preprocessing required to prepare the images for input into our classification
algorithm. The goal of preprocessing is to bring the images into registration and to match local pixel inten-
sities. We achieved this with the methods outlined below. We propose to improve upon these preliminary
algorithms in our future work.
Before the system can find the changes in two images (we will designate an image obtained at time tj by
A, and B will be used to denote the subsequent image of the same scene at time t,), the imageS must
be preprocessed to account for atmospheric effects, differences in illumination, and differences in angle,
perspective or altitude of the sensor.
The first problem that the system will have to correct for is rigistration. Two images .-A and B are said to
be in registration if every pair of pixels (at, bi. ), where (tij is a pixel in the image A and bij is a pixel with
the same coordinates in image B, correspond to the same point in the actual scene. If the sensor is not at.
precisely the same location when both images are observed, then this will not be the case. Thus, we need to
find a mapping T : B ,- B, where B is the transformation of B that. is in registration with .4.
One possible technique, which we would explore in future work. is to take advantage of characteristics
that would appear in most. of the images that we are likely to observe. Features such as roads, buildings,
rivers, borders of fields, in addition to well defined geologic features such as cliffs and ridges, form a set
of "landmarks" within an image. These features are readily found by an edge detector algorithm. In this
manner, we would reduce A and B to "skeleton" images, consisting only of the edges. Then. we would apply
a deformable template matching algorithm nto find the values of scale, translation and rotation necessary to
bring the images into registration.
In practice, many of the differences between the two images will be a result of sun angle and orientation and
overall illumination [Townshend, 1981], and thus these differences must be compensated for to enable the
changes of interest to be detected. We examined normalization techniques that could be employed to solve
this problem. For example, the pixel intensities of each image could be scaled and translated to fit into the
same range, or we could match the mean pixel intensities of the images and scale the image intensities such
that both images have the same variance in pixel intensity about the mean. While these global measures
may be sufficient, it may be necessary to consider methods which vary over the image if the illumination
is uneven or from different directions. It. may also be useful to employ smoothing algorithms to remove
noise from the images. We have investigated the optimal combination of these techniques to achieve image
normalization in various settings.

4 Difference Image
One fundamental aspect of our algorithm is the difference image which, in its simples. form, is tile difference
between pixel intensities in the overlapping regions of the two images. If the images are identical, the
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difference image should be all zeroes. We impose the constraint that the algorithm should be insensitive to
the order in which the two images are presented; therefore we define the difference image as

Du = IAj - B,jj (I)

where Aij and Bi, are the pixel intensities in the ith row and Jth colunn of images A and B respectively.
which are invariant to swapping .4 and B. Note that it is ii'c,,ssary to map the images onto the same grid
if any rotation or scale transform is used for registration.

4.1 Image Smoothing

Difference images tend to be very noisy due to natural variat ions from image to image and "gghosting" that,
can occur due to poor registration. In order to ameliorate these problems, we convolve our difference images
with a square indicator function. Thus the pixel value in the smoothed image is given by

9oorhed = k(i- I,j in)Dtm (2)

where k(I, in) = 1 when ill < r and Ijm < r and k(I.rn) = 0 otherwise. We can adjust the amount
of smoothing by varying the radius, r, of k. We can also approximate Gaussian smoothing by repeated
convolution with k. Note also, that this smoothing can be applied to the classifications given by the texture
classifiers.

4.2 Pixel Intensity Histograms

The amounts of smoothing and thresholding needed for accurate detection of variations within and image
can be suggested by examining histograms of the pixel valhws of a given image. We consider several his-
tograms in our work, including histograms of the preprocessed, differenced, and smoothed images. In the
preprocessed images, one typically has a smooth distribution of pixel values which is nearly identical for
both images. Smoothing over difference images results in a main peak in the pixel histogram corresponding
to zero difference and minor peaks in the tails corresponding to more interesting pixels (See Figure 1).

3000 202"

.00/

2500

I0 0 ¶0 0 Io 30 0 0• -2 1" ;2 2 2 .0.

Figure 1: The left graph shows the pixel histogram of an original image. The right graph shows the pixel
histogram of the smoothed difference image. Useful information is contained in the tails of the histogram on
the right.
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5 Adaptive Thresholding

At the heart. of our environmental change detection algorithm is the at) adaptive threshold which uses
information from both the difference image and the text ure cla.ssifier to filter out uninteresting regions if the
images.

5.1 Algorithm for Detecting Differences Between Imnages

Heuristically, the decision criterion for flagging a windowed region as being interesting can be stated as the
following steps:

"* If the average pixel intensity (API) of the difference image is very low, tie difference is not signifi-
cant/interesting.

"* If the API is high and the classifications from the different, images are different. the difference is
significant /interest ing.

"* If the API is high but the classifications are identical, the difference is not significant.

We can improve on the algorithm by including a sensor fusion center (neural net based) that will learn when
the three inputs are significant and when they are not. Thus we can make our thresholding ionlinear and
more robust.
Ideally. we could say that for all pixels dij E D. a level of intensity gir.ater tihan z1ro indicates a change in
the scene being imaged. However. due to natural variations in (lit, imaged :objects, or terrain a certain level of
pixel variability is expected. It is therefore necessary to identify an optimal threshold to determine whether
a pixel value in the difference image is significant. Thus we determine these values from images where known
changes have been located and quantified.
Because it is unlikely that every region of the image will have the same optimal threshold, we used a neural
network approach to identify various classes of regions front a given corpus of images for which different.
optimal thresholds can be determined. The neural networks were used to determine which 'terrains" in the
difference image are interesting and which are not. Once the neural networks are trained, they are used to
determine what terrain class a particular region belongs to. With this information. we can use a specialized
threshold to determine whether an observed variation in the images is of significance. The advantage to this
approach is that the system is more sensitive where small variations are important and less sensitive where
they are not, resulting in more changes being detected and less "false alarms". or changes that are detected
which have no importance.

5.2 Pattern Classifiers

In this section, we consider two image classifiers designed to identify terraini/texture class in subregionis
of the images: The KNN algorithm and the RCE algorithm. The training input to these algorithms are
hand-labelled subimages of a fixed size. We refer to these subimages as data vectors. \Ve note here that
there exist other neural network algorithms which could also he applied to the task of terrain classification.

5.2.1 The KNN Algorithm

The K Nearest Neighbor (KNN) algorithm [Duda and Hart. 1973] funciions by finiding the nearest KC vectors
from our previously labelled data vectors to a new data vector for which the terrain class is unknown. The
classification for the new data vector is given by the majority class of the K nearest neighbors. The distance
metric that is used in this algorithm is not essential and for high dimensional spaces an I1 -norn. is generally
sufficient as well as being faster to calculate than most other norims.
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5.2.2 The RCE Algorithm

The Reduced Coulomb Energy (RCE) algorithm (Reilly et al.. 1982] creates networks of neurons with bounded
activity function given by

ni(.F) = 1 - 0( J[- ,ili J 2 - ti) (3)

where 0(.) is a step function. Thus the activity of RCE neuron i is I if the input, is within a distance ti of
rfi and 0 otherwise. Classification of a given input. is determined by choosing the class of niciories which

has the largest total output. in its simplest version, the RCE algorithm builds a network in lhe following

manner. For each memory in the data set:

1) If the classification is correct., make no changes.

2) If the network activity is zero (no classification), add a new neuron to the network using the
new memory as the center and set the neuron's threshold equal to the distance to the nearest
memory of a different. class.

3) If the classification is incorrect or confused,

a) Shrink the thresholds of the neurons which were responsihle for the error.

b) Pass the memory through the network again.

This process is repeated until the network stops changing. Given enough resources, this algorithm can cover
arbitrarily complex boundaries between classes for a deterministic classification problem.

6 Application

A version of the algorithm described in the preceding sections was implemented on real satellite images and
the results are presented below. From Figure 2 and Figure 3, it can be see that our algorithm can correctly
select the regions of a photographed area which have changed.
This research is continuing. Further results will be presented at the conference on different images and more
elaborate classification algorithms.
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ABSTRACT This paper describes the system architecture of a neural knowledge base object detection system and its
application to detection and classification of lung cancerous pulmonary radiology. The configuration of the system
includes the following processing phases: (1) pre-processing to enhance the figure-background contrast; (2) Morphology
based quick selection of object suspects based upon the most prominent feature of nodules; and (3) feature space
determination and neural network based suspect fields reduction; (4) neural network based knowledge fusion processing
and final classification of suspect fields. Preliminary results from applying the approach to lung cancerous pulmonary
radiology are also reported.
INTRODUCTION

This paper describes a Computer Aided Diagnosis (CAD) system to improve the accuracy and speed of object
recognition in cluttered and noisy image background. The detection method is based on a hybrid scheme of digital
processing, artificial neural network and knowledge base synergy. This CAD tool was applied to early detection of
cancerous pulmonary nodule from X-ray films. The resulting hybrid system is a robust, effective and fast Hybrid Lung
Nodule Detection (HLND) System.

Dr. Doi and Dr. Giger of University of Chicago have shown that it is feasible to automate the lung nodule
detection process by searching in the chest X-ray radiography for a set of preselected nodule features [1,3-7]. With the
help of modem digital computer and digital image processing techniques, some success was obtained in detecting
cancerous lung nodules from digitized chest X-ray images [2,8,9,11,12,14]. Although the digital processing method
correctly identified cancerous nodules, it also misidentified numerous other anatomic structures in the image as nodules.

Because of its capability to learn and generalize from training data set, artificial neural network (ANN) techniques
are chosen for identifying true-positive objects from false-positive objects. By applying ANN techniques, the common
features of the true-positive objects and the false-positive objects can be extracted and used internally by the ANN in
the learning process to differentiate between true and false objet of interest. The generalization property of the ANN
suggest that the features learned from the training data set would be applicable to other data set as well. By applying
knowledge base techniques, the logic reasoning of experts' knowledge for making diagnosis can be extracted and
simulated during the detection process. In the case of lung nodule detection, the patient's age, history of smoking, living
environment and work condition may become a factor in deciding true-positives nodules. Hybrid Lung Nodule Detection
(HLND) system is developed to integrate the robustness of ANNs and the logic reasoning of knowledge bases with the
accuracy of digital signal/image processing techniques in a single system for shape feature analysis in diagnostic
radiology which provides accurate and robust recognition performance [2]. The configuration of the HLND system
includes the following processing phases: (1) pre-processing to enhance the figure-background contrast; (2) Morphology
based quick selection of nodule object suspects based upon the most prominent feature of nodules; and (3) feature space
determination and neural network based suspect fields reduction; (4) neural network based knowledge fusion processing
and final classification of nodule suspect fields.
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Figure 1. Schematic Diagram of Hybrid Lung Nodule Detection System

PRE-PROCESSING
The digital chest images were obtained from Georgetown University Hospital and University of Maryland

M edipcal Center:. Each p)ulmonary radio.gr~iaph was digitized to 2.000x_2048x.12 bit .w.here each pixel .represen.ts about
20 imor a 14" by 17 X-ray film. Thne images are later reduced to 500x5 12x12 bits image for comlputational speed.
Each image contains at least one nodule. The actual location of the nodules are verified by computed tomography (CT)
or followed by radiologists. A reversible contrast scaling function is used to obtain a constant contrast between lung
space and the mediastinum area. Potential nodule information in a pulmonary radiograph is enhanced by a differential
technique which subtracts a nodule suppressed image (through a median filter) from a nodule enhanced image (through
a matched filter with a spherical profile) [2-71. This approach would reduce the camouflaging anatomic backgroundin
The difference image, containing nodule-enhanced signal, is used for morphology base selection processing phase.

Median filtering technique tends to smooth the image by reducing the intensity of abnormal phenomenon (e.g.,
nodules). Match filtenng technique, which correlates the energy of the synthetical nodule image with original image,
generates resultant images with highest values corresponding to the locations of potential nodule suspects. The matched
filtering technique involves fast Fourier transform, complex conjugate, and complex matrix multiplication with
assumption of white noise (ije., Fourier spectrum equals constant). A spherical profile with diameter of 3ram is used
to synthesize the ideal nodule images. Substraction between the resultant images derived from median and matched
filtering methods further enhanced the nodule-to-balckground information [5].

MORPHOLOGY DASED QUICK SELECTION
A search algorithm is applied for quick (ire-) selection of all possible nodule suspects based mainly upon the

most prominent feature of nodule - the spherical profile [4,5,61. The difference image is processed by locally-adaptively
area extraction process using edge and gray value tracking with different gray values for thresholding and morphological
opertions. It provides an initial determination of features, arising from nodules and arising from anatomic background.
Circularity and effective radius of the segmented image block are evaluated at different thresholding levels to determine
the location and the size of the nodule suspects. All the suspect areas (blocks) with dense area (high gray values)
equivalent to 3 mmn of diameter or less are captured in 32x32x 12 bits images for further evaluation.
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Figure 2. Schematic Diagram of Feature Extraction

Neural Network Based Suspect Reduction
A supervised back-propagation (BP) neural network classifier is developed for classification of each anatomic

structure. The BP ANN classifier contains four layers. Input layer consists of 64 neurons corresponding to combination
of both amplitude and orientation bins of marginal distribution. Two hidden layers contains 128 and 64 neurons, which
are chosen as multiple of eight (pre-determined anatomic structure classes) since the properties of each class are desired
to be coded evenly within the network. Finally a two-neuron output layer is used to classify either true positive or false
positive nodules.

Since BP ANN learned from the training data set presented to it during learning phase (weight adaptation
phase), the resulting class samples which presented to the BP ANN should have equal probability among classes. Thus
the BP ANN will not biased toward any result classes (in our case, TRUE nodule class and FALSE nodule class). In
our case, 87 of the 392 samples (22.5%) are TRUE nodule, while 305 samples (77.8%) are FALSE nodule. The BP
ANN will biased toward FALSE nodule class if the data set is applied for training. Therefore the TRUE nodule sample
was replicated 7 times and FALSE nodule samples was duplicated twice based upon the statistical properties of the
training set. As a result, 609 out of 1219 samples (49.95%) are TRUE nodules and 610 out of 1219 samples (50.05%)
are FALSE nodules in the resulting data set. 40% of the data set are used as training set depending on the results of
image shape feature analysis [2].

NEURAL NETWORK BASE KNOWLEDGE FUSION
Knowledge fusion processor is designed to integrate different decision from different decision maker to obtain

the optimal classification accuracy. As the data fusion processor, which has been used widely in communication theory
and satellite remote sensing applications. The knowledge fusion processor fuse classification from ANN classification
(suspect B-fields) and expert diagnosis (through knowledge base inference).

The knowledge fusion processor is a combination of a static feed forward network and a dynamic recurrent
network. The structure of the knowledge fusion processor is illustrated in Figure 3. The static feed forward network
implement a rule-based neural knowledge base. The configuration of the static neural knowledge base is a three-layer
feed forward network. First layer is Premises Layer, which accepts encoded premises from expert's observation and
diagnosis. Second Layer is the Rule layer where each node in this layer represents a rule in the knowledge base. Every
node in Rule layer connected to the nodes in Premises layer only when the premises represented by the nodes will take
part in the rule's resolving process. The connections between Premises layer to Rule layer is defined when the rules
were first constructed. To add a new rule to the neural knowledge base, a new rule node in the Rule Layer will be
introduced to the system, new premises will be introduced to Premises Layer. The connections between the premises
and the iew rule node will also be determinated.
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Figure 3. Schematic Diagram of Neural Netwci k KnIowledge Fusion Processor

The dynamic (trainable) part of the knowledge fusion processor includes Two part of trainable recurrent net-
works. One of the dynamic network is the Suspect network which accepts inputs from the suspect B-fields from ANN
classifier, pre-processing parameters, and feature space determination parameters to take into account the decision
process of the neural-digital classification process of HLND system. The other dynamic network is a decision surface
shaping parameters network. The function of this network is to form n decision surface to determine final classification
(suspect C-fields).

However, the three part of the knowledge fusion processor is not mutual exclusive. The neural knowledge base
might use some of the parameters 8enerated in the process of neural-digital classification. The trainable Suspect network
can also use the expert's diagnosis as part of it input pattern. In fact, the only difference between Neural-Knowledge
Base and Suspect network is that the connections and weights between Rule layer and Premises layer are determined
at time the rules were constructed. Yet the weight and connections of the Suspect network is trained with a backpro-
pagation algorithm. While the weights of the decision surface shaping network is trained with a recurrent network
algorithm.
EXPERIMENTAL RESULTS

The knowledge base is still under construction. Therefore, the knowledge fusion process has little effect on the
experimental results. The ANN classification result are report herein. It takes around 130 epoches to train the BP ANN
classifier to learn up to 100% accuracy of the training data set. With a fully-trained BP ANN, True-positive classification
accuracy can reach 93.3% over the overall image base as shown in Table 2. It is found that the trained BP ANN
increases the detection accuracy of true nodule up to 93% with around 7% false detection. By examining the weight
matrix, the effect due to different feature (either amplitude or orientation) can be determined. Such implementation
can also be easily implemented in a highly parallel, reconfigurable, and scalable, neural network co-processor called
MNR [15] for fast and real time processing.

Actual Structure

True Nodule False Nodule

Classifie~d True Nodule 93.3% 6.7%
False Nodule 1.3% 98.7%

Table 2. Classification Accuracy for Nodule Detection
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FEATURE DETERMINATION AND SUSPECTS REDUCTION
Image Feature Extraction

Since the quick selection process are based on the general features of lung nodules -- the spherical profile, a
classification algorithm based on localize anatomic features is needed. We developed an algorithms for localized feature
extraction and classification based on gradient edge analysis of local anatomic structure in the 32x32 image blocks
[2,101.

The nodule suspects (A-Fields) passed through the morphology based filtering process, thus they would contain
the specific geometric features the quick selection filter was designed for, in this case of lung nodule detection, the
spherical profile in the X-ray images. In order to define a feature space in which the ANN architecture can be trained
to derive a decision surfaces for separating different classes of anatomic structures, a feature extraction function that
can complement the major search algorithm (morphology based filter) is needed. Such feature extraction algorithm
should minimize the homogeneous effect among the suspect A-Fields selected from quick selection process, yet
maximize the geometric differences among the suspect A-Fields. Therefore we designed a feature extraction algorithm
based on sobel operators to respond to the gradient in the image.

After first two processing phases (pre-processing and morphology based quick selection), nodule suspect
A-Fields are determined from each image. Typically, there are 15-30 suspects on a radiograph. The nodule suspect
is extracted into a 32x32 pixel image (larger than 9 mm in diameter) sufficient for the ANN-based development. After
processing 31 radiographs, more than 380 nodule suspects in original and difference image blocks (32x32 pixel) are
obtained for further development of the ANN classification. Among the nodule suspects, 22.2% of them are true
positive nodules. Since sufficient database for various anatomic structures are required for analysis, many false positive
nodules are included for further investigation. With properly adjustment of parameters, the success rate in detection
of nodule can achieve 70% after first two phases.

Anatomic Class

IRX RV VC EV IRE BO VS TN

No. of samples 96 40 41 43 28 42 15 87

Total suspect image blocks: 392

Table 1. Eight Types of Anatomic Classes

The suspect image blocks are first classified into 8 classes: true nodule (TN), rib crossing (RX), rib-vessel
crossing (RV), vessel cluster (VC), end-vessel (EV), rib edge (RE), bone (BO), and vessel (VS), based on the content
of the image and previous related works [2, 11]. Generally, the suspect image blocks contains more than one class of
information. It is found that among 392 images 24.5% are rib crossing and 22.2% are true, as shown in Table 1. Since
eight (8) categories of anatomic classes are obtained from real radiographs, overlapping of several phenomenon in
single image block is quite common. The classification is primarily based on the most dominant anatomic structure
in the image. Based on these image blocks, several features are analyzed and extracted.

A I -D histogram of gradient component (either amplitude or orientation) has been applied by Matsumoto et al.,
[I I foranalysis of subtracted image block. In this analysis, we investigated both elements of gradient vector (amplitude
and orientation) from original image block. A 3x3 Sobel operator for image edge enhancement is applied to the original
image block to obtained two 32 x 32 images: one is amplitude image and another one is orientation image. The
orientation angles are within the range between 0 and 360 degree, whereas the amplitude varies from 0 to 1024. Feature
vector pairs are generated from histogram of orientation and amplitude. It was found that most non-nodule 32x32
images contain identifiable histogram features in amplitude and orientation gradient image.

By performing the histogram operation on gradient image, two sets of marginal distribution curves are obtained:
one for orientation distribution and another one for amplitude distribution. The feature vectors from the nodule curves
(both in orientation and amplitude) is quite distinct from rest of other structures. Each distribution is normalized to
enhance its variation through performing division by ten, which is the deviation of these curves, and followed by taking
its square. These feature vectors are then used for development of supervised neural classifier in this study.

It is found that for true nodules the distribution of orientation angles is relative uniform compared with other
false positive cases and the magnitude of gradient amplitude of true nodules is mostly concentrated in smaller magnitude.
Most types of false positive nodules demonstrate two peaks separated at around 180 degree in orientation angle axis
except for vessel cluster. Because bone is wider than vessel in the 32 x 32 images and the contrast between bone and
anatomic background is stronger than that for vessel, one peak at distribution of orientation is typically smaller than
another one for bone whereas they are within similar range for vessel class. Each peak in bone gradient images is
sharper (i.e., smaller standard deviation) than that in vessel images. Rib-edge gradient image shows one stronger
amplitude distribution at certain angle because of the orientation of the rib in the 32 x 32 image. Gradient distribution
for rib-vessel crossing also demonstrates one stronger peak with relatively larger standard deviation at orientation axis.
Although it is expected to obtain one sharper peak at angle axis, it shows very insignificant effect due to the low contrast
of end vessel. Vessel-cluster gradient image shows more rough contour (i.e., larger standard deviation along the
amplitude axis) than this from nodule. This type of analysis and classification algorithm perform well in noisy conditions,
because the distribution enhancement tends to smooth out the noise contribution to the feature vector. Images containing
mixed features will be easily analyzed. Parameters including standard deviation, curtosis, skewness, and other texture
information from the feature vectors are currently extracted for further supervised neural network applications.
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SUMMARY
A neural-knowledge base analysis and detection algorithms are developed for improvement of the performance

of Hybrid Lung Nodule Detection (HLND) system. The configuration of the proposed system includes the following
processing phases: (1) pre-processing to enhance the figure-background contrast; (2) Morphology based quick selection
of nodule object suspects based upon the most prominent feature of nodules; and (3) feature space determination and
neural network based suspect fields reduction; (4) neural network based knowledge fusion processing and f'mal clas-
sification of nodule suspect fields. After first processing phases, several suspect image blocks are captured. Extraction
of shape features is performed through edge enhancement, evaluation of marginal distribution curves and feature
extraction. A pair of feature vectors is determined based on the analysis of image blocks. A supervised back-
propagation-trained neural network is developed for recognition of the derived feature curve, a marginal distribution
curves. A knowledge fusion processor is under development to include prior information not inherent in the X-ray
image into HLND system. Preliminary results show that this feature set is able to identify most true nodule at accuracy
of 93% with around 7% false detection. More data set are still needed for further improvement of the HLND system.
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Abstract

Detection of hepatoma (liver cancer) prior surgery is very important for liver transplant patients. This is
due to the high probability of recurrence in the transplanted liver, which in turn undennines the benefit
of transplantation. Our goal was to develop a classifier system that is able to diagnose the existence of
hepatoma in patients being evaluated for liver transplantation based on paramneters collected routinely,
without the need for more expensive and/or invasive procedures. This paper will present the use of neu-
ral network classifier for hepatoma detection. Instead of using a single network, this paper will investi-
gate the merit of a neural network ensemble with collective decision making in improving classification
performance. Mean-square error (MSE) and Cross-entropy (CE) objective functions in the backpropa-
gation learning procedure will also be investigated in this experiment.

Introduction

Hepatocellar carcinoma (HCC), or hepatoma for short, is a very important clinical problem in patients
that are being considered for liver transplantation. This is due to the high probability of recurrence of hepatorna
after transplantation, which in turn undermines the benefit of transplantation. If a hepatoma can be identified
prior transplantation, patients can be entered into special protocols that may improve their ultimate outdlxk.

Unfortunately, the diagnosis can be difficult to establish, especially in the presence of cirrhosis. The re-
sult of routine screening ultrasonograms in cirrhotic patients is unsatisfactory. There are a number of imaging
techniques that are being used to try to improve detection rate such as MRI, angiography, CT portography, etc.
Some of these are invasive procedures, with their associated complications, and they all represent an extra ex-
pense.

Our goal has been to develop a good detection system with a minimum of imaging, or invasive studies.
Neural networks will be used as a classifier system to discriminate patients with and without hepatoma. Pre-
vious studies (Dorfner & Porenta, 1993; Bounds et. al., 1990; and Mulsant, 1990 among others) have shown
the effectiveness of neural networks in clinical diagnosis environment. This study will take a different ap-
proach to the use of neural networks for clinical diagnosis. In order to improve the performance of a neural
network classifier, this experiment will explore the idea of simple averaging among a group of neural network
ensembles. This experiment will also compare two different cost functions used in the backpropagation learn-
ing, namely mean squared error (MSE) and cross-entropy (CE).

The Data and Preprocessing

For this investigation, 200 data items with the associated diagnoses are available. The data were col-
lected from a population of patients who underwent primary orthotopic liver transplantation at the Presbyterian
University Hospital in Pittsburgh. The data consist of both positive and negative diagnoses with the proportion
of 60 positive and 140 negative, where a positive diagnosis refers to the existence of hepatoma and a negative
diagnosis refers to the absence of hepatoma. The diagnosis was established by examining tie native liver after
transplantation, or from pre-transplant needle biopsies of the liver.

Each data item consists of 16 measurements or demographic of an individual patient (see Table 1), and
a diagnosis (positive or negative). This data set is plagued by a number of typical problems, such as noise and
missing data. We propose a solution for the missing data problem in the next section (architecture). This par-
ticular data set is furthermore characterized by the unfortunate property that some variables range over 3 orders
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Table I. Variables
Demography. Radiology: Serology: Clinical Chemistry.
Age Liver ultrasound Hep. A antibody Total bilirubin Prothrombin tune
Ethmic Gorup Abdominal CT scan Hep. B surf. antigen , Gamma glutamyl trans. Alfa-fetoprotein

Hep. B surf. antibody Glutarnic transamirase
Hep. B E antigen Pirufic trwnsaminase
Hep. B core antibody Catrcinoembryonic antigen

of magnitude across the patients; hidden units cannot be sensitive across the entire range. Each variable was
scaled according to a power transformation, y-xP, where p is chosen such that the ratio of the maximum value
to the minimum value of y equals some prespecified value F (see Figure 1):

Y =Xp
p = logrF

Y is the transformed data and X is the original data. The basis of log function "r" is the ratio between
maximum and minimum of the original data (Xma/Xmin) and F is the ratio between maximum and minimum
of the transformed data (Ymax/Ymin). F is an adjustable parameter that may vary from one variable to another
depending on the range of transformed data we want to achieve.

0

0 1 0 20 30 40
Orignal Data

Figure 1. Power Function Transformation.
Data varuiables were transformed according to the fmunton y--xp, such that the ratio ymnax/ymiin is 10.
The scafttrplot shows the transformed values of the b'tlirubin variable plotted agains the corresponding
raw data. Density plots on the top and on the right side show data distributions for both reprsentations.

Network Architecture

The network architecture used in this experiment is feedforward, with dim~ effective layers beyond die
input layer: an immediate layer to the input layer which we "call encodler layer. a lhidden layer, and an output
layer (figure 2). Each input unit is connected to a bank of encoder unit%, but no connection with other hanks ill
the encoder layer (not fuilly connected). The connection from encoder layer to the hidden layer and from the
hidden layer to the output layer is fully connected. The encoder layer was used with the hope that each unit in)
the encoder bank will respond to certain distribution in the input variable.

The networks co~nsist of 16 input units which are the number of variables in the data. 4 units in each en-
coder bank, 20 hidden units, and I output unit (represents the diagnosis). The data in the input units is a con-
tinuous value between 0 and 1. The output of the network is also a continuous value between 0 and 1. Because
the task of the network is to perform a classification, we can treat the continuous output of the network as; a
probability or confidence with 0 represent the absent of diagnosis and I as the presence. hI interpreting rthe out-
put of the network, the continuous value between 0 and I will be "rounded" according the decision threshold
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being used. For example, if we use threshold of 0.5 the output of greater than 0.5 will he con•nsidered as positive
and less than 0.5 as negative.

Hididen Unnits

Encoder Baznks it

Var. I var.j . 16

Figure 2. Network Architecture

Each of the 16 variables is represented by a single input unit, that projects to a set of N "encoder" units
dedicated to that variable. The 16N encoder units then project to a common set of hidden units that pro-
jects in turn to a single output unit.

The network was trained using the backpropagation learning procedures (Rumeihart, Hinton, & Wil-
liams, 1986). Two types of objective function in the backpropagation were compared in this experiment: the
Mean-Squared Error (MSE) and Cross-Entropy (CE). Suppose we want to train the network to produce a de-
sired output for a set of input vectors. The objective function hi the backpr(pagation procedure compares the
actual output activation of the network to the desired output for the given inputs. This function seeks to mini-
mize this difference in order to produce the correct classification fir a given input pattern. The MSE is a meas-
ure of how poorly the network is performing with its current weights and it seeks to minimize the
mean-squared error between the actual output of network's node 01 .- On and the desired output DI ..... ,Dn:

N

MSE I-y Oj-Dj)2
j=t

In the CE objective function (Hinton, 1987; Hampshire & Weibel, 1990), we only attach meaning to bi-
nary output vectors while a real-valued output vector is treated as the probability that individual compoments
have value of "I". For a given set of training cases, the likelihoodx of producing the desired output is maxi-
mized when the following cross-entropy function CE is minimized:

N

CE=-,Djlog2(OJ)+( l-Dj)log2( l-Oj)
j-- I

In practice, cross-entropy can help avoid the network getting stuck in the extreme (such as 0 or I) when
the desired output is actually on the opposite extreme. Which objective function is more appropriate for a
given task depends on the natural interpretation of the output for the task. Since the task in this experiment is
detecting the existence of hepatomna. the interpretation of cross-entropy objective function is very appealing. hi
this case. the actual real-valued output of the network can be interpreted as the probability of a given patient to
have hepatoma.

This architecture handles missing values in the data quite nicely. If missing data arrives in the input
unit, the encodier will give a zero responise to the hidden units. By doing so, the encoders do not map missing
value the same way as other values in the data, and map the missing one to a "neutral" value.

Committee of Networks

The ultimate goal of neural networks as a classifier is generalization, it's ability to compose the best pa-
rameters out of the data that will be used to predict unseen data. Unfortunately, one of the drawbacks of a neu-
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ral network classifier is the fact that it suffers from the problem of many local minima. The parameters in a
neural network take the form of neuronal weights. Independent runs that may include different starting
weights, different set of sampling, or different learning methods will end up at different set of connection
weights (Kollen & Pollack, 1991). A collective decision making among a committee of independently trained
networks has been proposed to improve the performance of neural networks (Hansen & Salomon 1990, Per-
rone, 1993, Ghosh et al., 1992).

In this experiment, 11 networks were independently trained to form a committee. All the networks in
the committee have exactly the same architecture. Each network was initialized with a different set of rndoln
weights. The output of each member of the committee will be used to form a collective decision. We used sev-
eral variations in making a collective decision, all of them are based on a simple averaging metlhd (Hansen &
Salomon, 1990; Perrone, 1993). The first alternative is just taking the average of the committee's response,
where each network has equal weight. The second alternative is using "majority rule", where each network has
an equal vote. The first one can be extended by taking into account the confidence level of the individuals in
the committee. For example, we exclude "indecisive" networks that have response between 0.4 to 0.6, 0.3 to
0.7, and so forth. In the majority rule, each network in the committee has binary yes-no vote (the network has
only I output) and the output of tie committee will be the output that voted by 6 or more networks. Wlile in
the average decision, each network has a floating point output.

In measuring the network's perfornance, we ame only concerned with the percent correct in classifica-
tion. Perrone (1993) measured the performance of neural network in it's mean square error (MSE) and the per-
cent correct in classification. He observed the impact of averaging in both performance measures. Although
mininizing the MSE usually also optimize the classification performance, there is no guarantee that minimiz-
ing MSE necessarily maximizes classification performance. Since MSE is a continuous measure and classili-
cation performance is discrete, it is possible to have a network with a high MSE and yet have a high
classification performance. In this experiment, we are only concerned with the use of committee as far as it's
improvement to the percent correct in classification.

Experiment

Training set and test set are composed from the data items. We faced the problem of a small data set
and imbalance proportion between negative and positive diagnoses. Out of 2M0 total data that we have, only 60
of them are positive. We use I(X) items (out of 200) as a training set with negative and positive diagnoses in an
equal proportion. We also drew 20 items with equal proportion as a test set. Using random sampling witho~ut
replacement, 6 pairs of training set and test sets were composed from the data. The remaining 80 items with
negative diagnosis are also used for a test set but are not included as a crossvalidatory stopping criteria. Each
network was trained an all the training set. The training was stopped using crossvalidatory criteria: when the
emrr in the test set goes up. the trainig ended. The performance of the network is measured in the test sets (20
items) and the remaining 80 items. Since we have 6 pairs of training set and test set, the network performance
is basically tested on the entire data.

Two different types of networks with MSE and CE objective functions were independently trained in
this experiment. Since each type forms a committee with I I networks as a member, we have 22 networks as a
whole. The entire networks were trained and tested in each pair of the training set - test set.

Introducing "white" noise to the training set can improve generalization by obscuring "idiosyncratic"
features. In the data that we used, some missing values only exist in the data with a positive diagnosis. Early
experiments without intnrlucing noise showed that the network turned out to pick this idiosyncrasy as a clue:
every time we gave missing values for that variable, it classified the pattern as positive. In order to mitigate this
problem, noise was intrmduced to the data. During training, we randomly gave missing values to the input.
The result showed that the network didn't pick the wrong clue from the data anymore.

Results

We are interested in comparing the performance of the networks with MSE and CE objective function.
We are also interested in observing the performance of collective decision making using neural network com-
mittee compared to the performance of individual networks. The performance is measured as percent correct
in classification using the threshold of 0.5. The summary of these comparisons is shown in Table 2.
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First, we compute the average without taking into account the confidence level of the individual net-
work in the ensemble, then take the average of the ensemble after excluding items with output between 0.4 -
0.6,0.3-0.7,0.2-0.8, respectively; this excludes 9.5%, 21%, 34% of items for the respective confident intervals.

Averagin of Network Ensemble Individual Networks
Majority Vote Confidence I Confidence II Confidence Hl Confidence IV Best lndiv. Average

(includes all) (excl. 0.4-0.6) (excl. 03-0.7) (excl. 0.2-0.X)

MSE 0.83 0.85 0.86 0.84 0.84 0.85 0.79 +/- 0.03
CE 0.88 0.88 0.88 . 0.85 +/- )02

Table 2.
Comparison of Individual Networks and Committee

The table shows that by any measure, the networks with CE objective function outperform networks
with MSE objective function. In the committee setting, CE outperforms MSE by 5% using majority vote anti
around 3% using simple averaging. While in the individual networks, on the average CE is significantly better
than MSE, with 6% difference and the best individual of CE is 3% higher than MSE. The explanation of this
result may lie in the fact that the interpretation of network output in this particular task is naturally close to the
interpretation of network output in the CE objective function.

The result also shows that averaging can significantly improve the performance. Using MSE, the result
of the average ensemble by excluding the indecisive network can reach the performance of 0.86, this is far bet-
ter than single network with performance of 0.79. The result of averaging of ensemble even better than the best
performance that can be reached by individual network, although this seems not always the case. Pemme
(1993) has shown that the result of ensemble is always better than the average individual network. This im-
provement still hold in the CE networks, on the average the performance of committee is 3% higher than the
individual. Although the best individual in this case is as good as the committee.

The diagnostic performance, such as the performance that we just discussed, in the clinical test is usu-
ally measured in a pair of sensitivity and specificity (Weiss & Kulikowski, 1991). Sensitivity is referred to as
the percentage of correctly classifying positive (presence of disease) cases, while specificity is referred to as the
percentage of correctly classifying negative case. In a continuous output of the network between 0 and 1, these
two values are taken only in one threshold. A more accurate measure of performance sho•ld take into account
continuous threshold between 0 and 1. Receiver Operating Curves (ROC) that plot sensitivity over 1-specific-
ity are given to asses the interdependence between those two values across continuous threshold. The ROC
for this experiment (figure 3) is the result of averaging among ensemble of network.

The curve generated from the ensemble network using CE objective function has an area index of .9526
(from the maximum value of 1.00). This result compares favorably with diagnostic instruments and is consis-
tent with clinical standards. For example, using threshold of 0.32 the output of the network ensemble has sen-
sitivity of 0.89 and specificity of .90.

Discussion

The combination of techniques for training (committee training, power function scaling, and the encoder
architecture), show remarkable power in this diagnostic application. In future studies we plan to extend this
work by tuning the number of encoders to the variables, analyzing the network solution by analyzing the en-
coider unit response properties, and experimenting with larger committee sizes.

Aside from performing respectably on a difficult diagnostic task, this approach offers a new tool for en-
hancing the potential of backpropagation: encoder units to provide a distributed representation for each variable
and to give a natural representation for missing data. As a given variable traverses the (oxmain from its mini-
mum to maximum value, the corresponding encoder vector traces a one dimensional manifold. This repre-
sentation of the variable is presumably tuned to the task, and is likely not to come particularly close to the zenr
vector. Hence the zero vector can be used to represent missing data, and will not generally correspond to an ac-
tual value.
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Figure 3. ROC Curve. As the threshold for positive diagnosis is dec•ised. the probability of correct
positive and incorrect diagnosL S th increase. Using this curve, an acceptable point can hopefully he
chosen, such that there 1isefu, probability of coniect diagnosis, while the proability of false alann is
acceptably low. The & .ader the curve is generally an indication of the quality of the diagn(osic. A
perfect curve would go up ne left axis of the box, and across the top, giving an ,ea of I.

Another technique that we investigated bears description because it illustrates part of the ratioale be-
hind the encoder representation. Here, each variable was scaled from 0 to 7t, and subsequently represented by
the sine and cosine (two input units). This gives a 2-D representation where the input variable lies on a semi-
circle; thus, missing values can be represented by the zero vector, which lies equally distant from all px)tential
input values.
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Abstract
Various domains require hierarchical classification. In medicine, learning partial diagnoses can be helpful when

time and information constraints are present. Hierarchical neural networks provide a good means to perform partial
diagnosis. We implemented a hierarchical backpropagation-based model for the domain of thyroid diseases, and com-
pared the results against those of nonhierarchical networks in terms of sensitivities and specificities. In our system,
high-level neural networks filter instances that are relevant for use in specialized neural networks. The hierarchical
model required fewer epochs to be trained and yielded a higher classification rate in the test set than did the nonhier-
archical one. The hierarchical model also had the advantage that fewer data attributes for each instance were required
at higher levels. Therefore, using this model decreases the problem of dealing with missing values, and provides a
framework to establish a parsimonious sequence of tests for diagnosing thyroid diseases.

1. Background
In most real-life situations, medical decision making is done in absence of complete information. Diagnostic tests

may be ordered to decrease uncertainty, but actions take place before all results become available. The actions (which
could be ordering of new tests, or prescribing a treatment) may change the course of the disease. Cases that are
resolved in this initial phase may never be assigned a final diagnosis. Conversely, further investigation may yield a
more precise diagnosis. The diagnostic process is then repeated, until no additional information is necessary. Yet, the
decisions made early in the diagnostic process -- usually in the absence of complete information -- play a key role on
patient outcomes. These decisions are based on partial diagnoses derived from a limited set of observations. Partial
diagnoses are key components in medical reasoning [Pople, 19821, usually consisting of syndromic, rather than etio-
logic, diagnoses.

Thyroid diseases are classified in two major classes: hypothyroidism and hyperthyroidism. Each of these classes
can be further divided according to the etiology of the disease: hypothyroidism can be divided in primary, secondary
and so on. We have built a computer program to help physicians decide whether a patient has hypothyroidism, hyper-
thyroidism, or normal thyroid function by interpreting the results of the patient's laboratory tests, and defining a par-
tial diagnosis. Such a partial diagnosis may be useful in explaining some of the patient's findings, in helping a
clinician to make decisions regarding what diagnostic tests to order next, and in helping the physician decide which
medications may be appropriate (even though this partial diagnosis may not be sufficient to allow the clinician to
decide on the optimal therapy). The system produces useful results early in the course of the investigation, when only
scarce information is available. In cases where the system determines that the patient's thyroid function is not normal,
further processing occurs, and a final diagnosis is suggested.

Many taxonomies of diseases (nosologies) are structured in a hierarchical fashion [Gara, Rosenberg, and Gold-
berg, 1992]. This type of classification not only is easier to understand than a flat list of diseases, but also provides a
basis that guides the differential diagnosis. It is therefore natural to use a hierarchical classification system to perform
medical diagnosis. Several authors have used this approach when building medical expert systems, or rule-based sys-
tems [Weiss, Kulikowski, Amarel, and Safir, 1978]. Although performance may be acceptable, problems with expert
systems usually occur during the knowledge-acquisition phase, when a great amount of time is spent on extracting
information from the expert [Forsythe and Buchanan, 1989]. Furthermore, expert judgment may contain biases
[Tversky and Kahneman, 1974], a problem that machine-learning approaches, by extracting information from evi-
dence, may also avoid.

Hierarchies of neural networks are not new. Ballard proposed them as a solution to the problem of building large
networks [Ballard, 1990]. He developed a modification of the backpropagation algorithm to be applied to these hier-
archies; he reported that preliminary computer experiments showed that his approach resulted in a better performance
in large problems in terms of time and accuracy than did the approach that uses the backpropagation algorithm with
several internal levels. He did not report specific results of these studies. Our motivation for using hierarchical net-
works was somewhat different. Although we were concerned with the scaling problem, the objective of our project
was to develop a hierarchical network that would perform partial diagnosis accurately and parsimoniously. We
applied the backpropagation algorithm to a sequence of networks, so that each network was trained in a supervised
way. The first level of this hierarchical system was presented with fewer data attributes than were given to the more
specialized level. The purpose of this first network was to establish a partial diagnosis of hypothyroidism, hyperthy-
roidism, other conditions, or no disease.

Curry and Rumelhart used hierarchical networks to classify mass spectra [Curry and Rumelhart, 1990]. Our sys-
tem is based on their architecture, except that we did not incorporate extra units for representing the degree of confi-
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dence in the top-level network's results. Curry and Rumelhart did not compare the hierarchical system with its
nonhierachical counterpart. Other approaches using neural networks involve preprocessing of data by several statisti-
cal techniques, usually in a nonsupervised manner [Hrycej, 1992]. Frean has proposed a method for constructing the
hierarchical networks dynamically, but concepts associated with each intermediate level did not have a specific mean-
ing, as they do in our system [Frean, 1990). Alternatives to building a supervised hierarchical classifier outside the
field of neural connectionist systems include piecewise linear machines, as described by Nilsson [1965], and classifi-
cation trees [Breiman, Friedman, Olshen, and Stone, 1984].

Hierarchical classification in medical domains has been done in a few cases. Ash and Hayes-Roth have studied
the use of action-based hierarchies in a surgical intensive-care unit [Ash and Hayes-Roth, 1993], and there are rule-
based systems that rely on hierarchical classification [Weiss, Kulikowski, Amarel, and Safir, 1978].

2. Material and Methods
We used the set of cases of thyroid diseases provided by Quinlan [19871, and distributed by the University of Cal-

ifornia at Irvine [Murphy and Aha, 19921. It consists of more than 9000 instances, each with 29 attributes. A previous
version of this database was used by Quinlan to show the implementation of decision trees [Quinlan, 1986]. There are
continuous and discrete values, as well as many missing values. Input consists mainly of values for laboratory-test
results. There are 20 classes for output, which can be grouped in at least four superclasses. Data were collected from
1984 to 1987 in an Australian medical institution. Similar data were also used previously in a neural-network imple-
mentation [Schiffmann, Joost, and Werner, 1992]. The authors described the difficulty that the system had in learning
the patterns. They tried different variations of backpropagation, and studied the variability of learning associated with
variation in learning rate and momentum. As in Quinlan's experiments, their problem was just to classify whether or
not the patient had hypothyroidism. The authors were not concerned with learning both partial and final diagnoses.
Weiss also used a similar set of data to compare different machine-learning algorithms in the domain of thyroid dis-
eases, showing that the smaller error rates in the testing set were associated with neural networks of nine hidden units,
trained by a backpropagation variant [Weiss and Kulikowski, 19901.

2.1. Multiple Neural-Network Architecture
Two top-level networks that determined partial diagnoses (triage neural networks) consisted of multilayered per-

ceptrons (MLPs), with inputs provided by the reduced set of data attributes (20 inputs in the case of the first partial
networks), or the complete set of ( ita attributes (23 inputs in the case of the other networks). We varied the number of
input attributes to measure the importance of the three additional attributes to the determination of the partial diagno-
sis. The attributes were laboratory values that could be left out in the first clinical assessment of thyroid diseases (T3,
T4, and TBG). Figure I shows the architecture of the triage networks, and Figure 2 shows the architecture of the spe-
cialized network. Te complete set of data (23 inputs) was presented to the generic network, in which the final diag-
noses corresponded to output units. Figure 3 shows the architecture of the generic network.

FIGURE 1. Triage network. Inputs are clinical and labora- FIGURE 2. Specialized network for hypothyroidism.tory data; outputs are first partial diagnoses. CliniPatient finding Patient Hidden
Clinical data 1 ndata lyer

finding (5 or 10 units) diagnoses
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• Hyper-
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The triage networks in the hierarchical model were trained to distinguish among four classes of diagnoses: (1)
normal, (2) hyperthyroid, (3) hypothyroid, and (4) other conditions. The specialized network was then trained on only
those cases considered hypothyroid by the triage network. It was trained to classify instances in the following final
diagnoses: (1) hypothyroid, not otherwise specified; (2) primary hypothyroid; (3) compensated hypothyroid; and (4)
secondary hypothyroid. In the generic and triage networks, the training set was composed of the first 4000 instances
in the database. The test set was composed of the remaining 5000 instances. In the specialized networks, the training
set was composed of all training instances considered hypothyroid by the corresponding triage network. The test set
was composed of all test instances considered hypothyroid in the corresponding triage network.

FIGURE 3. Generic neural network. Inputs are all labora- FIGURE 4. Number of epochs required.
tory data; outputs are final diagnoses. TSH is the thyroid- Triag networks
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Three triage networks were built in which there were (1) 20 input units and five hidden units, (2) 20 input units
and 10 hidden units, and (3) 23 input units and five hidden units. We built specialized networks with five and 10 hid-
den units, so that we had three systems for the hierarchical model: one with an overall of 20 hidden units, when 20
input units and 10 hidden units were used for the triage network; one with an overall of 10 hidden units, with 20 input
units and five hidden units in the triage network; and one with also an overall of 10 hidden units, but with 23 input
units and five hidden units in the triage network. The generic network was built with 23 input units, 10 hidden units,
and 10 hidden units.

We formatted all input files to provide one output unit for each desired diagnosis in each level of the hierarchies.
Continuous values were preserved, and true-false values were assigned "I" and "0," respectively. Missing values
were assigned to their means, and scaling was done for continuous values to provide inputs in the order of 100 to 10"
4. Of all attributes in Quinlan's set, we did not use those that flagged only whether continuous values were present
(e.g., "measurement": true or false), those referring to patients' identification numbers, those determining the referral
center, and the FTI (free thyroxine index). The latter is just the ratio between two other inputs, so the network should
be able to derive it. The ability of neural networks (as opposed to classification trees and other discriminants) to com-
bine inputs in this way was shown by Reibnegger and associates [Reibnegger, Weiss, Werner-Felmayer, Judmaier,
and Wachter, 1991 ], who dealt with the aminotransferases ratio in a neural net system used to diagnose liver diseases.

Each of the components of the hierarchical system, and the generic network learned using a standard backpropa-
gation algorithm [Rumelhart, Hinton, and Williams, 1986]. We started with a learning rate of 0.5, but we had to
decrease it to 0.01 to achieve a reasonable performance in both the training and the test sets. Since it is known that the
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prevalence of hypothyroid cases in the data set is 92 percent [Weiss and Kulikowski, 1990], this rate was a lower
bound to our classification-rate goal. The parameter momentum was set to 0. Weight updating was done by epochs,
rather than by patterns.The decision about when to stop training was not straightforward. One-hundred percent accu-
racy in the training set was not obtained even after 10,000 epochs in the generic model, which took approximately 48
hours on a shared SunSparc2. Since the total sum of squares (tss) decreased slowly after 10,000 epochs, we decided
to stop training then. By doing so, we could also compare our results to those of Schiffmann. All networks were
trained for 10,000 epochs. Performance of the test set (measured by the tss) was decreasing with the tss of the training
set, so there was no sign of overfitting at this point.

2.2. Evaluation
Although the goal of learning was to minimize the tss, we could not use this measure to evaluate the networks

because a different number of outputs were involved in each system. The classification rate provided a good means to
evaluate the percentage of correctly classified cases (or the accuracy of the classifiers), but in fact has little meaning
in medical practice. Sensitivities (the proportion of a test's true-positive results to all genuinely positive cases) and
specificities (the proportion of a test's true-negative results to all genuinely negative cases) are among the most
important measures of performance for a diagnostic test in medicine [Sox, Blatt, Higgins, and Marton, 19881. It is
also usual to compare discriminating power of two tests by comparing the areas under each test's receiver operating
"characteristic (ROC) curve over the whole range of cut-off values [Centor, 1991]. We compared classification perfor-
mance using sensitivities and specificities.

3. Results
Table I shows the classification rates for performing the partial diagnosis of hypothyroidism. We obtained the

numbers corresponding to the generic network by adding the numbers for each of the final diagnoses that can be clas-
sified as hypothyroidism. The classification rates for final diagnoses in the hierarchical systems correspond to the
results of the specialized networks for hypothyroidism. Table 2 shows the results for the specific final diagnosis of
primary hypothyroid. Table 3 shows the results for the final diagnosis of compensated hypothyroid.

Figure 4 shows how the tss decreased with learning in the triage networks, generic networks, and specialized net-
works. Note that it took more time to go through each epoch in the generic network, as compared to the combination
of triage networks and specialized networks, since there are many more diagnoses to be learned in the generic net-
work than in the triage network. The specialized networks were easy to train, since only about 300 instances were fil-
tered in the triage network.

The generic network had the least accuracy in all cases. In fact, this network could indicate compensated hypothy-
roid correctly in only 248 of 394 hypothyroid cases, and did not recognize any other type of hypothyroidism. Sensi-
tivity to primary hypothyroidism was, therefore, zero. Although not shown in the tables, the generic network could
not recognize any case of hyperthyroidism, whereas hierarchical systems with all 23 inputs units provided to the tri-
age network were the most accurate for classifying this superclass (accuracy 96.16 percent, sensitivity 80 percent,
and specificity 96.57 percent). The triage network that contained just 20 input nodes was also unable to recognize
cases of hyperthyroidism. The reason for these results may be that the three inputs that were left out in the 20-input
models were indeed essential to reach a diagnosis of hyperthyroidism.

The generic neural network was unable to learn patterns that were infrequent in the training set. One example of
an infrequent diagnosis was primary hypothyroidism, as mentioned above. The generic network usually yielded high
specificities (98.63, 99.24, and 96 for hypothyroidism, primary hypothyroidism, and compensated hypothyroidism,
respectively), whereas sensitivity for these different categories ranged from zero to 92.53 percent. There was no
important change in accuracy, sensitivity, or specificity when the triage and specialized networks were composed of
10 versus five hidden units.

3. Discussion
The degree of uncertainty in diagnosis depends on the penalty for false positives and false negatives. Therefore,

an accuracy of 99.99 percent may not mean much when high specificity is coupled with low sensitivity, or vice versa.
The sensitivity and specificity have to be considered by the health-care worker when she receives test results. If rare
patterns must not be missed (e.g., a treatable important disease), we can improve our results by lowering the threshold
of some output units, to ensure higher sensitivity. Preliminary results show that this procedure may be important to
calibrate the network to recognize rare, but important, patterns.

We have not considered physician or patient preferences in our system. Also, we have not addressed costs, risks,
severity of illness, or any measure of patients' well-being. We present sensitivities and specificities so that the appro-
priate misclassification penalties can be assigned. It is unrealistic to assume that costs for false positives and false
negatives are the same in the medical domain. For example, we can see in Tables I and 3 that, although the generic
network has a lower accuracy than does a simple "guess" that all patients do not have the disease, its sensitivity is far
from zero. Utility measures, although difficult to acquire, may provide additional insight on how to choose the best
classifier for this data set.
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It is interesting to investigate whether the results conform the literature concerning thyroid diseases. The fact that
hierarchical systems could learn almost as well with fewer input units confirms certain guidelines of the American
Thyroid Association [Surks, Chopra, Mariash, Nicoloff, ane Solomon. 19901 that suggest that few laboratory tests are
necessary to diagnose certain thyroid conditions. We are undertaking further research in this area. The use of back-
ground knowledge to choose which units to leave out for the triage networks needs further investigation. It speeded
up learning, since fewer weights had to be adjusted, yet it did not decrease accuracy. A physician needs to review
cases that were misclassified, to check whether they compriseu mainly certain conditions that are more difficult to
diagnose, as in clinical practice.

TABLE 1. Classification rates for superclass hypothyroid (percent)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
System train train train test test test

Generic network 95.93 55.34 98.77 95.82 62.94 98.63

Hierarchical system:
20 hidden, 20 + 23 input, units 99.25 96.56 99.43 98.50 91.11 99.13
Hierarchical system:
10 hidden, 20 + 23 input, units 99.12 95.41 99.38 98.54 91.87 99.10

Hierarchical System:
10 hidden, 23 + 23 input, units 99.07 91.22 99.62 98.38 88.57 99.21
No computer-based system:
(assigning not hypothyroid to all) 93.45 0 100 92.12 0 100

TABLE 2. Classification rates for class primary hypothyroid (percent)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
System train train train test test test

Generic network 96.55 0 99.38 96.90 0 99.24

Hierarchical system:
20 hidden, 20 + 23 input, units 99.25 85.96 99.64 97.90 68.64 98.61

Hierarchical system:
10 hidden, 20 + 23 input, units 99.27 82.46 99.77 98.38 67.72 99.111

Hierarchical system:
10 hidden, 23 + 23 input, units 98.90 73.68 99.64 98.08 61.86 98.96
No computerized system:
(assigning "not hypothyroid" to all) 97.15 0 100 97.64 0 100

TABLE 3. Classification rates for class compensated hypothyroid (percent)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
System train train train test test test

Generic network 95.92 98.63 95.82 95.82 92.53 96%.0

Hierarchical system:
20 hidden, 20 + 23 input, units 99.15 93.88 99.35 97.56 80.22 98.54
Hierarchical system: [I
10 hidden, 20 + 23 input, units 99.00 94.56 99.17 ".08 80.55 98.56

Hierarchical system:
10 hidden, 23 + 23 input, units 98.60 92.52 98.83 97.72 87.31 98.31

No computer-tased system:
(assigning not hypothyroid to all) 96.33 0 100 94.64 0 100

Another interesting extension would be to use enhancing techniques, such as weight elimination and weight
decay, to improve performance. We also need to do rigorous evaluation before determining whether this classifier can
be useful in clinical settings. Our classification rates were different from those of previous works. Shiffmann reports a
best classification rate of 98.48 percent, whereas Weiss and Kulikowski reported results as good as 98.80 percent. Our
best result to diagnose the superclass hypothyroid was 98.54 percent correct classification with the hierarchical sys-
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tem.
Examples of the importance of partial diagnosis in medicine are common. Partial diagnoses that guide the diag-

nostic and treatment processes are relative. In certain centers, were the constraints on resources are strong, as in pri-
mary-care institutions, what is considered a final and specific diagnosis may correspond to a partial diagnosis in a
more specialized center. Furthermore, different patients may require different levels of refinement of diagnosis. These
issues play an important role in the decision regarding how partial a diagnosis should be. Triage of patients may ben-
efit from the use of hierarchical classification systems. Identifying patients who are suitable for research studies and
practice guidelines, for example, requires selecting individuals from a large population of patients. The degree of
selection accuracy may have a great influence on patients' satisfaction and on health care financial costs.

4. Condusion
The hypothesis that hierarchical neural networks would perform more accurately than nonhierarchical ones,

because they "filtered" cases to be classified by more refined networks, was confirmed by this experiment. In all
cases, the overall accuracy of the hierarchical system with 20 inputs for the triage network, 23 inputs for the special-
ized network, and five hidden units for both networks was the highest. In one category (compensated hypothyroid-
ism), however, the sensitivity of the hierarchical system was lower than was that of the generic network. The generic
network was slower than the combination of triage and specialized networks.

Use of a hierarchical neural network classification system in a medical domain improved classification rates, com-
pared to nonhierarchical neural network system. In the limited domain of thyroid diseases, the system proved to be
accurate and practical. More important, results derived from this study may be valid across domains, so hierarchical
neural networks may be useful for many diagnostic tasks in which partial diagnoses are necessary.
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Abstract

This study applied neural networks to a problem in quantitative genetics, namely, the
prediction of offspring given genetic data about both parents. Applied to dairy cattle, the
network was to predict whether the offspring would or would not be a good milk producer
within a reasonable tolerance level. The breeding of dairy cattle is a very competitive
multi-million dollar industry. Artificial insemination centers have been established to
facilitate and promote the breeding process. The ability to successfully predict offspring
performance is important for these centers since they can avoid wasting resources on
matings which are unlikely to produce good milk-producing offspring.

The network performance was comparcd against current quantitative genetic models
coupled with insights from an expert geneticist. This conventional method was able to
predict the offspring performance with 50% success. A basic feed-forward network with
multiple hidden layers was applied to the problem, and was able to predict offspring
performance with a success level of 68%.

This initial success of neural network models applied to the breeding of dairy cattle
suggests they could be a useful tool when applied to other areas of quantitative genetics.

Introduction:

Current genetic theory has had a rich history of development and application. The study of
discrete characters (e.g. brown eyes versus blue eyes) has fallen into the area of population
genetics. Population genetics problems are easily modelled with simple algebra and there has
been much success in applying these models to problems in the field. The study of continuous
characters (e.g. height and weight) lies in the field of quantitative genetics. The problems in
this area are much more complex and often involve the interactions of multiple genes with
each other and with the environment. The models used on these problems are much more
sophisticated, often employing advanced first order statistics, regression, and multivariate
analysis. The models used in both population and quantitative genetics are probabilistic
in nature since the underlying physical process is partly random. This underlying physical
process is the segregation of one or more genes each of which follows the laws of Mendelian
inheritance, and hence independently segregate and assort. Due to the complexity of these
genetic and environmental interactions, quantitative genetic models have had limited success
when applied to problems in the area.
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Faced with stiff competition in a multimillion dollar industry, animal breeders are looking
for ways to improve upon the present models. In the Canadian dairy system, artificial
insemination centers have been established to promote and facilitate genetic improvement
in dairy cattle. Over the last 25 years, the output of high quality milk by the average dairy
cow has doubled. Stiff competition is effecting continued improvement. To bring about this
improvement, superior animals in one generation must be selected and used to produce the
next generation.

Genetic modelling is assisted in this process by a series of metrics developed by the
Canadian dairy industry and government. These metrics are an evaluation of a dairy cow
according to the following properties:

milk production These rankings are based on milk yield, fat content, protein content, and
ratios between protein and fat. These traits are expressed as Breed Class Averages
(BCA) which adjust for age, month of calving, and other environmental factors.

conformation These traits include size, shape, normality of various body parts, and others
that are associated with the ability of an animal to withstand the stresses of high
production and to have a long productive life in the herd. These metrics are adjusted
for non-genetic factors such as age and inter-herd variations.

auxiliary traits These include such factors as calving ease, fertility, and milking speed.

These metrics are combined with relative and progeny information to produce an Estimated
Transmitting Ability (ETA) score for each trait of interest. The ETA score is adjusted for the
genetic merit of an animals mates, differences between sexes, and other genetic information.
The ETA scores for an animal are continually updated as new progeny information becomes
available. The ETA has been found to be the most accurate predictor of genetics which an
animal can pass onto its progeny.

With dairy cattle, an overall index has been developed which incorporates the most
important traits related to milk production and which are expected to be the most significant
determinants of profitability at the farm level. This Lifetime Profit Index (LPI) emphasizes
milk production but also weighs in other characters such as milk quality, mammary system,
and feet & legs. The LPI score for an animal is the primary selection tool of all dairy
breeders.

With the ETA scores and the LPI for each animal, a geneticist tries to determine which
matings are most likely to produce the best offspring. In this case, given both parents, a
model would predict the resulting offspring. By using historical data from many different
prior matings, a neural network could be trained to predict the offspring of future matings.
Such historical data is available. Unfortunately, the neural network is unable to factor in
genetic data from several generations of a family. Such information might be useful.

Method:

For this study, the problem of predicting the genetic offspring for a given mating was at-
tacked. This problem is the most important from a commercial standpoint and there exists
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COW BULL CALF
production conformation LPI production conformation LPI LPI

-11 -8 -9 -1 0 -1 -4 -600 9 14 9 4 5 -14 6 784 -44
2 9 3 2 3 9 -1 518 6 9 7 -2 -2 -4 4 450 70

-1 16 3 2 2 4 -3 664 9 14 9 4 5 -14 6 784 594

Figure 1: Examples of ETA scores and LPI rankings for parents and offspring.

comparative measurements from competing methods. Breeding data for a one year period
was obtained. The data consisted of ETA and LPI scores for a cow, a bull, and the resulting
male offspring. A portion of the data is given in Figure 1. The goal is to use the ETA and
LPI scores for the bull and cow to predict the LPI score for a resulting male offspring. Re-
call that the LPI is an overall index measurement and serves as the best indicator of future
breeding success. Hence, it is this measurement which artificial insemination and breeding
centers are most interested in. With this in mind, the neural network models used took
the ETA scores and the LPI for both parents and produced the LPI for the resulting male
offspring.

A perusal through the data illustrates some of the problems in presenting it to a neural
network. Each different type of ETA score and the LPI all have a different range. The final
output should be a number between -1000 and 2000. It was unclear how the output should
be represented. A first guess was to present the input data directly, and directly predict the
output with a linear output unit. This and the other output representation methods which
were tried are listed below:

1. single linear output, no scaling

2. single output scaled between 0 and 1

3. 10 outputs discrete mapped between -1000 and 2000 (high=1.0 lo=0.0)

4. 10 outputs thermometer (high units set to 1.0)

5. 4 output discrete mapped between -1000 and 2000 (high=1.0 lo=0.0)

6. 4 output discrete 1000, 500, 500, 1000 (hi=1.0 lo=0.0)

In each case, the data was randomly divided into a training file of 325 matings and a cross-
validation or testing file of 124 matings. It is the network performance on the testing files
which is reported in the results section.

The best method of output representation was determined empirically. Determining this
best method was the most time consuming step in the application process. Tn addition, a
smaller effort was made to determine the optimal network architecture in terms of layers and
hidden units. Standard feedforward networks were used in all trials. The LNKnet simulator
from the Massachusetts Institute of Technology was used for constructing and training some
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of the neural networks. Additionally, the CNAPS neural network engine from Adaptive
Solutions along with their Buildnet software package was used for the more computationally
intensive network training.

Results:

The interpretation of the output results require some analysis. The LPI range in our data set
spanned from -1000 to 2000. From a quantitative genetic standpoint, it would be valuable
to predict within some reasonable distance of the correct values, say one-tenth of the entire
range or 300 LPI units. From a breeding standpoint, it would be more valuable to predict
whether the offspring will be a good producer (greater than 500) or whether it would be a
bad producer (less than 500). Both of these scores are presented below.

The network used for the first datafile which represented the output with a linear output
unit failed to converge. Our next trials with the output scaled between 0 and 1 produced
good results. The other methods of data presentation were reasonably close but failed to
provide further improvement.

With regard to network architecture, each of the networks tried had 16 input units. The
networks architectures which performed the best had two hidden layers of 8-10 sigmoidal
units each and the final output layer with a single sigmoidal unit. Other networks were
tried by varying the number of layers and hidden units, but no improvement in performance
was observed. Convergence was usually achieved after training for 7 or 8 epochs. The
performance of the best network on the testing data was 68% accuracy when looking at the
ability to predict good milk producers from bad milk producers. The performance was 62%
when looking at the quantitative genetic measure where a prediction is considered correct if
it is within 300 LPI units of the actual value.

Conclusions:

Previous to this study, the best performance achieved on this data by conventional methods
was 50%. This performance was achieved by quantitative genetic models including informa-
tion spanning many generations and matings. Also necessary to achieve this performance
was the application of these models by a geneticist experienced in these areas. Hence, it
is a bit of an art. Conventional methods are limited by the modelling power of first order
statistics and what little insight the human expert provides.

The neural network approach is a different look at the same problem. Instead of track-
ing characters over several generations, these models infer the general inheritance pattern
of these characters based on observations from random matings. This approach is not able
to incorporate information from several generations, but it is able to incorporate second or
higher order information into its model. The better performance of networks with more
than 1 hidden layer would suggest there is alot of second or higher order information which
is important in this problem. The success of this preliminary study suggests that neural net-
works can contribute significantly to problems in the area of quantitative genetics. Similarly,
the accuracy of neural network models could provide significant savings to animal breeding
centers by helping to avoid nonproductive matings.
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Abstract

Circuit bipartitioning is an NP-hard comlbinatorial optimization problem in the layout syn-
thesis of VLSI circuits, where we wish to find a partition of the circuit elements into two blocks
such that the number of signal nets crossing the partition boundary is minimized. We have devel-
oped and experimented with several competitive learning neural network algorithms to solve this
problem. The algorithms were tested on randomly generated circuits as well as several popular
benchmark circuits. The stochastic reward and punishment neural network produced the best
results which were comparable to those found by the Ratio Cut algorithm of Wei and Cheng.

1 Introduction

Circuit bipartitioning is a very iml)ortant combinatorial optimization problem in the layout syn-
thesis of VLSI circuits. It has been proven to be NP-hard. Given a circuit consisting of a set of
cells (modules) connected by a set of nets (signals), the circuit bipartitioning (also called mincut
partitioning) problem is to find a partition of the cells into two blocks such that the number of
nets which have cells in both blocks is minimized.

A circuit netlist naturally defines a hypergraph H, with vertices corresponding to modules and
(generalized) edges corresponding to signal nets. Throughout our discussion, we assume that the
hypergraph H contains M nodes (modules) V = {mi, m2 . .aM}, and N edges (signal nets)
E = {n 1 , n2, .... nN where each edge is a subset of V. Each node ni has an area, or size, of s(rni).
The objective is to partition the Al nodes to two nonempty disjoint subsets, or blocks, L and R,
V = LU R, with sizes si7,(L), and size(R), such that the number of hypergraph edges connecting
the two blocks (also cal,l,.I the cutse$) *s minimized. Since the problem is NP-hard, many heuristic
algorithms have been proposed, the most popular of which is due to Fiduccia and Mattheyses [1]
with a time complexity of O(P) where P is tihe total number of pins. Generally, the Fiduccia-
Mattheyses (FM) algorithm is quite efficient but it needs a predefined restriction on the subset
sizes size(L), and sizc(R), which is usually set such that sizc(L) ý_ size(R). For hierarchical
designs predefining the subset sizes is overly restrictive. Recently, Wei and Cheng introduced the
ratio-cut metric to locate the "natural" clusters in the circuit and obtained improved results [2].

1-302



NET I

iFignzre 1: ,A\niflh, ci~rciit

2 A Competitive Learning Neural Net Model for Circuit Bi-
partitioning

Circuit partitioning can be seen as a categorization probleh, where we want to assign the modules
of the circuit to partitions each of which defines a category. This task can be accomplished by
a certain class of neural networks called competitive learning or winner-take-all neural networks
[4]. The aim of such networks is to cluster or categorize the input data. Similar inputs should be
classified as being in the same category, and so should fire the same output unit.

Our task is to code the modules as input vectors to a competitive learning neural network with
two output units. This representation scheme should allow the neural network to categorize the
modules according to their connectivities such that heavily interconnected modules are grouped
together into the same category. This way, we can also minimize the cutset. We could use the
representation scheme proposed by Hemani and Postula [31 for the similar placement problem
where they used the rows of the connectivity matrix as input vectors to a self-organizing neural
network. The connectivity matrix C = [c1j] is derived from the netlist of modules such that cij
represents the connectivity between modules i and j. This transformation however, destroys the
hypergraph property of the circuit netlist by mapping it to a weighted graph. For the partitioning
problem such a transformation is unnecessary. We can use the netlist directly to represent the
modules in terms of the signal nets they are connected to. Consider the MxN matrix A = [aij].
The entry a, will be one if module mi is5 on liet II, i.e., I., E II, ."i.d zeru utherwise. This wa),
row ai of the matrix A is a binary vector representing module mi,. As an example, consider the
circuit shown in Figure 1. We have 5 modules and 3 nets. Module ti, is on nets ni and n2 , but
not on net nq. Thus. the vector a, corresponding to module in, is equal to (1, 1,O)T. For this
exalnple, •ilt miiarx A is given by:

/1 1 O\
1 0 0

A= I 0 0
1 0 1

ý0 1 1)

The representation scheme proposed above is in one-to-one correspondence with the hypergraph
model and accurately describes the circuit at hand.

Now consider a neural network with two winner-take-all output units numbered 0 and 1, and
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the standard competitive learning rule (4]. Let uw be the weight front input j to output i. Our
first neural network algorithm is given as follows:

Algorithm 1:
Initialize weights from N inputs to the 2 output nodes to small random values.
Set the sizes of the partitions to zero, sizeo = sizel = 0.
for each module mi do

Present its input vector and determine the winner node k* with minimum
dk = (ai - uxkj) 2

Assign module mi to node k*.
Set sizek. = Sizek. + ,(Mi).

endfor
Initialize gain term (0 < vi < 1). Set iterations - 1.
while Weights did not converge do

Randomly select a module mi and present its corresponding input vector ai.
Compute distances dk between the input vector and each output node k using

dk = - '1kj)2 + a * Sizck
Select winner node k* as that output node with minimum dk.
Update weights to node k* using

AUk-j = -(aij 100k*)

if iterations mod M - 0 then Y, = 0.90i,
Set sizek. = sizel. + s(ini), sizcl-k. = sizeI-k. - .q(mi).
Increment iterations

endwhile
Set sizeo = size1 = 0.
for each module mni do

Present its input vector and determine the winner node k* with minimum
dk = = - ykj) 2

Assign module mi to node k*.
Set size . = sizcLk. + s(inl).

endfor
Determine the number of nets cut by the partition boundary.

Note that an extra term, 0 * Sizek, is added to the distance calculation during the learning
phase to bias the network towards the partition with the smaller size.

While Algorithm 1 performed well on small examples with up to 40 modules, its performance
progressively got worse as the problem size increased. The results for even the smallest bench-
mark problem PrinarySCi (752 modules, 904 nets) were very bad and the running time became
unacceptably high.

3 A Stochastic Reward and Punishment Neural Network

There are several problems with the winning and learning rules used in Algorithm 1. In the
minimum distance winning rule, the zero and one eutries in the input vector are equally important.
But we would like a module to be classified according to the nets that it is connected to and not
according to the nets it is not connected to. Consider the following winning rule where the output
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unit with the largest score is declared the winner. The score of a unit is defined as the normalized
scalar product of the input vector and the weight vector plus a normalized balance term, and can
be written as

1 1 sizek
scorek = T - 11kj + G - (1)ail +totalqize

where Jail is the number of 1 entries in the ai-vector, and total-size = Y s(mi). Finding the
winner is now a O(jaid) operation where it was a O(N) operation in Algorithm 1.

The learning rule in Algorithm I has a similar problem where the whole weight vector is
updated each time, regardless of the corresponding entries in the input vector. We can construct
a new rule where only those elements of the weight vectors are updated which correspond to one
entries in the input vector. Let node k be the winner and I the loser. The new rule is given by:

(1 - vkj) aij = 1
Auk 0= { otherwise

r1( - wij) aii = I

0( otherwise

In this learning rule, the winner is rewarded and the loser is punished. Note that with the use of
the new winning and learning rules, one iteration of the algorithm can be accomplished in 0(lail)
time. We will refer to the modified algorithm as Algorithm 2.

Although Algorithm 2 performed much better than Algorithm 1, the solutions to the bench-
mark problems were on average still considerably worse than the ones obtained by the FM al-
gorithm. One reason for this is that very frequently it gets stuck at local minima. To overcome
this, we created Algorithm 3 where the winner is determined using a stochastic rather than a
deterministic rule. Let the winning probability of a node k be given by

Pk = Cscor~e/T (2)

Since we have only two nodes this expression becomes

1Pk = 1 + Cf score1 -acore&)/T (3)

When T is very high, both units have winning 1)robabilities close to 0.5 regardless of their
scores. As T approaches zero, the winning probability of the unit with the higher score approaches
1. With this approach (which we will call Algorithm 3) we were able to find solutions as well as
or better than the FM algorithm on many initialization instances.

In the next section we describe the experimental setnp and give the simulation results.

4 Simulation Results

A simulation algorithm for Algorithm 3 has been implemented in C language on a SUN4 archi-
tecture. The parameters were found in the following way.

The balance coefficient a should try to keep a sensible balance between the partitions rather
than enforcing a strictly 1:1 balance. Since the scalar product term in equation (1) is normalized,
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its value is between 0 and 1. We want the balance termn to contribute no more than 10 % to the
overall score. Since it too is normalized, we set a to 0.1.

Ideally, the starting temperature Tstrt should be set to a value such that the winning prob-
abilities are close to 0.5. In the worst case, the difference between the scores of the winning and
losing units can be at most 1.1, since the highest possible score is 1 + 0.1 = 1.1, and the lowest
possible score is 0. Thus we have to set Ttsrt such that

S= I0.5 (4)
1 + c-1"1/T°"r'~'

where k is the node with the higher score. For example, setting TStaTt = I 1 makes Pk = 0.525. We
could start with this value for T however our experiments showed that starting with pt- = 0.6
is sufficient for simulation purposes above which the results show very little, if any, improvement.
This value of Pk approximately corresponds to Titnrt = 2.5 which we used in our simulations.

Similarly, there is no need to cool the network until Tnd = 0. We found a value of 0.001 to be
adequate for this purpose. Starting with T = Tq,,.t, T was decreased by 5 % every M iterations
until T < T,,j.

A very interesting observation we made is that setting the gain factor 'q = 1 and keeping it
there for a long time produced much better results than reducing it smoothly over time. This is
because the network is better able avoiding local lninina and explore a bigger part of the search
space when the weight vectors were changed frequently and abruptly. Thus, il was kept at the
value 1.0 until T < TCLi and than reduced rapidly by 15 % every At iterations for 20*M iterations.

The algorithm was tested on six benchmark examples from Microelectronics Center of North
Carolina (MCNC): PrimSCI, PrimSC2, Test02, Test03, Test04, and Test05. For each test case
the algorithm was run 10 times and the best result was taken. The largest example (PrimSC2)
has 3029 nets and 2907 modules. In terms of CPU! time, the longest run took about 35 seconds.

Table I compares our results with the results of Wei and Cheng [2] where they ran the FM
algorithm and their ratio cut algorithm 20 times each and reported the best results. The size
ratio was set to 1:3 for each algorithm. In Table 1 the reported ratio cut values are normalized,
i.e. NHtCut

RatioCut 
=

As can be observed from the table, the neural net algorithm generally outperforms the FM
algorithm by as much as 50 % (PriiSC(2) except on Test04 and Test05 where the ratio cut values
are within 4 %. It also outperforms the ratio cut algorithm on PrimSC2. On average its results
are slightly worse than the results of the ratio cut algorithm.

TABLE I !
Fiduccia-M attheyses Wei-Clieng Neural Network

Circuit # Nets # Modules Net Cut Ratio Cut Net Cut Ratio Cut Net Cut Ratio Cut
PrimSCl 904 752 46 196.9 35 147.3 21 192.2
PritnSC2 3029 2907 166 728.4 77 361.1 77 358.3
Test02 1866 1663 66 287.7 43 189.3 49 213.8
Test03 1699 1607 84 389.1 49 221 61 250.6
Test04 1738 1515 44 176 44 176 46 184
Test05 2910 2595 42 168 42 168 44 176.2
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Abstract

A novel fast and accurate neural network tool is proposed for efficient technology independent
realization of the interface between device modelling and circuit simulation. An enhanced back-
propagation neural network based algorithm is applied to the problem of modelling various de-
vice characteristics. Simulations show fast convergence or learning rate and an excellent fit of
recalled characteristics to the measured device data. The utilized algorithm is robust and ca-
pable of presenting the entire device characteristics unaltered even with largely reduced
amount of the teaching material. The good monotonicity of the neural network generated device
data facilitates the usage of the method in circuit simulation purposes. Possible further appli-
cations of implementing circuit level macromodels with this technique are discussed.

1 Introduction

The integration of measured semiconductor device behaviour or data from numerical device simulators into a circuit
simulator has been a long standing well known problem for the integrated circuit designer. For digital circuits the re-
quirement of accurate functional modelling include knowledge of device currents together with the internal and exter-
nal RC-products to facilitate proper timing simulations. For analog circuit designs the simulation has proven more
difficult. The linear circuit gain is governed by the small-signal parameters, transconductance and output conductance,
and their frequency behaviour. Therefore, accurate and continuous models for small-signal parameters over the com-
plete operation region are required. The continuity of these models follows if the derivatives of the device current mod-
els with respect to terminal potentials are continuous [Tsi87]. Precision modelling of analog circuits also requires
accurate presentation of the substrate effects in dc- and ac-operation. Other inaccuracies in simulation have been at-
tributed to poor or non-existent modelling of the subthreshold region, non-linearities in device operation and voltage
dependent capacitances. Several approaches are currently available to generate device level behavioural modelling.
The numerical solutions of semiconductor equations of the devices have been applied in 2D and 3D to accurately mod-
el the physics of ultra small devices. Similarly, by starting from basic semiconductor physics, microscopic or particle
level simulation, approaches have provided the device electrical characteristics. These techniques are computationally
intensive tasks that are suitable for technology analysis and enhancement. Their capability to provide the device mod-
elling interface for circuit simulation simultaneously as it proceeds is, however, seriously limited by the required CPU-
time. Other techniques have been developed for more efficient device modelling interfaces. Typical approaches for the
realization of this crucial interface for accurate and fast circuit simulation have included analytical, parameterized sem-
iconductor device models [Ant88,Met90,She83,Tsi84] table look-up models with various interpolation techniques
[Rof93,Shi83] and a more atypical method of tensor product splines [Bis85].

Tre mos.* widely applied approach of using parameterized analytical models for presenting electrical characteristics
of a device has been plagued with several difficulties. The parameter extraction for these models, itself, presents a dif-
ficult problem even if the models are physically sound and include every possible physical phenomena that completely
describes the device. Two approaches can be utilized in the device parameter extraction. First, the parameters for phys-
ically based models can be defined from the tedious and time consuming extraction of measurements for the device.
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Some models use non-physical fitting parameters to include device behaviour that can not be explained otherwise. This
approach faces difficulties, as in the case of the semi-empirical MOSFET model usually referred as level 3 in SPICE
circuit simulator, owing to the difficult estimation of parameters from regression fitting of model to the data. Second,
the previously extracted physically sound set of parameters can be fine-tuned in a general non-linear optimizer to fit
the model to the measured or numerically simulated device data [Dog83,Oja88,Yan83J. This approach is, however,
capable of producing highly unphysical interpretations of the device parameters, which in turn may show up as unex-
pected and detrimental effects during circuit simulation.

As a conclusion the analytical and semi-empirical models, while introducing several fitting parameters for the second
order short or narrow channel effects or subthreshold conduction, suffer critically from difficult parameter extraction.
The determination of parameters for these models is a tedious numerical task itself. While it is performed only once
for the device, the single paramet%,r set is usually not capable of describing multiple sizes of devices.

To overcome the difficulties in parameterized models, a variety of table look-up methods with different interpolation
techniques have been used [Rof93]. These models typically store the device current in a table. For a four terminal de-
vice such as MOSFET or MESFET, a 3D table is formed as a function of gate, drain and substrate potential. The table
size, therefore, grows as the third power of the number of input vectors, and becomes the limiting factor in the mod-
elling accuracy. While efficient interpolation is required to reduce the amount of data in the tables, the continuity of
the derivatives between consecutive datapoints is also required for proper presentation of small signal parameters. For
digital circuit simulation linear interpolation can be adequate, but with practical table sizes it leads to large error in
small signal parameters of analog circuits. The third order interpolation scheme of Ref. [Rof93] is capable of estimat-
ing the derivatives with smaller amounts of data, but polynomial fit requires another set of numerical operations. The
methods that present the device current with a 2D table of gate and drain potential and add the substrate effect or chan-
nel length modulation with a sparse 3D table are capable of further reducing the amount of required data points. These
models, however also, require a higher order polynomial fit for interpolated datapoints and will, otherwise, lead to in-
accurate small-signal parameters.

In this paper the authors describe a novel, physically and technologically independent methodology for the realization
of the device modelling interface for circuit simulation purposes. This interface has been implemented with a modified
back-propagation neural network algorithm [Vog88]. The algorithm is programmed with C-programming language in
a typical small-scale UNIX workstation, but can also be transferred to any desktop personal computer and it does not
require extensive memory capabilities or superfast data processing.

2 Network structure and learning scheme

The network used for this study is a three-layer feedforward network with the error back-propagation learning algo-
rithm [Rum86] that consists of input, hidden, and output layers. Each layer contains several processing elements with
sigmoidal nonlinearities. Cybenko [Cyb89] has shown that this net can be used to approximate arbitrary functions, i.e.
it can model any continuous nonlinear transformation. The significant consequence is that a neural net using sigmoidal
nonlinearities and only one hidden layer can form complex disjoint and convex decision regions. In this study, the
back-propagation neural network is utilized as a continuous function approximator.

The network is feedforward in the sense that each unit receives inputs only from the units in the preceding layer. The
network converts input signals according to connection weights. During learning, connection weights are adjusted in
a direction to minimize the sum of squared errors between the desired outputs and the network outputs. The errors are
then propagated back to modify each connection weight.

A back-propagation neural network used herein is shown in Fig. 1. In the following, the subscripts k, j and i refer to
any unit in the output, hidden, and input layers, respectively. The total inputs to unitj in the hidden layer or unit k in
the output layer is

net = •WrsO0S r = k,j; s = j,i; (1)

S
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where wrs is the weight from the sth unit to the rth unit and 0S represents the output of unit s in the hidden and input
layers. A sigmoidal nonlinearity is then applied to each unit r to obtain the output as

Or = f (netr) = 1e (2)

exp {-(netr- 0r) d

where Or serves as a threshold of unit r. Hence, each layer communicates with all successive layers. There is no feed-
back within the network between layers of individual units and no communication with other units in the same layer.

In the learning process, the network is presented with a pair of patterns, an input pattern, and a corresponding desired
output pattern. Learning comprises of changing the connection weights and unit thresholds so as to minimize the mean
squared error between the actual outputs and the desired output patterns with the gradient descent method. The activity
of each unit is propagated forward through each layer of the network by using (1) and (2). The resulting output pattern
is then compared with the desired output pattern, and an error 8k for each output unit is calculated as

Sk = (tk - Ok) Ok (l-Ok)' (3)

where tk is the desired output and Ok is the actual output. The error at the output is then back-propagated recursively
to each lower layer as follows:

8. = O.(l-O.)0.) X W (4)I kjk

k

In order for the network to learn, the value of each weight and threshold has to be incrementally adjusted proportionally
to the contribution of each unit compared with the total error. The change in each weight and threshold is calculated as

Awrs(l+l)= rlqrOs + otAWrs(l), r=k,j; s=j,i; (5)

where rl controls the rate of learning and I denotes the number of times for which a set of input patterns have been
presented to the network. The parameter at determines the effect of previous weight changes on the current direction
of movement in weight space. The connection weights and thresholds of the network are usually initialized to small
random values uniformly distributed between -0.5 and 0.5. This initialization prevents the hidden units from acquiring
identical weights during learning.

One characteristic of error back-propagation nets is the long learning time. Learning times are typically longer when
complex decision regions are required and when networks have more hidden layers. To accelerate the convergence of
this standard back-propagation algorithm, we have used the modified back-propagation method presented by Vogl
et.al. [Vog88]. This algorithm includes three main modifications.

The first modification is that the network weights are not updated after each learning pattern. Instead, the weights are
modified only after all input patterns have been presented. The changes for each weight are summed over all of the
input patterns and the sum is applied to modify the weight after each iteration over all the patterns. The updating rule
for weights in the network is invoked according to the following rule:

AWrs (1+l)= 71- rOs+ o.AWrs(l), r=k,j; s=j, i. (6)

Further modifications include the altered learning rate TJ and the momentum factor a. The learning rate rI is varied
according to whether or not an iteration decreases the total error for all patterns. If an update results in reduced total
error, il is multiplied by a factor 4 > 1 for the next iteration. If a step produces a network with a total error more than
a few percent above the previous value, all changes to the weights are rejected, TJ is multiplied by a factor 03 < 1, a is
set to zero, and the step is repeated. When a successful step is taken, a is reset to its original value. For a successful
step ca resembles momentum as it tends to favour the change of weights to the earlier successful direction.
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The modifications to the standard back-propagation algorithm can greatly accelerate the convergence. After the learn-
ing, the neural network exhibits extremely low memory and computation requirements during classification. Hence, it
is very suitable for real-time processing.

3 Device modelling methodology

For the circuit simulation several characteristic sources of data from the devices are initially required in order to facil-
itate the variety of analyses of interest, namely the operation point, transient, dc- and ac-analysis. The required data or
models for circuit simulation, for example, with FET-devices includes the terminal currents versus bias voltages and
terminal non-reciprocal non-linear relationships of capacitances versus bias voltages. Typically, these models also
present small-signal parameters analytically for the FET. In Fig. 2 we present the methodology for providing these data
sets to the circuit simulation environment by using an enhanced back-propagation algorithm [Vog88] that was de-
scribed in above.

We have modelled a typical FET drain current dc-curve family by giving the value of drain current data to the process-
ing network as output teaching material. Correspondingly drain bias and gate bias values act as the network input
teaching material. Therefore, our back-propagation network consists of two input processing elements and one output
processing element. In addition to them, we have chosen to use one hidden layer of processing elements. In the mod-
elling five hidden layer processing elements were used. This was found by trial and error to be a suitable and cost-
effective number for the drain current data in question. If we had chosen to seek a solution for the drain current also
as a function of substrate bias, we would have included a third input processing element to present the third dimension
of the input vector. The addition of the bias processing element for the input layer is expected to enhance the learning
capabilities of the network. First, with the 2D model we study the monotonicity and accuracy of the network. An ex-
ample of 3D modelling will subsequently be given. As our present network consists of eight processing elements and
a bias unit, the updating of the network in each iteration cycle is extremely fast even with a modest desktop computer.
We have used a fully connected network with all the processing elements in a hidden layer connected to the all input
layer elements with weighted connections and also to the sole output layer element similarly with weighted connec-
tions.

The training material, i.e. input and output data for the network is first scaled linearly to fit between 0 and 1, typically
,we have used the range [0.15,0.851. Scaling of input data ensures that a proper section of the sigmoid is used in pro-
ducing the output of input layer elements. Similarly, scaling of output training set enables the output layer elements to
present the data with the sigmoid function. Before teaching of the network can take place the values of the weights are
selected randomly within a desired range of values as described in section 2. During the teaching period the scaled
input data is fed to the network input nodes and the desired scaled output is presented to the output node. The back-
propagation of error between the desired output and network output is used for updating the weights between the
processing elements in different layers of the network. This process is iteratively repeated until a desired error level is
reached for the modelled output or until no further improvement will take place during a specified number of iterations.
The final values of the weights are employed in the recalling of network output for chosen input and finally the output
is rescaled to the original scale of data.

4 Results, comparisons and discussions

As the target of our neural network device characteristic modeller, we have chosen a GaAs MESFET technology. This
serves as a fairly difficult task because the simulation accuracy of analog GaAs circuits has consistently been worse
than for comparable Si MOSFET technology due to less evolved device models [Sho92]. Our proposed approach is
also applicable to other difficult device modelling problems, such as Si MOSFETs with small channel lengths. In Fig.
3 we present the modelling results for the drain current curve family of GaAs MESFET's with a geometrical form fac-
tor WIL = 50pnml2pm (data from [Sho92]). The modelling output from the network is marked with 'o' and it is super-
imposed on the training data that is marked with 'x'. A very good fit with a relative sum of squares error of 1.41 per
cent was reached in less than 70000 iteration cycles for the weights during the learning period. The precision modelling
of the dc-curve family for GaAs MESFET has been difficult with the analytical models because of the complicated
second order phenomena in device physics. These device anomalies include, for example, backgating or sidegating
from adjacent devices, impact ionization triggered leakage current to substrate and gate terminal, drain potential in-
duced barrier lowering for short devices and deep level trapping dependent leakage current and subthreshold charac-
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teristics [Sho92]. Therefore, even with a set of optimized model parameters the above scale of modelling error has
been unreachable. Therefore, this error level presents a remarkably good fit to the measured data for the particular type
of device.

The evolution of the modelling error for this data is presented in Fig. 4. Here we have shown the modelling error from
0 to 10 000 iterations, with the inserted figure for iterations between 0-100. Learning can be seen to evolve with some
fast leaps between slower paces until finally after 70000 iterations the convergence to the minimum error with this
network is reached.

While the magnitude of the relative error for the modelling of the curve family is acceptable, the monotonicity and the
interpolation capabilities of the network output have to be verified to ensure proper modelling of the data between the
teaching material data points. The monotonicity of the recalled data with optimal weights was tested by creating a fine
mesh of input vectors that were fed to the network. The resulting network output presented a well behaved monoto-
nicity. Fig. 5 presents a graphical 3-dimensional view of monotonicity where the data, that the network recalled, is
marked with dots while the training set is marked with Y.

A more demanding test for the network is performed by reducing the amount of training material to one half of the
original data by removing every other gate bias value from the data set and calculating the network weights again for
the remaining data. These weights are further used to recall the original data set as a whole, thereby interpolating the
curves for every other value of gate bias. Fig. 6 presents the result of modelling the interpolation of data. All the meas-
ured data in this particular test is marked with 'x' and the learnt data for the trained points of data set with '*'. The
interpolated, recalled data corresponding measured points is marked with 'o' and the recalled mesh data with '.'. While
the interpolated data-points do show somewhat larger residual error in modelling, 6.25 per cent compared with 1.81
per cent for the learnt data, the substantial reduction of the teaching material has not lead into a catastrophic modelling
failure. Instead, the network is still able to present the intermediate data points with reasonable and adequate accuracy.

To further evaluate the modelling capabilities of the network to a different types of data, we have modelled the tem-
perature dependence of the GaAs MESFET drain current versus gate voltage characteristics. Fig. 7 presents the simu-
lated device data compared with the measured data. Again a remarkably good fit to the data is shown within less than
70000 iterations of learning updates for the network weights. Multidimensionality of the network input is now formed
by the temperature parameter together with the gate bias voltage. Similarly, any other variable can be added to further
specify the complexity and dimension of input data matrix. The continuity of drain current from the subthreshold to
above threshold regions of operation is a difficult problem for any analytical model. A smooth transition, which can
be seen from Fig. 7 for several temperatures, is assured by the monotonicity of the neural network output. In modelling
the drain current destination patterns data was first scaled by taking a logarithm of base ten, which stands for perform-
ing a non-linear scaling, in order to ensure an adequate dynamics for the network. Furthermore, the linear scaling with-
in the range [0, 11 was performed, as before, for the network input data. In recalling the network output with optimal
weights the rescaling procedures were performed in reverse order. The linear scaling was performed first which was
followed by the exponential rescaling of base ten. A relative error of 1.77 per cent was reached for this particular mod-
elling. This value presents a very good modelling accuracy when it is compared to the analytical models. The latter
cannot adequately estimate the magnitude of the gate leakage currents at elevated temperatures because of the diffi-
culties in estimating the leakage current model parameters [Sho92].

Next, in Fig. 8, we present an example of small-signal parameter modelling, namely the GaAs MESFET output con-
ductance, as it is recalled with the same network topology that was used earlier. Output conductance modelling with
analytical models has suffered from discontinuous models between regions of device operation. In comparison, the
neural model provides fully continuous and monotonous modelling. The network learnt the teaching material in 70000
iterations after which the final relative error of 2.26 per cent was reached. In comparison the typical accuracy for an-
alytic output conductance modelling with optimized model parameters has remained at 5-10 per cent for analog CMOS
technologies [Oja88].

Finally, in order to provide a useful and fast device modelling interface neural network will have to be capable of mod-
elling device data with more than two input dimensions. The 3D table look-up models allow presentation of the FET
device data with respect to all four terminal potentials (Vgs, Vds, Vsb). We demonstrate the similar modelling with a
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back-propagation algorithm by adding a third processing element for the 3D input data-vector in our network. In Fig.
9, recalled GaAs MESFET drain current characteristics is presented with the training set. Fig. 9 a) shows the lower
gate bias regime of -1.5 to -0.3 V and Fig. 9 b) the higher regime of 0.0 to 0.3 V, respectively. The 3D input vector for
network is formed by adding the substrate or sidegate potential to feed the third input processing element. We use both
positive and negative sidegate bias to make the modelling problem even more demanding. In less than 60000 iterations
the network converged to a result showing relative error of 2.28 per cent for the entire 3D data. Previously, a 3-4 per
cent relative error for short-channel Si MOSFET had been demonstrated with 3D table look-up technique [Rof93].

Since the data that was given to the network was sparse, even better accuracy can be achieved if a finer mesh for input
vector is used. We would like to draw attention to some specific characteristics of the device data. Namely, the drain
current at high drain to source potential difference has a characteristic increase owing to electron-hole pairs that are
generated by impact ionization in the channel. The generated holes will lead to decrease of substrate depletion thick-
ness under the channel and his, together with the generated electrons, tend to increase the drain current. Analytically,
it is difficult to model this phenomenon within the accuracy that is presented here. Similarly, the recovery from nega-
tive sidegating at high drain bias due to impact ionization is correctly presented with the simulations. The complicated
nature of shift from the negative, to positive sidegating is correctly modelled by the network which demonstrates high
variability of the itietwork iransformation of weights to fitted data.

In our example the back-propagation network device modelling interface requires a total of 21 network weights for
two dimensional data and a bias unit. If the third input dimension is included in network with five hidden layer ele-
ments, total of 26 weights are required. For more than five processing elements in the hidden layer, the number of
weights will be higher. These weights will have to be stored in memory for each presentation of data. The amount of
stored weights presents a remarkable saving of memory when it is compared to the table look-up method. About 500-
1000 datapoints will have to be saved for each channel length, for the table to attain the same accuracy. Therefore, we
use only 3-5 per cent of the memory that is used in a typical implementation of the table look-up method.

In terms of the CPU-time the implemented neural network interface is more efficient for circuit simulation than ana-
lytical models. The device modelling task is required to be performed only once and circuit simulation is performed
sequentially with fast recollection of the model from the stored weight-vector. In comparison, analytical models are
evaluated simultaneously with the circuit simulation which leads to longer overall simulation times. Therefore, the im-
plemented neural network device modelling interface is also capable of reducing the time-consumption of circuit sim-
ulations.

5 Conclusion

The method of realizing the interface between device modelling and circuit simulation using a neural network algo-
rithm has been shown to produce excellent fit to the measured data. The objective of presenting a general device char-
acteristics in circuit simulator environment is, therefore, reached. Any kind of circuit element can be accurately
modelled and represented, and a standard automatable neural network can be set up for the construction of these rep-
resentations.

The implemented enhanced back-propagation algorithm combines a fast learning rate with efficient and accurate recall
of the learnt material. The method is especially suitable for applications where physically justified analytic device
models lack the required accuracy. Such is the case of deep submicrometer devices or novel device structures with as
of yet unclear physical phenomena. Also the technology independent approach for the modelling facilitates quick ad-
justment to the new device structures, materials and technologies.

The macromodelling of complex circuit structures with easy neural network parameter presentation vastly simplifies
the required simulations for large systems. It reduces efficiently the required memory for the circuit presentation and
simulation. The proposed approach for modelling interface facilitates and encourages the user to model complex topol-
ogies. In simulation it promotes inclusion of desired behavioural information of general phenomena with easy to ex-
tract neural network weights, which are a fully compact and ideal form to present, save and transfer knowledge, such
as system level behaviour.
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Abstract

Pyrolysis mass spectra were obtained from various mixtures containing known amounts of
glycogen and casamino acids. Feedforward neural networks were trained using the standard
backpropagation algorithm to predict the percentage of casamino acids in unseen mixtures from
their pyrolysis mass spectra. By scaling the input nodes individually, the variation between the
spectra could be maximised and the convergence rate (as judged by the RMS error on test sets)
increased by more than 100-fold compared with training runs in which the scaling was over the
whole dataset.

INTRODUCTION

There is a continuing need for more rapid, precise and accurate analyses of the chemical
composition of fermentor broths and the organisms which they contain. An ideal method would
permit the simultaneous estimation of multiple determinands, would have negligible reagent
costs, and would run under the control of a PC, to allow flexible operation of the sample
handling, instrument calibration, and data analysis and visualisation routines. Our present work is
directed towards the development of exactly such an instrument.

Pyrolysis is the thermal degradation of a material in an inert atmosphere, and leads to the
production of volatile fragments from non-volatile material such as microorganisms or other
biological samples (Irwin 1982). Curie-point pyrolysis is a particularly reproducible and
straightforward version of the technique, in which the sample, dried onto an appropriate
ferromagnetic metal or alloy, is rapidly heated (0.5s is typical) to the Curie point of the metal,
which may itself be chosen (358, 480, 510, 530, 610 and 770°C are common temperatures). The
volatile fragments (pyrolysate) resulting from the Curie-point pyrolysis may then be separated
and analysed in a mass spectrometer (Meuzelaar et al 1982), and the combined technique is then
known as pyrolysis mass spectrometry or PyMS.

Almost all biological materials will produce pyrolytic degradation products such as methane,
ammonia, water, methanol and H,2S, whose mass:charge (m/z) ratio < 50, and fragments with m/z
> 200 are rarely analytically important in microbiology (Berkeley et al 1990) unless very special
conditions are employed (Smith & Snyder 1992). The analytically useful data are thus
constituted by a set of 150 intensities (normalised to the total ion count) versus mi/z in the range
51-200.

Within microbiology and biotechnology, PyMS has been used as a taxonomic aid in the
identification and discrimination of different microorganisms (Gutteridge 1987). To this end, the
reduction of the multivariate data generated by the PyMS system (and indeed of those generated
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by other arrays of sensors; Gardner & Bartlett 1991) is normally carried out using principal
components analysis (PCA), whihc is a well-known technique for reducing the dimensionality of
multivariate data whilst preserving most of the variance. Whilst PCA does not take account of
any groupings in the data, neither does it require that the populations be normally distributed, i.e.
it is a non-parametric method. (In addition, it permits the loadings of each of the m/z ratios on the
principal components to be determined, and thus the extraction of at least some chemically
significant information.) The closely-related canonical variates analysis technique then separates
the samples into groups on the basis of the principal components and some a priori knowledge of
the appropriate number of groupings (MacFie et al 1978). Provided that the data set contains
"standards" (i.e. type or centro-strains) it is evident that one can establish the closeness of any
unknown samples to a known organism, and thus effect the identification of the former. An
excellent example of the discriminatory power of the approach is the demonstration (Goodacre &
Berkeley 1990) that one can even use it to distinguish 4 strains of E. coli which differ only in the
presence or absence of single antibiotic-resistance plasmids.

More recently, we (Goodacre et al. 1992, 1993b, 1994a) and others (Chun et al. 1993) have
exploited artificial neural networks (ANNs) in supervised learning mode for the very successful
identification of a variety of biological samples from their pyrolysis mass spectra, training fully
interconnected multilayer perceptrons (MLPs) with one hidden layer on known standards using
binary-encoded outputs and the standard backpropagation algorithm, and testing on spectra from
unseen samples. We have also exploited Kohonen's self-organising feature map (Kohonen 1989)
succesfully to carry out unsupervised learning, and hence the classification of microorganisms,
from their pyrolysis mass spectra (Goodacre et al. 1994a).

Of perhaps more general chemical interest is the ability to use PyMS and ANNs for the
quantification of substances in complex biological samples. The strategy is to obtain pyrolysis
mass spectra from appropriate samples of interest and train ANNs to recognise the relative
concentration of a chemical substance (as measured by wet chemistry) from the PyMS. We again
demonstrated for the first time that ANNs could indeed be trained to give accurate values for the
concentration of indole in Escherichia coli cultures (Goodacre & Kell 1993), and for the
concentrations of individual compunds in a variety of binary, ternary and more complex mixtures
(e.g. Goodacre et al. 1993a, 1994b).

Given that any non-volatile biological material can be pyrolysed, and that it has been
established that MLPs with sigmnoidal activation functions and at least one hidden layer of
arbitrary size can effect any nonlinear mapping of a continuous function to an arbitrary degree of
accuracy (e.g. Hornik et al. 1989), our interest is focussed on improving both the learning speed
and the ability to generalise of ANNs trained on pyrolysis mass spectral data. In the case of
PyMS data, each input is of a similar character (in that they are all chemical fragments), but
some inputs may contain more noise than others (in that lower ion counts will have a greater
percentage of electronic noise); in the worst case the lowest inputs may simply be noise, whose
presence would both harm learning and without a rather robust cross-validation method would
likely lead to overtraining. Since the data are normalised to the total ion count, any increase in a
given mass is necessarily accompanied by a concomitant decrease in all of the others. However,
it is known from the statistical literature (as the 'parsimony principle') that much better
predictions can often be obtained when only the most relevant input variables are considered
(e.g. Rawlings 1988, Miller 1990, Seasholtz & Kowalski 1993), it was therefore of interest to
analyse the effects of varying the methods of scaling the input variables on the performance of
our ANNs.
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There are of course within the connectionist literature a multitude otfarticles which describe
optimal growth or pruning of feedforward networks, designed to effect a sparse representation of
the input-to-output mapping and thence improve generalisation (see e.g. LeCun et al. 1989,
Mozer & Smolensky 1989, Fahlman & Lebiere 1990, Weigend et al. 1991, Finoff et al. 1993,
Hassibi & Stork 1993). However, most of these growth/ skeletonisation algorithms have been
devised to work on the creation or destruction of individual weights, particularly those to and
from the hidden layer(s), and at all events make no attempt to uistinguish the physically
meaningful inputs from the latent variables represented by the nodes in the hidden layers (cf.
Moody 1992). Since obtaining extra variables not only tends to cause overfitting but also
normally costs more, it is more generally desirable to minimise the number of inputs used in the
formation of the connectionist representation. The present study therefore addresses, and serves
to illustrate, the substantial importance of optimal scaling of the inputs for the speed of learning
and, to some extent, the ability to generalise.

EXPERIMENTAL SYSTEM

The experimental system studied consisted of mixtures of casamino acids and glycogen, as a
model for the complex proteins and carbohydrates to be found in typical biological samples.
Mixtures containing different percentages of each component were made up gravimetrically, and
pyrolysed at 530'C as described (Goodacre et al 1993a). Typical pyrolysis mass spectra are
shown in Fig 1, where it can be seen that they are not easy to distinguish by eye, and one may
construe that such data constitute ideal material for analysis via computer/Al/neural methods.

6 1 g. I

0 4 4
C.o

5 2 2

0 0
50 100 150 200 50 100 150 200

mass (m/z) mass (m/z)
Fig 1. Normalised pyrolysis mass spectra of (A) 20 pg glycogen plus 100 lg casmino acids, and

(B) 20 lg glycogen plus 90 lag casmino acids

The training set consisted of normalised spectra from mixtures containing 20 ag glycogen plus
10, 20, 30... 100 lg casmino acids whilst the test set were spectra from mixtures containing 20 pg
glycogen plus 5, 10, 15, 20, 25... 100 jig casmino acids. To avoid the well-known problem of the
sensitivity of backpropagation to initial conditions (Kolen & Pollack 1990), each run was done in
sextuplicate and the data median-averaged. All neural networks were of the fully interconnected
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feedforward MLP type with a 150-8-1 architecture, and trained using the standard
backpropagation algorithm with a logistic activation function, a learning rate of 0. 1 and a
momentum term of 0.9. Inputs were scaled as described in the text, whilst outputs were scaled
between 0.1 and 0.9.

RESULTS AND DISCUSSION

Individual scaling of inputs

Whilst the usual backpropagation methods scale all inputs and outputs to lie between 0 and 1,
this leaves open the question of how the scaling is done throughout the (columns of the)
population of examples of interest. In particular, in the present case, some input columns
contribute far more numerically to the inputs to the hidden layer than others (Fig 1). It is
common in some other supervised multivariate calibration methods such as partial least squares
to normalise the inputs in proportion to the reciprocal of their standard deviations (see e.g.
Martens & Nws 1989). We therefore studied the effect of scaling the inputs on the basis of the
highest ion counts throughout the entire dataset versus scaling the inputs of each m/z
independently over the dataset. In the latter case, this means that the range of each input in the
population is made equal.

TRAINING SET EPOCHS UNTIL CONVERGENCE TEST SET % RMS ERROR
% RMS ERROR TO STATED % RMS ERROR

Scaled Scaled on whole Scaled Scaled on whole
individually dataset individually dataset

2 90 805 2.95 2.61
1 335 9770 2.44 2.02

0.50 725 84060 2.00 2.57
0.25 1470 217640 2.12 2.65

0.125 2240 >500000 2.08 -
Table 1. Effect of scaling inputs individually on the speed of convergence of backpropagation
learning on an MLP.

It is evident from the data in Table I that individual scaling of the input nodes can effect a
dramatic speed-up, of more than 100-fold, in the convergence of a neural network learning
algorithm. This indicates that when all the scaled inputs to the net are of approximately the same
magnitude the error value from a single input is less likely to dominate the error value at a given
node, and therefore is less likely to swamp smaller error values associated with other connections
to that node. This allows the reduction of error values in many dimensions in the input space to
occur simultaneously. Put another way, by scaling the inputs individually in this way we are
maximising the variance in the training set data, which therefore makes the discriminating
features in the data easier (quicker) to learn.

From the data in Table 1 it is clear that although the convergence of the learning algorithm on
the training set data is much quicker, there is a slight reduction in the accuracy of the predictions
on the unseen data. This can however be improved by allowing the network to train to a slightly
lower RMS error on the training set. The trade-off is such that individual scaling is still markedly
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superior when the criterion of training is the RMS error on the test data.

Pruning input variables

Given the dramatic speed-up that could be obtained by scaling the inputs individually, it was
also of interest to see whether generalisation could be affected by removing masses whose
numerical contribution to the total ion count over the population of samples was the lowest. The
results of such a study are shown in Table 2, where it may be seen that removal of the
numerically least significant masses had little effect on generalisation and a slightly unfavourable
effect on the number of epochs needed for convergence to a given RMS error on the test set. This
is consistent with the conclusion above that maximising the overall variance in the dataset leads
to faster learning.

NUMBER OF EPOCHS UNTIL STATED % RMS ERROR OF TRAINING SET
Training set % Zero inputs Remove m/z if Remove m/z if Remove m/z if

RMS error removed <0.025% <0.05% <0.1%
2 90 125 90 95
1 335 280 345 460

0.5 725 850 950 1060
0.25 1470 1785 2105 2670

0.125 2240 2605 3250 4760
% RMS ERROR ON TEST SET

2 2.95 3.07 3.17 3.02
1 2.44 2.33 2.37 2.18

0.5 2 2.08 2.27 2.44
0.25 2.12 2.21 2.19 2.75

0.125 2.08 2.26 2.43 3.53
Table 2. Effect of removal of masses with the lowest contribution to the total ion count over the
population on the speed of learning and generalisation. Input nodes were scaled individually.

CONCLUSION

Individual scaling of the inputs of an artificial neural network maximises the variance in a
given dataset and can effect a dramatic speed-up in the rate of convergence to a given RMS error
on both training and test data. In the examples displayed, this speed-up could be more than 100-
fold.
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Abstract
Predicting electricity generation is important to developing forecasts of air pollutant release and to
evaluating the effectiveness of alternative policies which may reduce pollution. A neural network model
(NUMOD) predicting electricity generation fueled by coal, natural gas, and oil (whose combustion releases
air pollutants) was developed to run on a personal computer. NUMOD uses 3 linked, feed-forward neural
networks, each trained with the extended delta-bar-delta paradigm. One network predicts coal-fired
generation and its output is fed as input to each of the other 2 networks, 1 for gas-fired generation and
I for oil-fired generation. In addition, all 3 networks use inputs describing electricity demand, fuel prices,
generating equipment, climate, and power pooling. Pearson's r calculated at various points during
training, out-of-sample tests, and performance evaluation was greater than 0.93 and frequently greater
than 0.98.

Background

The search for a simple, accurate, and robust electricity generation model was motivated by federal
legislation designed to reduce air pollution. On November 15, 1990 the Clean Air Act Amendments of
1990 (CAAA) were signed into a law requiring that extreme, severe, serious, and multi-state moderate
ozone non-attainment areas use photochemical grid modeling to demonstrate future attainment with the
ozone national ambient air quality standard (NAAQS) [Section 182(e)(2)(A)I. In addition to photochemical
grid modeling, CAAA requires that ozone non-attainment areas submit State Implementation Plans
(SIPs) that provide for a 15 percent reduction from baseline emissions by 1996 [Section 182(b)(l)(A)J and
that SIPs for serious, severe, and extreme areas must provide for a 3 percent annual reduction (averaged
over 3 years) from 1996 until attainment is achieved (Section 182(c)(2)(B)]. These plans are intended to
provided for reasonable further progress (RFP) toward attainment.

Section 182(b)(l)(A) specifies that the 15 percent reduction from baseline emissions accounts for any
growth in emissions, such as might be caused by combustion of fossil fuels, after 1990. A key component
of the RFP and photochemical grid modelling demonstrations is development of credible growth factors
for existing pollutant inventories. In turn, credible growth factors require accurate forecasts of economic
variables and the activities associated with them, such as electricity generation.
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Traditionally, electricity generation has been forecast using linear programming models which are very
complex. Although they provide richly detailed output, this comes at the price of simplicity, speed, and
economy. They tend to use large, often arcane input files to set up linear programs which are themselves
q.site large and time-consuming to solve. Moreover, they exhibit behavior typical of linear programs:
"knife edge" sensitivity to inputs and large numbers of alternative optimum solutions. Running, for the
most part, on main frame computers, these models can be expensive to set up, run, and analyze making
extensive sensitivity analysis difficult and exploration of alternative scenarios impractical. These factors
among others motivated a search for an alternative approach.

A successful alternative would have to meet the following objectives: 1) It would be less complex and
capable of running on a personal computer (PC). 2) It would be robust and its robustness could be
demonstrated by sensitivity analysis and accurate backcast of historical results. 3) It would execute
rapidly, allowing a larger number of alternative scenarios to be examined within reasonable budget
constraints and calendar time. Any model meeting these qualifications could be used in either of 2 ways:
as a screening too) for traditional models, selecting scenarios for more detailed simulation via traditional
models thereby allowing policy analysts to consider more alternatives without sacrificing detail; or as a
stand-alone tool in situations where detail is not needed or where bounding the universe of possible
futures is important.

Neural networks were selected as one way of meeting the demand for a simple, fast, accurate, and robust
models which could be used either for screening or stand-alone. Among their attractions are their ability
to synthesize functional relationships, bypassing the specification problem and avoiding costly
development of purpose-built behavioral algorithms. We called our first model the Neural Network Utility
Model - NUMOD.

Inputs, Outputs and Model Architecture

NUMOD's inputs include factors known to impinge on short run (fixed capital) electricity generating
decisions: end user demand, the price of fuel, climate, generating capacity, and power pool affiliation.
Outputs are generation in MWH fueled by coal, oil, and natural gas plus a generation index, or "growth
factor", for which 1990 generation = 1.00. Each input vector represents I year of state aggregate data for
any of the 48 contiguous states plus data for the power pool to which the state belongs. Therefore each
output vector represents annual, fuel-specific generation in the state. Inputs are organized into records,
each of which is independent of the others and NUMOD executes once for each record in its input file.
Similarly, outputs are written to an output file for further analytic or modelling use. This architecture
created obstacles which had to be overcome in order to train NUMOD's networks and these are discussed
below.

During development, we found that the best results were achieved by building specialized neural
networks and linking them together. The best performance resulted from simulating coal-fired generation
and using that as one of the inputs to the oil and the gas networks. This has a common-sense basis:
utilities usually try to use their large, economical coal-fired units as much as possible and only use their
smaller, more expensive oil- and gas-fired units to meet peak and emergency loads. It therefore seemed
reasonable to adopt an architecture in which oil- and gas-fired generation was made dependent on coal-
fired generation. Along the same lines, NUMOD accounts for nuclear and hydro-electric generation by
netting them out, reasoning that tth •se very low expense generating units will be used first whenever
possible.

Figure I depicts NUMOD's principal parts: a data input module, a pre-processor for the coal network, a
preprocessor for the gas/oil networks, 3 neural networks, and a post-processor which calculates index
values, writes the output file, and performs housekeeping chores.
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spectrum without saturating its transfer functions. The saturation problem becomes somewhat worse
when NUMOD is required to predict generation perhaps 20 years in the future. At even modest rates of
economic growth, demand, generating capacity, and fuel prices will be much greater in the year 2010 than
they are now. Taken all together, inputs had to be normalized to remove skewness, scale, and potential
neurode saturation. A 4-step normalization procedure was used:

Step 1, remove skewness by taking natural logs of all real-number inputs.
Step 2, remove scale using a z-transform, i.e. subtracting the mean and dividing the result by the
standard deviation. This gave all real-number inputs the same relative magnitude in preparation
for step 3.
Step 3, map transformed input vectors onto a hypersphere, ensuring that all input vectors have the
same euclidean length and that no element of an input vector can take a value greater than the
sphere's radius.
Step 4, scake inputs to the domain of a standard hyperbolic tangent function to prevent neurode
saturation by linear scaling the domain of the hyperbolic function to approximately ± 1 radius.

In practice, Step 4 is built into the network development platform (Neural Ware Professional 11 Plus) using
the built-in MinMax table.
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A convenient radius was chosen so that for the entire set of input vectors in the data file there were more-
or-less equal numbers in each hemisphere. In effect, this procedure maps input vectors into regions, or
"patches", on the surface of the hypersphere and the patches tend to occur in each portion of the surface.
It is thought. that the net effect is a fairly thorough mapping of the hypersphere's surface onto the output
space after training is complete. One further consequence of hyperspherical mapping is that the number
of inputs to each network is increased by 1 in order to accommodate the so-called augmentation
dimension.

Normalization is done twice: once for the coal generation network and then again for the gas and oil
generation networks. The coal generation network is solved to produce its output and this is fed to the
gas/oil preprocessor and to the post-processor, as shown in Figure 1. Because the gas and oil networks
use the same inputs as the coal network plus coal generation, their hypersphere has 1 more dimension.

Desired outputs were transformed by taking their natural logs. Two benefits result from this: skewness
is reduced and, after post-processing, negative outputs are precluded. During post-processing, base-e
exponents of raw output neurode activation levels are taken. Although the magnitude of the result might
be small, it is never negative - negative generation makes no sense.

Data for Supervised Training

Data used for supervised training were assembled from publicly available data collected by the U.S.
Department of Energy, the U.S. Department of Commerce, the U.S. Department of the Interior, the
Edison Electric Institute, and the National Electric Reliability Council (NERC). They consist of state-
level generation, generating capacity, fuel price, climate, and economic data for 1980 - 1991. Years before
1980 were not used because they may be atypical. Oil price shocks beginning in 1974, rapid inflation, and
economic recession during the late 1970's all acted to make the decade unusual. Data for years after 1991
are not yet complete, although the release of any missing data will probably occur very soon.

All data are aggregated to states and only the 48 contiguous states were considered. Power pools were
taken to be contiguous with regions established by NERC. There are 9 such regions and their boundaries
were adjusted somewhat to coincide with state boundaries.

Neural Network Architecture and Training

Each of the 3 networks is feed-forward with an input layer connected to I hidden layer containing 4
neurodes which is connected to an output layer with only 1 neurode. A single bias neurode is connected
to the hidden and output layers. Hyperbolic tangent functions are used for energy transfer and activation
levels are simply the sums of incoming energies. Training was accomplished using extended delta-bar-
delta with noise injection during early stages of training. The three networks were trained separately
with the coal network trained first. Coal network output was manually added to the training data for the
gas and oil networks. Thus, they "knew" what the coal network would tell them.

All 3 networks were trained using a 2-phase procedure designed to maximize data use. In Phase 1, the
networks were trained with files containing only 75 percent of the data and the remaining 25 percent was
held back for an out-of-sample test. Training data was selected randomly. After the out-of-sample tests
showed that the networks had learned (rather than just memorizing) and that they had adequately
synthesized a function which mapped respective input spaces to the output spaces, the networks were
retrained (Phase 2) using all of the available data. The rational for the 2-phase training procedure was
this: If no memorization occurs after a given number of presentations using 75 percent of the data, no
memorization will probably occur after the same number of presentations using all of the data. Because
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there is probably more diversity in a complete data set than in any subset, networks will learn somewhat
more during Phase 2. The only purpose served by the out-of-sample test is to demonstrate learning
without memorization and the ability to generalize. Having passed the test, it serves no further purpose.
Table I summarizes training results using Pearson's r as a measure of training success.

This table shows that training, measured by Pearson's r, was effective. It also shows that Phase 2 was
very helpful in the case of oil-fired generation and certainly did no harm for coal- and gas-fired generation.
Note that 20,000 extra presentations were allowed during Phase 2 - largely to accommodate a training
file with 33 percent more records.

Table 1 Training Results

Pearson's r

Phase 1 Phase 2

Network Number of Train- Out-of-
Presentations ing Sample

(Phase 1/Phase 2) Test

Coal-fired 50,000 / 70,000 0.993 0.992 0.992
Generation

Oil-fired 70,000 / 90,000 0.961 0.928 0.970
Generation

Gas-fired 70,000 / 90,000 0.983 0.980 0.981
Generation

NUMOD Performance

Over-all performance of NUMOD was assessed in several ways, 2 of which are discussed here: backcast
for historical years and sensitivity analysis. Figure 2 plots backcast results for 1985 - 1991, which are
probably the most important years because electric utility behavior during the last part of the 1980's is
more indicative of future behavior than earlier years.

In Figure 2, NUMOD output is plotted on the vertical axis against historical values on the horizontal axis.
A 45 degree reference line, which is the locus of perfect backcasts, is also plotted. The amount of vertical
deviation from the reference line measures error. It is clear from this plot that NUMOD backcasts
reasonably well - outputs are grouped tightly around the reference line.

Limited sensitivity analysis has been completed as of this writing. Several of the most critical inputs were
varied by 10 percent above and below the values in the data file and changes in NUMOD output were
examined. Variables included end user electricity demand and changes in the shape of the load-duration
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curve, which measures factors related to the time of day of electricity demand. It was found that NUMOD
predicts that generation will increase by less than the amount of increase in demand when demand
increases and it will decrease by less than the amount of decrease when demand decreases. A ± 10
percent increase/decrease in demand calls forth a ± 8 percent increase/decrease in generation. This is
sensible because increased demand will probably result in more efficient use of generating resources while
the opposite is true of lower demand. Results also show that coal, oil, and gas generation behave
somewhat differently depending on how peak demand changes relative to total demand - when peak
demand increases/decrease more than over-all demand gas and oil generation tend to increase/decrease
more than coal generation. In short, NUMOD behavior tends to mimic ways actual electric utilities
behave.
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Figure 2 NUMOD Backcast

Conclusions

Our general conclusions are that neural network models are quite capable of playing a part in predicting
electricity generation. We were able to design, develop, test, and implement this model with a very small
resource expenditure. It runs on a PC very quickly, uses somewhat less than 60 kBytes of memory and
its outputs appear to achieve an acceptable level of accuracy.
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Abstract:

One of the primary objectives of electric utility industry is
to maintain a satisfactory power supply to its customers. In this
paper a systematic new method to study the transient stability
assessment of power system using neural networks and Lyapunov
function is presented. Determination of critical clearing time is
of paramount importance for post-fault analysis of an
interconnected power system. In this paper the results of different
existing methods are compared. The data needed to train neural
network are generated from the transient energy function. The
results obtained by this method are compared with that of some of
the existing methods. This new method is illustrated with a
numerical example.

Introduction

The study of the stability of power systems under transient
conditions is a tedious task because the differential equations
describing even the simplest system are nonlinear. The general
approach has been to obtain a time solution and observe if the
various machines tend to lose or maintain synchronism [1]. The
differential equations, describing the power system dynamics, are
nonlinear with constant coefficients under the assumption of
constant voltage behind transient reactance and constant input to
the machines [2]. A characteristic inherent to electric power
systems is that they operate under the presence of disturbances.
The disturbances are of external or internal origin. The stability
of power systems deals with the character of the electro-mechanical
oscillations of synchronous generators created by a disturbance in
the power system conditions. Whether the post-disturbance process
leads to loss of synchronous operation is the subject of primary
concern [3]. Some of the methods to study the transient stability
are:

a) equal area criterion, b) phase-plane method, c) energy-
integral criterion, d) numerical integration, e) probabilistic
methods, f) pattern recognition, g) the second method of Lyapunov,
h) transient energy stability analys& ., and i) artificial neural
networks.

First three methods give identical results, but are applicable
to simple two-machine systems. Though numerical integration method
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gives the time of state transition of the system, it has three main
drawbacks: a) each fault must be treated separately, b) stability
limits are obtained by separate trials, c) smaller time-step
intervals are needed to ensure accuracy and numerical stability.
All of these make the integration process very time consuming. It
is reported that the procedure using "decomposition-aggregation"
integration by Xia and Heydt has resulted smaller integration
times. Some of the approaches of probabilistic and pattern
recognition methods are briefly discussed by Sobajic and Pao [3].

The basic objective of the second method of Lyapunov is to
ascertain the stability characteristics of a dynamic system
governed by a set of differential equations, without an explicit
knowledge of the solution. This method has limited practical value
for the following reasons: a) The method provides sufficient but
not necessary conditions for stability and these conditions are
often too conservative to be of practical value, b) Computational
requirements of the method have made the study of large scale power
systems infeasible, c) The method requires a simplified system
representation, d) The value of suitably designed Lyapunov function
has to be calculated and compared with the critical value of the
function previously determined, e) Integration of fault-on system
equations is needed to obtain the post-fault initial conditions and
the critical clearing time. The first two drawbacks have been
eliminated as much as possible by using Transient Energy Stability
Analysis (TESA) by Athay & et.al. [4].

The Proposed Nethod

Dynamic security assessment of electric power systems using
artificial neural networks was studied by Sobajic and Pao with
changes in system operating conditions and topology while the other
parameters are kept unchanged (3].

Our approach takes the advantage of the second method of
Lyapunov to determine the domain of stability for a given system
configuration and operating conditions. The Lyapunov function for
the problem under investigation is constructed by the method
presented in [5]. An artificial neural network is trained with the
data generated by the Lyapunov function to classify the stability
domain into either stable or possibly unstable. The network will be
tested for its performance during training. Once the network
attains the desired capability, it is presented with the data
representing the real-time operating conditions of the system that
was not presented earlier.

The distinct advantage of this method is that critical
clearing time can be found without computing the value of the
Lyapunov function for different values of rotor angles and
velocities. Training the neural network under consideration is done
off-line.
Search for an optimal architecture for rapid convergence and
minimum error is also presented. The numerical example given in [5)
is studied to validate the method.
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Artificial Neural Networks:

Artificial neural net models or simply "neural nets" or
connectionist models or parallel distributed processing models or
neuromorphic systems attempt to achieve human-like performance via
dense interconnection of simple computational elements [6].
Artificial neural systems, or neural networks are physical cellular
systems which can acquire, store, and utilize experimental
knowledge. Much of the inspiration for such systems comes from
neuroscience.

The proposed method takes the parallel processing capability
and fault-tolerance nature of neural networks to determine the
critical clearing time in real-time. Neural network is trained
using Rumelhart error backpropagation [7] with the input and target
output data obtained from the stability domain of the system. The
performance of network was evaluated with different sets of random
weights for optimal number of neurons in a single-hidden layer for
rapid convergence and desired least mean squared error.

For a quick and ready reference, the rule for the adaptation
of synaptic weights is given below.

Wii(t-1) = wij(t) + Tajxi + a(w1 j(t) - w1j(t-1)) (1)

where Wl(t) is the weight from hidden node i or from an input to
node j at time t, X, is either the output of node i or is an input,
I is a gain term, 6, is an error term for node j, a is a momentum
term whose value lies between 0 and one.

Power System Model

To illustrate the proposed method, a synchronous generator
with nonzero damping, connected to an infinite bus is considered.
The normalized post-fault state can be written as

d2+ ÷ D-d = Pi - sin 8 (2)
dt 2  dt

The region asymptotic stability is given by equation 3

D 2 + (I+D) x22 + xlx2 + (I+D3) [2cos8°-cos(x 1 +80 )-Pij• (N (3)

2~X 2D D

where the right-hand side of the inequality is given by

M2= (7c-28 0 )2 D4 
+ (1+D3) [2cos 60 - Pj(%-28 0)] (4)

2(1+D3) D
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Numerical Example

To illustrate the proposed method numerical example given in
[5] is considered. The post-fault system and faulted systems are
described by

12 + 0.01 = 0.4 - sin6

dt 2  dt

d 28 + 0.01 -8 = 0.4 - 0.2sinb
dt 2  dt

The post-fault system differential equation of the power
system under study is solved by numerical integration and phase-
plane analysis to determine the transition of the system from
stable to unstable. The results are shown in Fig. 1 and 2. The
critical clearing time by these methods is 3.1345 seconds.

The training data, the rotor angles and rotor angular
velocities are obtained from the asymptotic stability region given
by the equation 3. The region outside the stability domain indexed
as +1 and inside region as -1 are the desired outputs corresponding
to the input vector of rotor angles and rotor angular velocities.

A feedforward multilayer neural network was trained with
different sets of random weights to determine the optimum number of
processing elements for rapid convergence with bound on least mean
squared error as 0.001. The results of the search with a range from
two to twenty processing units are shown in Fig.3. As seen in
Figure 4, the architecture with eight neurons in a single hidden
layer is the optimum one. Perforformance of the proposed network is
shown in Figures 5 and 6.

After the network has obtained the desired capability, the
network was tested with the data that was not presented earlier
during training period. The critical clearing time by this method
was found to be between 3.1 - 3.2 seconds.

I .SO...

Sots

SSA

Figure 1Figure 2
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Results

Critical clearing times obtained by the three methods are

Numerical Integration Method 3.1345 seconds
The Second Method of Lyapunov 3.1345 seconds
Neural Network Approach 3.1 - 3.2 seconds

Conclusions

In this paper an attempt is made to show the combination of
the second method of Lyapunov, pattern recognition and neural
networks. The distinct advantage of this approach is elimination of
need for calculation value of Lyapunov function and comparison with
the predetermined critical value. This makes the approach suitable
for real-time application. This method naturally inherits the
conservativeness though not seen in this example. An important
question to be answered is its applicability to large scale
systems. Currently, the work with refinements in modeling such as:
governor's dynamics, transfer conductances, saliency is in progress
and use of self-organizing networks for security assessment is also
under investigation.
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Abstract

Team Decision Theory is a statistical discipline that has several applications in areas such as decen-
tralized control and distributed computing. In the middle to late 1970's, this area was studied quite
extensively. However, there were several limitations to the scope of the study due to the inherent math-
ematical intractability of the problem. There were severe restrictions on the nature of the system inputs
and their probability distribution functions. Unless the underlying probability density functions of the
system parameters were Gaussian, it was not possible to derive analytical solutions to the problems.

In recent years, neural networks have become increasingly popular as a means to solve large opti-
mization problems. The high interconnectivity and the nature of neuron layouts and interactions have
led to success in mapping large optimization problems to neural networks. In particular the Hopfleld
Network with annealing has been successful for these problems. Neural networks are not sensitive to the
underlying probability distributions of the systems they are trying to solve.

This work ties these vastly different areas of research together by mapping the team decision theory
problem to the modified Hopfield network. Two examples of team decision theory problems were mapped
to this type of neural network. In one case, the neural network converged to the optimal solution 100%
of the time; in the other case, the network converged to the optimal solution more than 50% of the time.
The network solutions were compared against the optimal solution found by exhaustive search,

1 Team Decision Theory

Team Decision Theory has been described as the theory of decentralized stochastic decision making [1].
Assume we have a system of decision makers (DM's), where each DM has different information that is
correlated to the information that the other DM's possess through a known a priori probability distribution
function. Each DM makes a decision based on its information that will lead to the minimization of the
expected value of a global loss function. Since the loss function is the same across the entire system, there is
no "conflict of interest" [21 between DM's. Furthermore, since the a priori probability distribution function
of the correlation between the information of the DM's is the same across the entire system, there is no
"difference of opinion" [2] between DM's. In other words, the DM's are working toward a common goal,
hence the name Team Decision Theory. The main difference between Team Decision Theory and ordinary
Decision Theory is that each DM has to take into account the decisions other DM's could make while making
its own decision. Ho [11 characterizes the essentials of a team decision problem as follows:

1. Each DM has different but correlated information about the underlying problem. The correlation
between the DM's information is known at the time the decision is to be made.

2. The DM's need to coordinate their actions in order to minimize the system loss function. Each DM
has to account for the decisions made by the other DM's while making its own decision.

*Author to whom all cerrespondence should be addressed.
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3. Communication between the DM's is allowed before the decision-making process begins. Thus, each
DM has an idea of the effect of the other DM's decisions on the system in general, and the loss function
in particular. This beforehand communication allows the DM to agree on taking their coordinated
actions based on the different information they have.

The loss function for such a system is formulated in such a way so as to be dependent on the decisions
each DM takes with respect to the others.

2 Modified Hopfield-Tank Network

The modified neural network algorithm suggested by Bout and Miller [3] uses some techniques from simulated
annealing and offers improved performance over the regular Hopfield network. Bout and Miller applied their
network to the Travelling Salesman Problem with very encouraging results. For the 30-city problem, they
were able to achieve solutions that were within 4% of the upper bound of an optimal solution.'

The network maintains the same shape and size as the regular network, out, each neuron V1i, now
represents a probability that, city x will reside in position i of the tour. The probabilities obey a Boltzmann
distribution, i.e.,

V Xi e( (1)

where T is the annealing temperature and E•:i is the mean field of a node. The mean field represents
the cost of city x occupying position i in the tour. Thus, a higher mean field corresponds to a less favorable
occupation position, causing the probability to drop for such a node to occupy that position. The mean field
is given by:

S= dPl 1 ',i

+ dP2 , C4Vy,i+I +v,i,_-). (2)
YOX

The first term discourages two cities from occupying the same position on the tour, while the second
term encourages cities with the smallest distance between them to occupy adjacent positions on the tour.
The energy function to be minimized is given by:

E - dP1 I ZZ

+ 2 +v,,,). (3)
, yor

The network iterates as follows:

1. Select a starting temperature.

2. While temperature is greater than a lower bound

(a) Do until a fixed point is found

i. Select a city x at random
ii. Calculate EZiVi

iii. Calculate VriVi

iv. Calculate E
1 The upper bound was calculated using the simulated annealing technique described in [4].
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3. Update the temperature

The above algorithm, suggested as an improvement to the original llopfield-Tank network, maintained
the high interconnectivity of the original network, and added in a new flavor with the annealing. The
annealing process allows the system to move from one trajectory to another, arid thus allows the network to
converge to better solutions. The main disadvantage of this scheme is that since the network has to anneal
to a solution, the convergence time is increased significantly.

3 Two-city B & H Problem

The first step toward determining whether a mapping of the Team Decision Theory Problem to neural
networks existed and if so, what this mapping was, was to take a small problem described by Ho [1] and
map it to a Hopfield Ne(work. Although the problem defined and used in this section is a little contrived,
it served as a good starting place and laid a good foundation upon which to determine if this research was
feasible and gave several insights into the nature of the Team Decision Theory Problem and the necessary
ingredients required by a Neural Network that would be developed to solve it.

3.1 Problem Definition

Imagine a situation where Mr. B, a Boston resident, and Mr. 1t, a Hartford resident, have to meet in
Worcester for an important meeting. They decide that they will meet at Worcester at a certain time on a
given day provided it does not rain. After this communication, there is no further communication between
them. Also, there is an uncertainty about the weather, and each man has access to his own local weather
information, and only an idea of the probable weather in Worcester based on their respective local weather
information. The nature of the meeting and the road conditions are such that going or not going to the
meeting when it is raining or shining in Worcester carries with it a certain penalty. The penalty varies based
upon whether one or both of the partners make it to the meeting or not, since both need to be at the meeting
for there to be any work conducted. Thus, each man has to keep in mind what the other person will do
while making his own decision. This is a simple Team Decision Problem with all the ingredients and the
decision that each partner has to make is whether or not, to go to the meeting based on if it is raining in his
city or not. The decisions are to be made in such a way that the total penalty involved in the decision s,
is minimized.

Table 1 shows one example of a loss table for this system. This table clearly shows how the loss values
are a function of the decisions each DM makes (UB, UH) and the weather condition at the common location
where they are to meet (ýw). The joint probability is given in Table 2. This gives the correlation between

Table I: Loss Function of the System
uB un ýw L(uB,uH,ýw)

0 0 0 -10.0
0 0 1 4.0
0 1 0 3.0
0 1 I 2.0
1 0 0 3.0
1 0 1 2.0

1 1 00.0
I I 1 -5.0

the weather conditions of the three cities (•n. •l. •w ). The goal is to determinei the decision rule set that
will minimize the overall expected loss.

This problem was mapped to the regular llopfield network. The description of i napping and the
results obtained can be found in [5, 61].
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Table 2: Probability Distribution Function of

0 0 0 0.25
0 0 1 0.05
0 1 0 0.1
0 1 1 0.11 i0 0 0.1

1 0 1 0.1
I 1 0 0.05
1 1 1 0.25

GS NGS GR NGR

Mr. B

Mr. H

Figure 1: Hopfield-Tank Network for Team Decision Theory

3.2 Modified Hopfield Network

3.2.1 Mapping

The modified Hopfield Network is shown in Figure 1. The neurons in the first row represent the four possible
decision rule pairs for Mr. B, while those in the second row represent those for Mr. H. The first column
represents "go on shine," the second column represents "don't go on shine," the third column represents "go
on rain," and the fourth column represents "don't go on rain." A '1' as the output value of a neuron at
network convergence indicates that that decision rule must be adopted, while a '0' indicates that it should
not. The node values were set up to follow a Boltzmann distribution, as described in Section 2. The node
values were normalized across each mutually exclusive decision pair. The mathematical formulation is given
below:

Uij = Vij+IVi,j=0,2

Ujj = Vij_-Vi,j = 1,3 (4)
3 3 1 3

E = DP I xZ jI + DP2x E E3Vi2J2
j --O jl=0i2=0,i2;eij2.

0

x (shJ[i,jl,j2] x shkp[j,j2]+ral[i, jl,j2] x ra.p[jl,j2])Vi,j (5)

S•,6 = e- 4 +e-'1/*Vi, j=0,2

Si, = eC-'= + e-1  Vi, j=l,3 (6)

V,- sej vi, (7)
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where T is the current annealing temperature. The energy function of the network is given by:

DPI 1 1
E - 2 ZZVIJ X 2Xj+I

i=0 j=0

DP2 1 3 1 3

+ E Y, v, E xv 2J2
i1=0j1=0i2=0,i2•1i1j2-0

x (shJ[il,j1,j2] x sh_p[jl,j2] + rai[il,jl,j2] x ra_p[j1,j2]) (8)

For this system, the constants were set as follows:

DPI = 2.0
DP2 = 10.0.

In Equations 5 and 8, the first term ensures that only one of the GO-NOGO pair is activated while the
second term ensures that the expected loss is minimized and an optimal solution reached. The network was
allowed to anneal from an upper temperature of 10.0 down to a lower temperature of 0.05 in factors of 0.95.
The parameter values, as well the annealing temperature limits, were determined throught trial and error.
Various values were tried, and these values gave the best results.

3.2.2 Experiments Run and Results Observed

Four sets of loss and probability values were used to test this network mapping. The optimal solution was
generated using an exhaustive search for each set of loss and probability values. The network solutions were
compared against this optimal solution. The network was able to converge to the correct solution every
time, a significant improvement over the performance of the regular Hopfield network. As hypothesized,
the annealing was able to force the network out of local minima and push it toward converging to a global
minimum. There was, of course, the overhead of the extra execution time that accompanies annealing
algorithms.

4 Three-city B, H, & W Problem

This problem was gen•.ralized to a case where there were 3 DM's and 3 weather conditions that determined
whether the DM's should meet in a common location or not. This increased the problem size considerably;
the joint probability table had 81 entries and the loss table 24 entries. The optimal decision rule set had
to be chosen out of a total of 512 possible sets. The neural network mapping we developed performed very
well, converging to the correct solution over 50% of the time. Details of the implementation and the results
can be found in [61.

5 Conclusions

The modified Hopfield network is appropriate to the team decision theory problem. Several different types
of team decision theory problems were mapped to the modified Hopfield network with a significant degree
of success. For each problem, our neural network was able to iterate to at least a good solution, if not an
optimal one. This gives one the confidence that the neural network was able to solve the problems without.
specific knowledge of the underlying probability distributions of the system parameters. This is a big step
toward cracking the inherent intractability of team decision theory problems. The other insight gained from
this work was that the system inputs, probability density functions, and most importantly the solution space,
had to be discrete. This is not a large limitation since we sample the probability distribution function off a
priori measurements. In ordcr for the neural network to solve the team decision theory problem, it had to be
able to represent every possible decision in the solution space of the problem, and pick the correct decisions
as opposed to calculate them.
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Abstract-This paper presents a neural network based method for data compression using
vector quantization technique. The key element in the vector quantization approach: codebook, is
generated via a simulated neural network, by using modified frequency sensitive self-organization
algorithms[MFSO 1, 2, 3]. First the concepts Involved and learning algorithm are discussed, and
then the results are presented and are compared with the results by Linde-Buzo-Gray(LBG)
algorithm and FSO algorithm. The proposed methods can achieve good performance and Is very
effective.

1. INTRODUCTION

Although a classical topic, image data compression becomes more important in the recent years.
It reduces significant amount of time and space in the areas such as network transmission, storage of
images in a database, etc. A fundamental goal of data compression is to reduce the bit rate for
transmission or data storage while maintaining an acceptable fidelity or image quality. Our goal is to use a
self-organization neural network to simulate the Vector Quantization method for image data compression.

Vector Quantization(VQ) method[l] is very effective at low to medium compression ratio. The
most famous and classical Linde-Buzo-Gray algorithm[2] is excellent in producing the reconstructed
image data but is not adaptable to changing data input, as mentioned by Fang[3J. The LBG algorithm
requires that data be input in a batch mode so that it can be arranged and rearranged to reduce the
distortion function. The LBG method also requires significant amount of computation.

Since the inherent feature of Vector Quantization(VQ) makes it easy to implement it in neural
network, various studies have been made on the subjectl3,4,8,101. Fang[31 first introduced the idea of
Frequency Sensitive Self-Organization neural network approach to solve the two problems mentioned
above. It is very efficient but does not achieve as good result as with LBG method.

In this paper, we incorporate the frequency sensitive approach and force attraction concept to
yield a better result in training the neurons. In section II, the proposed algorithm and results are
presented. In section HI, results by different algorithms are shown and compared.

II. CONCEPTS AND ALGORITHMS

By observing the result from the FSO method, it is noticed that the neurons still can not be fully
utilized, which is an inherent problem of self-organization networks[5-9]. The intuitive approach is to
involve more neurons during computation[5]. The more code templates are included in a code book, the
more accurate image can be reproduced. Therefore, instead of updating the winning neuron only, we also
update neurons with the least usage so that they will be drag to the main stream gradually. Then after a
certain time of training, the winning frequency will be evenly distributed among the neurons.

Since in general, the image vectors tend to be concentrated at certain area and sparse at the other
area, more neurons should be assigned to represent those higher populated area so that more details from
the reconstructed image can be obtained. In the mean while, less or no neurons will be assigned to a area
if there are only a few image vectors present in that area. And as the concentration of one area grows, the
more attraction it will have for the surrounding neurons, which will be dragged toward that area(see the
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figure 1). The following three methods differ in the way neurons are distributed, each has its advantages
and disadvantages in terms of performance and time complexity and VLSI design complexity. We
propose three different approaches as follows.

0X

XX

Fig.1 the Concept of Force Attraction

A. Modified Frequency Sensitive Self-Orgnization 1
In MFSO1, we update the neuron which is winner, and the neuron with the least winnn

frequency so it will have a better chance to be a winner in the future. The algorithm is lised below:

1. Initialize the code vectors Wi and the winning frequency Fi for each neuron:

W (0) - R,

Fj (0) - 1, i - 1,2 .......... N
where Ri is a random vector number generator function. N is the number of code vectors. And
Wi(0) - [Wjj(0),Wi2(0),...W.,u(0)]. First N input vectors can also be used as initial code

vectors instead of random generated code vectors from Ri.
2. Compute the distortion Di(t) between an input vector and all the code vectors in the code book:

Di(t) -d(X(t),Wi(t)) 4.(i)W(t))2,

where t is the training time index

3. Select the neuron with the minimum distortion as the winner and set its output Oi(t) a as follows:

O() {10 ifD~) D~)otherwise.lij Ni j}
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4. Update the code vector with a frequency sensitive training rule and the associated winning
frequency:
Wi (t + 1) - Wi (t) + S()Ooi(tX X(t) - Wi(0))

S(t) - F(t)'
10 otherwise I

Fi (t + 1) - Fi()+ ()
where S(t) is the frequency sensitive learning rate, and Fth is the upper threshold frequency. Only
the winning code vector is updated. The training rule moves the code vector toward the input
vector by a fractional amount, which decreases as the winning frequency increases. If the winning
frequency is larger than the Fth no further training is performed ton the neuron.

5. Select a neuron with the smallest winning frequency, F1 i, and a neuron with maximum
frequency, Fmx
If F"n/Fm < Df update the code vector with Fin with the following rule:

WF.(t + 1)- W,. (t) + *W (t)- WF. ())
6. repeat step 2 to 5 for all input vectors.

B. Modified Frequency Sensitive Self-Organization 2
MFSO1 yielded far better results than the FSO method. But it is still inferior to the LBG method.

One instinctive modification is to attract more than one neurons at a time in order to have a even better
utilization of the neurons. The whole procedure is very similar to the MFSO1 methods except step 5,
which is listed as follows:

5. Select all the neurons with the smallest winning frequency, Fi,, and the winner neuron with
winning frequency, Fw.
If Fmi,/Fwi, < Dth, update the code vector with Fi. with the following rule:

W,. (I + 1) - WF. (t) + X (W, (t) - W, (0)

The least frequently used neuron is replaced by a group of neurons whose usage is below a certain level as
compared to the current winning neuron.

During the training process, It was found that eventually the neurons that are attracted to one
densely populated area would get closer and closer to a same vector value. Such tendency is highly
undesirable and results in another type of underutilization problem. The ideal scenario would be the
neurons being distributed like the stars and planets in a galaxy, with its relative distance determined by
the attractive force between the two identities, which in term is determined by the relative mass. Yet each
star and planet remains to be an individual object no matter how closely they are attracted to each other.
In the case of distributing neurons, the winning frequency serves the same purpose as the mass of the
stars. That gives rise to the modification in MFSO3.

C. Modified Frequency Sensitive Self-Organization 3
To solve the problem mentioned in MFSO2 above, another modification is made in the updating

rule. The step 5 is as follows:
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5. Select all the neurons with the smallest winning frequency, Fm, and the winner neuron winning
frequency, Fwi
If F".1 j/Fwin < Dth. update the code vector with F., with the following rule:

W,,j (t + 1) - W•,. Wt +I n XO(t) X M,, Wt - W,. Wt))

I
P(t) - 1-;

C

C - C+1;

c indicates the sequence in which the least winning neurons are updated. c is incremented by I as
each such neuron is updated. Note that the neurons are attracted to each populated region at
different rate because of c.

II. SIMULATION AND ANALYSIS

The distortions using algorithms mentioned above are shown in Fig.2. One of the images and its
compressed versions are shown in Fig.3. Each code vector consists of 16 elements, with image size of 256

by 256 and 8-bit gray scale level.

180

160

140

120 -'-- LBG

100 -0.._- FSO

80 ---- MFSO I

60 a MFSO II

40 --- MFSO ID

20

0 I I I I I

4 5 6 7 8 9 10 11

Codebook Size

Fig. 2 Distortions(MSE) using LBG, FSO and MFSO1,2,3.

A close inspection of step 5 of MFSO1,2,3 algorithms concludes that all three algorithms have
the same time complexity. Yet they are different in VLSI design complexities. It is interesting to notice
that for MFSOs algorithm the neurons(i.e., codevectors) are moved around the data while in the LBG
method, data are arranged around the current code vectors. Since the number of codevectors are relatively
small as compared to the amount of input data, the MFSO algorithms require less computation time than
the LBG method..

IV. CONCLUSION

It is obvious from the images shown in Fig.3 that MFSO methods give better results, and it is
comparable in speed to the FSO method. The application of force attraction concept is proved to be very
effective in reducing the distortion. The design employing the algorithms above is currently in progress
and will soon be presented.
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Abstract

Bats that echolocate use blosonar to perceive their target as an auditory image by
extracting cues from the target-reflected echoes of their emitted pulses. Bats actively control
the sound structure and temporal pattern of their sonar emission that includes signal
parameters such as pulse duration, pulse repetition rate, amplitude, bandwidth, and
harmonics during the search, approach, and terminal phases of a typical hunting cycle.
Neurophysiologically, it has been found that a population of delay-sensitive neurons differing
in echo delays perform cross correlation for target-range perception and and also these
neurons participate In processing other target attributes besides target range. This paper
presents a model based on artificial neural networks to learn the delay-tuning properties of
the delay-sensitive neurons. This network is then used for generating the delay-tuning curves
toward the building of an auditory system framework of an FM bat.

L Introduction

Echolocating bats perceive their target image by extracting the acoustic cues conveyed
in the target-reflected echoes of their emitted blosonar pulses (Busnel and Fish 1980). During
echolocation, bats actively control the sound structure and temporal pattern of their sonar
emission such as Pulse Duration (PD), Pulse Repetition Rate (PRR) that is likely related to the
perceptual demands during target-directed flight (Simmons et al. 1975). Behavioral studies
into the echolocation process showed that FM bats exhibit an exceptionally fine delay acuity
in discriminating between two sets of echoes differing In delays In the order of microseconds
(Simmons et al. 1990b). Correlation is considered to be a possible mechanism underlying this
fine delay acuity. Simmons and Chen (1989) suggest that the sharp temporal acuity
demonstrated In FM bats may underlie their ability to perceive target shape, as well as target
distance.

Cross-correlation processing In the bat auditory system requires a mechanism for the
coincidence of the emitted pulse and the temporally delayed echo. Neurophysiological evidence
for such a mechanism is provided by delay-sensitive neurons, which have been characterized
in the brain of a number of echolocating bats (Suga and ONeill 1978). These neurons show
facilitative responses to artificial pulse-echo pairs at particular echo delays, and are likely to
participate in target-range perception.

In the auditory cortex of Myotts luc~fugus, the species that we are studying, delay-
sensitive neurons also mediate other aspects of target perception in addition to target range
(Wong et al 1992). This is suggested by the changes In the delay tuning properties of these
cortical neurons when such temporal parameters as PRR and/or PD are systematically varied
in simulating stimulus conditions found in target approach (Wong et al. 1992; Tanaka et al.
1992). These delay-sensitive neurons play a critical role in an auditory system model for the
FM bat, Myotis luc(fugus (ChittaJallu et al. 1994) that we have proposed. A delay-sensitive
neuron can be characterized by the variation of its best delay (BD) to the stimulus parameters,
PRR and PD. The BD of the neuron is defined as the pulse-echo delay for which there is a
maximum response for a specific pulse repetition rate and pulse duration. The specific aim of
this study is to model these delay-sensitive neuron's BD response pattern in order to build the
delay module as part of the framework for the auditory system. We present a brief overview of
the framework in section II of this paper. Section III describes the use of artificial neural
networks to develop the delay-tuning networks and section IV presents the results.
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JC. The Auditory System Fnamework

Little is currently known about how the neural responses are Integrated to generate a
unitary acoustic image of the target. An important first step is the development of a modeling
framework of the FM bat auditory system (Figure la). This framework incorporates several
functional aspects of the biological system such that only specific components have direct
neurobiological relevance while other components are based upon behavioral results
(Simmons 1979; Simmons et al. 1990a) and engineering solutions. Therefore, a signal-
processing approach is used to augment behavioral and neurophysiological approaches
directed toward understanding the perceptual mechanisms in FM bats. The main components
of this framework include pulse and echo channels, a delay module, a correlation module, and
higher-level modules for target-feature extraction.

In the auditory system framework, the desired blosonar pulse Is created in the
arbitrary waveform generator (Figure la). It is then emitted through a microphone and is
simultaneously passed directly into the pulse channel. It consists of a bank of bandpass filters
that span the bat's frequency range used for echolocation. The delayed target-reflected echo
enters the echo channel that mimics the peripheral auditory system. The electrical signal
from the microphone is amplified by the time-gain control stage and passed through an array
of bandpass filters. The mechanism for the coincidence of the pulse and echo, for cross-
correlation, is provided in the model by the combination of the pulse channel, the delay
module and the correlation module. The delay module serves to delay the signal propagating
through the pulse channel to Implement the coincidence. In addition, it provides the tuning
role necessary for providing the fine delay resolution. The emitted biosonar pulse and the
target-reflected echo coincide at the correlation module to yield the frequency-delay map.
Higher-level processing of this delay map yields target information such as range, velocity and
target class.

An important component of this framework is the delay module. This module consists
of a tapped delay line, and a delay-tuning network A bank of such units with different delay
tuning properties operate on the signal propagating through the pulse channel and encode the
delay-frequency structure of the pulse. The tapped delay line provides the delayed pulse. The
delay tuning network on the other hand, serves to tune the output of the tapped delay line to
provide the desired delay resolution in the delay-frequency map. The inputs to the delay-
tuning network are the temporal parameters of the emitted pulse. The dynamic characteristics
of the delay-tuning network would mimic that of the biological delay-sensitive neurons in the
FM bat cortex to natural sonar signals used in different hunting phases.

The delay-tuning network is an essential component of the auditory-system
framework- These networks provide the tuning mechanism necessary to extract the fine delay-
frequency map of the target-reflected echoes necessary for target discrimination (Figure ib).
Delay-sensitive neurons that have been identified in neurophysiological studies of the Myotis
auditory cortex are tuned to specific delays between components in the acoustic stimulus, and
thus influence further cortical processing that results in target perception.

Neurophysiological studies show that pulse repetition rate (PRR) and pulse duration
(PD) are Important temporal parameters in the stimulus that affect the delay-tuning properties
of a delay-sensitive neuron. The purpose of this study is to model the delay-tuning network
(DTN) using artificial neural networks. The modeling of DTN is based on neurophysiological
data on delay-sensitive neurons obtained from a previous study of the auditory cortex of the
little brown bat, Myotts lucifugus (Tanaka et al. 1992).

Theoretical analyses on thirty-three delay-sensitive neurons from eight animals
revealed that there are essentially six different classes of delay-sensitive neurons In the
auditory cortex of FM bat, Myotfs lucifugus (Tanaka et al. 1992: ChittaJallu et al. 1994).
Neurons from each of these class behave differently for given set of PRR and PD pair. The PRR
values ranged from 5/sec. to 99/sec. for PD values 4, 2, and 1ms. The response property of each
class of neurons is described below:

C L_[sjIga These units exhibit a constant BD for a range of PDs and PRRs. For example, one
of the units in this class showed a constant BD of 3ms for all PRR and PD pair.
Ctaa 2 U=The BD of these units drops with PD and remains constant over the range of PRR.
The drop In the BD with a drop In PD Is characteristic of tracking neurons.
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Class 3 Units: This class of units exhibits a constant BD with an increase in PRR at short PDs.
but they lose their delay-sensitivity at high PRRs and long PDs.
ClasU nits This class Is the counterpart of class 2. In both Instances the BD changed as the
PD and PRR are changed. While the PD is the determinant of BD for Class 2 units, it is PRR that
Is the determinant of BD for Class 4 units. These units show a constant BD for a specific PRR.
but show a decreasing BD with increasing PRR,
Class 5 Unis: i this class of units, the BD decreases as the PD shortens and the PRR increases.
This class exhibits the response properties of the classic tracking neuron. As the bat progresses
through the hunting cycle, the BD should drop to match the diminishing distance between the
bat and the target. In this class, a relatively long PD and low PRR results in a high BD. As the
PD shortens and the PRR increases, stimulus conditions found in hunting cycle, the BD drops
steadily to track the target.
Class 6 Units: This class of units exhibits no delay sensitivity under unnatural stimulus
conditions (i.e., at high PRRs and long PDs). However, under natural stimulus conditions, the
BD of these units decreases when PD and PRR are increased. This class is sensitive to variation
of each of the stimulus parameters like Class 5 units. However, Class 6 loses its facilitation at
high PRRs.

JI. Modeling Delay-Tuning Network

The purpose of the delay-tuning network (DTN) is to generate the tuning property of a
given class of neuron for a set of PRR and PD. Therefore, the input to DTN is the stimulus
parameter pair (PRR and PD) and the output is a tuning curve for a unit in a given class.
However, within a given class, the tuning property can change depending on the magnitude of
the Input parameter pairs. An interconnection among several such DTNs within a class and
across all classes will constitute the delay-tuning network for the entire auditory-system
framework. A standard back-propagation neural network (ANN) is used to model the DTN
networks. Each class of neurons is modeled separately using different ANN. The purpose of
these ANN models are two-fold:

A. Predicting Neuron Responses for Unknown Stimulus Pairs
Neurophysiological experiments were conducted only on a limited set of PRR and PD

values. For example, not all ranges of PRR values were tested for a given neuron. Similarly, for
certain neurons PD was tested for only 2ms and 4ms. Other values like Ims and 3ms were not
tested. This is because of experimental conditions during data collection. Therefore, from
neurophyslological stand point, a model that can reliably predict the tuning patterns for
unknown sets of stimulus parameters Is important. Such a model will allow
neurophysiologists to better understand the functional properties of these neurons.

B. Predicting Tuning Curves for the Delay Unit
The output of the ANN is the actual tuning curve. This curve will be used in the uelay

unit (Figure Ib) as weight vectors in order to perform correlation between the emitted pulse and
the echo. However, in order to build the auditory system framework, the tuning property for the
entire range of stimulus pairs must be available. Since the bat continuously changes the
stimulus parameters during its target directed flight, the model must be capable of generating
the tuning property for all sets of stimulus parameters.

The Neural Network Model
The ANN that we used to model the DTN is a back-propagation network with three

hidden layers. Inputs to the DTN are pulse repetition rate and pulse duration. There are 12
outputs that corresponds to the delay-tuning curve for the given stimulus parameter set. The
training data consisted of electrophysiological experimental data collected from Myotls
lucifugus for various stimulus parameter pairs. The training data set were normalized between
0 and I for each unit. The ANN converged in 12,000 iterations for a global error of 0.0001.

IV. Experimental Results

One representative unit from each class was used to train the ANN. Thus there are six
different ANNs corresponding to each class. Each ANN is capable of accepting a range of PRR
and PD pairs as input and generate a corresponding tuning curve. Results from two sample

1-350



tests are given in figures 2 and 3. Figure 2 shows the tuning curves corresponding to a unit from
class 2 which is a tracking neuron. Each sub-plot in this figure is a tuning curve for one set of
PRR and PD. In figure 2, the DTN was trained on PD values of 1, 2 and 4 ms and PRR values of
5/s. 10/s, 30/s. 50/s. and 70/s. The trained DTN was then tested for the untrained stimulus
value, PD = 3ms for PRR values of 5/s. 10/s. 20/s. 30/s. 40/s. 50/s. 60/s. and 70/s as shown in
column 3 in bold face. Similarly, the network was also tested for untrained stimulus value for
PRR = 20/s. 40/s. and 60/s for all PD values. These are shown across in bold faced rows of figure
2.

It can be seen from figure 2, that the ANN generalized well and captured the essential
properties of a tracking neuron. The tracking neuron has the property tihat the best delay (the
highest peak in the tuning curve) drops for small PDs while it stays constant for a wide range of
PRR. This property suggests that this class of units Is tuned to a specific target range
independent of the PD. The network clearly predicted this behavior -s seen in figure 2 for
PD--3ms and PRR=20/s. 40/s, and 60/s.

Figure 3 shows tuning curves for another sample unit from class 5. This is also a
tracking neuron with a different behavior. The best delay of this unit drops as PD drops while
PRR increases. Notice in figure 3. the highest peak (the best delay) shifts to the right as PRR
increases. This unit was trained with experimental data for PD=lms, 2ms and 4ms and
PRR=5/s, 10/s, 20/s, 40/s, 60/s, and 80/s. The network was then te -d for PD=Ims for all PRRs
as shown in bold face in column. The network was also tested for PR(--30/s, 50/s, and 70/s. As
in the previous case, the network was able to capture the essential features of this tracking unit
by correctly responding to a given set of stimulus pairs.

V. Conclusions

We have presented a neural network based model of a delay-tuning network to predict
the tuning properties of delay-sensitive neurons. These neurons, found in the auditory cortex
of the FM bat Myotts lucifugus. play an important role in their target directed flight. These
neurors are sensitive to stimulus parameters. pulse repetition rate and pulse duration. The bat
actively control these parameters during the various phases of their hunting cycle. The
purpose of the ANN model of the delay sensitive neurons Is to generate the tuning curve for a
given neuron to different set of PRR and PD input pairs. The tuning curve generated by these
networks will be used in our auditory system framework to compute the correlation between
the pulse and echo for generating *he acoustic Image of the target. The networks performed well
and generalized within a reasonable amount of time.
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Figure 2. Tuning curves for a typical Class 2 neuron. The Pulse Duration (PD) shown on top
ranges from I to 4 ms and the Pulse Repetition Rate per second are shown on the left margin
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Abstract

A new scheme is presented for encoding DNA sequences for use in building neural network models. The encoding scheme
is useful for data that relates DNA sequences with the presence or absence of some property. The scheme replaces each
base with a logarithm of the probability of chance deviation between the observed frequency of base occurrence at a
particular position within sequences possessing a particular property and the actual frequency of base occurrence within the
entire DNA strand. Neural network models developed using DNA sequence data encoded with the new scheme showed an
improved ability to predict the potential of topoisomerase to cleave DNA sequences, compared to neural network models
developed using the same DNA sequence data encoded with the popular CODE-4 [ 1) encoding scheme. The new scheme
results in encodings that are only one quarter the size of that obtained using the CODE-4 encoding scheme. It also reduces
the number of parameters in the neural network model by approximately 75%. This dramatic reduction in parameters
produces a more substantial neural network model using the same DNA sequence data. Subsequent statistical tests on the
best neural network model obtained using the new encoding clearly demonstrate the strong significance of the model.

I. Introduction

Artificial Neural Networks have become increasingly popular for building models that correlate nucleotide or amino acid
sequences with some property possessed by the sequence [1,2,3,4,5,6,7,8]. This popularity can be attributed to a
significant number of successful applications coupled with the ease with which the technique is applied.

Syntactically, DNA sequences are linear strings of four characters, A, C, T or G. Each corresponds to one of the four
nucleotides that makes up DNA. Similarly, peptides are linear sequences of 20 characters, each corresponding to one of
the 20 possible amino acids. It is widely believed that the linear sequence (or syntax) of a segment of DNA or a peptide is
sufficient information to describe its biological behavior. It should be possible therefore to correlate observed biological
behavior with an associated sequence.

Several techniques have been investigated for encoding a DNA or amino acid sequence into a vector of numbers
appropriate for processing by a neural network. [9,10,11] have developed an encoding scheme for amino acid sequences
that captures the physicochemical properties of each amino acid as three distinct numerical values. An amino acid
sequence is then encoded with a vector of numbers that is three times as long as the number of amino acids in the sequence.
This encoding scheme has been used to develop many successful correlations between amino acid sequence and its
properties.

Two popular encoding schemes for DNA sequences are the CODE-4 and CODE-2 schemes. The CODE-4 scheme replaces
each nucleotide with a sequence of three zeros and a one. The position of the one in the sequence uniquely identifies the
base. For example, if each base in a sequence were replaced according to the substitution set: {C/0001, G/0010, A/0100,
T/1000), the resulting vector of 0's and l's would be one possible CODE-4 encoding of the sequence. The encoded vector
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is four times as long as the original sequence. The CODE-2 scheme replaces each of the four nucleotides with a unique
two digit binary number. Consider for example the set of substitutions: (A/00, T/01, G/10, C/i1). The resulting encoded
vector is two times as long as the original sequence. II] has found the CODE-4 scheme to be superior to the CODE-2
scheme for representing DNA sequences in neural network models.

A series of experiments was designed to study the mechanism of inhibition of certain antitumor and antibacterial agents on
type IH DNA topoisomerase (topo II) [12,13,14]. Cleavage assays were performed on pBR322 DNA [181 and the 28 bases
surrounding each cleavage site experimentally identified. A neural network technique was used to build a model to predict
which sequences are cleaved by topo II in the presence of an additional chemical agent. Initially the CODE-4 scheme was
used to encode the 28-base DNA sequences in the data set. The resulting neural network models were unsatisfactory
showing a maximum prediction rate of only 50%. In an attempt to improve the performance, we investigated a new
encoding scheme for the 28-base DNA sequences. The new scheme replaces each base at each position in a cleaved
sequence with the base 10 logarithm (or negative logarithm) of the probability that the occurrence of the particular base at
its position is different from the average value seen in the entire DNA sequence. The resulting neural network model built
with the new encoding scheme improved prediction capability to 70% with only one quarter the number of parameters.
Subsequent statistical analyses provide strong support for the significance of the neural network model.

H. Methods

1.1 Artificial Neural Networks

Neural network models in this investigation were developed using a program of our own design. The program was written
in the C programming language [17] and runs on an IBM PC compatible personal computer containing an 80486
microprocessor. All networks were of the fully connected feedforward type and were trained using backpropagation [16].
Computing elements in each network used the squashing function, s(x),

I
s(x)= +-; 2 (Eq. 1)

which has a range of (-0.5,0.5). Data sets were scaled linearly to the same range using a maximum and minimum value
computed over all data in the entire training data set. The error function minimized during training was,

N(Eq. 2)

where E is the residual error, tj is thejth element of the ith target vector, ojI is the output of thejth element of the last
layer, NeI is the number of elements in the last layer and Nv is the number of vector pairs in the training set.

fl.2. Data Sets and the Encoding Scheme

A complete data set was obtained by moving a window of size 28 one base at a time down the entire counterclockwise
strand of pBR322 DNA. 1061 unique 28-base sequences were obtained; 80 of which were found experimentally to be
cleaved by topo HT in the presence of an additional chemical agent. Cleavage was indicated in the data set with a "I"; no
cleavage was indicated with a "0". For more information on experimental methods and characteristics of the experimental
data see [141.

106 (10% Of 1061) sequences with their corresponding cleavage site indicator values were removed at random from the
complete data set and placed into the test data set. The remaining 955 sequences with their corresponding cleavage site
indicator values then comprised the training data set.

Data sets were encoded by replacing all DNA sequences in both the training and test data sets with a unique vector of 28
real numbers. Each of the real numbers is a base 10 logarithm of the probability (P) of chance deviation between the
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expected and observed number of occurrences of the base at the position in the sequence. Probabilities are were computed
as follows.

Let: b= the frequency of occurrence of a given base (B) within the counterclockwise strand of
pBR322 DNA ( where: PA=0 .23 73 , pyr=.2252, pc=0.2600, PGr•. 277 5 )

n = the number of cleavage sites sequenced (n=80)
pn = the expected number of cleavage sites to have a given base at a-v particular position
m = the observed number of cleavage sites which had a given b: it position.

If the observed was greater than expected (m > pn), then P is the probaL ance occurrence of m or more instances:

= n! ,(PJ)(1- (Eq. 7),=, O.n - 1).

In this case the encoding for the given base at that position was computed as the -log I 0 (P).

If the observed was less than the expected (m < pn), then P is the probability of a chance occurrence of m or fewer
instances:

P= I n (p (I-p.Ti (Eq. 8)

In this case the encoding for the given base at that position was computed as the +log1O(P).

The complete encoding consists of 4 possible numbers (one for each of the bases) for each of the 28 positions in the
sequence. When computing the encoding only the data in the training data set was used.

Consider as an example the following computation. After splitting the complete data set into a training and test data set, 70
of the 80 cleaved sequences remained in the training data set. If 25 of the 70 had an A in a particular position in the
sequence, then since m = 25 > 16.6 = (0.2373*70),

70 = i(70'- 1) - 0.2373(1 - 0.2373)7-' = 0.016154

and the encoding for an A in that position is -log10(0.016154)= 1.791710. This is repeated for all four bases in each of the
28 sequence positions. To our knowledge this technique has not previously been used to encode DNA sequence data for
building neural network models.

Ill. Results

M.A. Neural Networks

Two series of neural networks were investigated. One series was trained with training data encoded using the logl 0 (P)
encoding just described. The second series was trained with the same training data only this time encoded with the CODE-
4 encoding scheme described previously. Corresponding test data sets were also encoded in an identical manner. The
neural networks in each series differed primarily by their topologies. All neural network topologies contained one hidden
layer but the number of nodes in each hidden layer was varied from 0 to 9. Neural networks trained with the logl 0(P)
encoded training set had 28 input elements, and those trained with the CODE-4 encoded training data had 4*28=-112 input
elements.

Each neural network was trained several times with different random initial values for network parameters. The best result
was retained in each case. Training of all networks continued until the rate of decrease of the residual network error was
lower than 10-7 per training cycle. Since the main goal of the investigation was to be able to correctly predict all sequences
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that would be cleaved under the given experimental conditions, we chose to define the best neural network model as the
one that correctly predicted the greatest number of cleaved sequences. This is measured using the corresponding test data
set which contained data not previously seen by the neural network model. The ability of all neural networks to correctly
predict a lack of cleavage exceeded 90%.

Figure 1 is a bar graph of the percent of correctly predicted cleaved sequences verses the number of computing elements in
the hidden layer of the neural network for the log 10(P) and CODE-4 encodings.

-. 0 (P) Encod..g

0 2 3 4 S D 7 E o

Number of Hidden l~yer Elements

Figure 1: Comparison of predictive performance for log 10(P) and CODE-4 encodings.

We can see from Fig. 1 that as the number of hidden layer computing elements increased in the series of neural networks
trained with the log I 0(P) encoded data, the percent of correctly predicted cleaved sequences initially increased quickly,
peaked at three computing elements, and then began to trail off. The initial rise is due to the increase in complexity of the
model due to the increased number of internal computing elements. After three hidden layer computing elements,
prediction capability began to decrease. This is most likely due to the onset of overfitting of the data by the neural network.
At this point the ability of the model to capture the true relationship in the data diminishes and simple data "memorization"
begins.

Prediction performance of the CODE-4 data displayed a different behavior. It increased more slowly and then leveled off at
about 50% as the number of computing elements in the hidden layer increased.

In networks with 0 to 3 hidden computing elements, the ones trained with the logl 0(P) encoded training set clearly show an
improved prediction capability over those trained with the CODE-4 encoded training data. Prediction capability for all
networks with 4 or more hidden layer computing elements are comparable.

The number of parameters in the network trained with the CODE4 encoded data with 9 elements in the hidden layer had
1027 parameters, more than there were vector pairs in the training data set. This is an undesirable situation due to the
potential for overfitting the data, therefore no topologies with greater than 9 elements in the hidden layer were investigated.
The best neural network obtained with the log10 (P) encoded data had only 91 parameters which is much less than the 955
sequences in the training data set.

Thewe results clearly indicate that changing the encoding scheme for DNA sequence data from the CODE-4 to log,0(P)
scheme can improve neural network models. The similar reduction in the number of parameters between neural network
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topologies resulting from the two encoding schemes is highly desirable since it reduces the number of parameters to a level
well below the number of vector pairs in our training data set.

An advantage of the CODE-4 encoding is that it is independent of the data set. Since the logl 0(P) encoding is determined
through a statistical analysis of the data in the training data set, a new encoding must be computed for each new or
modified training data set. Apparent advantages of the logl 0(P) encoding is a dramatic reduction in the number of
parameters in the model as well as the ability of the neural network to develop a better model with increased predictive
capabilities.

m.B. Statistical Analyses

Since only 10% of the sequences appearing in the original data set were actually cleaved, there was a question as to
whether the results presented were significantly different from a random result. To further verify the validity of the result,
two statistical tests were applied to the best model developed using the logl 0(P) encoded data.

A permutation test (15] was performed on the neural network model. In a permutation test (as we have applied it to neural
networks) we repeatedly randomize the pairing of target vectors with input vectors in the training set, reassign the
parameters in the neural network to random values and retrain the network. The residual error (E) remaining upon
completion of training is stored each time. The entire process is repeated as many times as possible. The residual error
associated with the model that was trained using the original, non-randomized data set is then compared with the
distribution of errors obtained from the models trained using data sets whose target data was randomly paired with input
data. If the actual model is significantly better than the models generated with randomly paired data, its residual error is
expected to be significantly less than the distribution of errors obtained from the randomized data models.

20 different randomly paired data sets were generated. Each was used to train 20 new neural networks. All 20 networks
had the same topology: one hidden layer made up of three computing elements. Figure 2 is a histogram representing the
frequency of residual errors. The arrow points to the residual error (0.087435) of the actual neural network model trained
with the original data.

The arrow appears far to the left of the "permutation distribution." Due to the large number of observations, the
permutation distribution is well-approximated by a normal distribution. We fit a normal distribution to the residual error
data using the sample mean (0.19126) and a standard deviation (0.0807). The normal distribution is drawn with a dashed
line in Figure 2. The estimated probability that one would observe a residual error of 0.087435 from the permutation
distribution under the assumption of normality is 10-3 7 (highly significant).

For our second test we made use of a contingency table 115]. A contingency table can be used to test the hypothesis that
one set of data is dependent on another set. A contingency table is appropriate in this case because we consider target and
output data to be "bivariate"; the data can indicate or predict the presence (1) or absence (0) of DNA cleavage. We used a
contingency table to test for the dependence of the target values in the test data set and the predicted output obtained from
the trained neural network fed the input vectors of the test data set.

The null hypothesis of the statistical test is that the two data sets are independent of each other. The alternative hypothesis
is that the two data sets are dependent. The null hypothesis is rejected if the test statistic (X2 ) exceeds a tabulated value
for a chosen level of risk (a).

The test statistic for the results obtained using the log l 0(P) encoding was calculated to have a value of 23.94. Using the
appropriate table we determine that to reject the null hypothesis (at a risk of a=0.005 - taking one chance in 200 of
rejecting the null hypothesis when it is true) the X2 value must exceed 7.88. Clearly this is very much the case and we can
therefore conclude that the output of the neural network and the target data are highly dependent. In other words, the
neural network model is highly significant.
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Figure 2: Histogram of permutation test results with a normal distribution.

IV. Conclusion

A new encoding scheme for DNA sequence data to be used when building neural network models is presented. The new
encoding scheme is compared to the CODE-4 scheme by observing the performance of two series of feedforward neural
network topologies trained with DNA sequence data encoded both ways. Results indicate that a performance gain is
possible over the CODE-4 encoding scheme using the new scheme with a dramatic, four-fold decrease in the number of
model parameters. Subsequent statistical analyses verify the strong significance of the best neural network model obtained
using the new encoding scheme.
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Abstract : This paper presents a neural network tool for forecasting half-hour electrical power consumption. This
tool allows us to forecast from one half-hour to twenty-four hours in advance. First, we have classified daily
consumption curves, using Kohonen self-organizing maps. Secondly, we have developed several neural models, one
for each class. These neural models are composed of 48 neural networks, each specialized in the forecasting of one
specific half-hour of the day. The initial results show that the neural tool is adaptable and functions well.

Forecasting power loads is a basic and crucial problem for Electricitd de France. The difficulty lies in the nature of
electricity, which is unstockable. In addition, we have to satisfy consumption at any time and therefore to match
production to consumption instantaneously. Given this context, we would like to optimize our use of the cheapest
electric power, which is nuclear power, and not to start up expensive production units. Moreover, it is more difficult
to modulate the production of nuclear power units quickly than it is for other units. These economic and
management problems are an indication of the importance of high-quality forecasts.

Up to now, to forecast electricity consumption, we have used linear models which are called ARMA models
(AutoRegressive-Moving Average). Generally, these models give good predictions for ordinary days such as normal
weekdays. But for special days, such as public holidays or special tariff days, the forecasts are less satisfactory. Our
goal is to improve the quality of the forecasts in both cases: for ordinary and special days. Rather than adopting the
usual method, we use several neural models, each specialized in the forecasting of one type of day and one specific
hour. To construct such networks, we first made a classification of the daily power curves, and then used it to build
the specialized networks. This paper presents first, the data; secondly, the results of the classification; and thirdly,
the different neural networks.

I The data

We are studying the half-hour electrical power consumption for metropolitan France. For each day, we have a curve
composed of forty-eight half-hour power loads. Our data goes back to 1986. Our ultimate goal is to make forecasts
from a half-hour to twenty-four hours in advance. A typical curve of a "normal" day (Figure I) comprises two peaks:
one in the morning, which begins around eight a.m.; and one in the evening, which is sharp in the winter and
disappears in the summer.

Thursday 02/07/91

I

I

-I
I
I

Figure 1: Daily consumption curve of a normal winter day,
between 12:30 a.m. and 12:00 a.m. (MW)
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This series has two periodicities of 1- and 7-day orders (Figure 2). For instance, a Wednesday curve is similar to the
previous Tuesday curve (periodicity of order 1) and also similar to the previous Wednesday curve (periodicity of order
7).

two weeks of electrical consumption

0 2W0 400 em

Figure 2: Evolution of a two-week consumption curve,
from Monday to Sunday (MW)

Unfortunately, forecasting can not be based only on these periodicities, because there are different types of
perturbations that can deeply change the consumption curve. The most common perturbations are pubuic holidays
(Figure 3) and special tariff days. The differences between these curves show that we have to build different
forecasting models for the different curve shapes. The goal of classification is to define these different curve shapes.

Tuesday 04/30/91 Wednesday 05/01/91

I I
I I
I It I'
I I

I I

Figure 3: Consumption curves for Labor Day in France (Wednesday 05/01/91)
and the day before (MW)

II Classification

We first tried to build a single neural network to solve the problem. We quickly noticed that the forecasts were
inadequate. This was due to two factors. First, a neural network can not work in "loop". Generally, with an ARMA-
type linear model, the basic model gives a one-step forecast, and to obtain further steps, for instance step two, the
one-step forecast is considered as an input value and the second step forecast is the new model output, and so on.
This process works in the case of linear models; in the case of neural networks however, the activation functions are
sigmo'ddal, and the forecasts obtained with this loop method are not reliable. In addition, there are numerous
differences in the curve shapes and a single model cannot give precise forecasts for both an August weekday and a
Christmas day.
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The first of these problems will be solved in the last part of this paper, The neural models To solve the second
problem, we made a classification of the consumption curves using Kohonen self-organizing maps. We also used
Data Analysis methods (hierarchical clustering and k-means): we obtained nearly the same results in the three cases.
The advantage of Kohonen maps is the topology of the classes obtained. That means that a map of the classes is
obtained. And two classes that have similar representative curves are close on the map.

We used several different maps (square, circle, line), and obtained similar results. In every case, we discerned two
breakdowns. The first is a weekly breakdown that distinguishes two kinds of days: Saturdays, Sundays, public
holiday days and special days on the one hand; and Mondays, Tuesdays, Wednesdays, Thursdays and Fridays on the
other. This breakdown appears in Figure 2. The second breakdown is annual. The year is divided into 3 parts: the
first, from May to September; the second, from October to January; and the third, from February to April. These
three periods are more or less homogeneous. The last one is the least so, due to the temperature variations in spring.

The classification we have retained aims at optimum simplicity. In fact, the classes obtained are used to forecast,
that is to say that we have to attribute a class to a future daily curve. For instance, today is Wednesday, November
24, and we would like to attribute a class to Thursday, November 25 without knowing the shape of its daily curve.
To do this, we have retained a typology of 16 classes as shown in the next figure. In Figure 4, each concentric circle
represents a type of day: the external circle - Monday; the second - Tuesday to Friday; the third - Saturday, Monday
and Friday on public-holiday weekends; and the fourth - Sunday and public holidays. Each quarter represents a
season.

December uary

september 14bra

October aarcbhchlia

Saturday, Monday and

Friday of public holiday weekend

Figure 4 : Classification of daily power consumption curves

In our ti- 11 neural network forecasting tool, this typology is used as follows. We have defined four large classes
which co-'respond to the weekly breakdown. Consequently, we have built four different neural models. The associated
neural networks are different in terms of synaptic weight values, through the architectures are nearly the same. A
yearly breakdown is also used. For each large class, we have built several season class input neurons (as many as
necessary). For example, every input layer of the Monday neural network is composed of several neurons; among
these is one binary input neuron for the season May-June-July, another for August, another for September, another
for October-November-December-January and a last one for February-March-April. In fact, there are five season class
input neurons for each neural network in the Monday neural model.
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III The neural models

As we have already said, the forecasting tool is composed of four different neural models: a Monday model, a
Tuesday-Friday model, a Saturday model (also used for Monday and Friday public-holiday weekends) and a Sunday
model (also used for public holidays). These four models are built following the same philosophy. We will explain
in detail here the Tuesday-Friday model. It is composed of forty-eight neural networks which are multi-layer
perceptrons; each neural network is used to forecast one specific half-hour. There is one neural network for 12:30
a.m., one for 1:00a.m ...... one for 11:30 p.m. and one for 12:00 a.m.. At each time step, we forecast the difference
between the consumption value of day d at time t and the consumption value of day d-I at the same time t. The
input is composed of 17 past consumption values, I future and 17 past temperature values, I future and 17 past
nebulosity values, 5 season class values, 4 weekday binary values and 3 special-tariff day binary values. This
represents 65 input neurons. There is only one hidden layer composed of 4 neurons. The activation function for the
hidden neurons is sigmoidal; that for the output neuron is linear. This architecture is illustrated in Figure 5. The
optimization of the average quadratic error is performed with a second-order method (BFGS) because of its reliability
and rapidity.

c(d Jh-2)
c(djh-3)

c(d .h-4)
c(dJh -5) ,
c(d J1 -6) 0
C(d •,-7) 0
c(d- -8) 9
c(d-1 h)@

c(d-h-lf) 1
C(d-1 ,h-8)

Otob e.-..Januwy*/Ma-Wednesday 0
Ahugusty

for the Tuesday-Friday forecasting at hour h

To reduce the number of parameters of each neural network and to increase its robustness, we have used a weight
elimination method (Statistical Stepwise Method) which we have already explained in detail in previous papers
[Cott.,93] [Man.,93]. This has allowed us to reduce the number of parameters from 269 to a value between 114 and
207 depending on the case. In most cases, the quadratic average error has also decreased. To evaluate the performance
of theforecasting neural networks, we have calculated the averaged relative error for every time step. The results are
shown in the following curve (Figure 6).
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Figure 6: Averaged relative errors of the 48 Tuesday-Friday neural networks
for the years 1986 to 1992, after weight elimination

Our ultimate goal is not only to forecast one step ahead, but more generally from one step to forty-eight steps and
even more. For these forecasts, we use several neural networks as follows. Suppose it is Friday 11:00 a.m., we
would like the forecasts from 11:30 a.m. to Saturday 11:00 a.m. First, we will use the Tuesday-Friday 11:30 a.m.
forecasting neural network to obtain an estimation of the consumption at 11:30 a.m. based on the previous real
values. To obtain an estimation of the consumption at 12:00 p.m., we will use the Tuesday-Friday 12:00 p.m.
with, as input, both the estimation of the consumption at 11:30 a.m. and the previous real values, and so on. To
forecast Saturday 12:30 a.m., we will use the Saturday 12:30 a.m. forecasting neural network with, as input, both
the real values for the consumption before Friday 11:00 a.m. and the estimations of consumption from Friday 11:30
a.m. to 12:00 a.m.. This process is illustrated in Figure 7.

rddaylla. c(Frday'113 c(d )1pnm.2

c(Fdaday, 11 p.m.)

1, 4
c(Fifday, 11:30a.m.) c(Fnday, t2p.m.) ', ) c(aauday, 0.30)

I I I 
I

11.30 a.m. 12 p.m. 12.30 p.m. 12130 a.Strd. te
F tlday 

l am. da

Figure 7 : The forecasting neural network sequence

For one-step forecasting, the neural networks have averaged relative errors between 0.29% and 0.60%. Each week
class has nearly the same error. The hours for which there are only small variations in the consumption values are
easier to forecast. To illustrate this fact, for the Tuesday-Friday model, at 5:00 a.m. there are small variations and
the 5:00 a.m forecasting network has an averaged relative error of 0.30%; on the contrary, at 7:00p.m. there are large
variations and the averaged relative error of the 2-hour forecasting network is 0.57%.
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Forecasting further steps is obviously less satisfactory, but performance does not decrease too quickly. For forecasts
from one step to forty-eight steps, the averaged relative errors of our first simulations are between 0.03% and 2.00%
with any initial forecast hour and day. These first results are in the same range than those of the linear model
generally used, whose averaged performance is 2.4%. But further simulations must give better results.

Conclusion

The two most significant properties of this neural network forecasting tool are, first; its good results for both
normal days and special days; and second; its adaptability. In fact, it can be used to forecast from any time on any
day to any horizon. This is precisely the kind of tool that is useful for a Company like ours.

This forecasting tool is being tested during 1994. We now believe that this tool, or a more advanced one, will be
used in an operational way in future years. We think that it should be used not alone but also with the linear model,
which is now familiar to dispatchers, and perhaps with other models developed with the aid of new methods such as
non-parametric forecasting, wavelets or fuzzy logic.
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Abstract

Much research is being done in the area of neural networks, and industry is actively seeking successful application to
real world problems. We describe here a successful application. We have used neural networks to model complex
coolant flow patterns, such as those encountered in design of hypersonic aircraft. Previous calculation methods,
while reasonably accurate, are iterative and extremely time consuming. Our new approach uses a hierarchical neural
network architecture to model coolant flow distribution in multiple heat exchanger panels. This method is direct,
fast, and accurate.

Coolant System for Hypersonic Aircraft

Development of hypersonic aircraft requires a high degree of system integration. A hypersonic engine may rely on
hydrogen for fuel. Since it is stored at cryogenic temperatures, this fuel can also be used as a coolant for
aerodynamically heated surfaces [Petley, et al.). This dual service can potentially lead to very efficient design.
However, design tools are needed that can provide rapid, accurate calculations of complex fluid flow patterns.
Existing methods are much too slow to allow multiple simulations, spanning a wide range of conditions, needed for
efficient design [White, et al.].

Envisioned hydrogen flow patterns and routing schemes incorporate multiple, tiered levels of distribution. We chose
the base case of one 6 leg heat exchanger panel, each leg having 3 straight line components, with the necessary
associated bends, splits, and merges (Figure 1). Flow is regulated through valved adjustment of inlet and outlet
pressures for multiple sets of panels connected in parallel and/or series. Although proper flow control is critical,
extensive use of valves is undesirable due to weight, volume, and access considerations. Much of the distribution
must therefore be accomplished by constant configuration devices (orifices, restrictors, etc.) that have to operate over
a wide range of conditions. Distribution within the panels is further complicated by the nature of the supercritical,
gas-like fluid being used as coolant.

Iterative Solution Time Consuming

The basic engineering problem being addressed is as follows: in a gas/gas heat exchanger, given desired inlet
pressure (p1) and temperature (T1), outlet pressure (p2), and heat load (Q, broken into IS different q values, one for
each straight segment), what mass flow rate of coolant (ml) is required? At first glance, this appears to be a
straightforward heat transfer calculation, except that there are a couple complications in this particular application.

The wide range of operating conditions, high pressure, high heat load, and gaseous nature of the coolant result in
variable properties (density, viscosity, and specific heat) throughout each leg as well as across the panel. Thus, the
heat exchanger must be broken down into small individual components (straight line, bends, splits, and merges) for
accurate calculations. Properties are then assumed to be approximately constant in each small component.
Furthermore, it is desired to study shock heating loads on small elements of the heat exchanger, as well as relatively
uniform heat loads. Therefore, we also need to calculate the split flow fraction at each split component in the heat
"exchanger (e.g., 5 different split fractions in a typical 6 leg panel).

The previous approach was to write a fluid flow equation, equation of state, loss factor equation, pressure drop
equation, and heat transfer equation for each component, and then solve this system of simultaneous equations
(Figure 2). Thus there are five equations for each component, so for a typical 6 leg panel, with 3 straight segments
per leg along with associated bends, splits, and merges, this yields a system of 160 equations in 160 unknowns. If
we were given pl, TI, and m I (as well as Q, of course), this would still be a straightforward forward dynamics
calculation for p2. The equations could be solved sequentially, starting with the first component, and marching
downstream through the entire heat exchanger, with the outlet conditions calculated from each component serving as
the inlet conditions used for the next component.
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However, in this application, we are given pl, TI, and p2 (and Q), and need to determine ml. Therefore we have an
implicit set of equations, and desire the solution of the inverse dynamics model. Thus, the previous solution
method requires an initial guess, not only of ml, but also of the internal flow distribution (i.e., each of the 5 split
fractions). Then an iterative calculation must be performed, until the calculated p2 equals the desired p2.
Convergence depends on the quality of the initial distribution guesses.

While this can be done, it is extremely time consuming, especially when multiple panels in series and/or parallel are
considered. This previous solution method took several hours of computer time, even for relatively simple panel
configurations. This would force design to be accomplished after investigation of only a few flight conditions. It is
preferable to base design on the wide range of conditions encountered in a complete flight profile. This is the
incentive for investigating neural nets for these calculations.

Neural Net Solution Rapid

In this research we first developed and implemented a flow simulation model, using transport equations, for
individual coolant system components. The computer code named COOL, written in C language, can do the flow
and heat transfer calculations for an individual panel, or for multiple panels in series. For our base case there are 21
inputs (pl, TI, ml, plus heat load of 18 different q values) and 7 outputs (p2, T2, and 5 flow split fractions, sl to
s5). Nevertheless, the calculation in this forward, explicit direction is fast.

We then ran COOL many times in the forward direction (choosing pl, TI, and ml, and calculating p2), using
randomly selected values of all input parameters, each spanning their expected operating range. This gave us a
training set of data for use in our neural networks. However, for the neural network training and testing, we
rearranged the data so that p2 was an input value and ml was an output, still leaving 21 inputs and 7 outputs, but
now arranged to allow for direct calculation of the desired variables, i.e., the inverse dynamics model (Figure 3).

A neural network code named TCOMP was written for this purpose. Using TCOMP, training of an entire 6 leg
panel using a 6000 case data set can now be accomplished in approximately 2 hours (on a Sparc2 workstation). This
is less than the time that it would take to calculate a single case using the iterative method. Once the net is trained,
subsequent calculation on any given set of input values can be accomplished in a fraction of a second. Therefore, we
have achieved our goal of an explicit, direct, and fast calculation of the desired variables.

Competitive Net for Coolant Panel

Many neural network architectures have been suggested for various applications. Most of these may be broadly
described as global or local learning methods. When a function is highly nonlinear, or when its dynamic
characteristics vary in different operating regimes, it is difficult to fit the input-output data with a single global
function (or system model) that faithfully describes the system behavior. The piecewise approach of local function
approximation is more suitable for this type of system. A neural network can be used for each local curve. We will
call these local fitting neural nets the expert nets. A gating net is then used to classify the input data and send it to
the appropriate expert net. This constitutes a competitive net. The competitive net architecture, newly developed in
this project, is shown in Figure 4.

We have made two modifications to the competitive net architecture originally suggested by Jacobs and Jordan.
First, we added a hidden layer to the gating net. This hidden layer is necessary to provide additional connections to
ensure that the classification problem is solvable. The second modification is that we used the inner product of the
error vector (weighted by the gating net output) as the objective function for each expert net, instead of the mixture
density maximum likelihood suggested previously. This feature allows for easier cascading of gating nets. As the
complexity of coolant panel configurations is increased, it is anticipated that this cascaded gating net architecture will
be better able to handle the complexity.

Figure 5a shows the training results for TCOMP, plotted as average percent error vs. number of training epoches.
For comparison, results are also shown for traditional backpropagation nets with one and two hidden layers
(LEARNI and LEARN2, respectively). TCOMP achieves a training error of only 2.5% after 200 epoches, vs. 9.0%
and 8.0% for the backprop nets. Furthermore, testing error is 2.3%, showing TCOMP is also able to generalize.

However, the competitive net requires more computer time per epoch. To insure a fair comparison, Figure 5b shows
the same training results plotted as average percent error vs. cpu training time. Although many researchers report
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comparisons based on epoches, we believe that the comparison based on actual training time is more apropos for
most practical cases of interest. But for our case, even this more harsh comparison demonstrates that TCOMP learns
much more quickly in the first few minutes of training time (note the steep learning curve during the rwst ten
minutes), and that it also attains a significantly lower error at the completion of training (2.8% after two hours, vs.
8.8% or 6.1%).

Hierarchical Net for Multiple Panels

The final technical obstacle to overcome was to find a way to link multiple panels together. The problem can be
illustrated by considering the case of two 6 leg panels in series, panels A and B. As discussed above, we have
successfully demonstrated a neural net that can take inputs pl, TI, p2, and Q, and accurately determine the desired
mass flow rate ml. However, in the two panel case, the given inputs are now pl, TI, and p 3 (the outlet pressure
from the second panel B, not the first). In this case p2, needed as input for panel A, is not available.

One possible approach to this problem would be to guess an intermediate value of p2 (approximately 2/3 of the way
between p I and p3 would be the best guess for most cases). Then it would be necessary to iterate on this p2 value
until the mass flow rate calculated for panel A (mA) and the flow rate for panel B (mB) converged. This approach
was attempted, but mainly because of the combination of uniform and shock heat loads in the data set, convergence
was neither fast nor certain.

A second approach would be to simply build a bigger neural net, encompassing both panels. However, we rejected
this approach because of the increasing dimension problem. For even a two panel case, this would result in a single
net with 39 inputs (pl, TI, p3, and 36 q values) and 14 outputs (ml, p2, T2, T3, and 10 flow split fractions). This
would be unwieldy for even the two panel case, and clearly impractical for anything larger. A more versatile
approach was sought.

The approach chosen, and proven successful, was to use a second level of neural net to predict p2, using a reduced
input data set (Figure 6). It was found that p2 could be determined very accurately (only 0.2 - 0.3% error) using only
pI, TI, p3, QA, and QB (where QA and QB are the average heat loads over panels A and B respectively, rather than
all 36 component q values). Thus this second level *p net* has only 5 inputs and I output. Therefore, since this
significantly reduced data set was found sufficient for the "p net,' extension to multiple panels, without the
dimension of the input variable set becoming too large, is entirely feasible.

Thus we have created a hierarchical neural net structure, written in C code named COOLER. The "p net* first
estimates the pressure between panels. Then this p2 value is used as an input variable by the "panel net" to calculate
mA and T2 for panel A. Next the p2 and calculated T2 values, along with the given p3, are used again by the same
"panel net' to calculate mB and T3 for panel B.

The beauty of this approach is that no additional neural net training is needed. Once the "p net' and *panel net"
weights are computed and saved, additional calculation of any number of cases is rapid. One thousand test cases were
run in only 33 seconds, with average error of less than 7%. Sensitivity analysis has shown that this level of
accuracy is reasonable and consistent with the measurement accuracy achievable for a real system. For example, a
typical 3% accuracy for pressure measurements in such a system would lead to approximately an 8 - 10% accuracy
requirement for the mass flow rate prediction. In addition, we believe that additional accuracy can be obtained in
future research in this hierarchical net direction.

We have developed and successfully implemented a hierarchical neural network scheme to link two heat exchanger
panels together in series. Although beyond the scope of this project, we now are confident that linking additional
panels in series and/or parallel is entirely possible and feasible. We are very pleased with this result, since the
possibility of using hierarchical neural networks is often mentioned, but to date there have been few actial successful
implementations reported in engineering applications (although different versions of hierarchical net are used in
pattern recognition applications).

Conclusions

Rapid, direct solutions of complex fluid flow problems has significant value in design simulations. Neural nets
offer a powerful tool for the expedient computation of complex non-linear flow dynamics. This capability would
allow a designer to evaluate performance over full mission or multi-mission operating conditions, and to optimize
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system designs more effectively. Therefore, designs would be accomplished both faster and better. However, the
results of this research go beyond this single application. We can now develop and provide a hierarchical method and
software for general purpose fluid flow calculations used in a wide variety of chemical processing applications.

There are three innovative aspects to this research. First, we have used training data generated from a set of fluid
flow and heat transfer equations in forward dynamics form, then trained a neural net to solve the associated inverse
dynamics problem. Second, we developed a new and improved version of a competitive net architecture. Finally. we
have developed and successfully implemented a hierarchical neural network scheme to link multiple heat exchanger
panels together.
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Notation

(in any consistent set of units)
m mass flow rate [mass/tlime)
p pressure [(force/(length*length) or (mass)/(time*time*length)j
Q heat load, overall [(energy/mass) or (length*length)/(time*time)j
q heat load, individual segment [(energy/mass) or 0ength*length)/(time*thme)j
s split fraction for each branch between legs (s I to s5, i.e., 5 splits for 6 legs) (dimensionless]
T temperature [degrees]
subscripts:
A first panel
B second panel
I inlet to first panel
2 outlet from first panel
3 outlet from second panel
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ABSTRACT
In this paper, neural networks are developed for the modeling and control of a steam boiler. Neural

network simulation models are trained using data from the results of a series of step response tests on an actual
once-through utility boiler. A Neural network controller is trained to minimize an objective function. A modified
back-propagation algorithm is given which includes the effect of an existing model.

I. INTRODUCTION
Artificial Neural network technology is rapidly finding opportunities for applications to the control of

power plant systems and equipment. Neural networks can learn the performance characteristics of plants from
plant operational data or from plant models, and can be used to simulate plant operations and to control plant
parameters. Neural networks can predict system responses for dynamic control purposes. Unlike many types of
computer simulation models, even nonlinear neural networks can be readily inverted, to compute the necessary
changes in control variables to produce the desired changes in controlled variables.

Many computer methods have been used for the simulation and control of power plants. Statistical time
series methods, involving the empirical fitting of parameters to autoregressive-moving average models have been
extensively used for plant simulation and for dynamic matrix control, but require considerable competence in
statistical methods. Mathematical simulation models can be developed for existing plants, but development of
these models requires considerable engineering skill, experience, and detailed knowledge of the physical processes
operating in the plant. Neural network technology offers an alternate method for the generation of empirical
response surfaces for power plant processes. Using plant monitoring data, neural networks can learn the
performance characteristics of existing plants.

Neural networks are not limited to simulation, in the sense of predicting a response for a specified
action, but can also be used to generate the action necessary to produce a given response, i.e., to control the plant
This is feasible because even nonlinear neural networks can be readily inverted. Some other types of simulation
models cannot be inverted, or must be linearized in order to be numerically inverted. This feature makes neural
network models complementary, rather than competitive, to other type of plant models. Also, the development of
neural networks does not require detailed knowledge of the physical processes internal to the system being
modeled, knowledge of advanced statistical methods, or experience in the development of mathematical models.
making neural networks attractive for application to the control of operational power plants.

Artificial neural networks, both feedforward and feedback, have been successfully applied in various
areas for control and modeling: truck backer-upper 161, nonlinear system stabilization 141, system identification
and control 15], chemical process modeling 11], etc. Various techniques for steam boiler modeling and control have
been reported which include: Dynamic Matrix Control 181, Kalman filtering 1101, linear regulator I1 ]. However,
due to the varying operating environment, a robust method is required which must be capable of modeling the
changing system and generating an optimal control.

In this paper, two different feedforward neural networks are developed to (1) model the steam boiler
which has three inputs: throttle valve position (Q), fuel firing rate (F) and feedwater flow rate (W); thi. • outputs:
power load (L), steam temperature (7) and steam pressure (P); (2) design a controller which, based on the steam
boiler simulation model, produces a series of controls. These controls increase the power load to the setpoint as
smoothly and fast as possible while maintaining steam temperature and steam pressure varying within certain
limit. The neural network boiler simulation model consists of nine independent small models. The neural network
controller is trained to minimize an energy function which is of a weighted quadratic form. The basic back-
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propagation algorithm [91 has been modified to include the effect of the steam boiler neural network model. The
same technique can be also applied to various other control cases, e.g., decrease power load, regulate the steam
temperature, etc.

This paper is organized as follows: in Section II, the neural network steam boiler model, together with
nine small models, are presented; in Section 111, the structure of neural network controller is shown; some
simulation results are shown in Section IV; the learning algorithm used to train the controller is given in Appendix
A.

II. NEURAL NETWORKS FOR STEAM BOILER MODELING
The neural network simulation model is based on the results of a series of step response tests on an

actual utility once-through boiler 1121. The objective of the neural network simulation model is to reproduce these
experimental step responses, and to predict the responses of the boiler to other inputs. The controlled variables and
control variables in the model are shown in Figure 2.1

In the actual plant tests 1121, the control variables were given independent step changes to generate nine
bivariate records:

"* power load L vs. throttle valve position V; • power load L vs. feedwater flow rate W;
"* power load L vs. fuel flow rate F; 0 steam pressure P vs. throttle valve position V;
"* steam pressure P vs. feedwater flow rate W;, steam pressure P vs. fuel flow rate F;
"* steam temperature T vs. throttle valve position V; 0 steam temperature T vs. feedwater flow rate W,

0 steam temperature T vs. fuel flow rate F.
The computer data were digitized from the plots in Woo and Anderson 1121. The data from these nine

experimental tests were used to train nine neural networks, namely, fL,(.),fLg(.),fF(.),fp1(.),fpw(.),fpA(.),fm,(.),

f,(.), f•'(.), where fLp(.) represents the model between L and V, etc. As an example, Figure 2.2 shows the
configuration of the neural network forfpp(.).

Valve Peosiio

(Time t)

Throttle valve position Power load Tmt1

Fuel firinigrae Se rsue (ieJ12 n -1
BOILER P load

Feedwater flow rite steamte (Timetmeu t)

Figure 2. 1. The boiler with three control vanables (Timet-I)

mad three controlled vunables. Figure 2.2. The neural network modelling power
ouut vs. valve position.

As indicated in 1121, the model of power load L vs. F, W, Vcan be formed in terms of superposition:
Ll+- =fuz(Lt .... Lt-d,Ft,.....,Ftr,WlfLW (L. , )+fLV(L ..... L ,,V, .Vt-d) (2.1)

Similarly,

Pt+1 = fPF(Pt...P1-d •Ft .... IFt-d)+fPW (Pt. ....Pt-dW ,.... Wt-d)+fPv(P . ....Pt-d ,V t....Vt-d) (2.2)
Tt.1  = fTF (Tt , ..Tt-d ,Ft ....Ft d)+ fTW (Tt,..., Tf d,W t ..... +Wl d ) w + / (Tt . .. Tl-d , VI .... VI ) (2.3)

where d represents the number of delays. For simplicity of notation, all delays in the above three models are chosen
the same. These three models are then put together as one single neural network model to simulate the boiler
which has three inputs and three outputs (Fig. 2.1). This single neural network gives the predicted value of all
three controlled variables as a function of past values of the control and controlled variables. That is, the neural
network simulates the function:

xt+1  = f (xt,xtI ..... xt-d) (2.4a)

where x = [P,T,L f, f:R"' - R3 , t is the current time step index, 1I t < samples, d the number of lagged time
steps which value is determined by error-and-trial, m the dimension of independent variable space. Equivalently,[t I11 [fLF(L,.L4-d, Ft., F-d) + flw(Lt,...L-d , Wt 9,.., Wt-d) +fLv (Lt,., 4-d, Vt, ,Vl-d)1

Tt+lI'= fP (Pt . Pt-d'F1, Fl-d) + fWt(PI,"Pt-'W, 9-.... .W1 -d)+ fPV (Pt. P-d-Vt .... -'Vd) (2.4b)

L + I.J L fw (Tt ..... T _d,Ft I....FtIdWl-f w (T .. T ... . ). T- T d,V . 1 "..... V )

Since all delays are assumed the same, the index of dimension m is 2(d+l).
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All neural networks for nine models stated above have the same structure: one input layer, two hidden
layers and one output layer (Fig.2.2). The activation functions of neurons in both hidden layers are the sigmoidal
functions ranging from 0 to 1. The activation function of the neuron in the output layer simply sums up all output
signals out of the previous layer. The number of inputs and the number of neurons in both hidden layers are
determined by balancing the learning speed and learning error. The learning is performed by the basic back
propagation algorithm [9]. Other modified algorithms have been tried, those including back propagation with
momentum, adaptive learning rate, etc. 121. Based on our experience, the basic back propagation algorithm is more
robust. The learning speed depends on the system structure. If one chooses a suitable structure, the basic back
propagation algorithm leads to an acceptable learning error reasonably fast.

All nine neural network models have fit the original data quite well. Figure 2.4 and 2.5 show the
comparison of actual data and neural network results associated with two models. Figure 2.5 shows the combined
effect of 4% step increases in all three control variables simultaneously. This figure was obtained by superimposing
the actual plant responses from the previous nine figures, as was done in the original paper 1121.
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UI. NEURAL NETWORK CONTROLLER
In the boiler, water and fuel are manipulated at rates needed to balance the requirements of the three

controlled variables, i.e., power load, steam pressure, and steam temperature. The demand for power is determined
exogenously to the system, and variations in the power load around the specified load should be minimized. To
reduce thermal stresses and to maximize the service life of the boiler and turbine, changes in steam pressure and
steam temperature should be kept within limits as the load changes. The objective of the boiler control system is to
manipulate the control variables to meet the exogenously imposed demands for power while keeping the steam
pressure and temperature relatively constant. Transients in pressure, temperature, and power load are to be
minimized.

As we stated in Section II, the neural network boiler model consists of nine small neural network
models. However, the neural network controller has only one model which structure is shown in Figure 3 1. The
activation functions of the neurons in the output layer are nonlinear sigmoidal functions as well.

The control system consists of both the neural network simulation model of Eq. (2.4) and the neural
network controller, as diagrammed in Figure 3.2. The approach used here is similar to that used by Nguyen and
Widrow[6]. The neural network steam boiler model is exactly the neural network simulation model described in
the previous section. The neural network weights for this model were kept constant while neural network controller
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is being trained. This was done in a recursive manner. At each time step t, there are two models: the neural
network boiler model and the neural network controller. As shown in Figure 3 2, the controller computes the
values for the control variables Vt, Wt, and Ft, and the boiler model computes the values of Pt+ 1, Tt+ 1. and Lt+ I,
using Vt, Wt, and Ft, and Pt, Tt, and Lt, as well as the lagged variables.

Neural N ork Sta M__ eur Mal NeTr

Co nerS l e

Figure 32. Neural network controller model with leaning

The performance of the controller is based on the values of the controlled variables, Pt+1. Tt+l, and
Lt+l, whereas the controller must be trained to compute values for the control variables Vt, Wt, and Ft. This is
accomplished by the use of an energy function:

Samples
2 =½ •"rL(L-Lt)2 +rp(Pf _p,)2 +rT(TfTd ) (3.1)

t=l

where Lt, P," and Td represent the desired power load, steam pressure and steam temperature at time t. and rL,

rp and r. are the penalty coefficients for the power load, steam pressure and steam temperature.

In order to train the neural network controller, the basic back-propagation algorithm 191 has been
modified to include the effect of the steam boiler model. The modified learning algorithm is given in Appendix A.
The block diagram of this learning process is shown in Figure 3.3, where vectors X and Y represent control and
controlled variables, D is the operator of one-step delay.

01 1
-,t- NetworaNeural Y(t-I)1 ~-' ewr

X(o) Network " Steam Y(t+l•

Controller D

Learning Yt-d Model Stopping
I Criterion

Partial deritives

Figure 3.3. Block diagram of recursive learning of neural network controller.

IV. SIMULATION RESULTS
Figure 4.1 shows the control variables Vt, Wt, and Ft computed by the neural network controller trained

to produce an increase in power load of +2% at 30 seconds and +4% at one minute. The steam temperature
variation is to be limited between -0.8% and +0.8%. This can be done by making the penalty coefficient of the
steam temperature term in Eq. (3.1) larger than the other two coefficients. In this way, the steam temperature
variation is more highly penalized, relative to the other penalty terms. The system transient responses based on the
control strategy in Fig. 4.1 are shown in Fig. 4.2. It is observed that the temperature change is indeed controlled
within the limit, -0.8% to +0.8%, although the power load has a somewhat larger swing.
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If we want to focus on minimizing the swing in the power load, we can make the corresponding penalty
coefficient in the penalty function larger. Fig. 4.3 shows the control strategy which puts less constraint on both
steam temperature and steam pressure. Fig. 4.4 shows the transient responses of system with the control variables
in Figure 4.3. In this figure, the transient response of power load is faster and more smooth But the steam
temperature change has exceeded the normal limit, -1% to +1%. And the steam pressure change is larger as well.
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From all figures above, it is observed that there is a trade-off between power load change and steam
temperature change. Smaller changes in power load will result in larger swings in steam temperature. If we limit
the steam temperature within a small range, the power load reaches its steady state more slowly. However, the
steam pressure changes are relatively small. By properly setting the penalty coefficients in the penalty function, we
can balance the requirements on power load and steam temperature. Of course, it is possible to specify constraints
that cannot be satisfied with the existing boiler system.

V. CONCLUSION
The above process illustrates some of the potential applications of neural networks in power plant

simulation and optimal control. Neural networks can be trained to simulate plant performance directly from plant
data, with little operator intervention. With continuous learning, the neural networks can adapt to secular changes
in the plant power parameters, such as those caused by slagging, fouling, soot blowing, etc. Clearly neural
networks have a wide field for application in improving the performance and extending the life of power plants.
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Appendix A: Learning algorithm for training the neural network controller

0 %Jpdate weights between output layer and the 2nd hidden layer (next to the output layer): Let the indexf, v and w be
associated with the output nodes F, V and W of the controller.
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"t Update weights between the 1st hidden layer and the 2nd hidden layer (next to the input layer):
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ABSTRACT

The integration of Dynamic Programming and Artificial Neural Networks has very important
characteristics which may provide efficient real-time learning mechanisms for manufacturing
scheduling. This paper presents a system that achieves real-time learning using the mentioned
integration for flexible manufacturing system (FMS) scheduling. The system is capable of
operational mappings. In addition, it utilizes reinforcement signals of the environment (a
measure of how desirable the achieved state is taking into consideration the performance
criteria) due to the lack of an expert scheduler.

1. INTRODUCTION

Flexible manufacturing systems (FMS) are automated systems which combine computer
numerical control (CNC) machine tools, material handling and storage systems, and a
computational (hardware-software/processing-communications) scheme to provide an integrated
environment.

1.1. Flexible Manufacturing System Scheduling

Flexible manufacturing system scheduling is a complex problem in nature that leads to a
high level of uncertainty due to the limited number of feasible solutions in an extensive search
space. Scheduling can be described as the allocation of resources over time to perform tasks. In
this sense, three questions arise: what, when, and where [5]. A process, which solves these three
questions, does scheduling:

- The first question is what task must be done.
- The second question is when each task will be performed.
- The third question, where, defines the set of resources that the tasks occupy.

1.2. Real-Time Learning in Scheduling

A scheduling system requires effective decision making capabilities. Reinforcement
learning algorithms could be utilized as the decision-making units. Reinforcement learning
mimics the human brain's learning system. The past experiences are stored in a way that the
actions taken are evaluated for the same or similar possible future experiences. The decision-
making ability is improved with a long term optimality. The level of expertise in activities could
be increased by experiencing more situations. Werbos [ 11] discusses the importance of real time
learning and points out that "if one builds systems which can truly learn in real time, one can also
achieve much greater flexibility in manufacturing, which is crucial to competitiveness in many
economic sectors."

Real-time learning has several advantages w, c, off-line learning. It is more robust
because errors and omissions in the training set car hc corrected during operation. Training data
could be created easily and in great quantities wherJ \ •,,tcm is in operation, whereas it isusually
scarce in off-line learning. The most important ad - .t:igc is the necessity of real-time learning in
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order to learn and track time varying functions, to continue to adapt to a changing environment.

Real-time learning is needed as a component of reinforcement learning methods [1,2,7,8,10,121.

1.3. Problem Statement

The main purpose of this research is the development of a scheduler which has automatic
learning and adaptive capabilities. Adaptive Critics concepts, which allocate reinforcement
learning algorithms, are utilized in real-time to control the dynamic scheduling environment. Q-
learning [8], and its extension, Q-learning with a discrete model are used to predict a scheduling
policy to meet the required performance criterion for a given queue status and an undefined
period of operation.

2. REAL-TIME LEARNING FOR DYNAMIC SCHEDULING

Most of the existing FMS scheduling methodologies arenot adaptive in real-time with
respect to changes in system behavior at appropriate points in time. They either havecomplex
and computationally expensive heuristics to make them adaptive, or use a single scheme at all
times resulting in optimal degradation [3,6]. Furthermore, the problem of a dynamic decision-
making process is not even considered.

In this paper, integration and utilization of scheduling techniques with Q-learning is
accomplished to achieve desired performance levels. Two schemes were utilized in order to
achieve this integration. The first one is based on the generic description of Q-learning and the
second one is based on the utilization of Q-learning and a model.

2.1. Q-learning for Dynamic Scheduling

The key idea of Q-learning is to assign values to state-action pairs. Q-learning does not
need an explicit model of the dynamic system underlying the decision problem. It directly
estimates the optimal Q values for pairs of states and admissible actions. The optimal Q value
for state i and action u is a cost of executing action u in state i. Any policy selecting actions that
are greedy with respect to the optimal Q values is an optimal policy. Q values define an
evaluation function in a way but they contain more information than an evaluation function.
Actions can be ranked based on the Q values alone. On the other hand, ranking through an
evaluation function requires more information like immediate costs of state action pairs and state
transition probabilities. Instead of state transition probabilities Q-learning requires a random
function to generate successor states. The Q-value of the successful action is updated with
learning parameters, although the other admissible actions' Q values remain the same.

Q-learning learns to accurately model the evaluation function. For a given state x , the
system chooses the action a, where the utility util(x,a) is maximal. Q-learning consists of two
parts: a utility function and a stochastic action selector (see Figure 1).

The utility function works as both evaluation andpolicy networks. It tries to model the
system by assigning values to action-state pairs. The utility function has multiple outputs, one
for each action. In the utility function, neural networks are utilized to update the Q value of the
selected action. The utilization of neural networks could be in two ways:

- One neural network with multiple outputs.
- Multiple neural networks (one for each action) with a single output.

In the first method, whenever the single network is modified with respect to an action. the
whole behavior ofthe system is modified, since the actions share hidden units [4]. In other
words, the reinforcement of an action results in modification of the Q values of other actions.
although they should remain the same. This makes using multiple networks more desirable.
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Figure 1. Q-Learning and the FMS Scheduling Problem

The stochastic action selector chooses the actions randomly according to a probability
distribution function determined by the action's Q values. So, the actions with larger Q values
have more chance to be selected than the ones with smaller Qvalues. Each action has a chance to
be selected as much as it's Q value. In this research, the Q-learning algorithm is appliedto the
scheduling problem to create pairs of queue status and dispatching rules to achieve a desired
level of system performance. The algorithm assigns Q values to queue status for each action rule
and then these Q values are updatedbased on the performance of the manufacturing system.

The admissible action set consists of dispatching rules. Backpropagation with dual
subroutines [91 was utilized for the utility networks. Multiple neural networks (one for each
action) were used with single outputs. The inputs to the networks are the representation of queue
status based on the attributes of the tasks in the queue. The arrival times, processing times, setup
times and due dates are the attributes of the tasks and determined stochastically. The output of
each network is the Q value of the dispatching rule that the network belongs to. The Q values of
all actions are processed in the stochastic action selector. The action selected by the stochastic
action selector is then performed in the manufacturing environment. By the completion of the
action, the performance of the system (e.g., work-in-process inventory) is evaluated. If the
system's performance progresses in the desired direction, the network of the selected action is
rewarded. Otherwise, it is punished. The punishment and reward mechanism are managed by
adjusting the weights in the neural networks. In the punishment case, the weights are adjusted in
a way that the network outputs a less Q value for the same state. In the reward case, theweights
are adjusted to produce a higher Q value to increasethe chance of being selected. Since actions
are selectedvrandomly, the system stores Q values for each network, and these Q values reach
optimal in the long term. The algorithm of Q-leaming could be described as follows:

- Receive the current state x;
- Calculate util(x,i), for each action i;
- Select the action a;
- Perform action a;
- Receive new state y and reinforcement r;
- Calculate the desired utility of action a based on the new state and reinforcement;

u = r + 8 Max { util(yk) I k £ actions ) where r is the immediate payoff and 8 is the
discount factor.
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- Adjust the utility network, by backpropagating the error pU, where pU = u - util(x,a);

2.2 Q-Learning With a Discrete Model

This is an extension of the Q-learning algorithm. Theproblem in the application of Q-learning
to the scheduling problem occurs in the reinforcement stage. The system is not clear when to
punish or reward. The reinforcement mechanism works based on the differences of the previous
and current values. There could be some cases that, the stochastic action selector chooses an
action with the best effect on the system, but, the difference in the system performance'scurrent
and previous values might require a punishment.

In Q-Learning with a discrete model, a model is added to the system (see Figure 2).
SELECTED RULE [MI

NEURAL NETWORK
CONTROLLER

'' ' F'-• NETWORK 3I1 "

STOCHASTIC
MANUFACTURING STATUS II ACTION

ENVIRONMENT

-= NETWORK 
815 I'

T REINFORFCEMENT It)

jrEVALUATION MODEL

•LFUNCTION rw =ez

ACTION 815

E ATON 815J

Figure 2. Framework of Q-learning with a Discrete Model

The model's job is to evaluate the effect of each action (not the actual one performed) through a
simulator and tell the network whether there is a punishment or a reward. The procedure used
here is different from on-line simulation techniques in real-time scheduling. In on-line
simulation techniques, simulation is used to predict the system's behavior in the future, whereas
in Q-learning with a discrete model, simulation is used for learning purposes (and therefore the
behavior of the system during that period of time (past) is already known). The actions are
simulated independently and thesystem performance is calculated for each action. According to
the results of the simulation, the actions are ranked with respect to the difference calculated. The
type of reinforcement is defined, as explained in the previous section, based on the relative
difference of previous and current performance criteria. If there is a punishment case, but the
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rule's rank is the highest, thereinforcement is switched to reward. This procedure is applied to
the program in each iteration. The algorithm of Q-learning with a model is as follows:

- Receive the current state x;
- Calculate util(x,i), for each action i;
- Select the action a;
- Perform action a;
- Receive new state y and reinforcement r;
- Simulate all actions to predict their reinforcements;
- Calculate the desired utility of action a based on the new state, reinforcement and simulation

results; u = r + 8 . Max { util(y,k) I k e actions I (If action a is good according to
simulation results, reward the network, otherwise punish the network.)

- Adjust the utility network, by backpropagating the error pU, where pU = u - util(x,a);

3. DEVELOPMENT OF A REAL-TIME SCHEDULER

This research required two computers (IBM PC compatible 80486/33) to be used
simultaneously. The first computer was used to run the Q-learning and Q-learning with a
discrete model, and the second one was used to run the job-shop simulator to simulate the
manufacturing environment to be controlled in real time. All data transfer between these two
systems has been achieved through serial communications. All programs were written in the C
programming language.

A discrete-event simulation program was utilized as a manufacturing environment. In the
simulator part, the jobs are created randomly with deterministic arrival times, processing times
and due dates. Probability distribution functions are used to create these parameters with
different characteristics based on the job type. There are seven job types in total. In addition,
There are setup dependencies based on the current and previous job types. The proper
dispatching rule (actions) is received from the other computer by the communication routine of
the program. The simulator calculates the performance criteria after the completion of the
process. Then the selected performance criteria is sent to the other computer. In the controller,
Q-learning and Q-learning with a discrete model were utilized.

3.1 Characteristics of the Problem

The characteristics of the scheduling problem of this research are explained as follows:
- There are independent single-operation jobs that are available for processing at time zero

and over time. The system creates seven types of jobs. Each job type has its own arrival
behavior, process plans, processing time distributions, and setup dependencies.

- The setup times depend on the sequence of the jobs. Different types of jobs might have
different setup times based on the job processed previously.

- The machine is continuously available and never kept idle while work is waiting. The
machine never breaks down.

- Pre-emption (interruption of process for processing other jobs) is not allowed.
Transportation times of the jobs are negligible.

- The maximum queue size for the machine is limited to ten. When there are ten jobs
available in the queue, the jobs entering the system are rejected.

- The interarrival times, processing times and due dates are randomly assigned based on the
job types (see Table 1).

3.2 Evaluation of a Schedule

In this paper minimization of work-in-process inventory (WIP: The average of the total
number of jobs in the system) was chosen as the performance criterion.
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Job Types
Interarrival

times 1 2 1 _3 1 4 1 5 1 6 7
Type Poisson Poisson Poisson E xpo Expo Expo. f Expo 1

[I Mean 25 50 45 22 75 70 100 ]
Processinq

Times2 4 6 7

Distribution Type Normal Normal Normal Normal Normal Normal Normal
Mean -4 6 5 3 10 8 15

Std. Deviation 0.2 0.3 0.2 0.1 0.6 0.4 0.75

Due Dates 73-j

Distribution Type Normal Uniform Uniform Normal Normal Normal Uniform

Mean/Min. _5 3 0 1 10 5 0

Std. Dev./Max - 2 4 10 1 2 2 10

Table 1. Probability Distributions for each Job Type

3.3 Dispatching Rules (Actions)

Fifteen dispatching rules, reported in the scheduling literature, were selected for this research.
The definitions of these rules are as follows:

SPT (Shortest Processing Time): The job with the least expected processing times has the
highest priority.

LPT (Largest Processing Time):The job with the largest expected processing times has the
highest priority.

FIFO (First In First Out): The highest priority is given to the job that arrived earliest.
LIFO (Last In Last Out): The highest priority is given to the job that arrived latest.
SST (Shortest Setup Time): The job with the least expected setup time has the highest

priority.
LST (Largest Setup Time): The job with the largest expected setup time has the highest

priority.
SPST (Shortest Processing and Setup Time): The job with least expected processing and setup

time has the highest priority.
LPST (Largest Processing and Setup Time): The job with largest expected processing and

setup time has the highest priority.
EDD (Earliest Due Date): The highest priority is given to the job with the earliest due date.
LDD (Latest Due Date): The highest priority is given to the job with the latest due date.
mSlack (Minimum Slack Time): The job with the least amount of slack time (available time

before due date time for remaining operation) has the highest priority.
MSlack (Maximum Slack Time): The job with the largest slack time has the highest priority.
CR (Critical Ratio): The highest priority is given to the job with the smallest ratio, calculated

at time t (current time), as follows: CR(i) = (Due Date (i) - t) / processing time of job i.
SSlack: The highest priority is given to the job with largest value found by the following

formula: Sslack = Due Date - Arrival Time - Process Time - Setup Time
Slack / RT: The highest priority is given to the job with largest value found by the following

formula: Slack/RT = (Due Date - Current Time - Process Time - Setup Time) I ( Due Date -
Current Time).

3.4. Application of Q-Learning to the Manufacturing Problem
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Fifteen independent neural networks (backpropagation with dual subroutines), one for
each fifteen dispatching rules and each with the same inputs and one output, were built in the
program.

3.5. Interaction of the Scheduling Problem and Q-learning in Real-Time

The programs and the interactions is managed as follows: First the queue status is
transferred to the control from the monitor. Then the queue status is translated to the input form.
Fifteen networks in the Q-learning use the same inputs, but, since they have different weights, all
give different outputs. Each network's output is collected and processed by the Stochastic Action
Selector. Each of the fifteen rules had a chance to be selected as much as its output value. The
selected rule is then transferred to the monitor. The monitor applies the rule to the system. In
other words, it processes the job required by the dispatching rule (like the job with earliest arrival
for FIFO, the job with shortest processing time for SPT etc.) After the job is processed, the
monitor sends the selected performance criteria back to the control. This information is needed
for reinforcement of the networks: If the WIP has increased after applying the rule, the network
which this rule belongs to is punished. If WIP has decreased after applying the rule, the network
is rewarded. If it stayed the same, the weights are not adjusted.

3.6. Results

The results were compared against the utilization of a single dispatching rule all the times
(a technique currently used in the industry). The time periods were chosen as 12,500 and 25,000
simulation units (1 simulation unit was equal to 1 minute), which were approximately equal to 1
daily shift working for one month and 2 daily shift working for one month (see Table 2). The
results of the benchmarking are in for 12,500 time units, and in Table for 25,000 time units. Q-
Learning with a model gave the best results for work in process (WIP) inventory (5.64 for 12500,
and 5.63 for 25000).

4. CONCLUSIONS

In this research, a Dynamic Programming based reinforcement learning algorithm "Q-
learning" and its extension, "Q-Learning with a model", were applied to the FMS scheduling
problem. We also described a small example which demonstrates the methodology. By exploiting
the parallel processing and modeling capabilities of neural networks and reinforcement based
algorithms it has the potential to be extremely fast and highly adaptable to customer needs. This
integration technique has the potential to solve real-world sequencing and scheduling problems
in real-time.
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Simulation Time
12500 25000

SPT 8.985 8.662

LPT 7.181 7.144

FIFO 8.306 8.271

twO 7.465 7.640

CR 9.091 9.062

MStack 7.046 7.078

mSlack 8.449 8.485

EDO 7.883 8.302

LDD 7.317 7.493

SST 5.743 5.778

LST 7.920 7.823

SPST 8.386 8.497

LPST 8.036 83.79

SSIock 8.909 8.809

SlackIRT 8.950 8.808

Q-.Lamlng 7.421 7.368

Q-L+M(Trainlng) 5.701 5.668

Q-L+M(Testlng) 5.644 5.632

miilmum 5.644 5632

Maximum 9.091 9.062

Average 7.691 7.706

* Q-L+M: Q-Learning with a discrete model

Table 2. Result for Work -In-Process-Inventory (Minimization)
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Abstract
In this paper we present the principal features and modes of operation of a new

real-time control system (RTCS) and demonstrate its use as PID Gain Scheduler for
stabilization of synchronous machine transients. Brief overview of RTCS functionalities
is provided and a numerical example is presented to illustrate its performance.

Introduction
Being able to accurately predict the behavior of a dynamic system is of essential

importance in monitoring and control of complex processes. In this regard recent
advances in neural-net based system identification represent a significant step toward
definition and design of a new generation of control tools for increased system
performance and reliability rQ,2,3:, i The enabling functionality is the one of accurate
neural-net representation o -nodel of a nonlinear and nonstationary dynamic system.
This functionality provides .resting new opportunities including:

(a) The ability to predict future system behavior on the basis of actual system
observations

(b) On-line evaluation and display of system performance and design of early
warning systems, and

(c) Controller optimization for improved system performance.

Most of the existing control methodologies depend largely on the historic
information about the system performance. These methodologies operate on the premise
that future control actions are going to be able to correct presently observed errors.
Clearly, such control actions are inherently reactive. There are very few exceptions of
this principle one of which is the derivative action of the PID controller. Derivative
action is supposed to counteract the linear prediction of current control error.
Unfortunately, the derivative action is turned off in most of real-world applications
largely due to the difficulties in adjusting it manually. With the capability to predict
system behavior accurately and hence predict the errors, PID tuning can be carried out
with more confidence resulting in improved system performance.

Learning of a System Model
The task of critical importance is capturing a model of a dynamic system. This is

accomplished through a learning process. A feedforward multilayered neural network is
attached to an unknown dynamic system as shown in Figure 1. Same inputs (controls)
are provided to the unknown system and to a neural-net and their outputs (responses)
are obtained. The closed-loop prediction error is calculated as a mean-square-error over
the prespecified time horizon. This error serves as on/off trigger for the learning
process. Learning is carried out in real-time and has the incremental character. Each data
point is processed once, hence the storage requirements are minimal. During the

arning process the response of a neural-net model gradually approaches the actual
system response at a rate (adjustment rate) that can be controlled. As the adjustment rate
increases (faster learning) so does the amount of computing. In practice, the adjustment
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rate is controlled to suit behavior of a learning process as well as capabilities of
computing equipment [5]. During learning the RTCS is in the closed-loop prediction
mode.(Figure 2.)

PREDICTED

CONTROL PLANT RESPONSE

COMMAND

PID PLANT

t 1RESPONSE

FEEDBACK

Figure 1. Learning a Model of Dynamic System

PREDICTED

RESPONSE
(CLOSED-LOOP)

CONTROL PLANT
Neural-Net

COMMAND

RESPONSE

FEEDBACK

Figure 2. Closed-Loop Prediction of System Response

On-Line PID Gain Scheduling
In operation a copy of a neural-net model (of dynamic system) is used for open-loop

prediction of system response (see Figure 3). Typically prediction rates are many times
higher in comparison to the actual system response. In other words, in few seconds of
real time the predicted response can be calculated for several minutes ahead. We use this
capability to evaluate system performance through the comparison of predicted and
desired response and consequently as a basis for optimal PID gain scheduling.

Gain scheduling is carried out on-line by suitably designed optimization
procedure.(Figure 4.)
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Figure 3. Open-Loop Prediction of System Response
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Figure 4. Schematic Depiction of On-Line PID Gain Scheduling Process
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Synchronous Machine Control
In preceding sections we have described briefly the main characteristics of the

proposed Real-Time Control System. Here we provide some results to illustrate the
application of developed technology to a problem of stabilization of synchronous
machine transients. For that purpose we consider an example of a nonlinear
synchronous generator connected to a variable load [6).

Synchronous generatror is equipped with two control mechanisms. One maintains
nominal frequency (fdesired = 60Hz) and the other one , the stabilizer, maintains
nominal generator voltage (Vdesired = Vnom). Frequency regulation is a slow
electromechanical process due to large generator inertiae. On the other hand voltage
regulation is considerably faster and can be effectively used to control electromagnetic
transients.

The experiment is conducted in the following manner. First, a neural-net
representation of the generator is obtained using the information gathered during
normal system operation.(Figure 5.) During this process a slow adjustment rate was
selected in order to minimize computing requirements. Successful learning is indicated
by a small closed-loop prediction error and open-loop prediction mode is engaged.

RESPONSE: V
V
1.1

1.0625 - 2

1.025-

0.9875-

0.950 0 0 0 40 o t 0 o 0 100
(00"00:OOXOO.00:02) Time (x 0.25 sec)

RESPONSE: frequency
frequency

1.02'

1.0075

0.995-

0.9825

0.970 0 40 0 0 0 0 0 100

(00:00:00X00:00:02) Time (,x 0.25 se)

Sa. Initial phase of the learning process
Figure 5. Time evolution of the generator terminal voltage and frequency

following 5% step load disturbance
1 - actual response (generator model)

2 - neural net response
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5b. Successful learning has been accomplished
Figure 5. Time evolution of the generator terminal voltage and frequency

following 5% step load disturbance
I - actual response ( generator model), 2 - neural net response
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Figure 3. Time evolution of the generator terminal voltage and frequency
following 5% step load disturbance

1 - actual response / Initial PID Parameters
2 - neural-net response / Final (Optimal) PID Parameters

3 - actual response / Final (Optimal ) PID Parameters
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The neural-net model and PID controller are coupled together to provide open-loop
prediction of system transients (Figure 6a). Using the predicted response and comparing
it to the desired one (Vdesired = Vnom and fdesired = 60Hz) system performance
function is evaluated and optimal PID gains are determined. Figure 6b shows the
response of the actual system controlled by the optimal PID controller.

Conclusion

In this paper we have presented main characteristics of a new real-time control
system (RTCS). Its use as PID Gain Scheduler for stabilization of synchronous machine
transients is illustrated with a numerical example.
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Backpropagation feedforward neural networks have been applied to pattern recognition and
classification problems. However, under certain conditions the backpropagation net classifier can
produce non-intuitive, non-robust and unreliable classification results. The backpropagation net is
slower to train and is not easy to accommodate new data.

To overcome these difficulties, a novel neural net paradigm that integrates an adaptive resonance
theory net (ART2) and a backpropagation net is proposed. ART2 is used to classify patterns into
coarse classes and the latter is employed to recognize patterns within each class. This network is
applied to a petroleum reservoir engineering problem for model identification and parameter estimation.
A real-time model recognition system incorporating the proposed neural net is also implemented to
demonstrate its measure-while-testing capability.

INTRODUCTION

Pattern recognition and classification are potentially useful approaches for interpreting data
generated by industrial systems such as chemical, manufacturing, and well testing processes. Possible
applications include sensor data interpretation, model identification and validation. Neural networks,
especially backpropagation networks 1, have been applied to many pattern recognition problems
including the classification of sonar targets2 and sensor interpretation 3 .

Application of back-propagation networks to well test model identification in reservoir
engineering has been studied by several researchers4-. These results have shown that the feedforward
backpropagation network classifier has the ability to learn a set of pressure derivative curves and can
often generalize to new cases of known models. Nevertheless, several difficulties were uncovered when
more models are included in the net decision space and when more training curves are added to the
training set4 . For example, with 16 models and 30 pressure derivative data curves per model, it took
more than 12 hours on a 486-PC for the backpropagation net to learn6 . Moreover, it can not correctly
distinguish models with similar features from each other. Furthermore, the backpropagation net is not
robust since it is not easy to add new models.

This work is partially supported by TUPREP at University of Tulsa funded by 12 major oil
companies in the world.

1-392



In this paper, we propose a novel neural net to remedy the aformentioned difficulties. This
network, called the ART2-BP net, uses an ART2 net7 to sort a large number of input patterns into
several classes. The one node that contains several similar patterns in the output layer of the ART2 net
is then fed to a 2nd-order backpropagation net8 for further classification. The advantages of the
ART2-BP net include shorter training time, improved training and classification abilities, and
capability of easily accomodating new models.

This paper illustrates the application of this new approach to identify well test interpretation
models. A propotype module, which can be implemented in a pressure transient system for real-time
application in the oil field, is also described.

The ART2-BP NEURAL NET

The ART2-BP neural network is shown in Figure 1. In this architecture, a backpropagation net
is placed directly on top of an ART2 net for the bottom-up processing. First, top-down weights and
bottom-up weights of ART2 are modified by the training examples. Then the three-layer BP net
associated with each class node is trained using a 2nd-order backpropagation algorithm8 for further
classification. The training-recognition procedure can be described as follows. Input patterns are
clustered into classes through the unsupervised learning process provided by ART2 layer. At this stage
coarse classification was carried out such that patterns with similar features were clustered together.
Patterns in each class are then forwarded to the BP layer for fine classification. In this phase, training
is efficient because faster learning algorithm is employed. Furthermore, classification is effective since
fewer patterns are used.

It is well known that ART2 is an unsupervised learning neural net7. Without any specified
decision criterion, patterns can be categorized into classes. High vigilance parameter could be chosen
to explicitly distinguish patterns with similar features, but the net will not be able to classify patterns
corrupted with noise or distorted features. On the other hand, if the vigilance parameter value is too
small, almost all patterns will be categorized as a single class.

6x12x3 6x12x3 6x12x5 I
Class 1 lass 4r

Winn r T ke N Cl steingART2 Layer

Subsystem [Subsystem

I

Input Pattern

Figure 1. The ART2-BP neural net.

1-393



The backpropagation algorithmI reawakened the scientific and engineering world to model-free
function estimation with neural networks. Though a great deal of applications using feedforward
neural networks with the backpropagation algorithm have been reported, several disadvantages were
also mentioned. These include slow training, convergence failure during training, and inability for the
trained neural net to accurately distinguish patterns with similar features. More often than not, the
algorithm converges to one of the local minima or the learning procedure stops prematurely. In the
recalling phase, the neural networks being trained will be unable to produce satisfactory results.

To solve the difficulties mentioned above, an unsupervised/supervised type neural net, namely,
ART2-BP net, is proposed. The idea is to use a low vigilance parameter in ART2 net to categorize
input patterns into some classes and then utilize a backpropagation net to distinguish patterns in each
class. Advantages of this ART2-BP neural net6 are (1) improvement of recognition and classification
capability, (2) enhancement of training convergence mechanism, and (3) easy to add new patterns.
Detailed derivation and theoretical analysis on the ART2-BP net will be reported elsewhere.

Problem Setting and System Implementation

One major purpose of well testing in petroleum reservoir engineering is to determine the ability
of a formation to produce reservoir fluids. Further it is important to determine the underlying reason
for a well's productivity. Well test often can provide information about formation permeability, extent
of wellbore damage or stimulation, reservoir pressure and boundaries, etc.

In a pressure transient test a signal of pressure vs. time is recorded. This signal is plotted as
derivative curves which are used in the interpretation process. The signal on these curves is usually
deformed and shaped by some underlying mechanisms in the formation and the wellbore. These
mechanisms are known as well test interpretation models. Thus to identify these models from the
signatures present on the derivative plot is of great importance.

Hardware Implementadonm Software Implementaton

--- / Modem--- . Offi\c

cable clock, A, Model Parameter
"i-gna FUter Identification Regression

-,-- I Module Module Module

.I, Hi-- Confidence
, -90 •"' Interval

il y JMoeule

Pressure ENDI
>Z2000psi

./2_

Temperature Gauge Electrical Pressure Gauge

Fig. 2. A real time well testing recognition system.
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The problem of identifying the well test interpretation model has been described as the inverse
problem9 . Inverse theory techniques (e.g. regression analysis) have been used to solve the inverse
problem. Regression techniques can be used to estimate oil reservoir properties once the model
reflected by the data has been identified. Since more than one interpretation model can produce the
same signal, this approach can lead to misleading results. Further, without going through pattern
recognition processing, wrong model may be selected by reservoir engineers who are not experts in the
pressure transient analysis.

This problem has been effectively dealt with using backpropagation neural nets4 ,5 . Results
showed that the neural net approach is effective in identifying the well interpretation model
Nevertheless, several comments were also made. They include (1) selection of training examples
having high quality data, (2) smaller nets can be trained efficiently and to correctly recognize one
model, (3) the net can not learn new models, and (4) long training time as the size of the net and
training examples become large. In this paper we show that the above four points can be resolved
using the ART2-BP neural net.

A real-time well testing recognition system based on the ART2-BP neural net is depicted in
Figure 2. Data collected from the two gauges are fed to clock, A/D and signal filter module to generate
the time-dependent pressure curves. Model Identification Module is actually the ART2-BP neural net.
After the model is identified, regression techniques such as the Levenber-Marquardt optimization
technique in Laplace domain10 are utilized for parameter estimation. In the Confidence Interval
Module, statistical characteristics of the identified model are calculated to verify the results.

This system has the capability of measurement while testing. Therefore it can be put in oil field
for real-time pressure transient analysis. Thus a complete set of high quality data can be obtained in a
very short time during the testing. This on-site well test can reduce costs and enhance the prospect of
correct interpretation.

Fig. 3(a). Input pattern is clustered in Class 2. Fig. 3(b). Model identified.

This package is interactive and user-friendly. A sample recognition process is illustrated in figures 3
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(a-d). A time series pressure pattern is categorized in Class 2 which contains 4 models (Fig. 3(a)).
Fig. 3(b) shows the pressure data matches Model I in Class 2 with very high activation value of 0.87
in comparison to other three models with low activation values (0.12, 0.15, 0.21). Fig. 3(c) shows the
pressure data matches a wellbore storage/skin model. Once the model is identified, Fig. 3(d) shows the
regression results after applying a Levenber-Marquardt optimization technique in Laplace domain.

ILLUSTRATIVE EXAMPLE

We applied the same well testing data used by AI-Kaabi and Lee4 to demonstrate the better
recognition capability exhibited by the ART2-BP neural net Ten interpretation models as shown in
Figure 4 were used in the training process.

The ART2-BP net consists of two training phases. One is the unsupervised clustering by ART2,
the other is the supervised learning using the 2nd-order backpropagation algorithm. Each derivative
curve in the training model was normalized between 0 and 1, and then was sampled at 12 points as the
input pattern. Note that the same normalization method must be used for all curves including the
training curves and the test unknown curves to avoid curves being shifted, enlarged or reduced. A
vigilance parameter of value 0.9 was used in AR12.

There were seven classes formed at the output layer of ART2. Class 2 contains Models 2, 6,
and 9; on the other hand, Models 4 and 5 were clustered together at Class 4 (see Fig. 4). Since each of
these two classes needs one BP net, a 12 x 24 x 3 BP net and a 12 x 24 x 2 BP net were constructed
for Classes 2 and 4, respectively. Both nets took less than 100 iterations for a satisfactory training.
Note that this process can be executed in parallel. Compared with using a single BP neta training time
is much shorter4.

-~e N M d*l2I

S....... ...... . - ,,- - I . - .."" | 4,,..i .. -14-•M• -- i-'m
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Class Class 2
Meid 3 I." 4
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° "2) -- *

"- ,"..'- - - -/ .,,-,,-- --

Class 3 Class 4 Class 5

MiDdI Ibd 0

Class 6 Class7

Fig. 4. Classes categorized by ART2 with vigilance parameter 0.9.

The recognition ability of the ART2-BP neural net was evaluated by applying an unknown
pressure curve pattem (as shown in Fig. 7.) to the net. This new pattern was cluster into Class 2.
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After going through a 12 x 24 x 3 BP net, it was identified as Model 6 in that the output node
representing Model 6 yields a high activation value of 0.811 compared with much lower activation
values in the other two node. Table I shows the results. By contrast, when applying to the BP net
alone, activation levels of two nodes (Model 2 and Model 6) were higher than 0.5. Because of the
inherent nature of the sigmoid function, either one could be a matched model.

Table. I Recognition Capability Comparison.

BP ART2 BP
DURVATIV3 PLOT

o (Activation) (Class) (Activation)

0.075 1
sn 0.594 2 0.010

Owosso 0.076 3
m u ..0.079 4e0.oe0.031 4

"0.936 2 0.81100 07l, o,3 0.068 5
rdXIAXD in TU 0.073 6

0.079 2 0.12S

Fig. 5. Unknown test pattern. 0.079 7

CONCLUSIONS

This paper has presented a new approach based on ART2 and BP neural nets to identify the well
test interpretation model automatically from the pressure derivative curves. The ART2-BP net has
better recognition capability and is easy to accommodate new models. Moreover it overcomes the
drawback of the backpropagation network. This net can be implemented into an intelligent pressure
transient analysis system suitable for real-time model idenfication.
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Abstarct: Analogy between multilayer dielectric optical interference filters and
multilayer neural networks is investigated, and the former is efficiently refined from
rough design by the adaptive learning algorithm for the latter. Sensitivities of the
filter response with respect to design parameters, i.e. dielectric thickness and refractive
index, are efficiently calculated by back-propagation through layers for the
gradient-base algorithm. Design examples for low and high pass filters are presented
to demonstrate usefulness of the developed algorithm.

1. Introduction

The design of multilayer dielectric optical interference filters and anti-reflection coatings
with complicated properties requires tedious parameter optimizations.[1-31 Some of the
design methods, such as modified gradient method and damped least squares method,
require the calculation of derivatives of the filter characteristics with respect to the
design parameters. Several attempts have been made to efficiently calculate the
derivatives. Recently an parameter optimization algorithm known as error back-
propagation (EBP) was developed for adaptive training of feed-forward neural networks,
i.e. multilayer Perceptron (MLP), with efficient calculation of the derivatives in layered
architecture. [4,5] In this paper we have investigated analogy between light transmission
in the multilayer dielectric thin films and signal feed-forward in the MLP, and
developed a new refinement procedure for the multilayer dielectric interference filters
and coatings.

2. Analogy between dielectric interference filter and neural networks

Lets consider an electromagnetic plane wave incident on a dielectric multilayer filter as
shown in Fig.1. Here nm and h, denote the index of refraction and thickness of the Ith
layer, respectively. The electric field strength (E,.w) and magnetic field strength (HM.])
at z=zi+1- are related to the electric (EM) and magnetic field strength (HR) at z=zi- by a
matrix ew ation xwL = Mt x, where xz =i E, H, ]T and Mt is a 2 x 2 transmission
matrix deffiied as [1]

I coskidi -jZt sink4d I
Mi= I

I -jYi sinkdi coskdi I.
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Fig.1 Multilayer dielectric interference filter. Thickness of the Ith dielectric layer is hI
= zi+, - zi. The electric and magnetic field strengths are evaluated at planes depicted
by the dotted lines.

Here the ko, is free space wave number, ck (= nhi cos(O) is the effective optical
thickness, and lo is the propagation direction angle in the lth layer and related to the
angle of incidence 0. by Snell's law. The optical characteristic impedance Zt (=1/'Yd

is defined as Z. coso Writ and ZIns coso for transverse electric (TE) and transverse
magnetic (TM) plane waves, respectively.

This matrix relationship is similar to that of feed-forward neural networks, where the
nth element of the (l+l)th layer becomes x(,.n•,=S( IW. xb.).[3,4] However, unlike

m

standard neural networks, the nonlinear function S(.) is not shown here, and the matrix
elements may have imaginary part. Now design of thin film dielectric filters, i.e. to
find proper dielectric constants and thickness, becomes training of neural networks, i.e.
to find the synaptic interconnection weights W'.

3. Refinement Algorithm

We adopted the popular error back-propagation learning algorithm for the multilayer
neural networks.[4,5] First a cost (or merit) function is defined at the output as

E a I I (i(yA-e)2/2, where the y and t are actual and target values of the
S n=1.2

frequency responses, and s is an index for different frequency. The ats is weighting
factor of the sth frequency component to the cost function. The cost function E is
minimized by iterative gradient descent algorithm. However, unlike standard neural
networks which optimize independent synaptic weight matrix elements, our matrix
elements are all f-,nctions of dielectric index n, and thickness h,. Small modification of
the learning rule is made to handle this difference as

h,[p+1] = hs[p] - n aE/lahi [p],
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a _ a aE_ __1_ a E W'12 E a W• a E31  a W'22a h, a w 111 a h i a W 112 a hi a W 12 a hi a W 122 ht

a w11 a E
ah, - -kjz cos, sinkdi, awl - Re( 1sTixfn),

ah kons COSO, coskId,, a(E )

aw2 a E
al t- -kjnZY, coso, cosk4,, aI( Y.SWID,

a W12 aEh -kn cosOt sink4d, a wl Re( SI),

where p is an index for iterative learning epoch and 'i is a learning coefficient It is
worth noting that the w',.'s are defined as real numbers from the complex

transmission matrix elements M],. by MWll--'W1, MI2-j W'12, MI2 1 --j w'2, M fi-ugh.

The mth element of the feed-forward signal at the /th layer with frequency s (xL) is

recursively calculated from the input layer, i.Le 1=, as x40.1)= 1M0. xm (10,1..
m

L-l). At the Lth and output layer the derivative of the cost function E with respect
to the actual output yA - x4 is defined as 8Ln, i.e. 8L- asE/axL, = (y'-4),
and back-propagates through layers to yield the other derivatives, i.e.

8S aE X E xl Ma (1=L-1, I).
In a- Y_• 8,(,. ". "i

a X~IJ m-1.2 aX,,~ a mn =1.2

Although the above refinmnent rules are for the dielectric thickness only, similar rules
can be easily derived for the index of refraction and incident angle.

At iractical fabrications accurate control of the dielectric thickness is demanding.
Since the sensitivity of the cost function with respect to the dielectric thickness, i.e.

a El a hi, is calculated during refinement, low sensitivity restriction may be easily
incorporated in the definition of the cost function E. Better performance at critical
frequencies may be obtained by assigning high weight factor a.. Since adding
another layer to existing networks does not cause much difficulty, adaptive increase of
dielectric layer may also be incorporated for better performance.

4. Results

In Fig2 frequency responses are shown for low pass and high pass dielectric filters.
The solid line and dotted line represent frequency responses for initial and refined
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dielectric thicknesses, respectively. Although the initial design was quite poor, the
refined design show good frequency responses.

5. Conclusion

In this letter we have demonstrated a new refinement algorithm for design of multilayer
dielectric optical interference filters and coatings. Based on popular adaptive training
algorithm for multilayer neural networks, the sensitivities of filter response with res%,ect
to the design parameters are efficiently calculated by back-propagation through layers.
By assigning high weight factors for the cost function at critical frequencies and
adaptively changing number of layers it will provide a powerful and efficient iterative
design procedure.
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ABSTRACT `

The application of Back Propagation Neural Networks to gesture recognition in general, and
to recognition of static representations of the American Sign Language (ASL) alphabet in partic-
ular is presented. Recognition system architecture, decomposition methods, data collection and
neural network construction tools are discussed. An experimental study of ASL recognition is
presented. The results achieved provide encouragement for the next stage of development: com-
puter recognition and translation of dynamic signs and gestures.

1. INTRODUCTION

Approximately 300,000 Americans use American Sign Language as their primary language.
[I]. Deaf and hearing people sometimes rely on a sign interpreter to facilitate communication by
translating from ASL to spoken English and from spoken English to ASL. The global problem is
to develop a computer recognition and translation system as a communication tool both for deaf
and hearing people. Some papers describing different approaches to this problem have appeared
in the past few years [2-6]. Some authors have tried to explore artificial neural networks [4-6].

We have developed a back propagation neural network (NN) system to recognize static repre-
sentations of the ASL alphabet. Each letter in the alphabet is represented either by a handshape or
by a handshape-movement pair. We used a CyberGlove to collect input data for NN training and
testing. In this paper, we will discuss the features which were used to describe signs, the NN
development problems, and our results.

We wish to apply what we have learned in developing these NNs to other NNs which would
recognize dynamic fingerspelling, and, eventually, ASL signs and non-linguistic gestures. Such
NNs have a potential to be useful in several fields; the most obvious one being applications
involving a sign language. A few possible sign language applications are sign dictionaries (for
example ASL-English, English-ASL, or ASL-ASL), sign language tutorials, translation pro-
grams, and aids to composing and recording sign literature and poetry.

Another group of applications are those for which gestures permit more efficient and/or natu-
ral computer input than do mice or keyboards. These applications include those which manipulate
virtual realities or maneuver robots [7].

A third use of a sign or gesture recognition system would be to assist communication by peo-
ple who are unable to speak, and who can not learn to sign, either because of cognitive or physical
limitations, or because they don't know sign. A NN could be used to map movements which such
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people are able to make onto linguistic elements (phonemes, syllables, morphemes, words, or

phrases); and then to act as a personalized interpreter for the individuals.

2. SIGN RECOGNITION SYSTEM ARCHITECTURE

The characteristics of the recognition problem we solved are:
- A = (Ar - a set of recognized classes, r = 1, 2,. . .., R. Each class Ar corresponds with a distinct
letter from the ASL alphabet (R = 26). The set A is presented in Fig. 1.
- X = xix) - features set or inputs, i = 1, 2, .... , n. The inputs are: degrees of flexion/extension of
the joints in one hand, and degrees of abduction/adduction between fingers (n = 18).

Our first difficulty came with the discovery that the recognition problem is not linear, but is
much more complicated. This was twe main reason we decided to explore multi-layer back prop-
agation NNs [8]. The simplest architecture of NN theoretically capable of solving this problem
utilizes twenty six outputs and a varying number of hidden layers and number of nodes in the hid-
den layer(s). Unfoi iately, our experiment with this architecture have not been completed suc-
cessfully. Despite _.. using a fast SPARCI0 Station and our manipulation of the NN architecture,
learning rule and training parameters, we were unable to achieve any reasonable results in real
time. Therefore we decided to decompose the problem into several simpler recognition problems.
There are several different possible ways to decompose the problem. In our study we have lim-
ited the number of outputs for each developed NN to three. This made it possible to construct very
simple and rapidly trained NNs. Another problem was the method of dividing recognized classes
into subclasses. The most obvious way is to employ an alphabetic distribution: Iabc, def, ghi,....
, yz). In the highest level of decision making each group of three subclasses has been joined into
a single larger subclass. Therefore the decision making system for ASL alphabet recognition has
three levels. However, this design requires greater accuracy on the highest tier. To solve this prob-
lem the subclasses on the highest level have to be more remote in the feature space, and we can't
be sure that we achieved this using an alphabetic distribution. Another sign distribution was made
by an ASL signer, who was experienced with several linguistic analyses of ASL. The linguistic-
expert distribution, as we dubbed it, is shown in Fig. 2.

After making subclasses we developed thirteen NN (NN 1, NN2 1, NN22,...., NN311,
NN312, .. . , NN333). They have similar architecture: they all have three layers (an input layer, a
hidden layer and an output layer) as shown in Fig. 3. Only the number of nodes in the hidden layer
varies. The back propagation training algorithm with momentum and adaptive learning rate, and
log-sigmoid transfer functions was used.

To improve initial conditions, we applied the Nguyen-Widrow NN initialization method [9].
We used two stop criteria: an acceptable level of sum squared error on the NN output, and a max-
imum number of epochs to train. We also employed recognition error probability estimation on
the training set.

Two different methods have been used to make decisions for testing samples. Let us define NN
outputs as Oj. - for the first level, 0O1 - for the second level, and Oj3km - for the third level
(j, k, m = 1, 2, 3). The simplest method of making the decision is based on finding the maximum
output in each level. The second way is to multiply the outputs for each letter, and then to make a
decision also by finding the maximum and comparing it with definite threshold (A):

X E At* ,if Or* = max Or and Or* >A;
r

r=1,2,.... ,R; A=[0,1]; Or=Ojkm=Oj= Oj2k Oj31 m; j,k,m=l,2,3
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3. DATA COLLECTION AND NEURAL NETWORK SOFTWARE

Data were collected using a CyberGlove - a special device with sensors that monitor the
shapes of the signer's hand and fingers. There are 18 sensors on the CyberGlove including two
bend sensors on each of the five fingers to measure joint flexion, four abduction sensors to mea-
sure the corresponding finger movement, an additional sensor which measures the thumb rotation
across the palm toward the pinkie finger, another sensor which measures the pinkie rotation across
the palm toward the thumb, and two wrist sensors to measure wrist pitch and yaw.
We used the CyberGlove Interface Unit to connect the CyberGlove to our Silicon Graphics
Workstation -and we also used special Virtual/Hand software to process the data received from the
CyberGlove. An experienced signer produced 40 samples of each letter, either making pauses or
coarticulating between letters. Then these data were randomly divided into training and testing
sets (30 and 10 samples of each letter correspondingly). Additionally, a continuous sequence of
samples of three letters which might be confused was recorded. This sequence was approximately
12 second long and included 357 frames (30 frames/sec).

NN software was designed with the Neural Network Toolbox for MatLab on the SPARC sta-
tion [10]. NN Toolbox is a very powerful tool which permits access to all of the major neural net-
work paradigms, including back propagation. The software allows one to change the paradigm,
NN architecture and parameters, transfer functions, etc. and facilitates the design process.

4. EXPERIMENTAL STUDIES AND RESULTS

The experimental studies results are shown in Table 1. The recognition probability error was
used as the criterion to indicate quality.

Table 1.

Linear Solving Rule Back Propagation Neural Network Number of training samples

Training Testing Training Testing Level I Level 2
S.....................................................................................................................

.293 .304 0 .096 .038 .024 260
0 .065 .023 .020 520
0 .035 .019 .008 780

S.....................................................................................................................

The facts that NNs solve the problem much better than the linear solving rule and that the NN
training results depend on the number of training samples have been proved. The number
of nodes in the hidden layer is greatest for the highest level of decision making (20 - for level 1;
5- 10 - for level 2; 2-5 - for level 3). Also the training of the highest levels requires more
epochs to reach the acceptable level of sum-squared error (2500 - for level 1; 1200 - for level 2;
100-300 - for level 3). We also calculated an error matrix which showed us which signs were
more frequently confused. For example, the NNs confused the letters 'b', 'c' and 'o'. The same
signer then generated a sequence of these confused letters, including all possible transitions:
b - c -o - b - o - c - b. Fig. 4 contains the result of this experiment is (frames: 95-155,
A = .5). These experiments provide initial evidence that back-propagation NNs can be used to

solve gesture (ASL) recognition problems, and also to permit sign separation of a continuous sign
sequence.
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5. CONCLUSIONS

The experiments presented above demonstrate how useful back propagation neural networks
are in solving the static sign recognition problem. Decomposition is also very important in mak-
ing the system more applicable as part of an ASL translator. An attempt to extract static signs
from a dynamic sign sequence shows one possible way to solve the dynamic gesture recognition
problem.

We have taken the first steps in developing a gesture recognition package. Such a project will
be difficult to accomplish, but it will pave the way for many types of useful applications.
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Introduction

Road networks in satellite images are generally readily discerned by the eye of
the average human observer. Unfortunately, roads are difficult to extract
automatically from satellite imagery, and many hours of work are required to
extract them by hand. In the current world political climate, it is important be
able to provide accurate, up-to-date maps of the road networks in any region
of the world. For this reason, there is strong motivation to develop more
powerful algorithms for automatic road identification. 1

Background

Previous attempts to automate the process of identifying roads in satellite
imagery generally have approached the problem by using one of two types of
information about roads: their spectral characteristics, and their linear spatial
structure. Unfortunately, roads share spectral characteristics with other
types of terrain in satellite images (plowed fields, clear-cut forest areas, any
bare ground), and thus cannot reliably be identified from spectral data alone.
Moreover, many linear features occur in satellite images (barges, wakes,
furrows, clearings for electrical transmission lines, etc.), and therefore
techniques which identify linear features cannot reliably find roads. Even a
merger of these two approaches can be misled by river banks, furrows, dry
stream beds, field boundaries, levees, river meander scars, and the like. For
this reason, previous attempts to identify roads in satellite images have met
with only moderate success, and the problem continues to inspire a
considerable amount of research.

lAcknowledgements - This work was supported by the U. S. Army Corps of Engineers
Waterways Experiment Station, Geotechnical Laboratories, Mobility Systems Division,
Analytical Studies Branch (Mr. Robert P. Smith, Chief; Mr. Cary D. Butler, project advisor)
under the auspices of the U.S. Army Research Office Scientific Services Program
administered by Battelle (Delivery Order 856, Contract No. DAAL03-91-C-0034). The
views, opinions, and/or findings contained in this report are those of the author and
should not be construed as an official Department of the Army position, policy, or
decision, unless so designated by other documentation.
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Artificial Intelligence algorithms derive their power from the use of domain-
specific knowledge. Several different types of Artificial Intelligence
approaches to road detection are available, including Expert Systems, Fuzzy Set
Theory, Heuristic Search, and Artificial Neural Networks. This study extends
previous work on finding roads using artificial neural network techniques by
incorporating knowledge of spatial relationships (context) with the more-
normally used spectral information. Although useful results are obtained, it is
probable that a complete solution to the problem will require the integration
of several Al techniques into a hybrid system.

Using Contextual Information with Neural Networks to Identify
Roads

The scope of this study was to investigate the use of artificial neural networks
in identifying roads in Landsat Thematic Mapper (TM) images. Table I shows
the spectral sensitivity of the seven TM bands.

BAND BOUNDARIES (micrometers) COLXR
1 0.45 - 0.52 blue
2 0.52 - 0.60 green
3 0.63 - 0.69 red
4 0.76- 0.90 reflective-infrared
5 1.55 - 1.75 mid-infrared
6 10.40 -12.50 thermal (emission) infrared
7 2.08 - 2.35 mid-infrared

Characteristics of the Landsat Thematic Mapper Spectral Bands
(adapted from Jensen, 1986, p. 34, and Richards, 1986, p. 13)

Table I

One goal of the project, in order to have a method of visually determining
whether the results were satisfactory, was to devise an automated process
which could accept as input a multi-spectral TM image and produce as output
an image of the road network suitable for overlaying on top of the original
image.

A Landsat TM image of the Vicksburg, Mississippi, area taken on 1 April 1991
served as a testbed (See Figure 1). This area was chosen due to its proximity to
the investigator and the consequent ease with which ground-truthing could
be performed. A 400-by-400-pixel section of the original image was used for
training and testing the network.

If the pixel to be classified as a road or non-road pixel is considered to be the
target pixel, then, in order to include the local context as part of the input to
the neural network, the pixels surrounding the target pixel would also have to
be included as part of the input. Consequently, it was decided to include both
the 8 pixels directly contiguous to the target pixel, as well as the 16 pixels
surrounding those 8 pixels, as part of the input, resulting in the input pixels
consisting of a 5-pixel by 5-pixel square centered around the target pixel.
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A backpropagation network with 175 input units, 50 hidden units, and I output
unit was constructed; the input data consisted of values from all seven TM
spectral bands for each of the pixels in the training set (See Figure 2).

1 FEW.

7-Band, 5 -by-5 Pixel Input Array for Context-sensitive Neural Network
(Showing Road Passing Through Center Pixel)

Figure 2

The image's pixel values (integer values from 0 to 255) were normalized to real
numbers between 0.0 and 1.0 in order to be used as input to the neural
network. The network was trained by exposing it to the data for 450 (out of
500) pixels, half of which were road and half of which were non-road. This
process was repeated until the rate of improvement in the network's
performance leveled off.

Once the network was trained, it was tested on the remaining 50 pixels. The
best-performing network scored 94% accuracy on the test set. An image of the
test area was produced using the trained network to identify road pixels; it is
included as Figure 3.

Conclusion

Although humans can readily trace road networks in satellite images, it is
difficult for computers to do so. Current techniques have concentrated
primarily on the use of spectral data alone; the results of the current report
indicate that use of contextual or spatial information is essential. The more
traditional statistical and rule-based techniques produce images with many
areas of soils identified as roads. Although the neural network technique does
not make many mistakes of commission (identifying non-road pixels as roads),
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it does omit many problematic road pixels. Consequently, additional work is
needed to connect the road segments, generated by the neural network, into a
coherent map of the road network structure. This will require information
beyond that provided by the neural network; this information may be
provided most easily by a hybrid system which utilizes several sources of
information. Work is underway on such a hybrid system.
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Figure 1 Landsat Thematic Mapper Image of Vicksburg, MS, 1

April 1991 - Band 1
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Abstract
The investigation of bladder cancer cell classification by Neural Networks(NN) is reported. In this work, a single
hidden layer feed-forward NN with error back-propagation training is adopted. Network configurations with various
activation functions, namely sigmoid, sinusoid and gaussian, are studied. A set of features. including cell size,
average intensity, texture, shape factor and pgDNA are selected as the input for the network. These features, in
particular the texture information, are shown to be very effective in capturing the discriminate information in cancer
cells. The experiments were conducted on 467 cell images from seven cases, normal and abnormal. The results
show a classification accuracy of as high as 96.9%.

1. Introduction
Until recently, bladder cancer was diagnosed almost exclusively by either cystoscopy. wherein a fiber optic device is
inserted into the bladder and lesions are detected visually by a urologist, or by conventional Papanicolaou staining of
bladder cells obtained from urine or from a bladder wash(hereafter called "conventional cytology")[Koss1979]. The
major use of cystoscopy is to detect tumors in patients expressing the symptom complex characteristic of bladder
cancer, which do not occur until the tumor has progressed to a more dangerous grade or stage. The difficulty with
conventional cytology is that its recognition rate to low grade lesions is highly sensitive to the training of the
cytopathlogist. Human can learn to recognize bladder cancer cells visually, but the process of screening samples
generally requires a high level of skill and knowledge [Koss19791, and the work is generally fatiguing and boring due
to its repetitive nature, therefore results are sometime inconsistent. Automatic cell classification has been studied for
decades by using conventional pattern recognition techniques (Noguchi1983, Zajicek1983], here we would like to
look into the application of neural network(NN) for bladder cancer cell classification.

Neural network has been utilized in many areas due to its potential high speed inherent in its parallel architecture,
learning ability and non-linear classification nature. Among various successful applications, pattern recognition is
one in which NN has shown results comparable or superior to the conventional approaches.

From pattern recognition view point, neural network, to the essence, constructs a non-parametrical discriminate
surface-boundary-in its often multidimensional input vector space. This surface is built up progressively by
exploring the discriminate information from labeled patterns in the training process. The trained network is then
used to classify future patterns by extrapolating the information learned. The discriminate surface is virtually coded
into weights and activation function threshold values of the networks during training process. Fig. I shows a
typical single hidden layer feed-forward neural network, which also has been used in this work.

Error back propagation training algorithm is chosen for our supervised learning processing. Back propagation
algorithm is a gradient based learning procedure. Although it has the drawback of getting stuck into local optima,
back propagation is by far the most popular method used and does perform well.

Input hidden Iaye output layer output

Fig. 1 Structure of a single hidden layer feed-forward NN
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In section 2, we study various neural network configurations used in this work. Section 3 considers the feature
extraction. Experiment results are presented in section 4. Section 5 is discussions and conclusion.

2. Network Configurations
In a multilayer neural network, hidden layers are of particular importance. How well and how quick the network
converges to an approximation of the discriminate surface, to a large degree, depends on the number of hidden
neurons and the type of the activation function used for each neuron. Too many hidden neurons will degrade the
generalization capability of the network. The issue can be directly analogized to polynomial curve fitting. Allowing
too few or too many parameters to be used in the polynomials will lead to under or over fitting. Therefore, there is
an optimal hidden neural number for each individual recognition task. Works have been done in trying to quantify
the generalization quality by using the concept of entropy or other complexity measurements.

Neural network can be perceived to have a underlying function decomposition mechanism [Nomickl989]. An
arbitrary function, e.g. the discriminate surface in classification application, can be represented by a collection of
simple primitive functions, which corresponds to the activation function associated with each neuron. It has been
prove, meeting certain conditions, neural networks with many types of activation functions are convergent
[Nornick1989]. Studies show the often used sigmoid activation function is not necessarily the optimal choice. It
has been suggested in certain class of problems the use of sinusoid or gaussian activation functions reduces the
training time substantially [Ashenayil992a,b]. In this work, sigmoid, gaussian and sinusoid activation functions,
denoted by fi(x), f2(x) and f3(x) respectively, are used in the network:

1
ft(x) = x (1)

1 + exp(--)
a

f2(x) = exp(- x (2)

f3(x) fx)

f3(x)= 2 (3)

f2 is not a gaussian function in the strict sense, but remains a bell shape. It is interesting to notice that if a sinusoid
activation function is used, assuming a single hidden layer structure with linear output layer, the neural network can
be made to resemble the fourier transformation. As fourier transformation is othogonal, there is reason to think that
a network with sinusoid activation function will, in general, use fewer hidden neurons than either sigmoid or
gaussian to approximate the same function.

1.2

1.0- fllx))

0.8

0.4

0.2 f3lx)

0.01 "
-6 -4 -2 0 2 4 6

X

Fig. 2 Activation functions.
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Fig. 2 denotes the three activation functions used in this work, with a, aandf equal to 1, (2n)-112 and I respectively.
It is easy to notice that for a value outside region [-5,5] the function output of fl(x) and f2(x) will become saturated
(close to 0 or 1). The discriminate nature of neural network mainly comes from the transition region on both sides
of the origin, before entering the saturation areas. The change of the activation function slope will enable the
network to deal with an input value of larger dynamic range. A scaling factor greater than I is used in this work.

3. Feature Extraction
The cell images are obtained through microscope and individually separated. Ideally, raw images (gray scale values)
should be used directly as network input as they contain all original information. If the network can explore the
discriminate information coming with the raw images itself, the hidden features will be revealed. However, the use
of raw image as the input leads to a large input data size, and consequently increase substantially the complexity of
the network as well as training time. Even for a moderate cell size of 60x60, there will be as many as 3,600 input
data. Perhaps the more serious problems is the lacking of the invariant property in a trained network. Unless some
special complex configuration of neural network is adopted [Spirkovskal993], or a large number of variations of
original cell images in scale, rotation and location are used for training, the network will likely fail to classify cells
not seen before.

In pattern recognition, only the discriminate information contributes to correct identification of objects, while the
rest does not or even degrades the performance. Feature extraction is to map the raw data into feature domain, while
at the same time preserve the discriminate information of the original data. The direct benefit of feature extraction is
the substantial reduction of input data size. For object recognition, if the features are chosen to be invariant to
geometrical transformations, the classification performance will be significantly improved.

By carefully observing the cell images it is revealed that the abnormal cells have either a larger size, irregular shape,
rougher surface or darker appearance. Based on above observations and with hardware implementation in mind, a set
of four simple visual features, including area, average intensity, shape factor(roundness) and texture, are identified.
All of them can be realized in hardware without much difficulty. In addition, pgDNA value is also used, although
this does not represent a visual property.

Shape Factor
As most non-cancer cells have a close to round shape, and the cancer cells look more irregular, roundness factor
seems to be a simple and effective discriminate feature. This is calculated as

Shape Factor - perimeter2  (4)aeam

An ideal circle will give a shape factor of 41r, while any shape other than a circle will produce a value greater than
4n.

Texture
Texture is an important visual feature for many pattern recognition tasks. Texture describes the interdependent
characteristics of pixels within a neighboring area. Regular texture has more or less periodical patterns, while
random texture is best described by its 'coarseness'. Various statistical models can be used for feature extraction from
a random texture image [Reedl993]. To minimize the computation, only simple convolution by using a 3x3 mask
is considered. This effectively extracts the high frequency information from an image.

Fig. 3 shows pixels in a small area of cell image and the convolution mask applied. From the configuration of
kernel it can be found this mask has the effect of high pass filtering. In fact the mask resembles a Laplacian kernel,
commonly used for edge sharpening.

The texture Tx for cell x can be obtained as follows,

I (O(i,j)) 2

Tx = (iij)E cell x
Area
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(8G(ij) - XG(k,l))2
(ij)e cell x (klAr e (5)

Area

0(ij) is the convolution output at location (ij) on a cell image. G(ij) corresponds to the intensity value at Location
(ij). i1 represents the 8 neighboring locations of (ij).

As only texture information of the cell surface is of the interests, the high frequency information on the boundary
between cell and background (zero pixel value) should be avoided. Above equation can be modified to

I O(i,j)2

Tx = (ij)e%;ell x
Area

S(SxG(i,j) - -G(k,) )2

(ij)E cell x (k,l)E1 (6)= ~Area(6

T1' represents the non-zero neighborhood region of (ij), and S is the number of non-zero pixels. This effectively
avoids the boundary problem by modifying the mask in those regions.

0 0 0 0 0

0 G ii .,C G ýý ,) G t i " • o-I 1 -

G(i*;) G(41) G(,. ?4i)o 0 -1 8 -1

O 1)GT 1)G( o -1 -1 -1

0o 0 0 0 0

a b

Fig. 3 a. pixel positions, b. the convolution mask applied

4. Experiments
All together 467 cell images from 6 cases are obtained. All cells have been labeled manually by experts as cancer or
non-cancer. Among them 263 from two cases are abnormal (cancer) cells and 204 from the rest of four cases are
normal cells. In order to restore the aspect ratio to 1:1, the original images are expanded horizontally by a factor of
1.78. After aspect ratio correction, the cell images are tailored into 60x60 pixel images. The cell image is centrally
aligned in this area and used as input of network.

Four features, namely area, average intensity, texture and shape factor defined in previous section are extracted from
images cell by cell. Based on these a feature vector list is formed. Apart from the raw images, also provided is
additional non-perceptual feature information pgDNA. This supplementary information will be shown to be useful
in enhancing the performance of classification.

As is often the case in pattern recognition certain features have substantially larger numerical values than others. To
prevent those features from dominating the training process, all features are normalized by their corresponding
standard deviations. Some cells, even after normalization, still have feature values out of transition region [-5,5],
beyond which is a saturated region in a sigmoid activation function. To keep the feature value within the transition
region, a scaling factor of 8 is identified and used in sigmoid acutvation function of Eq. (1). Similarly, a value 2.5 is
also chosen as Y for gaussian activation function.
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Shown in Fig. 4 is the input training data vectors in feature space. Non-cancer cells are symbolized by o and cancer
cells by 'Y. One can see that non-cancer cells cluster tightly around origin of the feature space while cancer cells
spread out along each axis. This spreading out manifests the irregular nature of cancer cells in shape, cell surface
smoothness, intensity and size.

a b

Fig. 4 Training data vectors plot in feature space
a. area-intensity-texture, b. intensity-texture-shape.

All cells (and feature vectors) are split into two groups for training and testing. Roughly 80% of the cells (normal
and abnormal) are used for training. The rest is retained for testing.

First, the network is trained by raw images. The number of input neurons required is 3,600. A single hidden layer
network structure is adopted. The number of neurons in the hidden layer was varied until an optimum number (20)
was found. To ensure that the initial network configurations are different from experiment to experiment, each run
was initialized randomly and different random seeds were used. Table I reports the test results for three networks
with raw image input on a 98 test cell set. Values listed in Table 1 for each experiment are 1) classification rate, 2)
iterations taken for the network to converge, and 3) total square error at the output layer for all test patterns. As is
indicated by the results shown in Table 1, the network trained using raw image only classified about 70% of the test
cell images correctly.

Table 1. Performance of networks for various input, activation functions.
Input Data Networks Classify Rate Learning Speed Output Error

Sigmoid 77.4% 1,000 20.09
Raw Image Sinusoid 62.3% 600 30.10

Gaussian 64.5% 300 24.47
Sigmoid 94.6% 8,500 5.58

4 Features Sinusoid 86.7% 200 10.00
Gaussian 91.8% 1,000 7.09
Sigmoid 96.9% 10,000 2.98

5 Features Sinusoid 90.8% 200 9.41
1 Gaussian 95.9% 3,000 3.58

Utilizing the feature vectors from the same training and testing cell sets as before, classification by using feature
vector trained networks were studied. Experiments with all four perceptual features were conducted under various
conditions (hidden neuron number, random seeds). For the optimal number of hidden neurons 4, the classification
score reaches 94.6% for sigmoid network, and 86.7% and 91.8% for sinusoid and gaussian networks respectively.
Here, it is worth to point out that by using texture feature alone, with sigmoid network, a classification rate of 88%
can be achieved. This demonstrates the rich information contained in cell surface texture.

When pgDNA is used in combination with the four perceptual features to train the network, there is a noticeable
improvement for sigmoid network, from previous 94.6% to 96.9%. Sinusoid and gaussian networks archive 90.8
and 95.9 respectively. This indicates pgDNA does provide additional discriminate information. Table 1 shows the
experiment results.
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As long as the comparison of three networks are concerned, the sinusoid and gaussian networks seems to converge
much faster than sigmoid network, but performances are somehow inferior. This is probably due to the rougher
search space resulted from the activation function.

5. Discussions and Conclusion
Above described investigations present the results obtained by using different artificial neural networks for bladder
cancer cell classification. Both raw data and feature vectors are used as input to the networks. Results indicate that
feature extraction leads to a substantial computation saving and classification accuracy improvement. With feature
vector as input, the neural network correct classification rate ranges from 86% to 97%, while with raw image input,

the classification rate is just about 70%.

Comparison between networks with sigmoid, sinusoid and gaussian activation functions shows sigmoid network is
able to archive higher classification rate, but sinusoid and gaussian networks converge faster. It is suggested this
quicker convergence and lower classification rate are possibly due to the fact that sinusoid and gaussian network have
higher degree of non-linearity. This allows the network to quickly fit the given training data. But also because of
this non-linearity, the generalization ability suffers which can been seen from lower classification rate.
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Abstract

This paper presents a method to design a preview I-PD controller using neural networks. As is well known, I-

PD controllers are widely used because they have good performance. However, if the controlled objects have long

dead-times, the control performance of the I-PD controllers are limited. We propose a preview I-PD controller with

dead-time compensation. The proposed method has the advantage of auto-tuning I-PD and feedforward gains.

1. Introduction

The I-PD controllers based on optimal control techniques are widely used for servomechanism systems because

they have good performance [ 1]. They have also both good disturbance rejection and low sensitivity. However, if there

are uncertainties of the process parameters and/or the controlled objects have long dead-times, I-PD gains should be

adequately adjusted. Most process engineers tune manually i-PD (PID) gains by "trial and error" procedures. When the

controlled objects have long dead-times, these gains are very difficult to tune manually [2]. In this paper, we present a

method of auto-tuning I-PD gains using neural networks for such as controlled objects. The neural networks consist of

three layers and are trained so as to minimize the error between the controlled object and the reference model outputs

by using the conventional back-propagation algorithm [3].

At first, a preview I-PD controller using neural networks is explained. Then the network learning algorithm is

precisely described. Finally, we show simulation results to demonstrate the effectiveness of the proposed method for

the controlled object with long dead-time.

2. Preview i-PD control system using neural networks

z , NerW HIM P

IM

O bjec -- o yM +2•W H "2 V , (=Uk)
Objct M. f(net)

IT Input Layer Hidden Layer Output Layer

Figure 1. A preview I-PD Controller. Figure 2. Neural networks.
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Figure I shows the preview I-PD controller using neural networks. G(z) is the pulse transfer function of the

controlled object and G,(z) is that of the reference model. I1, w..., are inputs for preview control. The neural

networks are trained by using the conventional back-propagation algorithm to minimize the error between the con-

trolled object and the reference model outputs. The neural networks consist of three layers as shown in Figure 2. The

input layer has M+3 units, the hidden layer 2 units and output layer 1 unit. The output function of each unit is a linear

neuron defined as follows:

f(x)=x (I)

where x is the sum of the inputs. The control input uk is derived as follows:

k YiW+y+ 3k-Yk- I W 2Uk=(WItk+I+W2tk+2+... +Wbltk+M)VI+(WM+ITE ei+WM,2yk+WM+ -)V 2  (2)
i=0 T

where e,4=rryj) is the control error and the integral gain Ki, the proportional gain K. and the derivative gain Kd are

respectively given as
Ki=Wu+iV2, Kp=WM+ 2V2, Kd--WM+3V2 (3)

3. Network learning algorithm [41

In Figure 2, assuming that I, is the output value of i-th node in the input layer, Hj (j=l, 2), the output value of j-

th node in the hidden layer, becomes

-. M
H2=E Wili (4a)

H-2= Y., WAI (4b)
i=N+J

where Wi is the coupling coefficient between an input layer node and a hidden layer node. The outputs of the hidden

layer, Hi and 112 are

Hi=H, H2 42 (5)
Then 0, the output value of an output layer node, becomes

2
o=L V^;? (6)

j=1

and this equals the manipulating variable Uk.

Here, we define the error function E& by the following equation.

Ek--l-(tk-yk E (7)
2

The coupling coefficients between neurons are tuned by the following equations so as to minimize the error function.

V =V -M(--- (8a)
av,

(k+1 (k) _ Ek (8b)
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where ih and 112 are learning rates determining convergence speed. To process M-e and -Et, we use the chain ruleNJ, b)W,

aEkEk aYk aG (9)

aVi a a• avi

where

aE' (t -Y 0- = H.
aYk avj

For simplicity, we assume that the partial derivative aYkIaO is constant.

Similarly, we have

Wk _ a Ek 9 yE aO M ll- a i for i=1,2,...M (1Oa)
aWi Gy, YaO ()H1 l 8Wi

and

WEk _ Ek 4k. ao aH2 aH 2  for i-= M+I, M+2, M+3 (10b)

aW , 8 0a 81-2 aH2 CWi

where

80-j, • =I /

4. Simulation results
Let the pulse transfer function of the controlled object be

G(z) =zL biz+b 2  (01)
Z2 +alz+a2

In this simulation values of L=4, a 1=-1.529, a 2=5.323e-01, bl=7.628e-02 b2=6.l68e-02 ,M=5 and T=10msec were

selected.

On the other hand, the pulse transfer function of the reference model is as follows:

Gm(z) - blz2,+bm2Z+bm3  (12)
Z3+a, lZ2+a,2Z+am3

where a.,=-2.71451-02, a, 2=2.45619, a,3=-7.40819e-0l, b,,i=l.54667e-04, b. 2=5.74070e-04 and

b, 3=l.33047e-04.
Figure 3 shows simulation results of the position control for the controlled object described by Eq.(l 1). (a) show the

reference model output. (b) and (d) show the step resonse of the proposed method after the training of 1000 iterations

and that before the training, respectively. (c) shows that by the I-PD controller without the preview input. Each

simulation starts with an already pretuned controller. The target vector is a set of 200 training seguences. These figures

illustrate the effectiveness of the proposed method.
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applicability to nonlinear systems with both unknown parameters and long dead-times by introducing a sigmoidal

function.
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ABSTRACT

A centralized neural controller for parallel connected switching fabrics is presented. The
system allows a substantial reduction in the input buffers length of the Banyan switching
matrices for lossless Asynchronous Transfer Mode (ATM) communications. In addition, the
architecture is fault-tolerant.

INTRODUCTION

The interconnection nodes of the Broadband Integrated Services Digital Network (B-ISDN)
are based on space division multistage switching matrices. Usual software control of these
switches appears inadequate to give a proper answer to the response times needed at
Asynchronous Transfer Mode (ATM) frequencies (higher than 155 Mbit/s) [1]. For this
reason, hardware control, which is based on application specific circuits, is used. However,
this kind of control is not flexible, is not easily adapted to new conditions of the network, and
even is more complex than the switching network itself. Recently, centralized control
systems based on artificial neural networks (ANN) have been proposed [2]. These systems
use massive parallel processing capacity and similar topology to the ANN. For an NxN
switch (N inputs and N outputs), the neural controller proposed is a Hopfield network with
NxN neurons, interconnected as multiple overlapping Winner-Take-All (WTA) circuits [2][3].
However, this controller suffers from two main deficiencies. First, the greater the value of
N, the longer the input buffer queue needed. Second, the network is not fault-tolerant. In this
paper, we present a centralized neural controller for parallel connected switching fabrics. The
system allows a substantial reduction in the input buffers length of the Banyan switching
matrices for lossless Asynchronous Transfer Mode communications, and is fault-tolerant.

PARALLEL ARCHITECTURES

The Banyan networks are self-routing networks, i.e., there is only one route through the
switch for each pair of input-output addresses. This allowss the ATM cells to be routed at a
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high rate. However, as a drawback, the Banyan networks are blockrd either at the output or
through the switch. In both cases, this may cause a non-admissible impact on the amount of
ATM cells lost, specially in the case of a non-constant traffic.

To avoid the blocking problem while maintaining the self-routing capacity, we propose an

architecture consisting of the parallel association of multistage interconnection networks under
a centralized neural control. The neural controller analyzes the ATM cells waiting at the

queues of the input buffers, selects a subset of them that does not present blocking either
internal nor at the output, and guarantees that the cells do not pass through any wrong

internal switch. Fig. 1 depicts the block diagram of the architecture proposed, where each
switching matrix has its associated neural controller. The input buffers are common to all

the switching matrices; in this way, the same ATM cell can reach the output through any of
the switching matrices. Since several ATM cells can reach the same output from different
inputs at the same time slot, it is necessary to establish output buffers with the appropriate
minimal length. This length should not be lesser than the number of matrices in parallel.

The question is how to interconnect the individual neural controller associated to each matrix
so that they behave like an unique neural controller of the association. In Fig. 2, we show
the solution proposed in this paper, where the interconnection between each individual

controller of the switching matrices parallel association is represented, together with the
request matrices corresponding to each switch (k=l, k=2 ...... , k=n). The elements aý,

a , ...... au., correspond to the same input-output pair of the input matrix, which is common
to all the switches. The ATM cell with the input-output addresses Ik/Oj must be directed
through just one of the switches in parallel. In order to achive this, we connect all the
corresponding neurons associated to the elements a%, a4., a.,, in a Winner-Take-All

circuit, overlapped with the appropriate neuron of each individual controller. Thus, the output
of each neuron inhibits all the others, and the winner neuron avoids that all the others win
in their respective overlapped WTA circuits. In this way, the ATM cell is only selected by

a controller.

The system operates in the following way. The request matrix is divided into n maximum
disjoint sets which overlap with the set C, where C consists of the possible input/output
addresses. Then, each neural controller sends an output matrix to its corresponding switching
matrix. Therefore, the output, after the neural parallel computation, will be a maximum of
k disjoint subsets of non-blocking ATM cells.

FAULT TOLERANCE

Since the system offers alternative routes for the same ATM cell, the proposed architecture
presents a fault-tolerant scheme. A system is defined as d-tolerant if it maintains the same

capacity to realize permutations from input addresses to output addresses when d internal
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switches are wrong. We implement this scheme by sending a excitatory signal from all those
neurons associated to the internal routes that use the wrong switch, to the corresponding
neurons in the parallel controllers. Thus, we guarantee that the last neurons will participate
with advantage in the competition, and that the ATM cell may use any of the alternative
routes. We could also get the same results if we apply an inhibitory signal to the neuron
associated with the wrong internal switch.

STABILITY ANALYSIS

In a system composed of multiple switching matrices in parallel, the temporal evolution of
the neurons that compose the neural controllers is governed by equation (1), which represents
the neural controller state equation [4], including the external biases to the neurons, and
where we have added the last two terms, m(g(u.,-1)) and Fi, to take into account the two
conditions we want our system to carry out: inhibition among neurons from different matrices
and fault tolerance, respectively.

In (1), n is the number of neurons of each controller matrix in parallel; u., represents the state
variable of the neuron i, in the matrix k; and wj•, is the weight between the neurons j and i,
in the matrix k.

Cik duik =_, k Ulk + n SUi t Wjik g (Ujk )+ (Ii ti+Fi +M(g (uik -1)))

where

i if x>1

g(x) =x if-Igx-l

I if x<-i (1)

n

Ai ,rI IWjikI

m(x) ={jIj I iif X>-0.751Ii

0o otherwise
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The Lyapunov's energy functional associated with the system is of the form:

Ev, E (uk )gU) -g fg'(0,, )0&k dOk2 k -Ij -1- -10 -( )

being

%, =(-A 18,e-I,-t,+F n+m(s(Ok, -1)))

The system is stable if the function V is stable, that is:

S;av .& , (3)

k-I 1-1 al~ d t ;s

Since the two terms we have added in equation (1) are asynchronous, i.e., they do not depend

on time, the system is stable.

SIMULATION RESULTS

For simulation purposes, we have used two different traffic models. The first one is a
Constant Bit Rate (CBR) traffic model, which is a simple Bernoulli process, where one cell
arrives at each time slot with a constant probability p. The input ATM cells are stored in the
input buffers with variable length, i.e. queue depth. The second type of traffic is an ON-OFF
model where the cells arrive at the ON period with a probability p, and the Tom/ToF rate is
variable. The destination addresses of the cells are uniformly distributed, being 11N the
probability that a given output is chosen.

Each simulation was performed in three cycles of 1000 packets per cycle for each input for
both types of traffic and different load conditions. We have considered individual switching
matrices and parallel associations of two and three individual switching matrices. All of them
were 16x16 self-routing Banyan matrices. To study the fault tolerance of the system when
some internal switches fail, we have analyzed the new throughput of the system by measuring
the increase of the input queues required to get zero loss.

In Fig. 3, the results obtained are shown. We observe the substantial reduction of the queue
depth in the input buffers in the case of using parallel matrices. This reduction is independent
of the type of traffic. The system shows its fault tolerance capacity, getting good results even
in the case of five wrong internal switches; although in this case, the throughput decreases.
The parallel analog process performed by the architecture indicates that the system will be
able to manage the short times required in a real-time ATM network. The main drawback of
the system proposed here is the need for more hardware to implement the system.
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CONCLUSIONS

A centralized neural controller for the parallel association of Banyan switching matrices in
an ATM network has been developed. The system reduces significantly the average queue
depth of the input buffers for zero loss, as the parallel association of matrices increases. In
addition, the architecture is fault-tolerant at the expense of some reduction in the throughput
of the system. It has also been shown that the neural controller is stable using a Lyapunov
functional.
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SIMULATION OF VERDICTS IN CIVIL LIABILITY

Francesco Romeo, Fabrizio Barbarossa
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Abstract
Using Neural Networks we have simulated judge's sentences in the field of Civil Liability Relating to
Motor Vehicles. Our Neural model has been able to pass correct sentences which respect the laws and
the principle of equity. The net has learnt how to judge. In fact, it has drawn out sentences equal to
court precedents which were not in the training set. The back propagation procedure has calculated
sets of weight which give out new information showing and quantifying the relevance of each element
of guiltiness.
Our experiment demonstrates that the net is able to better manipulate the simbols than the expert
systems do because it learns from training procedure both logical rules and analogical quantifications.
In our opinion it is very difficult to simulate any subjective judgement without using both rules.

1. Introduction
With this experiment, we want to demonstrate the possibility of the neural nets to simulate human
judgment. We would like to point out briefly that it is possible to use the nets to a symbolic manipolation
(Kosko, B. 1992).
We have simulated a typical subjective judgment to prove it. One of the most typical subjective
judgments is when the judge ascribes the liability for the car accidents. That judgement originates from
observing the logical rules (Rules of the Road) and from a subjective method of appraisal which is
unwritten result of experience.
In our opinion the application of the neural nets in that field is very appropriate. As a matter of fact,
it is not possible to judge an accident basing only on logical rules. In fact, the other experiments, which
have been trying to demonstrate the liability and have been carried out using the other systems of
artificial intelligence, have failed (Reisinger,L. 1981).

2. The Experimental Part
We have gathered 200 judicial precedents regarding judgement for accidents between two vehicles
A and B that have occurred at intersections. They made up 70% of survey on Civil Liability Relating
to Motor Vehicles (Alpa,G. & Bessone,M., 1982). Such judicial decisions have been codified through
a large number of logical variables, representing the description of the accident and the following
liability ascribed by the judge. The accident has been described using indexes regarding the place the
accident occurs (intersection, stop signal, etc.) and the behaviour of the drivers involved (speed,
overtaking, carelessness etc.). Afterwards we selected a small number of variables that could indicate
all the accidents with a certain approximations.
Since one of the driver at an intersection has to give right of the way, coming from the right side, or
from a minor priority road, in our simbolic representation, Driver A always has right of way and Driver
B is always obliged to give right of way to vehicle A. Furthermore, another variable has been used
(Stop B) to indicate whether Driver B had to stop in addition to giving right of way to vehicle A,
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according to the stop sign.
The behavior of each driver (A and B) involved has been represented by three variables. The first one
(speeding) indicates whether the driver was speeding close to intersection, infringing art. 102 ofItalian
Higway Code.
The second variable (Carelessness) represents other breaches of the Highway Code (such as
overtaking, driving off the carriageway) and elements of more general blame as resklessness and
negligence of the driver (dangerous driving, carelessness, etc.). The third variable indicates the lack
of skill of the driver, meaning his or her technical incapacity to prevent the accident from occurring
using fitting emergency manoeuvres which a good driver could have been able to execute.
In description of the accident, seven variables have been sufficient, one indicating the presence or
absence of stop signal, two group of variables respectively representing A's and B's offences.
Two numerical variables have been used to represent the judgement in terms of the quantitative
attribution of blame and of liability. Such variables indicate the percentage of liability of each driver
involved.

3. The Architecture and the Training of the Net
The neural net has been dividend into seven inputs, six hidden cells and two output cells [ Fig. 1 1. The
input values represent the description of the accident and the output values the evaluation of the liability
given in percentage to Driver A and B. The number of necessary hidden cells has been selected
empirically. Each cell has been connected with all cells of the layer above with a sigmoid transfer
function.
The net has been trained trought a set of eighty typical judgements, in which we supposed that the judge
applied specifically to the field of C.L.M.V. not only the information contained in the legal provisions,
but also af all the knowledge that is not included in them. The net has been trained with the back
propagation procedure using the Delta Rule (Rumelhart, D.E. & McClelland, J.L. 1986) function for
8000 cycles with a learning rate of 0,2.
After training, the net has learned all the sample decisions with minimum error. This means that the
backpropagation method has calculated a set of weight between the connections able to present all
the given judgements.

A Liability B Liability

Hidden Cells,,

Slop B A Carelessness 8 Speeding 8 La& of skil

A Speeding A Lack of skill B Cafelessnems

Figure 1: Structure of the neural network judging car accidents.
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4. Experimental Results
The judgement meter calculated by the net allows us to judge all the possible accidents, that can be
represented through the provisions with repetition of seven variables of class two (true-false).
The judgements given for the cases that have been foreseen in training appeared to be similar to case
precedents and, anyway, were always reasonable acceptable.
Two phenomena can be underlined from the analysis of the judgements of the nets:
1) the net judges a case having one or more similar precedents, not by repeating or making an average
of the judgements gathered (in training), but considers as more biased those precedents (even if a little
different) in which the judge's evaluations appeared to be more suitable to the general evaluation
principles of court precedents.
2) the net also draws out judgements in cases differing from the ones that have been gathered.
It is interesting the net verdict drawn out from the set of data representing accidents in which the driver
of the vehicle with right of way is responsible only for lack of skill in his or her behaviour, basically
meaning that he or she did not make the proper emergency manoeuvres an "average driver" would
have performed. In this case whatever the offence Driver B committed (he or she had to give the way),
the neural nets decides that Driver A has no liability whats-ver.
The lack of skill alone of the driver is of no influence in dettermining liability, the same as court
precedents unknown to the net (Court of Cassation, Rome, 6.3.1991).
This outcome shows that the net has learned "legal knowledge" that is unwritten and unforeseen in
programming, and the actual relationship of importance that connect the rules one to the other
depending on the described facts which are also unknown.

5. Analysis of the results
From the juridical point of view the net deducts extremely correct sentences. In fact, these nets respect
every rule of the road and the net's solution does not seem to be unreasonable or incompatible with
legislation or equity.
But how can the net reproduct all thejudge's sentences without introducing all the logical rules (laws),
used when a judge ascribes the liability to somebody ?
In our opinion, after the training, a set of weights is able to represent also a logical rules:
I)If the driver of the vehicle does not give right of way, he is liable.
2)If the driver of the vehicle drives at too high speed, he is liable.
3)If the driver of the vehicle lacks of skill in his behaviour, he is not liable.
4)If the driver of the vehicle does not respect the stop-sign, he is liable.
5)If the driver A lacks of skill in his behaviour and the driver B does not give him right of way, the
driver B is liable. Etc.
These logical rules have not been taught expressly but the net has interiorized them through training.
The model is able to quantify the relative importance of the input elements. In fact, we can see in Fig.
2 the average of the weights which connects the input layer of the net with the hidden cells.
The picture shows us that the net has determined that the driver A is guiltier if he drives at too high
speed than if he is careless in his behaviour. The lack of skill of the driver is of no importance.
This quantification associated with the interiorized logical rules allowes the net to infer the right
quantity of liability in every possible accident which can be represented by a simple model.
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6. Conclusion
We suppose to have reached two goals with our experiment
Firstly, we have demonstrated the possibility that the judge can be replaced by a well-trained neural
net. This net must respect laws, rules and a unit of value applicated by judges.
Such a neural judgement would be useful at least in the judgement offirst instance and would guarantee
the same judgement for every case. In fact, it is not very unusual that two different judges give two
different evaluations for the same accident.
The computerization ofthejudgement proposed herein does not totally replace thejudge' s work, some
points being difficoult to computerize and representing the limit of this research These are:
1. Cases that have particular and complex aspects, involving several branches of law, tne automation
of which can be programmed only after the automation ofall the field that are involved with the specific
case.
2. Sometimes a judicial decision creates a precedent. This innovation is very important for legal
regulations as it represents the alignment of already existing law to social reality The neural net
proposed herein is "conservative" it brings every new case back to the logic of his precedents.
Secondly, we think that our experiment has demonstrated that the neural nets constitute a model of
a symbolic manipulation which is more powerful than the expert systems. Whereas the expert systems
applicate a series of logical rules, the neural nets are able to calculate a function which represents both
the logical rules and the analogical quantification (Phillips,L 1 1 )
First of all, we may say that the nets induce a rule from training. Such a rule, which is able to represent
logical and analogical rules, will be codified in the weights of the neural net connections.
Afterwards, during the recall, they deduce the answers from the application of the rule induced by
experience.
In our opinion the nets applicate a two degree process (induction-deduction) which can be used not
only for a direct interpretation of the reality (video images, sounds and so on) but also for a
manipulation and for a symbolic reasoning.
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SIMULATION OF HUMAN HEDONIC CHOICES

FRANcEsCo RoMO, MARiO Guccio

DlAxRaur o Dg Mrroa Qu•mvirrlrv, Umvwmra G.D'ANmnuino, VwE Pmmao 42, 65100 PcA&A, ITALY.

Abstract
Neural networks are able to learn structures by using typical examples of this structure as

input, without necessarily knowing the rules of it, even if the data are fuzzy (Rumelhart, D.E.
& McClelland, J.L. 1986). Human like/dislike choices are the result of complex perceptions
whose components are not known or quantifiable in their importance in decision making: this is
the case for example when tasting foodstuffs (Frijters, J.E.R., 1988). Using neural networks we
have simulated a human subjective choice of taste employing as input chemical data and as output
the taster's choice of a Panel test about the quality of wines and oils. The nets, after training cycles
with a few examples, were able to give responses to the quality of all samples with little percentage
judgement difference compared to each taster and related to the average Panel's judgement. The
nets worked out sets of weights that give out new information showing and quantifying the
relevance of each set of input data for the individual taster's choice.

1 Introduction
Several tests have shown the particular ability of the nets, in comparison with normal

algorithms, in simulating human perception (Churchland, P.S. & Sejnowski, T.J., 1992). The
most researched field is that of visual cognition, where the computer should be able to recognize
an object when there is a lack of information about its definition or if the bounds of it are not
geometrically described (Lisberger, S.G. & Sejnowski, T.J.,1992). In a hedonic choice the
computer can make a further perception step: on the basis of an already known perception, that
is, of a classification already having occurred, the net should be able to work out a judgement
of taste for each specific similar perception, at least saying whether the object is a good or a bad
one.

The chemical analysis of foodstuffs alone generally doesn't allow inductive judgements
about the individual taster's choice. The analysis performed by the sense evaluates those qualities
that are not provided by the chemical analysis, even the most advanced, probably because the
compound of sense information produced by the nervous system allows us to perceive those
relations between sensations that are insignificant if considered separately (Wold,S. et al., 1983).
Furthermore, the simulation of individual taste choices has not been sufficiently researched in Al,
whereas the importance of such individual preferences is well known in decision making (Slovic,
P., 1990).

The advantages of such applications are to be seen in an improvement of evaluation criteria
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of goods based on an increased objectivity of judgement. The computer in fact is not affected by
those influences (i.e. tiredness, prejudice etc.) that can create errors in evaluation. Another
advantage comes from the possibility of a standardization of judgement evaluation, because
computers allow a better control of the experimental conditions and therefore a higher
repeatability. This is especially true if we consider that the Panel test is now a fundamental
criterion, at least in the European Community, for the trademark attribution of certain goods, as
for example in the case of oil when attributing the "extra virgin olive oil". trade mark (Regulation
EC,1987).

2 Model Description
Representative samples of wines (n0 150) and olive oils (n°67) were submitted to net

judgement using analytical data produced by official analysis methods. The analytical parameters
we chose were for wines: Density, Alcoholic degree, Total alcoholic degree, Total reductor sugar,
Dry extract, Total acidity, Volatile acidity, Ph, Ash, Total sulphur dioxide, Free sulphur dioxide,
Methyl alcohol; for oils: Acidity, Polyphenols, Peroxides, UV =K. and K--= K [ -[( + C=,)]

2

SUITABLE UNSUiTABLE

[ 2 3 69L

Dooly Aceb Toal Toal Dry Total Vowk PH Ash TOWe Fre MhW
der ako nrebtor Mondacfty adt soly oý Ak- -

deqrm Sqr dimSW doxie

Fium 1: Structure of the neural network judging the suitalMty of a wine for the quality tradanark.
The 12 input units represent the chmicl analisys of the wine, the two output units give out the sitability for
the quality trade mark. The net is able to judge with a difference of20% compared with the averagejudgenents
of a Panel, but with a percentage slightly over the one given by each Panel nember.
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The same samples were submitted to a Panel test. The wine net was made up of 12 nodes
in input, 12 hidden and 2 nodes in output; and the net for oil of 5 nodes in input, 5 hidden and
1 node in output. The input data were given by the analytical values that have previously been
indicated. The output data show a comparison with the judgements of the Panel of tasters and
indicate whether that sample of wine or oil is suitable for the quality trademark.

Surrmsnmr

HSUITABILITY

A• ~f • "- M• ".- A- - FM.

BIAS

FG= 2: Structure of the network judging the sutability of a oil for the "extra irgin olive oil" trade
mark. The net is able to judge with a difference of 6% campared with the average judgeunts of a Pand, but
with a lower percntage eompared to the one given by ea&h Pande manber.

The nets were trained through a set of 10 prototypical samples for the wines and 20 for the oils,
with the back- propagation procedure using the 'delta rule' and sigmoid functions for 1,000,000
cycles.

Regarding wines, for the hedonic choice the net considers the following data important: Free
sulphur dioxide, Total sulphur dioxide, Ash, pH. It is interesting to note that in commodity science
a number of studies have attempted to show the existence of these correlations without however
reaching an acceptable conclusion. Because this induction by the net of the principal components
of the subjective judgement of a wine is interesting, we therefore tried to reproduce it in the field
of olive oils where such correlations were in part already known.
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The data that the net considers important for the subjective evaluation of oils are the
polyphenols content and the value of peroxides. It is known that the polyphenols, natural anti-
oxidants, preserve the aroma of the oils (Maga, J.A. 1978), while the peroxides are an index of
the oxidation of the oils. It is interesting to note that this relationship is so reinforced in the net,
that the cases in which the net was further from the taster's judgements are cases of oils in which
the polyphenols and the peroxides gave a judgement that was opposite to the actual Panel one.

3 Discussion
The nets, after the training, were able to give responses to the quality or non quality of a

sample with ajudgement difference of 20% for wines and 6 % for oils compared with the average
judgement of the Panel, but with a percentage slightly over the one given by each Panel member
for wines and lower for oils. The high level of correspondence with the judgements of tasters
shows the non-accidental nature of the net's responses. It is certainly possible to improve the result
by using larger samples.

The input data in the model used, when taken separately, do not permit anything to be
inferred concerning sample evaluation. The nets' judgement, like the human one, seems to be
based on the relationships between the analytical data of the sample, extracting those relationships
that allow man to define a wine or a oil as a good or a bad one. This explains why a small number
of analytical data is sufficient for the composition of the net.

This first result at least indicated that: 1) neural nets can simulate the qualitative subjective
judgement of an individual starting from quantitative analytical data; 2) it is not necessary to have
a large amount of data to obtain an acceptable subjective judgement, since neural nets process data
analogically, building up a structure that is applicable to all similar information; 3) regarding the
first point, a neural net is able to create information because the quantitative structure, that appears
after the weights of the net have been configured by the learning procedure, simulates the unknown
part of the human mental structure that causes the hedonic choice.
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Abstract:

In this paper Net Tools, a set of tools optimised for research, evaluation and simulation in the
field of artificial neural nets, fuzzy control and optimisation is presented. It is shown, that in
an object oriented framework, the seamless integration of neural network components, fl4zzy
theory and genetic algorithms evolves naturally. The general architecture of NetTools is
presented and fields of applications are reviewed

1. Introduction

When moving from research projects to industrial strength applications the combination of
different technologies becomes more and more important. There may be a neural net for noise
reduction from a sensor, a fuzzy controller steering a plant or adaptive controllers optimised by
an evolutionary algorithm.
Proof of concept studies, design and optimisation of such projects need a strong, versatile
simulation tool, which combines ease of use and applicability to different environments.
Neural network research on the other hand requires a flexible, open and extensible framework
to develop, test and evaluate new algorithms and architectures.

2. Basic architecture

The basic building block in NetTools is the network node, the basic entity of the simulation.
For SimLib, the simulation engine, a node consists of three equations, which are in general
represented by strings: the input function, which maps the input to the node output, an optional
output function, which modifies the output and an training function which specifies the training
in case of neurons.
Each node is addressed by an unique handle and stores the links to and from other connected
nodes, together with the corresponding weights in its internal memory (Fig. 1).
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Fig. I

The input for SimLib is a simulation data file which consists of a header with general network
informations and node characteristics mentioned above. The simulation sequence is determined
by a vector, holding the node handles in the desired processing order.

There are two ways to build a simulation data file: NetMaker is a text oriented tool, which
compiles network information input to the format readable by SimLib. Filter programs for
established network definition languages are under development.
The second, more user friendly way is NetDesigner, a highly interactive, easy to user graphical
network designer. Fig. 2 show a preliminary version of NetDesigner with a sample net loaded.

Elle Edit Lkst Layer Group Nel #Agu No&e Mistc ?

A sample Amy cormoer

Fuzz&lkOb m~z

//

(C)Cyne*A RTC f1

Fig. 2

For convenience 4 x 12 elements from neural networks, fuzzy and binary logic and classical
control theory a predefined and represented by user editable icon. Their node functions can be
globally preset, stored or individually altered in a project.
Network nodes are organised in a highly object oriented way. They can be combined to
groups, which simplifies the design process enormously.
In neural network research the need for fully connected layers arises. To speed up the design of
layers, a layer node object has been introduced. Layer elements are individually addressable
and their input, output and training functions can be individually set.
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To implement objects which are too complex for the simple three functions approach or to
speed up the simulation of frequent used elements, device objects have been introduced. A
device is a precompiled object, which is stored in a catalogue and retrieved from there to the
current project. The design and handling process is equivalent to standard nodes. The device
parameters are stored in a datafile and editable through an editor.

Fig. 3 shows the basic architecture of NetTools. Modules are project specific programs, which
can be written in any language and work as interface between SimLib and project input/output
(e.g. data entry modules, visualisation modules, real world interfaces,...)

Module 1

Mdl2 SimLib1 NetDesigner

Module Management

Project Management
Fig. 3

NetTools is currently implemented for the Windows 3.1 and Windows NT and written in C++
and Smalltalk. Unix platforms are under consideration.

3. Fields of applications

The open architecture of NetTools guarantees a wide range of applications (even process
control). In projects neural nets, fuzzy logic, boolean logic and classical control theory can be
mixed and simulated in common framework. Through modules NetTools can be adapted to
any project specific task.

4. Conclusion:

Combining neural systems with fuzzy logic and classical systems simulation is easy and straight
forward in an oriented framework like NetTools. The concept of network nodes is versatile
enough to support different technologies and handle hybrid simulation tasks.
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Abstract
This paper overviews an adaptive self-organizing concurrent system (ASOCS) model for
incremental supervised learning of boolean propositions. ASOCS is comprised of many
boolean processing nodes, distributed throughout the system, to represent the presently
acquired knowledge. ASOCS internal structure is effected by the training data provided by
the user. ASOCS architecture synthesizes a reconfigurable network of boolean processing
nodes using an adaptation unit to supervise consistency checking of the knowledge contained
in the new boolean propositions relative to the existing nodes, and to minimize the system
function representation. Depending upon the adaptation unit directives, boolean processing
nodes interactively pass messages, add new nodes, delete redundant nodes from the network.
These actions lead to self-modification and self-organization. The adaptivity issue is of major
concern, as it determines the potential applications of the ASOCS model. This paper strongly
emphasizes this point. In addition, actual ASOCS applications are discussed.

1 Introduction

ASOCS is a special-purpose parallel processor performing asynchronous and concurrent
dataflow computations using boolean variables [1]. Self-organized learning and parallel ex-
ecution form two separate phases of ASOCS operation (2]. ASOCS uses network structure
modification as a means of adaptation to the new training data [3].

An instance is the atomic knowledge element used to train ASOCS. It is a boolean propo-
sitional logic rule whose antecedent is a conjunction of boolean variables representing input
propositions and consequent is a single boolean variable representing output proposition,
such as AB' =.> Z for example, where B' is a complement of variable B, and =- is an im-
plication operator to specify a partial boolean function. Instances, used to train ASOCS,
allow arbitrary mappings of inputs to outputs and critical variable generalization [4]. Only
a single presentation of an instance is necessary in ASOCS.

Adaptation phase begins with an introduction of the new instance (NI) to the system.
Network structure evolves according to the changing system function. Learning proceeds
using information contained in both the stored instances or old instances (01) and the NI.
During execution the system acts as a parallel network of boolean gates and returns binary
output values in response to the input vector with only propagation delays of the functional
nodes.

A propositional logic rule with m variables in its consequent is equivalent to the union
of m instances with the same antecedents, as that of the original rule, and each containing
unique output variable. ASOCS uses this paradigm to deal with multiple outputs.
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The layout of this paper is as follows: section 2 discusses theoretical principles supporting
ASOCS operation, section 3 describes ASOCS system architecture, section 4 presents AA2
adaptive algorithm, section 5 focuses on ASOCS applications, section 5 contains a summary
and conclusions.

2 Theoretical Foundations

Based on classification criteria for intelligent computational models established by Khebbal
and Goonatilake [5], ASOCS model is a sub-symbolic or adaptive system. At a higher level of
abstraction though, ASOCS can be considered' performing both sub-symbolic and symbolic
processing depending upon responsibilities assigned to the adaptation unit. Artificial Neu-
ral Networks (ANN) and Genetic Algorithms (GA) are are representative of sub-symbolic
processing. Expert systems and other machine learning paradigms exemplify symbolic pro-
cessing. Verstraete discussed adaptive versus symbolic processing in more detail and talked
about combinational rule-based inference systems [6]. Many researches proposed a hybrid
approach to take advantage of of both adaptive and symbolic processing [5]. Using ASOCS
in real-world applications should provide a fruitful ground for testing similar approaches.

Variables actually present in the instance are called critical variables, as opposed to 'don't
care' variables that do not appear in the instance symbolic representation. For example,
ABC =Z
is an instance whose critical variables are A, B, C, and 'don't' care variables are D, E. This
boolean proposition is equivalent to the following set of training patterns:
ABCD'E'% Z,
A B C D'WE = Z,
ABCDE'=•Z,
ABCDE=>Z,

each containing all the variables of the system. Hence, instance representation is a more
general one than binary pattern representation typically used in discrete Artificial Neural
Networks (ANN) [4).

ASOCS operation is predicated on the following principles:

Consistency. A discriminant variable between two instances is a variable that appears in
the antecedents of both instances simultaneously but with opposite polarity. Two instances,
that have opposite polarity and do not have at least one discriminant variable between them,
contradict each other. A set of instances that includes such pair is inconsistent. However,
consistency in such a set can be restored by resolving all conflicts between the contradicting
instances. To resolve such conflicts, ASOCS gives higher precedence to the newer instances.
Discriminant Variable Addition (DVA) operation replaces the 01 node by a node created by
concatenating the 01 variables with the complement of a variable that is present in the NI
but not in the 01. A single node is created for every variable of this kind.

Minimization. It is performed for the same polarity instances on a pairwise basis by ap-
plying Boolean identities [1], [7]. This leads to a more parsimonious network representation
of the instance set and improves system's generalization capability. Also, network parsimony
manifests critical variable generalization capability of ASOCS to handle novel input patterns
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from the environment [4]. Minimization is computationally demanding operation that re-
sults in drastically increased system complexity and less intuitive knowledge representation.
In addition, redundant data representation may bring about inherent fault tolerance and
robustness in ASOCS distributed computational system environment.

3 System Architecture

Block diagram. Figure 1 depicts ASOCS internal structure, including major functional
units: Adaptation Unit (AU), Logic Network (LN), Input Binder and Router, Output Binder,
and their unidirectional communication channels: Presentation Path, Test Path, Feedback
Path, and a bidirectional communication channel called Broadcast Bus. Input and Output
Binders connect the input and output variables to the LN. Normally, the AU and LN ex-
change messages via Broadcast Bus. Optionally, the AU can communicate with the LN using
the Presentation Path and the Input Router. The Feedback Path is to be used in finite state
machine applications.

outputs

Adaptation Logic
Ins ~~UnitNewr

B. B. - Broadcast Bus Inputs

Figure 1: ASOCS block diagram

The AU receives new instances from the user and coordinates the adaptation process while
learning proceeds. Processing nodes of the LN respond to the input stimulus during execution
and are also active during learning to adapt the network structure to the changing instance
set. The AU guides the LN through the adaptation process using global commands that
specify actions the nodes perform concurrently and in a self-organizing fashion. The logic
network can build itself from scratch with new interconnections being dynamically formed
between nodes. For multiple outputs, ASOCS systems require separate logic networks to be
associated with each output variable.
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4 Adaptive Algorithm AA2

The AA2 adaptive algorithm [1], [31 represents a computed system function in a sum-of-
products form with the product terms corresponding to the stored instances. This scheme
relies on instances being stored implicitly in the logic network.

Hardware Support ASOCS requires the following kind of nodes supporting AA2 adaptive
algorithm operations:

1. Primitive nodes conjunct and store two variables, and indicate if these variables are
present or absent iii the NI.

2. Discriminant nodes of positive (negative) type represent the entire instance learned
by the logic network. Critical variable list of the discriminant node is built by up by a
layer of internal primitive nodes. The LN must support a dynamic interconnect between any
primitive node and any discriminant node [1]. The outputs of all the positive (negative) dis-
criminant nodes are connected to positive (negative) non-adaptive OR-plane located outside
the logic network. During execution, if a positive (negative) OR-plane outputs a logic 1, the
logic networks outputs a logic 1 (0). Otherwise, the output is a 'don't know' variable since
the AA2 adaptive algorithm does not support generalization.

AA2 Adaptive Algorithm It consists of four steps corresponding to global commands
broadcast by the AU to the LN:

1. Instance Presentation - broadcasts the NI to the network. Only if the NI is matched
by the network, indicating that ASOCS has already learned the information, adaptation is
not needed and the the remaining steps of the algorithm are skipped.

2. Consistency Resolution - modifies the instances stored in the network that contradict
each other. DVA operation is used to recover the uncontradicted portions of the stored
instances. As a result, the number of nodes in the network may grow well beyond the
number of instances actually presented in the step one of the algorithm.

3. New Node Addition - adds the NI to the LN. Since the NI contains new knowledge, a
new processing node is allocated and connected to the logic network.

4. Self-Deletion - requires any portion of the network that is completely contradicted
by the NI to be deleted. Redundant subnetworks, as determined by the minimi2ation rules,
may also be deleted from the logic network, optionally.

5 ASOCS Applications

Actual Applications. The following illustrates a real world application of ASOCS system
using AA2 adaptive algorithm [1]. It is a part of the flight control of an experimental aircraft
tested by NASA. Based on the system specification, instances were created that expressed
output variables as functions of the inputs variables utilizing a cyclic tree representation.
This application used the instance data representation with a single-valued AA2 adaptive
algorithm, i.e., the system was limited to instances of positive polarity or.ly, such that the
system output a logic 1 when a positive instance was matched, and a logic 0 otherwise.
This positive value logic based implementation did not allow 'don't know' input or output
variables. So the power of ASOCS paradigm was not fully utilized there. In fact, the

1-447



activities of all the phases of the AA2 adaptive algorithm were not exercised in this case,
e.g., the existing instances never contradicted each other so no consistency resolution was
necessary. But most importantly, the incremental learning using instances still took place.

Other real-world application of ASOCS model include a system to perform adaptive real-
time network routing in computer networks proposed by Campbell & Martinez in [8]. In
addition, ASOCS model using AA1 adaptive algorithm has shown promising results when
tested on staaidard machine learning databases requiring generalization capability, as re-
ported in [91.

Potential Applications. Adaptivity in ASOCS model manifests its on-line learning abil-
ity. ASOCS can successfully deal with constantly varyinr, conditions and learp in real-time
in the presence of unstationary environments. In addition, ASOCS model has great promise
in applications requiring critical variable generalization capability, such as:

" Embedded Systems, which require high speed and adaptivity to perform real-time
decision making with input data obtained from the environment. .5OCS systems,
by means of the concurrent combinational computing paradigm, could be successfully
used to perform the desired control activities.

"* Robotics, which falls into the category of the embedded systems and is considered its
own research and application discipline. For the reasons discussed above, the ASOCS
systems could speed up the adapt, ve activities performed by autonomous robots, such
as visual tracking and navigation.

" Pattern recognition and classification problems lend themselves naturally to ASOCS
applications because of the critical variables contained in the input data. Hence, adap-
tive pattern recognition should be possible with ASOCS and could be used in complex
intelligent systems comprised of visý_,l and auditory subsystems.

" Adaptive logic devices could be made using ASOCS systems. They, in turn, could be
applied to fast prototyping of boolean circuits, that once verified could be implemented
using standard fixed interconnection networks, such as programmable logic arrays, field
programmable gate arrays and so on.

" Adaptive Control and decision systems, which output the information depending
upon the input state, are within the domain of ASOCS system applications. The
problems falling into this category are control of complex systems with multiple inputs
and outputs, such as aircraft malfunction management and recovery system, collision
avoidance, vehicle guidance, process control, and distributed traffic control. High-speed
adaptive control could also be achieved in modern computers using ASOCS systems.

" Al applications of logical inference using ASOCS system. Specifically, a concur-
rent ASOCS mechanism could be applied in expert systems as an inference engine to
concurrently fire rules. This would allow to process large rule bases without a notice-
able slowdown in the system operation.

" Standard ANN applications. Training would need to be accomplished by means of
rules introduced incrementally over time instead of the traditional training set methods
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typically applied in ANNs. As already indicated, there is an easy mapping between
ASOCS instance representation and the training pattern representation used in ANN.
However, substitution of instances for the training patterns would greatly diminish the
critical generalization ability of ASOCS.

6 Conclusions

This paper discussed ASOCS model for incremental supervised learning. ASOCS can
be trained to recognize categories in response to an arbitrary binary input vector. ASOCS
enforces consistency of its instance set and minimizes internal data representation. The
above abstract principles of ASOCS operation rely on message passing, adding new nodes
to the network, removing old nodes from the network primitive activities, leading to self-
modification and self-organization. ASOCS model supports adaptivity by means of self-
modification and self-organization operations. Thus, ASOCS model has great promise in
practical engineering applications.

Potential engineering applications of ASOCS model are abundant, and include embedded
systems performing real-time decision making, adaptive pattern recognition, adaptive logic
devices and Al applications of logical inference.
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Abstract-Since standard stochastic models were not successful in classifying subtypes of aphasic syndromes,
the performance of modified Multilayer Perceptrons (MLP's) in solving this task is tested. The choice of an ap-
propriate network structure and of a new training strategy (so called probabilistic learning) enabled the network
to be trained for the classification of the. whole sample of about thousand aphasia examinations according to the
neurolinguistic coding. Like any other prognosis or classification procedure, however, the MLP is susceptible to
capitalizing on chance. Cross-validation techniques must be applied to assess the generalization properties of
the network. Their application during the learning phase leads to a new termination criterion which avoids
overgeneralization. Nevertheless, for the classification of aphasia examinations this leads to a considerable drop
in classification quality. It is recommended that the examination of classification and prognosis properties of
connectionist network models should be carried out with the same rigor as for multivariate statistical procedures
in order to prevent unrealistic expectations concerning the potentials of network algorithms. Finally, inversion
of networks is used to detect the criteria for the classification decision. This is intended to serve as a tool for the
analysis of knowledge representations in connectionist models such as MLP's.

1. Introduction

Aphasias are central language disorders caused by brain lesions acquired at an adult age. Linguistically, they can be
described as disturbances in different components of the language system (phonology, lexicon, syntax and seman-
tics). In most cases, they are the result of a cerebrovascular accident (stroke) affecting parts of the language areas of
the brain located with most people (over 95%), in the left hemisphere of the brain. About 40% of patients suffering
from stroke present with aphasia (Poeck 1987).

In clinical aphasia research, six major categories of aphasia syndromes are distinguished. Within each category,
several (between six and eight) subtypes can be differentiated according to the quality of their aphasic symptoms. On
the whole, 48 different subtypes can tentatively be distinguished.

At the Department of Neurology of the Aachen University of Technology the Aachen Aphasia Test (AAT), has been
developed for the examination of German-speaking patients. With the aid of this test, a test profile consisting of 24
test variables is obtained for each patient (Huber et al. 1984). For standard diagnostic purposes this detailed test
profile is reduced to 11 summary variables, serving as a basis for the identification of aphasia as well as for a
statistical classification of aphasic syndromes.

Up to now, neurolinguists have arrived at a detailed classification of subtypes of aphasic syndromes on the basis of
clinical impression. Descriptions of the characteristic features of each aphasia subtype have so far been lacking
sufficient psychometric foundation. Attempts to use statistical methods for the classification of aphasias by subtypes
and for the identification of their respective features have so far led to no satisfactory results, due to the large
discrepancy in the occurrence of individual subtypes. For this reason we used connectionist models to tackle this
problem. Multilayer perceptrons (MLPs) according to Rumelhart, Hinton and Williams (Rumelhart et al. 1986) were
found to be of special interest.
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Figure 1 describes the greatly varying frequency of subtypes in the set of 996 test profiles on which the analysis was
based.

Number

1201 X

60

6 Subtype

global a Wenicke's a Broca's a amnesic a tZansconical a condtdction a residtal a 9

Type of aphasia

Fig. I Frequency of aphasias by subtypes

The features characterizing this classification problem are typical of many medical classification problems,
especially for differential diagnosis:
"* In the different categories, the incidence of objects differs considerably.
"• The number of objects per category often is too small in relation to the respective number of object features.
"* No multivariate normal distribution for the set of variables considered can be assumed.
"* There is no homogeneity of variance-covariance matrices of feature vectors among the diagnostic categories.

Any solution for such a classification problem should accomplish correct classification of new cases not known to the
system (generalization capacity). Furthermore, discriminating features should be identified which have been
responsible for establishing an individual's classification.

2. Multilayer networks for the detailed diagnosis of aphasia by subtypes

The multilayer network is designed in two phases. The first phase aims at determining training strategy, network
structure and network dimension leading to a correct classification of all cases in the sample. The general adequacy
of the network for the solution of the classification problem under discussion is ensured in this way. Procedures such
as weight-decay and choice of a suitable termination criterion are introduced only during the second phase to
counteract overgeneralization.

Training with the aid of a MLP without a hidden unit layer was tried first. Elements from just two of the 48
categories were identified correctly. Accordingly, all further trials were made with MLP's comprising a hidden unit
layer. For the determination of the number of hidden units, the upper limit established by Baum and Haussler (Baum
1990) was employed. Experiments were carried out with MLP's using this fixed dimension to find a suitable training
strategy.

Probabilistic learning

Commonly used training strategies like sequential, periodical or batch learning did not lead to learning the entire set
of samples in MLP's with one layer of hidden units. Elements from low-frequency categories in particular were
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classified incorrectly in each case. For this reason, a new probabilistic training strategy was introduced. The idea is
to make the presentation rate of patterns proportional to the difficulty with which they are learned. During the
training process calculation of the actual local error for all patterns to be learned is carried on continuously.
Depending on the size of its local error, the probability of a pattern being presented to the network and of weights
being adjusted increases. This training strategy made learning of 97% of all cases possible. The remaining 3% could
not be learned even after different initialization of the system. It was found that they represented erroneous diagnoses
due for instance to the confusion of syndrome and subtype coding. After correction, all cases could be classified
correctly.

Network architecture

Once a suitable training strategy had been found, the number of hidden units was reduced as far as possible without
reducing the number of cases that could be learned to prevent overgeneralization. The number of hidden units could
thus be reduced from 67, the Baum-Haussler limit, to 45. Afterwards, complete-linkage hierarchical cluster analysis
was carried out on the activations of the hidden units for all cases. Each 'cluster contained vectors belonging to two or
three different and not just one aphasic syndrome. Apparently, the hidden units also served to distinguish aphasic
syndromes from each other.

This observation led to the splitting of the network into sub-networks by cancelling links between hidden units and
output units belonging to different aphasic syndromes. Thus, all subtypes of the same aphasic syndrome were learned
in one sub-network and those belonging to different aphasic syndromes in different sub-networks. This network
architecture consisting of sub-networks is shown in figure 2.

Output units

hidden units

Input units

Fig. 2 Network architecture consisting of sub-networks

The dimensions of the sub-nets were then adjusted to the size of the corresponding sub-classification problem. The
number of hidden units was determined for each sub-network separately, in order to obtain the lowest number of
units still permitting a correct classification of all cases concerned. During the learning phase, the criteria for the
assignment of an output vector to a specific subtype take into account only the output activations of subtypes of one
aphasic syndrome. All output activations continue to be taken into account in evaluating the entire network, thus
ensuring an unequivocal categorization. In structuring the network architecture in this way, the number of weights
was reduced by two thirds although there was a slight increase in the overall number of hidden units needed.

1-452



The division of the network into sub-networks shortened the learning phase in two ways: on the one hand, less
weights had to be adjusted, and on the other hand the parallel calculation of sub-networks using different processors
was possible. The number of back-propagation-steps during the learni,'- phase of each sub-network was reduced.

As expected, when analysing the learning phases of the different s. .s, the training process within each net is
concerned primary with the distinction between subtypes. It appeal aitially, all elements of the training set are
chosen with similar frequency. The further advanced the learning phase, the greater is the frequency of presentation
of sample elements belonging to the particular sub-network.

bp-steps
30000 Number of bp-sleps per element of the training set:

after 350.000 bp-steps

25000
after 1.300.000 bp-steps

20000

15000

10000

5000

global a. \Vernicke•s a. Broca's a. amnesic a. 'tram. o idal.

Test profiles according to aphasia categories

Fig. 3 Number of back-propagation steps executed within the sub-network for global aphasia per element
of the training set after 1.300.000 bp-stcps

With this, the first phase of designing the network is finished, determining training strategy, network structure and
network dimension.

Overgeneralization

During the second phase of network design, only two thirds of all cases were used for training. The remaining third
was taken for testing the generalization capacity of the network. Already during the first phase of network design, the
number of hidden units has been reduced as far as possible. In this way we tried to avoid overgeneralization (Chauvin
1989) apart from acceleration of the learning phase. Weight-decay was used as a further means to counteract
overgeneralization (Nowlan et al. 199 1).

Already during the learning phase itself, the error rates for both the training and the test sets were calculated. During
training the error rate for the test set first decreases but then starts to become bigger again whereas the error rate for
the training set continues to go down. This point during the learning phase indicates when the network starts to
overgeneralize. It was chosen as the suitable moment to stop the learning phase. The test set can then no longer be
used for determination of the true generalization capacity of the network. Otherwise, the objection would be justified
that the network has been trained on the test set. For this reason, the entire set is divided into three parts of the same
size, the training set, the 'development' set and the actual test set.

For the determination of the expected error rate for this type of network and for the given set, the cyclic hold-out
method was used for this threepartite partition and it was repeated for three different initializations. The result was
an error rate of 0.72. Incorrect classifications were in two thirds of all cases due to a confusion between subtypes
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within an aphasic syndrome, resulting in an expected error rate of 0.3. Apparently, given this sample of aphasic
patients networks of this type cannot be used successfully for the classification of aphasic subtypes.

Several reasons can be account for the high amount of generalization errors:
First, the very low number of cases for some subtypes must be mentioned. Furthermore, the boundaries between
subtypes are poorly determined. A further reason may be seen in the quality of data obtainable from a clinical
aphasia test. The different components of the test profile do not have proven metric properties. One realizes the basic
difficulty of arriving at an exhaustive measurement of qualitative speech disturbances of an aphasic patient through
the use of quantitative test scores. The question remains unanswered whether a classifier for a differential diagnosis
of subtypes can be determined at all. Classification according to syndromes war however comparable to results
obtained from nonparametric dicriminant analysis

3. Analysis of multilayer networks

To attain insight into the criteria on which any classification by means of a network is based, two questions should be
answered:

"* According to which criteria does the network assign a given feature vector to a specific category?
"* Do criteria exists within the network which are decisive for the assignment of feature vectors to a given

category, and if so, which'?

Two procedures, 'contribution analysis' (Sanger 1989) and 'inversion of a network' (Linden et al. 1989), were
examined. Only inversion led to satisfactory results. Through inversion, the input vector is reduced to the features
decisive for classification. Only those input units which represent the discriminating features exceed a prespecified
low threshold value (minimal positive discriminating features), or they remain below a particular high threshold value
(minimal negative discriminating features). The classification of this decesive feature vector when taken as an input
vector is identical to that of the original feature vector. Thus, the first question seems to be answered.

standardized
test profil values

0.5

9 +
test variables 1317 +*mn e

17 + _

test profile of a patient21 *rain. pos.

test profile with * discriminating features

Fig. 4 Test profile with minimal positive and minimal negative discriminating features

Second, it becomes apparent that all elements of a class are reduced in a very similar manner. The ten most
prominent features of each element of the set were ordered according to size. Calculating the average result for all
elements of a category, one may interpret the features with the highest rankings to be criteria for each category
responsible for the classification.
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Even without using the actual cases from a subtype it is possible to obtain comparable results. To achieve this, the
reduction of the input vector starts with each component being set to a maximum (or minimum) value. Both
procedures lead to classification criteria bearing a strong resemblance to each other. They both provide an answer to
the second question.

Conclusions about the measure of coincidence between the discriminating features defined here and the actual criteria
pertaining to the assignment of feature vectors to a certain category are hardly possible on the basis of the example of
aphasia diagnosis presented here. Throughout, the networks fail to be successful in terms of generalization.

Linden and Kindermann (1989) present the first type of inversion approach only for binary coded data. As far as the
present classification problem is concerned, however, the value or rather the relationship of values of individual
features respectively is decisive for a definite classification. Whether the definition of minimal positive and negative
discriminating features is sufficient for characterizing the classification proposed by the network so far remains
unanswered.

The assumption seems justified that discriminating features can be extracted from complex data sets on the basis of
generalizing networks by means of the procedures discussed above. Negative discriminating features in particular
were in good correspondence with the leading symptoms of the aphasia subtypes.

4. Application of the connectionist classifier

The program modules developed in this study were integrated with the existing system for the processing of AAT
data (Willmes et al. 1987) already in existence at the Department of Neurology in Aachen. Thus, an additional tool
for the classification of aphasia, apart from the procedure of nonparametric discriminant analysis can be used by
clinical practitioners. Furthermore, it is possible to identil6 subtypes of aphasic syndromes and to analyze the
respective criteria decisive for classification. Results, however, due to the high rate of generalization errors, can only
be treated as preliminary as far as a definition according to subtypes is concerned.

Nonetheless, these criteria can help the neurologists and neurolinguists to check their own, partly intuitive criteria,
which hopefully will lead to a clearer differentiation of subtypes of aphasic syndrome in the future.
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THE COOPERATIVE - COMPETITIVE NETWORK:
A NEURAL NETWORK METHOD FOR MAKING ASSIGNMENTS

Alianna J. Maren and Robert Pap
Accurate Automation Corporation

7001 SHALLOWFORD Rd., Chattanooga, TN 37343

ABSTRACT

The multilayered COoPerative - COMpetitive (COPCOM) network is an assignment network; it
determines which items in a given set have closest similarity across a set of relationships. It is
possible to use this network to form a hierarchical cluster representation of a set of objects. This
network has a wide range of applications uses, ranging from perceptual grouping for image
understanding to target-to-track assignment. The generic, powerful, and yet simple nature of this
network make it a reasonable choice for many assignment tasks.

1. ORIGINS OF THE COOPERATIVE-COMPETITIVE NETWORK

COPCOM operates as an assignment network. There are several ways in which it can be used.
It can make the best one-to-one assignments between elements of one set to those in another, it
can find the closest one-to-one matches within a given set of elements, or it can find "clusters"
of related elements within a given set. When applied recursively, COPCOM can be used to build
a hierarchical representation of the structure (clustering) of a set of elements.

Although the multilayer COoPerative-COMpetitive (COPCOM) network architecture was
developed for use in image understanding, it has broad applications uses. It is historically related
to the Boundary Contour System (BCS) [Grossberg & Mignolla, 1985a&b]. The primary
difference between COPCOM and predecessor cooperative-competitive neural networks is that
the predecessors such as BCS operate on the spatial relationship between image points, and the
COPCOM network operates on the feature relationships between distinct units. The difference
is one of level of abstraction. Because COPCOM can use different types of features as
appropriate, it can be used for a wider range of applications than can the BCS network. It is able
to create abstract clusters of most closely related units out of an ensemble of units.

2. OVERVIEW OF NETWORK STRUCTURE AND OPERATIONS

COPCOM operates by making the easiest assignments first, followed by progressively more
difficult assignments. "Easiest" assignments are those which are characterized by both

• Greatest similarity (cooperation) between units that will be matched, and
* Least similarity (competition) with those units that will compete with, but will not

be included in the match.
This means that the COPCOM process follows a form of iterative minimaxing operation.
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COPCOM operates on a set of similarity metrics for pairwise relationships of units. COPCOM
works best if there are multiple dimensions in which similarity metrics can be obtained. If there
are I different types of relationships that will be used, then the cooperative-competitive network
will use I different subnets at a certain layer of operation. Each of the 1 subnets will consider
all the appropriate pairwise relationships between units. Interactions within and between the
subnets produce values for pairwise relationships which, when aggregated, identify the best
pairwise or clusters of matches.

2.1 Structure

In the multilayered COPCOM structure, the elements of the first "layer" refer to the units which
are to be associated with each other. The nodes in all higher layers refer to the pairwise
relationships between these units. For a set of n items, there would be n nodes in Layer 1. The
nodes in Layers 2-5 represent the strength of pairwise relationships between items in the set, not
to the individual items themselves. This means that for a set of n items, there are n*(n-lk2
nodes in each subnet, to accommodate that number of pairwise relationships. When the
COPCOM network is used to uniquely assign elements of set A to elements of set B, then a total
of n*m relationships can be considered, where n is the number of elements in set A, and m those
in set B.

COPCOM consists of five conceptual layers, as illustrated in Figure 1. These layers perform the
following major functions:

Layer 1: Stores information about each of the original units, which is used to create
similarity metrics for relationships between the units.

Layer 2: Stores initial information about pairwise relationships between different
units. Propagates this information to Layer 3, and passes cooperative and
competitive signals proportional to relationship strengths to elements in
Layer 3. Layers 2 and 3 are each composed of a set of isomorphic
subnets, one subnet per relationship type.

Layer 3: Stores values which result from original values plus cooperative (positive)
and competitive (negative) signals passed up from Layer 2.

Layer 4: Combines signals from all subnets in Layer 3.

Layer 5: Contains thresholded (winning) values from Layer 4. Only the strongest
values from Layer 4 survive thresholding (whether histogram-based or
winner-takes all) and propagate to Layer 5. These winning elements in
Layer 5 correspond to the most closely-related possible pairwise matches.
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Illustration of a cooperative-competitive network to find
best pairwise matches between four original units (Layer 1).
The five subnets in Layers 2 and 3 correspond to five
different types of relationships which yield similarity
metrics (e.g. similarity in location, etc.). The number of
elements in each subnet equals N(N-1)12, which in this case
is 6. The "most active" elements are shaded dark.

FIgure 1. Basic COPCOM architecture.

The user must define his or her own metric for determining the initial strengths to load into the
nodes in Layer 2. Typically, an exponential decay distance function is used. Thus, when the
"distance" between two items in any dimension is 0, the strength of the node in the subnet for
that dimension is 1. As the "distance" between two items increases, the strength value put into
the Layer 2 subnet node decreases towards 0.

COPCOM has feedforward connections between all layers. The feedforward connections between
most layers are strictly of like-node to like-node. For example, the feedforward connection of
the Subnet A node for pair (ij) at Layer 2 connects to the corresponding node in Subnet A in
Layer 3. Similar connections hold between the nodes in Layer 4 to the nodes in Layer 5. In
going from Layer 3 to Layer 4, each node in each of the subnets in Layer 3 goes to the single
corresponding node in the single subnet at Layer 4.
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There are lateral connections between the nodes at Layer 2. The connections between a subnet
at Layer 2 (e.g. Subnet A) to a nodes in a different subnet at Layer 2 (e.g. Subnet B) are all
inhibitory. For a node representing the item pair (ij), there is an inhibitory connection to all
nodes representing an item pair containing either i or j. The lateral connections from one subnet
to another are all excitatory. For a node representing the item pair (ij) in Subnet A at Layer 2,
there is an excitatory connection to all item pair (ij) nodes in all other subnets (e.g. Subnets
B..N) at Layer 2.

This is illustrated in Figure 2, which shows how a single strong unit in a subnet in Layer 2
might influence the values in a subnet in Layer 3. In addition to receiving the cooperative and
competitive inputs from Layer 2, each unit in Layer 3 also receives a direct copy of the value
from its corresponding unit in Layer 2. This amounts to copying over the values from Layer 2
ý.o Layer 3, and modifying those values with cooperative and competitive signals. This is done
using two layers, so that the cooperative and competitive signals sent from Layer 2 to Layer 3
are based on the original values stored in Layer 2 and are not distorted in incoming signals.

2.2 Dynamics Lateral Connection in Layer 3

Net 1 Influencing Net 2

When Layer 2 subnet nodes receive their - Positive Values
input from Layer 1, they pass excitatory and -.... Negative Values

inhibitory signals to each other, and sum each 8 Q
of these to their existing strength. The
resultant is passed up to Layer 3 nodes. At
Layer 3, the nodes are thresholded, and the 8 8." (nodes with surviving activations send signals

to the single subnet in Layer 4, which sums 1-3 (7'1-2
(for each node representing a pairwise GJ. .
combination of items) each of the inputs. -. - "-
This is then again thresholded, and the
resultant passed to Layer 5. Excited Layer 5 Net " e
nodes represent the strongest pairwise Net 1 Net 2
com binations. T hey m ay be accessed in one __ __ _ 2 ._ C o op e r at i v e _a nd.
of ceveral ways; finding the maximal-strength eigure 2. Cooperative (c) an
wirmer, finding all nodes with excitations corpetitive (- -) interactions.
above a certain threshold, etc.

2.3 Learning

Connections strengths are typically set before the network is used, and are not adapted during
network use. The possibility of adapting the connection strengths is an open research issue, and
would provide a means of generating context-sensitivity or sensitivity to a priori expectations.
The parameters which should be set by the operator, and which remain fixed during network
operation, are the relative strengths of the inter- and intra-net connections. Also, the thresholds
for cutting off the transfer of activations from Layer 4 to Layer 5 can be set by the user.
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3. COPCOM APPLICATIONS

COPCOM was originally designed to produce a Hierarchical Scene Structure (HSS) for use in
image understanding. The HSS would be a structured representation of the segmented regions
of an image. Regions which were related by proximity, boundary line continuation, similarity
of intensity, and other factors would be grouped together. However, COPCOM's ability to create
clusters based on similarity metrics across multiple relationship types makes this network useful
for several different applications, including:

Identifying best one-to-one matches out of a possible set of many-to-many
matches which is useful for sensor data association and target-to-track assignments
(Pap, 1990; Maren et al., 19921
Forming hierarchical data structures which represent the perceptual organization
(identify most salient combinations of features) in an image or set of time-varying
data, which is useful for image interpretation and automatic target recognition
[Maren, 1988; Maren et al., 1989a&b; Maren & Minsky, 1990; Maren et al., 1990;
Minsky, 1991], and
Combining different votes to arrive at a 'best-choice' classifier from several
different classifiers.

Because the COPCOM architecture is so intuitively obvious, we believe that applications for this
new neural network have just begun. We find this network to be an excellent exemplar of the
cooperative-competitive class of networks [Maren et al., 19901, and has as wide an application
utility as exemplars of other main classes, such as the multilayer Perceptron and the Hopfield
networks. We anticipate seeing a wide range of applications being developed in the future.
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Abstract
As previously shown neural networks can successfully be used to detect
Rapid Eye Movement (REM) sleep stage from EEG data. The EEG signal
was preprocessed in time periods of 20 seconds and presented to a neural
network as a six dimensional vector of real numbers. Backpropagation was
used as the training algorithm. The percentage of correctly classified time
periods was 89% for data not belonging to the training set. In comparison to
the results of a classical nonparametric discriminant analysis algorithm the
network proved to be clearly superior for data not belonging to the calibration
data set resulting in a decrease of the average error rate between 19% and
30%. Different parameters and networks are compared.

Introduction
The course of sleep stages - the sleep architectur - is an important clinical
indicator in judging sleep disturbances. For manual evaluation EEG, EOG
and EMG information is used to determine the sleep profile from sleep EEG
data according to Rechtschaffen and Kales (1968). Some work has been
done on the automatic recognition of sleep stages (Ferri et al. 1989, Kubicki
et al. 1989). More recently other authors have applied neural networks to
solve this problem (Mamelak et al. 1991, Roberts and Tarassenko 1992,
Gr6zinger et al. 1993). Since a backpropagation algorithm worked very well
in detecting REM sleep in our clinical situation, we were curious to compare
these results with a more classical mathematical analysis. As we did not
expect the data to be normally distributed, a nonparametrical method seemed
appropriate.
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Methods
Following an adaption night polysomnographic registrations were performed
from five healthy volunteers in two separate nights each. The continous EEG
data flow at Pz and Cz was analysed in 1440 consecutive time intervals each
consisting of 2048 data points sampled with a precision of 12 bit and a
frequency of fs= 100 Hz. Thus the time intervals were about 20 seconds. The
monopolar signal CzlA1 was digitally filtered into 6 frequency bands as
usually used in EEG analysis: 0.5 - 3.5 Hz, 3.5 - 7.5 Hz, 7.5 Hz -15 Hz, 15 Hz
- 35 Hz, 35 Hz - 45 Hz and 0.5 - 45 Hz. The Root-Mean-Square (RMS)-
variation of each frequency range over time was calculated. The result - a
vector of 6 real numbers - was used as input to the network, which consisted
of 6 input -, 4 hidden - and 1 output neuron. The different layers were totally
connected. The input neurons were linear, the hidden and the output neurons
had a sigmoid output function and were connected to a threshold neuron
leading to 33 synapses. A generalized backpropagating algorithm was used
as the learning rule for computer simulation. The software program was
provided by the Neural Networks Research Group University of Kassel
(Kloppel 1990).
The sleep profiles of the EEGs were evaluated manually by two independent
raters according to Rechtschaffen and Kales. Each of the 1440 time periods
that included a change of sleep stage were neglected. All others were
assigned REM or non-REM as given by the sleep profile.
In order to determine the "fit" of the network output levels ti in predicting the
manually evaluated sleep stages ti* the percentage of misclassified time
periods were determined by using ti = 0,5 as the cutoff point for the neural
network to discriminate between "REM" (ti>0,5) and "non-REM" (ti<=0,5)
periods.
Because of the smaller amount of REM in regards to non-REM periods in the
course of the night - and in the training set - the 'REM errors' dominate the
"non-REM errors' unless the amount of REM periods is increased in the
training set (another way would be to change the error function). To keep
both options two networks were trained by data sets put together from input
vectors as defined below and the sleep stage coded outputs.

PM1: Trainig data were pooled by taking every fifth time period of
the first night - EEG-signals of each subject.

PM2: Like PM1, but substituting other sleep stages by REM
periods equally for each subject, so that the precentage of
REM time periods in the training set increased to 40%.

The EEG data of the second night were used as test data.

Starting from randomly chosen synaptic weights training was stopped, when
QME improved less than 10-4 within 50 training loops, which was reached
within a maximum of 2500 loops. Each learning cycle was repeated from at
least three different starting points to avoid local minima.

As a classical method of discriminant analysis to compare with we chose
the nonparametric k-nearest neighbor discriminant analysis (Mahalanobis
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distance) for k=1 and k=3 as provided by the SAS standard software. The
calibration data set was exactly the training data sets of PM1 and PM2.

Results and discussion
Figurel gives an example for the output of PM2 during the first third of a night
of a subject in comparison to the manually evaluated sleep profile. For the
lower part of the figure the network output was smoothened by moving
average over a time period of one minute respectively.

sleep Profile

"", II'I d"1[ l-Fl' 'IT"Y-£i 1Yr'' 'I

O I

1.0 smoothened output

0 100 2W0 3W0 400 rme penod

Figure 1: Example of the sleep profile in comparison to the network output.

Tables 1 and 2 show the error rates of the networks PM1 and PM2 as
compared to the nearest neighbor discriminant analysis (k=1 and k=3).
Looking at the average error rate of the different methods for the first night
one can see hardly any difference, while there is a clear advantage for the
neural network in the second night resulting in a decrease of the error rate
between 19% to 30% as compared to the nearest neighbor methods.
Additionally the error rate for the first night is lower than that for the second
night in both tables. Both effects are caused by the fact that the
training/calibration data set is pooled from EEG data from the first night.
Thereby every test data set of the first night is containing one fifth of
training/calibration data resulting in a lower and more equal error rate.
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subject Percenta•ge of miisclassificd time pcriods
Neural Network Discriminant Analysis

I k =1 k=3

_first night
1 6.9 7.5 7.7
2 6.1 7.4 5.5
3 13.3 11.4 11.3
4 15.4 16.0 15.9
5 7.9 9.6 8.9

average 9.92 10.38 9.86

second night
1 6.2 9.2 7.6
2 11.6 18.1 16.5
3 14.0 18.8 15.9
4 17.8 22.1 22.4
5 7.4 9.3 8.3

average 11.40 15.50 14.14

Table 1: Percentage of misclassified time periods for different discriminant procedures using
calibration data as continuously recorded (PM 1).

subject Percentage of misclassified time periods
Neural Network Discriminant Analysis

k =1 k=3

first night
1 7.5 7.3 7.8
2 6.1 7.5 6.7
3 12.6 10.2 13.9
4 16.4 13.6 14.7
5 7.8 9.6 9.1

average 10.08 9.64 10.44

second night
1 6.3 10.7 8.8
2 13.7 19.5 16.4
3 13.7 24.9 21.5
4 21.9 22.5 21.6
5 6.0 10.6 8.7

average 12.32 17.64 15.40

Table 2: Percentage of misclassified time periods for different discriminant procedures using
equalized calibration data (PM2).
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1. Introduction

Reengineering software modularity includes both discovering existing module
structures and changing these structures to improve organisation (Arnold 1993). The
overall success of most large systems is dependent on their organisation, because
organisation affects understandability, modifiability, integratability, and testability
(Schwanke 1991). Remodularisation activities become more and more necessary as
software systems grow in size and age. As procedures are added to a system to meet
new requirements, decisions must be made, by the programmer, as to where the new
procedures should be placed. which module will the new procedure belong to? As
systems grow large, programmers find it difficult to make these decisions because
their view of the system is focused on the software they are working on, which is
small with respect to the size of the entire system.

This paper describes a software reengineering tool which attempts to guide
programmers in the remodularisation of software systems. The tool makes use of
several technologies, which include an object-oriented information base for storing
the original source code and an artificial neural network (ANN), which is used to
cluster together procedures that share information. The remainder of this paper
discusses the relations between software modularity and information hiding,
suggesting a way that data and procedures could be organised into modules, and
describes the reengineering tool, which attempts the remodularisation of existing
code, with a presentation of results from several experiments.

2. Software Modularity and Information Hiding

It is almost certain that, at some point during a software system's lifecycle, there will
be a need to reorganise its modularity following numerous changes to functionality
and structure. Several methods exist defining criteria for remodularising software
components, based on grouping procedures that call one another. However, since
Parnas formulated his influential "information hiding" criterion (Pamas 1971),
programmers have generally agreed that it is more important to group together
procedures that share data, than to group procedures that call one another. Using the
information hiding principle, as did Schwanke (Schwanke 1991), the process of
remodularising existing code can be partially automated, helping programmers
reorganise large systems.

A software module has two major roles which are: Providing organisation and
scope. Organisation is achieved by dividing the system into logical modules which
helps the programmer understand the overall structure, while scope refers to the
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region of a program where a particular variable may be used. For example in the C
language, a name declared in a function (called a local name), has scope that extends
from the point of declaration to the end of the block in which it is declared- for a
name not in a function (called a global name), the scope extends from the point of
declaration to the end of the module. In essence scope provides a way to group data
and procedures so that system organisation can be achieved.

The information hiding principle can provide programmers with a guideline as to
how data and procedures should be organised into modules within a system to
provide "good" organisation. Information hiding occurs when a module's access to
data, which is not needed by the module, is denied by using the scope rules of the
programming language. One advantage of hiding such unnecessary information is
that it can not be changed or deleted by units which are not supposed to use that
information. David L. Parnas, a leader in software modularity research, formulated
the information hiding criterion in 1971 which states a module should be

"... characterised by a design decision which it hides
from all others. Its interface or definition lis] chosen
to reveal as little as possible about its inner
workings" (Parnas 1971).

Good modularity is a subjective issue, however, using the information hiding
principle a general heuristic for modularisation can be formulated which couples
procedures together which share information (data): If two units use several of the
same data, in a global scope, they may very well be sharing important design
information, and should be grouped together. This heuristic can be implemented by a
ANN, using information sharing features as input vectors.

3. The Remodularisation Tool

The software reengineering tool introduced in this paper is composed of several
interacting programs which attempt to remodularise existing code. This section will
describe the three major components of the tool (1) The decomposer, which is a
parser and semantic analyser for breaking down the original code. (2) the information
base, which is an object-oriented database representing information about the
software, and (3) the composer, which is a combination of two translators. The first
translator extracts information sharing features from each procedure, and the second
uses these features as input vectors for a ANN which attempts to remodularise the
original code, generating a new organised system.

3.1. The Decomposer and Information Base

Decomposition is the process of transforming a particular view of software into
objects and relationships which are stored in an information base. Working with a
decomposed view rather than on the source code directly saves the time and energy
of parsing the code for each transformation. The challenge of decomposing views is
not the issue of parsing because tools exist such as lex and yacc that eliminate a great
deal of work. The challenge is, however, which decomposed views should be
represented in the information base and how. Several papers introduce object based
representations (Kozaczynski & Ning 1989 and Harandi & Ning 1990) which allow
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additional program abstractions to be derived or added to the existing hierarchy
giving the information base great flexibility and extendability.

In this system the source code is originally decomposed, using lex and yacc, into
an implementation language independent object-oriented information base, which
will be referred to as the source base. The parser uses the programming language
syntax to translate the source information; there is a corresponding parser for each
source language. From the source base a set of views can be composed displaying
different information about the original code.

3.2. The Composers

Composing views is the process of generating visual information about the software
from the information base. A composer is a tool which inspects the information base,
collects relevant objects and relationships, builds visual representations, and displays
a view. This section describes two of the composers within the system, including first
the software modularity feature view, which extracts the feature vectors from each
procedure, and secondly the module view, which uses an ANN to display the
reorganised modules.

3.2.1. Software Modularity Feature Views

Each procedure will have a unique signature which will distinguish it from other
procedures. The signature is created by extracting the information sharing constructs
of each procedure from the information base. These constructs can be recognised as
non-local variables, which are defined as any variable whose scope includes two or
more procedures. The feature view is used by the ANN as input for clustering
procedures.

3.2.2. ANN Subsystem: Composing Module Views

The original modularity of a system is first broken down by placing each procedure
in its own module. Each module has a corresponding feature vector, created by the
feature view. A neural map is then generated by applying the feature vectors to a
neural array without supervision, this is known as the process of self-organisation
(Kohonen 1984). The array consists of a large number of neural elements; a 2-
dimensional 20x20 array is used in this system. All the neurons have N inputs which
are supplied with the same N-dimensional input vector X. The output ni, of the ith

neuron in the army is a function, f, of similarity, S, between the input vector X and a
prototype vector, or weight Wi, uniquely associated with the neuron:

ni = fI S (X Wi) I 1

The map can then be visualised by translating the trained prototype vector, Wi, to a
summary map (Whittington et al., 1992), see Figure 1. The modules, which Ahe ANN
produced, are represented on the map by wells. To establish which procedures were
organised into each well, or module, the map is first calibrated using known input
samples. The map units are labelled according to the majority of labels "hitting" a
particular map unit. Secondly, a list of coordinates are generated corresponding to the
best-matching unit in the map for each procedure.
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Original Expert Reengineering Tool

M I M2 M3 M4 M5 M6
MI 17 MI 14 14

M2 14 M2 9 9

M3 11 M3 9 9

M4 9 M4 7 > 7

M5 6 6

M6 6 6
x-Neurons

Figure 1. The neural map's representation -of a reorganised software system. The
group labelled, Original, Is the original structure of the system while the group
labelled, Expert, Is how an expert would remodularise the same system. The groups
lit the system's modules on the left and the number of procedures contained in
each module on the right. In the middle is a Kohonen map generated by the tool
with each well, or dark spot, representing a module. The map Is translated to the
representation on the far left, showing the number of procedures In each module.

4. Experimental Results and Summary

The reengineering tool was used to remodularise several software systems The
systems were all written in C and COBOL, ranging in size from 10-50 modules. For
each system an expert was contacted and ask to verify the quality of the
remoduralisation.

One system written in C, which originally contained 51 procedures in 4 modules,
was reorganised into 6 modules, see Figure 1. The remodularisation process required
43 choices (to reduce 45 groups to 6). Thirty five of the choices the tool made
organised procedures together, which had originally been in the same module. Ten
choices organised procedures originating in different modules. More importantly the
expert agreed with the choices the tool made for remodularisation.

Through the experiments conducted, and advice from experts, the ANN based
reengineering tool presented in this paper has proven that it has the capability to
guide programmers in the modulation or remodularisation of existing code to
improve its organisation.
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Abstract

This paper deals with a neural network solution for a problem specific to the power industry.
In particular, the static unit commitment problem [1], [2] is addressed. The static problem is a
special case of the unit commitment problem, where the planning horizon of unit commitment
consists of only one hour. To represent the mixed-integer nature of the problem, a coupled
gradient network is formulated. The dynamics of the network are defined by gradient descent on a
global energy function, and hence the network converges to locally optimal solutions. After
formulating the model, the parameter selection involved in actually simulating the network is
discussed. Finally, this paper concludes with a discussion of some simulation results.

1. Introduction

In this section, the static unit commitment problem is formulated as a mixed-integer
optimization problem. Following this introduction, a coupled gradient network is proposed as a
method of solution for the static problem. A penalty function approach is used to construct an
appropriate energy function and gradient-type network. Actually, to solve the static problem, two
coupled gradient networks will be constructed that will represent the mixed-integer nature of the
problem, operate in parallel, and converge to a locally optimal solution. After specifying the
network architecture and energy function, the dynamics are defined by gradient descent. Finally,
simulation results are presented and discussed.

Suppose we have a power system with n generators, or units. Let the generation level of each
power plant be denoted by P1, P2, ... , P., and let the commitment of each generator be denoted by
u1 , u2, .... U, where ui E { 0, 1 ..That is, ui = 1 if unit i is on-line; otherwise, ui = 0 and unit i
is off-line. The static unit commitment problem is to determine optimal unit commitments such
that the overall cost of operation of the power network is minimized, subject to some constraints.
The cost of operation, which is the objective function to be minimized, is given as:

T n

f(P, u) = E -(TiP + Pii + ai) u + sci(I 1 -U) u
t-li-l

where P = (PI, ... P.), u = (u,, ... u.), and for the ith unit, Zy, 0,, and a, are the cost
parameters of generation, sc, is the start-up cost, and u0 is the initial commitment of the unit (the
commitment of the unit at time t = 0). Note that start-up cost is only incurred if a unit is switched
on-line, i.e., u? = 0 and ui = 1.

The constraints of the problem include unit constraints and generation constraints. The unit
constraints require each generator i to stay within its minimum power capacity, denoted mi and its
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maximum power capacity, denoted M,. So while on-line, unit i must not generaie less than mi
units of power and must not generate more than M, units of power:

mi<P NOtSrMA i = 1,2. ... , n,

The generation constraint requires that the total supply of power must meet the projected
load or power demand L:

EPiui = L
i. I

Also, we will require that at any given time, there is reserve power on hand. This reserve
power is called spinning reserve and is denoted R. Such a reserve is necessary because at any
time t, the actual demand is not known precisely; L thcn represents some projected value of the
total power demand. Hence those units which are on-line should be able (if necessary) to
aggregately supply an additional R units of power. This constraint can be expressed as:

n R

Y [Mi - P,(t)] u, > R, and since the power balance equation gives E Piui = L, then the
i-Ii I

spinning reserve constraint can be written as:

,Mju,> L +R
i-l

Finally, the static unit commitment problem may be concisely written as the following
mixed-integer programming problem:

'I

Minimizef(Pu) = E [Yp2 + ,P + a,i + sc( 1.0 -u)]u, (1)

subject to mi < Pi!< Mi i = 1, 2, ... , n (2)

Piui = L (3)

,M~u > L + R (4)

u1E {O,I}, i= 1,2,...,n (5)

2. The Structure of the Coupled Gradient Network

The coupled network consists of two interacting recurrent networks: a network to represent
the unit generation levels, called the p-network, and a network to represent the unit commitments,
called the u-network. The p-network will have as node outputs (states) the power generation
variables P,, while the u-network's node outputs will correspond to the commitment variables u,,
i = 1, ... n. Hence the state space for this dynamical system will be the hypercube given by

PI/I,

= II [miM] X H [0, 1]
ail i-i

The input to the ith node in the p-network will be denoted by h", and the input to the ith node
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in the u-network will be denoted by hý. Later, the dynamics of the coupled net will be defined in
terms of these input variables. The network structure is shown schematically in Figure 1.

Utl Uni2 Ut3 Unit

Unit I Unit 2 Unit 3 Unit n

(a) (b)
Figure 1. The structure of the coupled gradient net. (a) The input-output scheme for the
neurons representing the ith unit. (b) The coupled structure of the two networks.

To ensure that Pi E [min, Mi ] and uj E 10,11, the activation functions shown below in
Figure 2 will be used for the nodes of the coupled network. So for the nodes in the p-network, the
activation function is given by a saturated linear function with slope X', in the linear region. The
activation function for the commitment network takes the following sigmoidal form:

1
u. = a(h ) =- 1

I +" e-xg

During computation, the integral constraints on the commitments are relaxed, and the
commitment variables are allowed to assume intermediate values in the hypercube [0, 1] ", but it
is expected that the final values of these variables will saturate at either 0 or 1 upon convergence
to a solution.

Pi = p1(hj') ui o(h')

(a) (b)

Figure 2. The activation functions for (a) the nodes of the p-network and
(b) the nodes of the u-network.

This approach of allowing both the generation levels and commitment levels to continuously
evolve is different from some previously defined neural net solutions of the unit commitment
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problem. For example, the network of Liu, et al. [31 searches for the optimal commitments in the
discrete space { 0, 11 " using a Boltzman machine. In the model of Sasaki, et al. [4], although tke
commitments evolve in the unit hypercube, the generation levels are held fixed during
computation. Furthermore, their model uses a linear objective function, rather than the quadratic
cost function given above.

The energy function for the coupled network will be constructed using a penalty function
approach. That is, the energy function E (P, u) will consist of the objective function f(P, u) for
the static problem plus a penalty function to enforce the constraints. In the case of the static unit
commitment problem, there is only one equality constraint: the power balance constraint, and one
inequality constraint: the spinning reserve constraint.

Also there are n combinatorial constraints on the commitment variables; these are the
constraints ui E {0, 1} , for each i = 1, ... , n. Hence the required penalty function will consist
of three terms: PL for the power balance constraint, Ps for the spinning reserve constraint, and Pc
for the combinatorial constraints.The resulting energy function E = f(P, u) + PL + PS + PC for
the static unit commitment problem is given below:

n

E = A i(yP+ + 8 a 2) ui + B + sc,(1 - uP) ui
i-I i-l

2 nn

+C(EPiui-L) +D(EMiu,-L-R)+KEu,(1-u,)
i i-i i-1

where g(*) is the penalty function shown below in Figure 3. That is, g (x) = x2 for all x < 0 and
g (x) = 0 for all x Ž 0; so g(-) penalizes solutions which fail to meet the spinning reserve. In the
above energy, A, B, C, D, and K are positive penalty coefficients. The selection of these
coefficients will be discussed below.

g(x) 100

50

0
-10 0 10 x

Figure 3. A graph of the penalty function used for the spinning reserve constraint.

3. The Dynamics of the Network

As usual, the dynamics for this Hopfield-type gradient network are obtained by gradient
descent on the energy function. So for each node i = 1, 2, ... n in the network, we have

= - = - A (2yPi + P,) ui - 2Cu[ Piu, - L] (6)

Pi = p,(h-') (7)

1-474



h, = -A (y p2 + pii+ a,) - B (I1 - u9) c
J(8)

-2CPi Pjui -L -DMjg" (Y•Mju - L- R) - K (1-2uj)

ui= a(hý) (9)

where 11 and 1,. are positive coefficients which will be used to scale the dynamics of the two
networks. Note that the derivative of the penalty function g is piece-wise linear: g'(x) = -2x for
x < 0 and g'(x) = 0 for all x > 0. The stability of the network may easily be verified by using the
usual procedure of Hopfield and showing that E is decreasing along trajectories. Hence E is a
Liapunov function for the coupled network. That is, by following the dynamics of Equations (6)-
(9), the energy E always decreases until a local minimum of E is reached. But since E only
contains cost terms and constraint satisfaction terms, then by following these dynamics we are
lead to regions of the state space which represent lower cost and/or more constraint satisfaction.
The balance between the cost optimality and constraint satisfaction critically depends on the
choice of the penalty coefficients, which is discussed next.

4. Parameter Selection

To actually simulate the above coupled gradient network, values for the following
parameters must be chosen:

1. The penalty coefficients: A, B, C, D, and K.
2. The activatior function slopes: XP and X.
3. The scaling factors: Ti, and il.

4. Initial Conditions: (P,, u°)

Additionally, some method of numerical integration must be chosen to solve the coupled
differential equations given in (6)-(9). In the simulations reported below, a simple forward Euler
integration with sufficiently small step-size was used. The penalty coefficients were determined
empirically by running trial simulations and observing the optimality and/or feasibility of the
resulting equilibrium points of the system. A proper choice of A, B is critical to obtaining optimal
and feasible solution, and the selection of these parameters will be discussed later. The other
parameters were set as follows: C = 1.0, D = 0.0001, and K = 10.0, XP = 1, Xk = 0.5,
Tlp = 500, and Tj,, = 1. The initial conditions of the network were chosen randomly near the
center of state space 0: P• = Pi'± 106 and u? = 0.5 ±0.2T, where P, is the midpoint of the
range [mi, Mi], and 6 is a random number chosen uniformly from the interval [0, 1].

Once all the parameters have been chosen, a typical simulation of the coupled gradient
network proceeds as follows. Starting from a random initial condition, Equations (6)-(9) are
integrated using a forward Euler numerical integration. Upon convergence of the dynamics, the
outputs of the commitment network are thresholded at 0.5 to yield the required binary values.
This thresholding is required since the outputs ot the commitment network may not have fully
saturated upon convergence. Based on these binaj y commitment variables, an economic dispatch
program is run to obtain the optimal generation levels.

5. Simulation Results

In this section, simulations are reported for the coupled gradient network for a 15-unit
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system. The solutions obtained by the coupled net are compared to the globally optimal solution,
which, for this size problem, is possible to obtain by exhaustive search. To do this, we simply
enumerated all possible commitment settings u = (u, u2, ... uj, from u = (0, 0 ... .0) to
U = (1, 1, ... 1). For each such commitment vector, the economic dispatch problem is solved,
and the lowest cost solution which also satisfies the constraints is retained.

For the 15-unit system, 20 different problems were formulated by varying the load and
spinning reserve requirements (See Table 1). For each of these problems, 20 simulations were run,
each time starting the coupled net at a different initial position in state space Q. Upon
convergence of the network for each such simulation, the cost optimality of the resulting solution
is measured as the percentage above optimal cost:

%above optimal = 100 (f(P* u*) (10)f*
where f(P*, u*) is the cost of the local minimum solution found by the coupled network, and f
is the globally optimal cost obtained by exhaustive search. Table 1 shows the results obtained for
different values for the penalty coefficients A and B. For each Table entry, the first two values
reported are: (1) the average cost of solution (averaged over the 20 runs); and, (2) the cost of the
best solution (out of the 20 runs). Actually, the raw cost is not reported, rather, the percent above
optimal cost [using Equation (10)] is shown. So an entry of 0.0 means that the network was able
to produce the globally optimal solution. Since the coupled net does not always converge to a
feasible solution, a third quantity is reported for each problem: the percentage of time that the
network converged to a feasible solution.

6. Discussion

From Table 1, it is clear that the average performance of the coupled network improves as
the penalty coefficients A and B increase. Unfortunately, though, with higher values of A and B,
the network is more likely to produce solutions which are not valid. In this application, though, a
high percentage of invalid solutions could be tolerated, if it could be shown that the network (run
in a multi-start mode) could, with high probability, produce the globally optimal solution. The
third column of Table 1 clearly indicates that this is possible with the coupled net. In this case, the
global solution was found in 15 out of the 20 problems. For comparison purposes, the Lagrangian
relaxation solution was able to produce the globally optimal solution in 12 out of the 20 problems.

The above network may be extended to handle the temporal unit commitment problem,
where it is necessary to schedule the commitment of each unit over a planning horizon of, say T
hours. In this case, there are additional unit constraints, such minimum up times, and minimum
down times, which must be included in the problem formulation. A later paper will address this
problem. Also, the percent convergence to valid solutions may be improved by using global
search techniques, such as mean field annealing or stochastic gradient descent [5].
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The Coupled Gradient Network

n = 15 Load Reserve % Above Optimal Cost Average Solution/Best Solution

A =B =0.30 A =B = 0.32 A= B = 0.35

1520.0 152.0 7.8 0.0 100% 7.6 0.0 95% 0.2 0.0 100%o

10%Reserve 1590.0 159.0 8.1 0.7 95% 5.5 0.0 95% 1.1 1.1 30%
1645.0 164.5 6.9 1.5 90% 6.0 0.9 100% 0.7 0.0 90%9

1700.0 170.0 7.8 4.7 95% 6.6 2.3 100% 1.0 0.0 95%

1520.0 228.0 6.4 0.5 90% 4.5 0.0 100% 1.2 1.2 15%
1590.0 238.5 7.6 2.3 90% 7.0 1.1 95% 1.0 1.1 35%
1645.0 246.8 6.1 0.8 95% 5.2 0.0 909Yo 0.0 0.0 70%

1700.0 255.0 6.9 2.3 95% 6.7 3.0 85% 0.4 0.0 65%

1520.0 304.0 5.8 0.0 90% 6.9 0.0 80% 0.0 0.0 15%
20% Reserve 1590.0 318.0 4.9 0.6 85% 5.3 0.0 90% 0.0 0.0 75%

1645.0 329.0 7.0 0.2 80%0 7.5 2.9 809 0.3 0.2 70%

1700.0 340.0 4.3 0.8 90% 6.1 0.0 100%0.5 0.0 4096

1520.0 380.0 5.0 0.0 85%4.9 0.0 65%0.0 0.0 75%
1590.0 397.5 5.9 0.0 80% 4.8 0.0 75% 0.0 0.0 75%
1645.0 411.2 4.7 0.0 75% 4.0 0.0 85% 0.1 0.0 300%6

1700.0 425.0 4.5 3.0 75% 5.9 3.0 75% 0.1 3.0 85%

1520.0 456.0 5.6 0.0 80% 5.1 0.0 50% 0.0 0.0 70%
1590.0 477.0 5.7 0.0 65% 2.2 0.0 60% 0.1 0.0 30%
1645.0 493.5 6.5 0.0 70% 4.2 0.8 65% 0.1 0.0 90%

1700.0 510.0 2.3 0.0 60% 2.5 0.0 80% 0.0 0.0 20%

Table 1. A summary of the performance of the coupled gradient network for a 15-unit system
with various load and spinning reserve constraints. The performance is shown for different
settings of the penalty coefficients A and B. The first number in each table entry is the average cost
of solution (averaged over 20 runs) measured as the percent above optimal cost [see Equation
(10)]. The second number is the percentage above optimal cost of the best solution found. Third
number is the percentage of time that the coupled net converged to a feasible (valid) solution.
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Abstract
A neural network (NN) dedicated to the estimation of inhibition zone size of disk diffusion

antibiotic susceptibility tests was developed and compared to previously described algorithm
(ALGO) based on image processing. The biological sample was composed of 2552 drug-
organism combination tests. Data were divided in two sets, a learning and a testing set. Neural
networks were developed with PDP programs and supervised learning was performed with the
back propagation module. On the testing set, neural networks corrected most of the inaccurate
results obtained with the image processing algorithm. The discrepancies between two human
readings were at the same level that those obtained between NNs and a reference estimate.
Furthermore, the use of selection rules combining NNs and ALGO results allowed the automatic
detection of a very reduced part of the sample (1%) that contained most of the severe errors of
the system. In these rare difficult cases, a warning is issued by the system, asking for a human
interpretation. This behavior meets clinical requirements. The developed method appears as a
solid backbone for an automated system dedicated to the interpretation of disk diffusion
antibiotic susceptibility tests.

I - Introduction

Many efforts have focused on the automation of antibiotic susceptibility tests and most of the
commercial systems yet available are based on broth culture (1). Despite the availability of such
systems, disk diffusion in agar media, a simple and inexpensive method (Fig 1), is still widely
used all over the world for antibiotic susceptibility testing. The most critical step for an
automated analysis of such tests lies in the estimation of the inhibition zone sizes. Recently, we
proposed an image analysis-based automated method that performs such a task (2). Our results
indicated that the efficiency of the proposed algorithm (ALGO) compares with most systems
based on broth culture. However, the residual errors of the system are difficult to correct. Neural
Networks (NNs) may be used to solve complex problems with no need of an explicit description
of the decision processes. Since a comprehensive algorithm is quite hard to implement, we
developed a NN processing as an alternative approach. The present work shows that the results
obtained with NNs, when combined with those obtained with the efficiency of our conventional
algorithmic method can be used to increase the accuracy of the system. Moreover, the
comparison of different outputs obtained with different NNs and with the algorithmic method
allows an automatic clustering of the sample in two parts: a large part where confidence in the
results verges on certainty and a reduced part that contains most of the errors.
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Figure 1. Disk diffusion tests. Bacteria are cultured on an Agar medium in Petri
plates. Antimicrobial agents are applied to the test plates in the form of dried filter
paper disks that are placed on the inoculated surface. The antimicrobial agent
being free to diffuse through the adjacent agar medium, the result is a gradually
changing of drug concentration and no bacterial growth will be observed in the
circular area around the disk where inhibitory concentrations of the drug are
present. In practice, the reading of the drug-organism test consists in determining
the diameter of inhibition zone, after a 24 hour incubation. This measurement is
compared to standard breakpoints to clinically categorize the organism a&
susceptible, intermediate or resistant to the tested drug. The collection of the tests
performed with the various drugs is then interpreted by the clinician who then
decides the best treatment strategy.

II Material and Methods

Computer system. The system was composed of a Macintosh Quadra 700 computer (Apple
Computer Inc., Cupertino, CA), a Nubus image grabber board (Neotech Limited, Eastleigh,
United Kingdom) and a CCD XC-77CE digitizing camera (Sony Inc., Japan). Programs were
written in Object-Oriented MPW Pascal (Apple Computer Inc., Cupertino, CA). Neural Network
processing was performed with PDP programs (Mac Version 1.1,©1989 J. L. Mc Clelland and
D. E. Rumelhart).
Estimation of the inhibition zone diameters with the ALGO. The estimates of the inhibition
zone size diameters were obtained according to an algorithm previously described (2). The
algorithm can be summarized as follows: after digitization of the image of the Petri plate, the
method generates and analyzes a pattern corresponding to each antibiotic disk tested. The pattern
analysis is based on the examination of a profile (Fig. 2) representing the mean grey level value
as a function of the distance from the disk, the latter being recognized and labeled in a
preliminary step. The estimate of the inhibition zone size obtained with the profile analysis is
finally compared to conventional breakpoints recommended for susceptibility categorization,
resulting in an automatic categorization of the organism as susceptible, intermediate or resistant
to the antibiotic tested.

a b C Figure 2. Extracting profiles from local zones around each antibiotic disk.E After the recognition of each tested disk, the pixel constituting a local zone around
each disk (top) is used to generate profiles (bottom). The profiles represent the
mean grey-level (ordinate) as a function of the distance to the disk center
(abscissa).

_--___ • Three typical cases are shown. -a: an inhibition zone is observed and its diameter is
< 35 mm; within the 35 mm wide square zone of analysis, an inhibition zone

L _L___ appears as a circular spotless area. The corresponding radial profile pattern is
formed by a U-shaped curve. The ascending slope corresponds to the edge of the

inhibition zone. -b: an inhibition zone is observed but its diameter is > 35 mm; within the 35 mm wide square zone
of analysis, the edge of the inhibition zone does not appear. Consequently, the profile shows a L-shape curve with
a low grey-level of the plateau. The diameter of the inhibition zone is fixed to 35 mm. -c: no inhibition zone is
observed; the profile shows a L-shape curve with a medium grey-level value of the plateau. The diameter of the
inhibition zone is fixed to 6 mm, value of the antibiotic disk diameter.

Evaluating the accuracy of automated methods. Each Petri plate was examined at the naked
eye by two independent human readers. They estimated a diameter corresponding to the
inhibition zone for each test with a ruler. A reference diameter was built as follows: When the
difference between the two measurements was greater than 3 mm, the measurement of a third
human (a senior) was considered as RD. Otherwise, the mean of the two first human
measurements was considered as RD. RD was used both as the target value in the learning phase
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of the neural network processing and as reference to evaluate the accuracy of the machine
estimates.
Biological sample. The sample was composed of 107 unselected consecutive bacterial strains
isolated from clinical specimens in a teaching hospital laboratory. The strains were tested for
drug susceptibility in a routine process with no special care. For that purpose, square (165 x 165
mm) Petri plates containing Mueller-Hinton agar (Diagnostics Pasteur', Marne-la-Coquette,
France) were used. Because of limited growth resulting in poor image contrast, nine strains of
Enterococcus sp. were excluded. Finally, the 98 strains included in the study belonged to the
following staphylococci or gram negative rod bacterial species: Staphylococcus aureus (25
strains), Staphylococcus epidermidis (15), Escherichia coli (36), Proteus mirabilis (6),
Pseudomonas aeruginosa (6), Klebsiella sp.(5), Acinetobacter sp.(2), Enterobacter cloacae (2),
Serratia marcescens (1). For each strain, drug susceptibility tests were performed with 22 to 28
distinct antibiotic disks made of blotting paper that were distributed onto two plates (six to
sixteen disks per plate) according to a predefined standard scheme that depended on the tested
species. In all, 2618 disk susceptibility tests of 40 distinct antibiotics were studied. Additionally,
8 plates were automatically excluded from the study because of a poor image contrast. They
were automatically detected by the image processing program. The final sample was based on
the 2552 remaining tests.
Estimation of the inhibition zone diameters with neural networks. Each processing unit was
composed of 4 layers (Fig. 3): 1 input layer, 2 hidden layers, 1 output layer. The radial profile
was given as input, the output being an inhibition zone diameter estimate or a derived value. In
practice, different types of profiles representing the mean or the variance of the grey levels (raw
data or calculated differences with the neighboring pixel values). The data set was split in two
equal parts, a learning subset and a testing subset. During the learning phase, performed with the
back propagation module of PDP programs, the weights were iteratively adjusted to minimize
the distance (error) between the target (RD value) and the output. The testing subset was
exploited to control the quality of learning. Specialized networks have been trained to deal with
three different situations (Fig. 4): a "large" susceptibility (inhibition zone diameters greater than
27 mm), a full resistance (inhibition zone diameters equal to 6 mm), and finally the remaining
cases ( 6 mm < inhibition zone diameters < 28 mm). Eight independent learning sessions were
run in each case. Due to the stochastic nature of the learning process, different weight sets could
be obtained, the corresponding networks having comparable efficiencies. For each new radial
profile analyzed, a confidence index was defined as a function of the variability of the outputs of
these different networks (see joined paper, reference 3). This index, combined with the mean
value of the outputs, was used to decide whether to retain the mean value as the diameter
estimate or to carry on the analysis. The neural network architecture is summarized in Fig. 4.

III Results

Table 1 presents the evaluation of the machine accuracy in terms of clinical categorization.
The differences observed between RD and NNs categorizations closely approaches those
observed between two human readers. When comparing the accuracy of NNs and ALGO, NNs
appeared to remove most of the errors of the ALGO that led to major disagreements in the
staphylococci sample. Most minor disagreements corresponded to tests where the true inhibition
zone diameter is very close to a breakpoint value. Actually, 15% of the NNs estimates were at
most distant from 2 mm of a breakpoint value, and this subset contained 28 among the 30 minor
disagreements with RD estimates. More important is the detection of major and very major
disagreements that may lead respectively to the non-prescription of an active drug and to the
prescription of a non-active drug. The amount of such disagreements between NNs and RD
compares to that observed between two human readers.
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minor major very major

Agreementa disagreementsb disagreemnentsc disagreementsd

Total test sample

HR1/HR2e 1229 (95.7%) 47 (3.7%) 4 (0.3%) 4 (0.3%)

RD/ALGO 1230 (95.8%) 33 (2.6%) 14 (1.1%) 7 (0.5%)

RD/NNs 1244 (96.9%) 30 (2.3%) 3 (0.2%) 7 (0.5%)

Gram negative rods

HRl/HR2 840 (96.7%) 29 (3.3%) 0 (0.0%) 0 (0.0%)

RD/ALGO 841 (96.8%) 25 (2.9%) 1 (0.1%) 2 (0.2%)

RD/NNs 844 (97.1%) 23 (2.6%) 1 (0.1%) 1 (0.1%)

Staphylococci

HR1/HR2 389 (93.7%) 18 (4.3%) 4 (1.0%) 4 (1.0%)

RD/ALGO 389 (93.7%) 8 (1.9%) 13 (3.1%) 5 (1.2%)

RD/NNs 400 (96.4%) 7 (1.7%) 2 (0.5%) 6 (1.4%)

Table 1. Agreement and disagreements in SIR categorization for the test sample. aagreement: identical
categorization; bminor disagreement: intermediate susceptibility with one method but susceptibility or resistance
with the other. Cmajor disagreements: susceptibility with the reference method but resistance with the test method.
dvery major disagreements: resistance with reference method but susceptibility with the test method. eThe
following codes correspond to: RD. reference value obtained with the combination of the three human readings (see
material and methods); HRI, estimate of human reader n*1; HR2, estimate of human reader n*2; ALGO, estimate of
the algorithmic method; NNs, estimate obtained with the Neural networks results.
HRI/HR2 corresponds to the comparison between the two first human readers where the first reader was arbitrarily
chosen as the reference.

IV Discussion
Our results indicate that the neural networks are of great help in our biological application.

First, they appear to be more accurate than a dedicated image processing algorithm. Second, the
differences in the estimates of NNs and ALGO may also be used to cluster the sample in two
parts, a reliable result sample (>95% of the tests) and a questionable result sample (<5% of the
tests) spoiled with many errors. The detection of a very reduced part of the sample, that points
out on the system errors may be investigated in two directions, the call for a human intervention
and the development of special tools for automatically correcting the errors. Whereas about 95%
of the tests could be automated, it is clear that a human intervention of a clinician expert is
desired in practice to interpret difficult results obtained in rare cases. Among the criteria that
may be used for automatically detecting the errors, the agreement between ALGO and NNs
results (in terms of SIR categorization or diameter estimates) is helpful (Table 2). For instance,
we show that, using the second criterion described in the Table 2, the examination of only 11
tests (only 1% of the test sample) allows the detection of 5 among the 10 severe (major and very
major disagreements) errors made by the machine.
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Although the results shown are very encouraging, they have to be further confirmed for two
reasons. First, we used the testing subset to control the quality of learning, although this should
be theoretically done with another independent subset. We did this because the number of tests
available was too small for making three subsets. Indeed, in terms of drug-organism
combinations, some situations are rarely encountered in our sample. Therefore, our objective is
to perform a study with a very large sample. Provided that the results obtained with the neural
networks are confirmed, the developed method constitutes a very solid backbone for an
automaton dedicated to routine laboratory.

minor major very major

Agreement disagreements disagreements disagreements

Total test sample

(100%) 1244 (96.9%) 30 (2.3%) 3 (0.2%) 7 (0.5%)

criterion 1: agreemen5  SIR categorization between NNs and ALGO

true (97.7%) !223(97.5%) 27 (2.1%) 1 (0.1%) 4 (0.3%)

false (02.3%) 21(72.5%) 3 (0.2%) 2 (0.2%) 3 (0.2%)

criterion 2: difference between diameter estimates of NNs and ALGO is at most 10 mm

true (98.7%) 1233(97.3%) 29 (2.1%) 1 (0.1%) 4(0.3%)

false (01.3%) 11(64.7%) 1 (0.2%) 2 (0.2%) 3 (0.2%)

Table 2. Clustering the sample in two parts according to two criteria. Columns indicate the number of
observations (and their rate, in parentesis) for agreements and disagreements (see Table I for definitions) between
RD and the NNs estimates. The first column indicates in parenthesis the proportion of sample satisfying (true) or
not (false) the criterion.

References
1 Jorgensen, J. H. 1991. Antibacterial susceptibility tests: Automated or instrument-based
methods, p. 1166-1172. In A. Balows, W. J. Hausler, Jr., K. L. Herrmann, H. D. Isenberg, H. J.
Shadomy, (ed.), Manual of clinical microbiology, 5th ed. American Society for Microbiology,
Washington, D.C.
2 Hejblum G., Jarlier V., Grosset J., and Aurengo A. 1993. Automated interpretation of disk
diffusion antibiotic susceptibility tests with the radial profile analysis algorithm. J. Clin.
Microbiol. 31:2396-2401.
3 Fertil B. and Vilain J. 1994. Multiple learning sessions to improve predictions and evaluate
reliability of neural networks. Proceedings of the Wolrd Congress on Neural Networks. San
Diego, USA. June 4-9, 1994.

1-483



PAVEMENT SURFACE EVALUATION USING NEURAL NETWORKS

Vinod K. Kalikiri Norman W. Garrick
Graduate Research Assistant Assistant professor

Department of Civil Engineering Department of Civil Engineering
University of Connecticut University of Connecticut

Luke E. K. Achenie
Assistant Professor

Department of Chemical Engineering
University of Connecticut

ABSTRACT

Neural network models are paradigms for performing cognitive tasks such as pattern recognition and
classification. It has been established that neural networks are particularly well suited for pattern recognition tasks
because of their inherent ability to generalize based only on a set of training data. The goal of our study at the
University of Connecticut (UCONN) is to make use of this capability of neural networks for the development of an
automated system for pavement condition evaluation. The system is expected to have the capacity to recognize and
characterize distress patterns from pavement images that are recorded by the Connecticut photolog system.

In this paper we discuss the neural network model that we are developing at UCONN for the analysis of
pavement images. Some of the topics addressed in the paper include the image processing methods that are used to
isolate distress features, the input data used for analysis, the feed forward neural network model that forms the core
processing unit of the system and the results obtained from the model.

So far, we found that our analytical system has a success rate of 91 % for pavement distress identification.
Preliminary results show that the proposed approach of using neural networks for distress pattern recognition is
viable and has real potential to be integrated into a fully automated system for pavement surface condition
evaluation.

INTRODUCTION

Supervised neural networks have been successfully used for pattern recognition tasks because of their
ability to generalize based on training data. These networks were also found to be capable of analyzing and
classifying data that cannot be described by conventional data analysis techniques (1). This capability of neural
networks has been successfully used in various fields of engineering to solve problems which could not be solved
by the commonly available computer algorithms. One potential area of application is in the field of pavement
engineering. The pattern recognition capabilities of neural networks can be used to characterize common pavement
distress forms like cracks, patches and potholes.

The aim of the current research work at the University of Connecticut is to develop an automated system
incorporating the concepts of image processing and pattern recognition for pavement condition surveys. Such an
automated system is expected to give an accurate and reliable analysis of the pavement condition. The condition
ratings of the pavements would serve as input to a pavement management system to assist decision makers in
scheduling maintainance operations, projecting future funding requirements and allocating funds to the prioritized
projects.
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At present the Connecticut Department of Transportation (ConnDOT) uses a manual rating procedure to
analyze pavement images recorded by a photolog vehicle. This rating procedure is both time consuming and labor
intensive. In addition the evaluations obtained by this process are also highly subjective in nature. In this paper we
will summarize the study being carried out at UCONN to mitigate these problems by using neural networks for
pavement distress identification. The image data used in this project is taken from the photolog laser videodisc
(PLV) collection at ConnDOT.

OVERALL STRATEGY

Our current project for the development of an automated pavement condition evaluation system is being
carried out in two phases. The first phase involves the processing of images from the PLV collection. The
objective is to use the principles of digital image processing to generate standard images of sufficient quality to
serve as input for analysis (2). The second phase involves the use of artificial neural networks for analyzing the
processed images. These two phases will be discussed in the following sections of this paper.

IMAGE PROCESSING

The images used in this project are taken from the ConnDOT PLV system. Images from this system are
particularly difficult to process because of characteristic features of the ConnDOT photolog system like perspective
views, non uniform illumination and shadows. The images must be treated to compensate for these factors before
they can be used for analysis. The various elements of the strategy that we have developed for processing the
images are outlined in the flowchart shown in Figure 5.

The first stage involves tt e use of a video digitizing software to capture and digitize a selected portion of
the pavement image. Filters are then applied to this image to convert the color image to a gray scale image. The
next stage, referred to as feature extraction, involves the processing of the gray scale image to isolate distress
features. The two alternative processes that we have identified to achieve this objective are shown in the flow chart.
Each of the alternatives involves a series of image processing techniques which are applied to the image to isolate
distress features. Figures I and 2 illustrate the two series starting with the gray scale image in the first frame and
ending with the processed binary image in the last frame. Figures 3 and 4 show the typical histograms with the
corresponding optimum threshold values at which each of the gray scales were thresholded to obtain the binary
images from the two series. The strategy outlined here was found to be capable of eliminating problems like
shadows and variable contrasts which are characteristic of the Connecticut photolog system. The binary images
obtained at the end of the process were of sufficient quality to serve as input to the neural network model for
distress pattern recognition.

PREPARATION OF INPUT DATA FOR THE MODEL

The binary image file obtained at the end of image processing is first converted into an ASCII file to obtain
a matrix of binary values. A zero in this matrix corresponds to a background pixel while a one corresponds to a
distressed pixel. Parameters characteristic of each of the distress types are then calculated from the binary image
matrix. We identified four attributes, listed below, which characterize the various types of distresses. These
parameters ( in various combinations ), constitute the input matrix for each of the images. This matrix is stored in a
batch file which serves as input to the neural network model for analysis.

Dx Average pixel density along the X-axis
Dy Average pixel density along the Y-axis
Dxy :Overall average pixel density
A : Angle of inclination of the distress feature (relevant only for linear cracks)
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THE FEED FORWARD NEURAL NETWORK MODEL

A feed-forward neural network forms the core processing unit of the distress data analysis system. A
typical feed forward multi-layer neural network (N-N) model consists of S layers of neural elements. Each neural
element in a layer is interconnected with each o.' the elements in adjacent layers. The strength of each
interconnection is characterized by its weight.

The four parameters listed previously constitute the input data to the network. Information propagates
from the input layer to the output layer. Subsequently, the sum of the weighted inputs is filtered through a logistic
function to produce an output from the output element. These outputs represent the final prediction of the neural
network. Training of the neural network occurs through systematic adjustment of the interconnection weights so
that the prediction output of the network will be as close as possible to the desired output.

Figure 6 shows a typical S layered Neural Network structure. In the j th layer, there are Al processing
elements which are interconnected with elements in the (j-I) th and 6"+1) th layers. Associated with the
interconnections between the k:j_ th element of layer (0-1) and the kj th element of layer j is the weighing factor
Wk,_jkl. The transfer function, a , maps the cumulative input X, to the output Y of a processing "ent. A

generalized logistic function for a is defined as follows (3) :

Y = a(X) = (1 + eP(x))-i -c

For the present work P(X) is restricted to the family of polynomials defined by Z, 0 =oaqXq . The commonly

used values of m =1, ot I= -I and C = 0.5, corresponds to the conventional form of the logistic function (4). The
term, a0 , corresponds to the bias term. A quasi Newton based training strategy was used for training the network.
Details of the neural network training methodology are documented in reference (3).

PERFORMANCE OF MODEL

The training of the network is carried out in three stages. The first, second and third stages require three,
twenty and twelve parameters respectively. It can be seen from the plots of number of iterations versus required
training time (Figure 7) that as the number of parameters increases, the time required for training increases steeply.
For example, the first stage requires only fifteen seconds of the CPU time before the training objective value gets
close to zero. In contrast the second stage, involving twenty parameters, requires approximately eight hundred
seconds.

The number of iterations required for training the network was independent of the number of data sets
available for training and the number of parameters used. Forty five data sets involving twenty parameters required
approximately the same number of iterations as thirty data sets with only twelve parameters. The plots of training
objective versus number of iterations show that all the stages required approximately 50-60 iterations before a
constant objective value was attained.

The third plot of objective versus iterations (Figure 7, Stage 3) indicate that the curve turns assymptotical at
an objective value of 0.9 instead of zero. This problem is usually a result of multiple local minima and can be
countered by reinitializing the training parameters and retraining the network.

At the end of the final stage, the network is trained to recognize four different types of distresses : patches,
longitudinal cracks, transverse cracks and alligator cracks. The trained model was then used to validate a new data
set of pavement images. We used a data set containing twenty three images, representing the four categories of
distresses, for validating the network. The first two stages were validated with 100 % success. The final stage

1-486



classified two images erroneously resulting in an overall success rate of 91 %. Better performance can be achieved
by choosing a combination of parameters which more accurately characterize the distress types.

CONCLUSIONS

Neural networks have been found to perform robustly as pattern recognition tools in many different types
of applications. The goal of our research work at the University of Connecticut is to make use of this capability of
neural networks for the development of an automated system for pavement surface condition evaluation. We have
developed an image processing strategy which can be used to process the pavement images before they are provided
to the neural network model for analysis.

The pattern recognition system that we are developing at UCONN is based on a feed forward neural
network model. We identified parameters, that we feel, adequately characterize various distresses based on the
pixel density and the orientation angles of the distress feature. These parameters are used to train the feed forward
neural network model. The model is then validated using a separate set of images.

So far, we have found that our analytical system has a success rate of 91 %. These results suggest that the
methodology outlined has potential to be developed into a fully automated pavement distress analysis system.
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ABSTRACT

We discuss some preliminary results of a neural network approach to predict missing
environmental data. One of the main problems in environmental modelling and expert system
application is the lack of useful data. The neural network approach will no doubt provide more
useful data. It is found that the neural network, when used with proper pre-screening processes,
produces satisfactory results. The preprocessing techniques used here are the cluster analysis to
filter noisy data and the transformation to align the data in the appropriate range. Design
procedures for this application are given and its performance is discussed by means of a
sensitivity analysis.

I. INTRODUCTION

Environmental science is a complex field and multidisciplinary in nature. When
determining how to correctly analyze any collection of data, the first consideration must be the
characteristics of the data themselves. After understanding the data, we can apply these data in
applications such as environmental modelling, expert systems and statistics. Most often,
environmental data are measured frequently or in real time, but others are often incomplete and
noisy. Most statistical software permit the entry of the missing data. Sometimes, more than one
code might be used to identify particular types of missing data, such as don't know, no
measurement or out of legitimate range. Analytical packages typically exclude the missing data
for any of the variables in an analysis. This approach is found to be inappropriate, since the
researcher is usually interested in understanding the entire database, rather than the portion of the
database that would provide measurements to all relevant variables in the analysis.

In the past ft. ý' years neural networks have received a great deal of attention in many
areas. Recently tlre' ,.,,e been many practical applications to apply neural networks techniques
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to environmental science [1]. Much of the success is contributed to the ability of neural networks
to predict and draw conclusions when presented with complex, noisy, irrelevant, and even partial
and missing information. In particular, we are interested in dealing with the data poor situation,
i.e. finding the appropriate values of the missing data. As a result, a neural network can be
trained to predict missing values from a network trained to examples.

II. NEURAL NETWORK APPROACH

We have developed a knowledge-based system, RAISON, using the C++ language [2].
This system is composed of a geographical information system (GIS), a database, a spreadsheet
and most importantly, an artificial intelligence (A.I.) module. In this paper, we describe how to
implement neural networks within the A.I. module.

The neural network that we have implemented is a variation of the back-propagation
network model [3] because of its simplicity and flexibility required to interface with other
modules in RAISON. In this network model, data from the input layer are fed into one or more
hidden layers and a set of connections weights are continually adjusted under the supervised
training mode. In particular, the feedforward output state calculation is combined with backward
error propagation (e.g. using the conventional sum of squared errors based on the square of the
difference between the output value and observed value). In addition, it is found that the back-
propagation network is the most appropriate one in dealing with missing data. However, the
training time tends to be very slow in this kind of network. Since environmental data sets are
often very large, we have opted for a modified form of back-propagation network [4], called
quickprop.

The following are some of the essential features of this neural network model:
(i) The weight is updated based on the sum of the errors affected by that weight over the

entire training set. This gives the gradient of the composite error function in the weight
space.

(ii) Different learning rates are prescribed for different weights in the network.
(iii) We set the weight change proportional to the derivative of the sigmoid function and when

a node output is close to the extremes of the function, the derivative is close to zero.
When an output node's error is large, the small derivative allows a slight change to be
propagated back, hence slowing down the convergence. To overcome this, a constant of
0.1 is added to the derivative value.

(iv) While standard back-propagation takes the first derivative of the error surface with respect
to the weights and adds a constant step size in that direction, quickprop uses the gradient
of the error function at two consecutive points and the weight change between them, fits
a parabola and sets the step size to the minimum of this parabola.

(v) To further improve the performance, a weight decay term is added to the error function
which optimizes the weights on this slightly changed error surface.
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III. PREPROCESSING TECHNIQUES

It is not always necessary to have all the environmental parameters in the data set used
in the neural networks. Some parameters have a stronger relationship than others. For example,
pH and alkalinity measurements should be closely related. Therefore, it is desirable to pre-screen
the parameters before feeding them into the neural network. One of the most commonly used
preprocessing methods is cluster analysis.

Statistical methods are used to select clusters in order to examine whether significant
differences exist between the objects of different clusters. One of the approaches is to consider
a criterion for measuring the tightness of the clusters and to plot its value against the number of
clusters [5]. A sudden marked flattening of the curve indicates a significant number of clusters
since there is relatively little gain from a further increase of number of clusters. In our case, the
correlation coefficients between parameters are used as a criterion to determine the number of
significant clusters.

It is also found that the ranges of some environmental parameters vary over several orders
of magnitude. In practice, careful treatment of the network representation is usually required to
obtain an efficient network. When the range of a parameter is large (many orders of magnitude),
the logarithm of the variable should be used. This transformation makes small changes in small
inputs as important as large changes in large inputs. In addition, some of the parameters are
logarithmic in nature, e.g. pH. We must deal with these parameters properly to achieve optimum
results.

IV. AN EXAMPLE

We use a data set of water quality data (NAQUADAT) in the Great Lakes Ecoregions as
an example. This set of data consists of the following parameters: Na, K, Ca, Mg, SO4, Cl,
alkalinity, pH, colour, specific conductivity, Al, Fe, NO3, NH4 and DOC. Some of the pH data
are not available. The problem is to show how to make use of the existing known data for all
parameters to predict the missing pH values.

First, we have to identify the parameters which have a close relationship with pH and use
them as the input parameters in the neural network. This is done using the cluster analysis. A
cluster distance is assigned to each pair of parameters and then the cluster process uses these
distances to classify the parameters into different clusters and to determine the appropriate
number of clusters. In this example, the cluster distance is based on the correlation coefficient
from the regression analysis. Figure 1 shows the plot of cluster distance (regression coefficient)
against the number of clusters. The significant value is identified when there is a abrupt change
in slope. The results of the cluster analysis are summarized in Figure 1. By inspecting this figure,
the appropriate number of clusters is 10. It is found that pH formed a cluster with Ca, specific
conductivity and alkalinity.

Once we identify the parameters that are related to pH, we can set up a neural network
to estimate the pH values from these parameters. To validate the preprocessing techniques, a
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Figure 1: Cluster results of the 14 parameter data set

sensitivity analysis is performed. Three different network topologies are used. The first network
uses all 14 parameters to predict pH. The second network uses seven randomly picked parameters
that are unrelated with pH as determined from the cluster analysis as inputs. Finally, we use the
three parameters from the cluster results as the input parameters. In addition, each topology has
two variations: the output parameter pH is either normal or log-transformed. The number of
hidden layers can be set to one to speed up the training. As a rule of thumb, the number of
hidden nodes is set to the geometric mean of the sum of the inputs and outputs nodes [6]. Table
1 summaries the layout of the sensitivity analysis.

Case Input Hidden Output pH Relationship Median Rel.
Nodes Nodes Node Tranform. with pH Error

a 14 4 1 Yes Don't Care 1.8%
b 14 4 1 No Don't Care 3.2%
c 7 3 1 Yes Unrelated 4.5%
d 7 3 1 No Unrelated 8.2%
e 3 2 1 Yes Highly related 1.6%
f 3 2 1 No Highly related 2.8%

Table 1: Layout of the sensitivity analysis
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V. RESULTS AND DISCUSSION

There are a total of 2250 good records in the data set. We randomly select 400 records
as our training set and the rest is for verification. Training is complete when either the network
reaches one million epochs or the sum-squared error satisfies a prescribed threshold. We use the
median values of the relative error between the predicted pH and tie observed pH as a
benchmark of the sensitivity analysis. Table 1 displays the results of the six network topologies.

It is found that cases (c) and (d) are the worst cases as expected. Although the results of
case (a) and (e) are close, the training time on case (e) is about one-tenth of case (a). In addition,
case (e) shows slightly better results. It confirms that cluster analysis based on regression
coefficient is an essential tool for preprocessing environmental data. It is also found that cases
(a), (c) and (e) generate better results than their counterparts, i.e. cases (b), (d) and (e). This
shows that proper transformation on certain environmental parameters will yield vast
improvement over simply using the data.

The neural network provides a new approach to predict missing values of environmental
data. It has been successfully implemented in RAISON as part of the artificial intelligence
component. The sensitivity analysis shows that preprocessing of the data is crucial to the
performance of the neural network. Although neural networks require a great deal of training and
computational resources, it is very fruitful when dealing with large data sets in environmental
science. Neural networks can be applied to provide more information with reasonable accuracy.
Future work include the improvement of the training time and in formulating imprecise
measurements with fuzzy logic algorithm.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Dr. William G. Booty, Jane Kerby and Kevin Hopkins
for their helpful suggestions.

VII. REFERENCES

[1] Schmuller, J. 1990, "Neural Networks and Environmental Applications", in J.M. Hushon
(ed.) Expert Systems for Environmental Applications, ACS Symposium Series 431, pp.
52-68.

[2] Lam, D.C.L. and D.A. Swayne, 1992. "Some experiences in applying the RAISON expert
system to environmental problems. In (Eds. J.W. Brahan and G.E. Lasker) Advances in
Artificial Intelligence - Theory and Applications, IIAS Publication, Windsor, Canada. pp.
59-64.

[3] Rumelhart, D.E. and J.L. McCelland, 1986. "Parallel distributed processing, explorations
in the microstructure of cognition. Vol. 1: Foundations", MIT Press, Cambridge, MA.

1-494



[41 Fahlman, S.E., 1989, "Faster-learning variations on back-propagation: an empirical study",
in Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann.

[51 Massart, D.L. and L. Kaufman, 1983, "The interpretation of analytical chemical data by
the use of cluster analysis", Wiley, pp. 147-149.

[6] Maren, A.J., Harston, C.T. and R. M. Pap, 1990. Handbook of neural computing
applications, Academic Press, pp.238-243.

1-495



ART-based Control Chart Pattern Recognizers

H. Brian Hwarng and Chu Wei Chong

Department of Decision Sciences
National University of Singapore

Singapore 0511
E-Mail: fbahhi@nusunix.nus.sg

Abstract

A control chart pattern recognizer (CCPR) which is based on Adaptive Resonance Theory (ART) is
proposed. There are two major motives for using ART, that is, ART's ability to retain previously learned pattern
classes while adaptively learning new ones and ART's capability of fast learning. To improve the ART-based
CCPR's ability to discriminate patterns between pattern classes and, at the same time, to tolerate minor pattern
variations within each pattern class, a synthesized layer is added on top of the recognition layer. To cater to the
peculiar needs of control chart applications, a quasi-supervised training strategy is employed. The performance
evaluation indicates that the ART-based CCPR can be readily integrated into an on-line, real-time manufacturing
environment.

Introduction

The need of identifying patterns of data on statistical quality control charts was realized early in the 1950's
[Western Electric, 19561. In Western Electric's Statistical Quality Control Handbook a set of run rules were devised
to detect some nonrandom patterns. These rules or variation of these rules are still quite popular in today's literature
and practices. However, recently the utility of neural networks in identifying process nonrandonness exhibited on
statistical quality control charts has been demonstrated by a number of researchers [Hwarng & Hubele, 1991, 1992,
1993; Lim et. al., 1991; Guo & Dooley, 1992]. While traditional run rules are useful in signaling if there is any
structural change in the mean and/or variance of the process, the pattern recognition approach which explicitly
identifies nonrandom patterns is more useful in recognizing what particular type of nonrandomness occurs in the
process. Additional information about nonrandomness in the process then can be deduced through the identified
nonrandom pattern. This approach is not only more effective in determining corrective actions but more flexible in
a dynamic manufacturing environment.

In almost all of the published works, the major architecture used has been back-propagation neural networks.
Although back-propagation algorithm has been widely used and well studied, two well known problems, namely,
slowness in training and inability to perform adaptive learning without re-learning still pose some inconveniences
for practical applications. In this paper, we use Adaptive Resonance Theory (ART) [Carpenter & Grossberg, 1987,
1988] to resolve the problems. ART-based neural networks are adopted for two distinguished features, that is, ART's
ability to retain previously learned pattern classes while adaptively learning new ones and ART's capability of fast
learning. Throughout this paper, we only refer to the binary version of ART, ARTI.

Problems Encountered

While the ART architecture provides solutions for two major concerns of back-propagation networks, the
use of ART does not guarantee a success in control chart pattern recognition. The first problem comes from ART's
recoding instability. Ryan & Winter (19871 pointed out that ARTI networks had not entirely solved the code stability
problems. For example, once a new category was learned in the recognition layer (or F2 layer in Carpenter &
Grossberg's notation) the top-down weights can be gradually recoded in subsequent presentation of slightly varied
new patterns. The recoding can be so substantial that eventually the network would not recognize the original pattern
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original pattern. Figure 1 illustrates how this InpA poeM 1 2 3
problem occurs in control chart pattern
recognition. In the figure each control chart 000 1000 0001000 0001000

pattern is represented by l's in a 7 by 8 0001000 0001000 010000
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grid. A pattern is read from top to bottom of 100:000 100000 0001o001000000 100:0000 0900100

a grid. The network has been trained and 1000000 100000o 0oo0010
encoded with two top-down templates which 1000000 1000000 0000100
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Four inputs of noisy sudden shift upward are 2 oo1oo0 0001000 0001000

presented to the network. On the fourth 0001000 0001000 0010000

input, the network fails to classify it as0001000 00010000

1000000 1000000 0000100
has been recoded by the previous noisy 1000000 1000000 0000010

sudden shift upward patterns. The input 1000000 1000000 0000100

pattern fails the vigilance test. As a result, it
is classified into a new category. 3 001000 0001000 0001000

0001000 0001000 0010000
0001000 0000000 0100000

The second problem arises from oooo0 oo 0000000 0010000
1000000 1000000 0001000

ART's inabilityto classify shifted orrotated 10 0 0 000 1000000 0000100
patterns into the same category as the un- 1000000 1000000 0000010

shifted or un-rotated patterns. Figure 2 1000000 1000000 0001

shows two cyclic patterns. One was shifted
downward by one row. The only vigilance 4 oo0 10oo 0001000 0001000 0001000
value which could classify both of them into o0oo0 oo o010oo 0 01o0000 0000100

00000 00000 0100000 0001000

the same category is zero. 0001000 0000000 0010000 0001000
1000000 1000000 0001000 1000000
1000000 1000000 0000100 1000000

The third problem results from the 1000000 1000000 0000010 1000000
unsupervised training environment. Under 1000000 1000000 0000100 1800000

unsupervised training, when an input pattern
fails to match the learned top-down Figure 1 Illustration of the Recoding Instability
templates during the vigilance test the
network always learns a new category
provided sufficient capacity in the recognition layer. This might not be desirable in control chart patern recognition.
Because, in the actual application, we are interested in only a number of nonrandom patterns. When random patterns,
which are anything other than the pre-specified nonrandom patterns, are presented to the network, they should not

be classified as new nonrandom patterns. Nevertheless, under unsupervised training it is very likely that many

random patterns would be classified as new categories in the recognition layer even a low vigilance value is used.

Consequently, the network might grow very large in the recognition layer.

With the above three noted problems unsolved, the 0 0 0 1 0 0 0 0 0 0 0 1 0 0

use of ART-based neural networks still can not provide 0 0 1 0 0 0 0 0 0 0 1 0 0 0
satisfactory results for control chart pattern recognition. 0 1 0 0 0 0 0 0 0 1 0 0 0 0
Some alternatives need to be devised. 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0001000 0010000

Alternative Architecture and Training Strategy 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0000010 0000100

Overcoming these problems would involve using 0 0 0 0 1 0 0 0 0 0 0 0 1 0
some alternative architecture and training strategy. For the
problem of recoding instability and that of inability to
classify shifted or rotated patterns, adding one additional Figure 2 Shifted Patterns
layer on top of the recognition layer would alleviate the
dilemma. This layer is called synthesized layer. The
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synthesized layer is configured in such a way that one node is used to connect all similar learned categories, which
are either shifted or slightly varied, in the recognition layer into one class. In other words, for any patterns which
are shifted or slightly varied in the input, the network will be able to classify them into a same category even though
they might belong to different categories in the recognition layer. Of course, this can only be done with some a priori
knowledge about the data. Figure 3 shows the new ART architecture. As an illustration in the figure, the network
has learned the shifted cycles and upward trend patterns. They are represented as distinguished categories in the
recognition layer. However, the shifted versions of patterns are connected to one shared node in the synthesized layer.
That is, three cyclic pattern categories are connected to node I and three upward trend categories are connected to
node 2 in the synthesized layer.

Syntadwd UW

Figure 3 Th AR6rhtcuewt yteie ae

To resolve the problem of learning too many new categories at the recognition layer, some quasi-supervised
training strategy based on prior knowledge about the process dae should be employed. The strategy is as follows:
(a) generate or collect a representative set of nonrandom patterns which covers the whole spectrum of patterns of
interest and group them according to pattern classes; (b) configure the size of the recognition layer to be the number
of nonrandom patterns in the training set plus one additional node denoted as "others"; (c) during training each
pattern is presented to the network once according to the pre-arranged sequence and connection weights are adjusted
accordingly; (d) upon completion of training the number of learned categories should be exactly the number of
nonrandom patterns; (e) during testing (recalling) weights are not modified and any patterns that are not classified
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under any one of the learned categories will be placed under "other" category, i.e., random patterns; (f) in the

synthesized layer one node is used to connect all similar categories in the recognition layer into one class, called a

pattern class. Thus, the size of the synthesized layer should be configured to be the number of pattern classes of

interest. The training time for this ART-based CCPR is rather brief because the training simple goes through a single
pass of the training data set.

It should be noted that although the extent of the difficulties posed by the first two problems can be

manipulated to a certain degree by the vigilance parameter, it is necessary to resort to alternatives such as the one

mentioned above in order to eliminate the problems. With the additional synthesized layer which deals with looser

boundary conditions tackling the second problem, the original recognition layer can remain at a more vigilant level
such that the first problem of recoding instability can be alleviated.

Performance Evaluation

Here we present partial results from our simulation. The two performance measures are the detection rate

(R,) and the run length (ARLt). R, is the percentage of sequences of data in which the target pattern was detected
within a sequence of data of a fixed length, i.e., measuring how frequently the CCPR detects the target pattern. ARL,
is the average run length of detecting the target pattern within a sequence of data, i.e., measuring how quickly the
target pattern can be detected in a sequence of data [Hwarng & Hubele, 19931. In Table 1, R, is calculated based

on 100 independent sequences of data. Each sequence consists of 30 observations. ARL, is calculated in terms of

the number of classifying attempts. We compared the performance with that of a back-propagation CCPR [Hwamg

& Hubele, 19931. The results based on two vigilance values, 0.6 and 0.7, for the ART-based CCPR and two

activation cutoff values, 0.85 and 0.90, for the back-propagation CCPR are listed in Table 1. In general, two CCPRs

performed comparably and they were able to detect most of patterns within an ARL, of two at low noise levels. Even

at high noise levels, the ART-based CCPR was able to detect cycles within an ARL, of 8. The ART-based CCPR
has better R, for noisier cycles.

Table 1. Partial results of performance evaluation of ART-based CCPR: cyclic patterns with various amplitude and
noise values

ART Back-Propagation

Amp (a) Noise (a) Vig. R,(%) ARL, AcL Cut. R,(%) ARI.

1.50 0.1 0.6 100 1.00 0.85 100 1.00

0.7 100 1.00 0.90 100 1.00
2.00 0.1 0.6 100 1.00 0.85 100 1.00

0.7 100 1.00 0.90 100 1.00

2.50 0.1 0.6 100 1.00 0.85 100 1.00

0.7 100 1.00 0.90 100 1.00

1.50 0.3 0.6 98 1.57 0.85 100 1.56

0.7 99 3.02 0.90 100 1.72
2.00 0.3 0.6 96 1.67 0.85 94 1.21

0.7 97 3.64 0.90 91 1.17
2.50 0.3 0.6 100 1.24 0.85 86 1.00

0.7 100 1.56 0.90 82 1.05
1.50 0.5 0.6 92 3.85 0.85 95 3.58

0.7 72 5.78 0.90 96 5.35
2.00 0.5 0.6 93 3.26 0.85 71 1.73

0.7 78 7.56 0.90 73 2.15
2.50 0.5 0.6 93 3.51 0.85 53 1.46

0.7 81 5.84 0.90 49 1.98
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Closing Remarks

Alternative architecture and training strategy were used to improve the performance of an ART-based control
chart pattern recognizer. In general the ART-based CCPR performs comparably to the back-propagation CCPR but
with better detection rates for noisier patterns. The major advantages of the ART-based CCPR are ART's ability to
retain previously learned pattern classes while adaptively learning new ones and ART's capability of fast learning.
With the inherent distinguished features and the improved capabilities, the ART-based CCPR can be readily
integrated into an on-line, real-time manufacturing environment.
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ABSTRACT: Neural Networks that employ a competitive learning layer are especially well suited to modeling
organizational behavior. The Committee Machine of Nilsson (1965) and the Counterpropagation Network of
Hecht-Nielsen are two examples that incorporate a majority rule and a winner-take-all rule, respectively. A
variation on the Committee Machine is introduced that uses Kohonen learning and constructs a consensus based on
the riskiness of the decision-making environment. The network adapts in real time to the risk profile by modifying
the size of the consensus required to "approve" each case. The model proposed by Sah and Stiglitz (1985, 1988)
serves as a theoretical framework for the economic consequences of increasing committee and/or consensus size
and the costs of Type I and Type II errors. Experimental results show that increasing the consensus size reduced
Type 1I errors but that the best overall performance was with a relatively small consensus. The implication is that
there is "safety in numbers," i. e., the entire committee can protect itself from Type II errors, but the true optimal
consensus size may be less than a majority.
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Abstract: The Self-Organizing Map (SOM) of Kohonen (1989) produces a two-dimensional topological
ordering of data vectors. Data clustering and dimensionality reduction are two typical applications. of
SOMs. In Garavaglia (1993), two versions of ti, . same data vectors, the original with simple binary
valued elements and the other having the elements transformed by standard scaling, were input as
training sets to a SOM. The results were that the scaled vectors were concentrated in fewer and less
topologically dispersed processing elements (PEF), as measured by the PE activation counts. Originally,
it was proposed that this result could serve as some form of relative measure of homogeneity.. The
statistical properties of the scaled version of the data are discussed and a more formal diversity index is
proposed that draws its inspiration from information theory.

1. Background

The Self-Organizing Map (SOM) of Kohonen (1989) produces an n x m (two-dimensional)
topological ordering of data vectors using a special layer of n x ml processing elements and Kohonen's
mean-reverting competitive learning. A basic form of Kohonen learning is:

w -= wi + c(xi - wi) or Awi = c(xi - wi) (1)

and lim w'. = xi
t-+- I2

where w'i is the updated connection weight, wi is the initial weight at time t, c is a learning coefficient,
and xi is the input.

In Garavaglia (1993) a SOM was applied to clustering U. S. Census data after transforming the
data elements into binary valued vectors. Each vector represented a single Census Tract and the
individual elements represented factual information for each tract. One 8 x 8 SOM was trained with the
binary data values and a second 8 x 8 SOM was trained with standard scale transformations of the binary
data. Standard scaling produces values which are an index of deviation from the mean.2 The number and
location of activated processing units was compared for the two versions. The initial example, Census
Division #6 - New England, yielded 33 active units for the unscaled data and 18 active units for the
scaled data. The first experiment did not use normalized vectors. A macro-micro interpretation was
proposed, the unscaled version being a micro analysis which reflected the diversity of the data and the
scaled version reflecting the macro view of the data emphasizing the overall "sameness" or homogeneity
of the data.

In the sections following, an overview of the statistical properties of the data, results on all 9
U. S. Census divisions, a SOM-derived Diversity Index, and theory of interpretation are given. The
conclusion may appear to contradict the earlier result, but is, in fact, an information theoretic
interpretation rather than a contradiction. The homogeneity described in the earlier work (Garavaglia
1993) reflected a view of the data that equated "sameness" with "amorphousness." The relationship
between this quality and relative system entropy, i .e., that the homogeneity characteristic pertains to the

Iln most applications n = m producing a square layer.
2 A standard scaled version of a variable x is z = x -.x
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probabilities and not the data itself, is explained. In other words, the ratio of unscaled active SOM units
to scaled active SOM units gives information about the degree of equiprobability among data in a system.

2. Statistical Properties of Binary Valued Data and the Relationship to System Entropy

Dummy variables allow the representation of qualitative information in quantitative modeling. If
the information is a two-valued, i. e., a true-false proposition, then one dummy variable can be used to
indicate the proposition is true with a value of 1, or 0 otherwise. More complicated qualitative
information, such as the education level of a person, requires either reduction of the information to a two-
valued proposition, or more than one dummy variable. For example, typical education categories (no high
school diploma, high school diploma only, some college, undergraduate degree, or graduate school and
beyond) would be represented in a traditional statistical model as four dummy variables, with one
category, say, no high school diploma, represented by the 4 dummy variables having a value of zero. For
simple transmission of the data in a noiseless channel, five equiprobable categories could be represented
by an average of 1.609438 binary digits each.3 The difference is that the collinearity of having two
dummy variables assume the same value for any condition would threaten the statistical stability of a
model, while the average of 1.609438 binary digits is used solely to transmit the information from a
sender to a receiver or to efficiently store the data. For an explanation of the resulting collinearity when n
conditions are represented by n dummy variables and a constant (intercept) is also present, see Maddala
(1977).

The average or mean of a dummy variable is the proportion , p, of observations having the
dummy variable value of 1. The statistic p is also the probability of obtaining a value of I in a random
draw. Therefore, the distribution is neither continuous nor normal, but point binomial, or Bernoulli.
Because of this, the standard deviation, S, (of the population) takes on a unique meaning because it
depends on only p. It is at a maximum with p = 0.5 and approaches 0 when p approaches its extreme
values 0 or 1.4 Entropy has similar characteristics in that it is at its maximum when all events being
measured have an equal likelihood. However, entropy increases with n and the population standard
deviation does not depend on n (although the sample standard deviation does). Wiener's (1948)
comparison of entropy with information is apropos here: "Just as the amount of information in a system is
a measure of its degree of organization, so the entropy of a system is a measure of its degree of
disorganization; and the one is simply the negative of the other."5

Thus, for binary valued data elements, a value of the standard deviation that is at its maximum
indicates equal proportions of each value. In information theory, equal proportions mean "no bias," a
maximum freedom of choice and maximum uncertainty. The measurement of "information, chcoce and
uncertainty," 6 is the domain of entropy. The general formula (from Shannon and Weaver (1949)) is:

H = - KE pi log pi (2)

where H is the entropy, K is some constant for unit of measure, Pi is the probability of the event. For
binary data, in which there are two possible values with probabilities p and (I -p), entropy is calculated by

H -(plogp+(l-p)log(0-p)) (3)

Two of the properties that Shannon cited that make H a "reasonable" measure of choice or
information also apply to the standard deviation in the case of dummy variables. H tends to 0 as the
proportion of pi = 0 increases reflecting a decrease in choices. The standard deviation tends to 0 as the
variability of the data decreases. As stated above, both H and S are at a maximum when the probability or

3 Based on -(5(0.2 log 0.2)) = 1.609438.
4The population statistics are used in this example rather than the sample statistics. For more details on
the distributions, see (Mood, Graybill, and Boes 1974).
5p. 11.
6 See (Shannon and Weaver 1949), p. 50.
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proportion = 0.5. Figure 2-1 shows the relationships between p, H, and S. This is relevant to the
application because one goal of analyzing the U. S. Census data is to gain information about the relative
diversity of each region and of the regions among themselves. Weaver thought that information theory
and entropy might strike his reader as "disappointing and bizarre - disappointing because it has nothing to
do with meaning, and bizarre because it deals not with a single message but rather with the statistical
character of a whole ensemble of messages, bizarre also because in these statistical terms the two words
information and uncertainty find themselves to be partners."7

As a brief digression to confirm the intuition of this idea: consider the following example as an
illustration of the partnership between information and uncertainty. If the results of an election are
predicted to favor one candidate by with 90% of the vote and there is confidence in this prediction, an
observer may be tempted both: a) not to vote, and b) not to spend money on a newspaper the next day
because: a) he or she does not perceive a free choice, and b) the money spent on the newspaper will not
bring any extra information. Now if the results are predicted as "50-50" there is both an incentive to vote
and to buy the newspaper, because the vote could effect the outcome and the newspaper will tell the reader
something he cannot confidently infer from the predictions - the outcome. The point is that with a high
degree of certainty, and the cost of information being fixed, there is less of a benefit in purchasing the
information.

Figure 2-1

Entropy for Two Choices (Value = 1 or 0)
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When standard scaling is applied to binary valued data, the results are new binary valuesfor the
data that inherently contain the information about proportions. Specifically, when binary data is
represented as 0 or 1, the maximum absolute value distance between any two binary data elements is I
regardless of the distribution of values. When the data is standard scaled, the maximum absolute value
distance between any two binary data elements depends on the proportion of l's. This distance is
maximized when the proportion is minimized, i. e. l/n. Table 2-1 contains examples of these distances
for a set of proportions (in deciles), and Figure 2-2 is a graph of these relationships.

7 ibid., p. 27.
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Table 2-1

Mean p Scaled I Scaled 0 Scaled Non-Scaled
pl zi zO Distance (pi -pO)

(zI - zO)

0.0 n/a n/a n/a -1.0
0.1 3 -0.33333 3.333333 0.8
0.2 2 -0.5 2.5 0.6
0.3 1.527525 -0.65465 2.182179 0.4
0.4 1.224745 -0.8165 2.041241 0.2
0.5 1 -1 2 0
0.6 0.816497 -1.22474 2.041241 -0.2
0.7 0.654654 -1.52753 2.182179 -0.4
0.8 0.5 -2 2.5 -0.6
0.9 0.333333 -3 3.333333 -0.8
1.0 n/a n/a n/a 0.0

Figure 2-2
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3. Relevance to SOMs and Kohonea Learning

In Kohonen learning, the competitive rule combined with the mean reverting learning algorithm
will cause the weights to "imitate" the data vectors. Thus, a Kohonen layer processing element will output
a 1 if its weights most closely resemble the input vector as measured by the Euclidean distance between
the weights and the input vector. Thus, if the maximum absolute value (a. v.) distance is 1, as it is with
unscaled and unnormalized vectors, the weights will organize themselves within these boundaries. For
normalized vectors, in which each vector length is 1, the maximum distance between binary values will
depend on the size of the vector, but is still bounded at 1. Under standard scaling, the maximum a. v.
distance is attained when p = l/n, i. e., only one observation out of n has a value of 1, and the minimum
distance is attained when p = n/2 or 0.5. In the latter case, the a. v. distance between the scaled 1 and the
scaled 0 is 2.
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The formula for the standard deviation of the population when p = g = l/n is:

S = (1-n') 2 +(O-n') 2 (n-1) 1/2 (4)

n

zO = (0-nI) zI = (I -n'l) (5)

S S

lim zi - zO "-
n --) co

The standard deviation of the population when p gt = n/2 is 0.5 is.

zO = -1 (0-0.5) zI =1 (1-0.5) (6)

0.5 0.5
where, in () and ( ) above, zO and zI are the standard scaled values when the original binary values are 0,
and 1, respectively.

From the above, we infer that zI >=1 and zO <= 0. Hence, for any connection weight, w:

(zI - w) >= (l - w) and (zO - w) <= (0 - w). (7)

In Kohonen learning, this means that:

Awz >= Aw (8)

i. e., the change in weights under standard scaling will be greater or equal to the change in weights with
non-scaled data. These adjustments will have the effect of concentrating the data into a smaller region of
the topology, just as what would occur in the case of an outlier vector.

Hecht-Nielsen (1990) comments on this characteristic with a geographic analogy which is
paraphrased here: if the weight vectors represent, say, the continental U. S. and the first input vector
represents a point in Africa, the processing element closest to Africa will have its weights adjusted to
represent all of Africa, Europe, and most of Asia because after the first weight adjustment, this PE will
win the learning competition for all of the vectors that are closer to Africa than to the continental U. S. If
there are 50 vectors from the continental U. S. and 50,000 vectors from Africa, the 50 vectors will be
spread out in the topology, but the 50,000 vectors will activate only one PE. Although for many
applications, this is, as Hecht-Nielsen suggests, a problematic result, the point could be made that the
vectors were not set up to properly represent the sample, and that the vectors from Africa were a
"surprise" and the SOM's arrangement of weight vectors conveys information to that effect.

Even though it is a matter of representation, standard scaling has somewhat the same effect
because of the larger adjustment of the weights and the more extreme values of the data. Any connection
weight which wins the competition by matching a zO, will have its value adjusted by the learning
algorithm to get closer to zO. That brings it further away from z 1. Conversely, a connection weight that
wins by being closest to zI will be adjusted to be further away from zO. As these distances are greater
than the unscaled maximum distance of 1, the vectors will organize themselves relatively further away.
However, in a bounded space defined by the number of processing elements in the Kohonen layer,
becoming further away from their opposites means getting closer to each other. Hence, the result of fewer
activated elements with standard scaled elements. .The "clumps" of active units are created by nearest
neighbor weight adjustments. This explains why, for any one census division, there are fewer active PE's
with the standard scaled data. The other question is, what characteristics of the data determine the
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relative differences in the number of active PEs from one census division to another. Section 4.

summarizes the results and Section 5 proposes the SOM-derived Diversity Index.

4. The Complete Results for all Nine U. S. Census Divisions

Tables 4-1 and 4-2 contain the list of U. S. Census Divisions and the results for the entire 1990
U. S. Census, respectively. In all 9 cases, the standard scaled data produced relatively fewer activated
units and denser spatial concentrations. The Pacific region showed the greatest difference in numbers of
activated units while the Middle Atlantic region showed the least difference. This is illustrated by the
ratio of unsealed data/ scaled data unit activations.

Table 4-1

The Nine U. S. Census Divisions

1. Pacific: Alaska, California, Hawaii, Oregon, and Washington
2. Mountain: Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, and Wyoming
3. West North Central: Iowa, Kansas, Minnesota, Missouri, North Dakota, Nebraska, South Dakota
4. East North Central: Illinois, Indiana, Michigan, Ohio, Wisconsin
5. Middle Atlantic: New Jersey, New York, Pennsylvania
6. North East: Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont
7. West South Central: Arkansas, Louisiana, Oklahoma, Texas
8. East South Central: Alabama, Kentucky, Mississippi, Tennessee
9. South Atlantic: District of Columbia, Delaware, Florida, Georgia, Maryland, North Carolina, South
Carolina, Virginia, West Virginia

Table 4-2
Summary of Results for the SOM Training

(in order by Diversity Index)

Census Raw Data Raw Data Norm. Norm. Data Diversity Unsealed Scaled Vector # Obs.
Div. Average Average Data Average Index Active Active Size

Std. Dev. Average Std. Dev. Units Units

DIVS 0.6128 0.3269 0.1371 0.0784 1.22 22 18 8 9826
DIV4 0.4602 0.3384 0.1000 0.0751 1.53 29 19 10 10915
DIV2 0.2827 0.3645 0.0769 0.1226 1.58 52 33 13 3438
DIV7 0.3229 0.4136 0.1111 0.1659 1.67 45 27 9 6619
DIV8 0.3160 0.4341 0.1111 0.1773 1.68 42 25 9 3822
DIV6 0.4494 0.2921 0.0909 0.0666 1.79 25 14 11 3202
DIV3 0.3703 0.4085 0.0972 0.1247 1.92 50 26 12 4791
DIV9 0.3319 0.2770 0.1224 0.1080 2.19 35 16 14 9609
DIVI 0.3653 0.3682 0.1000 0.1199 6.00 42 7 10 7906

5. The SOM-derived Diversity Index Theory

A Diversity Index is proposed for SOMs that is the ratio of the number of active PEs after
training on unsealed data to the number of active PEs after training with standard scaled data. The higher
this ratio, the more diversity or relative equiprobability is implied in the data. The maximum amount of
diversity in the data vectors is attained under the condition that the mean and standard deviation of each
element is 0.5. As the distance between zI and zO is at its minimum when p = 0.5 the weight vectors have
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a smaller adjustment in learning the vectors and may organize themselves to activate for either z I or zO
for some data elements. In addition, the mean of any standard scaled variable is 0, so the mean of all the
data elements is zero.

Therefore, a higher relative compaction of the topology is expected when the average standard
deviation of the vectors is closer to 0.5. When the size of the vectors is held constant, this is the result.
Table 5-1 shows pairs of divisions in which the vector sizes were equal. A varying vector size will have
an additional effect on the standard deviation. The information in Table 5-1 shows that, the Diversity
Index increases as the average of the standard deviations of the vector elements approaches 0.5. The
comparison cannot be made with vectors of unequal sizes because the average of all the standard
deviations will be affected by the total number of elements in the vector.

Table 5-1
Ceams Raw Data Raw Data Norm. Data Nonm. Data Diverasty Unscaled Scaled Vector # Obs.
Div. Average Average Average Average Index Active Active Size

Std. Dev. Std. Dev. Units Units

DIV7 0.3229 0.4136 0.1111 0.1659 1.67 45 27 9 6619
DIVS 0.3160 0.4341 0.1111 0.1773 1.68 42 25 9 3822
DIV4 0.4602 0.3384 0.1000 0.0751 1.53 29 19 10 10915
DIVI 0.3653 0.3682 0.1000 0.1199 6.00 42 7 10 7906

6. Summary and Conclusions

A SOM combined with a probability sensitive data transformation such as standard scaling is a
useful tool for some aspects of data analysis. The results obtained with the U. S. Census data rely on the
mean reverting quality of the Kohonen learning law and the information content of standard scaled
dummy variables. An index of relative entropy or data diversity can be derived by taking the ratio of
unscaled to scaled active PEs. The higher this ratio, the more entropy or diversity in the data, holding the
vector lengths equal. Another way of stating this is that the higher this index, the more amorphous and
"gray-valued" the data.

This application of SOM models presumes that either the entire population or an unbiased
sample is available for calculation of the means and standard deviations. Therefore, the theory of the
diversity index cannot be applied to deriving unknown distributions. Furthermore, only information
which can be appropriately represented as dummy variables can be modeled in this framework.
Nevertheless, a broad spectrum of applications still fits within these constraints.

This research has a number of applications in commerce and public policy. For product
marketing, a diverse group presents challenges in a highly competitive environment where increasingly
targeted messages are used to attract prospects. This targeting eliminates "noise" relative to the intended
received but is noisier when transmitted to unintentional receivers. In public policy, the high-entropy
areas are the focus of expected economic growth and an accompanying demand for public services such as
roads and schools. Scaled and unscaled versions could be compared over time for trend analysis.

Future research points to tuning of SOMs by investigating different neighborhood sizes and
configurations and different sizes of SOM. In addition, statistical measures of the significance of these
topologies would be useful. There may also be some information if the training of a SOM could be
observed by some graphic representation of the changes in weights over time. The SOM remains an
attractive neural network paradigm because it is relatively simple to implement and can be applied to
highly complex analytical tasks.
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ABSTRACT

This paper presents results of empirical studies applying feedforward neural networks to modeling com-
puter system performance. Experiments were performed on a simulated multiprogrammed computer
system with a time-varying workload comprising four job classes. Key system performance measures such
as device utilizations, mean queue lengths, and paging rates were collected and used to train several neural
networks. Single-layer, multi-layer, and radial basis function feedforward neural networks were used to
model the simulated computer system's performance characteristics, accurately predicting job class response
times.

INTRODUCTION

Computer system performance is a function of four elements. First is the workload presented to the system.
Second is the service level expected from the system. The service level is a measure of user satisfaction
with the system, such as response times or throughput. Third is the processing capacity of the system in
terms of hardware. Last is the system efficiency in processing the workload. This is called system tuning
and is often a critical factor in the operation of a computer system. These four elements are dependent on
each other and can interact in subtle (nonlinear) ways, complicating the performance modeling process.

Accurate computer system performance models are required to do initial system sizing, long range capacity
planning, and system tuning. Typically, performance models are created using analytic models designed
specifically for a particular system configuration, and for a particular workload. More generally applicable
models can be created, but at the expense of model accuracy. A workload characterization study is also
usually required. Building this type of performance model is expensive and requires skilled personnel not
usually available at any but the largest computing centers.

Neural networks offer several advantages over analytic system performance models. A neural network
model can be created for any system configuration, no matter how unique, by collecting data on the system
using a performance monitor, and then training the neural network on that data. Because the neural net-
work model is created specifically for the system, the model should be at least as accurate as the
custom-built analytic models (5 to 10% for utilizations and throughputs, and 10 to 30% for response times)
(Lazowska, et al.). Since the data inherently contains information on the workload, no workload character-
ization step is required. Also, the process of collecting the data and training the neural network can be
largely automated, so that the model-building process can be performed by system operators.

This paper presents results of empirical studies applying feedforward neural networks to modeling com-
puter system performance (see Bigus, 1993 for a more detailed treatment). Experiments were performed on
a simulated multiprogrammed computer which is described in the next section. Next a series of experi-
ments are detailed, in which single-layer, multi-layer, and radial basis function feedforward neural
networks are trained to model the computer system's response times.

COMPUTER SYSTEM ARCHITECTURE

The system is a simulated, multiprogrammed system with a workload comprising four job classes: two
closed queueing classes and two open queueing classes. A workload generator is used to provide the load
to the system. The system consists of a CPU server using a priority first-come-first-served (FCFS) queue-
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ing discipline, and a composite I/O subsystem (made up of multiple (2) servers) with a single queue
scheduled as FCFS without priority. The system memory is divided into four memory partitions in each of
which jobs from a single job class can run. Entry into each partition is controlled by a multiprogramming
level (MPL) blocking queue or gate. Figure I below shows the job flow for a single (closed) job class and
partition.

Q Illý
_ ' I M P L l .... ... ... ........ .. .... .... °

6; MPL Queue CPU
Terminals 0 1-0

I/0 Servers 1.. 04 Page Fault

Figure 1. Computer System Model and Job Flow

A job enters the system and requests a multiprogramming slot. When one is available, it then enters the
system and competes for memory, CPU and I/O resources with other jobs. Whenever a job enters or leaves
a memory partition, the amount of real memory (in pages) available for each job is calculated by dividing
the current poolsize by the number of jobs currently in that partition. Based on the amount of memory
available, the mean or expected CPU time to the next page fault is calculated using a paging lifetime func-
tion (Chamberlin, Fuller, and Liu, 1973). Routing probabilities are calculated for CPU to program I/O,
CPU to page fault, and CPU to exit transitions. Ifjobs in one memory partition start thrashing because the
MPL is set too high for the amount of memory available then its paging rate will increase dramatically and
throughput of jobs in that class will be lower. If thrashing occurs in one partition, it will impact the other
job classes through more contention (queueing) for CPU and the I/O subsystem. A similar model was
used by Ferguson in (Birman, Ferguson, & Kogan, 1992) to model the paging characteristics of an MVS
system with multiple workloads and was shown to be quite accurate.

The input to the simulated computer system consists of four job classes. The job class definitions are
parameterized to describe both the workload intensity and the CPU and 110 subsystem service demands.
Job classes can be either open or closed chains. Open chains have infinite arrival populations while closed
chains are limited to the number of jobs in the chain. The terminal and batch jobs are closed. The
workload for these classes is adjusted by varying the population of these chains (workload intensity
parameter N). For the two open classes, transactions and distributed I/O requests, the arrival rate (workload
intensity parameter X, which is the mean of an exponential distribution) determines the workload presented
to the system. A smaller mean inter-arrival time corresponds to a heavier workload. The workload inten-
sity is represented by a four element vector (N=,, N•,i, X,. Xd.J which changes over time, the other job
class attributes are constant for each job class. The behavior of ajob once it is in the system is defined by
the rest of the job class attributes. The total CPU time is consumed in small pieces or bursts. Once a CPU
service burst is complete, the job is routed to either a program 1/0 request, a page fault, or exit of the system
(see Figure 1). After exiting the system, closed jobs simply recirculate back to the terminal and delay for
the associated think time. The total number of program I/Os and page faults defines whether the program
will be CPU or 1/0 bound (or neither).

The computer system is assumed to be in use 12 hours a day, and the workload is specified for each half
hour increment, so that a complete day's workload can be specified by a set of 24 4-element vectors. This is
a much more realistic workload representation than the more common, steady-state workload assumption.
This workload is the "standard daily workload" used in the system performance prediction studies. The
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workload varies in both job mix and intensity more or less in keeping with a typical business office system.
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Figure 2. Job Class Throughputs and Response Times for the Standard Daily Workload

Figure 2a shows the average job class throughputs for the standard daily (12 hour) workload with a static
system configuration. Performance measurements were taken at 30 minute intervals. Figure 2b shows the
job class response times for the standard daily workload and a static system configuration.

The computer system model was implemented using an object-oriented discrete-event simulation envi-
ronment, designed and developed by the author, and written in C++. The computer simulator was
integrated with the IBM Neural Network Utility/2 (NNU), a commercial neural network application
development environment. NNU allows integration with other application programs in the form of OS/2 or
Windows dynamic link libraries (DLLs).

METHODS

In this series of experiments, neural networks are trained to predict the average response time of each job
class based on the information given by the performance monitor. Figure 3 shows the workload presented
to the computer system and resulting in some actual throughput and response time for each job class. As
the computer system is running, the performance monitor provides internal workload measures to the neural
network, along with information on the current achieved system performance. The neural network is
trained to relate this internal performance (and workload) information to the achieved throughput. This
technique makes no a prioi assumptions about the computer system performance. The neural network is
learning a mapping function from the current system load (as measured by device utilizations and mean
queue lengths) to the actual response time measures. If the system performance is dependent on the
workload, then the neural network will learn this dependency. Also, if the relationship between workload
and response time is nonlinear, the neural network will account for that.

Workload Actual Performance
Computer SystemDevice Queue

Utilizations Lengths

Predicted Performance
Neural Network

Performance Model

Figure 3. Modeling System Performance using Neural Networks
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Experiment I

In this experiment, 10 simulations were run with a static system configuration and the standard (12 hour)
daily workload. Performance data was collected at 60 second intervals, resulting in 720 data points for each
day. A feedforward neural network with 24 inputs, no hidden units, and 4 output units was trained using
back propagation supervised learning (Rumelhart, Hinton, and Williams, 1986). The input vector consisted
of the 8 configuration parameters (held constant), and the internal workload measures consisting of the 2
total device utilization values, the 10 queue length values (total and per job class), and the 4 page fault rates
(per partition). The 4 outputs were the job class response times. The performance data was scaled to a
range of 0.0 to 1.0. The networks were trained with a learn rate of 0.2, a momentum of 0.0. The error tol-
erance was set to 0. 1 for the first 150 epochs, and then lowered to a value of 0.01 for the last 100 epochs.
The logistic activation function (0.0 to 1.0) was used throughout. In all cases, connection weights were
updated after each pattern was presented (i.e. not batch).

On average, after 250 training epochs, the average RMS error was 0.0540 on the training data set and the
maximum RMS error was 0.1792. To see whether the neural network was predicting the response time
equally well for all 4 classes, the RMS errors for the individual outputs were also calculated. These were
0.0531 for terminal, 0.0828 for batch, 0.0566 for transactions, and 0.0733 for distributed 1/0 jobs. An
interesting fact is that the prediction accuracy corresponds exactly with the job class priorities. It would
seem that the FCFS priority scheduling is responsible for these differences.

Next the generalization ability of the neural network system performance model was tested. Three different
neural network architectures were tested, a back propagation network with no hidden units 24-4, a back
propagation network with a single hidden layer 24-44, and a radial basis function network with 25 hidden
units, 24-254. Simulation data was collected from 10 different simulation runs of the standard daily
workload. Each network was trained on a subset of the data and then tested for prediction accuracy on the
holdout subset. The training subsets ranged from 1, 5, and 8 days. The networks were trained first on the 1
day training set for 250 epochs, then locked and their predictive accuracy was checked. They were then
unlocked (but weights were not reset) and trained on the enlarged training set for an additional 25 epochs.
This was repeated until the training set contained all 10 days.

The radial basis function networks (Moody & Darken, 1989) were trained in a two step process. First a
self-organizing feature map was trained with 24 inputs and 25 output units to cluster the input space (Ko-
honen, 1989). After the SOFM was trained, the connection weights were then loaded into the radial basis
function (RBF) network centers array (which serve as the basis vectors for the hidden units). The RBF
network was then trained multiple times (like the back propagation networks), but only the hidden to output
layer weights were reset, not the centers. The test results are shown in Tables 1 2, and 3. In all cases the
networks were locked (weights were frozen) when error measurements were taken.

Training Data Avg. RMS Err Max. RMS Err Test Data Avg. RMS Err Max. RMS Err
Day 1 0.0530 0.2061 Days 2..10 0.05966 0.2683
Days L..5 0.0510 0.2877 Days 6..]0 0.06214 0.2763
Days L..8 0.0549 0.3822 Days 9,10 0.0634 0.2293
Days l..-0 0.0584 0.3831 1na na na

Table I. BKP 24-4, System Performance Prediction

Training Data Avg. RMS Err Max. RMS Err Test Data Avg. RMS Err Max. RMS Err
Day 1 0.0543 0.2001 Days 2.. 10 0.0627 0.2700
Days 1.5 0.0511 0.2929 Days 6..10 0.0640 0.2883
Days L..8 0.0558 0.3872 Days 9,10 0.0660 0.2411
Days L ..10 0.0573 0.3923 na na na

Table 2. BKP 24-4-4, System Performance Prediction
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Training Data Avg. RMS Err Max. RMS Err Test Data Avg. RMS Err Max. RMS Err

Day 1 0.0590 0.2310 Days 2..10 0.0725 0.3386

Days L..5 0.0581 0.4568 Days 6..10 0.0748 0.4119

Days L..8 0.0710 0.4227 Days 9,10 0.0783 0.3671

JDaysL..10 10.0715 0.4515 na na na

Table 3. RBF 24-25-4, System Performance Prediction

The results were that the 24-4 back propagation network was the best at predicting the system performance
of the 9 succeeding days when they were trained on a single day's data. This result was surprising because
it was assumed that the system performance function was highly nonlinear and so that at least 1 hidden
layer of units was needed to learn the mapping. Apparently the computer system dynamics are such that for
a fixed configuration the relationships are relatively linear. Another surprise was that the average prediction
accuracy (average RMS error) did not improve as the training set grew, but got slightly worse. However,
the prediction accuracy in the worst case (maximum RMS error) did improve as the trained set increased. It
should be noted that all 3 neural network architectures produced results with well under 10% error rates,
which is better than the 10-30% accuracy usually attributed to analytic models when predicting response
times.

Experiment 2

In this experiment, we change the multiprogramming levels, while the workload intensity and poolsize are
held constant. The terminal multiprogramming level was changed from I to 9 in increments of 1, while the
other MPL were held constant. The simulation consisted of 30 minutes at each of the 9 terminal multipro-
gramming levels. Data was collected every 60 seconds, so there were 270 training vectors. Each type of
neural network was trained 5 times using learn rate parameters of 0.2, momentum of 0.0, and an initial error
tolerance of 0.1. After 150 epochs, the error tolerance was lowered to 0.01. All error measurements were
taken with the neural network weights locked, and each network was trained for 250 epochs. The results
shown in Table 4 are the average errors over the 5 training runs.

Training Data (80%) Test Data (20%)

Architecture Avg. RMS Error Max. RMS Error Avg. RMS Error Max. RMS Error

BKP 24-4 0.0906 0.2381 00914 0.2019

BKP 24-4-4 0.0909 0.2331 0.0855 0.2750
R[ F 24-25-4 0.0823 0.2798 0.0837 0.2134

Table 4. System Performance Prediction - Changing MPL

As in the previous experiment, our expectation was that the multilayer networks would perform better than
the 24-4 network. This is the case, as the average RMS prediction error for the multilayer networks was
compared to the RMS error for the linear networks with a planned contrast-of-means. The average RMS
error for the linear networks was significantly larger, F(1,12)=19.21, p < 0.01. Although the worst case
(maximum) RMS prediction error is lowest for the linear network, the maximum RMS errors were not sig-
nificantly smaller than the radial basis networks, F(1,12)=0.23, p > 0.01. The multilayer networks can fit
the performance function better than the linear network for most patterns.

Experiment 3

In this experiment, the system configuration was varied while presenting the system with the standard daily
workload. The objective is to see whether a neural network can learn the complex dynamics of the multiple
interactions between system configuration and workload on the system performance. A set of 5 days of
simulations were run, with different multiprogramming levels and poolsize settings for each day. The per-
formance measurements were made at 60 second intervals. The multiprogramming levels were held
constant, while the poolsizes were adjusted before each day's run.
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Training Data (80%) Test Data (20%)

Architecture Avg. RMS Error Max. RMS Error Avg. RMS Error Max. RMS Error
BKP 24-4 0.0445 0.1625 0.0447 0.1843

BKP 24-4-4 0.0459 0.1966 0.0452 0.1868
RBF 24-25-4 0.0591 0.3390 0.0594 0.3272

Table 5. System Performance Prediction - Changing PoolSize

As shown in Table 5, the neural networks actually performed better on the changing poolsize and workload
data than on the static configuration tests. The two back propagation networks had average RMS prediction
errors of under 0.046, and under 0.187 in the worst case. The poor performance of the radial basis function
network, especially in predicting some patterns (Max RMS error), indicates that perhaps more hidden (ba-
sis) units were required. Because the center vectors were found using a self-organizing feature map on
80% of the data, there is a chance that some of the patterns in the holdout data were not well represented.
Thus, the RBF network would see patterns which produced no significant hidden unit activations, and so
resulted in poor predictions on those patterns. Of course, this is always a concern when training neural
networks. The training data must be representative of the total input space of the data.

CONCLUSION

In static predictions of response times, the neural networks were able to achieve average RMS prediction
errors of less than 10%. The advantages of the neural network approach over traditional queueing theoretic
approaches are that the neural network approach is at least as accurate, and is less expensive. It requires the
use of a performance monitor to gather data and requires some scaling of the data (which could be auto-
mated), and the training of the neural network model.

This work shows that neural networks are a viable alternative to queueing theoretic models of computer
systems. By using performance data collected during normal system operation, a neural network model can
be generated to accurately model the system response times.
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Abstract

In this paper, a typical artificial neural network -- self-
organization model was applied to establish computer expert system for
grading the beer quality on the basis of physical and chemical indexes
of beer, As a result, the grading was consistent with the fact.

Keywords: Grading for the Beer Quality, Physical and Chemical Indexes,
Self-Organization Artifivial Neural Network,
TKohonen Model

I. Introduction

In standard practice, the beer quality is evaluated according to
the sensory indexes (outlook, beer head, smell and taste),the chemical
indexes (the content of a alcohol, the actual concentration. the
concentration of raw malt huice, the colour degree, the acidity. the
content of CO? ?, the content of duel acetyl, the EBU value, the dLration
of beer head and the height of beer head, etc. and the stability.
However, the chemical indexes inter-relate4 and inter-influenced with
each other. In view of single index, there is not a clear grading
criterion between the special grade and the ordinary grade. Especially
those sensory indexes, which are comprehensive refliction of all kinds
of chemical indexes, can only be assessed by experienced beer
appraisers. So, the assessed results are anyway affected by subjective
and other unstable factors. In this paper, with the applicatioe of a
typical artificial neural network -- self-organization model. we
establish a computer expert system for the grading of beer quality it
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a: atrept to g more exerI cence ir the ass of win. ir
oods comn:t ers. Te st-dv on tHis •rob>, has ct bea r 20rtec

yet.

II. Artificial Neural Network -- Self-Organization Nodel

c•ifici1 NeuraI Net ork N'N; is a non-linear science w cI be~al
t o i;e quicky in the mia-i980; s, it nas been ?reiicrnar ii;Y appi•c :o
.Ze fields of pattern recognition, data processinc, automatic conteoi,
eac., and obtained satisfactory results [li.

Kohonen's Self-Organization neural network is a two-layer network. Ou
tput todes are arranged regularly on a planar mapping grid. Each in.-t no
de is connected to every output node via a variable connection Weig
ht. Weights are adjusted interatively during training by input data and or
ganized gradually such that topologically close nodes are sensitive to in
puts which are physically similar. Self-Organization model is well known f
or its lowdimensional topology preserving mapping of high dimensional pat
terns and stable evolving properties. It is now widely applied in vector
quantization, pattern recognition, associate memory, itmb!nater!i o!t.imi
zation and motor control [HL.

The structure and learning algorithm of self-organization model has
been reported in literaturefl,.

I[[.T.kohonen Neural Network Applied to the Grading of Beer Quality

I. Source of information

It is reported in the literature some chemical indexes in sampling
analysis of beer in the Shanghai Area in recent years.

In this research , the concentration of raw malt juice is olitted
because it is relative with the concentration of alcohol and the ac

tual concentration. And the Grade refers to the grade given by the beer
factories.

2. The establishment of ANN recognition model

First, 14 samples in Table I are randomly selected and used as the 'I
earning" material(class one:special; class two:ordinary) for tae neural n
etwork. All those feature variables are taken as the input: the output nod
es form a 2x7 lattice and the convergence of training set reaches
the value 0.0001. After learning process, these samples can be perfectly r
ecognized by neural network. [n the meanwhile, the coop!icated relat
ionship between the chemical indexes and its quality grade has b!er ýz
tablished. (See Figure 1,Table 1)
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4. 85ft 4. Otht i6.4Z 1.91 G.Z&4 29.26 13 1
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4.111 4.041 8.416 1.614 a W4N 28 6 It
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1.9844 4.373 9.5 22 1416 26 7 2

219ft cl79 a %% 2.66 9.1b6 31.95 U

4.633 4. 46 O .S 2.46 a 965 28.1 9 2

3. The results of assessment

Furthermore, in order to test the performance of the newly-est
ablished model, 8 samples which haven't been trained are recognized by th
e neural network which has grasped the krowledge information.And, the

samples will be classifid into a certain category in light of the class
of its closest output node(the max. value correspondingly, namely, th
e similar point with max. value).The predicting is totally in conf 1._
ty with the actual result(See Table 2).
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From Table 2. we can see that except for one sample. the grade ofother
samples aare completely consisten; with thaz of t'nepavan'ife n:,g fie

tory. So, the neural network approach is also asefuin differenziati-g f
ake wines.

IV. Conclusion

Because of its superior classifying and recognizing ability, the
AN approach is suitable to solve nonlinear multi-factor and multi-
target pattern recognition problems, such as tHe grading of beer
quality. Compared with ordinary multi-factor discrimination methods,
this approach has the following advantages:

1. Stronger fault-tolerant ability,

Because any information which the model obtains is distributed ove
r the whole network, the error of individual input signal of the sample t
urns large, no fault will be given rise to, namely, the neural networkcan
associate a complete and clear picture stored in the memory even with an
incomplete or ambiguous signal.

In this research, for example, 0.1 is added to the second inp:it si
agal of each unkown sample. And prediction is given to the samples thus o
btained by trained network. Comparison between the original and latter pr
ediction results is shown in Table 3.

Table 3. Influence on the Performance of the
Network by the Increasing of Error

of Individual Input Signal

Position of Predicted Position of Predicted
the Closest Grade(l; the Closest Grade
Output Node(l) Output Node

2 1 2 1
2 1 2 1
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0 2 0 2

(i): Constructed Smples.

2. Grading speed

Because only some simple addition and mutti-licatioi are needad in
the recognition of 'unknown' samples in trained neu;ral network. ;o th,
recognition speed is very high.

If we prodfuce a particular hardware or make use of parallel
processors, the speed will be further higher.

So, it may be expected that with the further development of the
artificial neural network theory, it will pave a new way for the
grading of beer quality.
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Abstract

More and more attention has been paid to the HNN algorithm since it [1)

was used by Hopfield and Tank to solve TSP in 1985. However, the algorithm

can only solve the pure 0-1 linear programs with equality constraints and many

tests [21 showed that it is unreliable. In this paper we propose a two-step method,

whose core is HNN-type algorithm. The method can solve all the pure 0-I

linear programs with inequality constraints and is guaranteed to obtain their
"or-optimal" solutions. Finally, one. example is given out.

Key words: neural network, the pure 0-1 linear program, or-optimal solution,

simplex algorithm

1. Introduction

There have been several methods to solve the pure 0-1 linear programs,

such as implicit enumeration method, dynamic programming method and etc..
But when the number of 0-1 variables increases, the computation quantity in-

creases very fast, sometimes by exponential speed. So people would rather persue

the "or-optimal" solutions than the optimal ones when the number of 0-1 vari-

ables is very large in many practical situations.

Hopfield and Tank [11 proposed to solve TSP using a neural network

algorithm (called HNN algorithm for short) in 1985, which has been received

more and more attention from people. However, the algorithm can only solve the

pure 0-1 linear programs with equality constraints and many tests [2] showed

that it is unreliable. In the paper we propose a two-step method which may be

used to solve all the pure 0-1 linear programs with inequality constraints and is

always reliable. At the end of the paper, one example is given out.
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2. Introduce of the two-step method

The pure 0-1 linear program with inequality constraints may be depicted in

following form:

min c (2-1)

s.t. AX>.b, XE{0,1}"
where

C= (C, c",.", c")T, A

b (b1 , b 2,'**, b M)T

To solve (2-1) using the two-step method, the program must be modified as

(2-2) by penalty method at first:

min E(1)---C TX(t) + AF A TX(t) - b
{mi (2-2)

s.t. X(t)6{0, 1}"

where A is a large positive number, A J= (a,,, a,,, so&, a.,) T

0, if z >O
F(z) 1! 2 (2-3)

2' else
The added tag t denotates iteration step, so E(t), X(t) are respectively the val-

ue of E and X after the tth iteration step.
It's obvious that (2-2) is equivalent with (2-1) when A is large enough.

In order to guarantee that the two-step method can always converge, add a

term to E(t) as (2-4):

{min E(t)=C X(t)+A2F A(X(t)-bj +(x(t)(e4)

s.t. X(t) f{0, 1 }"

The matrix e is a vector in R", all elements of e are 1. Assumpting the diagonal
AT*

elements of the matrix A are a a,,, a a 22 , ..e, a ann

a'a H 0

U Aa 22  (2-5)

0 Aa'aM

When x, =0 or I for all i, the added term I XT U(e - X) gets the minimum
2

value, zero. So (2-2) and (2-4) has the same global minimum point.
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(2-4) may be solved through the following iteration (This paper merely in-
troduces an asynchronous iteration that only one variable may change every step,
assumpting that the variable x , may change at the tth step.):

1 2 J)1(2-6)

IxJ( + l) = x1J) ji i

where U, - (un, u, **., uO),

Az)=dF(z) 0, if z>0 (2-7)

dz z, else

sgn(z) = {"' if z>O (2-8)
0, else

When X don't change, that is, X(t + 1) = X(t), the iteration (2-6) has con-
verged and must be stopped. It will be proved that the iteration (2-6) converges
certainly if (2-1) has a limited minimum objective value in the next section.

Unfortunately, the problem (2-4) is not completely equivalent with the orig-

inal problem (2-1). The function XU(e-X) is a concave function, soinaIpolem(-) h ucin-XUe-X sacnaefntos E in
2

(2-4) may not be a convex function and has a number of minimum points,
among which only the global one is the minimum point of (2-1). It is all possible
that the iteration (2-6) falls into any one of the local minimum points of E in
(2-4) and stops. In order to get the minimum value of (2-1) at the greatest possi-
bility, we propose a two-step method:

Firstly, to solve the following problem using simplex algorithm for linear
programs with bounded variables:

min C T X

SA. AX >, b (2-9)I0 < <1, i=l, ... , n

where A, b, C are similar with them in (2-1).
Assumpting that the solution obtai- cd by the first step is X', it's obvious

that 0 <x,<11i= ..- , n.

Secondly, to solve the problem (2-4) through the iteration (2-6), selecting
.V as initial point. The iteration (2-6) is likely to take very little steps to fall into
the minimum point of(2-1) because the initial point X' nears it.

In a word, the two-step method can always obtain the "or-optimal" solu-
tions of the pure 0-1 linear programs with inequality constraints.

3. Proof of convergence of the iteration (2-6)
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From (2-6) we know that at the tith step,

Axj(t) = x](t + 1) - xPt) = 0 for all j# i (3-1)

By (2-4),

AE(t) E(t + 1) - E(t)

SCr TAX(t)+ j[ F( A T X(t + 1) -b 1 ) -F( A r(t) b,)]J
i-I

+ e UAX(t) - X T (t)UAX(t) - X (t)UAX(t)

=(Cr+ erU-XrU)Ax(t)

lows in terms of (2-3), (2-7) and (3-I):

+aAx,(t) A TX(t) -b-b+)a]_x 1 (t)

© AiX(t)-b O, ATU X(t+l)-bx,<0:

+A F TA +1)- 1 ) -F Aj -X(t) -b t)-b)_ U11&2(t (3)

T - A T X(t + 1)b- b,) -F( A•TX(t)h ds)

(D '(A) -b 10)+A TX(t)l)-b 1 ) >O:~'~)- 1

=AT0aX~) Axt AXQ - b~t - b X tAA T X
j 4 1 1)
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F( A TX(t + 1) -b,) - F( A X(t) -b,)

a 2 AX 2 (t)+2a A,(AxiAX(t)-b,) + (AX(t)-b j)

a (,Ax,(t)+ ATX(t) - b,)> 0o,

so

2 222TT

=a,,Ax ,(t)+2a,,Ax,(t)J1\,X J)-)(34

By (3-2) and (3-4),

FA TXt+ 1) -b,) - F( A T X(I) -b,)

®) AjT X(t) -b>, ~0, A T X(r+ 1)-b, <O:

-( A T X(t +1-b)-b,(-A T(t b,)t+)-b,

T T 2 _ T

A TX(t+ 1)-b, =A TX(t)-b +A TAX(t)

so

Furthermore,,

(aii)2 ( AIX(t±I)-b J) 2  (3-6)

By (3-5) and (3-6),
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2(a1AXa) 2 Xa 2 A(1)+ a. Ax ,(t AT X(t)--bJ

By conlusion, the following inequality always holds:

< as2Ax (t) + a Ax,(t A i X(t)- bJ (3-7)
2 J1' I J1 J /J

By (3-2) and (3-7),
AEt) C+ r UiXTU)Ax,(t)AE(t)--(c, +•er UX~

2

+Ai[F(A TX(t + l)-bj)--F(A"X(t)-b,)] -- u,,Ax2(t)

2 T T(AX(t) -b J)]Ax, (t)ci+-e U,-X U,+AiI J-
+ [ (a 2 1 U.]Ax2(t) (3-8)

From (2-5), we know u11 =E (ad) 2  (3-9)
J-I

o if x1 (t) = x,(t + 1)

Ax~t) =ý I if xi(t) = O, x (t + 1)=

-I if x,(t)= 1, xI(t+ 1)-0

whereas

x,(+ 1)=sgn -(,-Ie UI +X TU -AaJ(AJX()-b (2-6)

so

(c 1T Uc " U• , U U, +Ai~aAAjX()--bj) )1x,1() (3-10)

By (3-8), (3-9) and (3-10), AE(t) < 0.

If the original (2-1) has a limited minimum objective value, E(t) must have

a low bownd, so the iteration (2-6) convergences certainly.

4. One example

min crTx 1 (4- 1)

SAt. AX>,b, Xc-f0, i16

where
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 I 0 0 0 1 0 0 0 1

-- ! -- 1 -- 1 0 0 0 0 0 0 0 0 0 0 0 0A=f
0 0 0 0 -- 1 - -1 -- 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -I - -I -1 10 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1-1 -1 -1

-- 1 0 0 0 -- 1 0 0 0 -- 1 0 0 0 -1 0 0 0

0 -- 1 0 0 0 -- 1 0 0 0 -- 1 0 0 0 -- 1 0 0

0 0 -- 1 0 0 0 -- 1 0 0 0 -- 1 0 0 0 -- 1 0

0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -- I

C- (2, 15, 13, 4, 10, 4, 14, 15, 9, 14, 16, 13, 7, 8, 11, 9) r

The first step solves out that the value of X' is (0.00, 0.00, 0.02, 0.98,

0.00, 0.99, 0.01, 0.00, 0.00, 0.01, 0.97, 0.02, 0.00, 0.00, 0.00, 0.00)

The second step firstly modifies (4-1) as follow:

min E=C X+± F(A,.X-b )+-X U(e-X)
J (4 -- 2)

xe{0, i1}
where .= 200, A, b, C are similar with them in (4-1), then solves (4-2)

through the iteration (2-6). If selecting X' as initial point, the final solution is

(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) T, which coresponds

to the global minimum objective value, 24 of (4-1). When selecting (0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) T or (1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1) T as initial point, both the obtained solutions are

(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0) T, which is one local

minimum solution of (4-2) and one feasible solution of (4-1), but not the mini-
mum solution of (4-1).

5. Conclusion
The paper proposes a two-step method which may be used to solve all the

pure 0-1 linear programs with inequality constraints. The core of the method is

the HNN algorithm. The method can always get the "or-optimal" solutions of

the pure 0-1 linear programs with inequality constraints.
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ABSTRACT

In this paper, it is shown how complex mathematical models can be replaced by artificial
neural networks to determine the superposition model parameters of many ON-OFF sources
of ATM traffic. The model is adjusted using multilayer perceptrons (MLPs) with a
backpropagation learning. The architecture proposed allows to obtain the superposition
parameters of any Markov chain models with any number of states, just changing its
dimension.

INTRODUCTION

The broadband integrated services digital network (B-ISDN) seems to be the most suitable
architecture for supporting multimedia (data, voice and video) applications in
telecommunications. The transfer technique proposed for its implementation is the
asynchronous transfer mode (ATM) due to its efficiency and flexibility. The ATM networks
have to support a wide variety of services, each with different characteristics such as:
interactive or distributed, broadband or narrowband, constant or variable traffic, etc. In
addition, each service requires a different quality of service (QOS) [1].

To analyze and develop ATM networks, mathematical models are used to simulate the traffic
sources. These models try to imitate the system with maximum accuracy and avoiding
arduous computation times. Usually, the models used are Markov chains where the process
rate depends on the state. The process is a Poisson or determinist distribution, and the time
in each state follows an exponential distribution.

An easy way to model an ATM traffic source is via a simple ON-OFF model, which is a
renewal process with an exponentially distributed duration between states. Therefore, the
simulation of ATM network traffic may be realized with the superposition of many different
ON-OFF models. However, the mathematical models that resolve this superposition are not
so simple. The superposition of ATM sources can be modeled just like an equivalent ON-
OFF process [2]. This model has poor accuracy, but presents a simple computational
solution. A model widely used is the Markov modulated Poisson process (MMPP) [3]; this
is a double stochastic Poisson process, consisting of a continuous time Markov chain with
two states.This model is accurate enough, but its solution takes much computational time.

Lately there is a great interest in the application of artificial neural networks (ANNs) in the
telecommunication world [4,5], assuming they may have some advantages over traditional
methods: a) knowing acquisition through observation of real systems (adaptive learning) and
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identification of nonlinear complex functions; b) high velocity of computation due to the
massive parallelism of the ANNs hardware implementation; computation time is independent
of the ANN dimension and of the number of control variables; c) generalization capacity,
i.e., ANNs may learn with just a subset of training patterns; d) ANN is fault tolerant
because of its distributed process.

In this paper we show how complex mathematical models can be replaced by artificial neural
networks to determine the superposition model parameters of many sources of ATM traffic.
In addition, our system can determine the main parameters of any unknown superposition of
ATM traffic, and model it. These parameters will depend on the number of connected
sources of each class. The model is adjusted using multilayer perceptrons with a
backpropagation learning [6].

SYSTEM DESCRIPTION

The most simple model to simulate the traffic of an ATM network is an ON-OFF process.
This model is a two-state Markov chain, with an active state (ON) where ATM cells arrive
with a constant rate, and a silent state (OFF). The time in each state is exponentially
distributed. The model is characterized by three parameters: the rate of arriving cells in the
ON state, R, the mean sojourn time in the ON state, a, and the mean sojourn time in the
OFF state, b. Therefore, ATM network traffic can be defined through the vector k= (R,a,b).
The traffic statistical characteristics of this model must be equal to those of the real traffic.

The system is composed of four modules (see figure 1). The S module is an ATM Network

Figure 1. Block diagram of the system.
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link, which for this purpose, has been simulated. From this module, in function of the
connected sources in a given instant, we can find out a set of traffic statistic parameters of
the ATM network[3], defined by the vector elS= (miS, v/ 5 ,vSf), with:

m s = E[N(t)]
t

vS]= var [N(t)] IE(N(t)] I (1)

V2 (s =var [N(t)] 0E(N(t) ]]-

where N(t) is the number of arriving cells along the time, m is the mean arrival rate over a
long time, and v, and v2 are the variance-to-mean ratios of the number of arrivals in t=1/m
and t--oo, respectively.

The C module is the Network Controller, which estimates the parameters of the model in
function of the number of connected sources of each class at its input; this module calculates
the vector k=F(n, W), being the vector n= (n1,...,ni,...,n•) where ni is the number of sources
of the class i (i= 1,2,..., N), and W the weights matrix of the multilayer perceptron.
Unfortunately, we do not know the components of the vector k, and so it is not possible to
perform the learning phase of the Network Controller module. To overcome this difficulty,
we introduce two new modules (K and E).

The K module calculates the statistic parameters of an ON-OFF model, defined by the vector
pM =(nr,v,'1 ,vr'). For an OFF-ON model, the estimated values of these statistic
parameters in function of the model parameters (R, a, b) are [7]:

M Im= Ra
a+b

vl- 2R 2 (ab))2  -a-(exp (-j- (2)
(a+b)3 [t+ -a (b cab

v2pt- 2Rab
2

(a+b)
2

The E module is the Network Emulator, which is another MLP and calculates the statistic
parameters of the ON-OFF model, defined through the vector k, i.e., this module gives at
its output the vector pel = (mI', vi', v2,EJ), with the same statistic parameters as the real
system (S module). The Network Emulator will learn to identify the K module, estimating
a vector pel=G(k, V), being V the weights matrix of the Network Emulator module. This
module adjusts its weights to minimize the error el= 'i(prm-A p(-l)', using the
gradient:

-. -_(p _

v - - av

The Network Emulator is necessary to backpropagate the error to the Network Controller
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[8,9]. This module must minimize the error jcI.= %(P$sp' )(P#sIP17)r , by means of the
gradient:

a _0lt13 ) a _( tinp =J) ap,

where .p!K/aw is replaced by aell/aw as e tends asymptotically to pM7 . When the learning
process finishes, the Network Controller will calculate the vector k, in function of the
number of traffic sources (vector n); this vector will identify an ON-OFF model that will
have similar characteristics than the real traffic of the ATM network.

SIMULATION AND NUMERICAL RESULTS

For simulation purposes we have used the neural network development system Nworks, by
NeuralWare Inc. The ATM Network was simulated with C-language software; we have
assumed that the transfer rate at the output link is 150 Mbit/s, and the cell length is 53 byte
(424 bit). The service time for each cell (slot) is 2.83x10's (424 bit/150 Mbit/s). For the sake
of simplicity, only two classes of sources were selected, each modeled via an ON-OFF
process, whose characteristics are shown in Table I.

We have obtained 50 training patterns introducing 50 different n vectors into the ATM
Network, and measuring at its output the corresponding l vector. The n vectors are random
combinations of n, class 1 sources and n2 class 2 sources, with n,={0,1,...,75} and
n2 =-0,1,...,25}. The Network Controller has 2, 15 and 3 neurons in its input, hidden and
output layers, respectively, therefore, its dimension is (2,15,3). The dimension for the
Network Emulator is (3,15,3). Using the error propagation shown above, both MLPs
converge in less than 100.000 iterations. After the learning phase, the mean quadratic errors
for the Controller and Emulator Networks are 3.8xl03 and 1.8x l0-, respectively. The MLPs
outputs have been normalized between 0 and 1. The backpropagation learning algorithm of
both MLPs uses a learning rate of 0.1, and a momentum of 0.075.

Once the learning phase is finished, the system is tested with 9 new patterns, obtained as a
set of combinations of sources n, and n,. Table II shows the parameters of the calculated
model by the Network Controller (vector k) for a combination set of sources n, and n%.
Tables III, IV and V, compare the estimated and simulated statistic parameters ot our system
with the new 9 patterns. These results are good enough since the starting ON-OFF model is
rather simple. More complex models, for instance the MMPP model, should give better
results.

CONCLUSIONS

We have achieved through MLPs a procedure that calculates the model parameters for the
superposition of ON-OFF ATM traffic sources, in function of the number of connections of
each class. With this procedure we obtain the parameters of a simple model, which simulates
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some statistic characteristics, previously selected, of the traffic of the ATM network. Since
the simplicity of the selected model, to get more accuracy certainly needs to increase the
number of statistic parameters. In fact, our architecture allows to obtain the superposition
parameters of Markov chain model with any number of states, just changing
its dimension.
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CHARACTERISTICS CLASS 1 CLASS 2

R 0.01333 cellsslsot 0.06666 cells/slot

a 884 slots 177 slots

b 884 slots 708 slots

Table I. Characteristics of the traffic sources

ni/n2 R a(slots) b(slots) nl/n, _tn_ MIS] ________

25/20 0,3502 32,358 35.286 25/20 0,1664 0,1675 0,0000

16/5 0,3628 51,301 54,954 16/5 0,1731 0,1751 0,0000

15/23 0,7836 35,103 31,929 15/23 0,4056 0,4100 0,0000

3/18 0,5145 53,137 53,412 3/18 0,2590 0,2566 0,0000

6/21 0,6247 44,995 43,102 6/21 0,3194 0,3190 0,0000

6/6 0,2285 112,684 104,818 6/6 0,1196 0,1183 0,0000

0/4 0,1126 205,208 257,353 0/4 0,0599 0,0499 0,0001

47/11 0,9355 18,056 18,214 47/11 0,4593 0,4657 0,0000

52/0 0,7343 14,932 16,84 52/0 0,3463 0,3451 0,0000

Table II. Parameters of the model Table m. Estimated and simulated m

ni/n2  vM vIS3 -, nl/n1 v2U v2)31

25/20 0,9676 0,9725 0,0000 25/20 6,3035 6,1673 0,0186

16/5 0,9839 0,9981 0,0002 16/5 9,7365 9,9564 0,0484

15/23 0,8135 0,8669 0,0029 15/23 12,285 12,483 0,0392

3/18 0,9905 0,9578 0,0011 3/18 13,666 13,741 0,0056

6/21 0,9393 0,9140 0,0006 6/21 14,028 13,458 0,3249

6/6 0,8938 0,8837 0,0001 6/6 12,067 11,960 0,0114

0/4 1,1845 1,1839 0,0000 0/4 14,280 14,314 0,0012

47/11 0,8866 0,9336 0,0022 47/11 8,5015 8,5100 0,0001

52/0 1,0094 1,0018 0,0001 52/0 5,9940 6,1611 0,0279

Table IV. Estimated and simulated v, Table V. Estimated and simulated v2
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DEVELOPMENT OF A NEOCOGNITRON SIMULATOR FOR GROUP TECHNOLOGY

Fuat Kulak and Luis Carlos Rabelo
Department of Industrial and Systems Engineering

Ohio University
Athens, Ohio 45701

ABSTRACT

The neocognitron, a neural network paradigm, is selected by comparisons with other neural networks
families due to its characteristics of recognizing patterns without being affected by the shifts in the position and
distortions for a group technology (GT) implementation. Two-dimensional Computer Aided Design(CAD)
representations are input to a neocognitron neural network to produce groups of similar parts. This system
demonstrates the feasibility of training a neocognitron neural network to develop templates, and then to recall a
family of similar parts (based on the templates).

1. INTRODUCTION

A part family is a collection of parts that are similar in geometry and size, or in the processing steps that
are required in their manufacture. The identification of part families forms a major prerequisite for the
implementation of group technology (GI). The objective of GT, as a total manufacturing philosophy, is to exploit
these similarities and achieve economies in the entire manufacturing cycle [1,12,131. A wide range of benefits are
made possible, which include design rationalization and variety reduction in the engineering design stage, setup
times, lead times, labor needs, and work-in-process inventory in the shop floor.

The visual examination involved in part geometry-based classification is similar to the process involved
in pattern recognition, character recognition and image processing. Due to this fact, several studies have been
carried in the possible use of neural networks to accomplish GT [23]. In this paper, a neocognitron
implementation for GT is studied. Neocognitron has the capability of scale, rotation-invariant recognition of parts.
Neocognitron also acquire the ability to handle large amount of deformation on the patterns. These are essential
elements to develop an effective GT implementation driven by computer-aided design (CAD).

2. DESCRIPTION OF THE NETWORK

The neocognitron is an example of a hierarchical neural network in which there are many layers with a
very sparse and localized pattern of connectivity between layers [4,5,6,7,8,9.1011].

U54 kU

b

Cc(v) 
bbty

rxed inhuboWaoy e

(a) (b)

Figure 1. Connections toa S-cell (Adapted from 110,111)
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The first layer of the network is the input layer called Uo (see Figure 1). Uo consist of a two-dimensional
array of receptor cells. The layers of S-cells (i.e., simple cells) and C-cells (complex cells) at the I th stage are
denoted by Usi and Ucl. The notation Usl(nk), for example, is used to denote the output of an S-cell in layer Usl,
where n is a two dimensional coordinates (x,y) indicating the position of the cell's receptive field center in the
input layer Uo, and k is the serial number of the cell-plane. (1< k < KI).

The output of an S-cell is:

1+ 1 Xa,(u,K,k)XUc, (n+u,K) T(X]=X, IFX>0
Usa(n,k) I x q)[ k=1 "eA, -1] [X]=0, IFX 0

1+ xb, (k)×U. p[X]-O, IxX (,

al (v+ K, k) is the strength of the variable excitatory connection coming from C-cell Ucl-l(n+vK) of the
preceding stage. al denotes the summation range of v, that is the size of the spatial spread of the input
connections to one S-cell. bl (k) is the strength of the variable inhibitory connection coming from subsidiary V-
cell Uvl(n). All the S-cells in a S-cell plane have identical sets of input connections. Hence, equation do not
contain argument n representing the position of the receptive field of the cell Usl. The positive constant 1
determines the efficiency of the inhibitory input to this cell.

The output of an subsidiary V-cell:

Uui~~~n)= lea C,( 0)×XUd_,(n+ ,)

/K=l UA,
where ci and is a monotically decreasing function of Ilvil

I' EC,_,(n)=1

The output of a C-cell inserted in the network to allow for positional errors, is:

Ud(n,k) = T[ Xd,(M)xU,(n+u,k) ]
v e D

Parameter dl(v) denotes the strength of the fixed excitatory connections, and is monotically decreasing function of
Ilvil. Dl is the area to which these connections spread. [jxj is a function specifying the characteristics of
saturation of the C-cell, and is defined by

Vx] = t[x]l+q,[x]

During learning, the variable connections al(v, k, K) and bl(k) are reinforced depending upon the intensity of the
input to the seed cell. Let Usl(nk) be selected as a seed cell at a certain time. The variable connections al(vk,K)
and bl(k) to this seed cell, and consequently to all the S-cells in the same cell plane as the seed cell, are reinforced
by the following amounts:
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Aa,(u,K,k) = q,xc,(u)xUd_,(n+u,K)

Ab,(k) = q, xU,(n)
Where q is a positive constant determining the speed of reinforcement.

3. GT Application

The objective was to develop a classification system that places the parts into groups based upon the
observable similarities in the part design. When these types of similarities exist, it is very obvious that similar
production operations and plans are used to produce the parts. This basic similarity fact is based purely upon a
visual judgment of the commonalties. The neocognitron is intended to detect these similarities and classify them
into correct part families.

A simulator was written in the C programming language on a SUN \Sparc workstation (see Figure 2).
Five part families were created in an INTERGRAPH workstation. These part families are shown in Figure 3.
Then, pixel representations of the part drawings were generated. Bitmaps of the drawings were then utilized as
the inputs to the neocognitron. Then, the hierarchy of the network would be as followed layer by layer
16x16 Uo, 13xl3x1O UsI,
12x12x10 Ucl, 9x9x10 Us2,
8x8x1O Uc2, 5x5xlO Us3,
4x4x10 Uc3, 2x2x10 Us4
lxlx5 Uc4.
Receptive fields for simple cells are 3x3, and for the complex layers are 2x2 for this specific simulator.

. chi 5 Part Familie,ý

g>.. S•I 0 - Family 1

- 0 - Family 2
Fai0 - Family 3

0 - Family4S"/ ••0 - Family 5

Figure 2. Schematic of the system

For both training and testing, only one geometric view of parts were used. This could be any geometric
view. The network could also be trained with six possible views of parts. Indeed, this should be the way in
practical life. Because, this method does not require any part orientation before classification. This means that
parts can be traveling on a conveyor or any material handling device at any position. Hypotethically, the
neocognitron will give different responses for each different view. Then by using other supervised classifier these
six views could be combined into one part family.

The network was trained layer by layer with the repeated presentations of five training patterns. Each
layer was trained sequentially (i.e., with the completion of training of the preceding layer). Details of the training
iterations process are given below:

1-537



Layer No. Number of Training Pattern Presentations

Layer 1 8 times
Layer 2: 4 times
Layer 3: 13 times
Layer 4: 8 times

At the end of training, one C-cell in the final C-layer (4) was fired.

!- t

Figure 3.. Training Patterns
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Different parts were developed to test the trained network (see Figure 4). These patterns were coded the

same way as those used for training. Parameters and network structure were kept the same. The performance of

the network on these testing patterns was 100% correct. Each testing pattern from the same part family activated

the same C-cell at the final layer.

/TI I M I
I,-,

oC (ji, Z

t ~II LL= I

Figure 4. Samples of Testing Patterns
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CONCLUSION AND ONGOING RESEARCH ISSUES

In this research, a neocognitron with only feed forward connections was built. A variation with backward
connections could provide a more flexible structure. Another important point is that all the engineering design
parts for this experiment were encoded for one certain view and tested with the same view. The development of a
system that could be trained from six possible views of the same part which forms a part family is under
construction. However, for future developments, it is very important to determine the capabilities of the
neocognitron when more group families are needed (e.g., 1000 - the literature available does not describe
neocognitron-based systems that could handle a great number of categories.)
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A neural network approach to the problem of estimating physical properties of

a material based on the material's chemical composition is presented. The net-

work, a multilayer perceptron, consists of sigmoidal hidden units and a linear

output unit arranged in a feedforward architecture. As a component of a pro-

cess optimization system which is applied in production processes with a priori

unknown and eventually drifting characteristics, fast on-line adaptation of the

network is performed. A first application has been the estimation of the "rel-

ative yield stress" of different steel qualities, which is necessary for optimizing

the rolling process at a hot line rolling mill. On an independent test data set the

neural network approach achieved a reduction of the average estimation error of

about 15% compared to the current state-of-the-art method.

1. Introduction

Process optimization requires knowledge about the relevant properties of the processed mate-

rial. Depending on the material transformation process to be controlled, physical properties

of the material like its heat capacity, its viscosity, its heat conductivity, or its hardness (just

to mention a few) determine the optimal choice for the control parameter values. In most

cases, however, the respective material property cannot be measured directly but must be

estimated based on the thermodynamic state of the material, i.e., its chemical composition,

its temperature, the given pressure, and eventually geometric quantities. The quality of the

estimation result determines to a great extent the cost effectiveness and the product quality

of the production process.

To be able to estimate material properties based on the thermodynamic state variables,

the respective physical relationship has to be known. A common approach is to try to
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describe this relationship through physical models. However, in most cases the underlying
physics is too intricate and/or not understood sufficiently to allow the design of feasible
physical models which yield satisfying estimation results. In addition, the development
of physical models is time consuming, requires precise knowledge about the usually very
complex physical processes, and each model is specific for each material and each material
transformation process.

To increase cost effectiveness and product quality also of intricate material transformation
processes, an approach is necessary which learns the underlying physical relationship instead
of modeling it based on specific prior knowledge. In addition, it would be highly desirable
to have an approach which is generic and can 'he applied to a variety of materials and
transformation processes. In the following we demonstrate that neural networks as adaptive
modeling schemes have the desired capabilities. We describe the application of a neural
network to the problem of estimating the relative yield stress (plasticity) of steel plates
based on the steel plates' chemical composition, temperature, and shape. Knowledge about
the relative yield stress is necessary for optimizing rolling processes, in our case the rolling
of steel at a hot line rolling mill.

2. The Neural Network Architecture

The neural network has to model the relation

a = F(C, Si, Mn, P, S, Al, N, Cu, Cr, Ni, Sn, V, Mo, Ti, Nb, B, d, b, Ti, T1 )

between the relative yield stress a of the steel plate and the concentrations of the sixteen
chemical additives C, Si, ... , B, the steel plate's thickness d and its width b. Ti and Tf
denote the temperature of the steel plate before and after the rolling, respectively. These
two temperatures serve as a measure for the actual rolling temperature T, which cannot
be determined explicitly. The concentration of the sixteen chemical additives C, Si,..., B is
obtained from a material analysis during the steel cooking.

Figure 1 shows the neural network architecture, a three-layer feedforward network con-
sisting of ten sigrnoidal hidden units and one linear output unit. Each hidden unit receives
the same twenty-dimensional input vector x = (C, Si, ... , Nb, B, d, b, Ti, Tf). The weights of
the hidden units i, i =1,..., 10, are denoted by wi = (wil,...,wi2o), and the weights of the
linear output unit are denoted by w = (wl, ... ,w 10 ). The thresholds of the hidden units and
the output unit are denoted by Oj and 0, respectively. Hence, when the network receives
the input x which carries the information about the steel plate to be rolled, the network
generates the output

10 20
Arw(x) =w- + Z ,EwijX, - O

i=l
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C N Figure 1: The architecture of the
neural network. The network re-

Si ceives 20 inputs and consists of 10
S Wi sigmoidal hidden units plus one lin-

Mn N(x) ear output unit.

TI >

as an estimation for the relative yield stress of the steel plate, with o,(.) = 1/(exp(-.) + 1)

forming the sigmoidal output of the hidden units. The index W denotes the dependence

of the network output Arw(x) on the set W = (wi, 0i, w, 0) of all network weights and
thresholds.

The estimation error of the network has to be minimized by adapting the network weights

W = (wi, Oi, w, 0). This is achieved through pattern-by-pattern training, i.e., with each

pattern 1L through gradient descent on the square error

E(W) = (a•' -AW(xp'))2.

x/I comprises the chemical composition, thickness, width, and temperature of the p-th steel

plate, the actual relative yield stress of which was aP. With each new data pairs (XI, aA) the

network weights are adjusted through gradient descent on E(W), which yields, by calculating

OE(W) (1)AW = -n W

the backpropagation learning rules [1, 21.

3. The Performance

For testing the performance of the neural network approach and comparing it with the

current state-of-the art method, 38442 measured data pairs (x", a") from a rolling mill were

made available by the steel manufacturer. The data pairs were ordered chronologically,

corresponding to the order the steel plates were rolled. The first 10000 data pairs formed

the training set which was used for a preadaptation of the network. The following 28442

data pairs were used for on-line testing and training.
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39.57% 33E70% 14.9%

Table 1: The relative RMS error of the neural network and the current method.

The on-line performance of the network was tested by sequentially presenting data pairs
(xA, all) from the test set, in the same chronological order as the steel plates were rolled.
With each steel plate the estimation error of the neural network and the current-state-of-the-
art method, respectively, was recorded, and an adaptation step of the network weights was

performed. Then the next data pair was presented, etc.. After 28442 data pair. the average
estimation error of the neural network and the current-state-of-the-art method on these
28442 steel plates was calculated. The test was performed in the laboratory, however, the
result is equivalent to the average estimation error the neural network would have achieved
if it had really been applied at the rolling mill.

The achieved estimation performance is shown in Table 1. (E~t) denotes the root mean
square (RMS) estimation error of the neural network on the data of the test set, relative to
the standard deviation of the test data. (E,,.) denotes the relative RMS estimation error of
the current state-of-the-art method on the test set, and A is the achieved improvement. The
neural network approach achieves an imnrovement of 14.9% over the current state-of-the-art

method.

4. Discussion

The results obtained with the straight-forwtrd neural network approach are very promising.
In the application described, the estimation of the relative yield stress of steel, the im-
provement of the estimation quality is so significant that the neural network approach will

replace the current method and soon be a component of a commercially available process

optimization system for rolling mills.

There are a couple of reasons for the favorable results with the neural network approach.
The main reason is the on-line adaptation of the network. The network weights are per-
manently adjusted to the changing characteristics of the rolling mill and the drifts of the
measuring devices for the chemical composition, thickness, width and temperature of the

steel plate. Particularly the calibration of the measuring devices is not very reliable because
of the very hazardous environment at a hot line rolling mill. The presented approach based
on a neural network is able to compensate for these drifts due to its adaptability.

References
[11 Werbos P (1974) "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences." Ph.D. thesis, Harvard Univ. Committee on Applied Mathematics.

12) Rumelhart DE, Hinton GE, Williams RJ (1986) "Learning Representations by Back-Propagating
Errors." Nature, 323:533-536.

1-544



Electricity Demand Prediction Using Discrete-Time
Fully Recurrent Neural Networks

Santiago Rementeria, Josu Oyanguren and Gurutze Marijudn
LABEIN Research Centre
Parque Tecnol6gico 101
48016 Zamudio, Spain

Abstract: Despite their more complex dynamics and the computational cost demanded to train
them, recurrent networks are potentially better suited than traditional feedforward layered
perceptrons for time-series prediction problems. In this paper we present some results obtained in
power demand forecasting using such architectures. It is also shown how vector implementations
on supercomputers may help to improve the experimental design of artificial neural networks.

I. INTRODUCTION

There are lots of natural and artificial processes in which observations are collected sequentially in
time. Predicting the values that such observations will take in the future is an important problem
in areas like production planning, marketing, quality control, stock management and matereology.
By the very nature of prediction, with all the risks involved in extrapolating concrete assumptions
to the future, no single method is infallible for all types of problems. Nonetheless, neural
networks have been shown to be a robust alternative to already existing forecasting methods in
applications like electric load forecasting. On the other hand, vector and parallel supercomputers
offer the storage size and speed required to get maximum performance in numeric applications
like neural network training and operation. Supercomputing lends itself naturally to neural
network research because most of the operations involved in the simulation of such devices are
vector and matrix-oriented. Such powerful machines can exploit the fine-grained parallelism
inherent in neural architectures speeding up their computationally costly training process.

This paper shows the results obtained in a series of experiments aimed at testing the usefulness of
fully interconnected feedback neural networks in an industrial demand forecasting application. It
also provides an example of the way supercomputers can help in the development of
computationally intensive simulations of artificial neural systems. In the following section we will
introduce fully recurrent neural networks. Section III focuses on the electric load forecasting
problem, describing the experiments carried out and the results obtained. Section IV explains how
the original implementation was ported to a CONVEX computer and section V2orffne concludes
the paper by bringing out a few summary ideas.

I1. STATE NOTION THROUGH RECURRENCE

In our research we tested feedforward and fully recurrent networks. Feedback or recurrent
networks, unlike the formers, contain inter and intralayer feedback loops. In particular, each unit
in a fully recurrent network is connected with all the other units -including itself-, and so the
network loses its layer structure. A crucial difference between multilayer perceptrons (the
feedforward paradigm tested) and recurrent networks is that the latters are characterized by
dynamic node behavior. In contrast to other neural paradigms with dynamic node equations, like
Hopfield networks, recurrent networks have learnable weights. Feedback connections allow the
units in a recurrent network to process information about past states of the system i.e. they
provide a certain memory capability. Previous systematic experimental research has shown that
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the good performance of such networks in time-series forecasting applications stems from the
notion of context incorporated in them [111. Figure 1 shows one fully recurrent architecture with
two input units and three fully recurrent ones, including one external, observable output.

@0@
I I

Figure 1. An example of a fully recurrent network

In this paper we will focus on the discrete-time approximation [131 to the continuous-time network
described, for example, in [101.

I!!. ELECTRICITY DEMAND FORECASTING

We chose electric energy consumption forecasting as a practical problem to test the potential of
recurrent neural networks. Predicting tomorrow's load as accurately as possible is a task
performed daily by engineers in power generating and distributing companies worldwide. Such
short-term forecasts play an important role for a reliable, safe and economic operation of power
systems. However, electricity consumption is highly unpredictable as it is influenced by factors
like the hour of the day, the weather and random disturbances whose effect on the load is
uncertain. Artificial neural networks are an alternative to conventional statistical techniques like
regression, exponential smoothing or time-series modelling that are normally used in this task [51.
Most experiments described in the literature are based on the multilayer perceptron. There are
very few references proposing partial recurrent networks 18,91 and we have found a single one
considering full recurrence [3]. In contrast to the approach proposed there, we used a single
network to forecast hourly loads for all days of the year.

3.1 Experimental setting

Before starting the experimentation stage the set of available load data was divided in two sets.
The training set consisted of total hourly load information in Northern Spain between 1987 and
1990 (35,064 examples), whilst the hourly consumptions during 1991 constituted the test set
(8,760 cases).

Two different series of experiments were carried out. Experimentation began assuming a one hour
ahead prediction problem. This means trying to predict the consumption of the following hour
having hourly information of past consumption values. Additional information like past
temperatures or the day of the week was also used in later experiments. Although the most useful
short-term forecasts are the ones done the day before, the predictions done with a lead time of one
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hour constitute a best-case situation useful to set the performance limits of neural nets for more
realistic time horizons. The second series of experiments assumed a lead time of 48 hours, which
can be considered the most unfavourable situation in one day ahead forecasting.

For the one hour ahead problem we compared the performance of multilayer networks trained
through backpropagation and discrete-time fully recurrent networks trained using a more general
but conceptually similar gradient search algorithm seeking to minimize a sum of squared error
criteria 113]. After extensive experimentation it was concluded that the latter type behaves better
in this kind of applications. Hence, for 48 hours ahead forecasting only fully recurrent networks
were considered. All the software was written in C language and run on a Sun Sparc II station.

3.2 Results

Table I shows the performance achieved with the best fully recurrent neural network for each of
three different input vectors. The error measures reported refer to the mean absolute percentage
error (MAPE):

MAPE=•,E l °(i)-d(t l

N,. 1  d()

where o(i) is the forecast value computed by the neural network, d(i) is the expected value and N
is the size of the test set.

Table I. Neural network performance
(correctness on the test set: 100%-MAPE)

Input:
Forecasting Input: Input: Li(ARIMA),
horizon L11, LI_2 Li(ARIMA) T,(forecast),

Qi(qualitative)

1 hour 96.5% 98% 98.2%

48 hours -- 91% 94%

Using only information relative to previous loads it was observed that knowing the load values of
the preceding two hours suffices to achieve a MAPE of 3.5% in the test set. Being this a pure
time-series problem, ARIMA modelling was used to reveal the features which are statistically
more relevant [2]. The most relevant past demand values in the best models were, in decreasing
order, 1.,, L1.1, L11-6, 1L-2 and L,, where ,., denotes the demand X hours before the
prediction time (note the obvious weekly period). Taking such features as input of the neural
network the MAPE decreased to around 2%.

It was observed that, for the one hour ahead problem, adding qualitative information like the
month, day and time of the prediction and whether the current day is a holiday or not, and
quantitative one like the temperature forecast do not contribute much to decreasing the MAPE
(only about 0.2%). Demand and thermal inertia prevent from sudden changes in periods of just
one or two hours, being most relevant information already contained in the last elements of the
time series.

The situation is a bit more complex in the 48 hour ahead forecasting problem. Having a wide,"
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prediction horizon increases the uncertainty and so the results are necessarily worse than in the
previous problem. Statistical methods determined L,,., L1,,.2,, L1, 9 and L.-2,7 to be the most
relevant input features in this case. The recurrent network trained with those features as inputs
attained a 91% of correctness in the test set. In contrast to what was observed in the one hour
ahead problem, additional information is quite helpful in this case and the MAPE is reduced in
about 3%. This is because the information contained in the load values of 48 hours before the
value to be forecast is much less than the one implicit in the load value of the immediately
preceding hours. Thus the importance of additional information in realistic load forecasting
problems.

It must be noted that, at least with the data available for the experiments, there was little room for
improvement of the results achieved in the next-hour forecasting problem by considering separate
networks to model different hours, days or seasons. As the lead time increases, the performance
of the network worsens, and splitting the problem into several networks could result in a better fit
to cyclic load variations.

IV. LEARNING PHASE SPEED-UP

Unfortunately, neural network building is practically an ad hoc procedure for which an extensive
experimentation may be required. Moreover, the training times required by learning algorithms
for multilayer perceptrons or fully recurrent networks can result too long for them to be practical
in complex applications on conventional computers. Huge databases have to be processed in the
training phase involving lots of time-consuming vector and matrix operations. High-performance
hardware allows to broaden the training stage experimentation in order to get a (near-)optimal
neural network design much faster. After having been trained off-line e.g. on a supercomputer,
the network may be efficiently operated on a smaller machine, typically a workstation or even a
personal computer.

Artificial neural networks are well suited for simulations on supercomputers [4]. By the term
supercomputer we refer to a class of computers supporting not only large and high-speed
memories and input/output operations, but mostly some degree of parallelism understood as the
capability to simultaneously process tasks ranging from jobs and programs to loops or statements.
Some combination of multiprocessing, vector processing and concurrent scalar processing will be
therefore expected from such machines.

The relevance of parallel computing in this context stems from the fact that neural architectures
and learning algorithms are also parallel in nature. Each neural unit is assumed to process
information independently. At the implementation level collections of neurons could be associated
with individual computer processors. Alternatively, neuron arrays can be represented as vectors
and the connections between these arrays of units (i.e. weights) can be represented as matrices.
Vectorization converts loops performing scalar operations on array elements into equivalent vector
operations. Vector operations use special vector registers to operate on hundreds of array elements
with a single machine instruction. Obviously, optimizing loop handling is crucial to accelerate
typical neural network training. A second degree of parallelism refers to the processing of training
examples. Several steps of typical neural net training algorithms can be vectorized or parallelized,
thus bringing a considerable reduction in computation time. Weight matrix and unit activation
updating, for example, are inherently parallel procedures. Assuming a batch updating of weights
(that is, following the strict gradient) individual contributions made by each training pattern to the
adjustment of the network weights can be linearly combined so, in principle, patterns could be
processed independently and concurrently. Moreover, most supercomputers have resources like
floating point processing or fast multiply-accumulate operations (a majority of neural computations
is of the type multiply-and-add) that provide additional support for efficient neural network
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simulations. The processing, memory and input/output speed provided by supercomputers can thus
be advantageously exploited for neural network design. Other researchers have also reported a
favourable performance of neural networks implemented on supercomputers 11,6,7,121.

We tested this working procedure for assessing the potential advantages provided by
supercomputers in neural network design by vectorizing the learning algorithms mentioned in
section III and measuring the training phase speed-up. In our experiments we used a CONVEX C-
3820 computer with two processors providing a computational rate of "- Mips and 250 Mflops
and with 256 Mbytes of crossbar memory with three access c0 '500 Mbytes/s). A
CONVEX C compiler was used. Having the source code running t mputer was almost
straightforward, but the first small optimization efforts did not yield a results as expected.
Although compilers are far from providing a neural network optimally designed for vector
processing, the information generated at compile time was found useful to detect parts of the code
like, for example, dynamic memory allocation, that required a special treatment. The original
programs required several changes, mostly to break the data dependencies that inhibit the
utilization of special vector registers and pipelined multiplications and additions. Figure 2 shows
the average improvement obtained over a workstation by using different compiler optimization
levels and after recoding the training algorithm for fully recurrent networks:

- no • default scalar optimization
- 00: no + scalar optimization within basic blocks
- 01 0 00 + scalar optimization within functions
- 02 0 01 + vector optimization

Relative CPU times

16-

14

t2

10

86-

4-

2-

0
sparc -nO -00 -01 -02

Figure 2. Training speed optimization

V. CONCLUSIONS

In view of the preliminary results obtained there are several conclusions that can be drawn from
the current line of investigation. In what concerns neural networks, they seem to be a robust
black-box approach in forecasting applications like the one considered here. Ordinary multilayer
perceptron performance can be improved in short-term electric power demand modelling and
prediction by considering feedback connections and discrete time delay within the neural
architecture. Given the sensitivity of the network performance to the inputs of the system, we
relied on traditional statistical methods to decide what particular features are more relevant.
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Although operation speed is an unarguable asset of neural networks, their training slowness may
become an inconvenience. As an alternative -or better a complement- to theoretical research
aiming at faster algorithms, we tested an empirical procedure consisting of training sufficiently
complex artificial neural networks on supercomputers and then porting the resulting best solution
to other machines in order to be integrated with the computing environment of the application.
High-speed processing has beneficial effects on neural network design and makes working
methodology more flexible. Fast training times improve productivity and contribute to more
reliable solutions. We are currently trying to obtain more accurate and faster predictions by testing
adequate data preprocessing methods, considering alternative neural architectures and having
multitasking implementations across several processors.

This project was supported by a grant from the Department of Industry of the Basque Government.
We are gratefid to Fýlix Alonso from Iberdrola S.A. for having provided us with data for the
experiments.
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Abstract

Valiant has suggested a polynomial-time algorithm that can learn disjunctions of conjunctions (DNF) from a
suitable training set using simple threshold gates. Each conjunction has up to k literals. The input layer is
randomly connected to the hidden layer, where conjunctions are learned in an unsupervised mode; the disjunctive
output layer is trained in a supervised mode. We perform theoretical and empirical studies of the learning
performance of the boolean concept learning algorithm. We confirm that the method provides afast, efficient means
for learning k-DNF concepts. We examine hardware tradeoffs in the structure of these learning networks, in terms
of the number of hidden neurons required versus the fan-in per neuron. Finally we investigate 3-dimensional
optically-interconnected architectures well suited to implement k-DNF learning.

1. Introduction

Acquisition of discrete knowledge by learning is one of the central issues in artificial intelligence. One
approach to this issue is to study boolean concept learning by induction. In this approach, acquisition of knowledge
amounts to acquiring representations of boolean concepts. A boolean concept is a boolean function of boolean
attributes. A concept learning algorithm takes a sequence of examples of an unknown boolean function as input, and
outputs a hypothesis which is an approximation to the unknown boolean function. More often than not, we insist
that the learning algorithm have the on-line property, i.e. the algorithm updates its hypothesis between the successive
presentations of the examples. We typically assume that the unknown function belongs to a certain class of boolean
functions. The complexity measures of interest are the costs of each update and the rate of convergence, i.e. the rate
at which the hypothesis approaches the unknown function as a function of the number of examples. For an
implementation, the hardware resources required to represent the hypothesis and for the updating process are also of
interest. Usually the choice of representation for the hypothesis strongly influences these complexity measures.

The importance of Boolean functions to represent knowledge and the inductive acquisition of knowledge is
supported by the success of expert systems [1]. Valiant [2] studied the learnability of a class of Boolean functions
represented as disjunctions of conjunctions, otherwise known as disjunctive normal form (DNF); he presented an
algorithm for learning a class of DNF formulae in polynomial time. Moreover, he showed that this algorithm can be
implemented using networks of linear threshold devices. In this paper, we study the neural network implementation
for learning DNF functions. The focus of our study is the scalability of hardware resources and the rate of
convergence. We take Valiant's paper as our starting point and study the neural implementation of the DNF
learning algorithm in detail. In particular, we view his idea of random interconnections as a means of efficiently
allocating storage. We theoretically and empirically determine the relationship between the number of threshold
gates and the fan-in, given the number of monomials, length of the monomials, and the number of boolean variables.
We use these results in the design of a hardware-efficient optoelectronic neural network. In section 2, we analyze
Valiant's algorithm for learning DNF under the assumption of randomly chosen conjunctions. In section 3, we
describe the simulations we performed to study the scalability issue, present our empirical results, and compare it to
our theoretical predictions. In section 4 we discuss several optoelectronic neural system designs for DNF learning.
A brief summary constitutes section 5.
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2. Learning k-DNF Formulae

Valiant [2] proposed a network architecture for learning a disjunction of conjunctions, where each conjunction
consists of exactly k literals. The network consists of t input nodes, N hidden layer nodes and one (or more in case
of multiple disjunctions) output node. Each hidden node is connected randomly tof input nodes (the hidden layer
fan-in isf), and the output node is fully connected to the hidden layer. In this section we derive the probability that
randomly chosen conjunctions can be learned by the hidden layer.

A particular conjunction (or monomial) can only be learned if all of the corresponding input nodes are
connected to some hidden node and if the distribution of training examples satisfies certain requirements [2]. Each
hidden unit learns at most one conjunction using an unsupervised learning algorithm. Thereafter, the output unit
learns the disjunction of the conjunctions using a supervised algorithm.

The following analysis deals with the probability that a network generated according to the above rules has the
connections required for learning some particular disjunction of conjunctions.

There are ()possible sets of inputs to a hidden unit. Of these, t(-) include any particular set of k inputs. Thus

the probability that the inputs of a particular hidden unit include any particular set of k inputs is given by:

(ft-k'•-
P, = k) = kt )! f!(1

() t! (f-k)!

Iff>>k and t>>k, Stirling's approximation may be used to obtain:

P= (2)

p L tf

The probability that at least one of the N hidden units can learn a given monomial is p, = 1- (1 - p)N . Iff > >k

and t>>k. then:

Also, iff<t and N>>], then: 
(3a)

P 1- e-N()" (3b)

Given k, t, and N, the desired fan-in is:

f = tN- [- n( )] =- tNY (4)
If N is approximately equal to t , then for a large value of PI (close to 1), each input node should be connected to a
random set of about t'-X hidden nodes.

An upper limit on the probability, PK , that such a network can learn the disjunction of K conjunctions is
(p,)K. However, under the assumption that the conjunctions to be learned are randomly chosen, a more exact

expression may be obtained. In this case, the probability that a hidden unit is connected to the inputs corresponding
to exactly one of the K monomials (exactly one of K k-sets) is:

= = KP(I-P)x- (5)
The probability that i of N hidden units are each connected to exactly one of K k-sets and the remaining N-i units

are each connected to none or more than one k-set is jP.(1-Pe) . Finally, the probability that K k-sets are each

connected to at least one distinct hidden unit is
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= N p K ( _ N K+-(K 1
PK =(NJ e ( Pe)N PD(KK)+( I JpK~' (1-Pe )N lPD (KK + 1)+...(6

K (K + e(6)

+(NN 1)pN-l(1 -Pe)1 PD (K, N -1) + (Np (- Pe)0 PD(K,N)

where PD(Kji) is the probability that K of i monomials are distinct. Equation 6 may be rewritten:

P= ( P.1-PlP -iPo(KJ) (7)

The term PD(KJ) may be calculated recursively from PD(K,i-1) for a given value of K:

PD(2 ,i) = 1-

PD(K,i) =1 -(8)

PD(3,i +1)=PD(3,i)+ with PD(3,3) = 0. 2 22
3i

A general expression for PD(K.i) may be obtained by reformulating it as the well-known coupon collection
problem [3]. Equation 7 gives the probability that the given network will be able to learn the randomly chosen
conjunctions. Learning at the second layer proceeds according to the single-layer perceptron rule [41, that converges
assuming the DNF formula is comprised of the conjunctions learned by the hidden layer.

3. Investigation of DNF Learning Performance & Scaling Behavior

For large networks, it becomes increasingly difficult to fully connect the input layer to the hidden layer due to
the large number of connections (fan-out and fan-in) required. Furthermore, an exhaustive network that explicitly
provides a hidden unit for each possible conjunction requires an exorbitant amount of hardware. The contention is
that a randomly connected hidden layer with a small number of hidden units and a limited fan-in can efficiently learn
k-DNF. However, as the fan-in is reduced more hidden units may be needed. The goal of the software simulation
was to develop an accurate software model of the circuit and to use this model to investigate the relationship
between the number of hidden units and the fan-in of the hidden units. The simulation, written in C, was used to
empirically determine optimal values for these variables.

3.1 Methodology of DNF Learning Study
The DNF circuit can be simulated by a three-layer network (figure 1). The input to the network is a locally

represented bit string. The hidden layer, which is partially connected to the input layer, learns to recognize fixed-
length bit strings. The number of connections between the hidden and input layer is determined by the fan-in;
connections are randomly selected. The output layer, which is fully connected to the hidden layer, contains one
node for each function, and learns to detect the presence of specific functions in the input bit string.

Figure 1: DNF Circuit with 3 functions, 6 hidden units, 10 literals, and fan-in of 3.
As discussed in section 2, the DNF circuit attempts to learn boolean functions that are disjunctions of

conjunctions. Here we assume every conjunction contains the same number of literals. The number of conjunctions
in each function is variable. The following is an example of a DNF training set:
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X1X2X3 + XIX3X4 + X3X4X8 + XOXIX2 Function #1
XIX2X3 Function #2
X3X4X8 + X4XsX9 Function #3 (9)

The network was presented with uncorrupted information about each conjunction to be learned. The training set
consisted of a list of conjunctions presented in random order. For the training of the output layer, the training set
also contained the desired output function.

Unsupervised learning was used for the hidden layer, according the method suggested by Valiant [21. Weights
were updated according to the following method, in which wij represents the weight from input unitj to hidden unit
i , and Yn represents the activation value of hidden unit n. d and d* are continuous, strictly monotone functions.

{ a(w) f y,=l and y,=1
4/ = dw) fy= an y=1(10)W#~ d-1(w,,) i = 0 and y, =I (10

d(wq) = 2(wq) - (w, ; d-'(wi) = 1- V1- (wi.) (11)

This learning algorithm ensures that a given hidden unit will learn to ignore inputs which do not contribute to the
unit's firing. The learning algorithm increments the weights to inputs which are active when the unit fires, and
decrements weights to inactive inputs. When learning is complete, the weights of irrelevant inputs to a hidden unit
will be set to near-zero values; in essence, irrelevant inputs are disconnected. Each hidden unit is given a threshold
value of one. The initial and maximum weights are related to the number of literals per conjunctions, k:

1 1 (2
Initial Weight = ; Final Weight = 1 (12)

k-- k--
4 2

The initial weights ensure that at least k connected input units must be on to fire a given hidden unit. During
learning, the maximum-weight limit prevents the weights from becoming large enough for less then k inputs to fire
the node. Note that the specific form of the increment and decrement functions in equation 11 are not important, as
long as they are continuous and monotonic. This fact can be used to advantage when designing custom hardware.

Output learning proceeds after hidden layer learning is complete. The output layer learning was governed by
the perceptron learning rule [4]. In equation (13), wkj represents the weight from hidden unitj to output unit k, y*
is the desired output, and Yk and yj are the activations of hidden units k andj respectively.

Wkj(t+l) = wkj(t) + (yk*(t+l) - yk(t+I)) yJt) (13)
It was necessary to devise a means of determining when learning in the hidden layer was complete. This was

accomplished by examining ihe weights of the connections to the hidden layer. When every weight was equal to the
initial weight or within a specified threshold of either the maximum weight or zero, learning was complete.
Connections that remain at the initial weight for hidden units are unused by the network. These units can be
ignored. Due to the nature of the DNF learning rule, weights within the specified threshold can be considered to be
at their extremes. The threshold was determined by the number of inputs to the network. It must be low enough so
that negative examples of a conjunction do not fire the node. Otherwise, a large number of irrelevant inputs with
small weights may cause the node to fire for a negative example. The following formula specifies the maximum
threshold, 0, where wo is the initial weight, i is the number of input units and k is the number of literals per
conjunction:

0 - w (14)
i-k

After learning was complete, the hidden layer was tested to determine if every conjunction was exclusively
represented by at least one hidden unit.

3.2 Simulation Results
The performance of the network was influenced by the random selection of hidden layer connections.

Networks with a small number of hidden units were particularly sensitive to this random selection. In order to
collect data that accurately represented the performance of a particular network, it was necessary to measure the
average performance of a large number of networks with different random connections. Averaging over one
hundred runs was sufficient to eliminate swings in the data caused by the random hidden layer connections for a
particular set of conjunctions. In all cases, the fan-in and the number of hidden units were varied, and the specific
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performance statistic was measured. The number of hidden units was based on a pseudo-logarithmic scale ranging
from I to 100. Four performance statistics were collected:

" Percent Success
The percentage of the networks that successfully learned all the conjunctions. Due to the random
connections, some percentage of the networks will always fail to learn the given conjunctions. This
statistic reveals the probability of selecting a network with the specified fan-in and number of hidden units
that will successfully learn the conjunctions.

"* Number of Trials to Learning
The number of presentations of training set examples required for the network to reach the stopping criteria.
Only networks succeeding in identifying all conjunctions were averaged into this statistic.

"* Percentage of Redundant Hidden Units
Only one hidden unit should represent a given conjunction. All other hidden units representing that
conjunction are redundant.

"• Percentage of Unused Hidden Units
The percentage of hidden units which remain in their initial state. This occurs when the selection of fan-in
connections for a given hidden unit fails to include any of the conjunctions.

A number of runs were performed with various values of t , k , and K. In each case, a series of simulations
were run with increasing overlap between the chosen conjunctions. As the number of conjunctions and the overlap
between conjunctions were increased, a larger number of hidden units were needed. For example, figure 2a-b shows
the results for k =3, t =10, and K =2 and K =8, respectively. A fan-in of 6 or higher gave good results for no overlap
(or small values of overlap) between conjunctions (figure 2a); For 8 conjunctions with an overlap of two literals
between any two conjunctions, a fan-in of six gave the best result (figure 2b).

Figure 3a-b shows the average number of trials required to learn the conjunctions. Again this was dependent
on the number of conjunctions and the overlap between conjunctions. For a given set of conjunctions, the network
was able to quickly learn the conjunctions if the necessary fan-in and number of hidden units were provided.

In Figure 4a-d, the result for k =5, t =10, and K =2, are plotted for fan-ins of 6-9 respectively. On each graph
five different simulations with varying amounts of overlap between conjunctions are presented along with the
theoretical prediction of equation 7. For a fan-in of seven or larger, the network provides a means of efficiently
learning (with high probability) the chosen conjunctions. Note that an exhaustive network (one unit for each possible
conjunction) would require over 250 units. For large fan-ins the predicted probability of success, which is valid for
randomly chosen conjunctions, is consistently lower than the simulation result, particularly for conjunctions with
low overlap. This issue is addressed later.

As figures 2-4 reveal, the ability of a given network to learn a set of functions depends on the following
characteristics of the training set:

* Number of inputs (t)
* Number of literals per conjunction (k)
* Total number of conjunctions (K)
* Overlap between conjunctions

Increasing the number of literals per conjunction, the number of inputs, or the number of shared inputs between
conjunctions (overlap) requires more hidden units for a given fan-in to satisfy the success criteria. Increasing the
overlap decreases the number of inputs that can be used to distinguish the conjunctions and thereby decreases the
probability of selecting connections that can represent the conjunction. In this case the choice of correct fan-in is
critical.

Next, the relationship between the fan-in and number of hidden units required for a given probability of
success was investigated. This is an important issue in determining the scalability of a hardware implementation of
the r,4 learning algorithm. In another series of experiments, random conjunctions were created, and data was
averageu over one thousand runs. The effect of overlap was thus eliminated by averaging network runs over
randomly selected conjunctions. Network performance reflected the average overlap typical of functions with the
given number of conjunctions, literals per conjunction, and number of inputs. This is precisely what equation 7
assumes, so we expect good agreement with the simulation result. This is verified in figure 5a-b, which plots the
number of hidden units required for a given probability of success, versus the fan-in. The minimum fan-in for any
set of conjunctions is equal to the number of literals per conjunction. At the other extreme, a fully-connected hidden
layer can only learn one conjunction. The network was configured with the fan-in ranging from the minimum fan-in
to a nearly fully connected network. For each fan-in value, the number of hidden units required for the given
probability of success was determined.

Note that increasing the number of functions only adds more conjunctions to the training set; the number of
functions does not otherwise effect the learning of the hidden layer. Once the hidden layer is correctly learned, the
output layer will converge when using the single-layer perceptron learning rule. Therefore, varying the number of
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functions has the same effect on the network as increasing the number of conjunctions. For a given probability of
success, figure 6a-b indicates a relatively linear growth for the number of hidden units required (at the optimum fan-
in) as the number of conjunctions is increased.

A final issue is the redundancy and fault tolerance of the network. A potential concern for any learning
mechanism that relies on a local representation for learned concepts is the low tolerance to degraded or faulty hidden
units. As depicted in figure 7a-b, the DNF learning algorithm discussed above typically provides a high degree of
redundancy among the hidden units. Large fan-in typically results in many hidden units learning the same function
and a low percentage of unused hidden units. Again, a judicious choice of fan-in will provide the required level of
redundancy without under-utilizing or wasting the network resources.

4. Design of Optoelectronic Systems for Boolean Concept Learning

Scalable hardware implementations of the DNF learning algorithm described above must possess several
properties: a large number of hidden units (neurons), a large fan-out from the input layer and large fan-in to each
hidden neuron, and an efficient interconnection system that can provide random, non-local interconnnects between
the input and hidden layers. Such implementations may be classified as to whether they provide a reconfigurable
interconnect topology or afixed one. In the former case, it may be allowable to use a smaller network with a lower
probability of success and run the unsupervised learning algorithm several times (reconfiguring the network between
tries) until the conjunctions have been learned. In the latter case, a larger, network may be needed to ensure
successful, one-shot application ef the unsupervised learning rules.

Free-space optical interconnects have been widely recognized as a means of providing high-density
interconnects [5]. We have previously presented a scalable 3-dimensional optoelectronic neural architecture, the
dual-scale topology optoelectronic processor (D-STOP), that provides efficient, fixed optical interconnection
between silicon-based neural processing elements [6]. We have built and tested a 64-synapse prototype feed-
forward D-STOP neural system with a maximum sustained rate of 640 million interconnects-per-second [7]. The D-
STOP neural system [8] nominally provides full interconnection (or limited regular interconnection) between layers
of neurons using space-invariant computer-generated holograms (CGH). However, using special encoding
algorithms, arbitrary space-variant computer-generated holograms can be generated to provide fixed random
interconnections between processing elements [9]. The modified, randomly-connected D-STOP system would be
one possible means of achieving a fixed topology DNF learning system.

The potential for random, reconfigurable optical interconnects has also been investigated [ 10]. In one method,
a fourth-rank tensor, that provides arbitrary interconnection between two 2-dimensional arrays, is stored in a
photorefractive crystal [ 11]. By appropriately populating the tensor, random optical interconnects with arbitrary fan-
in can be achieved. In fact, it has been shown that the interconnection system achieves a high SNR when the fan-in
per output is large, i.e. it scales with the number of inputs.

A third alternative is to provide a fixed optically interconnected system, such as D-STOP, with a means of
electronically reconfiguring the network topology. This can be achieved, for instance by combining the
optoelectronic neural network with an optoelectronic multistage interconnection network [ 121. The resulting system
combines the advantages of a fixed, mature optical interconnect technology (e.g. CGH technology) with the
flexibility and efficiency of a reconfigurable network.

5. Conclusions and Future Work

In this paper we investigated hardware-tradeoffs for implementing k-DNF Boolean concept learning as
suggested by Valiant. The importance of this class of functions stems from the fact it is learnable in polynoimial
time and provably tolerant to noisy data. We performed theoretical and empirical studies of the learning
performance and hardware costs of the unsupervised conjunctive learning algorithm. We confirmed that the method
can provide a fast, efficient means of learning k-DNF concepts. We investigated tradeoffs in the structure of these
learning networks, in terms of the number of hidden neurons required versus the fan-in per neuron. Finally we
suggested 3-dimensional optically-interconnected architectures well suited to implement k-DNF learning. Our
studies so far have assumed only positive literals. Future work will consider the internal implementation of negated
literals, the investigation of the noise tolerance of the learning rules, and the design of the learning circuitry.
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Abstract
Genetic Algorithms (GAs) operate on problems with a complex feature space. Each member of the popula-
tion can contribute to the overall knowledge about the feature space. Visualization of the evolution of the
gene population is an effective mechanism to increase user understanding of the complex problem space.
Information about the problem space, population size suitability for the problem, and rate of convergence
can be quickly and efficiently understood through the visualization. The visualization is also a great tool
for teaching or debugging GAs. In this work, visualization experience with a two dimensional problem
space is presented. A method for extension of this work to higher-dimensional problem spaces is
described.

1. Introduction

1.1. Introduction to Genetic Algorithms
Genetic Algorithms (GAs) are powerful generalized search and optimization procedures that are based on
natural laws of genetics. Natural selection is a phenomenon that is observed in biological systems as they
adapt to their environments through several generations.

Genetic Algorithms have a basic cycle. The cycle starts with a given population, or gene pool, and yields a
new, more fit pool. The algorithm begins with an initially random gene pool which is made up of individu-
als, and a fitness function that must be optimized. The optimization does not have to be exact but must rep-
resent "suitable" choices. The individuals of the gene pool are composed of a set of values which are
parameters of the function. Each individual is then evaluated by the fitness function which yields a mea-
sure of fitness. The individuals which are most fit are then allowed to reproduce. Reproduction involves an
exchange of genetic material between two selected individuals. After the exchange there is a chance that
one of the genes of an individual may be mutated. Application of these procedures creates a new more fit
gene pool. One iteration through this cycle is termed a generation. After several generations, the system
converges to a pool of most fit individuals.

1.2. Introduction to MPGS
Our visualization for this research uses the Multi-Purpose Graphics System (MPGS) version 5.1 from Cray
Research, Inc. MPGS provides engineers and scientists a powerful graphics post processing package. The
power of MPGS comes from the marriage of high-end workstations and high speed supercomputers.
Graphics output and manipulations, like translations and rotations, are handled by local hardware in a
graphics workstation while more memory intensive tasks and complex calculations, like isosurface gener-
ation and particle traces, are performed by a supercomputer.
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Some of the key features of MPGS are the ability to visualize transient data and to create keyframe anima-
tions. We treat the data from the genetic algorithm as a system of particles in three dimensions with each
generation being a time step. Animating through the generations with MPGS shows a distinct migration of
the genes to the maxima of the function. We select key frames by rotating the particle system to interesting
points of view and then animating not only through the transient data, but also through the motion of the
particle system. This allows us to see depth throughout the system providing more information about the
performance of the GA.

2. Implementation

2.1. Implementation of The Genetic Algorithm

2.1.1 Gene Representation
In our implementation, genes are represented by real numbers. Our GA algorithm was implemented on the
Cray Y-MP2/216 at the National Supercomputing Center for Energy and the Environment (NSCEE). The
Cray Y-MP stores real numbers as a packed representation of a binary mantissa and an exponent with two
sign bits, one for the mantissa and for the exponent [ I]. The programming language of implementation is
C. Since C does not allow bitwise manipulation of real numbers, a union, consisting of an integer field and
float field was used. This allowed bitwise manipulations on the integer field which also facilitated use of
masks in the implementation of the crossover procedure. When bitwise operations are performed on reals,
there is a chance of producing an invalid real number. This is a side effect of the GA operations. All invalid
real numbers are discarded and not allowed to reproduce.

By using logical operations and a gather-scatter technique we were able to take advantage of vectorization
on the Cray Y-MP2/216 for performing crossover. This reduced execution time.

2.1.2 Selection
A roulette wheel algorithm (21 was used to select the fit genes from the gene pool. The fitness of each gene
in the pool is summed, giving the total pool fitness. Each gene fitness is then divided by the total pool fit-
ness, giving a normalized value (a value between 0 and 1) which indicates how much any individual con-
tributes to the total pool fitness. A table of ranges is then created based on these normalized values. A
random real number is selected on the interval between 0 and 1. That number is then applied to the table.
The gene corresponding to the range in which the number falls is selected for the next generation. The
genes with the largest fitness would have the greatest ranges and thus the greatest chance of being selected.
Only the fittest survive.

2.1.3 Crossover
Crossover is a procedure that takes two individuals of a gene pool and combines their genetic material to
create two new individuals. There are a number of different implementations of crossover. Both one and
two-point crossover is implemented in our GA. The user can select which one to use. The crossover point
defines where the genetic material of each gene is split among the two selected genes.

2.1.3.1 One-Point Crossover
In the one point crossover strategy, both genes are split at the same random spot. Figure I shows two genes
(gene A and gene B) before and after crossover. A random point to split the genes is selected. The gene
code to the right of the split point of gene A is joined with the gene code to the left of the split point of gene
B. Also, The gene code to the left of the split point of gene A is joined with the gene code to the right of the
split point of gene B, thereby yielding two different genes.
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Figure 1: One-point cross over.

2.1.3.2 Two-Point Crossover
When two-point crossover is implemented both genes are split at two points, although these points are the
same for both genes. Figure 2 illustrates the two-point crossover. The gene code to the left of the first split
point of A is joined with the gene code to the right of the first point and to the left of the second point of
gene B. This is also joined with the gene code to the right of the second split point of gene A.

The gene code to the left of the first split point of B is joined with the gene code to the right of the first
point and to the left of the second point of gene A. This is also joined with the gene code to the right of the
second split point of gene B. Again yielding two different genes. The two-point crossover has been shown
to be superior to one-point crossover [3].

A

B - before

C C

A
B '_ _ _- after

Figure 2: Two-point cross over.

2.1.4 Mutation
Each bit in a gene has a probability of mutation (usually a very small number). If a bit is mutated, then its
value is changed. If the bit is a zero it is changed to one. If it is one it is changed to zero. Fig. 3 illustrates
the mutation process (the top gene is the original and the gene on the bottom is the mutated gene). The 12th
bit from the left has been mutated (its value was changed from zero to one).

In the absence of mutation, there is a chance that a genetic algorithm could converge to a gene pool where
all individuals are clones. Thus, the GA would enter a steady state where it neither converges nor diverges.
Mutation adds the necessary variability (new genetic material) in the population for continued progress of
the algorithm towards the maxima (or minima). This feature gives the GA a great advantage over other
search and optimization algorithms.
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Figure 3: Mutation.

2.2. Sample Problem
In order to produce a visualization, an "interesting" sample problem had to be selected. We arbitrarily
developed the following function

f(x, y) = sin (3x) + sin (5y) + cos (2x) + cos (y).

This function has many local minima and maxima on the (x,y) plane.

2.3. Implementation with MPGS
The ordered triple (x,y, f(x,y)) of the Sample Problem is treated as the location of a particle (an individual)
in three dimensional space. Collectively, several individuals can be represented as a particle system. After
each generation, a file of these positions is written in a format suitable for importing into MPGS. Each file,
therefore, is a particle system that can be visualized by MPGS. The largest and smallest ordered triples are
used to determine a bounding box for this problem. This box helps the user position the particle system and
camera and also quickly determine the size occupied by the system.

MPGS can read several of these particle system flies, buffer them, and then play them back to create an
animation. As MPGS animates through the files, the user can see the particles migrate toward the highest
peaks. The user can also rotate, translate, and zoom in and out of the system as the particles are animating
which gives the user more control over what can be seen. The animation can be paused at any frame to
allow for screen capture of images. The figures in this paper were generated in this fashion.

3. Results
The four snapshots in Fig. 4 were produced by MPGS. They are snapshots of the initial, second, fourth and
tenth generations of a GA calculation of the sample function discussed in section 2.2. Where x and y are
bounded by the interval (10,15). The fitness of any individual was based on the z value it yielded after
function evaluation.

The GA was run for 20 generations with 4000 individuals. There was a 60% chance of crossover and 0.1%
chance of mutation. The two-point crossover procedure was used.

The visualization demonstrates the convergence of the individuals to the maxima of the function. MPGS
has a tool that allows animation of particle files. Particle files are created for each generation. Animation of
the evolution is accomplished by flipping through particle files. During the animation, the individuals
appear to migrate to the peaks of the function.
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Figure 4: Snapshots of the sample problem evolution.

4. Conclusions
Visualization of a GA is a powerful vehicle for increasing a user's understanding of the complex problem
terrain. The GA search procedure is better understood by observing the evolution of the generations from
their initial random distributions towards the optimal values. Furthermore, detailed information about the
objective function is displayed in a visual form. The enhanced insight gained through visualization can
also be used as an effective tool for teaching GA and debugging.
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Visualization of the evolution demonstrates the concept of convergence and the robust nature of the GA.
Visualization can also be used for testing new reproduction rules or other new procedures. Visualization
may also help in the running and optimizing of these procedures.

4.1. Future Work
As the GA converges, the population at the peek becomes increasingly dense. It may be useful to delineate
the number of individuals at or around the peek, One method would be to use a color map to indicate the
population density.

In our implementation, we used a two dimensional feature space. Most problems of interest for GA appli-
cation will have many dimensions in the feature space. This situation would require more sophisticated
visualization techniques. We plan to experiment with a nested coordinate systems as a method of breaking
down the problem dimensionality. A hyperspace of n independent variables can then be visualized.
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Abstract
In this paper an artificial neural network technique to treat inverse problems, typically encountered in Non-Destructive
Testing applications, is introduced. The basic architecture is proposed for an electrostatic test problem. We also address
the case of plural defect recognition, and we also show how the method here described could be useful for more realistic
NDT problems, commonly known as eddy current testing. Simulations show that our method can be very effective,
particularly when a high accuracy of the identification procedure is required.

1. INTRODUCTION.

The interaction of electric and magnetic fields with conducting materials can reveal both their properties and the
presence of defects. Non-Destructive Testing (NDT) is an interdisciplinary science aimed at providing methods,
hopefully completely automated, and techniques which allow to decide about the soundness of a specimen under test. In
some research areas, such as nuclear fusion, there are significant financial incentives to prolong the useful life of
operating plants and NDT plays a central role in pursuing this goal. Of course, this aim has to be achieved preserving
safety, particularly near the end of the design life of the plant.

In this paper we consider a special problem which, though not necessarily realistic, presents the major
characteristics of standard electromagnetic testing, as well as the formulation of a real problem. Actually, the decision
about each specimen is carried out by analysing the perturbations of a potential map generated by an exciting source
placed close to the zone where a defect is suspected. By measuring potentials and/or fields in properly selected points
one can have informations about the location, size and shape of the defects. Research in NDT focuses attention on
methods for in-service inspection. Another significant aspect of modem NDT is concerned with saving inspection time.
Neural Networks (NNs) can have an impact in NDT, particularly considering both these two aspects. In recent years
NNs have emerged as important numerical tools in a number of multi-sensor analyses and data fusion problems.
Moreover, the speed of NNs in the recall phase make them ideally suited to processing patterns of data very rapidly as
requested by modern NDT applications. In NDT problems the goal is to find the configuration of the sources generating
the pattern of measurements. This is an inverse problem usually solved by minimising a cost function and taking into
account some constraints on the system parameters.

NNs have already been proposed for the classification of NDT signals [1]. Examples of NNs applications for
identification of both size and locations of defects have been presented in [2,3]. In this paper we introduce the concept
of task decomposition to reduce the ill-posedness of the test problem, and to discriminate between defect detection and
defect characterisation. Moreover, the concept of fuzzy set is introduced at various stages . The problem under study is
extended to consider the possibility of having more defects on a same plate. Finally, an eddy current testing problem is
presented.

2. A SAMPLE NDT ELECTROSTATIC PROBLEM.

An earthed (v-0) conducting plane has a hemispherical boss of radius a. The centre of the sphere lies on the plane.
A point charge q is placed close to the plane at a distance b>a from it. Let P be a point exterior to the metallic plate. The
electric potential v(P) can be determined by using the method of images and the inversion transformation as follows:

v(P) = (q/r, - q'/r2 + q'/r 3 - q/r4) / 41me0  (I)

where q'=qa/b*, b'=a2/b*, and b* is the distance from the inducing point charge to the centre of the boss, i.e. the centre
of the inversion. The remaining symbols are explained in fig. 1.

The attempt of the present work is to solve the identification problem of inverting (1) to recover the location and
size of the defect of known shape from potential and field measurements. Aim of the work is to achieve a processing
architecture which guarantees a good identification accuracy. The hypothesis of considering a pre established shape of
the boss seems not too restrictive. In fact, in [4] it is shown that an NN can successfully discriminate among different
defect shapes. Actually, by knowing a pattern of measurements which represent a proper sampling of a continuous
function, we do not aim to reconstruct the entire function, rather to infer some geometrical quantities related to the
object that generate the distribution.
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The inverse problem under study can be viewed as a pattern recognition task. Actually, by considering the map of
the electric potential generated by the point source in presence of the metallic plate, the existence of a defect is pointed
out by the perturbation of this pattern (see fig.2).

The extent of the perturbation is, in turn, related to size and location of the defect. By possessing a large database
of simulated experiments one can, in principle, approximately solve the identification problem by means of a search
within the library of cases. As a matter of fact, a dataset which guarantees to reach the user's required accuracy could be
impractically large. Moreover, the search within such a dataset would be very hard. Today's research are then oriented
toward the development of methods based on computational intelligence. Among these, the use of NNs appears
appealing particularly considering two features of these systems:

i) the generalisation capability, which allows to interpolate between the available limited number of cases;
ii) the data fusion capabilities, which suggest the possibility of using a multi-sensors approach and/or of

incorporating a linguistic (rule based) approach which can exploit the know how of human experts.
To set up the database required for the learning process, exact synthetic data are calculated using (1). The radius of

the boss, a, can vary between 15 and 35 mm. The region over which the boss could be present is a rectangular grid of
size 10 cm along x and 5 cm along y. All of the sensors are placed along this rectangular contour at a fixed height. A
suitable choice of the locations' measurements within the inspected window is a prerequisite to good detection.
Concerning the number of measurements, our analyses show that at least three sensors per quadrant are needed. In fact,
in the case of small bosses only sensors in the vicinity of the defect are expected to contribute to the identification, and
then three measurements are just needed to saturate the three parameters to be estimated. The selected pattern of sensors
is shown in fig.3.

3. A NEURAL SYSTEM FOR NDT PROBLEMS.

In this section we show how it is possible to solve the proposed problem by means of a complex structure
composed of specialised neural sub-systems.

3.1 Analysis of the multilayer NN approach.
The first step of our work has been using a NN which acts as a mapping between input and output. The selected

model of NN has been a multilayer feed forward one with a single hidden layer and sigmoidal activation functions for
both hidden and output layers. The input layer only distributes the measurements to the adjacent layer. Several
experiments of training have been carried out aiming to obtain an appropriate set of weights. These experiments have
been conducted varying the number of hidden nodes, the number of training patterns, and the initial seeding of the
weights.

Moreover, the learning rate and the "momentum" NN Fully Linear Modified
coefficient of the backpropagation procedure have been Topology Sigmoidal Output
varied according to a proper schedule. It is worth noting that #input sensors 12 12 12
the initial choice of these two parameters strongly affect the #hidden nodes 8 10 6
successive training. Again, this choice derives from the #connL+biases 131 163 99
designer's experience, and depends on the architecture of the
network. For example, for a linear output the learning rate
of the output layer has to be chosen different and generally *%/yb trainJtest 13/15 12/14 10/12
smaller than the one selected for a sigmoidal layer. Finally, /OR trainitest 18 /24 16/22 12/14
when the involved gradient descent procedure reaches a Table I - Performance of three different NNs in terms
minimum, the learning rate must decrease to avoid of full scale root mean square error (measurements of
oscillation around the minimum. In any case, the behaviour potential only). Training and test sets contains both
of a single NN cannot be considered accurate enough to 300 cases.
solve the problem. Table I reports the performance of a fully
sigmoidal NN, a linear output NN, and a network modified by adding a layer of direct connections between input and
output [5]. It is worth noting that by considering special pattern of connections rather than a fully connected NN , one
can enforce the network to distribute the knowledge embodied in the training set in useful ways.

Even considering unsuccessful the behaviour of the NN, a detailed study of the weights' patterns carried out, for
example, by Hinton diagrams [6], can yield important hints about how to decompose our problem. Indeed, the internal
representation of the hidden layer suggests some elemental rules of behaviour. There is at least one hidden node which
roughly recognises the vertical position of the boss, i.e. ybkO and another one which specialises itself to decide xb2O.
Finally, there are two hidden nodes sensitive to the differences between measurements of sensors located at opposite
corners of the plate (sensors 1-7, 6-12, fig.3). By combining such elemental decisions, the global NN can easily
determine the region containing the boss. The NN is so strongly sign-sensitive with respect to xb, yb. A very interesting
technique that can help to recognise the behaviour of each HN is the one of the localised damage. Briefly in these
procedure, we damage the trained NN by randomly changing the weights of a processing element, and as a result the NN
loses some properties and it continues to work if the special feature represented by the damaged HN is not of interest.

Note that the size of the boss does not affect this kind of processing. It is to be noted that such a processing lends
itself to difficulties in estimating bosses located in correspondence of the axes of the structure. Another interesting
question posed by the analysis of the trained NN concerns the difficulties to discern between a small boss located in the
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vicinity of a sensor and a medium-sized boss located near the inducing charge. Indeed, these two configurations can give
similar electric potential drops in correspondence of the sensor. Because of the scarce contribution of other sensors, it is
hard to decide what configuration has given rise to that pattern of measurements. The discussed problem remains
unsolved and it reduces to getting stuck in a poor local minimum in the training phase.

Another interesting topic is that training a NN on a set of cases of fixed radius, a, strongly improves the accuracy
in estimating xb, yb. Again, by considering a restricted range of variability for a, we achieve better results. Studies
carried out on sensory systems of animal species show that the perceptual processing is often separate into task-specific
sensory channels. In our case, it's clearly impossible to separate the estimate of a from that of xb, yb. However, it seems
possible to define some general rules which allow, for example, to qualitatively discriminate among bosses of small or
large size starting from the pattern of measurements. Furthermore, we have seen how simple for a NN is the task of
deciding the region where the boss is expected to be. All these capabilities can also be improved either by properly
processing the absolute measurements to obtain useful differences of potential, or by using field measurements. In the
last case we deal with a different mathematical formulation of the problem but the neural approach is not affected b3  is
aspect.

"- 3.2 Task decomposition of the identification problem.
In what follows, it is shown how a special neural architecture can incorporate all the preceding considerations. We

train a NN to classify the pattern of examples into four categories: 1) no boss, 2) small boss, 3) medium boss, 4) large
boss. Such a NN is not expected to yield a completely correct classification. In fact, the decision is also related to the
location of the boss. However, it's relatively easy to define generic expressions about the identification like the
following:

1) a large boss located near a sensor produces a significant reduction of the electric potential measured by this sensor;
2) the neighbouring sensors are affected by the boss in dependence of the boss size;
3) a small boss produces a negligible effect if not located in the vicinity of a sensor: in any case, the perturbation

regards a limited region.
Then, it seems reasonable to teach a NN to cope with this problem. We have so trained a NN of 12 inputs, 8 hidden

neurons, and 4 outputs with sigmoidal activation function both for hidden and output layer. The training set consists of
300 cases. Because of the nature of the output, in correspondence of some values of a, it's hard to decide whether a
pattern belongs to either one class or another. In our model we admit that a pattern may belong to more than one class
with a finite degree of confidence. This means that the boss radius, a, is treated as a fuzzy variable which admits four
fuzzy values (No Boss, Small, Medium, Large). Each fuzzy value of the fuzzy variable is a subset of the entire domain
(universe of discourse) and is characterised by a membership function. This function maps the universe of discourse to
the real interval [0, 1]. The degree to which a measured value belongs to a particular class is its grade of membership.
This framework provides a natural way of dealing with problems where the source of imprecision is the absence of sharp
cut-off between classes. To set-up the training dataset we have selected the membership functions reported in fig.4.

Of course, due to the nature of the data the membership functions resulting from the training process may be quite
different. In particular, in our case, both the Small and Large classes are characterised by the presence of special
features, whereas the Medium class is associated to the absence of them. Once detected the boss, and given a fuzzy
estimate of its size, we have to characterise it. To do so, we need three different NNs trained on datasets corresponding
to the three above mentioned classes. To entirely exploit the concept of fuzzy variable as well as that of overlapping
membership functions, we decide to train the three network on datasets generated by considering, respectively: a r 15+
23 mm (Small), a r 20+30 mm (Medium), a r 28+35 mm (Large). In case of uncertainties about the membership of a
pattern to a precise class, as happens in the regions of overlap, there are two NNs switched on: the outputs of the
identification process are then obtained properly combining the two NNs output. The weights of the combination are
related to the degree of membership to the involved classes as estimated by the detection NN. By considering the
symbols reported in fig.5, the estimation of the defect's parameters is carried out according to the following logic (post-
processing):

IF S>0,8 THEN 2=2s
IF L>0.8 Then P=pl
IF M=max(S,M,L) THEN P=-m
IF S=max(S,M,L) AND S<0.8 THEN p=S*Ps+M*pm
IF. L--max(S,M,L) AND L<0.8 THEN p=M*pm+L*21

with S, L, M preliminarly normalised so that either.S+M=l or M+L=1 for the last two cases.
Of course, each NN continues to work as previously described, that is by implicitly dividing the identification

process into two contextual stages: i) rough determination of the plate's region containing the boss; ii) tuning of the
estimation.

Notice that the number of hidden neurons carrying out the above described processing and their efficiency is a
matter of design. In particular, the size of the hidden layer(s) have to be related to the complexity of the mapping to be
interpolated as well as to the available number of examples. In this respect, the use of an example problem is beneficial.
A simple trick to speed up the training process is again to separate the two conceptual steps: the area to be inspected is
subdivided into five overlapping regions (see fig.6). A classification NN (or a properly designed rule-based logic)
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selects the region and then switch on the identification NN specifically trained by examples concerning only the
presence of a boss in that region.

As previously discussed, the topology here introduced allows to incorporate possible uncertainties about the region
containing the boss. In particular, it is possible to consider vague (fuzzy) boundaries between classes. In such a way, a
boss located in correspondence of a boundary may be considered lying in two regions with different degree of
membership: in this case the resulting estimate derives from the cooperation of two identification NNs properly trained.

It is worth noting that once detected the region of interest, it would be possible to subsequently change the map of
the sensors. On the other hand, it can be of more interest to obtain a completely automatic system without having to
repeat the measurements. For this reason, the training of each specialised NN is carried out by considering the same
configuration of sensors. Fig.5 details the proposed architecture showing that for each fuzzy value of the fuzzy variable
we have a module composed of five specialised NNs. Table 2 reports the results of the identification process in terms of
full bcale root mean square errors, of maximum absolute errors, as well as of misclassification error for the two
classification NNs.

[Misclassification error % Training i Test
3.3. Location of plural defects. Size detection NN 2.0 3.0
When the above-mentioned conducting plate can present Region detection NN 1.0 1.6

more defects of hemispherical shape, the analytical
formulation of the problem must change to cope with an Fully Linear Modified
infinite series of images. However, if the centres of the two
bosses are located so that dx>max(a,a'), where d is the Topology Sigmoidal Output
distance between the centres, we can consider a finite number *%xb train./test 4.2 /5.1 4.2 / 5.0 3.9 / 4.5
of terms of the expansion [7], fig.7. By limiting ourselves to %yb train./test 4.0/4.8 4.3/5.1 3.7/4.1
the discrimination between one or two bosses, the /oa train.test 7.0/7.5 6.8/7.1 4.5/5.2
identification process can be carried out as follows: Max abs error xb = 8.m, yb = 4. a = 0. 3 mn

i) decision about the presence of defects: Table 2 - Performance of the task decomposing
ii) in case of presence, decide about the number of defects; neural system.

iii) in the case of one I- ss, determine its size and location
by means of the at )ve described neural system;

iv) in the case of two bosses, determine their location, in the hypothesis of considering bosses of equal size.
When admitting bosses of different sizes, it is awkward to discriminate between the presence of a large boss and

two near smaller bosses: this problem of ambiguity is now under study. In particular, work is underway aimed at
determining the minimal distance of correct detection w.r.t. the ratio a'/a'.

3.4. Identification of circular holes in thin plates.
A more realistic NDT problem concerns the evaluation of eddy currents at low firequency in thin plates with the

aim of finding size and shape of defects. In this case a time-varying magnetic field induces eddy currents in the metallic
structure under test: the presence of defects can modify the pattern of fields. Also in this electromagnetic inspection
problem we have to cope with an inverse problem. We can generate the cases required by the training phase by means of
a finite element code , but it seems useful to derive treat again a closed form solution to have at our disposal a simple
and practical pattern generator. The analytical formulation of the problem for circular holes is reported elsewhere [3].
However, we can say that the approach above considered yields a good accuracy also in the estimation of the hole
location.

4. CONCLUDING REMARKS.

It seems clear that the usefulness and flexibility of future neural systems will depend in large part on the integration
of simple NNs into more complex architectures, perhaps emulating biological sensory systems. In this work we have
shown that NNs can have an important impact on the development of improved tools for NDT applications. An open
question regards the noiseless nature of the data used in our work: an important aspect of neural computing is the
robustness to additive noise. It can be said that the injection of noise in the training dataset can improve the
generalisation capabilities of the NN showing a regularising effect, nevertheless we have to consider the sensitivity of
the NDT processing to such a noise.
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Visual Pattern Recognition with Selective Attention

Kunihiko Fukushima, Hayaru Shouno
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Abstract

The "selective attention model" proposed previously by Fukushima is a neural network
model that has the ability to segment patterns, as well as the function of recognizing them. In
order to increase the ability of the model, bend-processing circuits have been introduced in the
network. The search controller in the network has also been modified, and backward signals
as wells as forward signals are used to control the search area. Using the principles of the new
model, a cursive word recognition system has been developed. The system can recognize and
segment connected characters in cursive handwriting of English words. The ability to recognize
and segment each individual character has been greatly improved by these modifications of the
model, compared to the previous system proposed by Fukushima and Imagawa.

1 Introduction

The "selective attention model" proposed by Fukushima [1] is a, neural network model that has the
ability to segment patterns, as well as the function of recognizing them. Using the principles of the
model, a cursive word recognition system [2] was developed. The system was able to recognize and
segment connected characters in cursive handwriting of English words.

On the other hands, from previous work on the neocognitron, it was found that the introduc-
tion of bend-extracting cells greatly improves its generalization ability for pattern recognition [3].
The neocognitron with bend-extracting cells can easily be trained to robustly recognize deformed
patterns.

Therefore, we have introduced bend-extracting cells in the connected character recognition
system [4]. Following the introduction of the bend-extracting circuit in the forward paths, an

identical circuit has been added also to the backward path, through which the backward signals
are made to flow, retracing the same route as the forward signals.

A new idea is introduced also in the search controller. A search controller produces a so-called
"search light effect" and restricts the number of patterns to be processed simultaneously. The
system mainly processes the input patterns contained in a small "search area", which is moved by
the search controller. The new search controller uses not only forward but also backward signals
to control the search area.

The ability to recognize and segment each individual character has been greatly improved by
these modifications of the system, and the error rate for word recognition has been reduced. The
new system is discussed in detail in this paper.

2 Basic Function of the Network

The selective attention model used for connected character recognition is a hierarchical multilayered
network, which has backward (i.e., top-down) as well as forward (i.e., bottom-up) connections
between layers. Figure 1 illustrates how the cell layers are connected in the network.
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Figure 1: Network architecture of the cursive word recognition system.

A stimulus pattern, or an image of a cursive word, is presented to the input layer UIc0 shown
at the upper left of Figure 1. The result of recognition of each individual character in the input
word appears in turn in the recognition layer Uc4 at the highest stage of the forward path. The
character that is now recognized is segmented and appears in the recall layer Wco at the lowest
stage of the backward path.

This section explains the basic idea of the system, which is similar to that of the old system [2]
with some modifications. Various large modifications applied to the new system will be discussed
in the following sections.

The signals through the forward paths manage the function of pattern recognition. If we

consider the forward paths only, the model has almost the same architecture and function as the
neocognitron [5]. Cells us are feature-extracting cells. Cells uc have the function of tolerating
positional errors of the features extracted by the us cells. By the blurring operation by the uc

cells, the network acquires robustness against deformation in the patterns during recognition. The
uc-cells at the highest stage work as the recognition cells.

The signals through the backward paths manage the function of selective attention, segmenta-
tion and associative recall. The cells and connections in the backward paths of the network are
arranged in a mirror image of those in the forward paths. Cells wv and wc in the backward path
correspond to cells us and uc in the forward paths, respectively.

The output signal of the recognition layer Uc4 is sent through the backward paths, and reaches
the recall layer Wpa at the lowest stage. Guided by the gate signals from the forward cells, the
backward signals reach exactly the same positions at which the input pattern is being presented.
Since backward signals are sent from the active recognition cell only, only the signals corresponding

1-576



to the recognized pattern reach the recall layer WCo. Even if the input pattern, which is now
recognized, is a deformed version of a training pattern, the deformed pattern is segmented from
the other patterns and emerges with its deformed shape.

A backward cell wc sends a gain control signal to the corresponding forward cell and increases
the gain of the cell. Thus, only the forward signal flow in the paths in which backward signals are
flowing is facilitated. This has the effect of focusing attention on only one of the patterns in the
stimulus.

There are cells that monitor the situation that a wc-cell in the backward paths is active but
that feature-extracting us-cells around it are all silent. This occurs when some part of the input
pattern is missing or contaminated by noise and a feature that is supposed to exist there fails to be
extracted in the forward paths. If a monitoring cell detects such a situation, it sends a threshold
control signal to these us cells and lowers their thresholds. Thus, the us-cells come to extract even
faint traces of the undetected feature. This is useful for repairing imperfect patterns: Even if the
input pattern is an imperfect one, a complete pattern, in which defective parts are interpolated,
emerges in the recall layer WCo.

A threshold-control signal is sent also from the no-response detector shown at far right in
Figure 1. If all the recognition cells are silent, the no-response detector sends the threshold-control
signal to the feature-extracting cells in all stages, and lowers their thresholds until at least one
recognition cell responds.

The attention switcher shown at the top right in Figure 1 monitors the response of the recogni-
tion layer Uc 4 , and determines the timing of attention switching. When the response of tC4 reaches
a steady state, the attention switcher sends inhibitory signals and cuts off the backward signal flow
for a short period. This causes the gain control signal from the backward cells to disappear. and
the gain of the forward cells decreases because of fatigue of the cells. The search controller again
seeks a place in which a larger number of line- and bend-extracting cells are active, and shifts the
search area to the new place.

3 Bend-Processing Circuits

Layer USBend consists of bend-extracting cells. These cells detect bend-points and endpoints of
lines. A uSBend-cell receives antagonistic inputs from two adjoining areas in a cell-plane of the
preceding layer Ucl. These two areas are aligned in parallel with the preferred orientation of the
cell-plane. The usBend-cell is strongly activated, if the input signal comes from the excitatory area
only, and not from the inhibitory one. Therefore, it responds to an endpoint of a line in the input
pattern. When a curved line is presented, the usBend-cells' response represents bend-points of the
curved line.

Layer Us 2 receives input connections not only from Ucl but also from U-CBmd. This means
that layer Us 2 integrates the information of not only the existence of line components but also the
bend-points and endpoints of the lines. Generally speaking, the important information required
to recognize a pattern is concentrated around these points. Therefore, the utilization of bend-
extracting cells can easily increase the feature extraction ability of Us2.

Following the introduction of the bend-extracting circuit (layers L-SBend and UCB,,d) in the
forward paths, an identical circuit (layers WSB,,,d and WCBend) has been added also to the backward
paths. Similarly to other Ws layers, WSBend receives gate signals from USBCnd in the forward path
and regenerates signals at the exact places where the bend-points and endpoints of the attended
pattern exist.

This circuit is useful not only for recalling a perfect pattern in Wc0, but also for improving the
ability to segment individual characters. As shown in Figure 2, the inhibitory signal from WKBffd
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the backward path. circuit on the result of segmentation.

to WC1 prevents the unlimited extension of a connecting stroke from a segmented character, and

the border of the character can be correctly delimited. Figure 3 illustrates this situation.

4 Search Controller

A new idea is introduced also in the search controller, which is shown at the top center in Figure 1.
A search controller restricts the number of patterns to be processed simultaneously. The system
mainly processes the input patterns contained in a small "search area", which is moved by the
search controller. The gain control signal from the search controller produces the search area by
decreasing the gain of the forward cells situated outside the search area.

The search controller monitors the response of layers Uci and UCBebd at first, and shift the

position of the search area to the place in which a larger number of line-extracting and bend-
extracting cells are active. However, the position of the search area is not fixed during the whole
period of recognizing one character.1 It is adaptively moved as shown in Figure 4. When one of
the characters in the input pattern is once recognized, the search controller now starts monitoring
the response of the backward cells, that is, layers WC1 and WCBCTnd, instead of UCI and UCBend.

The search area is now shifted to the place that exactly coincides with the character that is now
recognized and segmented. This process of adaptive shifting the search area is useful, when the

initial position of the search area happens to be misplaced, say, in the middle of two characters. If
the position of the search area is not adjusted, there is a chance that the segmented character has
a missing part near the border of the search area. In the present system, however, the search area

'in the old model [2], the position of the search area was determined from the response of Ucl only, and was not

moved afterward.
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Figure 4: Shift of search area using not only forward but also backward signals.

is moved adaptively, and a missing peripheral part rarely occurs.
The search controller works not only in the recognition phase, but also in the training phase.

Incidentally, in the old system [2], the search controller was stopped working during the training
phase.

5 Computer Simulation

The performance of the system has been simulated on a computer. The system has been trained
using ten alphabetical characters shown in Figure 5(a). Although we used ten characters instead
of twenty-six because of the limitation of the computer power, we chose characters whose shapes
are similar to each other and difficult to be segmented when they are connected in handwriting.
In other words, a character set difficult to discriminate have been chosen intentionally so that the
performance can be tested with a small number of test patterns.

Figure 5(b) shows how the characters in cursive words have been recognized and segmented.
Most of the characters have been recognized correctly, but few of them are erroneously recognized
or failed to be correctly segmented. In Figure 5(b), the letter written below the image of an
input pattern indicates how the corresponding character in the word was erroneously recognized
by the system. No such letters are written for characters recognized correctly. When one character
in a word was recognized twice by mistake, the two results are indicated by letters enclosed in
parentheses. A question mark shows the character could not be recognized.

As can be seen from Figure 5(b), most of the characters were recognized and segmented correctly.
Even in the words in which some characters were erroneously recognized, the rest of the characters
were usually recognized correctly.
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Figure 5: Computer simulation of cursive word recognition.
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Abstract

There is a lot of evidence that cortical neurons show synchronized activity. There is also a
variety of synchronization-based models and simulations, but there are almost no arguments
excluding the possibility that the investigated phenomena could also be explained without
synchronization. Our results from comparison of two alternative models show quantitatively
the superiority of a synchronization-based mechanism. The simulated contour representa-
tions proved to be successful in our robot vision system, but we can also give strong argu-
ments for similar representations in the biological visual system.

Introduction

The hypothesis of dynamical links "', and the experimental confirmation of synchronized
activity in the visual cortex [2 1] caused a lot of enthusiasm in this field of research. It was
argued that temporal labels cL Ad be dynamic links, binding elements of coherent contours,
regions, or moving backgrounds. Models were provided and supported by simulations
showing that synchronization ist able to provide the desired mechanisms. On the other hand
there are almost no arguments excluding the possibility that the investigated phenomena
could also be explained without synchronization and there are also models [4] treating the
observed cortical acitivity as sheer oscillations of a control loop.

Our contribution is focussed on the comparison of two alternative models for one pheno-
menon, and the results show clearly that the synchronization-based architecture is less
expensive by orders of magnitude. We look at the problem from a vision system designer's
point of view, and we pursue the following line of argumentation: Our robot vision system
is based on a holistic approach [5] assuming that objects up to a relativly high degree of
complexity like faces, traffic signs, or written syllables are recognized by matching of suitable
neural representations. Region based representations including colour representations are
very robust against minor errors in foveation, and against errors due to parametric mappings
[6] providing invariances. Region based representations are also very helpful for discrimina-
ting objects of different size and colour, but they are not very sensitive to shapes. So we had
to include contour representations in our system, and we could achieve reliable and selective
recognition. However, matching of contours requires special representations which are
significantly less expensive on the base of synchronization mechanism.

The Problem of Contour Matching

An active vision system learning and recognizing normalized representations is subject to
errors in position, size, and shape of retinal images and has even to interpolate between per-
spective distortions. Associative networks with error back-propagation or networks of the
Hopfield type can tolerate these deviations, but only at the expense of long training sequen-
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ces. In our robot vision system we decided to use one step learning [71 for practicability, and
so we have to tolerate these errors by reducing the demands on the similarity measure. This
strategy works well in the case of region based features, but at the expense of shape selecti-
vity. Equal sized areas of circular or hexagonal shape can not be distinguished by region
based features as soon as the similarity measure is reduced in order to tolerate the system-
related errors.

Simple: receptive fields Fig. 1: Simple model neurons (a) with
small oriented receptive fields provide

contour chains of activity in response to a contour.

(a) --------- activity chain Complex model neurons with large, highly
Complex: highly overlapping overlapping receptive fields (b) respond to

receptive fields the contour with a cloud of activity.

contour

(b) activity cloud

Representation by simple neurons Fig. 2: Activity pattern of simple (a) and
complex (b) model neurons in response to

.. 0 .-.".-.- a rectangular contour. Overlap between
10 1 activity pattern (-) and learnt pattern (3) of
I1 0 simple neurons is completely lost (a) due

a to a diagonal shift of the image by only
I0a one pixel. In a representation by complex

C3a= (a neurons (b) overlap is only reduced.

Representation by complex neurons

Ii Ion Ilio

S1100 1 1N00IlIion1 Ili[on

SIliJon Ilion
Ilio

3R ------M---MM (b)

We could significantly improve shape sensitivity by including contour representations. Spatial
tolerance could not be achieved, however, by only changing the similarity measure, we also
had to change the contour representation. Model neurons with oriented receptive field [81
similar to simple cortical neurons provide chains of acitivity in response to a contour struc-
ture (fig. la). Model neurons with enlarged, highly overlapping receptive fields like complex
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cortical cells (fig. 1b), however, respond to contours with a cloud of activation. If we learn
the representation e. g. of a rectangle (fig. 2), and present the image in a diagonally shifted
position, there will be decreased overlap in the case of complex neurons, but no overlap in
the case of simple neurons. Though there is a local overlap at two crossing points in fig. 2a,
please note that there is no overlap in the components of the feature vector, as the neurons
at the crossing points are differently oriented. Clouds of orientation in the representation by
complex neurons still provide overlap also in the feature vector, and recognition is again
possible with reduced demands on the similarity measure.

At the moment we have investigated two types of complex model neurons with receptive
fields of double and quadruple size compared to our simple neurons, but in principle all
sizes are possible. There is an equal number of simple and complex neurons per unit area
and so the large sized fields have high overlap, necessary for cloud representation. The
shapes of the receptive fields are similar to those of the simple cells [8] and allow response
to contours with orientations of t 150 related to the field axis. Field axes are oriented at
ip = 00, 150, 300 ... 1800 related to a hexagonal pixel matrix. Our complex neurons respond to
all types of continous contours and are not sensitive to the phase (bright/dark).

All these features are very similar to those of biological complex cells, but they are also in-
dispensable for our system. They provide spatial tolerance and orientation selectivity neces-
sary for representation of contours by orientation clouds. Insensitiveness against contrast
phase helps to cope with changing contrasts due to ilumination [9]. Finally, response to only
continuous uninterrupted contours provides a clean up effect, showing only essential parts
of contour structures in the oriented cloud. By verification of continuity recognition becomes
more reliable, as noise and oriented textures are not learnt together with the contour
structure of an object. So continuity is an essential point in our model of a complex neuron.

Alternatives for Implementation of Complex Model Neurons

There are actually two alternatives for implementing all the features of our complex model
neuron: one using synchronization, the other one using only an appropriate interconnection
scheme in a straightforward way.

In both cases we define size and position of the complex receptive field, and within this area
we select all the combinations of simple cells which may be simultaneously activated by any
contour, matching to the receptive field of the complex cell. So the condition for activation
of the complex neurons is the simultaneous acitivity of one of these combinations of simple
neurons. In a straightforward model we could use linking neurons for verification of simulta-
neous activity. A linking neuron 1 should only become supraliminal if all the neurons a, b,
c, d of combination cl are active (ig. 3a) and another linking neuron 1, should be acitvated
by neurons s, t, u, v of combination c,. The complex neuron itself should be activated by
only one out of the linking neurons due to a very low threshold adjustment. The inter-
connection scheme is very simple (Fig. 4a) and no synchronization is necessary.

The real problem with this architecture is the tremendous number of linking neurons. In
order to allow arbitrary contours to be encoded, small parts of the visual field are encoded
by complete sets of simple neurons with receptive fields of different position, orientation,
and shape. There is a detailed description of this set in [8] and fig. 3b shows only a sim-
plified scheme. But the graph in fig. 3b will clearly show that a contour entering at point p
will have 54 possibilities to cross the complex field. So already in our small sized example
there are more than 5000 combinations and a corresponding number of linking neurons 1n
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if all possible entering points are considered . An architecture, however, which needs 5000
useless interneurons in order to connect about 100 simple neurons to one complex neuron
is evidently unaceptable expensive, and so we did not really realize it.

Fig. 3: Continuous contours matching to
Cn the receptive field of the complex model

n:euron activate combinations of simple
neurons. The receptive fields of the contri-

Ca buting simple neurons form sequences in
this case (a) and the high number of
possible combinations can be estimated on
the base of these sequences (b).

(b)n

Fig. 4: Due to a tre-
(a) mendous number of link-

ing neurons the straight-
complex neuron forward architecture (a) is

very expensive compared
linking with the synchronization-
neurons based architecture (b).

The symbols for synchro-

simple nizing interconnections (b)
a 0 bUneurons are explained in (c).

(b)

I complex neuron

;14ý ý simpleS.. . neurons

(• mutual
(c) synchronization

interconnections

The alternative architecture is based on synchronization between pulse coded model
neurons [10]. All pairs of simple neurons in the visual field with adjacent in-line receptive
fields, like (a, b) or (t, u) in fig. 3a, are mutually interconnected via excitatory synapses (fig.
4c). We could previously show [11] that all neurons responding to an arbitrary continuous
contour are synchronized by this interconnection scheme. Consequently, the combinations
cn (Fig. 3a), the building blocks of our complex neuron, are also synchronized by continuous
contours. Vice versa, continuity of a contour can easily be verified by sensing synchronized
activity.
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This leads to the very simple and inexpensive architecture in fig. 4b. All those simple
neurons contributing to valid combinations c, of a complex neuron are interconnected to it
by excitatory synapses. These synapses have a short time constant in the range of 1 ... 3 ms,
and so the membrane potential can only become supraliminal, if more than three spikes pile
up within a short time slot. This occurs as soon as a combination cn of simple neurons is
simultaneously activated and synchronized.

This simple architecture obviously provides all the features of our model neuron. Only
simple neurons contributing to valid combinations are interconnected to the complex
neuron, and so only contours are represented if they are matching to the receptive field of
the complex neuron in orientation and space. Interrupted contours or textures with correct
orientation can also activate but not synchronize simple neurons. So the spikes can not pile
up and the complex neuron remains subliminal.

Biological Aspects and Conclusion

Our actual research is in the neld of robot vision systems, and our model neurons sucessfully
provide clouds of activation (Fig. 5). The above results, however, could also support the
assumption that sychnronization provides superior solutions in biology. Our complex model
neurons show all the features of biological complex neurons, and as far as we know there
is no experimental evidence speaking aginst this architecture. Especially, we would like to
discuss two points. Hubel and Wiesel have already proposed a model of complex neurons
receiving input from simple neurons. The spikes of the simple neurons are not synchronized
in this model and so the synapses of the complex neuron must have longer time constants
and smaller weights in order to integrate the uncorrelated rates. This leads to a delayed
activity of the complex model neuron which is not observed in biology. This delay was one
of the strongest objections against this model, but this delay does not occur in our synchro-
nization based model. The first set of synchroneous spikes will immediatelly cause a spike
of the complex neuron, and there is almost no delay. Moreover, the complex model neuron
is synchronized to the simple neurons in accordance with recent experimental results.

Fig. 5: Contour representation of workpiece (b) by "activity" cloud of complex neurons (a).
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The second point which should be included into the discussion deals with the fast direct
inputs to biological complex neurons. These additional inputs are not considered in our
simulations. However, it would be compatible with our model, if fast inputs would prepare
a complex neuron by rising the membrane potential. Sychronized spikes from simple cells
could then more easily add the rrissing part of the membrane potential.

On the other hand, on can almost exclude that biology uses a straightforward interconnec-
tion like that in fig. 4a. Due to the additional interneurons delay would be still increased.
The additional "linking neurons" should repond to a piece of contour acitivating a combina-
tion of simple cells with in-line receptive fields, and so they should have extremely elongated
receptive fields. Due to the tremendous number of these neurons they should have been
found. Finally, synchronization between simple and complex neurons could never be
interpreted on the base of this straightforward model.

For completeness, we should not omit to discuss a third possibility by which biology could
realize complex cells without snchronization, and without additional interneurons. The
logical AND-function of the linking neurons (fig. 4a) could also be executed within the
dendritic tree itself between neighbouring synapses. In this model the tremendous number
of interneurons can be avoided, but not the time delay due to integration of un, )rrelated
spike trains. Again, the observed synchroneous activity of simple and complex neui ons could
not be explained at the base of this model.
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Abstract
The problem of binary pattern recognition invariant over translation, scale and in-plane rotation

is very often encountered in many practical situations. Recently high order neural networks (espe-
cially third order) were proposed to solve this task. However this approach was successful only for
distinguishing between two simple binary objects. In our paper we propose an efficient solution for
recognizing real world images (human faces) because of elaboration of effective coding algorithm for
gray level images and new neural network structure. Theoretical investigations and practical results
are described.

1 Introduction

For many years a problem of invariant pattern recognition draws attention of many researchers in this
field. One of the very interesting tools for solving such problems is an artificial neural network. It seems
to be reasonable to use a high order neural network of the third order since the required invariances
can be incorporated into its structure and do not have to be taught. In this contribution we present
the classical concept of the high order neural network (of third order) and efficient improvements which
enable to classify complicated gray level objects. The method described in this paper is very effective
and gives high recognition rates (over 96% correctly classified patterns).

2 Third Order Network for Binary Images

The output yi of the neuron i in a general high order network is given by:

Y= f (-tiji +ZF'WijkX•Xk +•- -FW ijkZjkXl +'') (1)

where f is a nonlinear threshold function (hardlimiter or sigmoid), the x(.) is the pixel value equal 1 or 0.
wi.... is an element of the interconnection matrix. In order to achieve invariant recognition over all three
considered transformations it is sufficient to use a third order neural network (TONN) [1). The output
signal of a strictly TONN is given by the function:

i =fEEE (Z Wijz-8kz) (2)
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For our purposes consider a binary pattern represented by a pixel map. Each triplet of different input
pixels forms a triangle. The idea of building invariances into structure of TONN takes advantage of the
well known fact that three included angles in a triangle are unchanged despite the translation, scaling
or in-plane rotation the triangle is subjected to. The connections architecture must be design in such a
way that the output signals are the same for the object independently of the mentioned transformations.
Therefore before the learning phase of the network we must connect triplets belonging to one class of
similar triangles to one weight. This synaptic weight is related to one equivalence class (EC)[3]. Instead
of having one weight for each triangle we have only one weight wk, for each triangle class. Taking it into
account we can reformulate equation (2):

Yi= f (E Wki) (3)
where k is the equivalence class index and Ik denotes the effective input given by equation:

Ik = E xj2 z3 2Xj 3 . (4)
(jijIjs)ECA

(3& is a set of pixels triplets of class k.

Because of the multiplications of pixels values in (4) the TONN is capable of supplying nonlinear
separation using only a single layer. During learning phase typically a simple perceptron learning rule is
used:

AWijk= (, - -)XjkX (5)

where ti and yi are desired and actual outputs respectively and x(.) is an input binary signal.

3 Reducing the Complexity of TONN

In order to take advantage of a third order neural network for invariant pattern classification we must
overcome the problem of combinatorial increase of the number of weights with the size of the input field.
This is the reason why we cannot use described in the previous section algorithm directly for real size
images. Even if we consider small input field, for instance 16 x 16 pixels, the number of connections
between pixel triplets and multiplying elements is very high (2 763 520 interconnections). Building invari-
ances into the structure of this network partially solves this problem, since we can substitute all weights
related to one EC by just one synaptic weight. Thus we can reduce the number of weights but we still
must store the same number of connections or to evaluate them on-line during simulation experiments
on a sequential machine.

The more pattern resolution is the higher number of triangle classes we have. In order to control the
number of EC independently of the image size a method for dividing triangles into "approximately similar
triangle" (AST) classes will be used [3]. AST are characterized by the same values of their two smallest
angles. We denote these angles by a, P and y which satisfy: a </P, 0 < c _< ir/3, 0 _< 0 < x/2 and
0 < P + a/2 < 7r/2. Furthermore we choose an angular tolerance w, so that W = 7r/3w and Q = ir/2w
are integers. Finally we partition the set of possible values of o and / into following subsets:

(k- l)w _ or < kw, (I-1)w < 0 < iw (6)

with k E [1, W] and I E [1, Q]. All triangles whose angles satisfy (6) for given (k, 1) are in the same EC.
The number of EC (effective inputs) can be calculated from:

NI = 7r(4w + ir) (7)

which is independent of pattern size. This reduces significantly the number of weights, for instance for an

16 x 16 pixels image normally we have 7414 EC (angle calculation with tolerance 10) and with W = 100

only 66.
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Figure 1: Illustration of coarse coding technique.

The controllability of the number of EC helps alleviate the problem for hardware realization but we
are still limited to relatively small input fields. Another simple scheme applied to solve this problem
was inspired by coarse coding (CC) [2] and described in [4]. In the latter the technique was successfully
implemented for simple binary images and such problems as T/C or distinguishing between two object.
We present here our view at efficient coarse coding technique for TONN.

Consider a small binary input field of size 4 x 4 pixels. All pixel numbers are denoted by letters a... p
as in figure 1. In order to reduce the size of an image we encode it into two plains of size 2 x 2. Elements
of the first plane (see first row in Fig. 1) are evaluated from:

A=aVbVcVd, B=eVfVgVh,... (8)

The second plane (see second row in Fig. 1) is shifted one pixel right and one pixel down and its
elements are given by

A=dVgVjVm, B=hVn, C=lVo, D=p (9)

If the plain exceeds boundaries of the input field we do not consider the values outside this field which
results in (9).

After this procedure we must compute effective inputs of each plain separately using (4) and sum
them up. This simple example can be generalized to higher image dimensions (more plains).

4 Efficient High Order Network for Gray Level Images

The described in the previous sections TONN with CC technique and angular tolerance is designed only
for binary images and can be easily implemented for invariant recognition of such objects. However it
is not always sufficient to have at one's disposal such classifying system, since many real world pictures
are represented in a gray level scale and transforming them into binary space means loosing essential
information. In this section we propose a neural network structure developed especially for invariant
recognition of gray level (GL) images.

Consider a binary 2-D pattern formed by pixels which can have values equal 0 or 1. This means that
the output of a multiplying element (eq. (4)) is taken into consideration o-ily if all three pixels building
a triangle are set. In order to generalize this for GL images, which pixel values ranges from 0 to some
Nm.. (maximum gray level) we utilize a linear transformation that changes integer into real numbers
uniformly dividing the [0, 1] interval.

After this transformation we must apply a coarse coding technique similar to this dedicated for binary
images (eq. (8.9)) but instead of logical operations we will take advantage of an average value of pixels
in defined neighborhood. We can reformulate now CC for GL images, which gives us following formulae:

A= !(a+b+c+d), B-= I(e+f+g+h),... (10)
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Figure 2: Neural network structure for gray level images (description in text).

and for second plane:

A= •(d+g+j+m), B= •(h+n), C= [(i+o), Dzp (11)

For letter assignment see figure 1.
Finally we must calculate effective inputs for each plane separately using formula (4) and sum them

up for all EC. The result forms a vector which has the number of elements equal the number of EC. This
vector is then an input vector presented for classification to a reliable neural network classifier - the multi
layer perceptron (MLP). The algorithm is reproduced in form of a neural network structure in figure 2,
where :1, ,. .. , zn denotes all elements of plane coming out of coarse coding, 03 is a multiplying element,

•1..-, • are summation elements (one for each equivalence class), and Yj,. . , Y are the outputs of
the MLP (one for each pattern).

5 Implementation Details

As a result of theoretical investigations a TONN implementation was developed. A complete software
package for testing and estimating usefulness of proposed algorithms was coded in C language for a 32-bit
compiler. All experiments we.re done on i486DX2/66 based machine with 64MB of RAM.

Two different network structures were utilized: a TONN with a simple perceptron-like learning rule
(described in sections 2 and 3) and a new TONN equipped with a MLP with two hidden layers (see fig.
2). [n both cases two different angular tolerance values w were chosen: w = 1° and w = 100 defining 7414
and 66 equivalence classes respectively. This results in four different network structures for testing.

In all experiments 64 x 64 pixels images of human faces as input patterns were taken. In order to make
computer simulations possible we were forced to reduce the complexity of TONN: each input pattern was
flrst normalized, so that all pixels values were transformed into 10, 11 interval and then coded using CC
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Figure 3: A - input image, B - coded planes.

technique (eq. (10,11)). After this step, 4 planes each 16 x 16 elements were taken for calculation of
effective inputs. An example of an original image used for training the neural networks and its 4 planes
is pictured in figure 3.

In order to measure and compare the recognition abilities of traditional algorithm (TONN with
perceptron-like learning rule) the same experiments as for GL images (new network model) were done
for binary images. The black and white pictures were obtained with threshold technique from original
GL images. With these pictures equations (8, 9) were used for CC purposes.

6 Simulation Results

For each experiment (both binary and GL images) two sets of eight human faces were used. After learning
the network to distinguish between patterns from training set transformed patterns of all images were
utilized for testing:

"* scaled to 90%, 95%, 105% and 110% of its size, and

"* rotated by ±20, +-5*, ±10*, ±15', ±20*, ±30*, ±450 and ±90'.

The origin of all transformation was in the geometrical centre of the input field. The translation case
was not considered, since while rotating or changing size of an object we simultaneously move the object
in reference to defined origin (the origin is not in the gravity centre of a face). It would not be the case
if we have rotated or scaled the image with the origin in the gravity centre of it. We have also done
experiments with translation separately and it was not a problem for a network to classify properly all
objects. The same refers to rotation by ±90*, when all faces were correctly recognized.

All results are summarized in figures 4 and 5.

7 Conclusions

In recent literature it has been shown that third order neural networks are able to distinguish between two
binary objects regardless of their position, in-plane rotation or changes in size. Although the problem of
combinatorial increase of the number of weights with the size of the input field seems to be under control
utilizing angular tolerance and coarse coding techniques, during experiments one can observe that with
the increase of patterns (number of faces in the learning set) the perceptron-like learning rule is not
sufficient for proper class separation. This is partially caused by the fact that exact transformation by
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image form/classifier type Number of EC (rolerance)
7414 (w = 1) 66 (w = 10*)

Binary / simple perceptron 53.6% 89.1%
Gray Scale / simple perceptron 64.3% 72.3%

Gray Scale / MLP 82.3% 96.0%

Figure 4: Recognition rates for rotated images.

image forn/,classifier type Number of EC (Tolerance)
7414 (w =lV) 1 6 (w = 10*)

Binary / simple perceptron '65.6% 71.9%

Gray Scale / simple perceptron 53.4% 68.8%
Gray Scale / MLP 6-5.6 1F 96.9%

Figure 5: Recognition rates for scaled images.

arbitrary vectors, rotation by arbitrary angles and scaling by arbitrary factors are not realizable on a
square lattice. Another problem inherent in ITONN is the necessity of applying various techniques for
reducing the complexity of connections which cause another information losses. For this two reasons we
are obliged to use a better classifier - a multi layer perceptron, which has better separation abilities.

Next improvement can be achieved using the angular tolerance. The distribution of triangles based
on the "approximately similar triangle" approach causes that mild distortions of the shape of a triangle
as a result of transforming images on a square lattice will not push it out of equivalence class to which it
originally belongs.

Another benefit can be utilized with the generalization of coarse coding technique for gray level
images. The results are better then those for binary images and the recognition rates for proposed
network structure is very high and promising.

The simplicity of described neural network structure allows possible hardware implementation which
would speed up the learning and classifying process. Further research should concentrate upon finding
new methods for increasing input plane size, minimizing interconnections number and testing robustness
against pixel noise.
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Abstract
Incremental ART extends adaptive resonance theory (ART) by incorporating mechanisms

for efficient recognition through incremental feature extraction. The system achieves efficient
confident prediction through the controlled acquisition of only those features necessary to
discriminate an input pattern. These capabilities are achieved through three modifications
to the fuzzy ART system: (1) A partial feature vector complement coding rule extends fuzzy
ART logic to allow recognition based on partial feature vectors. (2) The addition of a F2
decision criterion to measure ART predictive confidence. (3) An incremental feature ex-
traction layer computes the next feature to extract based on a measure of predictive value.
Our system is demonstrated on a face recognition problem but has general applicability as
a machine vision solution and as model for studying scanning patterns.

Introduction

Classification algorithms including K-means, nearest neighbor, self-organizing feature
maps, backpropagation and ART systems (Carpenter and Grossberg, 1987) all require that
the entire input or feature vector be presented before confident prediction can be made.
This requirement demands that preprocessing of a scene be completed prior to recognition
despite that fact that much of that preprocessing may be unnecessary or irrelevant. For
typical applications such preprocessing demands feature extraction by either expensive par-
allel or time-consuming sequential implementations. One common remedy is to determine
and extract a set of task specific features off-line. By contrast, human visual recognition
acquires scenic features incrementally through the intelligent deployment of the spatially
limited foveal resource by automatically determining which scenic features are important
for a range of tasks (Rojer and Schwartz, 1992; Seibert and Waxman, 1993). Our model
extends fuzzy ART (Carpenter, Grossberg, and Rosen 1991) both as a pattern recognition
device and as a model of human recognition through the incorporation of three modifications
which interactively allow recognition through incremental feature evaluation and extraction.

Our control strategy results in an efficient system in which the status of the recogni-
tion process guides the deployment of acquisition and preprocessing resources offering the
potential for real-time affordable operation even in very complex input environments.

The operation of Incremental ART is illustrated on a face recognition problem. In this
example, Incremental ART was trained on a set of complete feature vectors extracted from
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12 faces taken from the MIT Eigenfaces database (Turk and Pentland 1991). Each complete
feature vector consisted of a coarse spatial coding of local boundary activations concatenated
with a much longer fine spatial coding of local boundary activations.

Testing was then carried out using the faces corrupted by noise. During testing, only the
coarsely coded portion of the feature vector was initially presented. The system then ex-
tracted finely coded features incrementally from predictive regions of the face until confident
recognition was achieved.

Feature extraction was accomplished by a minimal scheme for discounting the effects of
variable illumination and detecting boundaries (Contreras-Vidal and Aguilar, 1993). Ga-
bor filters were used to detect boundaries of 4 orientations, the resulting boundaries were
sharpened by techniques inspired by the Boundary Contour System (BCS) (Grossberg and
Mingolla 1985a,b), and then orientation activations were summed and normalized within
both coarse and fine regions. The details of preprocessing are not relevant since the system
is compatible with any preprocessing scheme.

Incremental ART

Incremental ART is a departure from conventional feedforward approaches in which the
system only processes that information which is initially supplied. A more efficient approach
is to reduce the amount of information preprocessed at any one time provided that the system
can actively control from which areas in the environment it will next extract features. This
sequential acquisition process allows for a reduction in the complexity of initial preprocessing
and for confident recognition based on minimal feature extraction.

Figure 1 presents a diagram of the Incremental ART system. The Incremental ART
system dynamically guides the feature extraction process to accomplish face recognition.
Algorithmically, the operation of the system can be summarized as a three step process in
which each step incorporates one of the extensions to fuzzy ART. The three steps repeat
until the decision criterion is met and confident recognition occurs.

Step 1: The incrementally completed feature vector is input to the F, layer. This vec-
tor activates the F2 layer according to the fuzzy ART activation equation augmented by
the partial feature vector complement coding rule. Step 2: The distributed pattern of F2
activation is then contrast enhanced and a winner is chosen if a decision criterion is met.
Step 3: Otherwise the incremental feature extraction layer determines which feature to next
extraction.

Partial feature vector complement coding rule

In order for a partial feature vector to activate F2 categories in a way that accurately
reflects the partial information represented some distinction must be made between the
absence of feature due to the fact that it has not yet been extracted and the absence of a
feature due to an actual absence in the scene.

The complement coding preprocessing strategy provides a means of expressing this dis-
tinction. In complement code, each feature is represented by both on and off channels so
that the on channel codes a measure of the feature's presence and the off channel codes a
measure of the feature's absence (Carpenter, Grossberg and Rosen 1991). Thus, in both
categorization and learning both the presence and the absence of a feature can be predictive.

The partial feature vector complement coding rule states that in a complement coded
feature vector, the absence of a feature due to an actual absence in the scene (after extraction)
is coded as a 0 in the on channel and a 1 in the off channel, whereas the absence of a feature
due to the fact that it has not yet been extracted is coded as a 0 in the on channel and a 0
in the off channel.
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Figure 1: System diagram of incremental ART.

This rule allows informative activation of recognition categories at F 2 by a partial fea-
ture vector. Since in the current implementation, learning is prevented when only a partial
feature vector is present, the rule does not result in spurious decrease in weights for features
that have not yet been extracted. However, a given partial feature vector may not yield an
unambiguous winner among F2 categories.

Decision criterion

An alternative to the standard ART F 2 winner-take-all choice rule uses a decision cri-
terion (DC) at the field F2 . The decision criterion is introduced in ART-EMAP to achieve
efficient 3-D object recognition (Carpenter, and Ross 1993a,1993b). The decision criterion
permits ART choice only when the most active F2 category J becomes a minimum propor-
tion more active than the next most active F2 category. Thus if zj codes system prediction

1-595



and yi codes F2 node activation:

1 if yj > (DC)yj for all j ( Jzj = 4(I)

0 otherwise,

where DC > 1. When DC = 1, the decision criterion rule reduces to the F2 winner-take-all
choice rule used in previous ART systems. When DC > 1, the decision criterion prevents
prediction in cases in which multiple F2 categories are about equally activated, represent-
ing ambiguous predictive evidence. For computational convenience, activity at F2 can be
contrast enhanced prior to application of the DC by a normalized power rule:

= (N ) (2)

n=1

When the decision criterion fails more features must be extracted to disambiguate.

Incremental feature extraction

The determination of which features of the input environment, in this example a face,
to process next to best disambiguate between potential recognition categories requires some
.neasure of the discriminating power of one portion of the feature vector versus others. The
variation across the weights between a single feature and likely categories provides a good
indication of the predictive value of extracting that feature, since it is a measure of the
variation in yj activation that would result. Therefore, in this implementation, we use, S",
, where u is the index of an unaccessed F1 feature, to be the sum of the biased differences
between the template weights and the template weight of the maximally activated category.
Each difference is biased according to the likelihood of that category as given by yj. Thus,
if the most active F2 category is J, the F1 features are xi, and the F1 -+ F2 weights are wij
then the feature to be extracted next, U, will be given when;

Su > Sufor all u 5# U (3)

where,

NF2

U= E yjlw i - WUJj. (4)
j=1

This incremental feature extraction layer determines each unaccessed features predictive
value dynamically since after each extraction yi changes. It should also be noted that the
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Figure 2. Simulation of recognition sequence for noisy version of face 6. The system is trained
with the faces shown in the first row. The sequence of feature as exctracted by the system are
shown after each new reduction in the number of candidate categories. Clean images are used
to show the scanning patterns. The actual test input was noisy as shown.
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value of q in the normalized power rule (2) scales the degree of bias according to category

likelihood.

Simulation results

In practice, we found that using q = 4, and DC = 1.25 yielded perfect performance on
the noise-corrupted face test set while requiring a minimal number of incremental feature ex-
tractions, on average 10% (15) of the finely coded features. Figure 2 illustrates performance
for one of the test faces. The sequential extraction of predictive features rules out candidate
face categories gradually as the marked scanning pattern emerges.

Conclusion

A new neural network architecture is presented which extends fuzzy ART -.o accomplish
efficient recognition through intelligent incremental feature extraction. Incremental ART
is demonstrated to offer computational savings without loss of predictive accuracy while
offering a model of saccadic scanning pattern.
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A Parallel Channel Binocular Vision Neural Network Model
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ABSTERACT

Stereo vision, which creates the sensation of visual depth, results from the neural response to dissimilarities in the
images seen by the two retinas. Psychophysical studies have strongly suggested that stereo disparity exists in the human
visual system, and forms the basis for three-dimensional depth perception in the brain. This subject has been studied by
many scientists using various approaches. Recently, several vision biologists have proposed a human binocular neural
interaction model. Base on their discovery, we modify Neocognitron's mathematical equations proposed by K. Fukushima,
and simulate this multilayer neural network model with binocular images on a digital computer. This model provides
binocular depth performance close to the biological data.

1. INTRODUCTION

The scene input through the two eyes is segregated from the retinas up to the visual cortex. Cortical neurons and
the lateral geniculate body neural interconnections are organized in two sets of ocular dominance columns that each receive
input from one of the eyes. Neurophysiologists studying this structure have concluded that binocular interaction neuron
cells exist in the visual cortex of the brain. Hubel and Wiesel ' were the first to discover binocular interaction cells in the
upper and lower layers of the cortex that receive input from both eyes. The two most important conclusions of their
discovery, are: (1) The cells of receptive fields in the visual cortex consist of "simple" cells and "complex" cells and (2)
Several types of simple receptive fields exist, differing in the spatial distribution of excitory and inhibitory regions. Other
biological experimental reports have been contributed by G.F. Poggio 2; P.O. Bishop, et al. 3; C.Blakemore 4; and I.
Ohzawa and R.D. Freeman '. G.F. Poggio 2 concluded that in the macaque monkey, a substantial portion of both complex
and simple neurons are differentially sensitive to horizontal binocular disparity. Different subsets of excitory or inhibitory
neurons respond to a small disparity range. P.O.Bishop 3 discovered that binocular interaction fields in the cat striate
cortex consist of some neurons with weak monocular responses, binocular gate neurons interconnection types, and
binocular opposite direction selective neurons. C.Blakemore 4 provided evidence of constant depth columns and constant
direction columns for disparity detecting neurons. More recently, I. Ohzawa and R.D. Freeman 5.6 studied the binocular
organization of simple cells and complex cells in the cat's visual cortex. They concluded that most of the simple cells
show phase-specific binocular interaction, and the complex cells combine outputs from a small number of simple type
receptive fields. The results of these studies suggest that the binocular interaction neurons are capable of forming a depth
solution and that they extract stereoscopic features. The disparity-detecting neuron interconnection of our model is
primarily based on these biological data.

In the field of computational vision, binocular stereo vision has also been studied by scientists. B. Julesz 7 used
random-dot stereograms to demonstrate that the stereo module is separated from other vision modules. D. Marrs suggested
feature-based matching algorithms. T.D.Sanger ' used the differences in the complex phase of local spatial frequency
components of Gabor filters for stereopsis computation. C.C.Chang '0 used the Markov Random Field (MRF) theory and
Simulated Annealing (SA) to model the disparity field from image data. Although these approaches demonstrate stereo
computation capability, none is related to the neural network model. Y.Hirai and K.Fukushima "1,2 previously proposed a
binocular depth-perception neural network model that can find binocular correspondence predicted by neurophysiologists.
These neurons are selectively sensitive to a particular orientation and position of the stimulus. More recently, M.Nomura,
et al. 14 proposed a mathematical model for simple cell response based on G.F.Poggio's 13 experiments. It uses two
Gabor-type receptive fields that have the same spatial frequency and orientation, then integrates input from both eyes and
performs a nonlinear threshold operation. Their binocular disparity cell model consists of tuned excitory, tuned inhibitory,
near and far cells. As of this date, the full functionality of excitory and inhibitory connection has not been explored in the
above models.

2. STEREO NEURAL VISION AND STEREO DISPARITY

Figure 1 illustrates the geometry for a binocular stereo-imaging system consisting of stereo cameras that have a
common focal length f, and a baseline distance D. Assume an object is located at P. The relative difference in positions
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between the image points corresponding to its projections onto the left and right image planes is defined as the stereo
disparity associated with the pair of image points.

d = (x r,y r)- ( x1, y') (1)
If we use one of the stereo image pairs as the reference image and the other as the target image, the goal of the

stereo matching process is to locate the corresponding points in the target image for the points in the reference image.
Although the stereo matching process is usually characterized as an ill-posed problem in early vision studies, and many
methods have been suggested before ' our goal is to demonstrate a neural network stereo matching process to compute the
stereo disparity.

In the next section, we propose a binocular neural vision model to compute the binocular disparity (depth). We
will summarize our computer simulation results in Section 4 and present the conclusion in Section 5.

3. BINOCULAR NEURAL INTERACTION MODEL

Figure 2 shows the complete neural interconnection structure. This model primarily consists of two parallel neural
channels. The first layer of each is a monocular feature extraction layer; there are several simple cell planes in this layer.
Each of these planes extracts preferred orientation features of the stereo image pairs. On the left monocular feature
extraction layer, the right image ,sed as an inhibitory input to extract the features from the left image. The same
principle applies to the right featu. , xtraction layer. At the next stage, the binocular complex gate neural layer combines
input from both the left monocular feature extraction neural layer and the right monocular feature extraction neural layer
using two pairs of asymmetric excitory and inhibitory weight connection matrices. The output response of this layer
forms the input to the binocular integration neural layer. A mutual inhibitory connection is applied to both the left and
right binocularly opposite direction selective neural layer. Each of these binocularly opposite direction selective neural
layers are connected by a pair of symmetric excitory and inhibitory weight connection matrices. The outputs of these layers
are summed into the binocular integration neural layer. The symmetric and asymmetric excitory and inhibitory weight
connection matrices used in our model are taken directly from the biological data obtained by P.O. Bishop, et al., 3 and
G.C. DeAngelis et al. "5. P 0. Bishop's data indicate that for binocularly opposite direction-selective neurons, each eye has
a receptive field which is excitory for one direction of stimulus movement and inhibitory for the other direction. G.C.
DeAngelis provides strong evidence to show that the optimal stimulus disparity is determined by the difference in phase
between the excitory and the inhibitory profile.

In Figure 3, we show the connection diagram for the left and right image planes to the monocular feature extraction
neural layer. The neural interconnection between the left and right image planes to these feature planes is expressed in
Eqns (2) and (3) which have both modifiable excitory weight matrices and inhibitory inputs. Equation (2) defines the

feature piane representation of the j-th plane in the left monocular feature extraction layer., where, in the equation aM lV)
and b(r1) represent the modifiable weight matrices, and drl(V) represents the inhibitory weight connection matrix. The

strength of connection can be modified through control of the constant in the equation. We modify the equations
previously published by K. Fukushima 16 for this layer. The difference is that while Fukushima uses this equation for
monocular input image feature extraction, we use it for binocular input image pair feature extraction. The numerator of
equation (2) stands for the excitory input from the left image plane, and the denominator of equation (2). stands for the
inhibitory input from the right image plane. The same principles apply to the right monocular feature extraction layer
which is represented in Eqn (3).

1+ a ,t l v*i/(n+v)

=Al I I where O)xi= (2)
I1 2 r/1 .b(rl). / dr l(v)*ij nv) 0 if x<0

+r/l v E DrI

+ djr l(v)*ir n+v)
S Jl(n) =rr 1.V E • r 1 (3)

r1+ 2ýrrl.b(ll). Y_/ dl llV)*i/ 2 (n+v)'

l+rrl v r= DI I

The binocular gate neural layer acts as a gate for visual depth or disparity features. Stimulus passes through this
layer only if it is located at the precise depth in space where the excitory region of one input image is congruent with the
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inhibitory region of the other input image "'. The connection diagram from the monocular feature extraction simple neural
layer to binocular gate neural layer is shown in Figure 4. The output of this layer, which comes from multiple cell planes

is described in Equation (4). The matrix S1I(n+v) represents the left monocular feature extraction neural layer, Sri(n+v)

represents the right monocular feature extraction neural layer. al g(V) and 4 g(V) are the fixed synaptic weight connection

matrices for the left monocular feature extraction neural layer and the right monocular feature extraction neural layer

respectively. Matrix al g(V) is symmetric with respect to the horizontal axis of the weight connection matrix. The

disparity sensitivity d is built into these weight connection matrices. The constant (x determines the saturation of the
feature output response of the cell planes.

1+ X g(V)*SJi,(fl+v) 1 + I a4g v)*Sjl (n+v) 1
SlA(n) =. V E A Ig + T . vEArg r -1 (4)

g Kg . *. Kg .

1+ ll1i ajrg(v *S nv 1 rv)*S .l(n+v)LKg j=l VEAl Kg j~l VEArg
Ix if X-> 0/

where T(x)=(O+°a if=x<0 and gV) -= ag(x-d'y;XO), ag V) = ag(x+dy;),O)

0 ifx<OJ 19 gr r

The interconnection from the monocular feature extraction neural layer to the binocularly opposite direction
selective neural layer is shown in Figure S. The binocularly opposite direction selectivity neural layer 3 is similar to the
neural interconnection mechanism in the monocular feature extraction layer except that the inhibitory input is averaged

before convergence from the left and right monocular feature extraction layers. The outputs of this layer, Cj 2(n) and

Cir 2 (n), consist of multiple cell planes described in Eqns (5) and (6). a/ 2 (v)and a}r2v) are the fixed synaptic weight

connection matrices for the left monocular feature extraction neural layer and the right monocular feature extraction neural

layer, respectively. The matrix a! 2(v) is asymmetric with respect to the horizontal axis of the weight connection matrices.

These matrices are similar to all g(V) in which the disparity sensitivity d is built into the weight connection matrices.

These equations show that the interconnections are different from the binocular gate neural layer in the sense of
asymmetric excitory and inhibitory weight connection matrices.

1+ YX a12(v).S11 (n+v) 1
K2 . )

v K2j=1ve Ar2 r

-,-c2(n=V| VE Ar2

S~x

2(n) IF K2 1 (6)

K2j=lve Al2
The binocular integration neural layer is constructed according to principles found in 1. Ohzawa, et al., 6.,17 and Y.

Hirai, et al""'. They concluded that binocular non-phase-specific complex cells have subunits whose optimal relative
phases are random or monocular. Additionally, they discovered the linearity of binocular summation in receptive field

subunits. Equation (7) describes the principle of this layer. In the equation, a'h31(v) and 4•3 r(V) are the synaptic weight

connection matrices from the left and right binocularly opposite direction selective neural layer. ab3g(V) is the synaptic

weight connection matrix from the output of binocular gate neural layer. Both the excitory and the inhibitory synaptic
weight connection matrices are non-phase specific. The modifiable strength is set up according to the same principle used
by the left and the right monocular feature extraction layer.
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Sb3(nI+ [1.WI 3 v)*Cjl 2(n+v) + aýi3rP)*C4 2(n+v) =~ 3 p VeblV~~ * 7SJV Ab3r(7
rJ3(n)b=r b3". | A b(b3). Vi 2-1

L l+rb3 V E Ab3g b3g(v)*jg I na Cj

4 . COMPUTER SIMULATION
Using the same tree stereo images as C.C. Chang'°, we show by computer simulation that the computation of

horizontal disparity achieves using this neural network model. The simulation results of our model are shown in Figures
7. The disparity responses of each of the cell planes in each layer are coded as image intensity.

5. DISCUSSION AND CONCLUSIONS
The neural stereo vision model will have many commercial and military applications. Examples include automatic

vision systems for extracting 3-D information, autonomous vehicle navigation, and automatic parts inspection used by
industrial assembly lines.

In this paper, we have presented a binocular visual neural network model to compute the disparity response for real
stereo pairs of images. The model and its performance closely match the performance predicted by some of the biological
data. Although this model is extremely complex, our data only show a preliminary result.

The authors wish to thank Dr. C.C. Chang and Dr. S. Chatterjee for the use of their stereo image data.

6. REFERENCES
1. D.H. Hubel, T.N. Wiesel," Stereoscopic Vision in Macaque Monkey," Nature, Vol. 225, pp. 41-42, 1970.
2. G.F. Poggio, " Processing of Stereoscopic Information in Primate Visual Cortex," in Dynamic Aspects of Neocortical
Function, G.M. Edelman, W. Einer Gall, W. Maxwell Cowan, eds.; John Wiley and Sons, New York, 1984.
3. P.O. Bishop, G.H. Henry and C.J. Smith, "Binocular Interaction Fields of Single Units In The Cat Striate Cortex,"
Journal of Physiol. 216, pp. 39-68, 1971.
4. C. Blakemore," The Representation Of Three-Dimensional Visual Space In The Cat's Striate Cortex", Journal of
Physiol. Vol. 209, pp. 155-178, 1970.
5. I. Ohzawa, R.D. Freeman, "The Binocular Organization Of Simple Cells in the Cat's Visual Cortex," Journal of
Neurophysiology, Vol. 56, No. 1, pp. 221- 242, July 1986.
6. 1. Ohzawa, R.D. Freeman, "The Binocular Organization Of Complex Cells in the Cat's Visual Cortex", Journal of
Neurophysiology, Vol. 56, No. 1, pp. 243-259, July 1986.
7. B. Julesz. "Binocular Depth Perception," Bell System Technical J., Vol. 39, pp. 1125-1162, 1960.
8. D.Marr,T.Poggio."A Computational Theory of Human Stereo Vision,"Roy. Soc. of London, B-204,pp.301-328, 1979.
9. T.D. Sanger, "Stereo Disparity Computation Using Gabor Filters,"Biological Cybernetics, Vol.59, pp. 405-418, 1988.
10. Chienchung Chang, "Area Based Methods for Stereo Vision: Computational Aspects and Their Applications," Ph.D
disseration, University of California, San Diego, CA, 1991.
1I. Y. Hirai, K. Fukushima, " An Inference Upon Neural Network Finding Binocular Correspondence," Biological
Cybernetics, Vol 31, pp. 209-217, 1978.
12. Y. Hirai, K. Fukushima, "A Model of Neural Network Extracting Binocular Parallax," Biological Cybernetics, Vol.
18, pp. 19-29, 1975.
13. G.F. Poggio, B. Fischer, "Binocular Interaction and Depth Sensitivity in Striate and Srestriate Cortex of Behaving
Rhesus Monkey," Journal of Neurophysiology, Vol. 40, pp. 1392-1405, 1977.
14. M. Nomura, G. Matsumoto, and S. Fujiwara, "A Binocular Model for the Simple Cell," Biological Cybernetics, Vol.
63, pp, 237-242, 1990.
15.G.C. DeAngelis, I.Ohzawa, R.D. Freeman, "Depth is Encoded in the Visual Cortex by a Specilized Receptive Field
Structure," Nature, Vol. 352, pp. 157-159, July 1991.
16. K. Fukushima, S. Miyake, and Takayuki Ito, "Neocognitron: a Neural Network Model for a Mechanism of Visual
Pattern Recognition,", IE.E.E. Transactions on Systems, Man and Cybernetics, Vol. SMC-13, pp. 826-834, 1983.
17. A. Macy, I. Ohzawa, R.D. Freeman, "A Quantitative Study of the Classification and Stability of Ocular Dominance in
the Cat's Visual Cortex," Exp. Brain Research, Vol. 48, pp. 401-408, 1982.
18. M. R.M. Jenkin, A.D. Jepson, "The Measurement of Binocular Disparity," in Computational Processes in Human
Vision: an interdisciplinary perspective," edited by Z.W. Pylyshyn, Norwood, N.J., Albex Pub. Corp., 1988.

1-602



Lef StPoRgt Stereo

b eft Monocular Feaurej Right Monocular

traction Neural Lad Feature

lExtraction Neural Lay

% I#

I Binocular Gate
I Neural Layer

Letfttoctlarly IRight Binocu~larly

D pposit ~exDr ction y connectionetio

inhiitory connection

Figure 1. Epipolar geometry of a Figure 2. The binocular neural interaction channel
binocular neural image system derived from left channel to right channel and right

channel to left channel,the final result is the
combination of these channels.

I !PtLeft Column Right Column
ftInput [NIo e Monocular Feature Monocular Feature

aw [wage none Extraction Simpk xra Sml

th letadrgtiagNln oteextraLacy o euaaer obNocurlayr gaei eualsac"
monocular feature extraction neural layeraTes bnclrfauersos pae r eetdbh

sumain f ipait etctdfites

1g-6034yko



Left Binacularly Opposite Right Binocularly Opposite
bitted.. Selectivity Neural Direction Selechivity Neweal
Layer Layer

Mmmacular Feat"" Right Columns
Extraction Neural Monocular Feature
am.-yer hExtractlo Neural Layer

r.L j a~(z+Iy;),O) Blame Gate
K2 k 2 11I Newal ye,

alarly oppoite
Lrectioa Selectivity Neural

Layer

Figure $.The connection diagram from monocular Figure 6. The connection diagram for binocular
feature extraction neural layers to binocularly integration neural layer

opposite direction selectivity neural layer.

Figure 7.The simulation results with binocular parallel channel neural
network model for tree stereo image pairs: the disparity planes
coded as image intensity on binocular integration neural layer.

1-604



Selectivity of Feature Detection Weights for a Neocognitron-like,
Image Analysis Neural Network

Peter Soliz
John P. DiTucci

Applied Sciences Laboratory, Inc.
P.O.Box 21158 Albuquerque, NM 87154

Mark Culpepper
Greg Tarr

Phillips Laboratory (AFMC)
Kirtland AFB, NM 87117

Abstract

The neocognitron, proposed and pioneered by N. Fukushima, has inspired vision-based neural
network research at a number of centers throughout the world. The self-organizing approach to
feature selection and pattern classification is often plagued with long training times and selection of
features which may or may not have significance to the application. For the more interesting image
classification problems, the neocognitron has extremely large memory requirements to
accommodate connecting weights. Pre-training feature selectivity can lead to a closed form
solution to Fukushima's neocognitron, which in turn can result in the elimination of the tedious
training requirement of the lowest layer. When combined with a clustering type of neural network,
which takes advantage of the neocognitron feature selection, this hybrid neural network performs
image analysis and classification of complex objects in a much more efficient manner than
Fukushima's traditional neocognitron. The hybrid neural network loses none of the highly
desirable features of the neocognitron. It is shift invariant, distortion tolerant, and has been
extended to extract complex, gray-scale features. A neocognitron inspired neural network is
suggested which runs significantly faster and with significantly less memory requirements. The
Phillips Laboratory has embarked on an aggressive research program to assess vision-based neural
networks in a number of applications, including automatic image analysis..

1. Introduction.

The Air Force Phillips Laboratory is researching techniques for automatic, near real-time
processing of optically-sensed images of a variety of man-made objects. To take advantage of the
rich possibilities offered by a neural network which detects and extracts physical features, the
Phillips Laboratory sponsored research has selected the neocognitron for its vision-like approach to
image analysis. The hybrid ANN's approach for pattern recognition at higher levels is based on
"feature discovery" implemented through a neocognitron-like algorithm at the lower levels. The
success in using a multi-step procedure that extracts features before attempting a pattern recognition
has been demonstrated by a number of researchers1,2, 3. There are aspects of the vision problem
that an implementation of a pattern/object recognition system using only the neocognitron does not
perform readily. A hybrid approach has been implemented successfully by the aforementioned
researchers who employ the neocognitron for feature extraction and a network like adaptive
resonance theory (ART) for the classification problem.

Instead of the computationally intensive approach employed by the researchers for feature
extraction and image analysis, an alternative approach is being studied. Features will be extracted
from new images with a directed training approach which will not require large weight fields or
laborious iterative training. Data for feature characterization and weight determination are provided
by the computer-aided model database. Object identification can be performed with simpler and
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more appropriate neural networks. Similar hybrid approaches have been successfully

demonstrated.

2. Background

Although it is not known with total certainty how the human performs pattern recognition, it is
generally understood that it involves a matching of the visual stimulus with stored memory. A
number of pattern-recognition theories have been advanced to explain the processes involved in the
matching of the long-term memory information with the visual stimulus. Among them are feature
theories and that advanced by Gestalt psychologists 4. The framework within which the human
vision system processes the visual stimulus and corresponding computational analogs is described
especially well by D. Marr 5 and Grossberg 6. Pattern or object recognition is performed through
a process which is highly dependent on our ability to extract primitives or tokens which are
representative of shapes. Visual stimuli are processed in successive stages, where the first stage
extracts features like edges, and the final stage involves advanced vision processes like spatial
organization of complex 3-D features.

Marr contends that this representational framework for deriving shape involves three levels:

"* Primal Sketch - which extracts geometric and intensity information from a two-
dimensional image.

"* 21/2-D Sketch - which describes the orientation and rough depth, and
discontinuities.

"• 3-D Sketch - which represents the pattern with spatially organized shapes.

In the primal sketch, where many of today's pattern recognition applications are focused, the
primitives which are being analyzed are the pixel intensities, edge segments, blobs, zero crossings,
and there is some analysis of groups, boundaries and curvalinear organization. The more difficult
primitives in the primal sketch, such as virtual lines, groups, terminations and discontinuities, are
often not treated with the same attention as the former list of primitives. The primitives in 2 I/2-D
sketch, which include local surface orientations, depth, and discontinuities in depth and surface
orientation, are rarely treated explicitly in most pattern recognition systems.

Implementations of vision-based artificial neural networks have addressed only narrow aspects of
Marr's ideas on computational vision. This situation has led to neural networks which are limited
in their application to image recognition problems. For example, Fukushima's neocognitron has
demonstrated extremely good capability in character recognition problems where the pixel data
contain binary images 7. The neocognitron has been used successfully in extracting features from
an image plane containing a complex object, such as a vehicle. Researchers, including the authors,
have repeatedly shown the neocognitrox; to be shift invariant and distortion tolerant. Issues related
to training time for features in complex scenes and objects with any possible 4-7t steradian
orientation have also been mentioned and solutions attempted..

Fukushima 8 proposes a neural network paradigm that models some aspects of the architectural
theme of human vision. He achieves the objective of feature extraction through a series of local-
ized feature detectors in his implementation of the neocognitron. The neocognitron is a hierarchical
neural network, where the input layer is a two-dimensional array of pixels (the image). Each layer
has a number of planes, consisting of two-dimensional arrays of S-cells and C-cells. The purpose
of the S-layer is to detect the presence of a particular feature in the preceding C-layer. Through the
presentation of sample patterns, the neocognitron is trained so that S-cells respond (highest output)
to certain features. As the training proceeds, each S-plane becomes selectively sensitive to a
feature in the image pattern. Details on how neocognitrons are trained and a background on their
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development will not be presented in this paper, but are given by Fukushima 9. The C-planes in
the last layer contain a single C-cell each. If one were training the neocognitron on the ten
numerals, then the neocognitron would be constructed such that the last layer would have ten C-
planes. Each of the planes would train to recognize a different numeral. When activated, the plane
would signify recognition of the number it had learned to recognize. A similar behavior would be
exhibited for a neocognitron trained, for example, to differentiate between two or more objects.
There would be at least as many C-planes in the last layer as there were objects.

Conceptually, the neocognitron extracts features by scanning an image plane with a receptive field
of finite size, seeking to match a certain feature with a number of feature planes in the first layer.
This process is illustrated in Figure 1. The letter "A" can be thought of as having three simple
features: a horizontal line and two lines slanted in opposite directions. Each feature is detected in a
number of places in the image planes, as depicted by the activation of the cells in the second layer.
Each successive layer operates in the same manner, except that in the higher layers (layers 2 and
greater), the receptive field scans for patterns in the features detected by the previous layer. The
result is an integration of features by the higher layers until classification occurs. This concept has
been demonstrated by a number of researchers, including the authors, in a number of applications.

Because for most applications the patterns to be recognized
are not presented as block letters in the center of the field of -.------ -:. -

view, the algorithm for feature detection must be
insensitive to translation (object off-center in the field of
view) and tolerant of distortions (for example, handwritten eature
letters). Figure 1 shows how the neocognitron solves
these problems. Since the algorithm scans the entire image . ..- "-"
plane with its receptive field, the feature may occur any- " -
where and the neocognitron will find the feature. As with
the mammalian vision system, the neocognitron was Figure 1. Feature Detection and Integration
developed to account for distortions. The weights in a Neocognitron.
(excitatory and inhibitory) will illicit a response in the S-
cells for patterns that are not exactly the learned pattern. The tolerance for accepting distorted
features can be tuned by the "similarity term" in the neocognitron.

The "learning" of combined features in the higher layers of the neocognitron is often a computer
intensive process. To overcome this problem, a popular approach has been to exploit the
neocognitron's aptitude for feature extraction, then apply a different type of neural network,
usually a clustering paradigm, to combine features into a higher level pattern recognition system.

3. Closed-form Approach to Feature Selectivity

The principal equations for Fukushima's neocognitron are given below. Equation [1] gives the
activation of a cell in the feature detection planes of the first layer, 1. As one can see, the activation
is a function of the a-weights, the input image (Uc), the b-weights, the inhibitory plane (Vc) and
the similarity constant, ri. In Fukushima's scheme, his goal is to train the network to recognize
unspecified features in the input plane by allowing the a- and b-weights to learn a set of features
through a competitive learning process. For the first layer, only the a- and b-weights are unknown
and must be solved for unspecified features through Fukushima's iterative process.

For some applications, as with a mature human, recognition of an object or a pattern is not a
learning process which starts with "random features". Humans learn to distinguish between
classes of objects by comparing previously learned (therefore pre-selected) features. If one were to
specify all the features one wished the neocognitron to detect, then the equations could be solved
for a unique set of b-weights. If, for the moment, the calculation of weight values for the
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remaining layers is not of concern, a cognitron can be developed to detect features in the input
plane without the time-consuming iterative process of Fukushima.

I + •' 4 (ki_1, v,ki)*Uc. 1 (k4.. ,n+v) [1
Us1(kl,n) r1* + r bl(k1) Vc I., (n)

1 +rI

Vd(n) = 3 c1_1 (v) , Uc1._1 (kl-1, n+v) [2]

Aa1(k11,v,C1) = q, * c1_1 (v) * UOc 1 1 (ki-1, n+v) [3]

Ab1(k = q, * q_1 (v) * Vc 1-1 (n) [4]

The first step in this directed training process is to select the features which one wishes the
neocognitron to detect. The a-weights are adjusted so that there is an orientation of the weights
toward the selected feature. This process specifies the excitatory weights. The calculation of the
inhibitory weights can also be performed knowing the input image, Uo, and the c-weights. The b-
weights are calculated using Equation [4]. In a single scan of the image plane, Uco, the activation
fields for the first layer, UsI, for each feature (set of weights) can be calculated explicitly without
an iterative algorithm.

A directed feature pre-selection version of the neocognitron has been developed based on the same
general formalisms originally proposed by Fukushima 7. Because of the highly structured nature
of the problem which is being addressed in this application, where it is highly desirable to be able
to pre-select manually the features of greatest interest, it is possible to prescribe excitatory- and
inhibitory-weights analytically. An algorithm which combines the feature detection process
popularized by Fukushima with a modification of his excitatory-inhibitory functions and the
technique for calculating these functions has been developed and tested on imagery of a variety of
geometrical objects.

Using Fukushima's notation, the activation for a plane is shown in equation [5] to be a function of
an excitatory function, fex and an inhibitory function, fin. The excitatory contribution to the
activation is given by equation [6] as the dot product of the weight field and the receptive field on
the image plane, normalized by the weight field. This means that a value of unity will result when
there is a perfect match of the pixels in the image plane and the weight vector. If one allows
arbitrary values of pixel values, i.e. gray levels, then values greater than one are possible. An
inhibition function is needed to suppress activity when a receptive field in the image plane causes
too much activity due to high pixel values in areas where there is a positive but lower value in the
weight vector. Similarly, the activation should be inhibited when there are high pixel levels where
no activity exists in the weight field. Calculating cell activation in this manner is not unlike
Grossberg's 10 approach for determining resonance in his adaptive resonance theory neural
network (ART- 1). Equation [7] shows how the effects of these two situations on the activation of
a cell may be mitigated.

us - fe(Uc,-) • fiJ((ic,A) [51

fex((ic,X) - A_0_
AoA [6]
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fm(Uc,X) = exp - AUcI +1X'X- ic'0J)r [71
Processing time and memory requirements have been reduced significantly by employing this

directed training approach for extracting the first level features from the image plane. A desirable
consequence of the use of the above activation functions has been applicability either to binary
images, such as character recognition, or to multi-gray-scale images. At this stage, one can
proceed using Fukushima's learning algorithm, or one may choose a more suitable neural network
paradigm for integrating the spatial and intensity extent of the extracted features. This is the
approach of a number of researchers including Moya', Hush 2, Pulito3, McKinstry 11, Lincoln 12,
and others.

Although the vision-based neocognitron neural network has performed well in feature discovery
and object recognition, its strength is in performing the former, and it is less efficient in integrating
the features in the final recognition step. For the integration of the features detected by the
neocognitron, a neural network has been implemented which can more easily take advantage of
knowledge about the relative importance of key features. The parallel in humans would be their
ability to recognize a partially obscured object or target based on the detection of a single but
unique feature. In the second stage, an adaptive resonance theory (ART) neural network is being
used to form the final recognition. A two-stage self-organizing neural network architecture was
used to recognize an object at any arbitrary azimuthal angle. The first stage performs feature
extraction and implements a one-layer neocognitron. The resulting feature vectors are presented to
the second stage, a clustering-type neural network like an ART 13 classifier network, which
clusters the features into multiple target categories. The aforementioned researchers (Moyal,
Hush2, McKinstry 1 I, and Pulito3) are meeting with extremely good success using this architecture.

4. Application in Feature Detection and Classification

Ultimately, the objective of this research will be to determine the pose of a 3-D object by extracting
object features from a single 2-D image. Features will be selected from a number of representative
orientations. The feature selection approach described above will be used to search and extract
these features when they appear in an image. Since these features often are not unique and may in
fact be blurred, noisy, or distorted due to the sensors limitations and atmospheric effects, the
detection of the features will have some uncertainty. As was mentioned earlier, because of the
large number of possible orientations of an object, viewing geometry and illumination angles, all
cases cannot be searched sequentially. Using representative features is essential, as for the human
standing on a street comer looking for a particular type of automobile. He will discount trucks and
buses at a distance because they lack many of the distinguishing features of automobiles. Once he
recognizes an automobile, the search narrows and focuses on more specific features, such as the
difference between a sports car and a sedan, etc. In a similar manner, a hierarchical approach is
being implemented to make orientation determination of any 3-D object.

To date the hybrid neural network system described has bee used successfully in a number of
target recognition applications. With the strong emphasis within the Department of Defense and
other government organizations, it is encouraging that the neural network system which has been
developed, in part through Phillips Laboratory sponsorship, is applicable to a number of pattern
classification problems. Below are two examples of the potential for transferring the vision-based
technology to law enforcement as well as cell biology. Figure 2 shows a set of figure prints which
are easily distinguishable by the hybrid neural network. In Figure 3, a microscope image showing
cells from amniotic fluid. The vision-based neural network has been applied successfully in
detecting the cells which display the DNA in a manner suitable for analysis.
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At this time other applications of a vision-based neural network are being explored. Figure 2
shows a sample of the set of fingerprints used in the training of the vision-based neural network
for a personnel identification security system. Figure 2a shows the left thumbprint used as the
pattern to be matched by the neural network. Figure 2b and 2c are examples of other prints
presented that were not the left thumbprint in question. The vision-based neural network rejected
all these other prints. Experiments showed that the vision-based neural network was capable of
identifying correctly a fingerprint with noise. The vision-based neural network recognized the
pattern with as much as 30 percent occlusion (or loss of data). Automated analysis of cell patterns
in amniotic fluid for DNA pattern matching is being conducted. A sample of the imagery for
analysis is presented in Figure 3. The vision-based system consistently detected the "open" cell
pattern that is sought for cytogenetics.

(a) (b) (c)

Figure 2. Fingerprint samples.

Figure 3. (a) 10 x magnification display of a typical view of amniotic fluid through a
microscope. Cell structure sought is given in (b) at 100 x magnification.

SummM

In this study a technique for feature selection was demonstrated which eliminates the need for an
iterative search technique to train the sets of excitatory and inhibitory weights for a neocognitron-
type of network. Since many researchers are not using the higher layers of the neocognitron, but
rather are turning to neural networks like the ART, the need to train for feature weights is
eliminated altogether.
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Abstract

Recently an isotropic resistive network that performs a Gaussian filtering of an image for pre-
processing tasks in image analysis has been proposed. In this paper, starting from biological considera-
tions on cortical organization, we propose an anisotropic resistive network able to extract local features
of an image, that can be used to detect variations of texture and to perform higher level visual tasks.

1 Introduction

A great deal of visual tasks is solved by animals and humans in a preattentive phase, without focusing of
attention. In this phase, vast arrays of intercommunicating, identical processes carry out low-level vision
tasks such as perceiving edges by texture differences, depth mapping, computing optical flow, recovering
local surface structure, segmenting images, etc. To extract information relevant to movement or action (e.g.
of a robot) it is fundamental that such low-level processes can be performed in real time. Thus, analog
hardware devices, with embedded image sensing, are of great interest in machine vision. In such devices,
information, indeed, is really distributed, being mapped directly in the electrical variables, and computatioli
is carried out massively in parallel with high efficiency and speed. In the perceptual phase, the brain analyzes
the scene and extracts symbolic information to form an abstract representation of the external environment
[1]. Hence, the tasks involved in this phase are 1) to map from the original pattern of light intensities to
intermediate abstract representation by means of appropriate receptive fields and 2) to arrange information
in functional mapping apt to help all subsequent processes to come up with useful image descriptors.

In this paper we present an active resistor network in which different orientation-selective neurons, are
simultaneously realized on the same layer, according to a simulated orientation domain of the mammalian vi-
sual cortex. Each neuron (or node) has a receptive field that is characterized by an elongated two-dimensional
Gabor-like profile. Network performance is evaluated to test its potential use in compact machine-vision sys-
tems.

2 Neurophysiological basis for complex stimulus perception

Computational solutions evolved by nature, are particularly valuable in designing neural devices for optimal
feature extraction, and neuromorphic architectures to solve perceptual tasks.

At first stages of perception, retinal ganglion cells provide local contrast information to higher stages.
Combining such information, receptive fields of striate cortex become complex enough to handle symbolic
information. In the striate cortex a wide class of cortical cells are characterized by elongated receptive fields
with parallel subregions alternately driven by stimuli of opposite contrast, that can be closely fitted by two-
dimensional Gabor functions. The properties of these functions in maximizing the joint selectivity in space
and frequency domain, and their efficacy in optimal image filtering have been widely investigated [4][9].
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The characteristics of such operators guarantee the extraction of information on both tile orientation
and the spatial frequency of the local visual stimulus and allow a multi-channel approach for image analysis.
However, to solve simple visual tasks, we need blending information from different channels [5]. More specif-
ically, a simultaneous analysis of small areas of the image by multiple differently oriented filters, compatibly
with the sensor resolution, and functional interactions among them, are required to enhance their selectivity
to orientation contrast. To fulfill these demands, the mammalian visual system resorts to two computational
prii:::ples, embodied in its structure. First, the existence of a retinotopic mapping preserves topological rela-
tions of the input images so that two nearby points in the retinal image activate nearby points on the cortical
surface. Second, orientation-selective neurons are horizontally arranged in an ordered fashion (orientation
map) to help cooperation and competition among different orientations with minimal wiring demand.

The organization of the orientation-selective cells in the visual cortex fulfills two golden rules: (1) all
orientations are well-represented in a small area, (2) in a more restricted area neurons have similar orientation
preference. Several models, driven by functional considerations [2] or mathematical description of real
orientation maps [10), have been presented and simultaneously, experimental research provided new insights
on the organization of the orientation maps. Two examples of biological-plausible maps are depicted iii
Fig.1.
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(a) (h

Figure 1: Examples of biological plausible orientation maps: (a) a plaid-like map and (b) a more realistic
one.

3 The Architecture of the Resistive Network

The starting point is the schema shown in Fig. 2 for an isotropic square grid network: g, is thle conductance
value of positive interconnected resistors; 92 = -g1/4 is the value of negative resistors, and go is the value
of node-to-ground resistors. The 2D distribution of the current sources represents the input. image. The
output image is represented as the node voltage distribution of the array. The steady-state~ signal processing
functionality of the network is completely described by the shape of the node voltage response to a constant
current excitation at a single node. For the mesh in Fig. 2, such a response is similar to a Gaussian funictioni
centered around in the excited node; the width of the Gaussian function depends on the (gi /gu) ratio.

To generate elongated Gaussian functions, we' consider an extra positive resistor of conductance G froiii
the node, in the direction of the orientation selectivity we need [7].
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Figure 2: The basic schema of the connections from a node: an input current proportional to the luminous
intensity is provided by a photoreceptor, that is here represented by a generator.

To improve the spatial frequency selectivity, a Gabor-like convolution kernel should be used. Following
the approach described [7], we add two negative resistors for each node, arranged in the direction orthogonal
to the one to which the node is selective and at a distance related to the width of the modulating Gaussian
function (see Fig. 3a for the case ir/4 and inhibition radius 3). In Fig. ??b, a Gabor-like operator with the
orientation preference ir/4 is depicted: it has been obtained by a 31 x 31 grid, and by inhibition radius 6.

2 30

25

5 o0 20 250-

(W) (b)

Figure 3: (a)Connections to obtain a Gabor-like operator oriented along ir/4 with inhibition radius 3. (b)
Perspective and contour plots for the Gabor-like operator oriented along 7r/4 with radius 6 for a 31 x 31
node.

This result can be extended to the implementation of orientation maps by varying the pattern of inter-
connections of the resistor mesh in a continuous fashion [8].

Among all the biological plausible orientation maps that are in accordance with the above-mentioned
golden rules, we will refer here to the two shown in Fig. 1 which allow us to have uniform areas, large enough
to obtain well shaped and well-oriented convolution kernels. The minimal portion of the array containing
nodes selective to all the orientations present in the map will be refered in the following as the basic ?nodude
of the map.
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4 Experimental results

Our network is able to detect texture differences in an image by different responses of cells selective to

different orientations, as other networks based on biological considerations do [9][3]. Indeed, if thi test inmage
is composed of repeated oriented elements, the cells in the regions of the map selective to that orientat ion
have the strongest output.

For testing network performances we have considered at first a synthetic image containing four differetnt
oriented textures (see Fig. 4a. In Fig. 4b the output of the network that implements the cortical map on the
left shown in Fig. la is depicted subdivided in domains (collecting all considered orientations). Ignoring the1

border effect, we can note that regions with uniform texture lead neurons to have similar domain responses.
More generally different texture structures correspond to different patterns of excitation on the cortical map.
The output of the orientation map can be used as the basis for a post-processing phase to iprovidel a texture
classification. This is not sufficient on its own to solve segmentation processes and all efficient strategy to

bind features must be introduced.
There is a strong evidence that in real visual cortex, the average characteristics of local-field potentials

may aggregate local information of small assemblies of neurons selective to a complete set of orient at ions. The
spatio-temporal characteristics of such local-field potentials yield global perception about edges separating
one region from another and determine regions on the basis of continuity of structure.

The development of a suitable algorithm to solve on the same devices the binding problem will be
argument of a future work. However, to show that global coding is conceptually feasible, we made an effect ive
color display of texture information assigning different colors to different orientations and modulating the
luminous intensity according to the activity of the neurons. In order to consider a global coding the color-
merging is simulated with an average operation. The value of each component is obtained by averaging I he
output over an array portion centered in the node of the same size as the map's module.

Under this assumptions it is possible to discriminate a number of textures equal to all the nuances of
the color palette. In the last image of Fig. 4c the result of this operation subjected to the constraints of the
gray-level representation is shown. Network performances on natural texture image (Fig. refnat a) have iben
evaluated and the results obtained with the two maps in Fig. 1 are shown in Fig. 5bc.

(W) (b) (C)

Figure 4: (a) the synthetic textured pattern image, (b) the output of the network subdivided into oriental ion
domains, (c) the global coding of textural information (see text).
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(a) (b) (cH

Figure 5: From left to right: a natural textural image and the segmentated images for the cortical map. of'
Fig. 1.

5 Discussion and Conclusions

The active resistor network presented in this paper, provides an efficient hardware solution to real-time
low-level visual tasks. The topology of the network allows, indeed, an efficient feature extraction and image,
representation, but should also provide an effective solution for subsequent local symbolic interaction-..
particularly useful for texture segregation.

Moreover, we have shown how complex operators for low-level image processing can be mapped, with low
effort, directly in the structure of a resistor network. Such network reveals itself particularly robust, indee'd.
the choice of the value of the resistances is not critical since the final orientation of the convolution kernels
is more a consequence of the topology of connections than of a proper choice of these values.

Concerning the implementability on VLSI hardware of this network, we have to express it in terms of a
set of computational primitives, representing the resources available for the realization of the system, and
of the rules that determine the interactions among the blocks implementing those primitives. While ini a

digital system the primitives are simple logical operators (AND, OR, NOT, ... ), in analog neural system
the functionalities of the primitives present higher complexity, even if the rules are represented by Kirchoff's
laws. In particular, in the network here presented, we can identify three basic primitives: resistors, active
resistors and photoreceptors.

Various choices are available to the circuit designer for the implementation of such primitives: fixed
resistors can be implemented in silicon with paths of diffusions with assigned resistivity; properly biased
MOS transistors can act as variable resistors; active resistors can be implemented by more complex circuit ry.
such as operational amplifiers or negative impedance converters; finally, photoreceptors can be implemented
through p-n junctions (photodiodes or phototransistors), being its reverse current proportional to the incidet•i
light intensity. The previous choices determine the number of nodes (i.e. pixels) the network is able to proc,.s.
By example, in [6] on a silicon area of 8mm x 9mm using a 2prm CMOS technology and phototransistorls
that take up a 26pm x 54pm silicon area, an exagonal grid of simmetrical gaussian operators 45 x 410 i.
proposed. In such implementation the dimensions of the operators are controlled by a variable resistor (01).
which is responsible of the 75% of the power dissipation.

The network we propose considers additional resistors to implement Gabor-like oriented receptive-field.
for higher level processing; though we disregard the variability of the resistors in order to dissipate less power
and increase operator density. It is not so easy (or, at least, not possible on a cost basis) to meet constraintS
on power dissipation and area occupation, with present commercially available technologies. for a iietwoik
of 256 x 256 nodes, however the design of a smaller network is under development.
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Abstract

The first step in restoring a degraded image is the identification of the type of degradation
the image has suffered. A fundamental issue for image restoration is blur removal. Blur can
be introduced by an improperly focused lens, relative motion between the camera and the vi-
sual scene or atmospheric turbulence. The more accurate, we can describe blur phenomenon
of degraded image the more precisely we can construct the proper filter, which results in
high quality restoration. In this paper we present a very efficient and robust method of blur
identification by applying a combined neural classifier called NEUROEXPERT built of three
separated networks (basic classifiers). This system learns power cepstra, SVD cepstra and
high order spectra (bispectra) of blurred images during the training period and the basic
classifiers vote in recognizing phase. This assures a very high reliability of degradation iden-
tification (98% of correctly identified blurs for single encountered case and about 90% for
mixture of different blurs in one image), which allows to build completely automatic image
restoration system. Theoretical investigations and practical result are presented.

1 Introduction

The problem of deblurring images with a known point spread function (PSF) has been dealt
extensively in the image processing literature. The blurred image is modeled as the output of a
noncasual unknown linear impulse response. A model of the system that causes, the degradation
could be obtained analytically from the physical nature of the problem if there is sufficient a
priori information. In most real-life situations, however, it is not possible to have enough a
priori information to determine the PSF analytically and the blur must be identified from the
blurred image itself. In this situation it is helpful to have a parametric description of blurring
function. Lee in [2] showed that, it is possible to parameterize the PSF with a few parameters
knowing only the type of blur. This is an attractive alternative in blur identification, especially
when the number of these parameters is less than the number of the PSF coefficients. For
linear motion blur it is only necessary to estimate the direction of blur and blurring distance.
With the simplified model for an out-of-focus blur it is sufficient to estimate the radius of the
circle of confusion. Because both of these blurs have an oscillatory frequency response with
a characteristic zero-crossing pattern, it is advantageous to identify them in the spectral or
cepstral domain under the assumption that the blur is locally space invariant, which is often
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encountered in practice. We have successfully solved this difficult blur identification problem by
applying neural network multiclassifier called NEUROEXPERIT.

2 Problem Statement

A degradation process of image can be expressed by using an equation

g = [h]f+v (1)
where f and g are column matrices containing the samples from the original object and the
degraded image respectively. The blur matrix [h](also called point spread function or PSF) is
derived from the impulse response of the degrading system and v is a column matrix (vector)
containing noise samples (for example due to the detector). The problem is: given g estimate
f. The necessary condition for image restoration is [h] identification.

Another possibility is to formulate discrete model for each pixel

g(x, y) = h(x, y) * f(x, y) + v(x, y) (2)

where * denotes convolution.

The effects of blurs can be better interpreted in the frequency domain. Then we have

G(u, v) = H(u, v). F(u, v) + V(u, v) (3)

So we have to identify the PSF function [h]. In our paper we restrict ourselves to the most often
encountered blur types: camera motion blur (CM), out of focus blur (OOF) and atmospheric
turbulence blur (AT).

3 Neural Method of Blur Identification by Cepstral Techniques

A well-known approach to identify h(x,y) is to compute the cepstrum by g(x,y). The cepstrum
is defined as

C9(p,q) = F{logJG(u,v)J} (4)

where F denotes the Fourier transform. One of the most important features of the cepstrum is
that if two signals are convolved, their cepstra add. Thus, neglecting the effects of noise

Cg(p, q) = Cf(p, q) + CA(p, q) (5)

If we express (3) in terms of power spectra we obtain
4tg(k, 1) = -f(k, 1)1HJ(k, 1)12 + -Dv(k, 1) (6)

It is more efficient to apply power cepstrum instead defined as

P.9(p,q) = F{log[l.(k, 1)]} (7)

and neglecting the noise
Pg(p, q) = Pj(p, q) + 2Ch(p, q) (8)

The multilayer perceptron with backpropagation learning algorithm was apply to teach the
cepstra of the observed images (training set). During the recognizing phase the network is able
to identify the blur with 90.5% correctly classified for one blur in image only and 82% for two
types of blur in one image.
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5 Neural Network Blur Identification Using the Bispectrum

Instead of identifying PSF using cepstra we can take advantage of high-order statistics of the
degraded image. Chang [1] suggested an interesting method of blur estimation. This method
proposes inspecting the zero crossing in the central slice of the bispectrum [31 of the observed
image.

It is assumed again that the blurring process, in the exposure domain, can be modeled by a
linear, shift-invariant system as

g(m,n)= E h(i,j)f(m-i,n-j)+v(m,n) (13)

(i,j)ESh

where g(m, n) and f(m, n) are the observed and the ideal images respectively, h(m, n) denotes
the PSF function of the blur, Sh is the support of the PSF, and v(m, n) denotes additive,
Gaussian observation noise.

The bispectrum of the observed 2-D image g(m, n) in 13 is given by

Bg(WhViI; W2, V2) = H(w1, VI)II(W2 , v2 )H*(wi + W2 , VIn' + v.2 )Bf (w,i VI; W2 , V2 )

+ Bv(wo,v1;W2 ,v 2) (14)

Since v(m, n) is Gaussian,B( (wi, vI; w2, V2 ) is identically zero, and can be dropped from (14).
Then setting w2 = 0 and v = 0 in (14), we consider a 2-D cross section, or a central slice, of the
bispectrum of the observed image, given by

B, (w1 , v'; 0, 0) = IIH(wi, v1)1 2H(0, 0)B.(wi, V1, 0, 0) (15)

Assuming that 11(0,0), and there are no periodic zero crossings in Bj(wl,v 1;0,0), the zeros

of IH(wi),vz' 2 can be observed as the "central slice" Bg(Wo,v 1 ;0,0) of the bispectrum of the
output image.

The estimation procedure is as follows. The observed image has been segmented into N
segments, which are possibly overlapping. The segments are rectangular, where the dimensions
of the rectangle can be chosen according to the type and expected extent of the blur. Discretizing
the frequencies w1 and vj, the estimate of the central slice of the i-th segment, using the direct
method [3], is given by

B ')(k, 1; 0, 0) = G0(k, I)R,(, )G!(k, 1) (16)

where Gi(k, 1) is the Discrete Fourier Transform of the ith segment of the observed image. It is

important to note that the mean of the entire observed image is removed before it is segmented,
which implies that the average of Gi(0, 0) over all i is zero, although Gi(0, 0) is, in general, not
zero for each i. The estimate of the "central-slice" Bg(k, 1; 0,0) is taken as the average of the
"central-slices" of the bispectra of each segment

N

B (k, 1; 0, 0) = (17)
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Figure 2: The Central Slices of Bispectra for CM, OOF,AT Blurred Image

The multilayer perceptron network is taught the estimate of the "central slice" of the bis-
pectrum of the observed image (blur training set). After the learning phase the network is able
to recognize camera motion, out of focus and atmospheric turbulence blurs (testing set different
from learning set) with about 91% efficiency for simple blur but only with about 55% correctly
classified patterns for the mixture of two blurs in one picture. It is clear that we need more
complicated classifying system (with voting classifiers at least for two blurs at once).

6 Computer Simulation Results

All the experiments were done for 32 x 32 images with 64 grey levels on IBM compatible i486
DX-2 /66Mhz based computer. The software package has been built in C language.

We have built a NEUROEXPERT system based on three voting neural network classifiers
(parallel classification). This idea seems to be very fruitful. Three multilayer perceptron net-
works are used each being taught different transform (different feature vector), having different
number of neurons and requiring different number of learning epochs.

"* FIRST EXPERIMENT -SINGLE BLUR
The training set consisted of 27 blurred images (27 human faces blurred by one of three
types of blur camera motion, out of focus and atmospheric turbulence). The testing set
consisted of 162 blurred images. Each blur had three different parameter values indicating
blur severity.

"* SECOND EXPERIMENT -MIXTURE OF TWO BLURS IN ONE IMAGE
The training set consisted of 27 blurred images with two blurs in each image and the
testing set of 162 images of the same kind.

First neural network has 1024 neurons in the input layer, 50 and 30 neurons in first and
second hidden layers, 3 neurons in the output layer. It uses cepstral transform for learning and
recognizing. While working as a separate classifier it has 90.5% of correct classification in the
first experiment and 82.1% in the second experiment.

Second neural network consists of 1024 neurons in the input layer, 50 and 25 neurons in
hidden layers, 3 neurons in the output layer. It uses SVD cepstral transform (10 eigenimages
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Figure 3: NEUROEXPERT System for Blur Classification

is taken into account). In separate classification it has 93.7% of correctly classified blurs in the
first experiment and 81.5% in the second one.

Third classifier has only 32 neurons in the input layer (it needs to learn only a short feature
vector), 40 and 20 neurons in the hidden layers and also 3 neurons in the output layer. It uses
a "central slice" of bispectrum transform. As a separate classifier it reaches 91% in the first
experiment and 55% for two blurs at once.

All these three neural networks vote (their votes are equally important) making this way
an efficient automatic blur classification systems. The final rate of correctly classified blurs for
NEUROEXPERT is 97.7% for simple blur indentification problem (first experiment) and 90%
for two blurs in one image (second experiment).

It is interesting to note that even if one classifier seems to be inefficient in some experiment
(bispectrum classifier in the second experiment) if it votes together with other classifiers (a little
bit more efficient) it increases the performance of the whole system significantly so
that the NEUROSYSTEM is more efficient than any separate classifier and because of this
high efficiency can be use as a part of completely automatic image restoring system.
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Abstract- We describe the first-phase of an investigation into techniques for automatic cloud masking in remote sensing
data. BCM Projection Pursuit (BCM) networks are explored as a method of unsupervised feature extraction from AVIRIS
images. Search vectors in this method discover directions in the data in which the projected data is skew or multi-modal, by

minimizing a Projection Index which depends on higher moments of the projected data distribution. We compare this approach

against backward propagation (BP). In addition, we explore the use of ensemble techniques, which allow smoothing of the

estimation process for more robust classification of image pixels. Predicted cloud masks are compared against cloud masks

derived from human interpretation.

Introduction

The automatic identification of clouds and cloud type in remote sensing data poses a significant technical challenge
to researchers in climate modelling. Human analysis of images is time-consuming, and automatic methods of scene-
level and pixel-level identification are needed to cope with large volumes of image data. A number of researchers
have investigated multi-class scene- and pixel-level identification of cloud type based on textural and spectral fea-
tures [6], [7], [28], [26] using AVHRR (Advanced Very High-Resolution Radiometer) [101, [171 images. Examples of
such features are moments of gray-level difference vector (GLDV) statistics [29], [4], sum and difference histograms
(SADH) [27], [4] and gray-level run length (GLRL) [29]. Neural network techniques based on backward propagation
(BP) [23], the probabilistic neural network (PNN), [25] and Kohonen's Learning Vector Quantization (LVQ) [18]
have been used successfully to find meaningful information in these features and their inter-relationship for classifi-
cation [28], [26] ; results compare favorably to traditional statistical analysis of the same textural features [28].

The present study examines techniques for pixel-level classification in AVIRIS (Airborne Visible and Infra-Red

Imaging Spectrometer) imagery. In the first phase of our investigation, we looked only at the raw intensity data
without textural and spectral pre-processiag steps; a future paper will describe ensemble methods which simultane-

ously examine both raw data inputs and textural and spectral inputs as found in [7], [281, [261. In this paper, we

describe ensemble techniques which incorporate both unsupervised feature extraction networks, in this case BCM

Projection Pursuit, as well as a supervised learning algorithm, BP, for mapping BCM features to a final classification.

These results are compared against backward propagation alone. Classification results are generated for low-level
cloud masks which only distinguish between pixels containing cloud and those containing no cloud. The problem of

identifying cloud-type will be addressed in a future publication.

Unsupervised Feature Extraction Using BCM Projection Pursuit

Recent treatments of the BCM model (3] [5] [241 have shown its relation to the statistical approach known as
Projection Pursuit [15] [16]. A Lyapunov function (cost function) for the modification rule can be defined for BCM;
minimization of this function will favor directions where the projection distribution (projection onto the search vector)
is statistically skew, i.e bi-modal or multi-modal (Figure 1).The BCM model uses a semi-local learning rule: search
vectors are modified based on the information available within a single layer without reference to training labels; in
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mLa
Figure 1: BCU Cell Response Histograms from two cells in networks trained with l6xl6 pixel patches from AVIRIS

Imagery.

contrast, supervised networks such as BP modify network connections in all layers based on a global error measure
in the last layer.

The ith cell in layer n of a multi-layer BCM network responds according to: 1 2

with
(n) = -. -+ b) (2)( i,fori=j) (3)-is, .for i :0 i

where L(7) is the fixed lateral inhibition ' matrix of weights in layer n, 1 3 "-1) is the vector of connections to cell j

in layer n from the prevous layer, (n - 1), and b(n) is the bias of cell j in layer n. The Lyapunov function in layer n
3

is a statistical function emphasizing skewness of cell responses, or projections, in that layer: 4

E E[(c'n))J ___E __ _ (4)

3 4

This leads to a learning rule of the form:
, = -a-S = -a -E[&")] c") ac(')

= sE ['• •(�) • n)) (4")) n) =(n-1) (5)

with:
o( n), j"n) = •")( - -.n"n)) and o!") = E[(cn))2] (6)

.y9I") is the dynamic modification threshold which separates regions where the 0-function yields Hebbian reinforcement

and anti-Hebbian weakening in the single-cell theory. For a small and decreasing step-size, Equation 5 can be well

approximated by stochastic gradient descent (see [16] for further details). The presence of the lateral inhibition

means that the fixed points of the synaptic vectors of individual cells are coupled (Equation 5). Therefore, in a
trained network, cells may find directions for which the projection distribution is not just bi-modal, but perhaps

even multi-modal (Figure 1). The inhibition also promotes cell differentiation, so that features are less likely to be

redundant.

Ensemble Methods

'The sigmoidal function is typically of the form: E(z) = a tanh(aAz), which has the derivative: j'(z) = A(a -
Z(x))(a + Z(z)).

2Superscripts denoting layer indices appear in parentheses.
3The choice of L•7) places each cell in a field proportional to the average response of the other cells in the layer.

Other choices could be used to establish different fixed influence fields, for instance the Mexican Hat [18].
4Ea represents the expectation value.

1-625



A number of researchers have explored the use of ensemble methods for the purpose of enhancing overall performance

of neural network classifiers [12], [19], [13], [20], [21], [22]. The notion of pooling a set of "experts" is by no means

confined to research in adaptive neural network algorithms. Whatever the nature of the underlying estimation process,

ensemble methods can be employed profitably [11], [14], [20]. We illustrate the general framework for ensembles of

estimators in Figure 2.

Figure 2: Schematic diagram of an ensemble of estimators. Each individual estimator may have a very large number

of parameters as in non-parametric estimation proceedures such as neural networks, and the input data to each may be

identical data sets or different representations of the same problem such as in sensor fusion. The ensemble estimator weights

the estimates of members of the ensemble, and the relative weighting may be adapted.

Cloud Masking for AVIRIS Images: Experimental Design (First Phase)

In the initial phase of our research as described in this paper, we investigated aof ensemble networks. In one
version of these ensembles, multiple BCM Projection Pursuit networks performed low-level, unsupervised feature
extraction from input patches of AVIRIS images. Inputs to these networks were vectors containing the pixel values
as a percentage of the dynamic range over the entire image. In some cases, we used a unit vector representation,
which preserved the direction of the high-dimensional vector in input space, but normalized the length of the vector
onto the unit sphere. The ouput of the BCM networks was fed to the input layer of a BP network which performed
the mapping to pixel-level predictions. Error correction in the BP networks was done by comparing network pixel
predictions against a ground truth mask generated by human interpretation. The unsupervised BCM networks were
trained independtly before being attached to the BP networks. As a baseline, results were also obtained for 3-level
BP networks operating directly on the input patches. A third experiment consisted of pooling the ensembles in the
first set of ensembles and the single BP network to obtain an ensemble of ensembles. This last experiment is closer
in spirit to the ensemble concept in (13] and [22], in which the actual output classifications of estimators are pooled.
Network configurations for the experiments described here are reported in Table 1. LIBP (1] refers to BP run with
fixed lateral inhibition, as in the feedforward rule for the BCM network; inhibition in the BP networks was found to
be important for obtaining reasonable performance with 3-layer networks.

Table 1

Network Configurations: Single & Ensemble Nets

Experiment Net Type Configuration
BPI Single Level : I LIBP: (256.100-16)

_Input: an7
Ens9 Ensemble Level 2: BP (256-100-16)

Teve7 1: BCM80 (256-20) BkMI23 1 256-40) BCM4 54
Preprocess: 1one None U73t vector

_npu: Band 17 band 32 - Band 52
EnslI Ensemble =evel : BP (256-100-16)

Level 1: BCM80 (256-20) bQM23 (256.40) BCM134 25L40)
Preprocess: None None nit ector

Input: Band 17 Band 52 Band 52
EnslI Ensemble Level 2: BP 256-100-16)

Level 1: BCM80 (256-20) bQ•M123 (256.40)_ bCMA34 (256.40)

Preprocess: None None unit vector
Input: band 17 band 52 Band 52

Ens2 Ensemble Level 2: aP (256-100-16)
Level 1: BCMes (256-20) UeMnsý 256-40) II•MI34 (25"0)_

Preprocess: None mon; Unit Vector
Input: band 17 1n 52band 52

Supensl Ensemble level 2: LIBP (48-100-16)
of Tevel I. ens9 (2 level ensI0 (2 level BPe (ve 97100-1

Ensembles BCM-BP ensemble) BCM-BP ensem ens)
---upen2 Ensemble level 2: LI'P (32-100-16)

of l-eveT 1: en*9 (2 level enslO (2 level
Ensembles BCM-BP ensemble) BCM-BP ensemble)
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The AVIRIS data used in this set of experiments were comprised of 10 different images derived from 6 different
locations under a variety of weather conditions; they included a variety of terrain, for example a land-sea interface,
or agricultural areas; a number of different cloud types were also present. For each location, 4 bands were made
available to us, three in the visible and one in the near infra-red, although the experiments in this phase only used
two bands, Band 52 (near infra-red), and Band 17 (visible). Eight images were used for training and two for testing.
More complete statistics using the bootstrap method will be obtained in the future. Note that in general setting a
single threshold for the entire image will not suffice since this would lead to unacceptably high levels of false alarms in
many of the images 3(a). Even if a single threshold were used, it would njt be the same for each image(Figures 3(b)
and 3(c). Each image contained 614x512 pixels.

* .. 4.i . . . .~ea..

., jdy., '8 e,* * % UW.mn

I • .5• • %

F'I. I• *: .
i / .',. o,•i

(a) (b)

(C)

Figure 3: The results of trying to use a global threshold for cloud-masking in "VIRIS Band 27: in many of the images,

good detection rates would come at the expense of a high false-alarm rate (a); even if a global threshold were used, it would

be impossible to set a single threshold which would translate into the same level of performance across different images: (b)

false-alarm rate vs. threshold (c) rate of cloud-pixel detection vs. threshold.

During training, images in the training set were selected at random and from each image, 16x16 patches were
sampled at random as input to the networks. A number of different input patch sizes have been explored (8W, 16x16,
32x32 and 64x64) to examine the qualities of the BCM feature vectors on different scales of area, although in the
experiments described here for prediction input patches were all 16x16. An example of BOM feature vectors obtained
from experiments with different input patch sizes is shown in Figure 4. The figure shows some particular netlwork
solutions which were strong edge detectors. Notice that local structure found in smaller patch vectors appears as a
sub-component of the larger patch feature vectors. Feature vector structure in BCM takes on a variety of different
forms depending on the control parameters q~, -j, r (7- is the temporal width of the sampling window for the sliding
threshold -yE(c') in the BOM rule). Other factors such as dwell-time on each image may also play a role. In
experiments with larger values of r, feature vectors may be banded or speckled (Figure 5) in appearance compared
with those in Figure 4.

In the prediction experiments described in the Results section, the final prediction of the network ensembles

and single networks was the identity of the pixels in the 4x4 sub-patch in the upper left corner of the input patch.

Prediction masks were generated for the training and testing sets by scanning the entire image with the 16x16 pixel
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information. Similarly, image 7 has bright land as seen through a diffuse layer of smoke from a forest fire. Mistakenly, this
image is completely identified as cloud by BPI.

BCM-BP Ensemble Performance
What is notable about the ensembles incorporating both BCM and BP is that some of them appear to find solutions which

achieve considerably greater classification accuracy than BP alone for images 5, 6 and 7. Ens9, for instance, has a respectable
level of performance on both images 5 and 6; EnslO has a strong performance on image 7. Ens9 and EnslO, incorporating
BCM for low-level feature extraction, appear to have found textural information sufficient for performing some of these more
difficult classifications. Ens9 has a respectable level of performance on all of the other images as well, but does not perform as
optimally on the images for which a more simple magnitude thresholding might be sufficient; Ensl0 has a respectable level of
performance on all but three of the images. The other ensemble runs, Ensll and Ens12, did not perform as well as Ens9 and
Ensl0.

Ensembles of Ensembles
The best ensemble of ensembles run was Supens2, which received input from Ens9 and Enslo. Across all of the images,

it achieved the most consistent performance and the highest overall classification rate for the two classes for Image 5. For
Image 6, it was only fractionally less accurate than Ens9 which achieved the highest level accuracy on this image. It achieved
the second highest classification rate on Image 7; however,on Image 7 the only network achieving acceptable performance was
Enslo. The ensemble of ensembles run, Supensi, is a low false-alarm classifier, receiving input from BP1, Ens9 and Ensl0. Its
overall performance on Image 5 is an improvement over the individual performances of the networks from which it is receiving
input; for image 7, its performance is only slightly better than the mean of its components, for image 6, its performance was
slightly worse than its subcomponents.

Table 2
Pixel-Level Classification of AVIRIS Images

Cloudiness BP1 Ens9 I Ensl0 ( Ensil I Ens12 I Supensl I Supens2
"Training Images % Cloud Pixels Correct

% Non-Cloud Pixels Correct
910628B.R6.S2 12 o 91.3 % 92.2 % 80.0 % 91.8 % 85.4 % 79.6 % 87.6 o

96.9 % 87.9 % 90.5 % 80.0 % 93.8 % 98.8 % 92.9 %
910620A.R2.S2 39 % 76.8 % 82.7 % 70.5 % 84.3 % 75.9 % 68.4 % 75.0 %

99.2 %A 90.2 % 93.0 % 85.0% 93.6 % 98.1% 94.4 %
900810A.R6.S4 33.8 % 98.8 % 98.6 % 72.2 % 98.4 % 95.1 % 89.4% -91.2 %

94.0 % 79.8 % 94.4 % 78.5 % 92.7 % 98.7 % 91.3 %
900809A.R3.S5 21.4 % 96.2 % 93.1 % 71.8 % 95.2 % 88.8 % 83.3 % 87.4 %

93.9 % 92.2 % 95.9 % 83.2 % 95.3 % 98.9 % 96.4 %
900723A.R9.S4 4.9 % 100.0 % 93.6% 73.4 9 99.2 % 93.4 % 85.1% 89.5 %

2.3 % 73.8 % 92.2 % 8.5 % 76.9 % 85.8 % 82.5 %
900814A.R9.S1 51.0 % 36.7 % 75.7 % 45.0 % 62.1 % 33.0 % 32.1% 75.0 %

96.8 % 74.0 % 89.6 % 81.8 % 96.7 % 98.6 % 75.4 %
900813A.R9.S3 0.0 % - - - - - - -

0.0 % 6.4 % 93.3 % 2.1% 6.3 % 37.2 % 48.5 %
900813A.RS.S2 53.6 % 79.0 % 83.2 % 55.2 % 85.0 % 71.9 % 61.1% 76.0 %

99.4 % 92.5 % 93.8 % 89.4 % 96.5 % 99.1% 95.1%
Testing Images I I
910628B.R5.S4 23.2 % 94.7 % 95.0 % 79.7 % 95.2 % 91.7 % 87.5 % 91.7%

97.6% 80.0% 90.2 % 71.7% 87.5% 98.0% 88.9% I
900814B.R12.S2 100% 100.009% 99.7% 14.6% 98.3% 98.3% 68.3% 71.5 % 7

Conclusions and Future Directions

BCM Projection Pursuit in an ensemble configuration (Supens2, Ens9 ,Ensl0) is capable of discovering textural

features which may be useful in separating bright land from cloud, as well as detecting cirrus over a land-sea interface.
The ensemble of ensembles run Supens2 achieved the most consistent performance across the images. BP solutions
tended to be vary sensitive to overall intensity of return and had notable failures on the training set for these difficult
cases. Further experimentation with ensemble configurations of BCM-BP and other hybrid networks to optimize
classification performance will be explored in a future publication; we will also study the performance of ensembles

receiving inputs from statistical measures derived from GLDV, SADH and GLRL distributions as well as the raw
data.
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Abstract

In this paper, we illustrate the use of an artificial neural network using an unsupervised learning
strategy for detecting contaminants in food packets. The rare occurrence of foreign objects such
as glass, rubber or wood in the food bags is worrying to both the consumer and the food industry.
This research aims to automatically detect and segment any foreign objects that might be present
in the bags. Artificial neural networks using unsupervised learning have an advantage that they
do not require much apriori information of the pattern recognition task. Nodes representing both
the food substrate and foreign objects need to be characterised in the training phase. However,
no training data is used for learning the features of the foreign objects, because the knowledge of
the various types of foreign objects cannot be assumed.

1. Introduction

Foreign objects (FOs) such as stone, glass or wood occurs rarely in food packets; however, when
they are found it causes considerable alarm to both the consumer and manufacturer. The purpose
of our research is to develop an image analysis system that will automatically detect these FOs in
food bags. We deal with the analysis of the contents of packaged frozen food such as corn or
peas, and consequently in order to view the contents we use X-ray imaging. X-ray imaging
makes hard contaminants such as stone or metal appears darker and soft contaminants such as
wood or plastics appear lighter against the background food substrate. However plastics or
rubbers that are generally knuwn as soft contaminants can have a darker appearance as will be
seen in the paper. Whilst the detection of hard contaminants is a relatively easy task, soft
contaminants pose a problem due to the fact that the X-rays get absorbed through them at a very
similar rate as for the food substrate itself. The detection of hard contaminants is presented
elsewhere [Hannah, Patel and Davies, 1993 and Patel, Hannah and Davies, 1994]. Whereas, this
paper deals with the automatic detection of soft contaminants. Sample X-ray images containing
FOs are shown in figure 1.

There exists an infinite number of FOs in various shapes and sizes. It would be impractical to
build a network or an array of sub-networks to learn the numerous possible FOs. The detection
of a specific FO - wood, via texture recognition and a Multi-Layer Perceptron topology using the
supervised Back Propagation learning rule has been previously suggested [Patel, Hannah and
Davies, 1993]. The method used in this paper is based on characterising the food substrate that
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contains no FOs and then detecting any anomalies in the food substrate. These anomalies can
then be classed as either FO or a defect in the food bag. The application uses an artificial neural
network (ANN) comprised of a few nodes and is shown to successfully detect FOs.

2. Artificial neural network for foreign object detection

The simplest method to detect the possible presence of the FOs is human inspection. However,
the use of human operators is unreliable, slow and expensive. The existing system that is
currently being used is based on a simple thresholding technique. Detection based on these
techniques cannot be relied upon for a stringent quality control process.

Research into artificial neural networks (ANNs) is undertaken in the hope of achieving human-
like performances for pattern recognition tasks. The pattern recognition application addressed in
this study is concerned with the detection of foreign contaminants in food bags. Several ANN
architectures exist [Simpson, 1990], each characterised by the particular connection topology of
their nodes (processing elements) and learning rule. Learning is a task whereby the connection
weights between the nodes are adapted such that the network can undertake a specific task.
There are two categories of learning: supervised and unsupervised. In supervised learning, there
is a supervisor to teach the system how to classify a known set of training patterns, i.e. both the
training patterns and the associated desired output patterns are available. In unsupervised
learning on the other hand, all one has is a collection of patterns and the network usually
categorises them according to some pre-specified measure of similarity between them. The
unsupervised approach is attractive because the network learns without assuming much
knowledge about the data. In a previous paper we have investigated the segmentation of images
based on textural features and a logical ANN paradigm using an unsupervised learning rule
[Patel, Tambouratzis and Stonham, 1993]. Visa [1992], also segments images using texture
features in an unsupervised mode using a Kohonen self-organising topological feature map.
Hsiao and Sawchuk (1989) presented a method using the Laws (1980) texture masks and the
conventional K-means clustering method. ANNs have an overall advantage over the
conventional methods such as the nearest neighbour approaches and a comparison between the
two unsupervised methods can be found in Lo and Bavarian (1991). The unsupervised learning
rule in our ANN is similar to Kohonen's vector quantisation methodology [Kohonen, 1990] and
briefly is as follows:

Step 1. Select a pattern XP =(xJ,x22... xN,) from the training set; pE(1,2 ..... P) and feed into
input layer. N is the dimension of the pattern vector.

Step 2. Find node Wj;j = (t,...J) closest to X, using:
Ilxp - will MinllXP - will,

where Wi is the closest node to XP and the measure of similarity is the Euclidean distance.

Step 3. Move Wi closer to XP using:
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•(t + 1) = W (t) + (t)[xp (t) - Wi(01]

where a(t) is the learning rate at time t

Step 4. Repeat steps 1 to 3 for successive instants of time t until convergence.

The ANN consists of a topology of nodes that represent both the areas on the bag that does not
contain any FOs and the FOs. Although the proposed method analyses textured images, it is not
dependant on a mathematical measure for texture and therefore eliminates the long processing
times that might be needed to characterise the texture. All the images are pre-processed using an
averaging filter to remove spot noise and cluster the grey levels; this tends to connect
neighbouring pixels. The training data for the node that represents the part of the bag that is free
from contaminants is acquired from a 3 x 3 mapping window and is represented by a 9-element
vector. The variation within such images over a small neighhourhood can be substantial because
the X-rays penetrate an uneven layer of food. In order to accommodate such a variation, more
than one node is used to represent the food substrate. The vector quantisation learning procedure
is used to adapt the data, until the nodes sufficiently represent the food substrate. After the nodes
representing the food substrate have learnt the essential features, nodes representing the FOs
need to be characterised. There exists a large number of different kinds of impurities that might
be found in the food bags and therefore no apriori knowledge of the FOs can be used. However,
using X-ray imaging we know that hard and soft contaminants appear at either the darker or
lighter end of the grey level spectrum (this difference is not always distinct enough for detection
using simple thresholding techniques). We therefore have two nodes at each end of the spectrum
representing the hard and soft contaminants.

After the nodes have been sufficiently adapted, the test images are scanned by a 3 x 3 window
and the 9-element data vectors are passed through the network. The vectors are assigned the
label of the node that best matches the input. The Euclidean distance is used as a measure of
similarity between the pattern sample under test and the nodes. The clusters of regions formed
around the nodes representing the food substrate can be merged into one homogeneous region.
Here unsupervised networks can reveal regions on an image that might otherwise have been
unobserved using supervised networks. These clusters can be of considerable significance as
they can indicate the presence of insufficiently filled bags. The method has been tested on
several images and works well. An example of the detection of a small rubber grommet, an
eraser and a splinter of wood embedded in bags of frozen corn kernels is illustrated in figures 1
a, b and c. In the example of the wood FO in figure I a, the contrast between the wood and the
food substrate is small and consequently at the edge of the bag where the layers of corn kernels
decrease, they get mistakenly classified as FO. This is because X-ray absorption by the thin
layers of corn at the edge of the bag is similar to that of the wood. The decision unit that signals
to indicate the presence of FO can cope with any border anomalies and a rigid blob removing
algorithm can remove the spurious regional discrepancies in the post-processing stage. An
algorithm to locate any FOs on the edge of the bags is also currently being developed. In figure
lb it must be stated that the segmentation of the eraser can also be achieved by simple
thresholding. However, thresholding methods for other categories of soft contaminants are not
entirely reliable and have only had limited success.
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3. Concluding remarks

This paper shows that an artificial neural network operating ifi an unsupervised mode can detect
FOs in food packets without assuming any knowledge about the FOs. The results show that the
segmentations achieved are in good agreement with the perceived ones. There is marked
improvement on the capabilities of the existing system which cannot cope with the detection of
soft FOs such as wood.

In general the detection of soft FOs is difficult because the contrast arising between the food and
the FO by X-ray attenuation is small. These small differences are difficult to discriminate due to
the presence of system noise such as X-ray detector variations or density fluctuations in
homogeneous food. Differences can only be detected if large volume FOs are present. The size
of the wood piece used in the experimentation reported earlier is 48 x 18 x 17 mm. Smaller
pieces and certain plastics could not be discriminated from the food substrate. Several techniques
such as iodine doping, to increase the contrast between the FO and the food substrate are being
investigated.
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a: wood

b: eraser

c: rubber grommet

Figure 1: Original X-ray images imbedded with FOs (a) wood, (b) eraser, (c) rubber grommet
and the resulting segmentations in an unsupervised mode.
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Abstract
The primary role for Neural Network (NN) image processing is in achieving a thousand-fold increase in the number of
pixels interpreted per wat. In doing so, data driven learning will be necessary to maintain solution development
costs. This paper introduces a biologically motivated NN image processing design and an associated pulse stream NN
architecture. Also, the ability of an inner-product NN to learn multispectral vehicle signatures using flight test
imagery is described.

1.0 Introduction
NN's have experienced a resurgence in activity during the last decade due to the availability of higher speed parallel
processing and the need for data driven adaptive non-linear pattern recognition. Cost effective applications have driven
the development of classic inner-product NN's (e.g. backpropagation) software simulations and hardware accelerators
including DSP boards (-$10K; 5 million connections per second CPS), Single Instruction Multiple Data (SIMD) NN
learning machines (-60K; 5 Billion CPS), digital CMOS chips (IGCPS/watt), and analog CMOS chips (100
GCPS/watt). The payoff of NN's is in applying this speed/watt processing close to the sensor to learn problem
solutions based upon available data. Progress is also being made on developing more biologically motivated NN
architectures (e.g. pulse-stream NNs) which will achieve a Tera CPS/watt (still over a thousandth of the brain). Based
upon their very high speed per watt and their data driven learning, NNs have secured a place in high performance
hybrid computing (HPHC) as a method of choice for fast solutions to pattern recognition problems such as image
processing. HPHC architecture technologies include:

" Computing architectures
- Processors (SIMD, MIMD, vector, neural)
- Memory (shared, distributed, connectionist)
- Interconnection (bus, ring, hypercube, local fan in/out, direct)

"* Computing hardware
- Electrical (digital, analog, hybrid)
- Optical (analog, digital, hybrid)

"* Computational models/algorithms
- Numerical analysis (Bayesian, possibilistic)
- Symbolic (knowledge representation, inferencing)
- Neural networks (Supervised, scored, and clustered learning)

These components are combined (see Figure 1) and then matched to the various parts of a large problem in order to
optimize its solution. NN's are a key enabling technology which provides orders of magnitude increase in speed per
size, weight, and power, as well as reduced solution development cost. This is accomplished by processing data
nearer the focal plane using analog massively parallel processing which is trained on the data instead of a
"programmed solution". As such, the NN automatically tailors its architecture parameters to fit each problem. The
benefits of NN's for image processing include:

"* Thousand-fold reduction in power per operation,
"* Sensors and processing circuitry integrated together (e.g. both in silicon),
"* Massively parallel analog computation for speed with low power and volume,
"* Biologically motivated computations that map naturally to electronics,
"* Computational methods that do not require high precision, and
"* No "up-front" long-term storage (via fast processing and connectivity).

Section 2 summarizes our NN-based image processing and control functional flow. A volt-nanosecond pulse stream
NN architecture is described in Section 3. The results of applying NNs for multispectral, pixel-level detection is
given in Section 4.
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3.0 Biologically-Motivated Pulse Stream Processing Elements
The basic Processing Element (PE) used in the NN object recognition effort described in this paper and the majority
of all NN applications is the Non-Linear Perceptron (NLP). The NLP was originally introduced in 1943 by
McCulloch and Pitts [41 as a binary threshold unit. The unit computes an inner product between the current input
vector and an internal weight vector. If the product is greater than an internal threshold, the unit output becomes
active. Many variations on this basic model have been made over the years such as the use of various non-lincarities
(e.g. step function, threshold logic, sigmoid function), the addition of a feedback connection from the output of the
unit to one of its inputs, and the addition of internal memory. The original McCulloch-Pitts model and all its
variations have become collectively known as perceptrons. Additionally, numerous perceptron-based architectures
have also been investigated including multilayer (i.e. traditional feed-forward and recurrent networks), two-
dimensional single layer (i.e. Kohonen and cellular style networks), and one-dimensional single layer (i.e. Carpenter-
Grossberg style networks).

Perceptron-based networks have shown great promise in applications such as image and speech processing which
benefit from highly-parallel processing and adaptivity. Perceptrons, however, do not adequately capture the
characteristic behaviors of the biological neurons they attempt to model; perceptrons are greatly abstracted from
biological neurons. The primary reason for this abstraction is the motivation behind perceptrons. Perceptrons were
intended as a primitive neuron model which could be used to study different parallel computing architectures and
adaptation mechanisms without the computational complexity associated with biologically-realistic neuron models.
Perceptron-based networks typically operate on spatial relations (i.e. the relationships between the elements of the
input vector). Even if the input vector elements represent a temporal feature, the processing is based on spatial
relationships. Recurrent and time-delay NNs have extended traditional NN processing to include discrete temporal
relationships but, the capabilities of the individual PE have remained unchanged. As an alternative, consider the
spatiotemporal processing performed by the VLSI Hybrid Temporal Processing Element (HTPE, patent pending)
which explicitly models the processing performed by biological neurons.

Development of the HTPE was initiated in 1989 with support from the NASA Innovative Research Program (Grant
NAGW 1592). The goals of the project were to develop realistic models of the electrophysiological behavior of
typical spiking neurons at a level of description that allowed investigation of different time-dependent models of
channel conductances, and to use these models to investigate processing of time-dependent signals. Scaling to the
volt-nanosecond operating domain and modeling both passive membrane conductances and channel populations with
discrete MOS devices allowed flexible models with minimal device counts to be developed and simulated using
SPICE. This modeling methodology can be contrasted with that of Mead and colleagues, who have employed
primarily operational transconductance amplifiers to model neurons, neuron components, and small circuits in the
mV - ms operating domain. Circuits developed with the HTPE are generally smaller, lower-power, less noise-
sensitive, and much faster than circuits developed with operational amplifiers.

A principal motivation behind the development of the HTPE was to realistically model a biological neuron without
sacrificing speed and computational power. Biological realism in neural modeling is motivated both by the goal of
understanding the behavior of biological nervous systems, and by the realization that biological neurons are
complex, versatile signal processing devices that are evidently well-suited to a very large variety of computational
tasks. Neurons are hybrid analog/discrete devices, in which inputs are processed by the time-dependent convolution
of relatively slowly-varying post-synaptic potentials (PSPs), and outputs are transmitted over long distances by fast,
relatively loss-free action potentials APs. The integration of continuous, asynchronous analog input processing
with discrete, pulse-encoded communication allows neurons to make use of time and phase differences between
signals arriving in real time to represent both temporal and spatial information. It also allows neurons to exchange
information in times much smaller than their internal processing times, hence breaking the communication
bottleneck that hobbles many massively parallel systems. The combination of high-speed, discrete communication
and versatile analog computaLon makes neurons ideal for many time-dependent signal processing applications [5-7].
The HTPE, which we have developed over the past five years, is the first artificial neuron to explicitly model the
generation and processing of both PSPs and APs in hardware (8,91.

The HTPE represents a qualitative advance over conventional digital and analog processing elements. In
conventional digital systems, all processing is synchronous (clocked). Synchronization imposes a fixed lower limit
on the temporal resolution of processing, and forces a discrete representation at no better than the processing
resolution on continuous input signals. Conventional analog processors accept continuous input, but embody the
assumption that transient responses to inputs can be neglected. In the most common hardware PE, incoming signals
are summed and then convolved with a sigmoidal transfer function, as is done in standard software simulations of
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ANNs. By only using steady-state responses in processing, these systems impose an effective upper limit equal to
the relaxation time of transients on the overall temporal resolution of the system. Biological neurons are sensitively
dependent on transient responses of ion channels to fluctuations in membrane potential - the AP itself can be viewed
as a transient response - and both accept and generate signals asynchronously. The HTPE is similarly a fully
asynchronous PE that allows information to be encoded in both the transient and steady-state components of time-
varying signals [5-9].

While many of the properties of biological neurons are important in developing robust NNs, some are artifacts of the
neuron's implementation in organic matter. The HTPE has been designed to model the computationally
advantageous properties of neurons while making full use of the speed and compactness of silicon implementation.
Signal timing in the HTPE has been linearly scaled to take advantage of this speed while maintaining the relative
shapes and timing of both APs and PSPs. VLSI input voltages are typically on the order of a volt; therefore the
signal voltages have been scaled from the millivolt range of neural signals to the volt range of MOS devices. The
operating range of a typical neuron is roughly -80mV, just below the Nernst potential for K+ ions, to roughly
+6OmV, just above the Nernst potential of Na+ ions. This range has been scaled linearly to the [0,5] volt range of
MOS devices. This maps the resting potential of approximately -6OmV to I volt and the typical threshold voltage
of -4OmV to 1.7 volts. The operating range for temporal relations in neurons, which is in the ms range, has also
been scaled to the ns range of VLSI devices (approximately lms per IOns in the current implementation). Figure 4
shows a typical AP (pulse), Excitatory PSP (positive going analog waveform), aid Inhibitory PSP (negative going
analog waveform). AP streams are analogous to the non-linear output functions of the NLP and PSPs are analogous
to the weights of the NLP.

Neurons are generally highly specialized, both electrochemically and geometrically, to particular signal processing
functions. The HTPE, in contrast, is a "generic" model neuron that can be customized either by adjusting device
sizes at the fabrication stage or by adjusting DC control voltages during operation. The design of the HTPE reflects
a computational interpretation of neural architecture that views modulatory connections between neurons as the
primary mechanism of real-time programming in neural circuits, and supports a flexible set of modulatory and
learning mechanisms.

The primary advantage of the HTPE is its capability to process temporal information. Conventional NNs are based
on the assumptions that each input vector is independent of other inputs, and the job of the NN is to extract patterns
contained within the input vector that are sufficient to characterize it. For problems of this type, which amount to
local spatial pattern recognition, a network that assumes time independence will provide acceptable performance.
However, in a large class of signal analysis problems the input vectors are not independent and the network must
process each vector with respect to both its own temporal characteristics and its relations to previous vectors.
Network architectures that assume time independence are typically unwieldy when applied to a temporal problem, and
require additional inputs, neuron states, and/or feedback structures. Although temporal characteristics can be
converted into activation levels, this is difficult to do without losing information that is critical to solving the
problem efficiently. Networks that assume time dependence have the advantage of being able to handle both time
dependent and time independent data. The HTPE is ideal for developing networks of this type. Particular advantages
of the HTPE for time-dependent signal processing include the following:
"* The modeling of the continuous/asynchronous dynamics of biological neurons allows the HTPE to detect ultrafine

temporal characteristics of the input signals, such as frequency and phase differences, less than the minimum
switching time of the MOSFET devices on which it is based.

"* The HTPE is designed to exploit the full nonlinear range of the MOSFET devices on which it is based. This has
two consequences: first, the HTPE has an extremely wide temporal behavior range resulting from the use of all
four modes of MOSFET operation (i.e., cutoff, sub-threshold, saturation, and ohmic); second, the additional
circuitry used in conventional systems for biasing and non-linearity compensation is not required, thus reducing
the device count and VLSI area of the HTPE. Custom VLSI layout further reduces the HTPE layout area by
ensuring that each MOSFET device performs a necessary function and that it is the minimal size required to
provide adequate drive capabilities.

"* The behavior of the HTPE is fully controllable through DC biases, which makes systems of HTPEs easily
configurable. Neural systems typically require locally-dense globally-sparse interconnection schemes, which make
them ideal for VLSI implementation.

"* Parallel systems are inherently noise immune. This in conjunction with built-in adaptation mechanisms allows
the HTPE and its systems to be very robust by absorbing system noise and imperfections.

"• Several HTPE characteristics make it a very low power device: first, the system is asynchronous, which reduces
the peak power requirements of the HTPE with respect to conventional digital systems in which all devices switch
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same time; second, sincethe quiescent state of the HTPE is rest it has much less static power dissipation than
conventional analog systems, which constantly dissipate power to maintain a particular quiescent state; and third,
minimal device count and size reduces the overall power requirements of the HTPE.
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Figure 3. Typical AP and PSP Waveforms Produced by the HTPE.

HTPE networks can be applied to any task to which NLP networks are applicable. In addition, HTPE networks can
be used to extract and directly process the temporal information in the input signal. The application of HTPE based
networks to the multispectral object recognition effort described in this paper is currently underway. The results of
this effort will be reported in subsequent publications.

4.0. Initial Neural Net Multispectral Vehicle Detection Results
The imagery was gathered in flight tests over FL Huachuca, AZ. Overlapping data in the UV, Vis, MWIR, LWIR,
and SAR was gathered using the sensors described in Bowman (10]. Over 25 hours of raw sensor video was collected
on military staged targets (e.g. tanks, trucks, BMP's) and targets of opportunity in wooded and open fields, with
natural camouflage, radar transmission camo, and no camo. Data was gathered on targets with engines on/off, in
morning and afternoon conditions, at slant ranges of 4K and 8K feet. The imagery is highly cluttered with object-like
regions in all bands. The vehicles were approximately 6-12 pixels lengthwise depending upon the band and
orientation. The approach is summarized in Figure 4.

Silicon Graphics Neural Network
IRIS Workstation Board on 486

Extract Go•' T anigTte+ INoiNetor
UY+ Vi + MW* I Trailngf'Tllsn (NN) object Detection

"* Co-registration * Shifts * NN architecture
"* Individual bands * Rotations -Size

- Scale I -Connectivity
-Learning
Performance Trades

Figure 4. NN's Have Identified Patterns in Multispectral Images for Vehicle Detection
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The following training and testing process for NN object detection was used in each of 4 bands. First, extracted 9x9s
of targets, random clutter, and "target-like" clutter. Second, trained then tested BPN feed-forward NNs on +2 pixel
shifts of 9x9s for individual bands, pairs of bands, triples of bands, and all four bands. Third, analyzed performance
sensitivity to training/testing sets, number of layers, nodes per layer, learning rate and type (i.e. batch, sequential),
activation function type, and training iterations. The IDL-based IRIS image processing bench was enhanced with a
user friendly (button based) data preparation and extraction tool that allowed the user to work with up to 4 (512x512)
images simultaneously while selecting zoom extractions (area, magnification).

The NN performance sensitivity results are summarized as follows: direct weighted connections from input to output
with minimal net size improved results, scaled learn.ag rate by 6n for the nth layer of BPN improved training, and
generalization best when training stopped at knee-of-curve in error[ I 11. The object detectioi, results are summarized as
follows:

" Individual bands (81-9-3-1) [8 inputs, 9 & 3 nodes in hidden layers, I output node]
- UV and Vis achieved 97% accuracy (1750/1800 9x9s correct).
- LW and MW performed poorly at 80% and 85% respectively.

" Multiple bands
- Pairs (62-9-1) UV+Vis and Vis+MW best with both achieving 97%
- Triples (243-9-1) UV+Vis+MW performed best with 99% accuracy
- All four (324-5-1) achieved 93% due to larger net size memorization
- Hierarchy of NNs using V, UV, and MW single band NN outputs as inputs to a

3-2-1 NN achieved 99% accuracy with a much smaller net size.

5.0 Summary
NN and traditional parallel (MIMD/SIMD) object recognition comparisons have shown a rough equivalence of the
connection per sec (CPS) and the operation per sec (OPS) per pixel. However, NN's have over a thousand-fold power
advantage with MIMD and SIMD computational capability of 20 to 200 MOPS/watt, respectively, and analog NN's
at 100 to 1000 GCPS/watt. This is significant for the 300 ops/pixel (per frame) required for space-based and UAV-
based image processing needed for theater missile defense. This paper has presented an image processing architecture
for applying NN's, an analog pulse stream NN paradigm for simultaneous spatial and temporal processing with a Tera
CPS/watt capability, and results on flight test imagery showing the potential for multispectral, pixel-level vehicle
detection in clutter.
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Abstract

The paper considers visual motion tracking from a com:ectionist perspective; the described approach aims at
showing how the flexibility of neural networks can provide a tracking system with adaptiveness and effectiveness.
The method first performs an elementary mapping of sensorial data into a lower-dimensional representatior,
("messages") tractable by neural structures, hence motion information is injerred .from differences between
consecutive messages. The described tracking structures range from single-network schemata, which demonstrate
the basic principle of operation, to multinetwork architectures, whose estimation-averaging mechanism greatly
increases tracking stability. The approach validity is assessed on a simple domain to ensure generality, yet a
difficult testbed has been chosen and satisfactory results confirm the method's effectiveness.

I. INTRODUCTION

The paper addresses motion tracking (i.e., the evaluation of an object's motion properties) by a fully
connectionist perspective, where neural networks (NNs) perform visual information processing at a subsymbolic
level. As a result, the described schemata operate as stimulus-response devices, and would lie at a pre-attentional
cognitive level. The proposed approach appears consistent wit,. some biological evidence, in which tracking
precedes recognition; anyway, it allows integration with higher-levcr representation paradigms, to which it can
contribute with fast, data-driven attention-focusing mechanisms.

In related approaches, classical methods achieve generality and effectiveness by sophisticated mathematics (e.g.,
filtering [131, regularization [181, optical flow 18,41), but may also prove computationally heavy and noise-sensitive.
The approach here described offers greater simplicity in both design and implementation. Other methods implicitly
assume some highet level analysis of perceived information (e.g., by feature-extraction) 11,15]; they lie at an
attentional level but might lack general applicability. Connectionist isual systems usually involve specific signal
pre-processing steps to facilitate a network task by reducing data dimensionality; in vehicle-guidance applications,
a neural visual subsystem aims to accomplish some critical subtask (e.g., following road edges) [61. Concerning the
tracking process, the neural schema described in 1101 focuses on biological congruence, and the approach presented
in [9] bridges the gap between optical-flow models and connectionist structures.

The method described in this paper aims at exploiting the generalisation power of neural networks in those
complex domains (like active Vision) for which explicit and analytic approaches would prove inefficient or difficult
to apply. The specific system's task is to maintain a visual sensor continuously centered on and aligned with an
observed moving object. The resulting schemata show a wide range of applicability; in addition, distributed
implementations on (neuro)computing architectures inherently allow fast performances in real-time applications.

Tracking is performed in two steps: first, visual data are mapped into an intermediate representation
("messages"); thus a sequence of images maps into a sequence of messages. The lower-dimensional message space
can then be handled by neural networks, which can extract motion information from message differences and drive
tracking accordingly. The visual testbed includes binary images representing object shapes. The choice of binary
images aims at preventing domain-dependent techniques from affecting the evaluation validity, even though they
may improve the system's performance; at the same time, the specific testbcd can demonstrate the method's
accuracy. As to the method's generality, the motion-tracking schema applies to pictorial images, as well; moreover,
in case "target" implementations should involve dedicated processing, the proposed structures are inherently
compatible with any application-dependent module.

Section 11 presents the basic research framework, including the dimensionality-reduction mechanism and the
neural component. Section III illustrates the neural tracking architectures, covering single- and multinetwork
schemata. Section IV reports experimental results, whereas some concluding remarks are made in Section V.
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IL NEURAL FRAMEWORK

I. 1 - Message-based reduction in dimensionality

Generalization theory [5] and practical training limit the data
dimensionality that neural networks can process effectively. For
this impossibility of neural networks to handle visual patterns
directly, an image, I, is mapped into an intermediate, lower-
dimensional representation ("messages"). This message-based
approach proved effective in previous applications of associative
models to image understanding, such as classification and
stimulus- response behaviour 131. Reduction in dimensionality is
modelled by a general image-message mapping function, Mo-; in
practice, a message is represented by an K-dimensional vector of
real numbers. £ my

We chose a straightforward implementation of Mo to enhance
the method's generality and fast response. In the basic schema, ix
row-wise and column-wise sums of image pixels yield a message
for each coordinate axis (Fig. 1). The representation of the Mo Fig.1 - Sample of message generation
function can be formally expressed as follows:

def N NM ) = (rX^ i( •, k = 1,...., 1,j k1
5=| J=I

In spite of this apparently simple characteristics, the resulting structures proved quite effective, and would not
prevent the application of other more sophisticated message-generation schemata.

11.2 - The neural component Ax
The use of a neural network (NN) for motion estimation offers the

possibility of training the system by examples; under some conditions,
the generalization power of the NN can improve effectiveness. A
connectionist structure does not require any explicit model of the
message-motion relationship; in addition, training flexibility makes
the schema adaptive to different implementations of Mo.

All the described schemata involve classical feedforward networks;
the input layer has the same dimensionality of messages; analog units
in the output layer provide motion evaluation (Fig.2). The meaning of
output information depends on the implemented schema, and may
express, for example, an object shift in the image plane, or its object Am(' Am (K)
rotation angle. The number of neurons in the (unique) hidden layer is
set experimentally for each configuration. Such a number can be first Difference of messages
assessed using generalization theory, which relates the number of
connections to the cardinality of the training set, whereas necessary Fig.2 - The neural structure
adjustments follow practical experience. The training algorithm is an improved version of the back-propagation,
named SuperSAB 1 141, where adaptiveness is provided by a specific learning rate, iii, for each weight dimension:

AW~ i w-- OE + a. A r-)(2)

where (x is a momentum term, and Aivwr) represents the weight variation from the i-th to the j-th units at the

training iteration r. An optimized version of this algorithm on a RISC-based workstation 121 made it possible to
cope with the huge computational load involved in all experiments.

1-643



III. NEURAL ARCHITECTURES FOR TRACKING

I/. 1 - The differential estimation schema

The principle of operation of the basic tracking mechanism is to infer an object's motion from the differences
between two consecutive messages; for this property, this estimator is denoted as a "differential" estimator. This
schema implicitly assumes rigid object and translational motion, but these assumptions can be relaxed without loss
of generality provided the time diffcrcnce between two consecutive frames is small enough.

As described earlier, row-wise and column-wise summations of pixel values result in two messages. The neural
networks (one for each coordinate axis) process the information contained in time-consecutive messages and work
out the corresponding estimates of the object shift in the image plane.

Training is performed by showing the network differences in messages for several shifts of several objects at
different scales. The eventual training steps consist in an experimental measurement and compensation of the
estimator's constant error (if any) to improve stability. As a result, the network generalizes an implicit procedural
rule to associate differences in the message space with differences in the image space. The conditions for the
network's proper learning are based on both generalization theory 151 and practical criteria [161, which set the
cardinality of the training set in order to achieve reliable generalization. The differential estimator can be formally
defined as:

def

d(Am) : • :{m" - m'} -- {(Ax,Ay)} (3)

where m' and i" denote the messages associated with two consecutive frames, and (Ax, Ay) indicate the
corresponding object shift in the image. Figure 3 presents the basic differential-tracking architecture.

An additional advantage of the row-wise and column-wise approach is the possibility of controlling the
dimensionality of the message space to comply with generalization requirements. For example, a further
compression in the experiments was obtained by summing up rows and columns into groups of four elements; thus
images consisting of 128x128 pixels can be mapped into two messages of 32 elements each.

The above schema enhances performance and generality, as the differential mechanism extracts from image
sequences only motion-relevant information and removes insignificant information (e.g., the background).
Focusing the network on tracking-essential information strongly facilitates the generalization task. As to the
training-set cardinality, it can be tailored by controlling, for example, the number of objects shown or the number of
different object shifts.

111.2 - The multinetwork schema

The differential schema may, in critical situations, exhibit an intrinsic drawback: processing differential
information inherently increases noise-sensitivity. Techniques to overcome this limitation may include, for
example, low-pass processing of neural inputs to remove spikes and high-frequency noise. Although such
additional modules have full compatibility with the overall methodology here described, we followed a different and
more straightforward approach, which exploits recent achievcments in neural network theory.

The integrated structure we developed includes several networks, each contributing to motion-evaluation
independently of the others. The final average over the outputs provided by all members will correspond to the
actual motion estimate. For this mechanism, the structure is called the "multinetwork" schema; Figure 4 gives its
schematic representation.

x-wise Bias
i-th message compensation

/ (I 01 31 ,/
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i+l_th message

Fig.3 - The differential tracking schema
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Neural Bias To obtain several

L stimaorl Compensai on independent contributors, onestiMator] Compensation can just perform several
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-- Estimator vAX different and independent

Message 0 g weight initializations. A more
Gener. 0 accurate estimator can be

Neural obtained by using different
Estimator I training sets for each

network. This procedure can
Fig.4 - The multinetwork schema increase the estimator's

generality by removing
possible bias that may be introduced by a specific training set; on the other hand, the practical feasibility of such an
approach will depend on the availability of huge amounts of training data.

The integrated approach makes it possible to exploit the statistical properties of network ensembles 111,71 to
improve the whole system's robustness. Multinetwork approaches recently received increasing attention. Although
an in-depth theoretical investigation of their basic properties (e.g., generalization ability) has not been carried out,,
network ensembles have proved very effective in practical applications 1171. The formal expression for a
multinetwork schema including N members can be the following:

IN

7/(Am) = - Z t ("(Am) (4)
N n=d

In this paper, we exploits two results of research on network ensembles, which has shown that network
averaging 1) does not affect estimation bias, and 2) reduces error variance. Indeed, one can make error variance
arbitrarily small by including a sufficient number of networks. A formal demonstration of these properties 1111
involves notions from statistics and approximation theory, and goes beyond the scope of this paper. Very briefly,
property 1) follows from the linearity of the average operator: the bias of W') is equal to the average bias of
members, and the members' biases are all equal (averaged over data on a statistical basis) because they relate to
equivalent estimation structures. Variance reduction (property 2) follows from modelling estimation as a regression
problem: if MSEO indicates the mean square error averaged over data of a regression module, it has been proved in

IlII that:

MSE( 2 _ - MSE( 9"-) (5)

which demonstrates that the multinetwork estimator performs better than the average individual member of the
ensemble. When applied to prediction tasks, the variance reduction provided by multinetwork structures improves
the second-order statistics of the estimator, and the ultimate result is to increase the tracking system's stability.

IV. EXPERIMENTAL RESULTS

IV. I - The experimental testbed

Images of shapes belonging to 7 different classes form the testied for this research. The simplicity of using
binary images is countervailed by the complexity inherent in the specific testbed considered. Training shapes are
different from test ones; in addition, the nature and composition of training and test sets have been intentionally
chosen to stress the system's accuracy and effectiveness. Figure 5 (top) presents the shape classes used for training
and test. Each class includes a set of thirteen 128x128-pixel images, representing shapes at increasing scales; scale
factors range in the interval 11,13]. The neural networks have been trained using only images at three scales:
3,7,and 11; all 13 scale factors are instead used for test shapes. This training strategy implements a sparse
sampling in the scale space (Fig.5, bottom); this makes it possible to verify the method's scale-invariance, which is
provided by the network's generalization power.
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i ? ! I Fig.5 - The Visual testbed
a 9 , 12 3 , ,Top, left: training shapes

The scale-sampling strategy for training and test Top, right: test shapes

In each experiment, the network training set was built up as follows: the object was initially placed at a
reference (leftmost or bottom) position, and increasingly shifted (when possible) by 10, 20, and 30 pixels in both the
positive and the negative directions. The network's analog output ranged from -0.9 to 0.9 and represented the shift
amplitude with the related sign. The difference between the shifted-object message and the "unshifted-object"
message was combined with the desired output value, and formed a single element of the network's training set.

The object's reference position was then increased until the whole axis range was covered. As a result, the
network learned to map differences in messages into object shifts, independently of the object's actual position in
the image. The whole software environment (tracking system and neural model) has been implemented with the C
language on a IRM 6000 RISC workstation.

IV.2 -Accuracy results on differential and multinetwork estimation

A massive experimentation involved more than 400 evaluation runs, and provided reliable sample results for
using unobserved shapes at unobserved scales. The graphs in Fig.6 present sample results for horizontal shifts of
_ 10 and ±20 pixels of test shapes with scale factor =6; similar results have been obtained for other scales and for

vertical shifts. In the graphs, the x-axis indicates the object's reference position in the image, the y-axis gives the
network's output, and the straight line indicates the object's actual shift.

The training and test strategies for the multinetwork schema were the same used for differential estimation. In
each experiment, the ensemble was made up of three members, chosen from a set of independently trained
networks. The choice privileged the networks with the minimum error variance (averaged over training data). Two
different ensembles were used, one for each image coordinate. Table I shows statistic measurements of prediction
quality for one such ensemble; the individual performance of each member was measured on the training set,
whereas the ensemble's behaviour was evaluated on the test set. Results fully confirm expectations from ensemble
theory (bias invariance and reduction in error variance).

IV.3 - Tests on the method's stability

When closed-loop systems (like trackers) have to be set up, stability represents a crucial issue, too. Stability
here means the method's capacity to compensate for errors (in other words, to avoid error accumulation). As
mentioned previously, a rough stability mechanism is bias compensation to remove constant errors. Run-time
stability is difficult to prove formally, due to the network's nonlinear behaviour. Stability can hardly be predicted by
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Fig. 6 - Sample results from differential estimation
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observing the experimental charts on
ED siIFT AVG.ERROR ABS. ERROR VARIANCE accuracy; in the present research, it was

evaluated experimentally. Using the

10 1.851 3.255 12.766 same test shapes at several scales, we

#2 20 1.818 4.227 34.597 lated a random path of an object
30 -3.038 3.654 15.499 a 1024x1024 visual field. While

10 1.861 3.436 15.515 , in the image, the object takes

#72 20 -0.136 4.181 39.841 uom steps of amplitude ranging from

30 -3.961 4.653 29.419 2 to 30 pixels along each axis.

10 2.521 3.372 9.840 At several positions along this path,
#291 20 2.227 3.545 12.264 the object's scale varies, thus mimicking

30 -3.846 4.615 17.355 radial motion. This makes it possible to
_ ________ __stress the method's scale invariance.

At each (fixed) time, the trackersiIvr A R EAevaluates the object's shift and moves the
- 10 1.882 2.968 3.097 centre of the camera (here modelled as a

20 0.863 3.000 3.653 128x128 pixel region) toward the
30 4.153 4.692 4.571 estimated object's centre. The referenceK 10 -0.904 4.585 5.968 camera view for the next evaluation step
20 -2.340 3.750 4.111 is this new estimated position (which
30 4.000 4.153 2.660 differs from the actual object centre

Table I - The effect of multinetwork averaging because of estimation errors). Figure 7

Top: individual behaviours of three networks (Training set) displays the tracking result for the

Bottom: behaviour of their ensemble (Test set) multinetwork schema, demonstrating the
method's stability.

Fig.7 - Stability test for multinetwork estimation
The continuous line connects estimated object centers; shapes indicate actual positions and scales
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V. CONCLUDING REMARKS

The research aimed to show how elementary schemata, when supported by the representation power of
connectionist structures, can accomplish complex tasks in difficult but interesting domains like that of active vision.
Results show a satisfactory balance between the effectiveness needed in practical applications and the generality
requirement to be met by scientific methodologies. The confirmed validity of multinetwork structures, whose
expected theoretical performance have always been supported by experimental evidence, represents another major
achievement of the present research. The described methods can be further improved in several respects. Rotation
tracking can be easily accomplished by the same message-based mechanism here described. Removing
simplifications increases the method's practical impact and allows one to tailor the general principle to final
applications. For example, the differential schema can be directly extended to handle pictorial images and
inherently solves the problem of background elimination. In addition, the simplicity of the dimensionality-
reduction mechanism opens new interesting vistas for using specific signal-processing techniques, which may help
benefit from particular sensors (e.g., IR, etc.). A promising aspect of the present research is the possibility of easy
implementation on dedicated hardware. Indeed, the realization of the neural component (i.e., the core of a tracking
schema) by using (neuro)chips makes it possible to tackle real-time applications at a relatively low cost.
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Abstract

SEJONG-NET, inspired by the visual system of vertebrate animals, has been designed to recognize on-line
characters, and initially applied to Hangul(Korean alphabet) characters. Later, the model was modified to
recognize various other character sets such as Roman characters, Chinese sub-characters and numerals.

In this paper, we propose the extended SEJONG-NET model based on the on-line SEJONG-NET model to
recognize both on-line Hangul patterns and off-line Hangul patterns through a common mechanism of recognition.
We treat the process of off-line character recognition as a special case of on-line character recognition through
selectively scanning over strokes according to the remembered writing sequence.

In the case of complicated characters as Hangul, contacts between parts that compose a character is a major
factor of confusion by the off-line recognition system. We use human-like process of analysis-by-synthesis to
solve the problem of contacts by extracting strokes on the basis of the writing sequence.

1 Introduction

SEJONG-NET(SElective Judgement Of Numerous Grapheme-neural NETwork), inspired by the visual sys-
tem of vertebrate animals, is a neural network model to provide a comprehensive paradigm to explain visual
character pattern recognition. This model composed of multilayer extracts spatial and temporal features in
parallel, and then combines the two modes of information to recognize a given pattern.

This artificial neural network model has been designed originally for the recognition of on-line Hangul
characters[1][2], and then modified to recognize Roman characters[3] and Chinese radicals[4]. An integrated
model for the on-line recognition of several sets of characters mentioned above has been developed with a single
mechanism[5].

The main difference between the existing SEJONG-NET and most of the pattern recognition neural network
designed so far lies in that the input of the existing SEJONG-NET is not of a static visual pattern but of a
dynamic one. Thus the extraction of temporal features through multistage transformations of 2-dimensional
visual input is taken as an equally important problem as the extraction of spatial features.

The field of character recognition can be classified into two classes, on-line recognition and off-line recognition.
On-line recognition is characterized by the use of dynamic information to recognize a character, on the other
hand off-line recognition can use only the x-y coordinates of each pixel. Thus on-line recognition has produced
much more encouraging results than off-line recognition. So far, most of the recognition system has been
developed only for one of the two classes of input pattern.

Now, we propose the extended SEJONG-NET with backward paths on the basis of the on-line model for
Hangul to recognize off-line characters as well as on-line characters using a common mechanism. This model can
take both a static visual pattern and a dynamic one as the input, while the existing models can recognize only
a dynamic pattern. In this paper, we recognize off-line characters by treating the process of off-line character
recognition as a special case of on-line character recognition through selectively scanning over strokes according
to the writing sequence of a character.

Several studies related to the use of on-line information have been made. Pan[6] uses a heuristic-rule-based
tracing algorithm to get the temporal relationship among the strokes in a numeral. Rosenfeld[7] provides
a taxonomy of local, regional, and global temporal clues to recover temporal information from the image.
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Marcelli[8] presents a method based on a suitable implementation of good continuity criteria which take into
account direction, length and width of the strokes making up characters to recover part of the lost script
dynamics.

The major factor of confusion by the recognition system for complicated characters as Hangul have been
the contact problems that occur between strokes/graphemes that compose an individual syllabic character.
Several attempts have been made to solve the contact problem[9J[10]. Most of them use bottom-up approaches
and result in systems that consume inappropriate amount of time to handle all the possible cases of contact.
In this paper we use human-like process of "analysis-by-synthesis"[l1][12][13] to extract strokes on the basis
of the writing sequence which is already remembered. By using the process, Halle and Stevens[ll] described
computer program that attempted to recognize spoken language and Eden[12] developed the system to recognize
handwritten cursive script.

Hence SEJONG-NET can be considered as a more general model of problem solving for the tasks of visual
pattern recognition.

In this paper, we describe the details of the structures and functions of the proposed model and report the
results of applying the extended SEJONG-NET as a recognizer for both off-line and on-line Hangul characters.

2 Structures and Functions
SEJONG-NET has the feed-forward local connections between two adjacent layers. Each layer may contain
several planes, each extracting different features. Signal flows from input layer to output layer(feed-forward),
and when the system fails to get the proper information from the previous layers, it transmits feedback signals
to the previous layers. (The structure of the model is identical to that of on-line Hangul model[ll[2] except for
the addition of backward paths)

This model receives binary input patterns and recognizes individual strokes using spatial and temporal
information extracted from the previous layers, and then combines the strokes to compose graphemes. Finally
these graphemes are combined in sequence to form a particular character. (Figure 1) shows the functional
structure of the extended SEJONG-NET.

--- ~v• ,, -: -............
I "

I I
- - - - - - - -K O W L E D E-of- - - ---- - - - - - - - -

Sp..a" S pa" FoI I-
E m e IN o m ea of

................. I ,. .............. hro

Feedfaroard Signal 0 Cf

F,,edbeck 8"1, ,,C ------

Figure 1: The functional structure of the extended SEJONG-NET

After getting an input image through on-line input device or scanner, the model thins/relaxs the input
pattern, and then the input pattern is transferred to IN(ILNput) layer to represent the presence of visual
stimulus by binary value. Next in REC(photoRECeptor) layer, each pixel from IN layer is converted into a
real value to represent its spatio-temporal information. The outputs of REC layer are supplied to two paths
to extract spatial and temporal features at the same time. One path is SSF(Simple Spatial Feature) and
CSF(fomplex Spatial Feature), the other is STF(Simple Temporal Feature) and CTF(Complex Temporal
Leature). STR(ITRoke) layer extracts strokes utilizing these spatial and temporal features of CSF and CTF
layer, and GRA(GR.Apheme) layer combines several extracted strokes to recognize a specific grapheme. In
SYL(SYLlable) layer, these graphemes are combined to form a particular character. (Figure 2) shows the
overall structure and the signal flow of the proposed SEJONG-NET in this paper.
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Figure 2: The overall structure of SEJONG-NET

2.1 Basic Idea for Off-line Recognition through On-line Mechanism

Basically, the model is based on the on-line Hangul model. The main structural difference between the model
and the on-line Hangul model is that the model have backward paths to take the adequate actions on the lower
layers when the system fails to get the valid outputs in the higher levels, STR, GRA, and SYL layers.

This model can recognize on-line characters through feed-forward paths like the on-line Hangul model.
However for example, if an input image has inappropriate strokes unsupported by STR layer of the model,
these strokes are split into several small strokes and then the system continues to recognize along the backward
paths. Thus we can say the model is more general and powerful than the existing on-line model.

It is well known that on-line recognition is relatively easier than off-line recognition, mainly due to the fact
that stroke dynamics is known. Unfortunately, because we can't directly get temporal information from off-line
characters, in this paper we present the method to recover dynamic information from a static images. We
get the writing sequence information of an off-line character through attending selectively on images according
to the remembered writing sequence of a character. By following the remembered sequence, we can trace a
character in the natural order which human follows generally.

To trace from the first stroke of a given character, first of all we have to identify the start point of the first
stroke. Generally, the writing direction follows top to bottom and left to right. According to this rule, we
can easily decide the start point of the first stroke of the first grapheme through scanning the input image
diagonally from the top-left corner. (A start point should be a termination point.) If several points are found
as the candidates of the start point, we select only one point by comparing the positional relationship among
these points. We define a line-segment as a string of pixels sequenced according to their tracing order, and
each line-segment is separated by a start point, a termination point, or a branch. Trace starts with a selected
start point and continues until all the line-segments connected with the point are traversed. By tracing point
by point from the start point, we find line-segments, and then make strokes by combining these line-segments
with the same directional properties. The process for merging line-segments is always guided and induced by
stroke knowledge of Hangul represented by automata.

After processing all the line-segments connected with the first stroke of the first grapheme, we continue to
find start points, and to trace all the line-segments related to each start point. Note, the number of the start
point to be processed varies because of the contacts between strokes/graphemes.

After recognizing strokes through merging line-segments, we can extract graphemes by combining the ex-
tracted strokes according to the automata on the graphemes of Hangul.

Feedback signals are generated if there are some violations against automata when merging line-segments or
strokes, and then the Rystem continues the process of recognition until it reaches a stable state, which means
the system no longer generates any feedback signals.

1-651



We can't get the correct temporal information and the recognition result of a character until the system
reaches the stable state.

(Thku,.d MWt hag.) (Exiractd Stinok.. (lExtractd Orhaphuin.

S2 A

0 10 F (3)

(a) (b) ýCl

Figure 3: The basic idea for off-line recognition

In (Figure 3)(a), there are three start points('Sl', 'S2', 'S3'), and 11 line-segments. After the line-segments
('1','2','3','4','5') connected with 'Sl' are processed first, the line-segments connected with '$2' and 'S3' will
be processed respectively. Line-segment '1' and '2' can be merged into the stroke 'A' of (Figure 3)(b), while
line-segment '1' and '3' can't be merged into a stroke because automata on liangul stroke don't support such
stroke. In (Figure 3)(b), stroke 'A', 'B', and 'C' are merged into the grapheme '(])' of (Figure 3)(c), and so on.

We can classify the types of contact between strokes/graphemes into 2 types. One is the branch form, and
the other is the extension form of horizontal or vertical line.

While merging line-segments into strokes or the extracted strokes into graphemes according to automata on
stroke/grapheme, we can solve the contact problem. Because a guessed stroke with inappropriate strokes and
a hypothesized grapheme with inadequate strokes can't be recognized correctly by each automata, alternative
strokes/graphemes are generated and tested until correct strokes/graphemes are found.

2.2 Details of Each Layer

The structures and functions of each layer are described briefly as follows. (Refer [1][21 to get more details of
the structures and functions of rach layer)

Preprocessing : In the case of the on-line character recognition, we accomplish the spatio-temporal relaxation
to remove discontinuity between points. In the case of off-line character recognition, a thinning process[14]
is applied to skeletonize a given character, and the processing stage of the system identifies the start
point of the first stroke of the first grapheme to proceed trace pixel by pixel through scanning an image
diagonally from the top-left corner.

IN layer and INJ layer : Each element of IN layer can have a binary value and indicates whether input
exists currently at each position in coordinates. Each element of IN1 layer marks whether there was
input before one unit time at each position. Each stroke is stored in each plane. In the first stage of
off-line character recognition, line-segments instead of strokes are stored in each plane, and the number
of plane varies as the line-segments are merging/splitting to form strokes.

TRACE layer : Each non-zero element of this layer shows the order of positions written over the input
character. In the case of off-line character recognition, this sequence may be considered as the sequence
of tracing a off-line character through time. This layer detects the end point of a stroke and then activates
the stroke to be processed the next time according to this sequence when receiving the signal from STR
layer. This stroke-based computation can be regarded as the basic processing unit, works to facilitate
character recognition, and helps to solve the contact problem.

REC layer and REC1 layer: Elements of REC layer represent spatial information of points entered into
IN layer as the strength of steady state as well as represent the time of their appearance as the strength
of transient state. REC1 layer represents the state of each element of REC layer at one unit time before.

SSF layer : Elements of SSF layer extract various simple local spatial features. 8 filters with different ori-
entation are currently used. SSF layer consists of sublayers called planes each of which extracts a given
local feature within the receptive field.
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STF layer : This layer represents temporal changes in the respective positions of the visual image. Each
element of this layer activates when the corresponding element of REC layer changes above threshold.

CSF layer : Elements of CSF layer represent more complex spatial features constructed from features gathered
from SSF planes. The window size and the thresholding value used in this layer are adjusted by the
feedback signal of the higher layers to control the tolerance degree of distortions and variations whe the
recognition fails.

CTF layer : Elements of CTF layer represent termination of a stroke gathering their information from STF
layer. Through this layer, we can get the information of the start point and the end point of a stroke by
only visual information, not using pen-down/pen-up information obtained from input device. Especially,
this layer is useful for off-line character recognition.

STR layer : Elements of STR layer combine elements cf CSF layer and of CTF layer and then discriminate a
particular stroke according to the start and the end of the stroke and the different types of connectivity.
In the case of off-line character recognition, a stroke such as ' -1 ' and ' L' is split into two strokes, a
horizontal stroke and a vertical stroke because of the hook and the contact of a stroke. Thus, we first
extract sub-strokes and then combine them to find a particular stroke.
If STR layer fails to form a stroke, the system generates the feedback signal to reanalyze a pattern.
According to the cause of the recognition failure, one of the following actions is taken.

"* Reverse the direction of a stroke to follow top to bottom and left to right
"* Adjust the window size or the thresholding value of CSF layer to control the tolerance degree of

distortions and variations.

"* Split a stroke into the smaller strokes.
Note we should be careful of selecting points to be cutted. In the case of the contacts with the
branch form, a stroke is split at the corresponding branch point. On the contrary in the case of
the contacts with the extension form of a straight line, a point to be cutted have to be decided by
referencing the information of the neighboring strokes.

"* Merge several strokes with the same directional properties into a larger stroke

And then STR layer sends a control signal to TRACE layer to process the next stroke, or to continue the
process of recognition after feedback process.

GRA layer : Elements of GRA layer combine recognized strokes at various positions in the previous STR
layer and then recognize a particular grapheme.

The process of combining recognized strokes is always guided/induced by the knowledge of grapheme
represented as automata. This automata cc-tinually monitor the output of STR layer, remember what
has gone on before, and predict what will come next. Thus the automata use much information than
conventional automata to recognize a particular grapheme.

One of the following actions according to the current state of automata on grapheme is taken if this layer
can't find - particular grapheme.

"* Adjust the sequence between strokes
"* Split a stroke into the smaller strokes

SYL layer : Elements of SYL layer combine recognized graphemes in sequence to recognize an initial conso-
nant, a vowel and a final consonant(if any) to form the syllable according to the automata on Hangul
syllables. This layer is the final output layer for Hangul recognition.

3 Experimental Results

3.1 Simulation Environment

This extended SEJONG-NET is implemented in C language on Sparc-1 Workstation(SDT-200). For off-line
recognition, we used 2350 printed Hangul syllabic data obtained from a font file of Macintosh because the data
obtained through scanner have too many complex contacts to handle properly at this stage of the research.
Also, we used 600 handwritten syllabic characters for on-line recognition experiment.(most frequently used 200
syllables by 3 persons).
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3.2 Recognition Result

Although we used off-line data obtained form a font file to tackle the contact problems between strokes/graphemes
with ease, data have many contacts. In this circumstance the model recognized 90.8 % of data described. In
the on-line recognition, the recognition rate is 94.5 %.

In the case of off-line character recognition, most of misrecognition are caused by the contacts between
strokes/graphemes. In the case of on-line character recognition, many data are misrecognized because the
variations of the shape of strokes and the connectivity among strokes.

The test patterns could be classified into the 6 types of Hangul according to the arrangement of graphemes.(See
(Figure 4)). According to these types, the result of the recognition are shown in (Table 1).

[1111]4
Goorl Smatrur TYPE 1 TYPE 2 TYPE 3

of
Hengul

TYPE 4 TYPE S TYPE 6

Figure 4: The 6 types of Hangul

The average recognition time is about 13 second per character for the recognition of off-line characters, and
about 4 second per character for the recognition of on-line characters.

In the case of off-line character recognition, it took too much time to reanalyze a given pattern when the
recognition on a guessed target fails. On the other hand the model recognized on-line characters easily and
most of on-line data could be recognized only using feed-forward paths because the temporal information is
available.

___ _ No of data No of Reco j No of Misreco I Reco Rate(%) ]
Type 1 Off-line 148 132 16 89.2

_ On-line 148 142 6 95.9
Type 2 Off-line 94 87 7 92.6

-0On-___ n e- 77 76 1 98.7
Type 3 Off-line 101 95 6 94.1

On- 'ne 26 25 1 96.2
Type 4 Off-line 1070 971 99 90.8

On-llne 215 200 15 93.0
Type 5 Off-line 587 523 64 89.1

On-line 113 106 7 93.8
Type 6 Off-line 350 326 24 93.1

_ _ On-line 21 18 3 85.7

Total Off-line 2350 2134 216 90.8

I JOn-line 600 567 33 94.5

Table 1: The result of the recognition according to the structure of Hangul

(Figure 5) and (Figure 6) show the example of correctly recognized character. As you can see in (Figure 5)
and (Figure 6) the sequence of extracted strokes is identical to that of human writing.

4 Conclusions

From the described experiment, we can say that the model is valid for off-line character recognition. This model
recovers temporal informations from a off-line character through scanning selectively over strokes according to
the remembered writing sequence, and then the on-line recognizer uses the off-line character together with the
recovered temporal information as its input. In on-line recognition case the temporal information on a given
pattern is already known, the model can readily recognize the pattern. Because the model is a superset of
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Figure 5: The example of correctly recognized character (1)
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Figure 6: The example of correctly recognized character (2)
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on-line Hangul recognition model, the model can recognize both off-line characters and on-line characters using
a common mechanism of recognition.

When contacts occur, the system guesses a target based on the remembered writing sequence, and then tests
it by using knowledge of the higher processing stages. Through this experiment we have solved some of the
inter-grapheme contact problems by analysis-by-synthesis approach.

Current implementation of the model did not obtain a high recognition rate in recognizing both on-line
and off-line Hangul characters, but it has presented plausible model of reading/recognizing off-line characters
through the same recognition mechanism using temporal information from the perspective of cognitive science.
To obtain better recognition rate, more knowledge of contacts and the variations of stroke informations such
as shape, connectivity, and sequence should be added.

In the near future, we are planning to test the model with handwritten off-line characters.

References

[1] Y. Lee and A-Yeon Chung, "Sejong-Net: A Dynamic Visual Pattern Recognition Neural Net." Proc. of
Int. Joint Conference on Neural Networks 90 WASH. DC, Vol.1, pp.412-415, 1990

[2] Cho H.J., J.Kim, A-Yeon Chung and Y.Lee, "Sejong-Net: A Neural Net Model for Dynamic Character
Recognition," Proc. of Int. Conference on Fuzzy Logic and Neural Networks IIZUKA '90, Vol.1, pp.315-
318, 1990.7

[31 J.Kim and Y.Lee, "Handwritten English Alphabet Recognition using SEJONG-NET," Proc. of 1990 Fall
Conference of SIG-AI of Korean Information Science Society, pp.107-111, 1990 (in Korean)

[4] S.Kim, "On-line Recognition of Handwriting Chinese Character(Radical) using SEJONG-NET," Master
thesis of Yonsei Univ., SEOUL, KOREA, 1991 (in Korean)

[5] S.Lee, K.Lee and Y.Lee, "A Generalized Character Recognition using SEJONG-NET," Proc. of the 2nd
Pacific Rim Int. Conference on Artificial Intelligence, Vol.2, pp.947-952, 1992

[6] Sukhan Lee and Jack C. Pan, "Handwritten Numeral Recognition based on Hierarchically Self-Organizing
Learning Networks with Spatio-Temporal Pattern Representation," Proc. of 1992 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp.176-182,1992

[7] David S. Doermann and Azriel Rosenfeld, "Recovery of Temporal Information from Static Images of Hand-
writing." Proc. of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp.162-168, 1992

[8] A. Marcelli et.al, "Recovering Dynamic Information From Static Handwriting," Jour. of Pattern Recogni-
tion, Vol.26, No.3, pp.4 0 9 -4 18, 1993.3

[9] H.Kang, et.al, "Hangul Recognition using Syntax Analysis and Pattern Classification," Proc. of Conference
on Hangul and Korean Language Processing, pp.197-202,1989 (in Korean)

[10) K.Lee, Y.B.Kwon and Y.Lee, "A Novel Hangul Recognition Algorithm based on Stroke Extraction," Proc.
of the 1st Int. Conference on Document Analysis and Recognition, pp.272-280, Saint Maio, France, 1991

[11] M.Halle and K.N.Stevens, "Analysis by Synthesis," Proc.of the Seminar on Speech Compression and
Processing, Bedford,

[12] M.Eden, "Handwriting and pattern recognition," Trans. Information Theory, IT-8, pp.1 6 0 -16 6 , 1962

[13] ULRIC NEISSER, "Cognitive Psychology," Prentice-Hall INC., Englewood Cliffs, New Jersey, 1961,
pp.101-102

[14] Jin-Whan Kim, et.al, "A Study for ASIC Chip Implementation of the Noise Elimination and the Thinning,"
Proc. of 1991 Spring Conference of SIG-AI of Korean Information Science Society, pp.164-168, 1991 (in
Korean)

1-656



Machine Vision
Session Chairs: Kunihiko Fukushima

Robert Hecht-Nielsen

POSTER PRESENTATIONS



Neural Network Power Density Filter for Image Filtering

Slawomir Skoneczny Jaroslaw Szostakowski and Rafal Foltyniewicz

Control Division,
Institute of Control & Industrial Electronics (ISEP),

Warsaw University of Technology,
00-662 Warszawa, ul. Koszykowa 75, Poland

e-mail: skoneczQplwatu21.bitnet

November 26, 1993

Abstract

In this paper we present neural network implementation of the power density filter for
image restoration purpose. Two performance indices are utilized by the neural network:
minimum square error and minimum of error absolute value. This filter assumes that the
power density after restoration is equal to power density of original image. The autocorre-
lation estimate of power density is used. The filter proved its fast convergence (below 50
iterations) controlled by the learning factor in conjugate gradient method, which was applied
both in continues and discrete filter realization, presented in this paper.

1 Introduction

The problem of restoring noisy - blurred images is a very important in early vision processing
for a. large number of applications [1]. Restoration techniques are applied to remove:

1. system degradation such as blur due to optical aberrations, atmospheric turbulence, mo-
tion, and diffraction,

2. statistical degradation due to noise.

Over the last 20 years, various methods such as the inverse filter [1], Wiener filter [1],
homomorphic filter [1), Kalman filter 15], [4], SVD pseudoinverse [3], and many other approaches
have been proposed for image restorations. Also methods using neural nets approach have been
proposed [6], [2].

2 Problem formulation

In many practical situation, the image degradation can be adequately modelled by a linear blur
(motion, defocusing, turbulence, or others) and the additive white Gaussian process. Then the
degradation model is given by
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Y = IH + n (1)

where y, z, and n represent, respectively, the lexicographically ordered original and degrade
images and the additive noise. Matrix H represents the linear spatially invariant or spatially
vayng distortion. It has as elements samples of the point spread function (PSF) of the imaging
system. II can have special structure depending on the properties of the PSF. In the following
we assume that the size of the images is M x N, resulting in z and y being MN x 1 vectors and
11 an MN x MN matrix.

With this model, the purpose of digital image restoration is to operate on the degraded
image y to obtain an improved image that is close to the original image x as possible, subject
to a suitable optimality criterion.

R Multilayer Perceptron Realization of Autocorelation Filter

Another interesting idea of taking the advantage of neural network in image restoration is the
usage of the multilayer perceptron as a autocorrelation or power density filter (homomorphic).

Writing equation (1) in an equivalent form of

N-I

Y= E JI,,ixi + n, (2)
j=0

and denoting

N-1

Zi E lh,3 X, (3)
j=O

we obtain noise autocorrelation function expressed as

N-i N-I N-I

el= E /Y•-kYk - E Z1_kk= Z(,l-kyk - z..-.,k) (4)
k=O k=O k=O

el N-81 a N-1 [Oz1-k + Zk Zl (5)
7ez,;o yi-k -_- E ÷x x, ]

If we take into account that

agzk a N-1
D -- _ , 1: Hkjxj "= ki (6)

then the equation (5) can be expressed as

Det N-i

F = E [Ii-h.,iZk + lk,,zl-k (7)
k=O
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In order to be used as a homomorphic (squared autocorrelation) filter the neural network
"s.hcId minimized a proper performance index (energy function) i.e.

N-I

1 (8)

1=0

Minimizing this energy leads to the next step

0E eN- N-+

e, 0 el [= (I_-k•,i• + HJIZlk) (9)

The filtering rule for continuous case (state updating rule) uses the steepest descent method.
Therefore we have

N-1 N-OE N]
d-xi DE " el (HJIk,iZk + HkZI-k (10)

1=0 L k=O

Sometimes it is more convenient (especially when simulating neurai network on a discrete, se-
quential computer) to use a discrete representation of equation (10). So we have

N-i N-i

Xi+1 = Xi + f E el ( (I•_k,iZk + J1k,.•Z-k) (11)
1=0 Lk--

Alternative performance index possible to minimize is

N-1E E lell, (12)
i=0

then

OE _ N-I N-i a N-i Oe(
jeZlld = F ý-lx eill= sign(ei)ýC- (13)

I=0 1=0 1=0

Continuing the minimization procedure we compute

___ o r"-' ] N a--I N-i ~'" °'= = 4

Bel - 61 1 N( 7/iIdk-Zl.¶Zk)] N-1 a (l-(.kZk) -i [ý [ -±Zk + -Zj.. lk] (14)
Ox x k=O k=0 k Ox ,

and

614k N-i
7x,= E Hkjxj = Hk, (15)

8 j=o

Therefor we have another continues filtering rules:

1-661



IuI~Ii

Figure 1: Degraded (left) and restored (right) Lena image

dxi N ON-I
d =- -1xi = y 'sign(ei) IZ(HI-kizk+Hk zI-k)+ (16)

10 Lk=0

and discrete one

N-i F•.. N-i

Xi+J = Xi + C aign(ej) (HI(...( k,izk + HkJz1-k) (17)
1=0 Lk=O

4 Experimental Results and Conlusion

A neural network implementation of power density filter seems to be very promising and effective
tc-ol for gray level image processing and restoration. The sizes of tested images varied from
16 x 16 to 128 x 128. For both performance indices i.e. minimum square error and minimum
of the absolute values error, neural network converges to the stable state (equilibrium point)
significantly reducing this way the degradation of the image increasing a signal to noise ratio
and performing filtering task. By applying the varying learning factor c in conjugate gradient
method we can speed up the converges of the algorithm (30 iterations is usually enough to be
in stable state). We replace then a long period of training time for multilayer perceptron and
backpropagation algorithm (many thousands of lessons by just 30 iteration.) In our case the
training phase is actually a filtering phase. It is worth mentioning that in order to reduce the
computation burden of algorithm and to speed it up we use Fast Fourier Transform (FFT) for
calculating convolution while computing autocorrelation function of the images. It allowed us to
simulate filtering of real size images on a 386/486 PC computer. However, this implementation
would by much more efficient while using neural hardware. Example of the filtering by neural
power density filter is presented on Lena image (see figures 1 and 2).
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Figure 2: Covergence of Neural Network Filter for Lena Image
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Abstract

During this work we show how observed trajectories can be mapped on recurrent
neural networks in order to resolve the problem of temporal prediction in visual tasks as
diverse as the interpretation of cell images and the recognition of moving vehicles. As
it is noted, objects move purposely in an environment and effective prediction on their
trajectories can be achieved by modelling the spatio-temporal regularities associated
with their moving purposes. Such hidden regularities can be represented by a finite
state machine where the location of the regularities correspond to the states of the
machine and the orientation and dispacement vectors correspond to the transition
arcs. Such a representation can be modelled on a neural network based on Elman's
architecture that learns the significant locations of the trajectory of a moving object
and encodes such information in its hidden units.

1 Introduction

Visual tasks such as the interpretation of cell images (Psarrou and Buxton, 1993) and the
recognition of moving vehicles require to track objects along their trajectory and to predict
their future position in their environment. It was noted that objects move purposely in an
environment and effective prediction on their trajectories can be achieved by modelling the
spatio-temporal regularities associated with their moving purposes with visually augmented
hidden Markov Models (Gong and Buxton, 1992). Temporal prediction and recognition
require (a) a short-term memory that retains aspects of the input sequence relevant to pre-
diction and recognition, (b) the specification of a function that combines the current memory
and the current input in order to form a new temporal context (Mozer, 1993), (c) to identify
and learn the regularities from the temporal sequence. Feedforward neural networks (Figure
la) can be trained with the backpropagation algorithm to represent, predict and recognise
temporally ordered events since (a) they are capable of extracting "common features" from
a temporal sequence, (b) can encode such features in the hidden units of the network and (c)
these features encode information that relates past events with future input values. How-
ever, this approach requires the spatial representation of events by parallelising time which
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involves several drawbacks: (a) only allows fixed window size on the event representation,

(b) large memory consumption and (c) the network cannot easily distinguish the relative
temporal position of an element in a sequence from its absolute temporal position (Elman,
1990). In this paper we explore the work of (Elman, 1990), (Cleeremans et al, 1989) and
(Mozer, 1993) to show how recurrent neural networks can be used to address the problem of
temporal prediction in computer vision applications.

2 Why Recurrent Neural Networks

A popular way to recognise and predict sequences is to use partially recurrent networks. In
these architectures the connections are mainly feedforward, but include a carefully chosen
set of feedback connections either from the hidden layer or the output layer (Figure 1b).
The feedback or context units remember some aspects of the recent past, and so the state
of the whole network at time t depends on the aggregate of previous states as well as on

the current state. In both cases, feedback is easily implemented by extending the input field
with an additional feedback vector containing the hidden or output unit values generated
by the preceding input. In most cases the feedback connections are fixed, so standard back-
propagation may easily be used for training. Elman suggested the architecture shown in
Figure lb in which the context units hold a copy of the activations of the hidden units from
the previous time step. As it is pointed out, the hidden unit patterns of activation represent
an "encoding" of the features of the input patterns that are relevant to the task. The context
units patterns of activation represent an "encoding"of the relevant features of the past input
elements (Elman, 1990). Thus, a hidden layer pattern now can encode information about the
relevant features of two consecutive input elements. Furthermore, (a) the event can now be
processed sequentially without the need of a buffer and (b) there is not an absolute temporal
position of an element. Such a network is able to recognise and produce short continuations
of known sequences. Cleeremans (Cleeremans et al, 1989) has shown that when this network

is trained with strings from a particular finite-state grammar, it can learn to be a perfect
finite-state recognizer for the grammar (Figure 2b).

output laye (output)

hidden layer [ or~r

Input layer Cc•-orJ xIrNpU

(a) (b) nput)

Figure 1: (a) Feedforward network (b) Recurrent network

Prediction using Recurrent Neural Networks: Trajectories that include hidden regu-
larities can be represented by a finite state machine where the location of these regularities
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correspond to the states of the machine and the orientation and dispacement vectors cor-

respond to the transition arcs. Such a representation can be modelled on a neural network
based on Elman's architecture that learns the significant locations of the trajectory of a mov-

ing object and encodes such information in its hidden units (Figure 2c). Figure 2b shows

a finite state machine representation of a circular trajectory. The states of the machine
correspond to the locations in a cyclic trajectory where the orientation changes suddenly,
namely at 0, 90, 180 and 270 degrees from the horizontal. The symbols on the transition
arcs correspond to the set of possible displacement the object may exhibit. The object may
either tranverse to the next state or loop on the same state. Their course of direction can
be described by eight qualitative directional states that denote the next possible movement
of the object and are shown in Figure 2a.

output next element

previous element

(a)

2,3 3 7 1,2 hidden

2.3.4 4,5.6 6,7,8 contextunits-:

(b) (C) current sequence element

Figure 2: (a) Qualitative directional states. (b,c) A finite-state machine modeled by a
recurrent neural network is used to model and predict the trajectory of purposively moving
vehicles.

3 Architecture and Experimental Results

When mapping object trajectories on recurrent neural networks the following issues should

be addressed: (a) the representation of the object's trajectory in terms of data elements
and (b) the representation of the trajectory in the short-term memory. In our experiments
the object trajctory was represented using only displacement vectors. The displacements
were presented as normalised real values in the input units. Trajectories are mapped in the

short-term memory using an exponential function (Mozer, 1993) of the past hidden unit
activations. The architecture used is shown in Figure 2c. In comprises of: (1) input layer of
one unit and represents the element of the sequence at time t; (2) hidden layer of four units;

(3) output layer of two units representing the element of the sequence at time t + 1 and t - 1;

(4) context layer of eight units. The value of the context units is an exponential encoding

of the hidden unit activation values. They maintain moving averages of past hidden value
activations according to the equation xi(t) = (1 - pi)x(t) + pixi(t - 1), where pi lies in the
interval [1, -1] and allows for the representation of averages spanning various intervals of

time, x(t) represents the vector of the hidden units activation values at time t and, x,(t)
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represents the memory vector i at time t. An exponential trace memory is o;rmed using
the kernel function ci(t) = (1 - pi)pý. Figure 3 shows the expected and predicted cyclic
trajectory of a moving vehicle. As it is shown the trajectory predicted from the network
follows the pattern of the expected orientation along the trajectory. The results show that
(a) there may be a scaling factor between the expected and predicted displacement value (b)
a different data representation where the displacement values are encoded in the gradient of
the input sequence may be prefered.

4 Discussion

In this paper we described how observed trajectories can be mapped on recurrent neural
networks. During our experiments we showed that the network was able to learn the sequence
that was presented to it and produce continuations of the observed sequence given the
initial element. Investigation of the hidden unit activation values showed that they exhibit
characteristic patterns associated with the orientation pattern of the trajectory, however a
cluster analysis on the hidden unit values did not yet provide any conclusive evidence of state
representation. This is mainly attributed to the absolute displacement value predicted by the
network. Past experiments have shown that the (a) the number of memory elements in the
context units and (b) the data representation of the input sequence may affect considerably
the recovery of quantitative results. Our work currently is to (a) exploit further the parameter
setting of our network architecture and especially the structure of the context layer, (b)
exploit alternative data representation of our input sequence as suggested in the previous
section and apply this network to a real world scenario.
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Abstract- A hierarchical Markov random field with two layers is proposed as a computational

model for texton-based preattentive texture segmentation. Different textures are assumed to be different

arrangements of bars (textons) with different orientations.

1 Introduction

A fundamental property of human visual system is its ability to discriminate between
textures. A systematic approach to texture discrimination was pioneered and pursued by
Julesz [3]. Julesz has made it clear that human visual system operates in two distinct
modes called "preattentive vision" and "attentive vision." In preattentive vision, texture
differences are perceived by anl observer almost instantaneously and effortlessly whereas
in the attentive vision, they are perceived by a time-consuming serial search and scrutiny.
Julesz and his colleagues have hypothesized that a preattentive texture discrimination is
done instantaneously and effortlessly based on a few local conspicuous features, which
they called textons, [4]. On the other hand, there have, in parallel, been efforts to describe
the preattentive texture discrimination in terms of linear filter models and their nonlinear
extensions (see the references given in [8].)

The texton theory is not a computational theory. The texton theory has been proposed
to explain, as closely as possible, the psychophysical findings regarding the ability of the
human preattentive visual system. On the contrary to the texton theory, the linear spatial
filtering theory is a computational theory constructed in such a way to be in consistent
with the known physiological findings regarding the early vision of primates. The linear
filtering theory cannot fully explain the psychophysical findings and there have been some
efforts to to extend it by adding some nonlinear elements in order to explain quantita-
tively the psychophysical data regarding the human preattentive vision. Nevertheless, the
filtering theory is not still capable of explaining some psychophysical findings which can
be explained by the texton theory [8].

Our main goal is to construct a computational model for preattentive texture discrim-
ination (segmentation) based on texton theory. In this paper, we propose a hierarchical
Markov random field with two layers as a preliminary computational model for texton-
based preattentive texture segmentation.

2 Test Images

We assume that test images (images displayed to an observer for a brief time for a preatten-
tive segmentation or to the preattentive segmentation system which we are going to make)
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consist of N x N texton subimages. Each subimage might consists of n x n pixels, where
n is an integer which its actual value is not important. We assume that the subimages
are located on an N x N rectangular lattice £ = {(i,j)}, 1 < i,j < N. Each subimage is
assumed to be either empty or depicts a texton. In this paper, we only consider textures
consisting of bars (texton) with 00, 450, 900 and 135' angles and encode them by 2, 3, 4,
and 5, respectively and keep 1 as a code for empty subimages. We associate a random
variable Yi, to the (ij)-subimage and treat test images as realiations of the random field
I ýC = {IYj}, (i,j) E C, where Y'j takes a value from the set {1,2,3,4,5}. In Fig. 1, we
display the possible states of the (i~j)-subimage and their codes.

YEj=l yij=2 y =3 Yij=4 Yij=5

Figure 1: The subimages' possible states and their associated codes.

3 Modeling of the Test Images

We model test images consisting of regions of different textures (texton arrangements) by
a hierarchical Markov random field (HMRF) with two layers. The first layer consists of
an MRF [21 which is considered as a model for the underlying unobservable regions while
the second layer incorporates MRFs which are assumed to generate the observable distinct
textures.

3.1 A Hierarchical Markov Random Field with Two Layers

We assume that a test image consisting of regions of different textures is a realization
of a collection of interacting random variables (Xc,, 11). The image process )c = {Yij},
(i,j) E C is assumed to be a function of the underlying region process XC = {Xf,},
(i,j) E L. The interacting processes (Xc, YC) can be characterized completely by a joint
probability density function P(xc, Yc) or equivalently, according to Bayes' rule, by P(xc)
and P(yc I xC). In the following, we precisely describe (XC, YC) in terms of P(xc) and
P(Y'C I xe).

We consider test images consisting of M different textures (textons with different ar-
rangements), i.e., we assume that Xij is a discrete-valued random variable taking a value
from the set Qx = ... , M}. We further assume that XA7 is an MRF characterized by
local conditional distributions P(xij I x,Ix), where 77,j denotes ijj with the (i, j)-subimage

deleted. For details see [6].
The conditional joint distribution P(yc I xc) is given by

P(yc I xr) = (Z'lX)-le-e(Y'cIz) (1)
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where the global conditional energy function is

C(Y Ixe)= = E £(ycIx 3j) (2)
(ij)Er CECr(z y,. )

and the conditional partition function is given by

ZYIx= E e-C(Y'1•). (3)
ticEfly

In (3), fly(XC) = fI(ij)•E QY, where Qy = {1, 2,3,4,5}. For details see [6].

4 Preattentive Texture Segmentation

We formulate the problem of preattentive texture segmentation as an optimization prob-
lem. Let P(x£) and P(ye I xe) be given. We assume that the preattentive segmentation
is carried out by calculating the Maximum A Posteriori (MAP) estimate of the region
process Xe, when a target image ye is given as a realization of YC. By definition, the
MAP estimate of Xe is

xc = arg max P(xe I Ye). (4)

We have already proposed a parallel deterministic rclaxation algorithm based on the
mean field approximations to solve the above large scale optimization problem 17]. The
local deterministic updating rule of the algorithm is given by

i+ arg max P(yij ] ... qP Y )P(xI. ] x Ox, ,or (5)

at the (p + 1)-th iteration.

5 Simulation Result

To test our computational model, we applied it to the test image shown in Fig. 2(a). It
is well known that the human preatentive vision segments the test image into two regions
of tilted Ts and upright Ts and Ls. As it is shown in Fig. 2, our computational model
shows the same behaviour. For the region process, we used a 2nd-order MRF model with
the following local conditional distribution [1]

/3,C x (z,,)

EMk=) ee

where £,7,x denotes the number of xi-valued pixels in ' and/3 = 0.8. For the

texture processes, we used 2nd-order MRF models with singleton and doubleton (pair-
wise) cliques only, given respectively as follows

r= f -ao(xij) when yij = 00 0 otherwise
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aud

&(yc I Xj 3) a -c(Yij,Xij) if pixels in C have the same value{ ac(yij, xij) otherwise

where C denotes a pair-wise clique. If we assume that the MRF models are homogenous
and isotropic then it is easy to see that our model has sixty four parameters in total. In
our simulation study, we set the horizontal and vertical bonding parameters to 1.0 for the
textures consisting of upright Ts and Ls, the diagonal bonding parameters to 1.5 for the
texture consisting of tilted T's, the singleton parameters to 10.0 and the rest of parameters
to 0.0. The segmentation is initialized by an image consisting of three regions (white, black
and crossed squares) scattered randomly as shown in Fig. 2 (b).

I x '\ \ x

I I/
T T T T T

(a) Test image (b) Initial segmentation

(c) Intermediate segmentation (d) Segmentation result

Figure 2. Segmentation result after 20 iterations
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Abstract
In this paper, we investigate the use of multilayer perceptrons with recurrent connections as general purpose

processing modules in a parallel architecture for image processing. The networks are trained to learn classification
rules in order to determine the output of their corresponding pixels in the processed image. The training patterns
can be obtained from existing algorithm of well-defined transformations or can be extracted by loading sample
image along with its target image. The latter is meaningful if the operation applied to an image is an unknown
operation because we may find the input-output association by using input patterns and its desired output for train-
ing multilayer perceptron. The potential application of the model includes image smoothing, enhancement, edge
detection, noise removal, morphological operations, image filtering, etc. By providing different sets of training pat-
terns the system may adapt itself to corresponding operations. With a number of stages stacked up together we may
apply several different operations on the image. Besides, recurrent connections from the output of last stage to the
input of the first stage also allow repeated sequence of operations to be used.

I. INTRODUCTION
A typical vision system requires many low-level capabilities we often take for granted; for example, our abil-

ity to extract intrinsic images of lightness, color, and range. To extract interesting parts of an image, we have to
apply some low-level image operations, such as smoothing, enhancement, edge detection, noise removal, morpho-
logical operations, etc. Low-level processing deals with functions that may be viewed as automatic reactions,
requiring no intelligence on that part of the image analysis system [3]. A number of algorithms for these operations
has been developed (318]. Most of these algorithms need to check the values of neighboring pixels to determine
thc new value of a pixel. The computation of the algorithm for pixel values are usually independent to that for other
pixels. Therefore, parallelism of the computation is highly expected in order to achieve higher performance. The
introduction of neural network models has been an exciting approach for most of the image analysis tasks due to
their highly parallelism and good learning performance.

Some efforts in developing morphology neural networks have been found in literatures. Davidson [11L21
redefined the weighted-sum activation function with additive maximum operation, which is in fact the original
definition of gray-scale dilation in mathematical morphology [11]. Shih and Moh [12) developed a neural architec-
ture to extract the maximum or the minimum value among nine input by parallelly compare every pair of the inputs
in one stage. Morales and Ko [7] proposed an efficient implementation of neural training algorithm and defined an
overall equality index related fuzzy implication, Lukasiewicz &-conjunction, as a performance index. In [5], a
parallel implementation of Rosenfeld-Kak thinning [9] algorithm and Wang-Zhang thinning algorithm are proposed
using recurrent multistage multilayer neural networks. The proposed architectures may learn the deletion rule to
determine if an object pixel should be eliminated during skeletonization. All of them contribute the implementation
of architecture performing a special operation only.

Our goal is to design a general purpose architecture which can adapt itself to different sets of operations. We
adopt the multilayer perceptrons (MLPs) as processing modules so that no special neural net has to be defined.
Such an architecture promises the feasibility of learning different operations and applying an operation parallclly to
all pixels in the image. The proposed MLP modules may learn transformation rule in two different ways: using
training patterns obtained from existing algorithm of well-defined transformations and using training patterns
extracted from sample images and the target images. The former is significant in processing binary images and the
latter is meaningful for unknown operation and/or for gray-scale images. With a number of stages stacked up
together we may apply several different operations on the image. Besides, recurrent connections from the output of
last stage to the input of the first stage allow repeating a sequence of operations.

In this paper, section II discusses how a multilayer perceptron can be used as processing modules for low-
level image operations. Section III elaborates the system architecture proposed for adaptive image processing. Sec-
tion IV shows an example of system design and explain the idea in determining good training parameters. Section
V concludes the paper and points out some directions of future researches.
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II. MULTILAYER PERCEPTRON AS PROCESSING MODULES
Multilayer perceptrons are feed-forward nets with one or more layers, called hidden layers, of neural cells,

called hidden neurons, between the input and output layers. The learning process of MLPs is conducted with back-
error propagation learning algorithm derived from generalized delta rule [10]. The more hidden layers we use, the
more complicated discriminant regions it forms in the domain space spanned with input vectors. There is some
tradeoff between the complexity of MLP connections and the time for the MLP to converge. A discussion on limits
of the number of hidden neurons in multilayer perceptrons can be found in [4]. Since we are interested in general
purpose MLP module, reasonably short training time to adapt the MLP to a new task and big capacity of connection
weights are expected. An example of determining the required number of hidden neurons in MLP with one hidden
layer is discussed in Section IV.

The back-propagation training algorithm is defined in [101. The neurons calculate the activation value with
the equation

X'"*1) = f [w(0 X!") - 9j where f(a) = 1 + e-Ga'(1

The superscript (n) is the label for the layer the neuron is in, and 0 serves as the bias or threshold. The sigmoid
logistic nonlinearity in Eq.(1) is used as the output function of neurons. The major part of the algorithm is to adjust
the connection weights according to the difference between the actual output from Eq. (1) and the desired output
provided in training patterns. The equations for weight adjustment (from neuron i in a lower layer to neuron j in
next higher layer) is given as follows [6].

W.=/ wl'/n(t) + qx,!!) yJ (1 - Y,) (dj - yj) if neuron j is in the output layer

wW)(t+l) = w()t(t) + 1x'(.)x(.+i) (1 - x5"+1)) ZW5kw'Q)(t) if neuron j is a hidden layer (2)
J1.

where r1 is the gain term (or called learning rate) and 8, is the error term for neuron j.
Most of the low-level operations applied in image preprocessing, such as smoothing, enhancement, edge

detection, noise removal, morphological operations, etc., require to check the values of neighboring pixels. The
sizes of neighboring area may vary depending on the algorithms designed for the operations. Eight-neighbor, of
course, along with the center pixel itself is the most common choice. A number of algorithms for these operations
are designed to evaluate the values of neighboring pixel and the center pixel to determine whether and/or how the
value of the center pixel should be changed. For binary images, the values of center and neighboring pixels forms
an input vector of binary values. The expected output is usually a single binary value indicating the resulting value
of the center pixel. These algorithms can be used to generate look up tables to associate the relationship between the
set of original values and the resulting value.

The input-output association can be realized by neural network models with nine input neurons (assumed that
8-neighbor area is used) and one output neuron with one or more layers of hidden neurons in between. By itera-
tively presenting input vector to the input neurons and the expected output from the look up table for determining
the magnitude of error. The error will then be used to adjust the weights of connections (see the learning algorithm)
so that the neural nets can gradually learn the input-output association. If the neural net converges after learning, it
can be used as a neural module to determine the value of a pixel after applying the same algorithm.

The training patterns can be generated with the algorithms expected for the specified low-level image opera-
tions. In the case of binary image processing with a 3x3 neighboring area, there are up to 29 = 512 training patterns,
with a vector of 9 binary values and one desired output. For instance, morphological erosion operation with the
structuring element shown in Fig. 1 should have desired output I at the center pixel for only the 16 input patterns
shown in Fig. 1. and 0 at center pixel for all other input patterns do not contain the structuring elements.

010 01101 1101 0 110 1 0 10 1 1 11 0 111 0

Fig. 1 Erosion structurng element with 16 possibly activating input patterns.

By exhausting all (512) possible combinations of input vectors for training, the MLP module is guaranteed to
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respond a 1 when the structuring element is contained in the 3x3 window after the training achieves convergence.

MI. SYSTEM ARCHITECTURE

Fig. 2 shows the overall architecture consisting of MLP modules for low level image operations. There is one
MLP module constructed for each pixel in the input image. Every MLP module applies the trained operation to the
pixel and its mxm neighboring pixels where m means the width of neighborhood window. The neighborhood size
may change depending upon the operations to learn.

Desired Output
Trainin Module

Training Patterns
of 9 inputs

S•t ILP-modules

Input Image Output Image

Fig. 2 Overall system architecture with MLP modules for low-level image operations. Each pyramid represents
an MLP module and receives m2 inputs from its mxm neighboring pixels. To make the figure clear, only
some MLP modules are shown in the figure. The separated pyramid, called training module, is used for
training task and for storing the trained weights. To simplify the figure, we show only some sample py-
ramids in between the input and the output images.

Since the same operation is simultaneously applied to all the modules for the pixels in the input image, all
MLP modules in the same stage can share the same set of trained connection weights during the operating phase.
Thus, no local memory are required for individual MLP modules in between the input and output images to hold the
connection weights. This will significantly reduce the required number of local memory for connections weights in
MLP modules. In Fig. 2, the separated pyramid shown at the top represents the training module which provides
shared memory for connection weights. The training phase is first turned up at the training module. As soon as the
training module converges, the connection weights are frozen and are shared and retrieved by all the MLP modules
to compute the activation value of each pixel.

The proposed architecture is similar to the one proposed in [121 except the pixel-based operating modules are
substituted with MLP modules because MLP modules are capable of adapting themselves to the expected opera-
tions. It is also more flexible than those designed for dilation and erosion operations only [5].

During the experiments of different image operations, we found out that the training sets for some operations,
such as dilation, erosion, and noise removal, have a small number of patterns with desired 1 or 0 output. For exam-
ple, erosion operation with structuring element in Fig. 3 has only 16 patterns expecting output I and erosion with the
following structuring element

r 111

Fig.3 A structuring element with all I's in pixels.

expects an out•ut 1 only if all nine inputs are l's. By checking the training patterns, we figured out that the value of
some of the m inputs do not even affect the output. Without considering for a certain value of the center pixel, the
training pattern set can, then, be reduced. The same effect can be achieved by connecting the output neuron directly
with the center input and the MLP module operation is bypassed when the center pixel equals 0 or 1. For instance,
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applying erosion operation to a center pixel with value 0 will never generate an output 1. Also, a dilation operation
applied to a center pixel of value 1 will always have output 1. Such bypassing connections can be specified with the
desired output as weight in the training MLP module for shared weights. For all the MLP modules in the architec-
ture, the bypassed connections implement an exclusive NOR operation between the center pixel and the memorized
connection weight from the training module. The operation of an MLP is disable if the exclusive NOR gets output
1, which mean the center pixel has the same value as specified in the shared module. Fig. 4 illustrates the bypass
connection and expresses how it affects the operation of an MLP module.

Output

OR
.............. . Pa output

Enable/Disable

Center Pixel Unchanged Input

3x3 Neighboring Inputs

Fig. 4 MLP module with a bypass control to enable/disable the activation of neurons in the modules. The dashed
lines with arrows show the enable/disable controls to neurons, while the dotted lines indicate the bypassed
connection for passing the value of the center pixel to the output.

We may stack up with more than one stage of the proposed architecture in Fig. 2. By training the stages with
different set of patterns, we can provide and apply a sequence of image operations to the input image. The outputs
of the last stage may be connected to the inputs of the first stage to form a recurrent architecture so that the same
operation sequence can be applied to the image for more than one iteration. See Fig. 5 for the overall architecture.

In the case of gray-scale images, it is impossible to enumerate all 2"'' combinations of training patterns.
Thus, we may provide a certain number of sample training patterns to define the discriminant regions in the input
space. Such training patterns can be extracted at each pixel location from the sample training images for mxm
inputs and the corresponding pixel in the desired image. The MLP modules can learn input-output association by
sell-adjusting connection weights based on the error between the actual and the expected pixel values. Fortunately,
for most applications, some factors, like environment lights and background materials and colors, can be fixed so
that images in the same problem domain are usually limited in a certain number of characteristics. For instance, a
vision system designed for a manufacturing plant may only process images containing a finite set of mechanical
tools. Representative images chosen from a problem domain can then be used as training images. Their desired
output image should also be provided during the training phase so that the training module can associate the input-
output mapping. Therefore, automatic training phase can be achieved.

IV. TRAINING EXAMPLES
In determination of number of hidden neurons in MLP modules, we depict the following example. We inves-

tigate the training iterations and convergence condition in training MLP module with patterns obtained from mor-
phological dilation and erosion with structuring element shown in Fig. 3, edge detection with Sobel operators, and
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Apply Training Sets operation 1 operation 2 operation 3

different "es•

Input
ImageImage t ..... :..'::i::::liQ output

.......... c"....T ... Im g
Img

Stage I Stage 2 Stage 3

Fig. 5 Stacked MLP-based architecture for multiple image operations. Only some MLP-modules are shown to
simplify the figure. The separated pyramids at the top of the figure are the training modules for different
stages. There may be more stages stacked on the architecture.

noise removal for binary images. The MLP module used in this investigation has nine inputs, 1 output neuron, and
one layer of hidden neurons. With a fixed momentUm (a = 0.2), we change the learning rate, i1, (varying from 0.01
to 0.05) and the number of hidden neurons in the hidden layer (varying from 1 to 20) to determine the number of
iterations for convergence. Table 1, 2,3, and 4 show the result of training patterns for morphological dilation opera-
tion, morphological erosion operation, edge detection, and noise removal, respectively. A "x" symbol in the table
entry represents that the training did not converge in 30,000 iterations. The same set of random weights is used as
initial connection weights for all these training experiments.

Tabbe . Diiadfu=0,, ____ Tabk 7.. Ensof(p 0.11
~~~of- - -NL TbL w -o 0-1

now20 141 mb In
_% 13 % 97 4- 1 V42 141 9 1 80 |.

19 143 138 102 105 93 19 130 59 73 81 3
13 134 140 91 72 70 13 119 73 65 81 78
17 156 133 83 76 59 17 123 V 57 77 73
16 114 61 51 48 41 16 212 64 77 96 296
Is 123 99 94 30 64 15 140 91 64 78 92
14 120 96 31 65 59 14 142 96 73 67 91
13 139 92 72 62 53 13 137 95 64 69 105
12 114 59 44 40 40 12 174 102 72 37 421
11 124 63 42 34 31 11 163 103 107 145 145
10 121 61 43 40 43 10 133 90 89 111 131
9 137 74 70 62 52 9 196 111 85 79 99
a 193 139 115 102 71 8 139 94 83 78 74
7 160 100 75 57 44 7 164 126 102 92 116
6 136 72 52 44 40 6 201 100 112 310 122
5 153 94 77 59 47 5 119 125 36 89 105
4 195 111 75 63 46 4 136 119 121 174 1041
3 181 92 62 49 41 3 204 96 118 272
2 192 99 67 S3 50 2 250 129 95 118 101
1 20 1 108 76 -62 -53 1I 224 160 ,133 133 157

We may determine certain ranges for both the number of hidden neurons and the learning rate so that the
MLP-training module is guaranteed to converge in a swall number of taining iterations. For instance, in the train-
ing examples, the number of hidden newmon can be chosen in between 10 and 18 and the learning rate can be set to
any value from 0.01 to 0.02. For each operation we create and store a look-up table like this along with training pat-
terns. A signal representing a certain operation will load a good choice of (number of hidden neurons, learning rate)
pair from the table, load the training patterns, and start the training phase.
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e 3. Sobel w Dmetedi I, , 0. 1) " Takl 4. Ngin RemiW (a- 0.1)
ElN &I0 OM1 0.03 0.04 0hio

Z- "hi83 1IG , 20 100 _1Wo 162 297- 2-43
19 905 N 1;78 19 106 77 157 219
is 862 1787 - is 90 106 241 219 215
17 921 1468 2901 , 17 107 101 148 302 260
16 895 534 534 16 97 121 295 962
15 973 2158 % - 15 103 133 216 136 145
14 946 X , X 14 109 143 164 138 121
13 1190 3762 - 13 102 147 226 186 206
12 887 1371 - 12 94 112 342 714
11 l0=0 1390 11 109 104 194 253 353
10 1334 3376 1 10 96 119 4331
9 1650 * 9 95 142 1798
3 1407 2486 , 8 103 133 194
7 6656 . ,, . 7 103 131 213 115
6 2065 17039 * 6 93 108 232 *

5 4220 2312 5 In12 138 307 259 150
4 . .4 110 111 us3
3 .. . 3 116 122 1125 293 3162
2 , 2 122 160 637 .I x I , . I00 9 316 . .

V. CONCLUSION
An architecture incorporating MLP's as fundamental modules is proposed for low-level image preprocessing.

This model is flexible - it can adapt itself with training process to most of the low-level image operation. Experi-
ments have been done to show the feasibility of the prc ,t ed architecture and the results are given. Since the train-
ing patterns are generated with existing algorit "for the specified operations, it is guaranteed that the architecture
obtains the same result as applying the same al4, lum to the same image.

The training phase of a MLP module takes a long time to converge for some complicated operations. This
could be a major drawback in the implementation of the proposed architecture. An extended experiment of training
MLP-modules with gray-scale images is in progress. A further research of choosing or developing another neural
net model as the pixel-based operating modules is expected. Also, self-determining the window size of pyramid
modules is another interesting field to study.
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ABSTRACT

An unsupervised neural network has been developed to fuse multisensory
information for a multilink robotic arm/hand system for target detection. The
network consists of a feature extractor for each sensor used in the robotic
system and a single classifier which takes input from all the feature extractors.
The network is a hybrid network which combines the following: (a) a modified
backpropagation learning rule in a self-organizing fashion, for extracting the
features, and (b) the Kohonen linear vector quantization (LVQ) method to classify
the objects based on the extracted features. The feature extractor detects the
important features of the input image in different subelement groups of its
hidden layer(s) by reproducing the input image in its output layer. The features
obtained from each of the feature extractors are then fused and fed into a
classifier which classifies the object based on these features. The overall
hybrid network is totally unsupervised because it does not need the intervention
of a human operator to provide the desired outputs during learning. Weight
sharing is incorporated in each of the feature extractors to reduce the number
of free parameters. Also, the modified backpropagation learning rule presented
in [Ref.1] has been used to improve the rate of convergence of the network.

INTRODUCTION

Multiple sensors are used in an intelligent system to obtain redundant and
complementary information about the environment at low cost and in less time and
to improve the confidence factor of the sensory information [Ref.4]. But, the use
of multiple sensors entails integration and fusion of multisensory information.
An artificial neural network which mimics the architecture and dynamics of a
biological neuronal system can be used to integrate and fuse multisensory
information. This approach gains inspiration from the fact that multisensory
fusion occurs in every living organism to a varying degree of complexity during
its perception of the environment. The advantages of using a neural network
include the following: (a)real time operation, (b)adaptability to unstructured
environments, (c)robustness to noise, (d)fault tolerance, (e)parallel processing
of sensor data and (f)feasibility in hardware implementation.

ARCRITECTURN OF THE NZTORK

The network consists of a feature extractor for every sensor and a single
classifier (see figure 1). The feature extractor is a three layer feedforward
neural network whose output layer is the mirror image of the input layer. The
input layer and the output layer consist of a 16X16 array of units. The hidden
or the second layer consists of twelve groups, each group containing 144 units
(12X12). Each unit in a group has connections to a 5X5 square in the input array,
with the location of the square shifting by one pixel between neighbors in the
12 groups of units of the hidden layer (see figure 1). In this manner the entire
input image of size 16X16 is thoroughly scanned by every group in the hidden
layer to detect the features relevant to each of them. All the 144 units in a
group have the same 25 weight values, so they all detect the same feature in
different places of the input image. This weight sharing, and the 5X5 receptive
fields, reduce the number of free parameters (excluding the independent
thresholds for all the units) for the network from 4,42,368 to 300, between the
input layer and hidden layer. The same reduction in the number of free parameters
occurs between the hidden layer and the output layer. The connection matrix
between the input layer and the hidden layer Cl (see figure 1) and that between
the hidden layer and the output layer C1' are both of size [12]X[25).
Functionally, Cl and C1' are inverses of each other. This is in the sense that
the input to one is the output to the other and vice versa. So, during learning,
only one weight matrix can be updated and the other updated weight matrix
obtained by finding the inverse of the updated first one.
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The classifier consists of a two layer Kohonen network which takes input
from the 12 groups of each of the feature extractors. So, the number of neurons
in the input layer of the classifier is twelve times the number of sensory images
being considered for fusion. The number of units in the output layer of the
classifier is proportional to the number of classes of patterns that the robotic
system has to differentiate to detect its target. Both the layers are fully
connected with every node in the input layer having connection with every node
in the output layer. There are no lateral connections between the neurons of the
output layer.

KOHOMEN CLASSIFIER

C2

vector

ir - - .-- -- - -- - -

C11 U. I

_."MillI It

CI

\I ,-

SELF-ORGANI Z ING
FEATURE EXTRACTORS

SENSORI1 L SENSOR2

Figure 1: Hybrid Neural Network Architecture for Sensor Fusion

LEARNING RULE USED

The learning rule used in the feature extractors is a modified
backpropagation learning rule used in an unsupervised and self-organizing
fashion.

The activation to the input layer is the input image itself. The
activations for the hidden layer and the output layer are given by

R7=Ea w.0V1Wi

where 'a' is the layer number, 'V' is the input and 'h' represents the activation
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above the threshold. The sigmoidal function g(h) = 1/(l+exp(-h)) is used to find
the output for each layer.

A new energy function is used to find the error of the output layer which
can eliminate the occurrence of local minima. In the standard backpropagation
network, the output error signal is propagated back through the network for every
iteration and is used to modify the ueight values. But, the output unit (tp,-
oj)(1-o,)oW can be zero not only when t . = ow but also when o. = 0 or o. = 1.
This leads to zero error signal for internal units as well. Therefore all the
derivatives are zero, and the network loses its learning ability at this state.

A new energy function was presented in (Ref.1] which resolves this problem
of local minima. The energy function is given by

K = -E ((Ul-tp,) 1n U -op,) + t,,lno,,,)

The above function can be used to evaluate the errors for the output layer as

a., t=- ( -L + (1 -t") -- -'j)OP -z -. J
1P 1____

Thus, the term (1-od)op is eliminated and the problem of local minima is removed.
The errors for the remaining layers are given by

=g-1 -- c1m-l\

The weights are updated using the equation

in which q, the learning parameter lies in the range O<n<l.

During updating of the synaptic connection matrices, a small portion of the
previous synaptic matrix values is added to the new values of the connection
matrices for faster learning. The learning parameter is different for different
synaptic connection matrices and is inversely proportional to the fan-in of the
nodes for that matrix. The initial values of the synaptic matrices are defined
randomly and scaled proportional to the fan-in of the nodes at that matrix.

The classifier is also unsupervised and learns using the Kohonen's linear
vector quantization algorithm [Ref.14]. In this algorithm, w,(t) (o~i~n-l) is
defined to be the weight from input node i to output node j at time t (or
iteration). The input is x0(t), x,(t), x,(t)... x,.,(t) where x,(t) is the input to
node i at time t.

The distance dj between the input and each output node j, is given by
n-i

I=0

The output node with the minimum distance d, is designated to be j*.Then, the
weights for the node j* and its neighbors, defined by the neighborhood size
N.(t), are updated by

w• (t+1) =w. ) +1 Mv) (X• (I) -w(681
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The term v1(t) is a gain term (O<11<l) that decreases in time, thereby
slowing the weight adaptation. For j in the neighborhood size Nj.(t), O<i-n-l, in
which 'n' is the input vector dimension. The neighborhood size NM.(t)is initially
set to a large value so as to include every other node in the output layer in the
neighborhood. The neighborhood Nr(t) decreases in size as time goes on, thus
localizing the area of maximum activity. The final size is determined depending
on the number of different input patterns that have to be classified.

In brief, Kohonen's competitive learning paradigm tries to find the closest
matching unit to a training input and then increases the similarity between this
unit and those in the neighborhood which are in close proximity to the input.

COMPUTER IMPLEMENTATION

The network has been implemented on a Sun SPARC Workstation 2 using ANSI
'C'. The network was tested on two sets of visual data. This is similar to using
two visual sensors or viewing with the right and left eye to identify the same
object. The visual images considered are binary images of numerical characters
from zero to nine. The binary images of the numerical characters are of size
16X16 which are fed into the input layer of the network.

Before the learning process is begun, the weight matrices are initialized
to small random values. The weights for each group in the feature layer are
initialized to different values so that they detect different features in the
input image. Even the threshold values for the units in a group are initialized
to different values which lends uniqueness to the feature they detect.

The twelve 12X12 feature groups obtained in the hidden layer of each of the
feature extractors are reduced to a one dimensional result in order to obtain a
12-D feature vector. This is done as follows. First, the output of each unit is
multiplied by the sum of its row and column number in the 12X12 group. This
incorporates the spatial distribution of the different features detected in the
given image. Then the mean of the new values of the outputs of all the units in
the group is considered as the reduced feature for the feature group. In this
way, a 12 dimensional feature vector is obtained for each sensor image. The 12-D
feature vectors obtained for both the sensors are concatenated to give a 24-D
fused feature vector for the given object.

The 24 dimensional feature vector is then fed into the input layer of the
Kohonen classifier. The connection matrix between the input and output layer is
initialized to values such that each output neuron vector is close to one of the
character feature vectors before the learning is started. This helps in speeding
up the learning process. The neighborhood is set to zero because the patterns are
totally unique.

Learning is continued until the neurons in the output layer respond to the
feature vectors of different characters. Ultimately, each output neuron
exemplifies one character.

DISCUSSION OF THE RESULTS AND RECOMMENDATIONS

The network is successful in extracting unique features for different
characters presented to it. The behavior of the mean squared error varies with
the type of the character. In case of characters like 0,5,6,8,9, the error
fluctuates a lot before decreasing steadily. Characters like 1,7 are learned
relatively fast with the mean squared error falling steeply. The behavior of the
mean squared error with the number of iterations for each character pattern used
is shown in Figures 2a-2j. The feature extractor learns to detect the features
of each character in about 180-250 iterations. The features generated in the
feature layer by the data compression are unique for each character. The feature
vectors obtained by reducing the two-dimensional features to one dimension are
also unique for every character.

The classifier is able to classify the characters based on their fused
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feature vectors. The output neurons of the Kohonen network learn to respond to
different character feature vectors. After learning, each output neuron
exemplifies one character.

The network's performance could be better evaluated by considering real
data obtained by actual measurement of the object's features by different
sensors. It is proposed to use multiple views of solid models of objects
generated by the IDEAS software (an integrated design package from SDRC) as input
to the network to test its performance. This involves developing an interface
between the IDEAS software and the neural network. It is also proposed to test
the network for fusing data from two different sensors as e.g, using vision and
range map data. Injecting noise in the input patterns by translation, rotation
and shape distortion will be an efficient way to further test the performance and
capability of the network.

The network's speed could be further improved by pruning the unnecessary
units in the hidden layer of its feature detectors. The network generates similar
features in different groups of the hidden layer of the feature extractor. This
implies that more than one group of the hidden layer detect the same feature in
the input image thus necessitating the removal of some groups from the hidden
layer. However, determining an optimal number of feature detectors in the hidden
layer is of vital importance. This is highly dependent on the complexity of the
patterns to be recognized. Also, determining the number of units in each group
of the hidden layer is an important aspect to be looked at.
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An Interpolated Counterpropagation Approach for
Determining Target Spacecraft Attitude

Bradley L. Vinz

INNS Member
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Abstract- This paper presents an approach that Integrates a small cluster of counterpropagation neural networks Into,
a video-based vision system designed for automatic spacecraft docking. First, the docking phases, the docking target
attitude problem, and potential rewards attributed from an automated docking system are discussed. Then, the issues
and challenges of automatic docking, relevant to machine vision processing, are addressed. Following a brief review of
the counterpropagation network architecture and training, an approach for determining the relative attitude of a
spacecraft's docking target, based on an interpolated counterpropagation net, is described.

I. INTRODUCTION

THE capability to identify the relative attitude of a target vehicle with unconstrained motion has special signifi-
cance, particularly to the autonomous docking of spacecraft. In a video-based method, the vision system must cap-
ture an analog instance of the target scene and transform it into a pattern of pixels. Within the procedure that ana-
lyzes this pattern is the key to determining the relative attitude of the target. Thus, successful recognition is de-
pendent on the pixel-arrangement interpretation. Artificial neural networks, with their powerful pattern-matching
and pattern-mapping skills, can play an important role in the determination process. This paper will demonstrate
how a small cluster of counterpropagation neural nets can be constructed, trained and integrated into an automatic
docking system for the purpose of determining the relative attitude of a target spacecraft.

In Section II, automatic docking basics, issues, and challenges, along with the benefits of an automated system
are delineated. Section MI provides a brief review of the counterpropagation network architecture and training pro-
cedure. An interpolation mode is included. Finally, Section IV depicts the functionality of the chaser vision system
components and presents a counterpropagation approach for determining the attitude of a spacecraft.

II. AUTOMATIC DocKINo

The automatic docking process between two orbiting spacecraft is a delicate venture involving interactive coopera-
tion and adeptness. Upon rendezvous to the proximity of the target, the chaser spacecraft executes successive co-
ordinated maneuvers to achieve the mechanical interlocking with the target spacecraft. Success is dependent upon
the effectiveness of the chaser's video-based vision system to accurately distinguish the target within a scene and
then provide valid attitude and position data to the control system (Fig. 1). This data is then analyzed by the con-
troller to determine the correct six degree-of-freedom maneuvering commands to be performed by the propulsion
system for attaining proper docking alignment.

"W[•System aytr SystemI target attitude

data & position data commands

Fig. 1. Recognition/analysis/action pipeline process of chaser spacecraft.

The rewaea of Bradley L Vinz is supported by a rant provided by the NASA Graduate Student Ra•ueschen Program, Conua No. NOT-50679.
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A. Issues, Challenges and Potential Rewards

As discussed above, the effectiveness of a video-based target recognition system depends on its ability to accu-
rately identify a target infixed in a scene. Scenes containing structured background clutter, foreground visual ob-
struction, and/or varying pixel intensities proliferate the recognition task, particularly when the system requires
automation [1]. An additional challenge is incurred for automatic docking due to the possible dynamic behavior of
the target vehicle. For example, the target spacecraft may lose its attitude stabilization and start to cone, spin or
tumble [2]. Since the automated system must function in a realistic environment (e.g., sun shadows, tumbling tar-
get, embedded objects in the background, etc.), it follows that rapid and reliable responses become imperative for
success.

Although the U.S. space program currently lacks experience in automated docking systems [3], studies have re-
sulted in a desire by NASA to develop this capability [4]. Potential benefits of such systems include decreased risk
liabilities, reduced expenditures, and expanded operational versatility [51. Automated docking systems permit
safety restrictions - incurred for manned missions - to be relaxed, resulting in substantial cost savings. Opera-
tional capabilities can be broadened beyond manned spacecraft altitudes so that repair of inoperable satellites,
space debris capture, and reboosting of satellites to higher orbits [51 can be accomplished autonomously. Other
payoffs include resupply [6], orbital assembly [7], and the prevention of hazardous materials from entering Earth's
atmosphere [8].

B. Docking Phases and The Docking Target Attitude Problem

The chaser spacecraft proximity and closure maneuvers may be partitioned into two sequential phases [9],
permitting possible optimization of automated tasks: approach maneuvers and final docking maneuvers. Approach
maneuvers provide closure of the chaser from a range of approximately 200 meters from the target to a distance of
about 10 meters - the point at which the final docking maneuvers commence. A three-dimensional docking tar-
get, affixed near the target spacecraft's docking port (latching mechanism), will function as a visual alignment
marker [101. Upon inception of the final docking maneuvers phase, the docking target is required to be within the
field of view of the chaser vision system. Docking maneuvers conclude when the mechanical latches of the two
spacecraft are securely coupled.

Before mechanical latching of the two docking spacecraft can become realized, proper alignment of the chaser
spacecraft with the docking target must be maintained. As the final docking maneuvers phase commences, the
problem of determining the attitude of the docking target relative to the chaser must be continuously solved to al-
low the chaser to perform correction maneuvers for sustaining alignment. This paper provides a neural network
approach for determining docking target attitude during the final docking maneuvers phase.

IHI. THE COUNTERPROPAGATION NETWORK

The streamlined feed-forward version of the counterpropagation network [1I] couples the Grossberg outstar with
the Kohonen self-, -ganizing competitive network, creating a three-layer paradigm possessing functionality that
exceeds the individual capabilities of the Grossberg and Kohonen models. Of special interest to target recognition
is the network's capability to generalize [121, even when presented with a partially incomplete or partially incorrect
input vector. Counterpropagation permits successful recognition of a target within a degraded image scene - per-
haps one resulting from a sudden change in the environment (e.g., target is partially casted with sun shadows pro-
ducing intensified regions within the digitized image).

A. Training The Three-Layer Network

Information progresses forward through a succession of three interconnected layers of neurons [111: the input
(distribution) layer, the middle (Kohonen) layer, and the output (Grossberg) layer. Before the network can be em-
ployed for recognition tasks, it must first be trained using a representative collection of input-target pattern vector
pairs (training set). During training, the net learns to correlate similar input patterns to distinct output (target) pat-
terns. The Kohonen layer processing divides the input patterns into distinct classes or categories. The Grossberg
layer associates each class with a precise output pattern by storing a reference vector. When the network is con-
tinually subjected to pattern pairs from the training set, learning evolves over time through selective modification
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of the weights associated with each neuron of the Kohonen and Grossberg layers [11]. After the net memorizes the
correct input-to-target pattern mapping, the training process is halted and learning is complete. During recall, a
trained counterpropagation network will classify an input pattern into the most suitable matching class. The stored
pattern (reference vector) associated with this class is then produced as network output.

For the purpose of discussion, assume the network comprises of n input layer neurons, p Kohonen layer neu-
rons, and m Grossberg layer neurons. The collection of weights affiliated with Kohonen neuron i, 1 • i <p, consti-
tute the weight vector WH = (w 1, w12 ... , win), where wy denotes the connection strength between input neuron j and
Kohonen neuron i. Similarly, the collection of weights affiliated with Grossberg neuron j, 1 :j < m, constitute the
weight vector Uj= (up1 , up__... ujp), where uj- denotes the connection strength between Kohonen neuron i and Gross-
berg neuron j. Each input-target pattern pair comprises of an input vector X= (x, x2, ..., x,) and a target vector
Y=(YiY2_..Yi). When a pattern pair is presented to the network, the input vector is delivered to the input layer
and the target vector to the Grossberg layer. In due time, the network output from the Grossberg layer will be com-
pared for accuracy with the (correct) target vector. The input layer's sole function is to distribute the input vector
entries to the Kohonen layer, where a winner-take-all competition is undertaken.

During competition [111], each Kohonen neuron calculates a Euclidean distance metric, II W, -X II, which es-
tablishes the distance each neuron's weight vector Wi lies from the input vector X. The neuron having the smallest
distance wins the competition and sets its output signal z, to 1.0. All other neurons set their output to zero. After
competition, only the winning neuron's weight vector is adjusted (using the Kohonen learning rule):

Wew = -+ CC(- W )z,

where u is the learning rate (0.05 <x5 1.0) and z,= 1 is the winner's output. In the next level of processing, the net-
work output vector is computed [Il]. Each Grossberg layer neuron j, 1 <j5 <m, computes the summation of inbound
weighted signals:

p
y old

i=1

resulting in the network output Y'= (y,Y22 ....y,Y). In the comparison of output vector Y' to the target vector Y, the
Grossberg layer weights are adjusted according to:

uMW = UO° + J. (yj- y,)

where j± is a learning rate, 0.0<.t• 1.0. The training process repeats with the next pattern pair until the correct in-
put-to-target pattern mapping is memorized.

B. Interpolation Mode

The feed-forward version of the counterpropagation net permits only one winner in the Kohonen competitive
layer. However, a variation to the method maintains the same training procedure as described above, but, during
recall, more than one Kohonen neuron is allowed to share in the winning [111. This relaxation, in effect, influences
the resulting value at the output layer. The winners split the (1.0) output signal. Each winner's share in the output
signal is inversely proportional to the winner's Euclidean distance metric.

As an example 1131, take the case where two winners are permitted, Kohonen neurons i and k. The 1.0 output
signal is then distributed such that z, + zk= 1 .0. The output vector can then be calculated as follows:

yji= Up, + ujkZk

This variation is known as interpolation mode, since the resulting output pattern appears as a compromise between
the (stored) target patterns for which the net learned to output during training.
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IV. THE CHASER SPACECRAFT VISION SYSTEM

This section explains the coordinate reference systems used for orbital docking and the method of image construc-
tion used in training the counterpropagation cluster. The functionality of the chaser vehicle vision system compo-
nents is discussed and an approach for determining docking target attitude based on an interpolated counterpropa-
gation network is offered.

A. Coordinate Systems and Training Set Construction

An unrestricted orbital spacecraft can demonstrate 6 degrees-of-freedom: 3 degrees-of-freedom in linear trans-
lation (XT, YT, Z-) and 3 degrees in attitude or body rotation (XR, YR, ZR). A coordinate reference system provides
a way of representing a spacecraft's position and attitude. Each spacecraft operates within its own coordinate sys-
tem. For successful docking to be realized, the chaser and target coordinate systems must be aligned in some prear-
ranged orientation.

In order for the counterpropagation network to be employed within the automated docking target attitude de-
termination method, a suitable training set is required. It is assumed that a ground-based facility will be available
to capture image views of the target vehicle. The collection acquired will comprise views attained by translating
and rotating a video camera about the target in various translations and attitudes. The amount of image collection
coverage needed for the final maneuvering phase can be restricted to a volume in the shape of a cone [101. This
cone projects from the center of the docking target to the range of the maneuvering phase (approximately 10 to 15
meters should be adequate) and projects 30 degrees out from the docking alignment axis (i.e., 30 degrees in all
three dimensions from the target's line-of-sight to the camera).

B. System Components

The chaser vision system (Fig. 2) for the final maneuvering phase consists of five components: 1) video camera,
2) digitizer, 3) image compression component, 4) image normalization component, and 5) docking target attitude
determination component. The following discussion exemplifies the interaction of these components. Upon captur-
ing a target image (frame) from the analog video stream, the digitizer transforms it into a 256 x 256 pixel image.
Image compression reduces the image to a 32 x 32 binary pixel image. The (XT, YT,4-r) translation misalignment
of the target is then calculated by an image normalization procedure. The image region representing the target is
centered and scaled to conform to images used during the training of the cluster of counterpropagation networks.
The docking target attitude determination component uses the 32 x32 normalized binary image to determine the
(XR, YR, ZR) rotation misalignment (attitude dispersions) of the docking target. The (XT, YT, Z) and (XR, YR, Z4)
misalignment data is input to the control system, where appropriate thruster maneuvering commands are deter-
mined for the propulsion system.

C. Docking Target Attitude Determination

Recall that before mechanical docking between the two spacecraft can occur, the chaser spacecraft must prop-
erly align itself with the target spacecraft The docking target located on the target spacecraft will serve as a visual
cue for sustaining alignment as the chaser accomplishes the closure. During the final closing maneuvers, the
chaser's vision system must continually determine the attitude of the docking target - that is, must compute the
rotational displacement (in all three dimensions) of the docking target from a known reference orientation. Once
the docking target attitude is determined, the control system issues the appropriate maneuvering commands to the
propulsion system to perform the correct adjustment.

The function of the docking target attitude determination component is to accept a 32 x 32 normalized binary
image as input and produce the rotation misalignment of the docking target. The rotation misalignment (or attitude
displacements) relative to the chaser can be expressed as a three-dimensional vector (XR, YR, ZR), where

XR =rotation displacement about X-axis of target
YR -rotation displacement about Y-axis of target
ZR rotation displacement about Z-axis of target

are angular offsets from a standard reference position such as (00, 00, 00).
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Vision System

DW=

Fig. 2. Chaser spacecraft vision system.

The attitude determination can be approximated using a single counterpropagation network operating in single
(Kohonen layer neuron) winner mode. During training, the network is presented with a collection (training set) of
input-target pattern pairs. Each pair consists of a 32 x32 normalized binary image (input pattern) and the correct
attitude displacements, (Xa ,Y,7-n), as the target pattern. As training proceeds, the Kohonen layer learns to cate-
gorize each input pattern into a distinct class. The Grossberg (output) layer assocmtes the correct target pattern
with this class. The network requires 1024 (or 32x32) neurons in the input layer and 3 ne'urons in the output layer.
One Kohonen neuron is needed for each distinct class established. The number of Kohoiien In.eurons is determlined
by the number of input-target pattern pairs, or equivalently, the number of target attitudes used to obtain the train-
ing set.

Target analysis and simulation experience indicate that training sets for attitudc: misalig~iments between +30
degrees for each target axis will be sufficient for the final docking maneuvers [10]. The centering and scaling proc-
esses of the image normalization component will determine the translation displaceir~ent;, (X1., YT,ZT), of the tar-
get relative to the chaser. These calculations will greatly reduce the number of Kohoiien aeutrcns needed. Since the
normalization uses a reference distance to compute the range and a reference center point for centering, all training
images can be acquired from a fixed range with the target centered in the field of view.

Suppose the training images are obtained with the attitude dispersions varying by 100 increments in each di-
mension. Then, for a single dimension, the attitude dispersions vary from -30o to +300, resulting in 7 dispersions.
For all three dimensions, the number of combinations total 7x~x7 or 343. Thus, using this approach, 343 neurons
are needed in the Kohonen layer.

The single network, single winner mode is likely to function adequately if only approximations (of attitude
displacements) are required. For example, suppose the network is subjected to the training set described above.
During recall, when presented with an image corresponding to the attitude displacements (-26°,24°,16°), th e
would likely respond with an output of (-30°,20o,20o). However, in order to minimize the possibility of vehicular
collision and avoid the risk of mission failure, a higher degree of precision in deriving the attitude displacement
calculations is essential.

One approac [131 is to smly keep adding more neurons in the Kohonen layer until an acceptable level af
precision is reached. This can dramatically increase the number of training images required. A more accurate ap-
proach is take advantage of the interpolation mode, i.e., two Kohonen neuron winner of the co Jnterpropagation net
[13]. To allow a simple linear interpolation scheme to be implemented, a separate netwc~rk is constructed for each
degree of rotational freedom (Fig. 3). Each counterpropagation net accepts the same .32 x 32 normalized binary im-
age as input. However, each network is trained to output the attitude displacement for a .,ingle, distinct dimenson.
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Fig. 3. The Docking Target Attitude Determination Comp:)nent.

During recall, each net performs the 2-winner interpolation, resulting in a greater degree of accuracy in the calcu-
lated output.

V. CONCLUSION

The determination of the relative attitude of a target spacecraft can be a demanding problem. In this paper, we in-
vestigated how a counterpropagation network, integrated into a spacecraft vision system, can provide a potential
solution to determining the attitude. The interpolated counterpropagation net, with its ability to add precision in
the calculated output., can provide reliability to a delicate procedure.

Neural nets, with their robustness and generalization ability have potential for many applications. Future re-
search will concentrate on developing neural net methods for image normalization.
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IMAGE TRANSFORMATION BY

RECOGNISING FACIAL CONTROL POINTS

T.D. Gedeon & S.K. Chan
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PO Box 1, Kensington 2033, AUSTRALIA

Abstract:

A sequence of images which change slowly can be recognised as a transformat ion
from the starting image to the final image. This transformation can then be used to
generate further images in the sequence, either interpolating to produce extra imaqeq
during the sequence, or extrapolating to continue beyond the final image.

This has application in a number of domains, such as real world image understanding,
where the sequence of images involve the movement of some object, or matching
facial features for identification purposes; in tracing connected paths on geographical
data, where the sequence is a series of nearby patches of the overall image.
containing some sizeable geographic feature; in medical imaging, for example
following blood vessels in scan data, where the sequence is adjacent 3D patches of
voxels.

We have experimented with morphing two faces successfully using a neural ,0,h,'.:ik
to discover the appropriate control points of the target face. This process can be made
fully automatic with the incorporation of minor domain knowledge.
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Fuzzy Logic and the Calculi of Fuzzy Rules, Fuzzy Graphs

and Fuzzy Probabilities

L. A. Zadeh*

Abstract

It is important to recognize that the term "fuzzy logic" is currently used in two different senses. In
its narrower sense, fuzzy logic, or simply FLn, is a logical system which underlies approximate
reasoning. But in a much wider sense - which is the prevalent sense at this juncture - fuzzy logic, or
simply FL, is fuzzily synonymous with fuzzy set theory, FST, that is, a theory of classes with unsharp
boundaries. In this perspective. FLn is but one of many branches of FL, with other important branches
including possibility theory, fuzzy data analysis and probability theory, fuzzy arithmetic, fuzzy relations
and the calculi of fuzzy rules, CFR, fuzzy graphs, CFG, and fuzzy probabilities, CFP.

The calculi of fuzzy rules and fuzzy graphs play a particularly important role in the applications of
fuzzy logic, especially in the realms of control and the enhancement of MIQ (Machine IQ) of consumer
products and industrial systems. As its name suggests, the calculus of fuzzy rules, CFR, is concerned
with the representation and manipulation of fuzzy if-then rules. The core of CFR is what is called the
Fuzzy Dependency and Command Language, FDCL. The syntax of FDCL is concerned with the
taxonomy and format of fuzzy if-then rules. The semantics of FDCL is focused on the meaning of
individual rules and their collections.

The calculus of fuzzy graphs, CFG, is a subset of CFR. Its importance stems from the fact that CFG
is largely self-contained and is sufficient for most practical applications.

The point of departure in CFG is the concept of a fuzzy graph, that is, an approximation to a
function or a relation by a disjunction of cartesian products of fuzzy sets. Such approximations differ
from conventional approximations in that (a) the approximant is a fuzzy relation or a possibility
distribution; and (b) the use of linguistic variables results in data compression. A version of fuzzy Prolog,
FA-Prolog, provides a convenient as well as effective way of representing fuzzy graphs and performing
operations on them.

In fuzzy logic, probabilities are assumed to be fuzzy numbers. The motivation for this assumption
is that most real-world probabilities cannot he estimated as real numbers. A typical example is the
probability that my car may be stolen, with the understanding that the information that can be obtained
from insurance companies is not specific enough to apply to my car.

In dealing with fuzzy probabilities, there are two major issues. First, how can fuzzy probabilities be
estimated; and second, how can fuzzy probabilities be computed with? We explore an application of the
calculus of fuzzy rules to the first problem and describe methods derived from the extension principle of
fuzzy logic for computing with fuzzy probabilities and fuzzy utilities.

The calculi of fuzzy rules, fuzzy graphs and fuzzy probabilities provide a widely applicable
methodology for exploiting the tolerance for uncertainty and imprecision. We describe the basic ideas
which underlie these calculi and illustrate their use by examples.

*Computer Science Division and the Electronics Research Laboratory. Department of EECS. University of
California, Berkeley. CA 94720; Telephone: 510-642-4959; Fax: 510-642-5775; E-mail:
zadeh@cs.berkeley.edu.
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representation, stability analysis, signal processing and data compression.
Today. most of the applications of fuzzy logic relate to control in the context of industrial systems

and consumer products. This is the case because such applications are easy to make and result in systems
and products with a higher level of MIQ (Machine Intelligence Quotient). What is discernible, however,
is (a) the trend toward the use of fuzzy logic in task-oriented - rather than set-point-oriented - control;
and (b) the incorporation of fuzzy logic and neural network techniques in the conception and design of
complex systems in which control and expert system techniques are used in combination. Among the
examples of such systems are power plants, cement kilns, elevator systems, air traffic control systems
and, more generally, those systems in which there is an interaction between local control and higher level
decision-making.

Viewed in a broader perspective, fuzzy logic may be viewed as a constituent of what might be
called soft computing (SC). In contrast to traditional, hard computing, soft computing is tolerant of
imprecision, uncertainty and partial truth. In addition to fuzzy logic, the principal constituents of soft
computing are neurocomputing (NC) and probabilistic reasoning (PR). with PR subsuming belief net-
works, genetic algorithms, chaotic systems and parts of learning theory.

In the partnership of FL, NC and PR, FL is concerned in the main with imprecision and approxi-
mate reasoning, NC with learning and curve-fitting, and PR with uncertainty and propagation of belief. In
large measure, FL, NC and PR are complementary rather than competitive. It is becoming increasingly
clear that in many cases it is advantageous to employ FL, NC and PR in combination rather than
exclusively. A case in point is the growing number of neurofuzzy consumer products and systems which
make an effective use of a combination of fuzzy logic and neural network techniques.

In the final analysis, it may be argued that it is soft computing - rather than the traditional, hard
computing - that should be viewed as the foundation for artificial intelligence. In the years ahead, this
may well become a widely held position.
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Abstract

A fuzzy system approximates a function by covering the graph of the function with fuzzy

rule patches and averaging patches that overlap. But the number of rules grows exponentially with

the total number of input and output variables. The best rules cover the extrema or bumps in the

function. For mean-squared approximation this follows from the mean value theorem of calculus.

Optimal rules can help reduce the computational burden. To find them we can find or learn the

zeroes of the derivative map and then center input fuzzy sets at these points. Neural systems can

then both tune these rules and add rules to improve the function approximation.

Fuzzy Function Approximation and the Curse of Dimensionality

A fuzzy system needs too many fuzzy rules to approximate most functions. The number of

rules grows exponentially with the number of input and output variables. In the end this "curse of

dimensionality" can defeat an expert who guesses at the rules or a neural system that tries to learn

the rules from data.

The rule geometry shows the problem. The rules define fuzzy patches that can cover part of

the graph of the function. An additive fuzzy system adds or averages patches that overlap and can

always approximate a continuous function on a compact set with a finite number of rules I1]. For P. R

-* R it takes k ruge patches in the plane to cover the graph. For R2 -4 R it takes on the order of

k2 rules to cover the surface in some 3-D rectangle. In general for . Rn -4 RP it takes on the order of

kn+p"1 rules to cover the graph of f.

Optimal rules can reduce the number of rules used to approximate a function. Neural

learning tends to find some of these rules and so can prune the rule set as well as tune it. In theory
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we can find the best rules by minimizing the mean-squared error of the approximation for a given

fuzzy architecture. A complete closed-form solution depends on the shape of the fuzzy sets and how

the system converts inputs to outputs.

Y

B
c

Figure 1. Optimal fuzzy rule patches cover the extrema of a function. Lone rules define a flat

line segment that cuts the graph of the local extremum in at least two places. The mean value

theorem implies that the extremum lies between these points.

A natural place to put the rule patches is at the extrema or bumps of the function (including

its endpoints). We show in 121 that this is the best place in the mean-squared sense. Figure 1 shows

how the rules might cover the bumps in a smooth function.

This result gives a new way to approximate f: X -4 Y. First find the zeroes of the

derivative map f'. Neural or direct methods can estimate f ' from the difference of noisy samples

(x, f&x)). Then Newton's method or other iterative or contraction maps can find some or all of the

root values i such that f'(i) = 0. Then center tie input fuzzy sets at these roots and perhaps add

fuzzy sets centered between the roots. Supervised or unsupervised learning can further tune the rules.

[11 Kosko, B., 'Fuzzy Systems as Universal Approximators," IEEE Transaction on Computers, 1994; an

earlier version appears in the Proceedings for the 1st IEEE International Conference on Fuzzy Systems

(IEEE FUZZ-92), 1153 - 1162, March 1992.

[21 Kosko, B., "Optimal Fuzzy Rules Cover Extrema," International Journal of Intelligent Systems, to

appear, 1994.
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Abstract
We present the architecture and learning procedure for a fuzzy-rule-based classifier that can reject

outliers and minimizes the cost of misclassification instead of the error rate. The fuzzy-rule-based system
can be interpreted as an adaptive kernel method where each fuzzy rule corresponds to a kernel. Each kernel
is asymmetric, and its center and and span(width) are adaptively determined from the training data. The
fuzzy-rule-based classifier has been applied to synthetic data and two real data sets: Iris data and Heart
Disease data. The performance of the system compares favorably with that of other methods.

1 Introduction

Many previous learning algorithms measure the quality of a learned model in terms of classification error
rate. However, in practical applications, other aspects of classifier performance, such as the ability to reject
classes on which it has not been trained and minimizing the cost instead of the error rate, can become
critically important. We can obtain the classifier with those abilities by learning generative models for each
of the classes. In the generative model, each rule states the properties that are true for all objects in the
concept rather than stating the properties that discriminate a given concept from the other concepts. The
goodness-of-fit of the model is defined in terms of how the features vary as a function of the classes. Fuzzy
classifiers provide a soft decision, i.e., a value that describes the degree to which a pattern fits within a class.
In this paper, we incorporate the cost function into the classification decision in a manner similar to optimal
Bayes decision rule. We also present an architecture and a learning procedure to generate a set of simple
fuzzy rules with appropriate membership functions for a fuzzy-rule-based classifier.

A learn-by-example mechanism is desirable to automate the construction of a fuzzy classifier. The fuzzy
logic system can be represented as multi-layer feedforward networks. A back-propagation training algorithm
can be used to adjust the parameters of the fuzzy logic system to make it match the desired input-output
pairs[7]. However, this back-propagation fuzzy system may be trapped in a local minimum and it converges
very slowly. Also, a user has to specify the system structure, i.e., number of rules, the number of membership
functions, etc. We thus want a learning method that is more computationally efficient, as well as able to
generate a structure of the system. There is an adaptive RBFN-like fuzzy systems[21. However, the perfor-
mance of radial basis function based classifiers deteriorates rapidly in the presence of noise and irrelevant
input variables, while elliptical basis variants can adapt to extraneous input components robustly[l]. The
elliptical basis function implements the local feature selection through the different variance for each feature
of a rule.

In this paper, we propose an architecture for a fuzzy-rule-based classifier and a learning procedure auto-
matically generates fuzzy rules to perform complex classification tasks. The distinct feature of the proposed
system is its ability to learn fuzzy rules from high-dimensional training data. Learning fuzzy rules amounts
to selection of locally important features. This is achieved by learning centers and widths of asymmetric
kernels corresponding to fuzzy rules.

2 Fuzzy Classifier Systems

Fuzzy Systems

This research was supported in part by 3M Corp. and by Center for Urban and Regional Affairs(CURA) at the University

of Minnesota.
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We consider a set of simple fuzzy if-then rules in the following form:

Rule i: If x is A1 l and x2 is Ai2 ... and xN is AiN, Then y isBi (1)

where i = 1, 2, ... , M, zk(k = 1,2, ... , N) are the input variables to the fuzzy system, y is the output variable
of the fuzzy system, and Bi is a crisp value. The membership function is Gaussian:

/AA.(zk) = eXP(- ( - ) (2)
bik

where bi, and cir are parameters for the membership function of the i-th rule, k-th variable. The singleton
fuzzifier is used for fuzzification. The inference method is a multiplication(product inference). For aggre-
gation of output of each rule, the centroid crispification method is widely used. The centroid crispification
realizes a normalization of rule activation and every input signal causes the same total activation of fuzzy
rules. Therefore, input signals that are arbitrarily far away from all fuzzy rules can activate them consid-
erably. It is somewhat questionable to generalize over patterns which are very different from all patterns
seen during training. Therefore, we may want no normalization. This has the advantage that "outliers" do
not activate any rules very much, and can therefore be identified easily. It is particularly beneficial for fault
detection applications, since we usually do not have data for every possible fault state of the system. We
thus propose to use a Dynamic Ordered Weighted averaging Aggregation(DOWA) operator. It is an Ordered
Weighted averaging Aggregation(OWA) operator[10] in which weights are dynamically changed according
to the rule activation during both training and classification stages of the system's operation. The OWA
operator has the property of lying between the "and," requiring all the criteria to be satisfied, and the "or,"
requiring at least one of them to be satisfied. Denote the crisp output y = F(RI(z), R 2(X), . . ., RM(x)),
where Ri is the i-th rule. A mapping F is called an OWA operator if it is associated with a weighting vector
W such that Wi E [0,1] and FjWi = 1, and where F(rl,r2,...,rM) = WiD, + W2D2 + ,.. + WMDM,
where Di represents the i-th largest element in the collection of rule activation ri, r 2 , ..., rm. The DOWA
operator has weights W,:

w,. Ik=lIAA.k(Xk)(3M N )
2

j=l Hk =l 1 AjA(xk )

where M is the number of fuzzy rules, and N is the number of input variables. Note that Wi is changed accord-
ing to the rule's activations. We thus call it a Dynamic Ordered Weighted averaging Aggregation(DOWA)
operator. If we use this DOWA operator as a crispification method, the fuzzy system can be represented as
a function of the form:

M N

E A W= EIw, f-PA,, (4)
i=1 k=1

where M is the number of fuzzy if-then rules, and N is dimension of the input data.
Approximation capability of the proposed fuzzy system can be established under the usual assumption

that the input data is sampled from the closed and bounded domain. Similar to the proof in [8], we can prove
the proposed fuzzy system is a universal approximator by applying the Stone-Weierstrass theorem[6]. This
representation problem is important, because, if the chosen system could give only a poor representation of
the mapping to be learned, even with optimal parameter values, then there would be little point in trying
to learn the system.
Architecture of a Fuzzy Classifier System

The fuzzy classifier can handle both continuous and symbolic input variables. If a symbolic variable is
fuzzy, each symbolic value has the fuzzy value of that feature. For a crisp symbolic variable, each symbolic
value is "1" if the input pattern has that feature, otherwise it is "0". Although it is possible to use an input
pattern that has an arbitrary range of values in any dimension, this paper will use values that range from
0 to 1 along each dimension; hence the pattern space will be an n-dimensional unit cube. These ranges of
values were selected because they made the computations simpler and some sort of normalization on pattern
value is necessary in order to prevent a certain variable from dominating the distance measure.

In our construction of the fuzzy classifier, we use m fuzzy systems for m-class classification. Each system
is to represent the possibility distribution of a class. In learning the p-th system, if the data are fuzzy, the
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training data of the p-th class are targeted to have the fuzzy value of that class. If the given data are crisp,
the training data of the p-th class are targeted to have the output "1" and those of the rest of the classes
are targeted to have the output "0". During the test phase, the decision rule could be a "winner takes all"
scheme. If a cost is associated with the classification, we can use that information to minimize the cost.
Both fuzziness and randomness represent a matter of degrees. The fuzziness comes from the variety among
the properties of the instance while the randomness comes from the variety among the instances. Consider
a sentence "X is A". The probability of "X is A"(randomness) is the ratio of the number of the instances
that are A over the total number of instances. The possibility of "X is A" (fuzziness) is the ratio of the

Fuzzy-Rubl-Basd Clauifir

Fuzzy Sytm
for caw2x 1

Fuzy Systan
bSput for comept 2 * Dwicon OAMp

0 Rule

FUzz SyiAn
-M i

Figure 1: Fuzzy-Rule-Based Classifier

number of the properties possessed by A over the total number of the properties of X. Both probability and
possibility are the ratio of the weight of all positive evidence over the weight of all relevant evidence. This
frequency interpretation allows us to use Bayes decision rule approach: choose class k if

rn i

E C(i, k)p(ilz) < 5 C(i, j)p(ilz) for all j, j # k, (5)
i=l iml

where C(i, j) is the cost of selecting the class j while the true class is i, and p(ijz) is the possibihlit of class
i for the given example z.
Learning Procedure

The number of fuzzy rules determines the complexity of the fuzzy system. For many rules, we have a
more sophisticated system at the price of more computation to evaluate it. The performance of the system is
improved as more rules are used. However, with too many rules, the performance of the system deteriorates,
as the system overfits the training data. In order to identify the proper number of rules, we use a constructive
method, i.e. we construct a system with a small number of rules and then add rules until certain performance
criteria are satisfied. The constructive learning algorithm is described as follows.

1. Initialize the system, i.e., assign one initial rule to each class, set termination conditions, and divide the
training samples into a training set X1 and a validation set X2.

2. For all x E X 1, execute the learning algorithm described in the next section.
3. Evaluate the classifier on the validation set X2 .
4. If termination conditions are reached, stop. Otherwise continue.
5. Add a rule and goto (2).

To avoid over-learning, the cross validation method is used to estimate the error rate of the system. In this
approach, the available data is divided into two parts - a training set and a validation set. Only the training
set is used to determine the system parameters, and the performance on the validation set is continuously
monitored. If we know the model error c, then the termination condition is "the error rate is less than c"
If we do not know the model error, training is stopped when performance on the validation set ceases to
improve. If the number of the available data is small, we may use leave-one-out method to estimate the error
rate of the system.
Learning kernel centers and widths
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The fuzzy-rule-based system can be interpreted as an adaptive kernel method where each fuzzy rule
corresponds to a kernel. The centers and widths of the kernels are adaptively determined from the training
data as discussed below. Then, weight Bi for each rule i in equation (4) is determined by a supervised LMS
algorithm.

We allocate one kernel per each cluster. For each class, the centers of the clusters are determined by
stochastic competitive learning techniques analogous to statistical clustering. The competitive learning
algorithm [4] is used to find the cluster centers of each class. The Voronoi region set Vi associated with the
center 4 is defined as cet- {i E RN I cj is the nearest neighbor of i}.

The cluster centers and variances are computed from a set of examples as:

S= k (6)

,k

where K is the number of examples, and 6j (.) is the characteristic function of set V.
The # is the center of a kernel(rule), i.e., " = #. The weight of a feature 1/bk may not be determined

by simple heuristics, the distance to the nearest neighbor or the variance of the feature. Because, if the
distance or variance goes to zero in a model with Gaussian components, the weight of a certain feature can
be infinitely large. This is likely to happen with the relevant features (especially discrete features). One ad
hoc approach to solve this problem is to constrain the value greater than some minimum variance/distance.
More systematic solution to this problem is discussed below. The weight of a feature 1/bk are estimated as
follows.

N N

j(k - Ck)/bk = -pk(Zk _ Ck) (8)
k=1 k=1

where tPk = 1/bk. That is, the kernel width parameters bt are estimated by two parameters pk (to specify
locally important features), and t (to specify the effective widths of the fuzzy rules).

The Pk is a attribute weight that determines the importance of attribute k for a rule. The attribute weight
pt are defined in 10, 0.5] rather than [0, 1] because an irrelevant attribute's weight is expected to be half of its
total weight and we wanted each irrelevant attribute to have a zero attribute weight. Recall that input data
have been normalized to have values that range from 0 to 1 along each dimension; hence the maximum a is
0.5. Thus, pk is determined by max(I 1 - ak 1 -0.5, 0). The parameter t, which determines the slope of the
exponential decay, is determined based on the number of rules, on the distribution of the input data, and
on the dimensionality of the input data, since the distribution of :' I (zk - ck) 2 /bk is X' with N degrees
of freedom. The value of ý is chosen so that the total activation of the kernels (fuzzy rules) for any input is
approximately 1. Then, the kernel width parameters bk in equation (8) are determined by bk = I/(pk).

3 Comparisons

This section presents the simulation results of the system. Three data sets have been used to illustrate
operation and properties of the fuzzy classifier. The first data set, an overlapping class problem, with known
optimal Bayes boundary, will illustrate the fuzzy classifier's performance on overlapping class data. The
second data set is the Fisher's Iris data, which is perhaps the best known database to be found in the
pattern recognition literature. One class is linearly separable from the other two classes. The others are not
linearly separable from each other. This is used to illustrate the fuzzy classifier's performance on linearly
separable as well as non-linearly separable classes. The third data set comprises Heart Disease Data[3]. This
will illustrate the fuzzy classifier's performance on a mixed type attribute, high-dimensional data set. All

of the data sets have been published, and we performed the analyses in a manner consistent with those

previously reported.
Synthetic data
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This data set[5] has two classes. Each class is an equal mixture of two two-dimensional normally distributed
populations, and the two populations are equally likely. The centers are (-0.7,0.3) and (0.3,0.3) in class 0
and (-0.3,0.7) and (0.4,0.7) in class 1, and variances are 0.03 for both classes. The boundary of the Bayes's
rule is known. The error rate has been estimated on the 1000 samples of test data after the classifier was
trained on 250 training samples. Table 1 compares the performance of the fuzzy classifier with several other
methods. Error rates of the other methods were previously reported in [5]. It achieved an 8.7 % error rate
with 4 rules. The fuzzy classifier achieves very good performance, but not the optimal result, because the
competitive learning algorithm that was used to find cluster centers can be trapped in local minima. We
may get better a result with a better cluster-center-learning algorithm.

Methods Error Rate %
Bayes rule 8.0
K-Nearest Neighbor 13.0
LVQ 9.5
BP 9.4
Classification tree 10.1
Fuzzy Classifier 8.7

Table 1: Classification Performance on Synthetic Data

Iris Data
The iris data set has three classes and four continuous features. It consists of 150 cases, 50 for each class.

One class is linearly separable from the other two classes and the latter are not linearly separable from each
other. The error rate has been estimated by the leaving-one-out method. The fuzzy classifier achieved a
2.7% error rate with 9 rules. Error rates of the other methods were previously reported in [9].

Methods Error Rate %
Bayes 6.7
K-Nearest Neighbor 4.0
BP 3.3
C4.5 4.7
CART 4.7
Fuzzy Classifier 2.7

Table 2: Classification Performance on the IRIS Data

Heart Disease Data
The heart disease data set[3] has two classes (absence or presence of heart disease) and 13 mixed type

attributes. It consists of 270 examples. It has a cost matrix that is useful when different classification
errors have different costs. For a user, the most important evaluation criterion for this data set is the
minimization of cost instead of error rate. Table 3 shows the cost matrix for the Heart Disease Data, where
the rows represent the true values and the columns represent the predicted values. Note that misclassifying
a presence of heart disease as an absence of heart disease will result in a high cost. The average cost is
calculated through dividing the total cost of misclassification by the total number of examples tested. For

class absence presence I
absence 0 1

presence 5 0

Table 3: Cost matrix for the Heart Disease Data

the heart disease data, the 9-fold cross-validation testing strategy is used. The misclassification cost of the
fuzzy classifier is compared with those of the other methods that were previously reported in [3].

Some algorithms can incorporate a cost matrix into its training phase and/or testing phase. Backpropa-
gation makes use of the cost matrix in both phases. The algorithms that can include a cost matrix in their
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testing phase include K-Nearest Neighbor and CART. However, machine learning algorithms, such as C4.5,
can not incorporate cost in either phase. Therefore, it may not be useful on a domain where minimizing
cost is more important. The fuzzy classifier can incorporate cost in the testing phase by using decision rule
(Equation 5). With the cost matrix, the fuzzy classifier achieved an average cost of 0.43 with 12 rules. C4.5
and RBFN performed very poorly since they did not incorporate the cost matrix. Note that BP, C4.5, and
RBFN achieve worse performance than the simple scheme that always chooses the class "presence", which
has an average cost of 0.55.

Methods Avg. Cost
K-Nearest Neighbor 0.48
BP 0.57
CART 0.45
RBFN 0.78
C4.5 0.78
Fuzzy Classifier 0.43

Table 4: Classification Performance on the Heart Disease Data

4 Concluding Remarks

We have described the architecture and learning procedure of the fuzzy-rule-based system. By using a
learning procedure, the proposed architecture can learn fuzzy if-then rules to perform complex classification
tasks. The fuzzy classifier can be used in various practical applications, since it has the ability to reject
classes that it has not been trained on, and to minimize the cost instead of the error rate.

Simulation results demonstrate that the fuzzy classifier system can find a reasonable decision boundary for
an overlapping class, can handle non-linearly separable classes, and can incorporate the cost associated with
the classification. The fuzzy classifier performance appears to be competitive against popular Al, neural
network, and statistical classifiers.

In this paper, the number of fuzzy rules in the fuzzy system, which determines the complexity of the
system, is determined by the cross-validation method. Possible improvements to the proposed system include
incorporating better methods for determining the number of kernels/fuzzy rules, as well as better procedures
for determining kernel centers.
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Neural Network Based Fuzzy Logic Decision System
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ABSTRACT

During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing
fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the
two approaches generally attack the design of "intelligent" systems from quit different angles. Neural networks
provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as
reasoning on a high (semantic or linguistic) level. Consequently the two technologies complement tach other
(Bezdek, 1993). In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial
neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three
layers map the input variables to fuzzy set membership functions. The last three layers implement the decision
rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration the
model is used to classify multispectral satellite image data.

1. Introduction

ANN models have been used for pattern recognition since the 1950 (Rosenblatt, 1958). ANN models am preferred
for patitern recognition tasks because of their parallel processing capabilities as well as learning and decision making
abilities. ANN models consists of a large number of highly interconnected processing units. ANN models with
learning algorithms such as the backprpation are being used as supervised classifiers, and self organizing
networks with learning algorithms such as the competitive learning and Kohonen's feature maps are being used as
unsupervised classifiers. Recently many neural network based fuzzy logic decision systems have been suggested
for pattern recognition tasks. ANN models essentially provide algorithms for problems such as optimization,
classification, and clustering, whereas fuzzy logic is a means for representing and utilizing data and information that
posses non-statistical uncertainty. Thus fuzzy methods often deal with issues such as reasoning on a higher
(semantic or linguistic) level. Fuzzy sets were introduced by Zadeh (1965) as means of representing and
manipulating data that were not precise but rather fuzzy. A fuzzy set is an extension of a crisp set. Crisp sets allow
only full membership or no membership at all, whereas fuzzy sets allow partial membership. In a crisp set, the
membership or non membership of an element x in set A is described by a chrcteristic function ILA(x), where ILA(z)
= if xE A, and pA (x) =0 if xe A. Fuzzy logic techniques in the form of approximate reasoning provide
decision-support and expert systems with powerful reasoning capabilities bound by a minimum of rules. The
permissiveness of fuzziness in human thought processes suggest that much of the logic behind human reasoning in
not traditional two valued or even multi-valued logic, but a logic with fuzzy tuths, fuzzy connectives, and fuzzy
rules of inference (Zadeh, 1973). During the past decade fuzzy logic has found a variety of applications in various
fields ranging from process control (Lee, 1990) to medical diagnosis (Hall et al., 1992).

There are many neural network based fuzzy logic decision and control systems proposed in literature. Lin
and Lee (1991) have suggested a fuzzy logic control/decision network. In their network input/output nodes
represent the input states and output control/decision signals, respectively, and in the hidden layers there are nodes
functioning as membership functions and rules. The learning algorithm for their network combines unsupervised
learning and supervised gradient descent learning procedureL As an illustration they have considered two problems-
the scheduling problem as a decision making problem and the fuzzy control of unmanned vehicle as a control
problem. Bernji and Khedkar (1992) have developed a neural network based fuzzy control system wherein the
learning and tuning fuzzy logic controllers is achieved through reinforcement. In reinforcement learning the
teacher's response is not as direct, immediate, and informative as in supervised learning and serves more to evaluate
the state of the system. Learning in their network is implemented by integrating fuzzy inference into a five-layer
feed-forward network. They have used a gradient descent method to improve performance adaptively, and the
fuzzy membership functions used in the definition of the labels are modified (tuned) globally to improve
performance. They have considered the cart-pole problem. Pal and Mitra (1992) have developed a fuzzy neural
network model using the backpropagation learning algorithm. They have used the model to classify Indian Telugu
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vowel sounds. Newton et al. (1992) have developed an adaptive fuzzy leader clustering algorithm. They have used
the concept of ART-I (Carpenter and Groasberg, 1987). This modification of ART-I type neural network can be
used for classification of discrete or analog patterns without prior knowledge of the number of clusters in data sets.
Hall et al. (1992) used approximate fuzzy c-means clustering algorithms for segmenting magnetic resonance images
(MRIs) of the brain. In this paper we suggest an architecture for a neural network based fuzzy logic decision
system. The model consists of six layers. The first three layers are used for fuzzification wherein input feature
values are mapped to membership functions and the last three layers implement the fuzzy inference rules. Units in
the input and output layers represents input features and output decisions, respectively. We have used triangular
shaped membership functions. The learning algorithm for this network is a supervised gradient descent procedure.
The decision rules are automatically determined from the training samples. As an illustration the model is used to
classify multispectral images.

2. Fuzzy Sets and Fuzzy Logic Decision Systems

Fuzzy sets allow partial membership. In a crisp set the membership or non membership of an element x in a set is
described by a characteristics function ILA(x) where ;rA(x) = 1 if x E A, and IA(x) = 0 if x e A. Fuzzy set
theory extends this concept by defining partial membership. A fuzzy set A in a universe of discourse U is
characterized by a membership function LA which takes values in the interval [0,1]; that is, glA: U->[O,1]. Thus a
fuzzy set A in U may be represented as a set of ordered pairs. Each pair consists of a generic element x and its
grade of membership function; that is, A = ((u, p.A(u))Iu e U), u is called a support value if pA(u) > 0. A
linguistic variable x in the universe of discourse U is characterized by T(x) = (Tx1 . Tx2 ..., Txk) and ;gx) = ('p

,. Pix2,... pxk}, where T(x) is the term set of r, that is the set of names of linguistic values of x with each Tj/
being a fuzzy number with membership function Wxi defined on U. For example, if x indicates reflectance value
then T(x) may be low, medium, high. A general model of a fuzzy logic decision system is shown in Figure 1. The
input vector x which includes the input state linguistic variables x1s and the output state vector y which includes the
output linguistic variables yis can be defined as

x = ((xi, Ui.(T 1 T.. T 2  T2,J... , Tpi 1, -xi 2 
..... p1.kiJ) 2 i.l...n)

Y = (Wi. Ui'.ITyi. Tyi 2 .. _. Ty/ai),[pylj, pyi 2 ..... Myli)) / i=1..m} (1)

The fuzzifier in Figure 1 is a mapping from an observed feature space to fuzzy sets in certain input universe of
discourse. A specific value xi is mapped to tde fuzzy set Td]I with degree ld and the fuzzy set T i 2 with degree
pAi and so on. We can use triangular or bell shaped membership functions for mapping. The triangular shaped
membership functions are shown in Figure 2. The fuzzy rule base contains a set of fuzzy logic rules R. For a multi-
input and multi-output system,

R = RI, R2 .... Rj

where the ith fuzzy logic rule is

Ri IF ( xi is Txl, and ... and xp is Txp),
THEN (yi is Tyl and ...and yq is Tyq) (2)

The p preconditions of Ri form a fuzzy set Txl x...x Tx2 and the consequence of Ri is the union of q independent
outputs. The inference engine is to match the preconditions of rules and perform implication. For example if
there are two rules

R 1: [FxlisTxjI and x2 is Tx21 THEN y is TI
R2: IFxl isTjl2 and x2 is Tx22  THEN y is Ty2 (3)

Then the ring strengths of rules RI and R2 are defined as al and v2 and are given by

Ct = xl'i A Ax2i (4)
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where A is the fuzzy AND operation and is defined as

a = rMin (ltxli , x2i) (5)

The above two rules, RI and R2, lead to the corresponding decision with membership function gLyi, i = 1. 2,
which is defined as

PLy = (X A A ItY (6)

The output decision can be obtained by combining the two decisions

tLy = Iy V Ity 2  (7)

where v is the fuzzy OR operation, which is defined as

tLy m anx( &yl, &iy2) (8)

Equations 5 and 8 describe the commonly used fuzzy AND and OR functions. However, these functions can be
defined in many other alternative ways. The defuzzification block is required only for control systems. The most
commonly used defuzzification method is the center of area method.

Fugure 1. Fuzzy logic decision system

Digri of 'f.loW lW' m1m larilm Y. ImgplN outprut

RU

Figure 2. Fuzzy membership functions
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3. Artificial Neural Network (ANN) Model

The ANN model for a fuzzy logic decision system is shown in Figure 3. The model consists of six layers. Each
layer consists of a number of simple processing units. Layer LI is the input layer and layers L2, L3, L4 perform
the functions of the fuzzifier block shown in Figure 1. We have used triangular shaped membership functions.
However membership functions with other shapes such as bell shape functions or the standard 1" functions can be
used. These functions can be predetermined or can be adaptive. Layers L4, L5, and L6 represent the inference
engine and the knowledge base. The connection strengths connecting these layers encode the decision rules used in
decision making. In order to encode the decision rules we have used a backpropagation learning algorithm which
essentially uses a gradient search technique (Pao, 1989). The algorithm minimizes the mean squared error obtained
by comparing the desired output with the actual output. The model works in two phases the training phase and the
decision making phase. During the training phase the model is trained using the training set data. The layers in the
model are described below.

Layer Li. The number of units in this layer is equal to the number of input features. Units in this layer correspond
to the input features and they just transmit the input vector to the next layer. The net-input and the activation
function for this layer is given by

net = xi
Outi = net/ (9)

where net/ indicates the net-input for unit i and outi represents the output of unit i.

Layers L2, L3, and L4. These layers implement the membership function. Units in layer L2 represent the
linguistic term variables. In this model we have used five term variables (very low, low, medium, high, wry high)
for each input feature value. The number of units in layer L2 is five times the number of units in layer Li. We
have chosen triangular shaped membership functions, which are given by

1 - (xi-mi)l Pi form! < xi <5 Pi + mi

Ixi = 1- (mi -xi) /pi for mi-xi < xi < mi

0 otherwise (10)

where jxi indicates the membership value for a given linguistic term veritable, mi and pi correspond to the center
and the width of the triangular shaped membership functions. The net-input and activation functions for units in
these layers are chosen so as to implement the membership functions given above. The net-input and output for
units in layer L2 are given by

netX =/ mi
Outi = net5  (11)

Each of the units in layer L2 is connected to two units in layer L3. The two units in layer L3 represent the left and
right sides of a triangular shaped membership function. The weights connecting these units are +1 and -1. The
net-input and output for each of the two units in layer L3 are given by

netl i = (mi - X0) I Pi
Outli = 1 - netli (12)

where netli and outj represent the net-input and the output, respectively of the unit that corresponds to the left
side of the triangular membership function, and i represents the ith input feature. Similarly the net-input and
output of units that correspond to the right side of a triangular membership function are given by

net2 i = (xi - mi) / Pi
out2i = - net2i (13)
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Each unit in layer L4 combines the outputs of the coresponding two units in L3. The outputs of units in layer L4

represent the membership values. The output of layer L4 is used the input to layer L5.

u UM

L.A
L3 LS

Figure 3. ANN model for a fuzzy logic decision system

Layers LS and L6. Layers L5, and L6 implement the inference engine. Layers L4, L5, and 1.6 reprsent a simple
three layer feed-forward network with a backpropagation learning algorithm. Layer L4 serves as the input layer,
layer L5 is the hidden layer, and layer L6 represents the output layer. The number of units in the output layer is
equal to the output decisions. The net-input and output for units in layers L5 and L6 are given by

neti - Outj Wij (14)

where neti is the net-input and outj is the output of the unitj in the preceding layer, wij is the represents the weight
between the units i and j.
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out fi 1/I+ exp I -(neti + N)] (15)

where outi is the output of unit i and 0 is a constant The network works in two phases the training phase and the
decision making phase. During the training phase the weights between layers L4 - L5 and L5 - L6 are adjusted so as
to minimize the error between the desired and the actual output.

4. Computer Simulation and Discussions

We have developed software to simulate the ANN model for a fuzzy logic decision system. As an illustration the
model was used to recognize objects in a multispectral satellite image. The data are obtained from a sensor called
the thematic mapper (TM), which is a multispectral scanner that captures data in seven spectral bands. We have
considered a scene (#Y4018116055) of January 1983. The original image for spectral band 5 is shown in Figure 4.
The scene represents Mississippi river bottom land. We used five linguistic term values (very low, low, medium,
high, very high) to represent a gray value of a pixel in the scene. Each of the pixel was represented by a vector of
five gray values. We used only five bands (bands 2, 3,4, 5, and 7), because these bands showed maximum variance
and contained information. that separates various classes. During the training phase the network was trained using
training set data. The four training set aras were selected which are shown in Figure 4. In our model we used five
units in layer L1 . These units correspond to the five gray values that represent a pixel. Layers L2 and L3 contain
twenty five and fifty units respectively. The twenty five units in layer L2 correspond to the twenty five term values,
five for each band. Units in layer L3 correspond to the left and right sides of the triangular membership functions.
Layers L5 and L6 contained thirty five and five units, respectively. The five units in the output layer represent five
output categories. The four categories are shown in the training set data, and the fifth unit for a data sample that
does not belong to any one of the four categories. The network was trained with the training set data and the training
set data was reclassified to check the accuracy The training set data was reclassified with 99.5% accuracy. In the
decision making phase the entire scene was classified. The classified output is shown in Figure 5. We have also
analyzed the data using conventional statistical classifier such as the maximum likelihood classifier. The main
disadvantage of conventional statistical methods is they are sequential in nature that is here for each pixel we obtain
the probability of that pixel belonging to each of the classes and assign the pixel to the class with the greatest
probability. This process is time consuming as we have to evaluate each pixel for all the possible classes. ANN
models are preferred as they work in parallel and once the network is trained, we present the input sample and a
feed-forward network yields the output category. We have also analyzed the data using only a three-layer feed-
forward network with a backpropagation learning algorithm without the fuzzification layers. The classified output
with the three-layer network is shown in Figure 6. ANN model without the fuzzification takes a large amount CPU
time for training. The model took about 88,155 seconds (24A8) hours on a PC and about ten minutes on a CRAY-
Y/MP computer system (Kulkarni, 1994). The three-layer ANN model took 2000 iterations for each training
sample to minimize the mean squared error. The ANN model with the fuzzy logic could minimize the mean squared
error only in 30 iterations. Thus learning was much easier in the case of model with the fuzzy logic. Also with a
fuzzy logic decision system we can interpret decision rules in terms of linguistic variables.

In the present case we used predetermined triangular shaped membership functions with 25% overlap.
However, other functions such as Gaussian or the standard n functions with different overlaps can also be used for
fuzzification. The are two approaches in learning. In the first approach the fuzzification functions are
predetermined and the system learns the mapping rules. In the second approach the inference rules can be
predetermined from the expert's knowledge and the shapes of the fuzzy functions are adjusted during the training. In
our model we have followed the first approach. It is also possible to determine the ranges of the membership
functions from the histograms obtained from training set data. Neural networks represent a powerful and
reasonable alternative to conventional classification methods. Our experiment suggest that by combining fuzzy
logic with neural networks we can develop more efficient decision systems.
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Figure 4. Original image (band 5)

Figure 5. Classified output - neural network Figure 6. Classified output - neural network

based fuzzy logic decision system with backpropagatiOn learning algorthm
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Fuzzy ART Choice Functions
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Abstract

Adaptive Resonine Theory (ART) models are real-time neural networks for category
learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy
ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity
between the computations of fuzzy subsethood and the dynamics of ART category choice,
search, and learning. Fuzzy ART self-organizes stable recognition categories in response to
arbitrary sequences of analog or binary input patterns. It generalizes the binary ART I model,
replacing the set-theoretic intersection (n) with the fuzzy intersection (A), or component-wise
minimum. A normalization procedure called complement coding leads to a symmetric theory
in which the fuzzy intersection and the fuzzy union (V), or component-wise maximum, play
complementary roles. A geometric interpretation of fuzzy ART represents each category a,
a box that increases in size as weights decrease. This paper analyzes fuzzy ART models
that employ various choice functions for category selection. One such function minimizes
total weight change during learning. Benchmark simulations compare performance of fuzzy
ARTMAP systems that use different choice functions.

ART and ARTMAP
Adaptive Resonance Theory (ART) was introduced as a theory of human cognitive infor-

mation processing (Grossberg, 1976). The theory has led to an evolving series of real-time
neural network models for unsupervised and supervised category learning and pattern recog-
nition. These ART models form stable recognition categories in response to arbitrary input
sequences with either fast or slow learning. Unsupervised ART networks include ART I (Car-
penter and Grossberg, 1987a), which stably learns to categorize binary input patterns presented
in an arbitrary order; ART 2 (Carpenter and Grossberg, 1987b), which stably learns to categorize
either analog or binary input patterns presented in an arbitrary order: and ART 3 (Carpenter and
Grossberg, 1990), which carries out parallel search, or hypothesis testing, of distributed recog-
nition codes in a multi-level network hierarchy. Many of the ART papers are collected in the
anthology Pattern Recognition by Self-Organizing Neural Networks (Carpenter and Grossberg.
1991).

A supervised network architecture, called ARTMAP. self-organizes categorical mappings
between rn-dimensional input vectors and n-dimensional output vectors. ARTMAP's internal
control mechanisms create stable recognition categories of optimal size by maximizing code
compression while minimizing predictive error in an on-line setting. Binary ART I compu-
tations are the foundation of the first ARTMAP network (Carpenter. Grossberg. and Reynolds.
1991 ), which therefore learns binary maps. Fuzzy ART (Carpenter, Grossberg. and Rosen. 199 )
generalizes ART I to learn stable recognition categories in response to analog and binary input
patterns (Figure i). The domain of fuzzy ART is thus the same as that of ART 2. but fuzzy ART

Acknowledgments: This research was supported in part hy ARPA (ONR N(Mt1l4-92-J-4015), the Nationd Science
Foundation (NSF IRI 90-00530), and the Office of Naval Research (ONR NO(X)14-91-J-4 I W).
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Figure 1: Fuzzy ART module.

measures pattern similarity by the city-block metric, while ART 2 is based on the Euclidean
metric. When fuzzy ART replaces ART I in an ARTMAP system, the resulting fuzzy ARTMAP
architecture (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992) self-organizes cate-
gorical mappings between analog or binary input and output vectors that are stable with fast or
slow learning (Figure 2).

This article analyzes fuzzy ART systems that employ various choice functions for category
selection. One such network is shown to be optimal in the sense that it minimizes total weight
change during learning. Simulations (if supervised ARTMAP networks illustrate computational
properties of the different fuzzy ART choice functions. The following section outlines the
fuzzy ART algorithm with complement coding preprocessing. The limiting case of conservative
choice is then examined, along with several alternative choice functions for bottom-up category
selection. The function that minimizes the total weight change during learning is more truly
conservative than other choice functions. A geometric interpretation of fuzzy ART represents
categories as boxes that grow as weights shrink during learning. Benchmark simulations show
that alternative choice functions minimally affect system performance. Various choice functions
may therefore be selected for their individual computational properties while maintaininsg the
demonstrated utility of ART I, fuzzy ART, and ARTMAP networks. These studies indicate
that when alternative Choice functions are selected for reasons such as computational ease or
generalizability, the basic ART and ARTMAP dynamics are retained.

Fuzzy ART Algorithm
Normalization by complement coding: Complement coding is a preprocessing step that

normalizes fuzzy ART input while preserving amplitude information. When a = (a. i . .. ) is
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MAP field Fab
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------- ----

Figure 2: Fuzzy ARTMAP architecture. The ARTa complement coding preprocessor transforms
the My-vector a into the 2M.-vector A (a. ac) at the ART,, field F'. A is the input to the ART.

field F'. Similarly, the input to F• is the 2Mb-vector (b,lIf). When ARTb disconfirms a predic-
tion of ARTa, map field inhibition induces the match tracking process. Match tracking raises the
ARTa vigilance Pa to just above the Fr-to-F& match ratio ixI/l/Il. This triggers an ARTa search
which leads to activation of either an ART,, category that correctly predicts b or to a previously
uncommitted ARTS category node.

the network input, with ai E [0, 1], the complement coded input I is the 2M-dimensional vector

L .... .aa" ..... .a .. . ......... .Ma~ .....: a: 1) 2

where
FL, i -(, (2)

(Figure 1). Complement coding implies that pec= A, with the city-block norm I defined by:

2M

III -(3)

ART field activity vectors: Each ART system includes a field Fo of nodes that represent a

current input vector and a field Fi that receives both bottom-up input from Fo and top-down
input from a field F i2 that represents the active code, or category. With complement coding, i

S(IT,. .. i, i2M) denotes F activity, x= (x, .... ,mt2M) denotes FI activity, andy - (AT, s.er2c)

denotes F72 activity. The number of nodes in each field can be arbitrarily large.
Weight vector: Associated with each F2 category node j (j pr e.d., N) is a vector wus

(w11,l ..... w3~,2M) of adaptive weights, or long-term memory (LTM) traces. Initially each category
is uncommitted After a category codes its first input it becomes co.mnited. Each component
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wji can decrease but never increase during learning. Thus each weight vector w (1) converges
to a limit. The fuzzy ART weight, or prototype, vector w. subsumes both the bottom-up and
top-down weight vectors of ART 1.

Initial values: With complement coding, initial values of the weights are:

=t,(0) = ?1,',2M(() = 1. (4)

Parameters: A choice parameter a > 0, a learning rate parameter il E [0, 1], and a vigilance
parameter p E [0, 1] determine fuzzy ART dynamics.

Category choice: The system makes a category choice when at most one F2 node can
become active at a given time. A choice function T1(I) determines the selected category. The
index .1 denotes the chosen category, with:

Tj = max{T :j = ... N}. (5)

If more than one Tj is maximal, the category with the smallest J index is chosen, so nodes
become committed in order j = 1, 2, 3 ..... When the .1 " category is chosen, yj = 1 and
yj = 0 tor j :A .1. In a choice system, the F, activity vector x obeys the equation:

I if F,2 is inactive
1. I A wj if the J.1" F 2 node is chosen, (6)

wb re the fuzzy intersection A (Zadeh, 1965) is defined by:

(p A q)i = min(pi. qi). (7)

Weber law choice function: ART I (Carpenter and Grossberg, 1987a) and fuzzy ART
(Carpenter, Grossberg, and Rosen, 1991) employ a Weber law choice function defined by:

Weber law choice
T,(I) 11A- (8)

a + jwj1'
for each F 2 node j.

Resonance or reset: Resonance occurs if the chosen category meets the vigilance criterion:

lxi = JI A wjlI _ plII. (9)

Learning then ensues, as defined below. Mismatch reset occurs if:

jxj = iI A w.1I < pIll. (10)

Then the value of the choice function Tj is set to 0 ftor the duration of the input presentation to
prevent the persistent selection of the same category during search. A new index .1 represents
the active category, selected again by (5) and (8). The search process continues until the chosen
,J satisfies the matching criterion (9).

Learning: Once search ends, the weight vector wj learns according to the equation:

w(nlew) =(o(I A w!odl)) + (! - w(old) (11)
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Fast learning corresponds to setting ýI = 1.

Conservative Choice
The linkage between fuzzy subsethood and ART choice/search/learning forms the foundation

of the computational properties of fuzzy ART. Vector wj is a hizzy subset of I if:

IA w. = wi (12)

(Zadeh, 1965), i.e., wji :: I, for i = 1,... 2M. When the choice parameter ot = 0+, the Weber
law choice function Tj(I) (8) measures the degree to which wj is a fuzzy subset of I (Kosko,
1986). When a = 0+, TJ(I) is maximized by vectors wj that are fuzzy subsets of I, since then
Tj(I) = 1-. A category .1 for which w.1 is a fuzzy subset of I will therefore be selected first,
if such a category exists. Specifically, the fuzzy subset category J that maximizes 1wj will be
chosen since then:

T JI) - , (13)
n + Iw)I+

which is an increasing function of IwjI. If wj is a fuzzy subset of I, learning does not change
weights, since then:

(new) = 1 (old) + ( I)W(od) = w(od). (14)

Because, when a = 0+, the chosen category .1 conserves weight values whenever possible, this
parameter range is called the fuzzy ART conservative limit.

While fuzzy ART choice depends on the degree to which wj is a fuzzy subset of I, resonance
depends on the degree to which I is a fuzzy subset of wj, by (9) and (10). When J is a fuzzy
subset choice, then the match function value is:

11A w j, _ I (15)

III III "

Choosing .1 to maximize 1w.,I among fuzzy subset choices thus maximizes the opportunity for
resonance in (9). If reset occurs for the node that maximizes 1w.1 among fuzzy subset choices,
then reset will also occur for all other subset choices.

Fuzzy ART Choice Functions
The choice function 7T(1) in (8) describes a Weber law form factor that scales the degree of

match between the input I and a weight vector wj (1I A wj 1) relative to the size, or degree of
specificity, of wj. The choice parameter a modulates the scaling process. In the conservative
limit, where a = 0+, the rule:

Choice-by-ratio
1 IA wji (16)Tj J) Iw j I

determines J, with the largest subset category chosen by (13) when such a category exists. At
the opposite extreme, as a -- c•, the rule:

Choice-by-intersection
TJ(I) I A wA (17)

determines .J. Since I A w, I for any uncommitted node j, by (4), choice-by-intersection will
always select an uncommitted node, unless I = w., for some .1. Thus, at this parameter limit,
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the system's memory consists of exact copies of all input exemplars. As n moves from 0 to
o0, the network becomes progressively more biased in favor of selecting an uncommitted node
rather than a coded node with a low match ratio (16). The effect of parametrically raising the
choice parameter a from 0 to oc is hereby similar to raising the vigilance parameter p from 0
to 1.

An alternative to the choice-by-ratio rule (16) rninhnizes the function:

T(1I) = (Iwjl - II A w,1). (18)

This function is related to the membership function used by Simpson (1992). However, Simp-
son's fuzzy minm-max classifier does not permit overlapping categories and so does not require a
factor, such as (13), to differentiate fuzzy subset categories.

An extension of the rule (18) that is analogous to the Weber law rule (8) minimizes the
function Tj(I) defined by:

Choice-by-difference

Tj() = (lwjl - IAwjl) + ± (Iv wjl - jlwjl)• (19)

In (19), V denotes the fuzzy union, or component-wise maximum (Zadeh, 1965).
Parameter t in (19) is analogous to the fuzzy ART choice parameter a. When t = 0+, the

category .1 is chosen to minimize the function (18), unless some w., is a fuzzy subset of I. Then.
the first term in (19) equals 0, so:

Tj(I) =( (jIVwj- Iw1l) =, (III- Iwjl) (20)

The function Tj(I) is therefore minimized by the largest subset category .1, if such a category
exists. Thus, as in (14), the choice rule approaches a conservative limit as ( --+ 0+.

Compared to the Weber law rule (8) with a = 0+, the choice-by-difference rule (19) with
= 0+ holds a superior claim to the label conservative. Both rules make a fuzzy subset choice

when possible, so both conserve weights if the fuzzy subset choice .1 satisfies the vigilance
criterion (9). In addition, however, the choice-by-difference rule with ( =- 0+ selects the category
that mininizes total weight change during learning, whether or not w., is a fuzzy subset of I, as
follows.

Suppose that wj is not a fuzzy subset of I. Then choice-by-difference minimizes the function:

T(I) = (IwjI - 1 A wj) +t (lI v w, I - wj) (21)
(lw.1 I - IA A w,1) > 0

when • 0+. Suppose that the chosen category .1 satisfies the vigilance criterion (9). Then the
learning law (I1) implies that the total weight change during learning is:

Aw., -1w (ld (nw. ^ wI;I" 1 (22)Aw 1 E w(,old) I- 11 (22) d

Thus selecting J to minimize the choice-by-difference function leads to minimal weight change
among all categories that satisfy the vigilance criterion, and to no weight change if wj is a fuzzy
subset of I.
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At the other extreme, as • -- oo, choice-by-difference minimizes the function:

Tj(I) (I1V wjI- Iw, I). (23)

Tj (I) is minimal at uncommitted nodes or when wj I, since then

=, (Iwjf-lIw, I) = 0. (24)

Thus, like fuzzy ART with Weber law choice as a -- oo, choice-by-difference reduces to
exemplar memorization as ( -* 00. Correspondingly, as t moves from 0 to 00, the degree of
code compression generally decreases, as it does when the vigilance parameter p moves from 0
to 1.

Alternative choice functions have similar properties in the limit as t - 0+. One such function
is:

TjI) = (Iwjl - IIA wIl) + (1I1 - IwjI), (25)

as in (20). With complement coding, this function is equivalent to:

Tj(I) = (Iwjl- IIA wI) + t(M - Iw1), (26)

since III = M. However, choice-by-difference maintains an aesthetic symmetry as well as a
form factor that is similar to the difference function that determines resonance (9) or reset (10).

Benchmark simulations will now show that fuzzy ART with the Weber law choice rule
(8) has performance characteristics similar to those of a system that is the same except for a
choice-by-difference rule (19) determining category selection.

Fuzzy ART Geometry
A geometric interpretation of fuzzy ART represents each category as a box in M-dimensional

space, where M is the number of components of input a. Consider an input set that consists of
2-dimensional vectors a. With complement coding,

I = (a, a') = (a,, a2, I - a,, a - 4 2). (27)

Each category j then has a geometric representation as a rectangle Fj. Following (27), a
complement-coded weight vector wj takes the form:

w, = (uj, v'), (28)

where u, and vj are 2-dimensional vectors. Vector uj defines the lower left comer of a category
rectangle R, and vj defines the upper right comer (Figure 3). The size of Rj is:

[R - Ivj - uj[, (29)

which is equal to the height plus the width of Rj. In f.- , for any M, ?.jI = M - Iwj 1.
In a fast-learn fuzzy ART system, with /3 = I in (11), w.(w) = I = (a,a,) when J is an

uncommitted node. The comers of R,,new) are then a and (a")" = a. Hence Ri(ew) is just the
point a. Learning increases the size of R j, which grows as the size of wj shrinks. Vigilance
p determines the maximum box size, with I1R3 I < 2(1 - p). During each fast-learning trial, R.
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Figure 3: Fuzzy ART category boxes. Simulations (a) and (c) use the Weber law choice function
(8), with a = 0+, and (b) and (d) use the choice-by-difference function (19), with = 0•. Plots (a)
and (b) show category boxes and decision boundaries at the time input 5 is presented. Plots (c)
and (d) show the system state after learning. Parameters ,1 =1.0 and () 0.4.

expands to R•°Id) ±• a, the minimum rectangle containing R!/°d) and a, with corners a Au•)
and a V v•°d). However, before Rj can expand to include a. reset chooses another category if

IRj Ej• al is too large. With fast learning, F?, is the smallest rectangle that encloses all vectors a
that have chosen category j without reset,

Figure 3 illustrates fuzzy ART category boxes at the start (a,b) and end (c~d) of an interval
in which input 5 is presented. Plots (a) and (c) use the Weber law choice function (8) and plots
(b) and (d) use the choice-by-difference function (19), both in the conservative limit. Vigilance
p = 0.4, so reset occurs if IRa ± aI > 1.2 for a chosen category .1. Each plot shows the decision
boundary between the set of points a that would first select box R1 and the set of points that
would select box R?2. [n plots (a) and (b), the boxes are the same and the decision boundaries are
similar for the two choice functions. However, some points, including input 5, lie on different
sides of the boundary. With Weber law choice (a), input 5 chooses .1 = 2, expanding the size
of R2 by 0.5 units during learning (c). With choice-by-difference (b), input 5 chooses ,1 = i,
expanding the size of R1 by 0.4 units during learning (d). This demonstrates the choice-by-
difference property of minimal total weight change. Plots (c) and (d) show the different category
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Figure 4: Fuzzy ARTMAP circle-in-the-square simulations for the Weber law choice function (8)
( ----- ) and the choice-by-difference function (19) (-). ART,, baseline vigilance g,, = 0.0, 0.35,
and 0.7, in the conservative limit (a =-- f,, t-- 0+), with fast learning (13 = 1).

structures and diverging decision boundaries that can result if a training set input falls near the
boundary.

Fuzzy ARTMAP Simulations
An ARPA benchmark simulation, circle-in-the-square (Wilensky, 1990), illustrates fuzzy

ARTMAP dynamics. The simulation task is learning to identify which points lie inside and
which lie outside a circle. During training, components of the ART(, input a are the x- and
y-coordinates of a point in the unit square; and ARTb input equals 0 or 1, identifying a as
inside or outside the circle. When ARTMAP makes a predictive error during training, match
trcking raises the ART, vigilance p,, (Figure 2) just enough to trigger search for another F2"

category. This variable vigilance leads to variable category box sizes as the system balances the
competing requirements of code compression (large boxes) and predictive accuracy (small boxes
for exceptional cases).

Figure 4 shows fuzzy ARTMAP circle-in-the-square simulation results for the Weber law
choice function (dotted lines) and the choice-by-difference function (solid lines), each in the
conservative limit with fast learning. Performance is nearly identical for the two choice functions
for baseline vigilance parameters #,, ranging from 0.0 to 0.7 and for training set sizes ranging
from 100 to 1000 inputs. Since choice-by-difference minimizes weight change. that system

creates slightly fewer categories when fi, = 0.0 and has slightly more test set errors. Even this
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difference disappears as higher p, itself creates more ART, categories for both choice functions.
Similarly, no consistent or significant differences persist for larger values of the choice parameters
a and (.

The mushroom database (Schlimmer, 1987) generated the benchmark problem of the original
ARTMAP network (Carpenter, Grossberg, and Reynolds, 1991). The Weber law choice function
and the choice-by-difference function again show similar performance statistics across a wide
range of simulations that use this database. These include on-line and off-line learning with
varied baseline vigilance levels and training set sizes.

Performance statistics, plus the added advantage of true conservative learning, argue for the
use of the choice-by-difference function (19) when this function has computational properties that
are needed for a fuzzy ART network embedded in larger architectures or used for computations
beyond the scope of the original system.
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1 Introduction

Our world has always been called the "information society", and great of effort has been
devoted to the handling, storing, processing and analyzing of information. More than 70%
of information we perceive is in visual form such as images, pictures, graphics, etc. We also
realize that our world is filled with uncertainty, with problems that are often not clearly
defined, and with imprecise and vague descriptions that may not be quantifiable. It is
especially true for image information. Many of our real world problems constituted by two
main factors: immense amounts of information and massive uncertainty of information.
Research works have been undertaken for the management and processing of huge amount
of image information [8, 9f. Recently, fuzzy logic techniques have been applied to retrieve
image information from image database and to process images [12, 141. It is believed that

-neural networks with the capability of massively parallel computations would be suitable
to handle huge volume of images.

Interactive Activation and Competition model (IAC) [1] was proposed for information
retrieval. IAC implies that the activation of output units is due to interaction and com-
petition. There are several groups of units in the output layer. Each group represents
certain concept. Units in example layer and units in the concept layer interact each other
through bidirectional links. That was how name interactive activation and competitive
model came from. In this paper, we propose a fuzzy IAC neural network model that is
capable handle fuzzy queries for accessing to the stored images.

To demonstrate the ideas and capabilities of the proposed fuzzy IAC neural network
model, we use facial images as a sample case. To describe a person, statements such as
"she has big eyes and sharp chin" or "his face is so round" are often heard. What do we
mean by "big-eyes"? How big the eyes are considered "big"? Where do we draw thbe line?
Fuzzy set theory founded by Zadeh [11f provides a theoretical basis for these questions
and Wu has implemented these fuzzy concepts for facial images in [12]. In this paper we
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Figure 1: IAC network for members of organizations

present the fuzzy image retrieval approach in the neural networks. Section 2 is devoted to
the general description of the problem and solution. Detailed discussion of fuzzy IAC will
be appeared in section 3. Experimental results are presented in section4, and followed by
the conclusion.

2 General Description

In the IAC model for facial image retrieval, the whole facial images are descr,6ed by
six facial features: chin, hair, eyes, eyebrow, nose, and mouth. When a facial image
is captured, it is first normalized to a standard size. Possible skew is also removed by
the normalization process. Numerical feature measures are then extracted using image
analysis techniques for six facial features, namely, chin, hair, eyes, eyebrow, nose, and
mouth. There are two type of feature measures, one is landmark coordinates, and the other
is principle component analysis coefficients. They are all vectors in multi-dimensional
feature (vector) space.

To enable fuzzy description of faces, fuzzy subsets defined for six facial features are
shown in Table 1:

Table 1: Fuzzy subsets for facial description
chin pointed, rounded, tapered, squared, bony cheek,

short-chin, long-chin, jowls
hair thin, normal, thick
eyes small, medium, large
eyebrow sparse, medium, thick
nose short, medium, long

mouth narrow, medium, wide

These fuzzy subsets are defined in the multi-dimensional feature space (or universe
of discourse in terms of fuzzy terminology) by multi-dimensional fuzzy membership func-
tions. Here, fuzzy membership functions relate fuzzy descriptions (subsets) and facial
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image (visual) through multi-dimensional feature measures. However, the relation be-
tween descriptions and images is not one-to-one, but rather complicated by the fact that
there are six facial features and each feature has multi-dimensional measures.

When developing the fuzzy retrieval of facial images stored in image database [121,
we found that the difficulties are due to incompleteness of query definitions. Detailed
description of a particular person is usually not available. For example, a witness for a
crime may say that the suspected criminal has long hair and wide face. Apart from these,
at that time, he was too frightened to take note for anything else. It is very difficult to
process these incomplete queries for a database. It might be relatively easy to retrieve the
image information using the resonance mechanism and competitive interaction in neural
networks.

The diagram of Fuzzy-IAC network for facial image retrieval is depicted in Fig. 1. The
network has two main layers: concept layer and example layer. The units in the concept
layer represent fuzzy subsets defined in table 1. They are grouped into six groups which
correspond to six facial features.

The network can be activated either from example units or from concept units. When
an example unit is activated, as the result, some concept units will be turned on with
certain, activation, which represent the classification result of the example. For example,
if unit "medium" in the mouth group has activation value of 0.8, we say that the mouth
of this example face is medium in width with certainty of 0.8.

In order to retrieve a face with round chin, small eyes, we can clamp the activation of
unit "round" in chin group and unit "small" in eye group to some certainty, and let the
network run for several cycles. As the result, some face examples will be activated with
certain activation level representing the certainties.

In the situation when a person meets many people, examples are accumulated in his
brain. Names of these examples might be blurred to him and he might mixed up people
having, the same or similar appearances. As time passes, some examples are forgotten
by him, new examples are added to his brain. These phenomena can be simulated by
adding an experience record to example units. In this case an example unit does not
only represent a specific person but also represents a specific group of persons who have
the same data. The experience record reflects the number of persons the example unit
represents. This experience record is attenuated as time passes to simulate the forgetting
process. The activation of example unit is proportional to its experience record. In this
case, the higher the experience record, the higher the probability of recognition.

3 Structure of the Fuzzy-IAC

We have described the configuration of the Fuzzy-IAC. In this section, we will cover topics
on unit structure, connection weight, and their initialization.

All example units have the same structure: activation, input, output, feature measures
of six facial features, pointer to the incoming links from all colicept units, pointer to the
inhibitory links from other example units, and pointer to image data.

Different from example units, concept units contain category information to indicate
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the group it belongs, and the template feature measures and deviation which define the
fuzzy subset membership function.

The certainty measure of a category is represented by the activation of the concept
units. The weight of a link represent the relative importance of the facial feature (chin,
eye, etc.).

Let us now concentrate at the situation without learning. Initially, all example facial
image entries will be loaded to fill the items of the example units. The activation of
example units will be initialized with 0. Because the structure of example units is different
from all other concept units, there is no category information included.

Concept units are initialized with fuzzy subset label, template feature measure, and
deviation. The activation of the units represent the certainty of the fuzzy subset. The
relative importance of a feature is represented by the weight of the link from the feature
group to all example units. That means that links from concept units of the same group
have the same weight.

3.1 Interaction between Concept Units and Example Units

The interaction between concept units and example units is bi-directional. Let us now
take mouth as an example. For mouth, we consider here only width, and three units are
created and labeled as "narrow", "medium", and "wide". The membership functions for
these three concepts are shown in Fig. 2. Each membership function will require three or
four parameters for its definition. These parameters will be stored in the template vector.
The function will be pointed by the function pointer defined in the unit data structure.
Let us denote the function by fnarou(), fmediumO, f, id() for the three fuzzy subsets. For
any example image, there will be a number actually specifying the width of the mouth.
If we denote it by z, then the interaction between these three concepts and this example
will be f, 8anm (X), f,,mdium(X), andfuid,(x). Suppose the weight of the links between these
three uiits and the example units are w, the total input from the example units to the
unit "narrow" would be

Sna-row 
( 

E)jfnarrow(Xj)Wm"t(

Care should be taken when calculating the total input from various concept units to
an example unit. It is quite often that someone says "the eyes of the guy is big, but
not so big". This can be represented in our network in terms of certainties to the user
and in terms of activation for both units "big" and "medium". The definition of the
query is fuzzy. Here internal interactions between units are not fuzzy. Or in the other
words, the concept units are fuzzy units. They need defuzzification. Unfortunately, our
internal representations here are multi-dimensional. That means the fuzzy set membership
functions are also multi-dimensional. This leads to very complicated, if not impossible,
defuzzification. However, the retrieval is based on providing a set of most likely candidates,
instead of defuzzification, we define the input to an example unit from units of a group
(for example, eyes group) as simple summation. The difference is: defuzzification tries
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to recover the actual value, and then compare with values from the examples. Direct
summation compares the value of examples with the template of concepts to generate the
certainty which represent possibility the example image belongs to the fuzzy subset, and
then sum them up with weights of certainties. Both method will produce the same results
if the membership functions are equivalent.

3.2 Activation Function

Now let us discuss the activation function for IAC network. Each concept unit receives
excitatory input from all example units, and example unit receives excitatory input from
all concept units. All example units send inhibitory signal to each other. The competition
comes from inhibitory lateral connections between concept units in the same gourd and
example units, while resonance originates from mutual excitatory connections. Let us
denote the total input, excitatory input, inhibitory input by s-o°a' , s-c , si'h, respectively.
The activation updating formula in [1] is written as follows:

if(stotal > o) A a, = (ama, - a,) Stotal - , ,(ai - areat)

Otherwise A ai = (ai - amin)Stotal - Adecay(ai - arest) (2)

where anaz and amin are maximum and minimum of activations, a,,ot is the res! ing ac-
tivation level to which activations tend to settle in the absence of external input. Adcay

defines decay rate, which determines the strength of the tendency to return to resting
level. Generally we choose an..,, = 1,aGmin •_ arest !_ 0,0 - Adecay < 1 so that ai is
assumed to be within the interval [amin, amarl. The decay term in the equation can be
viewed as a kind of restoring force or leakage that tends to bring the activation of the unit
down to aeat, in the general case. The large the value of the decay term, the stronger this
force is. The decay term can be also considered as a kind of leakage, which attenuates
the activation of the unit to rest if there is no input signal to this unit.

The equilibrium can be found by setting A-a, to zero and solving for a,:

ai = Gmat 8 total + areat Adecai (3)
stotal + Adeca(
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s tOtal

ai = 5 total + d for amax = 1, a,.,t = 0 (4)

Notice that s-'O°a is changing for each iteration due to activation changes of other units.
In general total input keeps unchanged for all iterations in one phase of running. Input
signal due to lateral interconnections changes continually. Suppose that an unit receives
inhibitory input signal from all other units in the same level or group, and that all lateral
connection strengths are the same, an unit receiving largest signal from input pattern
will tend to have large total input s t"a'l and therefore to have large activation. Because it
sends large inhibitory signal to other units while receives less inhibitory signal from other
units. This is a phenomena "the rich gets richer".

Grossberg [2] treats the excitatory and inhibitory inputs separately. The excitatory
inputs drive the activation of the unit up towards the maximum, whereas the inhibitory
inputs bring the activation back down towards the minimum. The formulation is as
follows:

A a, = (amax - a,) s" - (a, - am,,1 ) Si,.h - Adecay (a, - arest) (5)

Resonance is a phenomena opposite to competition. If a group of units has mutually
excitatory connections, then -once one of the units becomes active, they will tend to keep
each other active. For example, assume that between two units, ua and Ub, there is
bidirectional excitatory connection with weight of 2 x Adecai, and that initial activation of
these two units are 0.5. If we remove all external input, and if there is not other internal
input to these two units, the activations of these two units will stay at 0.5. We can show
this phenomena using evolution formula 2. In our brain such a resonance phenomena
often happens to mutually consistent concepts, propositions. As the result of resonance,
these concepts, propositions are reinforced. In IAC network resonance sustains consistent
input patterns by mutually excitatory connections between units in different pools. For
those input patterns which are not consistent, there will not be any excitatory links,
corresponding units then decay away rapidly in the absence of continuing input.

Competitive networks and IAC networks update their states parallel. For each it-
eration following computations are parallel performed for all units: The program first
computes three kind of input: total external input, total internal excitatory input, and
inhibitory internal input. With three scaling parameters the total input is obtained.
Finally, activation is updated.

How many iterations are required to complete an evolution when a new input pattern
i presented? Principally, the evolution stops when the network reaches its equilibrium
st.te. At the equilibrium state the delta of activations of units is negligible. An alternative
way is to pre-define the number of interactions.

3.3 Learning by Categorization

In the situation when a person meets many people, examples of these people are accumu-
lated in the brain. The names of these examples might be blurred to him, and he might
mixed up people having the same or similar appearances. As time passes, some examples
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are forgotten by him, new examples are added to his brain. These phenomena can be
simulated by adding an experience record to example units. In this case an example unit
does not only represent a specific person, but also represents a specific group of persons
who have the same data. The number of persons in the example unit is kept in the ex-
perience record. This experience record is attenuated as time passes. The activation of
example unit is proportional to its experience record. In this case the numler of example
units will be all possible combinations of units from concept groups in the second layer.

In this case, an example no longer represents a particular person, but a category of
people. A self-organization network is invoked to dynamically learning categories. Here
we use a neural network model LEP (Learning based on Experience and Perspectives).
The details of the model can be found in (7].

4 Experimental Results

The fuzzy retrieval network was implemented using C programming language and X-
window. There are 88 example facial images. Fig. 3 shows the interface panel and
the menu to input to the concept units. The function buttons on the first row in the
panel provide tools to edit the neural network parameters, input to the concept units and
example units, view concept units and example units, edit feature measures and network
weights.

Fuzzy queries are defined by inputing to the concept units certainty values. This is
done by shifting the scale widget in the input menu window. The certainty is in the
range of 0 to 1. Having defined the query, press "run" menu bar under the "parameter"
button to run the network, and then press "view node" button to view the images of
the most active example units. Fig. 4 shows 9 images retrieved for query "rounded chin
(0.8), short rounded chin (0.4), normal hair (0.7), and thin hair (0.3)". From top-left
to the bottom-right are images with the highest activation to less high activation. The
activation here has the meaning of possibility.

Learning and forgetting processing has not been implemented because this needs more
facial images.
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Figure 3: Interface panel of Fuzzy-IAC neural network.
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Abstract
In this paper, we present a novel fuzzy neural network model called fuzzy self-organizing map (FSOM).

Its algorithm will be elucidated. This model combines the properties of fuzzy c mean and topological
mapping in self-organizing map. The limitation and capability of this model will be discussed in detail.
Simulation will be given for illustration.

1 Introduction

As the well-development of fuzzy c mean (FCM) [1] and the simplicity of competitive learning (CL) network,
some researchers have attempted to merge them together to form a class of fuzzy neural network. Jou[2] and
Sum[3] recently derived the stochastic gradient descent algorithm for FCM and embedded it into competitive
learning network to form fuzzy CL (FCL). Bezdek et.al. [4] [5] proposed a sequential update equation as an
alternative. In their algorithm, they defined a kind of decreasing fuzziness scheme which is analogue to the
size decreasing scheme in self-organizing map (SOM) [6]. As their model resumes LVQ, they called it Fuzzy
Kohonen Clustering Network (FKCN).

Amongst all these models, only FKCN has taken into account of the update behavior of NN and put
it back into the fuzzified training procedure. However, FKCN is suffered from two disadvantages: (/) the
algorithm is too complicated to be embedded into neural network architecture, and (ii) it does not actually
take into the account of the concept of neighborhood interaction. Though the algorithm derived by Jou[2]
and Sum[3] are simpler but their algorithms do not consider the concept of neighborhood interaction. As
neighborhood interaction leads to the property of ordering1 .

In this paper, we take this neighbor interaction concept into account. The paper is organized as follow.
In the next section, we will derive a simple algorithm for one dimensional array of FSOM and illustrate its
capability through examples. Besides, we will also discuss about its limitation and improvement. The proof
of its convergence will be outlined. Then we extend the algorithm to two dimensional array. As well as
the illustrative examples are given in section 3. Section 4 will be devoted to describe the linkages of our
algorithm to CL, SOM and FCL. It aims at showing that our model is a generalization of CL, SOM and
FCL. Besides, we explain how our algorithm can be converted to them. A conclusion will follow afterward.

2 Algorithm of FSOM: ID Array

FSOM is similar to that of SOM in neural network. During each update, it is needed to find the winner
node, v1, and its neighborhood, N,. In order to ease the discussion in the later section, let us define some
notations.

2.1 Basic Notation

Definition 1: While data x is input, the winner node2, I < I < c, is defined by the one which
global membership value (definition 5) is greatest, jq(,) > pji(z) for all j 5 I. c is the number

'Since the definition of ordering is not well-defined, the present meaning of ordering is in a vague sense. We refer to those
map which looks like Figure 1(a) (Sxflmap without twist) or Figure 3(b) (16x16 map without twist) is well ordered.

2 It is just the same as nearest neighbor clustering.
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of output node.

Definition 2: The neighborhood interacting set is denoted by, N1, and it is defined as Ni =

{ mnax(1, 1 - 1), 1, min(I + 1, c)}.

Definition 3: The ith cluster set is denoted by Qj which obeys that x E Qi, pi(x) > pj(x) for all
j 0 i.

Definition 4: The local membership function is defined as follow3 . For tit > 1,
~~ x- • /r -] -1

r jI.=.V /L 1 if i E N1 and x Av where i = 1, 2.c.
Ii(X) I ifx =v (1)

0 ifx=vj wherej#i
0 otherwise

Definition 5: The global membership function is defined as follow. For m > 1.

(I if X = vi

) 0 ifx=vj where jAi (2)

j - 1 (ijx-v•ii J otherwise

2.2 Algorithm

With the aids of the above definition, we can define the algorithm as following. Suppose there are c code

vectors which are indexed in one dimension.

S1. Select randomly one sample, x, fromn the stationary sample space.

S2. Evaluate the winner node4 I, i.e. finding I such that tjs(x) > jpj(z) for all j # I.

S3. For all i E N1 , update vi(t + 1) according to the following equation5

Jvi(t) + . (t)X,.(x)(1 - _tnWjli-2(X))(X - vi) ifI = i- I

= vi(t) + a(t)03i(x)(X - vi) if I = i
vi(t+I) vi(t) + a(t)/0' (x)( I - M- li+2(X))(-vi) if = i + (3)

vi (t) otherwise

S4. Decrease a(t)6

S5. Gore S1.

Obviously, one difference between our algorithm and F(CL is in step 3. Moreover, there are three major
differences: (i) not all code vectors are needed to update. (ii) each of the update requires only local informa-

tion, i.e. J1• - vkII for all k E N1 . (iii) topological map can be preserved through the above algorzthlm. As
the term ff'(x)(l - m fli- 2(x)) exists inside the update equation, it is necessary to check its value. It is

because topological map may be erased if it is greater than one7 . Figure(l) plots two views of that function.
rn is set to be 2. It can easily see that

/•-(X)(1 - 13i-2(X)) - 1.

'in is corresponding to the degree of fuzziness.
"4 Actually, the equivalent condition is lix - vill < jjr - vll, for all j I.
'These equations are actually obtained by taking the partial derivative of an objective functional with respect to v,. This

will be discussed later in section 2.4.
6 According to [7), it has to be descreasing sequence in order to ensure that the convergence to minima is alnost sure.

'it can be verified by considering the case when the input dimension is one.
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Figure 1: Two views of/3 (1 - 23j-2).

2.3 Limitation, Improvement and Simulation

This model though can be applied to give topological code map, it cannot be guarantee if the initial map is
not ordered. Besides, the convergence rate of the above algorithm is rather slow especially when the size of
the map is small compared with the size of the data. In order to lift up these problem, we suggest a two
phases update. In phase one, the code vectors are updated based on SOM. Once the map converges (it
goes to phase two) the map is updated based on above algorithm. Figure(2) shows four examples illustrating
the idea5 . In all four examples, the input data is drawn from the square which probability density is uniform.

8xl Map 16xl Map

200-... 200

150,.... .. . 150'

10 0 .. . " ..... i. . . . . . . . . . ..... -0 1 . . . . . . . ................ :... ..

260 280 300 320 340 360 380 260 280 300 320 340 360 380

32x1 Map 64xl Map

200 200. [71.~ ¶iii~

150 150

0 .... .... ... ... . .. . .... . ........ lo on .. .. . .. . .. . . . ..
260 280 300 320 340 360 380 260 280 300 320 340 360 380

Figure 2: Examples of I-D maps

By inspection, global topological map is not guarantee for 16xl map and 32xI map. However, local map is
still established.

"8 Throughout the paper, in is set to be 2.
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2.4 Convergence

Similar to that of neural network, convergence is also an important issue. Consider the following objective
functional.

L Li (4)

where Li is defined as follow, for all i 0 1 or i : c.

Li f [ _, ( ,12) ] X1- v,112f(x)dx

EN Pu- (- ViI2  1/n 12 r

+ , 1, Yfr• •kfl22 J 1r - vi1l2 f(x)dx

+ L.+, k (, l2) ] I1k - vilI12f(z)dx (5)

Fori= 1, fr,[(l~ ,II 2\ir-
Li11X, - Vkl 11k - vilI2f( x)dx

+ L|+ L (1k 11) 1 X- vll2 f(x)dx. (6)

For i =c,

= lix vJI ]il I /i -f XV,112f(zXd
+ J

+ L V, 112) / ] i- v112f(x)dX (7)

It has no difficulty to show that (3) is the necessary condition for the minimization of objective
function9 L. Furthermore, it can also show that the convergence of above algorithm is almost sure
as the input dimension is one and the input data is between 0 and 1. The outline of the proof
is as follow. As the input is scalar value between 0 and 1, Pi can be specified as following open interval.

= [0, sl), f2i = [si-I +si) for i E {2,3,..., c}, where, si = "+"' for all i E {1,2,...,c- 1) and s, = 1.
Taking the derivative of (4) with respect to t, we obtained the following equation.

dL T(L r, - ( OL ) r dsi

dT- = ,i=1 Gh,1) !T + .= J d-

As s - + d") In addition, the expectation of (3) is the negative of the stochastic
gradient of L with respect to vi, "L < 0. Therefore, (3) can converge to one of the local minima of L with
probability one.

3 Algorithm of FSOM: 2D Array

While higher dimensional map is considered, the above algorithm is difficult to be extended'°. Instead, we
propose another algorithm stated as following.

9
The proof can be accomplished by following the same approach as given by Tsypkin ill section 4.3 of [8)

'°We have tried to derive such algorithm but we fail. In so far, we still couldi not find out a suitable objective function which
can lead to an equation as iiice as equation (3).
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S1. Select randomly one sample, x, from the stationary sample space.

S2. Evaluate the winner node I, i.e. finding I such that Iii(x) > lij(x) for allj $ I.

S3. For all i E N1 , update vi(t + 1) according to the following equation.

v 1(t + 1) vi(t) + o(t)/ Ti h(x)(x - vi) if i E N1
vi (t) otherwise (8)

S4. Decrease a(t).

$5. Goto S1.

Obviously, this algorithm is similar to SOM and it is simpler than the algorithm in section 2. Though it
lacks of theoretical backup, it is simple and intuitive. Figure(3) illustrates two simulation results, 8x8 map
and 16xl6 map. In both simulations, in is set to be 2. Two phases update is employed. Input data is drawn
randonily from a square. It is shown that global ordering is established by 16x16 map. However twisted
map is established by 8x8 map.

140 50 0

• 120 30 • X -I 1 20

Figure 3: Examples of 2-D maps

4 Linkage with CL, SOM and FCL

Apart from treating FSOM as an algorithm alone, it can also be considered as a generalized model of CL,
SOM and F(CL. Review the algorithm defined in section 2, the model is actually governed by two parameters,
the size of the neighborhood interacting set N, and the degree of fuzziness "i. Denotes the size of N, by
5(NI). Obviously, 0 < S(Nt) <_ c. Then we can have the following special cases.

When rn --4 1, no matter what ,(NI) is, (3) reduces to CL.
When rn > 1, if S(Nt) = 1, (3) reduces to CL.
When rn > 1, if S(N,) = c, (3) reduces to FCL.
When ni -+ oo and I < S(NI) < c, (3) reduces to SOM.

So it is clear that FSOM has a close relationship with other unsupcrvised learning algorithms.

5 Conclusion

This paper describes a model of fuzzy neural network called fuzzy self-organizing map. This model combines
the property of fuzzy clustering and topological mapping. As a result, we can obtain not just the result
comparable with fuzzy c mean, but also a topological relationship amongst these fuzzy cluster centers. Let
us summary the advantages of FSOM.
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a. Topological fuzzy clustering map can form.

b. Tile update algorithm is simple.

c. The complexity of each update is low as only neighborhood of winner will be update.

d. Local membership function is introduced which further reduces the complexity of algorithm due to the
evaluation of global membership value.

e. The update is sequential. The update can then continue even when the input is non-stationary, as long
as the step size a(t) is fixed to a small constant.

f. It is flexible to reduce to other model as the parameters, including S(N,) and ra, are changed appropriately.

Though our algorithm provides a number of advantages, it lacks of a vigorous analytical proof on its
property. So far, the convergence proof can only be success for a very special case, when both input and

map dimension are one. For the input dimension or the map dimension is higher than one, the convergence
proof is not established. We can only show that equation (3) satisfies th- necessary condition for minimum.
Besides, we encounter the same problem as SOM, the proof on the ordering preservation is not resolved. It
is due to the fact that "order" has not been well-defined. Some other disadvantages are listed following.

a. The convergence rate of FSOM is slow. So, a two phase update is suggested.

b. The order map cannot been usually form as the map is initially not in order. Even the map is initially
in order, it may form a disorder map.
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Abstract

In this paper, I construct an Edge Detection System using neuron-likv netuorks and Fuzzy Rules. First,
neuron-like networks enhances the noisy image and finds rough edges using neuron-like netvwrki. Then,
the fuzzy system determines edges using the fuzzy lanowledge. After several iterations, an enhanced image
and edge can be found. Edge Detection is an essential step in the various applications because the
results of later stages deeply depend on performance of this first step. This approach based on neuron-
lk networki and fuzzy system can be extended to vaarious vision problems. Neuron-like network offers
good performance in low level signal processing and fIizzy theory may provide useful means to uncertain
information processing. Experimental results for synthetic and natural images show the advantages of
this system.

I. Introduction
The use of fuzzy theory is growing in the field of image processing and computer vision because of its

flexibility[2l[7JII0l. An edge in an image is a boundary or contour at which a significant change of intensity
occurs. In general, edges of the 2-D image contain limited information of the 3-D scene. This lack of information
makes edge detection an ill-posed problemll 11. That is, the solution may not be unique, or it does not depend
continuously on the data. It can be made unique only by adding information or assumptions. In this point of view,
a priori edgei nformation can be used as fuzzy rules in the edge detection process. A good edge detector should
correctly identify edge and have only one response to a single edge. In addition, the edge points should be close to
the center of the true edges[ I].

Edge detection process is one of the most important parts in the image processing and analysis. It is an
essential step of segmentation, registration, and object identification as well as motion or stereo. The results of later
stages of applications depend on performance of this edge detection step.

The aim of this paper is to verify the possibilities of Fuzzy Theory in the field of image processing and
computer vision. This approach based on neuron-like networks and fuzzy system is meaningful because neuron-
like network offer good performance in low level signal processing and fuzzy theory may help in processing
uncertain information. Fuzzy logic can give clues for using high level information on the low level signal
processing. The usefulness of this approach in the edge detection will be shown through experimental results.
Fuzzy rules can help find edges in natural and systhetic images.

H. Image Space and Neuron-like Networks
Geman considered a given image as a realization of a stochastic process that is made up of an observable noise

process and a hidden edge process[4l. With these stochastic models, we can represent the strength and structure of
interactions between neighboring pixels and edges in an image[6].

Consider a random field of image G= (G#:(ij) E L) defined on a discrete, finite, rectangular lattice 1 -- (ij)
0O2 i< NI-l, O:j: N2-1). G is a Gibbs Random Field(GRF) with respect to a neighborhood system 71 = 7- :

(iQ) E 0 ), and consequently a Markov Random Field(MRF) according to the Clifford-Hammersley theorem,
such that
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II(Gi" =gji I Gid =g#, (k 1)E GI., (k L) (i0)) (1)
= II(G# =g# I Gi=g#, (k.1) E 1)

where fl(s 1bi) is conditional probability. For image processing applications, the first or second order neighborhood
is used. Commonly used neighborhood are shown in Figure 1(a). Similarly, we can define edge neighborhood
systemE=(LEh, LI) which represent horizontal and vertical edge. The associated edge neighborhood systems are
shown in Figure 1 (b) and (c).

3 4 3 4 5

4 2 I 2 4 ol I

s 4 # 4 5 - 1

(a) (b) (c)

Figure 1. Neighborhood Systems of
(a) Pixels (b) Vertical Edges (c) Horizontal Edges

The filled circle stands for (ij) pixel of G and rectangles are edges. In this paper, the edge strength has a
continuous value between 0 and 1.

From the MRF model of image, we can construct neuron-like networks as shown Figure 2.

Eh

F
Figure 2. Neuron-like Networks

where output value of the filled circle is enhanced image intensity. The neuron-like networks involve two types of
neurons[3][6l[131. The first type simply adds input after some weight multiplication. The output G of the first type
of neuron can be computed as

G(i')n + I =G(is)D + X F(ij)-G(i,j)D) (2)
- (I-A) (I-lij))G(iCj)n - (id + hI')

+ -lE~d1)Gi~ . -(id-])n)

+ (l-Ev(idj))(G(iji' - G(i + l,j))
+ (I- Ev(i-ls))(G(ij) - G(i-ls)n)/k),

where
k=4-EbO'd)-Ed2(i.,-)-E'v(ij)-Ev(i-l d),

where F is an observation of the ideal image G, X is weighting factor and n is time state. The second type what
we called edge or line process has sigmoidal response and modulates the summation neuron. It acts as a switching
device between neighbor pixels. After computation of G, the edge E is determined as

1

,-i) (3)i1 +exp( --(G(ij) -G(i +l,j))')
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I +exp(O --(C(i,j) -G(i,j +1))) (4)

where E" and Ev'are the horizontal and vertical edges and is a thresholding value. The results are used as inputs
of fuzzy system.

i1R. Fuzzy System
A new system based on a neuron-like network and fuzzy theory is shown in figure 3. First, the neuron-like

network removes noise from the image. Then it generates an enhanced image and rough edges based on the
intensity difference of neighboring pixels. In the second stage, the fuzzy system determines a set of edges using
fuzzy rules in the MRF model. Finally, using the thresholding operation, binary edge can be determined.

F(ij Network

I •jiE~i~j)

Figure 3. Overall structure

F(ij) and G(ij) are represent the noisy image and the enhanced image. E(i,j,k) shows the edge and k is the
direction of edges.

In fuzzy edge detection, the degree of intensity difference G and neighbor edge state Er, are used as inputs.
The fuzzy edge E-- is the output. First, each input is classified into three fuzzy classes represented by L(large),
M(middle), and S("mal) respectively.

Input : X:(AG-- jE~j
AGc'= 4 il, M/fiddle, Large)
7Ei.=( Snmll, Middle, Large)

Output: Y: (Ej )

Eij =Snmall, .Mddle, Large)

The fuzzy membership functions for the inputs and the output are shown in figure 4. To determine the degree
of neighbor edge states, I used good edge constraints as common-sense fuzzy rules. For example, I allocated Large
to the edge types that have high occurrence frequency in the image. I allocated Shil/ to double edge or isolated
edge.

Degree of Degree of
Membership Membership

------------------ SMAL- A0.8 |• . l-----SM ALL- . I \- - M L

0.6 MIDDLEI 0.6 / .. LARGE
0.8 

0M1D/LL0 --- LARGE 
I 

0.4
0.2 0.2 /

0 32 64 96 128 160 192 224 255 -0.5 0 0.5 1 1.5

Intensity Difference AG . / Degree of Edgeness
Degree of Neighbor Edge States

(a) (b)
Figure 4. Fuzzy Membership function for

(a) Input (b) Output(Edge)
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Fuzzy associative memory(FAM) rules encode structured knowledge as fuzzy associations[9]. The fuzzy
association (SM4LL, SMALL ;SMALL) represents the linguistic rule " IF G# is Smali AND E# is Szm)-, ThIE EN
is Small." Figure 5 show the fuzzy rule space used to find the edges.

(•E0)

M

S

s M L (A04 )
Figure 5. Fuzzy rule space

The output fuzzy set can be calculated using correlation-product encodmg[9].

(o, =min(m,,,(AG ). j. (,E)) (5)

where m0 indicates the membership function of fuzzy set. The fuzzy system activates each FAM rule consequent

set to a different degree. The It FAM rule yields the output fuzzy set Ok

Q =WAL (6)

where Lkstands for linguistic representation of output. The system then sums the Okto form the combined output
fuzzy set 0. The superimposing of all rules is performed by

0 =m,(Eý) = ý0, W (7)

Finally, I used centroidal defuzzification to get a crisp output E[9].

FAM Rule I

A G B)_Cedairad E
FAM Rule 2 DefvzzificslkuilE

FAM Rule N

Fig 6. Additive Fuzzy System

A correlation-product inference is used to compute the centroid ck of Lk from only three samples of the
combined output fuzzy set 0. The three sample points are the centroid of the output fuzzy set value because the
three fuzzy sets are systematic and unimodal.

VI. Results
In general, Finding edge information largely depends on the pixel value itself. Consequently, high pass

filtering not only enhances edge properties but also emphasizes noise. On the other hands, Smoothing operation or
low pass filtering can be used to remove granularity but it can also bhur edge. To over come this, Jeong et a&*5]
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proposed adaptive filtering algorithm but high computation cost is need for this kind of algorithm. The proposed
system can overcome these problems easily using adaptive filtering operation of neuron-like networks with fuzzy
rules.

To show the effectiveness of this new system, three kinds of images are used. Figure 7 shows artificial image
with additive Gaussian noise and its results computed by neuro-fuzzy system and Laplacian of Gaussian(LOG)
operation respectively. Figure 8 shows the original peppers image and the edge maps. Figure 9 shows image
included additive Gaussian noise and its resulting edge maps.

V. Conclusions
Early vision is mostly considered as a bottom-up process that does not rely upon specific high level

information about the scene to be analyzed. However, it is unnatural. In this paper, thus, I have suggested a neuro-
fuzzy cooperating system to build a rigorous basis of Human-like Computer Vision System. The efforts for
unification of neuron-like network and fuzzy theory are needed because they may provide significant clues for
using high level information on the low level signal processing. For example, neuron-like network offer good
performance in low level signal processing and fuzzy theory may provide significant means uncertain information
processing. The usefulness of using neuron-like networks with the fuzzy knowledge in the edge detection was
shown through experiment results. There are lots of works to be done at all levels of computer vision. For
example, it can be extended in the problem of texture, motion and stereo.
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Abstract

Competitive Hebbian Learning 2, a very simple and very general unsupervised learning
rule, is applied in this paper to the problem of finding fussy rules to approximate a function.
In order to make CHL 2 effective in grouping adjacent points, and also to "fusuify" a training-
set point, the system is trained using a Gaussian region of input activity around a training-set
point to train the neural network. Demonstrations show that CHL 2 learns a set of nodes,
representing a set of fussy rules, which generate very good approximations to the training
functions.

1 Introduction

An aspect of Fussy Systems which relates naturally to Neural Networks is the learning of fussy rules. For
many systems appropriate fussy rules are not known a priori for such systems an important step is that
of finding good fussy rules. Such rules may be found based upon experience with the system using an
unsupervised learning algorithm to generate the rules. A variety of unsupervised learning methods have
been applied to the learning of fussy rules, for example see Dickerson and Kosko (1993) and Khedkar
and Berenji (1993).

It is the purpose of this paper to show how Competitive Hebbian Learning 2 (CHL 2) may be applied
to the learning of fussy rules. CHL 2 is an unsupervised learning rule which uses a simple modification
of basic Hebbian learning to develop a set of competing units which each respond distinctly, but which
collectively respond strongly to the input vectors in a training set, see White (1993). CHL 2 should be
be able to train a set of nodes each to respond strongly to inputs in a distinct regions of the input space
whenever there are exemplars included in the training set in those regions. In this paper the general
method of applying CHL 2 to the learning of fussy rules is presented and then applied to a pair of
demonstration problems.

2 CHL 2 Applied to the Learning of Fuzzy Rules

CHL 2 is an effective unsupervised learning rule when the system is monopolar, that is when inputs,
outputs, and connection strengths are non-negative. (For systems in which the node outputs may be
either positive or negative a bipolar learning rule such as CHL, see White (1992a,b), should be used
instead.) The neural network to be trained consists of N nodes, which respond to a set of I inputs as:

I

Yi= f(EZwij Z). (1)
j=1

Each wi is the connection strength, or weight, connecting input mi to node yi. The function f(.) is in
principle a squashing function, but in the examples considered below yj is simply a linear function of
the zm.
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The CHL 2 learning rule is based upon the modified Hebbian rule

Ail = axi(yd -A sh. (2)
k;*i

In equation 2, a is a learning-rate parameter and A is the competition parameter which determines the
strength of the competitive learning interaction between the nodes, an adjustable parameter which is
varied to optimize the learning of the system. In CHL 2 the learning determined by equation 2 is limited
to non-negative learning, and the summation of the squared weights into each node is constrained to a
constant value, i.e. F l 2' = W,2,,, = Constant.One characteristic of CHL 2 is that the system learns to group together for any one node strong

weights from input components which are ON simultaneously. In the demonstrations which follow, the
natural training-set input vectors are points in a multi-dimensional input space which are on the surface
which defines the function which is to be approximated. Such points would not produce contiguous
regions of simultaneously ON inputs, nor would they produce a fussy boundary between inputs which
are included and excluded from the training set.

A method to solve both of these problems at once is to use for training-set input-vectors input
components which are partially ONin a region surrounding a point which is on the function surface. For
each point which is chosen to produce a training vector, the components of the input vector are turned
ON by an amount which decreases with distance from the point. In principle a variety of functions might
be used to produce these turned-on input regions; in this paper a Gaussian function of the distance from
the point is used. This choice of "fuuzifying" function means that the demonstrations presented below
are extensions of the "Gaussian spots in two dimensions" demonstration, which was included in White
(1992a) for CHL and in White (1993) for CHL 2.

3 Fifth-Order Polynomial

This demonstration is analogous to the one considered in Dickerson and Kosko (1993). The function
to be approximated is a curve in a two-dimensional space, where the second variable, y, is a fifth-order
polynomial of the first variable, x. The function is shown in figure 1, and is similar in form to the
function approximated in the Dickerson and Kosko paper. Here we use CHL 2 to find sets of first 10
and then 20 nodes, each set representing a set of fuzzy rules to approximate this function.

30

25,

20

15
Figure 1 10

5

0 5 10 15 20 25 30

The input space for this case has 1024 components, which are treated as a 32 x 32 array. Training-set
input-vectors are found by first choosing a point at a random position on the curve of the function. Then
the value of each input component is given by ezp[-((i - Z0)2 + (j - y0) 2 )], where zo and yo are the z
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and y components of the random point on the curve, and i and j are the indices of an input component
in the input array. A contour plot of the weights learned by 10 nodes is shown in figure 2a and a similar
plot for 20 nodes in figure 2b, along with the original function.

30 30

25

20 20

15 15

10 10

5 5

5 10 15 20 25 30 5 10 15 20 25 30
Figure 2a Figure 2b

The nodes obviously learned to respond strongly in distinct regions along the curve of the function.
For this training a was given a rather arbitrary value of 0.15, and A was varied during the training to
produce good results. Specifically, for the training of the ten-node set training started with A = 0.11 for
5000 cycles, followed by 10000 cycles with A = 0.17. Training continued with 5000 cycles at A = 0.25,
and thereafter with A = 0.50. Changes in weights were small after 50000 cycles of training. Figure 2a
shows weight contours after a total of 150000 training cycles, with very little change occurring during
the final 100000 cycles.

30 30
25 25

20 + + 20

15 15

10 10

5 5

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 3a Figure 3b

For the set of 20 nodes, training was started with 10000 training cycles using A = 0.056, followed by
5000 training cycles with A = 0.20. Further training used A = 0.50, and changes in the weights became
very small after an additional 20000 cycles. The contours shown in figure 2b show results after the
learned weights had very thoroughly settled with 200000 cycles of additional training, but the changes
over those additional training cycles were extremely small.
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To check how well the nodes represented the original function, the centroids of the weight matrices
of the nodes were used to reconstruct the function, using as the test set 100 points spaced uniformly
along the function. For the test set only the four input components surrounding the test point on the
curve were ON, as determined by the distance of the test-set point from the lattice point on the 32 x 32
input-array. The results of the reconstructions are shown in figure 3a and figure 3b for 10 and 20 nodes,
respectively. One sees that the approximation is quite good for 10 nodes and noticeably better for 20
nodes. These results may be compared with the unsupervised-learning results found in Dickerson and
Kosko, and obviously compare quite favorably.

4 Surface in Three Dimensions

The second demonstration is the approximation of a surface in three-space; specifically the surface is
defined by z(z, y) = 9.0/(1.0+ ezp[l.11(a + y - 9.0)]). This is the function used in Khedkar and Berenji
(1993), rescaled so that the variables run between 0.0 and 9.0. The surface is shown in figure 4.

Figure 4

As in the previous demonstration, training-set input-vector are generated by placing a "Gaussian
spot" of input activity around a point on the training function. In this case the "Gaussian spot" is
three-dimensional, the input array consists of 1000 inputs treated as a 10 x 10 x 10 array, and the
training points are chosen by selecting a random point in the z - y plane between 0.0 and 9.0 in both z
and y and projecting that point onto the function surface.

Sets of first four and then nine nodes were trained. For the four-node run the initial value of the
competition parameter, A, was 0.33 for 5000 training cycles, and training continued with A = 0.50.
Weights were well settled after a total of 25000 training cycles, and further training for 100000 cycles
produced extremely little further change. As in the previous demonstration, the learning-rate parameter,
ct, was set rather arbitrarily to 0.15. A contour plot of the learned weights for four nodes, projected
onto the z - y plane, is shown in figure 5a, and the four-node reconstruction of the function in figure 5b,
again using centroids of the weight-arrays of each node to reconstruct the function.

Similarly, the projected contour-plot of the weights learned by the nodes, and the reconstruction of
the function surface using nine nodes are shown in figure 6a and figure 6b. For nine nodes, training
started with A = 0.125 for 5000 cycles, followed by 5000 cycles with A = 0.25, 5000 cycles with A = 0.33,
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and then further training with A = 0.50. The nodes were quite well trained after a total of 35000 cycles,
but the figures show results after 100000 additional training cycles.

Figure 5& Figure 5b

The reconstructions are very good, and indeed excellent for nine nodes except near the z = 0,
y = 9 and a = 9, y = 0 corners, right on the transition of the surface and at the edges of the training
region. These regions are outside the centroids of all the nodes as well as on the function transition from
near z = 9 to near z = 0, and the approximation is noticeably poorer there. One should note that a
comparison with the results of Khedkar and Berenji is not really appropriate, since the goals of these
papers are distinct; Khedkaz and Berenji were demonstrating fast unsupervised extraction of very rough
fussy rules, whereas here we are demonstrating the use. of a very simple and a very general unsupervised
learning system to find good fussy rules.

Figure 6a Figure 6b
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5 Conclusions
This paper outlines the application of Competitive Hebbian Learning 2, a very simple and very general
method for unsupervised learning in neural networks with non-negative responses, to the problem of
finding fussy rules for function approximation. In applying CHL 2 to the finding of fussy rules, a
"Gaussian Spot" of activity is used around each point selected for the training set. This region of
activity exploits the fundamental grouping property of CHL 2 and simultaneously serves to "fussify"
the training-set point. The demonstrations show that CHL 2 is well-suited to such tasks, and that the
fussy rules generated produce very good approximations to the training functions.
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Abstract
ART-EMAP synthesizes adaptive resonance theory (ART) and spatial and temporal ev-

idence integration for dynamic predictive mapping (EMAP). The network extends the capa-
bilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern
representation at a view category field. Stage 2 adds a decision criterion to the mapping
between view and object categories, delaying identification of ambiguous objects when faced
with a low confidence prediction. Stage 3 augments the system with a field where evidence
accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning pro-
cess to fine-tune performance after the limited initial period of supervised network training.
Simulations of the four ART-EMAP stages demonstrate performance on a difficult :3-D object
recognition problem.

Object recognition by spatial and temporal evidence accumulation

ART-EMAP (Figure 1) is a neural network architecture that uses spatial and temporal
evidence accumulation to recognize target objects and pattern classes in noisy or ambiguous
input environments (Carpenter and Ross, 1993a, 1993b). During performance, ART-EMAP
integrates spatial evidence distributed across recognition categories to predict a pattern class.
When a decision criterion determines the pattern class choice to be ambiguous, additional
input from the same unknown class is sought. Evidence from multiple inputs accumulates
until the decision criterion is satisfied and the system makes a high confidence prediction.
Accumulated evidence can also fine-tune performance during unsupervised rehearsal learn-
ing.

In four incremental stages, ART-EMAP improves predictive accuracy of fuzzy ARTMAP
(Carpenter, Grossberg, Markuzon, Reynolds, and Rosen 1992) and extends its domain to in-
clude spatio-temporal recognition and prediction. ART-EMAP applications include a vision
system that samples 2-D perspectives of 3-D objects. In this scenario, a sensor generates
an organized database of inputs that are views of each object from different perspectives or
noisy samples of fixed views. Evidence accumulation has been successfully used in neural
network machine vision applications, as in the aspect network (Baloch and Waxman, 1991;
Seibert and Waxman, 1990). ART-EMAP further develops this strategy.

ISupported in part by ARPA (ONR N00014-92-J-4015), the National Science Foundation (NSF IRI 90-

00530), and the Office of Naval Research (ONR N00014-91-J-4100).
2Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0083), the National Science

Foundation (NSF IRI 90-00530), and the Office of Naval Research (ONR N00014-91-J-4100).
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ART- EMAP

Evidence MAP (EMAP)
----------------------------

F, FE F2

,!

fuzzy fuzzy

F•= match I F x

Figure 1: ART-EMAP architecture. The ARTMAP map field Fab is replaced with a multi-

field EMAP module. During testing, a distributed F•' output pattern ya, resulting from
partial contrast enhancement of F' --* F~j input T•, is filtered through EMAP weights wvab
to determine the Fgb activity xab. If a predictive decision criterion is not met, additional
input can be sought.

3-D object recognition

Simulations illustratc performance of fuzzy ARTMAP and ART-EMAP (Stages 1 - 4), onl
a recognition problem that requires a system to identify three similar :3-D objects (pyramid,
prism, house). Inputs consist of ambiguous 2-D views taken from various angles (Figure 2).
The problem is made difficult by the similarity of views across objects and by several test set
views that do not resemble any training set view of the same object. Fuzzy ARTMAP cor-
rectly identifies only 64.7% of the objects from noise-free test set images. Stage 1 ART-EMAP
raises performance accuracy to 70.6%, while Stage 2 and Stage :3 both boost performance to
98.0%.

Database inputs: The simulation database was constructed using Mathematica to
generate shaded 2-D projections of :3-D objects illuminated by an achromatic point light
source. For each of the three objects, 24 training set views were obtained from perspectives
spaced 300 to 600 apart around a viewing hemisphere (Figure 2a). For each object, 17 test
set views, spaced at 450 intervals, were obtained from perspectives between those of the
training set (Figure 2b). Each 2-D view was then preprocessed, using Gabor filters (Gabor,
1946; Daugman, 1988) to recover boundaries, competitive interactions to sharpen boundary
locations and orientations (Grossberg and Mingolla, 1985), and coarse coding, to yield a
100-component input vector a. The preprocessing algorithm is a typical feature extractor,
chosen to illustrate comparative performance of different recognition systems, and was not
selected to optimize performance of any one of these systems.

Training regime: Fuzzy ARTMAP and ART-EMAP Stage 1 through Stage 4 were
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evaluated using both a noise-free test set and a noisy test set. The noisy test set was
constructed by adding Gaussian noise (SD = 0.2) to each input component. Each system
was initially trained under one standard supervised learning protocol, with the training set.
presented once. Since the training set views were selected to be sparse and nonredundant,
a situation of minimal code compression was simulated during training. This was achieved
by assigning a high value to the ARTMAP baseline vigilance (g,, = 0.9), which established
58 ARTa, recognition categories for the 72 training set pairs (Figure 1).

pyramid prism house

(a) Training set

(b) Test set

Figure 2: 3-D object database images. (a) The training set consists of 24 views spaced 30o.
600 degrees apart within the front viewing hemisphere of each object. The topmost training
images for each ordered set are views taken from above the object, the bottommost from
beneath the object, etc. (b) The test set includes 17 new views of the front hemisphere,
spaced 450 apart.

Fuzzy ARTMAP simulation: Performance measures of fuzzy ARTMAP and ART-
EMAP on the 3-D object recognition database are summarized in Figure 3, for noise-free
test set inputs (plots a-c) and tor noisy test set inputs (plots d-f). The prediction of each
test set view is represented graphically, on shaded viewing hemispheres. Each hemisphere
shows 17 faces, which correspond to the 17 test set viewing angles (Figure 21)). For each
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simulation, three hemispheres show object (-lass predictions made by the system in respon-se
to the corresponding input, with shading of a face indicating a prediction of pyrami(d (black).
prism (gray), or house (white).

Fuzzy ARTMAP made only 64.7% correct object class predictions on the noise-free lest
set (Figure 3a), and 60.8% correct predictions on the noisy test set (Figure 3i1). This poor
performance indicates the difficult nature of the problem when pre(diction inust be made on
the basis of a single view. Note, for example, that many of the test set inputs from the
lower left part of the l)yramid view hemisphere were incorrectly identified as prism views.
The reason for these errors can be inferred from the similarity between the corresponding
pyramid and prism 2-D views in the test set (Figure 21)).

ART-EMAP Stage 1: Spatial evidence accumnulation

ART-EMAP employs a spatial evidence accumulation process that integrates a dis-
tributed pattern of activity across coded category nodes to help disainbiguate a noisy or novel
input. In contrast, previous ART (Carpenter and Grossberg, 1987; Carpenter (rossberg,
and Rosen, 1991) and ARTMAP (Carpenter, Grossberg, and Reynolds, 1991; Carpenter (/
al., 1992) simulations chose only the most highly activated category node at the field F.,' as
the basis for recognition and prediction.

In the fast-learn fuzzy ARTMAP system, the input from Fl" to the .)j/' FP node is given
by:

1~ ~ (I)a + I w;)

(Figure 1). Fuzzy ARTMAP uses a binary choice rule:

a I i fT.j>T for allj -,]
Y = (2)

0 otherwise.

Then, only the F2 category J that recieves maximal F,- F2. input, predicts the ARTh
output.

ART-EMAP also uses the binary choice rule (2) during the initial period of supervised
training. However, during performance, F2" output ya is determined by less exteme contrast
enhancement of the F, - F2 input pattern Ta. Limited contrast enhancement extracts
more information from the relative activations of F. categories than (does the all-or-none
choice rule (2).

Power rule: Raising the input Tj2 of the j"' FP1 category to a power p > I is a simple
way to implement contrast enhancement. Equation (3) defines a normalized power rule:
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black - pyramid gray - prism white - house
(a) (b) (c)

pyramid prism pyramid p rism pyramid prism

house house house

Fuzzy ARTMAP Stage I ART-EMAP Stage 3 ART-EMAP
64.7% on test set Distributed F2" activity Multiple views

p=24 , D('=I.O p=24 , decreasing DC

70.6% on test set 98.0% on test set

(d) (e) (f)

pyramid prism pyramid prism pyramid prism

house house house

Fuzzy ARTMAP Stage 1 ART-EMAP Stage 3 ART-EMAP
60.8% on test set Distributed F2' activity Multiple views

p=24, DC=I.O p=24 , decreasing DC
64.7% on test set 92.2% on test set

Figure 3: 3-D object simulations. Response viewing hemispheres for each object show pre-
dictions from each test set view. A window in the hemisphere corresponds to one of the 17
test views (Fig. 2b). Plots (a), (b), and (c) show noise-free test set results and plots (d), (e),
and (f) show noisy test set results. Plots (a) and (d) show fuzzy ARTMAP performance,
using the F•a choice rule. Plots (b) and (e) show Stage 1 ART-EMAP performance using the
power rule (3) with p = 24. Plots (c) and (f) show Stage 3 ART-EMAP performance with
p = 24 plus temporal evidence accumulation with the decreasing decision criterion (10) and
multiple views.
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YJ Na (3)

Normalization constrains the F2a output values to a manageable range without altering rel-
ative values or subsequent predictions. The power rule (3) approximates the dynamics of
a shunting competitive short-term-memory (STM) network that contrast-enhances its input
pattern (Grossberg, 1973). The power rule is equivalent to the choice rule (2) when p is large.
For smaller p, the distributed activity pattern (3) uses information from the relative f2a cat-
egory activations to improve test set predictive performance at ARTb. In all ART-EMAP
3-D object simulations, p = 24.

After contrast enhancement, the Fa output ya is filtered through the weights Wak to
activate the EMAP field Fab. The input S,. from Fa to the kthFb node obeys the equation:

Na
ab w.kYj (4)

j=I

Since distributed F.2 activity generally determines distributed EMAP field Fl'6 input, some
means of choosing a winning prediction at the EMAP field is required. The simplest method
is to choose the EMAP category K that rece>',es maximal input from F•'. This can be
implemented by letting x"b'= "Z6b and defining F26 activity by:

ab { ifx >xk. for allk#'K

0 otherwise.

Other methods for predicting an ARTb category will be discussed below.
Stage 1 simulation: Like fuzzy ARTMAP, Stage I ART-EMAP, with its spatially

distributed activity pattern at F., is required to make a prediction from each single test set
view. Nevertheless, predictive accuracy improves significantly, from 64.7% to 70.6% on the
noise-free test set (Figure 3b) and from 60.8% to 64.7% on the noisy test set (Figure 3e).

Stage 2: EMAP predictive decision criterion

An alternative to the Stage 1 predictive choice rule (5) uses a dccision criterion (DC) at
the EMAP field Ff'6 . The decision criterion permits ARTb choice only when the most active
category K becomes a minimum proportion more active than the next most active EMAP
category. Thus:
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Noise-free test set Noisy test set

DC' Percent Average # views Percent Average # views
5 98.0 4.8 90.2 6.8
4 92.2 4.3 96.1 6.0
3 92.2 4.2 94.1 4.1
2 88.2 2.7 80.4 3.2
1 70.6 1.0 64.7 1.0

Table 1: Stage 2 ART-EMAP 3-D object recognition simulation results as the fixed decision
criteria (DC) decrease from 5 to 1. When D[C=l, Stage 2 reduces to Stage 1.

1 if x> (DC()Xb for all k # K
=K (6)

0 otherwise,

where DC > 1. With DC = 1, the Stage 2 decision criterion rule (6) reduces to the Stage I
F~b choice rule (5). With DC > 1, the decision criterion prevents prediction when multiple
EMAP categories are about equally activated at Fla', representing ambiguous predictive
evidence. As the DC increases, both accuracy and the number of required input samples
per decision tend to increase. For computational convenience, activity at Flb can also be
contrast enhanced by a normalized power rule:

-. 
( 'ab)q

kN,,- ((7)b~

Setting q = 3 in (7) makes performance less sensitive to the DC, value than in the cause q
1 (no contrast enhancement at Fab). The value of q does not change system function.

When the decision criterion fails, and (6) implies that y'.l = 0 for all k, additional input
is sought to resolve the perceived ambiguity. In an application, additional inputs might
correspond to multiple views or to multiple samples of a single view.

Stage 2 simulation: Stage 1 spatial evidence accumulation improves performance by
causing a novel view to activate categories of two or more nearby training set views, which
then strongly predict the correct object. However, many single view errors, caused by similar
views across different objects, remain. Stage 2 or Stage 3 corrects most of these errors, when
multiple views of the unknown object are available. With a high fixed decision criterion
(DC=5.0) and an average of 4.8 test set views, Stage 2 ART-EMAP achieves 98.0% accu-
racy on the noise-free test set. Even on the noisy test set, object identification remains at
90.2% accurate, with an average of 6.8 test set views. Table 1 shows how both performance

1-755



and the average number of views decrease as the fixed decision criterion decreases from 5 to 1.

Stage 3: Temporal evidence accumulation

The predictive decision criterion strategy (Stage 2 ART-EMAP) searches multiple views
or samples until one input satisfies the decision criterion. However any single noisy input
vector a might produce map field activity that satisfies a given decision criterion but still
make an incorrect prediction. The Stage 2 strategy does not benefit from tile partial evidence
provided by all the views that failed to meet the decision criterion. Further perforlan(we
improvement in a noisy input environment is achieved through tile application of a decision
criterion to time-integr-ated predictions that are generated by multiple inputs. Stage 3 ART-
EMAP accumulates evidence at a map evidence accumulation field Fgb (Figure 1). The
time scale of this medium-term memory (MTM) process is longer than that of the STM
field activations resulting from the presence of a single view, but shorter than the long-term
memory (LTM) stored in adaptive weights.

Additive evidence integration: A straightforward way to imp)lement evidence accu-
mulation at the EMAP module is to sum a sequence of F11b map activations at the evidence
accumulation field Fgb:

(T.Ib)(new) = (Tb)(o°d) + Xab. (8)

At Fkb, evidence accumulating MTM (TAb) starts at zero and is reset to zero when the
decision criterion is met. Activities yab at field F2ab obey:

ab 1 if TRP> (DC)Tt,?b for all k : K
YK= 9

0 otherwise.

A decision will eventually be made if the DC starts large and gradually decreases toward 1.
As in Stage 2 (Table 1), larger DC values tend to covary with both greater accuracy and
longer input sequences. In simulations, the DC decreased exponentially form 6 to 1:

DC(1) = 5(1.0 - r)'-' + 1, (10)

where a(l) is the I'l input in a same-class sequence (I = 1,2, ... ). The decay rate (r) was
set equal to 0.2. Additive integration is equivalent to applying the decision criterion to a
running average of map field activations xab rather than to xab itself.

Stage 3 simulation: For a two-class prediction problem, evidence accumulation im-
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proves performance primarily by averaging across noisy inputs (Carpenter and Ross, 1993a.
1993b). Stage 3 ART-EMAP becomes increasingly useful as the number of predicted classes
increases, since evidence accumulation can also help solve the difficult problem of disali-
biguating nearly identical views of different objects. With three or more object classes,
when equal predictive evidence may exist for both the correct object and an incorrect one,
the identity of the erroneous class tends to vary from one input to the next. As the sequence
of views grows, erroneous evidence is quickly overwhelmed by evidence for the correct object.
In the Stage 3 ART-EMAP three-object simulations, with the decreasing DC function (10),
an average of 9.2 views were needed to reach 98.0% correct performance on the noise-free
test set (Figure 3c). On the noisy test set, an average of 11.3 views allowed the system to
reach 92.2% correct performance (Figure 3f).

Stage 4: Unsupervised rehearsal learning

Temporal evidence accumulation allows the Stage 3 ART-EMAP system to recognize
objects from a series of ambiguous views. However the system learns nothing from the final
outcome of this decision process. If, for example, an input sequence a0), ... , a(L) predicts an
ARTb category K, by (8)-(9), the entire sequence would need to be presented again before
the same prediction would be made.

Unsupervised rehearsal learning (Stage 4) fine-tunes performance by feeding back to the
system knowledge of the final prediction. Specifically, after input a(L) allows ART-EMAP
to choose the ARTb category K, the sequence a0 ), ..., a(') is re-presented, or rehearsed.
Weights in an adaptive filter u0 from FP to Fg6 are then adjusted, shifting category decision
boundaries so that each input a(t) in the sequence becomes more likely, on its own, to predict
category K.

Stage 4 simulation: Unsupervised rehearsal learning improves single view test set per-
formance only marginally on the 3-D object simulations. Stage 4 rehearsal learning was
conducted on the 51 noise-free test set views. Temporal evidence accumulation drew from
an enlarged test set that included 72 additional views. Accessing exemplars from this larger
test set allows stable fine-tuning by decreasing the percentage of ambiguous test views. After
this fine-tuning, performance on individual views from the original 51 test set inputs was
73%, compared to 70.6% at Stage 1 (Figure 3b).

Conclusion

Spatial and temporal evidence accumulation by ART-EMAP have been shown to improve
fuzzy ARTMAP performance on both the ARPA benchmark circle-in-the-square p)roblem
(Carpenter and Ross, 1993a, 1993b; Wilensky, 1990) and on the 3-1) object recognition
problem described here. Unsupervised rehearsal learning illustrates how self-training can
fine-tune system performance. ART-EMAP is a general purpose algorithm for pattern class
prediction based on the temporal integration of predictive evidence resulting from distributed
recognition across a small set of trained categories. The system promises to be of use in a
variety of applications, including spatio-temporal image analysis and prediction as well as
recognition of 3-D objects from ambiguous 2-D views.
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CONVENTIONAL CONTROLLERS IN FUZZY FORM

John A. Johnson and Herschel B. Smartt
Idaho National Engineering Laboratory

P.O. Box 1625
Idaho Falls, ID 83415-2209

Abstract
A specific formulation of fuzzy logic is shown to be exactly equivalent to conventional proportional-integral (PI),
proportional-differential (PD), or proportional-integral-differential (PID) controllers under certain conditions. This
formulation uses multiplication rather than finding the minimum to determine the conjunction between
antecedents. This product is then multiplied by a crisp consequent membership function or output action for that
rule and the sum of products determines the net output of the system. Only four rules are required for PI and PD
controllers and only eight rules are required for PID controllers. With linear analytic antecedent membership
functions, control is obtained through a single analytic expression which is equivalent to the analytic expressions
for the conventional controllers.

Introduction
This paper presents a formulation of fuzzy logic that makes the relation to PD, PI, and PID controllers
transparent, allowing the application of these technologies to fuzzy logic controllers and providing a deeper
understanding of how these classical controllers operate. This formulation also greatly simplifies the calculations
required for implementation. The complex and sometimes ambiguous methods of defuzzification are completely
eliminated. In this formulation the conjunction operation on antecedents is accomplished by multiplication. The
control action for each rule is determined by multiplying the antecedent truth value by a crisp consequent
membership function. Since normalize input membership functions are used, a simple sum of the control actions
for each rule determines the final, net control action. Sugeno[l] has previously used this formulation of fuzzy
logic and is discussed in the context of other methods by Lee [2] in general terms. Neither has related the method
to standard control theory.

Antecedent Membership Functions
For generality normalized scales are used for the membership functions, so all antecedent and consequent variables
are in the interval 10,1]. Two membership functions for each antecedent or input variable are defined as "negative"
which has a value of 1 when the input variable is 0, and "positive", which has a value of I when the input
variable is 1. To derive the relationship between fuzzy controllers and conventional controllers, linear membership
functions for one input variable are required:

mnegative(x) = I for x < 0
=I-x for0<x<1
=0 for I <x (1)

mpositive(X) = 0 for x < 0
=x for0<x< I
=1 for I <x

For the general case of n antecedents, each with two membership functions, m=2n rules are required:

If xi is negative and x2 is negative and ... and xn is negative,
then z is zI.

If xI is positive and x2 is negative and ... and Xn is negative,
then z is z2.

If xI is positive and x2 is positive and ... and xn is positive,
then z is zm.
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The output of the system is found by multiplying the antecedent membership values together for each rule, and

finding the sum with each rule weighted by its output action, z:

mnegative(xl) * mnegative(x2) mnegative(xn) * ZI +
mnegative(x1) * mnegative(x2) *...* mpositive(xn) * z2 +

* (2)

+mpositive(x 0) * mpositive(x2) *...* mpositive(xn) * zm

"A Fuzzy PID Controller
"A proportional-integral-differential controller works 3n the principle that an error correcting control signal should
depend linearly on how large the error is, how large the integral of the error is, and how fast the error is changing.
In the linear case this is equivalent to a three-input, eight-rule fuzzy logic system. In this case xI is the normalized
error, with mnegative(x 1) corresponding to the case where the variable is below the desired set point and
"mpositive(x1), above the set point. The normalized integral of the error is the variable x2. If x3 is the derivative
of xI, then mnegative(x3) corresponds to the case where xI is decreasing and mpositive(x3), where xI is
increasing.

The formulation is more general if the physical variables themselves, rather than the errors, are used. The error
signals are then just differences between a set point value and the actual physical value, which comes out naturally
in the formulation. A subtle complication arises depending on whether the derivative of the physical variable is
fed back and compared to a set point value (often equal to zero) or the derivative of the error signal itself is
calculated. The complication is moot if the set point of the derivative is zero, but can confuse the comparison to
standard controllers, in other cases. This is an especially important point for the integral part of the controller.

In the case of the linear membership functions given in (1) and eight rules, it is straight forward to derive an
algebraic relationship for z, the output, as a function of the inputs, xI, x2, and x3 by substituting into (2) and
expanding:

ZI +
xI*(Z4 -zl) +
x2*(z3 - zI) +
x3*(z2 - zl) +
xI*x2*(zI - z3 - z4 +z7) + (3)
xl*x3*(zl - z2 - z4 +z6) +
x2*x3*(zl - z2 - z3 +z5) +
xl*x2*x3*(-zi + z2 + z3 +z4 - z5 - z6 - z7 + z8)

Note that this equation is valid only when xl, x2, and x3 are within the range [0,1]. Outside that range, the

membership functions are either 0.0 or 1.0.

Now we take a linear mapping of the physical variables onto the normalized variables:

xl =al*XI +bl
x2 = a2*X2 + b2 (4)
x3 = a3*X3 + b3
z = az*Z + bz

where XI, X2, X3, and Z are the physical variables that map onto the normalized variables xI, x2, x2, and z, and
a's and b's are constants that may be chosen as described below.

To compare to a conventional PID controller we must eliminate all the nonlinear terms in (3). This means that
the output actions must obey these relations:
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Zl -Z3-Z4+Z7=0

ZI -z2"z4+z6=o (5)
Zl - z2-z3+z5=0
-Zl +z2+z3 + z4 - z5 -z6 - z7 + z8 = 0

We may substitute the relations (4) into (3), leaving out the nonlinear terms:

az*Z + bz =
Z1 +
(al*Xl + bl)*(z4 - Zl) +
(a2*X2 + b2)*(z3 - Zl) + (6)
(a3*X3 + b3)*(z2 - zi)

When the system to be controlled is at the set point, (6) holds with the values Z = Zset, Xl = Xlset, etc.
Subtracting (6) with the set point values from the general case, we obtain:

Z =

Zset +
(XI - Xlset) * al/az*(z4 -"Zl) + (7)
(X2 - X2se) * a2/az*(z3 - zl) +
(X3 - X3set) * a3/az*(z2 - zI) +

Thus the control is proportional to the error (XI - X Iset), the integral error (X2 - X2set, and the derivative error
(X3 - X3set) and the exact, analytic equivalence of this formulation of fuzzy logic and conventional PID
controllers is shown.

The values of the proportional, integral, and derivative gains are directly related to the output actions (z's) and the
mapping constants. In particular, by varying the values of a2 and a3, the integral and derivative gains can be
determined for a particular set of output actions. Curiously, the gains do not depend directly on z5, z6, Z7, or z8.
However, these variables are not superfluous and must be set to satisfy the conditions in (5) for a linear PID
controller, required to eliminate the nonlinear terms.

The values of a and b can be chosen so that the range of the physical variable to be controlled, X (or Z), maps into
the range [0,11. Thus we have

a = I./o(max - Xmin)
b = -a * Xmin (8)

where Xmin and Xmax define the expected range of the physical variable XI.

Comparison to Standard PD and PI Controllers
In a standard PD controller the control signal is proportional to the error and the derivative of the error. By setting
the x2 terms to zero in (3) or equivalently keeping only rules 1, 2,4, and 6, we obtain:

Z = Zset + (XI - Xlseo*al/af*(z4 - zl) + (X3 - X3seO*a3/af*(z2 - zl) (9)

that is, the control is proportional to the error and its derivative. The relationships (5) reduces to only the second
relationship.

Similarly the P1 controller is found by setting the x3 terms in (3) to zero or equivalently keeping only rules I. 3,
4, and 7:

Z = Zset + (XI - Xlset)al/af*(z4 - zi) + (X2 - X2set)*a2/af*(z3 - zi) (10)

The restriction on the output actions reduces to the first relationship in (5).
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Inverted Pendulum Example
As an example consider the standard control problem of balancing an inverted pendulum. We use a formulation
taken from Barto, Sutton, and Anderson (BSA) [3], which has also been used by other investigators to test neural
network and fuzzy logic systems. In their formulation, the inverted pendulum sits on a movable cart and control
is obtained by applying a force on the cart to the left or to the right. (Due to a typographical error in their paper,
the value of gravity is given the wrong sign, so that the pendulum is in fact, not inverted. The equation they give
is correct if g=+9.8. We use the correct sign in our calculations.) For this example we ignore the motion of the
cart and only worry about balancing the pendulum.

Fuzzy PD Controller
We find it more convenient and intuitive to rewrite the rules with a slightly different notation for the output
actions of the PD controller.

If xI is negative and x3 is negative, then z is positive large = Zpl. Rule I
If xl is negative and x3 is positive, then z is positive small - Zps. Rule 2
If x I is positive and x3 is negative, then z is negative small zns. Rule 4
If xi is positive and x3 is positive, then z is negative large = znl. Rule 6

Here it is assumed that z is a corrective action which is called "positive" when it serves to increase a negative
error, x 1, toward zero and "negative", to decrease a positive error toward zero. The terms "positive large", etc., are
specific values for z, which correspond to the output actions required to produce an appropriate change in x. The
first and fourth rules then correspond to the case where x is off the set point and moving in the wrong direction.
The second and third rules correspond to the case where x is off the set point but moving in the correct direction.

The physical parameter to be controlled, XI, is just the angle of the pendulum from the vertical. The range of
motion of the angle of the pendulum is taken to be from -200 to +200. This defines the values of al and bi to be
0.025 and 0.5 respectively. The set point is Xlset = 00. The output value, Z, the force applied to the cart, ranges
from -10.0 to +10.0, so the value of af is chosen to be 0.05. The values of Zps and Zns are both taken to be 0.0
in this example, corresponding to z = 0.5. The values of Zpl and Znl are taken to be the minimum and maximum
values of the range of Z (-10 and +10), which correspond to Zpl = 0.0 and Znl = 1.0. These are reversed from what
might be expected since the force must be negative when a positive change in the angle is required, and vice versa,
to put the pendulum at equilibrium. (The subscripts on Z refer to the effect on X1, not on the numerical values of
Z.) These values correspond to the conditions in (5, second equation) for the standard PD controller.

In Figure 1 are shown the results for several choices of a3, the slope of the derivative mapping for identical

starting conditions with the pendulum at the unstable equilibrium (XI=0) and moving at 100/s (X2=i0.0). For a
large value of the slope, the system is severely overdamped, resulting in a long time to reach the set point after
recovery. As the slope is decreased, the time to the set point decreases until finally the value is too small and the
system overshoots, indicating that it is underdamped.

Standard PD Controller
We can compare these results with those of the standard PD controller by first linearizing the equations for the
pendulum, adding the controller, and calculating the effect of that controller. The original equation for the angular
acceleration from BSA is

g sinO + cose -F - mlD2sin0 + Jicsgn(i) _ 1±0
mc+m ml

1(4 -m cos20 '
3(me + in)/1)

The notation is given in [3].

The linearized expression becomes:
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Igo+ -F go~
o. , m +m ml

l03 -(m:cm i) ) (12)

The forcing function, F, is made proportional to the angle and the angular velocity using the equivalent
coefficients for the gains from (9). The responses of the system for the same initial conditions are identical to
those shown in Figure 1. Using the parameters from BSA and standard control theory, the value of a3 for
critically damped control is found to be 0.0054. Using fuzzy control with a value of a3 = 0.005 (Figure 1) the
system is observed to be very close to being critically damped.

Fuzzy PI Controller
The fuzzy PI controller has been implemented for the control of heat and mass input to a weld in gas metal arc
welding (GMAW) [4]. A system had been developed which used a standard PI controller implemented in software.
The error in the welding current is calculated from the actual measured current and that calculated from a model of
the system three times a second. The integral of the error is calculated numerically by averaging the current error
over a fixed time window. The standard PI controller was replaced with a fuzzy controller and the GMAW system
operated identically, which is not really surprising since (10) shows the fuzzy system to be algebraically identical
to the standard PI system. "The same equations have the same solutions." [5]

Comparison to the MacVicar-Whelan [61 Controller
MacVicar-Whelan showed that a fuzzy controller could emulate a standard PI controller by taking the limit as the
number of rules approaches infinity or as the limit of the level of quantization of the input variables becomes
infinitely fine. This is necessary primarily because of the discontinuities between the rules in the standard fuzzy
logic theory and the defuzzification process. Using MacVicar-Whelan's design, Tang and Mulholland [7] had to
use computer simulations to compare a fuzzy PD controller to a standard PD controller. The formulation of fuzzy
logic in this paper, on the other hand, provides an analytic relationship between standard PI and PD controllers and
fuzzy controllers.

Discussion
This method of implementing a conventional controller provides an alternative to formulating an analytical
solution and designing a controller. In our uses of this method, we calculated the mapping constants based on (8)
and guessed values for the output actions. Actually the "guesses" were based on expert knowledge of how the
system operates based on empirical data or crude estimates or models. Then we tested the system which in our
experience always worked reasonably well the first time. Following that we knew exactly which mapping
constants to increase or decrease to change the integral or differential gains to tune the controller to our exact
requirements. Here we were able to use our expert knowledge on conventional controllers. We have also
investigated reinforcement learning techniques based on BSA [3] to change the output actions [8]
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Modeling Complex Human Social Dynamics

Using Neural Networks of Fuzzy Controllers

Myron S. Karasik, Sutter Corporation, San Diego and
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ABSTRACT

We are proposing a macro-model that will successfully capture the complexity of large-scale
human interactions. The concept is based on distributed intelligent systems embedded in an environment
whose own complexities are captured in various subsystems representing major natural forces at work on
our planet. We therefore have:

1) the world is represented as a system of interactions (flows or movements of information,
energy, commodities, materials, persons, and other living things) among distinct "actors" (regions,
nations, provinces, localities, communities, associations or other social groupings); and

2) each actor is represented as a separate set of computational sub-routines corresponding to a
distinct sub-model within the overall model.

In addition to representing social entities and their behaviors, the proposed model will capture the
environment in which they function. Many environmental aspects correspond to more "physical" aspects
of the modeling problem, in which variables are more operationally defined and relationships among
them are understood structurally. For instance, clearly climate and geological forces and conditions are
mutually affected. Each has different time frames of processes, one has to do with atmospheric and
cosmological sources (sunspots) which can shift radically in days, the other has long-term forces which
define the mineralogical wealth and soil characteristics. Both drive biological forces by defining ecological
possibilities. Climate and geology interact with economics and technology when it comes to conversion of
physical resources to goods and waste products. Each affects the other; consider acid rain, water
pollution, over-farming/desertification, etc. as examples of such cross-linking. We can utilize individual
modEis for climate, biological relationships, etc., to provide the matrix in which the actions of our 'actors'
can be played out and where the effects (intentioned or unintentioned) can evolve.

The representation of these comparatively more deterministic factors will provide part of the
environmental background (context) within which the societal components of the model interact. In
addition, for many social and other processes not understood deterministically, nevertheless there are
'hard' statistics that can provide probability or population distribution functions for per capita wealth,
education, health, etc. These comparatively tractable deterministic and probabilistic factors will provide
the context within which the modeling activity will address, in ways we discuss below, the 'softer', more
complex aspects of human and other global system behavior.

Together, these elements can be driven by a 'Monte Carlo' simulation engine to effectively
explore the range of possible states and their likelihood. Overall the model will integrate probabilistic and
determirnstic aspects to explore the range of possible states within, and connections among, elements.
One of the uses of these capabilities will be to simulate the interactions of the actors under the
perturbations of various events.

Model Description

Our premise is, simple cybernetic feedback systems and statistical forecasting techniques cannot
adequately capture, by themselves, the full range of interactions of all elements subject to policy
decisions and other social actions on a large scale. Instead we have found every action creates in its
wake a largely unforeseen range of results largely due to the fact that every 'problem' represents the
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culmination of a long history of events. This historical aspect is an important part of the complexity
problem.

In reality, the nominally independent 'trajectories' of sub-system histories commingle and interact,
changing each other in various ways. Previous experiences with other entities drives potential future
experiences (Williamson 1985,1989]. Our way of meeting this requirement is that the sub-models of our
distributed network will represent the actors as "intelligent." This means they possess memory of past
events and are capable of acting based on the contents of their memory plus current information.
Through this approach, we will seek to emulate present attitudes and behavioral traits (including
dysfunctional traits such as ethnic prejudices in Bosnia and resistance to change in General Motors or
IBM) as the product of evolution from past conditions and experiences.

We can organize the huge variety of human and environmental information necessary to support the
above modeling approach, into nine major types. These concern:

4k Geological forces and conditions

6 Climatic, uceanic, and cosmological conditions

19 Biological factors - non human species (physical and behavioral traits)

4k Biological - human factors (physical and behavioral traits, including health, epidemiological,
reproductive, and metabolic)

49 Social structures that define the actors of the model (cultural, social, and ethnic groups; and
provincial, national, international, and transnational political and economic units)

ik Culture (language and value systems)

4k Human artifacts, technologies, and wealth creation potential (including capital and
capital infrastructure)

i Economic-political organization and behavior (including distribution of wealth and other
resources)

*1 Interactions (material, energy, and information flows among relevant structures and elements)

Fuzzy Sets and Cultural Modeling

The problem of finding a computationally tractable way to represent human culture is important to
the tasks of describing human values and perceptions (i.e. our cultural 'lenses' ); these, in turn, may be
essential to understanding the learning process central to the fact of history. Attempts in the past, such as
Factions [Feder86], used utility function estimates and game theory models of voting with weightings
based on salience and influence. This type of model has limited durability since it does not capture trends
in the underlying cultural matrix. The salient characteristics of a culture define normative behavioral
patterns for its members. These patterns are based on social structures, historically catalytic
events, and traditional teachings filtered through authoritative figures. Information of this type Is
often describable In linguistic terms and can be measured effectively by statistical measures such
as percentage of population responding in a characteristic way. Periodic opinion surveys (assays)
In combination with historical and demographic data can allow us to track these salient
characteristics.

Integrating linguistic data to determine relative frequencies with other 'hard' data can be
accomplished through use of fuzzy sets and neural networks. The luzzy' sets [Mamdani 1981]
correspond to adjectives such as 'slightly agree', 'strongly agree', 'slightly disagree', 'strongly disagree', etc.
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which are associated with phrases categorizing the preferred response to or desirability of a certain
situation. For example, a questionnaire containing the following questions:

"I believe everyone has the right to make personal moral decisions', "I believe in the literal
truth of the received word of God as taught by our Leader Y,", "Our present leader represents
the values of our community properly", "Country X (or people X) are enemies of our country
(or faith, etc.), "Violence is an acceptable means of resolving disputes"., etc.

In our case, an assay would ask demographic data to help assign membership into groups based
on age, sex, religion, education, etc. The other questions would relate to behavioral propensities to
answers as to how they would respond to given scenarios where values are at stake. We are after the
relative frequencies of common behavior. Thus we may determine from analyzing the assay results that
there are a certain number of groups based on behavior (having the same answers to the same sets of
questions). Then, knowing the relative frequency of these behaviors among a particular demographic
group, we can determine the overall likelihood of a behavior in the society at large. Care must be made in
using a consistent of terms for each cultural group when framing our questions so that answers are
comparable.

Our membership sets are developed by analyzing the assay results into a minimal grouping of
non-overlapping patterns. In finite-state automata theory, we use 'Kamaugh' maps to produce the
minimum number of discrete states necessary to describe a finite state machine. In this case our states
represent all individuals whose answer patterns '1, 's for the selectel choices and '0, elsewhere are the
same. Sameness may be 'fuzzy' in that 'dose' patterns are grouped together. The resulting finite set of
distinct membership states then defines the 'interacting' agents whose distinct behaviors result in overt
group behavior. The weights of 'influence' and combinatorial thresholds is factored by demographic and
structural descriptions of the society.

We can then represent a social system as a combination of behavioral traits based on the relative
proportions of the population espousing them. Thus if 63% of a population are illiterate and 88% of them
strongly agree that one must defeat their enemies at all costs, while only 23% of the 37% of educated
people believe so then we can see a great dissonance between these two groups. Today, the economic
and political control might belong to the educated, but a popular movement could upset it and lead to a
sharp change in that society's overt behavior. On the other hand, a program of adult education might
make a permanent shift in the underlying behavior.

Thus every individual is the member of one or more communities; each community has a common
history, culture (language, prescribed behaviors, taboos), and an accepted political structure to determine
authority. At least one such community will have economic components and provide a means of
livelihood; and at least one will provide the primary social matrix (usually family, kin system, clan, tribe or
people). Our demographic description vector places us into a particular set of memberships. Each such
membership group has a certain set of propensities for behavior. By combining the membership and
behavior frequency data, we can predict probable behaviors by population segments and relative
contribution to total. These 'memberships' define the clustering of actor-elements of our
distributed network model. See Figure 1 below for examples of demographic categories and value /
behavior laden questions used to determine classes of distinct behavioral groupings.

Every individual attempts to integrate the various communities into a personally congruent and
fulfilling life. Sometimes this is easy, more often these days, not, because in this shrinking world, we find
ourselves more likely to belong to more groups having less in common. For example, the Bosnian Muslim
Biophysicist and Musician might have more in common with a Pakistani Muslim Poet or a Hindu
Biophysicist than a Bosnian Serb Musician (even though the last and the first may have two things in
common rather than one). This sort of non additive combination is the stuff of 'fuzzy' systems where
degrees of membership and relative weights can be accurately modeled. In particular, the attribute of
'strongly agree' would characterize the identification with "Serbness" while the other attributes would have
slight or no components, thereby driving the behavioral function to most closely resemble the 'optimal Serb
behavior profile', i.e.., sense of historical injustice and acceptari,- of violence as means of rectifying it.
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Example of Male Demographics

•age 50+ income

h.s.

Example Survey Questions

e must revenge the close kin only trusted
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able behavior

_there is only one correct
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look to 'xxxx' for guid nce [be destroyed I
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women are equals? our enemies are ....... (list)J
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All questions in form of truth
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agree our leaders are ...(list)
to disagree (middle = don't
care) purpose of life is......

Develop Karnaugh map of t__ __________________
answers for individuals,
combine [our greatest leader was 1
common entries to develop [is .......
groupings of patterns and
relative frequency by disputes are best
demographic resolved by violence?categories

FIGURE 1 the greatest problem with
tout society is ........
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Neural Networks to Model Interconnected Agents in a Common Domain of Interest

Per [Karasik 1992] we can embed the individual actor in a matrix of other actors to interconnect
with each other in a neural network. Each acts as a simple 'neuron' processor which takes many inputs
(environmental and other actor outputs) and has a single output (choice of behavior or null response).
The 'on' signal is achieved if the linearly weighted sum of the input signals exceeds a certain threshold
value. The output in turn can be fed into any number of subsequent stage neurons to be factored together
to produce next stage outputs, etc., until we get a final level which generates an overt behavioral change at
the global level. Weights can change over time as the model spontaneously 'learns' from past mistakes.
Weights in essence are the 'memory' of the system and define the degree of interaction among the
elements during the subsequent cycle of processing.

When we look at the model of the individual agent (person or grouping of like persons), we see the
following: We have a means of representing personal history (memory) recording the results of previous
encounters with reality. We also have a comparator function evaluating difference between existing state
of the world and internal ideal (note, dissonance is a cumulative function). Finally, the agent is equipped
by nature (through biological and physical resources and limitations) to perform a set of actions subject to
cultural propensities (group history, values, behavioral paradigms). The agent has the ability to sense and
filter events and messages from various sources (other agents, etc.) to determine an appropriate action
which will affect its domain. An action taken will impact both the agent, through learning how its domain
behaves when acted upon, as well as other agents linked through the common domain.

We are interested in modeling the dynamics of interacting social entities whose component agents
are population categories having varous behavioral propensities. At the agent level we can model the
various strengths (or weights) of direct environmental signals and signals from other agents that reinforce
or inhibit certain responses. The degree of contribution from the other agents depends on prior
experiences. These can be modeled using the concepts of proximity and credibility. Proximity
would Indicate a stronger weight, while credibility would Indicate the sign or direction of influence.
The links between the agents are incorporated in an 'interconnection matrix'. Proximity and credibility of
source signals are factored in the weights of the signals. The opinion-making process is then structurally
described by this matrix. The elements of the weights can change over time as new sources arise and
perceived credibility is reduced or enhanced based on history and evaluation of state.

Thus, messages from nearby friends are important, as well as those from nearby enemies; casual
strangers have little influence; while culturally authoritative sources (pope, imam, etc.) could have a
significant contribution as well. We can model the strengths as normalized to the set [-1, 1] for simplicity
and ability to use Markovian methods in modeling time evolution. The thresholds can be modeled using a
vector whose individual component values are in the set [-1, 1]. The individual component represents the
degree of dissonance allowed for a given environmental variable of concern. Thus each agent acts as if it
seeks to maintain some acceptable dissonance between its desired state and actual perceived state. The
measures of each of these objectives can then be ranked. Similarly, we can perform the same structural
analysis at the entity level.

In our model, our agents are 'neurons' representing disjunctive demographic components whose
outputs are the relative frequencies of behavior. These are input into a second level 'agent' or actor that
represents the behavior I preferred environment state in question. The voting logic triggers the threshold
of the behavior when cumulative frequencies exceed a certain percentage. Threshold can change or be
set based on actual structural factors as to how much 'weight' members of different groups might have. it
is possible for us to have multiple conflicting behaviors triggered by adjusting the thresholds, thus modeling
conflicts among agents. A simple, incomplete example is shown in Figure 2 below.
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The common domain shared by the behavioral agents can 'expand' depending on timeframes of
delays to incorporate larger numbers of agents who are indirectly affected or loosely coupled to the
domain. For example, a town which has a plant that generates wastes into a nearby river can affect many
other communities downstream and also, through ground water, even communities not on the river. The
plant may generate important economic goods that impact the livelihood of many other communities and
play a significant role in international trade, engineering research, etc. The recognition that domains
cannot be narrowly construed is crucial to obtain the requisite linkages to make forecasting accurate.

Within this model, conflict between entities Is a result of the computed difference between
the normalized "objective" vectors of the network of agents that compose the entity. The goals of
each agent are a component of a set of all goals of the entity. The strengths within the range [-1,1]
Indicate the relative desirability or non desirability of a particular state of affairs in one's
environment. Values of zero or neady so indicate a 'do not care' situation. Each social system can be
described as a combination of a number of communities (kin, tribe, clan, people, nation-state, religion,
economic class, political party, etc.) There is a combination of goals from each of these source group
memberships leading to an overall goal set of the social entity. In some cases, the ranking of certain goals
from one source will override that of another. Thus a strong desire from one group will override weak
desires. On the other hand, opposing tendencies might either cancel as a way of avoiding internal conflict
or might go with one or the other. Similarly, the net objective vectors of entities can be compared to
determine conflictual propensities.

We can therefore project physical scenarios using climatic, geological and biological information,
to forecast agricultural and economic occurrences and then model the results of these perturbations on the
social/cultural/political matrix of human societies. Similarly we can model the human impacts on our
physical environment and project its ramifications as well. Most of all, we can model the likelihood that
given strategies will be pursued by differing communities under various economic, political and social
stresses, based on the historical/cultural continuities and our ability to detect dissonance between actual
domain states and desired ones for each community. Dissonance is the metric that measures the
difference in value of the existing state of affairs versus the desired state of affairs. For a Bosnian Serb
whose goal of being a member of a Serbian political entity is ranked at +1 (most important), living in a non-
Serbian political entity is ranked as (-1) and thus the dissonance is 2. The value, indicating maximum
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difference between the vectors, will indicate that actions to redress the state of affairs is highly likely: when
combined with other members of the same political entity who are adverse to a Serbian dominated political
entity, one has then the makings of a serious conflict. Modeling strategies to allow multiple communities to
reduce dissonance simultaneously is the art we are attempting, to validate them before they become
policies inflicted on the communities in question.

Conclusions

We therefore hold that modem computational and visualization technologies are as last capable of
being used to accumulate the raw polling data (after all, we even poll the peoples of the former Soviet
system now) along with the demographic and other crucial physical data to build a tractable engine for
effectively modeling the complex dynamics of interacting human social groups at various levels. By
capturing the structural relationships and changes over time (opinions, demographics, etc.), we have a
scientifically valid model of ever increasing accuracy as refinements accumulate and community leaders
and authorities come to rely on it for evaluating prospectively the response of affected populations.
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Abstract- Soft computing models use fuzzy membership functions and the associated operators to qualify and
quantity uncertainties in diverse domains. This include dynamic multiple inferencing using high level fuzzy
connectionist designs which combines the symbolic and sub-symbolic paradigms. The mechanics of modeling
and choosing appropriate membership functions and their parameters, the relationship between linguistic vari-
ables and membership functions, the significance of membership functions in fuzsy reasoning, and the evolution
of optimal membership functions and fuszy rules in soft computing models are topics of active research. These
topics form the theme of this paper. Concepts of soft computing and membership function are overviewed in
the introduction. Representational categories and properties of membership functions are then explored. This
is followed by a discussion on qualitative, empirical, and evolutionary modeling techniques. Learning schemes
for associating membership functions with appropriate linguistic variables and the optimization choices are
studied. The paper concludes with a discussion on future research directions.

I. INTRODUCTION
A. Soft Computing

Soft computing models use fuzzy logic [1,2,3], artificial neural networks [4], approximate reasoning, genetic
algorithms [5], possibility theory, fuzzy clustering, and so on to discover relationships in dynamic, nonlinear,
complex, and uncertain environments [6]. These techniques often borrow mechanics of cognitive processes
and laws of nature to provide us with a better understanding of, and solutions to, real world problems. A
typical application is the development of hybrid intelligent systems [7]. Multicriteria Group Decision making
techniques in conjunction with soft computing models and similarity and commonsense based reasoning
form Flexible Intelligent Systems [4]. All these systems rely on fuzzy membership functions with associated
linguistic terms and variables to manage uncertainty.

B. Fuzzy Membership Function

Fuzzy membership functions allows us to quantify the extend to which objects which are instances of a
concept belongs to the concept. The concept is often a linguistic term T (e.g., tall woman) of a linguistic
variable V(e.g., height of women in USA) [8,9,10]. The word tall is an example of a fuzzy predicate which
may have associated quantifiers such as kind of and fuzzy truth values such as quite true, very true, more
or less true. The linguistic variable is a label for an attribute of elements 0 e e (e.g., woman in women) with
a measurable numerical assignment interval X c [-co, o0] called the referential set (e.g., [0,7] feet). PT(O), a
subjective numerical assignment then represents the degree of membership of 0 (e.g., a particular woman,
say Mary) in T (e.g., tall woman). V : E -- X [11,12,13].

The relevance of context may be noted. The concept of Mary being tall is not only subjective with
respect to individual opinion, but also dependent upon the universe of discourse. For example, height of
basketball players or the height of a ten year old girl. The following may also be noted. Even if I know that
the height of Mary is 5ftlOin, my concept of tall and my visual image of a length of 5ftlOin is still fuzzy.
Uncertainties if any concerning the actual height of Mary (whether it is 5ftlOin plus or less than Wft6in are
represented by fuzzy measures (g:p(X) -* [0, 1]). Another point concerns the fact that the degree or grades
of membership are not probabilities. An apparent difference is that, on a finite universal set, the summation
of the membership grades need not be I where as the summation of probabilities must be 1.

There are several options for choice of the membership function. It includes qualitative modeling using
methods such as fuzzy c-means clustering, empirical modeling, evolutionary learning using genetic algorithms
or artificial neural networks, and using predetermined membership function. The mapping between the
membership function and the linguistic variable may be pre or post determined depending upon whether
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subjective (use expert experience) or objective model building technique is used. The same applies to the
membership function parameters. You have a choice of point-valued and interval-valued. You also have an
option to choose from static and dynamic membership functions. The membership functions may be used in
various fuzzy reasoning models including fuzzy neurons (14,15]. Various aggregation operators may be used
to obtain conjoint measurement by performing fuzzy arithmetic operations such as max, min, t- norm and
t-conorm. For example, happy could be a composite linguistic variable of its component linguistic variables
rich, love , education. Monotonicity is of concern here.

The upcoming sections are organized as follows. Representational categories and properties of membership
functions are explored. This is followed by a discussion on qualitative, empirical, and evolutionary modeling
techniques. Learning schemes for associating membership functions with appropriate linguistic variables and
optimization choices are then enumerated followed by the conclusion.

II. Fuzzy MEMBERSHIP FUNCTION REPRESENTATION

Vertical, horizontal, and convex representational categories will be discussed here [9].

"* Vertical:
AT : X -. [0, 11 (1)

where x e X belongs to T to a degree PT(Z).
"* Horizontal: Here, a fuzzy set T is represented in terms of its a-cuts level sets {Ta I ac[0, 1]), where

T. = {z I PT(Z) 2! a}, such that
PT(Z) = sup{alz c Ta,} (2)

"* Convex Combination: Given a finite discrete fuzzy set T with its level sets {T. a e [0, 1]}, such that
{TM. C Ta2. C_ T.J and jal > 02.. > a0) where mN = a, - ai+I, and &n+1 = 0

PT(Z) =D(Y I zeTa, and z a T.,-,) (3)
i

This is a probabilistic way of representing a fuzzy set.

III. Fuzzy MEMBERSHIP FUNCTION PROPERTIES

Fuzzy membership functions are characterized by their unique properties. Scale type, membership function
shapes, and aggregation operators will be discussed in this section.

A. Scale Type
Nominal scale (one-to-one function, e.g, student number), Ordinal scale (monotonic increasing function,

e.g., grades), Interval scale (alflne function, e.g., Temperature C,F), Ratio scale (Similarity function, e.g.,
Weight kg, lbs), and Absolute (Identity, e.g., Frequency) are options for scale types [16]. The interval scale
is considered as the most adequate.

B. Shape

We have a choice of membership functions including triangular, trapezoidal, and gaussian, gamma, ex-
ponential, with their associated parameters. Each membership function may relate to a linguistic variable.
For example, given a,b,c,d as real numbers, fuzzy triangular (Figure 1. a) and trapezoidal (Figure 1. b)
membership function are defined as follows:

fx)= (z -c)/(b-c) ba<x_<c (4)

0 otherwise

(z -a)/(b-a) a < x < b
Sb<x<c (5)I~) (z -d)l(c -d) c•~ 5

0 otherwise
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f(x) Cb (x) b C f(x)

X X X

(a) (b) (C)

Figure 1. Membership Functions

The gaussian and exponential membership functions are given in (Figure 1. c).

I C-0.5 - /A-2

A(M,) = 1 e -ir W ,-• (6)

where p is the mean and o, is the standard deviation, the two parameters for the gaussian membership
function. A particular value of or and p corresponds to a specific linguistic variable. Another example is the
generalized bell function with three parameters a, b, and c.

1
f(z,) = 1 + [(z, - c)/a]2b (7)

An exponential membership function with parameters a, b, and c may be of the form:

f(z,) = 1 - (8)

The relationship between physical measure and subjective perception is highlighted by the exponential
model. A linear function can be generated from this using transformation techniques. Static or dynamic
hedge operations such as intensification, dilution, and inflection may be performed on these membership
functions.

C. Aggregation Operators

The aggregation operation could be simple summation, some logical operation, fuzzy aggregation oper-
ations such as min and max proposed by Yager, Dombi, Skiar, Schweizer, and so on. Axioms such as
monotonicity, continuity, idempotentcy, commutativity, associativity, distributive, symmetry, and involution
are of concern. One commonly used aggregation operator is the monotonic nondecreasing, continuous, and
symmetric, generalized means averaging operator given by

ha(a+, a2, .. ,a.) = ( + + n a) (9)

where a e *(a 6 0). Values of 0, -1, and 1 for a gives us the geometric, harmonic, and arithmetic means
respectively. For an OR and AND neuron [12,13], given the input signals zl,z2, .. ,Z, and the weights
Wi, W2, .., wn and VI, V2, .. , v, respectively,

n

y(OR) = V(w, A z^ ) (10)

i=1n
n

y(AND) = A(vi v z,) (11)
i=1

which corresponds to the max min and min max operations respectively.
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IV. MEMBERSHIP FUNCTION MODELING

This section explores the membership function modeling aspects of fuzzy modeling. Qualitative, empirical,
and evolutionary modeling techniques will be discussed. Interpretation of the generated membership function
and their associations with linguistic variables is an important step towards explaining an inference. We
will address this in a later section. The modeling options offer choices for developing suitable membership
functions.

A. Qualitative Modeling

This is an objective modeling technique that includes

"* structure identification (rule construction): At first the clusters are generated using fuzzy c-means
method, followed by the selection of variables associated with input-output relations [17].

"* parameter identification (parameter selection of antecedents and consequent in each rule) [18].

B. Empirical Modeling

This involves the experimental acquisition of membership values using direct rating, reverse rating, set
valued statistics, and polling [8,9].

"* Direct Rating: Randomly selected elements 0 c e with values V(8) e X are presented to subjects with
the following questions and responses.

- How T is 9 (V(9). For exa 'e How tall is Mary considering the height of women basketball
players. The response isL .iue y c a sliding scale (PL, AU]-

- Randomly asked to identify 8,nm (V(,min) = Xmi.), corresponding to PL and similarly 6"'a. for
pu in order to identify [Xmn ,X'.].

Memorization is avoided by repeatedly presenting the same 9(V(0)) between other random presentations
of 0 e[Omin, Gm.]. The responses y/x generate a conditional distribution.

"* Reverse Rating: Randomly selected membership values V c [pL,o u] are presented with the following
question: Identify G(V(O)) that possess the ItA degree of membership in the fuzzy set T. The response is
0 e O(V(0) X). The memorization avoidance technique employed in direct rating is applied. Responses
are recorded as x/y.

"• Set Valued Statistics: A fuzzy set can be defined as an inner or outer approximation of a convex
combination set.

"* Polling: This is a probability model. The subject is randomly presented with elements 0 c e and an
yes/no question Do you agree that 0 is T.

ArW #of'es (12)
#of yes + #o! no

C. Evolutionary Modeling
In a fuzzy reasoning system, the membership functions are used to build fuzzy rules. Evolutionary modeling

makes use of techniques such as genetic algorithms [5] and artificial neural networks to learn the membership
function parameters and rules. Simulations with a variety of reasoning methods allow us to identify the
most appropriate reasoning method. Preferences can be requested using an appropriate weighting scheme in
a multicriteria decision making framework. A hierarchy can be established for choices. This eliminates the
limitations of dependencies brought about by the choice of a particular membership function. We will now
look at the options for evolutionary modeling.

* Genetic Algorithms(GA): An objective function and a suitable performance index measure are identified.
GA selects appropriate membership function parameters through evolutionary learning. The rules and
their number may also be learned by GA [5]. This gives an objective flavor by not depending upon
experts for the choice of rules. It also solves the brittleness problem. Moreover, we have the option to
consider expert rules for comparison, learning, and verification. Computational complexity is reduced
by being able to make reliable inferences using a minimal rule set. Optimization of this learning curve

is important for ensuring efficient and robust performance of the system.
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* Artificial Neural Networks(ANN): Adaptive learning models using ANN also makes use of an objective
function and performance index to train the neural network. Several fuzzy neural systems have been
proposed [19 - 23]. Ideas such as simulated annealing may also be considered. Associated with these
models are specialized architectures such as time series memory modules and learning techniques.

V. MEMBERSHIP FUNCTIONS AND LINGUISTIC VARIABLES

The relationship between the membership function and linguistic variable may be established through
empirical measures. Often pre-established relationships are used. Appropriateness of this method is in
question. This may be attributed to the uniqueness and context dependencies of diverse relationships. Post-
determination of the relationship is one of our current topics of research. Questions include how a membership
function relates to one's perception, the cognitive and linguistic aspects of human decision making. Similarity
and commonsense based reasoning techniques may be considered [24]. Moreover, in the case of membership
function parameters, the meaning of the parameters in the context of cognitive relationships is important.
For example, in the case of Gaussian membership function, the parameters are the mean and standard
deviation, a statistical dependency. Often other parameters such as skewness may be more significant in a
relationship.

VI. OPTIMIZATION OF MEMBERSHIP FUNCTIONS

Optimization of membership functions can be addressed at the following levels.

"* Choice of the type of membership function
"* Membership function parameters
"* Fuzzy rules formed using the membership functions

Computational complexity, robustness, reliability, specificity, validity, and efficiency are of concern here. The
importance of these features may vary with the domain and the type of problem being addressed. Examples
are classification, pattern completion and matching, optimization, and control problems.

"* Computational complexity is important for implementation and practical application. Optimization
directly improves computational complexity by making available a minimal rule set build using the
membership functions. It may be noted that often there is a trade off between computational complexity
and specificity.

"* Robustness signify the extend to which the model can successfully handle internal disturbances and is
a measure of the extend to which the system has learned the relationship.

"* Reliability relates to robustness and consistency.
"* Specificity relates to the principle of minimum specificity. Optimization helps to identify more appro-

priate matches of membership functions with the linguistic variables.
"* The optimization technique should ensure the validity of the membership function parameters and the

fuzzy rules. Other concerns include the validity of the match between the membership function and the
linguistic variable.

"• Optimization should increase the efficiency of the model. Efficiency relates to the speed of the system,
and correctness of the solutions. Non-duplication in learning is also a matter of concern here.

Consider the case of an evolutionary model which learns the membership function parameters as well as the
fuzzy rules. Unless appropriate optimization techniques are employed, you may end up with duplicate rules.
There could be exceptions where the validity itself is in question. Thus the optimization employed should
be capable of weeding out invalid membership functions and rules. Options such as simulated annealing,
clustering, commonsense reasoning, and integer programming are currently being considered.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have discussed the mechanics of modeling and choosing appropriate membership functions and their
parameters, the relationship between linguistic variables and membership functions. This paper gives an
overview of the properties of soft computing and fuzzy membership function. Fuzzy modeling techniques were
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explored. The flexibility of soft computing models permit computational freedom in managing uncertainties.
Evolutionary learning and optimization of membership function parameters and fuzzy rules are currently
being studied. This includes identifying the optimal fuzzy rule set, and explaining the rules which gives us
a better understanding about the relationships between the concerned variables.

The importance of optimal membership functions and fuzzy rules has been established. Options for
combining expert rules with the newly learned rules are being studied. Future research directions include
development of parallel algorithms and analysis of the cognitive elements.
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Abstract

We introduce a simple fuzzy-neural network and prove that it can represent any continuous function
over a compact set. We introduce "fuzzy curves" and use them to set the initial weights in the fuzzy-
neural network. We show that our choice of initial weights and network structure yields networks that
train very rapidly.

1 Introduction

Bello [1], Drago [3], Narazaki [6], and Wessels [9] have published work on obtaining the proper network
structure and initial weights to reduce training time. We introduce a simple back propagation network to
implement a fuzzy model. We also introduce the concept of a "fuzzy curve," and we use fuzzy curves to
determine the initial weights in the neural network. Finally, we give several examples to show that our
method produces adequate models that train very rapidly.

2 The Architecture of the Fuzzy-Neural Network

Figure 1 shows the architecture of our four layer (input, fuzzification, inference, and defuzzification) fuzzy-
neural network. Referring to Figure 1, we see that there are N inputs, with N neurons in the input layer,
and R rules, with R neurons in the inference layer. There are N x R neurons in the fuzzification layer.
Hence, once we determine the number of inputs N and the number of rules R, we know the structure of the
network. The first N neurons (one per input variable) in the fuzzification layer incorporate the first rule,
the second N neurons incorporate the second rule, and so on.

Every neuron in the second or fuzzification layer represents a fuzzy membership function for one of the input
variables. The output of the fuzzification layer is oij = exp (-Iwijlzi + wiojI'-) where oij is the value of
fuzzy membership function of the ith input variable corresponding to the jth rule and iij is typically in the
range 1 < lij <_ 6 and initially equals 2. We label the set of weights between the input and the fuzzification
layer by W = {{wijo, wij1} :i = 1, . .. , N; j = 1, .. ., R}.

We use multiplicative inference, and the output of the inference layer is oj = I- oij . The connecting weights
between the third layer and the fourth layer are the central values, vj, of the fuzzy membership functions of
the output variable. We label the set of weights {vj} by V = {vj : j = 1, ... , R}. Note that the weights in V
and W determine the fuzzy membership functions. We use the weighted sum defuzzification. The equation
for the output is
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Figure 1: The architecture of the fuzzy-neural network.
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j I

It is a straightforward to show using the Stone-Weierstrass Theorem [5] that any continuous function f
,*' - W over a compact set can be approximated as closely as we desire by Equation 1.

3 An Introduction to Fuzzy Curves

We consider a multiple-input, single-output system. We call the input candidates xz (i = 1, 2,... n), and

the output variable y. Assume that we have m training data points available and that xik (k = 1, 2, .... , m)

are the jth coordinates of each of the m training points. Table 1 shows an example with n = 3 and m = 20.

For each input variable xi, we plot the m data points in xi-y space. Figure 2 illustrates the data points from

Table 1 in the XI-Y, x2-y, and X3-y spaces. For every point in xi-y space, we draw a fuzzy membership

function defined by

,UkX)= exp (-(ik Xi )2) (2)

We typically take b as about 10% of the length of the input interval of xi. Figure 3 shows the fuzzy

membership functions for the points in Figure 2. In Figure 3, the point where pik = I coincides with Xik.

We use centroid defuzzification to produce a fuzzy curve ci for each input variable xi by

E•' Pik(Xi) • Yk (3)
'i F-Z- Pik(Xi)
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No. x, x2 X3 y No. IL x 2 X3 y No. xL x2 X3 y

1 14.9 2.0 9.3 3.8 8 6.9 2.3 10.3 3.3 15 18.1 2.5 5.9 2.5
2 16.6 1.7 5.8 3.7 9 7.4 1.9 9.4 2.8 16 23.4 2.2 8.1 4.4
3 21.3 2.1 9.1 3.0 1 11.3 2.0 8.4 3.0 17 13.7 2.8 7.9 3.3
4 24.3 2.9 7.0 4.7 11 17.6 2.0 8.2 2.7 18 23.1 3.8 4.9 2.2
5 26.6 1.7 4.8 4.1 12 19.5 2.4 6.5 3.3 19 7.7 2.6 9.3 2.3
6 23.2 1.3 4.7 3.1 13 21.6 2.5 5.1 4.9 20 21.1 2.5 5.1 1.8
7 22.2 2.5 4.5 3.1 14 26.5 1.9 6.3 4.8

Table 1: Data points used in An Introduction to Fuzzy Curves.

4++ ++ + 4+ + ++ +4+ ++ + 4 ++ 4 + +
2+ + + + ++ +

+ 2 + 2 + +

10 20 2 4 5 10
xl x2. x3

Figure 2: The data points plotted in xl-y, x2-Y, and X3-y spaces.

Figure 4 shows the fuzzy curves c, c2, and c3 for the data in Table 1.

4 Setting the Initial Weights

We set the initial weights in V, we divide the range of the desired output data into R intervals, and we set
the initial vj (j = 1,2 .... R) to be the central value of these R intervals. If, using the data in Table 1, we
choose R = 4, then we make v, = 2.19, v2 = 2.96. v3 = 3.74, and v 4 = 4.51.

We set the initial weights in W by dividing the domain for each fuzzy curve ci into R intervals corresponding
to the R intervals in the output space. For the fuzzy curve ci, we label the centers of the intervals xij (j =
1, 2, .-. , R). We order the x;, (j = 1, 2, .. , R) by the value of ci at the center of each interval. XiR corresponds
to the interval containing the largest central value of ci. The interval containing the point XiR is associated

4-4 4Aý\A

2 2 _ _ WA

10 20 2 4 5 10
xl x2 x3

Figure 3: Fuzzy membership functions in x1 -y, x2-Y, and X3-y spaces.
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Figure 4: Fuzzy curves c1 , c), and c3 .

with the output interval whose center is at yR. In a similar fashion, X,R- I is the center of the interval which

contains the next largest central point on the curve ci, and xiR-1 is associated with tVR-, and so on for

j=R-2, R-3 3_.. 1.

The length of the interval over which a rule applies in the domain of ci is denoted as Ax,. We define the

initial fuzzy membership function of xi for rule j to be exp (- ' 1'), where a is typically in the

range of [0.5, 2]. Hence. we see that the initial weights wijo and wijI are wijo and aAx,=

5 Training the Model

We define the performance index for our model as

PI = -"k=l (Ok Ok)(P1=o 1(4)

where ok, (k = 1,2,. m), are the actual or desired output values and Ok, (k = 1,2 .2. i m), are the outputs

from the model. We train the neural network with a back-propagation technique to modify the variables

vj, wijo, wij I, and lij. We choose a maximum number of iterations I'ma, and some small number ( > 0. The,'i+1° 00 Xi2° I

training is continued until, for some i , -..j=i P - zE'+20 100 Pj < c or the number of iterations reaches

Imax. All of the examples in this paper used Imax = 5000. The choice of c depends on the problem.

6 Performance Comparisons

Our performance comparisons are summarized in Table 2. We see that our models are almost always simpler

than previously proposed models, they usually yield equivalent or better performance, and they train very

rapidly. The details for the various comparison tests are enumerated below. The performance measures

differ from author to author, but a lower number means better performance in every case. We have used

the performance measure of the original authors in all cases. Hence, the performance figures are comparable

across a line, but not vertically. A blank space in the table indicates that the data was not provided in the

reference. In cases where the original author did not quote a performance measure, we use Equation 4. The

item numbers refer to the test number in Table 2.

1. This is the non-linear equation y = (1+ z"+ xj- 1 5 )2 taken from [7].
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TEST PRIOR WORK OUR RESULTS
NUMBER RULE NEUR PERF ITER RULE NELR J PERF ITER

1. Sugeno NL 6 na 0.010 na 3 9 0.004 1900
2. Box & Jenkins 6 na 0.190 na 4 23 0.081 4300
3. Narazaki NL na 22 3.19 468 4 9 0.987 2200
4. COD 2 79 3.5/1.6 4 19 2.8/1.8 5000
5. Chem Plant 6 na na 7 28 0.002 1700
6. Stock Price 5 na na 5 31 0.018/0.126 3000

Table 2: Comparison with prior work. The RULE column is the number of rules, NEUR is the number of
neurons, PERF is a performance measure, and ITER is the number of iterations to train.

2. This is Box and Jenkins gas furnace data taken from [21 and [7]. We compare our performance with a
model developed in [7].

3. This is the non-linear equation y = 0.2 + 0.8(x + 0.7sin(2,x)) taken from [6].

4. This is data came from the Chemical Oxygen Demand in Osaka Bay example in [4] and [8]. A Group
Method Data Handling algorithm was used for analysis in [4]. They train on 33 data points, and predict
12. The performance measure from [4] on the training data is 3.63, and the performance measure on
the checking data is 2.04. (8] uses a fuzzy-neural to model the system and obtain performance measures
of 3.5 and 1.6 on the training and checking data respectively.

5. This is data for operating a chemical plant originally appeared in [7].

6. This is data on daily stock prices for stock A from [7]. We trained on 80 data points and predicted on
the next 20. The outputs are shown in Figure 5.

7 Conclusions

We create simple and effective fuzzy-neural models of complex systems from a knowledge of the input-output
data. We introduce the concept of a fuzzy curve and use it to set the initial weights for the fuzzy-neural
network model. Because the initial structure and weights of the neural network are set properly, our networks
train rapidly.
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ABSTRACT

Nonlinear systems are becoming an area of great interest in the control
engineering community. Many interesting problems such as controllability [14],
input-output decoupling [15], feedback linearization, have been approached with
success. On the other hand, not to many results have been achieved in the
solution of the problem of identification and control of unknown nonlinear
systems. In general, linear methods are being applied to nonlinear systems, when
only narrow ranges of adjustments are allowed in the neighborhood of the set
point. Non-conventional methods are being investigated for systems that are
inherently nonlinear and when wide control ranges are necessary. Narendra [16]
proposed a method for identifying some classes of nonlinear systems using neural
networks. Teixeira [10] developed a feedback linearization procedure for unknown
nonlinear systems, using two feedforward neural networks, and applied the method
for motor control. On the other hand the recent success on the application of
fuzzy logic in industry automation has motivated its use in the control of
nonlinear systems. Its simplicity and the fact that is not a time consuming
method, make it a very promising approach for this kind of control problems. Some
difficulties arise, such as, the adjustment of the rule base and the choice of
the membership functions [5]. A new approach that combines the learning
capability of the neural networks with the simplicity of fuzzy logic is been
identified as neuro-fuzzy systems [12]. Initially, this paper presents an
overview of the various neuro-fuzzy approaches, including their special features.
Secondly, a dc motor with a nonlinear load is controlled and the paper is
concluded with an analysis of the simulation results.

1. INTRODUCTION
Since 1946 some research groups have been involved in studying the basic

principles of the intelligent information processing. Mc Cullow & Pitts,
established the basic principles of the neural computation [4]; Hebb (4]
developed the rule for storing orthogonal patterns which is considered the basis
for the development of the Perceptron Neural Network [4]. The development of the
Back-propagation algorithm [4] for training the Feedforward Multi-Layer Neural
Network, contributed for the wide use of Artificial Neural Networks (ANN) in many
different areas. Another important theory occurred in parallel to the neural
network development, becoming known as "Fuzzy Logic" (FL). The basic principles
of FL were introduced by Zadeh [1] in 1965, having its first application to the
area of control systems in 1975 [2]. The analysis of the different ANN proposals
and the basic principles of FL shows that there are many points where the two
areas can be put together, specially in control applications. Multi-layer Neural
Networks are very good for estimating nonlinear maps and the approaches used in
Fuzzy Logic can be applied for controlling complex systems, by using the
information given by a system expert. This information is used to create a rule
base associated to membership functions describing how elements are related to
a set. In FL the membership functions can assume values varying continuously from
0 to 1. Neuro-Fuzzy Networks (NFN) [12-13] which are attempts to combine the
advantages of FL and ANN, are the main object of analysis in this paper. More
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specifically, different proposals of NFN are analyzed and used in the control of
DC motor with a non-linear load. Initially, an analysis of the many ways that one
can put together neural networks, and fuzzy logic is carried out.The following
approaches are analyzed: -Fuzzy logic control, -Fuzzy logic with neural
membership functions, -Fuzzy logic with neural rule base, -Fuzzy logic with
neural membership functions and neural rule base. Each one of the approaches are
then applied to the control of a DC motor. Finally, the results are analyzed and
compared with the results obtained from the use a PID controller.

2.FUZZY CONTROL
Basically, vague information can be used and processed in a fuzzy

controller in such a way that industrial plants can be actually controlled. A
control algorithm is prepared based in the plant control program that is used by
the control operators. In general, it consists of a set of IF-THEN-ELSE
statements that are used to compose the fuzzy rule base. One could organize the
development of a fuzzy controller [5] in the following steps:
STEP I- The rule base is established based on the linguistic information that
involves, for the control case, the actions to be taken as a function of the
output error and its variation. These values define the universe of discourse,
i. e., the range of application of the rule base.
STEP 2- This is the fuzzyfication stage, i. e., the transformation of the
numerical and linguistic values in fuzzy values. Basically, an inference rule is
applied to the output error set Z, to the output error variation set VE, and to
the control reference R:

U= (ZxVS) *R (1)

where the symbols x and * represent the cartesian product and the dot product,
respectively. For the case of fuzzy sets, these operations include the
application of the membership functions related to each element of the sets
[5,7].
STEP 3- This is the defuzzyfication stage where the output values of the
fuzzy controller is transformed in actuating signal that is introduced in the
plant through conventional devises like digital-analogic converters, transducers,
etc. There are many ways of performing the defuzzyfication process [5], including
the max, the gravity center, the indexed max, and the indexed gravity center.

Considering that the membership functions denote how much the elements are
related to the sets, and that, in most of the cases, their equations are not
known but only some plant input-output samples, the use of any kind of estimation
becomes necessary. Considering also that multi-layer feedforward neural networks
are excellent estimators of nonlinear maps, they are considered a good choice as
membership function estimators. Next section, deals with this subject.

3. THz USE OF FEEDFORWARD NEURAL NETWORKs FOR THz IMPLEMENTATION OF THE
DDMBERSHIP FUNCTIONS

The definition of fuzzy sets and the choice of the membership functions are
usually done in a very subjective way depending on many factors. There are some
well known methods for defining the membership functions [5] such as Saaty
comparison method. In this section we describe the use of a feedforward neural
network, for the estimation of the membership functions. In this kind of neural
networks the input layer receives the samples of the universe of discourse. In
the output layer there is one element for each linguistic value. Therefore,
during the neural network training session, numerical values obtained from
simulation or from the information of an expert are used as desired neural
network output values. The number of elements in the hidden layer influences the
trainability and the accuracy of the neural network [9,8]. Therefore, this number
must be chosen in a convenient way for the cases where a large number of
partitions is defined fo the universe of discourse.

It is important to notice that this kind of neural network makes the
functional approximation by superposition of sigmoidal functions, making the
membership function differentiable. This certainly contributes for the robustness
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of the overall control system. In the next section, the use of a neural network

is also analyzed for the implementation of the rule base.

4. T USZ OF FEEDORWARD NEURAL NETWORKS FOR TE IMPLEMENTATION OF THE BASE RULE

The rule base is defined based on F= SU/CE
the information obtained from a system
expert and from simulation. In this
kind of rule base, it is not possible
to take into account situations not
considered in the formulation of the AC
rule base. A common solution is to use
the relational matrix [2] based on the
linguistic rules and some logical
operators. The output of the fuzzy
controller in then obtained using the
Zadeh inference rule[6]. Another VE
solution is to use the inherent
generalizing capacity of the
feedforward neural networks.

Basically, the neural network
makes an approximation of the mapping
having its domain represented by the Figure I - Fuzzy surface (E, VE and
rule conditions and the range AC are the control error, variation,
represented by the rule consequents. In and control action)
this paper, we first adjust a PID
controller and then use its control
performance to obtain a first fuzzy rule base. This way, we accomplish the
fuzzyfication stage. The phase surface involving the control error, the error
change, and the control action becomes discontinuous due to the quantization
levels used during the fuzzyfication stage(figure 1). The use of a neural network
to assimilate the rule base makes this
surface continuous as seen in figure 2.
From this explanation, the following
options can be proposed for the NEUM +-U= PCE
implementation of fuzzy controllers:
•Conventional fuzzy controller;
•Fuzzy controller with neural membership
functions;
-Fuzzy controller with neural rule base; AC
-Fuzzy controller with neural membership
functions and neural rule base.

One of the purposes of this paper
is to analyze the performance of each
one of these approaches. This is done in VE
the next section through the simulation
of a DC motor with a nonlinear load
torque.

Figure 2 - Neuro-fuzzy surface
5.35D9LATION

In this simulation, the speed of a
DC motor is controlled by each the methods mentioned in the previous section. A
computer program was developed including the dynamic system simulation and the
training of the neural networks. The motor data are the following:

Ra=4.67 0 (Armature resistance), La=0.170 H (Armature inductance), J=42.6e-6
Kg.m (Moment of inertia), f=47.3e-6 Nm/rad/s (Viscous damping coefficient),
K=14.7e-3N-m/A (Armature current constant), Kb=14.7e-3 V-sec/rad (Motor speed
constant) Vmp=15 V (Maximum armature voltage), Vmn=-15 V (Maximum armature
voltage), AVmp=1.5 V (Maximum voltage variation), AVmn=-l.5 V (Minimum voltage
variation).

The transfer function describing the motor dynamics is shown in equation
(2).
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w~m = (2)
(Ma) &2+ (faL÷n) a. (fR+X•) a (

The load torque is considered as a three order polynomial as in equation
(3).

T=Ao+AIrj+A 2 c.2 +A3W3 (3)

where: A, = 0.01, A, = 0.001, A2
=0.0001, A, 3 0.00001.

Initially a PID controller was 3W
adjusted with the following
parameters that produced the best 2-

possible performance: Kp=0.8,
Ki=0.3, Kd=0.1. The system is then 100
simulated to obtain the rule base 0
from the results of the PID
simulation. Figure 3 shows the 400
results of this simulation. A better
performance is not possible due to *Mo.
the nonlinear characteristics of the
load. 400

Figure 3 - PID controller step response

The aimulation of the fuzzy controller
The control error E and the variation of the control error VE are the

variables chosen for the implementation of the of the fuzzy controller (5]. In
this case:

VEk=E~k-E~k_l (4)

E=w1z-w (5)

where W is the motor speed in radian and W0is the reference. Eand E,,-, are the
values of the control error at the instants K and K-i, respectively. An open loop
simulation was first performed. The control action, in this case, is the
increment in the motor armature voltage. An open loop simulation was performed
for determining the universe of discourse of the control error E, obtaining a
maximum velocity of 500 rd/s. The maximum control error and control error change
was considered 1000 rd/s and 6 rd/s, respectively. On the other hand, the maximum
increment in the armature voltage was 1.5 volts. The universe of discourse was
divided in 7 partitions. For the determination of the rule base, we used the PID
simulation, resulting in 49 rules. The results of several step perturbations, for
the PID controller and for the fuzzy controller are shown in figures 3 and 4,
respectively. A better performance of the fuzzy controller could be achieved by
expanding the rule base for values close to zero.
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Fuzzy controller with neural membership
functions

This approach is accomplished in
two steps. The first step consists of -
training two neural networks with the
membership functions corresponding to
the control error and the control error 100
change, respectively. In the second
step, the same procedure used for the
fuzzy controller is applied using the -1oo
neural networks as membership
functions. The advantage of this 4W
approach is the use of the generalizing
capacity of the neural networks, for
values not included in the discrete
universe of discourse. The step Figure 4 - Step response for the
functions were applied, resulting in a
better performance, with very small fuzzy control
overshoots and very few oscillations
(see fig. 5).

Fussy controller with neural rule base.

In this case, a neural network is
trained with the rule base, and then the
same procedure used for the fuzzy 100
controller is used. The basic difference 0 . .

is that a smooth surface is obtained as
shown in figure 2. An investigation of -.. .
how much this could improve the control
robustness is going to appear in a future
publication. In the case of this -=I
simulation, there is not a great
improvement in the controller performance
(see figure 6). Figure 5- Step response for the

neural membership function controller

Fuzzy controller with neural membership
functions and neural rule base

Two feedforward neural networks are
used in this case: one for the membership
functions and another for the rule base. _o--"--

Again, no great improvement could be
observed, in comparison with the other 3.
approaches, although it should be
expected an improvement of the overall I
system robustness due to the fact that
the neural networks are composed of
differentiable functions. -1.

Conclusions

This paper presents an analysis of figure 6 - Step response for neural
three neuro-fuzzy approaches. The rule base controller
basic improvement resulting from the use
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of feedforward neural networks to approximate the membership functions and/or the
rule base, comes from the generalizing capacity of feedforward neural networks.
The system nonlinearities are taken into account by using simulation results and
expert knowledge that are introduced in the rule base. An investigation of the
overall system robustness is been prepared to analyze the implications of the use
of feedforward neural networks in conjunction with the conventional fuzzy
control.

RZIFZRRNCZS

[1 Zadeh L.A., "Fuzzy Sets", Information and Control, 8, pp. 338-353, 1965.
[21 Mandani E. H. & Assilian S., An experiment in linguistic Synthesis with a

fuzzy logic controller", Internat. J. Man-Machine Studies, n2 7, pp. 1-13,
1975.

131 Yasunobu S. & Miyamoto S., "Automatic train operation system by predictive
fuzzy control", Industrial Applications of fuzzy control, North Holland,
1985.

(41 Rumelhart, D. McClelland, J., "Parallel Distributed Processing", Vol. 1,
MIT Press, Cambridge, MA, 4th Edition, 1987.

[51 Pedrycz W., "Fuzzy Control & Fuzzy Systems", Research Studies Press, 1989.
(63 Zadeh L. A., "Outline of a new approach to the analysis of complex systems

and decision processes", IEEE Trans. S.M. & Cyber., v.3, n0 1, pp. 28-44,
1973.

[71 Lee C. C., "Fuzzy Logic in Control Systems: Fuzzy Logic Controller", IEEE
Transactions Systems, Man & Cybernetics, vol. 20, n2 20, pp. 404-435, 1990.

[98 Loparo K. & Teixeira E., "A new approach For Adaptive Control of Nonlinear
Systems Using Neural Networks", IEEE Int. Conf. Sys. Man Cyb., Los Angeles,
1990.

[93 Teixeira E, Loparo K, Gomide F, "Design Multi-layer Neural Networks for
Accurate Identification of Nonlinear Mappings", American Cont C., Boston,
1991.

[0] Teixeira E., Loparo K., Gomide F., "Feedback Linearization of Dynamic
Nonlinear Systems Using Neural Networks", 92 Cong. Bras. Autom., Vit6ria,
1992.

[11] Nie J. & Linkens D., "Neural Network-based approximate reasoning:
principles and implementation", Int. Journal of Control, vol. 56, n2 2, pp.
399-413, 1992.

[121 Kong S. & Kosko B., "Adaptative Fuzzy Systems for Backing up a Truck-and-
Trailer", IEEE Transactions on Neural Networks, v. 3, n2 2, pp. 211-223,
1992.

[133 Dote Y., "Fuzzy and Neural Networks Controller", Proceedings of the second
workshop on Neural Networks, Auburn University, A.L., USA, February 1991.

[143 Stefani G. "On the Local Controllability of a Scalar-Input Control System",
Theory and Application of Nonlinear Control Systems, Elsevier Science,
1986.

[15] Singh R. & Rugh W. "Decoupling Class of Nonlinear Systems by State Variable
Feedback", Transactions ASME J.D.Syst.M.Cont, V.21, pp. 651-654, 1975.

(16] Nguyen D. & Widrow B. "Neural Networks for Self-Learning Control Systems",
IEEE Control Magazine Systems, April 1990.

1-792



Neural Fuzzy Logics as a tool

for design Ecological Expert Systems

Paulo Bernardo Blinder

Logic and Epistemology Center
Universidade Estadual de Campinas

Caixa Postal 6065
13081 Campinas, SP, Brasil

BITNET: blinder ime.unicamp.br

Keywords: Neural Fuzzy Logics, Feed-Forward ANN, Expert Systems, Theoretical Ecology

1 Introduction

Expert Systems in Theoretical Ecology reach a few applications, mainly because the un-
certainty and the dificulties to represent and describe ecological fenomena.
Lately there appeared some applications of fuzzy expert systems intended to solve the
representational problem in Biology (Salsky, 1991 [16)), and others isolated works using
fuzzy technics [14,13,21]. Some of them are based on other special propriety owned by a
fuzzy operator (like the anti-commutative fuzzy operator in Roberts's work).
Neverthless, is a problem to choose adequate implication operator when developing fuzzy
expert systems, and this problem was underestimed in some application work. There are
a lot of work on this problem, after problems begans to appear (see [7]) and too much
discussions about the choose of the fuzzy implication operator (like, e.g. [17]).
In this context neural fuzzy logics, which uses the implementation of fuzzy implication
operator through a feed-forward neural network, sounds better.
Neural fuzzy logics has recently appeared [4,2,1], and its ecological applications may fit
well also when traditional fuzzy logics operators doesn't work properly [12].
Solving the problems of appropriate representation of uncertain ecological data and finding
right operators, also possibiliting to the Ecologist to choose the intuitive desired proprieties
of the implication is the main aim of Neural fuzzy logics based systems applied to ecology.
We will do a brief review on Traditional fuzzy logics and about the topology of feed-
forward network used, and about the Neural implementation on fuzzy logics. Ecological
applications and numerical results will appear in the last sections.
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2 Traditional Fuzzy Logics

2.1 Fuzzy Sets and its Sintatic rules

We are using here discrete fuzzy sets, denoted by the pair (u,pA(u)), where u E U, U is
a domain and A is a proposition. We are using also the usual fuzzy conectives as follow

set operator formula logical equivalent
PAC (U) I - PA(U) -iA

11AuB nmaX(PA(U),/LB(U)) A v
(PAnB min(PA(U),PB(U)) A A b

2.2 Semantic Overview

Classical Logic uses boolean proposition (who are about to be false or true) and uses
traditional inference engine, called Modus Ponens, who states: "If I know thats true an
Proposition A and an implication A =* B, then I can infer the truth value of a proposition
B'.
It can be thinked as a function, where B's truth value should be derived as a function of
B = A o I(A, B) and I(A, B) denote a formula for the implication used1 .
Many valued logics uses many-valued truth values2 and I(A,B) depends on the choice of se-
mantic used. There are a lot of "semantically coherent" implication operators, eventhough
they are valid depending on the case. What's the case, is really an empirical matter (see,
for e.g.,f17]).

Operator Formulae
Lukasiewicz min(l, 1 - a + b)
Zadeh max(1 - a, min(a, b))
Kleene-Dienes max(1 - a, b)

Table 1. More frequently used Implication Operators in Fuzzy Logics

Traditional Fuzzy Logics is based on some premisses:

"* It uses fuzzy sets to represent their propositions and use fuzzy sets operators as
logical conectives.

"* Relations of attributes and objects by partial membership can "encode" information
about observable reality.

'In Classical First Order Logic it whold be took as derived by the Logic equivalence between A =:. B
or -'AandB, whose formula could be max(1 - v(A),v(B)), where v(P) E {O, 1).

'Here, a should denote the partial truth value of an proposition A, whose values range between 0
(absolutely false) to 1 (absolutely true)
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"* Operators (Modifiers) can chage the "meaning" of the information in a fuzzy set,
giving it a gracefull representation in a linguistic-fashioned way.

"* The inference engine (implication) is based on a Generalized Modus Ponens Principle
(GMP), who states:

"If x is A then V is B"
and knowing that "x is A'"
We can infer: "x is B"

where B' is computed based on fuzzy propositions A, A' e B; where A and A' , B e
B' are elements of same domain, respectively.

GMP 3 give an Approximate Reasoning capability to Fuzzy Logics, concerning it the pos-
sibility to make inference with only partially true premisses (partial knowledge of the
reality, which is very common in decision-making and nature, obviously thinking that we
aren't Gods...).
The traditional GMP semantic example is:

Having the follow rule in mind: "If the tomato is red then its ripe"
and knowing that: "the tomato is more or less ripe"
we readily infer that the "tomato is more or less ripe, even when we can't
exactly describe what state is "more or less res" or "more or less ripe".

There are some intuitive proprieties required by a fuzzy GMP, like:

Propriety Premisses Deduction
GMPI x is A y is B
GMP2a z is very A y is very B
GMP2b z is very A y is B
GMP3 z is more-or-less A y is more-or-less B
GMP4a z is not A y is unknown
GMP4b zis not A y is not B
GMP5 x i not B y is not *A

Table 2. Desired proprieties for Generalized Modus Ponens

They must to be choosen knowing beforehand the mathematical proprieties of fuzzy rela-
tional implication operators (like continuity, classic logical equivaleces, etc.).
Since earlier uses of Fuzzy Logics, some implication operators (including the first one pro-
posed by the pioneer Zadeh) was demonstrated to work only in restrited and natural cases,
do not working in generical ones. There are a lot of proposed implication operators and
also there are at least four great groups (there is a need of taxonomy !) of implicators.
We well show how FFNN can offer an graceful implemantation of that proprieties.

3GMP can be thinked as an natural extension of classic deductive rule Modus Ponens, by extending it
to fuzzy atributes in a linguitic way, as we can see further on.
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3 Feed-Forward Neural Networks

The ANN's used in this work are a staihiard back-propagation one with sigmoidal activa-
tion function and one hidden layer. The number of elements in the hidden layer are equal
to the entry layer for simplicity (with was demonstred to have no influence in results but
in the number of epoch training). The program used to do numerical simulation was the
one found in [151. The number of units at input and output layers will be explained in the
next section.

4 Neural Fuzzy Logics

It was noticed that implication operators could be thinked as a relation I(A, B) between
the antecedent and the consequent premisses (A and B). As is known [5], FFNN can
represent any ' -* 1•R non-linear function, the vector 1I at inputs can be took as its
elements are the partial ("fuzzN membership ujA(z) of z, where x are the elements of
the domain U and in the output is A,(y), y E U. But, what about A and b ? They're
linguistic modified values of fuzzy sets A and B, to represent statements in Table 2, and
a set P composed by pairs of (A, b) 4 will be our training set. The modification rules are
the same found in section 2. It should operate well (as can be saw in [4,2,1] for theoretic
point of view and [121 for practical purposes). Then, one can choose the more adequate
proprieties for represent one's problem, in a specific situation (May be there is no "world
general rules", but it cannot be proved true or false, only empirically observed in particular
cases'). It would be useful, particulary in ecological systems, that are complex and, in
general, have local knowledge about the governing rule of the problem.

5 An Theoretical Ecology example of uncertainty: Phyto
Sociology

Phyto Sociology may be the case when we deal with ecological uncertainty and linguistic
description, as we can see [11]

... the group of diagnostic species is not always represented in full in any relevi. In fact, we
may find a continuous series of relevis with a sucessively decreasing number of diagnostic
spieces, from those with the higest number, which represent the nucleus of the sintaxon,
towards poorly characterized relevis at sintaxon's margin, which is no sharp.

and by the following practical example [Polakowsk. 1968]

...discussed community resembles the most Salicetum albo-fragilis.

4One for each Fuzzy proprieties (found also in Table 2).
'Although it can be, I have not yet noticed about by God or anyone's...
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It can be shown (9] that the sintaxa6 can be represented as a fuzzy set of tazas7 and
linguistic descriptors can be states also as linguistic modified fuzzy sets pretty well.

6 Case Study: Production System for Phyto-indication
based on Neural Fuzzy Logics

Using Phyto-Sociological informations, one can infer proprieties of the soil and anothers,
by a process called Phyto-indication, as can be seen in the follow description [8]

Phytocoenosys of this association [Potentillo
albae-Quercetum] grow on moderately fertely and relatively dry soils ... ; substratum

is easily permeable ... and has a nearly neutral reaction, while the topmost layers can
be rather strongly acid.

Its clear that the above statement can be paraprased as conjunctions of condictionals, who
uses strongly linguistic variables like "rather strongly acid", fact that can be represented
by a fuzzy set in an pH scale in U = [0, 14] .
Based in this kind of statement, we can construct an Expert System who can do inferences
about soil acidity, based on observed community of plants, like [101, using the rules

(SI =- rather alcaline) A (S2 =# acid) A (S3 =: strongly acid) (1)

7 Numerical Results and comments

We shall not present here tables of numerical results ( it can be found in [31), but we have
to mention that all patterns in the training set reach less than 1% error in their outputs
of the network using only 150 training epochs. Other patterns have worked as expected.
Generally, we found at least 6% error at each element using fuzzy implication operators
[1].
As quoted by Moraczevicz itself

However, its clear that in all applications the result will depend on thje degree of adequacy
of transition from linguistic values to fuzzy sets. Some methods of acquisition of membership
functions associated with vague terms were proposed (e.g. Labov, 1973; Hersh and Cara-
mazza, 1976; Turksen 1988, 1991). As there is no general and simple solution to this problem,
in any serious application the membership functions which are used to represent meanings
of some terms should be regarded with extreme caution to ensure genuine8 representation.

May be Neural Fuzzy Logics is the case for representing local ("case by case") knowledge
using fuzzy sets, tipically found in Ecological Systems.

6Comunity's descriptor set
7The vegetal spieces in it.
8My emphasis.
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Abstract

A real-time human-motion recognition method is proposed that uses a fuzzy associative memory system. It
transforms space-time patterns into state-transition patterns, which are then recognized by means of fuzzy
associative inference using associative memories. The tracking data is given as time-series data, from which the
characteristic states are extracted. Each human motion has a specific state-transition pattern that consists of
characteristic states. To recognize these motions, the specific state-transition patterns of the motions are defined as
fuzzy rules and these fuzzy rules are implemented in a fuzzy associative memory system. This method is
independent of the person being measured and the speed of the motion. In real-time experiments, this method was
able to recognize three basic tennis motions (forehand stroke, backhand stroke, and smash) for six unspecified
people. The recognition ratio of the fuzzy associative memory system is better than that of conventional fuzzy
inference and a multi-layer perceptron.

1. Introduction

Human beings communicate with one another using motion as well as language. The recognition of human motion
in human-machine interfaces is expected to improve the efficiency of communication between human beings and
machines. Human-motion recognition systems will require a technique for extracting human motion from moving
images. Many tracking techniques have been developed, which extract specific colors and/or specific shapes in
images, but the knowledge representation and the ability to recognize human motion are not yet sufficiently
developed. More research into knowledge representation and processing is needed.

Murakami et al. [I] has studied recognizing gestures by using data gloves to detect finger angles. These angles are
used by a recurrent neural network to recognize human gestures. Data gloves, however, are not a practical detector
because they are wired and require human touch. Also, the recurrent neural network is a kind of multi-layer
perceptron (MLP) so that it is difficult to understand the meaning of each neuron in the hidden layers. In other
words, the knowledge representation is not clear enough for human understanding.

A typical system for human-motion recognition using moving images is a spotting recognition system, which uses a
dynamic programming method [2]. This method also has two problems. One is difficulty in recognizing the motions
of unspecified people because it compares an input pattern with standard patterns in its memory. The other problem
is that the knowledge representation in the dynamic programming is also not clear. It is therefore difficult to analyze
the knowledge when the system does not perform. Human-motion recognition systems require (1) a technique to
extract features from a motion image, (2) clear knowledge representation, and (3) independence from specified
people.

This paper proposes a human-motion recognition method that satisfies these requirements. The basic idea of the
proposed method is to transform space-time patterns into state-transition patterns and then to recognize them by
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means of fuzzy associative inference 13]. The tracking data is given as time-series data and the characteristic states
are extracted from the data.

Each human motion has a specific state-transition pattern consisting of characteristic states. To recognize a motion,
the specific state-transition patterns for human motions are defined as fuzzy rules, which are then implemented in
the fuzzy associative memory system. The memory system performs fuzzy associative inference and converges to
the most likely human motion. Ushida et al. showed the robustness of fuzzy associative inference by applying it to
the recognition of facial expressions [4]. He demonstrated that fuzzy associative memory can recognize facial
expressions by a combination of top-down and bottom-up processing, even if some information is lacking. Our
proposed method is so effective that it is independent of the person being measured and the speed of the motions.

2. FAMOUS: Fuzzy Associative Memory Organizing Units System

Human movements are not exact because the speed and sizes of each movement depends on the person and other
variables. While fuzzy inference [5] is effective in recognizing vague objects, such as human motions, the degree of
fuzziness increases and the conclusions becomes more fuzzy because the fuzziness is permitted as a precondition.
To solve this problem, fuzzy associative inference, driven by fuzzy associative memories, has been proposed [31.

We use fuzzy associative inferepce in our recognition system. Fuzzy associative memory is a kind of associative
memory network, consisting of several bidirectional associative memories (BAMs) [6]. The fuzzy associative
inference is driven by node activations propagation in the associative memory. This section describes the Fuzzy
Associative Memory Organizing Units System (FAMOUS) [31 which was proposed as a method for carrying out
fuzzy associative inference.

FAMOUS is used to develop fuzzy rules, as shown in Fig. 1. These rules consist of three elements: the if-part, the
if-then-rule-part, and the then-part. Fuzzy rules represent knowledge describing relationships between "conditions"
and "conclusions." The if-part has membership functions that abstract and characterize the conditions of the rule set.
The then-part has membership or input-output functions of the rule set.

FAMOUS uses associative memories to create relationships between the if-part conditions and the then-part
conclusions using the BAMs. Each BAM stores xi-yi pattern pairs in terms of the correlation matrix M and its
transposition matrix MT. For an x-y pair (x, y E (0,1)) stored in a BAM, and given x" (which implies a noisy x) in
the x-layer, the BAM recalls the x-y pair on the x, y -layer. The BAM recalls from memory by using reverberation,
which is given by Eq. (1).

Y, =s(Mx,), X1+, = S(MTY,) (1)

In Eq. (1), Xt = lax], ax2. ..., axp]T and Y1 = [ayl, ay2, ..., ayq]T are activation vectors on the x,y-layer at
reverberation step t, and S(.) is the sigmoidal function of each node. The correlation matrices M and MT are given
by Eq. (2).

S(2)

In Eq. (2), xi, ( i =1 to n ) are stored pairs in a BAM, f3 is an association parameter, and each element xi, yi (0,
I I n is usually converted to a bipolar element (- 1, 1} n based on the BAM energy function. The BAM recalls the pair
best matching the input conditions by using decreasing fuzzy entropy.

Fuzzy entropy describes the degree of fuzziness in the inference output. This feature is used to control fuzziness
during fuzzy inference. Fuzzy rules can be implemented using associative memories such as BAMs because of its
memory ability. Figure 1 shows how a fuzzy rule is implemented by means of associative memories. Each node on
the x-layer represents the if-part membership function given by the fuzzy rules as conditions. Each node on the y-
layer represents the then-part given by the fuzzy rules. Each node on the r-layer represents a fuzzy rule.
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The BAM connects the x-layer to the r-layer and the r-layer to the y-layer. Mxr and Mry are the resulting correlation
matrices. There are mutual, negatively weighted connections on the r-layer to recall the most suitable rule for the
input conditions. There are also minor positively weighted recessive connections on the r-layer to retain each
activation. Mrr is the r-layer correlation matrix, it is called the coordinator.

During fuzzy inference, reverberation is performed with the correlation matrices Mxr, Mrr, Mry, and each
transposition correlation matrix. This fuzzy associative inference improves one of the weak points of conventional
fuzzy inference, which is the increasing fuzziness of the inference output, this association controls increasing
fuzziness. Some fuzzy inference methods can be simulated without this weakness because each activation value is
used before it sufficiently converges.

3. Human-motion recognition system

The proposed recognition system (Fig. 2) consists of three modules: a tracking module, a feature extraction module,
and a fuzzy associative inference module. This section describes these modules.

Traking modul The tracking module detects the positions of moving objects by extracting their colors and/or
shapes. The color extractor and the color image tracker are products of Emtec Co., Ltd. in Japan. The color extractor
extracts the specific colors of the hands, face, and other parts of the human body from moving images. The color
image tracker determines the position of the extracted color by calculating its center of gravity. These processes are
carried out every 1/60 second and create a time-series pattern of the detected positions. This pattern represents the
movements of the parts of the body being tracked. The data is transferred to a computer via interface devices. The
computer determines the features of the data and carries out fuzzy associative inference.

Feature extraction module The position movement of an object in a moving image creates a space-time pattern. The

feature extraction module extracts the characteristic states from this space-time pattern, it is transforming into a
state-transition pattern. The states in the state-transition pattern are inputs to the associative inference process.
Human beings track human motion as a series of states. For example, a tennis racket stroke consists of six states:
ready position, take-back, forward swing, impact, follow-through, and finish. In our research, we simulate this by
extracting the characteristic states as a wave that is a space-time pattern.

From the space-time pattern, processed values, such as velocity and angle, are available. Our system extracts three
characteristic shapes, mountain shapes, valley shapes, and stable states, from the space-time pattern. The extracted
shapes are the features used by the fuzzy associative memory system.

The feature extraction procedure is as follows.
1. Define a threshold E (>0) to be compared with values obtained from a pattern.
2. Compute difference 81 between data(t) and data(t+l), where data(t) is the value at each point in time t (t = 1/60,

2/60, 3/60, ... [sec]).
3. If 1811 < 8, then the present state is a stable state and the standard value ; is defined as data(t+l). A stable state

means that no motion occurs.
4. If 1811 > 9 and 81>0, then the present state is a candidate for a mountain shape. If 1811 > 9 and 81<0, then the

present state is a candidate for a valley shape.
5. If the state is a candidate for a mountain shape (or valley shape), the point in the wave is moved forward along

time t in order to find the top of the mountain (or the bottom of the valley).
6. If the top (or the bottom) is found, the height of the mountain (or the depth of the valley) is calculated. This

height (or depth) is defined as A.
7. After passing the top (or the bottom), the point in the wave goes down (or up) the slope. The system calculates

the difference 82 between the point's height and A at every point on the slope.
8. When 82> (a% of A) (0<a<100), the point is regarded as the end position of the mountain (or valley) candidate

from step 4.
9. In step 8, if 82 is less than 9, the candidate from step 4 is not regarded as a mountain (or a valley).
10. When a mountain (or a valley) is detected, 82 is extracted as a characteristic value and is used as an input to the

membership functions in the fuzzy associative inference process.

Fuzzy Associative Inference Module The fuzzy associative inference module recognizes human motions by using
the fuzzy associative memory system FAMOUS described in section 2. Membership functions are defined as
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suitable features of motions and are embedded within fuzzy inference rules in FAMOUS. The characteristic value
extracted by the feature extraction module is input to the membership functions. The associative memory system
then performs associative inference to determine the motion of the object.

4. Experimental results

Three basic tennis motions (forehand stroke, backhand stroke, and smash (Fig. 3)) were used in our real-time
experiment. Their characteristic values and membership functions were obtained as follows. As the first value for
the space-time pattern, the angle 0 under the right arm is used. It is obtained from the positions of the right hand and
the right shoulder (Fig. 4). This position is extracted by the tracking module every 1/60 second. The space-time
pattern 0(t) (t = 1/60, 2/60, ... [sec]) generates a velocity vector for every point. When the direction of the vector
changes, a characteristic state appears in the space-time pattern. For example, a mountain or a valley of wave 0(t)
appears when the direction of the swing of the right arm changes. The top of the mountain or the bottom of the
valley in the swing corresponds to "take-back" and "finish". The height of the mountain and the depth of the valley
are thus used as characteristic values. The characteristic value of "take-back" is defined as xl and that of "finish" is
defined as x2. There are three membership functions for each characteristic value. These membership functions are
"FO" (forehand stroke), "BA" (backhand stroke), and "SM" (smash) in each state. To define these membership
functions, a subject person was tracked while he swung his arm six times for each motion. Each membership
function was produced by averaging the values for each set of six samples.

The fuzzy rules are as follows.

RI: IF xl is FO and x2 is FO, THEN the motion is a Forehand stroke.
R2: IF xl is BA and x2 is BA, THEN the motion is a Backhand stroke. (3)
R3: IF xl is SM and x2 is SM, THEN the motion is a Smash.

In the if-part, the values of xl and x2 are estimated by using the membership functions, and the then-part concludes
a motion (forehand stroke, backhand stroke, or smash). These fuzzy rules are embedded in FAMOUS (Fig. 5).
FAMOUS consists of three layers (x-layer, r-layer, and y-layer). The x-layer corresponds to the if-parts of the rules.
The x-layer has six nodes representing FO, BA, and SM for xl and FO, BA, SM for x2. Each node in the x-layer is
activated by a grade that is the output of each membership function. A node in the r-layer represents a rule (R1, R2,
or R3). The then-parts are assigned to the y-layer. The y-layer has three nodes representing forehand stroke,
backhand stroke, and smash. The association matrices in FAMOUS are obtained by transforming the fuzzy rules
into binary values according to Eq. (2).

The fuzzy associative inference is carried out as follows. The nodes in the x-layer are activated by the membership
functions grades and the BAMs reverberate according to Eq. (1). Node activations propagate in the FAMOUS
network and finally the activations distribution converges into a stable state. After convergence, the most activated
node in the y-layer represents the recognized motion.

In the experiment, the six subject people swung their arms six times for each tennis motion, producing 108
samples. To examine robustness for unspecified people, the original subject, whose data was used to obtain the
membership functions, was not included in the test group. The recognition performance of the proposed system was
compared with that of conventional fuzzy inference and a three-layered perceptron. The membership functions and
fuzzy rules in the conventional fuzzy inference were the same as in the fuzzy associative inference. The three-
layered perceptron learned the ranges of the membership functions with a back-propagation algorithm. The testing
was done in real time.

The fuzzy associative inference system produced the highest total correct recognition ratio (Table 1). It was
particularly better at recognizing a smash. The values in Table 2 represent the membership grades of a sample
"smash" which could not be recognized by the conventional fuzzy inference. The fuzzy inference does not select the
rule when it has a grade 0 in its if-part. In the example in Table 2, the grade for SM(xl) is 0.7243, but the grade for
SM(x2) is 0 in R3. Therefore, R3 is not selected. With fuzzy associative inference, when the grade for SM(x2) is 0,
the grade for SM(x 1) takes the activation of the R3 node of the r-layer to a higher value as a result of reverberation
in the network. Finally, the activation of the "smash" node in the y-layer converges to a higher value. This is the
effect of BAM inductivity. Thus, fuzzy associative inference can obtain an inference result even when conventional
fuzzy inference cannot be performed because of the lack of a membership grade. With a three-layered perceptron, it
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has to learn all of the input space and thus cannot recognize data in a region which is not learned. Fuzzy associative
inference can use the nearest learned region from input data even if the data exists in a region which is not learned,
and thus can obtain a recognition result. These results show that the proposed associative inference system can
overcome a lack of information to recognize the motions of unspecified people and is thus more robust than other
inference systems.

5. Conclusion

We have developed a system that can recognize human motion in real time by using a fuzzy associative memory
system. The system transforms space-time patterns into state-transition patterns and then recognizes them by means
of fuzzy associative inference using associative memories. The tracking data is given as time-series data and the
characteristic states are extracted from the data. The fuzzy associative memory system recognizes human motion by
using state-transition patterns consisting of these extracted characteristic states. The proposed method can recognize
three basic tennis motions about 84% on average for unspecified people. This recognition rate is better than that of
conventional fuzzy inference and a multi-layer perceptron. The proposed method will be improved to recognize
more complex human motion.
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Table I Correct recognition ratio (%) Table 2 Membership grades of a
sample which could not be recognized

FAMOUS MILP Fuzzy by conventional fuzzy inference.

FoeiW'n 86.1 88.9 75.0 X1 x2

Backhand 77.8 77.8 72.2 Foichand 0.0000 0.1222
Smash 88.9 69.4 66.7__ Backhand 0.0000 0.0000
ToWa 84.2 78.7 71.3 Smash 0.7243 0.00001

Number of samples : 108
FAMOUS: Inference by FAMOUS
MLP: Multi-layer perceptron trained by back-propagation
Fuzzy: Conventional fizzy inference
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Abstract

We examine the properties of function approximation using polynomial rules in a fuzzy system. We
show that this kind of fuzzy function approximation is equivalent to Lagrange polynomial interpolation
between turning points when normalized fuzzy function memberships are used. The fuzzy inference
procedure combines two polynomials of degree n and m in x into one single polynomial of at most degree
max(n, m) + I which passes through the points of intersections of the original polynomials. We present
the cases for linear and quadratic polynomials and then generalize it into polynomials of degree n.

1 Introduction

Approximating an unknown function has been a research topic for a long time. One commonly used model-
based approach in numerical methods is to evaluate a polynomial which passes through some given data
points of the unknown function. It is assumed in priori that the unknown function is of the form of a
n - 1 degree polynomial in x, P E (z) = a-2 az'. Lagrange's polynomial interpolation method is a classical
method of this approach to compute the coefficients, a1 , of this polynomial. Recently, some model-free
approaches have been suggested, such as the use of neural networks [4], [11] or fuzzy systems [9], [7] to
approximate a function. Hornik el al shows that multilayer feedforward networks with one hidden layer is
a class of universal approximators [4]. Similarly, Kosko shows that fuzzy systems can approximate any real
continuous function on a compact domain to any degree of accuracy [9]. These two model-free approaches
have more attractions than the model-based methods because of their high degree of flexibility. Unlike the
model-based approach, both neural networks and fuzzy systems provide only frameworks for the function
approximation. From these frameworks, we can build up various approximators for the unknown functions.
In multi-layer feedforward networks, any arbitrary bounded and nonconstant activation function can be
used for the function mapping [3]. In fuzzy systems, we can define the "if-then" fuzzy rules, and as well
as the membership functions, in various forms. However, both neural networks and fuzzy systems suffer
from the same criticism. Their operations can be understood in the microscopic level. Whereas, in the
macroscopic level, it is relatively hard to visualize their operations. In microscopic level, neural networks
are computational methods based on a massively interconnection of processing nodes. Fuzzy systems are
operated by inference systems with a collection of fuzzy rules. In this paper, we look at the fuzzy function
approximation system at the macroscopic level. We examine a fuzzy system using polynomial rules and show
that this system combines polynomial rules to form piecewise polynomials for function approximation. The
resultant polynomial has a degree no more than one degree higher than the highest degree of the polynomial
rules.

2 The Additive Fuzzy Systems

Kosko showed that any real continuous function, f : X -- Y, can be approximated by additive fuzzy systems
[8]. The basic idea is to cover the graph of the continuous function by fuzzy patches. These fuzzy patches
are equivalent to fuzzy rules of the form "If X is A, then Y is B". The input, z, is fuzzified into fuzzy subsets
Ai. Then the fuzzy rules associate and inference the fuzzy input Ai to the output B,. Weighted sum is used
to add the out fuzzy sets B, to form B and a defuzzifier transforms B into y. This approximation can be
achieved to any degree of accuracy by using finite number of fuzzy patches [9].
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3 Lagrange's form of Interpolation

Suppose we want to construct a n - 1 degree polynomial which passes through the points (Xi, yi), i -
n-1

1, 2,..., n. Assuming the polynomial as in the form of P,(z) = x aia,, we substitute all the data points
i=0

in Pn (x), and solve these n linear equations to obtain the coefficients, ai, of the polynomial. Alternatively,
Lagrangian form of interpolation obtains the coefficients of the polynomial without the need to solve a set
of linear equations. This method expresses the polynomial, Pn(x), of degree n - 1, in the following form

P.(x) = LI(x)yl + L 2(X)y2 + + Ln(x)y. (1)

with

X _.--l X_ k:l,2,...,n (2)Lk(X) = Xk - Xi

LA(,) in equation 2 has an interesting property that Lk(xk) = 1 and Lk(Xi) = 0, for any i 0 k, and
i,k = 1,2,...,n. Consequently, combining equations 1 and 2, we have Pn(xi) = y, for i = 1,2,...,n.
Therefore, Pn(x) is a polynomial which passes through all data pairs of (xi, yi).

4 The Approximation Using Functional Rules

4.1 The Polynomial Rules

The rules in the form of "Rule i : IF X = Ai, THEN Y = Bi" are used in the additive fuzzy function
approximation systems [9]. In these rules, A, and Bi are fuzzy sets defined on the input and output universe
of discourse respectively. An example of the rule is "IF X is Negative Small, THEN Y is Positive Small".
In our paper, we replace the linguistic variables in the consequences by some functional variables [10], [12].
Hence, the general form of the rules is "Rule i : if x is Ai, then y = fi (z)" where Ai remains a fuzzy set,
and fi(x) is a function of x.

In particular, functions in the form of polynomials are investigated in this article. An example of this

type of rules is "IF X is Negative Small, THEN Y is equal to 5x2 + 3z - 1". Each individual rule can now
be regarded as using a polynomial to approximate the unknown function within the support of the linguistic
variable, A,, associated with the rule. The final stage of the fuzzy system is to combine the inferred output
of the rules and to give a crisp estimation for the unknown function. The inferring mechanism of this type
of fuzzy rules is given by

EiWi * f,(X) (3)

where fi (z) is the output from the rule i, wi is the degree of satisfaction of the rule i.

4.2 The Membership Functions

The antecedent of our rules is in the form of fuzzy sets. These sets partition the continuous input universe of
discourse into fuzzy subsets. In this paper, we specify the membership functions, pi, to be in triangle-shaped
or in trapezoid-shaped, with max, p,(x) = 1. These functions can be asymmetrical or unevenly distributed

in the universe, but we restrict to the normalized degree of memberships, i.e.•, pi(x) = I at any ,. This
can also prevent the overlapping of more than two rules in the input space.

We define the turning point (or also called "edges" [5]), a, of the input variable, z, on any triangular or
trapezoidal membership functions to be

pi(a) = I and the derivative of pi(x) is discontinuous at a.

An example of the membership functions we used is shown in Figure 1, which x,, X2 and X3 are turning
points, and these turning points partitions the input space into intervals. Within each interval, the input
space is a subset of the support of one or two fuzzy sets defined in the input space. Thus, we have two

types of partitions in the input space; one is the space covered by one rules and the other one is the space
covered by two rules. In the first type (e.g. in Figure 1, x, < X < z2), the output is solely determined by
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Figure 1: Fuzzy Membership Functions
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*I f

Figure 2: Fuzzy Inference System

the consequence of one rule. Thus, the unknown function is approximated by the polynomial involved in
this rule. This is a trivial case and it reduces into a bivalent rule-base system. In the second case, (e.g. in
Figure 1, Z2 < X < X3 ), x is under the support of two sets, A1 and A2 . Apart from the rules using A1 and
A2 as their antecedents, other fuzzy rules have zero degree of satisfaction, and hence their outputs have no
effect on the final outcome. It is our interest to see how the fuzzy inference mechanism to composite the
output of the active rules and to produce a smooth transition within this interval.

The subsequence of this article will focus on the analysis of the inferencing of fuzzy rules. Figure 2 is a
simplified view of the composition. When xi < X < z2 , Rule 1 and Rule 2 are involved and the other rules
are not shown. Let w, and w2 be the firing strength of these rules respectively, and their relation to z is

X X2 •2 = X and W1 + W21 (4)
X1 X2 X2 -- X

According to equation 3, the final output from this system is

y(_) = *x • fh(X) + W2 * f2(X) (5)

W1 + W2

4.3 The Linear Case

Let us consider the interval between two turning points x, and X2. Any input x within this interval is
under the support of two sets; A1 and A2 . Here in this section, we assume that the consequence of the
corresponding rules are zero-degree polynomials as

Rulel: ifx isA 1 , then y=f1 (x)=y1

Rule2: ifxisA2 , theny=f 2(X)=y 2

where yi and y2 are constants and Yi : y2. 1

Substituting equation 4 into the weighted average in equation 5, the final output becomes

Y(X) = (Z - 2) Y1 + (X - XI) Y 6(xI - x 2 ) (X2 - X)

If yj = y2, these two rules are redundant, and the resultant output will simply be y = yt-
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Figure 3: Results of inferencing of two zero degree Figure 4: The polynomial generated by the fuzzy
polynomials. system

From equation 6, this results in a first-order polynomial in z. In graphical terms, the rules use horizontal

line segments to approximate part of the function and the fuzzy system joins the segments by having a linear
interpolation between the virtual point pairs of (al, yl) and (X2, Y2) (Fig 3).

In the case of Lagrangian Polynomial Interpolation, suppose we want to construct a first degree polyno-

mial to pass through the points (xl, yl) and (X2, Y2). From equation 1, the constructed polynomial is the

same as equation 6.

4.4 The Quadratic Case
Now, instead of using fixed constants as the consequence of the rules, we consider the case of using linear

polynomials in x in the fuzzy rules as shown below.

Rulel: ifzisA 1 , theny=px+q

Rule2: ifzisA2 , theny=rz+s

where p, q, r and s are constants and p 3 r. Applying these rules into equation 5, the output becomes

(q - x +q) (X - X) (r± + s) (7)y ( XI - X2 = )( (X -+

Now the fuzzy system forms a second-order polynomial. Here the combination of two first degree polyno-
mials extends into a second degree polynomial. Graphically, individual rules produce separate line segments

to approximate the unknown function. A fuzzy approximation system combines these linear segments by

joining them smoothly between the turning points (Fig 4).
We let y1 = p.Tl + q, y2 =- rX2 + s and let the point (X3, y3) be the intersection of the lines y = px + q and

y = rz + s, and X3 is distinct from both xj and X2. The coefficients of the polynomial rules can be expressed

in terms of.z 1 , Y1 , X2 , Y2 , X3 and y3 as

Y1- Y3 q- ,1- 11£ r = and S = 23(8)X-- l-- X3• X1 -- X3 X2 -- X3 X2-- X3

Substituting equation 8 into equation 7 gives

(X - X2)( - 3) X() -2 1)(- ) _ _- _ - X)(9)

(--l - Z2)( - + - 3)" (X2 - XM(2- X3) (X3 - X -)(£3 - X2)

Equation 9 shows that the output, y(x), given by this fuzzy approximation system is a second degree

polynomial passing through the points (zx, y1), (X2, y2) and (X3, Y3) (Figure 4). This equation is exactly the

same as the Lagrange's polynomial obtained by interpolating (£1, y1), (£2, Y2) and (X3, ya). Again this case

shows the equivalence to the Lagrange's polynomial of degree two.

1-808



4.5 Generalization to Degree n Polynomials

The above shows particular results for the equivalence of fuzzy approximation using polynomial rules and
the the Lagrange's polynomial in linear and quadratic cases. Now we show that this equivalence can be
extended to any degree of polynomials.

Theorem : In a fuzzy function approximation system using normalised membership functions and poly-
nomial rules of the form "Rule i : if x is A,, then y = P(v,)(z)" where P(',)(z) is a polynomial in
degree ni - 1, if Ai and Aj+l are two fuzzy sets with xi and zx+1 being their respective turning points
such that Ai and Aj+1 are monotone between xi and xi+,, the output of this system between zi and
xj+l is equivalent to a polynomial in degree of less than or equal to max(ni, ni+l), and this polynomialni+1),

passes through the points of intersection of Pni)(X) and P,,+ (W).

Proof. For simplicity, let us consider two polynomial rules

Rule 1: ifzis A, then y=p l1 )(z)

Rule 2: if x is A2 , then y = p.2)(.)

with A1 and A2 are two fuzzy sets with xl and X2 being their respective turning points such that A1 and
A2 are monotone between x, and x2. Now for any z between x, and Z2, the resultant output is

(Z+ (_.2 -- zM_) p(,2)(x) (10)y(X) = - ý)(0

which is a polynomial in degree max(n, m) at most.

If (zi, yi) is an intersection point of y = P,() (z) and y = P,(2)(x), P.() (xi) = P(2)(zx) = yi. Substitute
X = zi into equation 10, we have y(z) = yi. Q.E.D.

Suppose yl = PR()(xj), y2 = P,()(z 2) and we assume that P(,1)(x) = 0 and P,()(x) = 0 have n - 1
intersection points which labeled as (z3, y3), (X4 , Y4), --. Y(xyn), (zn+1, yn+l), and that all (zi, yi),i =

1,2, ... , n+ 1 are distinct.
Since Pn 1)(x) = 0 passes through (zi, yli), (z3, Y3), (X 4, Y4), ..- (zn, y•n), (zn+1, Yn+l). We can express

Pn(1)(x) = 0 in the form of Lagrangian Polynomial

P(')(x)-= L'l)(x)y1+ L31(z)ya + L()(x)y4 + ... +L(n')(x)yn + Ln4l(z)yn+(1(11)

where
n+1 n+1

L_-)(),, LO')(z)- X-__ H zz k-=3,4,...n,n+1S1() = 1 Xk l - X1 - . - Xi
i~dk

Similarly, y = Pm()(z) passes through the points (X2, Y2), (z3, Y3), (X4, Y4), . (Xn, Yn), (zn+l, Yn+i), and

thus we can express P,()(z) as

-) L)(z)y2 + L32)(z)ya + L4())y 4 + + L$+)(x)y.- + L(2 (X)yn+l (12)

where
n+1 n+1(2) (X z-z* (/2)-X-z-z 2-- I -I X:, Xi.n~~

L2 (z)= 1 X z, L (z)= Z-2 = -3,4....n,n+
i=3 X2 X- 2i =,XkX

i;dk

Equation 12 appears to be a degree n - 1 polynomial instead of degree m - 1. However, the higher order
terms in this polynomial cancel out and this polynomial is actually reducible to degree m - 1.

Substituting equations 11,12 into equation 10 gives

Pe+ 1 (z) = Li(z)yl + L2 (z)y 2 + + L. (x)yn + Ln+1 (X)Y+ (13)

with

n+1

Lk(z)-= XZ-Z k=,2,...,n,n+l (14)
Xk -Xi

1-8k
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which is the Lagrangian polynomial that interpolates the points (xi, yi) for i = 1, 2, ...n+ 1. Thus, the output
polynomial is uniquely defined in this way. When some of the intersection points do not exist or are not
distinct, there have fewer points for us to define the output polynomial. However, the output polynomial of
this type has some interesting properties [1].

5 Discussion and Conclusions

This article reviews the equivalence between the output of fuzzy function approximation using polynomial
rules and the Lagrangian polynomial interpolation. We show that the inference of the fuzzy system combines
the polynomial rules into a single polynomial with a degree of no more than one degree higher than the
polynomials defined in the rules.

Apart from their fundamental difference of belonging to different categories of approaches; namely, model-
free approach and model-base approach, these two methods of function approximation have other major
difference in the interpretation. Firstly, Lagrangian polynomial requires exact given data pairs and the
constructed polynomial passes through the data points exactly. The points that the fuzzy system interpolates
are virtual and they are the coordinates of the turning points and the intersection points of the corresponding
polynomial rules. In other words, only the fuzzy rules and the membership functions have to be provided to
the fuzzy systems. No data points are needed. The virtual data points that the system is interpolating are
embedded in the fuzzy polynomial rules. At present, the fuzzy rules are usually obtained from human expert
or via learning mechanism from numerical data. For examples, the ellipsoidal fuzzy rules can be constructed
from supervised and/or unsupervised competitive learning [2], the premise parameters of the bell-shaped
function can be obtained by gradient descent learning [6]. Suppose the polynomial rules can be constructed
from a learning mechanism with a set of training data. The training data are not necessarily the same as
the interpolating points. Besides, it is possible that the training data are noisy or inexact, and this depends
on the detail mechanism of the learning algorithm.

Within each interval between two turning points, the fuzzy inference mechanism combines the rules and
generates a new polynomial. The domain of the constructed polynomial is between two turning points
only. Polynomials in different partitions are unrelated. This makes the fuzzy polynomial system a piecewise
function approximation. Any discontinuous functions can therefore be easily accommodated. lor continuous
functions, the bell-shaped membership functions seem to be a better candidate.
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Extended Abstract

1. INTRODUCTION

Fuzzy neural networks have been applied to many areas in control systems, patter n recognition,
image processing, and fuzzy reasoning [1-5]. Almost all fuzzy neural networks are based on typical
neural networks(e.g. Backpropagation ), and the connection weights have the particular meanings.
Pal and Mitra proposed a fuzzy neural network, each element of which input vector is a triple vector
(low, medium, high) of a membership function[5].

In this note, we try to describe a reasonable fuzzy neural network, which can accept a group of
possibility functions as an input vector. In order to use fuzzy arithmatic operations, each of weights
in first layer is also assigned as a possibility function. Its output is a fuzzy set.

The Fuzzy neural network is proposed for classification of complicated images and data. The
fuzzy neural network has been used to satellite image classification. For a satellite image data, the
79.1 percent correctness for the traning set and 79.32 percent correctness for the test set have been
attained combining with a fuzzy system method for weight initialization.

Some reasons for building a neural network of this kind fuzzy neural network could be:
(1) Possibility function have been used to almost every where in fuzzy system and its application.
(2) In image classification, when we not only consider a pixel but also consider its surroundings

for an image unit. We can use possibility functions to represent the features of the unit[7,8].

2. A NEW FUZZY NEURAL NETWORK

In this section, we introduce the new fuzzy neural network. Its model is described below:

1-811



L(1) L(2) L(n)

Converting Layer Backpropagation Layers

Fig. 1 The Fuzzy Neural Network Model

We will only discuss the computation and training of the model in the first layer.
For this model, x(i) is a possible fuction but not a value. Without loss the generality, the domain

is assigned as always [0, 1]. Where each wi, is a possibility function.

(I)Computation Formulas
The input..output relationship of the first layer are defined as:
Input = (x1, x2, ... , xm), where each x, : [0, 1] -- * [0, 1] is a possibility function. x1(t) represents

the value t..th sample of domain [0, 1] of function x,.
Output = (• 2 .,y)

the weights is {w,, i = 1,...,m;j = 1,...,n}, where each w,, [0,1] -* [0,1] is a possibility
function. wi,(t) represents the value tLth sample of domain [0, 1] of function wi 3. We define the
output as:

y~)= •,'.=(Ma4T1 (Min(xi(t), w3 1(t))))/n, j=l,...n.

(II)Training
Training this fuzzy neural network in first layer is different from training the traditional model.
Let Target = (tarn, ... , tar,,) be a target vector, the training procedure is designed below:
(1) Let A = Target - Output = (• .,A)
(2) For all j,

If A, > 0 then for all t = 1, ... , Tdo:
If x,(t) > w11(t) then let w,,(t) = wi,(t) + A.i • y(j).

If A, <O0then for all t= 1, ... , Tdo:
If x,(t) < w,,(t) then let w,,(t) = w11(t) + Aj, *y(j).

The training method may be varied in different cases.

3. AN APPLICATION
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As a case study, we have applied the fuzzy neural network without using Backpropagation layers
to satellite image classification.

We use the satellite data was public domain data and published by Ross King [6]. Each sample
concerns with 3 x 3 pixels, and there are 4 band values for each pixel. The goal is to category the
every sample into seven classes. There are two data sets; one has 4436 samples (Data_4436) and
another one has 2001 samples (Data_2001).

We use the method described in [7,81 to get possibily functions of inputs and initialize the weights
in the fuzzy neural network. We have got a 79.1 percent of accuracy for training set Data-2001 and
got a 79.32 percent of accuracy for test set Data-4436. It is so interesting that when we apply the
trained weights to the fuzzy system described in [7,8], we get a 83.3 percent correctness for the test
data.

Acknowledgments. We are deeply indebted to Dr. J. Bezdek, Dr. R. King and Dr. C. Feng for
discussion and providing their papers and results.
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Abstract
A genetic algorithm was used to modify the members of a population of rules for a fuzzy

controller. In this work, the example of a truck backing toward a ramp was solved by the controller. An
error function was used to rank the members of the population, and the best members became the parents
of the next generation. Crossovers were done to further mix the new members, with additional mutations
done on individual rules of randomly chosen members. The algorithm proved to converge toward suitable
solutions of this problem, starting from 100 randomly chosen sets of fuzzy rules. The technique shows
great promise for the automatic synthesis of rules for fuzzy controllers.

Introduction
Fuzzy systems require expert intuition to define the membership functions and the fuzzy rules.

Most fuzzy controllers are robust enough to work amazingly well, despite the fact that often this expert
intuition is far from optimum. Because it is often necessary and/or desirable to operate a fuzzy controller
in an optimum mode, there is an interest in developing techniques for the optimum design of these
controllers. Many researchers are attempting to find the optimum solutions for systems whose input-output
relations are known [1][2]. For these systems, the fuzzy controller can be trained in a similar way as
neural networks [3][4][5] or more advanced methods based on orthogonal least-squares learning
algorithms[61. One possible approach is to use quasi random search techniques through the fuzzy rule
tables looking for some optimum performance [7].

In this paper, a genetic search is used to find the best performance. The example of backing up
a truck to a ramp is used in this study. The problem is stated the same way as presented in [7] and [81,
including the same membership functions. The goal of the genetic search is to find the optimum set of
fuzzy rules. In fact, the search algorithm described here can be used to automatize the synthesis process
of fuzzy systems.

Problem statement
In the example of backing a truck to ramp, there is no predefined path for each truck location and

therefore the optimum steering angle is likewise unknown. Furthermore, a controlled object such as the
truck has a certain "inertia", so the correctness of the assumed control variables and not known for some
time. In our example, the truck could drive out of the parking lot or crash because of the effect of a wrong
set of rules.

The truck is moving back toward the ramp as shown in Figure 1. The motion of the truck can be
described by the following set of equations:

x1.1 x, - rsin(a1 )
y,- y, + rcos(a ) (1)

*1+1 - af + Pi
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where a is the truck angle, x and y are coordinates of the back of the truck, 8 is the steering angle, and
r is the incremental driving distance. A fuzzy controller for this problem would have three input variables
(a, x and y). However, it can also perform its' function if the variable y is ignored since it is enough to
direct truck on the correct track toward the ramp. When truck is directed to the state with x = 0 and a
= 0, then it is only matter of time until it will reach the ramp (y = 0). The same approach was used in [81,
where y was not used as the input variable for controller. That is, its membership function was not
specified.

y

Figure 1. Top view of a truck backing toward a ramp. The ramp is located at the origin.

The membership functions for the inputs and the outputs are the same as in [8]. There are five
membership functions for the x input, and seven for both the a input and the j3 output variables. As a
result, the fuzzy rule table consists 35 rules and each rule may has seven different levels. Consequently,
there are 357•_ 1030 possible combinations of rules. It is obvious that a random search is not practical.
Even a quasi random search as it was proposed in [71 would require a very long search time. The genetic
algorithm seems to be the proper method to obtain a solution to this problem. A genetic search is capable
of doing a parallel search of solution space, as opposed to a point-by-point search. By using a population
of trial solutions the genetic algorithm can effectively explore many regions of the search space
simultaneously, and therefore, it is less sensitive to becoming trapped in a local minima [9].

The genetic algorithm consists of recursively performing the following steps:
I. A given population is tested to rank the members of the population. Ranking is done on

certain criterium, usually some error function the measures how well the fuzzy system
performs its' task.

2. The population is separated into winners and losers and the losers eliminated. The winners
are then reproduced to reestablish the population.

3. The new population is subjected to "Crossovers" where parts of the winners are randomly
exchanged.

4. The members of the population are then mutated, where some randomly chosen rules are
perturbed slightly.

As the algorithm converges, a population of better and better parents reproduce even better
children. The best of these, based upon the error criteria, is then used in the final fuzzy controller.
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Experiments
In the experiments done here, a population of 100 members was maintained in each new

generation. The members of a given generation were ranked using a cost or error function as follows:
Nmm Nmv

Er - E ( 2 + 0.1 a 2)+ E D (2)
i-i i-i

where N. is the total numbers of trial runs make on a member of the population, xd and E., are the
ending positions of the truck, ahd the driving distance Dj is a measure of how far the truck travels as it
approaches the ramp. A particular run was terminated when the position error (the term within the first
summation) became less than unity. From Equation 2, it can be seen that the genetic algorithm attempted
to align the truck directly in front of the ramp, keeping the driving distance to a minimum.

The cost function was totaled for selected starting points of the truck. For the training process, it
was logical to choose values of input variables which correspond to the center values of membership
functions. Using the inputs x and a, a training set of 5 * 7 = 35 possible starting points were selected.
Because each starting point corresponded to the center of a membership function, initially only one fuzzy
rule was applicable. In this way, the rules that started the truck in the correct direction were quickly
determined. Each member of the population was ranked using the cost or error function.

After the population of a given generation was ranked, the losers were eliminated and a group
of the best individuals were recreated to reestablish a population of 100 members. Several cases were
tested; one group that recreated the top 10% of the original population; in another group, 20%. These then
became the parents of the next generation.

(a) (c)

Figure 2. Paths of the truck as the genetic algorithm converges. The truck starts at 35 different
positions. In this test, 10% of a population is retained, with 300 mutations in each
generation. Shown are the paths of the best member of the initial population(a) and then
after 10(b), 20(c), 30(d) and 40(e) generations. Also shown (in (f)) is the solution from
[81.
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This new population was further altered by randomly crossing over (exchanging) one half of the
rules between members of the population. A total of 150 such exchanges were made. Then, a given
numbers of the individual rules were randomly changed one position in the membership function to add
further mutations in the new population. This number varied, in various experiments, from 100 to 3000
to investigate the effect on the convergence of the genetic algorithm.

Many different tests were run. In each. the same original population was passed through the
genetic algorithm, with only different number of children retained after each generation, and different
number of mutations within each population. The algorithm was allowed to run for 200 generations.

Discussion of results
All of the tests produced sets of fuzzy rules that did guide the truck to the ramp, although some

of the paths were certainly not the most direct. A plot of the best set of rules after 0, 10, 20, 30, and 40
generations for the best of these are shown in Figure 2. In this case, 10 members of the population were
used in recreation, and 300 individual rules were mutated in each new generation. After about 40
generations, the error did not drop significantly and the algorithm was for all practical purposes converged.
For comparison, the paths for the truck when the fuzzy rules are designed by an expert [8] are also shown
in Figure 2(0.

Figures 3 and 4 show the error of the best fuzzy sets after each generation. The algorithm seems
to converge rather slowly, reaching a steady-state error after 40 generations. The best solutions for all eight
tests after the algorithm reached its' 200th generation are shown in Figures 5 and 6. It can be seen that
in most cases, the genetic algorithm can find a solution to this fuzzy controller problem.

3000 - - - .I .- ....... .. . . .
best 10%

- 100
* -300

- 1000
--3000

1 2000

1000

0 .. . . .30. .. .
0 !0 20 30 40 50

iterations

Figure 3. Error function of the population for passes through the genetic algorithm. In these tests,
10% of a given population is retained, with 100, 300, 1000, and 3000 random mutations
given to each generation.
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300 .. . . . . . . . . . .. . . .. I . . .

best 20%

4 -100
* -300

-1000
' -3000

~2000-

1000-

0
0 10 20 30 41) 50

iterations

Figure 4. Error function of the population for passes through the genetic algorithm. In these tests,

20% of a given population is retained, with 100, 300, 1000, and 3000 random mutations

given to each generation.

Figure 5. Paths of the truck for the best member of the 200th generation through the genetic
algorithm. In these tests, 10% of a given population is retained, with 100(a), 300(b),

1000(c), and 3000(d) random mutations given to each generation.
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(b)

Figure 6. Paths of the truck for the best member of the 200th generation through the genetic
algorithm. In these tests, 20% of a given population is retained, with 100(a), 300(b),
1000(c), and 3000(d) random mutations given to each generation.

Conclusion
It has been shown that the genetic algorithm can be used successfully for automatic rule finding

in fuzzy systems. It was found from experiment that each time a good solution was found, but not the
necessarily the best one. Appartently, the algorithm converges to local minimas not far from the global
minimum. A disadvantage of the algorithm was that relatively long time was required for convergency.
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ABSTRACT
In this paper, we propose a novel learning method, self-learning fuszy modeling (SLFM),for inference rudes.
Basically, the input data should be divided into several groups in advance. Then, Gaussian distribution function
is employed as the standard form of the membership function. Methods of statistics are used to determine the
center and width of the membership finction for each group. Regarding the consequences, the linear regression
method is used. After the above procedures, we can decide the intial parameters of fuzzy system. Then, the error
backqoropagation-type learning method is used to fine-tune the parameters. An example system is ident#Wed as
fuzzy inference rules. The simulation results show that the proposed method is better than the conventional
artificial neural networks in both accuracy and speed.

1 INTRODUCTION
Artificial neural networks (ANNs), fuzzy logic, and genetic algorithm are three independent researches regarding
sixth generation systems. In this paper, the author would like to propose a method which shows the fusion between
ANNs and fuzzy logic. The basic idea of this method is to apply the learning capability of ANNs to improve the
performance of fuzzy logic which has been widely applied in many areas, such as control Applying fuzzy logic to
improve the training speed of error backppagation (EBP) learning algorithm can be found in [Kuo 1993].

Applying ANN's learning algorithm to improve the performance of the fuzzy system is very new and
promising research. Lately, Takagi et aL [19911 introduced feedforward ANN into fuzzy inference. Each rule is
represented by an ANN while all the membership functions are represented by only one ANN. The algorithm is
divided into three major parts: (1) the partition of inference rules; (2) the identification of IF pMts; and (3) the
identification of THEN parts. Since each rule and all the membership functions are represented by the different
ANNs, they are trained separately. In other words, the parameters can not be updated concurrentdy. Jang [1992],
Wang et al. [19921, Shibata et aL (19921, Nakayama et aL [1992], and Fukuda et al. [1992] also presented the
similar methods.

Though there already has been some literature reported to apply ANNs to fuzzy systems just as mentioned
above, none of them can successfully solve two main problems of fuzzy systems at the same time. One is the lack
of design for a membership function and the other is the lack of adaptability for possible changes in the reasoning
environment. The reason is that some of them only concern the second problem, the others concern the both
problems but the parameter learning for each problem is independent. Therefore, in the following section, a novel
architecture, the self-learning fuzzy modeling (SLFM), is proposed to solve the above two serious problems
concurrently.

2 METHODOLOGY
In this section, we would like to propose a method, the self-learning fuzzy modeling (SLFM) to solve the above two
mentioned problems. Basically, SLFM will determine a decision making action by using ANNs which implement
fuzzy system. Such an architecture is able to determine the inference rules by using the real data without the
experts' knowledge.

In order to decide the shapes and positions of the membership functions, the training data should be
divided into several groups in advance. Several different membership functions can be chosen for such domain. In
this research, Gaussian distribution function is used. Thus two parameters, center and width, of Gaussian function
should be determined. For each group, or rule, the Euclidean distances E between the training data and the desired
center is minimized in order to determine the center of the group. The width of the group is then determined by

1-820



the method of statistics. The consequence, which is the control action of each inference rule, is determined for
each group, or rule, by using the linear regression method.

After the above procedures, we can obtain the initial parameters for SLFM. The basic idea of SLFM is to
employ the learning capability of ANNs to update the parameters, which have already been predetermined, of fuzzy
system. Because of this purpose, the fuzzy system should be represented as the form of ANN. Before discussing
the proposed architecture, the used fuzzy system, based on Takagi's method [1983], is discussed first.

2.1 Takagi's Fuzzy System
In order to clearly explain Takagi's system, a simple example is used in the following. For instance, two rules are
illustrated below.

Rule 1: IF Y is Small(Al) and Y is Small(Bl)
THEN Z is!1 =ajlx+al2y+b1.

Rule 2: IF X is Large(A2) and Y is Large(82)
THEN Z isf2=a21x+a2 2y+b2 .

It is assumed that the membership functions for X and Y have been determined. Each rule has a premise, or IF,
part which contains several preconditions. The number of preconditions is corresponding to the number of the
inputs. And a consequent, or THEN, part which describes the value of one or more output actions. Now suppose
thee are two inputs, x and y, for fuzzy variables X and Y, respectively. Then the truth values are represented as
PAl(x) and pBBl(y) for rule I where pAAl and pBl represent the membership function for A1 and B 1, respectively.
Similarly for rule 2, we have pA2(x) and PB2(y) as the truth values. Hence the firing strength of rule 1 is obtained
as wl= PAl(x)PBl(Y) and w2=iA2(x)PB2(Y).

The oveall output O is determine by using centroid defuzzification where

xwift0 = _ X y 2 x +X2 xxylx f 2

•wi X XY2 +X2 Xyl
i

and fi is the consequence, or control action, value of rule i.

2.2 Self-Learing Fuzzy Modeling (SLFM)
Based on the above fuzzy system the corresponding ANN structure can be represented. The proposed fuzzy ANN,
which is shown in Figure 1, consists of five layers.

a. Layer 1
Layer I is the input layer which consists of the real-valued input variables.

b. Layer 2
Every node in this layer is the value of the membership function:

AA(X)=e 2 a (2)
where x is the input variable and c and o are the parameters. A is the linguistic term. Just as mentioned, the
shape and position of membership function will change while any of c or a are changed.

c. Layer 3
Every node in this layer possesses the capability of multiplication. It is equivalent to the meaning of the firing
strength in fuzzy system.

d. Layer 4
This layer calculates the ith firing strength proportional to the sum of all the firing strengths.
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e. Layer 5
This is the output layer which combines all the control action values from all the inference rules.

MCnbersqiup Function

M-Firig ue1.Sf-lerufingf ymdln SF)srcue

Of the ith rule

f h e Rwtio of the id Rule's
Mr'ing S-r nth to the Sum

of Aip the a ring Sbrength

Ctusequence and Ratio

tfluge 1. Sehilearding fuzzy modeling (SLFv e structure.

All the weights conneching two nodes are I except the weights between layer 4 and 5. They .e control
actions for each rule which is denoted as fi,

f, = )jx + b, (3)

where j is number of input and aij and bip are the parameters. The pr learig algorthm for fuzzy system is
trained by using the EBP-type algorithm. Since the slructure is much different from the standard e.P, the
modification should te make. In order to clearly doscribe the learning algorithm, the variables used ar. defined in
die following in advance.

e = the example number
Pile = the ijth membership function valuexample e.

Cia = the center of the ijth membership function.
114 = die variance or width of die ijth membership function.

w e = the interffction of the membership function values for rule e], example e.
= the number of the input vaiables.

In = the number of the categories of each input variable.
te = thee desired output for example e.
fOICe = the firing strength of rule Uj] for example e.
a.•,i = the coefficient of input xi.

xi = the ith input of example e.

E = the cost function.
0e = the actual output of example e.
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T1 = the training rate.

The fuzzy system, in the form of ANN, can be derived from the following equations:

ij ion(4)i-a

W~ I l-[ , (5)
ia t~jd.mi

o0 = (6)

"I1

=id) awx) + (7)

Since the EBP-type algorithm is employed to self-learning the parameters, the inference rules are updated
so as to minimize the cost function E which is defined as:

2 ,
where e is the training example number. Each parameter of control action function is updated by an amount
proportional to the partial derivative of E with respect to that parameter. For the layer 4-to-output parameter aij,
the gradient descent rule gives:

Aa,, E W 0, () Xj' x9)

hI

For parameter bj, the gradient descent rule gives:

xkj= -1 _ 1-• = ,(Cc - 00)--t (10)c~~b,.. IW;,,
(jI

For the layer 2, the scaled Gaussian function parameters are updated by an amount portional to the partial
derivative of E with respect to that parameter. For cij, the gradient descent rule gives:

.=�aE w X!" -c,.)

For aij, the gradient descent rule gives:
• (,. -O')_ _ • • '-O)(x' -c1-)

A -I (fil) (12)

hIl
The update learning rule is of the form

wO+O (0 aE
ZJ w -i 71-a-•, (13)

where wij is the changed parameter.

3 SIMULATION RESULTS
In order to demonstrate the validity of the proposed method, an example system is identified as fuzzy inference
rules. The input and output data are shown in Figure 2. Totally, there are 30 input-output pairs. The system has
one input and one outpuL Basically, the input and output variables are normalized within [0, I]. The membership
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functions before and after fine-uming for each rule are shown in Figure 3. In order to really show the advantages
of the proposed method, only three membership functions are used for input variables. Therefore, only three
inference rules are used in this case. The fine-tuming stops the learning when the inference error E for the
identification data is less than 0.03. The comparison between conventional ANN and the proposed method is
shown in Table 1, which shows that the inference error obtained from the proposed method is less than error
obtained by the conventional ANN. Moreover, SLFM can learn in a substantially shorter period than the
conventional ANNs. The control actions for three rules are shown in Appendix.

a9 -

OQ5

0.4-02"t

Ot

-0 3 l a I U I i W i i9

Figure 2. Simulation data.
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0.1 - I

Vqure 3. Membership functions before aud after ree-tuning, where dash fine represents the membership
functions before a fie-tuning and solid line represents the membership functions after fie-tuning.
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4 CONCLUSIONS
A learning method, SLFM of fuzzy inference rules is proposed. The parameters in both the antecedent part and
the consequent part can be fine-tuned simultaneously. The simulation results also show that SLFM has the high-
speed learning capability, generalization capability, and capability to express acquired knowledge. In the future,
SLFM will be applied in multi-sensor integration for tool wear monitoring.

Table 1. Comparison between ANN and SLFM.

ANN SLFM
Error 0.184 0.03
Iteration 3000 56

APPENDIX

Rules Before Learning Rule 1: IF x is small THEN y = 0.62x - 0.0159
Rule 2: IF x is medium THEN y = 0.177x + 0.271
Rule 3: IF x is large THEN y =2.73x - 1.76

Rules After Learning Rule 1: IF x is small THEN y =0.63x - 0.028
Rule 2: IF x is medium THEN y = 0.202 + 0.303
Rule 3: IF x is large THEN y = 2.769x - 1.781
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Fuzzy Functional-Link Net for Seismic Trace
Editing
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Abstract

A higher-oider neural net incorporated with fuzzy concept in learning procedure is
proposed. This net is called fuzzy functional-link net. Fuzzy functional-link net is
applied to the seismic trace editing to determine the good or bad recording.
Perceptron with pocket learning algorithm and multi-layer perceptron are also applied
to the seismic trace editing. Compared with the classification results, fuzzy
functional-link net has good performance in learning time and recognition rate.

Introduction

The widely used model of neural network for seismic pattern recognition in
seismic trace editing is the back-propagation learning model [1, 2, 3]. But there are
two major drawbacks of back-propagation learning model: one is that the training
time is sometimes too long to accept, the other is that it can not assure a successful
learning due to the local minimum problem.

In this paper, we propose the fuzzy functional-link net to seismic trace editing to
determine the good or bad recording in seismic traces. Since patterns with higher-
order terms contain more separable power than original patterns do, we can expect
that higher-order neural network can give better recognition rate. Next, we propose
the learning e'gorithm by using the fuzzy weights in perceptron learning algorithm.
The adjusted fuzzy weights can reduce the influence of the uncertain patterns in
adjusting the decision boundary.

Learning Algorithm of Fuzzy Functional-Link Net

Functional-link net was mentioned by Pao [4]. It is a single-layer perceptron and a
higher-order neural network. Here, we use the tensor form (outerproduct form) to be
the higher-order term. Before presented to functional-link net, the original pattern
must be enhanced to tensor form. By training with tensor form, the functional-link
net can solve some nonlinear separable problem such as XOR problem. Here, the
tensor form of a set of components (xi) would be (xi, xixJ* (j > i).}

Keller [5] proposed a fuzzy weights updated rule which can be incorporated into
perceptron-based learning algorithm. Such a rule can reduce the influence of the
uncertain training patterns in adjusting the linear decision boundary. We try to
incorporate fuzzy set theory into learning algorithm of the functional-link net.

Learning Algorthm of Fuzzy Functional-Link Net
Input: Given a set of P training patterns. Each pattern belongs to class A or class B.

Two classes are linear separable.
Output: A linear decision boundary.
Methods:

Step 1. Enhance the original features to higher-order terms for all training
patterns. New pattern vector has form X = [xl, x2,..., xN]t.
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Step 2. Initialize weights and threshold
Set wi(0) (1:5 i 5 N') and 0 (= WN'+1) to small random values. Here
wi(t) is the weight from input i at step t and 0 is the adaptive
threshold. N' is the number of features in tensor form. Set K, Ti, and
m.

Step 3. Present new input and its desired output
Present new input pattern vector X and its desired output d.

Step 4. Calculate the membership degree of each pattern X in each elasse
If X belongs to class A, then

gl(t) = 0.51 + (nl/K) * 0.49
192(t) = (n2/K) * 0.49

else (i.e. X belongs to class B)

gl(t) = (ni/K) * 0.49
192(t) = 0.51 + (n2/K) * 0.49

where nI is the number of nearest neighbors of input pattern X in class
A, n2 is the number of nearest neighbors of X in class B. Note that n 1
+ n2 = K and 1:• K< P.

Step 5. Calculate actual output

y(t) = fh (X, wi(t) xi - wN'+l (t))
i=l1

where fh( ) is the hard-limiting function.
Step 6. Adapt weights incorporated with fuzzy membership degree.

wi(t + 1) = wi(t) + 111 W(t) - 9±2 (t)0m [d(t) - y(t)] xi

1_ i:5 N'+ 1

d(t) = +1, f input is from class A
-1, if input is from class B

Step 7. Repeat by going to Step 3.

Application to Seismic Trace Editing

Four features of each seismic trace are generated as follows. Assume that each
seismic trace is the current time function f(i)(t), where i is the index of the seismic
trace.

(I) Average trace frequency F(i):
If the sample number of a trace is S(i), and the number of peaks in a trace is
N(i), then

F(i) = N(i)Os(i) (2)
(2) Sum of absolute amplitude A(i):

(3) Average trace power P(i): = J j 
(3)
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p(i) = (1/S(i)) S1)(fi))2  (4)
j=1

(4) Maximal crosscorrelation C(i) with two adjacent seismic traces:

c(i) = max(Jf (i)() f(i - 1)( - t) dc, f(i)(,) (i + -)(t. t) d) (5)

where f(i - 1)(t) and f(i + 1)(t) (if i - 1 or i + 1 exists) are time functions of
two adjacent seismic traces.

Experiments of determining the good or bad seismic trace recording are
implemented by the perceptron with pocket learning algorithm [6], the fuzzy
functional-link net, and two-layer perceptron here. Four features are generated from
each seismic trace and enhanced to the two feature product terms. So there are 10
input nodes. For the two-layer perceptron, the network is 10(input nodes)-5(hidden
nodes)- 1 (output node).

In training phase, several good recording seismic traces are selected as training
traces. Three networks are adopted in the trainig first, and then the whole seismic
traces are tested.

Process of Seismic Trace Editing by the Neural Network
Input: Seismogram
Output: Classification result to indicate that each seismic trace output is accepted

(good recording trace) or rejected (bad recording trace).
Methods:

Step 1. Present one neural network model which has been trained.
Step 2. Present a new trace.

Calculate four features of the input trace and enhance to the two
feature product terms. Total input nodes are 10 terms.

Step 3. Calculate actual output y and assign to the class.
Step 4. Repeat by going to step 2.

Now, we select trace number 3, 4, 5, 6, 21, 22 from Figure I as the training traces
of the good recording, and select 11, 12, 13, 14, 17, and 18 as the training traces of
the bad recording. Note that the trace number from 1 to 10 and 21 to 32 are good
traces. After training, all traces are tested to acquire the number of correct
classification by the above three models. Finally, we list the correct rates of each
model in Table 1. We also find that the training time of fuzzy functional-link net
runs in PC 486 are less than 4 seconds, and two-layer perceptron with back-
propagation training needs over 5 minutes. Compared with the classification results,
fuzzy functional-link net has better performance in learning time and recognition rate.

Neural Perceptron with Fuzzy Two-layerNetwork Functional-Link Preto
Models Pocket Algorithm NettionaltLin

Correct
Recognitlon 96.88% 100% 100%

Rate
Tae. 1 Correct recognition rate of each model.
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Conclusions

The fuzzy functional-link net is proposed and applied to the seismic trace editing.
The performance is good in recognition rate and learning time. The fuzzy neural
networks may apply to other problems of the seismic pattern recognition.
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A REAL-TIME NEAR NEIGHBOR TYPE FUZZY

PATI'ERN RECOGNITION NEURAL NETWORK

M. E. Ulug

Intelligent Neurons Inc., 1537 E. Hillsboro Blvd., #342
Deerfield Beach, Florida 33441

ABSTRACT

This paper describes a PC-based real-time neural network for
fuzzy pattern recognition. A near neighbor type architecture is
used. The training consists of a set of computations. Hence the
number of cycles is zero. It is a single layer network that uses
seven r functions for input fuzzification. For output fuzzifica-
tion parametric representation is used . A user can select granu-
larity by choosing a 5, 9 or 13 element term set. The numerical
data about the membership function is also supplied. Two fuzzy
pattern recognition systems that we built are discussed.

1. INTRODUCTION

It is well known that the pattern recognition problems are
solved more easily by humans than by computers. Yet the human
reasoning involves dealing with many imprecisions, ambiguities, and
uncertainties. For a computer to be able to handle uncertain data
like humans it is necessary to incorporate into the system design
fuzzy set theory [8] and fuzzy logic [1]. Many patterns used in
pattern recognition systems belong to more than one class with a
finite degree of belongingness [4], or have widely overlapping
regions [7]. In addition, their input signals may possess features
with a certain degree of confidence.

In the past decade artificial neural networks have been used
to classify patterns in many fields. However, problems have been
encountered in Intelligent Systems, e.g., machine vision platforms
that attempt to interpret scenes with various kinds of sensors and
contextual information, by the incorrect classification of test
patterns. Imagine a pattern indicating three different signatures.
The first one, however, is more pronounced than the other two. In
such a case a crisp neural network will identify the first signatu-
re because it achieved the minimum error for this particular class
and ignore the other two. As a result, the expert system of the
Intelligent System may either fail to identify or wrongly interpret
the situation and make the wrong decision. The use of fuzzy rather
than crisp classification can avoid these problems.

2. ARCHITECTURE OF FUZZY NEURAL NETWORK

The training times of fuzzy neural networks using the
backpropagation learning rule are exceptionally slow. Moreover,
convergence of the network cannot always be guaranteed. This is
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due to the fact that the target values represent the membership
values of the training samples. Therefore, they are dynamic. For
this reason the use of PC-based fuzzy near neighbor [3] networks,
or for short FN4 , shows great promise for small to medium size
applications. This is because the training consists of a set of
computations and involves zero number of cycles. For large
applications the training/computation for each output node/class
can be done on a separate microprocessor mounted on a PC-based
accelerator card. Therefore, the real-time training capability a
FN4 can be maintained for large systems by training the output
nodes in parallel. In Figure 1 We show the architecture of FN4

FUZZY NEAR NEIGHBOR TYPE
NEURAL NETWORK

NORMALIZER

INPUT -NEAR

VECTOR FNEIGHBOR

NEURAL
OUTPUT

NETWORK a U

Figure 1

As shown we use a normalizer and a n fuzzifier before the FN4.

2.1. Fuzzification of Input Signals:

For the fuzification of input signals we used the following
technique in our software system:

(i) we normalized the input signals, and

(ii) we placed seven r functions at the entrance to the ONN.
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Our r functions were given by the following equations [5]:

x = distance from origin
c = center of the 7r function
r = radius of the 7 function

for r/2<= Ix-cl <= r

x-=(x;c;r)=2(l IXCl )2r

for 0.0<= Ix-cl <= r/2

(x; c; r) =1-2 ( x-c)2 (2)
r

Otherwise

C=(x;c;r) =0.0 (3)

After normalizing the input signal, we placed the medians of our n
functions as follows:

Extremely low (EL) = 0.125
Very low (VL) = 0.250
Low (L) = 0.375
Midpoint (M) = 0.5
High (H) = 0.625
Very high (VH) = 0.750
Extremely high (EH) = 0.875

The advantage of this approach is that as long as the input signals
are normalized these w functions can be used in all applications.
For this normalization process we determine the minimum and the
maximum values of the input signals. We then subtract from each
signal the minimum value. After that divide them with the
difference between the maximum and the minimum values. This
process makes the minimum value zero and the maximum value one.

2.2. Fuzzification of the Output Signals:

For the fuzzification of the output signals we used the triangular
norms and conorms of Schweizer and Sklar [6] to handle conjunctions
and disjunctions [2],[81 respectively. A user could choose the
uncertainty granularity by selecting a 5, 9, or 13 element term
set. Below we show the a, b, c, and d parameters of a 5 element
term sets. In this representation we have: un[*] Il]=a, un[*] [2]=b
un[*] [3]=c, un[*] [4]=d, and me[*] = median of the membership
function, where * is the number of the term set, i.e., for a five
element term set we have the following notation:

1 = impossible, 2 = unlikely, 3 = maybe, 4 = likely, 5 = certain.
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PARAMETRIC REPRESENTATION

OF A MEMBERSHIP FUNCTION

a-c ab b+d

Figure 2

IMPOSSIBLE UNLIKELY MAYBE
un[l] [11=0; un[2] [1]=0.01; un[3] [11=0.40;
un[l] [2] =0; un[2] [2] =0.25; un[31 [2] =0.60;
un[l] [31=0; un[2] [31=0.01; un[31 [31=0.10;
un[l][4]=0; un[2][4]=0.10; un[3][4]=0.10;
me[1]=0; me[2]=0.1532; me[31=0.5;

LIKELY CERTAIN
un[4] [1]=0.75; un[5] [11=1;
un[4] [2]=0.99; un[5] [21=1;
un[4] [3]=0.10; un[5] [31=0;
un [4] [4] =0.01; un[5] [41=0;
me[4]=0.8467; me[51=1;

3. OPERATION OF FN4

The membership function for the input vector of the pattern i,
Xi, is calculated using the following equation which is a simpli-
fied version of the equation introduced by S.K. Pal [41:
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n 1 (4)
1+ I [xlj-mean k] 2

J.1

for k=1, ... ,m and where xi= j'th component of the i'th sample,
meankj = j'th component of the mean vector of the k'th class,

The calculation of the
membership values is shown
in Figure 3. We first MEMBERSHIP VALUES
calculate a mean vector
for each class. We then Y
calculate a membership cum.ITM1
value for all the training
samples of all the classes
with respect to a given CLAWN.2
mean vector. We then
repeat the process for all i
the mean vectors. This
computation completes the
training process. In
classification of an wmn CUM M

unknown sample, we x
calculated the vectorial
differences between the
vector representing the
sample and all the mean
vectors. In Figure 3 we only Figure 3
show two classes. For clarity
we did not show all the vectors used in training. As can be seen
from Equation 4, the membership value of a sample in a class is
inversely proportional to the sum of 1 and the vectorial difference
between the sample vector and the mean vector of this particular
class.

4. APPLICATIONS

We tried our FN4 on two different applications. The first one
used data taken from a map reading neural network. There were
seven classes, i.e., output nodes, and 25 samples from each class.
Each output node was trained with 7x25=175 samples. The input
signals were 27 dimensional vectors. In the second application we
used data taken from a curve recognition neural network. There
were four classes/output nodes and 5 samples from each class. Each
output node was trained with 4x5=25 samples. The input signals
were 10 dimensional vectors. The four classes had small areas of
overlap. This can be seen by observing the test results on an
object from class #1. In this test we used a nine element term set
with the following notation Mm = membership value, Md = median of
the membership value, and a, b, c, and d are the parameters of the
membership function as shown in Figure 2.
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Belongingness of Object # 1 to Class # 1 is CERTAIN
Mm=l.000000 Md=l.000000 a=l.000000 b=l.000000 c=O.000000 d=O.000000

Belongingness of Object # 1 to Class # 2 is SMALL CHANCE
Mm=0.370852 Md=0.292600 a=O.220000 b=O.360000 c=O.050000 d=O.060000

Belongingness of Object # 1 to Class # 3 is VERY LOW CHANCE
Mm=O.200000 Md=O.137300 a=0.100000 b=0.180000 c=O.060000 d=O.050000

Belongingness of Object # 1 to Class # 4 is SMALL CHANCE
Mm=0.216331 Md=0.292600 a=O.220000 b=O.360000 c=O.050000 d=O.060000

These real-time training and testing results were obtained using a
486 PC. The programs were written in "C" language.

5. CONCLUSIONS

The architecture and operation of a PC-based near neighbor
type real-time neural network, FN4' designed for fuzzy pattern
recognition is described. It is shown that 7r functions and
parametric representations are used for input and output
fuzzification respectively. It is believed that because of the
extreme slowness of fuzzy backpropagation neural networks, the use
of FN4 shows great promise in providing real-time training and
testing for small to medium size applications. It is further
believed that the real-time training capability of FN4 can be
extended to large systems by training the output nodes in parallel
using a PC-based accelerator card.
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CAUSAL STRUCTURE, MODEL INFERENCES, AND FUZZY COGNITIVE MAPS:
HELP FOR THE BEHAVIORAL SCIENTIST

Philip Craiger
Navy Personnel Research and Development Center1

San Diego , CA

Abstract

A fuzzy cognitive map (FCM) is a heuristic alternative to causal modeling; a graphical
means of representing arbitrarily complex causal networks, the implications of which can be
calculated via matrix algebra. This paper discusses the use of FCMs for providing qualitative
causal information in behavioral science research.

I. Causal Modeling in the Behavioral Sciences
One of the most widely used statistical techniques in the behavioral sciences is causal

modeling. Causal modeling allows researchers to define and test statistically relationships
represented as causal networks among a set of latent variables. The underlying statistical
model for this technique is:5 -6

'=Oil+ r4+ C (1)

x = Aj + Ot (2)

y= Ay• +0 • (3)

The structural model (Eq. 1) specifies how latent endogenous variables (1)), latent exogenous
variables (4 ), and errors in equations (C) combine to form a causal network. The measurement
models (Eq. 2 and 3), are confirmatory factor analysis models that partition each measured
variable into common (true) variance (71 and 4, modified by factor loadings A, and Ay,

respectively) and associated error of measurement (0, and 03). Computer software
implementing various parameter estimation procedures (commonly maximum likelihood and
generalized least squares) allows the specification and testing of the (putatively) causal
relationships among the latent variables defined in a causal model.

II. Limitations of Causal Modeling
A contributing factor to the popularity of causal modeling has been its capacity for

representing complex networks of relationships. Representing psychological phenomena in
terms of networks of variables more closely resembles real-world systems. Its use, however, is
often problematic. For instance, non-convergence of solutions and impossible parameter
estimates, such as negative error variances and standardized correlations greater than unity,
are not uncommon, and their occurrence can often be attributed to problems with model
identification. Identification concerns the question of whether the model and data constraints
are sufficient to determine a unique set of parameter estimates.2 Empirical underidentification
occurs when the data are such that a unique set of parameter estimates is unobtainable, whereas
theoretical underidentification occurs when the model specified does not allow for a
determination of a unique set of parameter estimates'. One cause often associated with
underidentification are reciprocal (bi-directional) causal links.4

Causal modeling has greatly expanded the potential for studying complex systems of latent
variables in the behavioral sciences. Below I describe fuzzy cognitive maps (FCM), an
alternative to causal modeling that does not suffer from some of the limitations described

1 The views expressed in this paper are those of the author, and are not necessarily
official Navy policy.
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above.3 The primary difference between the two techniques is that FCMs (1) provide qualitative
information regarding model implications, (2) facilitate pattern prediction, as opposed to
parameter estimation, and (3) facilitate the modeling of dynamic processes. FCMs may be used
in conjunction with causal modeling --- as a precursor in the initial modeling building phase ---
or in place of causal modeling --- when it is desirable to explore a causal network, but
conditions are such that the use of causal modeling is impossible or inappropriate.

I11. Fuzzy Cognitive Maps
Developed by Kosko7-, a FCM is a graphical means of representing causal knowledge that

can be used to evaluate the time-varying effects of patterns of causal connections represented in
a model. The "fuzzy" indicates that FCMs are often comprised of concepts that can be
represented as fuzzy sets. Fuzzy set theory was originally developed by Zadeh as a means of
representing and reasoning with vague and ambiguous information."0 The reader is referred
to Zadehl° and Kosko8 for information on fuzzy set theory.

IV. A FCM of Job Turnover
A FCM is comprised of nodes (concepts) and edges (directional arrows). Figure 1 is a FCM

representing an elaboration of a model of job turnover 9 .

Family
Problems

Job + Abse c

Alternatives La CSS

T+ +
Economic
Conditions Srs

Person/! nVolvemeat I-ntention
EniometAto - 4--'Troe

Ned , + + E+etain Cmmitment

Motives

In contrast to causal models, FCMs lack "traditional" statistical parameter estimates; real
numbers estimated from sample data that indicate the strength of relationships between
concepts. In a FCM causal links take on values in 1-1,+1), where a -1 indicates a negative
relation, and +1 a positive relation. Because the causal links are represented as all-or-none
relationships, FCMs provide qualitative as opposed to quantitative causal information

V. Causal Network Complexity
Behavioral scientists commonly ignore the global implications of his or her model. Model

implications are determined by the patterns of the causal links represented in a model. To
illustrate a simple case, the necessary implications of the causal network A-)B--C are that a
change in A results in a change in B and a change in C. Now consider the turnover FCM.
What are the implications of an increase in person/environment fit? A decrease? What are the
implications of increases in stress and commitment, and concomitant decreases in satisfaction
and involvement? It is difficult to determine the effects because of the reciprocal causal links
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and the complexity of the patterns of causal connections, the two ingredients that determine a
model's "complexity'.3

it may be difficult to determine the consequences of the spreading causal activation of
complex causal models. In general, there is a negative relationship between the complexity of a
causal network and our ability to determine the implications of the model; however, FCMs
provide the ability t' determine consequences of a causal network regardless of complexity.8

VI. Determining Causal Network Implications
In FCM nomenclature, model implications are determined by clamping variables and using

an iterative vector-matrix multiplication process to assess the effects of these perturbations on
the state of the causal network. As such, an analogy can be drawn between clamping nodes and
manipulating independent variables in a psychological experiment.

If we designate exogenous (independent) variables as the rows and the endogenous
(dependent) variables as the columns, we can transform a FCM into r "onnection matrix. A
connection matrix is a specification of the causal links represented in matrix form; a square
matrix with the number of cells equal to the number of latent variables squared. Below is the
connection matrix for the turnover model.

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0-1 0 I ) 0 0 0 0 0
0 0 0 0 0 00-1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 11 0 1 1 0 0 0 0
00 0 0 0 1 0 0 0 1 1 0 0 0 0 0

00 0 0 I 0 0 0 0 0 1 0 0 0 0 0
00 0 0 0 0 0 0-1 0 0 ý, 0 0 0 0

00 0 0 0 0 0 0-1 0 0 0 0 0 0 0
=O0 0 0 0 0 0 0 0 0 I1 0 -I 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 I 1 I I 11

0i 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
]0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

;0 0 0 0 0 0 I 1 0 0 0 I 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 I 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 l

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VII. In-ference Equationa
Say we wish to evaluate the effect of family problems and person/environrnent fit on the

state of our model. That is, in our causal model we posit that family problems exist and there is
a positive person/environment fit, and we want to evaluate these effects on the other variables
(intention to quit, turnover, satisfaction, and so on). The equation employed in the to ascertain
model implications is:

k k

1i•+,1=O[i,= E E. if-] C[M.., (4)

I is an input vector of k elements, and C is a connection matrix of order k x k. This equation
calculates the inner (dot,' product for each variable (column) of the connection matrix. The dot
produ, t defines the cosine of the angle between two (normalized) vectors, or in statistical terms,
is the correlation between the vectors.
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Computed elements of the output vector often lie outside (-1, 1). We transform the out-of-
range output vector elements (O(9/) into an acceptable input (bit) vector (Ili.,,) using the
following transformation rule:

-I if x<O

/1.1= ifx=O (5)
[Iif x> O

Thus, to transform the output vector into an acceptable input (bit) vector we (1) clamp any
nodes turned on in the initial input vector, and (2) transform elements outside 1-1, 1) into valid
vector elements (bits) using the transformation rule (Eq. 5).

VIII. Hidden Patterns = Model Implications
In FCM nomenclature, a model implication or inference is a global stability --- an

equilibrium in the state of the system represented as a set or sets of repeated patterns.8

Repeating patterns can be hidden patterns or limit cycles. A hidden pattern is a single recurring
pattern, such as the C in ABCCCC..., whereas a limit cycle is a sequence of (multiple) repeating
patterns, such as the pattern BC in ABCBCBCBC... Hidden patterns and limit cycles are model
inferences. Note that this equilibrium can be likened to the global minima of the maximum
likelihood estimation procedure commonly employed in causal modeling. Hidden patterns/
limit cycles and global minima reveal the minimum energy state of the of the system (model).

IX. Vector/Matrix Multiplication = Inference Process
We represent the effect of family problems and person/environment fit by the following bit

vector:

I[11=11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 01

Each element of the vector represents the state of one of the latent variables in our model.
Thus, Ili = 1 indicates that the family problem variable is clamped, 1121 = 0 and 1131 = 0 indicate
that job alternatives and economic conditions are off, 1141 = 1 indicates that person/environment
fit is clamped, and so on.

We begin the inference process by applying the inference equation (Eq. 4)), resulting in the
output vector:

Orul={O 0 0 0 0 0 0 0 0 0 1 -1 0 2 1 0)

This output vector is interpreted as a "snapshot" of the global state of the causal network
after the first iteration; it indicates that the initial effect of person/environment fit and family
problem is an increase in expectations, commitment, and intentions to leave, and a decrease in
job performance. Note that11 41 = 2 is outside {-1, 1), the range of valid bit values for input
vectors. Recall that to transform this output vector into an acceptable input vector, we (1) apply
the transformation rule (Eq. 5) to this output vector (affecting I'141 only), and (2) clamp any
nodes on in the original input vector (nodes one and four). This results in 1121:

1121 =11 0 0 1 0 0 0 0 0 1 -1 0 0 1 1 0)

Employing this process for four more iterations results in the following output vectors (model
inferences):

0121=10 0 0 0 0 0 0 0 0 1 0 1 1 0 -1 0)
0131=(0 0 0 0 0 0 0 0 0 1-1 1 1 0 0 -1)
0141 = 10 0 0 0 0 0 0 0 0 1 0 1 1 0-1 0)
0151=10 0 0 0 0 0 0 0 0 1-1 1 1 0 0 -1)
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The process reveals the model's implications on the fifth iteration by the sequence of
repeating patterns 0121 (0141) and 0131 (0151 ). This two-stage limit cycle is repeated ad infinitum.
Note that it took only three iterations for the system to equilibrate. Research indicates that
FCMs come quickly to an equilibrium, regardless of the complexity of the model.8

The model's implications and inferences are represented in the following two-stage limit
cycle:

X. Rsults
The two-stage limit cycle can be interpreted as a reciprocal causal connection between the

two sets of latent variables. The result is a more realistic reflection of real-world causal
systems than the simple static results representative of causal modeling because the limit cycle
implies a time component. Thus, unlike causal modeling, FCMs facilitate the modeling of
dynamic processes.

Given our model, one would expect that the presence of family problems would have a
deleterious effect on job performance (family problems increases absence and lateness, which
decrease job performance). The model implications calculated using the inference equation,
however, suggests otherwise. Why might this be? One cause appears to be a blocking effect.
Note that the effect of person/environment fit on job performance is mediated through four
variables; satisfaction, involvement, commitment, and stress (and numerous combinations
thereof). The effect of family problems on job performance is mediated through absence,
lateness, and stress. Note, however, that there is an apparent blocking effect of
person/environment fit on absence and lateness through involvement. Thus, although family
problems does increase absence and lateness (which decreases performance),
person/environment fit has a greater effect on the state of the causal network by virtue of the
way we have represented the relationships among the variables. If we had clamped the family
problems node only, job performance would have decreased; however, clamping both variables
results in person/environment fit moderating the effect of family problems on job performance
by blocking (reducing) absence and lateness. The blocking effect is not obvious because of the
complexity of the causal network. The model implication is that the effect of family problems
on job performance is moderated by person/environment fit. Thus, FCMs have the ability of
modeling both mediator and moderator effects.

XI. Discussion
FCMs exhibit a number of desirable properties that make it attractive as a supplemental

process in model building for behavioral scientists, including:

providing qualitative information about the (hidden, nonapparent) inferences in
complex causal matrices,

* providing a means of quickly mapping out and testing the implications of a model,
* can represent an unlimited number of reciprocal causal links,
* do not require data,
* facilitate "thought experiments" through the interactive manipulation of independent

variables and evaluation of concomitant effects,
relationships need not be linear,
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* can model both mediator and moderator relationships,
* it is impervious to problems with empirical or theoretical identification,
* can be easily calculated by hand,
* and facilitates the modeling of dynamic processes.

A limitation of FCMs is that they provide only qualitative information regarding the
predictions of emerging patterns; no real-value parameter estimates or statistical tests of
significance are available. Thus for the traditional methodologist, FCMs may not be an
acceptable alternative. FCMs, however, are ideal for situations where traditional statistical
techniques are inappropriate, as when a model is so complex that there are problems with
identification (e.g., when too many reciprocal causal links are modeled), when statistical
assumptions are severely violated (variables evidence highly skewed and kurtotic
distributions), or when data are not available. FCMs should prove useful for all behavioral
scientists in regards to prototyping models, and for assessing the global implications of
complex causal models.
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ABSTRACT

The ability to inspect the surface property in reasonable time plays a very important role for
manzacturing processes. Basically, the surface properties can be divided into three categories:
pass, re-grinding, and fail, for by-products. Thus, in this paper, we propose an automated
inspection system, which consists of three components, data acquisition, feature extraction, and
pattern recognition, to on-line inspect the surface properties. In the first component, the surface
information, sensory signals, are collected. The features of sensory signals are extracted for
each inspected by-product by using the time series model in the second component, while the
features extracted are fed to a feedforward artificial neural network (ANN) trained with fuzzy
error backpropagation (FEBP) learning algorithm for property recognition in the last
component. In order to select an appropriate time series model for this application, some tests
of statistics are made for model determination. The classification accuracy is over 80% for most
of the surfaces and the time required to implement the inspection is shorter enough for on-line
inspection.

1 INTRODUCTION

The ability to inspect the surface property plays a very important role for manufacturing
processes. Especially to inspect the by-products instead of the finished products provides more
economical alternative. In addition, the surface property of working material can be used to
indicate the cutting tool conditions, fresh or worn out. Basically, the surface properties are
divided into three categories: pass, re-grinding, and fail. On the basis of the types of surface
property, the system decides the next operation and makes the decision for tool change.
However, in order to efficiently apply this concept, the inspection time should be very short and
automatically implemented. Otherwise, the total production time becomes very long. Under such
consideration, the inspection system used should bt able to make the decision in reasonable time.

Therefore, in this paper, an automated inspection system, which consists of three
components: (1) data acquisition; (2) feature extraction; and (3) pattern recognition; is presented.
Firstly, the surface information, sensory signals, are collected. Due to large amounts of values for
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each surface information, it turns out to be very important to extract the features for each surface
information. In this research, the features of sensory signals are extracted by using the time series
modeL Since there are some choices of time series models, to make an accurate model
determination becomes very significant Thus, some test' of statistics are employed to make the
decision. Finally, the features extracted are fed to a ft yard artificial neural network (ANN)
trained with fuzzy error backpropagation (FEBP) I tgorithm for property recognition.
The classification accuracy is over 80% for most • surfaces and the time required to
implement the inspection is very short.

2 METHODOLOGY

The basic scheme of the proposed automated inspection system is shown in Figure 1. The
detailed discussions are as follows.

SUR.FANALYZER Data TransformatijH Tm Sleriesi Fuzzy Artificial
SYSTEM 4000 Pmrovm mode -1ell e , otwms

Figure 1. The automated inspection system.

2.1 Data Acquisition

For data acquisition, SURFANALYZER SYSTEM 4000 can be used to measure the surface
roughness in this application, since the surface roughness indicates the surface property.
Basically, SURFANALYZER SYSTEM 4000 is connected to PC which already has the data
transformation programs. Then, all the data is transferred to time series analysis package,
MINITAB, for parameter determination. This procedure will be discussed more detailed in the
following section.
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2.2 Feature Extraction

Different sensory signal patterns correspond to different surface properties. In order to analyze
the relationship between the signal patterns and the surface properties, it is critical to extract the
features of the sensory signal patterns. Using the features extracted from the surface information
instead of the whole surface information can save a lot of training time for ANNs which will be
used in the next component Intuitively, the sensory signals obtained from sensors are a time
series. By analyzing the time series data, we can construct a simple system, usually of a more or
less mathemtical kind, which describes its behavior in a concise way. There are three kinds of
time series models which are as follows for stationary data [Kendall 1990, Wei 1990].

Auto~ve Model (AR)

The pth-order AR(p) is written as:
y, = 8 + cy,_• +...+y, + r", ()

where coefficients 1,.-., %p being the AR coefficients for yt on yt- 1, ..-, Yt-p with 8 denoting the
constant term and et the error term.

Moving Average Model (MA)

The general MA(q) form is
y, = gx - Ole-,l- ...- 0q et- + el. (2)

where coefficients 01,..., Op being the MA coefficients.

ARM Model

By combining the above two models, AR and MA, a mix ARMA model can be represented as:
y, = 8 + Cy,_. +...+•,y,_, - 01 ,_1 -..*. -Oqe,_ + el,. (3)

Since there are the following concerns:

a. Trend removal,
b. The choice of AR, MA, ARMA, and
c. Order of the selected model,

it is necessary to determine which model is more suitable for the current data. In Figure 2, a
general paradigm for univariate time series modeling is shown. The first step is to analyze the
data. If there are trends or seasonal effects, the adjustments should be made. Then find the most
suitable model for the data which has been adjusted. Finally, the model can be used to do the
estimation.

2.3 Pattern Recognition

ANN is applied with the features extracted from the training data to identify the surface properties
to determine whether the by-product should be re-ground or not The results will suggest
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whether the ANN could successfully classify the surface properties by using the features extracted
from time series model. Three-layer feedforward ANN trained with EBP learning algorithm is
employed in this application.

INITIAL DATA ANALYSIS
Examine series for trends,

seasonal effects, unusual observations

ADJUSTMENTS
Perform transformations, trend removal

and other adjustments as necessary

IDENTIFICATION
Examine serial correlation structure

to determine form of model

ESTIMATION
Estimae parameters of model

Figure 2. The procedures of model determination.

However, EBP learning algorithm generally lacks the ability to produce an effective
network for a given task within a reasonable time. Thus, it is necessary to overcome this problem
for practical applications. In this research, fuzzy models are employed to speed up the
convergence of the EBP learning algorithm by dynamically updating the training parameters.
Though Xu et aL (1992) and Choi et al. (1992) have applied fuzzy modeling to accelerate the
training speed, the proposed fuzzy models are not suitable for all the different structures of
ANNs. The reason is that the ranges of linguistic variables for different ANN structures are
different. Therefore, the standard EBP learning algorithm with adjustable training parameters
proposed by Kuo et al. [1993] is used. In Kuo's fuzzy EBP (FEBP) learning algorithm, the
factors used to determine the change of the parameters are performance index (P1), which is
defined as error divided by maximum error, and change of PI (CPI). Since PI is the error
proportional to maximum error and CPI is the error change proportional to the maximum error,
both of them can be treated as the general information for all the different ANN structures. In
other words, E and CE should be normalized before being used. Moreover, all the three training
parameters, training rate, momentum, and steepness of activation function, are updated
simultaneously.
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3 SIMULATION

In this research, the proposed system will be evaluated by using an example system. Due to
communication problem between SURFANALYZER SYSTEM 4000 and PC with data
transformation programs, the simulation data will be artificially generated. Because sort of data
can be read from SURFANALYZER SYSTEM 4000, the generated data can well represent the
real data. After twenty data sets are generated, some noises are added to the above twenty data
sets in order to generate the re-grinding data sets and fail data sets. Therefore, totally, there are
twenty data sets for each property. Ten data sets for each group are used as the training sets, the
other ten data sets for each group are used as testing data sets.

4 RESULTS AND DISCUSSIONS

It has been mentioned before that the sensory signals are artificially generated. Two different
kinds of surface signals are shown in Figure 3. We can see that they are really very difficult to be
recognized. Thus, the time series model is used to extract the features from them. But, it turns
out to be very important to make the accurate model determination. Since the above three
mentioned time series models are all for stational data, it is necessary to detect the non-
stationarity first There are some methods proposed for detecting non-stationarity. In this
research, the test developed by Dickey and Fuller (Kendall 1990) is employed. The results show
that only the first difference is necessary. From the correlograms, we find that ARMA(4, 4) is the
best model for the first-difference data. Three models for three different properties are shown in
Table 1.

Therefore, the network architecture consists of nine input units which were connected to
sixteen hidden units which were connected to three output units. The task is considered solved
when the cost function for an epoch is below 0.01. Error backpropagation (EBP) learning
algorithm is used for training. The testing results show that the classification accuracy is over
80% for 30 testing surfaces.

Tabe 1. Time series model parameters
VA'. Vyt.2 Vyt.3 Vt4 et.1 et.2 4t.3 et-4

Pass -0.288 0.17 -0.31 -0.98 -0.246 0.377 -0.073 -0.517 -0.321
Re-grinding -0.983 0.221 1.137 0.622 -0.463 0.459 0.59 0.41 0.516
Fail -0.547 0.217 -0.466 0.972 -0.338 0.562 -0.032 0.846 0.333

1-846



(a) Time series data for Pams

(b) Time series data for re-grinding.

Figure 3. Two different time series data.

S CONCLUSIONS

An automated inspection system is proposed. It has been shown that parameters of the time
series data can be treated as the features of that data set. The simulation results also show that
the proposed system can recognize the surface properties in a very short time. In the future, real
data sets collected from SURFANALYZER SYSTEM 4000 will be used to evaluate the proposed
system instead of the artificial generated data sets.
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"Not only is everything changing, but all isflux..." - David Bohm

Abstract

With the introduction of Holographic Neural Networks we find ourselves looking out on
an entirely new, virtually unexplored terrain. We propose to partially connect Holographic
Neurons (HNs) or Clusters of Holographic Neurons (CHNs) to each other via a Classical
Distributed RDBMS where the relationship rules are evolved (in a genetic sense) by the
informational and temporal content of the neurons themselves. The synergy of the these
technologies should allows us to create systems of enormous potential.

Introduction

The Holographic Neural Method pioneered by Sutherland allows us to enfold extremely
large numbers of stimulus-response associations into a single complex vector the size of a single
input pattern. The process is roughly analogous to the process of [2,3]Bohm's Holomovement,
which is the continuous enfolding into the Implicate Order (the complex vector representation)
and extraction out to the Explicate Order (what we consider to be the world we see around us or
a data record). The modulating relationships of a classical RDBMS system may be encoded into
the holographic neurons that are themselves part of the data that is linked 'relationally'. A series
of relationship rules may themselves be evolved over time based on daemon processes that extract
metrics from within this domain.

While HNs have tremendous associative capabilities, not all data (or Objects) that we
wish to deal with are best suited to being represented within them. However, the relationships of
various data records or objects can be encoded within them to great effect. If we also enfold the
execution sequence of a series procedural threads within dedicated HNs the system can modify
and adapt its behavior based on its informational input history. A typical data record (or table)
within the RDBMS framework may consist of a small HN, a tag, and the actual fields (text,
numeric, etc.) which we wish to store. The HN within the record could hold all of the
relationships of that data to the related records throughout the system. This would allow us to
more tightly couple the information within the database, while substantially shortening any search
time required to find related data within the system. This should even allow us to incorporate
Hypertext' style access to a traditional RDBMS system. Another approach would have us
disassociate the HN(s) from the data record and externally modulate the relationships via some
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daemon (or agent) process outside of the traditional functions of the RDBMS. While this would
reduce the necessary data storage requirements in proportion to the total number of records
stored, we may loose some flexibility in retrieval and associative linking. This will require further
investigation.

Fuzzy Relationships

By incorporating Holographic Neurons within a traditional RDBMS, we can add aspects
of fuzziness to the data relationships which may also include temporal dependencies and even
[1]dynamic memory decay (if desired). Over time we can follow how the relationship of the
associated data elements change. This in itself is an incredibly powerful tool. With the HNs we
can encode the entire historic picture of precisely how the relationship has evolved over time.
The system should be able to on a continuous basis via daemon processes update its internal
model of the relationship of two or more data elements in such a way as to do a' N-dimensional
surface fit' on the deltas in order to interpolate possible future (or past) behaviors. As long as the
change is not chaotic we should be able to extract powerful predictive models. If the process
turns out to be chaotic, we will have to modify the approach so as to approximate a semi-stable
topology down to a chosen resolution. Instead of a single 'Snap Shot' probability based on the
current configuration, we now have access to the entire historical probability of the enfolded
relationships. We may find very interesting patterns in the first and second partial derivatives of
the generated functions.

Alding Genetic Processes

Let us assign a set of algorithms to a series of tags (equivalent to [4,5]Koza's
chromosomes). As time and experience progress, the simple algorithms that we started out with
could evolve into more sophisticated ones based on recurrent patterns of complex relations. The
relationship functions generated previously may be built up out of these genetic functions. By
doing this we allow the system to create a summarizing ability based on a arbitrary resolution that
in itself may be modified. In essence the system should be able to generate or 'teach' another
system or us what it knows, without an exhaustive temporal run through of all relationships
(which probably would not be feasible).

If we asked the system to tell us what it knew, it would have to query us as to what we
were interested in, else pick a fairly random data set to start with and proceed in an associative
fashior. from that point on. However, since the temporal relationships can be encoded with in the
HNs, we could also proceed in a past to future path through the data, where many connections
may be affected by a single probability within a series of associative links. We may find ourselves
traveling down a particular associative path in a positive time-wise fashion (at least within our
frame of reference) only to find that the general path that we have been following leads to a point
that we have traversed in the past due to the systems associative functions. We might find
ourselves in associative 'vortices' more often then we might suspect. If you envision a river of
water with thousands of small eddies, pools, vortices, and an overall current, you will begin to
grasp the picture. Since an associative path may also evolve, the path may be semi-recurrent, just
as a small particle in the flow of our 'river' may temporarily be caught in an eddy. Each time the
particle orbits the vortex, it's path is modified, and with Chaos playing a role, our particle's path is
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modified by the entire state of the system. Every molecule of 1IfO in the ocean is affected by
every other molecule in the ocean. It is viewed by many that because of an apparent 'chaotic'
relationship, reversal of the process would lead you to a different past path. If however the whole
process is analogous to [2,3]Bohm's Holomovement, it should be possible to reverse the process
and view the state of the system as it existed in the past. I refer to the example Bohm offered
which described two clear concentric cylinders filled with a very viscous fluid into which is
introduced small ink droplets in various configurations, which are then drawn out or enfolded as
the central cylinder is rotated. When the cylinder is reversed the ink drops become explicate or
manifest. We could in essence 'hypnotize' the system and regress it to any point we wished to
examine. This process is analogous to the enfolding of the stimulus response patterns within the
holographic neurons. In this model we have the totality of all of the information ever manifest in
the system along with how its relationships have changed throughout its existence. The system
may very well generate very complex procedural structures whose linked tags roughly resemble
(cybernetic) DNA sequences.

Manifest Object Encoding and Recognition
If we use real time (30 frames/sec) video frame digitizing in combination with audio

sampling of vocal (or sound) wave forms as the stimulus portions of two closely linked
holographic neurons, and in turn set the response patterns equal to an identifying structure such as
the ASCII representation of a person's name, the system over time would build a very detailed
internal model of an object or person. Since tens of thousands of video frames (or audio wave
forms) of the object (or person) at different orientations and scales may be collected over time and
encoded into a complex vector the size of a single stimulus pattern, the system should be able to,
when presented with an arbitrary input image, identify the object within a single decode operation.
And here again the notion of fuzziness comes into play. The neurons will automatically produce
the closest fit to the input pattern; and allow us to state, for example, 'There is a 87% chance that
it is a picture of X'. By linking a set of holographic neurons which perform object recognition
functions to related information within the data bases, we would have the basis of a security
system, or perhaps it could assist a physician in diagnosing a patients condition based on subtle
changes detected over time in their body's appearance.

Natural Language Interface

It should be possible to create a system that could learn to read and understand spoken
language much in the way that we appear to, based on holographic neural associations. I believe
that a system presented with a large body of human readable, and sensable text, would be able to
build most of the necessary semantic relationships needed for natural language recognition.

There are many others who are far more versed in this area, and I leave it to them to apply
these new tools to the task. It seems to me that the holographic neural method is perfectly suited
to this application. [6]Levesque and Mylopoulos's 'Procedural Semantic Networks' and
[7]Hendrix's 'Partitioned Semantic Networks' should benefit greatly by including holographic
principles.
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Inferential Data Base Management Systems (1DBMS)

Developmental psychologists [8]Piaget and Inhelder forward the hypothesis that human
learning is not one-pass learning. The stages of learning appear to be:

1. Sensomotoric Intelligence; direct associations between sensory stimuli
and motor responses. ( I define data retrieval as a type of motor response...)

2. Imaginative Intelligence; concrete, unidirectional, imagination-based
mental operations. ( Identification and classification of metrics

within the information domain, by free progression. )

3. Formal Operations; closed system bi-directional abstract operations.
( The process of genetic rule construction via holographic neural methods...)

It appears at the moment that Human learning is a mixture of two learning types as
indicated by [8]Hrycej:

1. Unsupervised, non-specific, and undirected learning, or self-organization.
( Free form holographic neural association trials.)

2. Supervised, specific, and goal-oriented learning.
( Building rules or solving goals using genetically assembled modules.)

If we structured a set of objects so that their linking relationships were 'Concepts' (where a
concept is defined as a set of relations.) or learned associations built up through the interactions
of Holngraphic Neurons, Genetic processes, and Fuzzy sets, the system should develop the
capacity to not only infer relationships between the objects with in our data base, but also greatly
abstract those relationships.

Conclusion

Please forgive me for any over simplifications, and the lack of formal proofs. The main
objective of this paper was to point out new areas for exploration, and not to rigorously address
any particular one.
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Abstract:
This paper reports on a neural-fuzzy technique to identify and name a mathematically
nondescript image, an image of a person's eye. An unsupervised artificial neural network
algorithm, the Self-Organizing Feature Map, is used to perform discrimination and a
supervised fuzzy clustering algorithm, the Fuzzy c-Means, is used to perform the
identification (naming). This study was done as an inexpensive home-project and used: a
video camcorder, an AT class PC, an inexpensive video frame grabber, and software
developed by the author.

Introduction:
In this study, image processing, artificial neural network discrimination, and fuzzy pattern
recognition combine to discriminate facial features and thereby identify the image of one
subject over the images of others. This effort uses the combination of two powerful
algorithms, the Kohonen's Self-Organizing Feature Map neural network [3] and the
Bezdek's Fuzzy c-Means clustering [1].

The neural network discriminates the images in an unsupervised manner. Then, the fuzzy
c-Means clusters the neural network's output in a supervised manner so that selection and
labeling (naming) can be accomplished through a set of fuzzy rules.

The neural network mimics the parallel processing of biological sensory systems and
produces an output map (layer) which preserves the topology of the input images [3].
This means the ordering of the neural network's output is along a continuum. Attempting
to characterize or give meaning to information contained in this continuum is not
necessary as this is an intermediate stage in the process. It is only important that training
samples are able to be discriminated and that there is an order in the pattern. Performing
clustering along this continuum breaks the data into classes but the fact that all the data
points are still in the continuum remains.

Fuzzy logic is well suited for situations in which elements of a set of classes transition
from membership to non-membership in a gradual rather than abrupt manner [7]. So a
fuzzy approach to clustering is appropriate and the c-Means algorithm is well suited for
this.

Algorithms:
The Kohonen algorithm is an unsupervised neural network and it consists of two layers,
the input and the output. The algorithm orders its output layer based on the patterns
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contained in the images. This ordering occurs in a manner that is difficult to characterize
and understand as it is a function of the parallel dynamics of the processing elements in the
network.

Data is presented to the input layer of the network, and the network forms internal
clusters that compress the input data onto a dimensioned-reduced set space, the output
layer.

The Kohonen neural network can be trained to classify input vectors while preserving the
inherent topology of the training set. In topological preserving maps, the nearest neighbor
relationships in the training set are preserved in the network in such a manner that input
images presented to the network which have not been previously "learned" will be
categorized by its nearest neighbor in the training set.

The ordered, activated elements of the output layer of the neural network are presented to
the fuzzy algorithm as the data samples to be clustered.

The Bezdek fuzzy c-Means algorithm is a supervised clustering technique. It groups data
samples into clusters or classes, and assigns a fuzzy grade of membership to each of the
data points with respect to each of the classes. Fuzzy c-Means also determines the cluster
centers.

Recognition of Facial Features:
To test how the combination of the Kohonen and the Bezdek algorithms work together,
digitized video images of the right and left eyes of three subjects were taken at three
different poses. The poses were facing straight ahead toward the camera, and facing
approximately thirty degrees to the left and to the right.

The digitized image of the faces were 512 by 512 pixels with a 64 gray level resolution.
Image edge detection was then done using the Robert's Cross edge detection algorithm
[6]. The images of the right and left eye from each of the subjects' poses were each stored
in 16 by 20 pixel data arrays.

The data files with the eye images were arranged into left and right eye training sets. The
training sets were each processed through the Kohonen neural network and the right and
left eye networks were allowed to self organize on these images.

The Kohonen network mapped an output pattern onto the network's output layer, an 8 by
8 array. As the network stabilized, each presentation of an eye image activated a
particular output element on the network's output layer.

The main question was how will the neural network arrange the clusters? Will the images
of the same eye presented at different poses map to the output layer in a orderly manner?
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As hoped, the unsupervised network did discriminate in an orderly manner between the
images of the eyes and thereby caused different output elements to be activated as
different input images were presented.

Then fuzzy c-Means was performed using the output layer as the set space. For this
application, three classes were assumed.

After the c-Means algorithm iterated and reached a solution, the algorithm provided the
cluster centers and fuzzy membership grades for the data points corresponding to the
activated output elements from the Kohonen algorithm.

Based on the results of the fuzzy clustering, fuzzy logic rules were established. They were
three straight-forward fuzzy rules for this application, one rule for each of the original
subjects. The rules were built along the lines of logic such as "(in left eye class X or in left
eye class Y) and (in right eye class A or in right eye class B)". The winner was the subject
(name) in which the related fuzzy rule had the highest value.

Not only did paired left eyes and right eye images (that is eye images from the same video
frame) give the correct subject (name) but unpaired left and fight eyes images (left and
right eyes from the same subject but from different video frames) identified the correct
subject. There were sixteen of sixteen correct selections. Chance would predict only a
third would be correct.

This technique appears to be robust. The quality of the images could have been improved
by further image preprocessing, such as noise removal. Also information is lost in the
edge detection operation. Even with these limitations the technique was able to name the
objects correctly.

In this example with the small number of samples, identification could have been done
simply with just the output of the neural network, but as more subjects and images are
added the need for the fuzzy processing becomes more apparent.

Real-Time Naming Operation:
Learning time is considerable due to the time it takes the self-organizing neural network to
stabilize its output. Also, the fuzzy clustering is a supervised approach and training
images must be labeled in the learning phase.

However, application of this technique, once learning has been done, will be quite rapid as
only simple calculations [ 1], [4] are required and there are a relative small number of
neural network processing elements. The introduction of parallel neural network type
processors or accelerator boards will also speed execution.
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Conclusion:
While only one example was explored, it appears that the neural network and the fuzzy
clustering combine to provide a simple way to categorize complex patterns and identify
(name) them without having to mathematically describe these patterns.

I
The strengths of the neural network and fuzzy'approach were utilized. The neural
network for adaptation and discrimination and the fuzzy for clustering, labeling and
decision making.

This investigation was accomplished by using a household camcorder, a personal
computer and an inexpensive video frame grabber, all at a minimum cost.
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ABSTRACT:

Fifty years have elapsed since the pioneering work by McCulloch and Pitts--forty years of cybernetics.
Emotional behavior has been studied by many scientists from Darwin on. Emotions have
characterized in biological, psychological, physiological and even everyday physical terms. Recently
cognitive mapping technologies have been available to view some of the processes by related mapping
and imaging of physiological activity in the brain. However, no unified theory for emotional behavior
exists.

A possible reason for this difficulty is that emotions are composite and complex integrative behavior
processes consisting of interacting cognitive, perceptual and physiological components. With the
advances in non-linear dynamics (including chaotic processes and fractal science) techniques and tools
have arrived which allow the construction of biologically realistic and psychologically plausible
mathematical models realizable in computer architectures such as neural networks. These models can
be of help in: (1) constructing realistic physical analogues of non-linear behavioral systems exhibiting
emotional behavior, (2) examining the feasibility of applying such "machines with feelings" as
"emotional components" in the design of future deterministic and non-deterministic computer
operating systems, and (3) evolving a new generalization of "passionate processors" which, if found
effective in clinical trials, would be applicable to constructing a new generation of Clinically Usable
Psychoanalytic Simulation tools for the diagnosis and treatment of affective disorders, providing
useful extensions to the pioneering psychoanalytic work of cognitive scientists, R. Abelson and K.
Colby.

In this paper, it is argued that using the approach of non-linear dynamics can provide a physical basis
for constructing models of an operational unified theory of emotion. Toward this end, a prototype
for "A Machine with Feelings" - is introduced; based upon the first author's Theory of Affect
Linkages, modelled as a self-organizing system, with its initial mathematical models realized in
MATHEMATICAtm. In addition, simple behavior ensuing from its coupling to a simple effector-
receptor system is examined, and implications for its applicability to constructing an operational
theory of emotional behavior are explored.
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Abstract

Production systems (PS) are one of the most used Al techniques as well as a widely
explored model of cognition. The problem of connectionist realization of PS is very important
because it could bring all the benefits of the connectionist approach to the Al symbolic
computation (Toretzky & Hinton, 1988; Lange & Dyer, 1989; Sun, 1992). If properly
designed, connectionist PS could make possible massive parallelism, typical for the neural
networks (NN); partial match; reasoning with inexact, missing and/or corrupted data; graceful
degradation; fault tolerance; robustness; learning and adaptation, thus overcoming the two
main problems in the present-day expert systems - approximate reasoning, and knowledge
acquisition.

In this presentation, the main principles of building connectionist production systems
(CPS) for approximate reasoning and their current applications are discussed. The presentation
is based on two recently published papers (Kasabov, N. and Shishkov, S. ,1993a and 1993b).

To illustrate the main principle of CPS a Neural Production System (NPS) and its third
realization - NPS3 designed to facilitate approximate reasoning, are presented (Kasabov, N.
and Shishkov, S., 1993a). NPS3 facilitates partial match between facts and rules, variable
binding, different conflict resolution strategies, chain inference. Facts are represented in a
working memory by so called certainty degrees. Different inference control parameters are
attached to every production rule. Some of them are known neuronal parameters, receiving
an engineering meaning here. Others, which have their context in knowledge engineering,
have been implemented in a connectionist way. The partial match implemented in NPS3 is
demonstrated on the same test production system as used by other authors. NPS3 allows
negated condition elements and introduces two new inference control coefficients: a relative
degree of importance attached to every condition element in the left-hand side of each
production, and a certainty degree attached to its right-hand side.

CPS have enormous abilities for approximate reasoning. Some of them, illustrated by
reasoning in NPS3 are:
"* reasoning over a set of simple diagnostic production rules;
"* reasoning over a set of decision support fuzzy rules (Lim et al, 1991);
"* reasoning over fuzzy rules for solving ambiguity problems in speech recognition;
"* solving planning problems on the example of the "Monkey and bananas problem" when
fuzzy terms are used;
* solving optimization problems on the example of the "Travelling Salesman Problem".

We consider approximate reasoning as a process of inferring new facts and achieving
conclusions when inexact facts and uncertain rules are presented. The reasoning process in
NPS3 for example is non-monotonic, i.e. processing of new facts may decrease the certainty
degree of an already inferred fact. The main idea of controlling the approximate reasoning
in NPS3 is that by tuning the inference control parameters we can adjust the reasoning
process for a particular PS to the requirements of the expert. Approximate reasoning in NPS3
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is a consequence of its partial match. For example by using the noise tolerance coefficients,
NPS3 can separate facts which are relevant to the decision process, from irrelevant facts.
Rules with different sensitivity coefficients react differently to a same set of relevant facts.
NPS3 can work with missing data. One rule may fire even when some facts are not known.
Adjusting the degrees of importance we declare that some condition elements are more
important than another, and rules can fire if only the important supporting facts are known.
In NPS3 fuzzy propositions are represented by unary predicates of "attribute (value)" type.
This shows that even unary predicates, and not only n-ary ones, may be successfully used to
represent complex concepts (fuzzy concepts in particular). By adjusting different values for
the inference control parameters attached to a PS in NPS3, different fuzzy inference methods
(Terano et al, 1992) could be realized. This is an interesting characteristic of CPS which
needs further investigation.

The connectionist environment, in which CPS is realized, makes possible building of
parallel production systems in the sense that all the rules which are satisfied above a set
threshold fire in parallel and make a parallel update of the working memory (Kasabov, N. and
Shishkov,S., 1993b). The same examples of approximate reasoning are discussed in the
parallel version of NPS.

The analysis of the CPS developed so far suggests that even though having limited abilities
for knowledge representation (for example a limited number of variables in the production
rules) CPS can be widely used in knowledge engineering (see also Sun, 1992) and can also
be hardware implemenwed as a new generation computer architectures along the current
implementations (Yamakawa et al, 1992).
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Abstract

The Natural language comprehension problem is being approached in this work by using a "net program". The
net program is a programmable network of cooperative neural nets and procedural functions. Its goal is to bridge
the gap between connectionist-sub symbolic and symbolic processing in Al by forming a fusion between neural nets
and classical programming. We devised a language, C+NET, for "neural programming" as an enhancement to the
procedural language C. We used C+NET to write a net program for language comprehension. The model and
program presented here were developed from a preliminary version presented in 181.

1. Introduction
We believe that it is appropriate to solve language comprehension issues with a computational scheme that can

combine connectionist and procedural, inductive and deductive methods, such as the Net Program scheme which
we are presenting here. To achieve comprehension of natural language, it is necessary to deal and experiment with
much structure of which little is known. A flexible structure would be useful. Clues for understanding natural
language texts may come in many forms. There is a combination of structural, contextual, lexical, transformational
and rational-logical processing and the exact border lines are blurred. A preferred way to approach such a domain
seems to be with a scheme that enables a flexible interaction of procedural, lexical and "neural knowledge", where
"neural knowledge" is both structure and experience. Structure and experience can perhaps be associated with
innate and learned knowledge when modeling natural understanding of language. Symbolic processing can be
associated with both innate mechanisms (perhaps inaccessible rules) and learned ones (perhaps conscious rules).
The presented scheme is meant to harness all of the above functional elements to reach solutions, rather than fixate
on one of them.

2. Net Programs
We view simulated neural nets as programmable software modules to which programming methods are applied.

This enables consolidation of nets and programs into a net program. The net program uses both connectionist and
procedural methods. It inherits the advantages of neural nets: the abilities to generalize, approximate, guess and
search solutions, the versatility and the graceful degradation of quality of solutions. But, conversely to plain neural
nets it can accept descriptions of problems and solutions as they are known to the user - with symbols, algorithms,
rules and prior and axiomatic knowledge as well as sample data, and process and utilize all the above. It can blur
the distinction between procedural knowledge and the knowledge acquired from the data, by having structure and
procedural assertions help reach a solution without dictating it, much like human reasoning. It can permit a
variable level of control of structure and learning. It can use strictly computer-like processes where accuracy is
needed. Its solutions can be justifiable. It enables reuse of knowledge and skills as it can be structured, created,
tested, refined and used like a high-level language, compounding modules by structure and functionality.
distributing tasks to modules, and reusing and re-invoking modules. It can do so for both functions and neural nets.
It may have a better chance than straight forward neural nets to solve problems of large scale and complexity.
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The net program is composed of procedural functions and neural nets. Each of the neural nets is (currently but
not necessarily) a back propagation net that follows [2]. A net node may be of one or more layers of one or more
neurons. A net program is composed of these basic elements or of other net programs. The connections among nets
are not restricted - nodes can be connected to any number of any other nodes and cycles are permitted.

Neural net nodes and function nodes can be connected by way of invocation - a net can invoke a function to get
input or transform the output, a function can use a net to do a subtask. Neural nets can be connected to each other
by arrays of connection weights. Connected nets, therefore, need not be of matching input and output layer size.
The back propagation mechanism is extended accordingly. The connection weights can be manipulated to set
default correlations. Subnets can be trained separately or jointly. Connected nets may be pre-trained.

Function calls can be recursive. When active nets are reinvoked by a function, they can have a different context
and activation values; the weights are the same.

A more detailed discussion of the net program scheme was provided in [8].

3. The Net Program Language - C+NET

The net program scheme is underlying a programming language which we call C+NET ,an enhanced version of
ANSI C implemented by the development of a collection of subroutines to be used as an extension to C. A current
implementation runs on a PC using MS-DOS and MS-C (and/or MS-Windows).

C+NET supplies facilities that can be invoked in a statement-like manner from within C programs. The basic
objects upon which C+NET operated are net lists: lists of one or more net (node) names. Most statements
(facilities), therefore accept as their main operand (argument) a list of net names.

The basic five facilities that are used to create a basic multinode net program, train it and run it are:

CreateNeuNets to create backpropagation nets and name them

connets to create connections among the nets

setinpat to set external inputs and patterns

and to connect input functions to net nodes

learn to train one or more nodes with or without those connected to them

run to activate a list of nodes and those connected to them

A more detailed discussion of the net program scheme was provided in [8].

4. Usage of Net Programs in Natural Language Comprehension
Jean Piaget and Noam Chomsky are debating [31 the manner of acquiring language. Piaget's view is. very

generally, that the knowledge of language is constructed in necessary stages, that develop from each other by way
of abstraction and generalization. Chomsky, contrarily, assumes an innate fixed nucleus for the language
knowledge. Both assume some initial mechanisms and some learning and both agree that a certain fixed nucleus of
knowledge is achieved. They differ, mostly, in assuming what is innate (or learned by an evolutionary process) and
what is learned. If we were to create a model for language acquisition that follows either one, or maybe tries to
experiment with finding a compromise, we would want to be able to manipulate structure easily, and enable the
employment of rules upon it conveniently and flexibly. We would need to facilitate creation of and experimentation
with structure, training and logical reasoning. For these, the net program scheme might be appropriate.
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Connectionist models have been applied to problems relating to language comprehension. However, Current
systems that do work limit either their domain as [4, 51 which have an inherently limited vocabulary, or their
range, as [61 that associates a limited number of responses (actions) with unrestricted input. We want to contribute
to devising integratable parts of a solution to a large problem, rather than solutions to reduced problems. Our intent
is to try to create a system that may be in actuality expandable to deal with real texts.

It may well be that the natural language problem requires joining all of the means that we have, connectionist
and symbolic. Classical systems do not have the flexibility, adaptability, fuzziness, robustness, graceful degradation
and associativity that are needed for the task. Connectionist models do not have the capacity to process
representations of structures and their compositions, nor can they do acceptable logical reasoning [2, 71. As there
probably are not any serious advocates of strict behaviorism left, there should not be a serious reason for anyone to
believe that a backpropagation type net can somehow learn to behave as if it knows the grammar of a natural
language, without appropriate representations and reasoning mechanisms. We hope to contribute to natural
language comprehension in doing what is doable by each of the tools available, and avoiding forcing upon any of
the mechanisms what is not feasible for it. We are not aiming at full understanding of meaning as (41 and (51 do, it
may be impossible at this stage. We will not train for every possible word and every possible structure as [41 may
have to. We will try to learn syntax and be aided by "light" semantics. We are trying to build a system that can
learn to handle many forms of sentences by training on examples containing frequent building blocks, so that it can
induce recurring and composable sentence structures.

Our approach is to parse sentences employing an interaction between a procedural parser and a decision making
neural net. The net takes care of the parts of the domain that do not have a good known tractable deductive
algorithm. It derives its "wisdom" from its own structure and the inductions and experience coming from the data
presented to it. With the net's help, the parser's task is much simplified. The structure of the net is such that it can
receive an encoding of the partial parse tree, create reusable internal representations for its constituents, and output
a decision. The parser keeps the codes created by the net for words and phrases, to re-present them to the net as
parts of larger phrases. The parser therefore, does the programmatic work, the nets do the decisions and encoding.

4.1 The Parser
The engine of the language comprehension program is the parser. The parser is directed by the input text, the

directives intermingled in the input text and the decisions of the neural network. The parser maintains a structure
of phrase elements which contains all the information that is known about them (e.g. their lexical value and their
function in the phrase). The information can either come explicitly from the input or be induced by the nets. The
structure also defines the parse tree. Initially, the first element (word) in the phrase is considered against the
sentence level, and then the parser decides the relation of each next element, in its turn, to the position held in the
tree. This process is not necessarily sequential - during parsing, as phrases are constructed, the parser can be called
to decide the relations of phrases at various levels.

When the parser is called to decide a relation it checks to see whether lexical information about the element
considered (from the input or the dictionary) and the parsing directives are available. If it is, the parser trains the
net with it, otherwise it tries to extract the missing information from the net.

The information about the lexical value of words is taken from a dictionary, but the net is trained to give that
information while encoding it. The same complex of nets learns to give the parsing decisions and lexical
information about words and phrases. The net does not learn to encode words as such, but to output some
information as a response to descriptors of words and give an encoding for that information. Since the network has
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as input the spelling of a word and its context, it can give some intelligent codes for words that do not appear in the
dictionary. This means that the parser is not limited to a fixed vocabulary, it can have the "feel" for new words.

4.2 The Input
The input to the system is continuous text with intermingled optional directives. The directives relate to

meaning, i.e. lexical values, of words and to the strucure of phrases. The net learns ,u reproduce both meaning and
structure. Lexical values are kept in a dictionary as well as taught to the net. The dictionary is managed according
to word level directives. A (most basic) example text is:

You [pronoun noun gend(anim) num(singular plural)) (start pivot,noun)

bake [verb tran form(finite) sem(food)] (start cont pivot)

a [article] (start push)

cake [noun gend(inanim) sem(food)J (cont pivot). [punct] (fullstop)

Dictionary instructions are optional. When a word is followed by a dictionary instruction(s), its lexical value is
determined by th'" instructions and the system uses the value for its training. If there is no lexical instruction but
there already is a lexical value kept for the word in the dictionary, then the value in the dictionary will be used,
otherwise the system will extract it from the neural nets. A lexical value, consists of speech part(s) and qualifiers.
They are not pre defined but some basic ones are assumed. Speech parts are terms like noun, verb, article etc.
Qualifiers are variables with values such as gend(male) sem(young). Multiple values are allowed Values can be
negated. The qualifiers and values given in the input cause the creation of corresponding net nodes. The coding is
not done accross a fixed set of micro features, it uses relevant and possibly introduced ones.

A phrase level directive determines how to construct the parse tree and what is the function of the immediate
word or phrase within its context. It relates to the current entity being considered which may be a word received
from the input or a previously constructed phrase or a phrase "under construction".

The parse instruction consists of combinations of operators:

start Start a new phrase.

Sentence

Phrase
of type lexiva

Word CD -- Word

cont The entity belongs to current phrase, put it in its continuation

Pivot The current entity serves as a head in its phrase, the phrase will get (the relevant
parts of) its lexical value. (cont,pivot) would look

Phruc
oftyp

pirseDiexj a •

of -ypdexival of6lypdexal
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pop Close the open phrase, recheck the entity in relation to upper level

Upper Upper

+hu A4? A ....2

Particl• Particie

start cont Start a new phrase at the same level of the open one, close the open one.

start push Start a new phrase as part of the open one

%PMW~tkC~d Pficele w

start pop Close the open phrase, start a new phrase, recheck the new phrase in relation to upper level

Uppa upper

start cont enclose
Close the open phrase, start a new one at the same level and

enclose the two of them within a new higher level phrase.

upper

-b

%Ptgaa A + A

start push enclose
Start a new phrase within the open one and enclose both within a new phrase.

adjoin The entity is part of a bigger one (an expression).

lookahoad Withhold decision. Read and encode the next few words, then redo the parsing.

record Learn to encode the last element, but ignore it as part of the phrase

fullstop finish parsing the sentence, display it
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4.3 The Language Comprehension Net
Instruction

Capital

S0 h lifiers

Sequetially By speech ,c

pat Characters Lastharthree

4.3.1 Subnets, Connections and Usage
The subnet (left) for word entry, which appears in the lower

Word .. ~ ight part of the net overview above, enables entry of multiple4~ aspects of the word. The coded characters of the word are the
• • input to the little nets in the bottom left. The three last

S~characters are also given to the next subnet called suffix, as the
word ending may be of importance to its meaning. Each speech

.. _• • • s,,.p,,• o., part that appears in the input causes the creation of a one

word neuron subnet connected to the speech part net. Each unknown

). (•value of each qualifier that appears in the input, causes the
St•" ,in ,h , creation of a one neuron node connected to the qualifier subnet.
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The subnet that outputs a lexical value (upper right part of
C*tWa the global view and repeated here in the left) has nodes that

S- p u correspond to components of lexical value, similarly to the

0 - - jo - -- 0 previously discussed subnet that serves to enter a lexical value.
Once the net learns a lexical value, which means that it learns
to output the proper activation for the output lexical nodes, the

activation of the lexical code subnet serves to represent a coded
word to the system for further reference.

Phrases too have lexical values, which are encoded by the same subnet, so that they are represented in the same

way as words. Phrases are entered to the system both for encoding and as context, The ground level nodes in the

phrase entry subnet receive as input codes that are created by the lexical code subnet described above. These
represent parts of a phrase which may be words or phrases. The pivot node is activated with the code of the phrase

head (if there is one). The system can (be trained to) determine while parsing that a given part of a phrase is its
pivot, which could help tell the function of the whole phrase. The "particles sequentially" subnet is a window to
the current phrase, the nodes connected to it correspond to the last few elements in the phrase and (when needed) a

few lookahead elements. They are activated with the codes of the phrase parts.

The "speech part" subnet has nodes that correspond to elements in the phrase by speech part e.g. if the phrase
has a noun, the noun node would be activated with its code. The inclusion of entities of certain speech parts in the
phrase is induced during parsing.

The leftmost nets in the overview are the upper phrases nets:

These are the codes of the upper level phrases of which the current phrase is a part, that is the immediate phrase

to which the current phrase belongs, the phrase to which the latter belongs, etc. which give a complete context in
which the phrase is set.

The nets described so far can represent phrases within a parse tree and produce an encoding. We can now add

the top of the edifice which is the production of a parsing instruction.

The instruction subnet decides what to do when presented with a parsing state. The state is characterized by a
partial parse tree on one hand and a word or phrase on the other hand. The instruction determines the connection

of the element that is being considered to the partial tree.
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The instruction subnet is a

straightforward addition to the net we
have so far, it simply has to know the c,,

global state of the parsing and details t.WifQ"
about the next element. The output nodes
of the instruction subnet are a set of one
neuron nodes, one node for each possible
component (operator) of the parse .....

instruction. They are activated as an
integral part of the global net: When the
net is presented with a new element to be
encoded or to extract knowledge upon, it

is also presented with its context, which
is the partial parse tree. The output would ..

be the activation of the lexical value ,•.. ph- ..-

nodes telling the lexical value of the ,.•, ly B, A" ,&,
element considered, and the instruction
in the form of the activation of the instruction nodes that tells the relation of an element to its context or the
parsing tree.

5. Conclusion
The implemented model has proven capable of learning to parse some quite elaborate sentences. With the same

software tools, but better (than PC) hardware tools it may be a promising methodolgy.
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ABSTRACT
A -non linear pattern recognition system, neural network technology, was
explored for its utility in assisting in the classification of autism. It was
compared with a more traditional approach, simultaneous and stepwise linear
discriminant analyses, in terms of the ability of each methodology to both
classify and predict persons as having autism or mental retardation based on
information obtained from a new structured parent interview: the Autistic
Behavior Interview. The neural network methodology was superior to
discriminant function analysis both in its ability to classify groups (92 vs. 85%)
and to generalize to new cases that were not part of the training sample (92

vs. 82%). Interrater and test-retest reliabilities and measures of internal
consistency were satisfactory for most of the subscales in the Autistic Behavior
Interview The implications of neural network technology for diagnosis, in genera,
and for understanding of possible core deficits in autism are discussed
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Abstract

An artificial neural network is simulated that shares formal qualitative similarities with the

selective attention and generalization deficits seen in people with autism. The model is

based on neuropathological studies which suggest that affected individuals have either too

few or too many neuronal connections in various regions of the brain. In simulations where

the model was taught to discriminate children with autism from children with mental

retardation, having too few simulated neuronal connections led to relatively inferior

discrimination of the two groups in a training set and, consequently, relatively inferior

generalization of the discrimination to a novel test set. Too many connections produced

excellent discrimination but inferior generalization because of over-emphasis on details

unique to the training set. It is concluded that, within the context of the current model, the

neuropathological observations that have been described in the literature are sufficient to

explain some of the unique pattern recognition and discrimination learning abilities seen in

some people with autism as well as their problems with generalization and concept

acquisition. The model generates testable hypotheses which have implications for

understanding the pathogenesis, treatment and phenomenology of autism.
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