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5] INTRODUCTION

This annual summary report describes research performed from 1 September 1993
through 31 May 1994 with financial support from ONR Grant N00014-89-J-1003
(with the exception of Landsberger's work, which is supported by ONR Grant
N00014-93-1-1135; see Sec. III). Three main subject areas are discussed in this report,5m with emphasis on nonlinear effects:

I. Surface Acoustic Waves

II. Diffracting Sound Beams

* III. Fluid-Solid Interface Effects

Contributions to these projects were made by the following individuals:

Senior Personnel

* M. F. Hamilton, principal investigator

I * Yu. A. Il'insky, visiting scientist

3 E. A. Zabolotskaya, visiting scientist

Graduate Students

* M. A. Averkiou, Ph.D. student in Mechanical Engineering

* E. Yu. Knight, M.A. student in Physics

* B. J. Landsberger, Ph.D. student in Mechanical Engineering

3 . Y.-S. Lee, Ph.D. student in Mechanical Engineering

* G. D. Meegan, Ph.D. student in Physics

3 Professor Il'insky, on leave from the Department of Physics at Moscow State Uni-
versity, performed research in our group for three of the nine months covered by this
report (September and October of 1993, and January of 1994). Dr. Zabolotskaya is
on leave from the General Physics Institute in Moscow.

The main source of financial support, in addition to that provided by ONR, has
been the David and Lucile Packard Foundation Fellowship for Science and Engineer-
ing. Computing resources were provided by The University of Texas System Center
for High Performance Computing.

The following manuscripts, abstracts, and dissertations, which contain work sup-
ported at least in part by ONR, have been published (or submitted for publication)
since 1 September 1993..
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Refereed Journals

" M. A. Averkiou, Y.-S. Lee, and M. F. Hamilton, "Self-demodulation of am-
plitude and frequency modulated pulses in a thermoviscous fluid," J. Acoust.
Soc. Am. 94, 2876-2883 (1993).

" M. F. Hamilton, Yu. A. ll'insky, and E. A. Zabolotskaya, "Nonlinearity in
Rayleigh waves," submitted to J. Acoust. Soc. Am. in October 1993.

* D. J. Shull, E. E. Kim, M. F. Hamilton, and E. A. Zabolotskaya, "Diffraction
effects in nonlinear Rayleigh wave beams," submitted to J. Acoust. Soc. Am.
in December 1993.

M. F. Hamilton, Yu. A. ll'insky, and E. A. Zabolotskaya, "Evolution equations

for nonlinear Rayleigh waves," submitted to J. Acoust. Soc. Am. in February
1994.

" Y.-S. Lee and M. F. Hamilton, "Time domain modeling of pulsed finite ampli-
tude sound beams," submitted to J. Acoust. Soc. Am. in March 1994.

Oral Presentation Abstracts

e M. A. Averkiou, I. R. S. Makin, and M. F. Hamilton, "Measurements of focused,
finite amplitude sound beams reflected from curved targets," J. Acoust. Soc.
Am. 94, 1876 (1993).

* M. A. Averkiou and M. F. Hamilton, "Measurements of finite amplitude pulses
radiated by plane circular pistons in water," J. Acoust. Soc. Am. 94, 1876
(1993).

* D. J. Shull, E. E. Kim, M. F. Hamilton, and E. A. Zabolotskaya, "Diffracting
nonlinear Rayleigh wave beams," J. Acoust. Soc. Am. 95, 2864 (1994).

Dissertations

e Y.-S. Lee, "Numerical solution of the KZK equation for pulsed finite amplitude
sound beams in thermoviscous fluids," Ph.D. Dissertation, The University of
Texas at Austin (December 1993). Lee is currently employed by an automobile
manufacturer in South Korea.

3 M. A. Averkiou, "Experimental investigation of propagation and reflection phe-
nomena in finite amplitude sound beams," Ph.D. Dissertation, The University
of Texas at Austin (May 1994). Averkiou is currently employed by Applied
Physics Laboratory, University of Washington, Seattle, Washington.
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g I. Surface Acoustic Waves

Portions of the work described in this section were performed by Yu. A. Il'insky, E.
Yu. Knight, G. D. Meegan, and E. A. Zabolotskaya. Four related investigations are
described below, all originating from Zabolotskaya's theoretical framework: ' differen-
tial time-domain evolution equations for nonlinear Rayleigh waves, model equations
which account for arbitrary time and space depencencies in nonlinear Rayleigh waves,
definition and comparison of nonlinearity coefficients associated with Rayleigh waves,
and nonlinear Stoneley waves.

A. Evolution Equations for Nonlinear Rayleigh Waves

This project is completed, and the following discussion is based on two articles2 , I

currently in review for publication in Journal of the Acoustical Society of America.
Evolution equations in the time domain were derived for nonlinear Rayleigh waves

on the surface of an isotropic solid. Two evolution equations were derived, one in
terms of the real horizontal displacement component, and the other in terms of a
complex displacement variable. The motivation to derive time domain evolution
equations for nonlinear Rayleigh waves is the wealth of experience acquired from
the many time domain studies of finite amplitude sound in fluids, e.g., based on the
Burgers equation" (for plane waves) and the KZK equation' (for diffracting beams).
Time domain equations for Rayleigh waves should thus permit greater understanding
of the similarities and differences with nonlinear effects in fluids.

The evolution equations are derived from the theoretical model developed by
Zabolotskaya.1 To simplify the analysis, not all nonlinear terms are included. How-
ever, the terms that are retained have been shown2, 3 to account qualitatively for
all nonlinear effects predicted by the complete theoretical model. Moreover, the
present analysis can be extended to include the remaining nonlinear terms. We note
that differential evolution equations for nonlinear Rayleigh waves, derived from the
fundamental equations of motion, have not appeared previously in the literature.

The analysis begins with the coupled spectral equations derived by Zabolotskaya
for plane waves:

_ im l Rmi, - n AV
IX l+m=m l

where V are dimensionless spectral components in a Fourier series expansion of
the horizontal and vertical velocity components, X is distance along the surface
of the solid, Rl is the nonlinearity matrix that depends on the frequencies of the
interaction components, and A is an absorption coefficient. The nonlinearity matrix3 has the form

I1 + M16 + Ilit + Imlet + TI +mlit + +ie6 + Imi + I mI~ t + II[i + ImIC&
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+ + +I1 + ml, + Il z + Iml~i Il+ m , Ii M6 + ImII Il + ml + Il6 + Italt
3-y

+ g+ mlfi + 11f, + IMI.I'' (2)

where the coefficients a, /, and -1 depend on both the second and third order con-
stants for an isotropic elastic solid (ft and ft depend only on the second order con-
stants). We have shown 2 that the "a terms," the "/# terms," and the "-y term" in
the matrix R,,n produce very similar nonlinear effects. Because of the complexity
involved in the derivation of an evolution equation, we therefore concentrate on the
effect due to only one of these terms. For simplicity we choose the - term. Setting
a = / = 0, we have transformed Eq. (1) into the time domain and thus derived two
alternative evolution equations in terms of particle displacement variables.

The first evolution equation is expressed in terms of the complex particle dis-
placement variable D at the surface of the solid:

OD 1 (OD\2 +1.r8 2 D* OD OD* 02 DX 0 i_ _ (1 + iHf) Lo _F2 + Ao &2 (3)
where 0 is dimensionless retarded time, and W is the Hilbert transform operator
defined by the principal value of the integral

'l,= 1 '00 f(t') .
Ii f= .F -t. (4)

The horizontal and vertical particle velocity components at the surface, V and V..,
respectively, are obtained from the real and imaginary parts of D:

v = -(7 + ft) (Re D), (5)

V. = -(1 + 1 ) (ImD), (6)

where q depends on the second order elastic constants. Equations (1) and (3) [with
a = / = 0 in Eq. (2)] provide equivalent descriptions of the Rayleigh wave on the
surface of the solid, and each can be solved with standard finite difference meth-
ods. Numerical solutions of the two equations are shown in Fig. 1 for a wave that
is sinusoidal at the source (X = 0). Minor discrepancies are observed after shock
formation, which are due to using only a finite number of spectral components in
the numerical solution of Eq. (1), and from discretization of the time waveform in
the numerical solution of Eq. (3). The solutions converge, however, with increasing
numbers of frequency components and time samples used in the calculations. Com-
parison of the waveforms in Fig. 1 with those calculated in previous articles1' [the
a and # terms were retained in Eq. (2) for the calculations reported in Refs. 1 and 6]

4



II

Frequency Domain Calculations Time Domain Calculations
1 (a) X=0.5 1 (b) X=0.5

10.5 0.5.
0x 0

I-0.5. -0.51

0 rJ2 x 3ir12 2z 0 ir/2 x 3r/2 2x

2 (c) =mi 2 (d) X=1

1 1

I 0 12 x 3W/2 2x 0 f/2 3 W2

Figure 1: Comparison of horizontal velocity waveforms calculated with the frequency
domain equation (left column) and with the time domain equation (right column) at
two distances, X = 0.5 (upper row) and X = 1 (lower row).

reveals that the -y term alone, and therefore Eq. (3), indeed account for all main
effects of nonlinearity in Rayleigh wave propagation.

An alternative version of Eq. (3) can be derived in terms of a real displacement
component d:

8d 2d 2 P 1 .L,[dH [ 2d]] +A'(7o- '= j 0-0 + 2 -

The corresponding velocity components are now obtained from the relations

V= 1 Od (8)

7+ [V J . (9)

Methods used to solve Eq. (3) can also be applied to Eq. (7).
We conclude by noting that diffraction effects" are easily included in Eqs. (3)

and (7), which yield KZK-type -quations for nonlinear Rayleigh waves.

5



B. Generalized Equations for Nonlinear Rayleigh Waves
This research was performed by E. Yu. Knight, who received partial financial sup-
port from the Earth and Environmental Sciences Division at Los Alamos National
Laboratory. She is scheduled to receive her M.A. in Physics in December 1994.
Knight has generalized the spectral equations derived by Zabolotskaya1 to include
arbitrary spatial dependencies (e.g., not restricted to progressive plane, cylindrical,
or quasiplane waves) and arbitrary time dependencies (i.e., not necessarily periodic
waveforms).

We begin by presenting the equations for plane waves with arbitrary time depen-
dencies. The horizontal and vertical velocity components in the elastic half space
z < 0 are now expressed as continuous Fourier integrals, rather than discrete Fourier
series, as follows:

v.(x,z,t) = uz(z,w))6(x,w)eiW(t,_/cR) dw (10)1,0 2vr

V,(X, zt) = u,(z,w)iD(X,w)e _ (t-/cR) .d (11)
ro 27r

where the depth dependent functions are defined as in previous work:' , 6

u?(z,w) = Gtew'h lcR + 1efIz/Cl R, (12)

u,(z,w) = ew' e/cR + vr*te a/CR. (13)

The resulting equation for the complex spectral amplitude Fi(xw) in Eqs. (10)
and (11) becomes

o(x,w) I&7 (00 I(W - w')I
8: pC4J-oow'(-w

x R(w',w - w')i(x,w')6i(x,w - w') d-. (14)I2ir
The function R(wj, w2) is the same as the matrix in Eq. (2), with W, and w2 in place of
m and 1. With the integrals in Eqs. (10) and (11) replaced by discrete Fourier series,
Eq. (14) reduces to the set of coupled discrete equations derived by Zabolotskaya,1

namely, Eq. (1) with A = 0.
We now remove the restriction to plane waves, and begin by expressing the hor-

izontal and vertical velocity components in the form

v(r,z,t) -- cRV./ u,(z,)V7(rw)w-'e- -  (15)

v t(r,z,i) =/_ u,(zo)(r,)e (16)
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where v -(.,v), r = (z,y), and V. is the gradient in the (z, y) plane. The
equation obtained for V(r, w) is

V 2 W 2 2iw3'p 0 -Iw'(w -w') I
dw'

x R(w', w - w')V(r, w')V(r, w - w') 2-. (17)

The model equations used previously for cylindrical Rayleigh waves 1'6 and for diffract-
ing Rayleigh wave beams' can be derived as approximations of Eq. (17). In these
earlier articles,' , 6, 7 the terms which account for cylindrical spreading and diffraction
were introduced in an ad hoc manner. Equation (17) thus permits these previous
results to be derived more rigorously. In addition, Eq. (17) applies to compound
wave fields (e.g., standing waves) as well as progressive wave fields.

C. Nonlinearity Coefficients for Rayleigh Waves

This research was also performed by Knight. Comparison of Zabolotskaya's model
equation' with one derived perviously by Parker" was performed. Also, a quantitative
investigation of the shock formation distance was conducted, which led to a consistent
definition for a coefficient of nonlinearity.

We first discuss comparison with the model equation for nonlinear Rayleigh waves
derived by Parker,8 who expresses his result in essentially the same form as Eq. (1).
Whereas Zabolotskaya used Hamiltonian formalism to derive Eq. (1), Parker used a
dynamical approach which begins with the governing nonlinear differential equations
of motion and the nonlinear free surface boundary conditions (this same starting
point has been used by all previous authors who investigated nonlinear Rayleigh
waves, except Zabolotskaya). Parker derived an evolution equation for the Fourier
transform of the vertical component of the particle displacement as a condition for
ensuring that corrections to the displacement predicted by linear theory are suffi-
ciently small everywhere. Following considerable algebraic manipulations, Knight
has shown that the final equations obtained by Parker are in fact identical to those
derived by Zabolotskaya, even though the derivations are fundamentally different,
and the nonlinearity matrices as expressed by Parker and Zabolotskaya are consid-
erably different in appearance.

We now consider the shock formation distance for a nonlinear Rayleigh wave.
Recalling Eq. (2), we see that the "strength" of nonlinear interaction between any
two given spectral components in a Rayleigh wave is a function of the frequencies of
the two components. In contrast, the coefficient of nonlinearity for sound waves in
fluids is independent of frequency. Consequently, whereas an analytic expression for
the shock formation distance in a fluid is readily defined, the same is not true for
nonlinear Rayleigh waves. Using the rate of second harmonic generation as a measure
of waveform distortion, we proposed in an earlier article a simple expression for

7



the Rayleigh wave shock formation distance. Via comparison with direct numerical
solutions of Eq. (1), Knight has shown that the earlier expression6 overestimates the
shock formation distance by approximately 10-20%.

An alternative expression for the shock formation distance was derived by Knight
in terms of an integral over the nonlinearity matrix R(WI, W2). This alternative
approach accounts (in an approximate way) for all spectral interactions, not just
the lowest order contribution to second harmonic generation. Her expression for the
shock formation distance is

7 = CR/I3 WOV.O (18)

where wo0 is the frequency of the source waveform, v=0 is the peak horizontal velocity
amplitude at the source, and the coefficient of nonlinearity /3 is determined by the
integral over R(w;1,W2). In contrast to the result proposed in Ref. 6, Eq. (18) agrees
with numerically calculated shock formation distances to within 5%.

The form of Eq. (18) was chosen to be consistent with the expression for the shock
formation distance of a sound wave in a fluid, and therefore 3 may be compared with
the more familiar coefficient of nonlinearity in acoustics. In Table 1 are listed values
of /3 calculated for materials having reasonably accurate values for the third order
elastic constants reported in the literature. The first five materials listed are all
homogeneous solids, and all have values of /3 that are of order one, as in fluids.
The last five materials are rocks that contain microcracks and other inhomogeneous
features, and the nonlinearity coefficients are of order 10'.

Material /3

Polystyrene 0.84
Nickel steel 535 0.85
Steel 60 C2H2A 1.03

Armco iron 2.03
Pyrex 2.42

Barre Granite 200
Dry Marble D82 593

Water Saturated F32 Thermally Cracked 1523
Dry F32 Fountainebleau Sandstone 3201

Dry F32 Thermally Cracked 4192

Table 1: Rayleigh wave nonlinearity coefficients for various materials.
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D. Nonlinear Stoneley Waves

The investigation of nonlinear Stoneley waves is being performed by G. D. Meegan,
whose funding has been provided through an AASERT (Augmentation Award for
Science and Engineering Training) extension of the present ONR grant. This ex-
tension began in September 1992. Meegan is scheduled to take his Ph.D. qualifying
exam in Physics in fall 1994.

A Stoneley wave propagates along the interface of two elastic solids in nonslip
contact. To some extent, a Stoneley wave may be thought of as a two-sided Rayleigh
wave, insofar as the disturbance decays exponentially with distance away from the
interface in either solid. However, the particle motion in the two solids differs.
Figure 2(a) depicts the horizontal particle displacement u. and vertical particle dis-
placement u.. for a Stoneley wave at a glass-steel interface. In the steel, the particle
trajectory resembles that for a Rayleigh wave, namely, it traces a retrograde elliptical
orbit (with respect to the direction of wave propagation) at the interface, reverses
direction at a depth of approximately one-third wavelength (note the sign change
in the horizontal component), and decays exponentially thereafter with further in-
crease in depth. In the glass, however, the particle motion is prograde at all depths,
never changing direction of rotation. Moreover, as indicated by the shaded areas in
Fig. 2(b), only material combinations with certain parameter relations can support
Stoneley waves (Poisson's ratio was assumed to be v = 0.25 for each solid, and the
axes specify the ratios of the densities and shear moduli of the two solids).

Z 2.5 3 , ,
* 2 .. U0 - x' ! las. Poisson's Ratio =1/42 -

Ste Ia"1.5 :

* 1 Steel,' , Glass 0

a0.5 °1

,.0si(a) o ,, (b)0. 0

-3 -2 -1 0 1 2 3 0 1 2 3
Depth per Wavelength Ratio of Densities

Figure 2: (a) Stoneley wave particle displacements, and (b) parameter regions for
which Stoneley waves exist.

Meegan's derivation of the equation for nonlinear Stoneley waves at the interface
separating two isotropic solids follows closely the method developed by Zabolotskaya1

for nonlinear Rayleigh waves. Specifically, Hamiltonian formalism is used. One
begins with Fourier expansions based on a modification of linear theory for the
particle displacement in each solid. The kinetic and potential energy functions are

9



obtained by integrating over the two half spaces occupied by the two solids (terms
through cubic order in the displacement are retained in the strain energy function).
Finally, generalized displacement and momentum variables are introduced, which
are interrelated through the Hamiltonian. The resulting system of equations can be
solved for the complex spectral amplitudes in the Stoneley wave. The resulting set
of coupled equations for the spectral amplitudes of the velocity components can be
written in the form

dvn pin2ks M1 2Rn vm 1 (19)
dx - 2pCS l n IM1

where the subscript "1" indicates shear modulus (14) or density (p) in medium 1. In
the absence of a second medium (i.e., with a free surface bounding medium 1), replace
the superscripts and subscripts S by 1, and Eq. (19) reduces to Zabolotskaya's result
for Rayleigh waves. For a Stoneley wave, the nonlinearity matrix is now given by

RS $ l + KR ,(2) (20)

where R(' (i - 1, 2) is given by Eq. (2) for medium i, and K depends only on the
second order elastic constants for the two media. We note that the nonlinearity
matrix Rsm1 exhibits precisely the same symmetries as the nonlinearity matrix Rn
for Rayleigh waves. Consequently, the theoretical description of nonlinear Stoneley
waves given by Eq. (19) is amenable to the same mathematical techniques that have
been employed in our recent investigations of nonlinear Rayleigh waves.

In Fig. 3 we compare propagation curves for the fundamental through third har-
monic components in a Rayleigh wave in steel (dashed lines) and in glass (dotted
lines), with those for a Stoneley wave that propagates along a steel-glass interface
(solid lines). The waves are sinusoidal at the source, where the horizontal velocity
components are equal for all three cases. Nonlinearity is seen to be stronger for the
Rayleigh waves in the individual materials (i.e., more rapid harmonic generation)
than for the Stoneley wave at the interace when the two materials are in contact.
The difference increases slightly if the vertical velocities, rather than the horizon-
tal velocities, are matched at the source. The decrease in nonlinearity is connected
mainly with the decrease in the ratio E3/E 2, where E, is the integrated strain energy
at order n in terms of the particle displacement. Whether nonlinearity is normally
weaker in Stoneley waves than in Rayleigh waves has yet to be ascertained.

Equation (19) shall be used to investigate Stoneley waves systematically with
techniques that have been established for nonlinear Rayleigh waves. Experimental
work is also underway.

1
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"..* -- I Rayleigh wave (steel)
', -....- Rayleigh wave (glass)

> 0.8 Stoneley wave (glass/steel)

1 0.6 ',

I0048 12 16 20

i Propagation Distance X
Figure 3: Fundamental, second, and third harmonic propagation curves for three

i types of surface waves.

II. Diffracting Sound Beams
I A. Pulsed Finite Amplitude Sound Beams

I The material reported in. this section concludes the numerical investigation of pulseda finite amplitude sound beams by Y.-S. Lee, who received his Ph.D. in Mechanical
Engineering for this work in December 1993. 9 The results reported below were ob-

I tained during the past year, and they are included in an article"' submitted in March

1994 to Journal of the Acoustical Society of America.
The research on numerical solutions of the KZK equation concluded with calcula-3 tions for the propagation of a noise burst radiated from a circular piston source. No

calculations have been reported previously in the literature which take into account
i the combined effects of diffraction, absorption and nonlinearity on the propagation ofI noise. To construct the noise burst at the source we followed the method employed by

Webster and Blackstock.11 We begin with a frequency spectrum which has constant
I magnitude in the band 0.5 < w/wo _ 1.5 and vanishes outside that band, where w0 is3 the center frequency of the band. A pseudorandom waveform was created by dividing

the nonzero portion of the spectrum into 56 equally spaced frequency components
I w,, assigning each component a random phase 4b with uniform probability density

in the range -r _ b _ w, summing the components together, and normalizing the
result by a convenient amplitude factor. A time limited noise burst was created byI

11I
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I

multiplying the resulting waveform by a suitable pulse envelope function, to obtain
the source waveform at a = 0 in Fig. 4. The dimensionless parameter a = z/zo
measures distance z along the axis of the beam in terms of the Rayleigh distance z0
at the center frequency w0 . The corresponding spectrum of the source waveform in
Fig. 4 is normalized by its peak value, and it is expressed in decibels.

The time waveforms and frequency spectra in Fig. 4 depict the axial propagation
of the noise burst. At a = 0.2 the waveform appears to have slightly less high fre-
quency content than at the source. Inspection of the corresponding spectrum reveals

a dip in the vicinity of w/wo 1.26, in agreement with the prediction by linear theory
for the last axial null at that frequency. The algorithm thus accounts properly for the
effect of diffraction on the random waveform. Maximum spectral broadening due to
harmonic generation and shock formation, including the generation of low frequency
components below w/wo = 0.5, is attained in the vicinity of a = 1. Beyond o' = 1
the effect of attenuation exceeds that of nonlinearity, and the spectrum is gradually5 low-pass filtered. The filtering process, which leads to an increase in the relative
amplitudes of the nonlinearly generated low frequency components, is demonstrated
in the continuation of the calculations in Fig. 5. Because of the irregular amplitude
of the source waveform, there is no clearly indentifiable far field waveform which cor-
responds to self-demodulation. Instead, the waveforms evolve continuously as more
and more high frequency components are stripped away by absorption.

Finally, it was noted that Lee's numerical algorithm can be modified to include the
effects of relaxation. An augmented Burgers equation, which is coupled with auxiliary
relaxation equations, has been developed by Pierce12 for a thermoviscous fluid with
an arbitrary numbers of relaxation processes. The KZK equation can be augmented
in a similar way. In our numerical model, however, physical phenomena are decoupled3 over each propagation step,9' 10 and we therefore require only the relaxation equation
for a small-signal plane wave. It is assumed that the various relaxation processes
are independent, and that the vth process is characterized by a relaxation time t,,
and high-frequency propagation speed increment (Ac),. 12 Relaxation is included by
solving over each step A, in addition to equations which account for diffraction,3 absorption, and nonlinearity, the following equation:

1 + a) L - C. (21)

I where 0 and C., are dimensionless constants that characterize the vth process, P
is dimensionless pressure, and r dimensionless retarded time. All operations are3 performed in the time domain.

Relaxation effects were recently introduced in Lee's code by R. 0. Cleveland
(Ph.D. student in Mechanical Engineering), who is investigating the propagation of
sonic booms under the supervision of Professor D. T. Blackstock (work supported
by NASA). Calculations based on the modified algorithm were compared with an

I analytic stationary wave solution derived by Polyakova, Soluyan, and Khokhlov13

12I
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for the propagation of a step shock in a monorelaxing fluid, and excellent agreement
was obtained. 14

B. Focused Finite Amplitude Sound Beams

The measurements reported below were obtained by M. A. Averkiou, who completed
his Ph.D. in Mechanical Engineering for this work in May 1994.5 His results will be
reported in an article that is nearly ready for submission to Journal of the Acoustical
Society of America. Averkiou is currently employed by Applied Physics Laboratory
at the University of Washington.

The purpose of this investigation is to present detailed measurements of har-
monic generation in the field of a focused piston source that radiates in water at
finite amplitude. The measurements are compared with numerical solutions of the
KZK equation. Our work is therefore very similar to that reported previously by
Baker. s One of our contributions is improvement of the dynamic range and spa-
tial resolution in measurements of the harmonic field structure. These improvements
permit comparison with theory to be made with greater precision. Second, measured
beam patterns are shown at more locations than have been reported previously in
the literature.

Measured (solid lines) and predicted (dashed lines) beam patterns for the first5 four harmonic components are presented in Fig. 6. A circular source with radius
19 mm and focal length 159 mm was used, which radiated in water at 2.25 MHz.
The theoretical predictions are based on numerical solutions of the KZK equation.
The equation is solved numerically with the version of the spectral code described by
Naze Tjotta et al.17 Excellent agreement is obtained between theory and experiment.
In particular, the sidelobe structure of all four harmonic components is predicted very
accurately in the focal plane, particularly the "fingers" (i.e., additional sidelobes15 , 19)

in the second and higher harmonic beam patterns. Note also the inward shift of the3 sidelobes in the second and higher harmonic beam patterns, relative to the sidelobe
locations in the primary wave beam pattern. Detailed measurement of this effect,
and comparison with theory, is presented here for the first time. These phenomena
were observed in a numerical investigation of focused beams supported earlier by
ONR.Y

I C. Reflection of a Spherical Wave from a Parabolic Mirror

The reflection of a spherical wave from a parabolic mirror is a problem encountered
in the analysis of electromagnetic antennas. The incident wave is radiated from the
focus of the parabola, and ray theory predicts a collimated, planar reflected wave
(see Fig. 7). In reality, diffraction produces a complicated nearfield structure, and
the amplitude of the wave in the farfield decreases inversely with distance. Although
considerable attention has been devoted to this problem, it appears that all reported

I
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analyses have been performed in the frequency domain. However, recent interest
in the design of ultra-wideband antennas (see, for example, Ref. 21) motivates the
derivation of a time domain solution.

z

T F
d

U 0r
Figure 7: Geometry of parabolic reflector.

The following transient axial solution was derived for the reflection of an acoustic
spherical wave from a rigid, parabolic mirror. Our solution complements the experi-
mental work performed recently by D. M. Hester2 2 and currently by L. I Gem under
the supervision of Professor Blackstock. The incident spherical wave pi radiated from
the focus F is assumed to have the form p,/po = (FIR)f[t - (R - F)lco], where p0
is the pressure of the incident wave at (r, z) = (0, 0), f(t) is an arbitrary function of
time, R is distance from the focus, and co is the sound speed. Following techniques
developed earlier for analysis of reflection from an ellipsoidal mirror,2 we derived
the following solution for the axial pressure in the reflected field:

3 =--f t--) - h.(z)f(t - t.) - - j h(z,t')f(t - t') dt', (22)

where t. is related to the time a signal takes to propagate from the edge of the mirror
to the axial observation point, and h. is the amplitude of the "edge wave." The first
term is referred to as the "center wave," and the third term is referred to as the
"wake." Simple analytic expressions have been obtained for the impulse response
functions h.(z) and ha(z,t). For z > F the edge wave amplitude approaches the
asymptotic value h. (1 +d/F) - , where d is the depth of the mirror. In the farfield,
Eq. (22) reduces to

p, 2 2  ( d) \, z\
L 2F-In I+ if' t-- , z-.o, (23)

3O p 0z To F co,

where f'(t) = df/dt. The derivative of the source waveform is thus obtained in the
farfield.
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In Fig. 8 we show calculations based on Eq. (22) for the axial reflected field due
to a one-cycle sinusoid incident on the mirror. The ratio of mirror depth to focal
length was selected to be d/F = 1.13, the same as in the experiments performed
by Hester22 and Gelin. The dimensionless pulse duration is coT/F = 0.1, which
is also consistent with experiment and satisfies the assumption in the derivation
of Eq. (22) that the wavelength is small in comparison with the dimensions of the
reflector. At z/F = 10 the center wave (on the left in Fig. 8) and edge wave (on the
right) are clearly resolved, and the effect of the wake is insignificant. At z/F = 20
the amplitude of the edge wave has increased slightly, and the effect of the wake
is becoming noticeable. As the center and edge waves overlap, the wake plays an
increasingly greater role. In the farfield, at z/F = 1000, the derivative of the incident
waveform is obtained, and the pulse amplitude decreases in proportion to distance,
as predicted by Eq. (23).

III. Fluid-Solid Interface Effects

This investigation is being performed by B. J. Landsberger, who has been funded
through AASERT since fall 1993. Landsberger's AASERT funding is separate from
the AASERT funding for Meegan (whose work is discussed in Sec. ID). Meegan's
funding is administered through the "parent" ONR Grant N00014-89-J-1003, whereas
ONR Grant N00014-93-1-1135 was created specifically to administer Landsberger's
funding.

Both experiment and theory were proposed for an investigation of diffracting
sound beams that are scattered in liquids following interaction with elastic half spaces
and plates. These are classic problems that are studied in connection with ultrasonic
nondestructive evaluation, and they have received considerable attention in the lit-
erature. However, the following observations can be made about the current state of
research on these problems: (1) there are scarcely any high precision, quantitative
field measurements of the scattered (i.e., reflected and transmitted) sound beams,
(2) most theories are developed for either two-dimensional or Gaussian sound beams,
whereas three-dimensional beams radiated by uniform sources are used in practice,
and (3) efects of nonlinearity are virtually unexplored. The proposed research is
intended to address each of these points through both experiments and analysis.3 Despite the numbers of experiments reported on the interactions of sound beams
with elastic half spaces and plates, most published data provide only qualitative de-
scriptions of the related effects due to diffraction and mode generation. Specifically,
the primary method of data acquisition has been Schlieren visualization. Schlieren
images provide dramatic confirmation of physical phenomena such as beam displace-
ments for incidence near Rayleigh and Lamb angles, and of different modes of leaky
wave radiation from the solid into the surrounding fluid. However, Schlieren images
do not provide the precision that is needed for quantitative comparisons with theory.
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This fact has been noted in recent years by others,24 and it appears to influence
the directions of current theoretical investigations. For example, theories that ac-
count for diffraction in three dimensions (3-D) are normally restricted to Gaussian
beams,25 and theories for sound beams radiated by uniform pistons normally ac-
count for only 2-D diffraction.24' 26 Even within the past two years,27 measurements
obtained with a (3-D) circular piston source were compared with theory based on a
2-D Gaussian source, and the results are said to be in quantitative agreement. More
recently, a rectangular Gaussian source with large aspect ratio (to approximate a 2-D
Gaussian source) was used to generate reflected fields that could be compared more
consistently with 2-D Gaussian beam theory.' However, noticeably absent from the
literature are comparisons of theory for 3-D circular pistons with measurements ob-
tained with conventional circular ultrasonic sources, even in the small signal limit
where nonlinear effects can be ignored.

The first goal was therefore to develop a computer program which calculates the
reflection of an arbitrary 3-D sound beam from a liquid-solid half space. This is a
necessary first step toward comparison with measurements to be made using standard
circular piston sources in the Mechanical Engineering ultrasonics tank facility. The
code is based on numerical solution via 2-D spatial FFT of the following standard
reflection integral:

1 00k)eoo~kyk
P,(x,y,z) = -"2f 0Pi(k.,k,,zi)R(k=,k )eikzr+kP+kcz)dkdkt, (24)

where P, is the spatial component of the reflected pressure field, Pi the FFT of the
incident beam in the plane of the interface z = zi, k=, and k,, are wavenumbers in
the (x, y) plane, k, = (W2 /C -k.2 - k2) 1/2 is the wavenumber perpendicular to the
interface, and R is the plane wave reflection coefficient. We note that focusing is
easily taken into account with the computer code.

Somewhat surprisingly, we have not found published 3-D solutions of Eq. (24)
for the practical case of reflection produced by incident radiation from a circular
piston source. We show such calculations in Fig. 9. Figure 9(a) shows the calculated
pressure distribution of a 1 MHz beam radiated from a one-inch diameter circular
piston in water, incident on a planar steel interface. The transducer is 10 cm from
the interface, and the axis of the incident beam forms an angle of 310 (the Rayleigh
angle) with the interface. The coordinate axes along the perimeters of the plots mark
position on the interface in centimeters, and the vertical axes denote dimensionless
pressure amplitudes. In Fig. 9(b) is shown the calculated pressure distribution in
the reflected beam right at the interface. Note the complicated sidelobe structure,
in both the incident and reflected fields, which characterizes sound fields radiated
from circular pistons. The bimodal distribution in the reflected field is due to the
well known interference between the specularly reflected wave and radiation from
the interface wave. The peak directly in the center of Fig. 9(b) is due mainly to the
specular reflection, as seen by comparison with Fig. 9(a).
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Figure 9: Surface plots of (a) incident and (b) reflected pressure distributions at the
interface formed by water and steel.

In Fig. 10(a) are shown the superposed incident and reflected pressure distribu-
tions along the lines of symmetry in Fig. 9(a) and 9(b). The reflected field distri-
bution 10 cm away from the interface is shown in Fig. 10(b). The field structure

I and overall amplitude has been altered by diffraction. For comparison, the curves in
Fig. 10(c) and 10(d) are calculated for 2-D radiation from a Gaussian source (which
is commonly studied in the literature), but otherwise the parameters are the same
as in the left column. Although the classical bimodal pressure distribution is clearly
revealed by the 2-D Gaussian beam theory, the fine structure seen in the piston field
is absent, and comparison of the beam patterns at z = 0 cm and z = 10 cm shows
only minor diffraction effects due to propagation over that distance (in comparison
to the piston radiation).

I
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Figure 10: Incident (dashed lines) and reflected (solid lines) beam patterns due to
circular piston radiation (a) at the water-steel interface, and (b) 10 cm away from
the interface. Comparable results based on 2-D Gaussian beam theory: (c) and (d).

ILandsberger is currently following two paths. One is the beginning of experiments
with elastic half-spaces and plates, the results from which will be compared with the
small signal results predicted by Eq. (24). The ultimate objective, however, is to
determine whether measurements of the third order elastic constants can be made by
monitoring the properties of harmonic generation in the reflected beam (or perhapsIthe transmitted beam in the case of plates). To this end, Landsberger has completed
a rederivation of results obtained by Cotaras 9 for the reflection and transmission of
finite amplitude sound at a fluid-fluid interface. This work will next be generalized
to reflection and transmission at a fluid-solid interface.

II
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