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CONNECTION MACHINE SOFTWARE CONVERSION
OF THE NAVY TOPS MODEL

1 INTRODUCTION

Models which solve a set of partial differential equations form a large and important category
of scientific applications. These applications are commonly structured to run well on vectorizing
machines such as the Cray Y-MP and the Convex C series.

The introduction of highly parallel machines [1, 21 with peak performance significantly exceed-
ing the Cray machines has sparked interest in running scientific models on these new machine
architectures. The demonstration over the past few years of many models restructured success-
fully for these machines has led to growing interest in code conversion. This is in part due to
the widespread belief that economic factors, principally the leveraging of commodity micropro-
cessor and memory technology, will make highly parallel machines more cost-efective than vector
architectures.

Many existing codes reflect decades of optimization for sequential processing. Achieving max-
imum parallelism from such a starting point can be difficult. An attractive alternative to code
conversion is development of a new model from the basic mathematical formulation. This is ap-
pealing as a way to build a model taking maximum advantage of the machine potential, both from
a coding and an algorithmic point of view. It also affords an opportunity to revise the formulation
to incorporate newer ideas or to rectify deficiencies.

Code conversion was chosen rather than re-development for two reasons. Firstly, the cost of
conversion is lower than the cost of re-development. Previous experiences with similar models has
clearly shown that the conversion cost is not typically high. The mapping of a finite difference grid
point model to an MPP is not especially challenging. Secondly, an existing model often has a long
history of operational use or has been comprehensively validated at some point. The operational
history or validation gives operational confidence in the existing model predictions which a new
model would lack.

This document describes the conversion of the Navy model called TOPS, the Thermodynamic
Oceanographic Prediction System. The conversion started with a serial version in Fortran 77 and
ended with a Fortran 90 [4] version for the Connection Machine CM-5. Data mapping, conversion
planning, and performance points of view are considered.

MA.aUcroi poved Ap 21, 1994.
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2 BACKGROUND

This conversion effort is part of a series of conversions for ocean and atmospheric models[6,
7]. The approach taken for TOPS is similar to that taken for OCEANS and differs from the
approach used in [6]. The TOPS model structure required substantially greater effort to convert
than OCEANS due to software structural features which needed to be changed.

The starting Fortran 77 version of TOPS is a generic code with a generic test case. There
are many provisions in the code for alternative input or output files and hooks for the addition of
additional history variables beyond TOPS' basic set of two current components, temperature, and
salinity.

3 DATA LAYOUT

Finite difference models of ocean or atmospheric variables tend to have simple mappings to
the CM-5. Often a set of simultaneous equations must be solved and this can affect the choice of
memory layout.

In the case of TOPS, tridiagonal systems are solved in routine TRID, called within the routine
UPDAT2. There are many tridiagonal systems, one for each vertical column and for each variable.
All of the systems for a given variable may be solved in parallel.

3.1 Layout Principles

The layout of data in an MPP is often the single most important factor in achieving good per-
formance. Layout is a global decision in the sense that the best layout of data to optimize the
performance of a routine or group of routines may not be the best to optimize any one operation
in the code. For a compiler to make a reasonable choice, it would have to consider more than a
sing statement or loop nest and it would need knowledge of the iterative structures within and
among routines. It is primarily for these reasons that MPP vendors have chosen to avoid the data
layout problem and forced the programmer to choose.

Like atmospheric models, ocean models tend to be more computationally complex along vertical
columns than in horizontal directions. It is therefore common that vertical columns be allocated
completely within a single processor. This course of action was taken in the model conversion.

The basic shape of data in TOPS is three dimensional, two horizontal dimensions, z and y, and
a vertical dimension z. The indices of z increase from the surface downwards. There are two sets
of values corresponding to two time steps of the four basic variables.

The serial TOPS code approached data layout from the point of view of minimizing memory
usage. A "slab" processing approach was used. Figure 1 shows how the method was implemented
for TOPS. The main time step loop contains an inner slab loop which sequences through lower-
dimensional sections of the history variables. In the case of TOPS, sections corresponding to z-z
plan are taken. The slab loop must preserve the context needed to process the individual slabs
in the V direction. This introduces an asymmetry in processing along the y direction which is not
present in the mathematical formulation.

2
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Fig. 1 - Slab Procesing

The parallel version of TOPS does not use the slab approach because its low level of parallelism
is insufcient for (and inefficient on) the Connection Machine. This fundamental change in the
software caused most arrays shapes in lower level routines to change.

Current Thinking Machines compilers require that all serial axes precede the parallel ones.
This restriction is contrary to the normal, and most consistent, usage patterns. To satisfy these
restrictions, the subscripts of the main arrays in the model were reordered to place the last three
axes, level, time step, and variable first. In the present compiler, this does not result in efficient
passing of three-dimensional sections to the low level computation routines.

Since the completion of the original TOPS port, Thinking Machines Corporation compilers
have been changed to store arrays in a more standard form. Some of the current problems with
army handling can be removed at the cost of again revising the code in a systematic way.

3.2 Major Variables

Figures 2 through 5 show the shapes of major variables originally and after conversion. Note that
these denitions assume that serial axes last are acceptable. Since the conversion took place before
the compiler restriction was lifted, all serial axes of parallel arrays have been moved to the left
side, in the same order. Axes dimensioned (naz) represent the x and y axes. All arrays with the
cm naonof axes (noa) are EWS parallel. The 1 axis always represents the vertical direction and
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such axes are always allocated serially, either as completely serial arrays or serial within processor
if the array is a parallel one (i.e., has the n and m axes). The axis ut ranges over time steps (2), and
the Dr axis ranges over variables (the 4 basic u, v, t, and 9 plus the potential for others). History
variables are stored in a single array, r(nm,.1,nt,n.).

Original Variable New Variable Notes
dxb (a) dxb (n. m) Spread
dxm(m) d (n,m) Spread
dxbr (a) dxbr(n,a) Calculated from dxb
dxmr (a) dxmr(n,m) Calculated from dxm
da(m) da(n, ) Spread
dxbdal (a) dxbdal(n,m) Calculated
dxbda2 (a) dxbda2 (n,m) Calculated
dydar(a) dydar(nz) Spread
zb(1) zb(1) (Serial)
=1) zain) (Serial)
dzb(1) dzbCW) (Serial)
dzu(1) dzm(1) (Serial)
dzbr(1) dzbr(1) (Serial)
dzar(1) dzmr(1) (Serial)
elong(n) elong(nZ) Spread
alat (a) Ialat (n) Spread

Fig. 2 - TOPS Arrays--Grid Parameteas

Original Variable New Variable Notes
ask(na) aask(n,z)
mask(nz) masknn)

ymask(n~u) yaask(n,a)

Fig. 3 - TOPS Arrays-Mask Parazmeters

The notes in figures 2 through 5 indicate some arrays were sprea& This means that a new axis
has been introduced and the values along the new axis are copies of the original array values. A
similar situation exists for arrays with the notation cakckted but in these cases, the redundant
values were computed rather than copied. In all of these cases, the redundant values were intro-
duced to eliinate the need to communicate the non-redundant set. These variables all relate to
grid parameters and do not have a vertical 1 axis. The space taken up by the redundant values is
not significant. The other notation used in the figures is collecteti This means that the m axis cor-
responding to the slabs has been added and the values along this axis correspond to the succession
of values taken by the original array inside the slab loop.

The original code used a set of temporaries, again to conserve space. These temporaries were
passed to lower level routines as work arrays. This practice is not effective on the Connection Ma-
chine because of the implicit equivalencing that is sometimes involved. The parallel code dispenses
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Original Variable New Variable Notes
f (a) :f(naM) Spread
istype~ntyp) istype(ntyp) (Serial)
iptype(n,i) iptype(n~m)
qrf(l,ntyp) qrf~l,ntyp) (Serial)
xk(2) xkC2) (Serial)
yk(2) yk(2) (Serial)
zk(2) AM(2 (Serial)
xkdxr(nma2) xkdxr(nm.2)
Ykdyr(nu,.2) ykdyr(n,m,2)
zkdzr~l.2) zkdzrC1,2) (Serial)
-r(n,1Int,nr) r(nm1,nt,nz)____
tla(na) tlm(n,M)
-kt(n~m) kt(n,m)____

Fig. 4 - TOPS Arrays-Problem Parameters (Part 1)

Original- Variable New Variable Notes
rgb(n,axn) rgb(n~u.nr)
rg.unr) rgs(n.&,mr) Collected
qr(n) qr(21.a)
rbgt(n,.zr-2) rbgt(n.m.,nz-2)
ug(n1l) Ug020u,1) Collected
vg(n21) vg(USM91) Collected
u(n.1) U(n,Zu1)
v(n.2,1) v~u,zu2,1)
v(n.1) W(n.M,1) ____

pi(n,21) pl(D.M.l) Collected
p2(n,21) p2(n,l,) Collected
tly(n,2,1,nz) fly(n.,nr) Collected
nu(n 1,nzr) suz(n,u,1 ,nr) Collected
zr2(n,1.zar) r2Cn,u.nr) Collected

Fig. 5- TOPS Anaye-Problem Parameters (Part 2)
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with many of these temporaries in the new calling sequences but many instances not causing equiv-
alence problems still remain. Needed temporaries are often dynamically allocated within the lower
level routines, resulting in cleaner interfaces and higher quality code. The practice of allocating
temporaries in the lower level routines is not possible in Fortran 77 since dimensional information is
passed down to the lower level routines. Passing dimensions is often considered good programming
practice but is the cause of some awkward programming idioms. A more desirable alternative is an
include file containing all of the problem dimensions but this necessitates complete recompilation
for each set of dimensions.

4 SOFTWARE STRUCTURE

The annotated indented call structure is shown in Figure 1. Note that a routine is listed more
than once if calls appear in the program text in more than one place and that its entire subtree is

reproduced at each call.

Table I - Call Tree of Original Code

Call Tree Function
main Entry point routine

disens Define dynamic dimensions for run

S goetint Read integer from standard input
* strIen Find trimmed length of string
* tops2 True main routine
* define Define data set, model, and run parameters

. vgrid Calculate vertical grid

• . sphgd2 Calculate parameters for horizontal lat-lon spherical grid
S. prntpar Print out data set parameters

luuask Define the land-sea mask (boundary)

S•tin Initialize temperature field

. strcc3 Concatenate three strings together

.strien Find trimmed length of string

* bgsrd Read 3D data file
* tiniti Define initial 3D temperature field
* . getenv Get environment variable value
* rdhd Dummy routine for reading hdf files

* sin Initialize salinity field

* . strcc3 Concatenate three strings together

*.. . strien Find trimmed length of string

* . . bgsrd Read 3D data file
* . . sinitl Dummy routine for initial salinity field

6



Call Tree Function
S.. terel Define initial 3D salinity field via T-S relation
. getenv Get environment variable value
. rdhdf Dummy routine for reading hdf files
. saladm Adjust salinity profile
.... saladj Adjust salinity profile
..... interp Perform linear interpolation
..... pdonav Calculate density anomaly for seawater
..... coetex Calculate coefficients of expansion of seawater
. data Write initial temperature and salinity fields to DA file
. . darite Write 3D field or section to DA file

rin Initialize auxiliary fields
setup Perform setup calculations for TOPS

. . extpro Calculate solar extinction profile for mixed layer

..... extj erl Interpolate an extinction profile for solar radiation
..... interp Perform linear interpolation
. . . .extuel Calculate solar flux extinction (Mueller and Lange)

..... ext ir Compute extinction with depth of IR spectrum
. ... extuorl Compute solar flux attenuance by pigment concentration
..... extir Compute extinction with depth of IR spectrum
..... intrpb Perform linear interpolation
. . prntgrd Print parameters associated with horizontal or vertical grids
. . prntd Print all or part of 2D integer/real array
S ein Define initial Ekman velocities and mixed-layer depth
. auxrfbc Calculate surface boundary conditions

.... abctst Calculate forcing for test case 12
.... ubcahp Dummy routine for atmospheric forcing
.... abcnog Dummy routine for atmospheric forcing
.... sbcecm Dummy routine for atmospheric forcing
. . ... darite Write 3D field or section to DA file

• . . iekan Initialize Ekman velocity field
. .. . buoy Calculate buoyancy from termperature and salinity

• * output Output model fields
. . . tiuepr Print time in hours, days, etc
. . . print Print out model fields interactively
. .. . prntsi Print section of 3D field
..... secdef Interactively get 3D section
. . .prntsJ Print section of 3D field

.prnts Print section of 3D array in integer format

7



Call Tree Function
.... ecdef Interactively get 3D section

.... daread Read sections of fields from DA file

.... prntsj Print section of 3D field

..... prnts Print section of 3D array in integer format

. getreal Read real number from standard input

. ... . strlen Find trimmed length of string

... . ald3am Estimate MLD field from 3D termperature field

... . prntc Print all or part of 2D integer array

.... prof i Print vertical profiles at a single point

..... pdenav Calculate density anomaly for seawater

.... getint Read integer from standard input

..... stren Find trimmed length of string
.... switch Swap two integers

prbgt Print regionally averaged heat and salt budgets

. . avellm Find area average for a data field

..... sphgdw Calculate weights for statistics on lat-lon grid

.... daread Read sections of fields from DA file
surfbc Calculate surface boundary conditions

e . bctsat Calculate forcing for test case 12
. sbcuhp Dummy routine for atmospheric forcing
S. sbcnog Dummy routine for atmospheric forcing

s . abcacm Dummy routine for atmospheric forcing
. . dante Write 3D field or section to DA file
. geovel Calculate geostrophic currents
. geovelb Calculate pressure
* cirvel Calculate circulation currents
• getcuhis Read history files from OCEANS

extandhad Extend/extrapolate 2D field to fill in unknown values
. . cirvelc Calculate pressure

advvel Calculate total advection velocity

davel Write geostrophic circulation and total velocities to file
. . dante Write 3D field or section to DA fie

cf1 Calculate CFL parameters for advection and diffusion

• updat2 Update fields
• . advdif Calculate rate of change of field due to several causes

. . budget Calculate cumulative budget for temperature and salinity
r . . &od2 Calculate vertical eddy coefficients

... * buoy Calculate buoyancy from termperature and salinity

... ... ... ...... m~ m~ m mm mm~ m m m mm mm m I I8



Call Tree Function
... . hann3 Apply Hanning 3-point smoother to an array
. trid Solve tridiagonal system of linear equations

switch Swap two integers

conad Perform convective adjustment of density field
. buoy Calculate buoyancy from termperature and salinity

5 CONVERSION

This section discusses the process used to convert the Fortran 77 serial version of TOPS to a
Fortran 90 (or CM Fortran) parallel TOPS. Section 5.1 discusses the basics of the code conversion.
In Section 5.2, a practice called parallel eztension is described and an example is shown. The most
significant changes to TOPS related to the tridiagonal solver. Section 5.3 discusses the underlying
theory used and shows the changes in tridiagonal setup in order to solve all tridiagonal systems in

pacallel. The section closes with a discussion of verification methodology.

5.1 Basic Conversion

In the conversion of the OCEANS model (see [7]), the most difficult conversion problems came
during integration of the routines. Since the basic functionality of the routines had already been
established to a high confidence level, the problems were known to lie in the main routine or in the
interface between the main and subordinate levels.

Most problems were traced to layout differences between arrays declared in the main routine
and passed to a subroutine and the subroutine formal parameter declarations. There were no
available mechanisms at the time to detect these errors except direct visual checking. A degree of
run-time checking is present in the current compiler version but the reliability and thoroughness is
not clear.

One metnod, use of interface blocks, has since emerged as a way to detect these mismatches.
In the TOPS conversion interface blocks were used to check interfaces at compile time. In order
to make interface blocks easy to maintain, a single include file was constructed which defined
the interfaces for all routines. This proved to be very convenient and helpful in that interface
problem never became a major source of run-time bugs. I few minor anomalies were noted
in the use of interface blocks, particularly in practices which involved implicitly passing array
sections. Although these practices are common in sequential Fortran 77 usage, they are somewhat
questionable in Fortran 90. The use of an include file minimizes software maintenance effort and
the entire interface block file can be replaced by commented lines if the interface block concept is
not supported or not desired.

As in the OCEANS conversion, common blocks were moved to include files. TOPS, however,
does not rely on common blocks in a significant way and uses the technique of passing arguments
through the formal parameter list. As mentioned in Section 3, the TOPS practice of passing
dimensions was occasionally awkward.

In general the conversion of TOPS retained the same module structure as in the Fortran 77.

9
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The primary deviations came from the process of parallel extension (see Section 5.2) were where
it was sometimes necessary to retain a serial version as well as the new parallel version.

Much of the code operates on the interior of the horizontal extent with horizontal subscripts
running from 2 through n-I and 2 through z-1. This creates visually cluttered code because section
designators must be specified for each array usage. There is also a small run-time cost to calculate
the masks. A better approach is to use a mask which is TRUE. in the interior and . FALSE. on
the boundary. When used in the WHERE statement, cleaner code is produced with the potential for
executing slightly faster on the CM-5. An easy method of handling these masks is to place them
in common blocks and have the routines use them as needed. The problem with this in TOPS is
the previously mentioned practice of passing dimensional information through the parameter list.
The masks in common must have static dimensions but the compiler cannot know or assume that
the passed dimensions of array arguments are the same as the common mask arrays. An alternate
is to explicitly pass the mask arrays to the lower level routines but this requires changes to almost
all parameter lists and gives a somewhat cluttered style. It should be noted that in the current
code masks are frequently generated as local temporaries. This can be considered a compromise
solution although many routines still contain explicit sectioning.

5.2 Parallel Extension

Many routines in the Fortran 77 TOPS operated on a single point or a single column, an approach
lacking parallelism. In most cases, and in all cases occurring within the time step loop, the routines
were extended to operate over all points in a vertical plane or on all columns. The approach chosen
in the serial code often reflects the fact that the operations were applied only to a subset of points
or columns. In the parallel versions, a mask is supplied which selects which elements are to be
operated on by the routine.

Figure 6 shows a typical routine from the Fortran 77 version. In this case the routine operated on
a single point at a time, applying a pair of formulas to the scalar values t and 8, water temperature
and salinity.

The parallel routine is shown in figure 7. Dimensional information has been added (parameters
ni and nj) as well as a controlling mask array. The t and s parameters are now entire horizontal
extents. The expressions in lines 24 and 25 of the figure are now array operations and the result
parameters alphag and betag are arrays.

This example also illustrates the practice of setting inactive elements (according to the mask) to
sero so that they at least have valid values, occasionally a helpful situation during debugging. The
Connection Machine layout directives are shown in lines 8-10. The interface blocks are included
in line 12.

5.3 Tridiagonal Solver ThID

This routine originally solved a single tridiagonal system of order k where the first k levels of the
history variables represent the mixed layer. Since the depth of the mixed layer potentially differs
in each column, a method was needed to solve a large number of tridiagonal systems of varying
orde in pal.

10



1 subroutine buoy(t,salphag,betag)
2 c subroutine to calc buoyancy parameters from temperature
3 c and salinity at atmospheric pressure. calculation is
4 c based on polynomial equation of state of fredrich and

5 c levitus (jpo. oct 72).
6 c t - temperature in dog c.
7 c s - salinity in ppt.

8 c alphag a -g/rozero * d(rho)/d(t).
9 c betag = g/rozero * d(rho)/d(s)
10 c note that alphag and betag are defined to be positive.
11 c value of g is taken to be 980 cm/s**2.
12 c created 7-27-82. paul j martin. norda code 322.

13 diuension ae(5),be(3)
14 save a,be
15 data ae/-4.7577e-2, 1.4516e-2, -1.0093e-4,
16 & 2.8743e-3, -7.1320e-5/

17 data be/ 7.7023e-1, -2.8743e-3. 3.5659e-5/

18 c
19 alphagaae(1)+t*(ae(2)+t*ae(3))+s*(ae(4)+t*ae(5))

20 betag -be(1)+t*(be(2)+t*bo(3))
21 c

22 return

23 end

Fi. 6 - V=mple of Pa--f. Extension-Before
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1 subroutine buoy(nimj ,t.s.aJlphag~betag.mask)
2 c
3 c Argumentsa:
4 c
5 integer ni~aj
6 real -t(nimj) .s(ni~mj) .alphag(ni~mj).betag(ni,mj)
7 logical mask(nimj)
8 czf$ layout tC:newa.:nevs),s(:nevs, :news)
9 cuf$ layout alphag( :nevu, :neus) ,betag( :news, :news)
10 cm~f$ layout mask(:news,:newa)
11 c
12 include linteriace.blocku'
13 c
14 c Local Variables:
15 c

16 real ae(5),be(3)
17 cmf$ layout a.(:serial),beC:serial)
18 save ae~be
19 data as/-4.7577e-2, 1.4516e-2, -1.0093e-4,
20 k 2.8743o-3. -7.13209-5I
21 data be/ 7.7023e-1, -2.8743e-3, 3.69e-5/
22 c
23 where (mask)
24 alphag - ae(l)*t*(ae(2).tsae(3)).u*Cae(4).t*ae(5))
25 betag a be(1)+t*(be(2).t*be(3))
26 elsewhere
27 aiphag - 0.0
28 betag a 0.0
29 end where
30 c
31 return
32 end

Fig. ? Example of Pazale Extension-After
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The method chosen was to imbed the individual kth-order systems

Az=b

within larger systems, all of a constant fixed order in such a way that the result is essentially the
same. This allows solving multiple instances in parallel using a simple extension of the original
single system solver. The system being solved is, of course,

where V is a vector containing the values of the history variable (temperature or salinity -ample)
below the mixed layer.

There are two problems with this approach. First, the amount of work is greater since a
larger system is solved in each column than before. In past experiences, it was advantageous to
trade additional floating point operations to reduce communications or to maintain a high level
of parallelism. New capabilities in the Connection Machine CM-5 system software now permit an
alternative approach. See section 7 for more details.

The second problem relates to the condition numbers of the modified tridiagonal systems which
potentially differ from the condition numbers of the original systems. The condition number of a
linear system of equations Am = b is related to the singular value decomposition of the matrix A.
The condition number reflects how sensitive the solution of A: = b is to errors in the elements
of A. A system with a high condition number may produce inaccurate results. Some algorithms
misbehave for ill-conditioned systems.

The singular value decomposition is a factorization of the matrix into a product of three matrices

A = UEVT (2)

where U and V are orthogonal and E is diagonal. T Alternatively, using the orthogonality of U
and V,

UTAV = E. (3)

The matrix E has n positive singular values a to a of non-increasing magnitude where the
rank of the matrix is a. If the order of the matrix is greater than n, E contains trailing zeros to
give E the same order as A. The factorizsation always exists for any rectangular matrix.

The condition number of a matrix A is defined in terms of the singular values of A to be

(A) o1 (A) (4)

That is, the condition number is the ratio of the largest and smallest singular values.

The condition number of an embedded system

=( oo)
A 1= 0 A 0

0 0 1

13



O'1 Un K2

< < 1 Increased
<1 > 1 Impossible
> 1 < 1 Unchanged
> 1 > 1 Increased

Fig. S - Relationship of K,(A) to ns(A)

is not the same as the condition number of A. To reveal this relationship observe that

DA UT (5)UT  0 • 0 A 0 • 0 V 0 = 0UAV 0 5
0 0 1 0 0 1 0 0 1) 0 0 1

= o 00 (6)
0 0 1

The above demonstrates that the set of singular values of A is the same as the set of singular values
of A with the addition of the singular value 1. Thus, the condition number of A is

, 2-(A )- - ' (7)

max(l, o1(A)) (8)
min(l, a,,(A))"

There are several possibilities for r.(A), summarized in the following table. The singular values
of typical A matrices used in the TOPS tridiagonal routine have not been determined so that it is
..... n which cae in figure 8 applies.

In terms of TOPS arrays, the augmented tridiagonal system is(.e.1 0 (9)
0 C2-,wl b2

where lt is the index of the first vertical level past the mixed layer.

The setup code from the Fortran 77 serial TOPS version is shown in figure 9. The variable kt
is the index of the first point below the mixed layer and the variable ktal is just one less than kt.
The subscript k indexes the vertical dimension of a column and am, bin, and m are vectors for the
lower, main, and upper diagonals of a single tridiagonal system.

.Fl ue 10 shows the paralll code. The complexity of the new code appears high at first
but is really fairly simple once the programming technique, used often in the parallel version, is
understood. The loop in lines 1 through 7 simply sets the three diagonals of all active columns to
the Identity. The mask updinak selects the columns of the interior of the region. The initial values
ofthe main and upper diagonals are set in lines 8 through 11. Note that only columns with at least
two ements in the mixed layer are affected. The loop from line 12 to line 18 is perhaps the most
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1oo

2 cm( )-dtzub2( )*zk2(2,id)
3 ba(1)-1.-cu(l)
4 if (ktal .gt. 2) then
5 do kn2,kt2
6 am(k)'=-dtzmbI(k) *zk2(k,id)
7 cm(k)=-dtzb2(k)*zk2(k+1, id)
8 bz(k)=i.-az(k)-cm(k)

9 enddo
10 endif
11 am(ktal)=-dtzmbi(ktal)zk2(ktml,id)
12 bz(ktz1)=1.-az(ktml)
13
14 call trid(ktIiaz,ba,cz,r2(I,ir))

Fig. 9 - TWdisgonal Setup-Before

interesting. The vertical index k sweeps throuhout its total possible range (all possible interiors of
the tridiagonal systems) and the IIHEPE statement in line 13 insures that only columns that should
be updated are modified. As k increases toward its maximum value, fewer and fewer columns will
be seLected. Lines 19 through 24 have a simil structure to the preceding loop and here simply set
the final values in the lower and main diagonals. Note that the WHERE statement sweeps through
all possible vertical indices and selects no more than one index in any column. Finally, all of the
tridiagonal systems are solved together in line 26.

.4 Veuifcation

The software structure of the original model was used as the basis for the verification of the
conversion. The module groups were converted and tested in groups. The groups were based on
order of execution including two initialization groups and the time step group. Multiple tests were
perfomed to the extent possible for alternative paths. At a minimum, each converted routine and
al major branches within were executed at least once.

In contrast to the approach used in OCEANS the test data and verification were carried out
using the serial code as a gentor. The serial code was changed by the addition of code to write
out dats generted by the serial code. This was used both as input and as output to be verified.
This method was chosen over the random inputs used for OCEANS because it was believed that
the Inputs would be better test cases for the converted code.

The armys of data generated were verified element by element. This again differs from the
OCEANS conversion process where a statistical verification approach was used. It has been found
that the stastad approach often misses errors and is not helpful in identifying where errors occur
even when detected in the statistics. Agreement to 5 significant figures was generally obtainable

aft h problms ware encountered deciding when to employ relative error tests versus absolute
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1 do kul,l
2 where Cupduauk)
3 aa(k.,::) a 0.0
4 ba~k.:.:) = 1.0
5 cff(k.:,:) - 0.0
6 end where
T end do
8 where Cupduask amnd. kt .gt. 2)
9 cu~l,:.:) -dtzub2(1)*zk.h(2.:.:)
10 bu~i.:.:) *1-u1::
11 and where
12 do k=2,1-2
13 where (k .le. kt-2 and. upduask .and. kt .g.2)
14 u(k,:.:) a -dtzubl(k)*zkuh(k,:,:)
15 ca(k.:.:) = -dtzub2(k)*zkoh(k.1,:)
le bm(k.:.:) u 1.-au(k,:.:)-cu(k.:.:)
17 and where
18 end do
19 do k=.1-1
20 where (k .eq. kt-1 .and. updaask aend. kt .gt. 2)
21 aa(ko:,:) a -dtzmbl(k)*zkmh(k.:.:)
22 bm(k.:.:) a 1.-suck,:,:)
23 end where
24 end do
25..

28 cial trid6.,l,,b,c,u2,updmask .aud. kt .gt. 2)

Fig. 10- T~ffiagoaaI Setup-After
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error tests. In one portion of the code, the routine UPDAT2 and the called routine MOD2, it was
impossible to duplicate the Sun Fortran 77 results on the CM-5. In further testing, it was found
that Convex single precision results also differed from the Sun and the CM-5. Eventually, double
precision Convex results were verified with double precision CM-5.

6 PERFORMANCE

The conversion of TOPS was carried out only to the point where correct answers were obtained
through a number of time steps. As the result of changing priorities, further work on the parallel
version of TOPS has been delayed and comparative timings in particular remain undone.

The projected performance of TOPS on the Connection Machine is expected to be good. No
unusual problems were encountered that required general communication. No attempt has been
made, however, to collect together repeated communications operations as was done with the
OCEANS code.

One final performance comment is appropriate. The relative performance of TOPS will increase
with larger grid sizes (higher resolutions). The largest resolution which seems appropriate for TOPS
is about 768 by 384 by 51 points. Most parallelism is in 768 by 384 layers. This grid size is only
moderate for the Connection Machine, and is significantly smaller than the approximately 2000
by 1000 grid size used in OCEANS. Performance is thus expected to be somewhat less than that
achieved by OCEANS running on the CM-5. For details on the performance of OCEANS, see (7].

7 FUTURE WORK

The TOPS conversion was overtaken by changing priorities and was not completely finished
although the model appears to be producing correct results. A number of generally small changes
could be, and perhaps should be, undertaken to move the model to a more usable state.

First, the Thinking Machines compiler restrictions on serial axes have been removed and hence
the axes could be reordered into a more standard Fortran ordering. This change is relatively
straightforward to carry out but involves changing almost every line of code.

Once the axes have been reordered, a new run time feature called array aliasing can be em-
ployed. This is most useful as a means of improving the efficiency of communication operations,
exclusively CSIIFT operations in TOPS. This may yield a significant improvement but the long
term improvement may disappear as the compiler and run time system are improved. Additionally,
this feature is definitely non-portable.

A minor change is removal of dead code. Most of the existing TOPS Fortran 77 code is still
present, commented out, in the source code. This is useful during debugging but it does detract
from the rmadabty of the finished code. This change is pervasive but cosmetic only. Despite the
possibility of introducing errors by accidentally deleting live code, the final product is worthwhile.

The tridiagonal solver is also an are where improvements can be made. First, it is possible to
reduce the order of the tridiagonal systems solved. Currently the size is equal to the total vertical
dimension. This is probably highly conservative and it could be reduced with little effort to the
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maximum size needed over all active columns. This is likely to yield a useful improvement but it
typical magnitude is unknown.

Also in the tridiagonal solver, a new compiler capability called local/global mode could be
exploited. Fortran 90 code normally runs in what is called global mode where operations are
synchronized at a statement level. In local mode a subroutine executes independently on its
own local data, essentially in MIMD mode. Applying this to the tridiagonal solver, each CM-5
processing node can solve all of its local tridiagonal systems using whatever method desired and
the total running time is simply the maximum time needed by any processing node. Local mode
is not part of Fortran 90 or High Performance Fortran and so this change would not be portable.

Some of the code in TOPS was not converted because it was not used in the test case. Perhaps
the most important of these was routine CONAD. This routine has been preliminarily converted but
not debugged. Code conversion was the most difficult in all of TOPS. Discussion with code author
Paul Martin has led to the conclusion that a revised formulation could be the best longer term
solution since performance of CONAD as currently converted would not appear to be especially good.

The final code change is a relatively minor one. TOPS has a direct access file in which history
variables and key intermediaries are stored for output and debugging purposes. The time to write
this file is a significant part of the current parallel run time and improvements in this area would
be beneficial to the overall run time. The improvement can come from using the CM-5 Scalable
Disk Array, a parallel file system, in one of several ways. On the other hand, the frequency with
which the file is written is user controlled and need not occur often in practice.

Finally, TOPS needs to be timed on larger test cases and performance problems fixed. This
will allow direct and meaningful performance comparisons between the parallel version and the
serial version. There is much external Navy interest in these comparisons.

8 CONCLUSIONS

The code conversion of the model was relatively straightforward although not as simple as in
the OCEANS model. The conversion process introduced generally systematic changes in the data
structures because the slab technique used in the Fortran 77 version was extended to fully parallel
for the Connection Machine.

The performance of the parallel version was not tested although no evident performance prob-
lems were encountered.

Veffication of the code was problematical. It was finally discovered that a portion of the code
was sensitive to round off error in single precision and hence verification was not possible until
both serial and parallel codes were run using 64 bit arithmetic.

Changing priorities have left the TOPS conversion at a preliminary operational level. There
are a number of relatively small activities which need to be done for TOPS, particularly timings
an high resoution grids.
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