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ABSTRACT

This thesis examines signal modeling techniques and their application to ambient

ocean noise for purposes of noise removal and for generating realistic synthetic noise

to add to synthetically generated transient signals. Higher order statistics of the noise

are examined to test for Gaussianity. Stochastic approaches to AR, MA, and ARMA

modeling are compared to see which technique yields the "best" synthetic noise. Results

from the modeling process are used to develop a short-time Wiener filter which can be

used to condition a real signal for further processing through effective noise removal.
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I. INTRODUCTION

A. NOISE HINDERS SIGNAL CLASSIFICATION

Ambient ocean noise can significantly reduce the effectiveness of underwater signal

clasification, both for the human listener and for automatic classifiers such as artificial

neural networks. While performance can be improved with adequate training, many

transients are rare and occur only in specific locations. This makes it difficult and

expensive (if not impossible) to collect a sufficiently large number of examples to perform

sufficient training.

Artificial Neural Networks are particularly well suited for pattern classification prob-

lems, and their application to underwater transient signal classification continues to be

an active area of research. When sufficient training signals are not available however neu-

ral networks can classify according to false clues. In particular, it is known that in low

signal to noise conditions a neural network may classify signals based on characteristics

of the noise rather than characteristics of the signal of interest. [1]

Human listeners are similarly plagued by a number of factors which can impair their

ability to classify signals in the presence of noise. One of the major problems is that to

some extent human listeners hear what they expect to hear. This is especially true when

the signal of interest is embedded in noise. As an example, [2] describes an experiment

where subjects listened repeatedly to a particular piece of choral music until they knew

it very well. The music was then played back to them in the presence of white noise. The

signal-to-noise ratio (SNR) was gradually decreased until there was only white noise with

no music. All of the subjects thought they heard the music playing for a considerable

time after the music had been completely turned off. Other physiological effects, such as



masking, distortion, and auditory fatigue can also impair a human listener's effectiveness

as a classifier [3]. Masking, which is when a signal at one frequency seems to hide a signal

at another frequency, is extremely important in considering what is heard because it can

significantly reduce what one actually hears - the listener could become completely

unaware of the fainter frequency components of a complex sound embedded in noise and

thus may miss distinguishing characteristics vital to accurate classification [2]. In some

cases, problems such as these can be partially overcome with sufficient training, so that

the listener learns, through repetition, to discriminate certain signals in the presence of

certain noises [3].

B. NOISE HINDERS SIGNAL SYNTHESIS

One method to improve the effectiveness of classification (both for human listeners

and artificial neural networks) is to expand the training data. When a sufficient quantity

of real data is not available the training data can be expanded by including synthetically

generated signals which have all of the significant characteristics of real signals. ARMA

modeling techniques have been used both to model transient signals with high precision,

and to develop models which are very much like the original, yet distinct. However.

the synthesis process typically yields poor results when the signal is corrupted by even

a small amount of ambient background noise [4]. The reason for this degradation is

that ambient noise, being a broadband process, can only be accurately modeled with

high model orders. Thus, in order to accurately model a narrowband process in the

presence of wideband noise, excess poles are required [5]. Good models can normally be

obtained in the presence of noise if the model order is chosen high enough to account for

the broadband nature of the noise. The inclusion of excess poles however can produce

undesirable distortions when synthesising new transients from real transient signals [6].

The synthesis is usually bad enough that a human listener can immediately distinguish
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between a real signal and a synthetically generated signal. Similarly, the distortions may

introduce false clues to artificial neural networks trained with these synthetic signals,

and thus cause poor classification performance in a real environment.

C. IMPROVEMENTS THROUGH NOISE MODELING AND
FILTERING

Removing noise prior to modeling transients has been shown to greatly improve the

ability to generate high quality synthetic training data [6]. Because ambient noise is

always present in the ocean environment, once a high quality synthetic signal has been

generated, realistic synthetic noise must be added in order to give the synthetic signal

convincingly real characteristics. Not only must the noise sound real, but a variety of

noise sources must be generated so that the classifier learns to classify the signal correctly

in the presence of these different sources. The modeling of ocean noise is an extremely

important part of the overall process of sonar data modeling and synthesis, since the

models are necessary to develop appropriate filters for removing noise from the signals of

interest before modeling those signals, and the models provide ways to synthesize noise

which then can be added to the synthesized signal data in a controlled manner.

This thesis concentrates on two aspects of noise. The first part focuses on the

sources of ambient ocean noise and how best to model the noise. Autoregressive (AR),

moving-average (MA), and autoregressive moving-average (ARMA) models are compared

in terms of simplicity of implementation and quality of reproduction. The comparisons

include , alysis of the noise spectrums and the model spectrums and subjective listening

tests. This modeled noise can be added to synthetically generated transients to produce

extremely realistic synthetic transient signals.

The second part of this thesis is directed at developing techniques to remove the noise

from digitally recorded signals. Since the signals embedded in the noise are non-stationary,
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a non-stationary approach is required. We chose a short-time application of the well

known Wiener filter because the Wiener filter is an optimal filter for removing noise

from a signal. One of the main difficulties in implementing the Wiener filter, however,

is that design of this filter requires a knowledge of the signal autocorrelation function

and the noise autocorrelation function, and generally assumes that the signal and noise

are stationary. Since the respective autocorrelation functions are usually unknown, they

must be estimated from the data, with the non-stationarity of the transient signal taken

into account. We applied a number of techniques to make the Wiener filter perform

satisfactorily in a short-time application with real signals. These techniques include pre-

whitening of the signals, filtering short (approximately stationary) signal segments, and

overlap averaging of filtered segments.

D. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II discusses the nature

of ambient noise and some current models. Results of tests for Gaussianity of the real

noise samples examined in this thesis are also presented here. Chapter III describes

three modeling techniques, AR, MA, and ARMA modeling, and compares them in the

noise modeling application. Chapter IV introduces a noise removal technique which

uses a novel implementation of the Wiener filter, and presents results. Chapter V lists

conclusions and suggests possibilities for future research.

4



II. AMBIENT OCEAN NOISE
CHARACTERIZATION

Ambient ocean noise studies are typically concerned with being able to predict the

noise level at certain bandwidths under various climatic and traffic conditions for the

purpose of target detection or localization. This thesis analyzes noise from the perspec-

tive of trying to recreate it in order to 1) develop methods for filtering the noise from

real signals and 2) improve the quality of synthetically generated signals by adding syn-

thetically generated noise to these signals. Proper characterization of the recorded noise

data is essential for the development of the best statistical models.

The definition of ambient noise varies with the application. Generally, it excludes

all noise sources which are identifiable. One of these types of identifiable noise sources is

self noise. This is any type of noise caused by the recording process, and includes noise

from the recording platform such as machinery noise, electronic noise in the amplifier of

the receiver, the noise caused by the flow of water over the hydrophone and its support

structure, and related sources [7, 8]. Because we do not have control of the recording

environment our definition is somewhat more broad; we define ambient noise to include

all stochastic signals which interfere with the signal of interest, including some noise

sources which might be considered identifiable.

There are two reasons for adopting the above definition. First, all noise interferes

with the reception of the transient signal of interest, and therefore should be filtered out

of the signal in order to obtain the best reproduction of the original transient signal.

Secondly, synthetic ambient noise will not adequately represent the noise found with the

recorded data if it does not include all sources of noise present in a real environment.

For example, if a sonar operator only hears real signals in the presence of flow noise
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and machinery noise (two forms of self noise), then these types of noise must also be

included in synthetically generated ambient noise to be added to a synthetically generated

transient signal so that the synthetic signal will sound exactly like a real signal.

A. SOURCES

The broadband spectrum of ambient ocean noise shows different characteristics at

different frequencies, indicating the presence of a variety of noise sources. Since there are

several regions of the spectrum where one type of noise source dominates, the spectrum

has been typically divided into five somewhat arbitrary frequency bands, each with differ-

ent prevailing noise sources. The following sections briefly describe some of the primary

sources of ambient ocean noise in each region. The descriptions below are summarized

from [7, 8], each of which contains a more thorough description of the sources.

1. Ultra-Low Band

This band covers all frequencies less than 1 Hz. It )ne of the least significant in

terms of underwater sound studies, and is therefore the least studied and understood. The

dominant sources in this region include tides, hydrostatic effects of waves, and seismic

disturbances. Valid measurements in this frequency range are difficult because of the

various sources of self noise caused by the interaction of the hydrophone and its supporting

structure with ocean currents, as well as the pyroelectric effect on the hydrophone as tidal

currents cause changes in the ocean temperature in the vicinity of the hydrophone.

2. Infrasonic Band

This band, which covers the frequencies from 1 Hz to 20 Hz, is of considerable

interest for low frequency passive sonar applications because it contains the blade-rate

fundamental frequency of propeller-driven vessels. Thus, one of the major noise sources in
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this region is the noise from shipping. In the absence of shipping noise, which dominates

all other sources, the noise spectrum in this band depends primarily on wind speed and

the level of seismic activity. Self noise caused by the the flow of water over the hydrophone

and its supporting structure is also evident in this frequency band. Another source in this

region, which is not as significant, is oceanic turbulence in the form of irregular random

water currents.

3. Low Sonic Band

This band covers the frequency decade from 20 Hz to 200 Hz, and is dominated

by the noise from distant shipping, especially in the frequencies around . 1. It

includes sources as far away as 1000 miles. The noise from distant storms comp, Cs with

the noise from shipping. In the absence of either of these noise sources, the ambient noise

level is determined by the local wind speed.

4. High Sonic Band

This band covers the frequencies from 200 Hz to 50 kHz. The noise level in this

band depends alinost exclusively on the speed of the local wind, especially at frequencies

above one kHz. The exact cause of the noise is still uncertain, but it is believed to be

caused by a number of interactions of the wind with the water surface. These interac-

tions include the breaking of whitecaps, flow noise of the wind over the water surface,

the collapse of air bubbles (cavitation) caused by turbulent wave action, and the wave

generating action of the wind.

5. Ultrasonic Band

Thermal noise, which is the noise of molecular bombardment, tends to domi-

nate this band, which covers all frequencies above 50 kHz. This frequency band is not
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significant for our purposes since our signals are band limited and were recorded digitally

with a sampling frequency much less than 50 kHz.

6. Other Sources

In addition to the noise sources which dominate each of the frequency regions

described above there are intermittent sources which can cover more than one frequency

band and be persistent enough at times to be considered part of the ambient noise.

Biologic noise includes the sounds produced by shellfish, marine mammals, and fish.

Non-biologic noise sources include rain, earthquakes, underwater explosions, volcanos,

and surf effects. All of these sources are of only limited duration and are therefore not

normally considered as part of the ambient background, even though at times they may

dominate all other sources. [71

The ambient noise generated in the arctic has some unique characteristics be-

cause of the ice cover, yielding a different noise environment than described above. In

addition to the noise sources described above, ambient noise sources in this region include

cracking ice, wind over the ice, moving ice masses colliding with each other, and waves

impacting ice masses. [7)

B. CHARACTERISTICS

Along with the sources of the ambient noise, there are a number of other con-

siderations which effect the qualities of ambient ocean noise. These characteristics are

important to take into account in the development of good noise models.

1. Stationarity

Ambient ocean noise is not stationary because the individual noise sources which

contribute to the total noise background are not stationary. For example, biologic activity
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is dependent on both the time of day and the season of the year. The noise from shipping

similarly varies depending on the time, season, and location. Likewise, noise from the

wind and storms is strongly dependent on the local atmospheric conditions. The vari-

ability of the ambient noise background over various time intervals is discussed in detail

in [7]. Although this variability is real and needs to be taken into account for predict-

ing the noise level at a particular time of the day, we can reasonably assume that the

noise is stationary over the short time intervals (several seconds) applicable to the meth-

ods described in this thesis since none of the dominant ambient noise sources changes

significantly over these short time intervals.

2. Directionality

The strength and spectral shape of the ambient ocean noise also depends on the

direction of arrival. With the use of vertical arrays it has been found that shipping noise

is highly directional in the horizontal direction, while noise from surface effects, such as

wind and rain, are stronger from the vertical direction than from the horizontal direction

[7]. Horizontal arrays have similarly been used to show that the noise level in a horizontal

plane is determined by such effects as the direction of the wind and swells, as well as the

direction of individual ships which contribute to the noise field [7]. In general we do not

know the directional characteristics of the recording equipment used to collect the noise

samples analyzed in this thesis, so the models we develop do not take the directionality

of the noise into account.

3. Depth Dependence

Deep water noise has relatively well-defined levels and is predictable. Shallow

water noise however is subject to much wider variations, both in time and location. In

deep water the noise level at any given frequency is predominantly from one type of
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source, but in shallow water the noise at any frequency is a combination of shipping and

industrial noise, wind noise, and noise from biologics. The combination of these three

sources is variable and unpredictable, making accurate prediction extremely difficult. [8]

4. Propagation Effects

Sound transmission in the ocean is effected by the water temperature and pres-

sure, with the sound rays bending toward regions of lower temperature and lower pressure.

Sound can also reflect off of the sea surface and sea floor. These effects lead to various

preferential transmission paths. One of these paths is the deep sound channel, in which

low frequency sound travels horizontally with little attenuation. A receiver located in

the deep sound channel will detect more noise than a receiver located below the channel.

Similarly, noise from the sea surface can be trapped in the surface duct and travel nearly

horizontally to distant locations. When the conditions are right, both the deep sound

channel and the surface duct are likely to be noisy environments. The propagation of

sound is also dependent on frequency, with high frequencies being attenuated much more

than low frequencies. This causes the ocean to behave as a low pass filter. [7]

C. STATISTICS

The most important aspect of the noise from the standpoint of modeling and fil-

tering is its statistical characteristics. Ambient ocean noise, which is comprised of many

individual sources, is typically assumed to have a Gaussian distribution over short peri-

ods of time [7]. This assumption is based on the Central Limit Theorem, which states

that the probability distribution of a sum of a very large number of random variables ap-

proaches a Gaussian distribution [9]. This assumption however is not valid in every case.

particularly in the presence of dominant non-Gaussian noise sources (such as impulsive

noise) [10, 111. Testing the noise to see if truly it has a Gaussian amplitude distribution
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is important in determining the most suitable techniques for modeling and filtering the

noise. If the noise has a Gaussian distribution, then linear methods will yield optimal

results 112]. For processes with non-Gaussian distributions, non-linear techniques are

generally required in order to obtain optimal results.

We tested both real and synthetically generated noise sources using a variety of

statistical methods. The synthetic noise sequences were generated using Matlab (13], and

were included to provide a "benchmark" with which to compare the results from the real

data. The real data used was collected from a variety of underwater transient sources. In

all cases the data sequences consisted only of background noise extracted before onset of

the actual transient signal. The noise sequence labeled orca is from a recorded biologic (a

killer whale). The tk-IOa noise is from ocean data distributed by DARPA to contractors

as part of an early test of classification algorithms. The noise sequence bio-2385 is part

of the NUSC TAP06 data. Finally, the sequences wIOl, qzOS, and fz09 are ambient noise

from sounds recorded during range tests.

1. X2 Test for Gaussianity

It would be extremely difficult to absolutely prove that a sequence has a Gaus-

sian distribution because no matter how much evidence is collected there always exists

the possibility that it does not. We can relatively easily prove that a sequence does not

have a Gaussian distribution however. This is how the X2 test is used as a means of

testing for Gaussianity. A null hypothesis (Ho) that the sequence has a Gaussian ampli-

tude distribution is formulated. The alternate, and mutually exclusive, hypothesis (HI)

is that the sequence does not have a Gaussian amplitude distribution. We accept H0

as being true only if there is insufficient evidence to reject H 1. The decision to accept

or reject the null hypothesis at a certain level of significance is based on comparing the

computed X2 test statistic, a weighted summation of the difference between the observed
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and expected probability distributions of the data, with a pre-determined critical value.

The null hypothesis is accepted (at the desired level of significance) if the test statistic

is less than the critical value. [14, 151

To perform the test the data are first categorized into r amplitude cells. The

number and size of the cells is flexible and typically depends on the application, but in

general one should choose as many cells as possible in order to increase the number of

degrees of freedom, with the condition that the expected number of occurrences in each

cell should be at least five [16, 141. Since the data will be distributed among the r cells

according to the probability distribution function of the data, the number of degrees of

freedom v is r - 1 (the number of occurrences in cell r is determined by the number

of occurrences in the previous r - 1 cells). If the expected cell probabilities depend on

unknown parameters which must be estimated from the data, then an additional degree of

freedom must be subtracted for each unknown parameter [15]. Since a Gaussian process

is completely characterized by its mean and variance, these are the only parameters which

must be estimated from the data to test for a Gaussian fit. Thus, for all of our sequences

the number of degrees of freedom is v = r - 1 - 2 = r - 3.

The test statistic W is computed by forming a weighted sum of the squared

differences between the actual number of occurrences in each cell and the number of

occurrences in each cell which would be expected of a Gaussian sequence. This weighted

sum is given by

W = ' - (2.1)

where r is the number of amplitude cells, Ni is the actual number of occurrences in cell

i, and ej is the observed number of occurrences in cell i. If the data sequence represents

a multinomial experiment of N. independent trials, then as N. approaches infinity the

distribution W approaches a x3 distribution with v degrees of freedom. (151
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In order to obtain a meaningful value for the test statistic we used, when pos-

sible, N. = 20000 points of the noise sequence. This usually allowed us to form as many

as 25 equally spaced amplitude cells and still maintain ei _> 5 for all but one or two cells

at each tail. The cells at either tail with e, < 5 were combined so that all cells had

ei > 5 [15]. We chose a level of significance of 0.05, which represents the risk involved in

wrongly deciding to reject the null hypothesis (the probability that the null hypothesis

was incorrectly rejected).

Table 2.1 shows the results of the X2 test for a number of different synthetically

generated noise sequences. In each case the number of degrees of freedom v was chosen

Noise Source JN. rI v W x0.os. Gaussian?

Gaussian 20000 23 20 18.82 31.41 yes
uniform 20000 25 22 4874.0 33.92 no
12 uniforms 20000 23 20 12.70 31.41 yes
Laplacian 20000 15 12 3619.4 21.03 no
exponential 20000 11 8 16629 15.51 no
Bernoulli-Gaussian 20000 21 18 338.7 28.87 no

TABLE 2.1: RESULTS OF THE X2 TEST FOR GAUSSIANITY USING SYNTHETI-
CALLY GENERATED NOISE SEQUENCES.

as three less than r, the number of cells with ei >_ 5. The Gaussian and uniform white

noise sequences were generated using the intrinsic Matlab functions "randn" and "rand,"

respectively. The Laplacian, exponential, and Bernoulli-Gaussian (with event probability

0.95) noise sources were generated using the "rpiid" function from the Matlab "Hi-Spec"

toolbox (171. Notice that only the Gaussian sequence and the sequence formed by sum-

ming twelve independent realizations of 20000 points of uniform noise passed the X 2 test

for Gaussianity at the 0.05 significance level.

The test was then performed on the real noise sequences described earlier. The

results are listed in Table 2.2. With the exception of the sequence orca all of the recorded
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noise sequences passed the test well within the five percent significance level, providing

strong evidence that these noise sequences have distributions which do not significantly

depart from Gaussianity. The sequence orca is apparently not Gaussian, however its

deviation from Gaussianity does not appear to be strong.

Noise Source JN. I r I v W X I Gaussian?
orca 12000 21 18 31.56 28.87 no
tk-IOa 20000 23 20 17.12 31.41 yes
bio-2385 20000 21 18 12.99 28.87 yes
WT01 20000 21 18 12.94 28.87 yes
qz03 20000 23 20 11.13 31.41 yes
fr09 20000 21 18 10.20 28.87 yes

TABLE 2.2: RESULTS OF THE X2 TEST FOR GAUSSIANITY USING RECORDED
OCEAN NOISE.

The X2 test has some important limitations. One of these limitations is that

the distribution of the discrepancies between the observed and expected frequencies is

not taken into account, even though this distribution may influence how well the data

appear to fit the theoretical curve. In other words, we would expect that the difference

Ni - ei should alternate randomly between positive and negative values. If however, the

differences are positive for all cells higher than the mean and negative for all cells lower

than the mean, then the data would be less likely to have a Gaussian distribution, even

though the X2 test statistic gives a satisfactory result. [18]

Another important limitation of the X2 test is that it considers only the marginal

first and second order statistics (the mean and the variance) of the sequence, which is

insufficient to prove joint Gaussianity [19]. Other more powerful tests such as those

discused in the next section are sensitive to joint properties of the data.
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2. Gaussianity Tests Based on Higher-Order Statistics

Tests based on higher order statistics (HOS) can yield additional insight since

they are not necessarily subject to the same limitations as the X2 test. Classical tests

are based on simple calculations of the marginal third and fourth order moments, while

modern tests are based on the third and fourth order cumulants. These modern tests yield

more information, but typically require significantly more calculations than classical tests,

and have thus only lately gained increased attention because of the recent improvements

in the computational capabilities of modern computers.

a. Classical Tests

Two classical tests are the measures of the coefficient of skewness and the

coefficient of kurtosis of a random sequence. The coefficient of skewness is a measure of

the symmetry of the density function about the mean. A Gaussian density function, and

all other symmetric density functions, have zero skewness. For this reason the coefficient

of skewness by itself is not a valid test for Gaussianity of a data sequence. Its usefulness is

in showing that a density function is not Gaussian since non-zero skewness is incompatible

with Gaussianity. The coefficient of kurtosis, which is a measure of peakedness of the

density function, can provide additional insight. Its value is zero for a Gaussian density

function. A density function with a sharper peak (such as the Laplacian density) has a

positive coefficient of kurtosis and is called leptokurtic, while a density function with a

negative coefficient of kurtosis has a flatter peak and is called platykurtic. 115]

The coefficients of skewness and kurtosis rely on the calculations of the

marginal third and fourtli order central moments about the mean of the sequence (Since

only the marginal statistics are considered, as with like the X' test, these tests are
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insufficient to prove joint Gaussianity.) The k central moment about the mean of a

random variable X is defined as

p = E[(X - mx) ") (2.2)

where mx is the mean of the random variable and £[.] represents the expectation oper-

ation. Tbse statistical parameters are generally unknown, so they must be estimated

from the data. The sample mean is estimated by

1N .-1
MX- " (n) (2.3)

n=O

while the sample variance of the data, which is the second central moment about the

mean, is estimated by
1 Nr-1

&[ ) = - F [()- rhxl' (2.4)

ft=O

from which the sample standard deviation &x can be obtained. Using (2.3), the sample

third and fourth central moments about the mean are then estimated by

1 N.-1

= W; F ((n) (2.5)
1 -.-i

n=0/#4 =  [x(n) - rhx]4  (2.6)

Finally, using (2.3), (2.4), (2.5), and (2.6), the coefficient of skewness a3 and coefficient

of kurtosis Nk are estimated by [15]

63 = /.s (2.7)

4 = - -3 (2.8)

Er4

The test yields qualitative rather than quantitative results since no test statis-

tic is computed as with the X2 test. A sequence can be considered non-Gaussian if either

quantity is not close to zero. Table 2.3 lists the results of these tests for the same test
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Noise Source n skewness (6s) kurtosis (&4)

Gaussian 20000 -0.0024 0.0122
uniform 20000 0.0024 1.8002
12 uniforms 20000 -0.0020 -0.0149
Laplacian 20000 0.0118 2.9975
exponential 20000 1.9386 5.3594
Bernoulli-Gaussian 20000 0.0155 0.1912

TABLE 2.3: RESULTS OF THE TESTS OF SKEWNESS AND KURTOSIS USING
SYNTHETICALLY GENERATED NOISE SEQUENCES.

noise sequences as those listed in Table 2.1. All of the sequences except the exponen-

tial sequence have small coefficients of skewness, indicating that only the exponential

sequence fails the test for Gaussianity based on symmetry properties. The other non-

Gaussian sequences (uniform, Laplacian, and Bernoulli-Gaussian) passed the test of zero

skewness but failed the test of Gaussianity based on their respective coefficients of kur-

tosis, illustrating the importance of performing both tests. Only the Gaussian and the

twelve uniform sequences added together passed the test for Gaussianity based on both

the coefficient of skewness and the coefficient of kurtosis.

Table 2.4 lists the results for the real noise sequences. All of these sequences

except orca have coefficients of skewness and kurtosis close to zero, giving strong evidence

that the sequences may be Gaussian. The sequence orca is possibly non-Gaussian since

its coefficient of kurtosis is relatively large. This sequence is the only one that also did

not pass the X2 test at the 0.05 significance level.

b. Tests Based on Higher Order Cumulants

Characterization of random processes using higher-order moments is a field

which has recently been given much attention. Cumulants, which are related to moments.

can be used for characterizing random processes, and are particularly useful as a measure
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Noise Source n J skewness (&) kurtosis (64)
orca 12000 0.0055 0.1017
tk-1Oa 20000 0.0042 -0.0504
bio-2385 20000 0.0044 -0.0274
wzOl 20000 -0.0028 -0.0333
qxO3 20000 -0.0007 -0.0069
fZ09 20000 -0.0111 0.0507

TABLE 2.4: RESULTS OF THE TESTS OF SKEWNESS AND KURTOSIS USING
RECORDED OCEAN NOISE.

of departure from Gaussianity since all cumulants of order higher than two are identically

zero for a Gaussian random process. If x is a real zero-mean random process the first

four cumulants are

C.(') = E[x()] = m. = 0 (2.9)

C.(')( 11) = C[x(n)x(n + 11)] = R.(li) (2.10)

C.)(l 1, 12) = E[(n)x(n + li)x(n + 12) (2.11)

C.(4)( 1 , 12, ls) = .[x(n)x(n + l,)x(n + 1)x(n + 13)] - C(2 )(l1 )C(2 )(l3 - 1,) (2.12)

- c(2)(l)C2W )(13 - l) - C(2)(l3)C(2)(l2 - 11)

where the arguments 11,12, and 1s are referred to as "lag values." Note that if the se-

quence x has unit variance then for 11,12,13 = 0 (2.11) and (2.12) reduce to (2.7) and

(2.8). respectfully. Since the third order cumulant is related to the skewness of the den-

sity function, tests based only on the third order cumulant are insufficient to completely

determine Gaussianity for the same reason that the coefficient of skewness is an inade-

quate test when performed by itself. The fourth order cumulant, like the coefficient of

kurtosis, should also be considered when testing for Gaussianity. Cumulants of order

higher than four are not typically used since they are difficult to compute reliably and

thus have little practical application. [12]

18



The power spectrum of a sequence can be obtained as the one-dimensional

Fourier transform of the second order cumulant (which is identical to the covariance for

a zero mean process). Higher-order spectra, or polyspectra, can be similarly obtained as

multidimensional Fourier transforms of higher-order cumulants. In particular, the two-

dimensional Fourier transform of the third-order cumulant is called the bispectrum, and

is expressed as

B.(w1,w) C.S)(11,l 2)e(w11+212) (2.13)
8i=-06 12m-G

For a real random process the bispectrum has twelve regions of symmetry, so the bispec-

trum needs to be computed only over the triangular non-redundant region [20]

fl--- {0 <wi < 7r, 2 : <w1, 2W1 + _< 2r} (2.14)

The rest of the bispectral plane is related to points in this region through symmetry

properties and thus contains no new information. [12]

The normalized bispectrum (or bicoherence) is

B(n , w2) = B.(w,,W2 ) (2.15)

u~1,w - VS.(Wi)S.(W2)S.(Wi +W2) (.5

where S.(wi) is the power spectrum of the sequence x at frequency wi. Using (2.15) the

average skewness of the sequence is

3 -1 /B()(W,, W) dwi, dw (2.16)

where the integration is performed over the non-redundant region defined by (2.14). This

relationship is the basis for using the estimated bicoherence of the sequence to compute

a test statistic which gives the probability of falsely rejecting the hypothesis of zero

skewness. (20]

The Matlab function "GLSTAT" from the "Hi-Spec" toolbox was used to

perform this test. "GLSTAT" first estimates the bispectrum using a direct Fourier
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transform approach, from which the bicoherence is estimated. The test statistic, which

is the mean bicoherence power, is computed as

S = E A)wI, U)02 (2.17)

where the summation is performed over the non-redundant region defined by (2.14). The

test statistic S has a X2 distribution with the number of degrees of freedom determined

by the length of the discrete Fourier transform (DFT) length and and the resolution

parameter. This test is described in detail in [20] and [17].

Table 2.5 lists the results from testing the same noise sequences listed in

Table 2.1 and Table 2.3. N. is the number of points in the data sequence, S is the test

Noise Source J N. S PrA ]Symmetric?
Gaussian 20000 0.7444 1.0000 yes
uniform 20000 0.4885 1.0000 yes
12 uniforms 20000 0.5393 1.0000 yes
Laplacian 20000 0.8936 1.0000 yes
exponential 20000 167.80 0.0000 no
Bernoulli-Gaussian 20000 0.7281 1.0000 yes

TABLE 2.5: RESULTS OF HINNICH'S TEST FOR GAUSSIANITY USING SYN-
THETICALLY GENERATED NOISE SEQUENCES.

statistic, and PA is the probability of incorrectly accepting the non-zero skewness hy-

pothesis. The DFT length for all sequences was 256 points and the resolution parameter

was chosen as 0.51 (the default value used by the "GLSTAT' function), which resulted

in 48 degrees of freedom for all data sequences. If the PFA is high there is strong evidence

that the non-zero skewness hypothesis can be rejected in favor of the zero skewness hy-

pothesis. If the P, 4 is lower than about 0.05 the probability is high that the data have

non-zero skewness, and are therefore non-Gaussian. All of the noise sequences, with the

exception of the exponential sequence, had high values of PA, indicating that the zero

skewness hypothesis can not easily be rejected.

20



-.? 
"  

... , .-'

Table 2.6 lists the results from testing the same noise sequences listed in

Table 2.2 and Table 2.4. All of the real noise sequences passed the test. We noticed

Noise Source I N. [ S PpA [ Symmetric?
orca 12000 21.750 0.9996 yes
tk-lOa 20000 1.0470 1.0000 yes
bio-2385 20000 52.970 0.2882 yes
wXOl 20000 0.5171 1.0000 yes
qzO3 20000 0.5502 1.0000 yes
fz09 20000 0.9484 1.0000 yes

TABLE 2.6: RESULTS OF HINNICH'S TEST FOR GAUSSIANITY USING
RECORDED OCEAN NOISE.

that the DFT length can significantly affect the values of both the test statistic S and

the PFA for a correlated noise sequence, indicating the importance of not rejecting the

zero-skewness hypothesis based on performing the test using only one DFT length. For

example, we found that a colored Gaussian noise sequence failed the above test using a

DFT length of 256, but passed the test using a DFT length of 255 or 257. Similarly,

the PFA for sequence bio-2385 was only 0.2882 with a DFT length of 256 but was 0.9986

with a DFT length of 257. Although we do not have a detailed explanation, we assume

that the variation is due to some anomaly (such as periodicity) introduced into the data

at or near a specific DFT lengtb that does not otherwise appear.

Because of the computational complexity involved with estimating the fourth-

order cumulant, efficient quantitative statistical tests based on the fourth order cumulant

have not yet been developed. Therefore a qualitative test was performed in the same way

that the qualitative tests were performed using the coefficients of skewness and kurtosis.

Since the fourth order cumulant is cumbersome to estimate for all lag values one can

obtain a "sample" of it by estimating its value on a one-dimensional slice (i.e., a line

through the space of lag values). Although any one-dimensional slice can be used, we
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chose the diagonal slice, which is equivalent to setting 11 = 12 = Is in (2.12). The maxi-

mum value of this one-dimensional slice is compared with the theoretical value of zero.

If this maximum value significantly deviates from zero then there is a strong possibility

that the sequence is not Gaussian.

The Matlab function "CUMEST" from the "Hi-Spec" toolbox was used to

estimate the diagonal slice of the fourth order cumulant, 64, using the "overlapped-

segment method" described in [17). The biased estimate was computed using a segment

length of 1000 points with 50 percent overlap, and lag values ranging from I = -100 to

I = +100. The results are listed in Tables 2.7 and 2.8.

Noise Source N. max(CL0))
Gaussian 20000 0.0534
Uniform 20000 -1.2011
12 uniforms 20000 -0.0491
Laplacian 20000 3.1137
exponential 20000 6.2762
Bernoulli-Gaussian 20000 0.1939

TABLE 2.7: RESULTS OF THE TEST FOR GAUSSIANITY USING THE DIAGO-
NAL SLICE OF THE FOURTH ORDER CUMULANT OF SYNTHETICALLY GEN-
ERATED NOISE SEQUENCES.

The results listed in Table 2.7 are similar to the results from testing for the

coefficient of kurtosis listed in Table 2.3. Note that only the Gaussian noise sequence and

the sequence formed by summing 12 independent uniform sequences yielded low values

for the maximum value of 6,.M). The other synthetic noise sequences had high values

for 604), indicating that they have a low probability of being Gaussian.

The results listed in Table 2.8 are likewise similar to the results from testing

for the coefficient of kurtosis listed in Table 2.4. All of the real sequences, with the

exception of orca, yielded small values of 6.04, indicating that these sequences do not
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Nise- Source No
ore 0.1242
&__0 __ 20000 -0.0603
&ie-2385 20000) -0.0705
wOl 2000 0.0543
jp03 20000 0.0607
o 20000) 0.0407

TABLE 2.8: RESULTS OF THE TEST FOR GAUSSIANITY USING THE DIAGONAL
SLICE OF THE FOURTH ORDER CUMULANT OF RECORDED OCEAN NOISE.

significantly deviate from Gaussianity. The relatively large maximum value of e'.(4

for orca indicates that this sequence is possibly non-Gaussian. This departure from

Gaussianity however is not strong since the maximum value of e,(4A for orea is not

nearly as large as that obtained for the known non-Gaussian noise sequences.

3. Statistical Conclusion

The results of the statistical tests indicate that all of the recorded noise se-

quences we considered in this thesis can reasonably be assumed to have a Gaussian

distribution. Most of the noise sequences responded to the test with strong evidence of

Gaussianity. Only the orca noise sequence gave evidence of non-Gaussianity and the evi-

dence in most tests was not strong. These results imply that linear Gaussian techniques

are appropriate vehicles to obtain models and filters for these noise sequences. This is

fortunate, since very few real processes if non-Gaussian are linear [21] and methods for

modeling of non-linear and non-Gaussian random processes are only in the early stages

of development.
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IH. MODELING

The process of signal modeling involves designing a filter to produce a sequence with

characteristics which are identical to a desired random process. In our case the desired

random process is ambient ocean noise. Because the recorded ocean noise tends to have a

Gaussian distribution, only the second-order statistics of the original sequence need to be

matched (a Gaussian process is completely defined by its second-order statistics). Since

a linear transformation of a Gaussian random process preserves its Gaussian nature, an

appropriate signal model is a linear model driven by Gaussian white noise. Additionally,

since the recorded noise also tends to be stationary over the time intervals of interest,

a time-invariant model can be used. Finally, since we desire stable models with stable

inverses for the application described in Chapter IV, the models we shall focus on will

be minimum phase linear models.

A. TYPES OF LINEAR MODELS

Three basic linear time-invariant models are considered: the autoregressive (AR),

the moving average (MA), and the autoregressive moving average (ARMA) models. These

models are illustrated in Figure 3.1, where w(n) is a Gaussian white noise sequence of

unit variance, x(n) is the modeled sequence, and A(z) and B(z) are the polynomials in

the denominator and numerator, respectively, of the filter transfer function defined by

A(z) - a + aiz - + a2 z- ' + ... + apz- p  (3.1)

and

B(z) = b + b1z 1 + bz- +... + bqz-Q (3.2)
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w~n) A(z)

(c)

Figure 3.1: Types of Linear Models. (a) AR. (b) MA. (c) ARMA

All three models can be described in the time domain by the difference equation for the

general ARMA model,

x(n) + alx(n - 1) +... + ax(n - P) = bow(n) + bw(n - 1) +... + bQw(n - Q) (3.3)

The AR model can be obtained from (3.3) by setting P # 0 and Q = 0; the MA model

can be obtained by setting P = 0 and Q 96 0. [12]

Because the AR model can have poles near the unit circle, the AR model is best

for representing sequences with peaks in the power spectrum. Correspondingly, since the

MA model can be designed with zeros near the unit circle, the MA model is best for

representing sequences with nulls in the power spectrum. The ARMA model works well

for sequences with both peaks and nulls in the power spectrum, as well as other general

spectra without pronounced peaks and nulls. The models are somewhat interchangeable

in that an AR model can be used to estimate an ARMA or MA process if the model order

is chosen sufficiently high and a MA model can be used to estimate an AR or ARMA
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process with a high enough model order. The best results are obtained however when

the model exactly matches the process which generated the sequence. [12]

1. The AR Model

The simplest model to solve is the AR or all-pole model because its solution

depends entirely on a system of linear equations. We chose to use Burg's method [12] to

find the ai's of (3.1) because it ensures a minimum phase solution (all roots of A(z) inside

the unit circle) and so guarantees that both the model and its inverse will be stable.

Since Burg's method is based on a least squares procedure, better results are

obtained if the noise sequences to be modeled are very long. Using 10,000 to 20,000 points

gives the best results without taking too much time to compute. Using more than 20,000

points serves only to increase the computation time without providing better results.

Using less than a few thousand points does not seem to capture enough of the noise

characteristics to obtain the best models.

2. The MA Model

The MA, or all-zero, model, even though it seems to have the simplest form,

is in general difficult to solve because its solution depends on a system of nonlinear

equations. If the sequence to be modeled was generated by an MA process, then the

transfer function polynomial can be obtained by spectral factorization of the spectral

density function of the original process. The spectral density function S.(z) is found by

taking the z-transform of the autocorrelation function of the random process. Since for

a white noise input S.(z) is of the form

S.(z) = B(z)B*(11z*) (3.4)

B(z) can be solved for by finding the roots of S.(z). Multiple solutions are generally

possible because the roots of S.(z) occur in complex reciprocal locations, giving rise to
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minimum phase, maximum phase, and possibly mixed phase solutions for B(z). If the

signal to be modeled is deterministic or non-Gaussian it is important to choose the roots

with the correct phase in order to obtain an accurate model. If the signal to be modeled

is a Gaussian random process, then the maximum phase, mixed phase, or minimum

phase solutions are all equally valid since each of these models yields identical second

order statistics. However since subsequent processing requires the inverse of the filter,

we chose the minimum phase solution of B(z) by selecting the roots of S.(z) which lie

inside the unit circle. [12]

The MA model turned out to be ineffective for our purpose for two reasons.

First, models of low order generally do not yield well modeled noise. Higher order models

can improve the quality of the modeled noise, but these higher model orders usually have

zeros of B(z) close to or on the unit circle, which causes stability problems for the

inverse model. Secondly, the spectral factorization is subject to err6rs. The factorization

algorithm does not always yield the same number of minimum and maximum phase

roots, and poles on the unit circle rarely occur in even multiplicities. These errors may

be attributed to roundoff error in factoring S.(z) and the error associated with estimating

the correlation fhnction of the original noise sequence.

3. The ARMA Model

The ARMA, or pole-zero, model is the most flexible of the models and typically

requires the fewest number of model parameters. Optimal methods for estimating the

ARMA model parameters involve solving for the AR and MA parameters simultaneously.

Unfortunately, optimal methods (usually iterative and based on maximum likelihood or

related concepts) are not well developed because they require the solution of a system of

highly nonlinear equations, and may not converge to a correct solution. The preferable

methods are suboptimal, and usually involve solving for the AR and MA parameters

27



separately. The advantage to these techniques is the significantly reduced computational

complexity. If the original random process was truly generated by an ARMA process the

model can be obtained by finding the AR parameters first and then filtering the original

sequence by the filter formed from the AR parameters, yielding a residual sequence which

is a pure MA process. The MA parameters can then be found by spectral factorization

of the residual sequence. [22, 23]

The main advantage of ARMA modeling for deterministic signals is that it

generally yields the most parsimonious representation of the original sequence [12]. This

is of tremendous usefulness in applications where data compression or simplicity are

important. Consequently, ARMA models are favored for modeling transient signals.

(For example, a 2000 point transient signal could be modeled by segmenting the data

into, say, forty fifty-point segments, and then modeling each segment with perhaps a

(P, Q) = (6,5) ARMA model. The modeled transient then has only 440 parameters

instead of the original 2000.) For noise modeling, however, a parsimonious representation

is not necessarily advantageous because any sequence of stationary noise, refardess of

length, requires only one model, and therefore only one set of calculations. (One is not

normally interested in purposefully transmitting compressed noise.)

For modeling noise the ARMA model does not give better results than the AR

model because it suffers from the same pitfalls as the MA model: spectral factorization

errors and inverse filters with poor stability characteristics. Additionally, any reduction

in parameters in the ARMA over the AR model for noise is usually offset by the increased

computational complexity of finding the ARMA model parameters.

B. MODEL ORDER SELECTION

Choosing the correct model order for stochastic data is not a trivial problem. We

analyzed four methods for determining the best model order for our data. Theoretically.
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if the data can be described by a finite order AR model and if the model order is chosen

correctly, then the theoretical prediction error variance will remain constant for all model

orders higher than the theoretical model order. Real data is seldom generated by an exact

AR process, so it may be difficult to find the model order at which the prediction error

variance becomes constant. This section examines a number of methods to approximate

the best model order.

1. Theoretical Criteria

The four most common methods for chosing the model order seek to minimize

a quantity related to the prediction error variance a and the number of data points No.

These quantities, which each have a distinct minimum at the optimal model order, are

Akaike's information-theoretic criteria (AIC), Parzen's criterion autoregressive transfer

(CAT), Akaike's final prediction error (FPE), and Schwartz and Rissanen's minimum

description length (MDL). The formulas for these quantities are

AIC(P) = N.ln , + 2P (3-5)

CAT(P) = 1 N,, N P

FPE(P) = a (N --P+ (3.7P= kN.P-1N)

MDL(P) = N.ln a,2 + P lnN (3.8)

Figure 3.2 demonstrates the use of one of these criteria, the AIC, which does indeed have

a minimum at P = 17. Unfortunately, since these quantities work well only if the data

are generated by an AR process, their use can be severely limited for real data. [121
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Figure 3.2: Example of Model Order Selection Based on the AIC Criteria for Sequence
wzO2 Using 2000 Points of Noise Data.

One major drawback of these criteria for modeling stochastic data is their de-

pendence on the data length. Long sequences of data (on the order of 10,000 points)

typically indicate very high filter orders, while short data sequences (on the order of 1000

points) typically yield much lower filter orders. For example, when the data sequence

wz 2 was tested using 2000 points of noise, a 17' order model was indicated, while using

20,000 points of noise indicated that a 98' order model should be used. The dilemma

is that the accuracy of least-squares techniques, such as Burg's method, improve with

increasing data length, thereby yielding better model parameters, The theoretical model
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orders indicated by the above methods can indicate erroneously high model orders how-

ever, and are therefore only of limited usefulness in modeling stochastic data which are

not generated by a truly AR process.

2. Computation of Prediction Error

In this analysis the prediction error for linear predictive filtering was computed

and tested. For a well chosen model order the output of the prediction error filter pictured

in Figure 3.3 will be Gaussian white noise of unit variance. The filter transfer function

Figure 3.3: Prediction Error Filter.

is given by (3.1) where the ai parameters are the same as those in (3.3). For each model

order &elected, the original data was filtered with the prediction error filter and the

spectrum of the resulting error signal was analyzed. The model order was chosen as the

lowest order which gave a reasonably flat spectrum for the error signal. Figure 3.4 shows

an example of using the spectrum of the PEF output. In this example an 1 Ph order AR

model was used to model 20,000 points of noise from the sequence wx02. Notice that

the variation for the PEF output spectrum is slightly greater than the variation of the

spectrum for the white noise. The variance could be reduced by a slightly higher order

model but other tests described below give some rationale for retaining the 11 order

AR model.

3. Spectral Density Comparison

In this test, the AR parameters for the noise are obtained using Burg's method

as before. The model in Figure (3.1)(a) is then driven with Gaussian white noise of
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Figure 3.4: Example of Model Order Selection Based on the Flatness of the Prediction
Error Filter Output Spectrum for Sequence w)2 Using 20,000 Points of Noise Data.

unit variance. The spectrum of the noise is then compared with the spectrum of the

model to see if they are reasonably close. Figure 3.5 shows the results of comparing the

spectrums of the noise and the model using the same example as that used in Figure 3.4.

This comparison shows that an 11"' order model performs reasonably well for this noise

sequence, although a higher order model could possibly match the noise better.
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4. Aural Evaluation

As a further means of testing, we can generate models of various orders and

determine the lowest order model which gives the beat sounding results. This test is

performed by listening to the real noise and the modeled noise played back-to-back. The

model is rejected if it is possible to hear the transition point between the noise and

the model. Modeled noise which sounds indistirguishable from real noise can be gener-

ated using model orders typically lower than those predicted using either the theoretical
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criteria or any of the other tests. The listening tests generally agree with the results

obtained by comparing the noise and model spectrums, in that when it is possible to

hear the difference between the noise and model then the spectra are also noticeably

different. An 11th order model was chosen for the above examples because this was the

lowest model order for which it was not possible to hear the distinction between the real

noise and the modeled noise. This demonstrates that aural evaluation is effective if a

good sounding model is desired, but may not necessarily be the best if the most accurate

model is required. The listening test and the prediction error filter output test turned

out to give the most useful practical results.
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IV. FILTERING AND RESULTS

An observed noisy transient signal can be thought of as a random process x(n)

which is related to another random process s(n) which cannot be observed directly. If

x(n) is the transient with additive background noise, then s(n) is an original transient

signal free of noise. The goal of filtering is to estimate s(n) from z(n) for all n. The

optimal filter which performs this estimation by minimizing the mean square error is

known as the Wiener Filter. Its design is based on the statistical characteristics of the

signal and the noise. If the noise is Gaussian, then the Wiener filter is the best filter (in

the mean-square sense) for removing the noise. If the noise is not Gaussian, then the

Wiener filter is the best linear filter for removing the noise although in general there may

be a nonlinear filter which will perform better. [121

The Wiener filter is usually designed for filtering stationary signals, which is a

reasonable assumption for the noise but a poor assumption for the transient signal whose

statistical characteristics change significantly over a short time. Accordingly we have

extended the Wiener filter by considering a short-time approach which is effective for

removing the noise from non-stationary signals, such as underwater transient signals.

A. WIENER FILTERING OF STATIONARY RANDOM SIG-

NALS

A signal in noise can be represented as

x(n) = s(n) + q(n) (4.1)

where x(n) is the received signal, s(n) is the signal without noise, and n(n) is the noise.

It is assumed here that all quantities are real and have zero mean. When the signal
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and noise are uncorrelated, as is typically the case for observed transient signals, the

autocorrelation of the noisy signal is given by

R,(1) = R.(1) + RI() (4.2)

where R.(l) is the autocorrelation of the signal plus noise, R.(l) is the autocorrelation

of the signal, and PI(l) is the autocorrelation of the noise. If a properly designed finite

impulse response (FIR) filter is applied to the data then an estimate of the signal can be

obtained from the convolution expression
P-1

i(n) = , h(l)x(n - 1) (4.3)
1=0

where h(n) is the impulse response and P is the order of the optimal filter. [12]

The Wiener filter, that minimizes the mean-square error, satisfies the Wiener-Hopf

equation
P-1FR.(1 -i)h(l) = R(i); i=O0, 1,., P- 1 (4.4)

1=0

where, since the signal and the noise are uncorrelated, the cross-correlation function

between s and x is given by

R..(l) = R.(l) (4.5)

Using (4.5) in (4.4) and writing each of the P equations explicitly yields the matrix form

of (4.4) as

R(0) Rv(-1) ... 4(1 -FP) 1 (0) R.(0)
R.(1) R4(0) .R(2- P) h(l) R,(1)I . . ] (4.6)

LP R(P -2) ... 14(0) L h(P -1) .(P -1)

from which the filter weights h(l) can be solved by simple matrix algebra.

B. SHORT-TIME APPROACH TO WIENER FILTERING

The Wiener filter described above works well for stationary signals, but several mod-

ifications are needed for non-stationary signals. In the short-time approach to Wiener
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filtai" the signal of interest is segmntd into short-time statioury segments, where

it is assumed that signal changes relatively slowly over small intervals. What consti-

tutes short-time stationa-ity is largely subjective and depends on the signal. Speech,

for example, is normally considered stationary over periods of 20 to 30 msec [24]. More

slowly varying transients can be considered stationary over intervals of perhaps tenths

of a second, while more quickly changing signals, such as impulsive signals, may only

appear stationary over intervals of several microseconds.

1. Autocorrelation Estimates

In the short-time approach the autocorrelation function of the data is estimated

for each segment, the filter weights are calculated for each segment, and finally each

segment is filtered with the appropriate filter. Since the exact autocorrelation functions

necessary to construct (4.6) are unknown, they must be estimated from the data. The

biased estimate
NA-8A.i)- x (n + /)(n); 0 <l< N. (4.7)

is used b,,ause it guarantees that the autocorrelation matrix in (4.6) will be positive

definite and therefore nonsingular. Since the correlation function is symmetric, (4.7)

needs only to be computed at zero and positive lag values. This estimator is asymptoti-

cally unbiased and consistent, which means that the estimate converges in probability to

the actual correlation function as the number of samples tends to infinity. This implies

that a compromise must be made in finding the best filter since stationarity requires the

shortest possible segmentation while a good estimate of the autocorrelation requires the

longest possible segments. [12]

Equation 4.6 requires the autocorrelation functions of both the noisy signal x(n)

and the noise-free signal s(n). To estimate these correlation functions P4(l) can first be

estimated by applying (4.7) to segments of the signal which contain only noise. Similarly,
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R.(1) can be estimated for each segment containing the signal plus noise. R.(1) cannot

be estimated directly, but it can be obtained by from (4.2) as

RI() = RO( )- ,(l) (4.8)

2. Pre-Whkitening

Since the estimates for R.(l) obtained by (4.8) can have some error, the filter

for some segments of the signal can give poor results. Note that the estimate for R,(1)

is not guaranteed to be positive definite even if the estimates for both P&(l) and A,(1)

are positive definite. The estimate of R.(l) can be improved in practice by pre-whitening

the signal because it reduces the problem of estimating the correlation function for the

noise to that of estimating just a single parameter (the noise variance). Pre-whitening is

accomplished by obtaining a good AR model for the noise using the method described in

Chapter III, and then filtering the noisy data x(n) with the prediction error filter (PEF)

formed from the inverse model, as shown in Figure 4.1. If the AR model order was well

x(n) A(z)x'n)

Figure 4.1: Prediction Error Filter.

chosen, then the output of the PEF x'(n) will be white noise for noise only input. For

sections of the original signal containing signal plus noise the output of the PEF will be

a colored version of the original signal plus white noise, that is

z'(n) = s'(n) + q'(n) (4.9)

where V'(n) is Gaussian white noise. If the short-time filtering approach is applied to the

output of the PEF rather than to the original signal, then 14(l) can be assumed to be
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the au toamltion function of Gaussian white noise, which is simply an impulse with

value equal to the estimated variance (ideally the noise variance will be 1.0). R(1) can

then be estimated by simply subtracting this impulse from R.(1). The advantage in this

approach is that only the zero lag is affected by the subtraction whereas in the previous

method all lag values were affected by the subtraction of R.(1) and R,(1). This new

approach tends to reduce the effect of accumulated errors. For the sections of the signal

containing only noise, ideally R.(1) = P4(I) since R(l) = 0. This should yield h(n) = 0

for n = 0, 1,.. , P - 1, which means that the noise (which is the entire received signal)

should be entirely removed from segments containing only noise.

It is important that not too much be subtracted from R.(0) because this can

cause the correlation function R,(i) to become indefinite and produce significant distor-

tion. We chose to filter several segments of noise through the PEF and use the smallest

of the resulting variances as the value to subtract from R,(0). This conservative estimate

decreases the chance of subtracting too much and lessens the chance that R,(1) will be-

come indefinite. In practice it was found that subtracting too little gives better results

than subtracting too much.

Once the filter has been determined, the short-time Wiener filter is applied to

the colored signal z'(n) in order to produce an estimate of the clean colored signal i'(n).

Then .S'(n) is filtered with the AR model in order to obtain an estimate i(n) of the

original signal. Figure 4.2 illustrates this process.

x(n) A(z) Z'n) Wiener Y~(n) ho (n)

Figure 4.2: Pre-Whitening and the Short-Time Wiener Filter.
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3. Smoothing Discontinuities

After all of the signal segments have been filtered the complete signal is con-

structed by joining all the segments into one signal. Since each segment is filtered with

a slightly different filter, some smoothing techniques must be applied so that the differ-

ences at the segment boundaries do not become noticeable. These differences produce a

distortion that is mainly from the noise that remains in the signal after filtering, and is

most noticeable in the segments containing more noise than signal.

a. Initializing the Filter Conditions

One technique to help smooth the discontinuities is to use the final condi-

tions from the filter of one segment as the initial conditions of the filter for the succeeding

segment. If the segment lengths provide a reasonably good approximation of stationarity,

then the filter from one segment should not be significantly different from the filters on

either side. Therefore the final conditions of one filter should give a fairly good approx-

imation of what the initial conditions should be in the next filter. This technique thus

reduces the effects of an unwanted transient response caused by the lack of appropriate

initial conditions.

b. Overlap-averaging

Another way to minimize the effects of the boundary discontinuities is pre-

vent any filtered segment from beginning or ending abruptly. One way to accomplish this

is as follows. Each filtered segment is weighted by a triangular window, as illustrated in

Figure 4.3 (a) and (b), to form a windowed sequence SI(n). Then the original signal is

resegmented as shown in Figure 4.3 (c) and windowed, as shown in Figure 4.3 (d), to

form another windowed sequence .:(n). The two windowed sequences are then added to

form the complete signal S(n) as shown in Figure 4.3 (e). The effect of adding .i(n) and
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Q() is to costinually phase out one segment while phasing in the next, thus smoothing

the discontinuities between segments.

I I I I I
(a)

(b)

I I I I I I

(d)

(e)

Figure 4.3: Overlap-Averaging Technique for Smoothing Boundary Discontinuities. (a)
Segmented signal. (b) Amplitude scaling for the segmented signal. (c) Re-segmented
signal. (d) Amplitude scaling for the re-segmented signal. (e) Signal smoothed by overlap-
averaging.

4. Forward-Backward Filtering

The FIR filtering process described above induces a linear phase shift in the fil-

tered signal. This phase shift can be compensated for by filtering in the forward and back-

ward directions. For the process described in the previous section this is accomplished
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by filtering each segment in the forward direction using the final condition of each filter

as the initial condition for the next filter. After filtering each segment, the process is

reversed. Beginning with the final filter segment the reversal of each filtered segment is

then filtered again, with the same filter used in the forward direction.

5. Filter Parameters

Four parameters must be chosen in order to obtain effective filtering. The most

important consideration is the segment length of the original signal, which should be

as many points as possible. Ideally, the segments should each contain 1000 or more

points of data because the accuracy of the autocorrelation estimate improves with the

number of points used. This is not always possible due to the competing requirement for

stationarity. The second consideration is the order of the FIR Wiener filter. High order

filters work well if the autocorrelation function is estimated well, as with data which

changes slowly and can be segmented into long segments. Low order filters give better

results for data which changes quickly and therefore requires the use of smaller segments.

Finally, the noise must be modeled well which means that a representative segment of

the noise must be used and an appropriate model order for the noise must be chosen, as

described in Chapter III.

C. RESULTS

1. Graphical Results

Figures 4.4 through 4.7 show the results of filtering several transient signals. The

magnitude scale for each signal represents the integer value of the output of the analog-

to-digital converter, not the actual strength of the signal in the ocean (for example,

16-bit quantization yields a magnitude scale from -32,768 to +32,767). Figure 4.4 is

data from a killer whale song. The sampling rate is 22.05 kHz, the segment length is
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50 msec (1102 points), the filter order is 50, and the noise was modeled with a 359h

order AR model using 12,000 points of data. Since the signal had a high sampling rate

it was possible to segment the data into long segments and still maintain a reasonable

approximation of stationarity, allowing the use a high order filter. A significant amount

of noise was removed from filtered signal with little added distortion. Figure 4.5 is data

from a porpoise whistle. The sampling rate is 12.5 kliz, the segment length is 200 msec

(2500 points), the filter order is 50, and the noise was modeled with a 35" order AR

model using 20,000 points of data. The sampling rate was slower than that used for

Figure 4.4, but the signal changed much more slowly, allowing for longer segmentation

and a high order filter. The filtering process was particularly effective for this transient,

as the noise was nearly entirely removed from the signal with almost no added distortion.

Figure 4.6 is data from a stochastically generated transient. The sampling rate and time

are not mentioned here in order to avoid revealing the source. The segment length is 500

points, the filter order is 10, and the noise was modeled with a 35"h order AR model using

20.000 points of data. The characteristics of the signal changed quickly with respect to

the sampling rate, which necessitated the short segment lengths and the low order filter.

Much of the original noise was removed, but the distortion was more noticeable than with

the two previous examples. Figure 4.7 is data from an impulsive source. The sampling

rate and time are also not mentioned. The segment length is 500 points, the filter order

is 20, and the noise was modeled with a 35' order AR model using 20,000 points of data.

A short segment length and low filter order were similarly required for this transient since

its characteristics changed quickly with respect to the sampling rate. This was generally

true for all of the transients we tested which were impulsively generated.

The amount of distortion caused by the filtering process depends, in general. on

how quickly the signal changes with respect to the sampling rate. The obvious implication

is that the short-time Wiener filter should be more effective with signals sampled at very
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high sampling rates. If the filtered signals are to have synthetically generated noise added

to them, as described in the next section, then the distortion is not a significant problem

since the added noise typically hides small amounts of distortion.

2. Results of Aural Testing

A subjective listening experiment was developed to see if human listeners are

able to distinguish between real underwater transient signals and synthetically generated

transient signals produced by the technique described in this thesis. The goal of this

experiment was to demonstrate that by effective use of noise modeling and noise removal

it is possible to generate synthetic transient signals which are indistinguishable from real

transient ignals. The experiment consisted of two parts and twelve individual tests. Part

one contained tests one through eight, which each consisted of listening to three signals:

two real transient signals in noise and one synthetically generated transient signal in

synthetically generated noise. In Part one each listener was asked to identify the one

synthetically generated signal for each of the tests. Table 4.1 indicates how the signals

were generated. The synthetic signals in tests 1, 5, and 7 were generated without first

Test Number Signal A Signal B Signal C
1* real w01 synthetic wxOl real wz=02
2 synthetic wzOl real wzll real wO1
3 real =z02 synthetic wz03 real w03
4 synthetic qzOl real qzO2 real qx03
5* real qzOl real qx02 synthetic qz03

6 real qzOl synthetic qz02 real qz03
7* real porpoise synthetic porpoise real porpoise
8 synthetic porpoise real porpoise real porpoise

TABLE 4.1: TESTS COMPRISING PART ONE OF THE SUBJECTIVE LISTENING
EXPERIMENT. The * indicates the tests with signals which were synthesized without
first removing the noise. The wz and qz signals are as described in Chapter II.
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removing the noise. The rest of the synthetic signals were generated by first removing

the noise, then synthesizing the transient, and finally adding synthesized noise at an

appropriate signal to noise ratio. Synthesizing some signals without first removing the

noise was intended to show the that noise removal and modeling improves the "realness"

of the synthetic signals.

Part two contained tests nine through twelve, which each consist of three real

transient signals in noise: one transient signal which is unaltered and two transient signals

which have the original noise replaced by synthetically generated noise. In Part two each

listener was asked to identify the signal which was unaltered. Table 4.2 indicates how

the signals in Part two were generated.

Test Number Signal A Signal B Signal C

9 original wxO1 filtered wxO1 with filtered wxO1 with
noise from qx03 noise from orca

10 filtered porpoise with filtered porpoise with original porpoise
noise from wzO2 noise from orca

11 filtered qz03 with original qxO3 filtered qx03 with
noise from wzO2 noise from wz02

12 filtered porpoise with original porpoise filtered porpoise with
noise from porpoise _ noise from porpoise

TABLE 4.2: TESTS COMPRISING PART TWO OF THE SUBJECTIVE LISTENING
EXPERIMENT.

All of the signals in tests 1, 2, 3, and 9 were generated from a common type of

source and noise background. Similarly, the signals in tests 4, 5, 6, and 11 are all from

the same type of source. The signals in tests 7, 8, 10, and 12 are all porpoise whistles

embedded in noise. Placing signals of the same class in each test was intended to give the

listeners the advantage of being able to compare the synthetic signals with real signals,

and possibly improve their scores. The tests were also designed to deceive the listeners

by selecting the signals in such a way that they are drawn to false clues, such as signal
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to noise ratios or other characteristics. For example, tests 2 and 3 each consist of two

real signals which sound different from one another along with a synthetic signal which

sounds very similar to one of the real signals; in test 12 the signal to noise ratio is varied.

This "trickery" is included in order to demonstrate that the listener is forced to resort to

clues which have nothing to do with whether or not the signal is real, thereby showing

the effectiveness of the synthesis. The synthetic signals for the tests were all generated

using the iterative Prony method [6], with a segment length of forty samples and a model

order of twelve. The synthetic noise in each test was generated with a 354 order AR

model of various noise sources. The filtered signals were obtained by using short-time

Wiener filtering with the filter parameters chosen to give the best sounding signals.

Of the 12 people who participated in the test, five are submarine officers, four

are professors at the Naval Postgraduate School with extensive signal synthesis experience

(one is also a former submarine officer), two are Navy sonar operators, and one is a P-3C

(an anti-submarine warfare aircraft) Tactical Action Coordinator. Table 4.3 lists the

results of the first part of the subjective listening test. The numbers in the table indicate

how many "votes" each signal received, with the correct choice indicated by the boxes.

Test Number Signal AJ Signal B Signal C
1* 0 11 1
2 6 2
3 11 W[ . 0
4 4W 6 2
5* 1 0 11

6 3 ill 8
7* 2 9J I
8 IIc 1 5

TABLE 4.3: RESULTS FROM PART ONE OF THE SUBJECTIVE LISTENING EX-
PERIMENT. The * indicates the tests with signals which were synthesized without first
removing the noise.
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Again the * indicates the signals which were synthesized without taking the effects of

the noise into account. Notice that these tests (marked with an *) received the most

correct votes, showing that traditional synthesis techniques can yield poor models when

background noise is present. With the noise taken into account in the synthesis process

and with well designed models the participants could not consistently tell the difference

between real and synthesized signals and frequently made wrong choices. In some cases

nearly every participant was deceived by the data (see the results from test 3 and 6).

Table 4.4 lists the results of the second part of the subjective listening Exper-

iment. Once again the numbers in the table indicate how many "votes" each signal

Test Number Signal A Signal B I Signal C
9 _1 0 3

10 6 1 5
11 8 I

12 5 Ii4 3

TABLE 4.4: RESULTS FROM PART TWO OF THE SUBJECTIVE LISTENING EX-
PERIMENT.

received, with the correct choice indicated by the boxes. The results of this part show

that it is possible to change the noise background of a signal (either by replacing the

original noise with a different type of noise or by replacing the original noise by the same

type of noise but with a different SNR) without destroying its "authenticity." In all but

one of the tests, listeners were unable to consistently identify any of the original signals.

It was expected that each listener would correctly choose the signals which were

synthesized without noise removal, yielding a potential minimum score or three. It was

further expected that, given good signal synthesis, each listener would randomly choose

the correct answers from the remaining nine tests, giving an expected score of three out

of the remaining nine. This yields an expected score of six. An average score higher than
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six would indicate that the signals were not convincingly real. An average score of less

than six would indicate that the listeners were drawn to false clues, thereby verifying the

effectiveness of the synthesis. The number of correct scores for the twelve tests ranged

from one to ten, with the average number of correct answers being 5.5.

Qualitatively, all of the participants expressed their difficulty in selecting the

correct choice. In many cases it came down to their "best guess." All of the participants

noted that the signals synthesized by removing the noise prior to modeling were superior

to those synthesized without noise removal.
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V. CONCLUSIONS

A. DISCUSSION OF RESULTS

Synthesis of underwater transient signals can be significantly improved if the ambient

ocean noise is taken into account in the synthesis process. The noise, which is typically

Gaussian, can be filtered from the signal using linear techniques. In particular, we

demonstrated that the Wiener filter, which is an optimal linear filter, can be effectively

modified for use in a "short-time" manner in order to filter stationary noise from a

transient signal. In order to make the short-time Wiener filter perform satisfactorily

a number of techniques were required to reduce the effects of distortion caused by the

filtering. The distortion is mainly due to the inability to obtain exact estimates of

the autocorrelation function for each of the short-time segments used in the short-time

Wiener filter while at the same time segmenting the data in short enough segments to

obtain a good approximation of stationarity. We found that in most cases a reasonable

balance can be obtained which yields useful results.

Finding a good model of the noise is important for at least two reasons. First, it

is necessary in order to remove noise from a real signal prior to analysis and synthesis.

Secondly, high quality noise models are essential to the formation of high quality synthetic

signals. We found that the AR model gave the best results in terms of simplicity of

computation, usefulness in the application of pre-whitening, and the best "sounding"

noise.

B. SUGGESTIONS FOR FURTHER STUDY

The results from this thesis lead to several interesting possibilities for future research.

These possibilities include:
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1. Training and testing artificial neural networks. We demonstrated that human lis-

teners are typically unable to tell the difference between real signals and synthet-

ically generated signals when the noise is taken into account in the synthesis pro-

cess. However, this may not necessarily be true for artificial neural networks, as

the filtering process may introduce false clues unnoticeable to humans which could

adversely affect training of an automatic classifier. The methods described in this

thesis should be applied to artificial neural networks to determine if the synthesis

is as effective as it is for human classifiers.

2. Real-time implementation. The short-time Wiener filter is non-causal and therefore

not strictly applicable to real-time processing. It could however potentially be

modified to work in a nearly real-time manner by applying the short-time method

described in this thesis to segments of data which are perhaps as long as several

seconds. For example, the filter could be used to remove the noise from two-

second segments of data. Each two-second segment would then be segmented into

sequences of perhaps 50 msec and filtered as described in this thesis. The output

of such a filter would be delayed by two seconds plus the processing time, however

it could potentially allow a human classifier to work at nearly real-time in a less

noisy environment.

3. Nonstationary noise models. The noise models we developed are stationary. This is

a good approximation for short duration signals but may be inadequate for longer

synthetic signals. Time-varying models should be examined since they may further

improve the authenticity of synthetically generated signals.

4. Non-linear filtering and modeling. Finally, since the data tested to have a Gaussian

distribution, the use of linear techniques is justified. Non-linear methods however
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could yield better results in the presence of known non-Gaussian noise sources.

These would have to be examined on a case-by-case basis
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