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I. Report
A. Statement of problem studied

Beginning with a mission to study the surfaces of III-V semiconductors with scan-
ning tunneling microscopy and with theory, we learned how to use the scanning tunneling
microscope (STM) to make artificial structures on the surfaces of III-V semiconductors,
established the basic science of single-atom-high steps on III-V surfaces, invented a new
kind of spectroscopy called "tipology" for investigating difficult to image states of semicon-
ductor surfaces, observed, explained, and understood a variety of data for semiconductor
surfaces, and then applied the ideas we had developed for strained-layer superlattices to
provide a solution to one of the "hottest" science problems of the day: the physics of
high-temperature superconductivity.

B. Summary of the most important results
During the course of this project, we have accomplished the following:

1. Quantum dots
We have fabricated quantum dots on the (110) surface of InSb, using a scanning

tunneling microscope as a fabrication tool [266]. Specifically the field under the microscope
tip is able to drill a hole one or two atoms deep without the tip touching the surface. Some
degree of spatial location of the dots was achieved. These results demonstrate that it is
feasible to make patterns at room temperature on an atomic scale on this surface - and
raise the possibility of patterning devices on the atomic scale, a goal that could be achieved
if (i) more control on returning to the location of a dot is achieved, and (ii) schemes for
converting the patterns into electronic structures are developed (by filling each dot with a
particular material, such as a superconductor, for example).

2. High-T c superconductivity
In the course of studying strained-layer superlattice materials composed of III-V semi-

conductors, we realized that many of the high-temperature superconductors have strained-
layer superlattice properties. This led us to investigate the problem of superconductivity
in the high-temperature oxide superconductors, and we developed a theory which is in
marked disagreement with the many current theories (none of which is regarded as "cor-
rect"), determined that it explained hundreds of experiments, and isolated the tenet of
most contemporary theories that is responsible for mis-directing the field. This tenet is
the assumption that the superconductivity originates in the cuprate planes. In fact, there
are high-temperature superconductors that have no cuprate planes, no copper, and no
layered structures, such as Bal-aKaPbl.bBibOx, which proves that cuprate planes are
not essential to high-temperature superconductivity, and therefore disproves virtually all
of the current theories.

Our viewpoint [295,308,310,320-322,326] is that dopant oxygen, which is substitutional
in YBa 2 Cu 3 07_6, and interstitial in many other superconductors (e.g., La 2 _#Sr#CuO 4 _b)
is the root of superconductivity in the high-T c oxides in general: holes associated with this
dopant oxygen pair through the polarization field of the material and form a BCS-like su-
perconductor. There is a great deal of evidence to support this viewpoint. Perhaps the
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best is available from pair-breaking data, which are all explained by our confined-oxygen
model, and unexplained by the cuprate-plane models: Pair-breaking by exchange scatter-
ing is short-ranged, and so affects almost exclusively atoms that are nearest-neighbors to
the magnetic impurity (usually a rare-earth) that is responsible for the observations. Thus
we can think of magnetic pair-breaking as a short-ranged and local experimental probe.
We have successfully explained all of the pair-breaking data that we have been able to
find, including dependences on site, host crystal-structure, the magnetic ions, crystal-field
splittings, orbital and total angular momentum quantum numbers L and J, and ionic size.
These many complicated dependences come from only two notions: (i) the superconduc-
tivity is rooted in the dopant oxygen (e.g., chains, not planes, in YBa 2 Cu 3 07_6 systems;
interstitials in some materials); and (ii) magnetic impurities more distant than nearest
neighbors from this oxygen do not break pairs.

These ideas led to the prediction that PrBa2 Cu 3O 7 should exhibit granular super-
conductivity, for grains that do not contain any Ba-site Pr, and this prediction has been
verified [326]. They also imply that it should be possible to develop integrated supercon-
ductor/semiconductor devices - but it will take some time to achieve this goal [310]. At
the very minimum, our ideas should completely alter the main tenet of most contemporary
theories of high-temperature superconductivity: that the superconductivity originates in
the cuprate planes. They are likely to have considerably more impact, however, and our
confined metallic oxygen model may eventually be adopted as providing the solution to
the main theoretical problem: What causes superconductivity in these materials?

3. Steps and dimerization on step edges
We have done pioneering work on the physics of single-atom-high steps on the surfaces

of InAs, InSb, and InP (110) surfaces. We have observed such single-atom-high steps for
the first time, and shown that the step edges dimerize. We have developed several models
of different steps, and shown that they are compatible with the measurements. As such, we
have laid the foundation for studying and understanding nucleation, growth, and contact
formation on these surfaces.

4. Tipology
We have developed the notion that scanning tunneling microscopy/spectroscopy

(STM/STS) can use an "active" tip [306]. By this we mean that the microscope itself
can be constructed to give it special properties. In our case, we have used a SiC STM
tip (instead of the usual W tip) to image the (111)-7x7 surface of Si, using the forbidden
band gap of SiC to filter out certain tunneling transitions at certain energies. This work,
performed in collaboration with Nobel Laureate Heinrich Rohrer, demonstrates that active
tips lead to new physics, provide new insights into the Schottky barrier problem, and may
lead to entire new classes of experiments.

5. Phenomenology
We have executed a number of calculations in order to support various experiments

[275,277,281,294] and to clarify observations and identifications of nanoscopic structures.
Perhaps the most important of these calculations showed that the f-SiC(111) surface
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is covered with a layer of (nearly) graphite, which masks STM tunneling, so that only the
dangling bonds below holes in the mask can tunnel out of the surface. This clarified and
established the graphitic-monolayer model of this surface. We have also established that
subsurface layers of InSb(110) can be imaged with STM, but that the image is ethereal,
disappearing as the bias voltage is altered. This work establishes the utility of combined
theoretical and experimental investigations of surfaces, and elevates the STM to being a
probe capable of examining with high resolution some issues relevant to buried monolayers.
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