
AD-A281 731

~ Papers

7PPCP '94 DTIC
ELECTE

9~ JUL 13 1994

MLh a a 4P S a m"

Is
4 * 1U .~f~b.~F

4H

1 Roai/Rsr

LOP3OZ

Papers

PPCP '94

The Second Workshop
on Principles and Practice
of Constraint Programming

Rosario Resort
Orcas Island, Washington

May 2 - 4, 1994

ii

The Second Workshop on the Principles and Practice of Constraint Programming is an
inter-disciplinary meeting focusing on constraint programming and constraint-based sys-
tems. This workshop is held in cooperation with the American Association for Artificial
Intelligence and the Association for Logic Programming, and is sponsored in part by the
Office of Naval Research.

Organizing Committee:
Jean-Louis Lassez, Organizing Committee Chair (IBM Watson)
Alan Borning (University of Washington)
Jacques Cohen (Brandeis University)
Alain Colmerauer (University of Marseilles)
Herve Gallaire (Xerox Corporation)
Paris Kanellakis (Brown University) Acceion For
Anil Nerode (Cornell University) -

Vijay Saraswat (Xerox Palo Alto Research Center) NTIS CRA&t

Ralph Wachter (Office of Naval Research) Dl C0 TA

Program Committee:

Alan Borning, Program Chair (University of Washington) . . .

Colin Bell (University of Iowa) _y

Frederic Benhamou (University of Marseilles) .t
Rina Dechter (University of California, Irvine) Av3AIdbi1!y Coots
Curtis Eaves (Stanford University) i --e r
Bjorn Freeman-Benson (Carleton University) Di Spe'ial

Eugene Freuder (University of New Hampshire)
Martin Golumbic (Bar-Ilan University)
Peter Hammer (Rutgers University)
Deepak Kapur (SUNY Albany)
Catherine Lassez (IBM Watson)
Alan Mackworth (University of British Columbia)
Satoshi Matsuoka (University of Tokyo)
Raghu Ramakrishnan (University of Wisconsin)
Francesca Rossi (University of Pisa)
Gert Smolka (DFKI and University of Saarbriicken)
Pascal Van Hentenryck (Brown University)
Jennifer Widom (Stanford University)
Richard Zippel (Cornell University)

A limited number copies of this collection of papers has been printed. The papers are also
available by anonymous ftp as compressed postscript files. To obtain papers that way, ftp
to june.cs.washington.edu, connect to the directory pub/constraints/ppcp94, and get the file
README. The README file has a list of all papers that are available online, and further
directions for obtaining particular papers.

£i

Contents

Set Constraints and Set-Based Analysis ... 1
Nevin Heintze and Joxan Jaffar

A (part 1)
A Substitution Operation for ConstraintsI........18

Peter Jeavons, David Cohen, and Martin Cooper

Contradicting Conventional Wisdom in Constraint Satisfaction 26
Daniel Sabin and Eugene C. Freuder

No-good backmarking with min-conflict repair in constraint satisfaction
and optim ization .. 36

Yuejun Jiang, Thomas Richards, and Barry Richards

User Interfaces
Locally Simultaneous Constraint Satisfaction 48

Hiroshi Hosobe, Ken Miyashita, Shin Takahashi, Satoshi Matsuoka, and
Akinori Yonezawa

Analyzing and Debugging Hierarchies of Multi-Way Local Propagation
C onstraints .. 58

Michael Sannella

Inferring 3-dimensional constraints with DEVI ... 68
Suresh Thennarangam and Gurminder Singh

Constraint Lovic Prorarminj
Beyond Finite Domains .. 77

Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H. C. Yap

QUAD-CLP(R): Adding the Power of Quadratic Constraints 85
Gilles Pesant and Michael Boyer

Applications in Constraint Logic Programming with Strings 96
Arcot Rajasekar

Concurrent Constraint Languages
Towards CIAO-Prolog - A Parallel Concurrent Constraint System 106

M. Hermenegildo

Encapsulated Search and Constraint Programming in Oz 116
Christian Schulte, Gert Smolka, and J6rg WUMrtz

Towards a Concurrent Semantics based Analysis of CC and CIP 130
U. Montanari, F. Rossi, F. Bueno, M. Garcfa de la Banda, and
M. Hermenegildo

CC Programs with both In- and Non-determinism: A Concurrent Semantics 138
Ugo Montanari, Francesca Rossi, and Vijay Saraswat

iv

Databases (Part 1)
Efficient and Complete Tests for Database Integrity Constraint Checking 146

Ashish Gupta, Yehoshua Sagiv, Jeffrey D. Ullman, and Jennifer Widom

Linear vs. Polynomial Constraints in Database Query Languages 152
Foto Afrati, Stavros S. Cosmadakis, St6phane Grumbach,
and Gabriel M. Kuper

Foundations of Aggregation Constraints .. 162
Divesh Srivastava, Kenneth A. Ross, Peter J. Stuckey, and S. Sudarshan

Set Constraints: Results, Applications, and Future Directions 171
Alexander Aiken

Experiences with Constraint-based Array Dependence Analysis 180
William Pugh and David Wonnacott

Some Remarks on the Design of Constraint Satisfaction Problems 190
Massimo Paltrinieri

Logic-Based Methods for Optimization ... 196
J. N. Hooker

Artificial Intellience
Specification & Verification of Constraint-Based Dynamic Systems 206

Ying Zhang and Alan K. Mackworth

GSAT and Dynamic Backtracking .. 216
Matthew L. Ginsberg and David A. McAllester

Foundations of Indefinite Constraint Databases .. 226
Manolis Koubarakis

Global Consistency for Continuous Constraints ... 236
Djamila Haroud and Boi Faltings

Study of symmetry in Constraint Satisfaction Problems 246
Belaid Benhamou

Characterization of the set of models by means of symmetries 255
Lakhdar Sais

Databases (Part 2)
Constraint-Generating Dependencies ... 264

Marianne Baudinet, Jan Chomicki, and Pierre Wolper

Constraint O bjects .. 274
Divesh Srivastava, Raghu Ramakrishnan, and Peter Z. Revesz

A uthor Index .. 285

V

Set Constraints and Set-Based Analysis

NEvIN HEINTZE* and JOXAN JAFFAR t

May 1994

1 Introduction

Set expressions over a signature E of function symbols are a natural representation of sets
of elements constructed from E, and set constraints express basic relationships between
these sets. In the literature, set constraints have between used mostly in the context of
uninterpreted (or Herbrand) function symbols. Although these applications have used set
constraints in quite different ways, a common theme is the use of set constraints to obtain
an approrimation of some aspects of a program.

This paper contains two main parts. The first examines the set constraint calculus,
discusses its history, and overviews the current state of known algorithms and related issues.
Here we will also survey the uses of set constraints, starting from early work in (imperative)
program analysis, to more recent work in logic and functional programming systems.

The second part describes set-based analysis. The aim here is a declarative interpreta-
tion of what it means to approximate the meaning of a program in just one way: ignore
dependencies between variables, and instead, reason about each variable as the set of its
possible runtime values. The basic approach starts with some description of the operational
semantics, and then systematically replaces descriptions of environments (mappings from
program variables to values) by set environments (mappings from program variables to sets
of values) to obtain an approximate semantics called the set-based program semantics. The
next step is to transform this semantics into a set constraint problem, and finally, the set
constraints are solved.

2 Set Constraints

We present here the general calculus, followed by a brief survey of related work.

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
tIBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598.

... . .• . i I II

2.1 The Calculus

The set constraint calculus is parameterized by an underlying domain of discourse, and a
set of functions E. F or the purposes of most this paper, we choose E to be a given collection
of uninterpreted function symbols, and the domain of discourse is then the ground terms
constructed from E. In addition to E, we consider a fixed set of set operators consisting of
union, intersection, complementation and projections of E functions.

A set ezpresuionis either a set variable (denoted V, W, X, Y, etc.), or of one of the forms
f(sel,..., ite) or op(se1 ,..., sen), where f E E, the sei are set expressions, and op is a set
operator. The set operators include union, irtersection, complementation and projection
(denoted f()i where f is an n-ary function symbol and 1 _< i 5 n). As an example of
projection, the operator cons-' denotes the first projection with respect to the constructor
cons, and is the "set" counterpart of car. It is also convenient to include T and _L in the
definition of set expressions to respectively denote the set of all terms and the empty set
(some works use 1 and 0 instead of T and 1). A set constraint is of the form se D se' where
se and se' are set expressions. We write se = se' as an abbreviation for the two constraints
se _D se' and se' D se.

A solution to a collection C of set constraints is an assignment of sets to set variables
that satisfies each constraint. Specifically, let I be a mapping from set variables into sets
of terms. Such a mapping can be extended to map from set expressions into sets of values:

* T(frse,. . .,,)se) = {f(v,. . .,,.) v.i E Z(se)};

" Z(el U se2) = X(se1) uI-'(se2);

" X(se, n Se2) = I(sel) n '(Sf 2);

T "(fg(se)) = {,v : f(vi,...,v,,) E 1(3e)};

" T(Nl)) = {v:v. V (se)};

" I(T) = al values, and (1)={}

T is a solution of a collection of constraints C if I7(se) _D I(se') for each constraint se D se'
inC.

For example, let C denote the single constraint X D c U f(f(X)), where c is a constant
and f is a unary symbol. C has many models, including the mapping that maps all set
variables into the set {c, f (c), f(f(c)), . .. Another solution of C is the mapping I defined
by

27(y c,Ac),Ac), .} if Y is X
2"(Y) { { (() i y is different from X

where fl abbreviates n applications of f. This solution is smaller than the first, and is in
fact the smallest solution of C. As another example, the smallest solution of the following
constraint collection maps X into {a, f 3(a), f6(a),...}, maps Y into {a, f2(a), f'(a),....
and maps Z into {f'f(a), f'1 (a), f1 7 (a),....

2

X a UIS5 (X)
Y a U (Y)
2 f4(x n Y)

In general, a collection of set constraints does not always have a unique smallest solution.
For example consider the constraint X U Y = a which has two minimal solutions: one that
maps X to {a} and Y to the empty set, and the other that maps X to the emtpy set and
Y to {a}. For certain kinds of program analysis, it is natural to consider sub-classes of
set constraints for which least models always exist. For example, consider constraints of
the form X D se where X is a set variable and se is a set expression that does not use
complementation. Such constraints always have a least solution. Somewhat more general
are the definite set constraints, which have the form a : se where a is a set expression that
is "atomic" in the sense that it is constructed solely from set variables and function symbols,
and se is a set expression that does not use complementation. A collection of definite set
constraints is such that whenever it has a solution, it will in fact have a least solution.
Further, it can be shown that this solution is regular in the sense that every variable is a
regular set, that is, a set accepted by a nondetermistic tree automaton.

2.2 A Brief History

The use of set constraints for analysis of programs dates back to the early works by Reynolds
[29] (who presents an analysis for a first-order functional language), and Jones and Muchnick
[22] (who present an analysis for a simple imperative language). In both of these works,
the set constraints used are quite simple: the only set operations employed are union and
projection (there are no intersections or quantified expressions). We say more about these
applications in the next subsection.

The general calculus of set constraints, as defined above, was first formalized and studied
in a general setting in [17]. This work also presented a decision procedure for the class
of definite set constraints (recall that definite constraints do not contain the complement
symbol, and are restricted to the form a D se where the set expression a contain only
variables and function symbols). This procedure further provides an explicit representation
of the least model of a (satisfiable) collection of definite set constraints. [17] also posed
decidability of the satisfiability problem for general set constraints as an open question.

Later, [1] proved the decidability of a different, and incomparable, class: the positive set
constraints. These are defined simply to be set constraints not involving projection. This
procedure reduces the constraints into a simpler form. When reduction terminates without
detecting inconsistency, the resulting constraints are evidently satisfiable. Note that satis-
fiable positive set constraints do not always have a least model. Subsequently, [9] provided
an alternative procedure using tree automata techniques. Starting with Rabin's result [28]
that the theory of k-successors is decidable, they generalized the Rabin automaton to ac-
comodate positive set constraints. They further showed that satisfiable positive constraints
always have a regular solution (all variables are assigned a regular set), and a minimal and
maximAl regular solution.

While the class of definite constraints and the class of positive classes are not comparable,

3

the work [5] proved decidability of a class subsuming the two. Briefly, the set constraints
considered here are the positive ones, extended to allow projections in a restricted way.
The importance of this work probably lies more in the technique used: it is proved that
set constraints can be written into equivalent formulas in the monadic class, that is, first-
order formulas with unrestricted quantification, but no function symbols and only monadic
predicate symbols. The transformation is simple and elegant, and gave rise to complexity
results on set constraints based on similar results in the monadic class.

The next step was taken by [10], who proved that negative set constraints, ie. the
extension to poitve constraints with negations of subset relationships such as se, Z se2 ,
remains decidable. Once again, tree automata techniques were used here. An alternative
procedure was then given by [4], by reduction to a number-theoretic decision problem.
Subsequently, [6] used the abovementioned translation of set constraints to the monadic
class to provide a straightforward procedure for deciding negative set constraints. Note
that none of these works on negative constraints deal with projections.

In summary, the state of the art for the set constraint decision problem is largely deter-
mined by the reduction to the monadic class of formulas. The main question remains how
to deal with (unrestricted) projection. At the time of writing, we have verbal communica-
tion [26] indicating that the proof in [6] can be extended to solve this problem. Thus the
question of whether the general set constraint problem is open, now becomes open!

2.3 Applications

Early works

Two important early works are by Jones and Muchnick [22] and Reynolds [29]. In [22],
an analysis is described for an imperative language with LISP-like data structures. The
essence here is the construction of set constraints corresponding to a program that capture
the flow of values from one variable to another as the program is executed. However,
the set constraints here are restricted so that they can be solved by a fairly straightforward
algorithm. In particular, the set constraints do not contain a notion of intersection, and their
only operation is projection (corresponding to decomposition of data structures). Hence
they are not expressive enough to capture a number of important components of programs.
For example all information about the conditions in conditional statements is completely
omitted. Further, information relating to well definedness of expressions is ignored (for
example, after a statement X = car(Y), it must be the case that Y is of the form cons(--.)
because otherwise the program would have terminated with ar. error).

In contrast, the earlier paper [29] used set constraints to compute data type definitions
for program variables in a first order functional language. The constraints used are similar
to those used in [22]. Again the only set operation of the constraints is projection, and so
the program approximations obtained can be considerably inaccurate.

In summary, the set constraints used in these early works are simple, but the program ap-
proximations that they define are not very accurate. These works viewed set constraints as
a tool for obtaining information about the program, and the constraints themselves incorpo-

4

rate a number of ad hoc approximations in addition to ignoring inter-variable dependencies.
As a result, there is no simple connection between the program and its approximation. This
particular shortcoming is one of the motivations for set-based analysis, discussed later in
this paper.

Logic Programs

The use of set constraints for the bottom-up analysis of logic programs was first considered
in [25]. The set constraints in this relatively early work were rather specialized and used a
form of approximation called tuple-distributive closure (hereafter just called closure). This
closure, which was subsequently used in some later works, has the effect of enlarging a set
of terms S into S" as follows:

S* c: c is a constant in S} U U f ((f,(S))*,..f t(,)(S))*)

where f(S,...,S,) denotes the set f ~sI. . I sn) : i E S,} and f t(S) denotes the set
{s, : f(sE, .,s,S) 6 S}. Thus for example, closing the set {f(a,b),f(c,d)} produces
{f(a, b), f(a, c), f(b, d). f(c, d)). The set constraints used in [25] are like the general ones
defined above, except that the union operation is interpreted to be the closure of the union
of sets.

A different approach to approximation starts from the (bottom-up) fixpoint operator Tp
of a program P, and the approximate meaning of a program is obtained by imposing closure
on each iteration of the operator. For example, [32] defined the operator Yp(S) = t (Tp(S))"
and the approximate meaning of the program is the least fixpoint lfp(Yp) of Yp (which
is always larger than the exact meaning, lfp(Tp)). In [16], a more accurate operator r"p
was used. (Roughly, Yp ignores inter-argument dependencies, while rp ignores only inter-
variable dependencies.) A more recent work [8] used the closure operators (in conjunction
with another approximation technique called widening) to define and compute a program
approximation.

The relationship between these closure-based fixpoint operators and set constraints was
described in (18]. One result is that the models of the set constraints in [25], essentially
correspond to the fixpoints of Yp. A similar result was that the other fixpoint operator -p
corresponded to certain formulas obtained from the program. These formulas are similar to
but more general than set constraints. The main point here was that the least fixed-point
of irp provided a more accurate and intuitive notion of approximation, and importantly, the
approximation is decidable. It is open as to whether lfp(Yp) is decidable.

Functional Programs

The general approach of [22, 29] has been extended by [21] to deal with higher-order func-
tions. This approach has been further developed for binding time analysis [24], garbage
collection (20] and globalization of function parameters [30]. One presentational difference
in these works is the use of various extensions of regular grammars instead of constraints.

5

Subsequently, a number of set constraint approaches have been developed for the analysis
of higher-order functional languages (see, for example, [27, 12, 2, 3, 131). Perhaps the most
developed of these approaches are those by [12, 13] and [2, 3]. The former starts with an
operational semantics, and develops a set-based analysis for this semantics. The constraints
that arise are briefly sketched in Section 3.3. In the latter, a denotational model of the
program inspires the extraction of "type constraints", which are essentially set constraints
(involving intersection and complement but not projection) over a domain of downward
dosed sets of finite elements (essentially the "ideal" model of types). We note that both
works include a mechanism for reasoning about non-emi ;iness of sets (these are called
"conditional types" in [3]).

Sorted Unification

Broadly, sorted unification is the problem of unifying two terms in the context of a sort
theory, the latter imposing constraints on the values that certain variables can take. The sort
theory is typically presented as a sort signature, indicating the hierarchical arrangement of
the various sorts, together with a specification on the sorts of the various function symbols.
For example,

{eveen C int, odd C int, succ: odd - even, succ: even - odd}

specifies that the sorts even and odd both belong to int, that the function succ maps an
even integer into an odd one, and vice versa. Such constraints can be naturally specified in
set constraints:

Int = Odd U Even, Odd = 0 U succ(Even), Even = 0 U succ(Odd)

In general, sorted unification is decidable only when the sort theory is restricted in some way.
In the literature, a typical restriction is that the sorts are regular sets. In [31], a restricted
class of set constraints is used to represent the sort theory, and a new sorted unification
algorithm is presented. This work shows that further development in set constraints may
be useful for sorted unification.

3 Set-Based Analysis

The basic approach of set-based program analysis starts with some description of the oper-
ational semantics. Typically, such a description involves environments, which describe the
values that each variable may assume at runtime. The next step is a systematic replacement
of environments into set environments, which map variables into sets of values, as opposed
to a single value. This fundamental step gives rise to the notion of a set-based semantics
of a program. Next, the set-based semantics is reduced to a set constraint problem, and
finally, the set constraints are solved.

In this paper, we will not go through this process in much formal detail. These details
can be found in [12]. Instead, we will show by examples how set constraints indeed model
the desired approximation from program fragments.

6

In the following examples, we shall use a simple imperative programming language with
basic facilities for data structure creation (e.g. cons and nil for list creation) and data de-
structuring/projection (e.g. car and cdr for list destructuring). Consider the statement X
:= cons(Y, X). To model this statement, set variables are introduced to collect the values
of the variables X and Y just before and just after the statement (we suppose that these
are the only program variables of interest). Let X, and Y, be the set variables to collect
the values of X and Y just before execution of the statement, and let X2 and Y2 be the set
variables for just after statement execution. Now, the values for X just after execution of
the statement include all values cons(%,, tx) such that vx E X, and vy E Y1 , and so we
write X2 _ {cons(W,ux) : wx E Xi,t, E YI}, which is abbreviated by X2 ;? cons(Yl,XI).
In contrast, the values for Y just after execution of the statement are exactly those before
execution, and so we write the constraint y2 Q Y1. Hence, from the above program state-
ment, we construct two set constraints: X2 Q cons(Yl, X1) and Y2 2 Y. Note that for
this example, we could have replaced D by = and written the equations X 2 = cons(Y1 , X1)
and y2 = Y. However, for a number of reasons, it is somewhat more convenient to use
inequalities rather than equalities'.

Similarly, for the statement X := cdr(X) we construct the two constraints X 2 2 cdr(X)
and Y 2 Q Y1, where cdr(XI) abbreviates {v 2 : cons(v1 , v2) E X,}, and XI, Y9,X 2,Y 2 are as
before. In general, the use of sets to reason about a program leads to an approximation
of the program's actual behaviour. This is because the use of sets ignores dependencies
between variable values. For example, consider the following program

X := car(W);
Y := cdr(W);
W := cons(X, Y);

Let W, X. and Yi, i = 14, be the set variables introduced to collect the values of W,
X and Y just before the first statement, just before the second statement, just before the
third statement, and just after the third statement respectively. Constructing constraints
as before yields:

W2 _DW1 W 42 con'S(Xs,Y 3)
X 2 Car(W 1) X3 X2 X4 DX 3
A 2Y 1 Y cdr(W2) 794D7Y3

Now, suppose that at the start of the program, the variable W is either the list [1, 2] or the
list [3,4]. Then the set for X' 2 (and X3) is {1,31, and the set for Y3 is {[21,[4]}. Hence,
the set for W 4 is {[1, 2], [3,4], [1,4], [3,2]}. In contrast, the only possible values for W after
execution of the third statement are [1, 2] and [3, 4].

The key property of the constraints constructed from a program is that any solution of
the constraints conservatively approximates the operational semantics of the program. This
means that to obtain a safe approximation of the program, it is sufficient to construct a
solution to the constraints. The constraint solving process will typically compute the min-
imum solution to the constraints since this is the most accurate approximation (described
by the constraints).

Ln particul, the construction of set constraints is simpler in the presence of statements that change

the Sow of cotzOL

7

In summary for this subsection, set constraints can be constructed to approximate the
execution of a program by first introducing set variables to capture the values of the program
variables at each program point, and then writing constraints between these set variables
to approximate the relationships between these variables that are inherent in the program.
In effect, the construction of constraints reduces the problem of analyzing the program to
the problem of reasoning about set constraints.

3.1 Imperative Programs

The example imperative programs considered above do not illustrate how conditional state-
ments and recursion are handled, and these are probably the most interesting aspects of
the analysis. In particular, recursion introduces the possibility of infinite sets of values.
Consider the following program

X cons(a. cons(b, cons(c, cons(d, nil))));

Y :- nil;

while(car(X) 0 c) do

Y cons(car(X), Y);

X cdr(X);

where a, b, c and d are constants. After execution of this program, X is cons(c, cons(d, nil))
and Y is con(b, cons(a, nil)); in other words the program reverses the initial segment of X
up until the first occurrence of c. The markers Q,), E) and E) indicate points in the
program (note that E) indicates the point at the end of the program). Corresponding to
this program, we can construct the following constraints.

XA 2 cons(a, cons(b, conu(c, cors(d, nil)))) Xc D cdr(XB)
yA - nil yC D cons(car(XB),yB)
X D _ A n con (c, T) XD D XA n cons(c, T)
y5 2 yA y yD yA

xR D V n cons(c,T) XD D Xc n cons(c, T)
yB 23yC yD D yc

The set expression cona(c, T) (the complement of the set denoted by cons(c, T)) is the set
of all values v such that car(v) differs from c. In general, it is useful to introduce a restricted
form of complementation in the constraints used to analyze imperative programs. However,
these uses are always sufficiently limited that the constraints obtained are still "monotonic".
The minimum solution of the above constraints is given by the following mapping:

8

A S {cons(a, cons(b, cons(c, cons(d, nil))))}

i-* {nil}
X {cons(a, cons(b, cons(c, cons(d, nil)))), cons(b, cons(c, cons(d, nil))))
YD . list.j

MO - { con(b, cons(c, cons(d, nil))), cons(c, cons(d, nil)))
YO non-nit-list,,b
XD . . { cons(c, cons(d, nil)))
yD list.,

where list.,,b denotes the set of all lists constructed from a and b, and non-nil-list. ,b denotes
the set of all non-empty lists constructed from a and b.

3.2 Logic Programs

The construction of set constraints for logic programs is similar to that for imperative
programs. However, for logic programs, there is a choice for the underlying operational
semantics used in the analysis. We begin by illustrating the construction of constraints
corresponding to a bottom-up execution. Again we introduce a set variable for each program
variable. We also introduce set variables Ret,, for each predicate p, to collect the set of

"return" values for that predicate. Consider the following logic program and constraints
constructed to model the bottom-up semantics of the program.

p(x) :- q(X), r(x). Ret, _2 P(X)
q(a). X D q ,(Ret,) n r-I(Ret,)
q(b).r(b). Ret, Q q(a) U q(b)
r(c). Ret, D r(b) U r(c)

The minimmn solution of these constraints maps Ret, into fp(b)}, maps X into {b}, maps
Ret, into {q(a),q(b)J, and maps Ret, into {f.(b),r(c)}. Now, consider constructing con-
straints corresponding to a top-down left-to-right execution of the program starting from
the goal ?- p(t) where t is either a, b, c or d. The main change here is the introduction of
set variables Call., for each predicate p, to collect the set of "calls" to that predicate. The
program points (&,@ and D respectively denote the points just before execution of q(X),

just before execution of r(X) and just after execution of r(X).

Call, Q p(a U b U c u d)
Ret, ;_ p(Xc)

p(X) :- g, q(X), (a, r(X), . XA D p-'(Call,)

q(a). X D p-'(Call,) n q-'(Ret,)
q(b). Xc D pI(Call,) n q (Ret,) n r (Ret,)r(b). Call, Q_ q(X)

f(c) • Ret, 2 (q(a) U q(b)) n Call,
Call,. D r(XB)
Ret, D (r(b) U r(c)) n Call,

The minimum solution of these constraints maps Call, into {p(a), p(b),p(c),p(d)}, Ret, into

9

{pb)}, XA into {a,b,c,d}, X into {a, b}, Xc into {b}, Call, into {q(a),q(b),q(c),q(d)},
Ret, into {q(a), q(b)}, Call, into {r(a), r(b)}, and Ret, into {r(b)}. As a third alternative,
consider constructing constraints corresponding to a top-down parallel execution of the
program starting from the same goals. The program points a , (and (respectively
denote the points just before execution of q(X), just before execution of r(X) and just after
execution of the entire body of the first rule.

Cal, 42 p(a U b U c U d)
Ret, 2 p(Xc)

p(X) :- (, q(X), @, r(X), c. ,A 0 pj(Cli,)
q(a). D D p I(Call,)
q(b). Xc D pI(Call,) n q (Ret,) n r-'(Re4)
r(b). Call, ; q(XA)
r(c). Ret, ? (q(a) U q(b)) n Call,

Call, _? r(X')

Ret, D (r(b) U r(c)) n Call,

The minimum solution of these constraints maps Call, into {p(a), p(b),p(c),p(d)}, Ret, into
p(b)}, XA and X' into f{a, b, c, d }, Xc into {b}, Call, into {q(a), q(I ,(c), q(d)}, Ret, into

{q(a), q(b)}, Call, into {r(a), r(b), r(c), r(d)}, and Ret, into {r(b),,-(cjy

Observe that in all three examples, the use of set constraints has lead to an exact
analysis, and that the sets obtained were finite. Neither observation holds in general, as is
illustrated by the following bottom-up analysis example:

pYX, f(Y)) :- pX, Y). Ret, ? p(f(X), f(Y)) U p(a, b)

p(a,b). X 2 p ,)(Ret,)

In the least model of the constraints, Ret, is mapped into the set {p(a, b)}U{p(f(a), fj (b)):
i > 1,j 2_ 1}, and this set contains elements such as p(f(a), f (f(b))) which are not part of
the program's (exact) meaning.

So far, we have made no mention of variables that appear in the head of a rule and not
in the body of a rule. Such variables can take on any value. Hence they are modeled using
the T constant, as illustrated in the following example.

Ret, 2 p(X,Y)
p(X, Y) :- q(X). X D q (Ret,)
q(). Y

Ret, ;2 q(a)
We conclude this discussion of the analysis of logic programs by noting that the accuracy of
the information obtained using set constraints can be improved by using more complex set
operators. For example, consider the following program and its (bottom-up) set constraints:

10

p(X, Y) q(X, Y), r(X, Y). Ret, _? p(X, Y)
(X, b)). X D q(,(Ret,) n r-1(Ret,)

q~a b) 3Y q(,(Ret,)fnlr'(Ret,)q(b, a).(2
r(a, a). Ret, 2 q(a,b) U q(b, a)

Ret, D r(a, a)

The minimum solution of these constraints maps Ret, into p(a, a), X and Y into (a},
Ret, into {q(a, b), q(b, a)), and Ret, into {r(a, a)}. Another way of constructing constraints
is to introduce quantified set expressions, which have the form {X : 3XI... 3X..(t, E
se, A -- A t, E se,1)) where X,X,...,X,. are program variables, t1 ,...,t,, are aton-
or terms whose variables are from X,Xl,...X,,, and sex,... ,se,, are set expressions. T
constraints using quantified set expressions that are constructed for the (bottom-up) analysi-
of the above program are:

Ret, ?p(X,Y)

X D {X: 3Y (q(X, Y) E Ret, A r(X, Y) E Ret,)}

Y 2 {Y 3X (q(X,Y) E Ret, A r(X, Y) E Ret,)}

Ret, q(a, b) U q(b, a)

Ret, r2 r(aa)

and the minimum solution of these constraints maps Retp, X and Y into the empty set,
Bet, into {q(a, b), q(b, a)), and Ret, into {r(a, a)). The more complex constraints using
quantified expressions not only provide more accurate program approximation, but they
are also more faithful to the notion of set-based analysis. In particular, they have closer
and much simpler relationship to the underlying operational semantics (see [12, 16] for
further details).

3.3 Functional Programs

To analyse functional languages such as Standard ML [23], set constraints must be extended
with a mechanism to deal with higher-order functions. In essence, this is achieved by the
addition of three new components. First, the set of underlying values is enriched to include
a new collection of constants to denote functions. In the following examples, we shall use
function identifiers for this purpose; in more formal presentations, it is convenient to use
abstractions in an appropriate lambda calculus. Second, for each function constant f, we
introduce two set variables Calif and Ret1 to capture the values on which f is called, and
the values that calls to f return, respectively. Third, a new set operator apply is introduced
to model function application. The meaning of a set expression apply(sel, se2) under a
mapping " is defined as follows:

Z(a pjp(sei,se2)) 4- U Retf, provided X(Callf) 2? I(se 2) for all f E 1"(se1)

H the side condition is not met then I(apply(sej, se2)) is not defined. The notion of solution
of a collection of set constraints is appropriately modified so that I is a solution of the

11

constraints if it is defined on each set expression and satisfies each constraint. Note that
the meaning of this expanded class of set expressions involving apply is somewhat unusual,
because now set expressions themselves may impose restrictions on solutions, independent
of the constraints in which they appear. Importantly, unique minimum solutions are still
guaranteed to exist.

To illustrate the construction of set constraints to analyze function programs, consider
the following program and its constraints. The set variable 6 is introduced to capture the
set of values resulting from program evaluation. The minimum solution of the constraints
maps X, Calli, Ret, and t into {c).

lt fun id X = X
Retu 2 X

nd C D apply(id, c)
end

Again, more complex set operators can be introduced to provide more accurate modeling
of certain aspects of the language (particularly case statements). See (12, 13] for further
details. The complexity of solving the set constraints is 0(n) [13]. This basic formulation
of constraints has been extended to deal with arrays, continuations and exceptions.

3.4 Comparison with Other Analysis Techniques

A key advantage of set-based analysis (and, more generally, the use of set constraints to
perform program analysis), in comparison to standard abstract interpretation techniques
[7], is that there is no underlying abstract domain. When using an abstract domain, the
requirement of "finite ascending chains" is typically required for termination, and this limits
the usable abstract domains. A remedy is to use techniques of "narrowing" and "widening".
Even so, termination continues to place a fundamental restriction on the accuracy of the
treatment of values. Avoiding the use of abstract domains leads to important advantages
in terms of accuracy and uniformity. In particular, set-based analysis does not use "depth-
limits" or other a priori restrictions on the sets of values that can be manipulated. We
contend that this reduces the potential for chaotic and unintuitive behaviour.

Another benefit of the simplicity and uniformity of the approximation embedded in set-
based analysis is that the analysis is extensible and flexible. In the course of implementing
& number of prototype set-based analysis systems, we have observed that modifications to
incorporate new features are often straightforward. For example, during the development
of a system for the analysis of ML programs, the treatment of continuations, side-effects
and exceptions required only minor modifications. There appear to be two reasons for
this. First, because set-based analysis has a simple and intuitive definition, it is usually
straghtforward to determine how to treat new features. Second, because the analysis has
a uniform definition, the treatment of one component of a language is largely independent
of the treatment of other aspects of the language, and so the analysis can be extended in a
modular manner.

Of course, the main limitation of set-based analysis is that all inter-variable depen-
dencies ae ignored. Such dependencies can be crucial for some kinds of analysis such as

12

mode analysis (see [19] for a discussion of this issue). In contrast, abstract interpretation
techniques can retain a limited amount of information about dependencies (although there
is, of course, additional computational cost associated with maintaining information about
dependencies). Motivated by this observation, hybrid approaches that combine aspects of
set constraints with abstract interpretation have been developed (19].

3.5 Efficiency Issues

It is difficult to quantify a comparison between set-based analysis and standard analysis
techniques. While worst case complexity costs can be obtained, it is not clear what con-
clusions we can draw from these results about the practicality of the various approaches.
Moreover, the technology for implementing set constraints is still in its infancy. With this
in mind, we now briefly describe results from implementations of set-based analysis for two
different languages.

The first deals with analysis of logic programs [11], and computes type, mode and sharing
information. This analysis has a worst case exponential complexity. While substantial
progress was made during the development of this implementation, the results indicate that
we awe still some distance from practical analysis of medium to large programs. Currently,
top-down analysis of programs of the order of 50 rules can be achieved in a few seconds. As
expected, analysis based on bottom-up semantics is considerably cheaper that for top-down
semantics. One of the main lessons of this implementation is the expense of solving set
constraints involving intersection. Much of the work of the implementation was directed at
reducing this cost.

The second implementation effort provides a contrasting experience. This implementa-
tion [13] focussed on the analysis of ML programs. The core algorithm for this analysis is
0(n s) on the size of the input program. Typical execution times are in the range of 200-400
lines per second for programs up to several thousand lines in length. The main reason for
the substantial difference between the results from the two implementations seems to hinge
on the fact that intersection is not used in the constraints generated from ML programs.
Based on this observation, we are currently investigating ways of constructing constraints for
logic programs that provide similar levels of accuracy, but either eliminate or substantially
reduce the use of intersection.

The results from the second implementation out-perform current implementations of
comparable abstract interpretation based approaches. There appear to be a number of rea-
sons for this. In set-based analysis there is only one pass over the program text. In essence,
this performs a "pre-compilation" of the program into a convenient computation form (set
constraints). In contrast, many abstract interpretation systems repeatedly pass over (some
representation of) program text during the iterative fixed-point computation. In set-based
analysis, all approximation is carried out in the translation to set constraints, and so no
approximation operations need to be done during the main computational component of the
analysis (solving set constraints). Furthermore, set constraints are inherently more incre-
mental than the iterative fixed-point computations of abstract interpretation. In essence,
constraints provide a compact implicit representation of information. This representation

13

supports computation over partial information that is particularly well suited to efficient
program analysis. We refer to [15] for a deeper discussion of this issue.

3.6 Extensions

So far we have focussed on the use of set constraints to obtain an approximation of the pos-
sible run-time values of variables in a program. However, the basic process of constructing
set constraints from a program and then solving these set constraints preserves numerous
structural properties of a program. It is therefore possible, with only minor modifications
to the set constraint algorithm, to compute approximations to a variety of other program
properties. We now illustrate this.

Mode Analysis (for Logic Programs)

To adapt set constraints to compute mode information for logic programs, we first change
the underlying set of values from the set of all "giound" terms to the set of all terms. Then
we replace the constant T by two new constants ground and any, which shall denote the set
of all ground terms and the set of all terms respectively. Finally, we modify the definition of
solutions of set constraints to account for these changes. For example, the minimum solution
of X D f(ground, any) maps X into the set of all terms of formf(th, t2) such that tj is
ground. The minimum solution of X D f(ground, any, a) nf(any, ground, any) maps X into
the set of terms f(t, t2, a) such that t1 and t2 are both ground. The constraints generated
for mode analysis are essentially unchanged, excepting that any and ground may be used to
describe the initial goals. The modifications for solving these new constraints involve steps
such as simplifying ground n any into ground, and f(any) n ground into f(ground). See
[12, 15] for further details. Note that the constants ground and any behave in essentially the
same way as T, and may appear in the output of the algorithm (that is, they may appear
in the explicit representations that are computed by the algorithm). For example, when the
program

app(nil, Y, Y).
app(cons(X', X), Y, cons(X', Z)) :- app(X, Y, Z).

is analysed in the context of the goal ?- app(ground, ground, any), the output of the algorithm
relevant to Call.,. and Ret., is

Call. = app(ground, ground, any)
Ret, = app(nil, ground, ground) U app(cons(ground, X), ground, cons(ground, Z))

X = nil U cons(ground, X)
2 = ground U cons(ground, Z)

Structure Sharing Analysis

Structure sharing analysis seeks information of the following form: given two variables,
determine whether the bindings of these variables can "share" sub-structures (in the sense
that the sub-structures have the same heap location). Such information can be used to

14

determine when data structures can be updated in place or when they can be garbage
collected. This kind of analysis may be performed by first giving each occurrence of a
function symbol a unique label. Then set constraints are constructed as before, with care to
preserve the labels on function symbols - call the resulting constraints labeled set constraints.
The meaning of these constraints is defined by mapping set expressions into sets of labeled
terms. We refer to [12, 15] for further details.

Interpreted Function Symbols

The set constraints considered so far deal with uninterpreted symbols so as to correspond
to the data constructors of the language at hand. For analysis of programs involving oper-
ations such as arithmetic, this approach must be generalized. One possibility is to compute
descriptions of how arithmetic values are obtained. These descriptions are essentially terms
built from arithmetic operations and integers. For example, the description of computations
for a program variable z might be given by

X=0U(X+1)

that is, the set of computations {0, 0 + 1, (0 + 1) + 1,..}. Clearly, the actual values of z
are included in the set {0, 1, 2,.. .}. [14] describes how this approach can be applied to the
problem of removing array bounds checks, and this requires that the analysis also reason
about arithmetic tests. An example of the kinds of descriptions that arise in this context
is:

X = 0 U [LE 10](X + 2)

where [LE 101 is a "restriction" operator that essentially picks those elements from a set
that are less than 10 (in general a restriction operator is of the form [op je] where op is
some arithmetic comparison operation and se is some set expression). The least model of
the above equation maps X into {0, 2, 4, 6, 8}.

4 Conclusion

The calculus of set constraints was presented, and its history of basic results and applications
briefly described. The approach of set-based analysis was then presented in an informal
style, with a focus on the breadth of applicability of the technique. The relationship between
set constraints and set-based analysis is roughly that the approximation of a program by
ignoring inter-variable dependencies can be captured by set constraints. It was then argued
that set-based analysis can provide accurate and efficient program analysis.

15

References

[1] A. Aiken and E. Wimmers, "Solving Systems of Set Constraints", Proc. 7 1A IEEE Symp. on
Logic in Computer Science, Santa Cruz, pp. 329-340, June 1992.

[2] A. Aiken and E. Wimmers, *Type Inclusion Constraints and Type Inference", Proc. 1993
Conf. on Functional Programming and Computer Architecture, Copenhagen, pp. 31-41, June
1993.

[3] A. Aiken, E. Wimmers and T.K. Lakshman, "Soft Typing with Conditional Types" Proc. 21 "t
ACM Symp. on Principles of Programming Languages, Portland, OR, pp. 163-173, January
1994.

(4] A. Aiken, D. Kosen and E. Wimmers, "Decidability of Systems of Set Constraints with Neg-
ative Constraints", IBM Research Report RJ 9421, 1993.

[51 L. Bachmair, H. Gansinger and U. Waldmann, "Set Constraints are the Monadic Class", Proc.
8W1 IBBE Symp. on Logic in Computer Science, 75-83, 1993.

(6] W. Charatonik and L. Pacholski, "Negative Set Constraints: an Easy Proof of Decidability",
Proc. 9"' IBEE Symp. on Logic in Computer Science, 1994, to appear.

(7] P. Cousot and R. Cousot, "Abstract Interpretation: A Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints", Proc. 41 ACM Symp. on
Principles of Programming Languages, Los Angeles, pp. 238-252, January 1977.

[8] J. Gallagher and D.A. de Wall, -Fast and Precise Regular Approximations of Logic Programs",
Proc. International Conf. on Logic Programming, MIT Press, to appear 1994.

[9] R.. Gilleron, S. Tison and M. Tommasi, -Solving Systems of Set Constraints using Tree Au-
tomat, Proc. lOh Annual Symposium on Theoretical Aspects of Computer Science, pp.
505-514, 1992.

[10] R. Gilleron, S. Tison and M. Tommasi, "Solving Systems of Set Constraints with Negated
Subset Relationships", in Foundations of Computer Science, 372-380, 1993.

[11] N. Heintse, "Practical Aspects of Set-Based Analysis", Proc. Joint International Con!. and
Symp. on Logic Programming, Washington D.C., MIT Press, pp. 765-779, November 1992.

(12] N. Heintse, "Set-Based Program Analysis", Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, October 1992.

(13] N. Heintse, "Set-Based Analysis of ML Programs", to appear, ACM Conference on Lisp and
Functional Programming, 1994.

(14] N. Heintse, 'Set-Based Analysis of Arithmetic", Carnegie Mellon University technical report
CMU-CS-93-221, 20pp., December 1993.

(15] N. Heintse, 'Set Constraints in Program Analysis", Workshop on Global Compilation, Inter-
national Logic Programming Symposium, October 1993.

[16] N. Heintse and J. Jaffar, "A Finite Presentation Theorem for Approximating Logic Programs",
Proc. 17k ACM Symp. on Principles of Programming Languages, San Francisco, pp. 197-209,
January 1990. (A full version of this paper appears as IBM Technical Report RC 16089 (#
71415), 66 pp., August 1990.)

16

[17] N. Heintse and J. Jaffar, "A Decision Procedure for a Class of Herbrand Set Constraints",
Proc. 5' IBB Spwp. on Logic in Computer Science, Philadelphia, pp. 42-51, June 1990. (A
full version of this paper appears as Carnegie Mellon University Technical Report CMU-CS-
91-110, 42 pp., February 1991.)

[18] N. Heintse and J. Jaffar, "Semantic Types for Logic Programs" in Types in Logic Program-
mring, F. Pfenning (Ed.), MIT Press Series in Logic Programming, pp. 141-155, 1992.

[19] N. Heintse and J. Jaffar, "An Engine for Logic Program Analysis", Proc. 7th IEEE Symp. on
Logic in Computer Science, Santa Cruz, pp. 318-328, June 1992.

[20] T. Jensen and T. Mogensen, "A Backwards Analysis for Compile-Time Garbage Collection",
Proc. 3 " European Symp. on Programming, Copenhagen, LNCS 432, pp. 227-239, May 1990.

[21] N. Jones, "Flow Analysis of Lazy Higher-Order Functional Programs", in Abstract Interpre-
tation of Declarative Languages, S. Abramsky and C. Hankin (Eds.), Ellis Horwood, 1987.

[22] N. Jones and S. Muchnick, "Flow Analysis and Optimization of LISP-like Structures", Proc.

6th ACM Symp. on Principles of Programming Languages, San Antonio, pp. 244-256, January

1979.

[23] R. Milner, M. Tofte and R. Harper, "The Definition of Standard ML", MIT Press, 1990.

[24] T. Mogensen, "Separating Binding Times in Language Specifications", Proc. Functional Pro-
gramming and Computer Architecture, London, ACM, pp. 12-25, September 1989.

(25] P. Miahra, "Toward a Theory of Types in PROLOG", Proc. I"' IEEE Symp. on Logic Pro-
gramming, Atlantic City, pp. 289-298, 1984.

[26] L. Pacholski, personal communication, March 1994.

[27] J. Palsberg and M. Schwartsbach, "Safety Analysis versus Type Inference for Partial Types"
Information Processing Letters, Vol 43, pp. 175-180, North-Holland, September 1992.

[28] M.O. Rabin, "Decidability of Second-order Theories and Automata on Infinite Trees", Trans-
actions of the American Math. Society 141, pp 1 - 35, 1969.

[29] J. Reynolds, 'Automatic Computation of Data Set Definitions", Information Processing 68,
pp. 456-461, North-Holland, 1969.

[30] P. Sestoft, "Replacing Function Parameters by Global Variables", Proc. Functional Program-
mini and Computer Architecture, London, ACM, pp. 39-53, September 1989.

[31] T.E. Uribe, "Sorted Unification using Set Constraints", Proc. 11'h Intl. Conf. on Automated
Deduction, D. Kapur (Ed), Springer Verlag Lecture Notes in Computer Science, 1992.

[32] E. Yardeni and E.Y. Shapiro, "A Type System for Logic Programs", Journal of Logic Pro-
gramming, Vol. 10, pp. 125 - 153, 1991. (An early version of this paper appears in Concurrent
PROLOG: Collected Papers, Vol. 2, MIT Press, pp 211 - 244, 1987.)

17

A Substitution Operation for Constraints

Peter Jeavons, David Cohen
Department of Computer Science

Royal Holloway, University oi London, UK

Martin Cooper
IRIT, University of Toulouse III, France

March 30, 1994

Abstract

In order to reduce the search space in finite constraint satisfaction problems, a number of different
preprocessing schemes have been proposed. This paper introduces a 'substitution' operation for
constraints. This new operation generalizes both the idea of enforcing consistency and the notion
of label substitution introduced by Freuder. We show that the constraints in a problem may be
replaced by substitutable subsets in order to simplify the problem without affecting the edstence
of a solution. Furthermore, we show how substitutability may be established locally, by considering
only a subproblem of the complete problem.

1 Introduction

The finite constraint satisfaction problem (or consistent labeling problem) is known to be NP-complete 17].
Such problems may always be solved by an exhaustive search strategy, but this is generally very ineffi-
cient.

The search space may be reduced by enforcing some level of 'consistency' [5] in the problem. This
involves strengthening the given constraints by disallowing labels or combinations of labels which can be
eliminated using other constraints. A number of efficient algorithms have been proposed for achieving
various levels of consistency in a given problem [2, 8, 9].

For some applications of constraints, notably problems arising in machine vision (3, 10, 11], it is not
necessary to calculate all possible solutions to a given problem, only to determine whether a solution
exists, and if so to output a single possible solution. When only a single solution is required it is possible
to generalize the notion of enforcing consistency to obtain a more powerful constraint simplification
strategy, which will be called 'substitution'. The substitution operation simplifies the given constraints
by removing labels or combinations of labels which can be shown to be unnecessary when seeking a single
solution.

The idea that one label may be substituted for another in some problems, without affecting the
existence of solutions was first proposed by Freuder in [6]. In this paper we generalize this idea to
apply to arbitrary sets of labels for arbitrary sets of variables. This opens up a wider range of possible
substitutions and allows us to apply substitution operations directly to the constraints in a problem.

The motivation for the work described here is to extend the range of simplification operations which
may be applied to constraints, in order to identify more precisely the features of a constraint satisfaction
problem which give rise to intractability (4].

2 Definitions
A finite constraint satisfaction problem (CSP) [7, 10] consists of a number of variables which must be
assigned labels from associated domains, subject to a number of constraints. Each constraint specifies

18

allowed combinations of labels for some subset of the variables, referred to as the scope of the constraint.
We now give a formal definition,

Definition 2.1 A finite constraint satisfaction problem, V, consists of a pair (X, C), where:

e X is a finite set of variables.

* Each z E X is associated with a finite set of labels, 6(z), called the domain of x.

* C is a finite set of constraints.

o Each c E C is associated with a subset, E(c), of X, called the scope of c.

A mapping t from Y C X such that t(x) E 6(z), for all z E Y is called a labeling of Y.
Each constraint c E C is a set of labelings of E(c).

Definition 2.2 Let P = (X, C) be a constraint satisfaction problem.

* Given any constraint, c E C, a labeling t of E(c) is said to "satisfy" c if and only if t E c.

* A labeling t of X is said to be a "solution" to P if and only if for every c E C, the restriction oft
to E(c) satisfies c.

The set of all solutions to 'P is denoted Sol(P).

To illustrate these definitions, we now give an example of a specific constraint satisfaction problem which
will be used as a running example.

Cl = {(a, a), (a, c))

c2 = {(a, a, a), (4, a, b), (a, b, b), (b, b, b), (c, c, c)}

C {(a,a),(a,b),(b,c),(c,c)}

C4 = (a, a), (b, b), (b, c), (c, c)}

Figure 1: An example of a constraint satisfaction problem

19

Example 2.3 Let V = (X, C) be the constraint satisfaction problem illustrated in Figure 1, in which:

0 X = {z,...,z

S6(zi) ={a,b,c}, i =1,2,...,5

C = {Ci,... , C4)

* The constraint scopes are as follows:

E(cl) = {Xl,z 2)
E(C2) = {Z 2 , -3,X 4 }

E(cs) = {3,ZS)

E(c 4) = {z 4 ,zs}

For this problem, a labeling is a mapping from a subset Y of X into the set {a, b, c}. For instance if
Y = {zX,z4), then the mapping t : Y --. {a,b,c} with t(zl) = a and t(z 4) = c is a labeling of Y. If we
fix a nominal order for the variables in Y, then we can denote a labeling of Y by an n-tuple where n
is the size of Y. Using the natural subscript ordering of the variables the labeling t can be written as
(a, c).

JFrom now on, for convenience, we shall assume that the variables of P have this natural subscript
order. Using the notation just described, we define the constraints of V to be as follows:

cl = {(a, a),(a,c)}
C2 = {(a,a,a),(a,a,b),(a,b,b),(b,b,b),(c,c,c)}

C3 = {(a,a),(a,b),(b,c),(c,c)}

c4 = {(a,a),(b,b),(b,c),(c,c)}

To complete this example we will compute Sol(P), the set of all solutions to V. By a simple search
we find that it is composed of four elements. As solutions are simply labelings of the complete set of
variables X, we can write them as follows:

(a,a, a, a,a)
(a, a, a, b, b)
(a,a,b,b,c)
(a, c, c, c, c)

0

We will sometimes want to deal with subproblems of a given constraint satisfaction problem which arise
from considering subsets of the set of constraints. We therefore make the following definition:

Definition 2.4 Let 'P = (X, C) be a constraint satisfaction problem and let D be any subset of C. The
reduced subproblem of P generated by D is the constraint satisfaction problem PID = (XID, D), where:

XID U E(C)
cED

We will make use of the following operations from relational algebra [1]:

Definition 2.5 Let Y, Z be sets of variables with Z C Y. For any labeling t of Y, the projection onto Z
oft, denoted t[Z], is the restriction oft to Z. Similarly, for any set S of labehngs of Y, the projection
onto Z of S, denoted wz(S), is the set {t(Z] I t E S).

Definition 2.6 Let Y, Z be sets of variables with Z C Y. For any set T of labelings of Z, and any set
S of labelings of Y, the selection by T from S, denoted oT(S), is the set {t E S I t[Z] E T}.

20

3 Substitutability

Freuder (6] defined the concept of substitutability for labels in a CSP as follows: given two possible
-labels a and b for a variable z, a is substitutable for 6 iff substituting the value a for b at variable z in
any solution yields another solution.

We now generalise Freuder's definition to apply to sets of labelings of arbitrary subsets, rather than
just individual labels for single variables:

Definition 3.1 Let P be a constraint satisfaction problem with variables X, and let R be a subset of X.
Given any two sets T1 , T2 of labelings of R, we say that T2 is substitutable for T, in P if

7rX-R(T, (Sol('P))) g 7rX- R(O Ta (Sol(P)))

If T2 is substitutable for TI in P, then we will write T1 -_ T2 .

In other words, given two sets of labelings, T, and T2 , for the same variables, we say that T 2 is substi-
tutable for T, if the following condition holds: the elements of T2 may be extended to complete solutions
in all the same ways as the elements of T1 .

Note that for any problem P and any sets of labelings, T, T2, we have

T 1 CT2 =TI<T 2.

The following example illustrates the definition:

Example 3.2 Consider the constraint satisfaction problem P in Example 2.3. None of the possible
labels for any of the individual variables is substitutable for any other in this example, according to
Freuder's original notion of substitutability.

However, using Definition 3.1 and the list of solutions given in Example 2.3, we can show that the
set of labefings {(a, a, a), (c, c, c)} for the variables Z3, X4 and zS is substitutable in P for {(a, b, b)), i.e

VI(a, b, 6)} :<(a, a,a), (c, c, c)}.

The next lemma indicates that a constraint in a constraint satisfaction problem may always be replaced
by a substitutable set of labelings without eliminating all of the solutions:

Lemma 3.3 Let P = (X, C) be a constraint satisfaction problem . If we replace any constraint c E C
p

by a new constraint c' with the same scope, such that c -< c', then we obtain a new constraint satisfaction
problem '" such that

Sol(P') = 0 == Sol(P) = 0

Proof: Note that Sol(P) = o(Sol(P)) and Sol(P') = ru(Sol(P)). Hence, if Sol(P) $ 0 then
V

0'(Sol(P)) # 0, so if c c', then by Definition 3.1 we have r,:(Sol(P)) # 0, hence Sol(P') # 0,
and the result follows. 0

For the special case of substitutable subsets of a given constraint, Lemma 3.3 has the following important
corollary:

Corollary 3.4 Any constraint in a constraint satisfaction problem may be replaced by a substitutable
subset without affecting the existence of solutions.

Furthermore, in this case, the solutions to the new problem will simply be a subset of the solutions to
the original problem.

Replacing a constraint with a substitutable subset will be called a 'substitution' operation. The
following example illustrates how this substitution operation may be used to tighten the constraints in
a constraint satisfaction problem.

21

Example 3.5 Reconsider the constraint satisfaction problem P defined in Example 2.3.
No proper subset of cl is substitutable for cl in 1P,
The following proper subsets are substitutable for C2 in 7':

{(a, a, a), (a, a, b), (b, b, b), (c, c, c))
{(a,a,a),(a,a,b),(b,b,b),(a,b,b)}

{(a, a, a), (a, a, b), (a, b, b), (c, c, c)}
{(a, a, a), (a, a, b), (a, b, b), }
{(a, a, a), (a, a, b), (c, c, c)}

The following proper subsets are substitutable for cS in P':

{(a, a), (b, c), (c, c)}

{(a, a), (a, b), (c, c)}

The following proper subsets are substitutable for c4 in 7':

{(b, b), (b,c), (c, c)}

{(a, a), (b, c), (c, c)}

0

Definition 3.1 implies that if a set of labelings T contains any labeling t which cannot be extended to a
7,

solution of P', then T1 _ (T - t). This gives us the following result:

Proposition 3.6 Any tuple which may be eliminated from a constraint in a constraint satisfaction
problem by enforcing consistency may be removed by a substitution operation.

This means that the substitution operation is a true generalization of the notion of enforcing consistency.
Calculating the smallest substitutable subset of a constraint is as difficult as solving the original

problem. However, the next result shows that it is sufficient to establish substitutability within certain
subproblems.

Definition 3.7 Let P = (X, C) be a constraint satisfaction problem.
For any c E C define the closure of c, 2, as follows:

E {c' E C I E(c') nl E(c) 50)

Lemma 3.8 Let P = (X, C) be a constraint satisfaction problem.
For any c E C and any set c' of labeliags of E(C), we have

-PIZ
7,,

C < cl *:- C.. Cl

Proof: Assume that c j c'. By Definition 3.1, this means that

1rX_ <(t0(Sol(r,))) 9 IrX-E()(-7,(SOI(P,)))

Hence, there is some s E Sol(P) such that the restriction of s to X - E(c) is not compatible with any
element of c. In other words, any labeling s' of X which satisfies c' and agrees with s on X - E(c) must
fail to satisfy some constraint in C.

By construction, s' satisfies c' and all elements of C - a, so s' must fail to satisfy some element of
'IC

- . Hence c j c'.

Any labelling which is substitutable for a constraint c in *Pj, will be said to be 'locally' substitutable for
c. Combining Lemma 3.8 with Corollary 3.4 shows that we may replace any constraint c in a constraint

22

satisfaction problem P by a locally substitutable subset without affecting the existence of a solution. For
many problems P', local substitutability may be calculated much more efficiently than substitutability
in P, since it requires solutions to be calculated only for the subproblems generated by the constraint
closures.

However, local substitutability is not implied by (global) substitutability, so using local substitutabil-
ity is not guaranteed to find all possible constraint substitutions, as the following example shows:

Example 3.9 Reconsider the constraint satisfaction problem P defined in Example 2.3. The set c -
{(a, a), (6, c), (c, c)} is substitutable in P for c3 (Example 3.5).

However, if we consider the subproblem P[-3, we find that Sol(Ple,-) contains the element (b, b, b, c)

so C3 C

4 Propagation of Substitution

Substitution operations may be propagated to obtain further reductions in the constraints, as the fol-
lowing example indicates. Note that in this example the use of substitution operations and propagation
is sufficient to obtain a complete solution to the problem.

Example 4.1 Reconsider the constraint satisfaction problem P defined in Example 2.3. It was shown
in Example 3.2 that the set of labelings

c = {(a, a, a), (a, a, 6), (a, b, b))

is substitutable in P for c2 (it is also locally substitutable).
If we replace c2 with 4 then we obtain a new constraint satisfaction problem ', and now we find

that 4 = {(a, a)) is substitutable for cl in VP'.
If we replace cl with 4 then we obtain a new constraint satisfaction problem P", and we find that

; = {(a, a), (a, b)) is substitutable for c3 in P".
If we replace c3 with 4 then we obtain a new constraint satisfaction problem P"', and we find that

c4 = {(a, a)) is substitutable for c 4 in P"'.
Finally, if we replace c4 with c4 then we obtain a new constraint satisfaction problem with only a

single solution, (a, a, a, a, a). Further substitution operations may therefore be carried out on all of the
constraints to reduce them to a single element, which is the projection of this soluLion. 0

As with the various methods for enforcing different levels of consistency, it is possible to organise the
propagation of substitution operations according to a number of different schemes. One naive algorithm
for repeatedly applying local substitutability and propagating the results is as follows:

Algorithm 4.2

Repeat
For each constraint c

For each t E c
pie

It c -< c-Q} then set c=c-{t)
Until no :urther changes to constraints.

The complexity of this algorithm depends on the maximum size of a constraint closure, say k, and
the maximum number of labelings permitted by a constraint, say m. The main repeat loop may be
executed at most mIC I times, since at least one element is removed from a constraint on each iteration.
The complexity of checking for substitutability for each constraint element is O(mk), since each possible
extension must be checked against each other element of c. Hence the overall complexity is O(JCI2mk+1 2).

However, unlike operations which simply enforce consistency, the repeated application of substitution
operations until no more substitution is possible does not always give an invariant result. More surpris-
ingly, the number of solutions to the resulting problem is not always invariant either, as the following
example shows:

23

Example 4.3 Reconsider the constraint satisfaction problem P defined in Example 2.3. It was shown

in Example 3.2 that the set of labelings

4 = {aa,a),(a,a,b),(c,c,c))

is substitutable in P for c2 (note that this is a different substitutable set to the one considered in
Example 4.1).

If we replace c2 with 2 then we obtain a new constraint satisfaction problem P', and now we find
that d4 = {(a, a), (c, c)) is substitutable for c4 in *P'.

If we replace c4 with d4 then we obtain a new constraint satisfaction problem P", and we find that
c3 = {(a, a), (c, c)) is substitutable for c3 in P" .

If we replace cs with 4s then we obtain a new constraint satisfaction problem 1"', and we find that
= {(a, a, a), (c, c, c)) is substitutable for 4 in P"'.
Finally, if we replace c2 with c1 then we obtain a new constraint satisfaction problem with two

solutions, (a, a, a, a, a) and (a, c, c, c, c). This constraint satisfaction problem cannot be further reduced
using substitution operations. 0

The implication of this lack of invariance is that some sequences of substitution operations may be
much more effective than others in reducing the search space. It is an open question whether an efficient
algorithm exists for choosing the most effective sequence of substitution operations, although we strongly
suspect that this problem is as difficult as solving the original problem.

5 Conclusion

We have presented a substitution operation which is a true generalization of Freuder's notion of label
substitution, and also generalizes all forms of consistency enforcement.

Although this substitution operation is most useful when searching for a single solution, it may also
be useful in the case where we want to find all solutions. In such cases, it can reduce search time by
showing more quickly that a branch of the search tree leads to no solutions. Substitution operations
may be worth applying to any constraint satisfaction problem that has a high probability of having no
solutions.

References
[1] Codd, E.F., -A Relational Model of Data for Large Shared Databanks", Communications of the

ACM 13 (1970), pp. 377-387.

[2] Cooper, M.C., "An optimal k-consistency algorithm", Artificial Intelligence 41 (1990), pp. 89-95.

[3] Cooper, M.C., Visual Occlusion and the Interpretation of Ambiguous Pictures, Ellis Horwood,
1992.

[4] Cooper, M.C., Cohen, D.A., and Jeavons, P.G., "Characterizing Tractable Constraints", Artificial
Intelligence 66 (1994), pp. 347-361.

[5] Freuder, E.C., "Synthesising Constraint Expressions", Communications of the ACM 21 (1978),
pp. 958-966.

[6] Freuder, E.C., "Eliminating interchangeable values in constraint satisfaction problems", Proceed-
ings of AAAI-91, pp. 227-233.

[7] Mackworth, A.K., "Consistency in Networks of Relations", Artificial Intelligence 8 (1977), pp. 99-
118.

[8] Mackworth, A.K., and Freuder, E.C., "The Complexity of Some Polynomial Network Consistency
Algorithms for Constraint Satisfaction Problems", Artificial Intelligence 25 (1984), pp. 65-47.

24

(9] Mohr, R., and Henderson, T.C., "Arc and Path Consistency Revisited", Artificial Intelligence 28
(1986), pp. 225-233.

[10] Montanai, U., "Networks of Constraints: Fundamental Properties and Applications to Picture
Processing", Information Sciences 7 (1974), pp. 95-132.

[11] Waits, D.L. "Understanding Line Drawings of Scenes with Shadows", in The Psychology of Com-
pster Vision, Winston, P.R., (Ed.), McGraw-Hill, New York, (1975), pp. 19-91.

25

Contradicting Conventional Wisdom in
Constraint Satisfaction

Daniel Sabini and Eugene C. Freuder 2

Abstract. Constraint satisfaction problems have wide application in artificial intelligence. They
involve finding values for problem variables where the values must be consistent in that they
satisfy restrictions on which combinations of values are allowed. Two standard techniques used
in solving such problems are backtrack search and consistency inference. Conventional wisdom in
the constraint satisfaction community suggests: 1) using consistency inference as preprocessing
before search to prune values from consideration reduces subsequent search effort and 2) using
consistency inference during search to prune values from consideration is best done at the lim-
ited level embodied in the forward checking algorithm. We present evidence contradicting both
pieces of conventional wisdom, and suggesting renewed consideration of an approach which fully
maintains arc consistency during backtrack search.

1 INTRODUCTION
Constraint satisfaction problems (CSPs) involve finding values for problem variables subject to
constraints that are restrictions on which combinations of values are allowed (15]. They have
many applications in artificial intelligence. (We restrict our attention here to binary CSPs, where
the constraints involve two variables.)

The basic solution method is backtrack search. Often consistency inference (constraint propa-
gation) techniques are used to prune values before or during search. The basic pruning technique
involves establishing or restoring some form of arc consistency. If a value v for a variable V is
not consistent with any value for some other variable U, then v is arc inconsistent and can be
removed. Ful arc consistency is achieved when all arc inconsistent values are removed.

One of the most successful forms of backtrack search has proven to be forward checking [8].
Forward checking combines backtrack search with a limited form of arc consistency maintenance.
Some values are removed that become inconsistent when the problem is modified by the choices
made during the search process.

This paper provides strong experimental evidence contradicting two well-established pieces of
conventional wisdom in the CSP community:

* Conventional CSP wisdom says that using consistency inference in a preprocessing step, to
prune values before search, will reduce the subsequent search effort. There has been some
question as to the degree of consistency preprocessing that is desirable - additional preprocessing
effort may outweigh subsequent search savings [2]. However, it seems an obvious article of faith
that removing values from consideration during a preprocessing step will lead to savings during'
the subsequent search step - or at the very least do no harm. We demonstrate that there are
circumstances in which pruning values by consistency preprocessing can in fact greatly increase
subsequent search effort.

" Conventional CSP wisdom says that using consistency inference during search, to prune values
that become inconsistent after making search choices, is best limited to the minimal inference
embodied in the forward checking algorithm. The feeling is that additional search savings
produced by pruning more values will be offset by the additional inference cost. We show that
maintaining Mul arc consistency during search is often in fact very cost effective.

SDepartmet of Computer Science, University of New Hampshire, Durham, NH, 03824-2604, USA
2 Department of Computer Science, University of New Hampshire, Durham, NH, 03824-2604, USA

26

To contradict the first piece of conventional wisdom we tested the effects of arc consistency pre-
processing on one of the most popular and successful CSP algorithms: forward checking combined
with dynamic domain size variable ordering. (Dynamic domain size variable ordering prefers to
consider variables that have fewer values left to choose from. It is a popular ordering heuristic. In
a probabilistic analysis, it was shown optimal under certain assumptions by Haralick and Elliott
[8]. It has proven particularly useful in conjunction with forward checking search, and we believe
it to be effective on our test problems.)

Another counterintuitive demonstration that pruning values can increase search effort, was
obtained recently by Proeser. He showed that pruning values can degrade performance for algo-
rithms that employ "intelligent backtracking" (though the actual exhibited effects were small)
[14]. However, even Proeser concluded that "We should now assume that increased consistency,
or the removal of redundancies, can only guarantee a reduction in search effort if that search is
unintelligent (such as a chronological backtracker)."

Forward checking is a chronological backtracker. However, we found that removing values by
arc consistency preprocessing made some problems an order of magnitude more difficult to solve
by our ordered forward checking search. (In fairness to Prosser though one might argue that
"unintelligent" should rule out dynamic search ordering.) Note we are not merely saying that
the effort to do the preprocessing plus the effort to do the subsequent search was an order of
magnitude greater than the effort to do the search without preprocessing. We are saying that
even if you ignore preprocessing effort, searching the preprocessed problems, which had fewer
values, was still an order of magnitude harder than searching the original problems.

The explanation for this counterintuitive phenomenon is that arc consistency preprocessing is
counterproductive when ii interferes with the functioning of the search ordering heuristic. We
interpret our results as implying that eliminating values can move a problem far enough away
from the assumptions needed to demonstrate the "optimality" of dynamic domain size search
ordering that the advantage of having fewer values is more than offset by the deterioration of the
ordering heuristic's performance.

We believe this experience is a useful object lesson in the need to exercise some care in combining
CSP methods: two rights may make a wrong. This lesson is particularly relevant now as new
constraint programming environments are making it easier to combine techniques for customized
algorithms.

To contradict the second piece of conventional wisdom we compared ordered forward checking
with an algorithm that established and maintained full arc consistency. These two algorithms
represent extreme poimts on a spectrum of algorithms that maintain various amounts of arc
consistency during search.

The conventional wisdom expressed to us by some members of the constraint programming
community already runs counter to the second piece of CSP conventional wisdom. Our experi-
ments suggest that the constraint programming community has been conventionally wiser in this
regard than the CSP community.

The combination of consistency pruning with backtrack search has a long history [5], [7],
[10]. Various degrees of consistency processing interleaved with backtrack search were studied
experimentally in [8], [11], [13]. A variety of algorithms were considered that alternate choosing
a value for a variable with "looking ahead", via a constraint propagation process, to infer the
consequences of that choice for pruning the values available for the as yet uninstantiated variables.
The algorithms differed in how much constraint propagation they performed, and thus in the
degree of arc consistency they achieved.

Forward checking is an algorithm which does a minimal amount of constraint propagation, in
the sense that it performs the minimal amount of lookahead needed to avoid having to "look
back", i.e. to avoid the need to check new choices against previous ones. In experimental studies
forward checking repeatedly proved superior to algorithms interleaving more constraint propaga-
tion.

Of course, the limitations of these experiments were recognized. However, the repeated success
of forward checking began to bias the conventional wisdom in the CSP community in the direction
of "less is more". For example, in a recent survey of CSP algorithms [9], the section on "How Much
Constraint Propagation Is Useful?" concludes: "Experiments by other researchers [in addition to
Nadel] with a variety of problems also indicate that it is better to apply constraint propagation

27

only in a limited form".
Earlier studies were limited, however, in several key ways:

" Many of the experiments were limited to special case problems, especially the Queens problem,
a. problem in which constraints exist between all possible pairs of values.

" Random problem experiments were conducted before the recent understanding that most ran-
dom problems appear in fact to be easy problems.

" Small sample sets decreased the likelihood of encountering difficult problems.
" The AC-4 approach to arc consistency [12], which is particularly well suited to consistency

maintenance, was not employed.
" The implementation of consistency maintenance may have been less than optimal. In order

to maintain arc consistency one does not need to restart an arc consistency algorithm from
scratch each time backtrack search chooses a value; one only needs to propagate the effects of
the removal of the unchosen values.

In our laboratory several studies began to suggest that "more could be more". Gevecker studied
full arc consistency maintenance [6] and Freuder and Wallace studied a range of hybrid algorithms
based on a notion of "selective" or "bounded" constraint propagation [4]. However, these results
were still limited in their understanding of the random problem space. Also, they did not employ
the powerful search ordering scheme we alluded to above.

We conduct here experiments on random problems, focusing on the "hard problem ridge"
identified in recent studies of "really hard" random problems [1], [17]. Problems that contradict
the conventional CSP wisdom appear to be pervasive, and orders of magnitude effects are found.

There are, of course, significant caveats to these experimental results. In particular, problems
of different structure or size may behave differently. We assume individual constraint checks can
be efficiently computed. (Each time we ask if a value v for a variable X and a value u for a
variable Y satisfy the constraint between X and Y we are performing a constraint check.) If this
were not the case, maintaining full arc consistency could conceivably require some very expensive
constraint check computation that backtracking or forward checking avoided. While we test two
extremes of arc consistency processing, optimality may lie between these extremes.

Nevertheless, the performance exhibited here for a variety of difficult random problems sug-
gests that establishing full arc consistency and maintaining it during search may often be more
efficient than limiting inconsistency removal to the partial arc consistency maintenance provided
by forward checking. Significantly, the full arc consistency approach was particularly effective for
"really hard" problems. As a result the full arc consistency algorithm was rather stable in com-
parison to forward checking: it was a bit more costly for some very easy problems, but remained
relatively efficient on problems where the difficulty encountered by forward checking shot way
up.

Section 2 describes the algorithms we compared. Section 3 describes our experimental objectives
and how we generated test problems. Sections 4 and 5 present the experimental results and our
summary observations. Section 6 is a brief conclusion.

2 ALGORITHMS

Forward checking, which we implement here in an algorithm FC, combines backtrack search with
a very limited form of arc consistency maintenance. The main idea is to project forward the
consequences of variable assignments during search. When a variable X is assigned a value, v,
from domain(X), the set of available values for X, v is checked against the domains of each
variable Y that is as yet unassigned and for which there is a constraint between X and Y. All
values inconsistent with v are removed. This way a limited form of arc consistency is maintained.
(If, during this process, the domain of some variable becomes empty, then no complete extension
of the current assignment set to a solution is possible, and the current assignment for X must be
discarded.) For details on forward checking consult [8].

We describe next an algorithm that combines backtrack search with full arc consistency main-
tenance. We call the algorithm MAC for Maintaining Arc Consistency. The algorithm is a com-
bination of old ideas, which we give a new name because the combination is unique and the name
is evocative. However, it is essentially a modern version of Gaschnig's CS2 [5].

28

We describe MAC in some detail, in order to make this paper more self-contained, and to clarify
precisely how we combined search with constraint propagation, for anyone wishing to replicate
or extend our experiments.

MAC uses the same basic framework as forward checking, alternating search and consistency
inference steps, but differs conceptually in two aspects:

" The constraint network is made arc consistent initially.
" When during the search a new variable X is instantiated to a value v, all the other values in the

domain are eliminated and the effects of removing them are propagated through the constraint
network as necessary to restore full arc consistency.

As underlined in [12), arc consistency is based on the notion of support. Let v be a value in
domain of X. Value v has support as long as for each of the variables Y for which there is a
constraint between X and Y, there is at least one value u such that the pair (v, u) satisfies that
constraint. Once there exists a variable for which no remaining value is consistent with v, then v
must be eliminated from the domain of X.

The algorithm proposed in [12], known as AC-4, keeps track of this support explicitly, by
maintaining a counter for each arc-value pair, Counter[(Xi, Xi), a], representing the number of
values in the domain of Xj supporting (Xi, a), the value a for Xi. Whenever the counter for some
assignment becomes 0, that domain value has to be eliminated.

To make this work efficiently, AC-4 keeps track of which values support which other values. For
each value b in the domain of Xj a set Sx=b = ((Xi, a)I (Xj, b)supports(Xi, a)} is constructed.
Then, if value b is eliminated from domain of Xj, Counterf(Xi, X,),a] must be decremented
for each (i, a) in Sxj&. Two additional data structures are used by AC-4 besides those already
mentioned. The table Marked[Xi, b] = 1 if b has been eliminated from the domain of Xi. The list
Agenda maintains all pairs (Xi, b), where value b has been deleted from the domain of X but
the effects of the deletion have not yet been propagated. The process of propagating the effects
of deletions is guided by the list, which specifies which deletion to process next.

Basically, MAC uses the same data structures as AC-4 and consists of three main components:

" initialization: construct and initialize the support counters
* propagation: prune the inconsistent domain elements and propagate arc-consistency through

the constraint graph
" search:

The algorithm is presented in Figure 1.
We also combined arc consistency and search in a simpler manner than that embodied by

FC and MAC. A single preprocessing pass to achieve some form of consistency has often been
used before some form of subsequent search. Waltz's well-known scene labeling experiments [16]
are an early example of the success of this basic approach. We will refer to the combination
of arc consistency preprocessing followed by forward checking search as AC-FC. (The AC algo-
rithm employed in AC-FC is also AC-4-based, though not identical in implementation to the arc
consistency processing employed by MAC.)

The order in which variables are considered for instantiation during search has been found to
be extremely important. The simple heuristic that chooses a variable with minimal domain size
to process next can be very effective when used with forward checking. We employ this heuristic
here for FC, MAC and AC-FC. As we always use this heuristic (except when we explicitly test
the effect of eliminating it) we will not bother to repeatedly refer to "ordered FC" etc., but the
ordering should be kept in mind.

3 EXPERIMENTAL DESIGN

Our objective was to address the following questions:

" Is the conventional wisdom sometimes wrong?
" Can it be "very wrong"? By orders of magnitude?
* How are the results that run counter to conventional wisdom distributed in random problem

space? Where do they occur, how often and at what magnitude?

29

procedure II IZZ(variabl) is: procedure SEARCH(variables, solution) is:
fore a&vare Xe aria do if variablesq- , then

for a E domain(Xi) do report solution
MarkedXi, &] - 0 return SUCCESS
SVpoted[X,, a .- Xi - select one variable E variables

AS=& - # if Marked[X,', a] = 1, V a E domain(X,) then
for ea& constraint (Xj,Xi) E the constraint graph do return FAILURE

for a E domain(X,) do a - next unmarked value E domain(X,)
total -- 0 save values of Marked and Counter data structures
for b iE domain(Xi) do for b E domin(X,) \{) and Marked[X,, b] = 0

if(&, b) satisfies constraint (Xi,Xi) then Agenda - Agenda U (x, b)
total .- total + I Marked[Xi, b] - I
Supp ctedfXj, b - Supported[Xj, b] U (Xi, a) if PROPAGATE(Agenda) = SUCCESS and

if tow = 0 the SEARCH(variables \{X,}., solution U (Xi, a)) =l-rhod Xi, -] .- I SUCCESS then

Agea& .- Agenda U (X. a) return SUCCESS
if MwhdXi, bi =, V b 4E domn(Xi) then restore values of Marked and Counter data structures

reen A FAILURE Agenda - (Xi, a)
els Marked[Xi, al - I

Counter(XiXi), a] . total return PROPAGATE(Agenda) and
rtmm SUCCESS SEARCH(variables, solution)

procedure PROPAGATE(Agenda) is: algorithn MAC(variables) is:
while Agenda # 0 do if INITIALIZE(variables) = FAILURE then

esect and rimnove (Xi, b) from Agenda return FAILURE
for (Xi, a) E Supported[X, b] do return SEARCH(variables, *)

Counterj(X',X,), al .- (6 ter(XXi), a] - 1
t if Co--nta(X,,Xi), a] - 0 and Mared[X,, a = 0

Agenda - AgendaU (X, &)
Mr4edXi, a] - I
if Ma &[Xj, c€= 1, V c e domain(Xi) thenretur FAILURE

return SUCCESS

Figure 1. MAC Algorithm

" How do these results relate to problem difficulty?
" Are these results significant for "really hard" problems?

We performed tests with FC, MAC and AC-FC to address these questions. We addressed the
problem of finding a single solution to a CSP (or determining that no solution exists).

The test problems are random binary CSPs: each constraint is a relation involving two vari-
ables. They are generated according to a (constant) probability of inclusion model, which we will
describe briefly.

A problem is generated given several parameters, whose meaning we will explain:

* the number of variables
* the number of values for a variable (initially the same number for each variable)
" the expected constraint density
" the expected constraint tightness

One way to represent binary constraints is with constraint graphs, vertices corresponding to
variables and edges to constraints. Since we want to deal only with connected constraint graphs
(connected components of unconnected graphs can be solved independently), the number of edges
for a graph with N vertices is at least N-i (for a tree) and at most N N-) (for a complete graph).2
As a consequence, we define constraint density as the fraction of the possible constraints, beyond
the milmaim N-i, that the problem has. For example, a CSP with a tree structured constraint
graph has a constraint density of 0 and a CSP with a complete constraint graph, containing all
posible edges, has a constraint density of 1. In the general case, the number of edges for a CSP
with a constraint graph with N vertices and a constraint density of D (a number between 0 and
1) is N - 1 + D(A-) - (N - 1)).

Constraint tightness is defined as the fraction of all possible pairs of values from the domains
of two variables, that are not allowed by the constraint. For example, if the constraint between

30

two variables with domains (a, b} and {c, d} does not allow the pairs (a, c) ard (a, d) and (b,
c), then the constraint tightness is .75.

Basically, in our problems a specific constraint is present, or a specific pair of values is permitted
by a constraint, with a probability based on the expected density and tightness specified for the
problem. This problem generation method permits some variation in actual values for the density
and tightness compared with the expected ones. Averaged over many constraints we expect the
actual values to be close to the expected values, but it should be noted, in particular, that the
tightness of an individual constraint within a problem can vary.

We do not allow problems to contain any null constraints (that do not allow any pair of values,
and make the problem trivially unsolvable) or any trivial "constraints" (that allow all pairs of
values, and are not usually represented by an edge in the constraint graph). We insure that
constraint graphs axe connected by initially randomly generating a tree of constraints.

The main experiments reported below used problems with 50 variables, each having a domain
of 8 values. There is nothing magic about these numbers; we simply wanted problems of a size
large enough to permit us to exhibit significant savings and small enough so that they would not
require great amounts of processing time. We experimented some with different size problems,
but a more systematic study is left for future work.

Based on recent research on really hard problems we expected to find that many random
problems are easy, but that if we hold one of either tightness or density fixed, and vary the other
sufficiently, that we will encounter a complexity "peak". Together these peaks form a complexity
"ridge" in "tightness/density" space. We were particularly interested in performance on this
ridge.

When we compared FC with AC-FC we used constraint checks as our measure of effort. Since
constraint checks are not an appropriate measure for MAC (the only constraint checks are done
during the initializing phase) we used CPU time to measure its performance and to compare it
with FC and AC-FC.

4 ON PRUNING CONSIDERED HARMFUL

The data reported here are for problem parameter values chosen to exhibit the phenomenon
dramatically. Our intuition, which requires further exploration, is that the phenomenon is more
likely to occur at low densities and near, but not at, peak difficulty areas.

We used problems with 50 variables and an initial domain size of 8 values for each variable.
For each of four density values .06, .07, .08 and .09 five random problems were generated with a
tightness of .50. We measured constraint check effort for AC preprocessing, for FC search after
AC preprocessing and for FC search without AC preprocessing. We also measured CPU time for
AC-FC, FC and MAC. Table 1 present the results.

Our main observations:

" AC-FC performed worse than FC on average for some problem sets and an order of magnitude
worse on some problems. Pruning the search tree by eliminating some domain values can
sometimes greatly increase subsequent search effort for the popular combination of forward
checking and dynamic variable ordering based on minimal domain size.

" FC was sometimes superior to AC-FC because the preprocessing effort for the AC phase was
larger than any possible savings in the FC phase, indeed larger than the entire FC effort with
or without AC preprocessing.

" More significantly the FC search effort itself, after preprocessing, was sometimes much greater
than the FC search effort without preprocessing.

* MAC, which employs the more extensive full arc consistency maintenance, was superior to
both FC and AC-FC except on some very simple problems. (We will have further data on the
comparison of MAC and FC in the next section.) Since MAC incorporates an AC preprocessing,
we have a situation where adding some additional consistency processing, in the form of AC
preprocessing alone, can decrease performance, but adding even more consistency processing,
in the form of AC preprocessing plus full AC maintenance, can help.

In order to verify that it is indeed the ordering that is at issue, we took some other easy
problems where AC-FC was inferior to FC, and ran AC-FC and FC on them without any variable

31

Table 1. Performance of AC-FC, FC, MAC

density - f density.06 .o I .08 I 09 .0o6 o7 08 0
15,370 16,321 18,465 16,640 f AC-FC 10 32 6 65

#1 + S 40,506 160,695 15,006 331,319 #1 1 F 202 1264 1.04 1 2
tCl T 55,876 17,047 33,471 347,959 R 1 1 2 1 1 1 -

F 1,078,271 1,421,48 79,245 A 2 30 6

AC P 13,966 14,840 1 19,080 19,220 #2 FC 1 01 51 110
#2 + S 1 847 119,886 J 150,65168,7 18,2 1 2

C T 14,8151 134,726 J 169,736 1 37,507 I AC-PC 5 336 33 6
PC 1 1,083 282,143 .,551 8,921 #3 1FC 2 289 312

A P 15,526 15,664 16,9711 21,819 1 MAC I 1 4 3 1
#3 + 14,470 1,815,053 173,303 1 14,471 1 AC-FC 273 216 5 3

_C 29,99611,M3,717t190,274 136,370 I#41 FC 1241 111
-- 10,006 i 1,574,023 14,659 8,396 5 1M T - I IlAkC P 15,816] 15,712 19,722 I18,193 AC.-FC 1"4 12 119 14#4 + S 1,461,280 1,118,572 13,519 1 5,477 I #5 FC I 0 9 18

S C"T '1,47T,096 1,134,284 33,241 23,670 MAC 1 I

FC- 11,302,927 474,484 4,993 444,553 A 1 - 2 -

AC JP 14,752 J 14,104 18,146 17,857)
#5 + 3~ 6,412 765 87,451 67,056]

FC [T 21,164 14,869 105,597 84,913 7
-- " 2,349 910 50,137 100,312]

P-preprocmlng(AC) S-search(FC) T-total(AC-FC)
a) Performance of AC-FC, FC, expressed in terms of b) Performance of AC-FC, FC, MAC, expressed

constraint checks. in terms of total CPU time.

ordering heuristic (in fact lexical ordering). Without the ordering heuristic the phenomenon
of preprocessing making matters worse did indeed disappear. (Without the ordering, however,
performance was much worse than either FC or AC-FC with the ordering.)

5 MORE IS MORE

Again we used problems with 50 variables, each having a domain of 8 values. For this experiment,
however, we used more combinations of density and tightness values to provide broad coverage of
the "density/tightness space". For each combination of density and tightness values, we generated
ten random problems, for a total of 1,200 problems.

Figures 2a - 2e present the performance of FC and MAC, as average values over the ten problems
generated for each pair (density, tightness). We used five values for the tightness parameter: .150,
.325, .500, .675 and .850. For tightnesses .150, .325, .850, 20 equally distanced density values were
taken throughout the entire range [0.05, 1]. For tightness .500, 20 equally distanced density values
were taken throughout the entire range [0.015, 0.965]. For tightness .675, 40 equally distanced
density values were taken throughout the entire range [0, 0.975). The performance is expressed
as seconds of CPU time (on a SUN 4) necessary either to find a solution or to discover that there
is none.

Just viewing averages can be misleading. For example, one problem in a set of ten can be so
much harder than the others that it dominates the result. For each tightness value (except .850
for which all the problems were very easy to solve), Table 2 presents data on the ten individual
problems in the problem set with the highest average difficulty.

Our main observations:

" Overall, establishing and maintaining full arc consistency during search was more efficient than
limiting inconsistency removal to the partial arc consistency maintenance embodied in forward
checking. MAC performed better than FC throughout the density/tightness space, except on
some very easy problems.

" MAC was often at least an order of magnitude better than FC on the complexity peaks.
" The advantage of MAC along the complexity ridge exhibited in Table 2 increased as we moved

toward the less dense, more tigl.h1y constrained end.

32

CPU de [we] CPU time [sec]
140M0 900

12000 C 800 FC
700

10000 MAC MAC

600

6000 400

300
4000

200
2000 100

0 0
O0 0 2 OA 0.6 0.8 0 0.15 0.3 0.45 0.6 0.75 0.9

Constatint density Consta inm density

a) b)
CPU d=n (am] CPU time (MCI
- _900

1to80 800 F
16070MA

140 MA 600AC

120
500

100
400

so
60 300

40 200)

20 100,

0.015 0.165 0.315 0.465 0.615 0.765 0.915 0 0.15 0.3 0.45 0.6 0.75 0.9

Constraint density Coemtaint density

c) d)
CPU time [sec]

FC
0.8

--.-MAC

0.6

O4

0.2

0 0.15 093 0.45 0.6 0.75 0.9
Constraint density

e)

7igure 2. Comparison Fr-MAC on random problems with tightness .150 (a), .325 (b), .500 (c), .675 (d) and .850 (e),
using CPU time to measure the performance

33

Table 2. Performance of FC, MAC, expressed in terms of total CPU time

tightness 150 .325 .500 .675
density .500 .150 .065 .018

1 FC 19,545 115.5 30.0 45.2
MAC 8,018 5.3 1.4 0.1

SFC 1'9,135 ' 5.3 5.9 4.6
MAC 8,217 10 3.3 0

1#3 LFC 2,881 17,346.21 95.7 1.4
1. MAC 1,365I 611.5 1.3 0.1

M#4 FC 1 15,2981 2.0 1 386.0 0.2
IMAC 1 6,213 1 2.8 1 0.51 0.1J

[*5 PC 16,281 1 750.2 6.5 128.6
MAC 1 6,854 1 42.1 1 1.01 0.1

#6 FC f 1,795 1 59.0 1 11.6 1 8356.0
MAC 1 773 1 1.8 1 1.2 1 0.1 1

* C 13496 1257.1 11,425.3 1 0.6
MAC 1 5,8711 32.4 0.6 1 0.1

PC 2,541 1 40.6 1 0.3 1 0.8]
MAC 1 10,264 1 1.9 0 0.3 1 0.1 1

#9 1F _ 114,4901 41.01 110.0 6.0
MAC 1 5,849 1 6.7 1 7.8 1 0.1

#i1 1 5,91 3.4 1 29.4 0 .8]
I MAC 1 2,902 0.7 [5.5 1 0.1 1

6 CONCLUSION

We have demonstrated that preprocessing to prune values can counterintuitively increase search
effort under the right circumstances. We have demonstrated that more arc consistency processing
than embodied in forward checking can reduce search effort unexpectedly often.

"Two rights can make a wrong" and "a little knowledge can be a dangerous thing". Arc consis-
tency preprocessing before ordered forward checking search can degrade performance significantly;
however, when, in addition, arc consistency is fully maintained during search, performance can
be enhanced significantly.

The performance, in our experiments, of an algorithm that operates by maintaining full arc
consistency throughout backtrack search suggests that it be reconsidered by the CSP commu-
nity as an alternative to algorithms that only obtain partial or temporary arc consistercy. This
algorithm seems especially worth considering for situations where difficult, as opposed to merely
large, problems may be encountered with some frequency. Indeed, for these problems we specu-
late that it may prove profitable to reexamine next the utility of maintaining even higher levels
of consistency [3].

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. IRI-9207633. Richaru Wallace and Gerard Verfaillie assisted us in obtaining appropriate test
problems.

REFERENCES

(1] P. Cheeseman, B. Kanefsky and W. Taylor, 'Where the really hard problems are', Proceedings of the Twelfth

International Joint Conference on Artificial Intelligence, 331-337, (1991).

(2] R. Dechter and I. Meiri, 'Experimental evaluation of preprocessing techniques in constraint satisfaction prob-
lem', Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1, 271-277, (1989).

[3] E. Freuder, 'Synthesizing constraint expressions', Communications of the A CM, 21, 958-966, (1978).

[4] E. Freuder and R. Wallace, 'Selective relaxation for constraint satisfaction problems', Proceedings of the Third

International IEEE Computer Society Conference on Tools for Artificial Intelligence, 332-339, (1991).

[5] J. Gaschnig, 'A constraint satisfaction method for inference making', Proceedings of the Twelfth Annual

Allerton Conference on Circuit and System Theory, 866-874, (1974).

34

[6] K. Gevecker, Relating the utility of relaxation in costraint satisfaction algorithms to the structure of the
problem, Master's thesis, Dept. of Comp. Sci., Univ. of New Hampshire, 1991.

[71 S. Golumb and L. Baumert, 'Backtrack programming', Journal of the ACM, 12, 516-524,.(1965).
[8] R. Haralick and G. Elliott, 'Increasing tree search efficiency for constraint satisfaction problems', Artificial

Intelligence, 14, 263-313, (1980).
[9] V. Kumar, 'Algorithms for constraint-satisfaction problems: a survey', Al Magazine, 13, 1, 32-44, (1992).

[10] A. Mackworth, 'On reading sketch maps', Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, 598-606, (1977)

[11] J. McGregor, 'Relational consistency algorithms and their applications in finding subgraph and graph isomor-
phism', Information Science, 19, 229-250, (1979).

[12] R. Mohr and T. Henderson, 'Arc and path consistency revisited', Artificial Intelligence, 25, 65-74, (1986).
[13] B. Nadel, 'Constraint satisfaction algorithms', Computational Intelligence, 5, 188-224, '989).
[14] P. Proser, 'Domain filtering can degrade intelligent backtracking search', Proceedings of the Thirteenth In-

ternational Joint Conference on Artificial Intelligence, 262-267, (1993).
[15] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London, 1993.
[16] D. Waltz, Understanding line drawings of scenes with shadows, 19-91, The Psychology of Computer Vision,

P. Winston, editor, McGraw-Hill, Cambridge, MA, 1975.
(17] C. Williams and T. Hogg, 'Using deep structure to locate hard problems', Proceedings of the Tenth National

Ccnference on Artificial Intelligence, 472-477, (1992).

35

No-good backmarking with min-conflict repair
in constraint satisfaction and optimization

Yuejun Jiang', Thomas Richards ' and Barry Richards
IC-Parc

Imperial College
London SW7 2BZ, England
{yj, etr, ebr}@uk.ac.ic.doc

Abstract

There are generally three approaches to constraint satisfaction and optimization: domain-
filtering, tree-search labelling and solution repair. The main attractions of repair-based algo-
rithms over domain-filtering and/or tree-search algorithms seem to be their scalability, reactivity
and applicability to optimization problems. The main detraction of the repair-based algorithms
appear to be their failure to guarantee optimality. In this paper, a repair-based algorithm, that
guarantees to find an optimal solution if one exists, is presented. The search space of the al-
gorithm is controlled by no-good backmarking, a learning process that records generic patterns
of no-good partial labels in order to stop the repeated traversing of those failed paths of a
search tree. Unlike some similar repair-based methods which usually work on complete (but
possibly inconsistent) labels, the proposed algorithm works on partial (possibly inconsistent)
labels by repairing those variables that contribute to the violation of constraints in the spirit
of dependency-directed bac5Iumping. In addition, the algorithm will accept a repair if it can
minimise the conflicts of a label even if it does not eliminate them. To control the space of
no-good patterns, we propose to generate the most generic no-good pattern as early as possible.
To support dynamic constraint satisfaction, we introduce several strategies to maintain no-good
patterns on the tradeoffs between space, efficiency and overheads. In particular, through the
comparisons with other works, we suggest possible strategies to improve the proposed method.

Keywords : Constraint Satisfaction and Optimization, Backmarking, Learning, Backjumping,
Repair-based Methods, Simulated Annealing, Tabu Search, No-good recording and No-good Justi-
fication.

Acknowledgements : The authors would like to thank helpful dicussions with Nadar Azarmi
and Hani El-Sakkout and all the people in the planning group in Imperial College. Special thanks
are also to Professor Bob Kowalski and Francsca Toni. The referees' comments have also improved
siginificantly the works reported in this paper.

1 Introduction

The importance of constraint satisfaction and optimization is well-recognized [Fox & Sadeh 93].
Scheduling is perhaps the most characteristic real-world applications of this field of research [Atabakhsh
91]. A constraint problem can be specified as consisting of an (possibly empty) objective function
and a set of constraints on n variables (X1 , .., X,,) each of which can be assigned a value from its
associated domain (D1 , .., D,). A complete (cf. partial) label for a constraint problem is simply an
assignment of a value for every (cf. some) variable from its associated domain. A consistent label
is a label that satisfies all the constraints. Labelling is the process of finding a consistent label for

'SERC Advanced Fellow2Suppotted by a British Telecom Scholarship
3That is a partial assignment to variables

36

a constraint problem. A solution label is a complete and consistent label. An optimal label is a
solution label that optimizes the objective function. Constraint satisfaction problems aim to find a
solution label; while constraint optimization problems try to look for an optimal label. The objective
constraint of a constraint problem is the constraint associated with the objective function. It is a
soft constraint in the sense that the value of the function is not necessarily fixed and is intended to
be optimized.

Many different techniques have been developed over the years [Nadel 89]. They have all proved
empiracally and theoretically successful for many applications although it is a commonly acknowl-
edged fact that no single technique is universally good for all the constraint problems. Despite the
diversity of these techniques and their hybrid nature, it may be possible to classify them among
three classes: domain-filtering, tree-search and repair-based techniques.

Domain-filtering techniques seek to filter out elements of the domains of variables that do not
participate in any solutions of a constraint problem. They are generally incomplete in the sense
that not all such elements are filtered out. For efficiency reasons, local consistency domain-filterings
[Mackworth 77] such as arc-consistency and path-consistency are usually adopted. Domain-filtering
techniques however do not produce a solution for a constraint problem. Even if it is complete, not
every combination of the filtered domains of the variables is necessarily a solution. Labelling is
thus usually performed at a separate stage that involves some tree-search techniques [Nadel 89].

.Tree-search techniques follow the paths of a search tree in some regular fashion by constructing
and extending partially consistent labels [Freuder & Wallace 92]. They usually work in a backtrack-
ing fashion together with backmarking and/or backjumping. Backmarking marks the combination
of values that have been proven to be satisfiable or unsatisfibale in order to reduce the redundant.
(thrashing) and normally expensive constraint checks. Backjumping performs dependency-directed
backtracking to the highest point of a search tree that contributes to the current failure in order to
prune the search paths.

Repair-based techniques usually work on complete but possibly inconsistent labels by repair-
ing them gradually towards a correct or optimal solution. It is naturally extensible to reactive
scheduling [Minton et al 92] since it always repairs on a complete label or schedule. It is also
easily extensible to optimization because the repair process is usually based on some estimated
cost. Notable representatives of repair-based techniques are hill-climbing, simulated annealling and
genetic algorithms. A key issue here is to avoid the trapping of a local minimum in a repair process.
Hill-climing generally involves repairing variables in conflict in such a fahsion as to minimize the
conflicts or to reduce the cost [Minton et al 92]. Simulated annealling [Kirkpatrick et al 83] on
the other hand provides a temperature control to enable the repair method to jump out of a local
minimum by allowing the possibility of a locally repaired label with a higher cost. To avoid looping
in the repair process, tabu search [Hertz & de Werra 87] keeps track of a buffer of forbidden moves
between complete labels. To be on the safe side, genetic algorithms [Schraudolph 91] maintain a
pool of potentially "healthy" and complete labels which can be jointly (via a cross-over operation)
or individually (via a mutation operation) repaired.

Unlike tree-search techniques which usually have a complete search space, repair-based tech-
niques do not normally enjoy this luxury. This is of course double-edged. On one hand, the repair
techniques are often easily jumping around the search space and greedily expect to find an approx-
imately optimal solution in a fairly quick time for some large constraint problems 4. On the other
hand, the repair-based techniques regretably do not guarantee to find the optimal solution of a
constraint problem.

The purpose of this paper is to present a repair-based technique (NG-Backmarking) that com-

4This is one emaon why repair-based techniques are generally regarded as scalable.

37

hines the advantages of the three classes of techniques mentioned above. This techi-que performs
an indirect domain filtering by no-good backmarking - a process that records the most generic
partial labels that are known to have violated some constraints of a constraint problem. The tech-
nique can also accommodate a domain-filtering technique both in a preprocessing phase and in the
labelling phase of a repair process.

Like tree-search techniques, the proposed technique also incorporates a backiumping strategy so
that only culprit variables that contribute to the violation of some constraints are being repaired.
However, unlike tree-search techniques, the new technique neither backtracks nor backjumps nor
backmarks along a fixed regular search structure (eg. chronological backtracking or dependency-
directed backtracking). Rather it jumps about the search space and prunes where it can using
no-good backmarking that records learnt information about "bad" partial labels. In particular, the
technique attempts to produce the most generic no-good patterns as early as possible in order to
reduce both the space and time overheads of the no-good patterns. Unlike a simple learning strategy
(e.g. Dechter 90]), the techqnique is also equiped with dynamic support of no-good patterns to
deal with constraint maintenance. We propose several strategies to control such dynamic support.

Unlike the no-good justification method [Maruyma et al 91, 92] that inspired the proposed
technique here, the NG-Backmarking technique can accept a local repair if it minimises the conflicts
(or the cost) of a label even if the resultant label does not eliminate all the conflicts. However
unlike similar repair-based methods (eg. min-confhict Hill-climbing repair) which usually work on
complete (but possibly inconsistent) labels, the NG-Backmarking technique can repair partial and
inconsistent labels. In particular, the no-good backmarking process can be seen as a generalization
of the tabu search in simulated annealing as it can forbid moves between partial (not just complete)
labels. Finally it will be noted that the new technique can be incorporated with some genetic
algorithms as the no-good backmarking process maintains a pool of generic partial labels that
require repairs. These partial labels can be jointly repaired or individually repaired.

This paper is organized as follows. In Section 2, two constraint problems are defined. They will
be used to illustrate the ideas of the proposed method later on. In Section 3, the NG-Backmarking
technique is presented. In Section 4, the control of the backmarking process in the NG-Backmarking
technique is discussed. In Section 5, we propose several strategies to deal with the maintanance
of no-good patterns in dynamic constraint satisfaction. In Section 6, we provide our experimental
results and analysis of the technique. In Section 7, comparisons and contrasts with other well-known
techniques are made and some hybrid modifications that might enhance the NG-Backmarking
technique are suggested.

2 Travelling Salesman Problem and Capital Budget Problem

In this section, we define two constraint problems; the Travelling Salesman Problem (TSP) and
the Capital Budget Problem [Taha 92]. These problems are chosen purely for illustrative purpose.
They are not intended for real-world applications to be repreresentative of the kind that is best
solved by the proposed NG-Backmarking technique.

Problem 1 (n-city TSP) The a-city TSP problem is to construct a least costly tour visiting each city
exactly once in a a-city map.

For reasons of clarity, we index the cities in a n-city TSP by numbers ranging from 0 to n-I and we specify
each tour/label of a n-city TSP by a sequence of n numbers ranging from 0 to n-1. For example, 01123 is
a label (in this case, an inconsistent one) of a 5-city TSP. From a constraint satisfaction point of view, the
variables are then the first city to be travelled to, the second city to be travelled to,.., and the nth city to be
travelled to. If a variable is undefined in a partial label, we will use U to indicate its status, eg. OU 12.

38

Problem 2 (Capital Budget) Five projects are being considered for execution over the next 3 years. The
expected returns for each project and the annual expenditure (in CK) are tabulated below. The problem seeks
to decide which of the five projects should be executed over the 3-year planning period. In this regard, the
problem reduces to a 'yes-no" decision for each project. We formalize the decision problem by treating each
project as a variable whose domain is {0,1} where the value 0 represents "no" and the value I represents
ayes".

Expenditures
Project Year I Year 2 Year 3 Returns

1 5 1 8 20
2 4 7 .10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Available funds 25 25 25

The constraint satisfaction and optimization specification then become

maximize z = 20zi + 40X2 + 20:z + 15x4 + 30xs

subject to the following resource constraints where xi E {0, 1) for i = 1,2, .., 5.

5xI + 4Z2 + 3zS + 724 + 8:5 5 25
M - 7+ 2 + 9X3 + 424 + 6zs < 25

8 Xi + 1022 + 2X3 + X4 + 10:lx 5 25

For simplicity, we represent a label for the capital budget problem as a sequence of integers in the set {0,1),
eg. 01011.

3 No-good backmarking with min-conflict repair

NG-Backmarking is a complete repair-based method that works on partial and possibly inconsistent
labels. Its architecture is based on the no-good justification algorithm which involves assigning and
designing variables of a partial label until a complete and consistent label is generated. However
instead of using a dynamically evolving and rather costly set of justifications (or constraints) as
in the no-good justification approach, the new algorithm works on a fized set of initial constraints
together with a dynamically generated but simple set of no-good patterns. These patterns are
partial labels (generated by no-good backmarking) to indicate that these partial labels violate some
constraints and should be repaired. They are used to prune the search space of a constraint problem.

In the No-good justification approach, the set of no-good justifications and the size of each no-
good justification can grow combinatorially large. This point is supported by our implementation
of the algorithm applied to the TSP problem and the Capital Budget problem. Since checking a
no-good justification can be an expensive operation, the size of the no-good justification set has a
significant impact on the performance of the algorithm. Although it is possible to remove some of
them because they are subsumed by others, subsumption check can be very inefficient and the set
can still be rather large at some intermediate stages of the algorithm.

In contrast, while the set of no-good patterns can still grow combinatorily large, the size of each
no-good pattern stays the same (if not smaller). In addition, the no-good patterns are simple to
check and the subsumption check is also a straightforward operation. For example, given {01UU2,
O1UU4} in the database of no-good patterns , if a new no-good pattern O1UUU is generated, the
subsumption check will remove {01UU2, O1UU4} before inserting O1UUU into the database. It is

39

important to note that no-good patterns are not permutations of all the labels that violate some
constraints. They are generic patterns that correspond to the most general partial labels that so
far violate some constraints. The objective is to reduce both the spatial and temporal overheads
of the no-good patterns in the spirit of the no-good justifications in ATMS [de Kleer 90] where the
minimum partial labels that violate some constraints are created.

Although it is claimed in [Maruyama et al 91] that no-good justifications provide more generic
constraints than no-good patterns in some cases, the extra efforts in checking the satisfiability of
these justifications appear to far outweigh their advantage of generality. For example, when a
partial label L is firstly known to be no good, L will be generated as a no-good pattern. So if the
label L pops up again in later repairs, it will be immediately eliminated by the no-good pattern
for L. On the other hand, the no-good justification approach will generate a no-good justification
J for L when it is firstly detected to be no-good. So if L pops up again in later repairs, the no-
good justification approach still has to re-evaluate J which can be a rather lengthy conjunction of
several previously generated no-good justifications. Even if one such lengthy no-good justification
may also prune some other labels, we still have to search through this possibly large set of no-
good justifications and evaluate every one of them. In contrast, the NG-Backmarking approach
maintains a static set of constraints. If several other labels are also meant to be pruned by one
lengthy no-good justification, it will be picked out in the NG-Backmarking approach by checking
this fixed set of constraints.

Unlike the no-good justification approach which randomly chooses any defined variable to repair,
the NG-Backmarking algorithm only randomly repairs a defined variable that contributes to the
violation of some constraints in the spirit of dependency-directed backjumping. For example, to.
repair the tour 01123 in a 5-city TSP problem, the proposed algorithm will choose either the 2nd
or 3rd variable to repair. In the case of choosing the second variable, it can assign the value 4 to
the variable if it does not violate any constraints and does not match any no-good patterns.

In addition, the NG-Backmarking algorithm can be regarded as a genuine repair algorithm.
Instead of looking for a value that makes the locally repaired label to satisfy all the constraints, the
proposed algorithm simply chooses an alternative value that minimizes the number of constraint
violations and the resultant label does not match any no-good patterns. For example, to repair the
tour 0112233 in a 7-city TSP problem, if the second variable is chosen to repair, we can assign a
new value, say 4. Although this value still does not eliminate all the constraint violations, it is the
best possible repair. This approach of repairing (in the spirit of min-conflict repair [Minton et al
92]) is very useful for reactive scheduling applications where the change of a schedule is required
to be as minimum as possible to the original schedule when some new circumstances arise.

Although randomness is often a virtue in constraint solving as evidenced by some simulated an-
nealing applications [Kirkpatrick et al 83], it is still commonly recognized that constrained heuristics
[Fox & Sadeh 89] can greatly improve the performance of many real-world applications. This point
is also noted in Zweben et al's anytime scheduling algorithm [90] where a heuristically controlled
simulated annealing is shown to be more effective. For these reasons, we have not indicated in
the following specification of the proposed algorithm the particular selection strategies of defined
variables, undefined variables and domain values. Since we are trying to provide the principles in
this paper, we have therefore not elaborated any particular heuristics here which are application
dependendent anyway. To name a few, we can choose the defined variable to be the most conjested
in an application or the one that most likely to reduce the cost of the objective function. The point
to note however is that the NG-Backmarking algorithm is complete whatever selection strategies
are adopted.

Under a heuristically controlled search strategy, it is not strictly true any more that the proposed

40

method randomly jumps about the search space. Still the method does not follow any regular tree
structure in a search process. The selections of variables and domain values are normally dynami-
cally changing as well. So effectively, we still move around the search space fairly opportunistically
and prune search space where we can.

Definition 1 (No-good backmarking with min-conflict repair) Given a partial label (which can
be complete or inconsistent) and an initial bound on the objective function.

1. check if there is any no-good pattern that matches the label. If there is, go to the Repair Process in 4;

2. else check if there is any constraint violated by the label. If there is, generate a no-good pattern for
the label and go to the Repair Process in 4; else go to the Labelling Process in 3.

3. Labelling Process

* If there is no undefined variable, the current label is a solution and go to the Optimization
Process in 5;

* Else select an undefined variable and check if it is possible to assign a value to it that satisfies
all the constraints and the resultant label does not match any no-good patterns. If it is, choose
such a value and go back to the Labelling Process in 3; Else go to the Repair Process in 4.

4. Repair Process

" If there is no defined variable left, the algorithm terminates with no solution.
" Else select a defined variable that contributes to the violation of some constraints' and check

if it is possible to assign an alternative value that reduces the number (or cost) of constraint
violations and the resultant label does not match any of the no-good patterns.

- If it is possible, choose such a value that minimizes the number (or cost) of constraint
violations.
If the value can eliminate all the conflicts, go to the Labelling Process in 3; else generate a
no-good pattern for the label and go back to the Repair Process in 4;

- Else make the variable undefined and generate a no-good pattern for the resultant label; go
back to the Repair Process in 4.

5. Optimization Process

" If optimization is not required, then terminate with the current label as a solution.
* Else calculate the new cost of the objective function against the current label and reset the bound

of the constraint on the objective function to the new cost; generate a no-good pattern for the
current label and go to the Repair Process in 4.

The major advantages of the no-good backmarking algorithm are

. it can repair a partial (including complete) label that is inconsistent.

2. it randomly jumps around the search space in assigning and deassigning values of variables. The
choice of variable for repair is essentially random and so is not confined to chronological backtracking
or dependency-directed backtracking along some regular search structure.

3. it is complete in satisfaction and optimization while the search space is controlled by no-good patterns.
It is guaranteed to find an optimal solution (if one exists) for a constraint problem.

'A varable can contribute the violation of some constraints in two aspects. One is that the variable is assigned
in a no-good pattern that matches the current label. The other is that the variable participates in the violation of
some constraints.

41

4. No-good patterns are simple to generate and to check. Subsumption check of no-good patterns are
also easy to perform.

Theorem 1 The algorithm is sound and complete for finite domain constraint satisfaction prob-
lems (CSP). That is, for any finite domain CSP, every complete label that is generated on the
termination of the algorithm is a solution label of the CSP and the algorithm wll find a solution
label if one exists for the CSP.

The algorithm however does not find all solutions of a constraint problem. It can be easily
amended by iteratively backmarking every current solution label to be a no-good pattern. This
will trigger the algorithm to find alternative solutions until no more solution is found.

Theorem 2 The algorithm is sound and complete for finite domain constraint optimization prob-
lems (COP). That is, for any COP, the last complete label that is generated on the termination of
the algorithm is an optimal solution of the COP and the algorithm will find an optimal solution if
one ezists for the COP.

4 Controlling the generation of no-good patterns

As noted in the last section, no-good backmarking simply records partial labels that violate some
constraints. Despite their simplicity to check, it is still essential to maintain only the most generic
no-good patterns. This raises the question of subsumption check. Even if we allow subsumption
check, it is still important to generate more generic no-good patterns as early as possible in order
to avoid the accumulation of the database of no-good patterns during the intermediate repair
process of the proposed method. As we have experienced from our constraint logic programming
implementation, a large set of no-good patterns can significantly hinder the performance of the
NG-Backmarking method.

First lets address the subsumption check. Every time a partial label is found to be no-good, we
first perform a retract operation from the no-good database of those patterns that unify with the
partial label whose undefined values are viewed as "don't care" variables. We then simply insert
the partial label where an undefined value is replaced by a "don't care" variable. To check if a
partial label matches a no-good pattern, we simply treat the partial label as a goal against the
no-good database. Note here that the undefined value U in the partial label is not treated as a
variable in the goal; otherwise a partial label, say, 1UUIU will match a no-good pattern such as
11111.

To generate more generic no-good patterns as early on as possible, the generation process need
be related to specific applications. Here we use the TSP and Capital Budget problems to illustrate
the point.

Consider for example a solution tour 02341 in a 5-city TSP problem where the cost of the tour
is C. Suppose we try to find the optimal solution, then the bound associated with the constraint
on the objective function will be reset to C. The solution label 02341 is no longer a good tour.
Normally we will simply add 02341 as a no-good pattern and repair the label. However for the TSP
problem, we can generate n no-good generic patterns with one value of the last solution label to be
undefined. For the above example, we would immediately generate five generic no-good patterns
{U2341, 0U341, 02U41, 023U1, 0234U I since there is no alternative value for repair for any variable
given that the other variables' values remain the same. In particular, we can choose any one of the
partial labels to proceed repairing.

42

Consider another example in the Capital Budget Problem where a partial label L = 10UUU is
to be repaired. Suppose previously, we have already found a solution label 01111 with the benefit
of the objective function as 95. Normally, we would simiply continue to label L. However for this
particular problem, we can immediately treat L as a no-good pattern since whatever values we
assign to the undefined variables, the objective function of the resultant label cannot be more than
95, ie. the objective constraint is always violated.

The generation of generic no-good patterns is also dependent on the kind of constraint being
violated in a specific application. Consider the Capital Budget problem again. Given an initial
label 11001, although the objective constraint is not violated, a resource constraint (the third one)
is violated. Instead of simply generating 11001 as a no-good pattern, we produce the more generic
label 11UU1 as a no-good pattern since the only alternative values (ie. 1) to repair the variables
with 0 values would only increase the violation of the label. Consider another label 00111. This
is a solution label, but not an optimal one. During the optimizatin process, although this label
satisfies all the resource constraints, it no longer satisfies the objective constraint with the current
cost. Instead of making the label to be no-good, we generate the more generic no-good pattern
OOUUU since whatever values chosen for U will not improve the benefit of the objective function.
To summerize, in the Capital Budget problem, if a label violates a resource constraint, we make all
the 0 values in the label to be undefined and then generate the resultant label as a no-good pattern;
if a label violates an objective constraint, we make the I values in the label to be undefined and
then generate the resultant label as a no-good pattern. This shows that the generation of Lo-good
patterns can be controlled by exploring the characteristics of the problem.

5 Dynamic Support of no-good patterns

No-good patterns are knowledge learnt during a search process. They can be used in subsequent
search and new constraint problems. In a dynamic environment, such knowledge are still valid when
new constraints (eg. new jobs, new machine restrictions) are added or old constraints (eg. dealine
is put forward) are tightened. This is because we do not create good patterns. However, they may
no longer be valid when some old constraints (eg. cancellations of jobs, deadline is delayed) are
removed (eg. cancellations of jobs) or relaxed (eg. deadline is delayed).

To incorporate constraint relaxation and removal, we propose to support every no-good pattern
by the set of minimnm set of constraints that violates the pattern. Subsumption check in this case
will also involve checking if the supporting set of set of constraints is also subsumed. In this way,
if a constraint is removed, then any set in the supporting set of a no-good pattern that contains
the coirtaint is removed from the support set. If a constraint is relaxed, then any set in the
supporting set of a no-good pattern that contains the constraint relaxed will be rechecked by the
no-good pattern. If the no-good pattern is no longer supported by the relaxed set, relaxed set is
removed from the support set. If the support set is empty, then the no-good pattern is removed.

Like the generation of no-good patterns, uncontrolled generation of the supporting set of a
no-good pattern can also be very costly. To control this problem, we suggest several strategies
to approximate the supporting set. One is to build the supporting set by the total number of
constraints that the no-good pattern is involved with. If any constraint is removed or relaxed from
the set, the no-good pattern will be withdrawn. The other strategy is to simply remove a pattern
if a constraint that involves the variables of the pattern is removed/relaxed. The advantage of this
strategy is that it does not require any space to store the supporting set of a no-good pattern.
Subsumption check is just like that in a static environment. Both strategies do not affect the
completeness of the no-good backmarking method, but may remove some learnt knowledge (or

43

no-good patterns) even though the constraint relaxation or removal does not affect the knowledge.
However this trade-off between the overheads of maintaining no-good patterns and the loss of
no-good patterns is often necessary in practice.

6 Implementation and Experimentation

The proposed technique has been implemented in Eclipse - a constraint logic programming language
that extends the CHIP developed at ECRC. We have tested the technique against the TSP and
the Capital Budget problem. For these problems, the performance of our no-good backmarking
methods compares about 100 times faster than the no-good justification approach. When compared
with a pure simulated annealling implementation of TSP, the method also fares much better for
10 city TSP problem. For larger TSPs, it is observed that the method performs still better than
simulated annealling if we compare the times of the two methods in obtaining the best cost of the
simulated annealling method. This is partly expected as the no-good backmarking method also
incorporates an element of randomness. Since the NG-Backmarking method adopts a min-max
strategy in optimization, it particularly performs better if the initial cost of a problem is set low.

The current implementation did not explore any constraint handling primitives in Eclipse at
the moment and it essentially just runs the Prolog part of the Eclipse language. This is satisfactory
for the problems we have tested. However we are now looking at the well-known 10-job and 10-
machine scheduling problem [Jiang et al 94] and the British Airways flight allocation problem
[Lever & Richards 94]. Our previous experience in these problems indicate that dynamic domain-
filtering can play an important role in improving the performance of these problems. It is our
intention to explore the full-power of Eclipse, using constraint handling mechanisms within the
overall architecture proposed in this paper.

Our experiments have also confirmed the overheads of no-good patterns when the database of
such patterns grows very big. Even with subsumption check, the random search strategy can still
take quite a long time (and hence lead to possible a huge space) to eventually perform a subsumption
reduction. To solve this problem, we integrate random search with regular search. This has proved
to be extremely effective with impressive speed improvement of the order of one magnititude. By
analysing the results, we discover that when using the random search strategy first, since the repair
method jumps about randomly, it will quite quickly settle for a reasonably good solution before
it is overwhelmed by the overheads of the size of the database of no-good patterns. By then, if
we switch to a regular search strategy, we immediately see substantial amount of subsumption
reductions which results a more directed search space towards the optimal solution.

We are currently implementing the dynamic support of no-good patterns. Eclipse is particularly
suitable for this task as it can easily find out what constraints are violated by a no-good pattern
and what variables are involved in this constraints. We hope to report some of these results at the
presentation.

7 Comparisons and Hybrid algorithms

The generation of no-good patterns corresponds to Dechter's learning idea [90] in the search pro-
cess. Whilst the support set of a no-good pattern is similar to Schiex & Verfaillie's 193] no-good
recording algorithm for dynamic constraint satisfaction. These algorithms however did not address
the problem of repairing a label which is additionally pursued in the paper. The no-good back-
marking method can be seen as an integration of the no-good justification search architecture with

44

backjumping, no-good pattern learning, dynamic maintenance and min-conflict repair. Recently,
it has come to our attention that the no-good justification search architecture with backjumping is
similar to Ginsberg's dynamic backtracking search architecture [Ginsberg 93] although he did not
address dynamic support for no-good patterns.

Traditional backmarking usually makes good and no-good patterns following a tree structure.
NG-Backmarking on the other hand randomly moves about the search space while generating only
no-good patterns. There is no need to generate good-patterns because they may not be good any
more when tigher bounds are set for the objective function in the optimization process. However
it is possible to generate good patterns for each current objective function and remove them when
the current objective function is reset to a new bound. Of course, we can apply the concept of a
supporting set to good patterns as well, but the overheads are not worthwhile.

Domain filtering methods remove inconsistent domain values during propagation. They are
usually incomplete in the sense that not every value that does not contribute to a solution of the
constraint problem is eliminated. Even if they are complete under some restricted domain, labelling
still has to be done in a separate stage. No-good backmarking on the other hand perform labelling
as well as filtering. Here filtering however does not eliminate values from the domain rather they
are indirectly eliminated by no-good patterns. Admittedly, such an indirect filtering can be very
ineffective especially with large domains and densely connected variables in a constraint system.
However the great strength of the algorithm is that it is repair-based and hence can be easily
applied to reactive applications such as scheduling.

Nevertheless the proposed NG-Backmarking algorithm is not orthognal to a domain-filtering
method. In fact, such a filtering method can be applied as a preprocessing phase to reduce the
domains of the variables in the constraint problem. This will certainly improve the efficiency
of the algorithm as its performance is significantly dependent on the size of the domains of the
variables. In particular, in the optimization process of the algorithm, since the soft constraint on
the objective funtion is effectively turned into a hard constraint each time a new solution is found
or a new bound is set, using a domain-filtering technique can continously or iteratively reduce the
domains of variables in the constraint problem.

We can even perform domain-filtering for each partial labels in the labelling process provided we
can maintain the previous domains when we are repairing the labels. This idea is particularly good
for the air flight allocation problem [Lever & Richards 941 we have looked at. There a constraint
logic programming implmentation [Van Hentenryck et al 921 is applied which provides the natural
backtracking or maintenance of previous domains for you.

Traditional repair methods usually work on complete (but possibly inconsistent) labels, the
propose NG-Backmarking method however can work on partial (but still possibly inconsistent)
labels. It is also worth noting that no-good backmarking subsumes tabu search. While tabu search
only forbid moves from one complete label to another, no-good backmarking can additionally forbid
moves from one partial label to another.

Traditional repair methods often do not guarantee to find the optimal solution although some
of them can avoid local minimum. The proposed NG-Backmarking method guarantees to find the
optimal solution. The search space in this case is controlled by "jumping" about the search tree
where any part of the tree that leads to no-good patterns are pruned.

In real-world applications, we often have an idea about the rough bound of the objective func-
tion. For example, we may well know that driving from London to Camridge cannot be more
than 3 hours and all we want to find is the quickest route to take. Unfortunately, traditional
repair methods are not particularly benefitable by a good initial bound for the objective function.
This is because it may make the methods to be trapped in a local minimum. The proposed NG-

45

Backmarking method on the other hand can be greatly benefitted by a good initial bound. This is
because a good bound can prune the search space through the generation of many generic no-good
patterns earlier on in the backmarking process.

The NB-backmarking algorithm only allows repair of a partial solution to another with lower
cost using a hill-climbing strategy. Although the method guarantees to find a global optimum, it
can take a rather long time to move away from local minimum. Especially, the number of no-good
patterns generated at every step of Hill-climbing is exponential in space complexity. Hill-climbing
itself can also be very expensive since it involves the selection of the best measurement of the
relative cost of a repair. Furthermore, each no-good pattern can be regarded as an extra constraint
despite its simplicity. So learning such a constraint may not be always effective if the size of the
no-good pattern is not controlled.

To deal with this problem, in [Li & Jiang 94], we have presented a hybrid method called
NG-Backmarkings T that integrates simulated annealing and tabu search with NG-Backmarking.
The basic idea is to allow the repair of a partial label or solution with higher cost depending on some
probability measure. Although this could lead to repairs of higher cost earlier in the search process,
it may well improve the search later on. In particular, compared with Hill-climbing, the simulated
annealing strategy does not suffer from the computationally expensive overheads of choosing a least
costly repairs.

The proposed repair method can even be adapted to accommodate genetic algorithms (GA).
The no-good database essentially contains all possible partial labels that need to be repaired. We
can combine two partial labels (via a cross-over operation between two partial labels) to form a new
partial label to be repaired. Or we can choose any individual label in parallel or alternatingly to
repair via a mutation operation. This approach generalizes genetic algorithm which only perform
combination or mutatation on complete labels to form new labels. In the hybrid approach, GA helps
the NG-Backmarking to perform repair on more "healthy" labels, while the NG-Backmarking helps
GA to ensure the optimal label to be found.

References

H. Atabakhsh (1991) A survey of constraint-based shceduling systems using an AI approach Al in Engineering
6.

V. Cerny (1985) Tkermodynamical approach to the TSP: an efficient simulation algorithm Journal of Opti-
mization Theory Application 45.

R. Dechter & I. Meiri (1989) Experimental evaluation of preprocessing techniques in constraint satisfaction
problems in IJCAI 89.

R. Dechter (1990) Learning while searching in constraint satisfaction problems AI 41.

J. de Kleer (1989) A comparison of ATMS and CSP techniques in IJCAI 89.

E. Freuder & R. Wallace (1992) Partial Constraint Satisfaction Al 52.

M. Fox, N. Sadeh & C. Baykan (1989) Constrained heuristic search IJCAI 89.

M. Fox & N. Sadeh (1992) Why is scheduling difficult - a CSP perspective ECAI 92.
vspace2ex M. Ginsberg (1993) Dynamic backtracking Electronic Journal of Al Research 1.
vspace2ex A. Hertz & D. de Werra (1987) Using tabu search techniques for graph colouring Computing

39.

46

S. Kirkpatrick, C.D. Gelatt & M.P. Vecchi (1983) Optimization by simulated annealing Science 220

J. Lever & B. Richards (1994) The applications of generic planning architecture to flight allocation CHIC
deliverable 4.1.3.

Y. Li & Y. Jiang (1994) No-good backmarking with simulated annealling and tabs search to appear

A. Mackworth (1977) Consistency in networks of relations Al 8.

F. Maruyama, Y. Minoda, S. Sawada, Y. Takizawa & N. Kawato (1991) Solving combinatorial constraint
satisfaction and optimization problems using sufficient conditions for constraint violation ISAI 4.

F. Maruyama, Y. Minoda, S. Sawada, Y. Takizawa & N. Kawato (1992) Constraint satisfaction and opti-
mization using no-good justification PRICAI'92.

S. Minton, M. Johnson, A. Philips & P. Laird (1992) Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problems, Artificial Intelligence 58.

B. Nadel (1989) Constraint satisfaction algorithms Computational Intelligence Vol 8, No 4.

T. Schiex & G. Verfaillie (1993) No-good recording for static and dynamic constraint satisfaction algorithm.

N. Schraudolph (1991) Genetic algorithms software survey - overview Genetic Algorithm Digest 5 (34).

H. Taha (1992) Operations Research - an introduction Macmillan Publishing Company.

P. Van Hentenryck, H. Simonis and M. Dincbas (1992) Constraint satisfaction using constraint logic pro-
grammging AI 58.

M. Zweben, M. Deale & R. Gargan (1990) Anytime Rescheduling DARPA 90.

47

Locally Simultaneous Constraint Satisfaction

Hiroshi Hosobe*t Ken Miyashitat Shin Takahashit
Satoshi Matsuokat Akinori Yonezawa t

tDepartment of Information Science, University of Tokyo
IDepartment of Mathematical Engineering, University of Tokyo

Abstract output values. A solution graph is a constraint graph
extended so that it dictates how constraints will be

Local propagation is often used in graphical user solved. A correct solution graph is a solution graph
interfaces to solve constraint systems that describe that can produce correct solutions, and satisfies the
structures and layouts of figures. However, algo- following two properties: the value of each variable
rithms based on local propagation cannot solve simul- must be determined by at most one constraint, that
taneous constraint systems because local propagation is, the graph should have no conflicts, and all the con-
must solve constraints individually. We propose an ef- straints must be partially ordered, that is, the graph
ficient algorithm that satisfies systems of constraints must have no cycles. Applying local propagation to
with strengths, even if they must be solved simulta- a correct solution graph is, in short, equivalent to
neously, by 'dividing' them as much as possible. In solving necessary constraints in the order consistent
addition to multi-way constraints, it handles various with the partial order dictated by the graph. For
other types of constraints, for example, constraints example, if the value of variable y is changed in Fig-
solved with the least squares method. Furthermore, it ure 2, local propagation solves this solution graph by
unifies the treatment of different types of constraints first computing w -- y, next z ,- y + z, and finally
in a single system. We implemented a prototype con- v --- w x z. Since this order is easily obtained with
straint solver based on this algorithm, and evaluated topological sort, and also since constraints are indi-
its performance. vidually solved at most once, local propagation is an

extremely efficient algorithm.

1 Introduction .-
Local Propagation is an efficient constraint satisfac- . m

tion algorithm that takes advantage of potential lo-

cality of constraint systems. It is often used in graph- D-y O

ical user interfaces (GUIs) to solve constraint systems

that describe structures and layouts of figures. Figure 1: A Constraint Graph
Early constraint solvers based on local propagation

handle one-wa. constraints because the algorithm is
simple [6]. A one-way constraint always outputs a
value to a certain variable. For example, consider a V-WxX zr =
constraint system with the constraints v = w x z,
w = y, andz = y+z. Figure I shows a con-
utraint grapk representing this system, where circles Y+z
and squares represent variables and constraints re-
spectively. If these constraints are one-way, they are Figure 2: A Correct Solution Graph
always solved for certain variables, e.g. v 4- w x z,
w -- y, and z +- y-+z. This case is illustrated by the However, one-way constraints are often insufficient
correct solution graph in Figure 2, where arrows from because they cannot change dependencies among
constraints point to variables to which the constraints variables. To cope with this problem, multi-way con-

*E-mal: detailis.u-tokyo.&cjp straints are proposed (1]. A multi-way constraint has

48

multiple candidates for its output variable. For ex- st" weak
ample, the constraints in the above example can be x- z=3 z.l x-

multi-way because they have multiple variables whose E ["
values can be uniquely determined. By contrast, log- (a) (b)

ical formula such as a = b A c are not multi-way con-
straints since they lack such a property. A system of Figure 4: Solution Graphs (a) for an Over-
multi-way constraints is solved as follows: First, out- Constrained System and (b) for a Constraint Hier-
put variables are selected for each constraint, that is, archy
a solution graph is generated out of the system so
that the graph has no conflicts and no cycles'. Then,
local propagation is applied to the solution graph. often result in solution graphs with cycles or conflicts.

Multi-way constraints also embody a problem that For example, consider a constraint system with the
output variables are not determined uniquely. Figure constraints a - 6 = 1, (a + b)/2 = m, stay(l), and
3 illustrates a solution graph for the constraint graph edit(m). This system represents a typical situation
in Figure 1, but is different in the output variables where the midpoint of two points is moved with a
from the graph in Figure 2. Both solution graphs are mouse, but its solution graphs contain cycles by ne-
correct because they have no conflicts and no cycles, cessity, e.g. as illustrated in Figure 5. As another
but such ambiguity is not preferable in GUIs since example, suppose a constraint hierarchy with the con-
it may cause unexpected behavior to the user. The straints strong z = I and strong z = 3. Even if
ad-hoc solution is to provide additional constraints: one wants to apply the least squares method to these
when the value of y is edited in the above example, a constraints and to obtain the iolution z = 2, local
constraint that fixes the values of variable t' -r z will propagation will fail. The resulting solution graph
determine a unique solution graph. However, such contains a conflict as shown in Figure 6. Generally,
a solution is obviously not desirable since it would in constraint systems that result in solution graphs
easily result in over-constrained systems. with cycles or conflicts, constraints need to be solved

simultaneously.
w.Y

".X WYstay a-b 1

(a+b)f2=m ed
Figure 3: Another Correct Solution Graph

Borning et al. proposed constraint hierarchies to Figure 5: A Solution Graph with a Cycle

cope with this problem [2, 10]. A constraint hierarchy
is a system of constraints with hierarchical strengths. a
If the system is over-constrained, it is solved so that X- x-s3

there are as many satisfied strong constraints as pos-
sible. In Figure 4a, for example, the constraints z = 1
and z = 3 conflict. However, if 1 = 1 and z = 3 are Figure 6: A Solution Graph with a Conflict
associated with strong and weak respectively, the con-
straint system is solved by satisfying only z = I as We propose an efficient algorithm that satisfies
shown in Figure 4b. Blue and DeltaBlue were first constraint hierarchies, even if constraints must be
proposed as algorithms that solve constraint hierar- solved simultaneously, by 'dividing' them as muchchies with multi-way constraints [4, 8]. The Delta- as possible. This algorithm is efficient enough to beBlue algorithm determines output variables of con- applied to constraint-based GUIs since it incremen-
straints incrementally when a constraint is added or tally finds parts of constraint systems that must be
removed, and realizes constraint satisfaction without solved simultaneously. In addition to multi-way con-
losing the eflciency of local propagation. straints, it handles various other kinds of constraints,

Although constraints have become powerful as de- for example, constraints solved with the least squares
scribed above, local propagation has a serious prob- method. Furthermore, it unifies the treatment of dif-
lem: constraint systems employed in real applications ferent types of constraints in a single hierarchy. We

IFew practical algorithms try to eliminate cycles, implemented a prototype constraint solver based on

49

this algorithm, and evaluated its performance. Tak- the larger the number of a strength, the weaker it
ing advantage of this solver, we developed the IM- is. All constraints with an equal strength i are cat-
AGE system, which generates GUIs by generalizing egorized into a solution type r: C is divided into
multiple visual examples. lists Co, C1, ..., C,, where Ci contains constraints with

strength i in some arbitrary order.
Solutions to a constraint hierarchy are defined as

2 Locally Simultaneous Con- a set of valuations. A valuation e is a function that
straint Satisfaction maps variables in V to their values in V. An error

function e, returns a non-negative real by evaluating

In this section, we present an extended theory of con- the error for 0 of a constraint c of a solution type

straint hierarchies and an efficient algorithm that in- r. The error e,(ce) = 0 if and only if c is exactly

crementally finds parts of constraint hierarchies that satisfied by 0. The function E,, returns the list of

must be solved simultaneously. errors of a list of constraints Ci = [ci, C2, ... , ck], i.e.,

E,, (C,) = [er. (cie), C,(C 21), ... ,

2.1 Overview
Each element e7, (ci0) can be weighted by a positive

In our extended constraint hierarchy theory, con- real wi. An error sequence R(CO) is the error of C
straints are categorized into solution types, which are except Co:
determined by how the constraints are solved. For
example, there is a solution type of constraints that R(CO) = [E 1 (C1 9), E,. (C20), E (C.0)).
will be ignored if they cannot be solved exactly, as is A combining function g,, combines E,, (C,6). Two
with the Blue and DeltaBlue algorithms. Also, there combining n i g9, and E, (C0) are
is another solution type of constraints that must be combined errors ga, (E, (Ci)) and m(Er, (Cio)) are
solved even in such a case by minimizing their er- compared by a reflexive and symmetric relation
ros with the least squares method. Alternatively, we tive and an irreflexive, antisymmetric, and transi-
can consider a solution type of constraints to layout tive relation <.. The function G combines an error
graphs, etc. sequence R(CG):

All constraints with an equal strength must belong G(R(CO)) = [(E,, (C10)), ...,g(E,. (C.9))].
to a single solution type. Intuitively, this requirement
is necessary because it is difficult to treat constraints Two combined error sequences G(R(CO)) and
equally if they have different solution types. G(R(CV)) are compared by a lexicographic ordering

Based on this theory, our algorithm solves con- relation <G:

straint hierarchies with the following restrictions:

•If solved individually, constraints are single-output G(R(CO)) < G(R(C,))
and multi-way and can select any of their con-
strained variables as outputs. gr,(E 7, (CB)) <>,, gr, (E, (Cip)) A

a All constraints in a constraint hierarchy are gr,(E,.(Ck9)) <9,, gh(E,.(CkVo)).
independent 2 . For example, a hierarchy must not We say that 0 is better than Wo if and only if
contain the constraints strong z + y = 1 and G(R(CO)) <G G(R(C)).
weak z+ =- 1. The set S of solutions to H is defined as follows:

2.2 Theory So = {OIVcECoe,0.(c0)=0}
S = {~sIW so.

By extending the theory described in [10], we for-

mulated constraint hierarchies that contain multiple -'(G(R(CO)) <G G(R(Cp)))}.

solution types of constraints. A constraint hierar- The main difference from the original formulation
chy H is a pair (V, C), where V is a set of variables in [10] is existence of solution types. In [10], all con-
that range over some domain V, and C is a set of straints in a constraint hierarchy are categorized into
constraints on variables in V. Each constraint is as- some single solution type, and therefore, for each
sociated with a strength i where 0 < i < n. Strength strength i, e,, and 9, are some e and some g re-
0 represents the strength of required constraints, and spectively. Since errors of constraints with different

2The reason is that our algorithm mainly uses information strengths are never compared directly, we can safely
on graphical structures of constraint hierarcies. assign various solution types to each strength.

50

Two error functions are presented in [101: Given Definition 2 (Constraint Cell) Let H = (V, C)
a constraint c and a valuation 0, the predicate error be a constraint hierarchy, and B = (V, C, E) a con-
function returns I if c is exactly satisfied for 9 and straint graph of H. For X C V, define r as follows:
0 otherwise. Also, the metric error function returns
c's metric, e.g. for the constraint z = y, the distance F(X) {c I (v, c) E E A V E X}.
between z and y. A pair p = (Vp,Cp) is a constraint cell in B if and

Also in (10], several combining functions and asso- only if Vp g V, Cp = , and V.1I = 1, or l C V,
dated relations are provided. Since it does not intro- Cp g C, the subgraph of B induced by Vi and Cp is
duce multiple solution types in a constraint hierarchy, connected, and
an instance of <G is determined by single instances of
e and g. For an instance of <G called least-squares- vx c Vp. X < Ir(X) n CpJ.
better, given lists of errors v = Ivi, v2 , ..., vj] obtained We say that p is over-constrained if and only if I Vp I <
with the metric error function, g(v) = wiv, IC,. 0
<9 is < and <>9 is = for reals. For instances of For example, the box with round corners in Figure
<G called locally-better, given v 1v1,)V2, ..., Vk] and 7a illustrates a constraint cell with a single variable.
u = [U1,U2, , u], g(v) = v and <s, and <>.f are Also, Figure 7b illustrates a constraint cell with a
defined as follows: single constraint, and Figure 7 c shows a constraint

V <# = . vi 5 u A 3j. <cell with a variable and a constraint.
v <I U Z Vi. vj<u =j. iu

Locally-predicate-better is the locally-better using the
predicate error function, and locally-metric-better is (a) (b) ()

the one employing the metric error function.
In the rest of this paper, we refer to the solu- Figure 7: Constraint Cells

tion type associated with least-squares-better as 'LSB
and constraints of rLSB as least-squares-better con- Values of variables in a constraint cell are obtained
straints, and correspondingly locally-predicate-better by evaluating constraints in the cell. In Figure 7c,
as rrLpB and locally-predicate-better constraints3 . for example, the value of the variable y is determined

by the constraint 0. Because of Definition 2, this is
2.3 Solution Graphs always possible for constraints that we handle. Def-

inition 2 is based on Hall's theorem, which describes
Local propagation cannot solve conventional solution the condition on existence of perfect matchings of bi-
graphs that have cycles or conflicts. To cope with partite graphs in graph theory. Intuitively, Definition
this problem, we propose a new definition of solution 2 means that given a constraint cell p = (Vl,, Cp), the
graphs. Before presenting the definition, we define value of each variable in V can be determined by at
constraint graphs of constraint hierarchies: least one constraint in Cp.

Definition 1 (Constraint Graph) Given a con- We can regard constraint graphs 'divided' by con-

straint hierarchy H = (V, C), a bipartite graph B = straint cells as solution graphs:

(V, C, E), where V and C are sets of nodes and E is Definition 3 (Solution Graph) Given
a set of edges, is a constraint graph of H if and only a constraint graph B = (V, C, E) and a set P of con-
if straint cells in B, a quadruple Bs = (V, C, E, P) is a

solution graph for B if and only if:
E = {(v, c) E V x C vI is constrained by c). E3 1. each variable in V belongs to only one constraint

cell in P,
By regarding constraint graphs as bipartite graphs, 2. each constraint in C belongs to only one constraint
we can use theorems and algorithms presented in cell in P, and
graph theory.

We introduce constraint cells to overcome the de- 3. there are no cyclic dependencies among constraint

fects of conventional solution graphs. A constraint cells in P. 0

cell is defined as follows: For example, Figure 8 shows a solution graph equiv-
alent to the one in Figure 24. We can apply local'These names mnay sound strange because 'better' is associ - ________

ated with <G (not <v), but we use them instead of introducing 4For readability, we often draw arrowheads in constraint
new terminologies, cells although they are not essential.

51

propagation to such solution graphs in the same way reuitw weak

as conventional solution graphs. ,0 I = + Z.?

weak stng weak sro

-eqk weak tequred mdi
X.+1.0 I-V z+i-Y z-7

Figure 8: A Solution Graph with Constraint Cells)TO

Solution graphs with constraint cells support con- V-1 :+w .= z+y-z

straint hierarchies that conventional solution graphs
do not because of cycles and conflicts. For example, . T
consider a constraint hierarchy with the constraints

aP, ,-, 6, c, C, ', and 6. Let a be required t = 0, ()
, weak t = u, y weak v = 1, 6 strong t + v = w, c W

weak w = z,C strong z + y/= z, q required z + 1 = y,
and 9 medium z = 7, where strong and medium con- V.I V V-w W z-
straints are locally-predicate-better constraints, and
weak constraints are least-squares-better constraints. 0 1-3+- z7
Figure 9a shows the constraint graph of this hierar- I P
chy, and Figure 9b illustrates a conventional solution (d)
graph for this constraint graph. This solution graph
is not correct since it has a cycle with C, z, , and
y, and a conflict of 6 and c at w. To begin with, we v-I I+v-w Wv X. z

create a solution graph so that constraint cells con-
tain the cycle and the conflict as shown in Figure 9c. Figure 9: A Constraint Graph and its Solution
Satisfying constraints locally in these cells, the cor- Graphs
responding valuation e is obtained as {t P-+ 0, u t-
0, v -+ 1, to - 1 ,, z -p 3 , y - - 4 , z - + 7}. T he
combined error sequence is: combined error sequence is:

strong gvzp.(E.PS ((6, strong gr~p8(ErLp&([6,(]t))
= g?.L.([0, o) = [0,01

= g.,P(O, 0]).-- [0, 0] medium gtLpB(E,?.p.([$]O)) = gLpB,([O]) = [01

medium gVP(ETLPf([9]e)) = gVLP,([0]) = [0] weak gTL5(ELsaf(l , 7, c]))
weak g. 3 (E,.,,([8,-, e]e)) = 97LSB([1,0, 1]) = 12 + 02 + 12 = 2.

= (0, o, 2)= 02 + 02 + 22 = 4.
This indicates that 4t is better than e.

Merging over-constrained cells with other cells We define correct solution graphs so that they can

sometimes creates a 'better' solution graph, i.e. the produce solutions to constraint hierarchies. Before

corresponding valuation is better, because the new presenting the definition, we define internal strengths

cell may acquire more freedom to determine the val- and walkabout strengths of constraint cells. Walk-
ues of its variables. For example, by merging the about strengths were first introduced as walkabout
over-constrained cell W and the cell V into the new strengths of variables in the DeltaBlue algorithm, but
cell W', we obtain the solution graph in Figure 9d'. for our purpose, we modify the definition.
Then, the corresponding valuation 4 is {t i-* 0, u i- Definition 4 (Internal Strength) Let p be a con-
0, v P-o. 2, to -. 2, r o.- 3, y #-4 4, z - 7}, and the straint cell (V, Cp). The internal strength of p is

weakest if Cp = 0, and the weakest among strengths
6We do not merge constraint cells simply because they con- of constraints in C. otherwise. 0

tain constraints of similar solution types or constraints with
equal sgrengths. For example, WI in Figure 9d contains mul- Definition 5 (Walkabout Strength) Given
tiple solution types of constraints with multiple strengths a constraint cell p, the walkabout strength of p is the

52

weakest among p's internal strength and walkabout impossible to reduce the errors of the constraints with
strengths of cells with variables adjacent to p. 0 strength ip by increasing the errors of the constraints

For example, the internal strength of the constraint with strength wl.

cell W' in Figure 10 is weak, the weakest among - For example, the solution graph in Figure 11 is not
strengthcorrect because the cell W does not use the weakest
weak. The walkabout strength of W is also weak, the constraint c to determine the value of the variable w,
weakest among W's internal strength weak, T's walk- and also since the internal strength weak of the over-
wakeutstramngh re ieralsrn gth ws walkabout strconstrained cell W is equal to the walkabout strength
about strength required, and X's walkabout strength of the cell V. By contrast, in Figure 10, the over-
medium. constrained cell W' needs the weakest constraints -

T wuic U and c to compute the values of the variables v and w,
rmu and W"s internal strength weak is weaker than the

t u Y walkabout strength required of the cell T and medium
of X. This solution graph is correct by definition.

week roqw T week U

We* W' mu X Z

Figure 10: Walkabout Strengths of a Solution Graph

A correct solution graph is defined as follows: we* V wa W ffo'm X Z

Definition 6 (Correct Solution Graph) A solu-
tion graph is correct if and only if: Figure 11: Walkabout Strengths of a Incorrect Solu-
1. for each constraint cell with multiple constraints, tion Graph

the pair of the set of its variables and the set of
its non-weakest constraints is not a constraint cell,
and 2.4 Algorithm

2. for each over-constrained cell, its internal strength It is desirable that sizes of constraint cells in correct
is weaker than the walkabout strengths of any other solution graphs are minimized since local propaga-
cells with the variables adjacent to the constraints tion can be efficiently applied to such solution graphs.
in the over-constrained cell. Our algorithm creates such solution graphs incremen-

Intuitively, condition 1 means that constraint cells tally when invoked with the following five operations:
must use the weakest constraints to determine the adding a variable, removing a variable, adding a con-
values of their variables, and condition 2 means that straint, removing a constraint, and updating a vari-
it is impossible to create better solution graphs by able value. The former four operations cause the cor-
merging such over-constrained cells with others. The responding solution graph to be modified, and the
reason for the latter is as follows: Suppose an over- last operation applies local propagation to the solu-
constrained cell p that satisfies condition 1 but not tion graph as described earlier. We call the former
condition 2. Because of condition 1, p uses the weak- planning and the latter execution.
est constraints to determine the values of its vari- The algorithm for adding or removing a variable
ables, and by definition, its internal strength ii is the is quite simple: to add a variable, we only create a
strength of the weakest constraints. Since p does not new constraint cell with the variable, and to remove
satisfy condition 2, ip is equal to or stronger than the a variable, we delete the constraint cell with the vari-
walkabout strengths w, of an adjacent cell q. Also by able after verifying that the variable is not adjacent
definition, the values of the variables in q are deter- to constraints. In the rest of this section, we describe
mined by one or more constraints with strength w.. the algorithm for adding or removing a constraint to
Therefore, merging p with q, it may be possible to a hierarchy.
decrease the errors of the constraints with strength
ip in p by increasing the errors of the constraints
with strength w.9 and then to create a better valu-
ation. However, if p satisfies condition 2, it is useless Initially, there is a correct solution graph whose con-
to merge p with q: since i. is weaker than w,, it is straint cells are minimized. When a new constraint

53

is added to this hierarchy, one or more constraints
with an equal or weaker strength may be 'victimized,' I cl - a ew cell with con;
that is, their associated errors will be increased. In 2 wastr - the weakest of walkabout strengths of cells
such a case, the algorithm re-constructs the solution with variables adjacent to cl;
graph incrementally to keep it correct and its con- 3 if wastr is weaker than con's strength then
straint cells minimal by modifying the necessary set 4 str - con's strength;
of cells. 5 while str is stronger than wastr do

This algorithm handles locally-predicate-better 6 neztcl - a cell that contains a variable adjacent
constraints differently from other solution types of to cl and that has walkabout strength wastr;
constraints since they may be ignored if they cannot 7 var - a variable in neztcl that connects to cl;

be exactly satisfied. For example, suppose that weak 8 remove war from neztcl;

constraints were locally-predicate-better constraints 9 add ear to cl;

in the constraint hierarchy presented in the previous 10 if neztcl is empty then
subsection. In the constraint cell W' in Figure 9d, 11 str - weakest;
subsecton. o n the constraint cell Wd in Furae t, 12 else if neztcl's internal strength is wastr then
only one of the onstraints 7v and c would have to 13 cis - cells generated by decomposing neztcl;
be exactly satisfied because they would be locally- 14 cl - an over-constrained cell in clis;
predicate-better constraints. Therefore, in this case, 15 sitr .- cl's internal strength;
the solution graph in Figure 9c could also produce a 16 else
correct solution although it is not a correct solution 17 bordercon - a constraint in neztcl adjacent to
graph by definition. In addition, this solution graph a cell with walkabout strength wastr;
could be solved more efficiently than the graph in Fig- 18 remove bordercon from neztcl;
ure 9d. Accordingly, we treat locally-predicate-better 19 decompose neztcl;

constraints specially by permitting 'equal to' as well 20 cl - a new cell with bordercon;

as 'weaker than' in condition 2 of Definition 6. 21 sitr - ci's internal strength;
Figure 12 shows the algorithm that adds a con- 22 merge cyclic cells dependent on con;

,Figure 23 update walkabout strengths of cells dependent on con;
straint con to a constraint hierarchy, and Figure 13 24 if wastr is weakest or constraints with strength wastr
describes the algorithm to decompose a constraint cell are not locally-predicate- better constraints then
at lines 13 and 19 in Figure 12. Let us explain the for- 25 merge cells that cl depends on and
mer algorithm briefly: First, we create a constraint that have the same walkabout strength as cl;
cell with c at line 1. Second, we find the strength
of the 'victim' constraint at line 2. Next, we follow Figure 12: Adding a Constraint con to a Constraint

the path in the graph of the constraint cells from c Hierarchy.
to the victim at lines 5-21, reversing the dependency
between these cells. After this process, c becomes ac-
tive. Then, we eliminate cycles of constraint cells gen-
erated in the previous process at line 22, and update 1 for each variable war in ci do
walkabout strengths correctly at line 23. Finally, we 2 remove war from cl;
merge over-constrained cells with others at line 25 so 3 create a cell with var;

that they can minimize the errors of their constraints. 4 for each constraint con stronger than wastr in cl do
5 remove con from cl;

Figure 14 shows an example of the execution of 6 war - a variable initially in cl that forms
this algorithm. Initially, there is a correct solution a cell alone and that con depends on;
graph illustrated in Figure 14a. When a constraint 7 reverse the dependency between con and war;

0 is added to the constraint hierarchy, this algorithm 8 for each constraint con with strength wastr in cl do

works as follows: 9 remove con from ci;
10 if there is a variable initially in cl that forms

1. A constraint cell H with 0 is created (Figure 14b). a cell alone and that con depends on then
The strength of the victim is found to be weak. 11 war - the variable found above;

2. After the variable z is removed from the cell G, it 12 reverse the dependency between con and war;
is added to H (Figure 14c). 13 else

14 create a cell with con;

3. The variable z is deleted from the cell E, and is
added to G (Figure 14d). The constraint c in E is Figure 13: Decomposing a Constraint Cell cl with

found to be the victim. Walkabout Strength wastr

4. The constraint cells G and F are merged because

54

they form a cycle (Figure 14e).

mSind A wak B we* F 5. Walkabout strengths are updated (Figure 14f).

a6. Since E is over-constrained, it is joined with the

walkabout strength as E (Figure 14g).

@ It is sometimes necesary to decompose 'large' con-
walk C k D ~ E -' G straint cells that contain multiple constraints. For

m*,w A wek B wak F H example, suppose that a constraint Y is added to a
constraint hierarchy as shown in Figure 15a. It is not

a q y sufficient to remove the variable w from the constraint
() cell A and then to add it to the new cell N as illus-v a W a X ztrated in Figure 15b, because this solution graph i

not correct by definition. The correct solution graph
wak C we* D E " G is created by decomposing A as shown in Figure 15c.

rp*d A wal B ma F Figure 13 describes the algorithm that decomposes
such 'large' constraint cells into 'small' ones. The ba-

a Tsic idea is to match variables with constraints in solu-

for bipartite graphs. For example, in Figure 15c, the

We* walk -4 constraint cells Ao, A 2, and A3 are matched pairs. To

we* C weak D we E G H leave the weakest constraints such as 6 and e unsat-

monm A wal B wal F isfied, our algorithm later tries to match the weakest
constraints in over-constrained cells. The definition

q t of constraint cells guarantees that there are no unde-
(d) termined variables after decomposing cells with one

or more constraints. Even if constraint cells that do
not satisfy condition 3 in Definition 3 or condition 2

va C ww* D E G H in Definition 6 are generated, they will be merged by
the caller algorithm in Figure 12.

(.))

a t A VX

M

C m D E G H Via*

Aal -w odx

wak c uk w kEm~iwIG , U1N we AuapWmC Walk e g

5)__(c)
w" m DE s mdl~ G H 8" N we sea A mA

-1~~~ W -

W* E "ed~mG H "~ N w**Ai 80mvA3 akA4

Figure 14: Adding a Constraint Figure 15: Decomposing a Constraint Cell

55

2.4.2 Removing a Constraint constraints individually. By contrast, subsolvers can
solve individual constraints, cycles of constraints, and

mov cae onsrait ro a constraint heruay even over-constrained sets of constraints. In addition,
may cause one or more constraints with an equal or sabsolvers allow constraints to have methods as done

weaker strength to decrease their errors. This is per- in SkyBlue. Therefore, sbsolvers are more func-

formed in the similar way to adding a constraint by tional than cycle solvers.

reversing the dependency between the cell with such The critical differences between our algorithm and

constraints and the cell that has been contained the the SkyBlue algorithm are summarized as follows:

removed constraint. teSyleagrtmaesmaie sflos
r Our algorithm handles various solution types of

constraints in single hierarchies while SkyBlue

3 Implementation treats only multi-way constraints solved using
locally-graph-better.

Based on the algorithm presented in the previ- * SkyBlue supports multi-output methods while our
ous section, we implemented a constraint solver in algorithm does not.
Objective-C. This constraint solver consists of two It will depend on applications which algorithm is over
layers called a solver and subsolvers. A solver pro- the other.
duces correct solution graphs, and applies local prop-
agation to them. Subsolvers obtain values of vari-
ables by solving constraint systems locally in individ- 5 Performance Measurements
ual constraint cells. During local propagation, the
solver invokes appropriate subsolvers based on solu- Using the chain benchmark [81, we compared the

tion types of constraints in cells. For example, if a cell performance of our constraint solver implemented in

contains only locally-predicate-better constraints, the Objective-C with that of DeltaBlue implemented in

solver calls the aubsolver for ?LPB. This architecture C7 . Initially, the constraint hierarchy contains the re-

enables us to introduce a new solution type of con- quired constraints zo = z x,z1 Z2, ... , Xn-2 = zn-1

straints only by implementing a new subsolver and the constraint weak stay(zo) (Figure 16a). The

We implemented three esusolvers. one that han- chain benchmark measures the planning time to add

dles locally-predicate-better constraints represented the constraint strong edit(zx,._) to the hierarchy (Fig-

as linear equations or multi-way constraints, one ure 16b), and also measures the execution time to

that treats least-squares-better linear equation con- compute values of variables when the value of z, 1

straints, and one that generates graph layouts based is changed through edit(z.-). Both of the planning
on the spring model [3]. and the execution are the worst cases where the over-all solution graph must be processed.

4 Comparison with SkyBlue %"k

SkyBlue is a successor of the DeltaBlue algorithm (7]. (2)

Like DeltaBlue, SkyBlue solves hierarchies of multi-

way constraints using locally-grapk-better, a variation weak a" u" s"

of locally-predicate-better. Moreover, it supports , r --'
constraints with multi-output methods and cycles of (b)

constraints. A method of a constraint is a procedure -. _ .
used to satisfy the constraint, and a multi-output
method is a method that outputs values to multi- Figure 16: The Chain Benchmark
ple variables. For example, the constraint p = (z, y),
which equates a point variable p with two real var- Figure 17 shows the result": while the planning
ables z and y, has a single-output method p +- (z, Y) time of our solver is almost four times as long as
and a multi-output method (x,y) .- p. SkyBlue 'In fact, the subsolver implemented for locally-predica&e-

treats cycles of constraints by invoking cycle solvers, better constraints handes multi-way constraints with single-
which solve constraints in cycles simultaneously. output methods.

It is intresting to compare cycle solvers of the 7 Since SkyBlue is implemented only in Lisp, we did not
SkyBlue constraint solver with subsolvers of our con- compared our constraint solver with SkyBlue.

SPrecisely speaking, the separation of planning and exe-

straint solver: Cycle solvers solve two or more con- cution is slightly different from the description presented in

straints at once because methods solve associated Section 2. In both our constraint solver and DeltaBlue, the

56

n 1000 2r.00 3000 4000 5000
Planning DeltaBlue 67 If' 250 350 434
(msecs) Our Solver 283 617 933 1183 1817
Execution DeltaBlue 2.5 4.3 6.7 8.7 10.8
(resets) Our Solver 36.7 68.3 105.0 140.0 176.7

Figure 17: Results of the Chain Benchmark

that of DeltaBlue, the execution time is nearly twenty [2] Borning, A., B. Freeman-Benson, and M. Wil-
times as long. The planning time is probably accept- son, "Constraint Hierarchies," Lisp and Symbolic
able for GUI applications, but the execution time Computation, vol. 5, 1992, pp. 221-268.
is extremely too long for such applications. The [3] Kamada, T., Visualizing Abstract Objects and
main handicaps of our solver are the complex data Relations, A Costraint-Based Approach. Singa-
structure of constraint cells, and dynamic bindings pore: World Scientific, 1989.
of methods in Objective-C'. We believe that dy-
namic bindings caused such slow execution because [4] Maloney, J. H., A. Borning, and B. N.
the source program involves numerous message send- Freeman-Benson, "Constraint Technology for

ings with dynamic bindings10. If we re-implement User-Interface Construction in ThingLab II," in
our solver in C++, its performance is expected to Proceedings of the ACM Conference on Object-

approach that of DeltaBlue. Oriented Programming Systems, Languages, and
Applications, Oct. 1989, pp. 381-388.

[5] Miyashita, K., S. Matsuoka, S. Takahashi, and
6 Conclusions and Status A. Yonezawa, "Interactive Generation of Graph-

ical User Interfaces by Multiple Visual Exam-
We proposed an efficient algorithm that incrementally pies," 1994 (Submitted).
solves multiple solution types of constraints in single [6] Myers, B. A., D. A. Giuse, R. B. Dannenberg,
constraint hierarchies by grouping together cyclic or B. Vander Zanden, D. S. Kosbie, E. Pervin,
conflicting constraints into constraint cells. We im- A. Mickish, and P. Marchal, "Garnet: Compre-
plemented a constraint solver based on this algorithm, hensive Support for Graphical, Highly Interac-
and provided a promising result on its performance. tive User Interfaces," IEEE Computer, vol. 23,

Using this solver, we developed the IMAGE system, no. 11, Nov. 1990, pp. 71-85.
which generates GUIs by generalizing multiple visual [7] Sannella, M., "The SkyBlue Constraint Solver,"
examples [5]. This system takes advantage of the abil- Technical Report 92-07-02, Department of Com-
ity of our solver to handle hierarchies of sinultaneous puter Science and Engineering, University of
constraints. Also, we are planning on applying our Washington, Feb. 1993.
constraint solver to our algorithm. animation system
based on declarative specification [9]. [8] Sannella, M., B. Freeman-Benson, J. Maloney,

and A. Borning, "Multi-way versus One-way
Constraints in User Interfaces: Experience with

References the DeltaBlue Algorithm," Technical Report 92-
07-05, Department of Computer Science and En-

[1] Borning, A., "The Programming Languages As- gineering, University of Washington, July 1992.

pects of ThingLab, a Constraint-Oriented Simu- (9] Takahashi, S., K. Miyashita, S. Matsuoka, and
lation Laboratory," ACM Transactions on Pro- A. Yonezawa, "A Framework for Construct-
gromming Languages and Systems, vol. 3, no. 4, ing Animations via Declarative Mapping Rules,"
Oct. 1981, pp. 353-387. 1994 (Submitted).

(10] Wilson, M. and A. Borning, "Hierarchical Con-
prphiUs tme idUde the time o SOPOIoSi t straint Logic Programming," Technical Report

'Objcd-C does not sppot stAc bhin. lihe C++. 93-01-02a, Department of Computer Science and
1 "The executio time became amost tea-perceut shorter Engineering, University of Washington, May

whm we removed only me mnge sendmig that would be ex- 1993.
ecuted n tme trio the soucode boy ignoing encapsulation
of objects.

57

Analyzing and Debugging Hierarchies of
Multi-Way Local Propagation Constraints

Michael Sannella
Department of Computer Science

and Engineering, FR-35
University of Washington
Seattle, Washington 98195

sannellacs.washington.edu

April 1, 1994

Abstract
Multi-way local propagation constraints are a powerful and flexible tool for implementing applications

such as graphical user interfaces. We have built constraint solvers that maintain sets of preferential multi-
way constraints, and integrated them into user interface development environments. These solvers are
based on the formal theory of constraint hierarchies, leaving weaker constraints unsatisfied in order to
solve stronger constraints if all of the constraints cannot be satisfied.

Our experience has indicated that large constraint networks can be difficult to construct and under-
stand. To investigate this problem, we have developed a system for interactively constructing constraint-
based user interfaces, integrated with tools for displaying and analyzing constraint networks. This paper
describes the debugging facilities of this system, and presents a new algorithm for enumerating All of the
ways that the solver could maintain a set of constraints.

1 Introduction

A multi-way local propagation constraint is represented by a set of method procedures that read the values
of some of the constrained variables, and calculate values for the remaining constrained variables that satisfy
the constraint. A set of such constraints can be maintained by a constraint solver that chooses one method for
each constraint so that no variable is set by more than one selected method (i.e., there no method conflicts).
If there are no cycles in the selected methods, the solver can order them and execute them to satisfy all of
the constraints. For example, given the constraint A + B = C (represented by three methods C 4- A + B,
A 4-- C - B, and B +- C - A) and the constraint C + D = E (represented by three similar methods), the
two constraints could be satisfied by executing the methods C - A + B and E 0-- C + D in order.

For a given set of constraints, it may not be possible to choose methods for all constraints so there are no
method conflicts, or there may be multiple ways to select methods. The theory of constraint hierarchies [1]
offers a way to control the behavior of a constraint solver in these situations. Given a constraint hierarchy,
a set of constraints where each constraint has an associated strength, a constraint solver can leave weaker
constraints unsatisfied in order to solve stronger constraints. Research on constraint hierarchies has pro-
duced several formal definitions for the "best" solution to a constraint hierarchy that are useful in different
applications.

The DeltaBlue and SkyBlue incremental constraint solvers can be used to maintain hierarchies of multi-way
local propagation constraints in applications such as user interfaces. Both of these solvers select constraint
methods to construct a method graph (or mgraph) with no method conflicts where stronger constraints are
enforced (have a selected method) in favor of weaker constraints. More formally, they construct a locally-
graph-better (or LGB) method graph, where a method graph MG is an LGB method graph if it has no
method conflicts and for each unenforced constraint C in MG there exists no conflict-free method graph
for the same constraints where C is enforced and all of the enforced constraints of MG with the same or
stronger strength as C are enforced.

DeltaBlue was the basis of the ThingLab II interactive user interface development environment [5, 10.
SkyBlue is more general successor to DeltaBlue that satisfies cycles of methods by calling external solvers

58

and supports multi-output methods (methods that set multiple output variables) [7, 8]. The Multi-Garnet
package [9] uses the SkyBlue solver to add support for multi-way constraint- and constraint hierarchies to
the Garnet user interface toolkit [6].

As constraint solvers have been applied to larger problems it has become clear that there is a need for
constraint network debugging tools. In order to debug a constraint network, the programmer needs tools
to examine the constraint network, determine why a given solution is produced, and change the network
to produce the desired solution. We have created a system for interactively constructing graphical user
interfaces based on constraints (maintained by SkyBlue), and debugging the constraint networks created.
The remainder of this paper describes the debugging facilities of this system and presents a new algorithm
for generating all LGB method graphs for a set of constraints that promises to be more efficient and useful
for debugging common constraint networks.

2 Debugging Constraint Networks

Figure 1 shows two views of a simple user interface constructed using our system. In Figure la, the two
horizontal lines are lined up. In Figure lb, the mouse has moved the left endpoint of the bottom line.
Constraints keep the width of the line constant, so the right endpoint is moved by the same amount.

(a) EU (bk X2 al W Z2

WividWh

Figure 1: Moving the left endpoint of a constant-width horizontal line.

This figure also displays the constraints relating the variables z1 and z2, the X-coordinates of the two ends
of the bottom horizontal line, to the variable width, the difference between the two X-coordinates. The
constraint x1 = mouse.X sets :1 to the X-coordinate of the mouse position. The medium stay constraint
(displayed with an anchor symbol) on width prevents the solver from changing this variable. The weak stay
constraint on x2 is not enforced, since the solver cannot satisfy this constraint without revoking a stronger
constraint. As the mouse is moved, the width of the line is kept constant.

The constraint diagrams present information about the constraints (black boxes) and variables (white boxes)
including names, constraint strengths' and variable values. The connection between the graphic objects and
the variables specifying their positions (such as zl) is shown by positioning the variables next to their graphics
(though these variable boxes can be moved by the user, if the display gets too complicated). These diagrams
also show how each variable value is calculated: the arrows indicate the variables currently determined by
the selected method of each constraint. If the constraint is not enforced by any method, the lines to its
variables are dashed (i.e., the stay constraint on x2). It is possible to explain the derivation of a variable
value by examining all of constraints and variables upstream of the given variable.

This system can be used to construct complex constraint graphs, and experiment with the behavior of the
user interface as constraints are added and removed. We have developed a set of debugging tools that present
additional information such as disjoint subgraphs, directed cycles, or directed paths between two variables.
A more sophisticated tool analyzes the constraint network to determine why a particular constraint cannot
be satisfied, identifying those stronger constraints that prevent the given constraint from being enforced.
Similar tools have been developed for the QOCA toolkit [2] and the Geometric Constraint Engine [4]. The
following section describes a tool for examining the different possible LGB mgraphs that the solver may

I The exauples in this paper wil ume the strengths met, stroug, medism, and wesk, in order from strongest to weakest.

59

produci, and presents a new algorithm for generating these mgraphs. Research continues on developing new
debugging tools, improving the facilities for invoking them, and presenting the results of their analyses.

3 Examining Multiple LGB Method Graphs

When debugging a constraint network, the programmer may want to know whether the constraints specify a
unique solution, or whether the solver might produce different solutions at different times. Some constraint
solvers can produce different possible solutions for a set of constraints, such as the CLP(R) system that
generates symbolic expressions representing sets of multiple solutions, and produces alternate solutions upon
backtracking (3]. Examining the different solutions can help the programmer understand the constraint
network, and determine what constraints should be added to control the solver.

0 0 -- 0 0 '00

N o 7500 .00 0 00
00.00 550 .0o

0 0 1 00 e

Figure 2: Moving the left endpoint of a horizontal line with a midpoint. The top line shows the initial
positions of the three points. Constraints and variables downstream of the mouse constraint are highlighted.

Given a hierarchy of multi-way local propagation constraints, there may be more than one possible LGB
method graph that the solver could use to maintain the constraints. For example, consider the constraint
network shown in Figure 2. In this situation, there are three ways for the solver to maintain the constraints:
by keeping the width variable constant and moving the line (2a), keeping z2 constant and moving the
two endpoints inward (2b), or keeping z3 constant and solving the cycle of linear constraints to position z2
between zI and z3 (2c). The solver can be forced to choose one of these behaviors by adding tay constraints
to variables that the user would prefer stay constant (2d). Different strength stay constraints can be used
to specify relative preferences for which variables should be constant.

In this example, it is easy to manually generate the possible LGB method graphs. This is much more difficult
for large constraint networks: it may not be clear whether there are any alternate LGB method graphs. We
have developed an algorithm that enumerates all possible LGB method graphs that SkyBlue could produce
for a set of constraints. The different method graphs in Figure 2 were generated in this way. Work continues
on developing better ways of examining a set of LGB method graphs, such as automatically partitioning
them into subclasses depending on which variables are constant. Given two method graphs, it may not be
obvious how they differ. Tools have been created for comparing two or more method graphs, highlighting
the similarities and differences.

60

4 An Algorithm for Generating All LGB Method Graphs

We have developed an algorithm for enumerating the possible LGB method graphs for a set of constraints.
This algorithm systematically calls the SkyBlue solver to increase the strength of unenforced constraints,
searching for alternate method graphs where these constraints are enforced. SkyBlue incrementally updates
the current LGB method graph as a constraint is added, removed, or has its strength changed, so it is
practical to change constraint strengths repeatedly. The following subsections present this algorithm in
stages. First, we present an algorithm for generating all sets of constraints that can be simultaneously
enforced in an LGB mgraph. Then, this algorithm is extended to generate all LGB mgraphs.

4.1 LGB Enforced Sets

The enforced sei (or E-sl) of an mgraph is the set of constraints that are enforced in the mgraph. The E-set
of an LGB mgraph are known as an LGB E-set. For example, Figure 3 shows the two possible LGB mgraphs
for the three constraints. These mgraphs have E-sets of {C, C2} and {C2, C3} respectively. Sometimes it
is useful to speak of the E-set for the constraints with a particular strength. For example, Figure 3a has a
strong E-set of {C2), and a weak E-set of {1).

Figure 3: Two LGB mgraphs with different LGB E-sets.

Note that no LGB E-set for a set of constraints can be a proper subset oi another LGB E-set. Suppose that
E1 and E2 are the E-sets for two LGB mgraphs M, and M 2 for the same set of constraints. If El were
a proper subset of E2 , this would imply that every constraint enforced in M1 is enforced in M2 , and M 2

contains at least one enforced constraint that is unenforced in M1 , hence Ml would not be an LGB mgraph.

4.2 Pinning Constraints

Consider an LGB mgraph for a set of constraints. If all of the constraints are enforced, then there is only
one possible LGB E-set for these constraints. If some of the constraints are unenforced, then there may be
other LGB mgraphs for the constraints where some of the currently-unenforced constraints are enforced and
other currently-enforced constraints are unenforced. The question is how to generate them.

Suppose that we start with the LGB mgraph of Figure 3a. All of the strong constraints are enforced, so
all LGB mgraphs for these constraints will have a strong E-set of {C2}. Consider the unenforced weak
constraint C3. Suppose that we changed the strength of C3 to be slightly stronger than weak. In this case,
C3 would be enforced and Cl would be revoked, leading to the mgraph in Figure 4 (the only LGB mgraph
for the modified constraints). This mgraph has an E-set of {(C2, C3}, the same as Figure 3

Figure 4: Increasing the strength of C3 to produce a different E-set.

For each constraint strength sir, define the pin-strengt of sir as another strength that is slightly stronger
than sir, and weaker than the next stronger constraint strength. The act of increasing the strength of a
constraint to its pin-strength (i.e., the pin-strength between its normal strength and the next constraint
strength) is called "pinning" the constraint. Pinning different constraints can produce LGB mgraphs with
different E-sets, as in Figure 4.

An important fact about pinning is that, no matter what combination of constraints are pinned, the selected
methods in the resulting LGB mgraph will specify an LGB mgraph for the original (unpinned) constraints.
The algorithm described in the next section systematically pins unenforced constraints to generate different
LGB mgraphe for the original constraints, and collects their B-sets.

61

4.3 Generating LOB E-Sets

Figure 5 presents pseudocode that generates all of the LGB &-sets for a set of constraints. get-*sets
simply initializes global variables containing a list of the constraints we are interested in (ecnss), a list of
the collected E-sets '*ss*u), and a procedure to be called to save each E-set (*save-.proc*). 2 Iathsce
save-.proc is set to the procedure xave..eset, which adds the &-set for the current rngraph to *esots*
if it isn't there already. After setting the global variables, get-.sets calls pin-.cus, which pins different
combinations of constraints, calling esave..proce to process each of the resulting LGB rngraphs.

get-esets (cnn)
cns := cna
**ets* := 0
uave.proc saweeOset
pin-cna({}. fl.{} cus)
return cesets*

saveemeot
set :=collect list of all enforced constraints in *cna*

add set to *ests* it it is not already there

pin-ca(pinned, unpinned, cnn, weaker. cu)
1U cnn contains any unenforced constraints then

ca : choose any unenforced ca in cns
;; generate esets with ca unpinned
pin..cns(pmnned, unpinned U {cn}, cnn - {cn}, weaker.cns)

;generate esele with cia pinned
pin(cn)
It pinned U {cn} are all enforced then

pin..cna(pinned U {cn}, unpinned, cas - {cn}, weaker..cns)
unpin(cn)

Else If weaker..cns is not empty then
;; pin all unpinned enforced constraints at current strength

enforced..unpinned := all enforced constraints in unpinned U cna
For cn in enforced..unpinned do pin(cn)
;; process nezt weaker cns

next-.streagth := strongest strength of constraints in weaker-cas
net-.cns := all constraints in weaker-cns with strength next-.strength
pUnL.C{}.) {), nert..cns, weaker-cns - nelt..cns)
;; unpin constraints

For ca in enforced-.unpinned do unpin(cn)
Else

;; all cns processed. save current state
call the procedure *save..proc*

pin(cn)
cn.origiual-.strength :=cn.strength
change..strength(cn, get..pin..utrength(cn. strength))

unpmn(cu)
change..strength(cu, cn. original.strength)

Figure 5: Pseudocode to generate all LGB &sets for cns.
2Al global variables in the pedocode begin aud end with an asterisk. Anl other variables wre local to their procedures.

62

Most of the work happens in the recursive procedure pin-.cn-. During any call to pin.cns, it is processing
the set of constraints at a single strength level. The arguments pinned, unpinned and cns are the sets of
constraints at the current strength level that have been pinned, left unpinned, and have not been processed.
veaker-cns contains weaker constraints to be processed later. If cns contains any unenforced constraints,
one is chosen (ca) and pin.cns recurses to investigate mgraphs where ca is not pinned. When that recursive
call returns, cu is pinned. If cn can be enforced along with all of the other pinned constraints, then pin.cns
recurses to investigate mgraphs where cn is pinned. Finally we unpin cu, restoring its original strength.

If there are no unenforced constraints in cns, then we have finished processing the constraints at this strength
level. Now we are ready to processes the weaker constraints. To ensure that the current strength E-set doesn't
change, all of the enforced constraints that haven't been pinned (enforced-unpiuned) are pinned. Then
pin.cns recurses, extracting the constraints with the next-weaker strength from weaker-cns. Note that
when pin.cns is initially called from getesets the first three arguments are all empty sets, so piuncns
just extracts the strongest constraints from voaker-cns and recurses.

When all of the constraints have been processed *saveproc* is called to save information about the current
LGB mgraph (get-esots sets this to save-eset, which saves the current LGB E-set).

4.4 Why get-esets Generates All E-Sets

Since get-ets only modifies the mgraph by pinning constraints, every E-set collected is a correct LGB
E-set for the original constraints. To show that get-esets is correct, we need to show that every possible
E-set is generated. Suppose that this were not true, and there was a set of constraints cno with an LGB
E-set E that was not generated by get.esets(cns). Consider the tree of recursive calls to pincnzs caused
by get-osets(cns). Figure 6 shows part of such a tree, where first C1, and then C2, are found to be
unenforced, and then either left unpinned or pinned during different recursive calls.

pin-cns(o, {, {Cl,C2,...},

C1 unpinned : C1 pinned

pin-cns(0, (C1), {C2,...},.....) pin-cns({C1), {}, {C2,...}, {...})

C2 unpinned C2 pinned :

PlcS(1, (Cl2,), .,...)) pin-cns({C2), (Cl), (...}, 4...)

Figure 6: Partial tree of recursive calls to piuncns.

Consider tracing down this tree, following each branch that pins a constraint in E, and each branch that
leaves unpinned a constraint that is not in E. For example, if E contained C2 and did not contain C1, one
would follow the branches with boxed labels in Figure 6. Note that every time a constraint in E is pinned
it ms4 be possible to enforce it along with the other pinned constraints, since E is the E-set for an LGB
mgraph, so all of the constraints in E must be simultaneously enforcible. Eventually, you will reach a leaf
of the tree, and *save-proc* will be called to process the current mgraph.

We claim that the E-set of this leaf mgraph is exactly E. First, all of the constraints in E that were found
unenforced in c" and pinned are enforced. Consider some other constraint cn that is in E but was not found
unenforced in cus. It must not have been removed from cns, since the only way constraints are removed from
cus is when they are considered for pinning, and if this had happened then cn would have been explicitly
pinned. Since it wasn't removed from cns, then it must have been enforced when that strength level was
processed, and hence it was pinned when gok'ng to the next strength level. Therefore, it must be enforced
in the final mgraph, and all of the constraints in E must be enforced. Finally, consider some constraint cn'

63

that is not in E. If it was enforced, then there would be an LGB mgraph where all of the constraints in E
'plus another constraint en' are enfqrced, in which case E would not be the E-set of an LGB mgraph. Thus,
we have shown that exactly those constraints in E are enforced in the leaf mgraph.

4.5 Generating Results Multiple Times

The procedure save-eset is written to add the current E-set to the list *esets* only if it is not there
already. This is necessary because get-sots may generate the same E-set multiple times if constraints
have multi-output methods. For example, suppose we call getesets on the three strong constraints Cl,
C2, and C3, whose current mgraph is shown in Figure a. The clock diagram indicates that CI hasa single
method which outputs to both VI and V2 (this diagram is not shown for constraints with a single-output
method outputting to each of their variables). If we pin C2 and not C3, we produce the mgraph of Figure 7b,
and collect its E-set. On backtracking, if we leave C2 unpinned, and pin C3, we will produce Figure 7c,
which has the same E-set.

(a) (b) (c)

Figure 7: Starting with mgraph (a), get.esets may collect the same E-set multiple times (b,c).

4.6 Collecting Some LGB Method Graphs by Adding Stay Constraints

It would be possible to modify save-eset to collect the enforced constraints along with their current selected
methods when it is called within get.esets. If the given set of constraints had exactly one LGB mgraph for
each LGB E-set, thiswould collect all of the LGB mgraphs. However, if there are multiple LGB mgraphs
that have the same E-set (Figure 8), there is no guarantee that they would all be generated by get..esets.

Figure 8: Three possible LGB mgraphs for {C1, C2}.

One thing that distinguishes different LGB mgraphs with the same E-set is the sets of variables that are
determined and undetermined. This observation can be used to generate these different LGB mgraphs:
Given a set of constraints cna, let v-weak be a strength weaker than any of these constraints. For each
of the variables that can be determined by any of the constraints' methods (the potential outputs of the
constraints), add a new stay constraint with strength v-weak. Consider an LGB mgraph for this extended
set of constraints, cen. The selected methods for cns in the extended mgraph define an LGB mgraph for

ens alone, since none of the v-weak stay constraints can effect which stronger constraints are enforced, but
they can effect the selected methods used to enforce stronger constraints. Calling pin.._cus(cns) will pin
all of the constraints including the v-weak stay constraints, generating different LGB mgraphs for cns. For
example, Figure 9 shows how extra v-weak stay constraints added to the constraints from Figure 8 can be
pinned to generate the mgraphs in Figure 8a and 8c.

VI V1 V

(a) i (b)I
Figure 9: Pinning extra stay constraints to generate different LGB mgraphs for {CI, C2}.

Figure 10 presents pseudocode that creates the extra variable stay constraints and passes all of these con-
straints to pin-cus, which will generate different LGB mgraphs for cns. Note that *save-proc* is set to
the procedure save.graph, so it will be called to save the current mgraph (including selected methods)

64

within pin..us. *ense does not include the extra variable stay constraints, since we are only concerned
with collecting the method graphs for the original constraints.

getsoaelgb_zVraphs(cns)
cnLs : ncs
:-aphs {}
saveproc := save.graph
;; add stays to output variables
var-stay-strength any strength weaker than all ot the constraints in ens
potential-outputs a list of all potential output variables for cns
output-var-stays = a stay constraint with strength var.stay.strength

for each var in potential-outputs
For cn in outputvarstays do add_€onstraint(cn)
;; generate mgraphs for constraints, including extra stays

pin...usC),{}, {}, ens U outputvarstays)
;; remove added stays

For cn in outputvar.stays do reaoveconstraint(cn)
return *mgraphs*

save_.agraphO)
ngaph := For cn in *cns* collect cn and its current selected at
add agraph to *sgraphs* it it is not already there

Figure 10: Pseudocode to generate some LGB mgraphs for cns.

4.7 Collecting All LGB Method Graphs by Adding Method Variables

There are two situations where getsoz,_gbWaphs may not generate all possible LGB mgraphs for a set
of constraints: (1) There are directed cycles of methods. The constraints {C1, C21 in Figure Ila have two
LGB mgraps, one with a directed cycle in each direction. Pinning extra stay constraints on the variables will
not choose one mgraph over the other. (2) There are constraints with "subset methods," where the outputs
of one constraint method are a subset of the outputs of another method for the same constraint. This is rare,
but it is not prohibited by the definition of multi-way local propagation constraints. For example, constraint
C3 in Figure hIb has one method that outputs to V7 and V8, and another method that outputs to V8.
If the constraint solver always chooses the second method, getsoaelgb.agraphs will never generate an
mgraph containing the first method.

V5 '76 1X

Figure 11: (a) A method graph with a directed method cycle. (b) A constraint with subset methods. (c)
Adding extra variables to (a). Method diagrams are shown in (a) for comparison with (c).

Given cycles or subset u hods, it is possible to generate all possible mgraphs using the pseudocode of
Figure 12. This code modifies every constraint that has more than one method, creating an extra variable
for each constraint method, and adding it as an output to all of the other methods of the constraint. Applying
this to Figure hla produces Figure 1ic, where the new variable Xl is only set when Cl is enforced with a
method other than its second method (setting V2 and X2). When the modified constraints are passed to

65

• ~~~~0 E, .a I

gSetsoae.lgb.graphs, and v-weak stays are added to these extra variables, pinning these extra stays will
try all of the methods of each constraint, if they are allowed in an hGB mgraph. Note that constraints with
only a single method do not need to have any extra variables added, since such a constraint's single method
must be used whenever the constraint is enforced.

Setall.-Igb-agraphs,(cus)

;; add extra variables to methods
For all constraints cn in cas with more than one method do

remove-constraint (ca)
For ut in cn.methods do

v :- create a new variable
add v to cn.variables
add v to the outputs of all of cn's methods except at

addconstraint (cn)
;; add extra stays to variables, and generate mgraphs

mWgaphs := gst-some.lgb.Agaphs(cns)
;; remove extra variables from constraints and methods

For all constraints cn in cns with more than one method do
remove-constraint (ca)
restore ca.variables
restore outputs for all of cn's methods
add.constraint(cn)

return agaphs

Figure 12: Pseudocode to generate all LGB mgraphs for cus.

The pseudocode removes all of the constraints before adding the additional variables to the methods, and then
re-adds the constraints. Likewise, the constraints are removed before removing these additional variables. If
the constraint solver had an entry for modifying methods, this would not be necessary.

4.8 Evaluating the Algorithms

We are currently comparing the performance of get.all-lgbmgraphs to alternate algorithms for generating
LGB mgraphs. An earlier algorithm enumerated all possible combinations of selected methods without
method conflicts, collecting all mgraphs that were LGB. This worked well for small networks, but was much
too slow for large networks (taking time exponential in the number of constraints). Testing shows that
get._allIgb..graphs is much faster than the earlier algorithm for many sets of constraints encountered in
actual practice (2 seconds versus 22 minutes for one set of 17 constraints), but we have been able to construct
constraint networks where it is significantly slower than the earlier algorithm. get-all-lgb..mgraphs appears
to be most efficient when there are only a few possible LGB mgraphs. In the absence of a simple way to
predict which algorithm is faster, it might be reasonable to run both algorithms in parallel.

The different algorithms described in this paper may be useful at different points during debugging.
get-eosts can be used to determine whether a given constraint is always enforced, or never en-
forced. If there are no subset methods and the programmer doesn't care about the directions of cycles,
ge-tsomelgbnngraphs can be called instead of get-alllgbngraphs.

These algorithms call the SkyBlue constraint solver to manipulate the constraints. Therefore, any future per-
formance improvements to SkyBlue (or other algorithms that maintain LGB mgraphs) will directly improve
the performance of these algorithms.

66

5 Conclusions and Future Work

We have described some of the debugging tools included within our system for interactively constructing
constraint-based user interfaces, and presented a new algorithm for generating all of the LGB method graphs
for a set of constraints. This algorithm is the basis for a powerful debugging tool that allows the programmer
to explore the different behaviors that can be produced by a set of constraints.

In the future we want to continue developing new debugging tools, improving the facilities for invoking
them and presenting the results of their analyses. We also want to conduct user testing, to determine which
debugging tools are particularly helpful to programmers when constructing large constraint networks.

Acknowledgements
This work was supported in part by the National Science Foundation under Grant IRI-9102938.

References

[1] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223-270, September 1992.

[2] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture for
constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on Object-
oriented Graphics, Champery, Switzerland, October 1992. Also will be published in Advances in Object-
Oriented Graphics II, Springer-Verlag, 1993.

(3] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems, 14(3):339-395, July 1992.

[41 Walid T. Keirouz, Glenn A. Kramer, and Jahir Pabon. Exploiting constraint dependency information
for debugging and explanation. In Position Papers for the First Workshop on Principles and Practice
of Constraint Programming, pages 156-165, April 1993.

[5] John Maloney. Using Constraints for User Interface Construction. PhD thesis, Department of Computer
Science and Engineering, University of Washington, August 1991. Published as Department of Computer
Science and Engineering Technical Report 91-08-12.

[6] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie, Ed Per-
vin, Andrew Mickish, and Philippe Marchal. Garnet: Comprehensive support for graphical, highly-
interactive user interfaces. IEEE Computer, 23(11):71-85, November 1990.

(7] Michael Sannelia. The SkyBlue constraint solver. Technical Report 92-07-02, Department of Computer
Science and Engineering, University of Washington, February 1993.

[8] Michael Sannella. The SkyBlue constraint solver and its applications. In Saraswat and van Hentenryck,
editors, Proceedings of the 1993 Workshop on Principles and Practice of Constraint Programming. MIT
Press, 1994. To appear.

[9] Michael Sannella and Alan Borning. Multi-Garnet: Integrating multi-way constraints with Garnet.
Technical Report 92-07-01, Department of Computer Science and Engineering, University of Washing-
ton, September 1992.

[10] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus one-
way constraints in user interfaces: Experience with the DeltaBlue algorithm. Software-Practice and
Eiperience, 23(5):529-566, May 1993.

67

Inferring 3-dimensional constraints with DEVI

Suresh Thennarangan
suresh~iss.nus.sg

Institute of Systems Science
National University of Singapore,

Heng Mui Keng terrace,
Singapore 0511

Gurminder Singh
gsingh@iss.nus.sg

Institute of Systems Science
National University of Singapore,

Heng Mui Keng terrace,
Singapore 0511

Abstract
Constraints can be used to specify and maintain spatial relationships
among objects in a geometric design. In the 3-D geometric design do-
main, the diversity of possible relationships among objects makes it
difficult for the designer to specify useful or intended relationships in a
productive and intuitive manner. We have built a constraint-based 3D
geometric editor called DEVI that infers possible or intended relation-
ships among objects of the design. DEVI's database of relationships
between design primitives can be extended using a descriptive language
which enables the developer to specify a set of rules made up of con-
ditions, to be satisfied, and inferences to be made. Each rule has two
parts; the first is a boolean condition wherein a certain situation is
described; the second part is an instruction to the system to infer the
specified constraint (or set of constraints) if the boolean condition is
true.

1 Introduction

Constraints have proven useful in automatically keeping spatial relationships
satisfied among geometric objects in a geometric design. They alleviate

68

much of the tedium involved in making small changes and then propagating
their effect.

Constraint-based geometric-design is not a new area. Rossignac's CSG
system [Rossignac86] allows the user to specify models in terms of uneval-
uated constraints that are evaluated sequentially, during the construction
process, in a user-specified order. Constraints are evaluated by perform-
ing rigid-body motions. In their paper, Kapur et.al. [Kapur91] describe a
generic model for representing polyhedra as a network of nodes and con-
straints. Van Emmerik's solid modeling system [vanEmmerik9O] is an ex-
ample of a constraint-based modeling system with a graphical front-end that
allows the specification of constraints via popup and cascading menus.

Constraints thus represent a significant advantage in geometric-design
systems. To gain this advantage, designers have to invest extra effort to
specify constraints. Geometric-design systems usually allow a fixed number
of pre-defined relationships among the geometric objects. In a typical inter-
active geometric design environment, the designer would create the geomet-
ric objects using menus, positioning and alignment tools, and tell the system
how he wants them constrained to each other. The designer normally knows,
in advance, where the new geometric object that he is creating should be
located and how it should be related to its' neighbours. He therefore tends
to create a situation close to the end-result that he has in mind.

To make the process of specifying relationships simpler, earlier systems
have used some of the following approacheb. VanWyk's automatic drawing
beautifier [vanWyk85] looks at a design to check if any predefined relation-
ships exist and makes them persistent. This approach is not interactive.
Converge [Sistare9O] provides a "locus" input mode for constraints wherein
newly created geometric objects are automatically constrained in a desired
way to a specified existing geometric object. It is an improvement over the
previous approach but is still rather limiting because it forces the user to
switch modes constanT is not a general solution. A more general ap-
proach is to use geomet .iext, users' actions and knowledge of geometric
objects and their possible relationships to infer what the user is trying to
do. Variations of this approach have been used successfully by a few sys-
tems, primarily in the two-dimensional domain. Peridot [Myers86] uses the
'demonstration' metaphor to help specify constraints. It infers the relation-
ships of the users' actions to user-interface elements during a demonstra-
tion sequence, and generates code to handle this action in a real situation.
Briar [Gleicher92] augments snap-dragging [Bier86] by making the relation-
ships persistent. Rockit [Karsenty92] also uses augmented snap-dragging

69

and maintains a database of relationships and a static inference-rule base
it allows the user to dynamically change the conditions that determine

which rules to execute.
The last approach has a limitation: it is difficult to extend and cus-

tomize. We propose to extend this method by allowing the designer to write
inference rules in a descriptive language. Each rule has two parts; the first
is a boolean condition wherein a certain situation is described in terms of
geometric objects and the geometric constraints relating them; the second
part of the rule is an instruction to the system to infer a specified constraint
(or set of constraints) if the boolean condition is satisfied. These rules are
applied in response to interactive events like creation or perturbation of
geometric objects.

In this paper we describe in detail how DEVI infers constraints using it's
knowledge database and how we have augmented it with our inference-rule
approach. For a general introduction to DEVI, please see [Thennarangam93].

2 DEVI's Approach

DEVI is a constraint-based, interactive 3D geometric editing environment
that uses flexible user-interface techniques to simplify the task of editing 3D
geometry (see Figure 1). DEVI provides an interpretive language to specify
geometric objects and the constraints between them. It infers constraints
among geometric objects as they are created and manipulated. These in-
ferred constraints subsequently become persistent and are maintained by
the system. In order to help understand and debug the design in a graph-
ical fashion, DEVI presents the network of constraints and geometry in a
constraint-network browser that is useful in determining relationships and
debugging the constraint network (see Figure 1).

DEVI organizes its' constraint network as a partitioned directed graph.
When an event occurs in the interactive geometry editor, DEVI quickly
isolates the portion of the design that will be affected by the event. By
default, DEVI only tries to infer constraints between selected objects and
newly created or newly perturbed objects - a newly created object is added
to the current selection. This limits the number of inferences the system has
to consider. Experience with the Druid UIMS [Singh90] shows that designers
tend to create designs incrementally - they usually create related parts of
the design one after the other, rather than randomly. DEVI exploits this
fact. In case it makes more than one inference, it prompts the user to make

70

FIgure 1: DEVs User-hnterface - The top-left window is the design work-aea
To the right are the geometry, constraint and tools palettes.lbe window at the
bottom depict the constraint-network browser The user can edit and manipulate
constraints using the browser.

71

a choice. This scheme also serves as an aid in case the designer forgets to
specify some relationships that he had intended to.

Consider the process of solving a network of constraints. DEVI's hybrid
solver propagates known values about the constraint graph until it satisfies
each constraint node. Failing to do so, it resorts to an iterative approach,
using Newton-Raphson's iteration to solve the set of algebraic functions that
describe the constraint network.

A minimization function is defined for each constraint. When this func-
tion has a value close to zero, that instance of the constraint is considered
satisfied. In fact, DEVI calls the algebraic solver with a single constraint
as an argument, demanding only a single iteration of the solver, when it is
propagating values in the constraint network; the solver tells DEVI whether
the constraint is satisfied or not. DEVI uses this property to infer con-
straints. Consider a scenario where we want to infer a constraint between
geometric objects A and B. Assume that constraints of type C1 and C2 can
exist between the geometric classes of A and B. We compute the minimiza-
tion function values for those two classes of constraints i.e. fc, (A, B) and
fc1(A, B). We choose those values that are smaller than some threshold
value. If there is more than one such value then the user is asked to make
a choice.

For the sake of generality and robustness of the solving process, one
can have the minimization function return an euclidean value that is rep-
resentative of the constraint. See [Sutherland80] and [Sistare90] for further
discussion on this point. For example, to constrain a point to lie on a plane,
one measures the distance of the point to the plane. Algebraically, this can
be expressed by substituting the point in the equation of the plane. With
more complicated constraints, it is not easy to see this relationship.

Consider another constraint that fixes the angle between two planes A
and B to be 0. Let kA = I nA1,kB = I nBi, where nA and nB are unit normal
vectors to planes A and B respectively. We could express the function we
want to minimize as follows:

fo= k +k-- 2kAkBcos-InA-nBI
The geometrical interpretation of this equation is as follows:

V' + kB - 2kAkB cos 0 is the desired length between the tips of the vectors
nA and rB, when they are constrained at an angle 8, and inA - nBI is the
current length. Obviously, when this value reaches zero, the constraint is
satisfied.

The problem with this approach is how to choose an appropriate thresh-

72

old value, which is essentially a real number. This number might not.have
much intuitive value. Since the designer may not be able to relate too well
to these seemingly obscure numbers, he might find it difficult to customize
the inferencing process. All he has are a set of real numbers that he can
manipulate back and forth. The significance of this number is determined
by how the system translates geometric constraints into algebraic equations
that can be minimized.

Our method uses familiar terminology like distance, angle etc. Although
the solver eventually works with vectors and real numbers, the designer
thinks in terms of concepts like angles, adjacencies, equalities and distances.
He might want, for example, to specify that angles close to 450 should be-
come 45* angles because, presumably, he has a lot of 45* angle situations in
his design and he does not want to go through all the trouble of explicitly
constraining them each time.

Here is an example of a rule written in this language:

RULE Rp(POLYGON pl, POLYGON p2)
IF ((ABS (ANGLE (pl, p2)-45))=)
THEN

INFER CONSTRAINT FIXANGLE (pl, p2, 45);

Based on this rule, the system automatically constrains the planes of two
polygons to lie at 45* to each other if it detects that the angle between them
is anywhere between 40* and 50*. The magic number 5 here represents
the desired angular tolerance and it is easy to understand exactly what it
represents and the consequences of changing this number to suit preferences.
A significant advantage of this approach is that it provides a way to limit the
problem of "over-generalization" [Bos92] with inferencing systems - that
they insist on making inferences that the user did not intend.

The syntax of DEVI's inference rules is simple and the effort involved
in creating new rules is well worth the effort in terms of the productivity
gained from it.

DEVI stores inference rules in memory; for each inference rule, a record
is maintained that consists of it's name, it's parameter types and a parse tree
that is evaluated each time the rule is triggered. A rule is triggered if it's
parameters match with that of the current event. Inference rules are thus
treated like geometric or constraint objects. They can be created, deleted
or modified.

73

3 Implementation

DEVI has been implemented in the C++3.0 programming language. It runs
on a Silicon Graphics Indigo Elan workstation running IRIX 4.0.5F and the
X11R4 Windows system. It uses the Motif 1.1 toolkit and IrisGL graphics
libraries.

4 Discussion

We have presented a system that enhances the ease and functionality of
using constraints in a geometric-design environment. DEVI uses constraint-
inferencing to ease the effort involved in specifying constraints in the 3-D
geometry domain. It achieves this by using it's knowledge of geometric
objects and their possible relationships. It also provides a powerful means to
extend the inferencing process by allowing the user to write inference rules.
To our knowledge, DEVI is the first system that infers spatial constraints in
the 3-D geometric domain and provides the user with the means to extend
and customize the system's constraint - inferencing capability.

Future work on DEVI will concentrate on making it more conversational,
especially offering advice on the degree of constraint to the designer and de-
tecting and warning of redundant and circular constraints. We would also
like to provide a graphical way to compose and edit inference rules. Meta-
mouse is a 2-D drawing program [Maulsby89] that induces picture-editing
procedures from execution traces of the users actions at work - it performs
a localized analysis of changes in spatial relationships to isolate constraints
and matches action sequences to build a state graph that describes what it
has learned. On detecting a repitition, it uses the state graph to predict
further actions. We are not sure if this approach can easily scale to three-
dimensions, given the inherently much greater complexity and the limita-
tions of even the state-of-art 3-D interface systems. Virtual reality systems
will probably allow this area to develop much more.

References

[Bos92] Edwin Bos. Some virtues and limitations of action infer-
ring interfaces. In UIST 92, pages 79-88. UIST, ACM,
November 1992.

74

[Bier86] Eric Bier and Maureen Stone. Snap-dragging. In Com-
puter Graphics, pages 234-240, 1986.

[Gleicher92] Michael Gleicher. Integrating constraints and direct ma-
nipulation. In 1992 Symposium on Interactive 3D Graph-
ics, pages 171-174, March 1992.

[Kapur9l] Deepak Kapur, Joseph L. Mundy, and Van-Duc Nguyen.
Modeling generic polyhedral objects with constraints. In
Computer vision and pattern recognition, pages 479-485,
Hawaii, 1991. IEEE.

(Myers86] Brad A. Myers and William Buxton. Creating highly
interactive and graphical user interfaces by demonstra-
tion. In SIGGRAPH '86, volume 20, pages 249-258. ACM,
1986.

[Maulsby89] David L. Maulsby, Ian H. Witten, and Kenneth A. Kit-
tlitz. Metamouse: specifying graphical procedures by ex-
ample. In Computer Graphics, volume 23, pages 127-136.
ACM, July 1989.

[Rossignac86] Jaroslaw R. Rossignac. Constraints in constructive solid
geometry. In Workshop on interactive 3D graphics, pages
93-110, Chapel Hill, North Carolina, 1986. ACM SIG-
GRAPH.

[Sistare90] Steven S. Sistare. A Graphical Editor for Three-
Dimensional Constraint-Based Geometric Modeling. PhD
thesis, Harvard University, Cambridge,Massachusetts,
1990.

(Karsenty92] C Weikart S. Karsenty, J Landay. Inferring graphical con-
straints with Rockit. PRL Research report 17, Digital
Corporation, March 1992.

[Singh9O] Gurminder Singh, ChunHong Kok, and TengYe Ngan.
Druid: A system for demonstrational rapid user interface
development. In UIST 90, pages 167-177. ACM, October
1990.

75

[Sutherland80] Ivan Sutherland. Sketchpad: A man-machine graphical
communication system. In Tutorial and selected readings
in interactive computer graphics, pages 2-19. IEEE Com-
puter Society, 1980.

[Thennarangam93] Suresh Thennarangam and Gurminder Singh. Devi:
A 3-d constraint-based geometry editor that infers con-
straints. In Tat-Seng Chua and Tosiyasu L. Kunii, editors,
First International Conference on Multi-Media Modeling,
volume 1, pages 45-56. World Scientific Pte. Ltd, Novem-
ber 1993.

[vanEmmerik90] Maarten van Emmerik. A system for interactive graphi-
cal modeling with three-dimensional constraints. In Eu-
rographics '90, pages 361-376, 1990.

[vanWyk85] C. van Wyk. An automatic beautifier for drawings and
illustrations. In SIGGRAPH'85, number 3, pages 225-
234. ACM, 1985.

76

Beyond Finite Domains

JOXAN JAFFAR* MICHAEL J. MAHER*

PETER J. STUCKEYt ROLAND H.C. YAP t

1 Introduction

A fnite domain constraint system can be viewed as an linear integer constraint system
in which each variable has an upper and lower bound. Finite domains have been used
successfully in Constraint Logic Programming (CLP) languages, for example CHIP [3],
to attack combinatorial problems such as resource allocation, digital circuit verification,
etc. In these problems, finite domains allow a natural expression of the problem con-
straints because bounds on the problem variables are explicit in the problem. ID other
problems however, for example in temporal reasoning and some scheduling problems,
there may not be natural bounds.

For these problems, a standard approach has been to use ad hoc bounds, giving
rise to a two-fold problem. If a bound is too tight, then important solutions ;ould

be lost. If a bound is too loose, then significant inefficiency may result. This is
because the algorithms used in finite domains work by propagating bounds on variables1

until certain local consistency conditions (for example, arc-consistency [4, 11]) are
achieved. These algorithms have the disadvantage that they reason about transitivity
of inequalities in an iterative manner; for example, detecting that x + 1 _< y _< z,
0 _ z, y < k is unsatisfiable will require a cost proportional to k.

We thus suggest that it is worthwhile to go beyond finite domains to more general
integer constraints. The issue then becomes the trade-off between greater expressive-
ness and potentially exponential-cost constraint solving. In this abstract, we propose
a restricted class of integer constraints v _. ch can be solved more efficiently than in the
general case, but which remains reasonably expressive. Furthermore, our algorithm
can be extended easily to accommodate more general integer constraints (though not
in all cases), and it also combines well with traditional propagation-based methods. In
this abstract, our presentation level is restricted to high-level algorithmic issues, and
we do not address specific implementation considerations.

"IBM T.J. Watson Research Center, P.O. Boa 704, Yorktown Heights, NY 10598, USA.
tDept of Computer Science, Univ. of Melbourne, Parkville, Victoria 3052, Australia.

'And other domain information, in general.

77

2 Integer Constraints

What are the features we desire of an integer constraint domain and solver for a CLP
system? Clearly soundness is essential. Completeness is obviously attractive, but
there is no known sufficiently efficient solver. In fact, the satisfiability problem for
nonlinear integer constraints is undecidable, so completeness is impossible to achieve.
The problem is decidable for linear integer constraints, but it is NP-complete. Thus it
appears that, in the context of a CLP system, a constraint solver that handles linear
integer constraints will necessarily be either incomplete or inefficient. In practice, the
choice taken by implementations is incompleteness and efficiency.

Given an incomplete solver, it is highly desirable to be able to characterize classes
of constraints for which the solver is complete. On the practical front, the algorithm
should be efficient, incremental and should support backtracking. Other operations
that may be required are: the ability to detect groundness, implicit equalities and
constraint entailment, the ability to extract constraints from disjunctive information,
and the ability to eliminate variables (projection).

Propagation-based solvers (e.g. [4, 5]) are a prime example of the choice of an
efficient algorithm which is relatively incomplete. These solvers are complete when
each of the constraints they handle involves only a single variable. Call this the class
of (linear) single-variable-per-inequality (SVPI) integer constraints 2. In general, these
propagation-based solvers handle constraints by extracting SVPI information from the
interaction of non-SVPI constraints with SVPI constraints. These solvers satisfy most
of the efficiency criteria mentioned above, but are incomplete and/or inefficient when
handling problems with variables which are unbounded or have very large domains.

An obvious generalization of SVPI is the class of (linear) two-variable-per-inequality
(TVPI) integer constraints. This class appears to be strictly simpler than the general
problem (unlike the three-variable-per-inequality problem). There is a strong analogy
here with the corresponding problem over the real numbers. There, current algorithms
for deciding real TVPI constraints (e.g. [2]) are more efficient than current algorithms
for arbitrary real linear constraint solving. Certainly integer TVPI constraints are far
more expressive than SVPI constraints: for example we can encode constraints such as
z mod 11 E {1,5} byx_ 11y+1,z< l1y+5, x > 11z+5, < 11z+12. Surprisingly,
solving integer TVPI constraints is also NP-complete [9]. However TVPI constraints
seem more directly amenable to transitivity-based methods similar to those used for
real constraints [1, 2, 14].

A class of constraints intermediate between SVPI and TVPI is the class of TVPI
constraints ax + by !_ d with unit coefficients, that is, a, b E {-1, 0, 1}. We call these
unit TVPI constraints. This class is considerably less expressive than the general class
of TVPI constraints (for example, it cannot express modulo constraints). However, the
constraints are sufficient for many problems in temporal reasoning and scheduling.

Much earlier, Pratt [12] had considered a restricted class of unit TVPI constraints,
those of the form ax + d < by, a, b E {0, 1}, and presented an efficient algorithm

21n this abstract we ignore disequality (6) constraints. However we note that the addition of
disequalities such as x 6 y to the class of SVPI constraints results in an NP-complete satisfiability
problem (see, for example, [13]).

78

for their solution. (Essentially, the integer and real satisfiability problems for these
constraints are equivalent, and hence real-based methods are applicable.) However,
unlike unit TVPI constraints, this class is not expressive enough for many problems.
For example it cannot express the mutual exclusion -i(z A y) which has a unit TVPI
representation x + V 5 1, z > 0, y > 0. The generalization of Pratt's class to permit
any positive a, b can be solved using arc-consistency techniques, provided all variables
have finite domains [4].

3 Unit TVPI Constraints

At the heart of our algorithm is a general framework for implementing transitive-closure
in real TVPI inequalities. This is described in the next subsection, together with an
adaptation of the framework to deal with integers. In the next section we present our
algorithm as an instance of the (modified) transitive-closure algorithm.

3.1 A Transitive-Closure Algorithm

Shostak [14] gave an algorithm for satisfiability of real TVPI problems, not restricted
to unit coefficients. In this algorithm every single variable inequality (i.e. bound)
is converted to a two variable inequality by adding a dummy variable v0 as follows:
x < 10 becomes z + Ovo :5 10. We give an incremental formulation of this algorithm,
which maintains integer coefficients for integer problems, as follows.

A singleton set of TVPI constraints is transitively closed. Given a transitively
closed set of TVPI constraints C and new TVPI constraint c = ax + by ! d. Let
CO = {d : d = a' + b'z _ d', a x a' < 0, d E C}. Define C b similarly. The transitive
closure of C U {c}, is

C U {c} U {lab"Iez + la'blft < la'bid" + Ia'b"Id + Iab"Id'
a'x + _,y < d' E C:, b"y + ft < d" E GC}

U {la'by + Ialez < la'Id + laid' a'x + ez < d' e c.}
U {Ib"Iaj + Iblft <_ Ibd" + Ib"Id : b"y + ft < d" E Cv}

The system CU {c} is satisfiable (in the reals) iff the transitive closure does not contain
a constraint of the form 0 < d where d < 0 [14].

The algorithm is immediately applicable to integer TVPI problems, but it is not
complete. For example, consider 2x + 2y <_ 1, -2x + -2y < -1. This is equivalent
to 2z + 2y = 1 which clearly has no integer solutions. The difficulties arises because
these inequalities are equivalent (in the integers) to the tighter constraints x + y < 0
and -x + -y < -1.

We extend Shostak's algorithm by adding tightening constraints. The tightening
constraints of C, denoted tightening(C), are

{a/kz + b/ky :_ d I ax + by <_ d E C, gcd({jai, IbJ}) = k,k # 1,d' = Ld/kJ, d' < d/k}

79

For example tightening({2z +2y _ 1,-2z+-2y S -1}) is {z+fx i 0,-x- -1}.
The tightening constraints give more information so that we are more likely to find
unsatisfiability.

Once we have determined tightening constraints they need to be added and their
transitive consequences found as above. By interleaving tightening and transitive clo-
sure we eventually obtain a transitively closed, tightened set of constraints, given the
procedure terminates. We conjecture that, for integer TVPI, this procedure always
either detects unsatisfiability or terminates. In the case of unit TVPI constraints, it is
easy to show this is true.

Even if the procedure always terminates it is still incomplete. The following system
provides a counterexample. It describes a unit cube with several edges cut off, so
that no corner remains. It has no integer solution, but each real projection onto two
variables has an integer solution.

0 5 z,yz < 1
4 x+ 3 y 5 6

-3x-4y < -1
4x - 3z < 3

-3x +,4z < 3
4y-3z < 3

-3y +4z < 3

However, the algorithm is clearly "more complete" than bounds propagation which, in
the TVPI case, is simply the application of transitivity to one TVPI constraint and
one SVPI constraint (possibly with tightening).

Clearly the above procedure is naive in a number of ways. First, corresponding
to tightening we also wish to divide the coefficients and constants of each constraint
az + by < d so that gcd({a, b, d}) is 1. Second, we can eliminate redundant constraints
that are generated by the method. Detecting all redundant constraints is just as hard as
the satisfaction problem, in general, but some kinds of redundancy are easy to detect.
A constraint ezp _ d is quasi-syntactic redundant [6] with respect to constraints C
if a constraint of the form emp < d' appears in C where d' : d. Quasi-syntactic
redundancy is particularly easy to detect. More generally, we can remove any TVPI
constraints involving z and y that are redundant (in the reals) with respect to the
other z, y constraints.

3.2 The Unit TVPI Solver

When dealing with unit TVPI constraints, the transitive closure algorithm above pro-
duces new unit TVPI constraints, except in one case. Consider C = {z + y _< 1, z + z _
2} and the addition of -y + -z < 0. One of the consequences is 2x < 3 which is not of
the correct form. But we can always simplify such constraints to have unit coefficients,
in this case z 1 1. Moreover this is the only way in which tightening is possible.

For each pair of variables x, y there are at most four possible non quasi-syntactic
redundant constraints: {z + y _ di, x-y : d2, -z + y _ d3, -z - y : d4}. Hence the

80

maximum number of (non-redundant) constraints that can be produced by closure un-
der transitivity and tightening for a system including n variables is 2n 2 . Quasi-syntactic
redundancy elimination is very simple, it just requires maintaining the minimal d for
each of the above constraint forms. This, together with the fact that no tightened
constraints can create further tightened constraints, gives a polynomial time bound on
the algorithm.

Given a new constraint az + by < d and a tightened, transitively closed set of
constraints C, there are at most 2n constraints in C involving -ax and 2n constraints
involving -by. Thus the cost of transitive closure is 0(n l). Tightening will introduce
at most 2n constraints, all of which are bounds. Further transitive closure will produce
only more bounds, and at most 2n of them for each initial bound. Thus tightening
and further closure also has cost 0(n 2). Hence the cost of producing a new tightened
and transitively closed set of constraints is 0(n 2). It follows that the cost of testing
the satisfiability of N unit TVPI constraints with our algorithm is O(N 3) in time and
O(N 2) in space.

The key result relating unit TVPI constraints to transitive closure and tightening
is as follows:

Theorem 1 Let C be a set of unit TVPI constraints that is closed under transitivity
and tightening. Let C7_= denote the conjunction of constraints in C that do not contain
x. Then 3x C " C_ 1 .

The proof follows the proof of the corresponding result for (arbitrary) inequalities over
the reals, with only minor modifications. It extends to general TVPI constraints only
to the extent that all occurrences of the eliminated variable have only unit coefficients.

Given the above result it is easy to show that:

Theorem 2 Let C be a set of unit TVPI constraints that is closed under transitivity
and tightening. Then C is satisfiable iff it does not contain a constraint of the form
O < d where d < 0. 3.

This demonstrates the completeness of our algorithm. Note that propagation-based
methods are not complete for unit TVPI constraints, even for finite domain problems.
Consider the following example:

:-y < 2
:+y < 1

-:+z < -2
-- z < -1
-20 S x,y,z < 20

Bounds propagation simply determines that the variables lie in the following ranges
-17 <z < 20, -19 <5 y, z < 18. In fact there is no solution: the first two constraints
imply 2z < 3 and hence x < 1; the second two constraints imply 2x > 3 and hence
z > 2. Our approach discovers the unsatisfiability essentially by following the above
argument.

Recently we have learned of a related approach 18] to testing the satisfiability of
general integer constraints which is based on extending Fourier's algorithm for the

81

reals (see, for example, (10]) to integers. The relationship between this approach and
our algorithm is quite close, since transitive closure can be thought of as a cumulative
form of Fourier's algorithm with redundancy elimination. The algorithm of [8] is not
suitable for a CLP solver since it is not incremental. However the work may be a useful
basis for extending our TVPI algorithm..

We can expect to improve the efficiency of the approach by treating equations, for
example z + y = 3, directly rather than as two inequalities z + y _5 3, -z - y _5 -3.
Any unit TVPI equation can be used as a substitution to eliminate one of its variable,
for example z + y = 3 can be used to replace each occurrence of x by -y + 3. Note
that applying such a substitution to a unit TVPI constraint either maintains the unit
TVPI form or creates a constraint of the form 2y _5 k which can be simplified to a unit
TVPI constraint (possibly with tightening).

To maintain the transitive closure the approach above is modified to treat an equa-
tion z = t as follows: add both the inequalities, x < t, z > t, and close under transitiv-
ity and tightening, then remove inequalities involving z. The equations are maintained
separately in Gauss-Jordan normal form and they are applied as substitutions to con-
straints that are added later. Note that we need to fail if we detect equations (after
substitution) of the form 2z = k, where k is odd, and to simplify if we detect equations
of the form 2z = k, where k is even.

Given we are keeping the equations in a separate tableau it seems worthwhile to
extract implicit equations from the inequalities. When we detect a transitive con-
sequence of the form 0 < 0 this signals that the inequalities which produced it are
implicit equations. By marking these and waiting till the closure process terminates
we can extract the (marked) implicit equations, place them in the equation tableau
and simply remove the inequalities that involve a substituted variable.

It is easy to extend this approach to perform other operations of interest. Let the
active store denote the current set of TVPI constraints in the computation, closed under
transitivity and tightening. Any groundness information that is a consequence of the
active store will appear in the equation tableau (perhaps through implicit equations).
Constraint entailment can be simply determined because of the following result:

Theorem 3 Let c be a unit TVPI constraint and let C be a satisfiable set of unit TVPI
constraints that is closed under transitivity and tightening. Then C -- c iff either c is a
tautology, c is implied by the SVPI constraints of C, or c is quasi-syntactic redundant
oith respect to a constraint in C 0.

Hence to determine whether a unit TVPI constraint is entailed by the active store
we simply check if it is quasi-syntactically redundant or implied by bounds (after
substitution). It is straightforward to make this check incremental. Projecting out a
variable is straightforward: if the variable appears in an equation this can be rewritten
to eliminate the variable, otherwise all inequalities involving the variable can simply
be removed (c.f. Theorem 1).

Using the result of Theorem 3 we can determine unit TVPI consequences of the
disjunction of two tightened transitively closed unit TVPI constraint sets C, and C2,
as follows. For each inequality form az + by _< ... , let ax < d E C, by d dE C., and

82

ax + by : d, E C,, for i = 1, 23. Then ax + by !_ d is a consequence of Ci V C2, where
d = max(min(di,di + d4),min(d2,d + d)) if a,b 6 0 and d = maz(dI,d 2) otherwise.
The set of such constraints describes the smallest unit TVPI polyhedra that contains
both C, and C2 . Extending this procedure to handle separate equations is reasonably
straightforward. This procedure can be the basis of constructive disjunction in this
constraint domain.

3.3 The Solver in a General Setting

In the context of a CLP system we want to handle a larger class of constraints than just
unit TVPI constraints. For non-unit TVPI constraints we can use propagation-based
methods to extract SVPI information in exactly the same way as finite domain solvers.
Note that the bounds on variables are available in the unit TVPI inequalities. Applying
propagation to unit TVPI constraints is unnecessary as they are completely handled
already. We can use the equation tableau to simplify non unit TVPI constraints by
substitution. The resulting constraints (possibly after tightening) may be unit TVPI
constraints. For example, applying the substitution y = z + 1 to 5x + 3y + 2z < 7
results in 5: + 5z _< 4 and thus x + z < 0.

An alternative is to apply the (incomplete) method of section 3.1 to all TVPI con-
straints. Non-TVPI constraints would be treated by propagation methods, as above.
This would provide a more powerful, but more expensive, integer solver. The choice
between these alternatives can only be made after experimental evaluation.

4 Conclusion

Unit TVPI constraints are sufficiently expressive for many problems: for example in
scheduling and temporal reasoning. We give an algorithm for incremental satisfiability
of unit TVPI constraints. Not only is this algorithm efficiently implementable, it
also supports efficient implementation of entailment detection, including entailment of
disjunctive constraints, and projection. Finally, for use in a CLP system, constraints
more general than unit TVPI must be handled, though not necessarily in a complete
way. Our algorithm naturally extends to (non-unit) TVPI constraints, and it can be
augmented with a bounds-propagation technique for constraints more general than
TVPI. An implementation of the solver is underway as part of the development of
CLP(R) [7].

References

[1] B. Apsvall and Y. Shiloach, "A polynomial time algorithm for solving systems of
linear inequalities with two variables per inequality", SIAM Journal of Computing,
9, 1980, 827--45.

3An inequality that is not present in C is represented by taking the appropriate constant (di,, d, d)
to be oo.

83

[] E. Cohen and N. Megiddo, "Improved Algorithms for Linear Inequalities with
Two Variables per Inequality", Proceedings of the 23"d Symposium on Theory of
Computing, 1991, 145-155.

[31 M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun, "The Constraint
Logic Programming Language CHIP", Proceedings of the 2nd. International Con-
ference on Fifth Generation Computer Systems, 1988, 249-264.

[4] P. van Hentenryck, Y. Deville and C. Teng, "A generic arc-consistency algorithm
and its specializations", Artificial Intelligence, 57, 1992, 291-321.

[5] P. van Hentenryck, V. Saraswat and Y. Deville, "Constraint Processing in cc(FD)",
manuscript, 1991.

[6] T. Huynh, J-L. Lassez and K. McAloon, "Simplification and elimination of re-
dundant linear arithmetic constraints", Proc. North American Conf. on Logic
Programming, 1989, 37-51.

[7] J. Jaffar, S. Michaylov, P. Stuckey and R. Yap, "The CLP(JZ) Language and
System", ACM Transactions on Programming Languages, 14(3), 1992, 339-395.

[8] D. Kapur and X. Nie, "Reasoning about Numbers in Tecton", manuscript, 1994.

[9] J.C. Laganias, "The Computational Complexity of Simultaneous Diophantine Ap-
proximation Problems", SIAM Journal of Computing, 14(1), 1985, 196-209.

[10] J-L. Lassez and M.J. Maher, On Pourier's Algorithm for Linear Arithmetic Con-
straints, Journal of Automated Reasoning 9, 373-379, 1992.

[111 A.K. Mackworth, Constraint Satisfaction, Wiley, New York, 1987.

[12] V.R. Pratt, "Two easy theories whose combination is hard", Tech. Report, Mass-
achusetts Institute of Technology, Cambridge, Mass., Sept. 1977.

[13] D.J. Rosenkrantz and H.B. Hunt, III, "Processing Conjunctive Predicates and
Queries", Proc. Conf. on Very Large Data Bases, 64-72, 1980

[14] R. Shostak, "Deciding Linear Inequalities by Computing Loop Residues", Journal
of the ACM, 28(4), 1981, 769-779.

84

QUAD-CLP(R):
ADDING THE POWER OF QUADRATIC CONSTRAINTS

GILLES PESANT • AND MICHEL BOYER *

Abstract. We report on a new way of handling non-linea arithmetic constraints and its im-
plementation into the QUAD.CLP(R) language. Important properties of the problem at hand are a
discretisation through geometric equivalence classes and decomposition into convex pieces. A case
analysis of those equivalence classes leads to a relaxation (and sometimes recasting) of the original
constraints into linear constraints, much easier to handle. Complementing earlier expositions in [18]
and [19], the present focus is on applications upholding its worth.

1. Motivation. This paper presents the constraint programming language
QUAD-CLP(R) which offers a powerful novel solving strategy for non-linear arith-
metic constraints under the computing paradigm of logic programming. Emphasis
will be given here to the techniques involved in the constraint solver for quadratic
constraints over R and to applications making use of this added power.

Despite the enormous potential of non-linear arithmetic constraints in several
spheres of scientific activity, typical efforts to provide for them amidst constraint
languages have brought mostly disappnintments as the resulting solvers either lacked
effectiveness or scalability.

The delay strategy implemented in languages such as CLP(R) (10] and PRO-
LOG II (1] yields an incomplete solver which will be effective only if the problem
under attack is such that reasoning about linear constraints ultimately becomes suffi-
cient. Unfortunately, this is seldom the case for interesting problems, even very simple
ones. One classic example is the multiplication of complex numbers, which can be
expressed as cault((Rl,I1),(R2,I2), (Ri*R2-I1*I2,R*I2+it2*I1)) in predicate
calculus. Among interesting queries, "?- cuult((R,I), (R,I), (-1,0))." requires
reasoning about non-linear system -R*I = R*I, 1*1 -1 = R*R.
QUAD-CLP(R) can easily handle this, giving the answer:

1=1

R=0
R** tetry? y

RzO
R** tetry? y

• ** No

On the other hand, languages like CAL [20] and RISC-CLP(Real) [7] bear witness
that the price to pay to achieve a complete solver seems to be the use of costly
computational algebra techniques which confine their usefulness to very small (albeit
interesting) problems.

Our approach, introduced in [18], takes advantage of the ease with which quadratic
constraints can be replaced or approximated by linear constraints. It is therefore es-
pecially well-suited to problems involving quadratic and linear constraints. There

. Ddpartement d'Informatique et de R erche Opirationmelle, University of Montreal, C.P. 6128
Suec. centre-ville, Montral, Canada, H3C 3.17 ({(ps&t .boyer)4IS 0.M1otreal .CA).

85

FIG. I. The constraint solver

I * I

...u......... ..F.

them down into quadratic components through the introduction of auxiliary variables

(we address this further in 15).
Even a restriction to quadratic constraints still provides a rich and expressive

extension to the domain brought about by linear constraints. Many problems and
solutions in CAD/CAM, spatial databases, motion planning and graphics are nat-
urally expressed through them [2][11][4][3]. They have also been used in seemingly
unrelated domains such as molecular biology [14], automobile transmission design [15]and electrical engineering [5].

The rest of the paper is organized as follows. The next section outlines the steps
involved in the quadratic solver of QUAD-CLP(). Some features of the language

and system are described in 13. A large part of the paper is devoted to applications
in Solid Modeling and Combinatorial Search problems, described and analyzed in 14.
Some relations to other work are established in 5.

2. The Quadratic Solver. The aim of this section is to acquaint the reader
with the steps taken by the quadgatic solver of QUAD-CLP(r). Details and proofs
of the algorithms involyed can be found in [17].

Figure 1 illustrates some of the interactions between the quadratic and linear
solvers. The latter should be considered here a black box relying on incremental
versions of Gaussian elimination and of phase I of the Two-Phase-Simplex method.
Upon encountering a constraint in the course of the computation, we first classify it

as either linear or quadratic according to its syntax, by considering the number of
bound variables in each monomial p in the former case, it is directly fed to a solver
for linear constraints. In the latter, it goes through the process summarized below:

Step I: Discretize. Quadratic arithmetic constraints offer a natural geometric
interpretation which leads to a small number of equivalence classes. For example, the
onstraint uga d + ri+ l- ve- T + oz t -19 belongs to the class parabola whose

tFor implty we do not discus here the cse of monomial whose degree is n 3. The corre-
sponding constraats coald be broken into quadrtic pieces, as mentioned previously, or just delayed.

86

bound vaibe neahnm '. Intefrca, it is diecl fe to a solve

canonical representative is the algebraic equation of the corresponding locus in stan-
dard position, ' - by (in this case, parameters a and b would both have a value of 1).
Those geometric equivalence classes allow us to achieve a discretization of the prob-
lem. This first step identifies the geometric equivalence class to which the quadratic
constraint belongs, producing the canonical representative and a transformation ma-
trix (whose geometric interpretation is the translation and rotations needed to bring
the locus to standard position). The computation amounts to the diagonalization of
a real symmetric matrix.

Step 2: Simplify. For several of the possible pairs (canonical representative, re-
lational symbol), the constraint can be immediately decided or replaced by an equiv-
alent Boolean combination of linear constraints.

Examples
* The geometric equivalence class of -48 1z2 + 216zy- 544y2 + 3946z + 3272y' _

37685 is imaginary ellipse. The pair (-1 - - 1, > (0)) reveals that the
constraint is trivially false.

* Constraint z 2-4zy+6zz-8w+4y 2 -12yz+16yw+9 2 -24zw+16w 2- 25 = 0
is classified as two points, leading to the simplification (z - 2y + 3z - 4w =
5) V (z - 2y+ 3z - 4w = -5). The unexpected feature of this example is that a
constraint on four variables falls into a geometric equivalence class seemingly
reserved to constraints on one variable. This degenerate case is best viewed
through substitution v = x - 2y+ 3z - 4w, yielding v2 -25 = 0. In this form,
it becomes less surprising that its class should be two points (v = ±5). Note
that step 1 described above does not look for such simplifying substitutions
but nevertheless produces equivalent results.

Step 2(bis): Approximate. For each remaining pair (canonical representative,
relational symbol), a sound approximation made up of linear constraints is computed.
The strategy leading to the efficient and accurate production of linear approximations
considers a Boolean combination of convex constraints in place of the original con-
straint (note that it may already be convex). The convex pieces are approximated
and the results recombined. That Boolean combination may be equivalent to the
initial constraint, in which case it will be termed a convex expression, or constitute
a relaxation of it and will then be called convex approximation. In both cases the
resulting combination of linear constraints constitutes an approximation.

. Bringing back the example of step 1, the pair (z2 - y, <) indicates a constraint
which is already convex and for which we can compute a linear approximation such as:

0 <y A
2.36522z < y + 1.39857 A

-1.39857 < y + 2.36522z A

0.662911z 5 y + 0.109863 A
-0.109863 < y + 0.662911: A

87

Step 3: Realize. Map the simplification or approximation for the canonical
representative to a simplification or approximation for the original constraint. This
is achieved by "multiplying" each linear constraint in the Boolean combination by
the transformation matrix. The result of step 3 is in turn sent to the linear solver to
decide upon the new collection of constraints. If it was an approximation, the original
quadratic constraint is also kept (delayed).

The resulting solver is not a complete solver since it partly relies on approxima-
tions. It nevertheless exhibits much less incompleteness than one which unilaterally
sets aside non-linear constraints. Some of this incompleteness can actually be driven
back by choosing an appropriate size for the approximations, as will be seen in the
next section. Note that from a logic programming perspective, the nature of the
approximations generated ensures the soundness of the inference.

3. Features of the System. QUAD-CLP(R) is built on top of the CLP(R)
system, which allowed us to concentrate on the non-linear component of the solver.
It was written in C to facilitate its integration with the host system whose source
code is available and also written in C. We discuss some of the additional features
provided.

3.1. A,V-bounds. Recall that in most cases, from a quadratic constraint is ex-
tracted a Boolean combination of linear constraints which is sent to the linear solver.
It proves convenient to write that Boolean combination in disjunctive normal form:

n in

V Ac,,
i=l j=l

Each disjunct will give rise to a solver choice point. There are cases where n can
be quite large. One may therefore wish to specify an upper bound on n in an effort
to control the non-deterministic behavior. QUAD-CLP(R) provides the user with a
parameter, the V-bound, which has the desired effect. A Boolean combination whose
disjunctive normal form exceeds that bound will not be sent to the linear solver. Note
that setting it to I yields a deterministic solver.

The A-bound specifies the desired size of an approximation to a convex co- nt.
Such a name was chosen because it often corresponds to an upper bound on m. A
default value of 4 has been found adequate experimentally for a first exploration:
refined approximations can always be tried subsequently. For example, the following
(unsolvable) system of inequalities,

X2 +y 2 < 1

u2 + V2 < 1

Z+i,+U+V > 3

required approximations of size 7 to decide that there was no solution.

3.2. Output. The simplification of the constraint set may be desirable for ef-
ficiency reasons, since it reduces its size, but also to ease the understanding of the
result by the user, when the answer takes the form of a collection of constraints. Much
research has been devoted for example to quantifier elimination in the special case
of an existentially quantified conjunction of linear constraints, in an effort to express
the output in terms of query variables only [13](8][12][9][7]. We discuss here another
aspect of simplification brought about by non-linear constraints.

88

FIG. 2. A solid and its CSG representation

Seemingly very different answers such as 481x 2 -216zy+544y 2 -3946z-3272y+
6409 = 0 and 16z 2 + 25y 2 - 400 = 0 express a quite similar relationship between the
variables (valid pairs (z, y) lie on an ellipse), which is captured by the concept of
geometric equivalence classes. An answer like the first one can be complemented by:

real ellipse: foci at (7.4,6.8),(2.6,2.2); principal axis of length 10.

Such information thus allows to deepen the understanding of the relationship
between the variables of a solution or may help to determine its solvability if no
concluion was reached.

Redundancy in the solution is also an issue of simplification. Let us mention that
the detection of a redundant linear inequality with respect to a quadratic constraint
can in some cases be reduced to the efficient computation of a supporting hyper-
plane. Some heuristics can also be applied for redundancy detection between pairs of
quadratic constraints [18].

4. Examples. In this section we describe two applications which demonstrate
the expressiveness and efficiency of QUAD-CLP(R) .

4.1. Solid Modeling. We consider the Point/Solid Classification and Solid In-
tersection problems in constructive solid geometry (CSG). In such a representation
scheme, a solid is built by combining primitive solids, using regularized Boolean op-
erations and rigid motions(translation and rotations) [6]. These primitive solids are
usually chosen among the parallelepiped, triangular prism, sphere, cylinder, cone and
torus. The regularized Boolean operations are U*, n and -*, differing from the set-
theoretic operations in that the result is the closure of the operation on the interior of
the solids. A solid can be represented as a tree whose leaves are primitive solids and
whose internal nodes are the operations on them (an example is given in figure 2).

-With the exception of the torus, every primitive solid has an implicit form ex-
pressed in terms of quadratic and linear arithmetic inequalities. This makes it partic-
ularly attractive to our language. For simplicity, we shall drop the reguiarization of
the Boolean operations: in some applications, this is even desirable. Constraint logic
programming allows for an elegant and concise solution to the Point/Solid Classifica-
tion problem, which consists of deciding if a point lies inside a solid. The first half of
this solution follows:

U inside(Point, Solid): Point lies inside Solid.
inside(Point, solid(ard(S1,S2)))

inside(Point, solid(SI)),
inside(Point, solid(S2)).

89

inside(Point, solid(or(SiS2)))
insido(Point, solid(Si));
inside(Point, solid(S2)).

inside(Point, solid(Rinus(SI,S2)))

insido(Point, solid(Si)),
outside(Point, solid(S2)).

Our solution also has the advantage of replacing the need to spec,'y rotations and
translations to "move" the solid into place by directly giving its position in terms of
natural parameters. For example, solid(cylinder((1,1,), (3,4,2),s)) defines a
cylinder of radius 5 whose axis extends from (1, 1, 1) to (3, 4, 2). Additional rules must
be written for each of the primitives and we give one of them below:

X point (MY,Z) lies inside primitive solid "cylinder".
inside((X,YZ), solid(cylinder((X0,YOZC),(Xl,Yi,Z1),R)))

% orientation of symmetry axis
Va - 11-10, Vy = Yi-YO, Vz = ZI-ZO,
% point (Ip,Yp,Zp) is on the axis of symmetry, ...

Xp = Vx*T + [0,

Yp = Vy*T + YO.
Zp = Vz*T + ZO,
%... inside the cylinder ...
T >= 0, T <- 1,
% ... and on the plane which contains (X,Y,Z)
% ... and is orthogonal to the axis.
Vx*(X-xp) + Vy*(Y-yp) + Vz*(Z-Zp) = 0,
% constrain the cylinder

(X-Xp)*(X-Xp) + (7-Yp)*(Y-Yp) + (Z-Zp)*(Z-Zp) <= R*.

Solid Intersection problems arise not only when we want to avoid overlapping
objects but also when we wish to eliminate redundancies in the representation of
a solid. A common approach is to verify a criterion for non-intersection obtained
by approximating the shape of the solid, usually through "box approximations" (see
figure 3). If the approximations do not intersect then certainly neither do the solids.
A simple extension to the above provides a solution:

Y solids Si and S2 intersect.
intersect(Si,S2) :-

inside(Point, Si),
inside(Point, S2).

The above solution, applied to the Point/Solid Classification problem, worked in a
satisfactory manner given a suitable linear solver (non-linearities vanished as enough
variables were fixed). The present problem on the other hand retains non-linear
constraints. Here the strength of QUAD-CLP(R) is to provide for free a behavior
conceptually similar to "box approximations" but with potentially much closer ap-
proximations.

90

q

Fir. 3. Box approximation of a cone.

a S

I I

a I

FIG. 4. A Solid Intersection problem.

In fact, it generates approximations with "holes" if need be. For example in the
following instance, illustrated in figure 4, the conventional approach would have failed
to detect the non-intersection, whereas with QUAD-CLP(R):

?- Bead - solid(ainus(sphere(O,O,O,4),
cylinder((-4,-4,-4), (4,4,4) ,2))),

Noedle = solid(cono((7,6,6),(-6,-s,-s),)),
iatorseet(Needle, Bead).

e No

4.2. Combinatorial Search. We examine next a combinatorial search prob-
lem involving Euclidean distances and thus quadratic constraints. Instances of
respectable size can be solved in a reasonable amount of time through a simple
QUAD-CLP(R) program.

Graph Geometric Embedding : Given a graph G(V, C), a label t(e) E Z+

for each e E C and a set P of points in E, is there a mapping f : V 6-E
such that P C codom(f) and V(v, v') E C, d(f(v), f(v')) _< t((v, v')) (where
d: E2 x 92 1.- R is the Euclidean metric)?

Intuitively, we are asked to cover certain points in E2 with vertices of a labeled
graph without "breaking" an edge. When IVI = IPI, a simple generate-and-test ap-
proach will solve the problem, although through considering all lvi! possible pairings.
The test-and-generate paradigm associated with constraint programming may accel-
erate our inspection by pruning the search tree. If IVI > IPI, generating candidate
solutions by associating a different vertex with each point in P will leave some vertices

91

Fio. 5. The 10;6 instance.

P = {(0, 0), (10,0), (4,7), (4,0), (4,4), (7, 3)},
V = fvl, v2, v3, v4, v5, v6, v7, v8, v9, vO},
1((vl, v2)) = 3, t((vl, v6)) = 5, 1((v2, v3)) = 1, t((v2, v7)) = 5, 1((v3, v4)) = 3,
1((v3, v6)) = 3, t((v4, vS)) = 3, 1((v4, v7)) = 3, 1((4, 08)) = 5, t((5, 9)) = 5,

((&6, v7)) = 3, -((t,6, 8)) = 1, t((7, v9)) = 1, 1((v7, v10)) = 5, t((v8, v9)) = 3,
I((vS, v1O)) = 3.

V1 V2 V3 W4 v5

"free". Testing those candidates thus requires reasoning about quadratic constraints.
The statistics in table 1 were obtained from a st: dghtforward program imple-

menting the test-and-generate algorithm: state all the distance constraints implicit in
the graph, assign vertices to points in P, output candidate solutions. The tests were
run on a SUN SPARCstation 10/42. The problem on 10 vertices was generated by
hand (the 10; 6 instance and its unique solution appear in figure 5). As for the rest,
the graphs were randomly generated with an edge-occurrence probability of about
0.4. Points in P were distributed on a square grid and the labels ranged from 1 to
the length of the diagonal of the grid.

The first three instances were run on both the QUAD-CLP(R) and CLP(R)
systems, in order to compare the performance of the quadratic solver with that of the
delay strategy implemented by the latter. Important speed-ups were always observed
mainly because of the difference in the number of nodes which were expanded in the
search tree, reflecting the amount of pruning that took place. A notable difference
between the results for the 10; 10 and 10; 6 instances is the number of candidate
solutions found by CLP(R). These instances share the graph and six points of P:
the first one includes four more points so that IVI = IPI. Consequently in the 10; 10
instance, a basic pairing procedure guarantees that we will find all and only solutions
to the problem, regardless of the strategy used to handle non-linear constraints, since
the distance constraints will eventually become ground. However the 10; 6 instance
brings forth the incompleteness of a solver as some of the constraints may never
become ground (or even linear) during the search. Thus we obtain a set of 72 possible
solutions.

Larger instances (30 and 50 vertices, about 180 and 500 quadratic constraints
respectively) were solved on QUAD-CLP(R) only as the 20; 8 instance was already
overwhelming for the delay strategy. Despite the surprisingly slight increase in the
number of nodes expanded as the problems gain in size, the time taken grows by
several orders of magnitude. This should be attributed to the growing system of

92

TABLB 1
Performa ce atatistics for the Graph Geometric Embedding problem.

size V;IPI) lanuage time (sec) nodes expanded # solutions
10;10 QUAD-CLP() 0.52 38 1

CLP(R) _ 4.94 1674 1
10;6 QUAD-CLP(R) 0.54 36 1

CLP(R) 3.95 1314 72
20;8 QUAD-CLP(ft) 13.75 35 1

CLP(R) >14 063.00 >2 411 229 >987 546
30;1O QUAD-CLP(R) 276.54 49 0
50;5 QUAD-CLP(R) 2 727.41 51 0

inequalities that the linear solver has to deal with. For example the largest instance,
given a conservative A-bound of 4 (which is what was used in every instance), spawns
a dynamically changing system of around 2000 linear inequalities in 100 variables. As
the linear solver relies on a Simplex algorithm, basic feasible solutions must constantly
be found at the cost of pivoting operations.

The most accurate rendition of the improvements brought by the approach de-
scribed in the paper must be found in the pruning of the search tree and the number
of candidate solutions offered.

5. Related Work. As was noted in 11, computational algebra techniques, cur-
rently still very expensive, nevertheless yield a complete solver through a uniform
treatment of polynomial constraints. It is not clear how well the approach described
in this paper, whose motivation was to solve quadratic constraints, can perform on
arbitrary polynomial constraints. The introduction of auxiliary variables fragments
the original constraints; separately considering (and most likely approximating) each
piece may yield weaker results. Since in general a constraint will admit several possible
fragmentations, choosing the best one is an interesting problem in its own right.

As an illustration, consider the following system of non-linear inequalities, bor-
rowed from [7]:

s> 0

0 - 0.0299010 s - 247.97152 + 396.01s - 245.03 > 0

4 - 2.01005s3 - 247.246S2 + 400s - 248.246 < 0

Use of a computer algebra package reveals that s lies somewhere in (14.93,15.98].
One possible fragmentation,

t = 2

s > 0

t- 0.029M1st - 247.97182 + 396.01 s- 245.03 > 0
t2 - 2.01005st - 247.246.2 + 400s - 248.246 < 0,

run on QUAD-CLP(R) , constrains s to the slightly larger interval (4.61,16.62] whereas

ti = s 2 , i=1...8

s > 0

tit2 - 0.029901st - 247.971t4 + 396.01s - 245.03 > 0
t5 ts - 2.010058t 7 - 247.246ts + 400s - 248.246 < 0,

93

offers a vastly different result, namely]0.00, oo[.
An even more uniform treatment of constraints is that provided by the language

CLP(BNR) [16]. Here relational interval arithmetic is applied to reals, integers and
booleans alike. A parallel can be drawn with our approach since interval arithmetic
is a form of approximation. Their approach to constraint solving is nevertheless quite
different as it is based on the local propagation of bounds on the value of the variables
through a constraint network.

We say a few more words on those approximations. In the context of quadratic
constraints, they represent a special case of ours. Each bound of an interval can be
viewed as a linear inequality. The size of such an approximation for a constraint
is consequently determined by the number of variables appearing in it (4 with 2
variables; 6 with 3 variables; ...) and the approximation itself is isothetic (aligned
with the coordinate axes). The result is comparable to the "box approximations" of
4.1. It may be sufficient in some cases but is certainly less powerful in general (recall

for example figure 4).

6. Conclusion. This report presented a new way of handling non-linear arith-
metic constraints and its implementation into the QUAD-CLP(R) language. Im-
portant properties of the problem at hand where discretization through geometric
equivalence classes and decomposition into convex pieces. A case analysis of those
equivalence classes led to a relaxation (and sometimes recasting) of the original con-
straints into linear constraints, much easier to handle. Applications in Solid Modeling
and Combinatorial Search showed both the expressiveness and the efficiency of such
a tool within a constraint language.

The latter application revealed a need for more efficient linear solvers when con-
fronted to large systems of inequalities. It proved to be a bottleneck for the speed of
the quadratic solver. One must therefore be careful when conbidering constraints as
language primitives: the apparently simple addition or deletion of a constraint may
hide a considerable cost in problems involving a large number of constraints.

Acknowledgements. We wish to thank the CLP(R) people whose public do-
main system greatly facilitated the development of ours. We would also like to thank
the anonymous referees whose constructive comments helped to put the present work
in perspective. This work was supported by NSERC and FCAR Graduate Scholar-
ships.

REFERENCES

[1] A. Colmerauer. Prolog 11 Reference Manual and Theoretical Model. Rep. groupe d'intelligence
artificielle, Universit6 d'Aix-Marseilh H, Luminy, October 1982.

(2] S. Donikian and G. Higron. Constraint Management in a Dedarative Design Method for 3D
Scene Sketd Modeling. In P. Kanellaks, 3.-L. Lasses, C. Lau, V. Sar"swat, R. Wachter,
and D. Wagner, editors, PPCP'93, Newport, RI, April 1993.

[3] T. Dub6 and C-K. Yap. The Geometry in Constraint Logic Programs. In P. Kanellakis, J.-L.
Lases, C. Lau, V. Sarawat, R. Wadter, and D. Wagner, editors, PPCP'9S, Newport, RI,
April 1993.

(43 M. Gleicker. Practical Issues in Graphical Constraints. In P. Kanellakis, J,.-L. Lasses, C. Lau,
V. Swaawat, R. Wachter, and D. Wagner, editors, PPCP'93, Newport, RI, April 1993.

[53 N. Huntse, S. Michaylov, and P. J. Stuckey. CLP(R) and Some Electrical Engineering Prob-
lems. In J.-L. Lame, editor, Proceedings of the 4th International Conference on Logic
Programming, pages 675-703, Melbourne, May 1987. MIT Press.

(6] C.M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publish-
a, Inc., 1969.

94

[7] H. Hong. Non-linear Constraints Solving over Real Numbers in Constraint Logic Programming
(Introducing RISC-CLP). Technical Report 92-16, RISC-Link, January 1992.

[8 J.-L. Imbert. Simpliflcation des systemes de contraintes numiriques linaires. PhD thesis,
Faculti des Sciences do Luminy, Universiti Aix-Marseilles II, 1989.

[9) J. Jafar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(9) Language and System.
ACM Transactions on Programming Languages and Systems, 14(3):339-395, July 1992.

[10] J. Jaffar, S. Michaylov, and R. H.C. Yap. A Methodology for Managing Hard Constraints in
CLP Systems. ACM SIGPLAN-PLDI, 26(6), 1991.

[113 G. Kuper. Aggregation in Constraint Databases. In P. Kanellakis, J.-L. Lassez, C. Lau,
V. Saraswat, R. Wachter, and D. Wagner, editors, PPCP'93, Newport, RI, April 1993.

[12] C. Lasses and J.-L. Lassez. Quantifier Elimination for Conjunctions of Linear Constraints via a
Convex Hull Algorithm. IBM Research Report, IBM T.J. Watson Research Center, 1991.

(13] J.-L. Lass, T. Huynh, and K. McAloon. Simplification and Elimination of Redundant Linear
Arithmetic Constraints. In Proceedings of NACLP 89, pages 37-51. MIT Press, 1989.

[14] F. Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillion, and R. Cedergren. The com-
bination of symbolic and numerical computation for three-dimensional modeling of RNA.
Science, 253, September 1991.

[15) B. A. Nadel, X. Wu, and D. Kagan. Multiple abstraction levels in automobile transmission
design: constraint satisfaction formulations and implementations. Int. J. Expert Systems:
Research and Applications. (to appear).

(16] W. Older and A. Veilino. Constraint Arithmetic on Real Intervals. In F. Benhamou and
A. Colmerauer, editors, Constraint Logic Programming: Selected Research. MIT Press,
1993.

(17] G. Pesant and M. Boyer. Linear Approximations of Quadratic Constraints. (submitted for
publication).

[18] G. Pesant and M. Boyer. A Geometric Approach to Quadratic Constraints in Constraint Logic
Programning. In F. Benhamou, A. Colmerauer, and G. Smolka, editors, Third Workshop
on Constraint Logic Programming, Marseilles, France, March 1993.

[19] G. Pesnt and M. Boyer. Handling Quadratic Constraints Through Geometry. In D. Miller,
editor, International Logic Programming Symposium, Vancouver, Canada, October 1993.
MIT Pro".

(20] K. Sakai and A. Aiba. CAL: A Theoretical Background of Constraint Logic Programming and
its Applications. Journal of Symbolic Computation, 8:589-603, 1989.

95

Applications in Constraint Logic Programming with Strings
Arcot Rajasekar

Computer Science Department
University of Kentucky, Lexington, KY 40506

Abstract

In this paper, we discuss CLP(S) which combines logic programming with constraint solving over
string, and show how CLP(S) can be used naturally in several applications ranging from natural language
processing, to encoding of genetic operators and DNA grammar rules, to scene analysis in iconic image
processing.

Several applications in artificial intelligence require that one deal with information which is not as precisely
encodable as required by logic-based systems. In recent years there has been a number of innovative applica-
tions in new fields which makes additional demands on the representational efficiency of logic-based automated
reasoning. Some of the most challenging applications have come in diverse fields such as processing textual
data [24], processing genome sequences (The Genome Project) [3, 20, 21], representing and reasoning with
visual data [8, 4], storing and processing musical compositions, natural language processing (6], etc. These
applications have some characteristic commonality - they process strings (or streams) of information, the data
may be incomplete and may require approximate reasoning. String-based logic provides a tool for developing
such automated reasoning systems.

Strings can be loosely defined as concatenations of variables and constants. String unification is difficult
and may not lead to a unique most general unifier and in fact there may be an infinite number of maximally
general unifiers. The decidability of the string unification problem (also called as the word problem) was
established by Makanin [15] and procedures based on his technique have been developed by other researchers:
Abdulrab and Pecuchet [1], Koscielski [14] and Jaffar [10]. But such procedures ai-e not suitable for use in an
automated reasoning environment or in a logic programming language because of their generation of multiple
(maximally general) unifiers and non-termination when there are infinite number of such unifiers. In (18, 16]
(see also [17]) we offer a solution to this dilemma through constraint logic programming (11, 12, 23]. is to
apply constraint solving techniques, instead In our approach, we solve the problems of string unification by
deferring full unification and performing partial unification at resolution step. By adapting this technique,
we generate a set of string equations at each step, which subsumes the sets of (possibly infinite) maximally
general unifiers. We define a notion of "partially-solved" form of string equations and develop an algorithm
for obtaining such partially-solved forms from any given set of string equations. We discuss, in detail, the
theoretical and procedural aspects of CLP(S) in [18] and define a constraint-solver which can be used to
provide a sound and complete query answering system for allowed string logic programs.

In this paper we only provide a brief overview of CLP(S). We mainly concentrate on describing applications
in CLP(S).

1 CLP(S) - Constraint Logic Programming with Strings

In CLP(S), apart from terms (built from constants, function symbols and variables) which can be used as
arguments for building predicates, there is a new set of constructs called strings. Strings are built with string
constants and striog-vriable names. A special symbol e is used to denote an empty string. Each string-
variable name has a parameter associated with it called its size, which limits the strings that can be bound to
the variable to be of the same size. The size can be defined by a positive, integral arithmetic expression, called
the bounds ezpression formed using bounds-constants and bounds-variable names. In essence, one can think of
the set of string-variable names to be typed (or sorted) by their size and are limited to acquiring values of the

t
same type (sort). We denote a string variable in the following way: W, where W is a string-variable name
and t is a bounds expression denoting its size.

A string is defined recursively as follows: an empty string e is a string; its size is 0. A string-constant is
I

a string; its size is 1. A string-variable W is a string; its size is t. If Si and S2 are strings then so is their
concatenation, S1 S2 ; the size of S$2 is the sum of the sizes of Si and S2 . The notions of ground strings,
string-atoms and string-/itera/s are defined as in logic programming.

96

A string equation (or constraint) is of the form S, = S2, where S1 and S2 are strings and = is a predicate
which does not occur in the vocabulary of the logic programming language. An arithmetic equation is of the
form el = e2 where ei and e2 are arithmetic expressions. In [1.7, 18] we provide a string equational theory for

A CLP(S) program is defined as a finite set of rules of the form:
A -- C, Bl,..., B., where n > 0, A, B, ... , Bn are string atoms and C is a set of string equations

and arithmetic equations. Whenever a string variable occurs in more than once in a rule, we consider it to
have the same size at each occurrence. An allowed program rule is a CLP(S) program rule in which every
variable in A also occurs in Bi,..., Bn. A goal is of the form:

C, Bi,..., B. i.e., a rule without a head. Some examples of CLP(S) program rules are:
r m p I r % d

add(XA, Y O, ZA) - add(X, Y, Z) % addition as a shift operation
n-3 I m n-3 I i 1

surftolez(n, W NicatX, W NY," + atX, 1) *- nc..al(N). % a C-insertion morphological rule
(eg. apply + ation = application)

same-obj(x, X) % used to check when two objects are identical (unifiable)

sim.obj(X, Y) - {-X=) % can be used to check whether objects are approximately identical. This
requires using approximate string equality checking.

Jaffar and Lasses [11] show that CLP paradigms can generalize the Horn logic programming semantics
based on term structures (operational, algebraic, logical) over to Horn logic programs based on an arbitrary
structure which is solution-compact and satisfaction-complete. The structure (SU,-=) (= is equality with
associativity) is soliton-compact and satisfaction-complete [11]. The only remaining piece in the puzzle is the
definition of constraint-solvers in the string domain for reducing string equations. In [18], we describe such an
algorithm, called the reduce algorithm, which reduces a set of string equation into an equivalent set of strings
in partially-solved form. The reduce algorithm, used in conjunction with Gaussian elimination (for solving
arithmetic equations on string sizes) provides a sound and complete proof procedure for allowed programs,
using the constraint logic programming paradigm. These results are shown in [18]. The reduce algorithm
is similar to the term rule-based unification algorithm (see eg. [13]). This allows one to easily incorporate
approximate string matching techniques during the reduction process. We discuss one such technique later in
the paper. We do not provide the definition of the reduce algorithm and the theoretical results due to space
constraints!

Prolog III is another example of a string processing constraint language [5]. CLP(S) differs from Prolog
III in several ways; mainly in the association of an explicit size factor for string variables and in allowing

unrestricted concatenation. The integrated structure of string-value and size provides several advantages.
First, it provides a notion of 'types' on the string variables and allows one to restrict the domain of values
that can be bound for the variable. One can also write equations (both equality and inequalities) on sizes
which can ease and speed-up the unification process by allowing one to solve string equations using algebraic
equation solvers on size-equations. The size information also allows one to effectively detect inequalities in
string equations and fail a derivation earlier than otherwise. Moreover, one can use known string inequalities,
such as aS 6 Sb (where S can be taken as a string of arbitrary length), to fail CLP(S) derivations. The usage
of the reduce algorithm, which is similar to a rule-based unification algorithm and based on the concept of
partially-solved forms of string equations, is also unique in our approach and allows unrestricted concatenation
and sub-string insertions and deletions. The advantage of this can be seen in the ease with which it can be
adapted for approximate reasoning on strings (see [16].) To make the paper more readable, we briefly describe
the unify algorithm in the appendix.

2 Applications of CLP(S)

We discuss three applications of CLP(S): in natural language processing for encoding logic grammar rules
and for performing computational morphology; in visual scene processing for picture correspondence and as a
picture description language; and, in genetic sequence analysis and for implementing genetic algorithms.

97

2.1 Natural Language Processing

Natural language sentences are inherently not well-structured. Their processing requires sentences of different
types and phraseology to be parsed and analyzed. Even though there are some concrete rules which govern
their analyses, for most parts ad hoc analysis needs to be performed. The analysis further deteriorates when
one has to deal with spoken and/or colloquial sentences. In such cases, words or even parts of sentences may be
missing caused probably by the speaker having a casual locution. Further, in morphological analysis one needs
to divide a word into several parts to identify the underlying morphemes; sometimes no division is necessary.
For example take the case of the following three transitive verbs, incite, instigate and invent. The first word
has to be divided into a prefix in and a transitive verb cite, whereas the other two need no such division. In
the last case, one can actually divide it into a prefix in and a transitive verb vent, but the recombined meaning
of the morphemes m,+vent is entirely different from the one given by the full word invent. In the above
analysis, one is neither dealing with a (indivisible) constant nor building a term from constants in the manner
of term-based logic. The use of strings as representation would be useful in naturally encoding the different
types of grammatical formations and rules used in the lexical and morphological analysis of natural language.
The associative property of string concatenation permits one to cut a string into two or more substrings at
arbitrary locations.

Another important advantage of using strings as representation of sentences comes from the 'global' view
offered by strings as compared to the 'local' view of term-based structures. When one needs to analyze (or
process) several parts of the list as the same time, as may be required for extraposition or discontinuity
analysis, one has to move (skip) through the list to perform the analyses. Such analysis can be easily done
using strings. The use of strings also eases the operations of 'movement', insertions and deletions which are
not easily performed with functions or lists. Such insertions and deletions occur quite often in morphological
analysis.

To show how logic grammar rules can be encoded as CLP(S) rules, we give an example in Discontinuous
grammar [2]. The rules in these grammars are of the form:

S,a0 , s kip(Xz), &I,...,, ak)p(X), a,, - A, skip(X), 1 ,... skip(X,),,,,
where S is a non-terminal and, as and fs are strings of terminals and non-terminals. (f0 can also be procedure
calls). The Xs denote arbitrary strings which need to be skipped. For example the following rule:

(DG) Rel.marker,akip(G), trace -* Rel.pronoun, skip(G)
taken from [2] parses sentences such as "the man that John saw laughed", where it considers the noun phrase
"the man that John saw" to be a surface expression of a more explicit statement: "the man [John saw the
man]", where the second occurrence of "the man" has been moved to the left and subsumed by the relative
pronoun "that". The rule can be translated into a CLP(S) program rule as:

ht n fnp rnrnt
sentence(HIZT) 4- rel.marker(X), trace(W), sentence(HXZWT)

The atoms rel.marker(X) and trace(W) are conditions which need to be enforced to make the transforma-
tion valid. In [16] we provide transformations for several different types of logic grammars and prove their
correctness.

The analysis of word structures using computers is called computational morphology. In this section
we show, through an example, how one can represent morphological rules using string-based logic. In our
discussion on computational morphology we follow the book (19] by Ritchie, Russell, Black and Pulman. A
sample rule is given below:

+:e <=> { < {c:c I s:s} (h:h) > I z:z I x:x I y:i } - s:s
The rule' states that the surface character e gets deleted and is replaced by a lexical character + if and only
if it is is preceded by either ch, sh, s, x or i realized as a lexical y and is followed by a s. The notation c:c
denotes that c remains unchanged while transforming from surface level to lexical level. The rule can be used
to transform the surface form flies to lexical form fly + s. The equivalent CLP(S) program is given by2:

- n-3
urtftolet(n, X she&, X sh+s, 1)

n-3 n-3
surftolez(n, X che., X ch+s, 1)

n-2 n-2
surftolez(n, X Ces, X z+s, 1)

1< item* > denotes sequential items and {iteme) denotes choice of items
2n and I we used ma rker and as used in other clauses. See [16] for details.

98

n-2 n-2
aurftole:Qa, X zee, X z+S, 1)

In [16], we provide translations for some of the other morphographernic rules given in [19]. From the rules
shown here and in [16] it can be seen that morphological transformation of a surface character into a lexical
character requires character strings of variable lengths on either side and also requires insertion and deletion
of characters. These operations are well-suited for a string-based representation.

In (16], we also show how one can use CLP(S) to perform word segmentation to identify categories and
for encoding feature passing conventions. Rules such as generation and analysis of plural nouns, compound
nouns, prefixing, etc, are given in [16].

Next, we point out how the CLP(S) system can be used for dealing with sentences with simple errors
and sentences that are incomplete. In [26] algorithms for several kinds of approximate string matching are
provided. They permit mismatches caused by extra characters, missing characters, altered (substituted)
characters and interchanged characters. For example, the sentence "The man tat John saw lauhged" has
two errors, one caused by a missing character and another by a pair of interchanged characters. Parsing this
sentence normally would lead to failure. If we augment string-matching to reason with such errors and build
in the mechanism as part of string-constraint solving one can parse the above statement. In [16] we show how
one can augment the reduce algorithm to take care of such errors. The case of incomplete sentences, sentences
with gaps in them, is easily treated with CLP(S), even though computationally it may not be attractive. The
following can be given as a goal, when one knows that there are two gaps in the sentences with one of them
of bounded size.

n 3
{n > 3, n < 10), sentence(the man X john Y laughed).

One of the bindings returned may be values "that " and "saw" to X and Y respectively when used with
proper rules. The need for parsing such incomplete sentences can be seen in several cases: when parsing old
manuscripts with torn or missing segments or when parsing a sentence heard over radio or telephone where one
may miss some segments due to noise. Parsing colloquial sentences which may have many missing segments.
CLP(S) provides a method for parsing such sentences which may not be easily possible with other methods
of natural language analysis.

2.2 Image Processing

One of the main areas in image processing deals with picture identification. For example, given a set of pictures
one may want to find a picture in which there are two cars or, one may want to check whether another picture
is a sub-picture of a picture in the set. A second question may involve approximate reasoning, since the smaller
picture may not be a precise sub-picture. One of the ways of representing pictures is to convert them into
symbolic forms based on an alphabet of 'icons'. For example, if one wants to represent a map of a region,
then one can iconify the objects in the map (such as large lakes (a), mountains (b), forests (c), hills (d),etc.,)
and place the icons on a corresponding scaled grid-map. Figure 1 shows such maps. Chang et. al. [4] define a
scheme where iconic images are stored as 2-D strings. For example, the 2D-representation of the iconic picture
of Figure 1, p is given by (ad < b < c)(a < bc < d,.
Note that the symbol < captures the spatial relationship of below and to-the-right-of in the two 2-D string
representation. Chang et. al. [4] provide algorithms to translate iconic pictures into 2D-representations and
vice versa. In [18] we provide CLP(S) programs for performing these translations.

The two-dimensional string representation provides a simple approach to perform subpicture matching.
Chang et. al. (4] describe three types of matching with decreasing levels of approximation; the last type
(type-2) provides an exact sub-picture of another. In the following r(a) denotes the rank of a non-< symbol
in a string and is defined as one plus the number of <'s preceding the symbol in s. A string u is a type-i 1-D
subsequence of a string v if for all als and bls, if alS5b, is a substring of u and a2S2 b2 is a substring of v
(where S and S2 are strings) and al, b, match a 2, b2 resp., then

(for type-0) r(b) - r(a2) > r(b1) - r(al) or r(bi) - r(al) = 0
(for type-i) r(b2) - r(a2)> r(bl) - r(al) > 0 or r(b2) - r(a2) = r(bl) - r(al) - 0
(for type-2) r(b2) - r(a2) = r(bi) - r(al).

Let (u, v) and (u', Vt) be 2-D representations of pictures p and p' respectively. Then p' is a type-i 2-D
subpicture of p if u' is a type-i 1-D subsequence of u, and V' is a type-i 1-D subsequence of v. In Figure 2,
pl, p2 and pa are type-0 subpictures of p; Pi and P2 are type-i subpictures of p; and p1 is a type-2 subpicture

99

of p.

d

b c b c b

a a a a

P P P P3
figure 1

Chang et. a. [4] provide a complicated pseudo code procedure for performing the three matchings. In
[18] we use CLP(S) programs to encode their definitions of type-i subsequences and to provide matching
procedures for picture identification. We do not discuss them due to space constraints.

CLP(S) programs can also be used to encode picture description languages (PDLs) [22, 8]. For example,
with proper labeling, the string ababab denotes a staircase structure with three stairs. The above description
can be captured using string-based logic as follows:

staircase(ab),
staircase(ab)- staircase(X)

Similarly, description of compound objects with occlusions can be given succinctly using CLP(S):
occluded.sene(WOP) -- object(4), object(Z).

nmcclde..sen(Wk) -. oh ject(IV/) , objet(Z) , m > r.

occuded.scene(ZIW) .- object(i W), object(2), m > r.
The representation can be used to reason about a scene, answering more complicated questions such as 'whether
an object is in a scene (probably partially occluded)?' 'whether an object is to the left (or right) of another
object?'

2.3 Genetic Operators and DNA Grammar

String-based logic can be used in genetic code processing in two ways. One of the method is to define operators
which can be used to build genetic sequences. Another method is to use string-based logic to define genetic
sequences and use these definitions to search for sequences in a given genetic code.

Genetic synthesis can be defined by several operators such as reproduction, crosscver, jumping and muta-
tion. These operations can be implemented in CLP(S). A somewhat complex cross-overs can easily be defined
as follows.

nm n r mm n mn r mm
crossed-genes(X1YZi, X2YIZ2) +- gene(X 1YIZI), gene(X 2YZ 2).

In [18] we define other operators using CLP(S). The new field of Genetic Algorithms is based on these and
other operators and [7, 25] shows how Genetic Algorithms can be used to encode and solve several problems in-
cluding the traveling salesman problem. The advantage gained by encoding the operators using this approach,
is that one obtains declarative-procedural duality and a reasoning system based on the logic programming
paradigm.

The recent explosion in genetics research, e.g., the Genome Project, has lead to the accumulation of a
very large database of human (and other species) genetic sequences. Analyzing this massive amount of data
would require a vast amount of computation and sophisticated algorithms. As Searls points out in [20, 21]
the primary tool currently used to analyze the data is based on linear pattern matching and on viewing the
data as a long string [3, 9]. Search for genetic sequences are carried out using regular expressions based on a
regular language. In [20, 211 Searls describes a computational linguistic approach where the DNA sequences
can be represented using formal grammar, which is better than the linear search techniques.. We translate his

100

DNA grammar rules into CLP(S) rules. He defines complicated genetic structures using simpler structures.
gene =1 upstream, xscript, downstream.
upstream =* catBox, 40...50, tataBox , 19... 27.
xscript =: capSite, ... , xlate , ... , termination.

These definitions given above are not regular expressions and require encoding of gaps (both unbound (...)
and variably-bounded (40... 50)) in the sequence. These gaps may be unimportant or untranslatable in that
particular gene expression. The above rules given above can be directly represented as the following CLP(S)
rules:

gene(XYZ) 4-- upstream(X), zscript(y), downstream(Z)

upstreamn(w'pa()

catboz(W), n < 50, n > 40,tatabox(Y), q < 27, q > 19

capsite(V), atate(X), termination(g).
Our representation of the DNA grammar rules have the advantage of being straightforward and declarative

translations, whereas Searls' transformation into Prolog are interpreter dependent.

There are other genetic features such as a repeat, inverted repeat, palindromes, tandem repeats,
clover-leaf repeat, copia and so on, which cause the representation of genetic sequences to be beyond the
power of context-free languages. In [18] we show how these features can be defined using CLP(S) rules.

Acknowledgement

We wish to express our appreciation to the National Science Foundation for their support of our work under
grant number CCR-9110721.

References

[1] H. Abdulrab and J-P. Pecuchet. Solving Word Equations. Jour. Symbolic Computation, 8:499-521, 1989.

[2] H. Abramson and V. Dahl. Logic Grammars. Springer-Verlag, 1989.

[3] A. Baehr, R. Hagstrom, D. Joerg, and R. Overbeek. Querying Genomic Databases. Technical Report
ANL/MCS-TM-155, Argonne National Laboratory, Mathematics and Computer Science Division, 1991.

[4] S.K. Chang, Q.Y. Shi, and C.W. Yan. Iconic Indexing by 2-D Strings. IEEE PAMI, 9(3):413-428, May

1987.

[5] A. Colmeraur. An Introduction to Prolog-Ill. Comm. ACM, pages 70-90, July, 1990.

[6] V. Dahl and P. Saint-Dizier. Natural Language Understanding and Logic Programming. North Holland,
1988.

[7] D.E. Goldberg. Genetic Algorithms. Addison Wesley, 1989.

[8] R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison Wesley, 1987.

[9] R. Hagstrom, G.S. Michaels, R. Overbeek. M. Price, R. taylor, K. Yoshida, and D. Zawada. GenoGraph-
ics for Open Windows. Technical Report ANL-92/l1, Argonne National Laboratory, Mathematics and
Computer Science Division, 1992.

[10] 3. Jaffar. Minimal and Complete Word Unification. Jour. ACM, 37(1):67-85, 1990.

[11] 3. Jaffar and J.L. Lassez. Constraint Logic Programming. In Proc. of POPL, 1987.

[12] J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In Proc. of Logic
Programming Conference, Melbourne, 1987.

101

(13] J-P. Jouannaud and C. Kirchner. Solving Equations in Abstract Algebras: A Rule-based Survey of
Unification. In J-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in honor of Alan
Robinson, pages 257-321. MIT Press, 1991.

(14] A. Koscielski. An Analysis of f Makanin's Algorithm Deciding Solvability of Equations in Free Groups.
In Word Equations and Related Topics, LNCS 572, pages 12-61. Springer-Verlag, 1990.

(15] G.S. Makanin. Equations in Free Semigroup. AMS, 1979. Also in Math USSR Sbornik, 32,2 (1977).

[16] A. Rajasekar. CLP(String) and Computational Linguistics. manuscript.

[17] A. Rajasekar. Logic Programming Using Strings. Technical Rtport 227-93, Department of Computer
Science, University of Kentucky, 1993.

(18] A. Rajasekar. String-based First Order Logic and Applications, 1993. submitted.

[19] G.D. Ritchie, G.J. Russell, A.W. Black, and S.G. Pulman. Computational Morphology: Practical Mech-
anisms for the English Lezicon. MIT Press, Cambridge, Mass., 1992.

[20] D.B. Searls. Representing Genetic Information with Formal Grammars. In Proc. of AAAI, pages 386-391,
1988.

[21] D.B. Searls. Investigating the Linguistics of DNA with Definite Clause Grammars. In Proc. of NACLP,
pages 189-208, MIT Press, Cambridge, Mass., 1989.

[22] A.C. Shaw. Parsing of Graph-Repesentable Pictures. JACM, 17(3):453-481, 1970.

(23] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[24] E.B. Wendlandt and J.R. Driscoll. Semantic Extensions to Text Retrieval. In ISMIS 91, pages 266-275,
1991.

[25] P. Winston. Artificial Intelligence. Addison Wesley, 1992.

[26] Wu and Manber. Fast Text Searching With Errors. Technical report, University of Arizona, Department
of Computer Science, 1991.

Appendix

A Unify Algorithm

Definition 1 A partially-solved form of a set of string equations is a set of string equations
{R 1 - Si,...R - S.) such that

S t

Vi, 1 < i < n, either R or Si is of the form XiQj, where Xi is a string-variable with size t and Qi is a
(possibly empty) string, and

t S

Vi, 1 < i < n, either R or Si is of the form PiXi, where Xi is a string-variable with size t and Pi is a
(possibly empty) string. 0

Definition 2 A solved form of a set of siring equations is a set of string equations
t(. ti

{X 1= S1,... Xn= S,} such that Vi, 1 < i < n,Xi is a string-variable, Vi,1 < i < j :_ n,Xi Xj, and
Vi, 1 < i, j :5 n, Xi is not in any variable in Sj 0

Every set of equations in solved-form are also in partially-solved form. We next define an algorithm which
transforms a set of string equations into a partially-solved form. Proofs of theorems are given in [18].

102

Algorithm 1 (Reduce Algorithm)
Input S, a set of string equations
Output On SUCCESS returns S', a set of string equations, else returns FAILURE.
Non-deterministically choose from the set of equation S an equation of a form below and perform the associated
actiou: (in the following i denotes a natural number.)

(A:1) a = c halt with FAILURE.
(A:2) SIS 2 = c replace by the equations S1 = c, S2 = e.
(A:3) aS1 = a52 or Sla = Siz, replace by the equation S, = S2 .
(A:.4) aS = 6S2 or Sla = S-b, where a # b, halt with FAILURE.
(A:5) S1 = S1 for any string S1 , delete the equation

t I t
(A:6) X= Si or Si =X where Si is not identical to X and X has another occurrence1

in the set of equations. If X appears in S, then halt with FAILURE.
I

Otherwise substitute S, wherever X appears in every other equation.
(A:7) Sla...aS2 = b, ... bk or b b = Sla... aiS2,

if a ... a is not a sub-string of b, . .bk then halt With FAILURE.,
else, if al . . . aj is a unique substring of bl ... bk such that

)I ... bk = bl ... bral... ajb, ... bk, replace by the equations S, = b, ... br and 2 = b ..b
i i

(A:8) x S, = al ... ajS 2 or a, ... ajS 2 =X S, where S2 contains at least one variable and Si # f
i

If j > i, replace by the equations X= a, ... ai and Si = ai+ . aiS2i i-i -

If i > j, replace by the equations X= ai ... aj W and 52 =W S1
(A4:8') S, X Sa ... a, or $ aj ... a, = S, X where $2 contains at least one variable and S, 96 e

i

If j > i, replace by the equations X= a, ... a, and S, = S2aj . .. a+
i i -j i-j

If i > j, replace by the equations X=W aj ... a, and S2 = S, W

(A:9) XS1 =Y S2 , where S1 and S2 are not empty strings.
i i j-i

I j > i, replace by the equations Y=X W and S, = W S2
i i-.i i-

If i > j, replace by the equations X=YW and S2 =W St

(A:9') St X= S2 Y , where S, and S2 are not empty strings.
j i-i i i-i

If j > i, replr-. by the equations Y=WX and S = S2 W
i i-j j i-j

If i > j, replire by the equations X=WY and S2 = S, W
(A:1O) SIS 2 = S3S4 where ISil = IS3I or IS21 = JS41, replace by Si = S3 and S2 S4
(A:11) If none of the steps (A:1) through (A:1O) can be applied,

halt with SUCCESS returning the set of equations.

Theorem 1 Let S be a set of string equations which is reduced using the reduce algorithm. Then,
I. The algorithm halts in finite steps;
2. If S' is the output set of string equations then S is equivalent to S;
3. If S ' is the output set of string equations then S is in partially-solved form;
4. If the algorithm terminates with FAILURE then S is not unifiable.

Definitionm 3 A string equation is in size-constant form if every string-variable occurring in the equation has
an integer as its size parameter. A set of string equations is in size-constant form if every equation in the set
is in size-constant form. A string is in size-constant form if every string-variable occurring in the string has
an integer as its size parameter.

Lemma 1 Let S be a set of string equations in size-constant form. Then the reduce algorithm results in
FAILURE if and only if, S has no unifiers, or else results in a solved-form. Moreover, the set of equations in
solved form provides the unique (up to renaming) most general unifier for S. 0

103

23 3 32.

Example I Let S = XY=YX
The reduce algorithm proceeds as follows:

3 21 3 12
S, = {y=XW, Y=WX from (A : 8)

3 2 1 21 1 2
S2 = IY=XW, XW=WX) from (A : 6)

3 21 2 11 2 11
S3 = {Y=XW, X=WZ,X=ZW} from (A: 8)

3 1 1 1 2 1 1 1I 1 1I

S 4 = {Y=WZW,X=WZ, WZ=ZW from (A :6)
3 1 1 1 2 11 1 11 1

SS = {Y=WZW,X=WZ, W=Z, Z=WJ from (A :8)
3 111 2 11 1 1 1 1

Se= {Y=ZZZ, X=ZZ, W=Z, Z=Z} from (A : 6)
3 111 2 11 1 1

S7 = {Y=ZZZ, X=ZZ, w=z} from (A: 5)
Halts with success. 0

An advantage of the rule-based reduce algorithm is that one can add failure-rules to it without compromising
the soundness or the completeness of the algorithm. Such additions would enable one to fail a reduction
process faster than without the rules. For example, it is well known that the following string equations have

n n m nn mi
no unifier: a X=X b and X a Y:Y b X. Such rules can be used as additional conditions for failing the
unification process of the reduce algorithm.

B CLP(3)-Resolution

A CLP(S)-derivation is similar to a CLP-derivation (11] but uses algebraic and string constraint solvers.

Definition 4 (SSLD-Derivation)
Let Let A be an algebraic constraint solver and let U be a string-constraint solver. Let P be a CLP(S) program
and let G be a goal. A String SLD-derivation is a sequence of CLP(S)-goals Go = G, Gj,..., such that Vi > 0,
Gi+j is obtained from Gi =-- Ci U Ei, A1 ,..., An. as follows:

1. An is an atom in Gi and is called the selected atom.
. A *-- B 1,...B, is a program clause in P standardized apart with respect to Gi

S. C+j = C, U {Si = S',..., Sn = S'} and E,+i = E, u {ISI = ISI,..., IS I = IS'}
when Am andA are of the form Am =p(S,...,S.) andA =p(S,...,S')

4. Gi+, is the goal -- Cj+j U Ei+j, Aj,. .. , A,IIB1 I... Br,Al+lI,... An

5. Let Pi be the set of string substitutions found by applying A and U to Cj+ U E,+2.
6. Gi+j is the goal 0- (Cj+j U E,+,,..., Am-,, B, Br, An+l,,... An)Oi 0

In line 5, 0 consists only of equations in C+1 U E,+ which are in solved form; the rest of the equations in
C,+j U E+ may be in partially-solved form.

Definition 5 Let P be a CLP(S) program and let G be a goal. A successful SSLD-derivation is an SSLD-
derivation which ends in a goal with only (possibly empty) constraints and no predicate goals. 0

Definition 6 Let A be an algebraic constraint solver and let U be a string-constraint solver. Let P be a
CLP(S) program and let G be a goal. Let - C, U E. be the final goal in a successful SSLD-derivation. Then
EA U Eu is a SSLD-computed constraint using A and U for P U {G} if

EA is a set of integer equations obtained from reducing E. using A,
and let #A be the subset of EA that are variable substitutions
Eu is a set of string equations obtained from reducing CnOA using U.

If EuUEu is a set of string substitutions then the substitutions in EA U Eu restricted to the variables occurring
in G is an SSLD-computed answer substitution for P U {G}. 0

Note that it is posible that the algebraic constraint solver or the string constraint solver may halt in failure.
In such a case the SSLD-resolution is considered to have ended in failure. The soundness and completeness of
SSLD-resolution for allowed CLP(S) programs is shown in [18].

104

The following is an SSLD-derivation for the goal ~-add(0100, 0101,1) using the program given below:

{#ucc(XO, x 1),
succ(X 1, Y0) -_ succ(i, p),
add(Xr, ,X),

add(kA Y 0,IA) 4-ad ,

add(X , Y 1, ZA) - (SUCCMk WA) A add(W, Y, Z)))
(Instantiations of the variable symbols in the SSLD-derivation is differentiated through subscripts.)

4-{,add(0 100 , 0101,13)

using add X, Y ZA) 4 ucX WA), addW YZ)

10 9f= X= 0100,Y= 010, r = 4, m = 3)
4- {PA, s=P + 11 U 91, succ(0100, WA), add(W, 010, "

using xucAi X, 1
3 3 1

= {X 1== 010,W= 010,A= 1,r, = 3,n = 3)
P1 I P

4- ZA=P, s8 p + 11 U 01 U 02, add(010, 010, Z)
r 2 1 m2 Pt r, 2 2 pi

Iusing add(X2 A2 , 2 0, ZiA2) -- addX 2 ,Y2 ,ZI)
2 1 2

103 = {X2 = 01, A2 = 0, Y2 = 01, r2 = 2, M2 = 2)
a~ 1 PI

{P=A~a= p 1,ZIA2 =Z,P =P1+li uU 9U 92U3,acdd(01, 01, Zi)
ra 3 1,t P2 1) . PC 3 , dd n,~ 1 3 , P2

1uwing add(Xs, Y3 1 Z 2As) V-s (S, WIA 3), add WI, Y3 Z2)
2 1

104 = X 3 = 01, Y3 = 0, r3 = 2, m3 = 11
ap Ptl Ip PI P21

4-{ZA,s=p+ 1,ZIA2Z,P=PI + 1,Z1 =Z2 A3,pi =P2 + 1) u91 U02 U03 U04,
Itt 1 it P

Succ(01, W1JA3), add(WI, 0, Z2)
r" t F4 14

using succ(X4 1, Y4 0) 4-- succ(X4 , P4)
195 = X4= 0,Y4=W,3= 0,r4 = 1,Ml4= 1)

succ(0, n,)add(ni, 0,

Iusing su X5 1,A5 1)
0 1

1 96 = {Xs= e, Wi= 1, n, = 1, 7s = 0)
+-{ PA 1=p+,&IA=,p=p+l,p 2ZZA ZZi=Z 2A,P =P2+1}U91 U9 2U9 3 U9 4U9 5 U9 6,

add(1, 0, ?32)

Iusing add(Xs, 0, X6)
1 1

107 = {X6 = 1, Z 2 = 1,P2 = 1, r6 = 1)
a I PI1 Ip PI P21I

4.-{ PZA,8=P+1,ZA 2=Z,P=P+,Z=Z 2A,P P2 +1UU i92 USU 4 USU6,U7

Applying the Gaussian elimination and the reduce algorithm to the constraint set given by:

we obtain the answer substitution: P= 1001. 0

105

Towards CIAO-Prolog -
A Parallel Concurrent Constraint System

M. Hermenegildo

Facultad de Informitica
Universidad Politicnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid, Spain

hermefilupmn.es

1 Introduction

We present an informal discussion on some methodological aspects regarding the efficient parallel implementation
of (concurrent) (constraint) logic programming systems, as well as an overview of some of the current work
performed by our group in the context of such systems. These efforts represent our first steps towards the
development of what we call the CIAO (Concurrent, Independence-based And/Or parallel) system - a platform
which we expect will provide efficient implementations of a series of non-deterministic, concurrent, constraint
logic programming languages, on sequential and multiprocessor machines.

CIAO can be in some ways seen as an evolution of the &-Prolog [17] system concepts: it builds on &-
Prolog ideas such as parallelization and optimization heavily based on compile-time global analysis and efficient
abstract machine design. On the other hand, CIAO is aimed at adding sever nportant extensions, such as
or-parallelism, constraints, more direct support for explicit concurrency in the source language, as well as other
ideas inspired by proposals such as Muse [1] and Aurora [27], GHC [39], PNU-Prolog [30], IDIOM [16], DDAS
[32], Andorra-I [31], AKL [20], and the extended Andorra model [40]. One of the objectives of CIAO is to offer
at the same time all the user-level models provided by these systems.

More than a precisely defined design, at .this point the CIAO system should be seen as a target which serves
to motivate and direct our current research efforts. This impreciseness is purposely based on our belief that,
in order to develop an efficient system with the characteristics that we desire, a number of technologies have
to mature and others still have to be developed from scratch. Thus, our main focus at the moment is in the
development of some of these technologies, which include, among others, improved memory management and
scheduling techniques, development of parallelization technology for non-strict forms of independence, efficient
combination of and- and or-parallelism, support of several programming paradigms via program transformation,
and the extension of current parallelization theory and global analysis tools to deal with constraint-based
languages.

We will start our discussion by dealing with some methodological issues. We will then introduce some of
our recent work in the direction mentioned above. Given the space limitations the description will be aimed
at providing an overall view of our recent progress and a set of pointers to some relevant recent publications
and technical reports which describe our results more fully. We hope that in light of the objective of providing
pointers, the reader will be kind enough to excuse the summarized descriptions and the predominance in the
references of (at least recent) work of our group.

2 Separation of issues / Fundamental Principles

We begin our discussion with some very general observations regarding computation rules, concurrency, paral-
lelism, and independence. We believe these observations to be instrumental in understanding our approach and
its relationship to others. A motivation for the discussions that follow is the fact that many current proposals for
parallel or concurrent logic programming languages and models are actually "bundled packages", in the sense
that they offer a combined solution affecting a number of issues such as choice of computation rule, concurrency,
exploitation of parallelism, etc. This is understandable since certainly a practical model has to offer solutions
for all the problems involved. However, the bundled nature of (the description of) many models often makes it
difficult to compare them with each other. It is our view that, in order to be able to perform such comparisons,

106

a "separation analysis" of models isolating their fundamental principles in (at least) the coordinates proposed
above must be performed. In fact, we also believe that such un-bundling brings the additional benefit of allowing
the identification and study of the fundamental principles involved in a system independent manner and the
transference of the valuable features of a system to another. In the following we present some ideas on how we
believe the separation analysis mentioned above might be approached.

2.1 Separating Control Rules and Parallelism

We start by discussing the separation of parallelism and computation rules in logic programming systems. Of the
concepts mentioned above, probably the best understood from the formal point of view is that of computation
rules. Assuming for example an SLD resolution-based system the "computation rules" amount to a "selection
rule" and a "search rule." The objective of computation rules in general is to minimize work, i.e. to reduce
the total amount of resolutions needed to obtain an answer. We believe it is useful, at least from tb oint
of view of analyzing systems, to make a strict distinction between parallelism issues and computr ;le
related issues. To this end, we define parallelism as the simultaneous execution of a number of inc :nt
sequences of resolutions, taken from those which would have to be performed in any case as determineci ..Y the
computation rules. We call each such sequence a thread of execution. Note that as soon as there is an actual
(i.e., run-time) dependency between two sequences, one has to wait for the other and therefore parallelism does
not occur for some time. Thus, such sequences contain several threads. Exploiting parallelism means taking
a fixed-size computation (determined by the computation rules), splitting it into independent threads related
by dependencies (building a dependency graph), and assigning these segments to different agents. Both the
partitioning and the agent assignment can be performed statically or dynamically. The objective of parallelism
in this definition is simply to perform the same amount of work in less time.

We consider as an example a typical or-parallel system. Let us assume a finite tree, with no cuts or side-
effects, and that all solutions are required. In a first approximation we could consider that the computation
rules in such a system are the same as in Prolog and thus the same tree is explored and the number of resolution
steps is the same. Exploiting (or-)parallelism then means taking branches of the resolution tree (which have
no dependencies, given the assumptions) and giving them to different agents. The result is a performance gain
that is independent of any performance implications of the computation rule. As is well known, however, if
only (any) one solution is needed, then such a system can behave quite differently from Prolog: if the leftmost
solution (the one Prolog would find) is deep in the tree, and there is another, shallower solution to its right,
the or-parallel system may find this other solution first. Furthermore, it may do this after having explored
a different portion of the tree which is potentially smaller (although also potentially bigger). The interesting
thing to realize from our point of view is that part of the possible performance gain (which sometimes produces
"super-linear" speedups) comes in a fundamental way from a change in the computation rule, rather than from
parallel execution itself. It is not due to the fact that several agents are operating but to the different way in
which the tree is being explored ("more breath-first"). 1

A similar phenomenon appears for example in independent and-parallel systems if they incorporate a certain
amount of "intelligent failure": computation may be saved. We would like this to be seen as associated to
a smarter computation rule that is taking advantage of the knowledge of the independence of some goals
rather than having really anything to do with the parallelism. In contrast, also the possibility of performing
additional work arises: unless non-failure can be proved ahead of time, and-parallel systems necessarily need
to be speculative to a certain degree in order to obtain speedups. However such speculation can in fact be
controlled so that no slow down occurs (18].

Another interesting example to consider is the Andorra-I system. The basic Andorra principle underlying this
system states (informally) that deterministic reductions are performed ahead of time and possibly in parallel.
This principle would be seen from our point of view as actually two principles, one related to the computation
rules and another to parallelism. From the computation rule point of view the bottom line is that deterministic
reductions are executed first. This is potentially very useful in practice since it can result in a change (generally
a reduction, although the converse may also be true) of the number of resolutions needed to find a solution.
Once the computation rule is isolated the remaining part of the rule is related to parallelism and can be seen

1This can be observed for example by starting a Muse or an Aurora system with several "workers" on a uniprocessor machine.

In this experiment it is possible sometimes to obtain a perfornmane gain wr.t. a sequential Prolog system even though there is no
parallelism involved - just a coroitising computation rule, in this cae implemented by the multitasking operating system.

107

simply as stating that deterministic reductions can be executed in parallel. Thus, the "parallelism part" of the
basic Andorra principle, once isolated from the computation rule part, brings a basic principle to parallelism:
that of the general convenience of parallel execution of deterministic threads.

We believe that the separation of computation rule and parallelism issues mentioned above allows enlarging
the applicability of the interesting principles brought in by many current models.

2.2 Abstracting Away the Granularity Level: The Fundamental Principles

Having argued for the separation of parallelism issues from those that are related to computation rules, we now
concentrate on the fundamental principles governing parallelism in the different models proposed. We argue
that moving a principle from one system to another can often be done quite easily if another such "separation" is
performed: isolating the principle itself from the level of granularity at which it is applied. This means viewing
the parallelizing principle involved as associated to a generic concept of thread, to be particularized for each
system, according to the fundamental unit of parallelism used in such system.

As an example, and following these ideas, the fundamental principle of determinism used in the basic Andorra
model can be applied to the &-Prolog system. The basic unit of parallelism considered when parallelizing
programs in the classical &-Prolog tools is the subtree corresponding to the complete resolution of a given goal
in the resolvent. If the basic Andorra principle is applied at this level of granularity its implications are that
deterministic subtrees can and should be executed in parallel (even if they are "dependent" in the classical
sense). Moving the notions of determinism in the other direction, i.e. towards a finer level of granularity, one
can think of applying the principle at the level of bindings, rather than clauses, which yields the concept of
"binding determinism" of PNU-Prolog [30].

In fact, the converse can also be done: the underlying principles of &-Prolog w.r.t. parallelism -basically
its independence rules- can in fact be applied at the granularity level of the Andorra model. The concept of
independence in the context of &-Prolog is defined informally as requiring that a part of the execution "will
not be affected"- by another. Sufficient conditions -strict and non-strict independence [18]- are then defined
which are shown to ensure this property. We argue that applying these concepts at the granularity level of the
Andorra model gives some new ways of understanding the model and some new solutions for its parallelization.
In order to do this it is quite convenient to look at the basic operations in the light of David Warren's extended
Andorra model.2 The extended Andorra model brings in the first place the idea of presenting the execution of
logic programs as a series of simple, low level operations on and-or trees. In addition to defining a lower level of
granularity, the extended Andorra model incorporates some principles which are related in part to parallelism
and in part to computation rule related issues such as the above mentioned basic Andorra principle and the
avoidance of re-computation of goals.

On the other hand the extended Andorra model also leaves several other issues relatively more open. One
example is that of when nondeterministic reductions may take place in parallel. One answer for this important
and relatively open issue was given in the instantiation of the model in the AKL language. In AKL the concept of
"stability" is defined as follows: a configuration (partial resolvent) is said to be stable if it cannot be affected by
other sibling configurations. In that case the operational semantics of AKL allow the non-determinate promotion
to proceed. Note that the definition is, not surprisingly, equivalent to that of independence, although applied
at a different granularity level. Unfortunately stability/independence is in general an undecidable property.
However, applying the work developed in the context of independent and-parallelism at this level of granularity
provides sufficient conditions for it. The usefulness of this is underlined by the fact that the current version
of AKL incorporates the relatively simple notion of strict independence (i.e. the absence of variable sharing)
as its stability rule. However, the presentation above clearly marks the way for incorporating more advanced
concepts, such as non-strict independence, as a sufficient condition for the independence/stability rule. As will
be mentioned, we are actively working on compile-time detection of non-strict independence, which we believe
will be instrumental in this context. Furthermore, and as we will show, when adding constraint support to a
system the traditional notions of independence are no longer valid and both new definitions of independence
and sufficient conditions for it need to be developed. We believe that the view proposed herein allows the
direct application of general results concerning independence in constraint systems to several realms, such as
the extended Andorra model and AKL.

2This is mudertandabe, giVen tbat'adding independent and-pwallism to the bauic Andor=& model was one of the objectives
in the deveopmen of its extended version.

108

Another way of moving the concept of independence to a finer level of granularity is to apply it at the
binding level. This yields a rule which states that.dependent bindings of variables should wait for their leftmost
occurrences to complete (in the same way as subtrees wait for dependent subtrees to their left to complete in
the standard independent and-parallelism model), which is essentially the underlying rule of the DDAS model
[32]. In fact, one can imagine applying the principle of non-strict independence at the level of bindings, which
would yield a "non-strict" version of DDAS which would not require dependent bindings to wait for bindings
to their left which are guaranteed to never occur, or for bindings which are guaranteed to be compatible with
them.

With this view in mind we argue that there are essentially four fundamental principles which govern ex-
ploitation of parallelism:

" independence, which allows parallelism among non-deterministic threads,

" determinacy, which allows parallelism among dependent threads,

" non-failure, which allows guaranteeing non-speculativeness, and

" granularity, which allows guaranteeing speedup in' the presence of overheads.

2.3 User-level Concurrency

Similarly to the separations mentioned above (parallelism vs. computation rule and principles vs. granularity
level of their application) we also believe in a separation of "concurrency" from both parallelism and computation
rules. We believe concurrency is most useful when it is explicitly controlled by the user and should be separate
from the implicit computation rules. This is in contrast with parallelism, which ideally should be transparent
to the user, and with smart computation rules of which the user should only be aware in the sense of being
able to derive an upper bound on the amount of computation involved in running a program for a given query
using that rule. Space limitations prevent us from elaborating more on this topic or that of the separation
between concurrency and parallelism. However, an example of an application of the latter can be seen in
schedule snaluis, where the maximal essential components of concurrency are isolated and sequenced to allow
the most efficient possible execution of the concurrent program by one agent [21]. Schedule analysis is, after
all, an application of the concept of dependence (or, conversely, independence) at a certain level of granularity
in order to "unparallelise" a program, and is thus based on the same principles as automatic parallelization.

2.4 Towards a General-Purpose Implementation

We believe that the points regarding the separation of issues and fundamental principles sketched in the previous
sections at the same time explain and are supported by the recent trend towards convergence in the impleme-
nation techniques of systems that are in principle very different, such as the various parallel implementations
of Prolog on one hand (see, for example, [17, 27, 2]) and the implementations of the various committed choice
languages on the other (see, for example, [7, 8, 14, 19, 24, 35, 38, 39]). The former are based on schemes for
parallelizing a sequential language; they tend to be stack-based, in the sense that (virtual) processors allocate
environments on a stack and execute computations "locally" as far as possible until there is no more work to do,
at which point they "steal" work from a busy processor. The latter, by contrast, are based on concurrent lan-
guages with dataflow synchronization; they tend to be heap-based, in the sense that environments are generally
allocated on a heap, and there is (at least conceptually) a shared queue of active tasks.

The aforementioned convergence can be observed in that, on one hand, driven by the demonstrated utility
of delay primitives in sequential Prolog systems (e.g., the freeze and block declarations of Sictus Prolog [6],
when declarations of NU-Prolog [36], etc.), parallel Prolog systems have been incorporating capabilities to deal
with user-defined suspension and coroutining behaviors-for example, &-Prolog allows programmer-supplied
wit-declarations, which can be used to express arbitrary control dependencies. In sequential Prolog systems
with delay primitives, delayed goals are typically represented via heap-allocated "suspension records," and such
goals are awakened when the variables they are suspended on get bindings [5]. Parallel Prolog systems inherit
this architecture, leading to implementations where individual tasks are stack-oriented, together with support
for heap-allocated suspensions and dataflow synchronization. On the other hand, driven by a growing consensus
that some form of "sequentialisation" is necessary to reduce the overhead of managing fine-grained parallel tasks

109

on stock hardware (see, for example, [13, 37, 22]), implementors of committed choice languages are investigating
the use of compile-time analyses to coalesce fine-grained tasks into coarser-grained sequential threads that can
be implemented more efficiently. This, again, leads to implementations where individual sequential threads
execute in a stack-oriented manner, but where sets of such threads are represented via heap-allocated activation
records that employ datafliow synchronization. Interestingly, and conversely, in the context of parallel Prolog
systems, there is also a growing body of work trying to address the problem of automatic parallelizing compiler
often "parallelizing too much" which appears if the target architecture is not capable of supporting fine grain
parallelism. Figure 2.4 illustrates this (and in fact reflects the interactions among the partners of the ParForCE
Esprit project, where Lome of these interactions are being investigated).

TratIdito L0gi Coscumat LO&i

(CAO-PodA MpSy..) (CIHC AlL,...)

.....
q 'a,,ct h= Wml.o..*P..- Ie PMMC

O• oft \ R
------------------------ ~

Dp I I
*.-' f........ ...PW&-C. AaL

/ . Ir'

'Pm-d cpftund-)

--------------------------------- J

This convergence of trends is exciting: it suggests that we are beginning to understand the essential imple-
mentation issues for these languages, and that from an implementor's perspective these languages are not as
fundamentally different as was originally believed. It also opens up the possibility of having a general purpose
abstract machine to serve as a compilation target for a variety of languages. As mentioned before this is precisely
one of the objectives of the CIAO system. Encouraging initial results in this direction have been demonstrated
in the sequential context by the QD-Janus system [12] of S. Debray and his group. QD-Janus, which compiles
down to Sicstus Prolog and uses the delay primitives of the Prolog system to implement dataflow synchroniza-
tion, turns out to be more than three times faster, on the average, than Kliger's customized implementation of
FCP(:) [23] ad requires two orders of magnitude less heap memory [11]. We believe that this point will also
extend to parallel systems: as noted above, the &-Prolog system already supports stack-oriented parallel execu-
tion together with arbitrary control dependencies, suspension, and dataflow synchronization via user-supplied
wail-declarations, all characteristics that CIAO inherits. This suggests that the dependence graphs and toait
declarations of &-Prolog/CIAO can serve as a common intermediate language, and its runtimne system can act as

110

•~~~~ . 9n n lI

an appropriate common low-level implementation, for a variety of parallel logic programming implementations.
We do not mean to suggest that the performance of such a system will be optimal for all possible logic pro-
gramming languages: our claim is r;ther that it will provide a way to researchers in the community implement
their languages with considerably less effort than has been possible to date, and yet attain reasonably good
performance. We are currently exploring these points in collaboration with S. Debray.

3 Some of our recent work in this context

We now provide an overview of our recent work in filling some of the gaps that, in our understanding, are
missing in order to fulfill the objectives outlined in the previous section.

3.1 Parallelism based on Non-Strict Independence

One of our starting steps is to improve the independence-based detection of parallelism based on information
that can be obtained from global analysis using the current state of the art in abstract interpretation. We have
had a quite successful experience using this technique for detecting the classical notion of "strict" independence.
These results are summarized in [3], which compares the performance of several abstract interpretation domains
and parallelization algorithms using the &-Prolog compiler and system.

While these results are quite encouraging there is another notion of independence - "non-strict" indepen-
dence [18] - which ensures the same important "no slow down" properties than the traditional notion of strict
independence and allows considerable more parallelism than strict independence [33]. The support of non-strict
independence requires, however, a review of our compile-time parallelization technology which to date has been
exclusively based on strict independence. In [4] we describe some of our recent work filling this gap. Rules and
algorithms are provided for detecting and annotating non-strict independence at compile-time. We also propose
algorithms for combined compile-time/run-time detection, including run-time checks for this type of parallelism,
which in some cases turn out to be different from the traditional groundness and independence checks used for
strict independence. The approach is based on the knowledge of certain properties about run-time instantia-
tions of program variables -sharing, groundness, freeness, etc.- for which compile-time technology is available,
with new approaches being curren]y proposed. Rather than dealing with the analysis itself, we present how
the analysis results can be used to parallelize programs.

3.2 Parallelization in the Presence of Constraints: Independence / Stability

In the CIAO-Prolog system, from the language point of view, we assume a constraint-based, non-deterministic
logic programming language. As such, and apart from the concurrency/coroutining primitives, the user language
can be viewed as similar to Prolog when working on the Herbrand domain, and to systems such as CLP(R) or
CHIP when working over other domains. This implies that the traditional notions of independence / stability
need to be evaluated in this context and, if necessary, extended to deal with the fact that constraint solving is
occurring in the actual execution in lieu of unification.

Previous work in the context of traditional Logic Programming languages has concentrated on defining
independence in terms of preservation of search space, and such preservation has then been achieved by ensuring
that either the goals do not share variables (strict independence) or if they share variables, that they do not
"compete" for their bindings (non-strict independence).

In [10] we have shown (in collaboration with Monash University) that a naive extrapolation of the traditional
notions of independence to Constraint Logic Programming is unsatisfactory (in fact, wrong) for two reasons.
First, because interaction between variables through constraints is more complex than in the case of logic
programming. Second, in order to ensure the efficiency of several optimizations not only must independence
of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We
clarify these issues by proposing various types of search independence and constraint solver independence, and
show how they can be combined to allow different independence-related optimizations, in particular parallelism.
Sufficient conditions for independence which can be evaluated "a-priori" at run-time and are easier to identify
at compile-time than the original definitions, are also proposed. Also, it has been shown how the concepts
proposed, when applied to traditional Logic Programming, render the traditional notions and are thus a strict
generalization of such notions.

ill

3.3 Extending Global Analysis Technology to CLP

As mentioned before, since many optimizations, including independence / stability detection, are greatly aided
by (and sometimes even require) global analysis, traditional global analysis techniques. have to be extended
to deal with the fact that constraint solving is occurring in the actual execution in lieu of unification. In (9]
we present and illustrate with an implementation a practical approach to the dataflow analysis of programs
written in constraint logic programming (CLP) languages using abstract interpretation. We argue that, from
the framework point of view, it suffices to propose quite simple extensions to traditional analysis methods which
have already been proved useful and practical and for which efficient fixpoint algorithms have been developed.
This is shown by proposing a simple but quite general extension to the analysis of CLP programs of Bruynooghe's
traditional framework, and describing its implementation - the "PLA" system. As the original, the framework
is parametric and we provide correctness conditions to be met by the abstract domain related functions to be
provided. In this extension constraints are viewed not as "suspended goals" but rather as new information in
the store, following the traditional view of CLP. Using this approach, and as an example of its use, a complete,
constraint system independent, abstract analysis is presented for approximating definiteness information. The
analysis is in fact of quite general applicability. It has been implemented and used in the analysis of CLP(R)
and Prolog-I applications. Results from this implementation are also presented which show good efficiency
and accuracy for the analysis.

This framework, combined with the ideas of (10] (and [29]) presented in the previous section, is the basis
for our current development of automatic parallelization tools for CLP programs, and, in particular, of the
parallelizer for the CIAO-Prolog system.

3.4 Extending Global Analysis Technology for Explicit Concurrency

Another step that has to be taken in adapting current compile-time technology to CIAO systems is to develop
global analysis technology which can deal with the fact that the new computation rules allow the specification
of concurrent executions. While there have been many approaches proposed in the literature to address this
problem, in a first approach we focus on a class of languages (which includes modern Prologs with delay
declarations) which provide both sequential and concurrent operators for composing goals. In this approach
we concentrate on extending traditional abstract interpretation based global analysis techniques to incorporate
these new computation rules. This gives a practical method for analyzing (constraint) logic programming
languages with (explicit) dynamic scheduling policies, which is at the same time equally powerful as the older
methods for traditional programs.

We have developed, in collaboration with the University of Melbourne, a framework for global dataflow
analysis of this clas of languages [28]. First, we give a denotational semantics for languages with dynamic
scheduling which provides the semantic basis for our generic analysis. The main difference with denotational
definitions for traditional Prolog is that sequences of delayed atoms must also be abstracted and are included in
"calls" and "answers.' Second, we give a generic global dataflow analysis algorithm which is based on the deno-
tational semantics. Correctness is formalized in terms of abstract interpretation. The analysis gives information
about call arguments and the delayed calls, as well as implicit information about possible call schedulings at
runtime. The analysis is generic in the sense that it has a parametric domain and various parametric functions.
Finally, we demonstrate the utility and practical importance of the dataflow analysis algorithm by presenting
and implementing an example instantiation of the generic analysis which gives information about groundness
and freeness of variables in the delayed and actual calls. Some preliminary test .esults are included in which
the information provided the implemented analyzer is used to reduce the overhead of dynamic scheduling by
removing unnecessary tests for delaying and awakening, to reorder goals so that atoms are not delayed, and to
recognize calls which are "independent" and so allow the program to be run in parallel.

3.5 Granularity Analysis

While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead
associated with the execution of goals in parallel because of the work involved in task creation and scheduling.
In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken
into account when deciding whether or not to execute a goal in parallel as a separate task. Building on the ideas
first proposed in [13] we describe in [25] a proposal for an automatic granularity control system, which is based

112

on an accurate granularity analysis and program transformation techniques. The proposal covers granualrity
control of both and-parallelism and or-parallelism. The system estimates the granularities of goals at compile
time, but they are actually evaluated at runtime. The runtime overhead associated with our approach is usually
quite small, and the performance improvements resulting from the incorporation of grain size control can be
quite good. Moreover a static analysis of the overhead associated with granularity control process is performed
in order to decide its convenience.

The method proposed requires among other things knowing the size of the terms to which program variables
are bound at run-time (something which is useful in a class of optimizations which also include recursion
elimination). Such size is difficult to even approximate at compile time and is thus generally computed at
run-time by using (possibly predefined) predicates which traverse the terms involved. In [26] we propose a
technique based on program transformation which has the potential of performing this computation much
more efficiently. The technique is based on finding program procedures which are called before those in which
knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and
transforming such procedures so that they compute term sizes "on the fly". We present a systematic way
of determining whether a given program can be transformed in order to compute a given term size at a given
program point without additional term traversal. Also, if several such transformations are possible our approach
allows finding minimal transformations under certain criteria. We also discuss the advantages and applications
of our technique and present some performance results.

3.6 Memory Management and Scheduling in Non-deterministic And-parallel Sys-
tems

From our experience with the &-Prolog system implementation [171, the results from the DDAS simulator [32],
and from informal conversations with the Andorra-I developers, efficient memory management in systems which
exploit and-parallelism is a problem for which current solutions are not completely satisfactory. This appears to
be specially the case with and-parallel systems which support don't-know nondeterminism or deep guards. We
believe son-deterministic and-parallel schemes to be highly interesting in that they present a relatively general
set of problems to be solved (including most of those encountered in the memory management of or-parallel
only systems) and have chosen to concentrate on their study.

In collaboration with U. of Bristol, we have developed a distributed stack memory management model which
allows flexible scheduling of goals. Previously proposed models are lacking in that they impose restrictions on
the selection of goals to be executed or they may require a large amount of virtual memory. Our measurements
imply that the above mentioned shortcomings can have significant performance impacts, and that the extension
that we propose of the "Marker Model" allows flexible scheduling of goals while keeping (virtual) memory
consumption down. We also discuss methods for handling forward and backward execution, cut, and roll back.
Also, we show that the mechanism proposed for flexible scheduling can be applied to the efficient handling of
the very general form of suspension that can occur in systems which combine several types of non-deterministic
and-parallelism and advanced computation rules, such as PNU-Prolog [30], IDIOM [16], DDAS [32], AKL [20],
and, in general, those that can be seen as an instantiation of the extended Andorra model (40]. Thus, we believe
that the results may be applicable to a whole class of and- and or-parallel systems. Our solutions and results
are described more fully in [34].

3.7 Incorporating Or-Parallelism: The ACE Approach

Another important issue is the incorporation of Or-parallelism to an and-parallel system. This implies well
known problems related to or-parallelism itself, such as the maintenance of several binding environments, as
well as new problems such as the interactions of the multiplicity of binding environments and threads of or-
parallel computation with the scoping and memory management requirements of and-parallelism. The stack
copying approach, as exemplified by the MUSE system, has been shown to be a quite successful alternative for
representing multiple environments during or-parallel execution of logic programs. In collaboration with the U.
of New Mexico and U. of Bristol we have developed an approach for parallel implementation of logic programs,
described more fully in [15], which we believe is capable of exploiting both or-parallelism and independent
and-parallelism (as well as other types of and-parallelism) in an efficient way using stack copying ideas. This
model combines such ideas with proven techniques in the implementation of independent and-parallelism, such

113

as those used in &-Prolog. We show how all solutions to non-deterministic and-parallel goals are found without
repetitions. This is done through re-computation as in Prolog (and &-Prolog), i.e., solutions of and-parallel

*goals are not shared. We propose ,a scheme for the efficient management of the address space in a way that
is compatible with the apparently incompatible requirements of both and- and or-parallelism. This scheme al-
lows incorporating and combining the memory management techniques used in (non-deterministic) and-parallel
systems, such as those mentioned in the previous section, and memory management techniques of or-parallel
systems, such as incremental copying. We also show how the full Prolog language, with all its extra-logical fea-
tures, can be supported in our and-or parallel system so that its sequential semantics is preserved. The resulting
system retains the advantages of both purely or-parallel systems as well as purely and-parallel systems. The
stack copying scheme together with our proposed memory management scheme can also be used to implement
models that combine dependent and-parallelism and or-parallelism, such as Andorra and Prometheus.

References
[1] K.A.M. Ali and R. Karlsson. The Muse Or-Parellel Prolog Model and its Performance. In 1990 North American

Conference on Logic Programming. MIT Press, October 1990.

[2] P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog-The Language and Application in Distributed Simulation.
In International Conference on Fifth Generation Computer Systems. Tokyo, November 1988.

[3] F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis in Strict Independence-
Based Automatic Program Parallelization. Technical Report TR Number CLIP7/93.0, T.U. of Madrid (UPM),
Facultad Informitica UPM, 28660-Boadilla del Monte, Madrid-Spain, October 1993.

[4] D. Cabeza and M. Hermenegildo. Towards Extracting Non-strict Independent And-parallelism Using Sharing and
Freeness Information. Technical Report TR Number CLIP5/92.1, U. of Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain, August 1993.

[5] M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wan. In Fourth International Conference
on Logic Programming, pages 40-58. University of Melbourne, MIT Press, May 1987.

[6] M. Carlsson. Sicstus Prolog User's Manual. Po Box 1263, S-16313 Spanga, Sweden, February 1988.
[7] K. L. Clark and S. Gregory. Notes on the Implementation of Parlog. Journal of Logic Programming, 2(1), April

1985.
[8] Jim Crammond. Scheduling and Variable Assignment in the Parallel Parlog Implementation. In 1990 North

American Conference on Logic Programming. MIT Press, 1990.

[9] M.J.Garcia de l Banda and M. Hermenegildo. A Practical Approach to the Global Analysis of Constraint Logic
Programs. In 1993 International Logic Programming Symposium. MIT Press, Cambridge, MA, October 1993.

[10] M.J.Garcia de Ia Banda, M. Hermenegildo, and K. Marriott. Independence in Constraint Logic Programs. In 1993
International Logic Programming Symposium. MIT Press, Cambridge, MA, October 1993.

[11] S. K. Debray. Implementing logic programming systems: The quiche-eating approach. In ICLP '93 Workshop on
Practical Implementations and Systems Experience in Logic Programming, Budapest, Hungary, June 1993.

[12] S. K. Debray. Qd-janus : A sequential implementation of janus in prolog. Software-Practice and Experience,
23(12):1337-1360, December 1993.

[13] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs. In Proc. of the 1990
ACM Conf. on Programming Language Design and Implementation, pages 174-188. ACM Press, June 1990.

[14] 1. Foster and S. Taylor. Strand: A practical parallel programming tool. In 1989 North American Conference on
Logic Programming, pages 497-512. MIT Press, October 1989.

[15] G. Gupta, M. Hermenegildo, Enrico Pontelli, and Vitor Santos Costa. ACE: And/Or-parallel Copying-based Exe-
cution of Logic Programs. In International Conference on Logic Programming. MIT Press, June 1994. to appear.

[16] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating Dependent and-, Independent and-
, and Or-parallelism. In 1991 International Logic Programming Symposium, pages 152-166. MIT Press, October
1991.

[17] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-Parallelism. New Generation
Computing, 9(3,4):233-257, 1991.

[18] M. Hermenegildo and F. RossL Strict and Non-Strict Independent And-Parallelism in Logic Programs: Correctness,
Efficiency, and Compile-Time Conditions. Journal of Logic Programming, 1993. To appear.

114

.. . . • , ... , i a l I II Miss

[191 A. Houri and E. Shapiro. A sequential abstract machine for flat concurrent prolog. Technical Report CS86-20,

Dept. of Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel, July 1986.

(201 S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. In 1991 International Logic
Programming Symposium, pages 167-183. MIT Press, 1991.

[21] A. King and P. Soper. Reducing scheduling overheads fox concurrent logic programs. In International Workshop on
Processing Declarative Knowledge, Kaiserslautern, Germany, (1991). Springer-Verlag.

(22] Andy King and Paul Soper. Schedule Analysis of Concurrent Logic Programs. In Krzysztof Apt, editor, Proceedings
of the Joint International Conference and Symposium on Logic Programming, pages 478-492, Washington, USA,
1992. The MIT Press.

[23] S. Kliger. Compiling Concurrent Logic Programming Languages. PhD thesis, The Weizmann Institute of Science,
Rehovot, Israel, October 1992.

(24] M. Koraloot and E. Tick. Compilation techniques for nondeterminate flat concurrent logic programming languages.
In 1991 International Conference on Logic Programming, pages 457-471. MIT Press, June 1991.

[25] P. L6pez and M. Hermenegildo. An automatic sequentializer based on program transformation. Technical report,
T.U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain, April 1993.

[26] P. L6pez and M. Hermenegildo. Dynamic Term Size Computation in Logic Programs via Program Transformation.
Technical report, T.U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain,
April 1993. Presented at the 1993 COMPULOG Area Meeting on Parallelism and Implementation Technologies.

[27) E. Lusk et. al. The Aurora Or-Parallel Prolog System. New Generation Computing, 7(2,3), 1990.

[28] K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Analyzing Logic Programs with Dynamic Scheduling.
In Proceedings of the 20th. Annual ACM Con/. on Principles of Programming Languages. ACM, January 1994.

(29] U. Montanari, F. Rossi, F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Contextual Nets and Constraint
Logic Programming: Towards a True Concurrent Semantics for CLP. Technical report, T.U. of Madrid (UPM),
Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain, January 1993. To be Presented at the ICLP'93
Post Conference Workshop on Concurrent Constraint Logic Programming.

[30] L. Naish. Parallelizing NU-Prolog. In Fifth International Conference and Symposium on Logic Programming, pages
1546-1564. University of Washington, MIT Press, August 1988.

[31] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that Transparently Exploits
both And- and Or-parallelism. In Proceedings of the 3rd. ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, April 1990.

(32] K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Dependent And-Parallel Scheme. In
Proc. Joint Intl. Conf. and Symp. on Logic Prog. MIT Press, 1992.

[33] K. Shen and M. Hermenegildo. A Simulation Study of Or- and Independent And-parallelism. In 1991 International
Logic Programming Symposium. MIT Press, October 1991.

[34] K. Shen and M. Hermenegildo. A Flexible Scheduling and Memory Management Scheme for Non-Deterministic,
And-parallel Execution of Logic Programs. Technical report, T.U. of Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain, April 1993. Presented at the ICLP'93 Post Conference Workshop on Logic
Program Implementation.

[35] S. Taylor, S. Safra, and E. Shapiro. A parallel implementation of flat concurrent prolog. In E.Y. Shapiro, editor,
Concurrent Prolog: Collected Papers, pages 575-604, Cambridge MA, 1987. MIT Press.

(36] J. Thorn and J. Zobel. NU-Prolog Reference Manual. Dept. of Computer Science, U. of Melbourne, May 1987.

[37] E. Tick. Compile-Time Granularity Analysis of Parallel Logic Programming Languages. In International Conference
on Fifth Generation Computer Systems. Tokyo, November 1988.

[38] E. Tick and C. Bannerjee. Performance evaluation of monaco compiler and runtime kernel. In 1993 International
Conference on Logic Programming, pages 757-773. MIT Press, June 1993.

[39] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog: Collected Papers, pages 140-156.
MIT Press, Cambridge MA, 1987.

[40] D.H.D. Warren. The Extended Andorra Model with Implicit Control. In Sverker Jansson, editor, Parallel Logic
Programming Workshop, Box 1263, S-163 13 Spanga, SWEDEN, June 1990. SICS.

115

Encapsulated Search and Constraint P rogramming in Oz

Christian Schulte, Gert Smolka, and Jorg Wiirtz
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany

{schult , smolka, vuertz}@dfki .uni-sb. de

Abstract
Oz is an attempt to create a high-level concurrent programming language providing the

problem solving capabilities of logic programming (i.e., constraints and search). Its compu-
tation model can be seen as a rather radical extension of the concurrent constraint model
providing for higher-order programming, deep guards, state, and encapsulated search. This
paper focuses on the most recent extension, a higher-order combinator providing for en-
capsulated search. The search combinator spawns a local computation space and resolves
remaining choices by returning the alternatives as first-class citizens. The search combi-
nator allows to program different search strategies, including depth-first, indeterministic
one solution, demand-driven multiple solution, all solutions, and best solution (branch
and bound) search. The paper also discusses the semantics of integer and fitite domain
constraints in a deep guard computation model.

1 Introduction

Oz [2, 7, 6, 1] is an attempt to create a high-level concurrent programming language providing
the problem solving capabilities of logic programming (i.e., constraints and search). Its compu-
tation model can be seen as a rather radical extension of the concurrent constraint model [5]
providing for higher-order programming, deep guards, state, and encapsulated search. This pa-
per focuses on the most recent extension, a higher-order combinator providing for encapsulated
search. The search combinator spawns a local computation space and resolves remaining choices
by returning the alternatives as first-class citizens. The search combinator allows to program
different search strategies, including depth-first, indeterministic one solution, demand-driven
multiple solution, all solutions, and best solution (branch and bound) search. The paper also
discusses the semantics of integer and finite domain constraints in a deep guard computation
model, which is an interesting issue since these constraints cannot be realized with their declar-
ative semantics (due to intractability and even undecidability of satisfiability and entailment).

The idea behind our search combinator is simple and new. It exploits the fact that Oz is a
higher-order language. The search combinator is given an expression E and a variable n (i.e.,
a predicate z/E) with the idea that E (which declaratively reads as a logic formula) is to be
solved for x. The combinator spawns a local computation space for E, which evolves until it
fails or becomes stable (a property known from AKL). If the local computation space evolves
to a stable expression (A V B) A C, the two alternatives are returned as predicates:

z/(A V B) A C -+ z/A A C, n/B A C.

If the local computation space evolves to a stable expression C not containing a distributable
disjunction, it is considered solved and the predicate n/C is returned.

We now relate Oz to AKL and cc(FD), two first-order concurrent constraint programming
languages having important aspects in common with Oz.

AKL [3] is a deep guard language aiming like Oz at the integration of concurrent and logic
programming. AKL can encapsulate search. AKL admits distribution of a nondeterminate

116

choice in a local computation space spawned by the guard of a clause when the space has become
stable (a crucial control condition we have also adopted in Oz). In AKL, search alternatives are
not available as first-class citizens. All solutions search is provided through an extra primitive.
Best solution and demand-driven multiple solution search are not expressible.

cc(FD) [8] is a constraint programming language specialized for finite domain constraints.
It employs a Prolog-style search strategy and three concurrent constraint combinators called
cardinality, constructive disjunction, and blocking implication. It is a compromise between a fiat
and a deep guard language in that combinators can be nested into combinators, but procedure
calls (and hence nondeterminate choice) cannot. Encapsulated best solution search is provided
as a primitive, but its control (e.g., stability) is left unspecified.

The paper is organized as follows. Section 2 gives an informal presentation of Oz's compu-
tation model, and Section 3 relates Oz to logic programming by means of examples. Section 4
shows how encapsulated and demand-driven search can be integrated into a reactive language.
Section 5 presents the search combinator, and Section 6 shows how the search strategies men-
tioned above can be programmed with it. Section 7 discusses how integer and finite domain
constraints are accommodated in Oz. Section 8 puts everything together by showing how the
N-Queens problem can be solved in Oz.

2 Computation Spaces, Actors, and Blackboards

The computation model underlying Oz generalizes the concurrent constraint model (CC) [5] by
providing for higher-order programming, deep guard combinators, and state. Deep guard com-
binators introduce local computation spaces, as in the concurrent constraint language AKL (3].
Recall that there is only one computation space in CC.

In [6] we give a formal model of computation in Oz, consisting of a calculus rewriting
expressions modulo a structural congruence relation, similar to the setup of the ir-calculus (4].
For the purposes of this paper, an informal presentation of Oz's computation model, ignoring
state, will suffice.

A computation space consists of a number of actors i connected to a blackboard.

Actor .. Actor

Blackboard

The actors read the blackboard and reduce once the blackboard contains sufficient information.
The information on the blackboard increases monotonically. When an actor reduces, it may
put new information on the blackboard and create new actors. As long as an actor does not
reduce, it does not have an outside effect. The actors of a computation space are short-lived:
once they reduce they disappear. Actors may spawn local computation spaces.

The blackboard stores a constraint (constraints are closed under conjunction, hence one
constraint suffices) and a number of named abstractions (to be explained later). Constraints
are formulas of first-order predicate logic with equality that are interpreted in a fixed first-
order structure called the Oz Universe. For the purposes of this paper it suffices to know
that the Oz Universe provides rational trees (as in Prolog II) and integers. The constraint on
the blackboard is always satisfiable in the Oz Universe. We say that a blackboard entails a
constraint 0' if the implication 0 -+ 0 is valid in the Oz Universe, where 0 is the constraint
stored on the blackboard. We say that a blackboard is consistent with a constraint V, if the
conjunction 0 A 0 is satisfiable in the Oz Universe, where 4 is the constraint stored on the

'Oz's actors am different from Hewitt's actors. We reserve the term agent for longer-lived computational

activities enjoying persistent and first-class identity.

117

blackboard. Since the constraint on the blackboard can only be observed through entailment
and consistency testing, it suffices to represent it modulo logical equivalence.

There are several kinds of actors. This section will introduce elaborators, conditionals, and
disjunctions.

An elaborator is an actor executing an expression. The expressions we will consider in this
section are defined as follows:

E ::= I EE2 localzinEend
I proc{zyi...y.}Eend I {zyl...y.}

I ifC, a... Celse E 1oCa... DCro

C ::= Eithen E2 I z 1 ... zinEthenE2

Elaboration of a constraint 4) checks whether 4 is consistent with the blackboard. If this is
the case, 0 is conjoined to the constraint on the blackboard; otherwise, the computation space
is marked failed and all its actors are cancelled. Elaboration of a constraint corresponds to the
eventual tell operation of CC.

Elaboration of a concurrent composition E E2 creates two separate elaborators for E,
and E2.

Elaboration of a variable declaration local z in E end creates a new variable (local to the
computation space) and an elaborator for the expression E. Within the expression E the new
variable is referred to by z. Every computation space maintains a finite set of local variables.

Elaboration of a procedure definition proc {: Y, ... yv E end chooses a fresh name a, writes
the named abstraction a: y, ... y/E on the blackboard, and creates an elaborator for the con-
straint z = a. Names are constants denoting pairwise distinct elements of the Oz Universe;
there are infinitely many. Since abstractions are associated with fresh names when they are
written on the blackboard, a name cannot refer to more than one abstraction.

Elaboration of a procedure application {z y, ... y,,} waits until the blackboard entails z = a
and contains a named abstraction a: z1 ... zx,/E, for some name a. When this is the case, an
elaborator for the expression E[yl/zl ... y,,/z,] is created (E[yi/zl ... y./z] is obtained from
E by replacing the formal arguments z z ... , z with the actual arguments yl,..., y,).

This simple treatment of procedures provides for all higher-order programming techniques.
By making variables denote names rather than higher-order values, we obtain a smooth combi-
nation of first-order constraints with higher-order programming.

The elaboration of conditional expressions is more involved. We first consider the special
case of a one clause conditional with flat guard..

Elaboration of if 4) then E, else E2 i creates a conditional actor, which waits until the
blackboard entails either 4) or -,0. If the blackboard entails 4 [-04)], the conditional actor
reduces to an elaborator for E, [E2]. In CC, such a conditional can be expressed as a parallel
composition (ask 4) -+ E) II (ask-,0 -+ E2) of two ask clauses.

Elaboration of a conditional expression if C1 0... C, else E fi creates a conditional actor
spawning a local computation space for each clause Ci. A clause takes the form

zl...zk in E then D

where the local variables zl,..., Xk range over both the guard E and the body D of the clause.
We speak of a deep guard if E is not a constraint. In Oz, any expression can be used as a guard.
This is similar to AKL and in contrast to CC, where guards are restricted to constraints. The
local computation space for a clause

x in E then D

(clauses with no or several local variables are dealt with similarly) is created with an empty
blackboard and an elaborator for the expression local z in E end.

Constraints from the global blackboard (the blackboard of the computation space the con-
ditional actor belongs to) are automatically propagated to local spaces by elaborating them

118

in the local spaces (propagation of global constraints can fail local spaces). Moreover, named
abstractions from global blackboards are copied to local blackboards (conflicts cannot occur).

We say that a clause of a conditional actor is entailed if its associated computation space
S is not failed, S has no actors left, and the global board entails 3-, where g are the local
variables of S and 0 is the constraint of the blackboard of S. Entailment of a local space is a
stable property, (i.e., remains to hold when computation proceeds).

A conditional actor must wait until either one of its clauses is entailed or all its clauses (i.e.,
their associated local spaces) are failed.

If all clauses of a conditional actor if C 0 ... 0 C,, else E fi are failed, the conditional actor
reduces to an elaborator for the expression E (the else constituent of the conditional).

If a clause zi in Ei then Di of a conditional actor is entailed, the other clauses and their
associated spaces are discarded, the space associated with the entailed clause is merged with
the global space (conflicts cannot occur), and the conditional actor reduces to an elaborator
for D (the body of the clause).

Elaboration of a disjunctive expression or C, I] ... [C" ro creates a disjunctive actor spawn-
ing a local computation space for every clause C1 ,..., C,. The local spaces are created in the
same way as for conditionals. As with conditional clauses, constraints and named abstractions
from the global blackboard are automatically propagated to local blackboards.

A disjunctive actor must wait until all but possibly one of its clauses are failed, or until a
clause whose body is the trivial constraint true is entailed. In the latter case, the disjunctive
actor just disappears (justified by the equivalence AA (AV B) - A). If all clauses of a disjunctive
actor are failed, the space of the disjunctive actor is failed (i.e., all its actors are cancelled).
If all but one clause of a disjunctive actor are failed, it reduces with the unfailed clause. This
is done in two steps. First, the space associated with the unfailed clause is merged with the
global space, and then an elaborator for the body of the clause is created. The merge of the
local with the global space may fail because the local constraint may be inconsistent with the
global constraint. In this case the global space will be failed.

3 Example: Length of Lists

This section clarifies how Oz relates to logic programming and Prolog.
The Horn clauses

length (nilO)
length(XJXr, s(M)) +- length(Xr,M)

define a predicate length (Xs,N) that holds if Xs is a list of length N. Numbers are represented
as trees 0, s(O), s(s(O)), ... , and lists as trees tI1t 2 l... Itnnil. The intended semantics of the
clauses is captured by the equivalence

length(Xs, N) ++ Xs= nil A N=0

V 3X,Xr,M (Xs=XIXrAN =s(M)Alength(Xr,M)),

which is obtained from the Horn clauses by Clark's completion. The equivalence exhibits the rel-
evant primitives and combinators of logic programming: constraints (i.e., Xs=nil), conjunction,

-existential quantification, disjunction, and definition by equivalence. Given the equivalence, it
is easy to define the length predicate in Oz:

119

proc {Length Xs N}
or Xs=nil N=O then true
I X Xr M in Xs=XlXr N=s(M) then {Length Xr M}

ro
end

There are two things that need explanation. First, the predicate is now referred to by a variable
Length, as to be expected in a higher-order language. Second, the two disjunctive clauses have
been divided into guards and bodies. The procedure application {Length Xr M) is put into the
body to obtain a terminating operational semantics.

To illustrate the operational semantics of Length, assume that the procedure definition has
been elaborated. Now we enter the expression

declar Xs N in {Length Xs N}

whose elaboration declares two new variables Xs and N and reduces the procedure application
{Length Xs N} to a disjunctive actor. The declare expression is a variant of the local expression
whose scope extends to expressions the programmer enters later. The disjunctive actor cannot
reduce since there is no information about the variables Xs and N on the global blackboard.
It now becomes clear why we did not write the recursive procedure application {Length Xr M}
into the guard: this would have caused divergence.

Now we enter the constraint ('-' is a variable occurring only once)

N = s(s(_))

Since N = s(s(_)) is inconsistent with the constraint N=O on the local blackboard, the first
clause of the suspended disjunctive actor can now be failed and the disjunctive actor can reduce
with its second clause. This will elaborate the recursive application {Length Xr M) and create
a new disjunctive actor whose first clause fails immediately. This will create once more a new
disjunctive actor, which this time cannot reduce. The global blackboard now entails

Xs = 44- N = s(s(_))

Next we enter the constraint

Xs = li2nil

whose elaboration fails the second clause of the suspended disjunctive actor (since x = nil is
inconsistent with z = yjz). Hence the suspended actor reduces with its first clause, no new
disjunctive actor is created, and the blackboard finally entails

Xs = 1l21nil N = s(s(O))

The example illustrates important differences between Oz and Prolog: if there are alterna-
tives (specified by the clauses of disjunctions or conditionals), Oz explores the guards of the
alternatives concurrently. Only once it is safe to commit to an alternative (e.g., because all
other alternatives are failed or because the guard of a conditional clause is entailed), Oz will
commit to it. In contrast, Prolog will eagerly commit to the first alternative if a choice is to be
made, and backtrack if necessary.

A sublanguage of Oz enjoys a declarative semantics such that computation amounts to
equivalence transformation (6]. The declarative semantics of a conditional

if z in E1 then E2 else E3 fi

with only one clause is
3z(El A E2) V (-3zE1 A E3).

Hence Oz can express negation -,E as if E then false else true fi.
The length predicate can also be defined in a functional mannei using a conditional:

120

proc {Length X& N}
if Xs-nil then N=O
o XXr M in Xs=XIXr the. N=s(M) {Length Xr M}
*se fase I

end

While the functional version has the same declarative reading as the disjunctive formulation, its
operational semantics is different in that it will wait until information about its first argument
is available. Thus

declreXs N in N=s(s(O) {Length Xs N}

will create a suspending conditional actor and not write anything on the global blackboard. On
the other hand,

declare Xs N in Xs=..j-nil {Length Xs N)

will write N=s (s (0)) on the global blackboard (although there is only partial information
about Xs).

Oz supports functional syntax: the functional version of the length predicate can equivalently
be written as:

fun {Length Xs}
case Xs of nil then 0
0 XIXr then s({Length Xr})

end
end

4 Encapsulated and Demand-driven Search

Given the length predicate of the previous section, Prolog allows to enumerate all pairs Xs, N
such that length (Xs,N) is satisfied. This service can be obtained in Oz in a more flexible form.
Oz provides search agents that can be given queries and be prompted for answers. These search
agents take the form of objects, the basic concurrency abstraction of Oz.

An object is a procedure 0 taking a message M as argument. It encapsulates a reference to
a data structure acting as the state of the object. A procedure application {0 M} (the object
is applied to the message) first competes for exclusive access to the object's state (necessary in
a concurrent setting) and then applies the method requested by the message:

method: state x message -+ state.

This yields a new state which is released. The message indicates the method to be applied by
a name that is mapped to the actual method by the object itself (so-called late binding).

Objects can be expressed in the computation model outlined in Section 2 if one further
primitive, called constraint communication, is added. Oz's higher-order programming facilities
make it straightforvitcd to obtain multiple inheritance of methods. For more information about
objects in Oz we refer the reader to [7, 2, 1].

Now suppose Search is a search object as outlined above (any number of search objects can
be created by inheritance from a predefined search object). First, we present it a query using
the method query:

local Q in
proc {Q A) local Xs N in A=Xs#N {Length Xs N) end end
{Search query(Q) I

end

The query is specified by a unary predicate, so that solutions can be computed uniformly for
one variable. Since we have existential quantification and pairing, this is no loss of generality.
Using functional notation, we can write the above expression more conveniently as

121

{Search query(proc {A) local Xs N in A=Xs#N {Length Xs N) end end))

Now we can request computation of the first solution by sending the message

{Search next)

which will produce the pair nil#O. Sending next (i.e., elaborating {Search next)) once more will
produce (.nil)#s(O), and so on. What happens when an solution is found can be specified
by sending Search the message action (P), where P is a unary procedure to be applied to every
solution found. The procedure P may, for instance, display solutions in a window or send them
to other objects.

We remark that Prolog provides demand-driven search at the user interface, but not at the
programming level. Aggregation in Prolog (i.e., bagof) is eager and will diverge if there are
infinitely many solutions. In Oz, we can have any number of search objects at the same time
and request solutions as required.

5 Solvers

We now introduce solvers, which are higher-order actors providing for encapsulated search.
Many different search strategies can be programmed with solvers, ranging from demand-driven
depth-first (as exemplified by the search object in the previous section) to best solution (branch
and bound) strategies.

The key idea behind search in Oz is to exploit the distributivity law and proceed from
(AVB) AC to AAC and BAC. While Prolog commits to AAC first and considers BAC only
upon backtracking, Oz makes both alternatives available as first-class citizens. To do this, the
variable being solved for must be made explicit and abstracted from in the alternatives. For
instance, if or z = 10 x = 2 ro is being solved for z, distribution will produce the abstractions
proc {z} = 1 end and proc {z} x = 2 end.

Solvers are created by elaboration of solve expressions

solvef:: E; u]

where z (the variable being solved for) is a local variable taking the expression E as scope.
The variable u provides for output. The solver created by elaboration of the above expression
spawns a local computation space for the expression

local x in E end

As with other local computation spaces, constraints and named abstractions are propagated
from global blackboards to the local blackboards of solvers.

A solver can reduce if its local computation space is either failed or stable. A local compu-
tation space is called stable if it is blocked and remains blocked for every consistent extension of
the global blackboard. A computation space is called blocked if it is not failed and none of its
actors can reduce. Stability is known from AKL 13], where it is used to control nondeterministic
promotion. Note that a local computation space is entailed if and only if it is stable and has
no actor left.

If the local computation space of a solver has failed, the solver reduces to an elaborator for
the constraint (u is the output variable)

u = failed.

If the local computation space of a solver is stable and does not contain a disjunctive actor,
the solver reduces to an elaborator for

u = solved(proc f F end)

122

where F is an expression representing the stable local computation space (the nested procedure
definition has been explained in the previous section). 2 Abstracting the solution with respect to
z is advantageous in case F does not fully determine z; for instance, if F is local z in z = f(z) end,
different applications will enjoy different local variables z. A less general way to return the
solution would be to reduce to an elaborator for u = solved(z) F.

If the local computation space of a solver is stable and contains a disjunctive actor
or C 0... 0 C. ro, the solver reduces to an elaborator for

u = distributed(proc {z} arC 1 ro Fo ed proc {z} orC 2 .. .0C, ro F end)

where F is an expression representing the stable local computation space after deletion of the
disjunctive actor. Requiring stability ensures that distribution is postponed until no other re-
ductions are possible. This is important since repeated distribution may result in combinatorial
explosion.

For combinatorial search problems it is often important to distribute the right disjunction
and try the right clause first. Oz makes the following commitments about order: clauses
are distributed according to their static order; solvers distribute the most recently created
disjunctive actor; and elaboration proceeds from left to right, where suspended actors that
become reducible are given priority (similar to Prologs with freeze). Taking the most recently
created disjunctive actor for distribution seems to be more expressive than taking the least
recently created one (see the first failure labeling procedure in Section 8).

Solvers cannot express breadth-first search if disjunctions with more than two clauses are
used. This can be remedied by also returning the number of remaining clauses when a disjunctive
actor is distributed.

Solve expressions are made available through a predefined procedure

proc {Solve P U} solve[X: {P X}; U] end

6 Search Strategies

We start with a function taking a query (i.e., a unary procedure) as argument and trying to
solve it following a depth-first strategy:

fun {Depth Q)
local S = {Solve Q) in

caseS of distributed (L R) then
case {Depth L of solved(-)=T then T else {Depth R} end

else S end
end

end

If no solution is found (but search terminates), failed is returned. If a solution is found, solved (A)
is returned, where A is the abstracted solution. A procedure solving a query with Depth and
displaying the result can be written as follows:

proc {SolveAndBrowse Q}
case {Depth Q} of failed then {Browse 'no solution found')
0 solved(A) then {Browse {A}}

end
end

2 The reader might be surprised by the fact that local computation spaces can be represented as expressions.
This is however an obvious consequence of the fact that Os's formal model [6] models computation states as
expressions.

123

fun (One Q}
local S = fSolve Q} in

case S of distributed(L R) then
if T in {One L}=solved(_)=T then T
0 T in {One R}=solved (_)=T then T
else failed I

eke S end
end

end

Figure 1: Parallel one solution search.

The search performed by Depth is sequential. Figure 1 shows an indeterministic search
function One that explores alternatives in parallel guards.' The use of deep parallel guards
provides a high potential for parallel execution.

Combinatorial optimization problems (e.g., scheduling) often require best solution search.
Following a branch and bound strategy, this can be done as follows: once a solution is found,
only solutions that are better with respect to a total order are searched for. With every better
solution found, the constraints on further solutions can be strengthened, thus pruning the search
space.

fun IBest Q R}
locA

fun fBAB Fs Bs S)
case Fs of nil then

case Bs of nil then S
0 BIBr then {BAB (proc {X} {R {S} X} fB X} end)Inil Br S}
end

r FjFr then
case (Solve F} of failed then {BAB Fr Bs S)
[] solved(T) then fBAB nil {Append Fr Bs} T}
O distributed(L R) then {BAB LIRIFr Bs S}
end

end
end

in {BAB QInil nil R failed) end
end

Figure 2: Best solution search.

Figure 2 shows a function Best searching the best solution of a query Q with respect to
a total order R (a binary procedure). The local function BAB takes two stacks Fs and Bs of
alternatives and the best solution found so far as arguments (if no solution has been found
so far, failed is taken as last argument) and returns the best solution. Alternatives which are
already constrained to produce a better solution than S reside on the foreground stack Fs, and
the remaining alternatives reside on the background stack Bs. If the foreground stack is empty,
an alternative B from the background stack is taken. The query A obtained from constraining
B to solutions better than S (the best solution so far) is expressed as follows:

SThLs search function was suggted to us by Sverker Janson.

124

create Search from UrObJect
m th action(A) action+-A end
meth query(Q) stack+-Qlnil end

ah next
cae Ustack of nil then {Qaction failed)
0 NJNr then

case (Solve N) of failed then stack--Nr ((next))
0 solved(S) then stack+-Nr {taction solved (S))
o distributed(L R) then stack+-LIRINr ((next))
end

end
end

end

Figure 3: Demand driven depth-first search.

A proc {X {R (S) X) {B X) end

If a new and better solution is obtained, all nodes from the foreground stack are moved to the
background stack so that they will be correctly constrained before they are explored.

The program in Figure 3 defines an object Search realizing the functionality described in
Section 4. The object must be initialized with messages query(Q) and action (A) fixing the
query to be solved and the action to be taken when a solution is found, respectively. The
attribute stack stores the unexplored alternatives. If a solution is requested with the method
next, the alternatives on the stack are explored following a depth-first strategy. If no alternatives
are left on the stack, the specified action is applied to the atom failed.

The search object illustrates object-oriented constraint programming in Oz. More sophis-
ticated search strategies, for instance iterated depth-first search, can be obtained by refining
Search using inheritance.

7 Integers and Finite Domains

An implementation of the presented computation model must come with efficient and incre-
mental algorithms for deciding satisfiability and entailment of constraints. This means that a
programming language must drastically restrict the constraints a programmer can actually use.
For instance, addition and multiplication of integers cannot be made available as purely declar-
ative constraints since satisfiability of conjunctions of such constraints is undecidable (Hilbert's
tenth problem).

The usual way to deal with this problem is to base the implementation on incomplete algo-
rithms for satisfiability and entailment (e.g., delay nonlinear arithmetic constraints until they
are linear). Consequently, constraints are not anymore fully characterized by their declarative
semantics, and the programmer must understand their operational semantics.

In Oz, we make a distinction between basic and virtual constraints. Basic constraints are
what has been called constraints so far. Their semantics is given purely declaratively by the
Oz Universe. Oz is designed such that the programmer can only write basic constraints whose
declarative semantics can be faithfully realized by the implementation (i.e., sound and com-
plete algorithms for satisfiability and entailment). Virtual constraints are procedures whose.
operational semantics is sound but incomplete with respect to the declarative semantics of the
corresponding logic constraint. A typical example of a virtual constraint is the length predicate
for lists defined in Section 3.

Most constraints expressible over the Oz Universe are only available through predefined
virtual constraints (i.e., with incomplete operational semantics). A typical example is addition

125

oc {'<" XY)
if {Fdln X Inf Sup) {Fdln Y lnf Sup) then

proc {LE X1 Xu YI Yu}
if X=Y then true
a Xu<YI then true
o] {Fdln X XI+l Sup} then {Fdln Y Xl+1 Sup) {LE X1+1 Xu YI Yu)
o {Fdln X lnf Xu-1) then {LE XI Xu-1 YI Yu}
o {Fdln Y YI+1 Sup) then {LE XI Xu YI+l Yu}
o {Fdln Y Inf Yu-l} then {Fdln X Inf Yu-1} {LE XI Xu YI Yu-1}
i

end
in {LE Inf Sup Inf Sup) end

else false 5i
end

Figure 4: The virtual constraint X <' Y.

of integers, whose definition is as follows:

Proc I- +- XYZ}
if int(X) int(Y) isdet[X] isdet[Y] then plus(X,Y,Z) else false fi

end

Here plus (X.Y.Z) is the basic constraint expressing integer addition (partial functions are avoid-
ed by using relations), int (X) is the basic constraint expressing that X is an integer, and isdet [X]
creates an actor that disappears as soon as there is a constant a in the signature of the Oz
Universe such that X=a is entailed by the blackboard. Clearly, there is no difficulty in imple-
menting the virtual constraint { + X Y Z}. Moreover, its semantics is fully defined in terms
of the computation model outlined in Section 2 (extended with the isdet[XJ actor, of course).

The virtual constraint

proc {IsInt X}
if int(X) isdet[X] then true else false fi

end

will fail if the blackboard entails that X is no integer, and disappear (important for deep guards)
if there is an integer n such that the blackboard entails X=n.

A further example is the predefined virtual constraint

proc{ XY)
if {Islnt X) {lslnt Y) then le(X,Y) else false li

end

where and Is (X,Y) is the basic constraint expressing the canonical order on integers.
The predefined virtual constraint

proc {Fdln X L U)
if {Islnt 1) {Islnt U) then le(L,X) le(XU) le(InfL) le(U,Sup) else false fi

end

makes it possible to constrain a variable X to a finite domain L..U (i.e., the value of X must be
an integer between L and U). There variables If and Sup are predefined by the implementation
and fix the maximal size of finite domains (i.e., there are only finitely many finite domains).

Another important predefined virtual constraint is

126

proc {FdNec X C)
if {Fdln X lnf Sup) {Islnt C) then X - C else false A

end

whose declarative reading says that X is a finite domain variable different from C (X 0 C is a
basic constraint).

Figure 4 shows the definition of a virtual constraint X <'Y enforcing domain consistency
for finite domain variables (the infix operators <, +, and - expand to applications of the
corresponding virtual constraints). For instance, elaboration of the expression

local X Y in
{Fdln X 3 7) {Fdln Y 7 24)
if X <'Y them {Browse yes) else {Browse no} II

end

will reduce the conditional actor to {Browse yes}, and elaboration of

{Fdln X 3 7) {Fdln Y 7 24} Y <'X

will constrain X and Y to 7.
With the outlined techniques we can formally define all finite domain constraints as virtual

constraints such that a faithful and efficient implementation is possible. To our knowledge, this
is the first formal semantics for finite domain constraints in a deep guard computation model.

To define heuristics such as first failure labeling (see next section), we need a reflective
primitive. The actor

rey]ect~r; Y1
can reduce as soon as the blackboard constrains the variable z to a finite domain. It will then
reduce to an elaborator for the constraint

y = nl--. Inknil,

where nil ... Ink ail is the shortest list in ascending order such that the blackboard entails the
constraint x = n1 V... V x = nk. Note that the reflection actor is different from all other actors
in that its reduction may have different effect if it is postponed.

8 Example: N-queens

Figure 5 shows an Oz program solving the n-queens problem (place n queens on an n x n
chessboard such that no queen is attacked by another queen). The predicate {Queens N Xs} is
satisfied iff the list Xs represents a solution to the n-queens problem. The list Xs has length N,
where every element is an integer between 1 and N. The ith element of Xs specifies in which
row the queen in the ith column is placed. The solutions to the 100-queens problem, say, can
be obtained by providing the search object of Section 6 with the query

{Search query(proc {Xs} {Queens 100 Xs} end))

The procedure {Consistent Xs Ys} iterates through the columns of the board, where Ys are
the columns already constrained and Xs are the columns still to be constrained. Since a queen
only imposes its constraints once it is determined (i.e., {Islnt X) can reduce), there are at most
N actors spawned before a distribution.

The procedure {Label Xs} labels the elements of Xs. Different labeling strategies are possible.
Figure 6 shows a labeling procedure realizing the first-fail heuristic (label variables with fewest
remaining values first). The procedure FdSize yields the number of values still possible for a
finite domain variable, and FdMin yields the minimal value still possible. Both procedures can
be expressed with the reflection actor of Section 7.

After all determined elements of Xs have been dropped with the higher-order procedure
Filter, the remaining elements are sorted according to the current size of their domain. If X is
the variable with the smallest domain, the disjunction

127

local
proc; {NoAttack XsY 11

case *Xs of nil then true
o XIXr then f{FdNec: X Y) (FdNec X Y + 1) {FdNec X Y - 1) (NoAttack Xr Y I + 1}

end
end
proc f(Consistent Xs Ys)

case Xs of nil then true
a3 XJXr then

if f IsInt X) then (NoAttack Xr X 1) f NoAttack Ys X 11 fi f(Consistent Xr XIYs}
end

end
proc: (Board I N Xs}

if 1=0 then Xs=nil
else local X Xr in Xs=XIXr {Fdln X 1 N) (Board I - 1 N Xr} end fi

end
in

proc: (Queens N Xs)
(Board N N Xs)
f{Consistent Xs nil)
f Label Xs}

end
end

Figure 5: The n-queens problem.

or X=M then f(Label Xr} 13 fFdNec X M} then (Label XIXr} ro

is created, where M is the minimal possible value for X, and Xr are the remaining variables to
be labeled.

Because of the use of the reflective procedures FdSize and FdMin, it is important that the
labeling procedure is elaborated only after all constraints have been propagated. This is ensured
by the fact that suspended actors are given priority once they become reducible, and that the
application of Label appears last. Since the most recently created disjunctive actor is distributed,
the latter ensures that the disjunctive actor created by the labeling procedure is distributed
even if there are further disjunctive actors (which is not the case in our example).

proc f Label Xi)
case (Sort (Fitter Xs proc {X} {FdSize X} > I end}

proc IX Y} (FdSize X) < {FdSize Y} end)
of nil then true
13 XJXr then

local M=(FdMin X) in
or X=M then f(Label Xr} 0 f{FdNec X M}I then (Label XIXr) ro

end
end

end

Figure 6: First-failure labeling.

128

Acknowledgements
We thank Michael Mehl, Tobias Miller, Konstantin Popov, and Railf Scheidhauer for discussions
and implementing Oz. We also thank Sverker Janson for discussions of search issues.

The research reported in this paper has been supported by the Bundesminister ffir Forschung
und Technologie (FTZ-ITW-9105), the Esprit Project ACCLAIM (PE 7195), and the Esprit
Working Group CCL (EP 6028).

Remark
The Oz System and its documentation are available through anonymous ftp from
duck. dfki. uni-sb. do or through www at http://mw. dfki. uni-sb. de/.

References
(1] M. Hens, M. Mehl, M. Miiller, T. Miller, J. Niehren, R. Scheidhauer, C. Schulte, G. Smolka,

R. Treinen, and J. Wiirtz. The Os Handbook. Research Report RR-94-09, DFKI, 1994.
Available through anonymous ftp from duck. dfki. uni-ab. de.

[2] M. Hens, G. Smolka, and J. Wiirtz. Oz-a programming language for multi-agent systems.
In 13th International Joint Conference on Artificial Intelligence, volume 1, pages 404-409,
Chambiry, France, 1993. Morgan Kaufmann Publishers. Revised version appeared as [7].

[31 S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language. In Logic
Programming, Proceedings of the 1991 International Symposium, pages 167-186. The MIT
Press, 1991.

[4] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Information and
Computation, 100(1):1-40, Sept. 1992.

[5] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In Proceedings of the
7th Annual A CM Symposium on Principles of Programming Languages, pages 232-245, Jan.
1990.

[6] G. Smolka. A calculus for higher-order concurrent constraint programming with deep guards.
Research Report RR-94-03, DFKI, Feb. 1994.

(7] G. Smolka, M. Hens, and J. Wirtz. Object-oriented concurrent constraint programming in
Oz. Research Report RR-93-16, DFKI, April 1993. Will appear in: P. van Hentenryck and
V. Saraswat (eds.), Principles and Practice of Constraint Programming, The MIT Press,
Cambridge, Mass.

[8] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and evaluation of
the constraint language cc(FD). Report CS-93-02, Brown University, Jan. 1993.

129

Towards a Concurrent Semantics based Analysis of CC and CLP

U. Montanari F. Rossi
ugoadi.unipi.it rossiOdi.uuipi.it

Universiti di Pisa

F. Bueno M. Garcia de la Banda M. Hermenegildo
bueno~fi.upm.es maniafi.upm.es hermeafi.upm.es

Universidad Politecnica de Madrid (UPM)

1 Introduction
We present in an informal way some preliminary results on the investigation of efficient compile-time
techniques for Constraint Logic and Concurrent Constraint Programming. These techniques are viewed
as source-to-source program transformations between the two programming paradigms and are based on a
concurrent semantics of CC programs [MR91].

Previous work [BH92] showed that it is possible to perform program transformations from Prolog to
AKL1 (JH91], allowing the latter to fully exploit the Independent And-Parallelism (lAP) [HR93] present
in Prolog programs. When extending the transformation techniques to the CLP paradigm [JL87, Co190,
VanH891, some issues have to be initially solved. First, the notion of independence has to be extended
[GHM93]. Second, compile-time tools based on the extended notions have to be developed in order to
capture the independence of goals, allowing such transformation. For this purpose an analysis of the
programs turns out to be needed.

Our analysis will be based on a semantics [MR91] which, although originally intended for CC pro-
gramming, can be also applied to CLP, if suitably extended [BGHMR94]. Such semantics allows us to
capture the dependencies present in a CLP program at a finer level of granularity than ever proposed
to date in the literature. This provides the knowledge for performing a transformation of the program
which will force an execution-time scheduling of processes which preserves those dependencies. When the
transformed program is run in a concurrent environment, parallel execution of concurrent processes will
be exploited, except for the cases where an explicit ordering has been annotated at compile-time based on
the dependencies identified.

The same semantics can also be used to identify dependencies in CC programs. Based on such depen-
dencies, an analysis of parallel and sequential threads in the concurrent computation can be performed,
establishing the basis for a transformation into parallel CLP programs (with explicit dynamic schedul-
ing). A similar approach (although not based on program transformation) has recently been proposed in
[KS92], in which a static analysis of concurrent languages is proposed based on an algebraic construction
of execution trees from which dependencies are identified.

The needed extensioi. of the semantics (for dealing with CLP instead of CC programs) is non-trivial
[BGHMR94]. In fact, it consists in capturing the atomic (instead of the eventual) interpretation of the tell
operation: constraints are added only if they are consistent with the current store. This implies the need
of having the possibility of knowing immediately if a set of constraints is consistent or not. Thus it may
seem that the semantics construction would have to go back to the usual notion of a constraint system as
a black box which can answer yes/no questions in one step (which is what is most generally used in all the
semantics other than [MR91]). However, this is not really true. In fact, the semantic structure still shows
all the atomic entailment steps of the underlying constraint system, thus allowing to derive the correct
dependencies among agents.

'AKL is a CC language based on the Extended Andorra Model, which is able to exploit the determinate-goals-first principle
as well as various kinds of parallelism.

130

2 Independence in CLP

The general, intuitive notion of independence between goals is that the goals' executions do not interfere
with each other, and do net change in any "observable" way. Observables include the solutions and/or the
time that it takes to compute them.

Previous work in the context of traditional Logic Programming languages [Con83, DeG84, HR93] has
concentrated on defining independence in terms of preservation of search space, and such preservation has
then been achieved by ensuring that either the goals do not share variables (strict independence) or if they
share variables, that they do not "compete for their bindings (non-strict independence).

Recently, the concept of independence has been extended to CLP [GHM93]. It 'is been shown that
search space preservation is no longer sufficient for ensuring the efficiency of several optimizations when
arbitrary CLP languages are taken into account. The reason is that while the number of reduction steps
will certainly be constant if the search space is preserved, the cost of each step will not: modifying the
order in which a sequence of primitive constraints is added to the store may have a critical influence on
the time spent by the constraint solver algorithm in obtaining the answer, even if the resulting constraint
is con-dstent (in fact, this issue is the core of the reordering application described in [MS92]). This implies
that optinizations which vary the intended execution order established by the user, such as parallel or
concurrent execution, must also consider an orthogonal issue - independence of constraint solving - which
characterises 6i properties of the constraint solver behavior when changing the order in which primitive
constraints are consideied

3 A Concurrent Semantics for CC and CLP

Usually the semantics of CC programs (Sar89] is given operationally, following the SOS-style operational
semantics, and thus suffering from the typical pathologies of an interleaving semantics. On the other hand,
the concurrent semantics approach introduced in [MR91] presents a non-monolithic model of the shared
store and of its communication with the agents, in which the behavior of the store and that of the agents
can be uniformly expressed by context-dependent rewrite rules (i.e. rules which have a left hand side, a
right hand side and a context), each of them being applicable if both its left hand side and its context are
present in the current state of the computation. An application removes the left hand side and adds the
right hand side. In particular, the context is crucial in faithfully representing asked constraints, which are
checked for presence but not affected by the computation.

From such rules a semantics structure is then obtained. Such structure is called a contextual net
[MR93] and it is constructed by starting from the initial agent and applying all rules in all possible ways.
A contextual net is just an acyclic Petri net where the presence of context conditions, besides pre- and
post-conditions, is allowed. In a net obtained from a CC program, transitions are labelled by the rule
applied for them.

Three relations can be defined on the items (conditions and events) of the obtained net: two items are
concurrent if they represent objects which may appear together in a computation state, they are mutually
ezclusive if they represent objects which can not appear in the same computation, and they are dependent
if they represent objects which may appear in the same computation but in different computation steps.

For each computation of the CC program, the net provides a partial order expressing the dependency
pattern among the events of the computation. As a result, all such computations are represented in a
unique structure, where it is possible to see the maximal degree of both concurrency (via the concurrency
relation) and indeterminism (via the mutual exclusion relation) available both at the program level and at
the underlying constraint system.

Nevertheless, such semantics is not able to handle failure, in the sense of detecting inconsistencies
generated by tell operations, since constraints are added without any consistency check (i.e., the "eventual"
interpretation of the tell operation is modelled). We extended such semantics to include the case of failure
(BGHMR94]. We showed that the new semantics can be obtained from the old one either by pruning some
parts of the semantic structure, or by not generating them at all. On one hand, the semantic structure
can be built up by first generating the net as before, and then propagating the failure information through
the net by introducing a notion of mutual inconsistency between items. The inconsistent items are then

131

pruned out. On the other hand, the net can be generated from scratch with a new computation rule for
the semantics which takes mutual inconsistency into account.

The mutual inconsistency relation extends the mutual exclusion relation, in the sense of capturing more
objects which are not allowed to be present in the same computation. In fact, in the original semantics,
if two objects were mutually exclusive, they could not be present in the same deterministic computation,
even at different computation steps, because they belonged to two different nondeterministic (in the sense
of "don't-care" nondeterminism, or indeterministic) branches of the program execution. Now, two items
exclude one another also when they are mutually inconsistent, that is, when they represent (or generate)
objects which are inconsistent.

When introducing an explicit representation for failurt in ie original semantics, what is achieved in
fact is a faithful model for capturing backtracking. In othtr words, failing branches in a computation are
also captured, allowing us to make a step further and exchange nondeterminism for indeterminism. In the
extended semantics, two different branches will be mutually inconsistent if they lead to failure. Otherwise,
if they are mutually exclusive, they will represent two different deterministic computations yielding distinct
solutions, i.e., a nondeterministic choice.

Thus the n-w semantics, although originally intended for CC programs, can be used also for describing
the behavior of (pure) CLP programs. The only difference is the interpretation of the mutual exclusion
relation, which expresses indeterminism when applied to CC programs, and nondeterminism when applied
to CLP programs.

4 Local Independence and CLP Parallelization

The semantics obtained above, while being maximally parallel, could be very inefficient if implemented
directly as an operational model for CLP. One reason for this is that branches of the search tree may
be explored which would have been previously pruned by another goal in the sequential execution. The
general problem of finding a rule to avoid the exploration of such branches is directly related to the concept
of independence and has been previously addressed in Section 2. In order to avoid such efficiency problems
we propose to apply those independence rules, but at the finest possible level of granularity (as proposed
in [BGH93]). This is now possible because we have a structure in which all intermediate atomic steps in
the execution of a goal and their dependencies are clearly identifiable.

Capturing independence is achieved by identifying dependencies which occur due to subcomputations
which affect each other, in the sense of the constraint independente notions above. In our nets, these
notions are applied not only at the level of whole computations of different goals, but also at the finer level
of subcomputations of those goals, i.e., the actual subcomputations which can affect each other. This new
notion of independence (local independence) is, to our knowledge, the most general proposed so far (in the
sense that it allows the greatest amount of parallelism) which, at the same time, preserves the efficiency
of the sequential execution.

A drawback of local independence is that it requires an oracle, since mutual inconsistency of branches is
not known a priori, and thus suitable scheduling strategies for AND-OR parallelism must be devised which
make sure that the added dependency links are respected (i.e. the strategy is consistent), while still taking
advantage of the remaining parallelism (i.e. the strategy is, more or less, efficient). Such an oracle can be
devised at compile-time by means of abstract interpretation based analysis, and a scheduling strategy can
be obtained for instance by a suitable program transformation (as that presented in Section 6).

5 A Meta-interpreter of the Concrete Semantics

A meta-interpreter has been implemented which takes as input a CC program and a concrete query, and
builds up the associated contextual net as defined by the true concurrency semantics of (MR9l], presented
in Section 3. The computation of the concrete model is performed in several steps:

1. A program is read in and transformed into a suitable set of context-dependent rules.

132

2. Starting from the initial (concrete) agent - the query - rules are applied one at a time, until no rule
application is possible.

3. Relations of mutual exclusion, causal dependency and concurrency are constructed from the structure
given by the previous step.

4. The contextual net giving the program semantics can be visualized in a windows environment, as
well as the resulting relations.

Although the construction of the net is completely deterministic, a fixpoint computation based on
memoization is performed in order to ensure termination (whenever the semantics model is finite).

Once the computation is finished, the structure giving the model of the program resembles an event
structure [Ros93]. An event structure is a set of events (together with conflict and dependency relations),
where each of them represents a single computation step, i.e., a rule application, and contains all the
history of the subcomputation leading to the particular step represented. The events represent either
program agents, which will be consumed by applying the program rules, or constraint tokens which will be
asked for in such rule applications. The former are represented by usual conditions in the net, the latter
by context conditions.

For simplicity, the current implementation only implements the Herbrand constraint system, leaving to
the underlying Prolog machinery much of the entailment relation.

Figure 1: Contextual Net of the append3/4 example.

As an example, consider the following definition of append/3, which appends two lists into another one,
and then splits it into another two. It can be run either first appending and then splitting or "backwards"
(first splitting and then appending).

:tell(l-Il,2J), tell(T=[3"), te11(Z=(4]), append3(X,Y,Z,I).

appmndS(A, 3, D, E) :-app(AI, 3, C), app(C, D, E).

133

• ~ ~ ~ 1 27 . iI

app(X, t, Z) - ask(X - 0). t11(y - Z).
app(X, Y, Z) :- ask(X - EAIB), tell(Z- [AIDJ), app(B, Y, D).
app(X, Y. Z) ask(Z = 03). te1(x a 0), tel(Y - Z).
app(x, Y, Z) ak(Z - U-3), te11(X 0), tell (Y Z).
app(X. T, Z) ask(Z a lAIDJ), tell(X - (AIDJ), app(B, Y, D).

A query has been included which performs the "forward" computation, where the second app/3 goal in
the body of the append3/4 clause has to wait on the first goal to proceed at each step while the resulting
list C is being constructed to consume it. The semantic structure resulting for the computation with this
query can be seen in Figure 1.

Circles in the figure correspond to agents (either program agents or tokens) and squares correspond
to steps. Context conditions corresponding to the constraint tokens told to the store in the computation
can be seen, and the use of such contexts by subsequent transitions are denoted by links between the
corresponding tokens and transitions (Figure L.a). The partial order subsumed in the net corresponds to
the causal dependency relation, plus additional dependencies due to the "use" of contexts, which appear
in Figure 1.b.

In this way, the causal dependency relation captures an optimal scheduling of processes based on
producer/consumer relations on the tokens added to the store. This can be augmented with the local
independence relation (as explained in Section 4) to capture and-parallel scheduling based on mutually
inconsistent computations.

6 Parallelization of CLP via Program Transformation to CC

One possible application of our semantics can be achieved by program transformation from CLP to CC.
The purpose of the transformation will be to allow CLP programs to run under CC machinery with an
optimal scheduling of processes which ensures no-slowdown and allows for maximal parallelism. In doing
this, the target language should allow for the features of CC, including synchronization and indeterminism
(although this latter is not needed for our purposes), and also for additional nondeterminism (in the sense
of backtracking - which is indeed needed to embed CLP). Examples of such languages are AKL2 and
concurrent (constraint) Prologs (i.e. Prologs with explicit delay).

The transformation will proceed as follows. First, the CLP program is rewritten into a CC program.
This first step will embed a CLP program into CC syntax, by (possibly) normalizing goals and head
unifications, and make all constraint operations explicit as tell agents. Second, inconsistency dependencies
are identified within the (abstract) semantics via program analysis, and then the program is augmented with
sequentialization arguments where required, and suitable ask and tell operations for this are incorporated
to the program clauses.

Let t1 dep t2 denote an existing inconsistency dependency link between transitions tj and t2 . The
corresponding rules applied in those transitions are identified, and also the program declarations related to
such rules. Let these be p, and p2, respectively, where As represent ask agents, At tell agents, and Ag other
agents. The transformation required for sequentialization maps these declarations into the corresponding

and A.

pi ::=p(X") -Asi, A, Agi P ::p1'(X, Y) -As 1, At,, tell(c(Y)), Ag1
p2 ::=p2() -As 2,At 2,Ag 2 A2 ::p2'(7,Y) -ask(c(Y)), As 2 , At 2 ,Ag 2

where Y is a completely new variable and c(Y) is some arbitrary constraint token over Y. Instances of
agents p1 and p2 are also mapped into the corresponding p1' and p2' by augmenting their number of
arguments accordingly and matching this additional argument to the same variable wherever both agents
appear together in the same declaration.

The transformed program will allow for or-parallelism (which is captured in the semantics by the mutual
exclusion relation) and locally independent and-parallelism (which is captured by means of relations derived
from the mutual inconsistency relation). An efficient strategy for parallel execution is thus achieved.

2HoweVm, in AKL computations are encapsulated in the so called deep guards, an issue that our semantics does not

captue yet.

134

7 Static Scheduling in CC via Program Transformation to CLP

Another complementary application of the independence detection based on our semantics is schedule
analysis. We propose to perform the linearization associated to schedule analysis by means of program
transformation from CC to CLP, achieving in addition an efficient parallelization of concurrent goals. In
order to do this the intended target language should allow "delay" features able to support concurrency.

The basic idea is related to the approach of [BGH93] and QD-Janus [Deb93]. However, we propose
to perform a more "intelligent" transformation (see also [BGH93]), which is based on the results of the
analysis performed over the CC program.

Let us illustrate our approach with the appendS/4 example of Section 5. Assume the following query:

tll(W=[1]). appnd3(1,YZ,V).

-M-1 rmjj AM)~ U9 J.nah 6. AEI).tIK2CNI111.

Figure 2: Contextual net for append3/4 running backwards.

The resulting contextual net given by our meta-interpreter is that of Figure 2, where the context de-
pendencies links are shown, and the information corresponding to each rule application (t1 , t2,...) appears
explicitly at the top. From the net, it can be seen that only the "backwards" version of the predicate
app/3 is used: while the second app/S goal in the body of the appends/I clause (corresponding to agent
84) can proceed without suspending, as no context other than the told constraints in the query is needed,
the first goal and the goals occurring in its subcomputatioa always suspend until the third argument be-
comes instantiated. An identical behavior will occur in all queries in which the three first arguments of

135

• • . li l I I

append3/4 are free and the forth is instantiated to a non-incomplete list. With this knowledge the following
transformed CLP program can be obtained:

append3(A, B, D, E) :-
when(nonvar(C),app(A, B, C)).
app(C. D, E).

app(X, Y, Z) X - 03, Y - Z.
app(X, Y, Z) Z - [AID], X - (AIB, app(B, Y, D).

Our aim is to develop an analysis able to infer such invariants based on the semantics. Such analyzer
will guarantee that the transformations applied to a CC program in the spirit above are correct.

References

[BGH93] F. Bueno, M. Garcia Banda, and M. Hermenegildo. Compile-time Optimizations and Analysis
Requirements for CC Programs. Technical Report CLIP6/93.0, T.U. of Madrid (UPM), July
1993.

[BGHMR94] F. Bueno, M. Garcia Banda, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual
to Atomic and Locally Atomic CC Programs: A Concurrent Semantics. Technical Report
CLIP1/94.0, T.U. of Madrid (UPM), January 1994.

[BH92] F. Bueno and M. Hermenegildo. An Automatic Translation Scheme from Prolog to the An-
dorra Kernel Language. In Proc. of the 1992 International Conference on Fifth Genera-
tion Computer Systems, pages 759-769. Institute for New Generation Computer Technology
(ICOT), June 1992.

(Col90] A. Colmerauer. An Introduction to Prolog I1. CACM, 28(4):412-418, 1990.

[Con83] 3. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD
thesis, The University of California At Irvine, 1983. Technical Report 204.

[Deb93 S.K. Debray. QD-Janus: A Sequential Implementation of Janus in Prolog. Technical Report,
University of Arizona, 1993.

[GHM93] M.Garcia de la Banda, M. Hermenegildo, and K. Marriott. Independence in Constraint Logic
Programs. In 1993 International Logic Programming Symposium. MIT Press, Boston, MA,
October 1993.

(DeG84] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation
Computer Systems, pages 471-478. Tokyo, November 1984.

[VanH89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[HR93] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in Logic
Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Program-
ming, 1993. To appear.

[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Syrp. Principles of
Programming Languages, pages 111-119. ACM, 1987.

fJH91] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. In 1991
Internatioal Logic Programming Symposium, pages 167-183. MIT Press, 1991.

[KS92] Andy King and Paul Soper. Schedule Analysis of Concurrent Logic Programs. In Krzysztof
Apt, editor, Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 478-492, Washington, USA, 1992. The MIT Press.

136

[MS92 K. Marriott and P. Stuckey. The 3 R's of Optimizing Constraint Logic Programs: Refinement,
Removal, and Reordering. In Proceedings of the 191h. Annual ACM Conf. on Principles of
Programming Languages. ACM, 1992.

(MR91] U. Montanari and F. Rossi. True-concurrency in Concurrent Constraint Programming. In
V. Saraswat and K. Ueda, editors, Proceedings of the 1991 International Symposium on Logic
Programming, pages 694-716, San Diego, USA, 1991. The MIT Press.

[MR93] U. Montanari and F. Roesi. Contextual Occurence Nets and Concurrent Constraint Program-
ming. Technical report, U. of Pisa, Computer Science Department, Corso Italia 40, 56100
Pisa, Italy, May 1993.

(Ros93] Francesca Rossi. Constraints and Concurrency. PhD thesis, Universitk di Pisa, April 1993.

[Sar89] V. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie Mellon,
Pittsburgh, 1989. School of Computer Science.

[Sha87] E.Y. Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press, Cambridge MA, 1987.

137

CC Programs with both In- and Non-determinism:
A Concurrent Semantics

Ugo Montanari" Francesca Rossi* Vijay Saraswat t

Abstract
We present a concurrent semantics for concurrent constraint (cc) programming framework with

both ("committed choice") indeterminism and ('backtracking") nondeterminism. The semantics
extends the previous semantics for Indeterminate cc by (1) allowing each state to contain different
or-paraillel components and (2) splitting the concurrency relation into two to distinguish between and-
and or-concurrency. Thereby, the construction produces a single representation (an And-or contextual
net) that captures the important relationships between events in program runs: concurrency, causal
dependency, indeterminism and nondeterminism.

We believe this is a first step towards the formal analysis of the concurrent semantics of practical
cc languages containing both in- and non-determinism, such as AKL [H390].

1 Introduction

The paper proposes a simple concurrent semantics for concurrent constraint (cc) programs [Sar93] which
may contain botA indeterminism ("don't care" or "committed-choice" nondeterminism) and nondetermin-
ism ("don't know" or "search" non-determinism). Prolog-style nondeterminism is obviously of consider-
able value in allowing simple, perspicuous representations of search-spaces. Indeterminism arises naturally
in reactive distributed contexts, where the relative speeds of processors and relative communication de-
lays across the network are unpredictable. Thus, the combination of indeterminism and nondeterminism
we discuss in this paper arises naturally when one seeks to implement simple representations for search
problems that are to be solved in a distributed, reactive context. Moreover, it also appears whenever,
for any reason, one decides to make some of the choices backtrackable (that is, nondeterministic, or
collective), and others committed (that is, indeterministic). Examples of cc programs containing both
indeterminism and nondeterminism can be found in [Sar93].

To define the operational behaviour of cc programs, we represent each computation state as a collection
of sets of agent and constraint occurrences, where different sets in a collection represent situations which
are achieved by making different nondeterministic choices. Then, each state is rewritten via rewriting
rules, which specify (1) conditions under which they can be executed, and (2) the new configuration
(collection of sets) that results on execution of the rule. The operational semantics then associates with
each agent the sequence of configurations that arise as a result of the applications of the rewrite rules
generated from the program and the underlying constraint system.

The coscurrnt semantics we develop is derived from the operational semantics by internalizing the
history of the computation in the states. The resulting objects in the semantic domain (called contextual
ses [MR93aJ) contain information about concurrency, causal dependency and mutual exclusion. Con-
textual nets generalize Petri net [Rei85] by allowing each event to have context conditions, in addition to
the usual pe- and post-conditions: for the event to occur the context conditions must be present. Causal
dependency describes the necessary sequentialization in the program (as introduced by ask conditions).

"Univwity of Piss, Computer Science Department, Corso Italia 40, 56100 Pisa, Italy. E-mail: {ugorossi)Odi.unipijt.
tXo m PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304. E-mail: saraswateparc.xerox.com.

138

The concurrency relation describes possible parallelism between events. The mutual exclusion relation
describes conufict, that is, the impossibility of the related events being in the same computation [MR93b].

To model nondeterninim, we split the concurrency relation into two: and-concurrency and or-
cescurreacy, obtaining a new kind of net that we call an and-or contextual net. Such a refinement of the
model is unavoidable if one wants to distinguish between in-determinism, non-determinism, concurrency
and dependency.

The and-or contextual net is derived from a cc program by using just one inference rule, which states
that whenever the left hand side and the context of the rule are already represented in the net, then we
can add new items to represent its application and its right hand side, and link them suitably to the other
elements of the net via the four relations. The applications of such inference rule are Church-Rosser, in
the sense that the resulting net does not depend on the order in which they occur. Moreover, it is easy
to see that such application is very similar to that of the rules in the operational semantics. In fact, as
noted above, the only real difference between the operational and the concurrent semantics (that is, the
contextual net) is that the latter generates an object which contains both the final state and the history
of the computation, with the appropriate dependencies among the computations steps. This allows to
reason more profoundly about several properties of cc programs.

From the obtained net, it is possible to recover all and only the computations as defined by the
operational semantics. Moreover, much more information, about concurrency of the steps involved in
each computation, is contained in the net. In fact, both causal and functional dependencies between the
items involved in a computation are explicitely expressed in the net.

The net representing the concurrent semantics of a given cc program contains many events and
conditions which are uninteresting, like those related to the expansion of a declaration. Therefore an
abstraction phase, which removes all such items, is needed if one wants to use in practice such nets to
analyse cc programs.

2 Syntax

In the cc paradigm, we consider the usual description of the chosen constraint system as a system of partial
information [SRP91] (D, -) where D is a set of tokens (or primitive constraints) and -C p(D) x D is the
entailment relation which states which tokens are entailed by which sets of other tokens. The language (we
consider a propositional language just for simplicity of the technical developments) is concretely described
by the following grammar, where P ranges over program, F over sequences of procedure declarations,
A over agents, and c over constraints:

(Programs) P ::= F.A
(Declarations) F ::= p :: A I F.F
IAgents) A success

failure
c (Tell)
c--* A (Ask)
A + A (Indeterminism)

I A 11 A (Parallel composition)
A V A (Non-determinism)

I p (Procedure Call)

3 Operational Semantics

Eawh state of a cc computation consists of a collection of sets (MI,... , M,,), where each set Mi is called
an or-state and contains occurrences of agents and constraints. Intuitively, each set Mi represents the

139

(intermediate) result of one nondeterministic branch of a computation. Therefore a state represents the
(intermediate) result of all nondeterministic branches occurring in a computation.

Then, each computation step models either the evolution of a single agent, or the entailment of a new
token through the F- relation. Such a change in the state of the computation will be performed via the
application of a rewrite rule

(r)
r :L(T) c -R. r) .. ;R.r

where L(r) is an agent, c(r) is a constraint, and each Ri(r) is a set of agent and constraint occurrences.
The intuitive meaning of a rule is that L(r), called the left hand side of the rule, is deleted from one of
the or-states of the current state, say Mi, and k copies of the so obtained or-state are produced. Then,
in each of such copies, say copy i, R,(r) (called a right hand side of the rule) is added. All this is done
only if c(r) is present in MA.

We have as many rewrite rules as the number of agents and declarations in a program (which is finite),
plus the number of pairs of the entailment relation (which can be infinite):

(c - A)- A
A1 11 A2 - At, A2

A, + A2 A,
A, +" A2 - A2

At V A 2 - A1 ; A2

In addition, there is a rule

p -- A

for every program clause p :: A and a rule

S

for every entailment pair S F- t in the underlying constraint system.

Formally, rule application works as follows. A rule r: L(r) c(+ Rj(r),...; RL(r) is said to be applicable
in a state S1 = (M 1,..., M,,) if there exists Mi such that (L(r) U c(r)) C Mi. In such a case, applying r
to S1 yields the state S2 = (Mi,..., Mi-1, (Mi \ L(r)) U n1(r),..., (Mi L(r)) U Rk(r), Mj+j,..., M.).

The operational semantics of a given cc program P consists of all the computations for P, i.e., the
sequences of computations steps which apply rules representing agents and constraints- of P. We will also
need the concept of non-redundant computations, which are those computations where no entailment rule
is ever applied more than once on the same constraint occurrence.

Note that this mechanism of making copies of the current world whenever a nondeterministic choice
is accomplished is the usual way to give an operational semantics to languages with nondeterminism. In
this way, a computation may contain nondeterminism, and different computations are instead originated
by different indeterministic choices.

Let us now consider an example of a simple cc program with botl' nondeterminism and indeterminism
in order to see how these two choice mechanisms interact. Suppose to have the parallel composition

(cl + C2) II (0s V C4)-

Although it could seem at first sight that the two choices are independent, and that cl and c2 cannot
appear in the same computation, in reality they can, and this depends on the order in which the two
choices are made. In fact, if the indeterministic choice is made first, then we have two computations, one
with final state (fcl, c3), fcl,c 4)) and one with final state ({C2, C3), fc2, c4}). If instead the nondetermin-
istic choice is made first, then we have other four computations: two of them produce the results written

140

above, and the other two have final state ({cC31, {2, C4)) and ({c2, cS), {c1 , c4)) respectively. Thus in
this second cae Cl and cz belong to the same computation. In fact, once the state has been divided into
two or-states, the computation may proceed in different ways in the two or-states and thus in particular
it may choose to evolve to cl in one or-state and to C2 in the other or-state.

We will consider this example again later on in the paper. In fact, although being very simple, it is
enough to understand the relationship between nondeterminism and indeterminism from the concurrency
point of view and to check whether usual partial order structures may be enough to represent concurrency
in cc programs with both kinds of choices.

4 And-Or Contextual Nets
Contextual nets (MR93a] extend standard Petri nets (actually, C/E systems) with the possibility, for
each event, of having context-conditions besides pre- and post-conditions. While pre-conditions are
deleted by the event occurrence, and post-conditions are created, context conditions are needed for such
an occurrence but are left unchanged. Contextual nets are able to specify three relations among their
elements: causal dependency, concurrency, and mutual exclusion, which in terms of cc programming can
be interpreted as necessary sequentialization, possible concurrency, and indeterminism, respectively.

In order to be able to model cc programs with nondeterminsm as well, we have to extend the semantic
structure so that it can express also nondeterminism. To this end we introduce the notion of and-or
contextual nets, which add to contextual nets the possibility of stating when some items of the net are
"or-concurrent-, that is, they belong to different nondeterministic branches.

We will write such nets as (B, E; F1, F2 , F3), where B is the set of conditions, E the set of events,
F, gives the direct causal dependencies, F2 states the context conditions for each event, and F3 contains
pairs of postconditions of the same event (which have to be considered as or-concurrent). In terms of cc
programming, conditions are agents and/or tokens, while events are computation steps.

Each and-or contextual net induces four relations on its elements: causal dependency, mutual exclu-
sion, or-concurrency, and and-concurrency. Causal dependency (_5) is derived from F, and F2, mutual
exclusion (#) originates from events sharing a precondition and it is propagated via the < relation,
or-concurrency (or-co) originates from the F3 relation and it is propagated via <, and and-concurrency
(and-co) is what is left from the other relations: two items are and-concurrent if they are not in any
of the other relations. Two elements which are not concurrent may be in more than one of the other
relations. For our semantics we will consider only occurrence nets, i.e., nets where the < relation does
not have cycles.

And-or context-dependent nets will be graphically represented in the same way as classical and con-
textual nets. Thus, conditions are circles, events are boxes, and the flow relation F, is represented by
directed arcs from circles to boxes or viceversa. We choose to represent the context relation F2 by undi-
rected arcs (since the direction of such relation is unambiguous, i.e. from elements of B to elements of E)
and the or-concurrency relation F3 by undirected labelled arcs (whose label is or). An arid-or contextual
net can be seen in Figure 1. In this net, for example, events el and e2 are mutually exclusive, while e2
and e4 are and-concurrent. Also, a and b and or-concurrent, and c is a context for both e2 and e4.

5 Concurrent Semantics

In order to give a concurrent semantics to cc programs with both in- and non-determinism, we follow the
same idea used for indeterministic cc programs, that is, to associate a net to each program. However, while
the nets used for indeterministic cc programs are contextual nets, here we need and-or nets. Nevertheless,
the generating mechanism is very similar: we take the rewrite rules associated to a given cc program
and by using them we incrementally construct an and-or contextual net plus a mapping which relates
the items of the net to the agents, constraints, and rules of the program. Such incremental construction
is achieved via the use of one inference rule (plus another one to start). Each time the inference rule

141

Figure 1: An and-or contextual net.

is applied, a rewrite rule is chosen whose left hand side and context are already present in the partially
built net. Such elements have to be and-concurrent (which means that they can appear together in the
same or-state). Then, a new element representing the rule application is added (as an event), as well as
new elements representing the right hand sides of the rule (as conditions).

The elements of the net are structured in such a way that elements generated by using different
sequences of rules are indeed different. That is, each element contains its "history". The way this is
achieved consists in defining an element as a pair, of which the first element is the type of the term, and
represents the rule or agent or constraint that the term corresponds to, and the second element is its
history.

More precisely, assuming the net to be obtained is (B, E, F1, F2, F3), the starting inference rule is:

P--F.A

(A, O) E B
which means that we start with one element, which is a condition corresponding to agent A and with
empty history. Instead, the main inference rule is:

si and-co si (i,j < n)s, = (ae)(i < n)
aj4ai (i, i < n)

3tr E RR(P) such that L(r) = {ao,... ,am.-} and c(r) = tam,..., a,-}
C = (,(,{o...,n1)

siFe (i < m)
s.F2 e (m < i < n)

Vi -,...,k, ifa EXR,(r) then (a,e) E B and eF(a,e)
a E R(r) and b F. Ri(r) and i 0 j implies (a, b) E F3

That is, if we find items of the net which correspond to the left hand side and the context of a rule
and which are and-concurrent, then we add a new event corresponding to the rule application, and new
conditions corresponding to the elements of all right hand sides of the rule. Then we also suitably link
such new objects among them via the F (dependency), F2 (context), and F3 (or-concurrency) relations.
In particular, the F3 relation is set to hold among any pair of items representing elements belonging to
different right hand sides of the rule. For example, the concurrent semantics of the program described at
the end of Section 3 is the and-or contextual net in Figure 2.

Note that the above inference rule is a simplified version of what is actually needed to correctly
generate the and-or net corresponding to a given cc program. In fact, we assume here that no rule has
the same agent more then once in its right hand sides. However, if this should happen, a straightforward
extension of the term coding, written as triple instead of pairs (where the added element is a natural
number used to distinguish the different occurrences of an agent) would be enough (see [MR93b]).

142

O (cl + C2) II (c3 V C4)

e + cC3 Vc 4

(DO ~or Q

Figure 2: The and-or contextual net giving the concurrent semantics of a cc program.

6 Concurrent vs. Operational Semantics

It is important now to understand the relationship between the operational semantics defined in Section
3 and the concurrent semantics defined in Section 5. In particular, it is important to be able to show that
from the concurrent semantics it is possible to recover all and only the computations of the operational
semantics.

In previous studies concerning the concurrent semantics of indeterministic cc programs via contextual
nets [MR93b] such relationship is very simple: any linearization (that is, a total order of the events
which is compatible with the partial order) of each (maximal and left-closed) subnet of the semantics
structure which does not contain any pair of mutual exclusive elements represents one (non-redundant)

* computation; and viceversa, each (non-redundant) computation is represented by one linearization of one
of such subnets.

When however nondeterninism and indeterminism coexist, the representation of computations via
subnets is not possible any more. Consider again the simple cc program whose computations are described
at the end of Section 3 and whose semantics structure is depicted in Figure 2. Then, it is easy to see
that there is no collection of subnets which may represent all its computations. In fact, if we consider all
its subnets which do not contain any pair of mutually exclusive elements (which can be seen in Figure
3), then we are able to represent only those computations where the same branch of the indeterministic
choice has been taken in both or-branches (either because the indeterministic choice was done before the
or-choice, or because the choices in the two or-branches coincide). But we are not able to represent those
computations where the or-choice has been made first, and where each or-branch evolved via a different
indeterministic branch (one chose ci and the other one C2).

A possible solution would be to consider subnets that do not contain pairs of mutually exclusive
elements. However, to allow two in-braches to appear in the same computation, we would have to specify
that or-choices must occur before in-choices. Unfortunately, recent approaches to the semantics of some
extensions of Petri nets have shown that in presence of some specific features it is not possible to represents
concurrency via partial orders, instead pairs of partial orders are required. In the present case, the first
partial order would give a subnet, and the second would specify the order of choices. However, this would
still not distinguish between a computation in which the first in-choice (cl) is taken in the first or-state
(ca), and the second (C2) with the second or-state (c4) and one in which cl is taken with c4 and c2 with
c4.

Therefore the usual method of relating semantic nets to programs (using subnet selection), does not

143

(CI C2)(C3 C4)(CI + 2) (C3 '.' C4)

0 or or
0 Q01-9

C2
, C

Figure 3: The non-mutually-exclusive subnets of the and-or contextual net. in Figure 2.

seem applicable in the current setting. So we look for alternative ways in which the semantic structure
may still represent all and only the computations of the operational semantics of cc programs. To this
end we introduce the concept of net execution.

Informally, a net execution is a sequence of steps which starts with the entire net and at each inter-
mediate stage reaches a collection of subnets of the original net. Each step executes one of the events
of the net, among those whose pre- and context-conditions are in the current collection of nets (and are
minimals), and the result is that the events and its preconditions are cancelled, together with every item
which is mutually exclusive with that event. Moreover, if the event is an or-choice, a replication of the
net containing the executed event is made, in the same manner as for the operational semantics.

More precisely, consider an and-or contextual net N. Then let us call rnin(N) the set of all items of
N which are minimal w.r.t. the causal dependency relation. Also, for any event c in N, let us call pre(e)
(ieesp., con(e), poat(e)) the set of preconditions (resp., context conditions, postconditions) of e. Moreover,
given any condition s in a net, let us call or-rest(s) the set S of all conditions which are siblings of s
and or-concurrent with it, plus the set S' which contains all elements (conditions and/or events) which
depend on some element of S as well as all events which have some element of S as a context. Finally,
given a net N and a set of items S in N, let us call ez(N, S) the net which is obtained from N by deleting
all the items which are mutually exclusive with any element in S.

Consider now a cc program P and the corresponding concurrent semantics N, and assume to have
a collection of subnets of N, say (N,..., N.) (at the beginning we just have (N)). Then an execution
step is accomplished by choosing an event e E Ni such that pre(c) U con(c) E min(Ni). There are now
two cases that can occur:

* there are no 81, s2 E pos't(e) such that s, and S2 are or-concurrent; then the new collection of nets
is

(N,.,N ,ex(Nj, - (pre(e) U e), e), Ni, ,. . ., Nn)

* the other case, where there are instead pairs of or-concurrent postconditions of e, is simplified by the
fact that this can arise only from the application of the nondeterminism rule, which only generates
two postconditions; in this case, assuming post(e) = {sI, s 2}, the new collection of nets is
(N,,..., Ni- 1 , ez(Ni-(pre(e)Ue), e)- or-rest(si), ez(N 1-(pre(e)Ue), e)- or-rest(s 2), N,+,... ,

Consider now the set OS all the (non-redundant) computations of a cc program P and the set CS of
all the executions of the corresponding and-or contextual net N. Then there is a bijection between OS
and CS.

144

This means that it is possible to recover all computations from the and-or net representing the concur-
rent semantics of P. Thus the concurrent semantics does not loose any information w.r.t. the operational
semantics. Indeed, it adds much information, concerning the possible concurrency of execution steps, as
well as the causal and the functional dependencies, are explicitely represented.

7 Abstraction

The contextual net corresponding to a given cc program can be used to analyse cc programs in terms of
concurrency, agent's dependency, choice points, parallelism level, and many others. However, the net as
defined in the previous section has many events and conditions which are uninteresting for any reasonable
analysis. Therefore one could think of abstracting from the information given by such items, and obtain
a net, or a similar structure, where only the relevant information is contained.

A choice that has been adopted also in many operational semantic approaches for cc programs is to
say that only ask and tell agents are important. Therefore, in our terms, it would mean that we only
want to keep those events which represent the evolution of ask agents or tell agents'.

To do that, consider an and-or net (B, E, F1, F2, F3), plus the mapping to the cc program rules, and
the corresponding relations <, #, or-co, and and-co. Now, consider the set of events F' C E such that
r = {e E E I C = (el, e2) el is an ask or a tell rule). Then the structure (E', <I,, or-co I,,) relates the
interesting events via the same relations as above, but projected over E'. This structure is obviously not
an and-or contextual net, because it does not contain any conditions. However, it is nevertheless able to
provide causality, indeterminism, and-concurrency, and or-concurrency information among the selected
events.

Note also that the abstract structure so obtained is able to represent the computations and the
dependencies present in many programs, possibly very different among them. Therefore reasoning on
the net instead of on the program allows one to focus on the crucial issues regarding causality and
functionality, and to be independent of the particular recursive set of agent definitions which have been
chosen to represent such causality information.

Acknowledgements

This research has been partially supported by the ACCLAIM Basic Research Esprit Project n.7195.

References
[HJ90; S. Haridi and S. Janson. Kernel andorra prolog and its computational model. In Proc. ICLP9O. MIT

Press, 1990.

[MR93a] U. Montanari and F. Rossi. Contextual nets. Technical Report TR-4/93, CS Department, University
of Pisa, Italy, 1993.

[MR93b] U. Montanazi and F. Rossi. Contextual occurrence tets and concurrent constraint programming. In
Proc. Dagstuhl Seminar on Grdph Transformations in Computer Science. Sprirger-Verlag, LNCS, 1993.

[RiS] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science. Springer

Verlag, 1985.

[Sar93] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[SRP91] V A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint prs>
gramnming. In Proc. POPL. ACM, 1991.

1A tell agent is any agent which adds a constraint. Similarly, a tell rile is any rule which adds a constraint.

145

Efficient and Complete Tests for
Database Integrity Constraint Checking*

Ashish Gupta
Yehoshua Sagivt

Jeffrey D. UUman
Jennifer Widom

Department of Computer Science
Stanford University

Stanford, CA 94305-2140
{agupta,sagiv,ullman,widom}@cs.stanford.edu

1 Introduction

An important feature of modern database management systems is the automatic checking of in-
tegrity constraints. An integrity constraint is a predicate or query such that if the predicate holds
on a state of the data, or equivalently if the query produces an empty answer, then the database is
considered valid. When an integrity constraint is violated, i.e., when the predicate does not hold or
the query produces a non-empty answer, then the update creating the undesirable database state
must be rejected or some other compensating action must be taken.

We are interested in efficient methods for checking integrity constraints (hereafter called con-
straints) as a database is updated. Here, general efficiency is measured both in the amount of data
that needs to be accessed in order to check a constraint, and in whether the check can be performed
by submitting a query to the database system (rather than running an algorithm directly on the
data). In terms of complexity, we are not interested in methods that are exponential in the size of
the data or in the number of constraints, but we are willing to accept methods that are exponential
in the size of the constraints themselves since, in databases, constraints tend to be short.

Suppose that we have a constraint C, and a database update occurs. We need to ensure that
C still holds after the update. Assume that we have available at least the update itself and the
definition of C. In addition to this information, there are three levels in the amount of data we might
use to check the constraint: none, some, or alL Using none of the data corresponds to the query
independent of update problem, which has been studied in its generality in [BT88, Elk9O, LS93]
and with respect to constraints by us in [GSUW94]. Using all of the data amounts to efficient
evaluation of predicates or queries over the database [BC79, GMS93, HD92, Nic82, QW91, U092].
We study the case where some of the data is used to check the constraint. This scenario arises
whenever certain data involved in the constraint is very expensive or impossible to access, such as
in distributed database systems or collaborative design [TH93, GT93]. Hereafter we refer to the
portion of the data used to check a constraint as accessible data, and we refer to the portion of the
data involved in a constraint but not used to check the constraint as inaccessible data.

Research sponsored by NSF grants IRI-91-16646 and IRI-92-23405, by ARO grant DAAL03-91-G-0177, by
ARPA contract F33615-93-1-1339, and by a grant of Mitsubishi Electric Corp.

tPermanent address: Department of Computer Science, Hebrew University, Jerusalem, Israel.

146

Note that, unless all of the relevant data is accessible, our constraint checking methods will be
conservative. That is, by looking at only some of the data, we may be able to determine that the
constraint still holds, or we may determine that it is necessary to look at all of the data to check the
constraint. A check is correct if, whenever it determines that a constraint still holds, then indeed
the constraint holds. We also want our checks to be complete, but completeness is with respect to
the accessible data. A check is complete in this sense if, whenever we determine that a constraint
may not hold, there is some configuration of the inaccessible data for which the constraint indeed
does not hold.

In the remainder of this short paper we outline the languages we have been considering for
database constraints and we solidify the notion of using some of the data to check a constraint. We
then give several examples that illustrate when and how our constraint checking methods apply.
(Due to space limitations, complete technical results are not included.) The examples serve to
bring out a number of problems we have not yet solved, which are enumerated at the end of the
paper.

2 Problem Definition

We consider relational databases where relations are modeled as predicates and queries are expressed
as logical rules that derive a result predicate, as in, e.g., Datalog [U1188]. Examples are given below.
A constraint is expressed as a query whose result is a special 0-ary predicate that we call panic.
If the query produces 0 on a given database D, then the constraint holds for D. If the query
produces panic then the constraint is violated. The difficulty of checking constraints depends
on the language that we use to express constraint queries. Examples of interesting languages for
expressing constraint queries are:

1. Conjunctive queries [CM77].

2. Nonrecursive Datalog, or unions of conjunctive queries [SY80].

3. Conjunctive queries with arithmetic comparisons [Klu88].

4. Datalog with negation [U1188].

5. Recursive Datalog, possibly with arithmetic comparisons and/or negation and/or arithmetic
operators [Ull88].

For some combinations of a language above and an amount of information used (none, some, or
alJ), the constraint checking problem can be reduced to other problems that have been studied in
the literature; see [GSUW94 for a discussion. For instance, conjunctive query containment results
can be used to check constraints when only updates and constraint definitions are used [LS93].

In this paper we focus our discussion on constraints expressed as conjunctive queries with
arithmetic comparisons, we suppose the only accessible relation is the updated relation, and we
consider updates that are insertions of a single tuple. The general form of a conjunctive query
constraint is:

panic :-l & rl, &... & r,, & c, & ... & ck.

Here, I is the predicate for which the corresponding relation L is accessible, the relation Ri for each
of the ri's is inaccessible, and each ci is an arithmetic comparison involving one of <, , >, >I - .1

I7he use of L and R refers to the fact that, in distributed databases, the "Local" data is accessible and the
"Remote" data is inaccessible.

147

Let tuple t be inserted into relation L and assume constraint C holds before the insertion. We
want to use L, C, and t to infer that C is not violated after the insertion. We derive a condition
that relation L needs to satisfy in order for t not to violate C. We refer to this condition as the test
condition. If the test condition is satisfiable, then relations R 1,..., R,, do not need to be accessed.
The test condition is obtained by reducing the problem outlined above to the problem of checking
if a conjunctive query is contained in a union of conjunctive queries; details are in [GSUW94].

3 Examples

EXAMPLE 1. Consider an employee-department relational database with two relations:

mp(E, D, S) Z employee number E in department D has salary S
dept (D, MS) X some manager in department D has salary MS

Let the constraint assert that every employee earns less than every manager in the same department.
This constraint is expressed as a conjunctive query C such that if C produces panic then the
constraint is violated:

C: panic :- e.p(E, D, S) & dept(D, M) & S : MS.

Let relation EIP for predicate amp be accessible and relation DEPT be inaccessible. Suppose tuple
.mp(e, dl, 50) is inserted into relation EMP. Constraint C will be violated if department dl has a
manager whose salary is < 50. However, suppose department dl already has an employee whose
salary is 100. Since constraint C is not violated before the insertion, we can infer that no manager
in dl earns as little as 100, and therefore emp(e, dl, 50) does not violate constraint C.

The above inference procedure can be formalized by specifying a test condition on the relation
EMP and the inserted tuple, such that if EMP satisfies the test condition, then the inserted tuple does
not violate the constraint. For constraint C, the test condition is the following Datalog query that
derives insertion-ok if and only if the inserted tuple does not violate C, independent of the value
of relation DEPT.

insertion-ok :- inuerted(E, D, S) & .ap(X, D, Y) & Y > S.

Relation INSERTED contains only the inserted tuple and EM does not contain the inserted tuple.
This test is complete with respect to the accessible data, as defined in Section 1. 0

Note, the test condition in Example 1 is a single Datalog rule and was derived without consider-
ing the actual value of the inserted tuple. We now give two examples that illustrate the complexity
that simple arithmetic comparison operators <, >,, 2 introduce. Example 2 shows that the com-
plete test could be a recursive Datalog program. The constraint in Example 3 also has a complete
test in the form of a recursive Datalog program, but illustrates the computational complexity of
evaluating the test.

EXAMPLE 2. We shall refer to this example as forbidden intervals.

C: panic :-l(X,Y) &r(Z) &X <Z<Y.

Each pair in the accessible relation L can be thought of as the ends of an interval that no Z in the
inaccessible relation R may occupy.

Suppose relation L has the tuples (3,6) and (5, 10). The tuples of relation R that violate the
constraint given tuple 1(3,6) lie in the interval [3,6] and similarly, the tuples of relation R that
violate the constraint given tuple 1(5, 10) lie in the interval [5, 10]. If the constraint is not violated

148

then we can infer that the tuples of the inaccessible relation lie outside the forbidden intervals [3,6]
and [5, 10] and therefore outside the combined forbidden interval [3, 10].

Let tuple 1(a, b) be inserted into relation L. If a > 3 and b < 10, then the forbidden interval
for 1(a,b) is contained in the union of the forbidden intervals of one or more existing tuples, and
relation R need not be accessed in order to infer that constralnt C is not violated. Note, the
complete test may need to access multiple existing tuples in order to make the above inference.
An incomplete, but sufficient, test would be to check that the forbidden interval for some single
existing tuple contains the forbidden interval for the inserted tuple. That corresponds to using
a single tuple in the accessible relation as opposed to using an arbitrary number of tuples, and
was the approach taken in our initial work [GW93]. The sufficient test is linear in the number of
tuples in L whereas the complete test could be exponential, if implemented naively. With some
preprocessing, the complete test can also be evaluated in linear time [GSUW94].

The complete test for this example is the following recursive Datalog program that derives
insertion-ok if and only if the inserted tuple does not violate C, assuming that C was not violated
before the insertion.

insertion.ok :- inserted(A, B) & forbidden.nt (C, D) & A > C & B < D.
forbidden.int(C, D) :- 1(C, D).
forbidden-int (C, D) forbidden-int(C, X) & forbidden-int(Y, D) & X > Y.

0

EXAMPLE 3. Consider a constraint C that involves two variables in the inaccessible relation:

C: panic :- (UVW) & r(X,Y) & U < X < V & W < Y < Z.

Intuitively, the above constraint is the forbidden interval constraint in two dimensions. A tuple in
relation R defines a point in a two dimensional space and a tuple in relation L defines a rectangular
region in this 2-D space. Constraint C requires that all the points defined by the inaccessible
relation R lie outside every rectangular region defined by the accessible tuples. Therefore, an
inserted tuple 1(a, b, c, d), does not violate C if the rectangle defined by 1(a, b, c, d) is contained in
the union of the rectangles defined by the existing tuples in L. The test for determining when a
rectangle is contained in a set of other rectangles can still be represented as a recursive Datalog
program. However, building the program is not as straightforward as in Example 2. In addition,
the complexity of the test is high even with preprocessing. Without preprocessing the test is
exponential in the number of tuples in L. 0

4 Discussion

In [GSUW94] we identify some subclasses of conjunctive query constraints with arithmetic compar-
isons for which the complete test is a (recursive) Datalog program. We also identify some subclasses
where the complete test does not need to consider multiple tuples from the accessible relation, but
can consider tuples one at a time (i.e., there is no need to consider combinations of tuples, as
in Example 2). The test condition for conjunctive query constraints, including the subclasses, is
NP-complete. However, in at least some cases, the exponential behavior is only in the size of the
constraint specifications, which we believe will be relatively small. In other cases the tests may be
exponential in the size of the database or the number of constraints in the system. In such cases
sufficient tests, instead of complete tests, may be preferable.

For conjunctive query constraints that use function symbols like +, - (instead of only arithmetic
comparisons), the complete test is an implication condition where both sides of the implication use

149

disjunction and the function symbols. Even though the implication condition can be derived in
time exponential in the size of the constraint, evaluating the implication may be undecidable or
have very high complexity. However, for some subclasses the ideas outlined in this paper can be
extended to derive sufficient decidable tests.

5 Future Research Directions

Many interesting avenues remain unexplored in making constraint checking efficient following the
framework we outlined above. We plan to:

" Consider more expressive constraint languages. Aggregate functions like MAX, SUM, AVG, etc.
make the constraints more general. For instance, we might want a constraint requiring the
average gradepoint of a graduating student to be at least 3.

" Use different amounts and type of information. For instance, constraint C1 might be checked
using constraints C2 and C3, possibly together with some functional dependency information.
In distributed database systems, such algorithms can be used to increase the amount of
constraint checking that can be done locally, without accessing remote data.

" Devise algorithms to efficiently perform local tests. As the examples in this paper illustrate,
the test conditions often have high complexity. Techniques from constraint logic program-
ming, operations research, and other areas provide ways of evaluating the tests efficiently.
For instance, in Examples 2 and 3, algorithms from computational geometry are useful for
efficient evaluation.

" For constraints where the complexity of local checking is inherently very high, it is useful to
look for sufficient tests that are efficient to implement even though they may not be complete.

References

[BT88] Jose A. Blakeley and F. W. Tampa. Maintaining materialized views without accessing base data.
Information Systems, 13(4):393-406, 1988.

[BC79] Peter 0. Buneman and Eric K. Clemons. Efficiently Monitoring Relational Databases. In A CM
Transactions on Database Systems, Vol 4, No. 3, 1979, 368-382.

[CM77] Ashok K. Chandra and P.M. Merlin. Optimal Implementation on Conjunctive Queries in Rela-
tional Databases. In 9th ACM Symposium on Theory of Computing, pages 77-90, ACM, 1977.

[Elk90] C. Elkan. Independence of logic database queries and updates. In Proceedings of the Ninth A CM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 154-160,1990.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining Views Incremen-
tally. In Proceedings of ACM SIGMOD 1993 International Conference on Management of Data,
pages 157-167.

[GSUW94] Ashish Gupta, Shuky Sagiv, Jeffrey D. Ullman, and Jennifer Widom. Constraint Checking with
Partial Information. To appear in PODS 1994.

[GT93J Ashish Gupta and Sanjai Tiwari. Distributed Constraint Management for Collaborative Engi-
neering Databases. In Proceedings of the Second International Conference on Information and
Knowledge Management (CIKM), Washington DC, November 1993.

(GW93] Ashish Gupta and Jennifer Widom. Local Checking of Global Integrity Constraints. In Proceedings
of ACM SIGMOD 1993 International Conference on Management of Data, pages 49-59.

150

[HD92] John V. Harrison and Suzanne Dietrich. Maintenance of Materialized Views in a Deductive
Database: An Update Propagation Approach. In Workshop on Deductive Databases, JICLSP
1992, pages 56-65, 1992.

[Klu88] A. Klug. On Conjunctive Queries Containing Inequalities. Journal of the ACM, 1(35):146-160,
1988.

[LS93] A.Y. Levy and Y. Sagiv. Queries independent of updates. In Proceedings of the Nineteenth
International Conference on Very Large Data Bases, pages 171-181, Dublin, Ireland, August
1993.

[Nic82] J. M. Nicolas. Logic for Improving Integrity Checking in Relational Data Bases. Acta Informatica,
18(3):227-253, 1982.

[TH93] Sanjai Tiwari and H. C. Howard. Constraint Management on Distributed AEC Databases. In
Fifth International Conference on Computing in Civil and Building Engineering, pages 1147-1154.
ASCE, 1993.

[QW91] Xiaolei Qian and Gio Wiederhold. Incremental Recomputation of Active Relational Expressions.
In TKDE, 1991.

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences Among Relational Expressions with the
Union and Difference Operators. Journal of the ACM, 4(27):633-655, 1980.

(Uil88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes 1 and 2. Computer
Science Press, New York, 1989.

CUO92] Toni Urpi and Antoni Olive. A method for change computation in deductive databases. In
Proceedings of the Eighteenth International Conference on Very Large Databases (VLDB), pages
225-237, Vancouver, British Columbia, 1992.

151

Linear vs. Polynomial Constraints
in Database Query Languages

Foto Afrati t Stavros S. Cosmadakis Stdphane GrumbachS
NTU Athens New York University LN.R.LA.

Gabriel M. Kuper
ECRC

Abstract

We prove positive and negative results on the expressive power of the relational calculus
augmented with linear constraints. We show non-expressibility of some properties expressed
by polynomial constraints. We also show expressibility of some queries involving existence
of lines, when the query output has a simple geometrical relation to the input. Finally,
we compare the expressive power of linear vs. polynomial constraints in the presence of a
discrete order.

1 Introduction

An active area of recent research is concerned with integrating constraints into logical formalisms
for programming languages [DG,JL87,Ma87,Sa] and database query languages [BJM93,KKR90,
Kup90,Kup93,Re90]. Constraints are incorporated in logic programming systems such as CLP,
Prolog HI and CHIP. The class of linear constraints is of particular interest, because of its
applicability and the potential for efficient implementation [HJLL90,JL87,La90].

Kanellaids et.al.[KKR90] describe a methodology to combine constraint programming with
database query languages. They propose several generalizations of the traditional relational
database calculus (first-order logic). One of the more powerful languages described in [KKR90]
is the relational calculus augmented with polynomial constraints, FO+poly. This language is
powerful enough to express many geometric problems, and has NC data complexity; however,
the complexity of quantifier elimination (over real dosed fields) makes it impractical for most
purposes. A natural question therefore is to ask what happens if constraints are restricted to be
linear.

t National Technical University of Athens, Computer Science Division, Heroon Politechniou 9, 157 73 Zo-
graphou, Athens, Greece; afrati~theseas.utua.gr.

II.N.R.I k., Rocquencourt BP 105, 78153 Le Chesnay, France; Stephane.GrumbachOinria.fr. Supported in
part by the Esprit Project BRA FIDE 2.

152

In this paper we study the expressive power of the a.1ational calculus augmented with linear
constraints, FO+Iinear. We first give some negative results, showing that there exist prop-
erties in FO+poly which are not expressible in FO+linear. We use the well-known technique
of Ehrenfeucht-Fraisse games [Eh6l,Fr54]. We show that, when constraints are introduced to
first-order logic, games can be appropriately adapted to prove non-definability; by contrast, tech-
niques such as the compactness theorem (from first-order logic) or locality and 0/1 laws (from
finite model theory) fail with constraints [GS94].

A natural subset of FO+poly singled out in [KKR90] is FO+Lnes; it extends FO+linear with
variables ranging over lines. We show that there exist properties in FO+lines which are not
expressible in FO+linear. We also show that some natural queries in FO+lines can be expressed
in FO+linear when the output of the query has a simple geometrical relation to the input.

Maybe the most basic query expressed by line variables is "compute the set of lines contained
in the database". We do not know if it is expressible in FO+linear. We show, however, that it is
linear, i.e., if the input is defined by linear constraints, the output is defined by linear constraints
as well. Linearity is a desirable property of query languages with linear constraints, because
it makes it possible to cascade queries. It can be shown that queries expressed in FO+linear
are linear. Also, queries expressed in a fragment of FO+poly described in [HJLL90, La9O] (the
parametric queries) are linear. It is an interesting open problem to find the most general fragment
of FO+poly which expresses only linear queries.

We also compare the expressiveness of linear vs. polynomial constraints in a different context,
namely in the presence of a discrete order. We show that including addition in first-order logic
increases its expressive power. Adding multiplication increases the expressive power further.
Neither is the case for Datalog, because of the availability of recursion. Results in a similar
perspective are presented in [NS93], where it is shown that no formula of first order logic using
linear ordering and the logical relation y = 2z can define the property that the size of a finite
model is divisible by 3.

2 Background

Databases are subsets of the k-dimensional Euclidean space R (1Z is the real line). Queries
are functions from databases to databases; Boolean queries are functions from databases to
{ true, false}.

FO+poly [KKR90] is the set of first-order formulas (with equality) over atomic formulas as
follows:

(i) S(zl,..., xh), meaning the point (z,..., zk) is in the database S.
(ii) Polynomial constraints of the form

f(Xl,...,Xk) 0 0

where f is a k-variable polynomial (with real coefficients) and 0 E {>, =}.

Note that >, 0 are expressed as Boolean combinations of >, =. Also, when writing FO+poly
formulas we will use abbreviations such as z < e (instead of -z + e > 0) and S(z + 1, y) (instead
of 3z.{z = x + 1 A S(z, y)}).

FOi--linear is the subset of FO+poly obtained be restricting constraints to be linear.

153

Formulas of FO+poly with free variables define queries: the output is the set of tuples satisfy-
ing the formula Sentences define Boolean queries. If the input to a FO+poly query is defined by a
Boolean combination of polynomial constraints, the outputis also defined by such a combination
[KKR90].

A linear database is a subset of R k defined by a Boolean combination of linear constraints.
A linear query is a function from linear databases to linear databases.

Formulas of FO+linear with free variables define linear queries. To see this, consider the
formula obtained by substituting the definition of the input (by linear constraints) into the query
formula. Now the quantifiers can be eliminated, as follows: if C is a set of linear constraints

x > A
2 < hj

z = f

(where x does not occur in the f's), then the formula 3 z. A C is equivalent to the formula A C',
where C' is the set of linear constraints

f, < fk = f < fj.

Formulas of FO+poly do not in general define linear queries, as can be seen by standard
geometric arguments (consider, for instance, the set of pairs (z, y) satisfying X2 + y2 = 1). The
parametric queries [La9O,HJLL90] is a class of formulas of FO+poly which define linear queries
(by the Subsumption Theorem and variable elimination [La90]).

FO+lines is an extension of FO+linear with variables ranging over points and lines in lRk.
Atomic formulas S(p), S() mean the point p (resp. the line 1) is contained in the database S;
p E I means the point p lies on the line 1. It can be seen that FO+lines queries can be expressed
in FO+poly. More generally, one can consider variables of higher dimension. It can be seen that
extending FO+poly in this way does not increase its expressive power [KKR90].

3 Linear constraints are less expressive than polynomial

3.1 Games and the expressiveness of FO+poly

Definition 1 The n-round Ehrenfeucht-Fraisse game is played between two players on two databases
V, V' C .k At round r player I picks a point pr E R? and associates it to either D or IY; player
II responds by picking q, E 1Z and associating it to the other database.

For each r let t,, t' be the points associated with D, ' respectively; {t,t,} = {pr, q,}. Player
II wins the game iff

(i)t, = tj iff t = tie and
(4i) , ti) EV iff .t , tk)EV.

The above condition is extended, given a set C of constraints over n variables, by the clause

(iii) c(ti,,... , ti.) iff c(te,,...,ti.), for every constraint c in C:

154

The well-known theory of Ehrenfeucht-Fraissi games [Eh6l,Fr54] -yes the following results:

Theorem 2 Let Q be a property of databases. For each n and each finite set of linear constraints
C (over n variables), the following are equivalent:

(a) Q is not expressible in FO+linear with quantifier depth at most n and constraints
from C.
(b) There exist databases Dc, I ',,c which differ wrto Q such that player H wins the
n-round Ehrenfeucht-Fraissi game on D,,,c, V:,c.

Corollary 3 Let Q be a property of databases. The following are equivalent:

(a) Q is not expressible in FO+inear.
(b) For each n and each finite set of linear constraints C (over n variables), there
exist databases D,,C, D',c which differ wrto Q such that player II wins the n-round
Ehrenfeucht-FraissJ game on D2 n,c, 2) ',,c.

Consider databases consisting of a subset U of the real line. We will use Corollary 3 to show:

Theorem 4 The set of databases satisfying

3z.3y. {U(x) AU(y)AX 2 +y 2 1}

is not expressible in FO+linear.

Proof: (Sketch) Given n and C as in Corollary 3, we will find points 6,6', e such that

62 +e2 = 1

(61) 2 + # 1

and player H has a winning strategy for the game played on the databases

D = 1be}

V' = {',f}.

Let t,, t' be the points associated (at round r) with), 2)' respectively (Definition 1). For
each r, 0 < r < n, we define sets of linear constraints C,, C" on the points {t, t , 6, f and
{t ,4..., tY, 6', e respectively. A constraint c(tI,..., t, 6, e) is in C? iff the corresponding constraint

, . , t., 6', e) is in C,. We proceed by induction on r:

r=n: C,, = {t,=t,,i,j=1,...,n}U
{ti = 6 : i = 1,.,n}U
{t= c: i =1,...,n}U
{c(t,,....,ti.): wherecEC, I<ij5n}.

O<r<n: C, = {tj=tj,i,j=1,...,r}U
{t=6 :i= 1,...,r}U
{t, E : i =1,...,r}U

{c(tj,,...,ti.) : where c E C, 1 < ij , r}U

155

where A is the set of constraints obtained by eliminating t,+, from the set C,+,.
We say that C,, C, are equisatisfied iff a constraint in C, is true just in case the corresponding

constraint in C' is true.
Claim: If C,, C" are equisatisfied, then for any choice of t,+l (resp. t',+,) there is a choice of

t',+1 (resp. t,+,) such that CT+,, Cr+1 are equisatisfied.
It follows that, if Co, CO are equisatisfied, player II can play so that C,,, C" are equisatisfied.

I.e., by the definition of C,, C, player II can win the n-round game, since

x E D iff x = 6V =

(resp. x E D' iff x = 6'V x = f).
We now show how to pick 6, 6', e so that C0, C6 are equisatisfied. Write the constraints in Co

in the form 6 6 fm(E), where 6 E {>, <, =}. Pick e so that f,.(E)2 + C2 # 1 for every m. Pick 6 so
that 62 + C2 = 1. Now 6 # f,,,(c) for every m, and by choosing 6' close enough to 6 we can make
sure that Co, CO axe equisatisfied. U

3.2 The expressiveness of FO+lines

We consider databases consisting of a binary relation S. The Boolean query in-line asks whether
S is contained in a line. It is expressible in FO+poly, by the formula

3u.3v.3w.Vx.Vy.{S(x, y) - ux + vy + w = o}.

In particular, it is expressible in FO+lines by the formula

31.Vp.{S(p) - p E l}.

Theorem 5 The in-line query is not expressible in FO+linear.

Proof: We show that, if the in-line query is expressible in FO+linear, then the set of tuples
(X, y, z) satisfying z = zy is definable in FO+linear, the latter can be shown to be false.

Given z, y, z, let S be a binary relation containing three tuples:

S = {[1, 0], [0, [y, z]}.

It is easy to verify that the three points are on a line if and only if z = xy. U

4 Expressibility of some FO+lines queries
We consider databases consisting of a binary relation S. The Boolean query exists-line asks
whether S contains a line; it is expressible in FO+lines by the formula

31.s(1).

The more general lines query returns the set of lines contained in S. The output of lines is a set
of tuples (u, v, w), each specifying the set of points (x, y) satisfying ux + vy + w = 0. Both lines
and exists-line are expressible in FO+poly, using the formula

Vz.Vy.{ux + vy + w = 0 - S(z, y)}.

156

The line-intersection query returns all points p which are intersections of (pairs of distinct) lines
contained in S; it is expressible in FOlines by the formula

311.312. {S(1)A S(l2) A l, $
ApE 11 ApE 12}.

We will show that exists-line and line-intersection can be expressed in FO-linear for databases
of certain geometric shapes. We will also show that lines is a linear query.

Definition 6 A two-slope database S(x, y) has the form

(x >fP, A y:5cix + si)
v (^<x<f#I A
V (x < P2 A Y C2 X + S2)

(see Figure 1).

A two-slope database contains a line iff a, > 02.

Theorem 7 The exists-line query is expressible in FO+linear for two-slope databases.

Proof: (Sketch) Let sp be the formula

3z.3w. {-S(x, z) A -,S(-z, w) A z + w <y

Ax > blA-x<b2.

Suppose S is a two-slope database with parameters 61,/32, al, a2 , sl, f2, Y as in Definition 6. For
b, > l1, b2 < 2, the formula V is equivalent to

Y > (a -C 2)X + sl + s 2
x > bl,-b 2.

It follows that, for b, > 813, b2 < 12, the formula Vy.3 x.o is true iff a1 - a2 < 0 (since b2 < b,
implies x > 0).

Now the formula

3B,.3B2.Vb.Vb2.{(b, > B, A b2 < B 2) --. (Vy.3x.9)}

is true iff a, - a2 < 0, i.e., iff S does not contain a line. U

Theorem 8 The line-intersection query is expressible in FO+linear for databases consisting of
at most two lines.

Proof: (Sketch) Suppose S consists of exactly two lines, neither parallel to the x-axis, intersecting
at (a, b) (it is easy to remove these assumptions). The database

S'(X, yl) 4_* S(5, y) A S(+ 1, y)

1_57

consists of two points (x,, Yl), (X2 , Y2) (see Figure 2). By a simple geometrical argument,

ZI+X2 = 2a-1

Y, + Y2 = 2b.

Therefore, the formula

3x,.3y,.3 X2.3Y2. {S'(xl, yl) A S'(X 2, Y2) A (z1 : X2 V y1 # Y2)

A ix+1 A v =-1 12 2

is true iff (u, v) = (a, b). U

Theorem 9 The lines query is linear.

Proof: (Sketch) Write S(x, y) in conjunctive normal form: Ai Vj C,(x, y), where C,, is a linear
constraint. Write the formula

Vx.Vy.{ux + vy + w = 0 -- S(z, y)}

in the form
v.{AVc,,j(x,- + W

equivalently

A{-',,(A -C,,x, - + W))}
i I V

(it is easy to deal with the case v = 0). Now consider eliminating z from the set of linear
constraints Aj -Cij(x, -). Eliminating x from

dl+ d2(- U+W)+ d3 61 0
V

d'x+d(UX+W)+ d 02 0
V

gives, after simplification and cancellation of a common factor v, a constraint

(d2d' - d~d3)u + (d3d, - d~d,)v + (d~d2 - dd2)w 0 0

which is linear in the free variables of the query, u, v, w. U

5 Addition, multiplication, and discrete order

In this section we consider first-order logic and Datalog with a discrete (linear) order. We denote
by FO (FO(<), FO(_ ,+), FO(<, +, x)) first-order logic with equality (and order, and addition,
and multiplication). We use corresponding notation for Datalog and the corresponding extensions.
The version of Datalog we are considering allows first-order queries on the input predicates.

158

It is easy to see that Datalog(:_,+) = Datalog(). We first use < and negation to define a
successor relation succ. Addition can then be defined as a ternary predicate, PLUS, as follows:

PLUS(O, z, x) -,

PLUS(z', y, z') - succ(x, z') A succ(z, z')A PLUS(x, y, z).

Further, Datalog(,+, x) = Datalog(<,+). Multiplication can be easily defined as a ternary
predicate, MULT, using + as follows:

MULT(O, X, 0) -,

MULT(x', y, z') -- succ(x, x') A z' = z + yA MULT(x, y, z).

Therefore, in the presence of discrete order, recursion can be used to show that addition and
multiplication do not add expressive power to Datalog. We next see that this is not the case
in first-order logic. The following query is (i) not expressible in FO(<), but (ii) expressible inFO(<5,+).

Example 10 Consider the schema a = (R), where R is a binary relation. The universe is the
set of natural numbers. The query answers true if and only if (i) the cardinality of the projection
of R on the first attribute, R1, is even, and (ii) the second projection of R, R 2, contains the order

of x in R , (i.e. R(x, y) iff x is the yth element of R 1).

It is easy to express the query in FO(<,+).

(VXI X2 Y1 Y2 (-3 ((xi <X < X2) A Ri(x))

A RI(xi) A RI(X2) A R(xi, yl) A R(X2 , Y2)) - (y2 = y1 + 1))

Amin& (1) A 3n (maxR, (n) A 3m (n = m + m)).

Here minR, (1) expresses the fact that the smallest element in the second column of R is 1
and mazR2 (n) the fact that the largest element in the second column of R is n. The proof that
it cannot be expressed in FO(_<) is based on Ehrenfeucht-Fraiss6 games.

The query "is the cardinality of the domain a prime number" is expressible in FO(<, ±, x)
but not in FO(<, +). We can therefore conclude with the following result.

FO C FO(<) C FO(, +) C FO(<, +, X)
Datalug C Datalog(<) = Datalog(<, +) = Datalog(<, +, x)

Acknowledgments

We wish to thank Serge Abiteboul, Alex Brodsky, Christophe Tollu and Victor Vianu for helpful
discussions, and Paris Kanellakis for providing some of the initial motivation.

159

References

[BJM93] A. Brodsky, J. Jaffar and M.J. Maher. Toward Practical Constraint Databases. Proc.
19th International Conference on Very Large Data Bases, Dublin, Ireland, 1993.

[DG] J. Darlington and Y-K. Guo. Constraint Functional Programming. Tech. Report,
Dept. of Computing, Imperial College, to appear.

[Eh6l] A. Ehrenfeucht. An Application of Games to the Completeness Problem for Formal-
ized Theories. Fund. Math., 49:129-141, 1961.

[Fr54] R. Fraisse. Sur quelques classifications des systemes de relations. Publications Scien-

tifiques de l'Universit6 d'Algerie, Siries A, 1:35-182, 1954.

[GS94] S. Grumbach and J. Su. Finitely representable databases. In Manuscript, 1994.

[HJLL90] T. Huynh, L. Joskowicz, C. Lassez and J-L. Lassez. Reasoning About Linear Con-
straints Using Parametric Queries. Foundations of Software Technology and Theoret-
ical Computer Science. Lecture Notes in Computer Science, Springer-Verlag vol. 472,
1990.

[JL87] J. Jaffar and J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM POPL,
111-119, 1987.

[KKR90] P. Kanellakis, G. Kuper and P. Revesz. Constraint Query Languages. Proc. 9th A CM
PODS, pp. 299-313, 1990. To appear in JCSS.

[Kup90] G.M. Kuper. On the expressive power of the relational calculus with arithmetic
constraints. In Proc. Int. Conf. on Database Theory, pages 202-211, 1990.

[Kup93] G.M. Kuper. Aggregation in constraint databases. In Proc. First Workshop on
Principles and Practice of Constraint Programming, 1993.

[La90] J.L. Lassez. Querying Constraints. Proc. 9th A CM PODS, 1990.

[Ma87] M. Maher. A Logic Semantics for a class of Committed Choice Languages. Proc.
ICLP4, MIT Press 1987.

[NS93] D. Niwinski and A. Stolboushkin. y=2x vs. y=3x. In Proc. IEEE Symp. of Logic in
Computer Science, pages 172-178, Montreal, June 1993.

[Re90] P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. Proc. 3rd Inter-
national Conference on Database Theory, 1990. To appear in TCS.

[Sal V. Saraswat. Concurrent Constraint Logic Programming. MIT Press, to appear.

160

ILO

CL'C

Fkite Intes&6ioA 4 I wo 1c+.,lve.

161

Foundations of Aggregation Constraints

Divesh Srivastava* Kenneth A. Rosst Peter J. Stuckey

AT&T Bell Laboratories Columbia University University of Melbourne

diveshOresearch.att.com kar@cs.columbia.edu pjs4cs.mu.oz.au

S. Sudarshan
AT&T Bell Laboratories

sudazsha@research.att.com

1 Introduction

Database query languages, such as SQL and Coral [RSS92], use the grouping construct in conjunction with

aggregate operations (such as rain, max, sum, count and average) to obtain summary information from the

database. These database query languages also allow constraints on values, such as the results of aggregate

operations, to restrict the collection of answers to a query. As an example, consider the following program/query

pair (using the notation of [MPR90]):

q-depts(Dept, M1, M2, C, S) : - groupby(employee(Emp, Dept, Sal), [Dept],

[Ml = min(Sal), M2 = max(Sal), C = count (Sal), S = sum(Sal)]),

C_< 10, M1 > 0, M2 < 10000.
Query: ?-q.depts(D, M1, M2, C, S).

Intuitively, the program rule scans all tuples in the employee relation (the first argument of the groupby), and for

each department (the variable within [] in the second argument of the groupby), computes the min, max, count

and sum of the salaries of the employees in that department. Tuples corresponding to departments where the

minimum salary is > 0, where the maximum salary is < 10000 and where the number of employees is < 10 are

answers to the query ? q.depts(D, M1, M2, C,).

The variables MI, M2, C and S are related by the fact that they are all obtained by performing an aggregate

operation on the same multiset. Thus, constraints such as M1 < M2 are implicitly present on this set of

variables, and act in conjunction with the other explicitly specified constraints on these variables.

A fundamental operation on any constraint domain is checking if a conjunction of constraints is solvable.

Given a query ? q.depts(D, M1, M2, C, S), S > 100000, it is possible to determine that there are no answers to

this query. To do this, we need to determine that the conjunction of (aggregation) constraints:

min(S) > 0 A count(S) < 10 A maz(S) < 10000 A sum(S) > 100000

*The contact author's address is Divesh Srivastava, AT&T Bell Laboratories, Room 20-404, 600 Mountain Avenue, P.O. Box

636, Murray Hill, NJ 07974, USA.
t The research of Kenneth Roes was supported by NSF grant IRU-9209029, by a CISE/NSF grant CDA-9024735, by a grant from

the AT&T Foundation, and by a David and Lucile Packard Foundation Fellowship in Science and Engineering.

162

is unsolvable, where S can be any finite multiset of unbounded cardinality. 1 The techniques described in this

paper can be used to efficiently check for solvability of such constraints.

Checking solvability of aggregation constraints can be used much like checking solvability of ordinary arith-

metic constraints in a constraint logic programming system. Aggregate operations are typically applied only

after multisets have been constructed. However, checking solvability of aggregation constraints even before the

multisets have been constructed can be used to restrict the search space by not generating subgoals that are

guaranteed to fail, as illustrated by the above program.

The contributions of this paper are as follows:

" We introduce a new constraint domain, aggregation constraints, which is extremely useful in database

query languages and in constraint logic programming languages that incorporate aggregate operations

[MS94] (Section 2).

" We discuss the factors that determine the complexity of checking for the solvabihit of conjunctions of

aggregation constraints. Further, we show intractability results for checking solvability of conjunctions of

certain simple kinds of aggregation constraints (Section 3).

" We present a reduction from the domain of aggregation constraints to the domain of mixed integer/real,

non-linear arithmetic constraints (Section 4). This reduction enables us to use existing techniques to

check solvability of aggregation constraints. However, these techniques cannot be in polynomial time since

checking solvability of aggregation constraints is intractable in general. We point out interesting special

cases of aggregation constraints where the reduction-based approach does, in fact, allow for tractable checks

for solvability.

" We describe a polynomial-time algorithm that checks for solvability of a useful class of aggregation con-

straints, where the reduction-based approach generates non-linear, mixed integer/real constraints. Our

technique operates directly on the aggregation constraints, rather than on the reduced form; it is not clear

how to operate directly on the reduced form to attain the same complexity.

Our work provides the foundations of the area of aggregation constraints. We believe there is a lot of

interesting research to be done. To illustrate the possibilities, consider the following example. Given a query

? q.depts(D, , M2, ., _), M2 > 5000, i.e., the user is interested only in departments where the maximum salary

is 2! 5000, this constraint can be used as a filter on the tuples of the underlying employee relation; employee

tuples that do not satisfy this criterion need not be considered for the groupby operation. This fact has bee.i

noted by Sudarshan and Ramakrishnan [SR91] and by Levy et al. [LMS94], who look at some simple casees of

query optimization in the presence of aggregate operations. Using more general aggregation constraints in such

situations remains to be studied.

2 Syntax and Semantics

In this section, we present an overview of the syntax and semantics of aggregation constraints.

The primitive terms of this constraint domain are integer constants, real constants and aggregation terms,

which are formed using aggregate functions on multiset variables that range over finite multisets. Thus, 7,3.142

'The cardinality of the multiset S depends on the number of employees in a given department, which can be unbounded.

163

and raz(S) are primitive terms, where S is a multiset variable that ranges over finite multisets. For simplicity,

we do not allow integer and real-valued variables as primitive terms in our treatment. 2 Complez terms are
constructed using primitive terms and arithmetic functions such as f,-, and /. Thus, min(SI) + max(S 2) -

3.142* count(S 2) is a complex term.
A primitive aggregation constraint is constructed using complex terms and arithmetic predicates such as

<, <, =p, > and . Thus, sum(S) < min(S) + maz(S2) + 3 is a primitive aggregation constraint. Complex

aggregation constraints can be constructed using conjunctions and disjunctions of primitive aggregation con-

straints, in the usual manner. In the sequel, we often use "aggregation constraints" to loosely refer to primitive
aggregation constraints.

The fundamental problem that we are interested in, in this paper, is as follows:

Solvability: Given a conjunction C of primitive aggregation constraints, does there exist an assign-
ment a of finite multisets to the multiset variables in C, such that Ca is satisfied?

Checking for solvability of more complex aggregation constraints can be reduced to this fundamental problem.

The other important problems of checking implication (or entailment) and equivalence of pairs of conjunctions of
aggregation constraints can be reduced to checking solvability of (collections of other) conjunctions of aggregation

constraints, in polynomial-time.

3 Complexity of Solvability

We present some intractability results for checking solvability of conjunctions of certain simple kinds of aggre-
gation constraints to illustrate the difficulty of the problem in general.

There is a straightforward linear-time, linear-space reduction from integer arithmetic constraints to aggre-
gation constraints, where, (1) the multiset elements can be from any domain, and (2) only the count aggregate

function needs to be used. For each (integer) variable Xi in the conjunction of integer arithmetic constraints,
the reducticen algorithm creates two new multiset variables Sil and Si2, and replaces each occurrence of Xi
by count(Sil) - count(Sis). The difference of counts is needed to simulate negative integers. Similarly, if the
multisets range over integers, we can create ine new multiset variable Si for each integer variable Xi, and replace
each occurrence of X, by min(S,) (or max(Si) or sum(S,)).

It is easy to see that the resulting conjunction of aggregation constraints is solvable iff the original conjunction

of integer arithmetic constraints is solvable. Further, the algorithm preserves the linear/non-linear nature of the

original integer arithmetic constraints. Since checking for solvability of integer linear arithmetic constraints is
NP-complete [Sch86], we have the following result:

Theorem 3.1 Checking solvability of a conjunction of linear aggregation constraints involving just the count

aggregate function is NP-hard. If the multiset elements are drawn from the integers, then checking solvability of

a conjunction (f linear aggregation constraints involving just min or max or sum is NP-Aard. 0

3.1 Special Cases: A Taxonomy

Although checking for solvability of aggregation constraints is NP I-i rd in the general case, there are many special

cases that are tractable. We present below several factors that ie complexity, and in later sections present
2 1f desired, these can be simulated using the primitive term allowed; ik -mple, a real-valued variable X, can be replaced by

min(S), where Si is a new multiset variable that ranges over finite multisets of reals.

164

tractable special cases defined on the basis of these factors.

Domain of multiset elements : This determines the feasible assignments to the multiset variables in checking
for solvability. Possibilities include integers and reals; correspondingly, the multiset variables range over
finite multisets of integers or reals. In general, restricting the domain to integers increases the difficulty of
the problem.

Aggregate functions : This determines the possible aggregation terms that are allowed. Possibilities include
min, maz, sum, count, average, etc. In general, the complexity of checking for solvability increases if more
aggregate functions are allowed.

Class of constraints : This determines the form of the primitive aggregation constraints considered, which
affects the complexity of the solvability problem. There are at least two factors that are relevant:

1 . Linear vs. Non-linear constraints: Checking for solvaLility of linear constraints is, in general, easier
than for non-linear constraints. By restricting the form even further, such that each primitive aggre-
gation constraint has at most one or two aggregation terms, the problem can become even simpler.

2. Constraint predicates allowed: The complexity of checking for solvability also depends on which
types of the constraint predicates are allowed. We can choose to allow only equational constraints (=)
or add inequalities (<, <) or possibly even disequalities (6). In general, the difficulty of the solvability
problem increases with each new type.

Separability : This also determines the form of the primitive aggregation constraints considered. The two
possible dimensions in this case are:

1. Multiset variables: A conjunction of primitive aggregation constraints is multiset-variable-separable
if each primitive aggregation constraint involves only one multiset variable. For example, the con-
junction min(S1) + maz(Si) _5 5 A sum(S2) _ 10 is multiset-variable-separable, while min(St) +
min(S2) _ 10 is not. In gene ' multiset-variable-separability makes the solvability problem easier
since one can check solvabi ,e aggregation constraints separately for each multiset variable.

2. Aggregate functions: A co. unction of primitive aggregation constraints is aggregate-function-
aeparable if each _rimitive aggregation constraint involves only one aggregate function. For example,
the conjunction min(S1) m rin(S2) A sum(SI) 2 sum(S2) + 2 is aggregate-function-separable,
although it is not multiset-variable-separable.

4 A Reduction-based Approach To Solvability

Our first approach to checking for the solvability of a conjunction of aggregation constraints is to try and reduce
aggregation constraints to an eziting constraint domain. 1ie advantage of this approach is that, if successful,
solvability checking techniques from previously known constraint domains can be used to check for solvability in
our novel constraint domain. In this section, we present some preliminary results in this direction.

The key idea behind our reduction algorithm is to add to the conjunction of aggregation constraints a com-
plete set of relationships between the aggregate operations on a single multiset. The intuition here is that the
constraint domain of "aggregation constraints" only allows primitive aggregate operations on individual mul-
tisets. Interactions between different multisets is possible only via arithmetic constraints between the results

165

of the aggregate operations on individual multisets. Consequently, relationships between the results of aggre-

gate operations on different multisets can be inferred using techniques from the domain of ordinary arithmetic

constraints (oe [Sch86]).

Theorem 4.1 The following relationships provide a correct, complete and minimal arsomatization of the rela-

tionships between the aggregate operations min, max, sum, count and average on a single multiset S.

(1) count(S) is an integer > 0.
(2) if (count(S) = 0) then min(S) and max(S) are undefined. 3

(3) if (count(S) > 0) then min(S) _ ma(S).
(4) if (count(S) = 0) then sum(S) = 0.
(S) if (count(S) > 0) then (count(S) - 1) * mi(S) + ma(S) _< sum(S).
(6) if (count(S) > 0) then sum,(S) < mi,(S) + (count(S) - 1) * mar(S).
(7) if (count(S) = 0) then average(S) is undefined.
(8) if (count(S) > 0) then sum(S) = average(S) * cotnt(S).

Proof: We first prove correctness and completeness of the set of relationships (1)-(8).
The multiset S clearly has 0 or more elements. If S has 0 elements, relationships (2), (4) and (7) are obviously

correct and complete. If S has 1 element, then S can be represented as {X 1 }. In this case, we have:

min(S) = X1 A mar(S) = X 1 A sum(S) = X, A average(S) = X 1 .

Projecting out the variable X 1 , we have:

min(S) = mar(S) A min(S) = sum(S) A min(S) = average(S).

It is easy to verify that the conjunction of relationships (3), (5), (6) and (8) are equivalent to the above conjunc-

tion, when count(S) = 1.

If S has n > 2 elements, then S can be represented as {X 1, X 2 ,. . ., X,}, where X, _< X 2 <... < X,. In this
case, we have miran(S) = X, A mar(S) = X. A sum(S) = X 1 + X 2 +... + X, A average(S) = sum(S)/n.

Aggregation constraints involving min, mar, sum, count or average do not allow direct reference to any of the
values X2 ,. , X1- 1 . Without loss of generality, we can assume that m < n - 2 of these values are identical (say

- X 2) and n-m-2 of these values are identical (say = X.- 1), where X, :5 X 2 :5 Xn- 1 :< X,' Consequently,
we can simplify the above relationships as follows:

X 1 < X 2 A X 2 X,,_ A X 1.._ < Xn A

min(S) = X, A mar(S) = Xn A average(S) = sum(S)/n A

sum(S) = X, + m * X2 + (n - m - 2) * X.,- + X.,

where 0 < m < n - 2. We can now replace the variables X, and Xn by min(S) and mar(S). Since X2 and

Xn- cannot be directly referenced in the aggregation constraints, and the only other constraints known about
these variables are their bounds, we can project them out to obtain:

3 An altearntive suggestion, made in [RS92], is to take min() = oo and max(#) = -oo. While this km useful in an inductive

charactertion of the min and max agregate operations, it violates our intuition that min(S) < max(S).
41f the elements of the multiset S are drawn from the reals, we can assume that all the n - 2 values X 2 ,.... Xn-l are identical.

If the elements are drawn from the integers, we may need two distinct values X 2 and X,,-,, such that there are m < n - 2 copies

of X 2 and n - m - 2 copies of X.- 1 . The reason for this has to do with computing the sum of all the elements of the multiset.

166

min(S) max(S) A tum(S) = average(S) • n A
surn(S) <mi,(S) + (n - 1) * max(S) A sum(S) > (n -1) * min(S) + ma(S).

It is easy to verify that the conjunction of relationships (3), (5), (6) and (8) are equivalent to the above conjunc-
tion, when count(S) = n. This completes the proof of correctness and completeness. Minimality follows from
the fact that none of the relationships is entailed by the others. 0

Other relationships between the results of aggregate operations can be inferred using these basic relationships.
For example, we can infer that count(S) = I implies that main(S) = maz(S). Similarly, we can infer that the

constraint max(S) < average(S) is unsolvable.

The above reduction results in non-linear, mixed integer/real constraints, even when applied to linear agre-

gation constraints. Such constraints are harder to solve than linear constraints.
Consider the linear aggregation constraint miin(S) = mar(S), where S ranges over finite multisets of re-

als/integers. For this aggregation constraint to be solvable, miin(S) and mar(S) must be defined. Hence, this
implies the additional constraint (count(S) > 0) A (sum(S) = count(S) * maz(S)). Since the values of miin(S)
and max(S) are not constrained any further, this is not equivalent to any finite collection of linear constraints.
The following theorem formalizes this idea.

Theorem 4.2 There is no finite collection of linear arithmetic constraints over the reals and integers that
correctly and completely axiomatizes the relationships between the aggregate operations min, mar, sum and

count. 0

4.1 Efficient Special Cases

In general, checking for solvability of aggregation constraints, even after the reduction, is intractable. In this
section, we briefly describe two cases where the reduction-based approach leads to polynomial-time algorithms
for checking solvability.

The first case is when the conjunction of constraints involves only min and mar. If we want such constraints
to be satisfiable, we must make the assumption that miin(S) and mar(S) are defined, and hence count(S) > 0.
Hence, in this case, only the relationship min(S) : mar(S) (which assumes count(S) > 0) needs to be added. If
the original conjunction of aggregation constraints is linear and the multiset elements are drawn from the reals,
the transformed conjunction of arithmetic constraints is also linear over the reals; solvability can now be checked
in time polynomial in the size of the aggregation constraints, using any of the standard techniques (see [Sch86J)
for solving linear arithmetic constraints over the reals.

The second case is when the conjunction of linear aggregation constraints explicitly specifies the cardinality
of each multiset, i.e., for each multiset variable Si, we know that count(Si) = ki, where ki is a constant. In this
case, each of the non-linear constraints in our axiornatization can be simplified to linear constraints; checking
for solvability again takes time polynomial in the size of the aggregation constrainte if the multiset elements are
drawn from the reals.

5 Linear Separable Aggregation Constraints

In this section, we examine a very useful class of aggregation constraints, and present a polynomial-time algo-
rithm to check for solvability of constraints in the class. Our technique operates directly on the aggregation
constraints, rather than on their reduction to arithmetic constraints. The reduced form of this class includes

167

mixed integer/real constraints, and is non-linear; it is not clear how to operate directly on the reduced form and

attain the same complexity as our algorithm.

We specify the class of constraints in terms of the factors, described in Section 3, that affect the complexity of

checking for solvability. We require that: (1) the domain of multiset elements is the reals, (2) the only aggregate

functions present are min, maz, sum and count, (3) the constraints are linear and specified using 5, <,=, >

and >, and (4) the constraints are aggregate-function-separable and multiset-variable-separable. Intuitively, the

above four restrictions ensure that we can simplify the given conjunction of aggregation constraints to range

constraints on each aggregate function on each multiset variable. In addition, we require that: (5) for each

multiset variable Si, the ranges for min(S) and maz(S) are identical. This semantic condition ensures that the

multisets can contain any finite collection of elements from the given ranges for min(S.) and maz(S). We refer

to this class of aggregation constraints as £S-aggregation-constraints.

Most aggregation constraints occurring in practice are multiset-variable-separable since typically a single

grouping literal appears in each rule. Only when we consider constraint propagation or fold/unfold transforma-

tions are we likely to obtain non-multiset-variable-separable aggregation constraints. The further restrictions for

£,.-aggregation-constraints are not onerous; the example in the introduction is such a constraint.

5.1 Multiset Ranges

The heart of our algorithm is a function Multiset.Ranges that takes three ranges, two real ranges (ml, ms) and

(v, vh), and an integer range (ki, ks), along with information about whether each side of each range is open or

closed, and answers the following question:

Do there exist k > 0 numbers, k between k, and k,%, each number between ml and m, such that the

sum of the k numbers is between vi and tl?

For simplicity of exposition, we present a special case of the algorithm below, where each range is assumed

to be finite (i.e., no value is infinite), closed on both sides, and feasible. The general case does not add to the

intuition, but makes the algorithm more verbose.

function Multiset-Ranges (ml, mh, vi, vh, ks, kh)

/* we assume finite numbers: ka 2: 0, k, :_ k,, mi < mh and vt < vh, and closed ranges. */

(1) if (ma :5 0 and mfl 0) then /* Case 1: [mI, mh] includes 0. */

(a) if (V4 < mI * kh or V1 > ms * kh) then /* sum is too low or too high. */
return 0.

(b) else return 1.
(2) if (m < 0) then /* Case 2: ml and mh are both < 0. switch everything. */

(a) temp = -ma; ma = -mh,; mi, = temp. /* both mi and mh become positive and ml mh. 0/

(b) temp = -vi; v, = -vh; vh = temp.

/* Case 3: ml and mh are both > 0. */
(3) if (vh < ki * ml or Pa > kh * Inh) then /* sum is too low or too high. /

return 0.
(4) define k, and k2 by vi =/i * mh - k2,0 < k2 < mh.

/* ki is the smallest number of possible values from (ma, mIh], whose sum is > Va. *.

(5) define k3 and k4 by wh = k3 * m +k4, 0 _< k4 < m.

168

/5 k3 is the largest number of possible values from [mI, mh]. whose sum is < vi,.

/* check if the [ki, k&] range overlaps with the [ki, k3] riange. /
(6) if (k< (hk and ki < h and ki < k) then

return 1. /* the intersection gives a possible value for k */

(7) else return 0.

Theorem 5.1 Function Mulliset.Ranges returns I iff there exist k > 0 real numbers, ki :5 k < kh, each number

is greater than or equal to ml and less than or equal to mh, such that the sum of the k numbers is greater than

or equal to tl and less than or equal to vga.

Proof: The algorithm has three cases, based on the location of the [ma, mh] range with respect to zero. The

first case is when this range includes zero; in this case the sum can take any value in the continuous range

[kh * ml, kh * m&]. The second case is when the [ml, m1,] range includes only negative numbers, and the third

case is when this range includes only positive numbers. These two cases are symmetric, and we transform the

second case into the third case, and consider only the third case in detail.

In the third case, the sum lies within the continuous range [k, * ml, kh * mh], but it cannot take all values

within this range; it- can take values only from the union of the ranges [k, * ml, kh * mh], [(k, + 1) * ml, (k + 1) *

rn,],..., [ki, * ml, kh * mi]. This union of ranges need not be convex; there may be gaps. 1ff the [v1, vhl range

lies outside the [ki * ml, kh * mr] range, or entire within one of the gaps, then the conjunction of constraints is

unsolvable. This concludes the proof. 13

5.2 Checking for Solvability

Recall the class of CS-aggregation-constraints. Since the conjunction of aggregation constraints is multiset-

variable-separable, the primitive aggregation constraints can be partitioned based on the multiset variable, and

the conjunction of aggregation constraints in each partition can be solved separately; the overall conjunction is

solvable iff the conjunction in each partition is separately solvable.

By definition, we can simplify a conjunction of £S-aggregation-constraints on a single multiset variable Si to

range constraints on each aggregate function. We can then check whether each range is feasible, and whether the

ranges for min(Si) and max(Si) are identical. If so, the algorithm Check.LS-Solvability that checks for solvability

first takes into account the special case of count(S.) = 0. It then calls function MultisetRanges with the range

for min(Si) (equivalently max(S)), the range for sum(i) and the range for count(S,).

If, for each multiset variable S., function Multiset-Ranges returns 1, then algorithm CheckLSSolvability

returns SOLVABLE.

Theorem 5.2 Given a conjunction ofCS-aggregation-constraints, algorithm Check.LS-Solvability returns SOLV-

ABLE iff the conjunction is solvable.

Further, it takes time polynomial in the size of the conjunction of £S-aggregation-constraints. 0

Though CS-aggregation-constraints are significantly restricted, they are strong enough to usefully entail

new aggregate constraint information. They can be used to infer information about an arbitrary aggregation

constraint, C, by determining an £S-aggregation-constraint, H, that is implied by C; any aggregation constraints

entailed by H are then also entailed by C.

169

6 Conclusions and Future Work

We presented a new and extremely useful class of constraints, aggregation constraints. We studied the complexity

of the problem of checking for solvability of conjunctions of aggregation constraints, and described some simple

cases that are intractable. We identified interesting classes of aggregation constraints that are tractable, and

presented novel algorithms for checking for solvability.

There are many interesting directions to pursue. An important direction of active research is to significantly

extend the clas of aggregation constraints for which solvability can be efficiently checked. We believe that our

algorithm works on a larger class of aggregation constraints than presented here-for instance, we believe that

our algorithm will work correctly even if we relax the conditions to not require min and max to be separated;

characterizing this class will be very useful.

Combining aggregation constraints with multiset constraints that give additional information about the mul-

tisets (using functions and predicates such as U, E, C, etc.) will be very important practically.

Another important direction is to examine how this research can be used to improve query optimization and

integrity constraint checking in database query languages such as SQL. Sudarshan and Ramakrishnan [SR91]

and Levy et al. [LMS94] consider how to use simple aggregate conditions for query optimization; it would

be interesting to see how their work can be generalized. Stuckey and Sudarshan [SS941 present compilation

techniques for query constraints in logic programs, essentially extending Magic sets to handle general query

constraints, not just equality constraints on queries. It would be interesting to see bow to use aggregation

constraints in conjunction with their techniques.

We believe that we have identified an important area of research, namely aggregation constraints, in this

paper and have laid the foundations for further research in the area.

References

[LMS94] lon Y. Levy, Inderpal S. Mumick, and Yehoshua Sagiv. Query optimization by predicate move-around.

Submitted, 1994.

[MPRg0] Inderpal S. Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. Duplicates and aggregates in deductive
databases. In Proceedings of the Sixteenth International Conference on Very Large Databases, August 1990.

[MS94] Kim Marriott and Peter J. Stuckey. Semantics of constraint logic programs with optimization. Letters on
Programming Languages and Systems, 1994. To appear.

[R92] Kenneth Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In Proceedings of the ACM
Symposium on Principles of Database Systems, pages 114-126, 1992.

[RS92] Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. CORAL: Control, Relations and Logic. In Pro-
ceedings of the International Conference on Very Large Databases, 1992.

(Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Discrete Mathematics and Optimization.
Wiley-Interscience, 1986.

[SR91] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive databases. In Proceedings of
the Seventeenth International Conference on Very Large Databases, September 1991.

[SS94] Peter J. Stuckey and S. Sudarshan. Compiling query constraints. In Proceedings of the ACM Symposium on
Principles of Database Systems, 1994.

170

Set Constraints: Results, Applications and Future Directions

Alexander Aiken
Computer Science Division

University of California, Berkeley
Berkeley, CA 94702

aiken@cs.berkeley.edu

Abstract

Set constraints are a natural formalism for many problems that arise in program analysis. This
paper provides a brief introduction to set constraints: what set constraints are, why they are inter-
esting, the current state of the art, open problems, applications and implementations.

1 Introduction

Set constraints are a natural formalism for describing relationships between sets of terms of a free

algebra. A set constraint has the form X 5 Y, where X and Y are set ezpressions. Examples of set

expressions are 0 (the empty set), a (a set-valued variable), c(X, Y) (a constructor application), and

the union, intersection, or complement of set expressions.

Recently, there has been a great deal of interest in program analysis algorithms based on solving sys-

tems of set constraints, including analyses for functional languages [AWL94, Hei94, AW93, AM91, JM79,

MR85, Rey69], logic programming languages [AL94, HJ92, HJ90b, Mis84], and imperative languages

[HJ9l]. In these algorithms, sets of terms describe the possible values computed by a program. Set

constraints are generated from the program text; solving the constraints yields some useful information

about the program (e.g., for type-checking or optimization).

Set constraints have proven to be a very successful formalism. On the theoretical side, rapid progress

has been made in understanding the algorithms for and complexity of solving various classes of set

constraints. On the practical side, several program analysis systems based either entirely or partially on

set constraint algorithms have been implemented. In addition, the use of set constraints has simplified

previously known, but rather complicated, program analyses and set constraints have led directly to

the discovery of other, previously unknown, analyses.

Much of the work on set constraints is very recent. Consequently, many of the results are not well

known outside of the community of researchers active in the area. The purpose of this paper is to

provide a brief, accessible survey of the area: what set constraints are, why they are useful, what is and

isn't known about solving set constraints, the important open problems, and likely directions for future

work. Section 2 gives definitions of the basic set constraint formalism and some illustrative examples.

Section 3 presents a survey of results on the satisfiability, complexity, and solvability of various set

171

constraint problems; open problems are also discussed. In Section 4 a brief, informal description of

algorithms for solving systems of set constraints is given; this discussion also points out basic trade-offs

between expressive power and computational complexity for various classes of set constraint problems.
Section 5 surveys applications of set constraints to program analysis. Section 6 concludes with a
discussion of current implementations and likely directions for future work.

2 Set Constraints

Let C be a set of constructors and let V be a set of variables. Each c E C has a fixed arity a(c); if

a(c) = 0 then c is a constant. The set expressions are defined by the following grammar:

E ::-= a 10 1 c(&1..., E.(c)) I Ei U E 2 I El n E 2 I -E,

In this grammar, a is a variable (i.e., a E V) and c is a constructor (i.e., c E C). Set expressions
denote sets of terms. A term is c(t,.. .,t.()) where c E C and every ti is a term (the base cases of
this definition are the constants). The set H of all terms is the Herbrand universe. An assignment is
a mapping V -+ 2H that assigns sets of terms to variables. The meaning of set expressions is given by
extending assignments from variables to set expressions as follows:

o'(O) = 0

a(c(E1 ,. .. ,E,)) = {c(ti,. . .,t-)- E a(Ei)}

o(E 1 U E2) = a(Ei) U o(E2)

a(ElnE2) = a(Ei) n (E2)

o= H - (EI)

A system of set constraints is a finite conjunction of constraints Ai Xi g Yi where each of the Xi and
Yi is a set expression. A solution of a system of set constraints is an assignment a such that Ai a(Xi) _

a(Y,) is true. A system of set constraints is satisfiable if it has at least one solution. The following

result was proven first in [AW92]. Simpler proofs have been discovered since [BGW93, AKVW93].

Theorem 2.1 It is decidable whether a system of set constraints is satisfiable. Furthermore, all solu-
tions can be finitely presented.

From the definition above, it is easy to see that the set expressions consist only of elementary set

operations plus constructors-simply put, it is a set theory of terms. The constraint language is rich

enough, however, to desc.ibe all of the data types commonly used in programming, and this is the
property that makes set constraints a natural tool for program analysis. For example, programming

language data type facilities provide "sums of products" data types, which means simply unions of
(usually distinct) data type constructois. All such data types can be expressed as set constraints.

Let X = Y stand for the pair of constraints X g Y and Y C X. Consider the constraint

= cons(a,fl) U nil

172

If cons and nil are interpreted in the usual way, then the solution of this constraint assigns to

the set of all lists with elements drawn from a. This example also shows that a special operation

for recursion is not required in the set expression language-recursion is obtained naturally through

recursive constraints.

The set of non-nil lists (with elements drawn from a) can be defined as -y = 3 n -,nil, where '3 is

defined as above. The set - is useful because it describes the proper domain of the function that selects

the first element of a list; such a function is undefined for empty lists. This example also illustrates that

set constraints can describe proper subsets of standard sums of products data types.

The final example shows a non-trivial set of constraints where some work is required to derive the

solutions. Consider the universe of the natural numbers with one unary constructor succ and one

nullary constructor zero. Let the system of constraints be:

succ(a) 9 -,a A succ(-'a) 9 a

These constraints say that if x E a (resp. x E -,a) then succ(x) E -'a (resp. succ(x) E a). In other

words, these constraints have two solutions, one where a is the set of even integers and one where a is

the set of odd integers. The solutions are described by the following equations:

a = zero U succ(succ(a))

a = 'ucc(zero) U succ(succ(a))

Note that the two solutions are incomparable; in general, there is no least solution of a system of set

constraints.

3 Results and Open Problems

The set constraint language defined in Section 2 is henceforth called the basic language. There are

several interesting extensions to the basic language, each of which substantially alters the set constraint

problem. Three extensions are discussed in this)per: projections, function spaces, and negative

constraints.

For every constructor c of arity n, a family of projections c-,..., c-" can be defined such that

(= ft43tl,. . tn.c(t1 ,.. .,t,) E a(E)}

Projections are used primarily in set constraint analyses for logic programming languages [HJ90b].

A separate extension is adding sets of functions X -- Y to the set expressions. This is a major

change, because it not only enriches the language, but also requires a new domain. The construction

of a suitable domain with function spaces is beyond the scope of this paper; somewhat surprisingly,

however, given such a domain, set constraint techniques still apply. In an appropriate domain, the

meaning of X -- Y is

X -- Y = {fix E X * f(x) E Y}

173

Function spaces are used primarily in the analysis of functional programming languages [AW93, AWL94].

Finally, negative constraints are strict containments X % Y. Negative constraints can express the

set of non-solutions of a system of positive constraints:

i i

Since conjunctions of positive constraints correspond to an existential property (i.e., is any assignment

a solution of the constraints) disjunctions of negative constraints can express universal properties (i.e.,

is every assignment a solution of the constraints) [AKW93, GTT93].
Four proofs of decidability of the satisfiability problem for the basic language are known [AW92,

GTT92, BGW93, AKVW93]. Remarkably, each proof is based on completely different techniques.

A particularly elegant proof is due to Bachmair, Ganzinger, and Waldmann [BGW93; their result

shows set constraints are equivalent to the monadic class, the class of first order formulas with arbitrary

quantification but only unary predicates and no function symbols. In addition to satisfiability, constraint

resolution algorithms are known that construct explicit representations of the solutions of systems of

set constraints for the basic language.
The situation with the various extensions is less clear. Table 1 summarizes the current state of

knowledge. Of the open problems in Table 1, decidability of the satisfiability of set constraints with

projections has been open for the longest time [HJ90aI. Constraint resolution algorithms for restricted

forms of the general problem are known [HJ90a, Hei92I; the current state of the art permits the full
basic language and restricts only projections [BGW93].

Work on set constraints extended with negative constraints has been motivated in part because it

appear. to be an intermediate step toward handling projections. To see this, consider the expression

c-'(c(X, Y)). Note that if Y = 0, then c(X, Y) = 0, since constructors function as cross products.

Therefore, the meaning of this expression can be characterized as

S0 ifY=0
c-(c(XY)) X if Y #0

Thus, even a restricted form of projection implicitly involves negative constraints (Y # 0 in the right-

hand side above). Two independent proofs of the decidability of set constraints with negative constraints

ha'-, been discovered [AKW93, GTT93]. These are decision procedures only, however, and do not

characterize the solution sets.

Set constraints extended with function spaces have been used to develop very expressive subtype

inference systems for functional languages. Currently, constraint solving algorithms for a fairly general
class of set constraints with function types are known [AW93, AWL94]. Damm has proven the surprising

result that satisliability of set constraints with function spaces is decidable [Dam94].

Set constraint resolution algorithms are computationally expensive in general. For the basic problem,
deciding satisfiability is NEXPTIME-complete [BGW93 and even if the language is restricted to the

set operations over constants satisfiability remains NP-complete [AKVW93. By restricting the set

174

Problem Satisfiability Constraint Resolution

basic yes yes

basic + projections ? with restrictions
basic + function spaces yes with restrictions

basic + negative constraints yes ?

Table 1: Status of set constraint problems.

operations (instead of the arity of constructors) it is possible to achieve polynomial time algorithms for

interesting classes of constraints [JM79, MR85, Hei92].

4 Algorithms

At the current time, the literature on set constraint algorithms is very diverse in many dimensions,
with a wide variety of notation and algorithmic techniques in use. Unfortunately, no reference provides
a systematic introduction to more than a small portion of the body of existing work. This section
gives a very brief and relatively informal overview of the basic algorithmic issues in solving systems of
set c, istraints. For a more detailed treatment of the various algorithms, the interested reader should

consult sources listed in the bibliography.
All set constraint resolution algorithms have the same basic structure. An initial system of con-

straints is systematically transformed until the constraints reach a particular syntactic solved form. In
most cases, the solved form is equivalent to one or more regular tree grammars. More precisely, the

final result is a set of equations

a = C(X,..,X) U... U d(Y,..., Ym)

which can viewed equivalently as the productions of a grammar

a ::= c(X1,...,)I .. d(Y,, Y,.)

The language generated by the tree grammar then describes the solution of the constraints.
Unfortunately, this simple explanation of the solutions of set constraints is a bit oversimplified. In

reality, set constraints are more general than tree grammars. In the solutions of set constraints, this
extra generality appears as "free" variables in the solved form equations. A free variable is one that does
not appear on the left-hand side of any equation. Thus, a more accurate description of the solutions of
set constraints is that they are tree grammars that may include free variables.

At their core, all set constraint algorithms have two characteristic forms of constraints: transitive
constraints and structural constraints. Transitive constraints arise from combining upper and lower

bounds on variables:

XCa A aCY#*XCY

175

Because of the need to resolve transitive constraints, most interesting set constraint problems have at

least 0(n 3) time complexity.

Structural constraints are constraints between constructor expressions:

e(XI, ... , X,,) _9 e(YI,...- , Yn)

In general, there may be many incomparable solutions of such a constraint. For example, because the

semantics of a constructor is essentially a cross product, a constructor expression is 0 if any component

is 0, and therefore the constraint is satisfied if Xi = 0 for any i. Of course, the constraint is also satisfied

if Xi g Y for all i. Thus, the complete set of solutions is

c(X,,..., ,X) gC c(Y,... ,Y,) 4* X, = 0 V ... V X, =0V (XI C_ YI A^... A X,, C_ Yn)

Searching for a solution of such a constraint requires guessing a disjunct that can be satisfied. This

non-deterministic choice increases the complexity of set constraint problems above the complexity of

the corresponding tree automata problems. For example, deciding whether the language of one tree

automata is a subset of another is complete for EXPTIME [Sei9O]; solving a general system of set

constraint inclusions is complete for NEXPTIME.

If it is known that the system of constraints under consideration has a least solution and the goal is

to compute only the least solution, then it is easy to see that the cases Xi = 0 need not be considered

and the last case can be chosen deterministically. Thus, more efficient algorithms are possible in the

special case that a system of constraints has a least solution.

Finally, the set operators n, U, and -, play roles very similar to their roles in other logics. There are

some distributive laws involving constructors, but these are not surprising:!

c(X,,...,X,)nc(Y,...,Y,) = c(XfnY",...,X,,nYn)

c(XI u Y, Z2 ,..., Zn) = c(X , Z2,..., zn) U c(Y , .., Zn)
-"c(Xz,...,Xn) = C(-Xl,1,..,1)U ...U C(1,... , 1,-,Xn) UUd(1,..., 1)

d#c

For set constraint problems with restricted set operations and where the constraints have least solutions,

it is possible to design polynomial time algorithms to compute the least solution; for examples, see

[JM79, MR85, Hei92, Hei94]. If the set operations are not restricted, then it becomes possible to

describe some complex sets of terms very succinctly with set expressions, which raises the computational

complexity of constraint resolution to exponential time.

'As written, the law for negation appears to require that the set of all constructors d such that d i c can be enumerated

and thus the set of constructors must be finite. In fact, this restriction is not necessary, and it is a simple matter to

implement negation for infinite sets of constructors.

176

5 Applications

Set constraints have a long history and, in fact, their use predates the term "set constraints" by many

years. The basic language of set constraints is now known to be equivalent to the monadic class of logical

formulas (BGW931; the first decision procedure for the monadic class was given by Lowenheim in 1915

[L615]. Within the realm of computer science, Reynolds was the first to develop a resolution algorithm

for a class of set constraints [Rey69]. Reynolds was interested in the analysis and optimization of Lisp

programs. In this application, set constraints were used to compute a conservative description of the

data structures in use at a program point. Using this information, a Lisp program could be optimized

by, for example, eliminating run-time type checks where it was provably safe to do so.

Independently of Reynolds, Jones and Muchnick developed a different analysis system for Lisp

programs based on solving systems of set equations [JM79]. This analysis was used not only to eliminate

dynamic type checks but also to reduce reference count operations in automatic memory management

systems based on reference counting. Recently Wang and Hilfinger have proposed another analysis

method for Lisp based on set equations [WH92].

A different set of applications provide type inference algorithms for functional languages that verify

the type correctness of a larger class of programs than the standard Hindley/Milner type system. Mishra

and Reddy described a type system based on a set constraint resolution algorithm that could handle

considerably more complex constraints than previous algorithms [MR85]. Thatte introduced partial

tpspe [Tha88], the type inference problem for which, while substantially different from earlier systems,

is also reducible a set constraint resolution problem. The most recent work in this area is due to

Wimmers and the author [AW93, AWL94], who provide a type inference system that generalizes the

results in [MR85, Tha88]. An implementation of this last system is publicly available (see Section 6).

A natural application area for set constraints is the analysis of logic programs. The idea was first

explored by Mishra [Mis84]; more recently, this line of work has been well developed in a series of

papers by Jaffar and Heintze [HJ90b, HJ90a, HJ92], as well as in Heintze's thesis [Hei92]. Many of

the techniques developed in [Hei92] have been fruitfully applied to compile time analysis in other areas,

especially the compile-time analysis of ML programs [Hei94].

6 Conclusions and Directions

Interest in set constraints originally arose from the needs of researchers working in program analysis.

Currently, there is a lively, continuing interplay between the theoretical and practical efforts in the area.

Future work is most likely to proceed along three lines. First, the open problems in Table 1 may be

resolved; in particular, there is considerable interest in understanding the combination of projections

and the basic language. Second, efforts to apply set constraints to new problems will lead to additional

variations on the basic language. Third, there will be additional effort devoted to the efficient imple-

mentation of set constraint resolution algorithms. This is likely to include not only new engineering

techniques, but also exploration of restricted classes of constraints for which good worst-case complexity

177

results can be obtained.
Besides a number of prototype or special purpose systems, there are currently two substantial,

complete set constraint resolution implementations, one by Nevin Heintze at CMU [Hei92] and one
by the author and colleagues at IBM. The latter implementation is available by anonymous ftp and

comes with a type inference system for a functional language based on solving systems of set constraints

[AWL94]. To get this system, retrieve the file pub/personal/aiken/Illyria. tar. Z from the machine

u2k-ftp.c sberkeley. edu.

References

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In

Computer Science Logic '93, Swansea, Wales, September 1993. To appear.

[AKW93] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints with
negative constraints. Research Report RJ 9421, IBM, 1993.

[AL941 A. Aiken and T.K. Lakshman. Directional type checking of logic programs. Technical
Report 94-791, University of California, Berkeley, 1994.

[AM91] A. Aiken and B. Murphy. Static type inference in a dynamically typed language. In

Eighteenth Annual ACM Symposium on Principles of Programming Languages, pages 279-

290, January 1991.

[AW92] A. Aiken and E. Wimmers. Solving systems of set constraints. In Symposium on Logic in

Computer Science, pages 329-340, June 1992.

[AW93] A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings

of the 1993 Conference on Functional Programming Languages and Computer Architecture,

pages 31-41, Copenhagen, Denmark, June 1993.

[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-

First Annual ACM Symposium on Principles of Programming Languages, pages 163-173,
Portland, Oregon, January 1994.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In
Symposium on Logic in Computer Science, pages 75-83, June 1993.

[Dam94] F. M. Datum. Subtyping with union types, intersection types and recursive types. In

Proceedings of the International Symposium on Theoretical Aspects of Computer Software.

Springer-Verlag, April 1994. To appear.

[GTT92] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints using tree au-

tomata. In Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer

Science, pages 505-514, 1992.

178

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving Systems of Set Constraints with Negated

Subset Relationships. In Foundations of Computer Science, pages 372-380, November 1993.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University, 1992.

[Hei94] N. Heintze. Set-based analysis of ml programs (extended abstract). In Proceedings of the

1994 ACM Conference on Lisp and Functional Programming, June 1994. To appear.

[HJ90a N. Heintze and J. Jaffar. A decision procedure for a class of herbrand set constraints. In

Symposium on Logic in Computer Science, pages 42-51, June 1990.

[HJ90b] N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic programs.

In Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages

197-209, January 1990.

[HJ91] N. Heintze and J. Jaffar. Set-based program analysis. Draft manuscript, 1991.

[HJ92] N. Heintze and J. Jaffar. An engine for logic program analysis. In Symposium on Logic in

Computer Science, pages 318-328, June 1992.

[JM79] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like structures. In

Sizth Annual ACM Symposium on Principles of Programming Languages, pages 244-256,

January 1979.

[L615] L. L6wenheim. Uber mbglichkeiten im relativkalkiil. Math. Annalen, 76:228-251, 1915.

[Mis84] P. Mishra. Towards a theory of types in PROLOG. In Proceedings of the First IEEE

Symposium in Logic Programming, pages 289-298, 1984.

[MR85] P. Mishra and U. Reddy. Declaration-free type checking. In Proceedings of the Twelfth

Annual A CM Symposium on the Principles of Programming Languages, pages 7-21, 1985.

(Rey69] J. C. Reynolds. Automatic Computation of Data Set Definitions, pages 456-461. Informa-
tion Processing 68. North-Holland, 1969.

[Sei9O] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal of Computing,

19(3):424-437, June 1990.

[Tha88] S. Thatte. Type inference with partial types. In Automata, Languages and Programming:

15th International Colloquium, pages 615-629. Springer-Verlag Lecture Notes in Computer

Science, vol. 317, July 1988.

[WH92] E. Wang and P. N. Hilfinger. Analysis of recursive types in Lisp-like languages. In Proceed-

ings of the 1992 ACM Conference on Lisp and Functional Programming, pages 216-225,

June 1992.

179

Experiences with Constraint-based Array Dependence Analysis

William Pugh David Wonnacott

pughQcs umd. edu davewvcs. umd. edu
Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

April 2, 1994

1 Introduction
When two memory accesses refer to the same address, and at least one of those accesses is a write, we say
there is a data dependence between the accesses. In this case, we must be careful not to reorder the execution
of the accesses during optimization, if we are to preserve the semantics of the program being optimized. We
therefore need accurate array data dependence information to determine the legality of many optimizations
for programs that use arrays. Array dependence testing can be viewed as constraint analysis. For example,
in Figure 1, determining whether or not any array element is oath written by Afi, j+13 and read by [io0,
j], is equivalent to testing for the existence of solutions to the constraints shown on the right of the figure.

Since integer programming is an NP-complete problem, ([GJ79]), production compilers employ techniques
that are guaranteed to be fast but give conservative answers: they might report a possible solution when no
solution exists. We have explored the use of exact constraint analysis methods for array data dependence
analysis. We have gone beyond simply checking for satisfiability of conjunctions of constraints to being able
to manipulate arbitrary Presburger formulas. This has allowed us to address problems beyond traditional
dependence analysis.

In our previous papers [Pug92, PW93a], we have presented timing results for our system on a variety
of benchmark programs, and argued that our techniques are not prohibitively slow. In fact, using exact
techniques to obtain standard kinds of dependence information requires about 1% - 10% of the total time
required by simple workstation compilers that do no array data dependence analysis of any kind.

Our techniques are based on an extension of Fourier variable elimination to integers. Many other re-
searchers in the constraints field [Duff4, LL92, Imb93, JMSY93] have stated that direct application of
Fourier's technique is unpractical because of the number of redundant constraints generated. We have not
experienced any significant problems with Fourier elimination generating redundant constraints, even though
we have not implemented methods suggested [Duf74, Imb93, JMSY93] to control this problem. We believe
that our extension of Fourier elimination to integers is much more efficient that described by [Wil76].

In this paper, we summarize some of the constraint manipulation techniques we use for dependence
analysis, and discuss some of the reasons for our performance results.

fori a 1ito a1 <i < < jw < (write iteration in bounds)
I o 1<, <jt , (read iteration in bounds)for" J f i to a

AU, i13 = As,, 5 , =n (first subscripts equal)
j, + 1 = j (second subscripts equal)

Figure 1: Dependence testing and associated constraints

180

2 The Omega Test

The Omega test [Pug92] was originally developed to check if a set of linear constraints has an integer solution,
and was initially used in array data dependence testing. Since then, its capabilities and uses have grown
substantially. In this section, we describe the various capabilities of the Omega test.

The Omega test is based on an extension of Fourier variable elimination [DE73] to integer programming.
Other researchers have suggested the use of Fourier variable elimination for dependence analysis [WT92,
MHL91b] but only as a last resort after exact and fast, but incomplete, methods have failed to give decisive
answers. We proved [Pug92] that in cases where the fast but incomplete methods of Lam et al. [MHL91b]
apply, the Omega test is guaranteed to have low-order polynomial time complexity.

2.1 Eliminating an existentially quantified variable

The basic operation of the Omega test is the elimination of an existentially quantified variable, also referred
to as shadow-casting or projection. For example, given a set of constraints P over z, y and z that define, for
example, a dodecahedron, the Omega test can compute the constraints on z and y that define the shadow
of the dodecahedron. Mathematically, these constraints are equivalent to 3z s.t. P. But the Omega test is
able to remove the existentially quantified variables, and report the answer just in terms of the free variables
(z and y).

Over rational variables, projection of a convex region always gives a convex result. Unfortunately, the
same does not apply for integer variables. For ex-mple, 3y s.t. 1 < y < 4 A z = 2y has x = 2, x = 4, z = 6
and z = 8 as solutions. Sometimes, the result is even more complicated. For example, the solutions for z in:

3i, j s.t. l< i<8AI<j _5Az=6i+9j-7

are all numbers between 8 and 86 (inclusive) that have remainder 2 when divided by 3, except for 11 and
83.

In general, the Omega test produces an answer in disjunctive normal form: the union of a finite list of
clauses. A clause may need to describe a non-convex region. There are two methods for describing these
regions:

Stride format The Omega test can produce clauses that consist of affine constraints over the free variables
and stride constraints. A stride constraint cle is interpreted as "c evenly divides e". In this form, the
above solution could be represented as:

z=8 V (14<z<80A3J(z+1)) V z=86

Projected format Alternatively, the Omega test can produce clauses that consist of a set of linear con-
straints over a set of auxiliary variables and an affine 1-1 mapping from those variables to the free
variables. Using this format, the above solution could be represented as

z=8 V (as.t.5<a<27Az=3a-l) V z=86

These two representations are equivalent and there are simple and efficient methods for converting between
them.

2.1;1 Our extension of Fourier elimination to integers

If < bz and az < a (where a and b are positive integers), then a# :_ abz < be. If z is a real variable,
3z s.t. ap 5 abz < ba if and only if aO < ba. Fourier variable elimination eliminates a variable z by
combining together all pairs of upper and lower bounds on r and adding the resulting constraints to those
constraints that do not involve z. This produces a set of constraints that has a solution if and only if there
exists a real value of z that satisfies the original set of constraints.

In [Pug92J and Figure 2 we show how to compute the "dark shadow" of a set of constraints: a set
of constraints that, if it has solutions, implies the existence of an integer z such that the original set of
constraints is satisfied. Of course, not all solutions are contained in the dark shadow.

181

Eliminte z from C, the conjunction of a set of inequalities
R= Fase
C' = all constraints from C that do not involve z
C'= C
for each lower bound on z: 6 < bz

for each upper bound on z: az < a
C" = C A a# +4 (a - 1)(b - 1) < 6a

% Misses a,6_5 a6z < be < aj5+ (a- l)(b -1)
% Misses 06 <bz < #+ (a-1)(b1)

let am.. = max coefficient of z in upper bound on z
for i = 0 to ((a., - 1)(b - 1) - 1)/a... do

R = R V CA P + i = bz
% C' is the dark shadow
% R contains the splinters
% C1 V (3 integer z s.t. R) 3 3 integer z s.t. C

Figure 2: Extension of Fourier variable elimination to integers

For example, consider the constraints:

3y s.t. 0 < 3y - z < 7 A I < z - 2y < 5

Using Fourier variable elimination, we find that 3 < z < 27 if we allow y to take on non-integer values. The
dark shadow of these constraints is 5 < z < 25. In fact, this equation has solutions for z = 3,5 < z2
and z = 29.

In Pug92] and Figure 2 we -give a method for generating an additional sets of constraints that would
contain any solutions not contained in the dark shaJow. These "splinters" still contain references to the
eliminated variable, but also contain an equality constraint (i.e., are fiat). This equality constraint allows us
to eliminate the desired variable exactly. For the example given previously, the splinters are:

3y s.t. z = 3y A0 < 3y-x < 7A 1< - 21 5

3y s.t. x- +l = 31 AO < 3y - z < 7 A1< z- 2y < 5

3y s.t. z -5 = 2y A y s.t. 0 < 3y1 -z <7 A 1 < z - 2y < 5

Simplifying these produces clauses in projected form:

3y s.t. z = 3yA 1< y < 5

3y s.t. z =3y- 1 A2< y:< 6

3y s.t. z= 2y+5A5 < y5 12

2.2 Verifying the existence of solutions

The Omega test also provides direct support for checking if integer solutions exist to a set of linear constraints.
It does this by treating all the variables as existentially quantified and eliminating variables until it produces
a problem containing a single variable; such problems are easy to check for integer solutions. The Omega
test incorporates several extensions over a naive application of variable elimination.

182

2.3 Removing redundant constraints

In the normal operation of the Omega test, we eliminate any constraint that is made redundant by any
other single constraint (e.g., z + y < 10 is made redundant by z + y < 5). Upon request, we can use more
aggressive techniques to eliminate redundant constraints. We use fast but incomplete tests that can flag a
constraint as definitely redundant or definitely not redundant, and a backup complete test. This capability
is used when verifying implications and simplifying formulas involving negation.

We also use these techniques to define a "gist" operator: informally, (gist P given Q) is what is "inter-
esting" about P, given that we already know Q. We guarantee that ((gist P given Q) A Q) E P A Q and try
to make the result of the gist operator as simple as possible. More formally, gist P given Q returns a subset
of the constraint of P such that none of the constraints returned are implied by the constraints of Q and the
other constraints in the result.

2.4 Simplifying formulas involving negation

There are two problems involved in simplifying formulas containing negated conjuncts, such as

-10 <i +j, i- j<: 10 A "-(2< i~J<58 A21i +j)

Naively converting such formulas to disjunctive normal form generally leads to an explosive growth in the
size of the formula. In the worst-case, this cannot be prevented. But we [PW93a have described methods
that are effective in dealing with these problems for the cases we encounter. One key idea to to recognize
that we can transform A A -B to A A -(gist B given A). Given several negated clauses, we simplify them all
this way before choose one to negate and distribute.

Secondly, previous techniques for negating non-convex constraints, based on quasilinear constraints
[AI91], were discovered to be incomplete in certain pathological cases [PW93a). We JPW93a describe a
method that is exact and complete for all cases.

2.5 Simplifying arbitrary Presburger formulas

Utilizing the capabilities described above, we can simplify and/or verify arbitrary Presburger formulas.
In general, this may be prohibitively expensive. There is a known lower bound of 22°(*) on the worst case

nondeterministic time complexity, and a known upper bound of 2220(*) on the deterministic time complexity,
of Presburger formula verification. However, we have found that we are able to efficiently analyze many
Presburger formulas that arise in practice.

For example, our current implementation requires 12 milliseconds on a Sun Sparc IPX to simplify

I<i<2n A l<i"<2nAi=i"

A -,(3i',j' s.t. 1 < i' < 2n A 1 < j' <n - 1 A i < i' A i' = i" A 2j' = i")
A -,(3i',j' s.t. 1 < i' < 2n A 1 < j' <n - 1 A i < i A i' = i" A 2j' + 1 = i")

to
(1 =i=i"<n)V(1 < i= i" = 2n)V(1 < i= i" < 2An= 1)

Related work

Other researchers have proposed extensions to Fourier variable elimination as a decision method for array
data dependence anwlysis [MHL91a, WT92, IJT91). Lam et al. [MHL91a] extend Fourier variable elimination
to integers by computing a sample solution, using branch and bound techniques if needed. Michael Wolfe
and Chau-Wen Tseng [WT92] discuss how to recognize when Fourier variable elimination may produce a
conservative result, but do not give a method to verify the existence of integer solutions. These methods are
decision tests and cannot return symbolic answers.

Corinne Ancourt and Fran'ois Irigoin [A191] describe the use of Fourier variable elimination for quantified
variable elimination. They use this to generate loop bounds that scan convex polyhedra. They extend
Fourier variable elimination to integers by introducing floor and ceiling operators. Although this makes their

183

elimination exact, it may not be possible to eliminate additional variables from a set of constraints involving
floor and ceiling operators. This limits their ability to check for the existence of integer solutions and remove
redundant constraints.

Cooper (Coo72] describes a complete algorithm for verifying and/or simplifying Presburger formulas. His
method for quantified variable elimination always introduces disjunctions, even if the result is convex. We
have not yet performed a head-to-head comparison of the Omega test with Cooper's algorithm. However,
we believe that the Omega test will prove better for quantified variable elimination when the result is convex
and better for verification of a formula already in disjunctive normal form. Cooper's algorithm does not
require formulas to be transformed into disjunctive normal form and may be better for formulas that would
be expensive to put into disjunctive normal form (although our methods for handling negation address this
as well).

The SUP-INF method [Ble75, Sho77] is a semi-decision procedure. It sometimes detects solutions when
only real solutions exist and it cannot be used for symbolic quantified variable elimination.

H.P. Witliams [Wi176] describes an extension of Fourier elimination to integers. His scheme leads to a
much more explosive growth than our scheme. If the only constraints involving an eliminated variable z are
L < lz and ux < U, his scheme produces lcm(l, u) clauses, while ours produces

1 'i-1)(U - 1)]
!max(l, u)/

clauses. If there are p lower bounds Li _<5 iz and q upper bounds ujr < Uj, Williams' method produces a
formula that, when converted into disjunctive normal form, contains

11 lcm~li,,U
1<i<pA'<j<q

clauses, while the number of clauses produced by our scheme is

1 + min (JE iP [(li -1)(max(uj) - 11, (max(li) - l)(uj - 1)

For example, if the li's are {1, 1, 1, 2, 3, 5} and the uj's are { 1, 1,3, 7), Williams' rr I produces

23156852670000

clauses, while ours produces 12. It is almost certainly possible to improve Williams' method while using the
same approach as Williams, but we know of no description of such an improvement.

Jean-Louis Lassez [LHM89, LL92, HLL92] gives an alternative to Fourier variable elimination for elim-
ination of existentially quantified variables. However, his methods work over real variables, are optimized
for dense constraints (constraints with few zero coefficients) and are inefficient when the final problem con-
tains more than a few variables since they build a convex hull in the space of variables remaining after all
quantified variables have been eliminated.

3 Constraint Based Dependence Analysis

Array dependence testin0; can be viewed as constraint analysis. Simply testing for the existence of a depen-
dence (as in Figure 1) is equivalent to testing for solutions to a set of constraints.

We can also use constraint manipulation to obtain information about the possible differences in the
values of the corresponding index variables at the times of the two accesses (this information can be used
to test for the legality of some program transformations). To do so, we introduce variables corresponding to
these differences, and existentially quantify and eliminate all other variables. Alternatively, we can choose
to eliminate everything but the symbolic constants, and thus determine the conditions under which the
dependence exists ([PW92]).

184

Program to be analyzed:

for j = 0 to 20 do Constraints after equality substitution:
for i a &ax(-,-10) to 0 do
for k = nax(-j,-10)-i to -1 do 3j t,,w s.t.
for I 0 to 5 do 0<lw <5

a(l, i,j) = ... a(1, k,i+j) . .0 < j,. 520

Constraiuts before equality substitution: 3Aj + 2Ai + Ak < j,.
Aj < j, < 20 + Aj

3j.,i,,k.,I,,j7,i,k7,l .s.t. 2Aj + Ai < j,
2Aj + 21i + Ak < 10

Ai= i-i.A A Aj j, - 1 < Aj+Ai+A
Ak=k,-k.AAl= 1, -11 <Aj+Ai< 10

0 < Aj _ 10

l. = 1 A i. =kAj, j + i,. 2Aj + Ai < 10
A := 0

0< jw _ 20 Constraints after eliminating 1. and j.:
-10, -Jw < i. < 0

-j. - i.,-10 - i. <5 k. _< -1 2Ai + Ai < 10
0<4. <5 0< Aj <10

3Aj + 2Ai + Ak < 20
0 <_ Jr. : 20 2Aj + 2Ai+ Ak < 10

-10, -j, < i, < 0 1 < Aj + Ai + Ak
-j - i,-10 - i <k, _< -1 1 < Aj + Ai < 10

0<r <5 Ai =0

Figure 3: Constraint-based dependence analysis

Figure 3 shows a relatively complicated example of constraint-based dependence analysis, from one of the
NASA NAS benchmarks. Note that our techniques for eliminating equalities let us reduce both the number
of variables and the number of constraints before resorting to Fourier elimination.

If we extend our constraint manipulation system to handle negated conjunctions of linear constraints,
we can include constraints that rule out the dependences that are "killed" by other writes to the array,
producing array data flow information ([PW93a]). The analysis tells us the source of the value read at
any particular point; standard array data dependence tests just tell us who had previously written to the
memory location read at any particular point. We have also found that our use of constraints to represent
dependences is useful for other forms of program analysis and transformation ([Pug9l, PW93b, KP93]).

4 Experiences
One of the main drawbacks of Fourier's method of variable elimination is the huge number of constraints
that can be generated by repeated elimination, many of which could be redundant. Other researchers have
found Fourier's technique to be prohibitively expensive IHLL92, Imb93] and have proposed either alternative
methods for projection [HLL92] or methods to avoid generating so many redundant constraints [imb93].

Our experiences have been exactly the opposite. We have found Fourier's method to be efficient, and do
not experience substantial increases in the number of constraints. Our empirical studies have shown that
Fourier's method can be used in dependence analysis without a significant impact on total compile time
[Pug92, PW93a]. The average time required for memory-based analysis (as in Figure 1) was well under 1
:aillisecond per pair of references, and the average time for array data flow analysis a few milliseconds. These
time trials were measured on a set of benchmarks that includes some of the NASA NAS kernels and some
code from the Perfect Club Benchmarks ([B+89]).

We believe this speed is the result of several attributes of the sets of constraints we produce for dependence

185

of constraints involving
Averages when # vars kind 1 var 2 vars 3+ vars total

initial 5.6 as given 2.9 3.3 1.4 7.6
nonredundant 2.0 2.1 0.9 5.0

final 2.4 as generated 1.8 0.5 0.1 2.4
nonredundant 1.2 0.3 0.07 1.6

a worst-case # of constraints involving
(but noncontrived) when # vars kind I var 2 vars 3+ vars total

example initial 5 as given 6 5 4 15
encountered nonredundant 4 2 3 9

in benchmarks final 3 as generated 2 3 3 8
nonredundant 1 2 2 5

Figure 4: Characteristics of constraint sets used in dependence analysis

analysis. First, loop bounds and array subscripts are often either constant or a function of a single variable.
If all loop bounds and array subscripts have this form, all of our constraints will involve only one or two
variables. Variable elimination is much less expensive within this restricted domain (known as LI(2)), even if
we use the general algorithm. The number of constraints generated is bounded by a subexponential (though
more than polynomial) function, rather than the 2"/2 of the general case [Cha93, Ne178].

Second, our constraints contain many unit coefficients. When the non-zero coefficients in a sparse set of
constraints are all ±1, projection ends up producing many parallel constraints, which can then be eliminated
by our simple test for redundant constraints. Variable elimination in a LI(2) problem with unit coefficients
preserves unit coefficients (after dividing through by the GOD of the coefficients). Under such situations,
there cannot be more than 0(n 2) non-parallel constraints over n variables, and our method needs no more
then 0(n 3) time to eliminate as many variables as desired [Pug92].

Finally, our constraint sets contain numerous equality constraints. Since we use these constraints to
eliminate variables without resorting to projection, they help to keep down the size of the constraint sets
that we must manipulate with Fourier's technique.

4.1 Empirical studies of dependence analysis constraints
We instrumented our system to analyze the types of constraints we deal with during dependence analysis.
For each application of the Omega test, we analyzed the constraints that remained (a) after our initial
removal of equality constraints and (b) after we had either eliminated all but two variables or run out of
quantified variables to eliminate. In doing this analysis, we computed real shadows, as opposed to integer
shadows (because the integer shadow may not be a simple conjunct). However, we still performed a number
of other operations to rule out non-integer solutions (such as normalizing 2z + 4 y 2 3 to z + 2y > 2).

When analyzing a set of constraints, we counted the number of variables, and counted (separately) the
number of constraints that involved 1, 2 or 3+ variables. We then eliminated all redundant constraints, and
recounted.

We performed these tests over our dataflow benchmark set [PW93a], which includes some of the NASA
NAS kernels and some code from the Perfect Club Benchmarks ([B+89]). In total, we considered 1144 sets
of constraints, and obtained the results shown in Figure 4.

Note that our methods always check for parallel constraints and eliminate the redundant one immediately
(e.g., given z + y S 5 and x- + y 5 10, the second is eliminated). This can be done in constant time per
constraint (through the use of a hash table).

Quite surprisingly, in none of the 1144 cases did the number of constraints increase as variables were
eliminated (this is without any redundant constraint elimination other than elimination of parallel redundant

186

Variable Elimination Method
10000 1TaI , a,

Iwo

I 00
*FuiIIO~ 5V"OdrdFurI-0~ 5V'

..... "O d re - nt-o r ra0 -5 ..
,II ::. , **mber -30- '.*

"O..edFourer_01 5_V -

11 , / / Ordered-Unit-Founer_00ISV'S
'Fourner-irmbeft_1305'j'W ---

2 4x' ;; +0 12 194

100 a

LI *'Ordered-ourer-15C 5.1V"
Ordered-Fourder30CWj 0'P

80*rdered-Fourer..30C0\...

101
2 4 a a 10 12 14

Average Numfber of Constraints Involving Each Variable

Figure 5: Factors that affect explosion of constraints

187

constraints).

4.2 Empirical studies of random constraints

To better understand the reasons for our good fortune in avoiding an explosion of constraints, we also studied
the behavior of Fourier elimination, on sets of random constraints. Figure 5 shows the results of these studies.

In each experiment, we fixed the number of constraints and variables, added one random non-zero to each
constraint. When then projected the constraints onto the first two variables, and recorded the maximum
number of constraints encounted during the elimination. We then added an additional nonzero coefficient
to the original set of constraints, and repeated the projection. We continued doing this until the problem
had no non-zeros left. Each line represents the median of 5-21 experiement. The key gives the elimination
method used, the number of initial constraints and the number of initial variables.

The top graph compares the effectiveness of several variations on Fourier's method:

Fourier Standard Fourier elimination of all variables in a random order

Ordered Fourier Standard Fourier elimination in which we choose to eliminate first the variable that
produces the smallest increase in the number of constraints

Ordered Unit Fourier Ordered Fourier elimination combined with detection of parallel redundant con-
straints. For this test, values of the coefficients affect the performance; to show this technique at its
best, we restrict the (non-zero) coefficients to ±1.

Fourier-Imbert Fourier elimination combined with a partial application of Imbert's method [imb93] of
redundant constraint detection. We use Theorem 10 of Vimb93] to determine that some constraints are
redundant. However, we do not use the more expensive comparison or matrical tests.

The lower four lines show the performance on sets of 15 constraints on 5 ,ariables, as per the most extreme
cases we encountered during dependence analysis. The upper four lines crrespond to sets of 30 constraints
on 15 variables.

Imbert's technique is clearly important for dense constraints, but until we approach seven constraints
per variable, even standard Fourier elimination is well behaved for constraint sets of the sizes that we
have encountered in our work with dependence analysis. At intermediate densities with unit coefficients,
eliminating parallel constraints is more useful and important than computing historical subsets.

Note that the "worst case" example from Figure 4 started with 15 constraints over 5 variables and almost
6 constraints on each variable. As can be seen in Figure 5, this is just a little less complex than the point
where Fourier elimination over unit coefficients starts to run into problems. We generally deal with constraint
sets with fewer than three constraints per variable. In this region of the graph, the number of constraints
does not grow with projection.

The graph on the bottom of Figure 5 shows the result of standard Fourier elimination with constraint
sets of various sizes. Notice that, in all cases, the number of generated constraints does not become excessive
as long as we start with an average of fewer than 4 constraints on each variable. Thus, we believe the Omega
test could be useful for sparse problems that are significantly larger than those that arise in dependence
analysis.

5 Conclusions

Other researchers 1HLL92, Imb93 have been quite leary of Fourier variable elimination. These researchers
have studied the effectiveness of Fourier variable elimination on sets of dense constraints. Our experience
has lead us to believe that Fourier's method has quite different characteristics (and is quite efficient) when
applied to sparse constraints. Furthermore, we believe that sparse constraints arise in many applications.

We have extended our work beyond Fourier variable elimination: first to handling variable elimination
for integer variables, and then to simplifying arbitrary Presburger formulas. We hope these extensions may
be of interest to a broader community.

188

6 Availability
Technical reports about the Omega test and an implementation of the Omega test are available via anony-
mousftp fromftp. cu.wud. edu:pub/onegaor the world wide web http: //Mn. cs.umd. edu/projects/oega.

References
IA9l] Coainne Ancourt and Fransois kigoin. Scanning polyhedra with DO loops. In Proc. of the 3rd ACM SIGPLAN

Sntpeisian on Principles and Practice of Parallel Programming, pages 39-50, April 1991.
[B+891 M. Ber yet al&. The PERFECT Club benchmarks: Effective performanceevaluationof supercomputers. International

Jounal of Spercompuitis Applications, 3(3):5-40, March 1989.
[Ble75] W. W. Bledsoe. A new method for proving certainpresburgerformulas. In Advance Papers, 4A Int. Joint Conference

on Artif. Intell., Tibilisi, Georgia, U.S.S.R, 1975.
(Cha93] Vijay Chandru. Variable elimination in linear constraints. The Compter Journal, 36(5):463-472, 1993.
[Coo72J D. C. Cooper. Theorem proving in arithmetic with multiplication. In B. Meltzer and D. Michie, editors, Machine

lntelligence 7, pages 91-99. American Elsevier, New York, 1972.
[DE73] G.B. Dantsig and B.C. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatoriel Theory (A),

14:288-297,1973.
1Duf74] R. J. Duffin. On fourier's analysis of linear inequality systems. Mathematicl Programming Study, pages 71-95,

1974.
JGJ79] MichaelR. Garey and David S. Johnson. Compu ters and Intractability: A Guide to the Theory of NP- Completeness.

W.H. Freemand and Company, 1979.
(HLL92] Tien Huynh, Catherine Lasses, and Jean-Louis Lasses. Practical issues on the projection of polyhedral sets. Annals

of mathematics and artificial iittelligence, November 1992.
f13T911 Rangois Irigoin, Pierre Jouvelot, and Rdai Triolet. Semantical interprocedural parallelization: An overview of the

pips project. In Proc. of the 1991 International Conference on Sspercomputing, pages 244-253, June 1991.
%mb3 Joan-Louis Imbert. Fourier's elimination: Which to choose? In PCPP 93, 1993.
[JMSY93 J. Jafar. M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Projecting CLP(R) constraints. New Generation Computing,

11(3/4)-449-469, 1993.
[KP93] Wayne Kelly and William Pugh. A framework for unifying reordering transformations. Technical Report CS-TR-

3193, Dept. of Computer Science, University of Maryland, College Park, April 1993.
[LHM89] Jean-Lous Lasses, Tiean Huynh, and Ken McAloon. Simplification and elimination of redundant linear arithmetic

constraints. In Proceedings of the North Americas Conference on Logic Programming, pages 37-51, 1989.
[LL92J Catherine Lasses and Jean-Loui Lasses. Quantifier elimination for conjunctions of linear constraints via a convex

hull algorithm. In Bruce Donald, Deepak Kapur, and Joseph Mundy, editors, Sym6olic and Numerical Comp*tation
for Artificial Intelliece. Academic Press, 1992.

[MHL91al D. E. Maydan, J. L. Hennessy, and M. S. Lam. Effectiveness of data dependence analysis. In Proceedings of the
NSF-NCRD Workshop on Advanced Compilation Technifutes for Novel Architecttres, 1991.

[MHL9lb] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence analysis. In ACM SIGPLAN'9i
Conference os Progmrmming Lasguage Design, and Implementation, pages 1-14, June 1991.

[Nel7S] C. G. Nelson. An o(ni 1") algorithm for the two-variable-per-constraint linear programming satisfiablility problem.
Technical Report AIM-319, Stanford University, Department of Computer Science, 1978.

(Pugll William Pugh. Uniform techniques for loop optimization. In 1991 International Conference on Spercompsting,
pages 341-352, Cologne, Germany, June 1991.

LPu 2J William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis.
Commuiotions of the ACM, 8:102-114, August 1992.

CPW921 William Pugh and David Wounacott. Going beyond integer programming with the Omega test to eliminate false
data dependsnces. Technical Report CS-TR-3191, Dept. of Computer Science, University of Maryland, College
Park, December 1992. An earlier version of this paper appeared at the SIGPLAN PLDI'92 conference.

(PW93aJ William Pugh and David Wonuacott. An evaluation of exact methods for analysis of value-based array data depen-
dences. In Sizte Annual Workshop on Programming Languages end Compilers for Parallel Computing, Portland,
OR, August 1993.

IPW93b] Wilam Pugh and David Wonmacott. Static analysis of upper and lower bounds on dependences and parallelism.
ACM Transactions on Programming Lsaguages and Systems, 1993. accepted for publication.

[Sh*77] Robert E. Shostak. On the sup-inf method for proving presburger formulas. Journal of the A CM, 24(4):529-543,
October 1977.

[W'076] H.P. Williams. Fourier-Motskin elimination extension to integer programming problems. Journal of Comhinatorial
Thurop (A), 21:118-123,1976.

" 21T91 M. J. Wolfe and C. Tseng. The Power test for data dependence. IEEE Transactions on Parallel and Distribted
Systems, 3(5):691-eo1, September 19.

189

Some Remarks on the Design
of

Constraint Satisfaction Problems

Massimo PALTRINIERI
Bull

Rue Jean Jauris - B.P. 68
78340 Les Clayes Sous Bois

France

Abstract

The development of a system based on constraint programming includes two main phases: first, the problem
to be solved is formulated as a constraint satisfaction problem; then, the formulation is implemented in a
constraint-programming language. Constraint-programming resemrch has mainly concentrated on the second
phase, by studying powerful declarative languages that automatically propagate the constraints in a program.
Nevertheless, when developing a solution to a real-world problem, the cost due to the first one, design, is
more relevant. This paper addresses the issue of effectively designing models of real-world constraint
satisfaction problems.

1 Introduction This paper discusses the limitations of the notion of CSP to

represent real-world problems and extends it along the

A constraint satisfaction problem (CSP) can be formulated Object-oriented paradigm to overcome those liintations;
as follows: given a set of variables and a set of o then, it outlines desirable features of a design methodology

that limit the combination of values of the variables, find for constraint programming and sketches a design

one assignment of values to the variables such that all the methodology that embodies such features for the exteded

constraints are satisfied notion of CS s; finally, it revisits a classical example where
the proposed methodology dramatically reduces the size of

A large number of problems in many areas of computer t model

science can be viewed as special cases of constraint
satisfacton problem (for a surey see Nd9O]) 2. Constraint Satisfaction Problems

To solve more effectively this type of problems, several
comstraint-programming languages have been developed (for A constraint satisfaction problem is defined by a set Xl,..,X,
a survey see [RI93]). The basic idea of these environments of variables, each associated with a domain D,,..,D -
is to provide a declarative language where the programmer respectively, and a set C,,..,Cm of constraints, Le., subsets of
just defines variables and constraints, while the propagation Dx..xD.
engine of the language automatically computes the

signmmt of values that satisfies the constraints. CSP's have extensively been studied to develop various
types of consistency algorithms (for a survey, see IKum92]).

The author's Department at Bull developed a constraint- Nevertheless, when real-world problems are tackled, CSP's
prmmin industrial environment, Charme [Op!89], and suffer from the following limitations:
successively a number of real-world applications based on it
(Cha94, DAm2, Gos93, MAT89, PMT92]. a) variables are semantically poor entities

0 the only relations over variables are constraints
From these experiences, it emerged that the main cost of a a) variables cannot be organized.
conrt- aed ppcadon is the design, rather than the

m L It was also observed the lack of a a) It is the usual case that entities participating to a problem
methodology to define the model of the problem, possibly in are charcterized by more than one feature. For example,
tight caftboradou with the cd user. a task is characterized by its name, start time, duration,

etc. Furthermore, several features can be initially
unknown, such as the start time of a task and theISa wa w putaf put eo do in Pkjet M, CHIC - machine assigned to it. This is not expressible in CSs,

C ma mM% ia mid Comse . because the only feature of a variable is its domain.

190

As a consequence, all the relations of a CSP are over A solution to an OOCSP is an assignment of domain values
domains, Le., they are constraints. On the contrary, when to object attributes such that all the constraints, including
solving real-world problems it is necessary to define those induced, are satisfied. Each OOCSP can be
other relations (e.g. a given task employs a given graphically represented as an object constraint graph, as
resource) and confine the combinatorial component to explained in the section 5.
parts of the problem.

G When defining a problem, it is often useful to aggregate 4. Design
entities according to some criterion. This is not possible
in CSPs, because variables are just gathered in a set, i.e.a fat trutue, nd heycanotbe rgaizd a an leel By design, we mean the creation of a model of the problem,
of atstraction, as understood through analysis, consisting of abstractions

and relationships that provide an architecture for

Each CSP can be graphically represented as a constraint implementation.

graph in which nodes represent variables and edges While it is quite well understood, for traditional software
represent constraints. In principle, constraint graphs could development, what the desirable features of a good design
be employed to model CS]s. In practise, they are and its resulting model should be, this topic has not been
untractable for real-world problems, as mentioned in Gmuch addressed in the field of constraint programming.

For instance, to represent a binary global constraint, the We would like the design of a constraint-based application
number of edges to be drawn grows as the square of the to be
number of nodes, which is untractable when the size of the
problem grows considerably. In general, it is possible to * lem driven
conclude that the constraint graph is not appropriate to & methodological
model CS~s. * computer aided

* interactive.

3. Enhancing Constraint Satisfaction emblem Driven. Design should concentrate on the essence
Problems of the. problem in exam without influences from tangible

components such as a target platform or language. It should

To overcome the mentioned limitations, the definition of be a straightforward activity for experts of the domain in

CSP is enhanced through concepts deriving from the object- exam, even with no computer skills.

oriented paradigm. The main difference is that here objects Methodolocal. Design should follow a methodology,
do not have methods (but just data members) since their Medoloialsign shoul follow a m dgy,state is updated by the constraints. based on massive succesful experiences, aiming at

identifying and ordering the main steps of the process.

The solution that we propose relies on abstraction, i.e., Computer Aied. Design should be supported by tools that
recognizing similarities and concentrating on them. make it more effective and faster while possibly controlling
Abstractions are defined both for variables and constraints mi
following the object-oriented paradigm. This leads to an
enhanced model, called object-oriented constraint Interactive. Design should facilitate and stimulate the
sarifaction problem (OOCSP). participation of domain experts

An atribute is a feature of some type. Types are associated
with domains. An object is a collection of attributes. Object
attributes correspond to variables in CSP's. The set of v
attributes of an object defines the structure of the object. & compact
Objects sharing the same structure are grouped into classes. * dynamic
Classes re oqaied into a hierarchy. The structure of a 9 composable
lower class includes that of a higher class. * modular

* multi purpose
To distinguish associations over objects from those over * reusable
classes, we call associations the former and class l languageindependent
associations the latter. In particular, a (class) association is * executable.
called (class) constraint if it is defined over (class) object
attributes, otherwise it is called (class) relation. Constraints
on object attributes have the same meaning as in CSFs,
while constraints on classes induce constraints on objects.

191

VbuaL Intuitive graphical formalisms should be employed The process consists of the following four steps:
to study and define the abstractions and relationships in the
model. * identify classes and objects

identify the semantics of these classes and objects
Compa t. The model should be compact and possibly * identify the associations among these classes and objects
provide different levels of abstractions. identify the semantics of these associations.

Dynamic. The model should account for problems that The purpose of the first step is identifying classes and
change rapidly, for instance because their size grows objects to establish the boundaries of the problem The

purpose of the second step is establishing the features of the
Composable. It should be possible to compose models to abstractions identified at the previous step. The purpose of
define new bigger models with more functionalities. the third step is identifying the dependencies among

abstractions. The fourth step formally specifies, through
Modulur. The model should be decomposable into logical formulae, the meaning of the associations identified
consistent views, each one focusing on a different aspect of in the previous steps. This issue is futher discussed in the
the problem. next section.

Multi iurpose. It should be possible to employ the model to The process is incremental and iterative. It is incremental
investigate different aspects of the problem, for instance by because when new classes, objects or associations are
asking different questions. identified, existing classes, objects and associations can be

refined and improved. It is iterative, because the definition
Reusable. It should be possible to use the model as a of new classes, objects and associations often gives new
starting point for new models of related problems. insights on the problem that allow the user to simplify and

generalize the design.
La a independent. The model should be easily
inplaented in any constraint-programming language.

6. Executable Models
Executable, It should be possible to automatically generate

code in a target constaint-programming language. In such a The models of OOCSP's can be directly executed: the edges
way, the model could be executed to provide immediate of the object constraint graph are labeled with logical
feedback on problem formulation. formulae defining the constraints of the problem at various

levels of abstraction. Such formulae can be either executed
by an interpreter of the object constraint graph, or

5. Design Methodology preprocessed to a target constraint-programming language,
not necessarily an object-orinted one. We abstract away

A methodology to design OOCSPs that embodies the from the syntactic details of such a language by taking a
features foreseen in the previous section is here sketched. It multi-sorted first-order logic in which the domain of
based on classical object-oriented design methodologies (for interpretation for sorts has been fixed.
a survey see [Pow93]), and adapted to the constraint-
programming domain. The methodology consists of The logical formulae are obtained by connecting, through

logical connectives, predicate symbols whose arguments are
* a notation to represent the model terms, i.e., constants, objects, classes, object attributes and
" a process to construct the model class attributes as well as functions on terms. Formulae on

classes induce formulae on objects, called instances of the
The notation consists of graphical entities that are combined given formula. They are obtained by replacing each class
to generate object constraint graphs, the models of with its objects or the objects of its derived (through
OOCSP's. Dotted boxes denote classes, while solid boxes inheritance) classes, in all the possible combinations. A
denote objects. Edges denote associations and directed solution is an assignment of domain values to object
edges inheritance (Fig. 1). Classes and objects are attributes such that all the formulae, including those
represented on two different plans (classes in the upper level induced, are satisfied in the classical sense.
and objects in the lower one).

An object constraint graph can be preprocessed to an
equivalent, i.e. with the same solutions, program written in

,Modtiofn Wntlmnoe any constraint-programming language. This is obtained by
.. - > replacing each class association with its instances, so

t L. MWotae tion comim of papbl enti, e an eliminating classes and hierachy. The resulting formulae on
Pmbindimo.objW cskaint gmpx, the 1odets of OOCSs, objects are the constraints of the program, where the object

attributes are the variables.

192

7. The Bridge Problem
K]. IF (Fo-mnorkpan = Foudw-part)

The Bridge Problem is a classical project-planning problem THEN (Fouwm lan + Foundaio.4uraim -4

consisting of determining the starting dates of the tasks Fomfworkson +n Fonnwor tuni)

necessary to build a five-segment bridge. The project 12. I(E.xcavauaLpart=Fonortpart)

includes 46 tasks (A], P1, etc.) that process 11 bridge THEN (Fomwrt.art 3 S Excoan

components (abutment Abl, pillar P11, etc.) and employ 7 J. Ercwm.stan S Fomwo.ta.ar 6

resources (excavator Ex, concrete-mixer CM, etc.). The k4. Um a rt a omydmoour - 25 R.movaLsMnl
constraints of the problem include 77 disjunctive constraints KS- Ddivery-stani= Begbumqsarl+ 30

(tasks Al and A2 cannot overlap because they both employ
the excavator, tasks 72 and 75 cannot overlap because they Model Complexity, Te design of the Bridge Problem is

both employ the crane, etc.), 66 precedence constraints complete (see Fig. 3). It consists of I base class, 14 derived

(execute task T5 before task V2, execute task MS before task classes, 46 objects and 7 class constraints. The fact that

T4, etc.) and 25 specific constraints (the time between the there are no constraints on objects means that the model is

completion of task S1 and the completion of task B) is at well conceived, because abstraction has been fully exploited

most 4 days, the time between the completion of task A4 to factmrize common features. As a result, the 168

and the completion of task S4 is at most 3 days, etc.), for a constraints of the problem are expressed with just 7 class

total of 168 constraints. Our methodology is now employed constraints, a factor of 21 times. Other models can be

to design the Bridge Problem. obtained by defining resources and bridge components as
objects, rather than task attributes. Those formulations are

Identify Classes and Objects. me basic class of the more complex in terms of constraints, but more explicit in

problem is Task. It has 14 subclasses (Eccavation, term of objects.

Foundation, etc.), characterized by the fact that an the tasks Preprcessing. The object constraint graph can be
in one of such classes employ the same resource. Each task preprocessed to a target constraint language: each class
of the problem is an object of the model. constraint induces a set of object constraints, its instances,

Identify the Semantics of These Classes and Objects. obtained by replacing class symbols by symbols of objects
of that class or a derived class in all the possible

Each task is characterized by six attributes: name, start tine, combinations. For example, an instance of Resource is

duration, bridge component that it operates on, resource that

it employs and set of tasks that come before it The start F (A3resource = A4.reource AND
time is the unknown to be determined: its domain is 0_200, A3j,,* A4.,one)

meaning that the start time of each task is initially unknown, THEN t 3. + .duradaS A4_tMa OR
it will be automatically determined by the system, and it Atast+A4dumaomiSA3.iAma)

must be included between 0 and 200 days (an estimated
upper bound). where A3 and A4 are object symbols of the Excavation

class, derived from Task, an instance of KI is
Identify the Associations Among These Classes and
Objects. The 77 disjunctive constraints and the 66 IF (S2.part =B5.paf)

precedence construnts are expressed as just two class THEN (D.Tasa +S.duraA~nx4S

constraints, referred to as Dijunction and Precedence

respectively. Te 25 specific constraints are also expressed where S2 is an object of the Formwork class and B5 is an
at class level and referred to as KI-KS. object of the Foundation class.

Identify the Semantics of These Assodatlos. Tme
semantics of these associations is specified by the following
formulae on classes:

Db rj.ctw. F (TaWkl.rnosc = Tak2.resowce AND A T3 T4 Ts

TaHi na Ta2.,Wme)
THEN (Taul. m + Ta*lratim S Tak2istw OR

Ta2.smn + Tandy*raam S Taskl.ssa)
Pracedvc. F (Taa*nmu e Taprevious)

THEN (kLrgal + TaWlduratim < Task2art)

where Taskl and Tak2 are two instances of the same class
Tas The 60 specific constraints can also be expressed at Fig. 2. 11c five-segments bridge
clas level:

193

.1 *k

S * *SOP

S * S S S d

F.3.oc ctcn~itgaho h rdePolm

194w

S. Dscua~onLanguage, John Wiley & Sons Publisher, to
appea, 1994.

This work originates from the observation of the lack of a (DAn92] M. DAndrea, Scheduling and Optimization in the

hmewo&t where Automobile Industry, Lecture Notes in Artificial

*CSs ate effectively designed through Inteligence, vol. 636, G. Coinyn, N. E. Fuchs,

*a visual methodology producing FB2]Ratcliffe (Editors), Springer Verlag, 1992.
model dirctlyexectabl by B. Freeman-Benson, A. Borning, Integrating

modes drecly xectabe b trditona cosuanitConstraints with an Object-Oriented Language,
prphnng lanuIages, Proc. of the 1992 European Conference on

A design methodology for CSPs s be wce an Object-Oriented Programming, June 1992.
illstate o ancanpl. t s ojet oieted t abtrct [Fow93] M. Fowler, A Comparison of Object-Oriented

vilstrated onta ns anple Itis l beto oete inutv Analysis and Design Methods, in Approaches to

vaasand c h onstrit and vsual, toel prdue Object-Oriented Analysis and Design, A.

through the methology has also been discussed. Crihe dAhae 93
[Gos93I V. Gosselin, Train Scheduling Using Constraint

Constraint-based systems integrating either visual or object- Programming Techniques", Acres lBeme Journote
oriented components aite: Sketchpad [Sut63], a pioneering International sur les Systimes Expert et Leur
visual system developed at the beginning of the sixties Application, Avignon, 1993.
allowing the user to build geometric objects from language [Haft]J D. R. Harris, A Hybrid Object and Constraint

priitiesand certain constraints; ThingLab [Bor79], Representation Language, AAAI-8,6, Philadelphia,
providing users with a set of tools to help them graphically Pennsylvania, 1986.
represent simulations and "experiments" in a constraint- [LeL3] M. Leconte, F. Leyter, Update Specification of
orientted. environent; Socle [HarB6I, an hybrid system that Lo~gic Constraint Programming Methodology,
cortans, a structured partitioning component and a Deliverable D2.1.2.2, CHIC Esprit Project 5291,
constraint component; Garnet [MGV92I, to create large- July 1993.
scale user interfaes combining pre-defined objects into [MaT89] J. Marcovich, Y. Tourbier, Une Application de la
collections; Kaleidoscope [FBB92], integrating the Progrmmation par Contraintes: Construction de
declarative nature of constraints with the imperative nature Plans d!Experience Orthogoiiaux. au Sens Strict
of object-oriented languages; flog-Solver [Pug92], a C++-. avec Condor, Actes des Journies Internationales
lbary of classes defining variables, constraints and d'Avignon, 1989.
algorithmls. [MG V92] B. A. Myers, D. A. Giuse, B. Vander Zanden,

Declarative Programming in a Prototype-Instance
Future work concerns the development of a tool supporting System: Object-Oriented Programming Without
the methodology [Le93J. To facilitate the development of Writing Methods, OOPSLA 92, 184-200,1992.
applications, it should be provided with a library of models [Nad9O] B. Nadel, Some Applications of the Constraint
for different domains. The library can be organized on Satisfaction Problem, Tech. Report CSC-90-008,
dMferen levels& the first level includes models for generic Dept. of C.S., Wayne State University, Detroit,
domains, such as project plannig, scheduling, finance, M,1990.
reOM=ce mnagemnt, etc.; the second level includes [0pl89] A. Oplobedu, Charme: un Langage idustriel de
models for m specfi domains, such as construction- Programmation par Contraintes, Actes 9eme
project muagement and software-project, management for Journie International sur les Syst~rmes Expert et
the project planning domain; production scheduling and Leur Applications, Vol. 1,55-70, Avignont, 1989.
meeting scheduling for the scheduling domain, etc. To solve [pM'r92] M. Paltrinieri, A. Momigliano, F. Torquati,
a probim the uae selects the appropriate model and Scheduling of an Aircraft Fleet, AAAI Tech. Rep.
cusc.lzes it by adding or deleting nodes and edges. SS-92-O1. Also as NASA Tech. Rep. FIA-92-17,

NASA Ames, Moffet Field, CA, USA, 1992.
Acknowledgements (Pug92] J.-F. Puget, Programmnation Par Contraintes

Orient6e Objet, 12th International Conference on

Many thuks to Y. C. Chan and M. Leconte for reading Al, ES and N1, 129-138, Avignon, France, 1992.
ewier versions of this paper (Rot93J A. Roth, Constraint programming: A Practical

Solution to Complex Problems, Al Expert, pages

Reerences 36-39 Sept 1993.
(SGA91] D. Sciamma, V. Gosselin, D. Mng, Constraint

(Bor9] . Brnin, Tingab: Costrint-rietedProgramming and Resource Scheduling: The
Si7] .maing hionglab: AD Cons anortd Charme Approach, Gintic Symposium on

Uesiton LAboa, y Ph9.7h9i,. Schzeduling, Singapore, 1991.

University, Cha., Prct979.staitBa [Sut63] 1. Sutherland, A Man-Machine Graphical

Programming: Solving Problems with the Charme CmuiainSsePD7wiMT 93

195

Logic-Based Methods for Optimization

J. N. HOOKER
Graduate School of Industrial Administration

Carnegie Mellon University, Pittsburgh, PA 15213 USA

March 1994

Abstract cuts, Gomory cuts, etc., also have analogs. Much
of the theory of cutting planes, duality, etc., has a

This paper proposes a logic-based approach to op- logical counterpart.
timization that combines solution methods from This approach can combine some of the problem-
mathematical programming and logic program- solving wisdom accumulated by mathematical
rming. From mathematical programming it bor-
rows str o r exploiatingl srucremig tt bae programmers with techniques and insights from
rows strategies for exploiting structure that have constraint programming and logic programming.logic-based analogs. From logic programming it Most importantly, the optimization community's
borrows methods for extracting information that ways of exploiting structure (strong cutting planes,
are unavailable in a traditional mathematical pro- etc.) carry over into a logical context. They may
gramming framework. Logic-based methods as also take on greater variety and adaptability when
provide a unified approach to solving optimization moved out of the polyhedral context. Strong cuts
problems with both quantitative and logical con- are traditionally found by studying the abstract
straints. polyhedral structure of a model. But strong logic

cuts can often be found by using one's intuitions

1 Introduction about the concrete application of a model, even in
cases where the polyhedron is far too complex to

The theory and practice of integer and mixed in- analyze. There is also a much greater variety of

teger programming are based primarily on polyhe- problem relaxations in the logical context.

dral methods. The thesis of this paper is that one The logical tradition also makes a key contri-
can develop a parallel theory and practice using bution. Logic processing can make more effective
logic-based methods. use of cuts, once they are discovered, than the tra-

The basic idea is to replace the essential elements ditional mathematical programming methods. A
of optimization methods with logical analogs. The branch-and-bound method typically solves a relax-
integer variables are regarded as atomic proposi- ation of the constraint set generated at a given
tions, and inequality constraints involving them node of the search tree and may thereby fail to rec-
are rewritten as logical formulas. In a branch- ognize when it is infeasible. An appropriate con-
and-cut scheme, discrete relaxations replace the straint propagation or logical inference technique
tradition linear programming and Lagrangian re- may detect infeasibility and avoid the generation
laxations, and they are solved by logic-based al- of successor nodes. The rapid speedup of propo-
gorithms. Logical implications replace cutting sitional satisfiability algorithms over the past few
planes. In particular, "prime" and other strong years makes logic processing of this sort increas-
"logic cuts" replace facet-defining cuts. Separating ingly attractive.

So the logic-based methods described here go be-"Stpportd an part by Offie of Naval Reeac Grant yod both mateaia rgamn n oi
NOO14-92-J-1028 and the Engineering Design Raearch yon athematical programming and logic
Center at Carnegie Mellon University, funded by NSF grant programming. They enrich logic programming
I-55093. with strategies for discovering structure that paral-

196

lel those of mathematical programming. They en- Barth [1] reports that this constraint expands to
rich mathematical programming with methods for 117,520 nonredundant logical clauses, using the
extracting information that are supplied by logic method of Granot and Hammer [4].
and constraint programming. So for several years prospects for logic-based

This paper is a condensation of a longer tuto- methods, as a general approach to optimization,
rial on logic-based methods [7]. Its main contribu- looked bleak. But several factors have recently
tions are to show in general how solution strategies converged to make them much more attractive.
for integer and mixed integer programming can be As noted earlier, satisfiability algorithms, a key
given logical analogs, and to outline a research pro- element of logic-based methods, have improved
gram in this direction. To do this it draws on a dramatically. Also it is foolish to expand an in-
number of results established elsewhere (6, 8, 9] equality constraint into its full logical equivalent.
and presents at least two new results, those of log- This is analogous to generating all possible cut-
ical duality and the logical analysis of nonbipartite ting planes for an integer programming problem,
matching problems. which is never done. Practical algorithms generate

a few "separating cuts," and a closely analogous
approach is available in the logical context.

2 Historical Context Further, there is a growing trend toward the
merger of quantitative and logical elements into a

If logic-based methods for optimization are so at- single model, and logic-based methods are a natu-
tractive, why have they not gained acceptance ral approach to solving such models. Purely math-
already? Actually there is nothing new about ematical models (integer programming, etc.) are
them. Hammer and Rudeanu w.rote a classic 1968 often unsuitable for messy problems without much
treatise [5] on boolean methods in operations re- mathematical structure, whereas pure logic mod-
search. Granot and Hammer [4] showed in 1971 els (PROLOG programs, etc.) do not capture the
how boolean methods might be used to solve inte- mathematical structure that does exist and are
ger programming problems. consequently hard to solve. Historically, solution

Although boolean methods have seen applica- techniques for the two types of models have been
tions (logical reduction techniques, solution of cer- unrelated. A technique that solves both opens the
tain combinatorial problems), they have not been door to a wider variety of tractable models.
accepted as a general-purpose approach to opti- Logic-based optimization also serves a heuristic
mization. There seem to be two main reasons for function of providing a whole new perspective on
this. One is that they have not been demonstrated optimization problems. In fact, it is in some ways
to be more effective than branch-and-cut. So there more natural to view a pure integer programming
has been no apparent advantage in converting a problem as a logical inference problem rather than
problem to logical form. a polyhedral problem. Similarly, the integer vari-

A second reason is that the conversion to a log- ables of a mixed integer problem can be viewed
ical problem is itself hard. The most straight- as artificial devices that can just as well be elimi-
forward way to convert an inequality constraint nated.
to logical form, for instance, is to write it as an
equivalent set of logical clauses. But the number
of clauses can grow exponentially with the num- 3 Integer Programming as
ber of variables in the inequality. Consider for in-
stance the following constraint from a problem in Logical Inference
Nemhauser and Wolsey ([11], p. 465).

A 0-1 inequality bz > 8 can be viewed as a logi-
30Ozs + 300z4 + 285ts + 285z6 + 265zs cal proposition that is true when the inequality is

+265z: + 230x12 + 2301s + 190z14 satisfied. The variables zj are viewed as atomic
+200:22 + 400:23 + 200x24 + 400X25 (1) propositions that are true when zi = 1 and false
+200Z2s + 400X27 + 20022 + 400z9 when zj = 0. A system of 0-1 inequalities Ax > a
+200zso + 400zsi < 2700. implies bz > 0 when all 0-1 solutions of the former

197

satidy the latter. Any logical proposition, inequal- Nodes of the search tree are obtained by branch-
ity or otherwise, implied by Ax > a is a logic cut. ing on the cases ri = 1, j = 0. At each node,

'The following are obvious but fundamental. an optimization problem with a relaxed constraint
set is solved to obtain a lower bound on the opti-

Theorem 1 An inequality is a valid cut (in the mal value of the original problem. If this bound
polyhedral sense) for a system of inequalities if and is already greater than the value of a feasible solu-
only if it is a logic cut. tion obtained earlier, there is no point in generat-

ing successor nodes. Classically the relaxations are
Theorem 2 Consider an integer programming usually linear (replace ri E {0, 1) with 0 < zj _5 1)
problem or Lagrangean, but a ',ide variety of discrete re-

min cx laxations are possible in the logical setting. The
(2) simplest is to minimize cx subject to each clause

s.t. Ax > a in S separately (a trivial problem) and pick the

xj E {0, 1}, allj. best bound so obtained.
Finally, logic processing is applied to make ex-

The optimal value of the objective function is the plicit some constraints that were only explicit.
largest / for which cx /3 is a logic cut. Traditionally this has been achieved by generat-

ing valid inequalities (cuts) with coefficients cho-
This fact can be framed as a duality relation- sen so that the linear relaxation is as tight as pos-

ship. The following is the logical dual of integer sible, preferably a facet of the convex hull of 0-1
programming problem (2). solutions. In a logic-based setting, logic processing

can be applied either in the form of a satisfiability
algorithm or a cut generation algorithm, or both.

max /(3) The former would normally be an incomplete pro-
s.t. At > a implies cz > / cedure, such as unit resolution (which happens to

be equivalent in deductive power to solving the tra-
The optimal value 0 in (3) is equal to the opti- ditional linear relaxation). The latter would gener-

mal value of (2). There is a close connection with ate separating logic cuts, which are those that are
linear programming duality, which is obtained by violated by the solution just obtained for the cur-
replacing z E {0, 1) with 0 _ xi _5 1 in (2) and rent relaxation. Coefficients are no longer relevant,
'implies' with 'implies as a nonnegative linear com- but the logic cuts should be strong (i.e., exclude as
bination' in (3). many 0-1 solutions as possible).

4 A Generic Branch-and-Cut 5 Strong Cuts
Algorithm The logical analog of a facet-defining cut is a prime

Figure 1 contains a rudimentary logic-based cut, which is defined -with respect to a class C
branch-and-cut algorithm (essentially a specialized of logical propositions. A prime cut for a system
A* Ax > a of inequalities is a logic cut F that is equiv-
search) that solves the integer programming prob- alent to any cut in C that is implied by Ax > a
lem (2). It combines three strategies that have and implies F. It is a prime inequality if C is the
proved much more effective in combination than set of all inequalities (with integer coefficients and
when used separately: an enumeration tree, gen- right-hand side).
eration of valid separating cuts, and solution of Useful logic cuts in practice need not and or-
relaxations of the problem. dinarily would not be prime cuts. But an inves-

Note that the problem is not solved subject to tigation of of how prime cuts can in principle be
the original constraint set Ax > a but to a set generated provides insight into the nature of strong
S of logic cuts (perhaps logical clauses) for these logic cuts.
constraints. The cuts are generated only as needed. A fundamental result of integer programming,

198

Figure 1:
Logic-Based Branch-and-Cut Algorithm.

Set UB-oW.
Execute Branch(0,0).

End.

Procedure Branch(S,k)
If k =0 then

the optimal solution is the best found so far
(infeasible if none found); stop.

Apply a partial or coplete satisfiability algorithm to S.
If no contradiction is found then

Find the minimum LB of cz subject to a rslazation of S.
If LB<UB then:

Generate separating logic cuts.
Branch:

Pick a literal L containing a variable
that occurs in S.

Perform Branch(S u {L), k + 1).
Perform Branch(Su {-L}, k + 1).

End.

due to Chvital (3], says that a finite procedure gen- equality of S. A diagonal sum is "generated" in a
erates all facet-defining inequalities (the strongest similar sense. Finally, let a set T of inequalities be
cutting planes) for a 0-1 system Ax > a. A par- monotone when T contains all clausal inequalities,
allel result can be proved for logic-based program- and for any given inequality ax _ 6 + n(a) in T, T
ruing (6]. Let a clausal inequality have the form contains all inequalities a'x > /' + n(a') such that
aZ > 1 + n(a), where each aj E {0,1, -1) and la'I< Jal and 0 < /_.
n(a) is the sum of the negative components of a.
For instance, the inequality x, + (1 - Z2) _> 1, or Theorem 3 Let T be a monotone set of inequal-

21 - X2 :? 0, represents the logical clause XI V "Z2. ities, and let S contain all resolvents and diago-

A resolvent of two clausal inequalities is simply the nal sums in T in that can be recursively generated

clausal inequality that represents the resolvent of from a feasible 0-1 system Az > a, up to equiv-

the corresponding clauses. Let a diagonal sum be alence. Then every prime inequality for Ax > a

defined as illustrated by the following example. with respect to T is equivalent to some inequality
in S.

zI + 5X2 + 3 -3 ;3 , > 4
2r, + 4X2 + 333 + z4 _ 4 The rank of a logic cut (analogous to the Chvita
2c, + 5X2 + 2X3 + Z4 _ 4 rank of a polyhedral cut) is the minimum number
2 zi + 52 + 3z > 4 of iterations of this recursive procedure required to
2zx + 5z2 + 3z + X4 _ 5 generate the cut.

The fifth inequality is the diagonal sum of the first
four. Note that the first four inequalities are iden- 6 Example: Matching
tical except that the diagonal term is reduced by Problems
one. Also the right-hand side of the sum is in-
creased by one. Logic cuts can be stronger and therefore more use-

A resolvent can be "generated" from a set S of ful than facet-defining cuts.1 A good illustration
inequalities if it is a resolvent of two clausal in-
equalities, each of which is implied by a single in- 2This section represents joint work with Ajai Kapoor.

199

of this is a nonbipartite matching problem. The
augmenting paths traditionally used in the best Figure 2: A very small matching problem.
matching algorithms [11] in effect rely on logic cuts
that strictly imply the less useful facet-defining in-
equalities (odd-set constraints) for the problem.

A matching problem is defined on an undirected p
graph (V, E) for which each edge in E is given a Y1 Y2 Y
weight. The edges connect vertices that may be
matched or paired, and a matching pairs some or
all of the vertices. A matching can therefore be
regarded as a set of edges, at most one of which
touches any given vertex. The weighted matching Theorem 4 An odd set constraint (7) for a
problem is to find a maximum weight matching; thore m a o i ut ofrant most
i.e., matching that maximizes the total weight of matching problem is a logic cut of rank at most
the edges used in the matching.

The matching problem can be written, 2E(U)I -U- 1

max E z. (4) Odd set constraints are strictly implied by aug-
CeE menting path cuts. Consider a matching problem

s.t. E z<1, for v EV (5) on the simple graph of Fig. 6. The odd set con-
s (t. 1 ostraints (facet-defining cuts) are simply the match-
eEEOt) eing constraints yl + y2 _ 1 and y2 + y3 > 1. They

are strictly implied by the augmenting path cut

where 6(v) is the set of edges incident to v. xe is 1 y1 + 2y2+ Y3 > 2, which says that either edge 2 is
when e is part of the matching and 0 otherwise. not in the matching or else edges 1 and 3 are not

The convex hull of possible matchings has a par- in the matching.
ticularly simple description. It is based on the fact In general a path of odd length whose edges cor-
that a matching for a graph (U, E) with an odd respond to yi,,..., yi_ defines an augmenting path

number of vertices can have at most Ilu edges. So cut,
the following odd set constraints are valid: V.i, + -1 yi + + .-. + M

U1 -- I :(M-)(M+-1)

X. L _< , all U C V with 1Ul > 3 and odd, 2 (m. 2- 2 ,
2SEE(U) which says that if the (m + 1)/2 odd segments be-

(6) long to a matching, then none of the (m - 1)/2
where E(U) contains the edges in the subgraph of even segments may belong to it, and vice-versa.
(V, E) induced by U. In fact (5)-(6) define the
convex hull of matchings.

For the purposes of logical analysis it is con- 7 Mixed Integer Program-
veninent to reverse the sense of the matching con- ming
straints (5) and odd set constraints (6) by replacing
variables z. with y. = 1 - zx, so that y. = 1 when Consider a general mixed integer programming
edge e is absent from the matching. (MIP) problem,

: . !16(v)l - 1, for v E V (7) min cx + dy (9)
1U 1() s.t. Az+ By - a

. :! (E(U)- 1 2 {0 E), , n,
all U C V with jUl 3 and odd. (8) A 0-1 point y is feasible if (z, y) is feasible for some

l Uz. Each 0-1 value of y is associated with a poly-
The following is proved in [7]. hedron 11(y) in z-space, namely the set of points

200

satisfying (9) when y is so fixed. The feasible re- X5 - 0.85z 4 = 0 (15)
gion can therefore be regarded as the union of 11(y) X7 - 0.75z6 = 0 (16)
over all feasible y. 7 < 10 (1T)

To write an MIP in logical form, regard the yj's
as atomic propositions. z3 - 30y, < 0 (18)

zs - 30Y2 < 0 (19)
min cx +dy (10) x7 - 5oy3 < o (20)
s.t. YEY Y1+2 <1 (21)

z E U II(y), z1= 14y, (22)
YeY Z2 = 12Y2 (23)

Here y E Y represents a set of logical propositions. Z3 = 10y3 (24)
(10) is actually more general than (9), due to a z, 0, all j
theorem of Jeroslow [9, 10]. It states that (10)
can be written in the form (9) if and only if the Y,12,Y3 E {0, 1}.
polyhedra 1(y) all have the same recession cone. Constraints (12)(13) are flow balance constraints.

An MIP in form (10) can be solved by a branch- (14)-(16) specify yields from the processing units.
and cut algorithm that enumerates linear program- (17) s the presig ut
muing constraint sets defining H(y)'s, where the (17) bounds the output. (18)(20) are "Big M"
enumeration is controlled by the logical proposi- constraints that prohibit flow through a unit unless

tions Y E Y. The enumeration can be markedly it is built. (22)-(24) define the fixed costs.

accelerated by the use of an expanded sense of logic A conventional branch-and-bound tree for this

cuts that obtain in an MIP setting, namely a non- problem appears in Fig. 4. Note that the optimal
valid logic cut. These may cut off feasible solutions solution is to build none of the units.
but do not change the optimal solution.

9 Logic-Based Solution of an8 An MIP Example MIP

Suppose one wants to decide which of three pro-
cessing units to install in the processing network I will now illustrate how logic-based branch-and-
of Fig. 3. The units are represented as boxes. Nat- bound can solve an MIP problem in logical form. It
urally one must install unit 3 if the network is to is convenient to suppose that the objective function
process anything, and one must install units 1 or of (10) is simply cz. This can be done by introduc-
2. Let's suppose in addition that units 1 and 2 ing a continuous variable zj for each dj 9 0, letting
should not both be installed. There is a variable the zi have coefficient 1 in the objective function,
cost associated with the flow through each unit, and augmenting II(y) with the constraint zj = di
a fixed cost with building the unit, and revenue whenever yj = 1. The generic algorithm appears
with the finished product. If z's represent flows in Fig. 5.
as indicated in Fig. 13 and yj's are 0-1 variables The example of the previous section is put in
indicating which units are installed, the problem logical form as follows. Note first that the objec-
has the following MIP -nodel. tive function is already of the form cz. The set S

of logical constraints is simply {-yi V -y2}, which
corresponds to constraint (21). The linear con-

min 3zs + 2.8zs - 9z7 + 2z, + straint set 11(y) consists of constraints (12)-(17),
Z1 + Z2 + Z3 (11) nonnegativity constraints, and the following:

6t. Zi-X2-X4=0 (12) 3=0 ify 1 =0, z1=14 ifyI=1
X6-X3-Xs=0 (13) X5=O ifY2 =0, 22=14 ify 2 =1 (25)
X3-0.9Z2=0 (14) X7=0 ifY3=0, z3=14 ifys=l

201

Figure 3: A simple processing network.

Figure 4: Branch-and-bound solution of a small mixed integer programming problem.

Node 1
Value of relaxation = -13.96

(y1, y2, y3) = (0,0.444,0.2)

Y2/0\Y=I

Node 2 Node 7
Relaxation = -12.15 Relaxation = -7.29

y = (0.444,0,0.2)y=(01,.2

=0 \Y, =1IY =(/ .2 \Y31

Node 3 Node 4 Node 8 Node 9
Relaxation =0 Relaxation = -4.37 Relaxation = 12 Relaxation = 0.71

y (0, 0, 0) y =(1, 0, 0.2) y=(,l1,0) y (,1, 1)

Y3 =/0 \Y=1

Node 5 Node 6
Relaxation = 14 Relaxation = 3.63

y = (,O,0) y =(1,0, 1)

202

Figure 5:
Logic-Based Branch-and-Cut Algorithm for NIP.

Set Uinoo, V = (u ... u) (where u =undeteruined).
Execute Branch(0, , 0).

End.

Procedure Branch(S,k)
If k =0 then

the optimal solution is the best found so far

(infeasible if none found); stop.
Apply a partial or complete satisfiability algorithm to

S, fixing some variables in V if possible.
It no contradiction is fomd, then

Find the minimum LB of cz subject to z E 11(y).
If LBUB then:

Generate separating logic cuts.
Branch:

Pick a literal L containing a variable
that occurs in S.

Perform Branch(S U {L), y, k + 1).
Perform Branch(S U {-L, y, k + 1).

End.

Note that 11(y) is defined even when some compo- (10), results in the same projected epigraph. The
nents of y are undetermined (yi = u). cut is valid if

Before solving this example, it is useful to in-
troduce in the next section some additional logic Ue VeU 1)

cus EY yEYnTcuts.
A cut can be nonvalid (i.e., cut off feasible values
of y), but it never changes the value of the optimal

10 Nonvalid Logic Cuts solution.
Some nonvalid logic cuts can be generated for the

In the context of mixed integer programming it is example of the previous section as follows. Note
useful to define a more general sense of logic cut. that it makes no sense to consider a solution in
Let the graph G for a mixed integer optimization which a unit is installed but carries no flow. Yet
problem (10) be the set such solutions can and do occur in the branch-

and-bound tree. Nodes 5 and 8 of Fig. 4 have
{(cm + dy, z, y) I y E Y, Z E U 11(y)). LP solutions in which the installed unit carries no

ly flow. Computational experience [8, 12] suggests

The epigraph E is that such superfluous nodes can be very numerous
in a branch-and-bound tree.

(z, z,y) I (z', x, Y) E G for some z' < z). This situation can be prevented by adding con-
straints that allow a unit to be installed only if a

The projection of the epigraph onto the space of downstream unit is installed:
continuous variables is -Y1 V Y3 (26)

{(z, z) I (z, z, Y) E E for some y}. -3 2 V Y3 (27)

A logic cut in the extended sense is a constraint and only if at least one upstream unit is installed:

y E T that, when added to the constraint set of Y1 V Y2 V -Y3. (28)

203

These are nonvalid logic cuts because they cut off [8] HookeE, J. N., H. Yan, 1. E. Grossmann, and
feasible values of (y1, yf, y3). It is shown in [8] that R. Raman, Logic cuts for processing networks
they essentially exhaust the nonvalid logic cuts for with fixed costs. Computers and Operations
such a problem. Research 21 (1994) 265-279.

Figure. 2 displays the search tree for a logic-
based solution of the example that uses (26)-(28). [9] Jeroslow, R. E., Representability in mixed

Note that the tree is smaller than the branch-and- integer programming, I: Characterization re-

bound tree of Fig. 4. The superfluous nodes 5 and suits, Discrete Applied Mathematics 17 (1987)

8, as well as other nodes, have been deleted. 223-243.

Logic-based methods have been applied to MIP (10] Jeroslow, R. E., and J. K. Lowe, Modeling
models of chemical processing network design with integer variables, Mathematical Program-
problems [8]. They solve larger problems sub- ring Studies 22 (1984)167-14.
stantially more rapidly than a state-of-the-art MIP
solver with preprocessor (OSL), and in some cases [11] Newhauser, G. L., and L. A. Wolsey, Inte-
solve problems that OSL cannot solve. Logic cuts get and Combinatorial Optimization (Wiley,
are also being applied to truss structure design 1988).
problems with discrete bar sizes [2]. [12] Raman, R., and I. E. Grosmann, Relation

between MILP modeling and logical inference
References for chemical process synthesis, Computers and

Chemical Engineering 15 (1991) 73-84.
[1] Barth, P., Linear 0-1 inequalities and ex-

tended clauses, manuscript, Max-Planck-
Institut fii Informatik, W-6600 Saarbruicken,
Germany, ca. 1993.

(2] Bollapragada, R., 0. Ghattas and J. N.
Hooker, Logic-based optimization of truss
structure design, Carnegie Mellon University,
in preparation.

[3] Chvital, V., Edmonds polytopes and a hierar-
chy of combinatorial problems, Discrete Math-
ematics 4 (1973) 305-337.

(4] Granot, F., and P. L. Hammer, On the use of
boolean functions in 0-1 linear programming,
Methods of Operations Research (1971) 154-
184.

(5] Hammer, P. L., and S. Rudeanu, Boolean
Methods in Operations Research and Related
Areas, Springer Verlag (Berlin, New York,
1968).

[6] Hooker, J. N., Generalized resolution for 0-1
inequalities, Annals of Mathematics and Al 6
(1992) 271-286.

(7] Hooker, J. N., Logic-based methods for op-
timization: A tutorial, presented at ORSA
Computer Science Technical Section meeting,
Williamsburg, VA, USA, January 1994.

204

Figure 6: Logic-based solution of the problem with nonvalid logic cuts.

Node 1
Logic cuts:
-9yi V -Y2
"YI/ V y3
-Y2 V Y3

Y1 VY2 V -Y3f
Value of LP = -21.29

(y, y2 SO) = (0, 0.444, 0.2)

2-0 / \12

Node 2 Node 5
Apply unit resolution: Apply unit resolution:

no variables fixed, fixed 2 = Ys = 1;
simplified cuts are no clauses remain.

-'p V Value of LP = 0.81
11 V "Y3 feasible

Value of LP = -20.37

Node 3 Node 4
Apply unit resolution: Apply unit resolution:

fixed YI =Y =0 fixed y =Y3= 1,
no clauses remain, no clauses remain.

Value of LP = 0 Value of LP = 3.63
feasible, backtrack. feasible; backtrack.

205

Specification and Verification
of Constraint-Based Dynamic Systems

Ying Zhang Alan K. Mackworth
Department of Computer Science Department of Computer Science

University of British Columbia University of British Columbia
Vancouver, B.C. Vancouver, B.C.
Canada V6T 1Z4 Canada V6T 1Z4
zhang~cs.ubc.ca mack~cs.ubc.ca

Abstract

Constraint satisfaction can be seen as a dynamic process that approaches the solution set of the
constraints asymptotically [s]. Constraint programming is seen as creating a dynamic system with
the desired property. We have developed a semantic model for dynamic systems, Constraint Nets,
which serves as a useful abstract target machine for constraint programming languages, providing both
semantics and pragmatics. Generalizing, here we view a constraint-based dynamic system as a dynamic
system which approaches the solution set of the constraints infinitely often. Most robotic systems are
constraint-based dynamic systems with tasks specified as constraints. In this paper, we further explore
the specification and verification of constraint-based dynamic systems. We first develop generalized V-
automata for the specification and verification of general (hybrid) dynamic systems, then explicate the
relationship between constraintbased dynamic systems and their desired behavior specifications.

1 Motivation and Introduction

We have previously proposed viewing constraints as relations and constraint satisfaction as a dynamic process
of approaching the solution set of the constraints asymptotically (8]. Under this view, constraint program-
ring is the creation of a dynamic system with the desired property. We have developed a semantic model for
dynamic systems, Constraint Nets, which serves as a useful abstract target machine for constraint program-
ming languages, providing both semantics and pragmatics. Properties of various discrete and continuous
constraint methods for constraint programming were also examined [8].

Generalizing, here we consider a constraint-based dynamic system as a dynamic system which approaches
the solution set of the constraints infinitely often. One of the motivations for this view is to design and
analyse a robotic system composed of a controller that is coupled to a plant and an environment. The
desired behavior of the controller may be specified as a set of constraints, which, in general, vary with time.
Thus, the controller should be synthesized so as to solve the constraints on-line. Consider a tracking system
where the target may move from time to time. A well-designed tracking control system has to ensure that
the target can be tracked down infinitely often.

Here we start with general concepts of dynamic systems using abstract notions of time, domains and
traces. With this abstraction, hybrid as well as discrete and continuous dynamic systems can be studied in a
unitary framework. The behavior of a dynamic system is then defined as the set of possible traces produced
by the system.

In order to specify desired behaviors of a dynamic system, we develop a formal specification language,
a generalized version of -automata (3]. In order to verify that a dynamic system satisfies its behavior
specification, we develop a formal model checking method with generalized Liapunov functions.

"ShA Can&d Fellow, Canadian Institute for Advanced Researd

206

A constraint-based dynamic system is a special type of dynamic system. We explore the properties of
constraint-based dynamic systems and constraint-based behavior specifications, then relate system verifica-
tion to control synthesis.

The rest of the paper is organized as follows. Section 2 briefly presents concepts of general dynamic
systems and constraint net modeling. Section 3 develops generalized Y-automata for specifying and verifying
desired behaviors of dynamic systems. Section 4 characterizes constraint-based dynamic systems and their
behavior specifications. Section 5 concludes the paper and points out related work.

2 General Dynamic Systems

In this section, we first introduce some basic concepts in general dynamic systems: time, domains and traces,
then present a formal model for general dynamic systems.

2.1 Concepts in dynamic systems

In order to model dynamic systems in a unitary framework, we present abstract notions of time structures,
domains and traces. Both time structures and domains are defined on metric spaces.

Let R+ be the set of nonnegative real numbers. A metric space is a pair (X, d) where X is a set and
d : X x X --* R+ is a metric defined on X, satisfying the following axioms for all z, y, z E X:

1. d(z, V) = d(y, x).

2. d(z, y) + d(y, z) >_ d(z, z).

3. d(z,) = 0 iffz= y.

In a metric space (X,d), d(z,y) is called "the distance between z and y". We will use X to denote the
metric space (X, d) if no ambiguity arises.

A time structure is a metric space (T, d) where T is a totally ordered set with a least element 0, d
is a metric satisfying Vt0 < ti _< t 2 : d(to,t 2) = d(to,ti) + d(t1 ,t 2). We will use T to denote the time
structure (T, d) if no ambiguity arises. A discrete or continuous time structure can be defined according
to the topology of its metric space. For example, the set of natural numbers can define a discrete time
structure, a left closed interval of real numbers can define a continuous time structure.

A domain is a metric space (A, d). Let v : T --+ A be a function from a total order T to a domain A.
A point a' E A is a limit of v, iff VetoVt > to : d(v(t),a*) < e . Any limit is unique if it exists. We will
use limv to denote the limit of v if it exists and IA if it does not. Clearly, if T has a greatest element to,
limt = V(to).

A trace v : T --+ A is a function from a time structure T to a domain A. Let T C T be a downward
closed subset of T, i.e. t E T implies Vt' < t : t' E T. We use limwIT to denote the limit of v on the total
order T. For simplicity in representation, we introduce the following notions: given a time structure (T, d)
and a real number r E R+,

" preQ) = {t' C 7]T' < t), and v(pre(t)) = limq,.0t;

" t- - {t' ETit' < t,d(t,t') > r), and (t -r) = limv,_,;

* t +,r = {t'E TI' > t, d(t, e) <)}.

Clearly, pre(t) = t - 0. If T is discrete, v(pre(t)) is the value of the previous time point and pre(t) = t - 7
whenever.r is small enough.

A time structure T is infinite iffYm > 0,03t E T,Vt > to : d(O,t) * m. We will restrict ourselves to
infinite time structures. This is not a real restriction, since any time structure T can be extended to an
infinite one V') T by letting v(t) = lim l - for all t V T.

207

2.2 Constraint Nets: a model for dynamic systems

We have developed a semantic model, Constraint Nets, for general (hybrid) dynamic systems [10]. We have
used the Constraint Net model as an abstract target machine for constraint programming languages [8],
while constraint programming is considered as designing a dynamic system that approaches the solution set
of the given constraints asymptotically.

Intuitively, a constraint net consists of a finite set of locations, a finite set of transductions, each with
a finite set of input ports and an output port, and a finite set of connections between locations and ports
of transductions. A location can be regarded as a wire, a channel, a variable, or a memory location, whose
values may change over time. A transduction is a mapping from input traces to output traces, with the
causal restriction, viz. the output value at any time is determined by the input values up to that time. For
example, a temporal integration with an initial vakue is a typical transduction on a continuous time structure
and any state automaton with an initial state defines a transduction on a discrete time structure.

A location i is the output location of a transduction F, iff I connects to the output port of F; I is an
input location of F, iff I connects to an input port of F. Let CN be a constraint net. A location I is an
output location of CN if I is an output location of some transduction in CN otherwise it is an input location
of CN. The set of input locations of CN is denoted by I(CN), the set of output locations of CN is denoted
by O(CN); CN is closed if I(CN) = 0 otherwise it is open.

Semantically, a transduction F denotes an equation lo = F(1,. .. , 1,) where 10 is the output location of
F and (11, .. ., ,) is the tuple of input locations of F. A constraint net CN denotes a set of equations, each
corresponds to a transduction in CN. The semantics of CN is a 'solution' of the set of equations [10], which
is a set of pairs of input and output traces satisfying the equations. Let Lc = I(CN)U O(CN) and {A)}EGLc
be a set of domains in CN. A state s of CN is a mapping from the set of locations to their corresponding
domains: i.e. s E xLCAU. Therefore, the semantics of CN is also a set of state traces with domain xLCAI.

We have modeled two types of constraint solvers, state transition systems and state integration systems,
in constraint nets. The former models discrete dynamic processes and the latter models continuous dynamic
processes [8]. Hybrid dynamic systems, with both discrete and continuous components, can also be modeled
in constraint nets [10, 9]. The behavior of a dynamic system is defined as a set of possible input/output
traces produced by the system, in our case, the semantics of the constraint net which models the system.

We illustrate the constraint net modeling with two simple examples. The first is a 'standard' example
of Cat and Mouse modified from [1]. Suppose a cat and a mouse start running from initial positions X, and
Xm respectively, X, > Xm > 0, with constant velocities V < V.. < 0. Both of them will stop running when
the cat catches the mouse, or the mouse runs into the hole in the wall at 0. The behavior of this system is
modeled by the following equations CM1 :

= J(X)(V c),

Zm = J(X.)(V.. c),

c = >ZX)A(z,>0)

where f(X) is a temporal integration with initial state X. At any time, c is 1 if the running condition
(z > x,) A (s,. > 0) is satisfied and 0 otherwise. Let It be the set of real numbers and B = (0, 1). This is
a closed system. The state of this system is (x,, z, c) E 2 x7R x B, with its initial state (X. Xm, 1). If the
cat catches the mouse before the mouse runs into the hole in the wall at 0, i.e. 0 < c < zn, the cat wins;
if the mouse runs into the hole before the cat, i.e. Zm _5 0 < z,, the mouse wins.

Consider another Cat and Mouse problem, where the controller of the cat is synthesized from its con-
straint specification, i.e. z, = z. Suppose the plant of the cat obeys the dynamics u = z where u is
the control input, i.e. the velocity of the cat is controlled. One possible design for the cat controller uses
the gradient descent method [8] on the energy function (Xin - zX)2 to synthesize the feedback control law
u = k . (z - z), k > 0 where the distance between the cat and the mouse xm - z can be sensed by the
cat. The cat can be modeled as an open constraint net with two equations CM 2 :

CC=(X)u, u = k. (z. - zc).

Will the cat catch the mouse?

208

3 Generalized V-Automata

While modeling focuses on the underlying structure of a system, the organization and coordination of com-
ponents or subsystems, the overall behavior of the modeled system is not explicitly expressed. However, for
many situations, it is important to specify some global properties and guarantee that these properties hold
in the proposed design.

We advocate a formal approach to specifying desired behaviors and to verifying the relationship between
a dynamic system and its behavior specification. A trace v : T --+ A is a generalization of a sequence. In fact,
when T is the set of natural numbers, v is an infinite sequence. A set of sequences defines a conventional
formal language. If we take the abstract behavior of a system as a language, a specification can be represented
as an automaton, and verification checks the inclusion relation between the language of the system and the
language accepted by the automaton.

There is always a trade-off between the power of representation, i.e., the class of languages the type
of automaton can accept, and the power of analysis, i.e. the computability of checking the acceptance of
traces. We would like the type of automaton to be powerful enough to state certain temporal and real-
time properties, yet simple enough to have formal, semi-automatic or automatic verifications. We generalize
V-automata [31 and Liapunov functions for our purposes.

V-automata are non-deterministic finite state automata over infinite sequences. These automata were
proposed as a formalism for the specification and verification of temporal properties of concurrent programs.
It has been shown that V-automata have the same expressive power. as Buchi automata [6] and the extended
temporal logic (ETL) [7], which are strictly more powerful than the linear propositional temporal logic [6, 7].
More importantly, there is a formal verification method [3].

In this section, we generalize V-automata to specify languages composed of traces on continuous as well
as discrete time structures, and modify the formal verification method (3] by generalizing Liapunov functions
(8] and the method of continuous induction [2].

3.1 Behavior Specification

Let an assertion be a logical formula defined on states of a dynamic system, i.e. any assertion a on a given
state s, denoted a(s),will be evaluated to either true, s a, or false, s 1& a.

A V-automaton A is a quintuple (Q, R, S, e, c) where Q is a finite set of automaton-states, R C Q is a
set of recurrent states and S g Q is a set of stable states. With each q E Q, we associate an assertion e(q),
which characterizes the entry condition under which the automaton may start its activity in q. With each
pair q, q' C Q, we associate an assertion c(q, q'), which characterizes the transition condition under which the
automaton may move from q to q1. R and S are the generalization of accepting states to the case of infinite
inputs. We denote by B = Q - (R U S) the set of non-accepting (bad) states.

A V-automaton is called complete iff the following requirements are met:

" V EQ e(q) is valid.

" For every q E Q, V.'EQ c(q, q) is valid.

We will restrict ourselves to complete automata. This is not a real restriction, since any automaton can be
transformed to a complete automaton by introducing an additional error state qE E B, with the correspond-
ing entry condition and transition conditions [3].

Let T be a time structure and v : T -+ A be a trace. A run of A over v is a trace r : T - Q satisfying

1. Initialitr v(0) = e(r(0));

2. Cosection:

* inductivity: Vt > 0, 3q E Q and 6 > 0, VO < r < 6 : r(t - r) = q and v(t) J= c(r(t - r), r(t)) and

" continuity: Vt, 3q E Q and 6 > 0, Vt' E t + 6 : r(t') = q and v(t') I- c(r(t), r(t')).

It is easy to check that when T is discrete, the two conditions in Consecution are reduced to one, i.e.
Vt > 0, v(t) 1= c(r(pre(t)), r(t)); and if, in addition, A is complete, every trace has a run. However, if T is
not discrete, even if A is complete, not every trace has a run. For example, a trace with infinite transitions

209

among Q within a finite interval has no run. A trace v is specifiable by A iff there is a run of A over v. The
behavior of a system is specifiable by A, iff every trace of the behavior is specifiable.

If r is a run, let Inf(r) be the set of automaton-states appearing infinitely many times in r, i.e.
Inf(r) = {q Vt3to 2! t, r(to) = q). Clearly, if T has a greatest element to, Inf(r) = r(to). A run r is defined
to be accepting iff:

1. Inf(r) n R 9 0, i.e. some of the states appearing infinitely many times in r belong to R, or

2. Inf(r) g S, i.e. all the states appearing infinitely many times in r belong to S

A Y-automaton A accepts a trace v, written v k A, iff all possible runs of A over v are accepting. A
Y-automaton A accepts a dynamic system S, written S k A, iff for every trace v of the behavior of S,
v A.

One of the advantages of using automata as a specification language is the graphical representation. It is
useful and illuminatin% to represent V-automata by diagrams. The basic conventions for such representations
are the following:

* The automaton-states are depicted by nodes in a directed graph.

" Each initial state is marked by a small arrow, called the entry arc, pointing to it.

" Arcs, drawn as arrows, connect some of the states.

• Each recurrent state is depicted by a diamond shape inscribed within a circle.

" Each stable state is depicted by a square inscribed within a circle.

Nodes and arcs are labeled by assertions. A node or an arc that is left unlabeled is considered to be
labeled with true. The labels define the entry conditions and the transition conditions of the associated
automaton as follows:

" Let q E Q be a node in the diagram. If q is labeled by 0 and the entry arc is labeled by (p, the entry
condition e(q) is given by: e(q) = (p A 0. If there is no entry arc, e(q) = false.

" Let q, q' be two nodes in the diagram. If q' is labeled by 0, and arcs from q to q' are labeled by
oi, i = l..n, the transition condition c(q, q') is given by: c(q, q') = (91i V... V o,) A i. If there is no arc
from q to q', c(q, q) = false.

A diagram representing an incomplete automaton is interpreted as a complete automaton by introducing
an error state and associated entry and transition conditions.

This type of automaton is powerful enough to specify various qualitative behaviors. Some typical
desired behaviors are shown in Fig. 1. Figure 1(a) accepts a trace which satisfies -'G only finitely many
times, Figure 1(b) accepts a trace which never satisfies B, and Figure 1(c) accepts a trace which will satisfy
S in the finite future whenever it satisfies R. For the Cat and Mouse examples, we can have the formal

'S"

(a) (b) (C)

Figure 1: Y-automata: (a) goal achievement or reachability (b) safety (c) bounded response

behavior specifications shown in Fig. 2.

210

(a) Ca

Figure 2: (a) Either the cat wins or the mouse wins (b) The cat catches the mouse persistently

3.2 System Verification

Given a constraint net model of a discrete- or continuous-time dynamic system, and a V-automaton specifi-
cation of a desired behavior, a formal method is developed here for verifying that the constraint net exhibits
its desired behavior.

Let CTN be a constraint net model of a dynamic system, whose behavior is a set of traces. Let { o}CN {tk
denote the validity of the consecutive condition: for every trace v of the behavior of ON,

.. Vt > 0, 6 > 0, V0 < r" 6 : v(t - r) o implies vQt) ' and

* Vt,3 >O0,V' E+6 :'v(t) I= oimplies vQ') .

Clearly, if T is discrete, these two conditions are reduced to one: Vt > 0, v(pre(i)) k o implies v(t) 1 P..
Let OuN be a constraint net with the set of locations Lc and the set of states xLCA, oe e n assertion

indicating the initial state of ON, and A - (Q, R, S, c, c) be a V-automaton. A set of assertions {CtV}9EQ is
called a set of iadarants for mN and A ifs

i dnitialito q E q.e A e(q) -- af.

* Corsscsioa: Vq, q' e Q.{,}ON {c~q, q') --.a}
Given that {c}tQ isast net ofvanam ONsndm, aht of partial functions {paes: x LeA: -'* +

is called a set of tihpon functions for eN and Aa ivf the following conditions are satisfied:

a Non-increase: Vq O Q, q' $:

* Vt. 36= w}ON{c(6, q') - pi .<,.

C Decrease: Let t h denote the current time, o: > 0,Vq E Q,hq' B :

{a4 A p9 = wA^ to = t})ON{c(q, q') -. ' -----

Let the time structure be infinite with either discrete or continuous topology. We conclude that if
the behavior of a constraint net ON is specifiable by a V-automaton and the following requirements are

satisfied the validity of A over OTN is proved:
(I) Associate with eah automaton-state q e Q an assertion cb , such that {,qon. is a set of invariants

o for CN and A.

(L) Associate with each automaton-state q E Q a partial function ps: XL¢AI -- fi, such that {PqIqEQ is

a set of Liapunov functions for ON and A.

211

" D"ied s Yq E Q : aq -- 3p = w.

As in [3], the verification rules (I) and (L) are sound and complete, i.e. A accepts CN iff there exist a
set of invariants and Liapunov functions.

Theorem 1 Let the time structure be infinite with either discrete or continuous topology. If the behavior of
a constraint net CN is specifiable by a V-automaton A, verification rules (I) and (L) are sound and complete.

Proof: (Sketch) Apply the method of continuous induction [21. The detailed proof is shown in Appendix A
of the extended version of this paper. 0

We illustrate this verification method by the Cat and Mouse examples. Consider the first Cat and Mouse
example adopted from [1]. We show that the constraint net model CM, in section 2 satisfies the behavior
specification in Fig. 2(a).

First of all, the V-automaton in Fig. 2(a) is not complete. To make it complete, add an 'error' state
qE E B, with e(qs) = false, c(qs, qE) = true and c(qo, qE) = zc < 0. It is easy to see that CM, is specifiable
by the complete V-autoi -aton.

Secondly, associate with qo, ql,q2,qE assertions Running, CatWins, MouseWins and false respec-
tively. Note that

{z > Zm > O)CMI{z < 0 -- false}

since z, is continuous. (Imagine that if the cat jumps, it may not catch the mouse but hit the wall instead.
Fortunately, this is not the case here.) Therefore, the set of assertions is a set of invariants.

Thirdly, associate with qO, q1, q2, qv the same function: p : 1 x 1R x B -. V+, such that p(zc, Xn, 0) = 0
and p(z,zm,1) = -(Q, + p,). Clearly, p is decreasing at qo with rate 2 and qj can never be reached.
Therefore, it is a Liapunov function.

If we remove the square 0 from node q2 in Fig. 2(a), i.e. q2 E B, the modified behavior specification
states that "the cat always wins". Clearly, not every trace of the behavior of CM1 satisfies this specification.
However, if the initial state satisfies 4 > 40^, in addition to X, > Xm > 0, we can prove that "the cat
always wine.

To see this, let A = - - - and let Inv denote ' - = A. Associate with qo, q, q2, qE assertions
Running A Inv, Cat Wins, false and false respectively. Note that

{Running A Inv}CMi {Running --+ Running A Inv)

since the derivative of L - , is 0 given that Running is satisfied; and

{Running A Inv)CM f MouseWin -- false}

since zm is continuous. Therefore, the set of assertions is a set of invariants.
Associate with q0, q1,q2, q9 the same function: p : 1Z x R x B - I + , such that p(Zc,z,,,0) = 0 and

p(zc, Zm, 1) "-(= + -). Again, it is a Liapunov function.
Consider the second Cat and Mouse example, in which the motion of the mouse is unknown, but the

cat. tries to catch the mouse anyhow. Clearly, not every trace of the behavior of the constraint net CM2
satisfies the behavior specification in Fig. 2(b). For example, if zi = in all the time, the distance between
the cat and the mouse will be constant and the cat can never catch the mouse. However, suppose the mouse
is short-sighted, i.e. it can only see the cat if their distance 1zm - z, < 6 < c, and when it does not see the
cat, it will stop running within time r.

The short-sighted property of the mouse is equivalent to adding the following assumption to CM2 :

{Iz-m - ZCI > 6 A km = OCM2{Iz - z=l > 6 - i = 0)

i.e. the mouse will not run if it does not see the cat. The maximum running time property of the mouse is
equivalent to adding the following assumption to CM2 : let l be the time left for the mouse to run when it
does not see the cat,

{Im - ZcI < 6}CM2 f{Iz. - -.J 12 6 A m, 6 0 -4 It -- r)

and

{IZm - Ztl > 6 Ain 6 0 A I, = I Ate = t}CM2 {JIZ - zJ >_ 6 A m # 0 - <_ 1 - d(tc,t)).

212

We show that no matter how fast the mouse may run, the cat tracks down the mouse infinitely often
(including the case in which the mouse is caught permanently).

In order to prove this claim, we may decompose the automaton-state qo in Fig. 2(b) into two automaton-
states qoo and q0o as shown in Fig. 3. This automaton is not complete. To make it complete, add an 'error'
state qg E B with e(qa) = false, c(qE, qE) = true and c(qoo, q) = Escape.

q , , Tta: 6II,- .e A -

7 %1

Ec,e: I7,-Zxcit A 4=

Figure 3: A refinement of the cat-mouse specification

Associate with automaton-states q0o, qoi, qi, qZ assertions Track, Escape, Caught and false respec-
tively. Note that

{Track}CM2{Escape -- false}

because of the short-sighted property of the mouse. Therefore, the set of assertions is a set of invariants.
Let dm E R+ be the maximum distance between the cat and the mouse. Associate with automaton-

states qoo, qo1, iq, qE functions P.., Piol, p., and P,, respectively, where

po. =(2m-Zc) 2 , Pqaj =adl+lI, Pq= PqE = d+r.

The feedback control law of the cat guarantees that p,,o decreases at qoo at a rate not less than 2We2 . The
maximum running time property of the mouse guarantees that pqo decrease at qoI at a rate not less than 1.
Therefore, the set of functions is a set of Liapunov functions.

4 Constraint-Based Dynamic Systems

In this section, we first explore the relationship between a constraint solver ani i;.s desired behavior specifi-
cation, then define constraint-based dynamic systems as a generalization of r traint solvers.

4.1 Dynamic process and constraint solver

Constraint satisfaction can be seen as a dynamic process that approaches the solution set of the constraints
asymptotically, and a constraint solver, modeled by a constraint net, exhibits this required behavior [8].
Here we briefly introduce some related concepts.

Let (A, d) be a domain. Given a point a E A and a subset A* C A, the distance between a and
A* is defined as d(a, A*) = inf.'eA"{d(a, a*)}. For any c > 0, the e-neighborhood of A* is defined as
N'(A") = {afd(a, A') < c4; it is strict if it is a strict superset of A*. For a function v : T --- A from a total
order T, v approaches A* iff Vc3toVt 2! to : d(v(t), A*) < c.

Let S be a domain indicating a state space and T be a time structure which can be either discrete or
continuous. A dynamic process p is a function p : S --+ S7' with p(s)(0) = s, Vs E S. For any subset S* C S,
let O,(S*) = {p(s)(i)ls E S*,t 4 T}. S* is an equilibrium of p if Op(S*) = S*. S is a stable equilibrium of
p if S= is an equilibrium and Ve36 : O,(N6(S')) g NI(S*). S* is an attractor of p iff there exists a strict
e-neighborhood NI(S*) such that Vs E N'(S*), p(s) approaches S*; S* is an attractor in the large iff Vs E S,

213

.p(s) approaches S*. If S is an attractor (in the large) and S" is a stable equilibrium, S" is an asymptotically
stable equilibrium (in the large). ,

Let C = {Ci)je be a set of constraints, whose solution sol(C) = {sIVi E I : Ci(s)} is a subset of a state
space S. A constraint solver for C is a constraint net CS whose semantics is a dynamic process p : S --. Sr

with sol(C) as an asymptotically stable equilibrium. CS solves C globally iff sol(C) is an asymptotically
stable equilibrium in the large.

We have discussed two types of constraint solvers: state transition systems and state integration systems.
Various discrete and continuous constraint methods have been presented, and also analyzed using Liapunov
functions [8].

4.2 Constraint-based computation and control

Given a set of constraints C, let C' denote the assertion which is true on the e-neighborhood of its solution
set, N'(sol(C)) C S, and let .A(C'; 3) denote the V-automaton in Fig. 4(a). Clearly, CS solves C iff
there exists an initial condition 0 D sol(C) such that Ve : CS(e) 1= A(C'; 0); CS solves C globally when
e = S. We call A(C'; 3) an open specification of the set of constraints C. Note that it is important to have

% 'Ic 'C S:-19

(a) (b)

Figure 4: Specification for (a) Constraint solver (b) Constraint-based dynamic system

open specifications, otherwise, if we replace C' with sol(C), a constraint solver for C may never satisfy the
specification, since it may take infinite time to approach sol(C).

However, requiring the integration of a controller with its environment to be a constraint solver is still
too stringent for a control problem, with disturbance and uncertainty in its environment. If we consider the
solution set of a set of constraints as the 'goal' for the controller to achieve, one relaxed requirement for the
controller is to make the system stable at the goal. In other words, if the system diverges from the goal by
some disturbance, the controller should always be able to regulate the system back to its goal. We call a
system CB constraint-based w.r.t. a set of constraints C, iff V : CB k A(C'; C) where A(C'; C) denotes
the V-automaton in Fig. 4(b). In other words, a dynamic system is constraint-based iff it approaches the
solution set of the constraints infinitely often.

We may relax this condition further and define constraint-based systems with errors. We call a system
CB constraint-based w.r.t. a set of constraints C with error 6, iff V > 6 : CB = A(Cl; 0); 6 is called the
steady-state error of the system. Normally, steady-state errors are caused by uncertainty and disturbance
of the environment. For example, the second cat-mouse system CM2 is a constraint-based system with
steady-state error 6, which is the radius of the mouse sensing range.

IfA(C'; 0) is considered as an open specification of a constraint-based computation for a closed system,
A(C';*) can been seen as an open specification of a constraint-based control for an open or embedded
system.

We have developed a systematic approach to control synthesis from requirement specifications [8]. In
particular, requirement specifications impose constraints over a system's global behavior and controllers can
be synthesized as embedded constraint solvers which solve constraints over time. By exploring a relation
between constraint satisfaction and dynamic systems via constraint methods, discrete/continuous constraint
solvers or constraint-based controllers are derived.

We have developed here a behavior specification language and a formal verification method for dynamic
systems. With this approach, control synthesis and system verification are coupled via requirement specifi-
cations and Liapunov functions. If we consider a Liapunov function for a set of constraints as a measurement
of the degree of satisfaction, this function can be used for both control synthesis and system verification.

214

5 Conclusion and Related Work

We have presented a formal specification language, called generalized V-automata, for desired behaviors of
dynamic systems. We have also presented a formal verification method, using generalized Liapunov functions,
for checking that a dynamic system exhibits its desired behavior. A constraint-based dynamic system can
be modeled by a constraint net, whose desired behavior can be specified by a V-automaton. The Liapunov
functions for a given constraint specification can be used for both control synthesis and system verification.

Some related work has been done recently along these lines. Nerode and Kohn have proposed the
notion of open specification for control systems [4]. Saraswat et al. have developed a family of timed
concurrent constraint languages for modeling and specification of discrete dynamic systems [5]. Problems on
specification and verification of hybrid dynamic systems have become a new challenge to traditional control
system design and traditional programming methodologies [1]. Our work is unique in that we distinguish the
executable (modeling) and logical (requirement) specifications, and develop the model checking technique
based on properties of dynamic systems.

Acknowledgement

We wish to thank Nick Pippenger and Runping Qi for valuable discussions. This research was supported
by the Natural Sciences and Engineering Research Council and the Institute for Robotics and Intelligent
Systems.

References
[1] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems. Number 736 in

Lecture Notes on Computer Science. Springer-Verlag, 1993.

(2] G. F. Khilmi. Qualitative Methods in the Many Body Problem. Science Publishers Inc. New York, 1961.

[3] Z. Manna and A. Pnueli. Specification and verification of concurrent programs by V-automata. In Proc.
14th Ann. ACM Symp. on Principles of Programming Languages, pages 1-12, 1987.

[4] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controllability, observability.
In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, number 736 in
Lecture Notes on Computer Science. Springer-Verlag, 1993.

[5] V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in timed concurrent constraint languages.
In B. Mayoh, E. Tyugu, and J. Penjam, editors, Constraint Programming, NATO Advanced Science
Institute Series, Series F: Computer And System Sciences. 1994.

[6] W. Thomas. Automata on infinite objects. In Jan Van Leeuwen, editor, Handbook of Theoretical
Computer Science. MIT Press, 1990.

[7] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72 - 99, 1983.

[8] Y. Zhang and A. K. Mackworth. Constraint programming in constraint nets. In First Workshop on
Principles and Practice of Constraint Programming, pages 303-312, 1993.

[9] Y. Zhang and A. K. Mackworth. Design and analysis of embedded real-time systems: An elevator
case study. Technical Report 93-4, Department of Computer Science, University of British Columbia,
February 1993.

[10] Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid dynamic systems, 1994.
Working Paper.

215

GSAT and Dynamic Backtracking

Matthew L. Ginsberg David A. McAllester
CIRL MIT Al Laboratory

1269 University of Oregon 545 Technology Square
Eugene, OR 97403 Cambridge, MA 02139

Abstract systematic procedures explore the space in a fixed or-
der that. is independent of local gradients; the fixed

There has been substantial recent interest order makes following local gradients impossible but
in two new families of search techniques. is needed to ensure that no node is examined twice
One family consists of nonsystematic meth- and that the search remains systematic.
ods such as GSAT; the other contains sys- Dynamic backtracking [6] attempts to overcome this
temtic approaches that use a polynomial problem by retaining specific information about those
amount ofjustification information to prune portions of the search space that have been eliminated
the search space. This paper introduces a and then following local gradients in the remainder.
new technique that combines these two ap- Unlike previous algorithms that recorded such elimi-
proaches. The algorithm allows substantial nation information, such as dependency-directed back-
freedom of movement in the search s tracking [15], dynamic backtracking is selective about
but enough information is retained to en- the information it caches so that only a polynomial
sure the systematicity of the resulting anal- amount of memory is required. These earlier tech-
ysis. Bounds are given for the sise of the niques cached a new result with every backtrack, using
justification database and conditions we pre- an amount of memory that was linear in the run time
seited that guarantee that this database will and thus exponential in the mse of the problem being
be polynomial in the sise of the problem in solved.
question. Unfortunately, neither dynamic nor dependency-

directed backtracking (or any other known similar

1 INTRODUCTION method) is truly effective at local maneuvering within
the search space, since the basic underlying methodol-

The past few years have seen rapid progress in. ogy remains simple chronological backtracking. New

the development of algorithms for solving constraint- techniques are included to make the search more effi-
satisfaction problems, or csPs. CsPs arise naturally in cient, but an exponential number of nodes in the search

subfields of A, from planning to vision, and exale space must still be examined before early choices can

include propositional theorem proving, map coloring be retracted. No existing search technique is able to

and scheduling problems. The problems are difficult both move freely within the search space and keep

because they involve search; there is never a guarantee track of what has been searched and what hasn't.

that (for example) a successful coloring of a portion of The second class of algorithms developed recently pre-
a large map can be extended to a coloring of the map sume that freedom of movement is of greater impor-
in its entirety. tance than systematicity Algorithms in this class

The algorithm developed recently have been of two achieve their freedom of movement by abandoning the

types. Systematic algorithms deter mine whether a o conventional description of the search space as a tree

lution exists by searching the entire space. Localalo- of partial solutions, instead thinking of it as a space of

rithms use hill-clibing techniques to find a solution total assignments of values to variables. Motion is per-
quickly but are notupytemstic in that they search the mitted between any two assignments that differ on a

entire space in only a probabilistic sense. single value, and a hill-climbing procedure is employed
to try to minimise the number of constraints violated

The empirical effectivenm of these nouystematic al- by the overall assignment. The best-known algorithms
gorithms appears to be a result of their ability to fol- in this class are min-conflicts [11] and GSAT (14].
low local gradients in the search space. Traditional

216

Mi-conflicts has been applied to the scheduling do- namic backtracking called partial-order dynamic back-
main specifically and used to schedule tasks on the tracking, or PD9. This algorithm builds on work of
Bubble space telescope. GsAT is restricted to Boolea McAllester's [10]. Partial-order dynamic backtracking
satisiablity problems (where every variable is as- provides greater flexibility in the allowed set of search
signed simply true or false), and has led to remark- directions while preserving systematicity and polyno-
able progress in the solution of randomly generated mid worst case space usage. Section 6 presents a new
problems of this type; its performance is reported variant of dynamic backtracking that is still more flex-
[12, 13, 14] as surpassing that of other techniques such ible in the allowed set of search directions. While this
as simulated annealing [8] and systematic techniques final procedure is still systematic, it can use exponen-
based on the Davis-Putnam procedure [4]. tial space in the worst case. Section 7 presents some

GSAT is not a panacea, however there are many prob- empirical results comparing PDB with other well knownGsATis ot paace, , her ar may pob. algorithms on a clas of "local" randomly generated 3-
lems on which it performs fairly poorly. If a problem SAT problems. Concludins remarks are contained in
has no solution, for example, GSAT will never be able Section 8, and procl appear in the full paper.
to report this with confidence. Even if a solution does
exist, there appear to be at least two possible difficul-
ties that SAT May encounter. 2 CONSTRAINTS AND NOGOODS

First, the GSAT search space may contain so many local
minima that it is not clear how osAT can move so as to We begin with a slightly nonstandard definition of a
reduce the number of constraints violated by a given CSP.
assignment. As an example, consider the cs of gen-
erating crossword pussles by filling words from a fixed Definition 2.1 By a constraint satisfaction problem
dictionary into an empty frame (7]. The constraints (I, V, a) we uill mean a finite set I of variables; for
indicate that there must be no confict in each of the each a E I, there is a finite set V of possible values
squares; thus two words that begin on the same square for the variable a. x is a set of constraints each of
must also begin with the same letter. In this domain, the form -[(zi = ..) A (a, = kvi)] where each z,
getting "close" is not necessarily any indication that is a variable in I and each vi is an element of V..
the problem is nearly solved, since correcting a conflict A solution to the csP is an assignment P of vlues
at a single square may involve modifying much of the to variables that satisfies every constraint. For each
current solution. Konolige has recently reported that variable a we require that P(a) E V. and for each con-
GSA? specifically has difficulty solving problems of this straint -[(u' = vi) A ... A (ah = v&.)] woe require that
sort [9]. P(Zj) 0 vi for some mi.

Second, GSAT does no forward propagation. In the By the sise of a constraint-satisfaction problem
crossword domain once again, selecting one word may (I, V, P), we will mean the product of the domain sizes
well force the selection of a variety of subsequent of the various variables, Ij. IV. .
words. In a Boolean satisfiability problem, assging
one variable the value true may cause an immediate The technical convenience of the above definition of a
cascade of vlues to be assigned to other variables via constraint will be clear shortly. For the moment, we
a technique known as unt resolution. It seems plausi- merely note that the above description is clearly equiv-
ble that forward propagation wW be more common on alent to the conventional one; rather than represent
realistic problems than on randcmy generated ones; the constraints in terms of allowed value combinations
the most difficult random probkau appear to be tan- for various variables, we write axioms that disallow
81s of closely reated individual variables while nat- specific value combinations one at a time. The sie of
urally occurring problems tend to be tangles of se- a csp is the number of possible assignments of values
quences of related variblea. Furthermore, it appears to variables.
that asAT's performance degrades (relative to system-
atic approaches) as these sequences of variables ise St a ticalgorithms attemptin to find a solution[3]. ao •CS typically work with partial solutions that

are then discovered to be inextensible or to violate
Our aim in this paper is to describe a new search pro- the given constraints; when this happens, a backtrack
cedure that appears to combine the benefits of both of occurs and the partial solution under consideration
the earlier approaches; in some very loose sense, it can is modified. Such a procedure will, of course, need
be thought of as a systematic version of eSAT. to record information that guarantees that the same
The next three sections summarise the original dy- partial solution not be considered again as the searchnamic bathrac sin aorithm (6], preseting it from proceeds. This information might be recorded in thethe perspeci ofloal erch. Th], senteintfron structure of the search itself; depth-first search withthe perspective of local e. The termination chronological backtracking is an example. More so-profis omitted here but can be foundin earlier Pa- phisticated methods maintain a database of some form
pen [6, 10]. Section 5 present a modification of dy- indicating explicitly which choices have been elimi-

217

nated and which have not. In this paper, we will use Denmark

a database consisting of a set of nagood. (5].

Deaultion 2.2 A nogood is as eawpesion of t form

(al = v) A...A(&=v)-a 6 (1) CsechoslovBkia

A nogood ca be used to represent a constraint an a

implication; (1) is logically equivalent to the constraint England

= VI) A. A X= V) A (a = v)] Figure 1: A small map-coloring problem

There are clearly many different ways of representinga given constraint as a nogood. As we have remarked, dynamic backtracking accumu-
lates information in a set of nogoods. To see how this

One special nogood is the emptp nogood, which is tan- is done, consider the map coloring problem in Figure 1,
tologically false. We will denote the empty nogood by repeated from [6]. The map consists of five countries:
I; if.L can be derived from the given set of constraints, Albania, Bulgaria, Czechoslovakia, Denmark and Eng-
it follows that no solution exists for the problem being land. We asume - wrongly - that the countries border
attempted. each other as shown in the figure, where countries are

The typical way in which new nogoods are obtained is denoted by nodes and border one another if and only
by resolving together old ones. As an example, sup- if there is an arc connecting them.
pose we have derived the following: In coloring the map, we can use the three color red,

green and blue. We will typically abbreviate the colors
=) A-and country names to single letters in the obvious way.

(a = a) A (z = c) - U * 6 V2 The following table gives a trace of how a conventional
(V = b) -- u 6 us dependency-directed backtracking scheme might at-

tack this problem; each row shows a state of the pro-
where vi, v2 and vs are the only values in the domain cedure in the middle of a backtrack step, after a new
of w. It follows that we can combine these nogoods to nogood has been identified but before colors are erased
conclude that there is no solution with to reflect the new conclusion. The coloring that is

(a =) A (=)A (z=c) (2) about to be removed appears in boldface. The "drop'
column will be discussed shortly.

Moving z to the conclusion of (2) gives us A B C D E add drop

(a=.)A(I=6)-4z:0 c g .r A= C,4C , I
r g b r A= -D r 2

In generalsuppose we have acolection of nogoodsof r p b g B =g- D 9L 3
the form v # b b r A= -EAr 4

g b b g B =g- E $g 5
aji~ ~ ~ ~ ~ = 6i A .it i,- 6V b D6b-+E#6 6

asi varies, where the same variable appears in the r 9 b b (A =v) A(B = g) 7 6
condsions of all the nogoods. Suppose further that D 6 b
the antecedents all agree as to the value of the ai's, so r g 6 A= - B Vg 8 3,5,7
that any time xi appears in the antecedent of one of
the nogoods, it is in a term i = vi for a fixed v. Jthe We begin by coloring Albania red and Bulgaria green,
nogoods collectively eliminate all of the possible values and then try to color Csechoslovakia red as well.
for a, we can conclude thatj (= vj) is inconsistent; Since this violates the constraint that Albania and
moving one specific it to the conclusion gives us Csechoslovakia be different colors, nogood (1) in the

above table is produced.
S(=) -.+ c # vb (3) We change Csechoslovakia's color to blue and then

job turn to Denmark. Since Denmark cannot be colored

As bore, note the freedom in our choice of varie red or green, nogoods (2) and (3) appear; the onlyAs bfor, nte te feedm inourchoce o wu~ale irmaiingcolor fee Denmark is blue.
appeaing in the conclusion of the nogood. Since the rem ing
nest step in our search algorithm will presumably sat- Unfortunately, having colored Denmark blue, we can-
isfy (3) by changing the value for sh, the selection of not color England. The three nogoods generated are
consequent variable corresponds to the choice of vari- (4), (5) and (6), and we can resolve these together be-
able to Oip in the terms used by aSAT or other hill- cause the three conclusions eliminate all of the possible
climbing algorithms, colors for England. The result is that there is no sole-

218

tion with (A = P)A(B = #)A(D = 1.), which we rewuite
as (7) above. This can in turn be resolved with (2) and Procedure 3.2 (Dynamic backtracking) To solve
(3) to pt (),correctly indicating that the color of red &CUP
for Albania is inconsistent with the choice of ween for
Bulgarma. The analyus can continue at this point to P : any complete assignment of values to variables
pradually determine that Bulgaria h" to be , Den r: o
ark can be preen at blue, and England must the be until either P is a solution or I1 E r:

th. color not chosen for Denmark. -y: any constraint violated by P
r: slnp(r'u -Y)

As we mentioned in the introduction, the problem with P := ay acceptable next assignment for r
this approacht is tha the set r ot nogoods grows mono-
tonically, with a new nogood being added at "Cr To simpliy the discussion we assume a fied total or-
step. The number of nogoods stored therefore prows der on the variables. Versions of dynamic backtrack-
pnenally wit the u of n th presmaby re- ing with dynamic rearrangement of the variable order
probflem ith ith maye bomte prbem da can be found elsewhere [6, 10]. Whenever a new no-prolemis ha itmaybeomeiaca~n dfliulttogood is added, the fixed variable ordering is used textend the partial solution P without violating one of select the variable that appears in the conclusion ofthe nogoods in r. the nogood - the latest variable always appears in the

Dynamic backtracking deas with this by discarding conclusion. The subroutine simp dloses the set of no-
nogoods when they become 'reevant' in the sense goods under the resolution inference rule discussed in
that their anitecedlentsno loniger match the partial so. the previous section and removes all nogoods which
lution in question. In the extample above, nogoods can have an antecedent a = v such that a 4v appears in
be eliminated as indicated in the Sinal colm of the the conclusion of some other nogood. Without giving
trace. When we derive (7), we remove (6) because a detailed analysis, we note that simplification ensures
Denmark is no longe colored blue. When we derive that r remains acceptabl. To prove termination we
(8), we remove all of the nogoods with B = # in their introduce the following notation:
antecedents. Thus the only information we retain is
that Albanias red color precludes red foir Ciechoslo- Definition 3.3 For any accetable r and variabl a,
vakia Denmark and England (1, 2 and 4) and also wee define the live domain of a to be those values v
green for Bulgaria (3). suc that. a#Av does not appear in the conclusion of

any .opd ,,n r. We will denote the siz of t Ine
3 D N~h C B CKT ACKNGdomatin of a by lair, and ,uil denote by in(r) the tuple
S D NAMC B CKT ACKNG(laialr,..., la.ir) ushere al,. -- , a. ame the variables in

the CSP in their specified order.
Dynamic backtracking ue the sad of nogoods to both Gv .p~l ,w eietess frt
recor information about the portion of the search Gn nacpskr e&ieM ieo ob
space that has been eliminated and to record the cur-r

dure. The current partial assignment is encoded in the *L.>

antecedents of the curent nogood set. More formally.

Definition 3.1 An acceptable next assignment for a Informally, the se of r is the size of the remaining
naoao set r is an assignment P satisfyin everI no- search spac given the live domains for the variables
good in r ausd cutry antecedent of everyV such nogood. and assuming that all information about a' will be lost
we wil calla set of nopori. r acceptal if no tw no- when we change the vaue for any variable a, < as.
gsodsin r here the &ame cnuion and eitheri j.e1
or then e ists an accable nows assignment for r. Lemma 3.4 Suppse that r an Va such that

MM(r is keiorpial less than m(F'). Then
1fr is acceptable the antecedents of the nogoods in r sizo(r) < six*(r").
induce a partia asingument of values to variables; any
accept" a dl n assignment must be an extensioni of The termination proof (which we do not repeat here)
this pattiali assignment. In the above table, for exam- is based on the observation that every simplification
ple, nogoods (1) through (6) encode the partial, assig- leioaphcll reduces w(r). Assuming that r =0o
meat Sim by A= r, B= y,and D =b. Nogoods (1) initially, since siz.(0). =- IL IV. Iit follows that the
thoughi (7) fagl to encode a partial assignment because running time of dynamic backtracking is bounded by
dhe seventh nogood is inconsistent with the partial as- the size of the problem being solved.
sigument encoded in nogoods (1) through (6). This
is why the sixth nogood is removed when the seventh Proposition 3.5 Any acceptable set of nogoodt can
nogood is added. be stored in o(n~ai) space where a is the nber of

21.9

WarueaGl and V s the maimum domain se of any ultimately both constrains the allowed directions of
*6&tk mieN.. motion and forces the procedure to search systemati-

cally. Dynamic backtracking cannot get stuck in local
It -is worth considering the behavior of Procedure 3.2 minima
when applied to a csP that is the union of two dis- Both systematicity and the ability to follow local gm-
joint csPi that do not share variables or constraints. dients are desirabe. The obertions of the previous
If each of the two subproblems is unsatisfiable and the pasarerphs, however, indica e tha these two proper
variable ordering interleaves the variables of the two ties are in cowndv - systematic enumeratwon of the
subproblems, a classical backtracking search win take search space appears incompatible with gradient de-
time proportional to the product of the times required scent. To better understand the interaction of system-
to search each assignment space separately In con-
trast, Procedure 3.2 works on the two problems inde- aticty and local sradients, we need to exine more
pendently, and the time taken to solve the union of closely the structure of the nogoods used in dynamic
problems is therefore the sum of the times needed for
the individual subproblems. It follows that Procedure We have already discussed the fact that a single con-
3.2 is fundmentall different from clasical backtrack- straint can be represented as a nogood in a variety of
ing o backjumplg procedures; Procedure 3.2 is in ways. For example, the constraint -(A = r A B = g)
fact what has been calle a polpyomia space agrvs- can be represented either as A = r-+ B # g or as
sive backrncking pooesdat [10]. B = g -+ A A r. Although these nogoods capture

the same information, they behave differently in the
dynamic backtracking procedure because they encode

4 DYNAMIC BACKTRACKING AS different partial truth assignments and represent dif-
LOCAL SEARCH ferent choices of variable ordering. In particular, the

set of acceptable next assignments for A = v -+ B # g
Before proceeding, let us highlight the obvious similar- is quite different from the set of acceptable next as-
ities between Procedure 3.2 and Selman's description signuents for B = g -+ A 6 P. In the former case
of WAT (14]: an acceptable assignment must sati A = r; in the

latter case, B = g must hold. Intuitively, the for-
Procedure 4.1 (GsAT) To solve a cSP: mer nogood corresponds to changing the value of B

while the latter nogood corresponds to chansin that
fo i:= I to MAX-TRUS of A. The manner in which we represent the constraint

P := a randomly generated truth assignment -,(A = r A B = y) influences the direction in which
for j:= 1 to MAx-lIws the search is allowed to proceed. In Procedure 3.2, the

if P is a solution, then return it choice of representation is forced by the need to respect
else Sip any variable in P that results in the fixed variable ordering and to change the latest

the greatest decrease in the number variable in the constraint. Similar restrictions exist
of unsatisfied clauses in the original presentation of dynamic backtracking

end if itself [16.
end for

end foeretn flure 5 PARTIAL-ORDER DYNAMIC

BACKTRACKING

The inner loop of the above procedure makes a local Partial-order dynamic backtracking [10] replaces the
move in the search space in a direction consistent with fixed variable order with a pnrtialorder that is dynami-
the goal of stisfying a mazimum number of clauses; cdly modified during the search. When a new nogood
we wia say GSAT follows the local grdient of a is added, this partial ordering need not fix a unique0m axsetr objective function. B ut local Search can get r p e e t t o h r a e c n i e a l h i e i
stuck in local minima; the outer loop provides a partial representation - there can be considerable choice inthe selection of the varible to appear in the conclusionescape by givin the procedure several independent of the nogood. This leads to freedom in the selection
chances to lad a solution, of the variable whose value is to be changed, thereby

Like GXT, dynamic backtracking examines a sequence allowing greater flexibility in the directions that the
of total assigmmnts. Initially, dynamic backtrackig procedure can take while trversing the search space.
has condderabe freedom in selecting the next assign- The locally optimal gradient followed by GsAT can be
meat; in many cases, it can update the total assign- adhered to more often. The partial order on variables
meat in a manner identical to GSAT. The nogood set 2Note, however, that there is still consideral freedom

1TWl1 bser atim remains true even if backumping in the choice of the constrint itself. A total swient
tJcakqiss we used. usualy violates many different constraints.

220

Is repressnted by a et of ordering constraints called
4j4 conditions. Procedure 5.5 To solve a csP:

Deaid~oin 5.1 A safety ondition is an asertion of P := any complete assignment of values to variables

he m a < ywha nedm e, riaes. 1e r:=

4 setS of safety conditions, we wXdnt b S h S:= 0
transitive cosure of <, sayng ta" s is acyclic if 5 until either P is a solution or I E F:

i is m et-rde. We Will rite. a <S Y o Imnee -f := a constraint violated by P

a <5s an 1 s a. (r,S) := ,p(Lr, S,-)
P := any acceptable next assignment for r

In ou words, y if there is some (possibly empty)
equence of softy conditions Procedure 5.6 To compute sinp(F, 5, -j):

a < s < ... < ZX < I select the conclusion a of 7 so that S U S is acyclic

Te requirement of antisymmetry means simply that r:= r u fl)
there wre s two d nct sad y fo which a <ya sad S:=W(SUS.,.)

V5 a; in oter words, <S has no "loop sand is par- remove from r each nogood with a in its antecedent
tial order on the variabl. In this section, we restrict t vaues for i the
our attentioa to acycic sets of safety conditions. possible vanes for X Men

p := the result of resolving al nogoods in F with a

Definition 5.2 For a naogood , we mill denote 6 S1 in their conclusion

M~e set of all safety condtiosa < y suach& ta.isin (r, S) := sip(r, s,p)
the antecedent of- and I ti e variable in its concl- end if

#ion.etu (F, S)
The above simpfifcation procedure maintains the in-

Infemsaly, we require variables in the antecedent of variant that F be acceptable and S be acyclic; in addi-
nogoods to prieced the varast in their conclusions, tion, the time needed for a single call to smp appears
mace the antecedent variables have been used to con- to grow signicantly sublinearly with the ,se of the
drain the live domain of the conclusions. problem in question (see Section 7).

The state of the partial order dynamic backtracking Them S.7 Procedure 5.5 terminate. Tne number
procedurei represented by apair (r, S) consisting of of cakt s impi bounded by the size of the probL m
a se of -ogoods and a set of safety conditions. In b s
many ms, we wm be interested in only the ordering o
infOrmatioa about variables that can precede a Axed As an example, suppose that we return to our map-
variable . To discd the rest of the ordering informa- coloring problem. We begin by coloring all of the coun-
io, we discard ,all of the safety conditions involving tries red except Bulgria, which is green. The table on

say 7aziaMe I that follows a, and then record only the next page shows the total assignment that existed
that I does indeed follow . Somewhat more formally: at the moment each new nogood was generated.

DdmAtiom 5.3 Per m set S of safety conditions and The initial coloring violates a variety of constraints;
miabla, we defin the weakening of S at , to be de- suppose that we choose to work on one with Albania
noted W(S, a), to be Me set of saety conditions gifen in its conclusion because Albania is involved in three
byp remm gvs m S all sferty condions of the form violated constraints. We choose C = r -+ A #r
s< wher <S V sd then adding the safety com- specifically, and add it as (1) below.
to w < I for all suc . We next modify Albani to be blue. The only con-

The set W(Sa)isaweakening ofSin thewnthat straint violated is that Denmark and England be dif-ThesetW(S)ia ~ o~inbesnselmt fereat colors, sowe add (2) to r. This suggests that we
evr oa reigcnitent with S(,) iswe a(,) lo ,.tuit change the color for England; we try green, but this
more total orderns tha S does; for eual if s conflicts with Bulgaria. If we write the new nogood
speies total order then (S) aoes;ows eanypoder as B = g -+ B 6 g, we will change Bulgaria to blue
speces total urder then W(S,a) allows any order and be done. In the table above, however, we make
wch ge with S up to sad fo l dign the variable the less optimal choice (3), changing the coloring fore. In gen , we have the following: England again.

Lemma 5P4 or amy set S of safety conditions, sari- We are now forced to color England blue. This con-
able a, and total order < consistent wi th safety licts with Albania, and we continue to leave England
oonditns W(S,a), thmiex a total order con- in the conclusion of the nogood as we add (4). This
sisentuiS S that agrees With < thOugh . nogood resolves with (2) and (3) to produce (5), where

221

we have once again made the wont choice and put D in order makes this constraint looser than previously, but
the conclusion. We add this nogood to r and remove it is still present. In this section, we allow cycles in the
nogood (2), which is the only nogood with D in its nogoods and safety conditions, thereby permitting ar-
antecedent. In (6) we add a safety condition indicat- bitrary choice in the selection of the variable appearing
ing that D must continue to precede E. (This safety in the conclusion of a new nogood.
condition has been present since nogood (2) was e-i The.basic idea is the following: Suppose that we have
covered, but we have not indicated it explicitly until introduced a loop into the variable ordering, perhaps
the original nogood was dropped from the database.) by including the pair of nogoods a -+ -V and y -+ a.

A B C D B I add drop Rather than rewrite one of these nogoods so that the
r 0 r r r C= 7--A #r I same variable appears in the conclusion of both, we
& g r P D= ?-+ or 2 will view the (a,y) combination asasingle variable
& g r g B=g--4R 9 3 that takes a value in the product set V. xV,.

b b = b -- A 4 b 4 If x and are variables that have been "combined" in
(A = b) A (B = g) 5 2 this way, we can rewrite a nogood with (for example)

-+ D A r a in its antecedent and y in its conclusion so that both
D < B 6 a and V are in the conusion. As an example, we can

b g ' g r B-g--D g 7 rewrite
b g r & r A =b-D#b 8

A b-b BV6g 9 3,5,7 a=v.Az = v.1 'v (4)
B<E 10 6
B<D 11as

We next change Denmark to green; England is forced z = vs -+ (a' ,) ((v"-) (5)
to be red once again. But now Bulgaria and Denmark which is logicaly equivalent. We can view this as elimi-
are both green; we have to write this new nogood (7) nating a particular value for the pai of varibles (a, y).
with Denmark in the conclusion because of the order-
ing implied by zogood (5) above. Changing Denmark
to blue coauict with Albania (8), which we have to Definition 6.1 Let S be a set of safety conditions
write as A = b - D# . This new nogood resolves (possit not acycli). We will wrte a -s yif a <s y
with (5) and (7) to produce (9). a y <5S a. 7%e eguiwalence class of 2 under w .- l

be dnoted (a)s. f'isa nogood whoe conclusion i-
We drop (S), (5) and (7) becaus they involve B = g, v the arieble a, we will denote by -s the result
and introduce the two safety conditions (10) and of m g t e conclusion of - , all term involving
(11). Since Z follows B, we drop the safety condition e zs is a set of nogood, we will de-
R < D. At this point, we are AnaRy forced to change note by rs the set of irogoed. of the form -fs for
the color for Bulgaria and the search continues. 71 E .

It is important to note that the added lexibility of PDB
over dynamic backtracking arises from the flexbility It is not difficult to show that for any set S of safety
in the first step of the simplification procedure where conditions, the relation -s is an equivalence relation.
the conclusion of the new nogood is selected. This As an example of rewriting a nogood in the presence
selection corresponds to a selection of a variable whose of ordering cycles, suppose that - is the nogood (4)
value is to be changed. and let S be such that (y)s = {z,y); now -is is given

As with the procedure in the previous section, when by (5).
given aCsp that is a union of dijoint csPs the above Placing more than one literal in the conclusions of no-
procedure Will treat the two subproblems indepen- goods forces us to reconsider the notion of an accept-
dently. The total running time remains the sum of able next assignment:
the times required for the subproblems.

Defiition 6.2 A cyclically acceptable next assign-
6 ARBITRARY MOVEMENT meat for a nogood set r under a set S of afety con-

ditions is a total assignment P of values to variables
Partial-order dynamic backtracking still does not pro- satisfyin every nogood in rs and every antecedent of
vide total freedom in the choice of direction through VeN1 *A rooo.
the search space. When a new nogood is discovered,
the existing partial order constrains how we are to in- We now define a third dynamic backtracking proce-
terpre that nogood - roughly speaking, we awe forced dare. Note that W(S, a) remains well defined even
to change the value of late variables before changing if S is not acyclic, since W(S, z) drops ordering con-
the values of their predecessors. The use of a partial straints only on variables y such that a <s y.

222

the choice of conclusion is unconstrained in the above
Procedure 6.3 To solve a csP: procedure, the procedure has tremendous lexibility in

the way it traverses the search space. Like the proce-
P :=any complete asinment of values to dures ian the previous sections, Procedure 6.3 continues

S:= 0 to solve combinations of independent subproblems in

untl either P i a solution or j- e time bounded by the sum of the times needed to solve

7 := a constraint violated bythe subproblem individually.

(, S) := siAp(, 5, 'y) Here are these ideas in use on a Boolean csp with the
P:= any cyclicaly acceptable next assignment constraints a -+ b, b -- c and c --+ -,b. As before, we

for r under S present a trace and then explain it:

a bI c add tor remove from r
Procedure 6.4 To compute simp(', s, Y): tTf7 a- 1

t t f 6 c 2

select a conclusion a for y (now unconstrained) t t t c - - 3 3r :=r u {-7} -,% 4 1
S :=W(S u S ,) a < b 5
remove fiom r each nogood a with an element of (z)s

in the antecedent of as The first three nogoods are simply the three con-
if the conclusions of nogoods in rs rule out all straints appearing in the problem. Although the or-

possible values for the variables in (z)s then derings of the second and third nogoods conflict, we
p := the result of resolving all nogoods in rs whose choose to write them in the given form in any case.

conclusions involve variables in (z),
(, 5) := siup(r, S, p) Since this puts b and c into an equivalence class, we do
end if not drop nogood (2) at this point. Instead, we inter-

return (r, S. pret nogood (1) as requiring that the value taken by

If the conclusion is selected so that S remains acyclic, (b, c) be either (t,t) or (t, f); (2) disallows (t, f) nd (3)

the above procedure is identical to the one in the pare- disallows (t,t). It follows that the three nogoods can

vious section. be resolved together to obtain the new nogood given
simply by -,a. We add this as (4) above, dropping

Proposition 6.5 Suppose that we am wong on a nogood (1) because its antecedent is falsified.
problem with n variables, that the size of the largest do-
main of any variable sw, and that we hae c uc 7 EXPERIMENTAL RESULTS
r and s using reeaed applications of aimp. if thelreeuvlne clas (a)s conn d element, thesa rgeiec .toon .so rlementsthe In this section, we present preliminary results regard-

ing the implemented effectiveness of the procedure

If we have an equivalence clas of d varibles each Of we have described. The implementation is based on
which has v possible values then the number of posi- the somewhat restricted Procedure 5.5 as opposed
ble values of the "combined variable" is vd. The above to the more general Procedure 6.3. We compared a
procedure can now generate a distinct nogood to efim- search engine based on this procedure with two others,

inate each of the vd possible values, and the space TABLBAU [2] and WSAT, or "walk-sat" [13]. TABLEAU
requirements of the procedure can therefore grow ex- is an efficient implementation of the Davis-Putnam al-
ponentianly in the be of the equivalence classes. The gorithm and is systematic; WsAT is a modification to
time required to find a cyclically allowed next assign- SAT and is not. We used WSAT instead of GSAT be-
meat can also grow exponentially in the use of the cause WsAT is more effective on a fairly wide range of
equivalence clames. We can address these difficulties problem distributions (13].
by selecting in advance a bound for the largest allowed The experimental data was not collected using the ran-
sise of any equivalence clam. In any event, termination dom 3-SAT problems that have been the target of
is still guaranteed: much recent investigation, since there is growing ev-

idence that these problems are not representative of
Tolk 6. Pribdue 6.3 temizates. The nmbe the difficulties encountered in practice [3]. Instead, we
of cai to sLp i bounded bg te sre of the problem enerated our problems so that the clause they con-
eng oed. tam involve groups of locally connected variables as

Selecting a variable to place in the conclusion of a new opposed to variables selected at random.

nogood corresponds to choosing the variable whose Somewhat more specifically, we filled an n x n square
value is to be changed on the next iteration and is anal- grid with variables, and then required that the three
oSous to selecting the variable to Mlp in GSAT. Since variables appearing in any single clause be neighbors

223

in this grid. Lisp code generating these examples ap- The times required for PDU and WSAT appear to be
pears in the appendix. We believe that the qualitative growing comparably, although only PDB is able to solve
properties of the results reported here hold for a wide the unsatisfiable instances. The eventual decrease in
class of distributions where variables are given spatial the average time needed by TABLEAU is because it is
locations and clauses are required to be local, only managing to solve the easiest instances in each

The experiments were performed at the crossover point mc . This causes TABLEAU to become almost corn-

where approximately half of the instances generated pletely ineffective in the unsatisfiable case and only

could be expected to be satisfialie, since this appears partially effective in the satisfiable case. Even where
tod be ereted mot d proiblem ie his Nters it does succeed on large problems, TABLEAU'S run timeto be where the most difficult problems lie [2]. Note i rae hnta fteohrtomtos

that not all instances at the crossover point are hard; i greater than that of the other two methods.

as an example, the local variable interactions in these Finally, we collected data on the time needed for each
problems can lead to short resolution proofs that no top-level call to simp in partial-order dynamic back-
solution exists in unsatisfiable cases. This is in sharp tracking. As a function of the number of variables in
contrast with random 3-SAT problems (where no short the problem, this was:
proofs appear to exist in general, and it can even be
shown that proof lengths are growing exponentially Number of PDB WSAT

on average [1]). Realistic problems may often have variables (msec) (msec)

short proof paths: A particular scheduling problem 25 3.9 0.5
may be unsatisfiable simply because there is no way 100 5.3 0.3
to schedule a specific resource as opposed to because 225 6.7 0.6
of global issues involving the problem in its entirety. 400 7.0 0.7
Satsabiity problems arising in VLSI circuit design 625 6.4 1.4
can also be expected to have locality properties simil All times were measured on a Sparc 10/40 running un-
to those we have described. optimised Allegro Common Lisp. An efficient C imple-

The problems involved 25, 100, 225, 400 and 625 van- mentation could expect to improve either method by
ables. For each sise, we generated 100 satisfiable and approximately an order of magnitude. As mentioned
100 unsatisfiable instances and then executed the three in Section 5, the time per lip is growing sublinearly
procedures to measure their performance. (WSAT was with the number of variables in question.
not tested on the unsatisfiable instances.) For WSAT,
we measured the number of times specific variable val-
ues were lipped. For PDB, we measured the number of 8 CONCLUSION AND FUTURE
top-level as to Procedure 5.6. For TABLEAU, we mea- WORK
sured the number of choice nodes expanded. WSAT
and PDB were limited to 100,000 lips; TABLEAU was Our aim in this paper has been to make a primar-
limited to a running time of 150 seconds. ily theoretical contribution, describing a new class of

satisfiable problems were as fol- constraint-satisfaction algorithms that appear to com-
Tesu For ThEAUe gbine many of the advantages of previous systematic

lows Fo TALEA, wegiv th noe cont or ue- and nonsystematic approaches. Since our focus has
ceosd runs only; we also indicate parenthetically what annoste tiaprch.Sneoufcshscessul unsonl; w alo idicte aretheicaly hat been on a description of the algorithms, there is obvi-
fraction of the problems were solved given the compu- o a reman o e one.

tational resource limitations. (WsAT and PDB success- ously much that remains to be done.

fully solved all instances.) First, of course, the procedures must be tested on a
variety of problems, both synthetic and naturally oc-

Variables PDB WSAT TABLEAU cutting; the results reported in Section 7 only scratch

25 35 89 9 (1.0) the surface. It is especially important that realistic

100 210 877 255 (1.0) problems be included in any experimental evaluation
225 434 1626 504 (.98) of these ideas, since these problems are likely to have
400 731 2737 856 (.70) performance profiles substantially different from those

625 816 3121 502 (.68) of randomly generated problems [3]. The experiments
of the previous section need to be extended to in-

For the unsatisfiable instances, the results were: dude unit resolution, and we need to determine the
frequency with which exponential space is needed in

Variables PDB TABLEAU practice by the full procedure 6.3.
122 8 (1.0) Finally, we have left completely untouched the ques-

100 509 1779 (1.0) tion of how the flexibility of Procedure 6.3 is to be ex-
225 988 5682 (.38) ploited. Given a group of violated constraints, which
400 1w 558 (.11) should we pick to add to r? Which variable should
625 1204 114 (.06) be in the conclusion of the constraint? These choices

224

correspond to choice of backtrack strategy in a more problems. In Proceedings of the Eleventh National
conventional setting, and it will be important to un- Conference on Artificial Intelligence, pages 21-27,
derstand them in this setting as well. 1993.

[3] J. M. Crawford and A. B. Baker. Experimen-

A Experimental code tal results on the application of satisfiability al-
gorithms to scheduling problems. In Proceedings

Here is the code used to generate instances of the class of the Twelfth National Conference on Artificial

of problems on which our ideas were tested. The two Intelligence, 1994.

arguments to the procedure are the sue s of the vari- [4] M. Davis and H. Putnam. A computing proce-
able grid and the number c of clauses to be "centered" dure for quantification theory. J. Assoc. Comput.
on any single variable. Mach., 7:201-215, 1960.

For each grid variable a we generated LcJ or LcJ + 1 [5] J. de Kleer. An assumption-based truth mainte-
clauses at random subject to the constraint that the nance system. Artificial Intelligence, 28:127-162,
variables in each clause form a right triangle with hor- 1986.
sontal and vertical sides of length I and where a is the [6] M. L. Ginsberg. Dynamic backtracking. Journal
vertex opposite the hypotenuse. There are four such of Artificial Intelligence Research, 1:25-46, 1993.
trianges for a given a. There are eight assignments of [7] M. L. Ginsberg, M. -rank, M. P. Halpi, and
values to varable for each tri e giving 32 posible M. C. Torrance. Search lessons learned from cross-
clauses. Variables at the edge of the grid usually gen- word pussies. In Proceedings of the Eighth Na-
erate fewer than c clauses so the boundary of the grid tional Conference on Artificial Intelligence, pages
is relatively unconstrained. 210-215, 1990.

(defun make-problem (a c kaux result xx yy) [8] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Op-

(dotimes (z s result) timisation by simulated annealing. Science,

(dotinmes (y a) 220:671-680,1982.
(doti-es (i (+ (floor c) [9] K. Konolige. Easy to be hard: Difficult prob-

(if (> (random 1.0) lems for greedy algorithms. In Proceedings of the
(rem c 1.0)) Fourth International Conference on Principles of

0 1))) Knowledge Representation and Reasoning, Bonn,
(setq xx (z -1 (* 2 (random 2))) Germany, 1994.

yy (+ y -1 (* 2 (random 2)))) [10] D. A. McAllester. Partial order backtracking.
(when (and (< -1 xx a) (< -1 yy W ftp.ai.nit.edu:/pub/dam/dynmic.ps, 1993.

(pusth (now-clause x y x' yy a)r(sult)))) [11] S. Minton, M. D. Johnston, A. B. Philips, and
P. Laird. Solving large-scale constraint satisfac-

(defun now-clause (z y xx yy a) tion and scheduling problems using a heuristic re-
(sapcar pair method. In Proceedings of the Eighth Na-

#'(lambda (a b *aux (v (+ 1 (e a a) b))) tional Conference on Artificial Intelligence, pages

(if (zerop (random 2)) v (- v)))) 17-24, 1990.
(list x xx z) (list y y yy)) [12) B. Selman and H. Kauts. Domain-independent

extensions to GSAT: Solving large structured sat-
Acknowledgement islfability problems. In Proceedings of the Thir-

teenth International Joint Conference on Artifi-
This work has been supported by AFOSR under con- cial Intelligence, pages 290-295, 1993.
tract 92-0693, by ARPA/Rome Labs under contracts [13] B. Selman, H. A. Kauts, and B. Cohen. Local
numbers F30602-91-C-0036 and F30602-93-C-00031, search strategies for satisfiability testing. In Pro-
and by ARPA under contract F33615-91-C-1788. We ceedings 1993 DIMACS Workshop on Maximum
would like to thank Ari J6nsson, Bart Selman, the
members of CRIL and especially Jimi Crawford for tak- Cie, Graph Colorng, and Satiiite, 1993.
ing the time to disuss these ideas with us. [14] B. Selman, H. Levesque, and D. Mitchell. A new

method for solving hard satisfiability problems.
In Proceedings of the Tenth National Conference

References on Artificial Intelligence, pages 440-446, 1992.

[1] V. Chvital and E. Ssemeridi. Many hard exam- [15] R. M. Stallman and G. J. Sussman. Forward rea-
ples for resolution. JACM, 35:759-768, 1988. soning and dependency-directed backtracking in

[2] J. XL Crawford and L. D. Auton. Experimen- a system for computer-aided circuit analysis. Ar-

tal results on the crossover point in satislfability tificial Intelligence, 9(2):135-196,1977.

225

Foundations. of Indefinite Constraint Databases

Manolis Koubarakis"
IC-Parc

Imperial College
London SW7 2BZ
United Kingdom

msk@doc.ic.ac.uk

March 24, 1994

Abstract
We lay the foundations of a theory of constraint databases with indefinite information based on the

relational model. We develop the scheme of indefinite f-costraint databases where 4, the parameter, is
a first-order constraint language. This scheme extends the proposal of Kaneflakis, Kuper and Revesz to
include indefinite information in the style of Imielinski and Lipekl. We propose declarative and procedural
query languages for the new scheme and study the semantics of query evaluation.

1 Introduction

In this paper we lay the foundations of a theory of indefinite constraint databases based on the relational
model [Mai83]. As a starting point of our investigation, we take the model of constraint databases proposed
in [KKR90]. This model is useful for the representation of unrestricted (i.e., finite or infinite) definite informa-
tion. However, indefinite information is also important in many applications e.g., planning and scheduling,
medical expert systems, geographical information systems and natural language processing systems. Moti-
vated by these practical considerations, we develop the model of indefinite constraint databases which allows
the representation of definite, indefinite, finite and infinite information in a single unifying framework.

Our contributions to the theory of constraint databases can be summarized as follows:

" We develop the scheme of indefinite C-constraint databases where C, the parameter, is a first-order
constraint language. This parameterised model extends the scheme of [KKR90] to include indefinite
information in the style of [IL84, Gra89] (section 3).

" We propose modal relational calculu,. with C-constraints as a declarative query languages for indefinite
C-constraint databases (section 4). We also propose a procedural query language: the modal C-
constraint algebra (section 5).

We show that expressions of modal relational calculus with L-constraints can be evaluated 6ottom-up
in closed form on indefinite £-constraint databases. This is a direct consequence of the fact that every
expression of modal relational calculus with -constraints has an equivalent expression in modal £-
constraint algebra (section 7). This result could be the first step in developing optimization techniques
for -constraint databases and indefinite £-constraint databases.

This paper is organized as follows. The next section presents some examples of constraint languages and
defines the relevant abstract concepts. In section 3 we present the scheme of indefinite £-constraint databases.

*This work was performed while the author was with the Computer Science Divisition, Dept. of Electrical and Computer
Eugin , National Tednical University of Athes, Greece.

226

In sections 4 and 5 we discuss the modal relational calculus with C-constraints and the modal C-constraint al-
gebra. In section 6 we present several results concerning algebraic query evaluation in L-constraint databases
and indefinite C-constraint databases. In section 7 we discuss the translation of expressions of modal rela-
tional - Iculus with C-constraints into expressions of modal L-constraint algebra. Finally, section 8 presents
related work.

2 Constraint Languages
In this paper we consider many-sorted languages, structures and theories [End72]. Every language £ will
be interpreted over a fixed structure, called the intended structure, which will usually be denoted '-y Mr.
If M is a structure then Th(M) will denote the theory of M i.e., the set of sentences which are true in
M. For every language C, we will distinguish a class of quantifier free formulas called C-constraints. The
atomic formulas of £ will be included in the class of Z-constraints. There will also be two distinguished
,C-co -.straints true and false with obvious semantics. Similar assumptions have been made in [Mah93] in the
contex of the CLP scheme. A set of C-constraints will be the algebraic counterpart of the logical conjunction
of its members. Th' we will freely mix the terms "set of C-constraints" and "conjunction of C-constraints".
We will assume that the reader is familiar with the notions of solution, consistency and equivalence of sets
of constraints [Mah93].

Let us now give some examples of constraint languages.

Example 2.1 The language ECL (Equality Constraint Language) with predicate symbols =, # and an
inf nite number of constants has been defined in [KKR90]. The intended structure for this language interprets
= as equality, 0 as non-equality and constants as "themselves". An ECL-constraint is an ECL formula of
the form x, = Z2 or x, A z2 where z 1 , z2 are variables or constants. ECL has been used by [KKR0] for
the development of an extended relational model based on ECL-constraints.

We now present a language for expressing temporal constraints.

Example 2.2 The language dePCL (dense Point Constraint Language) allows us to make stamements
about points in dense time. dePCL is a first-order language with equality and the following set of non-logical
symbols: the set of rational numerals, function symbol - of arity 2 and predicate symbol < of arity 2. The
terms and atomic forntlas of dePCL are defined as follows. Constants and variables are terms. If tl and t 2
are variables or constants then t, - t2 is a term. An atomic formula of dePCL is a formula of the form t ' c
or c , t where ,- is < or = and t is a term.

The intended structure for dePCL is Q. Q interprets each rational numeral by its corresponding rational
number, function symbol - by the subtraction operation over the rationals and < by the relation "less than".
The theory Th(Q) is a subtheory of real addition with order [Rab77].

A deP CL-constraint is a dePCL formula of the form t - c where t is a term, c is a constant and - is
=, <, >, < or >. For example, the formulasp, <p2, p3 - p4 _> 15, pa = 5/4 are dePCL-costraints.

Example 2.3 Let us also consider the many-sorted language ECL+dePCL which is the union of ECL and
dePCL. The sorts of ECL+dePCL are V (for the infinite set of constants of ECL) and Q (for the rational
numerals of dePCL). The symbols of ECL+dePCL are interpreted by the many-sorted structure which is
the union of the intended structures for ECL and dePCL.

Let us now define the concept of variable elimination.1

Definition 2.1 Let C be a many-sorted first-order language. The class of C-constraints admits variable
elimination iff for every boolean combination 0 of C-constraints in variables F, and every vector of variables
7 C 7, there exists a disjunction 0' of conjunctions of C-constraints in variables F \ 7 such that

'Notation: The vector of symbols (ol,...,on) will be denotedby . The natural number n will be called the size of a and
will be denoted by no'. This notation will be used for vectors of variables but also for vectors of domain elements. Variables
will be denoted by z, Y, z, t etc. and vectors of variables byF ,, , 7 etc. If 7 and W are vectors of variables then 7\ will denote
the vector obtained from 9 by deleting the variables in F. If is a vector of variables then 370 will be a vector of constants of
the same mise.

227

1 If e is a solution of 0 then I0\F 0 is a solution of 0'.

2. If To \ ' is a solution of 0' then this solution can be extended to a solution 7" of .

Some people might find the above definition overly strong. But requiring Y to be just a boolean combina-
tion of f--constraints would turn out to be unsatisfactory for the database models discussed in section 3. The
reason is very simple: when we eliminate variables, we would have to deal with negations of £-constraints.
Similar arguments and definitions appear in [Stu91].

The following definition will be useful in the forthcoming sections.

Definition 2.2 Let C be a many-sorted first-order language. The class of £-constraints is weakly closed
under negation if the negation of every £-constraint is equivalent to a disjunction of £-constraints.

In the rest of this paper we will only be interested in constraints which admit variable elimination and are
weakly closed under negation. Many interesting classes of constraints fall under this category. The following
proposition shows that this is also the case for the constraint classes defined in this section.

Proposition 2.1 The classei of ECL-constraints, dePCL-constraints and ECL+dePCL-constraints admit
variable elimination and are weakly closed under negation.

3 Indefinite Constraint Databases

We will now extend the £-constraint database model of [KKR90] to account for indefinite information in the
style of (1L84, Gra89]. For the rest of this section, let Z be a many-sorted language and Mc be the intended
C-structure. Let us also assume that the class of -constraints admits variable elimination and is weakly
closed under negation.

For each sort s E sorts(L), let U. be a countably infinite set of attributes of sort s. The set of all
attributes, denoted by U, is UsEort(r) Us. The sort of attribute A will be denoted by sort(A). With each
A E U we associate a set of values dorn(A) = dom(s, Mc) called the domain of A. 2 A relation scheme R is
a finite subset of U.

We will first define Mg-relations which are unrestricted (i.e., finite or infinite) standard relations. MC-
relations are a theoretical device for giving semantics to indefinite C-constraint relations.
Definition 3.1 Let R be a relation scheme. An Mc-relational tuple t over scheme R is a mapping from
R to U.E..t.(,c) dor(s, Mc) such that t(A) E dom(sort(A), Me). An Mc-relation r over scheme R is an

unrestricted set of MC-relational tuples over R.

For every * E sorts(C), we now assume the existence of two disjoint countably infinite sets of vari-
ables: the set of a-variables UVAR' and the set of e-variables EVAR . Let UVARC and EVARC denote
U.e.,Qt. UVAIr, and Ue..ot(EVAR, respectively. The intersection of the sets U VARc and EVARc
with the domains of attributes is empty.

Notation 3.1 U-variables will be denoted by letters of the English alphabet, usually z, y, z, t, possibly sub-
scripted. E-variables will be denoted by letters of the Greek alphabet, usually w, A, C, v, possibly subscripted.

Definition 3.2 Let R be a relation scheme. An indefinite C-constraint tuple t over scheme R is a mapping
from R U {CON} to UVARc U WFF(I) such that (i) t(A) E UVAR8°-*(A) for each A E R, (i) t(Ai) is
different than t(Aj) for all distinct Ai, Ai E R, (iii) t(CON) is a conjunction of C-constraints and (iv) the
free variables of t(CON) are included in {t(A) : A 4 R} U EVARc. t(CON) is called the local condition of
the tuple t while t(R) is called the proper part of t.

Definition 3.3 Let R be a relation scheme. An indefinite £ -constraint relation over scheme R is a finite set
of indefinite £-constraint tuples over R. Each indefinite £-constraint relation r is associated with a boolean
combination of L-constraints G(r), called the global condition of r.

21.f 5 is a st and M is & structure then dom(s, M) denotes the domain of a in structure M.

228

Similarly we can define database schemes, Me-relational databases and indefinite C-constraint databases
[Kou94a]. Database schemes and databases will usually be denoted by R and F respectively.

The above definitions extend the model of [KKR90] by introducing e-variables which have the semantics
of marked nulls of [IL84]. As in (Gra89], the possible values of the e-variables can be constrained by a global
condition.

Example 3.1 BOOKED is an indefinite ECL+dePCL-constraint relation giving the times that rooms are
booked. The first tuple says that room WP212 is booked from 1:00 to 7:00. For room WP219 the information
is indefinite: it is booked from 1:00 until some time between 5:00 and 8:00. This indefinite information is
captured by the e-variable w and its global condition 5 <w w < 8. E-variables can be understood as being
existentially quantified and their scope is the entire database. They represent values that exist but are
not known precisely [IL84, Gra89]. All we know about these values is captured by the global condition.
U-variables (e.g., zj, z 2 , tI, t 2) can be understood as being universally quantified and their scope is the tuple
in which they appear [KKR90].

BOOKED
Room Time CON
zx t1 zj = WP212, 1 < t1 < 7

z 2 t2 z 2 = WP219, 1:< t2 <

G(BOOKED): 5 < w < 8

3.1 Semantics

Let us first define two special kinds of valuations. An e-valuation in MC is a valuation whose domain is
restricted to the set EVARL. Similarly, a u-valuation in Mr is a valuation whose domain is restricted to the
set UVARc. The symbols Val' , and Val will denote the set of e-valuations and u-valuations in Mz

respectively. The result of applying an e-valuation v to an indefinite -constraint relation r over R will be
denoted by v(r). v(r) is an £-constraint relation over R obtained from r by substituting each e-variable w
of r by the constant symbol whose denotation in structure Mc is v(w). The result of applying a u-valuation
of Mr to the proper part of a tuple can be defined as follows. If t is an £-constraint tuple on scheme R and
u is a u-valuatiou in Mt then u(t) is an MC-tuple over R such that for each A E R, u(t)(A) = u(t(A)).

The semantics of an L-constraint relation is given by the function points [KKR90]. points takes as
argument an -constraint relation r over R and returns the Mt-relation over R which is finitely represented
by r:

points(r) {(t) : t E r, u E Valy, and M, = t(CON)[u]}.

The semantics of an indefinite -constraint relation r over scheme R is defined to be the following set of
Mt-relations:

ser(r) = {points(v(r)) : there exists v E ValI s.t. Mc 1= G(r)[v]}.

The function rep will also be useful in the rest of this paper. If r is an indefinite -constraint relation
over scheme R then rep gives the set of £-constraint relations represented by r:

rep(r) = {v(r) : there exists v E Vallr s.t. Mc J= G(r)[v]}

The functions points, ser and rep can be extended to databases in the obvious way.3

2The above definitions imply that indefnite -constraint relations are interpreted in a closed-uorld fashion. They are

assumed to represent aJl facts relevant to an application domain. However the exact value of any attribute of these facts may
not be known precisely.

229

IM '! l I

4 Declarative Query Languages

[KKR90] proposed relational calculus with £-construints as a declarative query language for Z-constraint
databases. In this section we propose modal relational calculus with C-constraints as a declarative query
language for indefinite L-constraint databases. Similar query languages have been investigated in [Lip79,
Lev84, Rei8].

Definition 4.1 Let R be a database scheme and R(Ci,..., Cm) be a relation scheme. An expression over
kin modal relational calculus with i-constraints is {R(C:,...,Cm),zi/si,. .,Zm/Sm :OP (zj,.•.,z.))
where si E sorts(Z) is the sort of C,, OP is an optional modal operator 0 or 0, 0' is a well-formed formula
of relational calculus with -constraints and zx,. , z.. are the only free variables of 4'. If an expression
does not contain a modal operator then it will be called pure, otherwise it will be called modal.

Let us now define the value of expressions in modal relational calculus.

Definition 4.2 Let f be the pure expression {R(C,..., Cm.), zi/sj,..., Zm/Sm : ..)) over
in modal relational calculus with -constraints. If F" is an indefinite C-constraint database over R then the
value of f on input database F, denoted by f(F), is the following set of Mr-relations:

{ {(al, . . .,an) E dom(si) x .-- x dor(sn): (Mr,Dom,7) j 4(a, .. .,am)} :F E ser(r)}

The above definition is somewhat problematic. The value of a pure expression over an indefinite L-constraint
database is defined.to be an unrestricted set whose elements are unrestricted sets of tuples! Can we guarantee
closure as required by the constraint query language principles laid out in [KKR90? In other words, given
a pure expression f of modal relational calculus with C-constraints, and an indefinite C-constraint database
F, is it possible to find an indefinite C-constraint relation which finitely represents f(-r)? In section 7, we
show that this closure property can indeed be guaranteed.

Example 4.1 The query "Find all rooms that are booked at 6:00" over the database of example 3.1 can be
expressed as fBOOKED-AT6(Room), z/VP : BOOKED(z, 6)). If this query is evaluated using the method
of section 7, the answer will be the following relation:

BOOKED-AT_6
Room CON

1 z 1 zi z= WP212
Z2 z2 = WP219, w > 6

This answer is conditional. Room WP212 is booked on time 6. However, room WP219 is booked on time 6
only under the condition that w is greater than 6.

Definition 4.3 Let f be the modal expression {R(C,..., Cm), z/Si, .. , tm/Sm : 3 4(zi,..., zti)) over
A in modal relational calculus with L-constraints. If F is an indefinite C-constraint database over R then
the value of f on input database F, denoted by f(F), is the following set containing a single Mr-relation:

{ {(al,...,a.) e dorm(si) x ... x dor(sn): for every Mr-relational database F E ser(-F)(Mz, Dom,?P) =0a, ,a.))} I

The tnlue of a <-expression is defined in the same way but now the quantification over Mr-relational
datQ,6ases in aem(F) is existential. Section 7 demonstrates that expressions of modal relational calculus with
C-constraints can also be evaluated bottom-up in closed form. In summary, for every expression f (pure or
modal) in modal relational calculus with C-constraints and indefinite C-constraint database F, it is possible
to find an indefinite C-constraint relation which finitely represents ().

Example 4.2 The query "Find all rooms that are possibly booked at 6:00" over the database of example 3.1
can be expressed as {POSS-BOOKED..AT-6(Room), z/Dl : OBOOKED(z, 6)}. If this query is evaluated
using the method of section 7, the answer will be the following relation:

230

POSS.BOOKED.AT-6
Room CON
Il X1 = WP212
X2 X2 = WP219

The above answer is unconditional. It is possible that both rooms WP212 and WP219 are booked on time
6.

The next lemma demonstrates an intuitive property of modal relational calculus with C-constraints. If
S is a set of sets then nS (resp. US) denotes the set {N.Ess} (resp. {Uess}).

Lemma 4.1 Let f be a D3-ezpression (resp. O-expression) over R in modal relational calculus with C-
constraints. Let f' be the pure expression which corresponds to f. Then for all indefinite £-constraint
databases F over R, fQ() = nf e) (rup. f(F) = Uf (F)).

5 Procedural Query Languages

In this section, we briefly sketch three procedural query languages, one for each of the models discussed
in section 3: the Me-relational algebra, the £-constraint algebra and the modal C-constraint algebra. The
Mc-relational algebra is a procedural query language for Mr-relational databases. It is interesting only
from a theoretical point of view because Me-relations are unrestricted. The operations of Mc-relational
algebra can be defined verbatim as in the case of finite relations [Kang0j.

The operations of the -constraint algebra are extensions of similar operations of standard relational
algebra [Kan90]. The f-constraint algebra has not been presented in [KKR.90] where the model of £-
constraint databases was originally defined. However it can be easily developed given the algebraic languages
defined for the models of [KSW90, Kou93l; these models are essentially instances of the scheme of !-constraint
databases. Detailed definitions can be found in [Kou94a].

The operations of the modal C-constraint algebra take as input one (or two) indefinite L-constraint
relations associated with a common global condition and return an indefinite L-constraint relation associated
with the same global condition. The modal -constraint algebra contains an operation for every C-constraint
algebra operation. The definitions of these operations were originally given in [Kou93 for the special case
of indefinite dePCL-constraint relations.4 These operations treat e-variables as uninterpreted parameters
thus they are defined exactly as the .- constraint algebra operations. Similar operations were defined in
(IL84, Gra89] for the special case of conditional tables.

The modal algebra also includes two additional operations POSS and CERT, which take a more active
stand towards e-variables. Given an indefinite -constraint relation r, the expression POSS(r) evaluates to
an C.-constraint relation which finitely represents the set of all tuples contained in any relation of semfl-).
The expression CERT(r) evaluates to an -constraint relation which finitely represents the set of all tuples
contained in every relation of sem(r).

Possibility. Let r be an indefinite £-constraint relation on scheme R. Then POS(r) is an.1-constraint
relation defined as follows:

1. sch(POSS(r)) = sch(r)

2. POSS(r) = (poss(t) : t E r).

For each tuple t on scheme R, poss(t) is a tuple on scheme R such that poss(t)(R) = t(R) and poss(t)(CON) =
0 where 0 is obtained by eliminating all e-variables from the boolean combination of C-constraints G(r) A
t(CON). The expression poss(t)(CON) is well-defined since the class of -constraints admits variable
elimination.

Certainty. Let r be an indefinite Z-constraint relation on scheme R. Then CERT(r) is an C-constraint
relation defined as follows:

1. sch(CERT(r)) = sch(r)
t mou9J use the larm tempor l talll for indeite dePCL-constrant relatons.

231

2. CERT(r) = cert(t): t E 1}

For each tuple t on scheme R, cert(t) is a tuple on scheme R such that cert(t)(R) = t(R) and cert(t)(CON) -
-1 where 10 is obtained by eliminating all e-variables from the boolean combination of -constraints G(r) A
-t(CON). The expression cert(t)(CON) is well-defined since the class of C-constraints admits variable
elimination.

The operation ri has the effect of denormalizing -constraint relation r. This is achieved by collecting all
tuples {t,,...,tirl) of r into a single tuple t' on scheme R such that t'(R) = (z,,..., ZlRl) and t'(CON) =
ti,(CON) V ... V t ,(CON). In the new tuple t' u-variables have been standardized apart: x1,.. Z

are brand new u-variables, and for 1 < i < Ir, t (CON) is the same as ti(CON) except that t(X) has been
substituted by t'(X) for each X E R.

The operation rT has the effect of normalizing the local conditions of a relation r in order to obtain a
true -constraint relation. This is done by the following three steps:

" Application of De Morgan's laws to transform the negated parts of each local condition of r into
a disjunction whose disjuncts are -constraints. This operation is well-defined since the class of C-
constraints is weakly closed under negation.

* Application of the law of associativity of conjunction with respect to disjunction to transform each

local condition of r into a disjunction of conjunctions of C-constraints.

" Splitting of disjuncts into different tuples.

Let us now define modal L-constraint algebra expressions.

Definition 5.1 A pure expression over scheme R in modal C-constraint algebra is any well-formed expression
built from constant -constraint relations, relation schemes from R and the above operators excluding POSS
and CERT. A modal C-constraint algebra ezpression is a pure expression, or an expression of the form
CERT(g) or POSS(g) where g is a pure expression. Expressions of the form CERT(g) or POSS(g) are
called CERT-expressions or POSS-ezpressions respectively.

Modal -constraint algebra expressions define functions from indefinite -constraint databases to indef-
inite -constraint relations. The result of applying an expression e to an indefinite C-constraint database
F is defined as for the C-constraint algebra. Let us simply stress that G(e(Fr)) = G(Fr) for all indefinite

C-constraint databases F and expressions e over R.
The following lemma gives an intuitive property of P055 and CERT.

Lemma 5.1 Let e be a pure ez2 ression over scheme R in modal C-constraint algebra. Then for all indefinite
C-constraint databases F over R

sem(CERT(e(-))) = nsem(e(r-)) and sem(POSS(e(r'))) = Usem(e(-')).

6 On the Semantics of Algebraic Query Evaluation

Let F be an C-constraint database, e an C-constraint algebra expression and el its corresponding Mc-
relational algebra expression. Recall that an C-constraint relation F is a finite representation of the unre-
stricted set of tuples points(F). The following theorem shows that the operations of C-constraint algebra
"behave" according to our intuitions: when we evaluate e on F, we essentially evaluate el on the unrestricted
relation points(F).

Theorem 6.1 Let e be an C-constraint algebra expression over Ft and el be its corresponding MC -relational
algebra enpression. If F is an C-constraint database over scheme R, then points(e(F')) = el(points(r-)).

Let us now assume that F is an indefinite C-constraint database, e is a pure expression of modal C-
constraint algebra and el is its corresponding expression in C-constraint algebra. Recall that the semantic
function sem(F) returns all the "possible worlds" represented by F. When we evaluate e on indefinite

232

e
I£-ICDB £-ICDB

rep el rep

sem {-CDB} {£-CDB} sem
points }e points

{M,-RDB} - {Mc-RDB}

Figure 1: Relating the three algebras

C-constraint database F using the operations defined above, we essentially evaluate the corresponding Mc-
relational algebra expression on each possible world in sem(r-). As discussed in ami89], an extension of
an Mg-relational algebra expression el to an expression e for an C-constraint representation of indefinite
information can claim to be "faithful to the underlying semantics" if and only if for every indefinite C-
constraint database ',

sem(e()) = el(sem(-)) = {el(ri) : ri E .sem()}.

Equivalently, one would like to guarantee that there is always an indefinite C-constraint database F such
that sem(?) = el(sem(-)). The following theorem demonstrates that C-constraint databases satisfy this
form of algebraic closure.

Theorem 6.2 Let e be a pare expression of modal -constraint algebra over R, el its corresponding C-
constraint algebra expression and e2 its corresponding Mr -relational algebra expression. If F is an indefinite
C-constraint database over seheme A then rep(e(-)) is equivalent to ei(rep(F)) and sem(e(F)) = e2(sem(Fr)).

The above theorems are summarized graphically in the commutative diagram of figure 1 where Mc-RDB
denotes the set of all Me-relational databases, C-CDB denotes the set of all C-constraint databases and
C-ICDB denotes the set of all indefinite C-constraint databases. Since the above results have been proved
in our general framework, special cases of constraint databases [KKR90, KSW90, Kou93] can simply refer
to these theorems to demonstrate the "correctness" of the operations of their algebraic query languages.

7 Translating Calculus Expressions into Algebraic Expressions
In this section we show that expressions of modal relational calculus with C-constraints have equivalent
expressions in modal f-constraint algebra. Thus we can evaluate a calculus expression by evaluating an
equivalent algebraic expression. As we have seen in section 5, algebraic query evaluation can be done
bottom-up and the answer is obtained in closed form. Therefore calculus expressions can also be evaluated
bottom-up in closed form on indefinite C-constraint databases. [Kou94a] gives an alternative proof of this
result by employing quantifier elimination techniques as suggested in [KKRg0].

We start by considering the simpler case of fC-constraint databases. [KKR90] has showed that, for several
languages C, expressions of relational calculus with f-constraints can be evaluated bottom-up in closed form
on C-constraint databases. The following theorem generalizes this result in the abstract setting of this paper.

Theorem 7.1 For every expression f over R in relational calcula wit C-construints there exists an C-
constraint algebra expression e over R such that the follouing property holds. If F is an C-constraint database
over a then f(?) = points(e(f)).

233

Let us note here that the analogous proofs of [KKR90] rely on quantifier elimination methods which
achieve good data complexity lower bounds but do not seem to have practical implementations. In contrast,
the above theorem provides a translation of calculus expressions into algebraic expressions. We believe that
this translation can be the first step in optimizing the evaluation of expressions in relational calculus with
C-coustraints.

Let us now turn to modal relational calculus with C-constraints and modal C-constraint algebra.

Lemma 7.1 Let e be a pure expression over R ian modal C-constraint algebra and e' be its corresponding C..
constraint algebra expression. Then sem(e(-)) = (points(e'(F)) : F E rep(Fr)) for all indefinite C-constraint
databases F over R.

The following theorem demonstrates that pure expressions of modal relational calculus with C-constraints
over indefinite C-constraint databases can also be evaluated bottom-up in closed form.

Theorem 7.2 For everj pure expression f over A in relational calculus with C-constraints there exists a
pare expression e over R in modal C-constraint algebra such that the following property holds. If F is an
indefinite C-constraint database over R then f(F) = sem(e(r)).

xample 7.1 The algebraic expression equivalent to the calculus expression of example 4.1 is

wi.. (oT,..=(BOOKED)).

Finally we turn to modal expressions.

Theorem 7.3 Let f be a r-expression (reap. *-expression) over A in modal relational calculus with C-
constraints. Then there exists a CERT-expresion (resp. POSS-expression) e over A in modal C-constraint
algebra such that the following property holds. If F is an indefinite C-constraint database over R then
A(F). = aem(e(F)).

Example 7.2 The algebraic expression equivalent to the calculus expression of example 4.2 is

POSS(ir..m (fTi.=E(BOOKED))).

8 Related Work

The results of this study are extended in [Kou94b, Kou94a] where we concentrate on temporal constraint
databases (with or without indefinite information). In particular, we study the complexity of query evalua-
tion in C-constraint databases and indefinite C-constraint databases where C ranges over several temporal
constraint languages (including dePCL). Our analysis shows that the worst-case data/combined complex-
ity of query evaluation does not change when we move from queries in relational calculus over relational
databases, to queries in relational calculus with temporal constraints over temporal constraint databases.
This fact remains true even if we consider indefinite relational databases vs. indefinite temporal constraint
databases. Unfortunately, the presence of indefinite information makes query evaluation intractable in many
cases. Our analysis complements the results of [Rev90, CM93] and extends the results of [KKR90, vdM92].

Acknowledgements
I would like to thank Timos Sellis for his support and encouragement. I would also like to thank Peter Revesz
and Paris Kanellakis for promptly answering my questions concerning their work on constraint databases.

References

(CM93] J. Cox and K. McAloon. Decision Procedures for Constraint Based Extensions of Datalog. In
F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected Research.
MIT Press, 1993. Originally appeared as Technical Report No. 90-09, Dept. of Computer and
Information Sciences, Brooklyn College of C.U.N.Y.

234

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Pres, 1972.

[Gr&S89] Goata Grahne. The Problem of Incomplete Information in Relational Databases. Technical Report
Report A-1989-1, Department of Computer Science, University of Helsinki, Finland, 1989. Also
published as Lecture Notes in Computer Science 554, Springer Verlag, 1991.

[1L843 T. Imielinski and W. Lipski. Incomplete Information in Relational Databases. Journal of A CM,
31(4):761-791, 1984.

[Imi89] T. Imielinski. Incomplete Information in Logical Databases. Data Engineering, 12(2):29-39, 1989.

[Kan9O] Paris Kanellakis. Elements of Relational Database Theory. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 17. North-Holland, 1990.

[KKR nl Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint Query Languages. In
Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 299-313, 1990. Long version to appear in Journal of Computer and System Sciences.

[Kou931 Manolis Koubarakis. Representation and Querying in Temporal Databases: the Power of Temporal
Constraints. In Proceedings of the 9th International Conference on Data Engineering, pages 327-
334, April 1993.

[Kou94aJ M. Koubarakis. Foundations of Temporal Constraint Databases. PhD thesis, Computer Science
Division, Dept. of Electrical and Computer Engineering, National Technical University of Athens,
February 1994.

[Kou94b] Manolis Koubarakis. Complexity Results for First-Order Theories of Temporal Constraints. In
Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International
Conference (KR'94). Morgan Kaufmann, San Francisco, CA, May 1994.

[KSW90] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling Infinite Temporal Data. In Proceedings of
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 392-403,
1990.

[Lev84] H.J. Levesque. Foundations of a Functional Approach to Knowledge Representation. Artificial
Intelligence, 23:155-212, 1984.

[Lip79] Witold Jr. Lipski. On Semantic Issues Connected with Incomplete Information Databases. ACM
Trscactions on Database Systems, 4(3):262-296, September 1979.

[Mah93) M. Maher. A Logic Programming View of CLP. In Proceedings of the 1Oth International Conference
on Logic Programming, pages 737-753, 1993.

[Mai83] David Maier. The theory of relational databases. Computer Science Press, 1983.

[Rab77] M.O. Rab -,. Decidable theories. In Handbook of Mathematical Logic, volume 90 of Studies in
Logic and the Foundations of Mathematics, pages 595-629. North-Holland, 1977.

[Rei88] Ray Reiter. On Integrity Constraints. In Proceedings of the 2nd Conference on Theoretical Aspects
of Reasoning About Knowledge, pages 97-111, Asilomar, CA, 1988.

[Rev9O] Peter Z. Reves. A Closed Form for Datalog Queries with Integer Order. In Proceedings of the
Srd Interational Conference on Database Theory, pages 187-201, 1990. Long version to appear
in Theoretical Computer Science.

[Stu9l] P.J. Stuckey. Constructive Negation for Constraint Logic Programming. In Proceedings of Sym-
posium on Logic in Computer Science, pages 328-339, 1991.

[vdM92] Ron van der Meyden. The Complexity of Querying Indefinite Data About Linearly Ordered
Domains (Preliminary Version). In Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 331-345, 1992.

235

Global Consistency for Continuous Constraints,

Djamila Haroud, Boi Faltings
Artificial Intelligence Laboratory (LIA)

Swiss Federal Institute of Technology (EPFL)
IN-Ecublens, 1015 Lausanne, Switzerland

FAX: +41-21-693-5225, e-mail: haroudOlia.di.epfl.ch

Abstract

This paper provides a framework for solving general constraint satisfaction problems (CSPs)
with continuous variables. Constraints are represented by a hierarchical binary decomposition of
the space of feasible values. We propose algorithms for path- and higher degrees of consistency
based on logical operations defined on the constraint representation mentioned above and we
demonstrate that this algorithms terminate in polynomial time. We show that, in analogy to
convex temporal problems and discrete row-convex problems, convexity properties of the solution
spaces can be exploited to compute minimal and decomposable networks using path consistency
algorithms. Based on this properties, we also show that a certain class of non binary CSPs can
be solved using strong 5-consistency.

1 Introduction

In the general case, constraint satisfaction problems (CSPs) are NP-complete. Trying to solve
them by search algorithms, even if theoretically feasible, often results in prohibitive compu-
tational cost. One approach to overcome this complexity consists of pre-processing the ini-
tial problem using propagation algorthm. These algorithms establish various degrees of local
consistency which narrow the initial feasible domain of the variables, thus reducing the subse-
quent search effort. Traditional consistency techniques and propagation algorithms - such as
the Waltz propagation algorithm- provide relatively poor results when applied to continuous
CSPs: they ensure neither completeness nor convergence in the general case (a good insight
of the problems encountered can be found in [1]). However, Faltings [5] has shown that some
undesirable features of propagation algorithms with interval labels must be attributed to the
inadequacy of the propagation rule and to a lack of precision in the solution space description.
He has also demonstrated that the problem with local propagation could be resolved by using
total constraintson pairs of variables. Lhomme [11] has identified similar problems and proposed
an interval propagation formalism based on bound propagation.

Van Beek's work on temporal reasoning [15] using Helly's theorem has shown the importance
of path-consistency for achieving globally consistent labellings. In certain cases, path-consistency
algorithms are difficult to implement in continuous domains because they require intersection
and composition operations on constraints. We propose a constraint representation by recursive
decomposition similar to the one described by Tanimoto in [14] which allows to implement these
operations. This allows us to apply Helly's theorem to general continuous constraint satisfaction
problems. The results obtained for temporal CSPs could therefore be generalized to less specific
classes of continuous CSPs.

'A verdom of this pape wi be published in ECA'94

236

y 2
yP (x-) 2 'Y > /(x-5)J r~w

P' ly
I IY

Syc 4 - (x-6)

Ix Ix(1) jx2) x

(a) (b)

Figure 1: Figure (a) illustrates a binary relation 1%, given intensionally by the two inequalities
y > (z - 5)2 nd y < 4 - (z - 6)2. 1., determine, the region ., and i, both y- and :-conv=:
the Prection of r,, respectiely over the z and y ares yields single bounded intervals (reap. I.
and I,). In Figure (b), the relation 1., is given intensionally by the constraint y > 1/(z - 5)2

and y < 4 - (z - 6)2. In this last case, the relation is only y-conveM since its projection over the
z ami yields two distinct intervals I., and 1.2.

In the following, a continuous CSP (CCSP),(P = (V, D, R)), is defined as a set V of variables
M1,2,... ,, taking their values respectively in a set D of continuous domains Di, D 2,..., D,,
and constrained by a set of relations R,...,. A domain is an interval of 1. A relation is
defined intensionally by a set of algebraic equalities and inequalities (see figure 1). A relation
R, is a total constraint: it takes into account the whole set of algebraic constraints involving
the variables i and j. Each variable has a label defining the set of possible consistent values.
The label L. of a variable : is represented as a set of intervals {I, = [z',L ... Z.,'], ... }.

2 Constraint and Label Representation

Constraints on continuous variables are most naturally represented by algebraic or transcenden-
tal equations and inequalities. However, as Faltings [5] has shown, this leads to incomplete local
propagation when there are several simultaneous constraints between the same variables. More
importantly, making a network path-consistent requires computing the intersection and union
of constraints, operations which cannot be performed on (in)equalities. It is therefore necessary
to explicitly represent and manipulate the sets of feasible value combinations.

Providing each variable with an interval label implicitly represents feasible regions by en-
dosing rectangles or hypercubes. As shown in Figure 2, this is not powerful enough for region
intersection operations. To define a more precise and yet efficient representation, we observe
that most applications satisfy the following two assumptions:

* each variable takes its values in a bounded domain (bounded interval)

" there often exists a maximum precision with which results can be used.

Provided that these two assumptions are verified, a relation P...,, can be approximated by
carrying out a hierarchical binary decomposition of its solution space into 2k-trees (quadtrees
for binary relationsoctrees for ternary ones etc...)(see Figure 3). A similar representation

237

Y

-I

L L- .- -

X •

Figure 2: The enclosing rectangle of an intersection of regions R, and R 2 is in general different
from the intersection of the enclosing rectangle. of R, and R 2.

has recently been proposed by Tanimoto for representing spatial constraints [14]. When a
relation is determined by inequalities, it can be approximated by a 25-tree where each node
represents a k-dimensional cubic sub-region of the original domain (i.e. the domain over which
the decomposition is carried out). A node has one of three possible states:

* white. if the region it defines is completely legal

• gray if the region is partially legal and partially illegal

* blacic if the region is completely illegal

When a black or white node is identiIed, the recursive division stops. Each gray k-dimensional
cube is decomposed into 21 smaller ones whose sides are half times the length. Unless the bound-
aries of a region are parallel to the coordinates axes, infinitely many levels of representation are
required to accurately represent a region. However, since the maximum precision is fixed, any
gray node with a smaller size than the maximum granularity can be declared black and the
decomposition stops.

Equalities In the case of equality constraints, a strict application of the binary decomposition
into 2h-tree described before would amount to pursuing the decomposition to infinity since an
infinite degree of precision is required to represent solutions which are points. We can avoid
this problem by exploiting the fact that many practical applications require a limited degree of
precision and it is then admissible to treat equalities with a certain error range. Presently, our
system translates strict equalities f(:,.. .z) = C into a weaker form, f(:i,...zt) = C ± c/2,
where e is the maximum precision fixed, as defined for inequalities. This amounts to replacing

each equality by two inequalities.

3 Consistency algorithms using 2k-trees

Path consistency algorithms, such as PC-1 [13) and PC-2 [12] require the application of the
following update rule defined on constraints:

&

Cj = Cj (D (c,,0Cs,) (1)

238

x

Figure 3: A binary relation R., can be approzciated by carrying out a hierarchical binary
desnpo.ition of its solution space into a quadtree

This relaxation operation uses two binary operators (intersection and composition, denoted
respectively by ED and ®) and a unary one (projection, denoted by f'), which can be defined on
2-trees. Since al variables are decomposed within the same interval (see figure 4), intersection is
simply the logical intersection of the corresponding quadtrees and can be carried out efficiently:
given an ordering white < gray < black the intersection operator can be defined as color(node1 $
node2) = Maz(color(node.), color(nde))).

Information on a k-dimensional node can be simply derived by composirg its facets ((k-i)-
dimensional nodes) (color(nodeL 0 node2) = Maz(color(nodel), color(nOde 2))), and vice versa,
information on a (k-1)-dimensional node can be obtained by projecting the k-dimensional node
over one of its facets (color(m'I(node,)) = Min(color(nwde4)), where node, are the nodes having
node, as facet).

The operators required for path consistency algorithms (and their generalization for higher
degrees of consistency) can therefore be implemented as straightforward logical rather than
numerical operations.

N-ary CSPs In many realistic problems, the constraints are not binary, but n-ary. However,
each n-ary constraint can be reduced to a set of ternary constraints without loss of information.
An n-ary algebraic relation, C(al,... x.), can be transformed into a set of ternary algebraic
expressions by:

i. replacing iteratively in C each sub-expression < z, operator zi > by a new variable z.+,

ii. adding a ternary equality constraint z.+ =< zi operator zi >

The process stops when C itself becomes ternary. This transformation is only based on sym-
bolic manipulations and consequently, no information is lost in the solution space description.
For example, the 5-ary CSP with one constraint ,(z - y)' + U+1> 2, can be translated into aU

ternary one with three constraints: w12 + (w 2/u) > 2, w, = z - y, w2 = z + t. Hence, address-
ing n-ary continuous CSPs amounts to giving the ternary counterparts of the algorithms and
representation used for solving binary continuous CSPs.

Constructing 2k-tree representations A total binary constraint R., is given intensionally
by a set of algebraic equations (C... CI). The quadtree approximation T., of a binary relation

can be obtained as follows:

239

X

Figure 4: In a binary CCSP with three variables (a, y, z), the octree obtained by composing the
qUadtTW Tv, T., and T, will give all the consistent instantiations according to the chosen
granularity (white cubes)

For each C, E(C ... 0,) Do

1. build a quadtree representation 2', for the basic constraint Ci

2. T.,,=T EDV

Constructing the quadtree representation of an individual algebraic constraint, require a
procedure for determining the color of each sub-region (rectangle) created by the recursive de-
composition.When the constraint curve determines a transversal segment within the considered
rectangle, testing for the rectangle color amounts to finding an intersection of its boundaries
with the curve. This test requires iterative numerical analysis in the general case. On the other
hand, when the curve is dosed more complicated treatment must be accommodated. Comput-
ing octrees for representing ternary relations can be carried out similarly to the case of binary
relations.

4 Global consistency in constraint networks

A minimal network is globally consistent (all the constraints are as explicit as possible in the
network) while a decomposable network allows for a backtrack-free search of the solution (the
search process can generally be carried out in linear time). In this work we show that certain
convexity properties of the solution space allows for computing minimal and decomposable
network in polynomial time for a continuous CSPs.

Encouraging results have been obtained for continuous CSPs in the domain of temporal
reasoning: Dechter, Meihi and Pearl [2] have shown that for simple temporal problems (STP),
where labels have to be convex intervals (i.e: disjunctive constraints are not allowed), the min-
imal constraint network can be constructed in polynomial time by ensuring path consistency.
Similar results have been obtained by Van Beek [15] on a subset of the Allen's interval algebra
excluding the binary relation 9k. RecentlyVan Beek [16] has generalized the convexity prop-
erty to the case of discrete CSPs: a property of discrete constraints - called row-conveity -

240

has been identified that guarantees the miimnality and the decomposability of the constraint
network when path consistency is ensured.

Although the convexity properties exploited in temporal and row-convex discrete problems
derive mainly from results in the continuous domain (see Helly's theorem for convex sets [151),
no framework has been defined to exploit them in the case of general continuous CSPs. This
is because the restriction imposed by the convexity condition on algebraic continuous solution
spaces is too strong. In this work, we show that the arcwie connectivity property (a weaker
condition) is sufficient for generalizing the results obtained in simple temporal [2] and row-convex
discrete [16] domains to continuous CSPs.

In simple temporal problems (STPs) constraints take the form of bounded differences b1 <
Zi - Mi < b2 where [bIb2] has to be a single interval. This condition amounts to saying that
each variable takes its value within a single interval (convex interval). Path consistent STPs
can be solved by backtrack-free search. The key observation is that this solution requires the
convexity property only for each individual variable domain. Hence, generalizing to non-temporal
continuous CSPs would amount to imposing convexity conditions only on the projections of the
solution space over the different axes involved (the convexity condition is required only on
projected intervals).

Consequently, for generalizing the results obtained for STPs, it is sufficient that the solution
space verifies the arcwise connectivity property.

The arcwise connectivity requirement is dearly weaker than convexity: a k-ary relation,
defined on a set of k variables V = z1,..., and determining a convex region has convex
projections for each variable zi of V. However, the converse is not true, a region may have
convex projections for each involved variable x without being convex.

4.1 Convex binary CCSPs

Let first describe how convexity properties can be exploited in the case of binary constraints.
The case of n-ary constraints will be dealt with later on. We define:

Definition I z-Convecity property

i. Let r be a Hi-dimensional region defined by a set of algebraic constraints on two variables
xi and xj. r is said to be zi-convez in the domain D.. if its projection over the xt axis
yields a convex interval (k E f{i,j)).

ii. A binary relation 14,,., is :5 -conve: in the domain D.. if it determines a zj-convez
region in D..

Definition 2 : Convex constraint network
A constraint network representing a CCSP (V,D,R) is conve: if for all relation Ri,inR,
Rz,z, is :5 -convez for each k in {i,j}.

Continuous constraint satisfaction problems (CCSPs) having convex constraint network rep-
resentations are the generalized counterparts of simple temporal problems (STP) as defined
in [2]. Since an arcwise connected region in RI is a single closed and bounded sub-region of R",
the x-convexity property is verified for each relation determining an arcwise connected set.

Note finally thi.t CCSPs including disjunctive or non-linear constraints may admit no convex
constraint network representation since these type of constraints often create splits in the solution
space.

241

Now, we are in position to extend the main theorem of Van Beek (theorem 1 of (16j) to the
case of CCSPs. We first have to extend the lemma on which his proofs are based. This can be
done as follows:

Definition 3 :
Let and r.2,., two z,-convez bi-dimensional regions. The zx-interection of r' and r2 i

defined as the intersection of their p jection ot er the z, axis.

Lemma 1 Let F be a finite collection of x-convez regions in RI. If F is such that every pair
of regions have a non null x-intersection, then the z-intersection of all these regions is not null
(i.e: there ezist at least one value v for z so that each region r.,, contains a point (v, yi), where
Vi is a posible valuefory)

Proof. This lemma is a direct application of Helly's theorem to the case of RI2.

We can generalize the theorem as follows:

Theorem 1 A binary constraint network which is convex and path-consistent is minimal and
decomposable

Proof. Analogous to the one given in [16].

Theorem 4 in [16] generalizes then to the case of x-convex relations:

Theorem 2 Let N be a path consistent binary constraint network. If there exists an ordering
of the variables x ,. such that each relation of N R.,,,, 1 < j < i, is :,-convem, then a
consistent instantiation can be found without bactracking.

Proof: The proof derives from the generalization of the backtrack-free instantiation algorithm
proposed by Van Beek in [16].

4.2 Convex n-ary CCSPs

As stated before, generalizing to n-ary CCSPs the results described before for binary CCSPs
amounts to giving the ternary counterparts of theorems 1 and 2.

Global consistency for ternary CCSPs The x-convexity property generalizes straightfor-
wardly to the case of non binary CCSPs. In the case of ternary constraints, the generalization
of lemma 1 can be used to prove the decomposability of the constraint network only if each pair
of ternary relations have a non null x-intersection. Two ternary relations R-j,,t and P ,4 ,,
have a non null k-intersection when each subset of five variables (il, i2 , j], j 2, k) are consistently
labelled. In the particular case where each pair of ternary constraints have two variables in
common,(i.e: il = i2 or j, or j 2), the number of variables that must be consistently labelled
reduces to four and strong 4-cousistency is sufficient for the network to be decomposable. Hence,
theorem 1 generalizes to ternary constraints as follows:

Theorem 3 A ternary constraint network which is convex and strong 5-consistent is minimal
and d omposable. Furtherrae, in the particular cuse where each pair of relations share two
vriables, Strong 4-consistency is enough to ensure that a convex ternary constraint network is
minimal and decomposable.

242

Since the translation of an n-say network into a ternary one is done at the cost of increasing
the number of variables, the practicality of 5-consistency for n-ary CCSPs is still an open ques-
tion. This result is mainly intended to provide a theoretical bound for solving certain classes of
n-ary CCSPs in a complexity better than exponential.

4.3 Non-convex CCSP

A general CCSP may admit no convex constraint network representation. Moreover, even if the
initial problem is convex, consistency algorithms may not preserve this property since intersect-
ing two non convex - even if arcwise connected- regions may result in an arbitrary number
of distinct arcwise connected sub-regions. We can distinguish three classes of CCSPs:

i. CCSPs where all the relations determine convex regions

ii. CCSP where each relation determining a non arcwise connected solution space is consti-
tuted by a set of convex regions.

iii. CCSPs where there exist non convex regions

In case i., since the intersection of two convex regions is necessarily a compact region, consistency
algorithms will preserve the convexity of the constraint network representation. Hence, problems
of this first category can be solved, with no further search, using partial consistency algorithms
(as stated in theorems 1 and 3). In case ii., the problem can be decomposed into convex
sub-problems (one for each possible combination of convex sub-region). Each sub-problem is
of type i.. Solution to the whole problem can be determined by solving individually each sub-
problem and then combining their solutions. Even if the complexity is, in this case, exponential
in the number of disjoint convex sub-regions, the computational effort can be bounded a pror
since consistency algorithms cannot create new case splits in the individual sub-problems. In
the last case finally, the splitting problem (similar to the one described in [10]) may occur and
the complexity is difficult to estimate. In the best case, the consistency algorithm may create
a convex constraint network from a set of non-convex relations. In the worst case however,
the intersection of each pair of non convex regions may result in an undetermined number of
disjoint new sub-regions which can in turn split again. Practical solutions (such as stopping the
splitting process when the maximum precision is reached) can be used to bound the combinatorial
explosion, but in general the complexity remains exponential for CCSPs of type iii

5 Complexity of Consistency algorithms

The complexity of the intersection, composition and projection operators on 25 -trees can be
roughly estimated in terms of the number of nodes generated by each operation. 0(2 h'* / ')

(where a is the maximum domain size and e the tightest interval size accepted for variables)
gives a rough approximation of the complexity. This measure assume that, in the worst case, a
2V-tree resulting from a given operation is complete. A more realistic measure can be done in
terms of the number of gray nodes generated, since the recursive quartering stops as soon as a
node color is set to white or black. We can show that this measure is function of the boundaries
size of the solution space. Furthermore, 25-tree structures are by nature well-adapted to parallel
processing. Parallel implementation of the intersection, composition and projection are likely
to reduce significantly the complexity. Important improvements in time and space complexity
can also be achieved by storing and processing only the white nodes (see linear quadtrees in [9]).

243

Convex Binary CCSPs The algorithm PC-2 can be implemented using eq. I by way of
the revise function. According to the definitions of E and & for 25 -trees, the relaxation
operation described by eq. 1 is monotonic. Moreover, since the region decomposition into 2h-trees
discretises the solution space, showing that PC-1 (and hence PC-2) terminates and computes
a path-consistent network using the relaxation operation T'ij = T2j E Tiw ® T5j, can be done
similarly to the case of discrete-domains CSPs (see [13]). The worst case running time of PC-2
occurs when each revision step suppresses only one node from the considered relation (i.e. the
node becomes black), hence:

Theorem 4 PC2 computes the path consistent network representation of binary CCSPs, (V, D, .R),
in 0(2(2 1/)n 3) where s is the largest interval size in D and e the tightest interval size accepted
for variables of V.

According to theorem 1, when the path consistent network computed by PC-2 is convex, it is
also minimal and decomposable. Similarly, we can demonstrate that strong 5-consistency can
be ensured for a ternary CCSP in O(2(s3aI)ns).

Non convex CCSPs During the construction and propagation of 25-trees, the case when a
single region is split into several can be reliably detected. At this point the algorithm branches

and explore both regions separately (a new CCSP is generated). The pathological case where
infinite number of sub-regions are generated is avoided in practice, since the regions smaller than
the maximum precision are not explored. However, the complexity is clearly exponential in the
worst case.

6 Conclusion

In this paper we present a generalization of the results obtained for convex temporal problems
and discrete row-convex problems to more general classes of continuous CSPs (called convex
CCSPs). One of its main contribution is to show that arctoise connectivity properties of con-
tinuous solutions spaces can be exploited to compute solutions to CCSPs in polynomial time
complexity. This paper also presents a recursive decomposition scheme that solves the problem
of representiug general regions. The 2k-tree decomposition amounts to performing the stable
binary-search method which guarantees convergence according to numerical analysis results.
The cycling problems, generally posed by fixed point iteration methods (such as those observed
by Davis for the Waltz algorithm [1]) are consequently avoided. Finally, we show that solving
non convex CCSPs remains inherently costly, but decomposition methods can be proposed and
might be of practical interest for many particular applications.

Acknowledgements

We thank the Swiss National Science Foundation for sponsoring this research under contracts
No.20-32503.91 and 50-34269.92

References

[1] E. Davis: "Constraint propagation with interval labels," Artificial Itelligence 32,
1987

244

[2] L Dechter, I. Meiri, and J. Pearl: "Temporal constraint networks" Artificial
Intelligence, 49(1-9),1990

[3] R. Dechter: "Prom local to global consistency" Proceedings of the 8th Canadian
Conference on AI,1990

[4] Y. Devile, P. Van Hetenryck: "An efficient arc consistency algorithm for a clas
of CSP problems' Proceeding. of the 12th International Joint Conference on A,1991

[5] B.Faltings: "Arc consistency for continuous variables" Artificial Intelligence, 65

(2),1994

[6] E.C. Freuder: "Synthesizing constraint expressions" Comm. ACM, 21,1978

[7] E.C. Freuder: "A sufficient condition for backtrack-free search" J. ACM, 29,1982

[8] E.C. Freuder: "A sufficient condition for backtrack-bounded search" J. ACM,
32,1985

[9] I. Gargantini: "An effective way to represent quadtrees" Communication. of the
ACM, 25/12, 1982

[10] E. Hyv6nen: "Constraint reasoning based on interval arithmetic: the tolerance
propagation approach" Artificial Intelligence, 58(1-3),1992

[11] 0. Lhomme: "Consistency techniques for numeric CSPs" Proceedings of the ItA
International Joint Conference on AI, 1993

[12] A. Mackworth: "Consistency in networks of relations," Artificial Intelligence,8,
1977

[13] U. Montanari: "Networks of constraints: fundamental properties and applications
to picture processing," Inform. Scie. 7, 1974

[14] T. Tanimoto: "A constraint decomposition method for spatio-temporal configura-
tions problems " Proceedings of the the 11th National Conference on AI,1993

[15] P. Van Beek: "Approximation algorithms for temporal reasoning" Proceedings of
the I1th International Joint Conference on AI, 1989

[16] P. Van Beek: "On the inimality and decomposability of constraint networks"
Proceedings of the 10th National Conference on AI, 1992

245

Study of symmetry in Constraint Satisfaction Problems*

Belaid Benhamou

URA CNRS 1787 - Universiti de Provence,
3,Place Victor Hugo - F13331 Marseille cedex 3, France

phone number : 91.10.61.08
e-mail: BenhamouOgyptis.univ-mrs.fr

Abstract. Constraint satisfaction past by a number of researchers in differ-
problems (CSP's) involve finding ent contexts; and steal a well-studied re-
values for variables subject to con- search area of recent years (refer to Ku-
straints on which combinations of mar (10]). A CSP involves, (1) a (finite) set
values are permitted. Symmetrical V = 04v 2,.. . , v,} of variables, (2) a fi-
values of a CSP variable are in nite set D = {Di,D 2,...,D,} of discret do-
a sense redundant. Their removal main values in which Di is the finite dis-
will simplify the problem space. In
this paper we give the principle crete domain associated whith the variable v,;
of symmetry and show that the to avoid confusions between values of differ-
concept of interchangeability intro- ent domains, di will denote the fact that it
duced by Freuder, is a particular belonges to the domain Di, (3) a finite set
case of symmetry. Some symmetries C = {c,c,...,c.} of constraints, a k-ary
can be computed efficiently thanks constraint ci is defined on a subset Vk C V
to the structure of the problem of variables which we denote var(ci), (4) and
(neighborhood interchangeability is a finite set R = {R 1 , R 2,. .. , R} of relations
a kind of these symmetries). There- corresponding to the constants in C, X- rep-
fore we show how such symmetries resents the list of tuples form in which the tu-
can be used by existing constrain- pies of values satisfying the constraint ci are
t propagation algorithms and in- pies ov us a the cnsan a a
troduce a backtrack procedure ex- enumerated. Thus, a CSP can be seen as a
plaiting symmetries. Both theorit- quadriplet 'P(V, D, C, R).
ical analysis and expiziments indi- A value assignment is a mapping which
cate that our proposed approach is specifies a value for each variable: formally a
an improvment of neighborhood in- value assignment I can be seen as: I : V
terchangeability use, and has very Uie[,.lD such that I[vi] E D,, Vi E [1, i].
good behavior for pigeon-hole prob- A value assignment satisfies a constraint if
lerns. it gives a combination of values to variables

that is permitted by the constraint; otherwise
1 Introduction it falsifies it. Thus a constraint satisfaction

problem is the task of finding one or all value

The finite domain constraint satisfaction assignments for the constraints network such
that all the constraints are satisfied together.problem (CSP)2 is well known in Artificial A oigepcevrostcnqe

Intelligence. It has been investigated in the fo soling c teds have b eene
for solving CSP's have been developed;

2 Through out this paper, we use CSP to re- these include backtraking, arc consistancy

fer to the finite domain constraint satisfaction (Waltz [13], Mackworth [11]), path consistan-
problem.

246

cy (Freuder [6] mantic symmetry are difined whith respect to
On other hand, symmetries for boolean con- the two previous problems.

straints are well studied in (Benhamou and
Sais [2,3]). They showed that it is a real im- Denitin I Symmetry for satisfiability.
provment for efficiency of several automated Deoinitaon I Symmetry for Sa i
deduction algorithms. In this paper we devel- Two domain values b and c for a CSP van-
op the concept of symmetry for CSP's. Sym- able vi E V are symmetrical for satisfiability

metrical domain values will be in a sense re- (notation b6 f ci) iff the following assertions

dundant. Their removal will simplify the prob- are equivalent :
lem search space. On other hand the set of 1. There is a solution of the CSP which con-
solution of a CSP can be represented in a tains the value 6i;
more compact way using symmetry. Indeed 2. There is a solution of the CSP which con-
only non-symmetrical solutions are computed tains the value ci.
(basical solutions) from which we process the
other solutions whitout duplication of efforts. Domain values can be not only symmetrical
The paper is organised as following: for satisfiability (definition 1) but symmetrical

Two levels of semantic symmefry are de- for the set of all solutions as well. Thus, if
fined in Section 2. Section 3 discusses spatac- sol(P) denotes the set of solutions of the CSP
Vial symmetry which is a form of semantic V, then we define a second level of semantic
symmetry that can be computed efficiently us- symmetry as follow:
ing only the structure of the considered prob-
lem. In other words, syntactical symmetry is
considered as a suffisient condition to hold se- Definition 2 Symmetry for all solutions.
mantic symmetry (Neighborhood interchange- Two domain values bi and cj for a CSP vari-
ability (Freuder [7]) is a cam of syntactical able vi E V are symmetrical for sol(P) (not&-
symmetry). Section 4 explains how symmetri- tion bi = ci) if and only if each solution of the
cal values can be used in various algorithms CSP containg the value b, can be mapped in-
such as propagation methods and propose a to a solution containing the value qj and vice-
backtrack procedure taking advantage of sym- versa.
metrical values. In section 5 we evaluate the
proposed techniques by experimental results. Remark. Symmetrical values for all solutions
Section 6 concludes the work. (definition 2) are also symmetrical values for

For simplicity we studie binary CSP's, satisfiability (definition 1).
which involve only constraints between two Ezample I Graph coloring problem.
variables. However, symmetry remains avail- The problem consists in coloring the vertices
able for non-binary CSP's; and non-binaryable fornnbina CP's;ornd ntobinary so that no two vertices which are joined by an
CSP's can be transformed into binary ones edge have the same color. The available col-
(Rossi, Dhar and Petri [12]). ors (domain values) at each vertex are shown

(figure 1).
2 Semantic symmetry The red1 and white, colors for vertex vi are

two symmetrical domain values. Indeed, solu-We are interested by two problems in CSP's.: tions in which one of them participates, can

the problem of finding a solution (test of sat-

isfiability) and the problem of findind all the
solutions of the CSP. Thus two levels of se-

247

be obtained from the solutions in which the sufficient condition to hold semantic symme-
other value appears by permuting the values try (definition 2) and give an efficient method
red and white for the variables vj, v2 and v3. for search of such symmetries.

3 Syntactical symmetry
vi rewht _c13orewht v3V1 red, white -marroo,,--red, ,hil Identifiying semantic symmetries as difined in

q 2 [c34 (definitions I and 2) is straightforward time
consoming, as this requires solving the prob-
lem. This section studies a family of sym-

v2 blue, red, white, blu v4 metries (syntactical symmetries) which are
more tractable computationally, thanks to the
structures of the considered problem.

FIg. 1. The graph coloring problem. A permutation a of domain values of a
binary CSP P = (V,D,C, R) can be seen
as: a : Uie(,n]D1 -A U ei,,]Di, such that

In other hand, Freuder introduced in ([7]) r(d.) E Di, Vi e [I,n] and Vd. E Di. The
the notion of interchangeability, where two do- permutation a, have no influence on the sets
main values are interchangeable in some en- {V, D, C) of the CSP P. However, it induces
veronment, if they can be substituted for each a permutation at on the tuples in each relation
other without any effects to the environment. Rj E R and then a permutation OR 3 on the
Let us summarize the main definition, relations themselves. Therefore a syntactical

symmetry of a CSP V = (V, D, C, R) is a per-
Defnition$3. Two domain values bi and mutation of domain values which leaves the
for a CSP variable v. E V are fully inter- CSP 7> invariant (i.e. vR(Ri)= R .,EVRi R).
changeable iff (1) every solution to the CSP Formally:
which contains bi remains a solution when Cj is
substituted for b,, (2) every solution to the C- Definition4 Syntactical symmetry.
SP which contains ci remains a solution when A permutation a is a syntactical symmetry
bi is substituted for qi. of the CSP V = (V, D, C, R) iff [Vi E R,

Remark. Interchangeable values are particu- < , di >E tuples(Rij) =

lar symmetrical values for all solutions in < ff(di), c(di) >E tuples(PRj)].

which the mapping consists to permute the in- Remark. A syntactical symmetry of a CSP
terchangeable values and still identity for the is a domain value permutation a such that
other values. rj(Ri) = R, VA E R.

In the previous examples, values red, and Eample 2 Pigeon-hol probem. The problem
whitel are not interchangeable. Thus, the consists in putting n pigeons in n-I holes such
principle of symmetry seems to be more gen- that each hole holds at most one pigeon. Take
eral than the notion of interchangeability, for instance 4 pigeons and 3 holes. The pigeon-
Therefore, eliminating symmetrical values can the set of variables the
prune more great deal of effort from a back- holes by the domain values, as it was shown
track search tree if such values are processed h s eo v sa ah
efficiently. We study in the next section syn- 3 Both u, resp. a'i are natural generalizations for
tactical symmetry of domain values which is a o, to tuples resp. relations.

248

in the constraint graph of figure 2, the con- Example 3. The sets of values {ai, bi, ci}, i E
straint c1s is given in its microstructure form (1, 4] of the previous example forme four cycles
showing the permitted tuples in the relation of symmetry.
R13 .

All values in a cycle of symmetry are sym-
metrical two by two. Therefore, our method of
search of symmetry will process a symmetry

V1 which gives for each domain, classes (cl(di) de-
notes the class of d,) of values which are sym-
metrical together. Each classe will be identi-

12c fied by a cycle of symmetry. Before, describing
2 c1 c13the search method of symmetry, we will prove

that syntactical symmetry is a sufficient con-
v2 abc23 c v3 dition for semantic symmetry.

Theorem 7. If bi and c are two syntactical
symmetrical values of a CSP variable vi r V

a C(i - ci) then bi and ci are semantic sym-
v4 metrical values for all solutions of the CSP

Fig. 2. Pigeon-hole problem for 4 pigeons and 3
holes.

Proof. Cf. ([1]).

The permutation ar defined as: O(ai) = (bi), Remark. Syntactical symmetrical values are
o(bi) = (i), o,(c) = (ai), Vi E [1, 4] keeps the also semantic symmetrical values.
CSP invariant (i.e. ort(R) = R., Vi E [1, 4]).
Thus, it is a symmetry of the CSP. Symmetry expresses an important proper-
Definition&. Two domain values bi and ci ty that we use to make prune the search tree.for a CSP variable v E V are syntactically Indeed if d, participates in no soliution of the
fomerica l (Parib -V f a here na t y CSP P and di - d, then d, will participate in
symmetrical (notation 6o - cr) if there exists no solution too. Thus, we prune the sub-tree

syntatical symmetry o' of the CSP > such which corresponds to its assignment. There-
that o(b.) =- c. fore, if there are n symmetrical domain values

Remark. The relation (-) is a relation of e- in cl(d), then we can cut n- I branches in the
quivalence. search tree if one of the domain values has al-

ready been identified that it paticipates in no
In the previous example domain values al solutions.

and b, of the variable v, are syntactically sym- See that neighborhood interchangeability is
metrical, a very particular syntactical symmetry which

permuts the interchangeable values and still
Definition6. A set {oa, 1 ... ,anj) of do- identity for the other values. Such symmetries
min values form a cycle of symmetry in can not exists frequentlly. Our approache is
V, if there exists a syntactical symmetry more general and will get more use. Bellow we
a of P such that a(a1) - af, a(a?) = give the search method for syntactical symme-
a3,... , -(a 1) =aO o =(a) al try.

249

3.1 Search method for symmetry 4 Adaptation of various

To be syntactically symmetrical, values need Constraints Propagation
to satisfy some necessary conditions: Algorithms

Proposition S. Let Atj (di) be the number of Now we are in the position to show how these
occurences of the value di E Di in the relation domain symmetrical values can be used to in-
R-i and tuples(R.,i) the set of tuples of Ri crease efficiency of various existing algorithm-
in which d, appears, then to be syntactically s. We give a few modifications of the key pro-
symmetrical, values bi and ci must satisfy the cedures and show the advantages of the use
following conditions: of symmetry techniques for certain problem

I. A&,j(.bi) =)~R,,(ci), VRij E R; types. We focus on binary CSPs.

2. for each di E tuples(R~i),e tuples(R .) such thai)Af,,(d.) - 4.1 Constraint filtering algorithms

Ap,\(dj), VARj E R. The critical and most time consuming task
in network consistency procedures is to check

Proof. Cf ([1]). if all values of a particular variable domain

The serch method consits in two steps: (1) can potentially be a member of a solution.

to partition each domain w.r.t the previous These checks are done repetitively for sin-

necaryconditions into primary classes of gu lar variables w.r.t singular constrains. Innecessycniisit ary rycap fthe case of binary constraints, the procedure

values which will be condidates for symmetry.

(II) process a permutation a from the prima- revise(Di,Dj) is usually used. It removes all
ry) pce s which eepsu in o the CSPiaria values of Di for which no value of the domainry classes which keeps the CSP invariant. W e c nb fo d suh t a t ebi ry o -deeoethe step (II) which will give the com- D, can be found such that the binary con-
develop s straint qj between variables vi and vj is sat-
plexity of the search method. isfied. It is abvious that the worst-case com-

proceduwe symmetry(Di E D) plexity of revise is O(a2) where a is the max-
Repeat for each RJi E R: imum domain size.

Repeat for each di 6 Di, The procedure revise is applied on differ-
such that < di,dj >4E tuples(RLi): ent constraints seperatelly, then symmetrical
choose r(dj) r. d(di) and v(di) E d(di), domain values must be computed w.r.t a giv-
such that < a(di), a(d) >E tuples(R,) en constraint c. The main idea is that domain

values can be symmetrical w.r.t a constraint
c, but not symmetrical w.r.t other constraints.

The classes of symmetrical values are the So it is important to caracterize symmetrical
different sycles of o,. A complexity bound for values for each constraint of the network in-

this algorithm can be found by assigning a dependently.
worst case bound to each repeat loop. Given We use the expression cl(d)* (d is a domain

m relations, at most a values in each domain value of the CSP variable v E var(c)) to de-

variable, we have the bound (the factors cor- note the equivalence class of symmetrical val-

respond to the repeat loops and the choose ues w.r.t to the constraint c in which d ap-

operation in topdown order): 0(m * a * a2) = pears; formally: d(d)' ={d E Dw : d - d}.

O(m.aO). Bellow we show how several meth- Figure 4 shows the procedure revise aug-

ods can be augmented with the advantage of mented by the advantage of symmetry.

symmetry.

250

procedure reviseV(var Di:domain,Dj:domain) a solution for the given CSP. Because we wan-
begin t to handle groups of symmetrical values, we

have to modify the form of the output. Instead
repeat of single assignment values, sets are used. As it

San eement of D was done in ([9]), assignment tuples are chift-
rpa =t ed to assignment bundles.
repeat

Y an element of Aj Definition9 Assignment Bundle. Let
if < z, I 'E tuples(Rij) then V be the set of n variables of the CSP P. An

begin n-tuple A where the ith element (I < i < n)4:= AiU flz'in D,}
&j ={) is a non-vacuous subset of the domain D is
end called an assignment bundle.

else &j :- A-{cl(Y)',- Definition 10 Solution Bundle. Let
u -til(Ai ={)) sol(P) be the set of all solution of the CSP P.Di :i - (C()"j

until (D i{i1) An assignment bundle A = {Al,.-, An} on

Di :f Ai the variables V of the CSP is said to be a solu-

end tion bundle, if and only if A, x A 2 ... x A C_
sol(P).

Fig.4. The reie algorit . Solutions bundle represent then groups of

The main difference between the classical paths throught the search tree, which are solu-
revise and reviseSV is that the former checks tions of the CSP. The terms of local and global
in the worst case all tuples Di x D and the consistency (see, for instance Dechter[4) can
later treats groups of symmetrical values e- be extended to assignment bundles.
qually. A symmetry or defined on a constraint
c partionnes the domain Di into subsets of do- Definition11. - An assignment bundle

main values which are symmetrical together. AP on the variables V C V is said to

If H11 is the set of symmetrical subsets do- be locally consistent, if every assignmen-
main values of the variable v E var(c), w.r.t t tuple extractable from AP is locally4 ,

the constraint c, if we assume that the sets H17 consitent;

for all constraint c and all variables v E var(c) - An assignment bundle AP on the variable

are of size d (1 < d < a), then a worst case Vp g V is said to be globally consisten-

bound of the algorithm reviseS V is C(d 2). t, if there exists an extention assignment
bundle A" on the variables (V- V) such

4.2 Backtrack s that AP U A" is a solution bundle;
- An assignment bundle AP is said to be in-

In the following, we want to envolve a consistent, if every assignment tuple ex-
tree search scheme where symmetrical search tractable from AP is inconsistent (i.e., no
branches are recognized by use of symmetri- tuple in AP can be extended to a solu-
cal values. The algorithm is basically the same tion).
as classical backtrack tree search as discribed, Now we modify the classical backtrack
for instance in (Fox and Nadel [51). search such that for each pass a bundle assign-

But first we have to give some notations we
need for the development of the search proce-
dure. Each output of a traditional backtrack 4 I.e., all the constraints of the subnetwork de-
procedure is an assignment tuple representing fined by the variables Vp are satisfied.

251

sets of symmetrical solutions. The following will test both interchangeability and symme-
theorem gives the fundamental basis for the try and compare them on two kind of problem-
utilisation of symmetrical values. s: (I) randomily generated CSP's, we use the

same test model as proposed in Freuder ([8]).
Theorem 12. Let AP be an assignment bun- (II) the pigeon-hole problem which is known
die on the variables Vp g V which is either to be hard, is solved using symmetries with a
globally consistent or inconsistent. Let v be a linear complexity, however interchangeability
variable of V - V, 6. C D and C all bina- get no use for this problem.
ry constraints from v to variables of (V- Vp),
suck that the two following two conditions hold

1. A? + 6. is locally consistent; 5.1 The experiment model
. Vdi, d2 E 6. : Vc E C5 , di - d2 .

Ten AP + 6, is either globally consistent
or inconsistent.

Random CSP's are characterized by the fol-
Proof. CfE ([1]) lowing four parameters: (1) n, the number of

procedure backtrackSV(kinteger,B:usin-bundle); variables. (2) a, the maximum domain size. (3)
begin t, the constraint tightness which is the fraction

revise5 v(Dk, Dp), for 1 < p < k; of forbidden tuples to the number of possible
(or do some kind of look ahead fliltring) tuples. (4) the constraint density which is a
dk := Dk; number between 0 and 1 given by d, indicates
repeat the fraction of additional constraints.
z := an element of Dk';
Cf := all constraints on Vk to future variables;
B~]:= (ne Ec (x).) n dk;

dk := d - Bk]
if k = a then write(B) 5.2 Results
else backtracking5' (k + 1, B);
until (d =

end.
Fig.5. The backtrack algorithm. Three forward-checking search procedures are

The advantageous behavior of the pro- compared: (1) (FC), the classical forward-
cedure backtrackingsv is that symmetrical checking. (2) (FC - NI), forward-checking
search branches are bundled and visited once. with the advantage of neighborhood inter-
If a dead-end occurs, all the partial assignment changeability seen as particular syntactical
extractable frome the derived assignment bun- symmetry. (3) (FC - SV), the instance of
de are proven to be confiting, the search scheme backtrackingsv (we, fig-

ure 5) where forward-cheking filtring is used.
The indicator of the complexity is the num-

5 experiments ber of checks. Of cours, the checks needed
for the computation of neighborhood inter-

Now we want to invistigate the indicated changeability resp. symmetry are added to the
performance improvement of our augmented run time checks. The samples of each test are
search technique by experimental analysis. We 30 randomly generated CSP's.

252

12000 140- FC-SV

80O LI-0

60
40

2WO 200 0 -' 1 0 L

6 6.5 7 7.5 8 8.5 9 9.5 10 2 4 6 8. 10 12 14 16

Fig.6.Symmetry effects w.r.t the number of variables Fig.8. Symmetry effects on pigeon-hole problems.

It can be seen in figure 6 that the effect of
both symmetry and interchangeability grows
if the problem increase. The variable size steps 6 Conclusion
from 6 to 10, a is fixed on 5, t and d are from
the interval [0.1-0.4] (the profitable ranges for We have developed the formal cocept of
the use of interchangeability as claimed in [8]). symmetry in constraint satisfaction problem-
It can also be seen that FC - S definitily s, then various constraintes satisfaction algo-
beats FC - NI at these problems type. rithmes can be adapted to exploit such in-

formation. The principe of interchangebility
is shown to be a particular case of symme-

180000_ try. Further investigation will consist to ex-
180000 " tend symmetry to domain values of different160000-
140000 FC - variables and try to identify certain type of C-
120000 FC-NI -0--- SP's for which such symmetries get more use.

00000 - FC-SV -8M-
42 19- References

2 4 6 8 10 12 14 16 1. B. Benhamou. Study of symmetry in con-

straint satisfaction problems. Technical Re-
port 1, Universiti de provence, 1994.

Fig.7. FC and FO-NI effects on Pigeon-hole problem. 2. B. Benhamou and L. Sais. Tractability
through symmetries in propositional calculus.

Figure 8 shows that the complexity of FC- Journal of Automated Reasoning (JAR), to a.
SV for pigeon-hole problem seems to be in- pear.
ear, whereas both FC and FC - NI (figure 3. B. Benhamou and L. Sais. Theoretical s-
7) cannot solve the problem when the num- tudy of symmetries in propositional calcu-
ber of pigeons is greater than eight, their com- lus and application. Eleventh International
plexities become quickly exponentiel when the Conference on Automated Deduction, Sarato-
number of pigeons is greater then 8. Thus, ga SpringsNY, USA, 1992.
neighborhood interchangeability get no use for 4. R. Dechter. From local to global consistency.
this problem. Artificial Intelligence, 55, pages 87-107, 1992.

253

5. M. Fox and B. Nadel. Constraint satisfaction
directed reasoning. Tutorials of IJCAJ-89,
1989.

6. E. Freuder. Backtrack-free and backtrack
bounded search. In Kanal, Latecn and Ku-
mar, Vipin, editors 1988, Search in Artifi-
cial Intelligence. Springer- Verlag, New York.,
1988.

7. E. Frender. Eliminating interchangeable val-
ues in constraints satisfaction problems. Proc
AAAI-91, pages 227-233, 1991.

8. E. Freuder and W. Benson. Interchangeabil-
ity preprocessing can improve forward check-
ing search. In proc. ECA, 1992.

9. A. Haselbock. Exploiting interchangeability
in constraint satisfaction problems. In Pro-
ceedings of IJCAI, pages 282-287, 1993.

10. V. Kumar. Algorithms for constraints satis-
faction problems. AI Magazine, pages 32-44,
1992.

11. A. Mackworth. Consistency in networks of
relations. Artificial InteUigence 8, pages 99-
118, 1977.

12. D. Rossi and Petrie. On the equivalence of
constraint satisfaction prc llems. Technical
report, MCC Technical Report ACT-AI-222-
89. MCC, Austin, Texas 78759, 1989.

13. D. Waltz. Understanding line drawings of
scenes with shadows. In Winston, P.H., edi-
tor, the Psychology of Computer Vision. Mc-
Graw Hill, Cambridge, MA, 1975.

This article was processed using the DTEX macro
package with LLNCS style

254

Characterization of the set of models by
means of symmetries

Lakhdar Sais
Laboratoire d'Informatique de Marseille

URA CNRS 1787
Universit' de Provence, UFR-MIM

3, place Victor Hugo
13331 Marseille Cedex 3 FRANCE

E-mail: sais~gyptis.univ-mrs.fr

Abstract

Many classes of propositional calculus problems display a large
amount of symmetries, i.e. the set of clauses representing such prob-
lems remains invariant under certain permutations of variable names.
In [2,1] we have shown how such symmetries can be detected and used
to simplify satisfiability checking.

The problem of finding all models of a given CNF propositional
theory is known to be hard. More generally, we need to explore a
complete proof tree and, in some cases, the set of models is much too
large to be represented explicitly.

In this paper, we show how symmetries can be used to represent
a large set of models by a subset of characteristic models(non sym-
metric models). The other models can be obtained by applying the
computed symmetries.

We present an algorithm for enumerating non symmetric models,
and we show results obtained on some known problems, such as the
pigeon-hole, queens and some other problems derived from mathemat-
ical theorems.

Key words. Theorem proving, propositional calculus, symmetries.

1 Introduction

Finding all satisfying models for a formula in conjonctive normal form (CNF),
or even deciding whether a satisfying model exits (Sat), is known to be NP

255

hard. There are, however, a large classes of propositional problems which
contains several symmetries. The principle of symmetry originaly suggested
by Krishnamurty [8] can lead in many cases to a shorter proof of the problems.
Indeed, for a set S of clauses with n propositional variables, there are 2n

possible interpretations (i.e. mapings from the variables to the set {True,
False}). If S contains symmetries, then the interpretations can be partioned
into equivalence classes. Satisfiability checking can be reduced to the problem
of testing one interpretation from each such equivalence class. The number
of such classes give us an estimate of the usefulness of a set of symmetries.

In (2,11 we have explained how symmetries are detected and used in some
automated deduction methods such as S1-Resolution algorithm and Davis
and Putnam procedure. Good results have been obtained on some known
hard propositional problems.

Enumerating all the models of CNF propositional theory is an interesting
and difficult task[4]. The difficulty is that we generally need to explore a
complete proof tree and in some cases the set of models is much too large
to be represented explicitly. The interest of this, is that for certain kind
of information the model-based representation is much more compact and
enable much faster reasoning than the traditional representation using logical
formulas[6,7].

In this paper, we show how symmetries can be used to represent the set
of models by a subset of characteristic models(non symmetric models), from
which all others can be generated. We present an algorithm for enumerating
all non symmetric models, and we show results obtained on some known
problems.

2 Preliminaries

We shall assume that the reader is familiar with the propositional calculus.
For a propositional variable p there are two literals p the positive literal and
-'p the negative one. A clause is a disjunction of literals such that no literal
appears more than once, a clause containing no literals is called the empty
clause. A set S of clauses is a conjunction of clauses. In other words we
say that S is in the conjunctive normal form. A truth assignment to a set
of clauses S is a map I from the set of variables occurring in S to the set
{True, False}. The value of S under the truth assignment will be defined in
the usual sense. We say that a set of clauses S is satisfiable if there exists
some truth assignments in which S takes the value True; it is unsatisfiable
otherwise. In the first case I is called a model of S. Also, if £ is true in a
model of S, we say that £ has a model in S. We identify -1 to the opposite
oft.

256

3 Symmetries

We recall some definitions and property of symmetry, for. more details see
[2,1].

A bijective map a: V -+ V is called a permutation of variables. If S is a
set of clauses, c a clause of S and a a permutation of variables occurring in
S, then oa(c) is the clause obtained by applying a to each variable of c and
a'(S) = {a(c)/c E S}.
In the following we define a permutation on literals.

Definition 3.1 A set P of literals is called complete if Vt E P, - 1 E P

Definition 3.2 Let P be a complete set of literals and S a set of clauses of
which all literals are in P.
A permutation o defined on P (a : P --+ P) is called a symmetry of S if it

satisfies the following conditions:

1. V1 E P, a(-Ie) = - a'(f)

2. a()= S

Definition 3.3 Two literals (variables) I and I' are symmetric in S notation
(I t') if there exists a symmetry a of S such that 0(1) = 1'. A tuple
(11,12,... ,1n) of literals is called a cycle of symmetry in S if there exist a
symmetry o defined on S, such that a'(I) = 12,.. a(,_0(4) = 1 ,(,) - 1.

Example 3.4 Let S be the following set of clauses : S = {a V -b, c}
and a the map defined on the complete set P of literals occurring in S:
a(a) = -'b, a(-'a) = b, o(b) = - a, o'(-,b) = a, o'(c) = c and a(-'c) = c
a is a symmetry of S, a and -,b are symmetric in S (a -b).
a(S) = {-b V a, c} = S.

Definition 3.5 Let P be a complete set of literals, a a symmetry, I a truth
assignment of P and S a set of clauses then, a(I) is the truth assignment
obtained by substituting every literal I in I by a(f).

Proposition 3.6 I is a model of S iff g(1) is a model of S.

Proof : cf.[2,1]

From the poposition above, one can define an equivalence relation on the
set of interpretations by : I, - 12 iff there exists a symmetry a on S such
that I, = a(12).

In the previous example, the set of possible interpretations can be partioned
into six distinct classes: [000],[110]}, {[001],[111]}, {[010]},{[011] , {[100]}
and {[101]}. Also we can easily distinguish two distinct classes of models
: {[001],[111]} and {[101]} ([1011 should be read as [a=True, b=False and
c=True]).

257

Theorem 3.7 Let I and I' be two literals of S.

if I - I' in S, then I has a model in S iff I' has a model in S.

Proof : direct consequence of proposition 3.6

Let us define S the set of clauses obtained after assigning to the
literals 11, 12,... , 4 the value true, consequently,

Corollary 3.8 Let (, 11,12,... ,,) be a cycle of symetry of I in S then, S
is satisfiable iff S, or - is satisfiable.

The previous theorem is very usefull to make prune the proof trees. Indeed,
if I has no model in S and I , ', then I' will have no model in S, thus we
prune the branch which corresponds to the assignment of I' in the proof tree.
Therefore, if there are n symmetric literals we can cut n - 1 branches.

In [2,1], we have explained how symmetries are detected and used in dif-
ferent automated deduction algorithms such as S1-Resolution and the Davis
and Putnam procedure. It should be noted that in our previous work [2,11,
we search for symmetries at each level of the proof tree: on the set of claus-
es simplified by the current assignment, we call these symmetries local, in
opposition to symmetries of the original set of clauses (global symmetries).
Local symmetries must be very usefful, when the problem holds some sym-
metric kernels. This kind of symmetries can't be used, if we adress the
problem of computing non symmetric solutions of the problem. In some oth-
er problems, the symmetries appear on the original problem (global), but
they can disapear after assignment of some variables.

4 A characterization of the set of models

In the sequel, We show how the principle of symmetry can lead to a short
representation of the set of models.

Definition 4.1 Two models m, and m2 of a set S of clauses are symmetric
if there ezists a symmetry a of S such that o(ml) = M2

Remark 4.2 If f f I' on S, then I and I' have the same number of models.

Definition 4.3 Let S be a set of clauses and A a set of literals occurring in
S which don't contain a literal and its opposite.
We define M(S, A) as a set of models of S which contain the literals of A.
and M(S, 0) is the set of all models of S.

Definition 4.4 Let S be a set of clauses and A = {11,12,. .. ,4} a set of
literals of S which don't contain a literal and its opposite.

258

We define M(S, @)/A as a partition of all the models of S on A
M(S, @)/A = {M(S, 4), M(S, -,142), M(S, -11 -4 ') ...

M(S,_tI - - - -, ,,_-14),M(S, _-1,2 . . . -In,))}

Theorem 4.5 Let S be a set of clauses and a a symmetry on S such that
(1,12,13,... ,,) is a cycle of symmetry, then,

1. Vi such that 2 < i < n,
M(S,-11-- ti-It) = ' 1-'(M(S, t1-I(,_ 2) -'4,,)) land;

2. The models M(S, 11) and M(S,-,4 ... -"4) are not symmetric.

Proof :
1)- Obvious. By the definition of a cycle of symmetry, one can easily write

-I (M (S, 1",_(_2) . . . -In,)) as M(S, -1 . .. li-Ii)
2)- Suppose that there exists m E M(S, 11) and M 2 E M(S, -it . .. -4) such
that ffi(mI) = m 2 with 1 < i < n.
t4 E mi, then a'(11) E n 2 and a'(1i) E {l, ,.. . ,M}. in 2 contain the liter-
als - 1, -4,..., -4, one can see that m2 contain a literal and its opposite
(contradiction) 3

This theorem show that, for a cycle of symmetry p = (4, ... , t) on S,
the set of models of S can be partitioned into three subsets :
MI = M(S, 11), M2 = U'91 2ai-I(M(S, 2-,t,,_(i-2) ...- 4)) and
M3 -- M(S, -1, ..- - ,4).

The models M 2 are included in M up to symmetry. The models M1 and M3
are non symmetric.

4.1 Use of symmetries

We will show an algorithm FindNon-SymmetricModels(S)(Figure 1), for
enumerating all non symmetric models of S, this algorithm uses as its basic
subroutine Solve(S). If S is satisfiable, then it returns a satisfying truth
assignment; otherwise, it returns nil. The notation Solve (S, ,) is a shorthand
for Solve (S U 4,), 0 is the set of literals in the current assignment.
In order to find all the solution, we use the Davis and Putnam procedure
without monotone (pure) literal rule.
Let 0 = {l ... 4} be the current set of literals assigned the value true.
Suppose we have found all the models of S U 4. Before searching for the
models of S U {I ... lk-i,-k -}, we search for a cycle of symmetry p of the
literal 4 on S(global symmetry), with the condition that {I,t2 ... 4- } is
invariant under the symmetry2. This additional condition allows us to avoid

Y : application of & i times
2A set of literals 4, is invariant under a symmetry o iff Vt E 4, a(t) E 0

259

symmetric models to the models found at the current level of the proof tree.
Now, we search for the models of S U f{4 ... 4...i-'41 U {f,Ve E P}.
As it is shown in Figure 1, in subroutine Find-NexLModel we search for
global symmetries to avoid symmetric models, and in Solve we search for
local symmetries in case of contradiction.

Find-.Non..Symmetric.Models(S)

modele-Solve(S,4,)
while model# nil
do I print model

model4e-Find.Next-Model(S, model)

F in-etMdlS41..)
I
for i=n downto 1
do I

/* global symmetry *
compute a cycle of symmetry v' of 1 on S such that {4, 12 ... li- I is invariant
modele-Solve(S,{1, 1 .. .4.-1-4- U {,V1 E 0)
if modelgnil then return(model)

return(nil)
I
Solve(S9$)

unit..propagate(S,4,) /* repeated application of unit-literal rule *
if contradiction discovered then return(nil)
else if all clauses are satisfied then return(4,)

else{I
X 4--some unvalued variable
if Solve(S,4, U I{z})=nil
then I

compute a cycle of symmetry 4' of z on S U 0 /* local symmetry ~
return(Solve(S,4, U {-z} U I{-f, V1 E 4'i))

else return(Solve(S,S U {x)))

Figure 1: Algorithms Find ..Non.symmetric-.Models

5 Results
We now present some results on the algorithm (Figure ~h and without
symmetry. For each problem, we give the total number of models(NM) and

260

the number of non symmetric models(NSM). Also in the case of unsatisfia-
bility we show also how symmetries affect the size of the proof tree.

5.1 Description of the benchmarks
" Queens. Placing N queens in N x N chessboard such that there is no

couple of queens attacking each other. Notation Queen(N)

" Erd~s's theorem. Find the permutation a of N first numbers such that
for each 4-tuple 1< i < j < k < 1 < N none of the two relations
o(i) < a(j) < e(k) < o(l) and a(l) < a(k) <-a(j) < a(i) is verified.
This problem is modeled by creating for each couple (i~j) a variable fij
which means cr(i) < a(j). The rules express the associativity of the
relation <, and prohibit the misplaced 4-tuples.
For N < 9 the problem admits solutions, beyond it doesn't.Notation
Erdos(N)

" Pigeon Hole: Put n pigeon in n - 1 pigeon-holes such that each pigeon-
hole holds at most one pigeon. The problem is unsatisfiable, for n pi-
geon and n holes the problem have n! solutions. Notation Pigeon(P,H)

" Schur's lemma: How to distribute N counters numbered from 1 to N
into 3 boxes A, B, C in accordance with the following rules:
1) A box can't contain both the counters numbered i and 2 * i
2) A box can't contain the counters numbered i, j and i + j
This problem is modeled simply by creating one variable by counter
and by box. For N _< 13 the problem admits solutions, beyond it
doesn't. Notation Schur(N)

" Ramsey problem's: Color the edges of a complete graph on N vertices
with k different colors such that no monochromatic triangle appears.
Notation Ramsey(N,K)

261

Table 1 : Schur's Lemma and Ramsey's problem,etc.

Problems SAT Without symmetry With symmetry
NM Steps Times NSM Steps Times

Pigeon(10,10) Y 10! - - 1 156 4.11"

Queen(4) Y 2 76 0.53" 1 28 0.150"
Queen(6) Y 4 1066 4.13" 2 278 2.150"
Queen(8) Y 92 17304 1'21" 23 7321 30.53"
Erdos(9) Y 1356 35732 3'57" 125 16328 2'.17"
Erd~s(10) N 0 2332 6.213" 0 1166 4.56"
Schur(13) Y 18 2029 5.83" 1 148 1.96"
Schur(14) N 0 1878 4.17" 0 374 1.517"

Ramsey(5,2) Y 2 231 0.200" 1 43 0.01"

Table 2 : Pigeon-hole problems

Number of pigeons Clauses Variables With symmetries
Steps Times

14 1197 182 193 3.21"
16 1816 240 253 6.83"
18 2619 306 321 13.11"
20 3630 380 397 23.04"
22 4873 462 481 35.29"

24 6372 552 573 54.73"
26 8150 650 673 1'20"

28 10234 756 781 2'15"
30 12645 870 897 3'34"

6 Related Work
Krishnamurty[8] discuses the idea of using symmetries to reduce the length of
resolution proofs, he uses a rule of symmetry to avoid repeated independent
derivations of intermediate formulas that are permutations of others. His
work does not adress the problem of detecting symmetries or of using them
in search problems.
Benhamou and Sais[1,2] discusses the detection and the use of symmetries
in automated deduction methods.
Freuder5] discusses the elimination of interchangeable value in constraint
satisfaction problem.
Also, a theoritical analysis of reasoning by symmetry in first-order logic have
been presented in Crawford[3].

262

7 Conclusion

In this paper, we have shown how global symmetries can be used to obtain
a new characterization of the set of models of a given CNF propositional
theory. For some problems symmetries give us a way to represent large sets
of models.
Also, the results obtained in this paper, shows the usefulness of global sym-
metries in case of checking satisfiability. There are, however, some problems
which possesses abundant local symmetry. Consequently, in order to increase
the tractable classes of problems by using symmetries, it is necessary to com-
bine the two kinds of symmetries.
In special case of Horn formulas and 2-cnfs, computing all models, although
counting is #P-complete, we intend to experiment our algorithm on this kind
of formulas.

References

[1] B. Benhamou and L. Sais. Theoretical study of symmetries in propo-
sitional calculus and application. Eleventh International Conference on
Automated Deduction, Saratoga SpringsNY, USA, 1992.

[2) B. Benhamou and L. Sais. Tractability through symmetries in proposi-
tional calculus. To appear in Journal of Automated Reasoning, 1993.

[3] J. M. Crawford. Theoritical analysis of reasoning by symmetry in first-
order logic. Workshop on Tractable Resonning, AAAI-92, San Jose, pages
17-22, July 1992.

[4] &. Dechter and A. Itai. Finding all solutions if you can find one. Workshop
on Tractable Resonning, AAAI-92, San Jose, pages 35-40, July 1992.

[5] E. C. Freuder. Eliminating interchangeable values in constraint satisfac-
tion problems. In proceedings of AAAI-91, pages 227-233, 1991.

[6] H. A. Kautz, M. J. Kearns, and B. Selman. Reasoning with characteristic
models. In procedings of AAAI-93, pages 34-39, 1993.

[7] J. L. Kolodner. Improving human decision making through casebased
decision aiding. AI Magazine, 12(2):52-68, 1992.

[8] B. Krishnamurty. Short proofs for tricky formulas. Acta informatica,
(22):253-275, 1985.

263

Constraint-Generating Dependencies
Marianne Baudinet Jan Chomicki Pierre Wolper

Universiti Libre de Bruxelles* Kansas State Universityt Universiti de Liege

Abstract I Introduction

Relational database theory is largely built upon
Traditionally, dependency theory has been de- the assumption of uninterpreted data. While
veloped for uninterpreted data. Specifically, the this has advantages, mostly generality, it fore-only assumption that is made about the data do- goes the possibility of exploiting the structure of
mains is that data values can be compared for specific data domains. The introduction of con-equality. However, data is often interpreted and straint databases [KKR90] was a break with this
there can be advantages in considering it as such, uninterpreted-data trend. Rather than definingfor instance obtaining more compact representa- the extension of relations by an explicit enumer-
tions as done in constraint databases. This paper ation of tuples, a constraint database uses con-considers dependency theory in the context of in- straint expressions to implicitly specify sets of
terpreted data. Specifically, it studies constraint, tuples. Of course, for this to be possible ingenerating dependencies. These are a generaliza- a meaningful way, one needs to consider inter-tion of equality-generating dependencies where preted data, that is, data from a specific domainequality requirements are replaced by constraints on which a basic set of predicates and functions
on an interpreted domain. The main techni- is defined. A typical example of constraint ex-
cal results in the paper are decision procedures pressions and domain are linear inequalities in-for the implication and consistency problems for terpreted on the reals. The potential gains fromconstraint-generating dependencies. These deci- this approach are in the compactness of the repre-sion procedures proceed by reducing the depen- sentation (a single constraint expression can rep-
dency problem to a decision problem for the con- resent many, even an infinite number of, explicit
straint theory of interest, and are applicable as tuples) and in the efficiency of query evaluation
soon as the underlying constraint theory is de- (computing with constraint expressions amounts
cidable. Furthermore, complexity results for spe- to manipulating many tuples simultaneously).
cific constraint domains can be transferred quite Related developments have concurrently beendirectly to the dependency problem. taking place in temporal databases. Indeed,

time values are intrinsically interpreted and this
can be exploited for finitely representing poten-
tially infinite temporal extensions. For instance,
in [KSW90] infinite temporal extensions are rep-"Address: 1nformatique, 50 Avenue F.D. E resented with the help of periodicity and inequal-meelt, C.P. 165, 1O50 Bnumel, Belgium. Email:

b4cs*.ulb.ac.be. ity constraints, whereas in (C188, C189, C1931tAd4egt: Departnent of Computing and information and [Bau89, Bau92] deductive rules over the inte-Sciences, 234 Nichols Hall, Kansas State University, Men- gers are used for the same purpose. Constraintshattan, KS 66506-2302. Email: chowickecis.ksu.edu.
Phone: (913) 532-6350. Fax: (913) 532-7353. have also been used recently for representing in-gAddress: lastitut Montefiore, B28; 40oo u e S -t- complete temporal information [vdM92, Kou92,Tilman; Belgium. Email: pubmtetiore.u g.ac.be. Kou93].

264

If one surveys the existing work on databases plication and the consistency problems for
with interpreted data and implicit representa- constraint-generating dependencies. The natu-
tions, one finds contributions on the expressive- ral approach to these problems is to write the
new of the various representation formalisms dependencies as logical formulas. Unfortunately,
[Bau, BNW91, BCW93], on the complexity of the resulting formulas are not just formulas in
query evaluation [Cho9O, CM90, Rev90, vdM92], the theory of the data domain. Indeed, they also
and on data structures and algorithms to be contain uninterpreted predicate symbols repre-
used in the representation of constraint expres- senting the relations and thus are not a priori
sions and in query evaluation [FVP92, Sri92, decidable, even if the data domain theory is de-
BJM93, BLL93, KRVV93]. However, much less cidable.
has been done on extending other parts of tradi-
tional database theory, for instance schema de- To obtain decision procedures, we show that
sign and dependency theory. It should be clear the predicate symbols can be eliminated. Since
that dependency theory is of interest in this con- the predicate symbols are implicitly universally
text. For instance, in [JS92], one finds a taxon- quantified, this can be viewed as a form of second-
omy of dependencies that are useful for tempo- order quantifier elimination. It is based on the
ral databases. In [GH83, GH86, 1093, Z093], fact that it is sufficient to consider relations with
one finds a study of integrity constraints over a small finite number of tuples. This then al-
databases with ordered domains, which can be lows quantifier elimination by explicit represen-
viewed as constraint-generating dependencies. tation of the possible tuples. The fact that one

only needs to consider a small finite number of
One might think that the study of dependency tuples is analogous to the fact that the impli-

theory has been close to exhaustive. While this cation problem for functional dependencies can
is largely so for dependencies over uninterpreted be decided over 2-tuple relations (Mai83. Fur-
data (that is, the context in which data values thermore, for pure functional dependencies, our
can only be compared for equality) [Tha9l], the quantifier elimination procedures yields exactly
situation is quite different for dependencies over the usual reduction to propositional logic. For
data domains with a richer structure. The sub- more general constraint dependencies, it yields a
ject of this paper is the theory of these inter- formula in the theory of the data domain. Thus,
preted dependencies. if this theory is decidable, the implication and the

consistency problems for constraint-dependenciesSpecifically, we study the class of consirainl- a~dcdbe

generating dependencies. These are the gen-

eralization of equality-generating dependencies The complexity of the decision procedure de-
[BV84], allowing arbitrary constraints on the pends on the specific data domain being consid-
data domain to appear wherever the latter only ered and on the exact form of the constraint de-
allow equalities. For instance, a constraint- pendencies. We consider three typical constraint
generating dependency over an ordered domain languages: equalities/inequalities, ordering con-
can specify that if the value of an attribute A straints, and linear arithmetic constraints. We
in a tuple t1 is less than the value of the same give a variety of complexity results for the impli-
attribute in a tuple t 2 , then an identical rela- cation problem of dependencies over these theo-
tion holds for the values of an attribute B. This ries and show the impact of the form of the de-
type of dependency can express a wide variety pendencies on tractability.
of constraints on the data. For instance, most
of the temporal dependencies appearing in the
taxonomy of [JS92] are constraint-generating de-
pendencies. IThough consistency is always satisfied for equality-

generating dependencies, more general constraints turn it
Our technical contributions address the im- into a nontrivial problem.

265

2 Constraint-Generating Example 2.1 In JS92], an exhaustive taxon-
Dependencies omy of dependencies that can be imposed on a

temporal relation is given. Of the more than
30 types of dependencies that are defined there,

Consider a relational database where some at- all but 4 can be written as constraint-generating
tributes take their values in specific domains, dependencies. These last 4 require a generaliza-
such as the integers or the reals, on which a set tion of tuple-generating dependencies (BV841 (see
of predicates and functions are defined. We call Section 5).
such attributes interpreted. For the simplicity of
the presentation, let us assume that the database For instance, let us consider a relation r(tt, vi)
only contains one (universal) relation r and let with two temporal attributes: transaction time
us ignore the noninterpreted attributes. In this (t) and valid time (Vt). The property of r be-
context, it is natural to generalize the notion of in g "strongly retroactively bounded" with bound

equality-generating dependency [BV84]. Rather c > 0 is expressed as the constraint-generating

than specifying the propagation of equality con- 1-dependency

straints, we write similar statements involving ar- (Vt) fr(t1)]
bitrary constraints (i.e., arbitrary formulas in the
theory of the data domain). Specifically, we de- [(ttt] t1[vt] + c) A (tI[vt] _ t1[tt])]j.
fine conatraint-generating k-dependencies as fol- The property of r being "globally nondecreas-
lows (the constant k specifies the number of tu- ing" is expressed as the constraint-generating 2-
pies the dependency refers to). dependency

Definition 2.1 Given a relation r, a constraint- (Vi1)(Vt 2) [[r(Qi) A r(2) A (ii ft] < t2tt])]

generating k-dependency over r (with k > 1) is a t (I (vt] < t2 [vtl)]. a
first-order formula of the form

Example 2.2 Let us consider a rela-
(Vt1)-... [A r(th) A C[tl,... ,tkl] tion emp(name, boss, salary). Then the fact that

an employee cannot make more than her boss is
=> C'[t,•., tk]] expressed as

(VtO) V 2)
where C[tl,...,ta] and C'[t,...,tk] denote ar- [(emp(tl) A eMP(t 2) A (tl[6bOSS = t 2[name])]
bitrary constraint formulas relating the values of (
various attributes in the tuples t1 , ... t , i There = (t[salary] _ t2 [salaril)j.E
are no restrictions on these formulas, they can in-
dude all constructs of the constraint theory un-
der consideration, including quantification on the 3 Decision Problems for
constraint domain. Constraint- Generating

Constraint-generating 1-dependencies as well Dependencies
as constraint-generating 2-dependencies are the
most common. Notice that functional dependen- generating dependencies are:
cies are a special form of constraint-generating 2-
dependencies. Constraint-generating dependen- * implication: does a finite set of dependencies
cies can naturally express a variety of arithmetic D imply a dependency do?
integrity constraints. The following examples il-
lustrate their definition and show some of their 9 consistency: does a finite set of dependencies
potential applications. D have a non-trivial model, that is, is D true

266

in a nonempty relation? The dependency implication problem consists
in deciding whether do is implied by the set of

The first problem is a classical problem of dependencies D= {dj,...,dn) In other words,
database theory. Its practical motivation comes it consists in deciding whether do is satisfied by
from the need to detect redundant dependencies, every interpretation that satisfies D, which can
that is, those that are implied by a given set of be formulated as
dependencies. The second problem has a trivial r
answer for uninterpreted dependencies: every set (Yr) 1 D * r do1 , (1)
of equality- and tuple-generating dependencies
has a 1-element model. However, even a single where D stands for d, A ... A din.
constraint-generating dependency may be incon- We equivalently write formula (1) as
sistent, as illustrated by (Vt)[r(t) => t[l] < tl]].
We only study the implcation problem since the (Yr) [D(r) = do(r)J
consistency problem is its dual: a set of depen-
dencies D is inconsistent if and only if D implies when we wish to emphasize the fact that the de-
a dependency of the form: pendencies apply to the tuples of r.

(VtO =) C'] 3.2 Towards a Decision Procedure

where C is any unsatisfiable constraint (we as-
sume the existence of at least one such unsatisfi- 3.2.1 Reduction to k-tuple Relations
able constraint formula).able onsrait wfoprouae nhWe first prove that, when dealing with

The result we prove in this section is that the constraint-generating k-dependencies, it is suffi-
implication problem for constraint-generating de- cient to consider relations of size 2 k.
pendencies reduces to the unsatisfiability prob-
lem for a formula in the underlying constraint
theory. Specific dependencies and theories will Len a 3.1 Let d denote an rl constraint-gener-
be considered in Section 4, and the correspond- atin k-dependency. i a relation r does not sat-
ing complexity results provided. The reduction does nt satisfy d. Furthermore, rT is obtained
proceeds in three steps. First, we prove that doms by reing dF or pias taied
the implication problem is equivalent to them from r by removing and/or duplicating tuples.
plication problem restricted to finite relations of Proof: Let us assume that r does not satisfy the
bounded size. Second, we eliminate from the im-
plication to be decided the second-order quantifi- k-dependency d, which is of the form
cation (over relations). Third, we eliminate the F]
first-order quantification (over tuples) from the (Vt).. .(Vtk)[r(tl) A.. A r(t) A C[tI,... ,tk]
dependencies themselves and replace it by quan-
tification over the domain - a process that we call C .
smmetrization. This gives us the desired result.• This means that there must exist k tu-

ples t2..-,tk in r such that C[tl,...,ttk] holds
3.1 Statement of the Problem and and C'[t . . ,tk] does not hold. Take r' to be

Notation the relation consisting of these tuples. Notice
that these tuples are not necessarily distinct, but

Let r denote a relation with n interpreted at- we do keep duplicate tuples in r' so that it is of
tributes. Let d0 , d,.. . , dn denote constraint- size exactly k. Clearly r' does not satisfy d. 5
generating k-dependencies over the attributes 2 ln what follows, we consider relations as multisets
of r. The value of k need not be the same for rather than sets. This has no impact on the implication
all dj's. We denote by k0 the value of k for do. problem, but simplifies our procedure.

267

Lemma 3.2 If a relation r satisfies a set 3.2.2 Second-order Quantifier Elimina-
of constraint-generating k-dependencies D = tion
{dl,...d) and does not satisfy a constraint-
generating ko-dependency do, then there is a re- By Theorem 3.3, in order to decide the implica-
lation r' of size ko that satisfies D but does not tion problem, we just need to be able to decide
satisfy do. this problem over relations of size k for a given

k. Deciding the implication (1) thus reduces to
deciding

Proof: Let us assume that r satisfies D and
does not satisfy do. Since r does not satisfy do, (Vr') [[Ir'l - k A D(r')] = do(r'). (2)
we can conclude by Lemma 3.1 that there exists
a relation r9 of size ko that does not satisfy do. Let r' = {t*,, tx2 ... , t,) denote an arbitrary
Since r satisfies D, this relation r9 also satisfies relation of size k where tz,, t. 2 t,,, are ar-
D. Indeed, r' is obtained from r by eliminat- bitrary tuples. We can eliminate the (second-
ing and duplicating tuples from r (Lemma 3.1), order) quantification over relations from the im-
and this cannot falsify the constraint-generating plication (2) and replace it with a quantification
dependencies of D, which are universally quan- over tuples (that is, over vectors of elements of
tified formulas over tuples. Therefore, there is a the domain). We get
relation r' of size ko that satisfies D but not do.
" (Vt.,)... (Vt.")

[D~t=,.. t.J}) =:, do(It.,,.,t,)] (3)

Theorem 3.3 Consider an instance (D, do) of
the dependency implication problem where do is 3.2.3 Symmetrization
a constraint-generating ko-dependency. The de-
pendency do is implied by D over all relations if In this section, we simplify the formula (3), whose
and only if it is implied by D over relations of validity is equivalent to the constraint depen-
size k. In other words, dency implication problem, by eliminating the

quantification over tuples that appears in the de-
(Yr) [r 1= D =t- r = do] pendencies. We refer to this quantifier elimina-

if and only if tion procedure for dependencies as symmetriza-

[II [e tion. For the sake of clarity, we present the de-
(Vr')t ~i' = ko = t D =* r' d0 j" tails of the symmetrization process for the case

where k = 2. The process can be generalized
directly to the more general case.

Proof: One direction is trivial. For the other, For the case where k = 2, the formula (3) to
assume that the implication is satibied by all re- be decided is the following.
lations of size k0 . First, it is satisfied by all re-
lations of size less than ko since such a relation
can be transformed into a relation of size ko by Mv ty) [D(it.,t,}) #d(.

duplicating tuples. Next, it must be satisfied by
all relations of size greater than k0 . Indeed, let We can simplify this formula further by eliminat-
us assume that one such relation r does not sat- ing the quantification over tuples that appears in
isfy the implication, that is, r I D, but r = do. the dependencies d({t,,ty}) in DU {do}. Every
Then, by Lemma 3.2, there must exist a relation such dependency d({t., t,,}) can indeed be rewrit-
of size ko that satisfies D but not do - a contra- ten as a constraint formula cf(d) in the following
diction. U manner.

268

1. Let d be a 1-dependency, that is, d is of the N-otice that in formula (4), each tuple variable

form (Vt) [[r'(t)AC[t]] => C'[t]]. This depen- can be replaced by n domain variables, and thus

dency considered over r' = {t,,t3,} is equiv- the quantification over tuples can be replaced by

alent to the constraint formula a quantification over elements of the domain. For
the sake of clarity, we simply denote by (V*) the

cf(d): [C[t.] =* C'Lt.]] A [C[ty] => C'[t]], adequate quantification over elements of the do-

which is a conjunction of k = 2 constraint main (the universal closure). Formula (4) thus

implications. Notice that the t and ty ap- becomes

pearing in this formula are just tuples of (V*) [cf(d) A... A cf(dm) cf (do)], (5)
variables ranging over the domain of the con-
straint theory of interest. where each cf(d) is a conjunction of ki constraint

2. Let d be a 2-dependency, that is, d is of the implications if d is a j-dependency and do is a
form k-dependency. Thus, we have reduced the im-

(Vtl)(Vi 2) [[r'(ti) /\ r'(t 2) A %."[t1, t2]] plication problem to the validity of a universally
I 1 t2]]. quantified formula of the constraint theory.

C[tl, tl

This dependency considered over r' = Example 3.1 Let us consider the following

{ts,tl} is equivalent to the constraint for- constraint-generating 2-dependencies over a re-

mula lation r with a single attribute.

cf (d) C fi ,t) * : C 'fi ,i] A d i (V x)(V Y) [r(z) A r(y) * x zC[t,,t.) 4 C[tyt.] A d2 : (V)(Vy) [r(z) Ar(y) * z =

Ir, ,, t,] Ct,, t,]l A Symmetrizing them produces the following con-
city, * C'[ty, ,t,]], straint formulas.

which is a conjunction of kk = 4 constraint cf(di) : z < y A y:<z A z < z A y < y
implications. cf(d 2): z=yAy=zAz=zAy=y.

The rewriting of d as cf(d) is what we call the It is clear that these two constraint formulas are
symmetrization of d, for rather obvious reasons. equivalent, as they should be. I
It extends directly to any value of k. Notice that
for a given k, any j-dependency d is rewritten as
a constraint formula cf(d), which is a conjunction 4 Complexity Results
of k5 constraint implications. Interestingly, in the
case of functional dependencies, symmetrization In order to study the complexity of the impli-
is not needed. This is due to the fact that the
underlying constraints are equalities, which are dencies, first make the assumption that the

already symmetric. Hence, in that case as well constraint formulas appearing in these depen-

as in any other case of symmetric constraints, dencies are conjunctions of atomic constraints.

symmetrization would produce several instances This assumption is satisfied by all the exam-
of the same constraint formulas.Thsasmtoisaifedbalteex -

ples of interest. Without loss of generality, we

Applying the symmetrization process to all the also assume that the consequents of dependen-
dependencies appearing in the formula (3), we get cies are atomic. We call such simpler depen-

(M-0 -...) dencies clausal constraint-generating dependen-
cies. Moreover, we assume that the constraint

[cf (d) A ... A cf(dm) = cf(do)]. (4) language is closed under negation.

269

Simple transformations demonstrate that for (domain constants are allowed here). We can use
clausal dependencies the implication problem can here the results about the complexity of linear
be expressed as the unsatisfiability of a formula programming (Sch86].
of the following form:

Theorem 4.2 For linear arithmetic constraints
(3*) A(Vcjj the implication problem for clausal constraint-

i -generating k-dependencies with one atomic con-

where each cji is an atomic formula. When straint per dependency is:

IDI = m and do is a k-dependency, the num- * in PTIME for the reals,
ber of conjuncts in the formulas above is at most
equal to m -kk plus the number of constraints in 9 co-NP-complete for the integers.
do. Thus deciding the validity of the implication
problem for k-dependencies (k fixed) can be done To obtain more tractable classes, we propose
by checking the unsatisfiability of a fixed number to restrict further the syntax of dependencies by
of conjunctive normal form constraint formulas typing. A clausal dependency is typed if each
of length that is linear in the size of D U {do}. atomic constraint involves only the values of one
The opposite LOGSPACE reduction also exists. given attribute in different tuples. The second

dependency in Example 2.1 is typed, while the
Given the above reductions, we obtain several first one and the one in Example 2.2 are not.

complexity results for the implication problem for
specific constraint languages. Assuming that k is We have then the following.
fixed, we have the following. Theorem 4.3

Theorem 4.1 For constraints in the theory of The implication problem for typed clausal con-

equality and order over the integers or the reals, straint-generating 2-dependencies is:
the implication problem for clausal constraint- * in PTIME for dependencies with at most two
generating k-dependencies is: atomic constraints in the theory of equality

" in PTIMEfor dependencies with one atomic over the integers or the reals,

constraint (no constraints in the antecedent) 9 in PTIME for dependencies with at most
fU1189, page 892], two atomic constraints in the theory of or-

* co-NP-complete for dependencies with two der over the integers or the reals,

or m0,1e atomic constraints, 0 co-NP-complete for dependencies with two
or more atomic constraints in the theory of

under the assumption that no domain constants equality and order over the integers or the
appear in the dependencies. reals,

It is interesting to note that in the second case under the assumption that no domain constants
equalities and inequalities suffice to obtain the appear in the dependencies.
co-NP lower bound. Notice that the correspond-
ing propositional problem, 3SAT, requires three Note that the first result is different from the
literals per clause. Also, for finite domains of size well-known result about linear-time implication
greater than 2 the implication problem is co-NP- for functional dependencies. Functional depen-
complete even for dependencies with one atomic dencies viewed as constraint-generating depen-
constraint. dencies allow only equality constraints which are

not closed under negation. Moreover, constraint-
i.e., atomic constraints of the form generating dependencies with two constraints in

the body correspond to unary functional depen-

alzl +-- + akzk < a dencies.

270

5 Conclusions and Related while we consider only the latter. We think that

Work our model is more intuitive because it is diffi-
cult to come up with a meaningful dependency
that references more than a few tuples in a re-

A brief summary of this paper is that constraint- lation. Our intractability results are stronger
generating dependencies are an interesting con- than theirs, while our positive characterizations
cept, and that deciding implication of such de- of polynomial time decidable problems do not
pendencies is basically no harder than deciding necessarily carry over to their framework. Also,
the underlying constraint theory, which, a priori, in [1093, Z0931, the tractable classes of depen-
was not obvious. We have only given a sample dencies are not defined syntactically but rather
of complexity results for common constraint the- by the presence or absence of certain types of
ories. It is clear that this is far from exhaustive refutations.
and that, depending on the application, other Order dependencies, proposed by Ginsburg
constraint languages might also be relevant, for and Hull [GH83, GH86], are typed clausal 2-
instance the congruence constraints that appear dependencies over the theory of equality and or-
in [JS92]. der (without #). The order is not required to

Other forms of constraint dependencies can be total. Ginsburg and Hull provided an ax-
also be of interest. An obvious candidate is iomatization of such dependencies and proved
the concept of tuple-generating constraint depen- that the implication problem is co-NP-complete
dency. Unfortunately, the implication problem for dependencies with at least three constraints.
for these dependencies is harder to decide and This does not subsume any of our results. They
more closely linked to the underlying theory. In- also provided a number of tractable dependency
deed, tuple-generating constraint dependencies classes which are, again, different from ours.
can, for example, specify a dense domain. The
obvious applications of constraint-generating de-
pendencies are constraint database design theory References
and consistency checking. [Bau] M. Baudinet. On the expressiveness of

As far as related work, we should first men- temporal logic programming. To appear
tion that Jensen and Snodgrass (JS92] induced in Information and Computation.
us to think about constraint dependencies. We (Bau89] M. Baudinet. Temporal logic program-
should note that the integrity constraints pos- ming is complete and expressive. In
tulated there involve both typed and untyped Sixteenth ACM Symp. on Principles of
constraint-generating dependencies, as well as Programming Languages, pp. 267-280,
tuple-generating ones. Austin, Texas, Jan. 1989.

Also, two recent papers on implication con- [Bau92l M. Baudinet. A simple proof of the com-
pleteness of temporal logic programming.sttaints by Ishakbeyo~lu, Ozsoyo~lu and Zhang In L. Farifias del Cerro and M. Pentto-

V093, Z093] present work fairly close to ours. nn, edis erond i. for Po-
hen, editors, Intensional Logics for Pro-

However, there are several important differences. gramming, pp. 51-83. Oxford University
Foremost, they consider a fixed language of con- Press, 1992.
straint formulas, namely equality (=), inequality [BCW93] Marianne Baudinet, Jan Chomicki, and
(:), and order (<, <) constraints, while our re- Pierre Wolper. Temporal deductive
sults are applicable to any decidable constraint databases. In A. Tansel et al., editors.,
theory thanks to our general reduction strategy. Temporal Databases. Theory, Design, and
Second, their complexity results are obtained in Implementation, chapter 13, pp. 294-320.
a slightly different model. They consider both Benjamin/Cummings, 1993.
the number of database literals and the arity of [BJM93] A. Brodsky, J. Jaffar, and M.J. Maher.
relations in a dependency as parts of the input, Toward practical constraint databases.

271

In 19th Intl. Conf. on Very Large Data [GH86] S. Ginsburg and R. Hull. Sort sets in the
Bases, Dublin, Ireland, Aug. 1993. relational model. Journal of the A CM,

[BLL93] A. Brodsky, C. Laasez, and J.-L. Lassez. 33(3):465-488, July 1986.

Separability of polyhedra and a new ap- [1093] Naci S. Ishakbeyoglu and Z. Metal Oz-
proach to spatial storage. In Proc. of the soyoilu. On the maintenance of implica-
First Workhop on Principles and Prac- tion integrity constraints. In Fourth Intl.
tiee of Constraint Programming, New- Conf. on Database and Expert Systems
port, Rhode Island, Apr. 1993. Applications, pp. 221-232, Prague, Sept.

[BNW91] M. Baudinet, M. Nidzette, and P. Wolper. 1993. LNCS 720, Springer-Verlag.
On the representation of infinite temporal (JS92] C.S. Jensen and R.T. Snodgrass. Tempo-
data and queries. In Tenth ACM Syrp. ral specialization. In Eighth Intl. Conf. on
on Principles of Database Systems, pp. Data Enfincering, pp. 594-603, Tempe,
280-290, Denver, Colorado, May 1991. Arizona, Feb. 1992. IEEE.

(BV84] C. Beeri and M. Vardi. A proof proce-
dure for data dependencies. journal of [KKR90] P.C. Kanellakis, G.M. Kuper, and

the ACM, 31(4):718-741, Oct. 1984. P. Revesz. Constraint query lan-

[Cho9O] J. Chomicki. Polynomial time query pro- guages. In Ninth ACM Symp. on Prin-

ceasing in temporal deductive databases. ciples of Database Systems, pp. 299-313,

In Ninth ACM Symp. on Principles Nashville, Tennessee, Apr. 1990.

of Database Systems, pp. 379-391, [Kou92] M. Koubarakis. Dense time and temporal
Nashville, Tennessee, Apr. 1990. constraints with 6. In Proc. of the Third

[CI88] J. Chomicki and T. Imielisld. Tempo- Intl. Conf. On Principles of Knowledge

ral deductive databases and infinite ob- Representation and Reasoning, pp. 24-35,

jects. In Seventh ACM Symp. on Prin- Oct. 1992.

ciples of Database Systems, pp. 61-73, [Kou93] M. Koubarakis. Representation and
Austin, Texa, Mar. 1988. querying in temporal databases : the

[CI891 J. Chomicki and T. Imieliski. Relational power of temporal constraints. In Ninth
specifications of infinite query answers. Intl. Conf. on Data Engineering, Vienna,
In ACM-SIGMOD Intl. Conf. on Man- Austria, Apr. 1993.
agement of Data, pp. 174-183, Portland, (KRVV93] P.C. Kanel-
Oregon, May 1989. lakis, S. Ramaswamy, D.E. Vengroff, and

[C193] J. Chomicki and T. Imieliiiski. Fi- J.S. Vitter. Indexing for data models with
nite Representation of Infinite Query An- constraints and classes. In Twelfth ACM
swers. ACM Transactions on Database Symp. on Principles of Database Systems,
Systems, 18(2):181-223, June 1993. pp. 233-243, Washington, DC, May 1993.

(CM90] J. Cox and K. McAloon. Decision pro- [KSW90] F. Kabanza, J-M. Stivenne,
cedures for constraint based extensions and P. Wolper. Handling infinite tempo-
of Datalog. Tech. Report 90-9, Dept. ral data. In Ninth ACM Symp. on Prin-
of Computer and Information Science, ciples of Database Systems, pp. 392-403,
Brooklyn College of C.U.N.Y., Brooklyn, Nashville, Tennessee, Apr. 1990.
NY, 1990.

[FVP92] Laurent Fribourg and Marcos Veloso [Mai83] D. Maier. The theory of Relational

Peizoto. Bottom-up evaluation of Dat- Databases. Computer Science Press,

alog programs with arithmetic con- 1983.
straints. Tech. Report LIENS-92-13, Lab- [Rev90] P. Revesz. A closed form for Datalog
oratoire d'Informatique de l'Ecole Nor- queries with integer order. In S. Abite-
male Supirieure, Paris, June 1992. boul and P.C. Kanellakis, editors, ICDT

[GH83] S. Ginsburg and R. Hull. Order depen- '90, Proc. of the Third Intl. Conf. on
dency in the relational model. Theoretical Database Theory, pp. 187-201, Paris,
Computer Science, 26:149-195, 1983. Dec. 1990. LNCS 470, Springer-Verlag.

272

lSck86] A. Schrijver. Theory of Linear and In-
teger Programming. John Wiley & Sons,
1986.

[Sri92] D. Srivastava. Subsumption in constraint
query languaes with linear arithmetic
constraints. In Second Intl. Syrap. on
Artificial Intelligence and Mathematics,
Fort Lauderdale, Florida, Jan. 1992.

[Tha91] B. Thalheim. Dependencies in Relational
Databases. Teubner-Texte zur Mathe-
matik, Band 126. B.G. Teubner Verlags-
geseflscha[t, Stuttgart, 1991.

[U11891 J.D. Ulnman. Principles of Database and
Knowledge-Base Systems - Volume HI.
The New Technologies. Computer Science
Press, 1989.

[vdM92] P. van der Meyden. The complexity
of querying indefinite data about lin-
early ordered domains. In Eleventh ACM
Symp. on Principles of Database Systems,
pp. 331-345, San Diego, California, June
1992.

[Z093] X. Zhang and Z. Meral Ozsoyojlu. On
efficient reasoning with implication con-
straints. In Third Intl Conf. on Deductive
and Object-Oriented Databases, Phoenix,
Arizona, Dec. 1993.

273

Constraint Objects

Divesh Srivastava* Raghu Ramakrishnant Peter Z. Revesz:

AT&T Bell Laboratories University of Wisconsin, Madison University of Nebraska, Lincoln

divesh@research.att.com raghu~cs.wisc.edu revesz@cse.unl.edu

1 Introduction

Object-oriented database (OODB) systems will, most probably, have a significant role to play in the next
generation of commercial database systems. While OODB systems have a sophisticated collection of features
for data modeling, current-day OODB systems provide little or no support for representing and manipulating
partially specified information. Very often, however, the knowledge that we would like to represent in a database
is incomplete.

For example, assume that an OODB is used to represent knowledge about plays and playwrights. If Shake-
speare'a year of birth were known to be 1564, this could be represented easily in the database. However, historians
do not have complete information about playwrights such as Shakespeare; they have only estimates of his date of
birth and when he wrote his various plays; occasionally these estimates are refined reflecting the results of new
research. Partial information about Shakespeare's year of birth can be represented naturally as a conjunction
of constraints, Shakespeare.Year-of.birth > 1560 A Shakespeare.Year-of.birth < 1570. As another example, an
image from a weather satellite may allow a meteorologist to estimate the location of the eye of a hurricane only
to within a small region, rather than know it precisely. Both these examples illustrate the use of existential
constraints in the database; Shakespeare was born in some specific year within the range described, and the eye
of the hurricane is at some specific location within the region.

Constraints can be used also to represent compactly (possibly infinite) sets of fully specified values. For
example, electronic components typically have certain tolerances for voltage and frequency inputs, i.e., these
components would work properly for all voltage and frequency inputs within the specified tolerances. A natural
representation of such a set of acceptable voltage inputs is a conjunction of universal constraints, CDPlayer.Voltage

> 108 A CDPIayer.Voltage < 117.
One of the contributions of this paper is to identify these two distinct uses of constraints in data models:

to represent partially specified values and to compactly represent sets of fully specified values. The former use
is related to the notion of store-as-constraint (see [Sar89], for instance), whereas the latter use is similar to the
notion of a constraint fact as a finite presentation (see [BNW91, KKR90, KG94, Ram9l, Rev93], for instance).

The technical contributions of this paper are as follows:

e We describe how an object-based data model can be enhanced with (existential) constraints to represent
naturally partially specified information (Section 2). We refer to this as the Constraint Object Data Model
(CODM).

*The contact author's address is Divesh Srivastava, AT&T Bell Laboratories, Room 2C-404, 600 Mountain Avenue. P.O. Box
636, Murray Hill, NJ 07974, USA.

tThe research of Raghu Ramakrishnan was supported by a David and Lucile Packard Foundation Fellowship in Science and

Engineering, a Presidential Young Investigator Award with matching grants from DEC, Tandem and Xerox, and NSF grant IRI-
9011563.

t The research of Peter Z. Revess was supported by an Oliver E. Bird faculty fellowship.

274

* We present a declarative, rule-based, language that can be used to reason with information represented in
the CODM. We refer to this as the Constraint Object Query Language (COQL) (Section 3). COQL has
a model-theoretic and an equivalent fixpoint semantics, based on the notions of constraint entailment and
"truth in all possible worlds".

One of the novel features of COQL is the notion of monotonic refinement of partial information in object-

based databases.

" We present a novel polynomial-time algorithm for quantifier elimination for a restricted class of set con-

straints that uses E and C. We refer to this class as set-order constraints. The quantifier elimination
algorithm can also be used to check satisfiability and entailment of conjunctions of set-order constraints in
polynomial time.

Both the constraint object data model and the constraint object query language are easily extended to
compactly represent sets of fully specified values using universal constraints, and manipulate such values using

a declarative, rule-based language, following the approach of [KKR90, Ram91]. For reasons of space, we do not
pursue this further in the paper.

Integration of constraints with objects has also been considered by Freeman-Benson and Borning ([FBB92a,
FBB92b]). Their work differs from ours in that their languages, Kaleidoscope'90 and Kaleidoscope'91, are im-
perative languages using the Von Neumann memory model. We are interested in the incorporation of constraints

into objects in a more declarative setting.
This paper is based on work in progress, and the various ideas are motivated primarily through examples.

2 Constraint Object Data Model

First, we need to understand the notions of a fact and an object. A fact is a tuple of typed attribute/value
pairs; this is well-accepted in the literature. Unfortunately, there appears to be little consensus in the literature
on answering the question "What is an object?". Hence, we (deliberately) use a simple and very general notion

of an object, which is consistent with many of the object-based data models in the literature.
We treat an object as consisting of an object identifier (oid) and a tuple of typed attribute/value pairs. Thus,

an object differs from a fact only in that it has an object identifier. An object identifier uniquely specifies
an object, i.e., no two objects can have the same object identifier. Hence, an object identifier can be used to
distinguish an object from other objects in the database, and can serve as a handle for updating the attribute
values without changing the identity of the object. We do not make any assumptions about the domains of the

attributes of objects (or of facts); these could be primitive types, tuple types, set types, user-defined classes, etc.
Our view of an object thus far is fairly standard; for instance, it is consistent with the view of [AK89].

The Constraint Object Data Model (CODM) incorporates both facts and objects, but relaxes the restriction

that the "value" of an attribute must be a constant of the appropriate type; domain-specific constraints can

be used to represent parlial information about the value of an attribute. Such attributes are referred to as E-
attributes. (Attributes whose values are completely known can be modeled also as E-attributes with sufficiently
tight constraints.) In the examples discussed in the paper, the domain of an E-attribute is either the integers or

sets of objects.
Conceptually, all the constraints on E-attributes of facts and objects are maintained globally. This allows

for specification of inter-object constraints, which are very useful in many situations. However, in many of the
examples discussed in the paper it suffices to associate constraints with the objects whose E-attributes they
constrain; when possible, we depict the constraints in this fashion for ease of understanding.

As is common in the literature, we assume that facts in the database are grouped together into relations, and

objects in the database are grouped together into classes. Classes can be organized into an inheritance hierarchy;
however, this is orthogonal to our discussion, and we do not deal with inheritance in this paper.

We motivate the modeling power of our constraint object data model using an example.

275

• Example 2.1 (Playwrights and Plays)
There are two classes of objects in the database: playwrights and plays. Partial information is represented

about the year of composition of the plays, the writers of the plays, and the year of birth of the playwrights.

playwrights

Oid Name Year-of-birth Constraints

oidl Shakespeare Y1 YI < 1570 A Y1 > 1560
old2 Fletcher Y2

oid3 Kalidasa Y3 Y3 < 1000

The constraints associated with each object are ezistential constraints in that the value of the E-attribute is
some unique value from the domain satisfying these constraints. Note that there is no information on Fletcher's
year of birth, which is equivalent to stating that Fletcher could have been born in any year.

1 ______plays ______ Constraints_____

Old Name Writers Year.of.composition Constraints

oidl0 Othello { oidl) Y1O (YIO < 1605 A Y10 > 1601) V
(Y 10 < 1598 A Y1-0 > 1595)

oidll Macbeth { oidl) Y11 Yll < 1608 A Y11 > 1604
oid12 Henry VIII S1 Y12 Y12 < 1613 A Y12 > 1608 A

I oid2 E SI A SI C { oidl, oid2 }
oidl3 Meghdoot { oid3 } Y13 Y13 < 1050

The form of the constraints allowed depends on the types of the E-attributes. The Yearof.birth and the
Year.of.cmposition E-attributes are of type integer, and hence they are constrained using arithmetic constraints
over integers. For example, the constraint on the Year.of-composition attribute of oidl0 indicates that Othello
was composed either between the years 1601 and 1605 or between 1595 and 1598.

Similarly, the Writers E-attribute of plays is of type set of playwrights and it is constrained using set con-
straints D, , C. For example, the constraint on the Writers attribute of oid12 indicates that either Fletcher is the
sole writer of Henry VIII, or Fletcher and Shakespeare are joint writers of that play. Note that this represents
partial information on the set of playwrights. 0

A key feature of the Constraint Object Data Model is that the constraints that the CODM allows are first-
order, i.e., the names and types of the attributes arc fixed for each fact and object. The CODM does not permit
the names and/or the types of at'ributes to be partially specified using constraints; only the values of these
attributes can be partially specified using constraints.

In general, constraints can be incorporated into any existing data model (e.g., relational, nested relational,
object-oriented) and the resulting constraint data model can be used to represent partially specified information,

or compactly represent sets of fully specified values. We do not discuss this point further in this paper.

3 Constraint Object Query Language

We present the declarative Constraint Object Query Language (COQL) that can be used to reason with facts
and objects in the constraint object data model. A COQL program is a collection of rules similar to Horn rules,
where each rule has a body and a head. The body of a rule is a conjunction of literals and constraints, and
the head of the rule can be either a positive literal or a constraint. COQL allows arbitrary constraints, not just
conjunctions of primitive constraints, to occur in the bodies and heads of program rules. However, we do not
allow any constraints in rule bodies that can manipulate the "ranges" of possible values of E-attributes; this can
result in a non-monotonic behavior of the rules, which makes the semantics hard to define.

276

3.1 COQL: Inferring New Relationships

A COQL program can be used to infer new relationships (as facts) between existing objects and facts. Object-
creating proposals (e.g., [KKS92]) also allow new relationships to be created as objects. For simplicity, we
assume that COQL rules do not create new objects; this condition can be checked syntactically by having a
safety requirement, that any object identifier appearing in the head of a COQL rule also appears in a body
literal of that rule. Our results are orthogonal to object-creating proposals, and can be combined with them in
a dean fashion.

We now present some simple queries to motivate the inferring of new relationships using COQL rules.

Example 3.1 (Selection)
Consider the database of plays and playwrights from Example 2. 1. Suppose we want to know the names of all
playwrights born before the year 1700. The following rule seems to express this intuition, using the dot notation
for accessing object attributes:

q1 (P.Name) : - playwrights (P), P.Year.of.birth < 1700.

If the years of birth of all the playwrights in the database are completely specified, inswering this query is
straightforward. In the presence of partial information about the years of birth of the playwrights, there are two
possible semantics that can be used to answer this query.

" Truth in at least one possible world.

Under this semantics, a playwright "satisfies" the query if at least one assignment of fully specified values
to the Year-.ofbirth attribute of the playwright, consistent with the object constraints, satisfies the query.
All three playwrights, Shakespeare, Fletcher and Kalidasa would be retrieved as answers to the query under
this semantics. Shakespeare could have been born in 1564, Fletcher in 1600 and Kalidasa in 975; these
values are consistent with the constraints on the object attributes.

To compute this answer set to the query, we need to check satisfiability of the conjunction of constraints
present in the object and the constraints present in the query. For example,.the conjunction of constraints
oid3.Year-of-birth < 1000 A oid3.Year-of-birth < 1700 (where oid3 is the identifier of the object representing
Kalidasa) is satisfiable in the domain of integers.

" Truth in all possible worlds.

Under this semantics, a playwright "satisfies" the query if ever assignment of a fully specified value to the
Year.of.birth attribute of the playwright, consistent with the object constraints, satisfies the query. Only
Shakespeare and Kalidasa would be retrieved as answers to the query under this semantics. Fletcher could
have been born in 1800; this value is consistent with the constraints on the object attributes, while being
inconsistent with the query constraints.

To compute this answer set to the query, we need to check that the constraints present in the objects entail
(i.e., imply) the query constraints. For example, the conjunction of object constraints oidl.Yearfof-birth <
1570 A oidl.Year.of-birth > 1560 entails the (instantiated) query constraint oidl.Year.of.birth < 1700 (where
oidl is the identifier of the object representing Shakespeare) in the domain of integers. However, the object
constraints associated with Fletcher do not entail the (instantiated) query constraint oid2.Yearof.birth
< 1700 (where oid2 is the identifier of the object representing Fletcher) in the domain of integers.

These alternative semantics are closely related to the semantics of Imielinski et al. [INV9l] for OR-objects; we
do not elaborate on these relationships in the paper for lack of space. 0

Example 3.2 (Equijoin)
Suppose we want to know the names of all plays written in the same year as Macbeth. The following rule seems
to express this intuition:

277

q2 (P.Nam) : - plays (P). plays (P1). PI.Name = "Macbeth"
P.Year..ofcomposition = P1.Year-.ofcomposition.

If the years of composition of all the plays in the database are completely specified, answering this query is
straightforward. In the presence of partial information, there are again two ways in which this query can be
answered.

Under the "truth in at least one possible world" semantics, the play Othello would be an answer (since both
Othello and Macbeth could have been composed in 1605, for example), as would the play Henry VIII (since both
could have been composed in 1608, for example). These answers can be obtained by checking for satisfiability of
the conjunction of object constraints with the query constraints. Meghdoot would not be an answer, however,
since the conjunction of constraints in this case is unsatisfiable.

Note, however, that each answer to the query under the "truth in at least one possible world" semantics may
hold in a separate possible world. While Othello and Henry VIII are both answers to the query ? q2 (Name),
there is no possible world in which both of them could have been composed in the same year. One possible way
of overcoming this problem is to give, along with each answer to a query, a description of the possible worlds in
which that answer would hold. We do not investigate this issue here.

Under the "truth in all possible worlds? semantics, only the play Macbeth itself would be retrieved. The
conjunction of object constraints oidll.Year.of.composition < 1608 A oidll.Year.of.composition > 1604 entails the
(instantiated) query constraint oidll.Year.of-composition = oidll.Year-of-composition, where oidll is the identifier
for Macbeth. For all other plays, there are possible worlds in which they could have been composed in years
other than Macbeth's year of composition; the check for entailment would fail. 0

Example 3.3 (Set Constraints)
Suppose we want to know the names of all the plays written by Shakespeare. The following rule expresses the
query:

q3 (P.Name) : - plays (P), playwrights (W), W.Name = "Shakespeare", P.Writers = S. W E S.

Under the "truth in at least one possible world" semantics, the play Henry VIII would be an answer (since
Shakespeare could have written it together with Fletcher) as would Othello and Macbeth (since Shakespeare is
known to have written these). The first answer can be obtained by checking the satisfiability of the conjunction
of the object constraints oid2 E oidl2.Writers A oidl2.Writers C { old1, oid2) with the (instantiated) query
constraint oidl E oidl2.Writers.

Under the "truth in all possible worlds" semantics, however, Henry VIII would not be an answer. This is
because the object constraints oid2 E oidl2.Writers A oidl2.Writers C { oid1, oid2 } do not entail the (instantiated)
query constraint oidl E oidl2.Writers. Othello and Macbeth would be the only answers in this case. 0

3.2 COQL: Monotonically Refining Objects

COQL programs can be used also to monotonically refine objects, in response to additional information available
about knowledge that we are trying to represent in the database. For example, suppose research determined that
Shakespeare could have been born no later than 1565, then the object Shakespeare can be refined by conjoining
the constraint Shakespeare.Yearof.birth < 1565.

The notion of declarstive monotonic refinement of partially specified objects is one of the novel contributions
of this paper. Object refinement can be formalized in terms of a lattice structure describing the possible states
of an object, with a given information theoretic ordering. The value I corresponds to having no information
about the attribute values of the object, and T corresponds to having inconsistent information about the object.
Object refinement now can be thought of as moving up this information lattice.

Object refinement can be specified declaratively (under the "truth in all possible worlds" semantics, as
discussed below), since the final state of the object does not depend on the specific order in which the various

278

refinements are performed. For example, suppose the "value" of the attribute Year-of.birth of Shakespeare is
Shakespeare.Yearof.birth < 1570 A Shakespeare.Yearof.birth > 1560. Then, the final "value " of the attribute
Year.of-birth of Shakespeare is independent of the order in which the refinements Shakespeare.Year-of-birth < 1565
and Shakespeare.Yarof.birth > 1562 are conjoined.

Refining partially specified facts in this fashion poses problems because facts do not have a notion of an
identity, independent of the attribute values.

We give an example of declarative, rule-based, object attribute refinement next. The body of a refinement
rule is similar to the body of a rule used to infer a new relationship, as described previously. The head of a
refinement rule, on the other hand, is a constraint (not necessarily a conjunction of primitive constraints).

Example 3.4 (Refining Attributes of Objects)
The following refinement rule seems to express the intuition that a playwright could not write a play before
birth:

W.Year.of.birth < P.Year..fcomposition : - playwrights (W), plays (P), W E P.Writers.

The right hand side (body) of the rule is the condition, and the left hand side (head) is the action of the rule.
If the body is satisfied, then the instantiated head constraint is conjoined to the global constraints. (This is an
example where the instantiated head constraint is an inter-object constraint, and hence cannot be associated
solely with a single object.)

If the year of composition of Henry VIII were known to be 1612, then we could conjoin the constraint
Fletcher.Year.of.birth < 1612 to the global collection of constraints on E-attributes.

In the presence of partial information, we give a meaning to refinement rules based on the "truth in
all possible worlds" semantics. In this case, we would conjoin the constraint Ftetcher.Year-of-birth < Henry
VIII.Year-of.composition to the global collection of constraints. Conflicting refinements could, of course, result
in an inconsistent constraint set. 0

Rules that refine objects can be combined cleanly with rules that infer relationships between existing objects
in COQL programs. For example, the rule in Example 3.4 can be combined with the rule in Example 3.1. In
the resulting program, Fletcher also would be an answer to the query ql under the "truth in all possible worlds"
semantics.

Rules that refine objects can be used to create new objects as well, using any of the object-creating proposals.
The advantage of our approach is that an object can be created multiple times, possibly with different values
of the E-attributes; the result is to conjoin each of the constraints on the E-attributes. (If an object is created
multiple times, with different values for a fully-specified attribute, the resultant set of constraints is inconsistent,
as is natural.) This technique avoids the problem faced by many object-creating proposals (e.g., [KKS92]), of
ensuring that the "same" object is not created multiple times.

If we adopted the "truth in at least one possible world" semantics for object refinement, object refinement
becomes order dependent, and the program cannot be assigned a unique meaning. The following example
illustrates this problem:

Example 3.5 (Order Dependence)
Consider a program with the following two refinement rules:1

W.Year.of.birth = 1560 - playwrights (W), W.Year-of-birth < 1565.
W.Yearof.birth = 1570 : - playwrights (W), W.Year-of-birth > 1566.

In Example 2.1, Shakespeare's year of birth is known to be between 1560 and 1570. Under the "truth in at
least one possible world" semantics, the order in which these two rules are applied could result in Shakespeare's

1 Although the rules do not make intuitive sense, this example is purely for illustrating a point.

279

year of birth being refined to either 1560 or 1570. (Once one of the rules is applied, the other rule becomes
inapplicable.) Under the truth in all possible worlds semantics, the object Shakespeare would not be refined.

Note that if Shakespeare's year of birth were initially specified as 1564, then the result of applying these
refinement rules would make the object have inconsistent constraints, under the truth in all possible worlds
semantics. This, however, would not be order dependent. 3

4 Set-Order Constraints

In the examples discussed in the paper, we used order constraints (i.e., arithmetic constraints involving <, <, ,

and >, but no arithmetic functions such as +, - or *) and set constraints of a restricted form (i.e., those involving
e, C and D, but not involving functions such as U and n). Techniques for quantifier elimination, checking
satisfaction and entaihaent for order constraints over various domains are known in the literature (see [U189],
for instance).

We now briefly describe a polynomial-time quantifier elimination algorithm for a conjunction of a restricted
form of set constraints, that we call set-order constraints. Satisfaction and entailment of conjunctions of set-order
constraints can be solved (in polynomial-time) using the quantifier elimination algorithm.

4.1 Quantifier Elimination for Set-Order Constraints

We will use the symbols ,kY, Z to denote set variables that range over finite sets of elements of type D. A
set-order constraint is of one of the following types:

cE±, Cs sC_1,±C

where c is a constant of type D, and s is a set of constants of type D.

Quantifier Elimination
Input: A conjunction Q of set-order constraints and a set variable Y to be eliminated.
Output: A conjunction Q1 of set-order constraints, such that 3YQ and Q' are equivalent.
Algorithm: Do the following steps in order:

1. First rewrite every constraint of the form c E X into {c} C f(.

2. For each set variable X, take the union of all sets s, such that s C f(is in the conjunction. Let the union be
the set Lx. Delete all constraints of the form s C X from the conjunction, and add the constraint Lx C X to
the conjunction.

3. For each set variable fC take the intersection of all sets s, such that X C s is in the conjunction. Let the
intersection be the set Ux. Delete all constraints of the form X C s from the conjunction and add the
constraint X C Ux.

4. For each pair of constraints of the form N C Y' and k' C M. where ' is the set variable to be eliminated, and
N and M are either set variables or sets of constants, add the constraint N C M. After this is done for each
such pair, delete all constraints in which k occurs. Repeat steps 2 and 3.

5. Check each constraint of the form s$ C s. where s, and 82 are sets of constants from domain D. If they
are all satisfied, delete all such constraints from the conjunction and return the conjunction of the remaining
constraints. If any one of these constraints is not satisfied, then return FALSE.

280

Example 4.1 (Quantifier elimination)

Let Q be the following conjunction of set-order constraints:

3 E 2,2_C X,X _ (3,4,8,9},X C k,k C {2,3,5,7,8).

From constraint Q we can eliminate set variable k as follows:

Step 1 Replace 3 E 2 by {3} Z.

Step 2 : No change.

Step 3 No change.

Step 4 :Weget 13} C Xf,.X C {3,4,8,9),Xk C{2,3,5,7,8}.

Step 2 : No change.

Step 3 :We get {3} _ 2,ZC X C {3,81.

Step 5 : No change. Hence, we return {3} C Z,Z C X, X C {3, 8).

Suppose now, that we also want to eliminate set variable Z. This will be done by quantifier elimination algorithm
as follows:

Steps 1-3 : No change.

Step 4 : We get {3} C_ C, X C {3, 8}.

Step 5 : No change. Hence, we return {3} X, X C {3,8}.

Theorem 4.1 Let Q be a conjunction of set-order constraints and k be a set variable. The quantifier elimination
algorithm on input Q and k will yield in PTIME, in the size of Q, a conjunction of set-order constraints Q'
such that 3k/Q and Q' are equivalent.

Furker, if Q' has n set variables, then the number of conjuncts in Q' is at most n2 + 2 * n. 0

The quantifier elimination algorithm can be used also to check for satisfiability of a conjunction of set-order
constraints, by successively eliminating set variables until either there are no more set variables remaining (in
which case the original conjunction is satisfiable) or the quantifier elimination algorithm returns FALSE (in
which case the original conjunction is unsatisfiable). The bound on the maximum number of cojuncts after
eliminating a set variable guarantees a polynomial-time algorithm for checking satisfiability.

Theorem 4.2 Let Q be a conjunction of set-order constraints. Checking whether Q is satisfiable is in PTIME,
in the size of Q. 0

The algorithm for checking satisfiability cannot be used for checking for entailment of conjunctions of set-order
constraints (using the reduction from a check for entailment to a polynomial number of checks for satisfaction),
since set-order constraints are not closed under negation (For example, XC ! I? is not a set-order constraint.)

However, the quantifier elimination algorithm can be used directly as a basis for checking entailment of
conjunctions of set-order constraints in PTIME, as follows.

Checking the entailment of a conjunction of set-order constraints Q2 by a conjunction of set-order constraints
Q, can be :one by reduction to a number of entailment checks of each set-order constraint in Q2 by the
conjunction Q2.

The following result shows how the quantifier elimination algorithm can be used to simplify checking the
entailment of a set-order constraint by an arbitrarily large conjunction of set-order constraints.

281

Theorem 4.3 Let Q be a conjunction ofset-order constraints over the set variables X6,. . .n Let Q1 be the
result of elimination cf variables X3 , , X. from Q. Let Q2 be the result of elimination of variable X 2 from

Q1. Then, (1) Q entails X C_ X2 if and only if Q, entails X1 c_ f(2 , (2) Q entails XI g s if and only if Q2
entails XI C s, and (3) Q entails s C X1 if and only if Q2 entails s c fXI. 0

The following two results show how to check whether a set-order constraint is entailed by a simple form of a

conjunction of set-order constraints.

Theorem 4.4 Let Q be a conjunction of set-order constraints over X. Let Ux ;e the upper bound (possibly the

set of all elements in domain D) on X and Lx be the lower bound (possibly the empty set) on X.

Then Q entails X C s if and only if Ux C_ s. Also, Q entails s C X if and only if s C Lx. 0

Theorem 4.5 Let Q be a conjunction of set-order constraints over X 1 , X 2 . Let UxI be the upper bound (if any)

on fX1 and LX2 be the lower bound (if any) on ± 2 . Then Q entails X c X 2 if and only if (1) Q is unsatisfiable,

or (2) ±1 g ± 2 is in Q, or (?) (Jx, g LX2. 0

5 COQL: Model Theory and Fixpoint Semantics

COQL has a model-theoretic and an equivalent fixpoint semantics, based on the notions of constraint entailment

and "truth in all possible worlds". The semantics of COQL is based on the notion of "truth in all possible worlds'
for several reasons:

* Object refinement is order independent; this is a very desirable property.

" An answer to a query is unconditionally true.

" An answer to a query continues to be true, even after the database objects are monotonically refined.

We briefly describe the model-theoretic and fixpoint semantics here; details and the equivalence proof are

omitted for reasons of space. Consider a COQL program P, and a collection of facts and objects I. We assume

that all the variables in each rule body of P have been standardized apart, possibly by introducing equality

constraints between some of the variables; this is important in checking for entailment.

5.1 Model-theoretic Semantics

An assignment of facts and objects to the body literals of a rule r of program P makes the body of r true if the

constraints associated with the facts and the objects entail the (instantiated) constraints between the variables
present in the body of rule r. A relationship inferring rule r is true in I if, for every assignment of facts and

objects to the body literals of r that makes the body true, the instantiated head fact of rule r is entailed by (the

constraints associated with) some fact f in I. An object refinement rule r is true in I if, for every assignment of

facts and objects to the body literals of r that makes the body true, the instantiated head object o, occurs in

I, and the instantiated head constraint of the rule is entailed by the object constraints associated with o,. The

collection I of facts and objects is said to be a model of a COQL program if each program rule is true in I.

The model-theoretic semantics of COQL is a least model semantics, where model M1 5 model M 2 , if for

each fact (or object) fi in M 1 , there is a fact (or object) f2 in M 2, such that f, entails f2. The existence of a
least model is guaranteed since we can show that the "intersection" of COQL program models is also a COQL

program miodel.

282

5.2 Fixpoint semantics

The fixpoint semantics is defined in terms of an immediate consequence operator, Tp. Given the collection I of

facts and objects, we define Tp(1) as follows. Let r be a rule. If there is an assignment of facts and objects from

I to literals in the body of r such that the body is true, then the instantiated head fact (or head object) is in

Tp(I).
The fixpoint semantics of COQL is based on the least fixpoint of the Tp operator, which can be computed

starting from the empty collection of facts and objects, as Tp(8) U Tp(Tp(@)) U In computing the unions, all

the constraints associated with an object o have to be conjoined together. The existence of the least fixpoint is

guaranteed by the monotonicity of the Tp operator.

Theorem 5.1 Consider a COQL program P. It has a least model semantics and a least fizpoint semantics,

which coincide. 0

Note that in the absence of objects with object identifiers, the semantics of COQL is very similar to the

standard semantics [vEK76], except that constraint entailment is used instead of constraint satisfaction; this is

required by the notion of "truth in all possible worlds".
The techniques of [KKR90] can be used to show that if a COQL program and facts/objects use only arithmetic

order constraints, the answer to a query can be computed in PTIME data complexity. The following result shows

that a similar complexity is achieved for a restricted case of COQL programs with set-order constraints.

Theorem 5.2 Consider a COQL program P with only refinement rules using set-order constraints, and a col-

lection of objects I. Let the E-attributes of the objects in I be constrained using only set-order constraints.

Computing the answer to a query can be done in PTIME in the size of 1. 0

Our notion of partially specified objects is related to Saraswat's notion of store-as-constraint. The store can

be viewed as a single object with agiven collection of E-attributes. Consider this case; programs written in COQL

and Saraswat's cc(l, -*) refine the object/store, based on constraint entailment. However, the resulting semantics

are quite different. Saraswat's semantics is an operational, indeterministic semantics, based on satisfying each

goal in at most one possible way, whereas our semantics is a fixpoint semantics. We conjecture that a suitable

combination of Magic Templates rewriting [Ram91 (which rewrites a program such that both goals and answers

are computed in the fixpoint evaluation) and indeterminacy can be used to simulate the semantics of cc(1, --)

using the semantics of COQL.

6 Conclusions and Future Work

We presented the Constraint Object Data Model, and the Constraint Object Query Language, which we believe

go a long way in incorporating the ability to represent and manipulate partially specified information in object-
based database systems.

There are many interesting directions to pursue. Determining classes of programs with tractable data com-

plexity is extremely important. Optimizing COQL queries is another important direction of research. Stuckey

and Sudarshan [SS94] present compilation techniques for query constraints in logic programs, essentially ex-

tending Magic sets to handle general query constraints, not just equality constraints on queries. It would be

interesting to see how these techniques apply to COQL programs. Finally, many of our ideas and techniques

seem applicable to temporal database languages. Exploring the interconnections is likely to be an interesting

direction of research.

References

[AK89] Serge Abiteboul and Paris C. Kanellalds. Object identity as a query language primitive. In Proceedings of the

ACM SIGMOD Conference on Management of Data, pages 159-173, Portland, Oregon, June 1989.

283

[BNW91] Marianne Baudinet, Marc Niezette, and Pierre Wolper. On the representation of infinite temporal data and
queries. In Proceedings of the Tenth ACM Symposium on Principles of Database Systems, pages 280-290,
Denver, Colorado, May 1991.

[FBB92a] Bjorn N. Freeman-Benson and Alan Borning. The design and implementation of Kaleidoscope'90: A constraint
imperative programming language. In Proceedings of the International Conference on Computer Languages,
pages 174-180, April 1992.

(FBB92b] Biorn N. Freeman-Benson and Alan Borning. Integrating constraints with an object-oriented language. In
Proceedings of the European Conference on Object-Oriented Programming, pages 268-286, June 1992.

[INV91] Tomasz Imielinski, Shamim Naqvi, and Kumar Vadaparty. Incomplete objects-a data model for design and
planning applications. In Proceedings of the A CM SIGMOD Conference on Management of Data, pages 288-
297, Denver, CO, May 1991.

[KG94] Paris C. Kanellalis and Dina Q. Goldin. Constraint programming and database query languages. In Proceedings
of ICOT, 1994. To appear.

[KKR90] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query languages. In Proceedings of the

Ninth ACM Symposium on Principles of Database Systems, pages 299-313, Nashville, Tennessee, April 1990.

[KKS92] Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented databases. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 393-402, San Diego, California, 1992.

[Ram9l] Raghu Ramakrishnan. Magic templates: A spellbinding approach to logic programs. Journal of Logic Pro-

gramming, 11(3):189-216, 1991.

[Rev93] Peter Z. Revesz. A closed form evaluation for Datalog queries with integer (gap)-order constraints. Theoretical
Computer Science, 116(1):117-149, 1993.

[Sar89] Vijay A. Saraswat. Concurrent Constraint Logic Programming. PhD thesis, Carnegie Mellon University, 1989.

[SS94] Peter J. Stuckey and S. Sudarshan. Compiling query constraints. In Proceedings of the ACM Symposium on
Principles of Database Systems, 1994.

(U1]89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes I and II. Computer Science
Press, 1989.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as a programming language.
Journal of the ACM, 23(4):733-742, October 1976.

284

Author Index

Afrati, F 152 Sabin, D 26
Aiken, A 171 Sagiv, Y 146

Baudinet, M 264 Sais, L 255
Benhamou,. B 246 Sannella, M 58
Boyer, M 85 Saraswat, V 138
Bueno, F 130 Schulte, C 116

Singh, G 68
Chomicki, J 264 Smolka, G 116
Cohen, D 18 Srivastava, D 162, 274

Cooper, M 18 Stuckey, P. J 77. 162
Cosmadakis, S. S 152 Sudarshan, S 162

Faltings, B 236 Takahashi, S 48

Freuder, E.C 26 Thennarangam, S 68

Garcfa de la Banda, M 130 Ullman, J. D 146

Ginsberg, M. L 216 Widom, J 146
Grumbach, S 152 Woe, P 24Gupta, A 146 Wolper, P 264

Wonnacott, D 180

Haroud, D 236 W airtz, J 116
Heintze, N 1...
Hermenegildo, M 106, 130 Yap, R. H. C........................ 77
Hooker, J. N 196 Yonezawa, A 48
Hosobe, H 48 Zhang, Y 206

Jaffar, 3 1, 77
Jeavons, P 18
Jiang, Y 36

Koubarakis, M 226
Kuper, G. M 152

Mackworth, A. K 206
Maher, M 77
Matsuoka, S 48
McAllester, D. A 216
Miyashita, K 48
Montanari, U 130, 138

Paltrinieri. M 190
Pesant, G 85
Pugh, W 180

Rajasekar, A 96
Ramakrishnan, R 274
Revesz, P. Z 274
Richards, B 36
Richards, T 36
Ross, K. A 162
Rossi, F 130, 138

285

