- » KEE? THIS COP OR ODUCTION PURPOSES
v Form Approved
: REPORT DOCUMENTATION PAGE o oo Q

Public reporting burden for this rolection Of iNtGrMatiIon 1t BSUMALEd 10 average | hour per resparse. Including the time Or 1EVIEwING INSTrUCLIONS. seafchiNg eaisting data sources.
gathening and maintaning the data needed. and completing and reviewing the (oHection of information Send comments regarding this burden estimate or any nther aspect of this

collection ot intormation, including tions 10r reducing this burden to Washington Headquarters Services, Directorate for iInformation Operations and Reports, 1215 Jetf@rson
LN Davrs Highway, Suite 1204, Arlington, VA 22202-4302. and t0 the Office of Management and Budqget. Paperwork Reduction Project (0704-0188), Washington. DC 20503
[1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1994 Final 25 Sep 92-31 Dec 93

N 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

] The Highways and Byways of Teaching ADA: Our Backyard

= Approach DAAL03-92-G-0414

EE T AUTHORD) i

g Edward Calusinski <

Tzilla Elrad
Thomas Grace

7. PERFORMING ORGANIZATION NAME(S; AND ADDRESS(ES) \

——

. PERFORMING ORGANIZATION
REPORT NUMBER

Chicago, IL 60616

AD-A281 661

Illinois Institute of Technolo%&

3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRE

U.S. Army Research Office
P.0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ARO 30997.1-MA

[77. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.
122, DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Ada is a modern language, for modern students that solve modern problems. Ada was

designed to be a language that promotes the goals of modem software engineering. It promotes
modifiability, efficiency, reliability, and understandability. Ada was also designed to support the

principles of modem software engineering. It promotes data abstraction, information hiding,
modularity, localization, uniformity, completeness and confirmability. Ada's original design chose
program readability over ease of writing. This attribute promotes code understandability, which

(continued on reverse side)

14. SUBJECT TERMS 15. NUMBER OF PAGES

ADA, Computer Science, Language, ADA Language,

16. PRICE CODE
Software Engineering

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

. Prescnibad by ANSI S1d ¢39-18
D-Ll’ T 198-102

" C G ¥ SPIOCND A ‘
94 %7 11 920¢ L .

helps prevent erroneous and error-prone programs. The Ada language supports separate
compilation units. This helps in program development and maintenance, which is helpful whea
developing large, complex software engineering projects. Given all the underlying features of
Ada, it is apparent that Ada is an excellent language to use when teaching students the principles

of computer science.

THE HIGHWAYS AND BYWAYS OF TEACHING ADA:
OUR BACKYARD APPROACH

FINAL REPORT

EDWARD CALUSINSKI
DR. TZILLA ELRAD
DR. THOMAS GRACE

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced

APRIL 15, 1994 Justification

ufr =%

By

Dist ibution|

U.S. ARMY RESEARCH OFFICE Availability Codes

. Avail and/or
Dist Special
30997-MA '

DRAL(03-92-G-0414 ﬁ'l

ILLINOIS INSTITUTE OF TECHNOLOGY

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

94—21246
L

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.

Table of Contents

6. Course Description of Classes that Incorporate Ada............

T, CONCIUSION.oeiieieiiiee e e et eeeeeeeeeceaeeeeeeeanens

The Highways and Byways of Teaching Ada:
Our Backyard Approach

BACKGROUND
The Illinois Institute of Technology is a private, medium-sized, coeducational university,

which offers undergraduate and graduate programs through the Institute of Design and six
schools and colleges: the College of Engineering and Sciences; the College of Liberal Arts; the
College of Architecture; the School of Business; the College of Law and the Graduate School.
The 120-acre main campus is located about three miles south of Chicago's Loop. The Computer
Science Department is part of the College of Engineering and Sciences which offers Bachelor of
Science, Bachelor of Arts, Masters of Science, Masters of Science for Teachers, and Doctor of
Philosophy degrees. The curriculum is software centered, which is attractive to all types of
majors. Our platform of choice is the IBM PC. This makes our program more interesting to
students who have majors other than computer science. This accounts for our large number of
students, with majors other than computer science, who enroll in our courses. IIT has an unique
situation in that we offer students an education through IITV (Interactive Instructional Television
Network). IITV is a live, talk-back television system that enables participating companies to offer
HT's educational programs to their employees at their places of business. The network links
classroom-studios on campus with receiving classrooms at industrial and business locations so
that employee-students can join IIT day and evening classes without traveling to campus.
WHY USE ADA

Ada is a modemn language, for modern students that solve modern problems. Ada was

designed to be a language that promotes the goals of modern software engineering. It promotes

1

modifiability, efficiency, reliability, and understandability. Ada was also designed to support the
principles of modern software engineering. It promotes data abstraction, information hiding,
modularity, localization, uniformity, completeness and confirmability. Ada's original design chose
program readability over ease of writing. This attribute promotes code understandability, which
helps prevent erroneous and error-prone programs. The Ada language supports separate
compilation units. This helps in program development and maintenance, which is helpful when
developing large, complex software engineering projects. Given all the underlying features of
Ada, it is apparent that Ada is an excellent language to use when teaching students the principles
of computer science.
OUR APPROACH TO INTEGRATING ADA

When we were first contemplating integrating Ada into our curriculum, we asked
ourselves the question, “Why is Ada not already integrated?”. We came to the conclusion that
one, the students and faculty had very little to no exposure or awareness of Ada. Two, the DoD
and DoD related industries are very limited in our area. Even though Ada is not just limited to the
DoD, our students would have little interest in learning Ada, if they could not apply it. Three,
Ada is very rich in its syntax, but our curriculum in the past has favored simpler languages like C,
Pascal, Lisp/Scheme which are thought to be "easier to leamn". Four; A large population of our
international students end up returning to there native countries. Most of these countries have
little or no use for Ada, which makes leaming Ada unattractive. We consider this a "backyard
approach". There is no real reasc'm for us to teach Ada, except we realize the capabilities and

powerful features that Ada possesses. Because we are not in the "mainstream" Ada community,

the acceptance of this becomes difficult. We are presented with the questions "Where do we
integrate Ada into are curriculum?" and "How can this be done given our current curriculum?”.
WHERE AND HOW TO INTEGRATE ADA

At first we thought of integrating Ada in our entry level courses. This seems to work well
for other Universities, but at IIT we felt that to incorporate the more advanced and best features
that Ada has to offer, we would need to integrate Ada at higher level. We based this on the fact
that most first year students are unfamiliar with the rigors of software development, and would
therefor under utilize its features and richness. Our curriculum is developed in small increments
due to the accrediting concerns, so a major change would set us back. Our second choice was to
develop a new sequence of software engineering courses around Ada. This was a better idea, but
our undergraduate curriculum is full and adding a new sequence might not attract the interest we
would need to maintain the courses. This idea also moves away from our objective of integrating
Ada. This idea would isolate Ada rather than integrating it. We finally came to the conclusion
that the best way for IIT to integrate Ada was to put it into our existing, and popular (i.e.
required) mainstream upper-division courses. We based this decision with the following things in
mind. This implementation does not require a "special audience”. Our students, once at the
junior or senior level, will be able to fully appreciate the richness of Ada. Also, there is a good

probability that Ada would migrate into more of our curriculum.

ACCOMPLISHMENTS
Identification and Acquisition of Resources.

¢ Substantial resources via FTP on Internet (code, documentation, etc.).

¢ Ada Tutor -- shareware; copies are available and distributed to students.

¢ LeamAda, by AETech, which is a tutoring system and Ada compiler available to
students on the IIT PCs

¢ A comprehensive manual "Getting Started With Ada" for the AETech software which
includes the ANS/MIL-STD-1815A Ada Reference Manual.

¢ Additional Ada literature developed by the Teaching Assistants which has helped
support course development and Ada integration.

¢ We have hired and additional part-time instructor to teach Ada.
¢ A 16 week Ada course available on video tape (VHS format).

COURSE DESCRIPTION OF CLASSES THAT INCORPORATE ADA

CS440: Programming Languages and Translators.
This course is a general introduction to theory and structure of languages. It covers
several programming paradigms (imperative, declarative, object-oriented, functional, etc.) There

has been a substantial amount of material added regarding Ada, especially:
rich syntax
generics
types and type checking
overloading
proposed Ada9X features

The integration is included in the lecture material, homework and class exercises, examination

topics and questions.

CS450: Operating Systems.
This a standard undergraduate course on operating systems. Its topics include CPU

scheduling, process management, memory management, file systems, multitasking, concurrency,
synchronization, security, etc. Ada is now the base language for this course. This is, of course,

especially important because of the Ada tasking model. Materials developed include examples in

lecture, exercises, and examination materials. Students are strongly encouraged to submit
programming assignments in Ada (although, for symmetry with our other courses, a choice of

languages is provided).

CS495: Safety Critical Software Engineering With Ada.
This course provides an in-depth examination of the principles behind development of

software intended for use in critical situations. Such situations include air-traffic control, medical
applications, defense weaponry, space exploration, etc. This course also emphasizes testing,
maintenance and reusability of code. Ada is the only language used in this course. Extensive

programming experience in Ada, emphasizing more advanced features, is provided.

CS545: Concurrent Programming.
This is a graduate course, but it is available to undergraduates with an advisor's approval.

Intensive examination and comparison of the various language testing models and there richness
of support for concurrency, especially in real-time systems. Ada is the base language for this
course, and extensive programming experience in Ada is provided. Ada9X issues are also
explored including protected types, asynchronous transfer of control, mutual control, race

conditions, etc.

CONCLUSION
We believe that our approach is fairly novel. We have not tried to duplicate efforts of

other educators to develop CS1 or CS2 courses based on Ada. We have not tried to develop and
*Ada Track" of courses. Instead, we are integrating Ada into the very core of our undesgraduate
curriculum, where Ada can be used to its fullest potential. By implementing this "backyard”
approach to teaching Ada, we have been able to break the trend of other successful institutions by
implementing Ada at a higher level. We have been able to take advantage of all the features that
Ada has to offer, from the most basic to the most advanced. By doing this, we are able to teach

modern day concepts, using a modern day language, in the comfort of our own backyard.

APPENDIX A

CS450 OPERATING SYSTEMS COURSE

SYLLABUS AND ADA LECTURE NOTES

A-1

Textbook

Abcaham Silberschatz, James L. Peterson, Petor B. Galvin
“Openting Systom Concepts®, Addison-Wealcy, third edition, 1991, Part 1, Chapters 1,2 and)

References

® Andrew S. Taneobaum
"Modern Opersting Systems®, Prentice-Hall, 1992, Part 1, Chapter 1
@ Jean Bacon

“Concurrent Systems - An Integrated Approach to Operating Systems, Database, and Distributed Systens”, Addison-Wesley, 1993,
Chapter 1 (1.1.1, 1.1.3) and Chapter 3 3.2 -3.9)

£

To present organization of the course

To review history and evolution of the computer and operating systems
To explain the notion of the operating system

To discuss computer system structures

To discuss operating system structures

clelelelc]

Content

® Content of the course
® History, Evolution, and Philosophy of Operating Systems (3 hours)

Organization of the Course

@ Course Syllabus (example in the sppendix)
® Overview of the Course Material
@ Overview of the First Lecture

History and Evolution of Operating Systems

@ First genoration (1943 - 1938)
Vacuum Tube and
First true digjtal computer - Charles Babbege (1792 - 1371) (unsuccessful)
Howard Aiken (Harvard University), Jobn von Neumann (Princeton University), J. Presper Eckert and William
Mlnehlcy(lluvuuyoﬁ’mylm). Konrad Zuse (Germaay), all succeeded in building calculsting machines using
vacuum tubes

O hoge
O slow
O machine language
® wiring up, phigbosrds fo control the machine's basic functions
@ programming languages sad ssambly language (unknown)
O operating systems (unheared of)
® mode of operation: sign up for & block o€ time
@ introduction of punched cards instead of plugboards (1950)
® Second generation (1955 - 1965)
Transistors and batch systems
O off-line operation
O batch systenss
® control cards - modem JCL and command intetpreters
@ special program (the ancestor of today's operating system) (Fortran Monitor System - FMS and IBSYS - IMB
7094)
® Third generation (1965 - 1980)
Small-scale i

Comnrsm
O buffering: overlapping the O of 2 job with its own computation (1'O-bound and CPU-bound jobs)
CDspoolq(SmhaumphenlOpamonOnunc) one program might have been executing while
O occurred for other jobs

® Fourth Generation (1980 - 1990)

Personal Computers

O LI circuits
O workstations

® highly interactive computing power with excellert graphics and user-friendly software (MS-DOS,0872,
O network and distributed operating systems

Traditional Operating Systems
hhmmwmmmmmmmwwmmnu@em
Centralized systems: single CPU, its memory, peripherais and some terminals

Distributed Operating Systems

may be networked together, making distributed operating systems more important
In mid 1980«
(Ddevelopmeﬁofmfnlm
Wwwmmm)

Moderm computers: ane or more processors, main memory, clocks, lerminals, disks, network interfaces and other VO devices
O tightty-coupled systems: processors share memory and & clock
@ loosely-coupled systems: each processor has its own memory
Real-Time Operating Systerns
Processing nwst be done within the defined constrainty

Computer System Structures
@ Older systems - data transfor under the CPU control - busy walting
""'m""”;’."' bengfit from the overlag of CPU and /O operations U mechanism needed 10 allow synchronization of operation U

polling
@ vectored interrupt system

Main Memory
@m’m m%o, with Bamwry Cantrolier
| wm @ VO epemtion O o disk)
Progzam 0 serumes e amcution

C t

Figure 1.1. Example of the interrupt-driven data transfer

® direct-memory-access (DMA) data transfer
During the transfer the disk controller is transfering data to or from memory st the same time as the processor is fetching
instructions from memory and reading and writing data operands in memocy. The memory coatroller ensures that only one of
them at once is making a memory access. The disk controller may acoess memory between an instruction fetch and a data
sccess which is part of the instruction exccution; this is called cycle stealing. DMA slows down the rate st which the processor
execute instructions.
High speed 10 devices
DMA Controller
Transfer of an entive block of data
1o (or from) its ovwn buffer
from (or t0) memory
directly (no intervention by the CPU).
One intevrupt per block

Figure 1.2. DMA countrolier

Operating System

Find a way ¢ shield from the complexity of the hardware:
Top\nnhy«ofsonwmontopoﬂhcbmhmlmtom
or virtual machine that is easier to understand and program.

Kuptnekofmywreqwasnﬂ»mﬁmc

Device-Status Table with Request Lists

all parts of the system and present the user with an interface

@ System call (program

)
Put 1/O request ingo the request list (OS)
Return control to one of the programs (OS)
Computstion (program)
Intervupt (device - hardware)
1dentify the source (OS)
Index Device-Status Table (read or modify the entry) (OS)
If this is completion
Intecrupt Service Routine (OS)
Start new job from roquest list (if aary) (OS)
Return control 1o one of the programs (OS)
® Computstion (user program)

o
o

REQUEST REQT KT
~gevice st |
Which precess? Which paocess?
Addrese Addvese
Length Length
Operation
Ale

cIc)

Incressed problems
WO-N&-MNMM
Al errors ssust be dotocted
-bym(wm © trep,.....)
Modss of operation
O user mods
® monitor (supervisor, system) mode
Trap or interyupt
weer mode © monitor mods
Afier finishing its job OB switches from
monitor tmode © user mods
SmndhstWOnﬂuM

e

clclelclelelelelclcle]

iclelelclc] elciclele)

clelelelelele)

tirner

@ 10 prevent infinits loops of never returning control 10 OS - fixod-rate clock and coussier; OS sets the counter @ clock
increments it © zero generates o interrupt

@ time-sharing - OO

Q@ current time

halkt

Operating-System Services

System Calls

System Programs

Operating System Structures
@ design requires partitioning into smeller pisces @ carcfully dosigned input, output, fanctions

systam
Process menegement

Systom activities
Procos - pregram in execution
Program is paisive entity
Process is gctive entity (PC specifies next instruction to be executed)
System and user processes
Input: CPU tims, seemory, files, VO devices
Functions: 1. Crestion (deletion) of the process
l&w(m)dﬂm
3. Synchronization

4. Comammication
5. Deadiock handling

Main-memory

managoment
Main memory is & largs arrsy of words or bytes addressable and quickly sccessible
Instruction-fatch cycle reads imstructions
Deta-fatch cycle reads or writes data
Program OB @ 10aded to sbeolute addresscs into the main memory
Meamory-management schemes % hardware support
Functions: 1. Bookkeeping (what is used and by whom)

2. Who will be loaded into available space

3. Allocate and deallocate memory space

management
Functions: 1. Free-space management
2. Storage allocation
3. Disk scheduling

1O system management

Functions: 1. Buffer-caching system
2. General device driver interface
3. Drivers for specific hardware devices
managoment
Information can be stored in several different physical forms: magnetic disk, magnetic tape,...
Logical storage unit (file) @%0 Physical storage unit
Fanctions: 1. Creation (deletion) of file and directories
2. Primitives for the manipulation of files and directories

3. Mapping files onto secondary storage
4. Backup on stable storage modia

Protection system

Memory-addressing hardware
Controlling access to resources by means of specification
Controlling access to resources by means of enforcement

Networking

Dwmmdoamtmmycdod

Part of the keme! (DOS) or running when job is initisted

Textbook

Abraham Silberschatz, James L. Petarson, Peter B. Galvia
“Operating System Concepts®, Addison-Wesley, third edition, 1991, Part 2, Chagter 4 (4.1, 4.2)

References

(¢

Andrew S. Tancnbeum
*Modem Operating Systems”, Prentice-Hall, 1992, Part 1, Chapter 2 (2.1)
Joan Bacon

WW-MWW”MMM.‘MW.MW&% 1993,

Goals

C)

@ To present the concept of the process

O To give examples of process partitioning

® To discuss and explain process state model

@ To discuss solutions used in sctual opersting systems

Lecture Two

Process Concept
Ndna)dhcm(pbm-crm_-ﬂwb

o

unit of work ia a system
(operating) syviem procosses
UBEr Processes
active entity @ program in execution (with s program counter specifying the next instruction to cxecuts)

O program code

e eeeeei

cle)

current activity
stack (subroutine parameters, return addresses, temporary variables,...)
data section (giobal varisbles)

Defined by the resources it uses and by the location at which it is executing.

i

systom processes
USer processes
CPU-bound processes
1/0-bound processss
soquential processes
emoution of a process must progroes in & sequential fashion

processes
ewecution of & process may progress in s parallel fashion
reasons for allowing concurrent execution
O resource sharing (physical and logical)
® computation speodup (if there are multiple processing elements)
O modularity

O convenience

oconcurrent

independent processes
camnot affect or be affected by the other processes executing in the system
@ state is not shared
® deterministic execution (depends solely on inpt)
@ reproducible execution
@ can be stopped and restarted (no ill effects)
cooperating processes
can affect or be affected by the other processes executing in the system
® state is shared
® resukt is unpredictable (depends on relative execution sequence)
Q ll o s e »
heavyweight processes (tasks with one thread - UNIX)
lightweight process 3 (threads - basic unit of CPU wtilization)
task is an environment in which threads
threads share: Ocode
Qaddress space
@OS resources less expenssive context switches
threads own: Oregister space
Ostack

Threads can be supported by:
O Komel - set of system calls (Mach, 082)
O Above the kemel - set of Library calls st the user level (Andrew)

Lecture Two

Lecture Two

Process Model

Figure 2.2. Process State Model
O Process states (names are arbitrary and vary from system to system)
submit
hold

ready @ waiting to be assigned to a processor
running @ instructions are being executed
waiting @ for some event to occur: 1O completion
complete

Implementation of Processes
Data structures
® Process (Task) Control Block (record)
O state

O pointer
Q@ program counter (PC)))
gcrt.lregmnl'D (accumulstors, index registers, stack pointers, general-purpose registers)
process
G ' ll- ﬁ 0
Mme
other scheduling parameters
O memory-management information
Page Table Base Register,...
@ accounting information
CPU time used,
real time used,

Lecture Two

O 1O status information

autstanding 1/O requents,

O devices allocated 1o this process,

list of open files,...
O identity of children processes

® EXAMPLE - some of the more commeon ficlds presented in UNTX

Process Mapagement Memory Management File Manasewment
Registers Pointer (0 text segment UMASK mask
Program counter Pointer (o data segment Root diroctory
Program status word Poigter 10 bes segnent Working divectory
Process state Signal status Effective uid
Time when process started Process id Effective gid
CPU time usod Parent process System call parametors
Childron's CPU time Process group Various flag bits
Time of next alarm Real uid
Message queus pointers Effective uid
Pending signal bits Real gid
Process id Effective
Various flag bits Bit maps for signals

Various flag bits
@ EXAMPLE - high-level language (Ada) description of the process descriptor stracture

type STATE ts (SUBMIT, HOLD, READY, RUNNING, WAITING, COMPLETE),
type DURATION fs mew REAL:
type ADDRESS Is secess LONG_INTEGER;
type PCBia
record

- process management
PROCESS_ID: INTEGER;
PROCESS_STATE: STATE;
PC: LONG_INTEGER:
ACC: LONG_INTEGER;

- and other registers

SP: ADDRESS;
MESS_QUEUE: ADDRESS;
CPU_TIME: DURATION;

- ele

-~ memory management
TEXT_SEG: ADDRESS;
DATA_SEG: ADDRESS;
- oc
- file management
ROOT_DIR: STRING(1..256),
WORK_DIR:STRING(1..256),
FD: ADDRESS;
- etc

end record;

@ The procedure of saving the state of a process and setting up the state of another is called comtext switching. The instructions that are
executed in performing these operations and the frequency at which context switching happens are an overhead st the lowest level of
asystem.

Functions
@ The creation and deletion of processes
@ process creation
via submit OS creates new processes for a job
ﬁacrmwm,yﬂmuﬂ(dmﬁaﬂydﬁuhemﬁm&m)mm
O creating processes: parest
@ created processes: children (UNIX: copy of the address space of the parent)
children may creste their children
resources: inherited from parent or directly from OS O overloading
execwtion: parent concurrently with children or parerst waits umtil all children terminate
® process tenmination
viammimté_pvmnsylmall(d\chlmnmmen)
return dsia to parent procoss
@ ask OS 10 delete process

iclelele]

vumo_p'ma

Lecture Two

mun(amm*mwbm«m)
excoeded usags of resources

task sssigned to the child is wo longer required

w-wommmwua(mala-m

@ ncoded information
ID of the children processes
state of the children processes
The suspension and resumption of processes
The provision of mechanisms for process synchronization
The of mechaniems for process conmmunication

Textbook

Abraham Silberschatz, James L. Peterson, Peter B. Galvia
"Openating System Concepts”, Addison-Wesley, third edition, 1991, Part 2, Chapter $ (5.1 - $.4)

References

® Andrew S. Tancobaum
o “Modern Operating Systoms®, Prentice-Hall, 1992, Past 1, Chapler 2 (2.2.1 - 2.2.9)
Jean Bacc
MWM7,W-MWAMBM' Systems, Detabase, and Distributed Systems”, Addison-Wesley, 1993,
Narain Gehand
*Ada: Concurrent Programming®, Silicon Press, 1991, Chagter 2

e

o Tomwmaqmnthhwd‘hm

@ Tostate the problems of the coordination and synchronization of concurrent activities
@ To analyze some of the programming solutions to the critical-section problem

@ To discuss hardware support for synchronization

Content

® Tasking and Processes (1 bour)
o uwSynanSuppmwammy
® Process Coordination and Synchronization (2 hours)
® The Critical-Section Problem
® Synchronization Hardware
® Semaphores

Language System Support for Concurrency

® Concumrent systems built from sequential programs with system calls

"Each unit of the concurrent system may be & single sequential process and the operating sysiem may provide systew calls to allow
interaction with other processes in addition (o sysem calls for roquesting operating system servios.” *A major problem with the
approach is portability of the concurrent system. The processes have made use of an operating systemn interface (a number of system
calls) that has been provided to allow interactions between processes. If the system is 10 be able to run on anry other operating system
it is nocessary for the same interface to be present. Syntactic differences can be allowed for when the code is ported, but semantic
differences between operating systems are likely to occur in this area.” Jean Bacon, “Concurrent Systems - An Integrated Approach
1o Operating Systems, Database, and Distributed Systems®, Addison-Wesley, 1993, p. 166

® Coroutines (Modula-2, BCPL)

il
1
i

pnvucdnu(mdut)

instructions to creste and delete a coroutine

instruction to suspend coroutine execution temporarily but retain its state
instruction to pass coatrol explicitly from the suspending coroutine 10 another
instruction to return control to the caller

coroutine activations must be scheduled at the user-level

single thread of coatrol

no poesibility for immediate response

transfer of control between coroutine activations invotves very little overhead

ielcielclelclelele]

® Operating system supports one process for one program: The processes within the program are managed internally by the
language runtime system which effectively re-implements a process scheduler. The application programmer does not have to
program the transfer of control between the language-level processes. Problem: if language-level process makes a system call to
the OS to do /O and becomes blocked then no other subprocess in the program can run.

® Operating system recognizes subprocesses defined in a program: They become operating system processes (and may be called
threads) and are scheduled by the operating system to run on processors concwsrently.

@ Ada Tasking Model
Tasks become active just prior to the first executable statement fcllowing the declarations in an unspecified order. Task is completed
after the execution of its body or if the exception is raised for which a handler has not beea provided A task terminates if its
execution is completed and all its dependent tasks have terminated, or if it is waiting at a termimate alternative and all of its
dependent tasks have terminated, there are no outstanding entry calls, its master has completed execution, all dependent tasks of the
master have either terminated or are waiting at a terminate afternative.
® Task specification
task [type] identifier [s
entry declarations
{representation clauses) O associating interrupts with entry calls
end identifier J;
® Task body
task body identifier b
declaration
begin
sisicments
| exception
exception handlers }
end identifier,
® Entry declarstions
Rendezvous: matching accept statements
Associated with each entry of & task is a queue where all newly arriving entry calls are inserted and accepted by the
task in FIFO order.
entry signal; O synchronization
entry set(T: in duration);
entry read(C: out character);
eatry request(IDYD: in out data): O family of entries; ID is discrete type: IDFIRST .. IDLAST

sccept signal;

secept 1e4(T: In duration) do
period .= T;

end set;

accept request(ID)(D: in owt dats) do
- statements
end roquest,

QO Eatryclls
calling task blocked while waiting for the call to be accepied and for the durstion of rendezvons
wqx);
sem.signal,

O Select statement
select
{ whea conditionl =>] skemativel

A seloct alternative can have one of the following fonms:
scoopt_statement; [statemeonts)
O deluy t; [statements)
O termingts;

Process Coordination and Synchronization
@ Potential concurrent exacution of
® Mechanisms for orderly execution

U] Enmpleohhemllymm - Producer-Consumer Class of Problems
A produces process produces information that is consumed by a consumer process. To aflow concurrent execution, buffer must
be created to be filled by the producer and emptied by the consumer. Buffer may be unbounded or bounded.

print program characters printer driver
compiler aasembly code assembler
sasembler object modules loader

@ Erroncous solution of the bounded-buffer producer-consumer problam

procedure PRODUCER_CONSUMER &
N: constant INTEGER raage 0..1 :~ 1000;
L O: INTEGER range O.N-1 :=)
COUNTER: INTEGER := 0;
- shared variable for two tasks - mutually exclusive access is necessary!

BUFFER: array INTEGER range 0..N-1) of ITEM;
- synchronized sccess is necessary!

task PRODUCER;
uuymooucsu

begin
loop

ound Joop
ond CONSUMER;

begin
il
end PRODUCER_CONSUMER;

A critical section is & sogment of cods in which the process may be changing common varisbies. A solution 10 the problom must sstisfy the
following requirements:
O pwstual exclusion
O progress:"If no process is exocuting in its critical section and there exist some processes that wish 10 enter their critical sections,
then only those processes that are not executing in their remainder soctions can participste in the decision as to which will euter
its critical section next, and this selection cannot be postponed indefinitely.” A. Silberschatz, J.L. Peterson, P.B.
Galvin:"Opersting System Concepts”, third edition, Addison-Wesley 1990, p. 134
@ bounded waiting

Two-process solutions
(® First solution (erroncous)

procedure ALGORITHMI &
TURN: INTEGER range 0..1 := 0;

task PO;
task body PO is
begin

while TURN <> 0 loop aall; end Joop;
-~ critical section
TURN:=1;
- remainder section
end loop;

end PO;

task P1;
task body Pl s
begin

while TURN < 1 loop nall; end loop;
- critical section
TURN :=0;
~ remainder section
end loop;
end P1;

begin
il
esd ALGORITHM]);

The execution sequence which does not satisfy progress requirement:

1. TURN is initially 0

2 T&Pomdmmamdmudmmhl

3. Task Py is interrupted in its remainder section

4 Tﬂ?lmﬂmmwm:dmwmho enters and exists its remainder section and wishes to enter its critical
section again

S. Task Py has to wait akthough task Py, is in its remainder section, because TURN is 0

@ Second sohstion (ervoneous)

procedure ALGORITHM2 b
FLAG: arvay (INTEGER range 0..1) of BOOLEAN :~ (FALSE, FALSE),

task PO,
task body PO s
begin

loop
FLAG(0) := TRUE;
whille FLAG(1) loop null; end loop;
~ critical section
FLAG(0) := FALSE;
- remainder section
oad loop

end PO;

taak P1;
tack body P1 ks
begin

locp

FLAG(1) := TRUE;
while FLAG(O) loop null; end loop;

— critical secth

FLAG(1) := FALSE;
-~ remainder section
ead loops
end PY;

begln
woll;
end ALGORITHM2;

mmwmmuummam%ur, in their respective while statoments:
Taak Py is inserrupted afler assigning TRUE to FLAG(0)

1. Tuk?l is interrupted after assigning TRUE to FLAG(1)
3. Both tasks may proceed now but they will endlessly loop within their whille statements

® Third solution
procedure ALGORITHM3 s
TURN: INTEGER range 0..1 :=0;
FLAG: array (INTEGER range 0..1) of BOOLEAN := (FALSE, FALSE),

task PO;
task body PO §s
begin

loop
H.AO(O);TRUE,
while (FLAG(1) and TURN = 1) loop nall; end loop;
- critical section
FLAG(0) = FALSE;
- remainder section
end loop;

end PO;

task P1;
task body Pl s
begin
Toop
FLAO(I);TRUE.
while (FLAG(0) and TURN = 0) loop null; end loop;
- critical section
FLAG(1) := FALSE;
~ remainder

saction
end loogs
end PI;

begin
il
end ALOORITHMS;

Multiple-precess selution
@ Bakery algorithm

Synchronization Hardware
@ Disallow interupts
@ Atomic swscution

O mx_ond st

O o
Semaphores

wait(s) (or F(9)): while s © 0loop null end loop; 8 =5 -1; (modify without busy waiting)
signal(s) (or V(s)):: 9:=s+ | H

Py 8
gy
Py :;.n(lwd);

® mutusl exclusion
Toop
wait{mutex);
T ctical secti
signal(musex),

ond loop;

section

.mmmmwwommmmmmmmoom)

Lecture Four

Textbook

Abraham Silbarachatz, James L. Peterson, Peter B. Galvin
“Opersting System Concepts®, Addison-Wesley, third edition, 1991, Part 2, Chapter 5 (3.9 - 5.7)

References

@ Andrew S. Tanenbeum
o WW.MM 1992, Part |, Chapter 2(2.26-2.2.9,2.3)
“Concurreni Systems - An Integrated Approach (o Opersting Systenw, Database, snd Distributed Systenss”, Addison-Wesley, 1993,

Chagpters 10 -12, 14

To analyze solutions to some of the clasical problems of synchronization

To discuss main concepts of scheduling

g e:eee
]
2
a

@ Process Coordination and Synchronizstion (2 hours)
® Classical Problems of Synchronization
D Language Constructs and Interprocess Commiunication
® scheduting (1 bour)
® Concepts

Lecture Four

end loops
end CONSUMER;

task BUFFERING s
entry PUT(X: in ITEM),
sntry GET(X: out ITEM),

end;

task body BUFFERING Is
N: comstant INTEGER range 0..1 := 1000;
L, O: INTEGER runge O.N-1 =),
COUNTER: INTEGER

=0
mmmmpoxn)d ITEM;

begin
loop
whes COUNTER <N =>
accept PUTCX: In ITEM) do
BUFFER(D) = X;
end;
I=(1+1)modN;
OOUNTER := +1;
o«
when COUNTER > 0 =>
sceept GET(X: owt ITEM) do
X = BUFFER(O)
end;
O0=(0+1)modN;
OOUNTER = -1
end select;
end loop:
end BUFFERING;
begin
L]
end PRODUCER_CONSUMER;

M Ada 9X solution (8. Tucker Talt: "Ade 9X: A Technical Summary”, CACM, Novembar 1992, Vol 35, No. 11)

type MESSAGE_TYPE s private;

package MAILBOX_PKG &
type MESSAGE_ARRAY Is array(POSITIVE range <) of MESSAGE_TYPE:
protected type MAILBOX(SIZE: NATURAL) s

Lecture Four

mwmm-m_ﬂmmowm<m-
beghn
CONTENTS(PUT_INDEX) := MESSAGE;
PUT_INDEX = PUT_INDEX meod SIZE + I:
COUNT = COUNT + I;
end PUT;

quET(MESSAOE:ﬂMESSAGE_TYPE)MWN’I‘>Ob
begin
MESSAGE :~ CONTENTS(GET_INDEX),
GST_INW:-GET_NDEX-‘SIZE+I:
COUNT := COUNT - 1;

LENGTH: NATURAL := 0;
DATA: STRING(1..80);
end record;
pockage LINE_BUFFER_PKO b
asw MAILBOX_PKG(MESSAGE _TYPE ~> LINE);
LINE_BUFFER: IJNE_BUH'SR_PKO.MAH.BOX(SIZE =>20)%

task PRODUCER;
task bedy PRODUCER bs
L: LINE;

for 1 1..100 loop
TEXT_IO.GET_LINE(L.DATA, LLENGTH),
LINE_BUFFERPUT(L),
oud loopt
end PRODUCER;

taak CONSUMER;
task bedy CONSUMER b
L: LINE; C: NATURAL;

for 1a 1..100 Josp

_BUFFER.GET(L),
TEXT_IO.PUT_UINE(LDATA(1.L.LLENGTH))
C = LINE_BUFFER COUNT(L)
if C> LINE_BUFFER /1 them
TEXT_IO.PUT _LINE("Buffer const now=" & INTEGERTMAGE(C)X
oud I
end loopt
end CONSUMER;

Lecture Four

beghn
iy
ond TEST:

The Readers and Wrilers Predlem
mwm
with TEXT_IO; wse TEXT_I%
DINING

procedare |]
pochnge 10_INT s uow INTEGER_JO(INTEGERY), wse JO_INT;
-wplbbm:npl..’;

task type PHILOSOPHER &
entry GET_ID(): fn ID):
«nd PHILOSOPHER;

sk type FORK b
eniry ICK_UP:
sntry PUT_DOWN,

ond PORK;

T srvay(ID) of PORK;
P: arvay(ID) of PHILOSOPHER;

ME, LEFT, IGHT: ID;
UIFE_LIMIT: comstont 100_000;
TIMES_EATEN: INTEGER == 0;

MOE'T_IIXJ:hD)hH:-J;dOE‘I'_n
LEFT := ME, RIGHT = MEmed S + |;
-hrm_uum-m_mm

THINK;
W_un POIGHT).MICK_UP,
GHTL.PUT DOWN; FLEFT).PUT_DOWN;

TIMES_EATEN := TIMES_EATEN + 1;
end loops
end PHILOSOPHER;

task body FORK s
hegn
loop

secept PICK_UP; aceept PUT_DOWN;
o
]
nd selact;
ond loopt
ond PORK:

for K i 1D toop N(K).GET_ID(K ond boogs
end DINING:

The Siseplug-Rarber Problom
WWMWW

® Conditional Criticel Regions
wwuumu
@ shared dats is only acossed from within a critical region
® aritical regions arc antered snd St correctly by processss

3"‘.............:.,.-.,..

© sregin
* mmwmwmwu

Lecture Four

® Monitors

A eaonitor has the structurs of an abstract deta object

O Encapsulated data are shared

@ Each operation is exscuted under mutual exclusion

@ Process may delay itself on condition varisble

Syatax:

menitor nams s

ey procedures <list of procedure names visibls externally>
veriable declarations and initiskizetion of values
extarnal proosdure declartions and bodies
isternal procedure declarstions and bodiies

Baders now have mutual exclusion
Can I precesd s eparais on the shared daida o must Iblock?

Figure 4.2. Condition synchronbzstion under cxclusion in & moniter proceduye

Lecture Four

MONITOR MONITOR IMPLEMENTATION
[B . 1 Processes Moched on condvl
§ Or-cmn uual.“uu-vz‘. avl
‘ m““"l; -------------...J
Precessas blochnd on cond 2
.
condv?
=,] e
[© =potential delay
Figure 4.3. Condition varinkhie quencs
MONITOR MONITOR IMPLEMENTATION
f Precasses bloched on cond-vl
e | [| e {ZHEH]
WAIN(cond-vi) H
Gy -
The signal fi b 4
5 —] || Bt

Figure 4.4. Signalling » condition variable

Who will be blocked after the SIGNAL operation?

signalling process: signalling process will be put at the head of the monitor wait queue O monitor data must be in a consistent
state before 8 SIGNAL is executed

o signalled process: transfer the signalled process from the condition variable queue on which it is waiting to the head of the

queue of processes waiting to enter the monitor

@ Path Expressions

Scheduling Concepts

multiprogramming ® maximize CPU utilization

throughput ® amount of work accomplished in a given time interval

cater the system O job queue (on mam storage swaiting allocation of main memory) U enter the main memory O
ready queue U running *3 request of 1O U device queue

Lecture Four

Separate (sequential) execution

Figure 4.5. Benefits of the parallel execution

Select processes from various scheduling queues
® long-term scheduler (job scheduler) ® may not exist
Job queue is on the mass storage device
Chooses a small subset of jobs submitted and lets them into the system
Creates processes
Assigns some resources
Requiraments: executes less frequently
controls the degree of multiprogramming (if stable same rate of creation and deletion)

good process mix (1/0O-bound and CPU-bound)
@ medium-term scheduler
Swapping
Partially executed queue ® secondary memory
Requirements: improve the process mix

reason - change of memory requirements
® shortierm scheduler (CPU scheduler)
CPU scheduler manages ready queue
When CPU scheduling takes places?
O running statc ® waiting state
Ex 1O request, wait for termination of the child process
process is blocked O another should be selected
O running state @ ready state
Ex iterrupt (time-out,...)
after OS services (interrupt routine,...) finish their job © another process (possibly the same)
should be selected for execution
O waiting state ® ready state
Ex completion of VO
O running state ® complete state
Process consists of a cycle of CPU execution and IO wait
@ CPU-bound process
@ 1O-bound process
Functionali
1. Choose a process for execution from ready queue
2. Call dispatcher to do the physical assignment of the job to the processor
ready queue (main memory)
assigns processor 1o a process: which, when and for how long?
Requirements: executes very ofien @ must be very fast
statistics on CPU-burst - /O-burst cycle may be important in selecting an algorithm @
expectations: a very large number of very short CPU-bursts

Lecture Four

overhead is smaller, simple, cazy Lo implement, may be reasonabls for dedicated
sysems (ex. database systems) where master process knowe how long child will

o
proemptive achoduling ‘
mwtu!bnmmdym(mhdh)
waiting to ready state (completion of LO)
circumstances may be changed and mors appropriste decision made
context switch
saving the state of the old process
loading the saved state for the new process
context-switch time (@ pure overhead) depends on
Bardware

switching context

switching t0 user mode

jumping to the proper location 10 restart the program
Criteria selection defined according to the relative importance of these measures
GEPU utifization (% of time when CPU is busy)
Ghroughput (number of proceses per time unit)

|

S —)
R N~]

cmuu-IT_l?. | R ! B Ii!;l

CPU utilization = 36 % throughput = 0.4

Figure 4.6, Difference between two comparison criteris
Curnaround time (time of completion - time of submission)
Owaiting time (in ready queue) minimize
Cresponse time (time of first response - time of submission)
or
optimize the min and max values rather then average
or

optimize average measure
or

O faimess (make sure each process gets its fair share of the CPU)
* Any scheduling algorithm that favors some class of jobs burts anothes class of jobs.",

Lecture Four

Kleinwock L.: "Queuing Systems®, Vol. 1, John Wiley 1974
Evaluation

@ analytic evaluation
Calgorithon O parformance for thet workload

Deterministic modelling - predetermined workload
ing modelling (queuing-nstwork ualysis)
O measure distribution of /O and CPU burss
@ wrival rates
® service rates
O sinwlstion (programming s model of the comiputer systam)
O dock = variable
@ clock value increased O system state modifiod 1o reflect the activities of the devices, the
and the scheduler
statistics of algorithm performence
@ random number generator (for events according 10 the probability distributions) or trace
tapes
o.

Analyze the rea} situation of CPU utilization taking into account time for O8 interverstion

Lecture Five

Textbook

Abraham Silberschatz, James L. Peterson, Peter B. Galvin
“Operating System Concepts”, Addison-Wesley, third edition, 1991, Part 2, Chapter 4 (4.4 - 4.7), Chagter 6 (6.1 - 6.2)

References

® Andrew $. Tancobaum

o “Modem Operating Systems®, Prentico-Hall, 1992, Part 1, Chapter 2 (2.4), Chapter 6 (6.1 - 6.2)
Jean Bacon
“Concurrent Systems - An Integrated Approsch to Opersting Systoms, Database, and Distributed Systems®, Addison-Wesley, 1993,
Chagler 6 (6.6 - 6.8), Chapter 16 (16.1 - 16.5)

Goals

@ To snalyze some of the existing scheduling sigorithms
® To prescnt different evaluation techniques

@ To introduce the concept of desdlock
Content

U] smm;mdmmam
Scheduling Algorithms and Their Evalustion
U] De-dlodu(nmr)
System Modelling
® Deadlock Characterisation

Lecture Five

Scheduling Algorithms and Their Evaluation

Algorithms
O First-Come First-Served (FCF$)
FIFO queue
O incoming ready process is linked onto the talll of the ready queus
O CPU i allocated 10 the process st the head of the ready queus

Averags waiting tims is long
Convoy efiact Ex one CPU-bound procsss and many 1/0-bound processes

Noapreemptive
O Shorteat-Job-First (SIF)
O Criteria
O process with smallest next CPU-burst

O tie - FCFS
@ Provably optimel (minimum sverage waiting time)

Figare 5.1. SIF - Optimal Algorithm

@ Problens
How can CPU know the length of the next CPU-burst interval?

O betch systems
@ job scheduler
@ Exponential average: ¢, 1 = +(1-5)¢_ 0050}
.muhiauy..n-p:;‘ﬁt;.;n ¥
= 0, past history prevails

entry GET(JOB: out ID);
- return the next job 10 be executed and delete it

end SJF_SCHEDULER;

task body SJF_SCHEDULER b
L ()
PERIOD:DURATION;

begin

losp
select
aceept ADD(JOB:ID; T:DURATION) do
1:=JOB;

PERIOD :=T;
end ADD,

INSERT(, PERIOD),
or

Lecture Five

when set EMPTY O
GET(JOB: ent ID) do
SMALLEST(JOBY,
end GET,
ond select,

ond Joop;
end SJF_SCHEDULER;

INSERTQOBID; T:-DURATION);
- add job to the set; T is the next CPU-buret tims
precedure SMALLEST(JOB: ent ID);
« JOB ia sat to the id of the job with the smaliest next CPU-burst time and this job is deleted from the set; call
~ SMALLEST only when the st is act empty
fanction EMPTY retarm BOOLEAN;

Indefinita blocking (ion) - stoad m of igh-prioe
m-ﬂ-,ﬂﬂymﬁ(bmim
8mmmm>mmm
® Round-Robin (RR)

O Criteris

O time quantum (10-100 ms) (timer set to interrapt after one time quantum)
O ready queus - circular FIFO
O average waiting time is long
O performance depends on the size of the time quantum; very small quantum ¢) processor sharing
O Probleme: Coatext switching - sofution: time quantum €@ context-switch time
O Type: proemptive
@ Mukilevel Queus
@ Criteria
O difforent ready queucs (foreground queue - interactive processes, background queuc - batch processes, system processes,

editing processes,...)
@ process permanently assigned 1o cne quee
© each queue bas its owm scheduling algorithen

O scheduling betwesn the quones: fixed-priority precmptive schoduling or timeslicing
@ Probiems: not flexible - process remaing pormanently into the sasignod quene
© O Critaria

© process mey move batwesn queves
O enturing quene
® criseria for upgrade (ex. VO-bound)
O ariteria when 10 demcte (ex. long weiting time)
O Quarantesd Scheduling
Make realistic promisss sbout performence sad live up 10 them
Ex if thare are & users logged im, each will recsive 1/n of the CPU power

System moust
) Ohepn&ofhwuumhumhuﬁtd&mﬁubﬁdhwmhbunhwdh

Lecture Five

Qmumdmu&m-uﬂdb

U]
actual CPU time used
CPU time entitiod
O run ths process with the lowest ratio

@ reschedule when the ratio has moved above its closest competitor
Ex. roal-time systom: process in grestost danger of missing its deadline
g

QO typesof
Smw

own queus
own scheduling
Ohnmmlym

O load sharing
008 queus

@ self-acheduling
syachyonization and mutual exclusion not 10 pick the seme process (commaon deta structare)

@ master-alave structure
ono processor scheduler
(asymmetric multiprocessing)
heavy scheduling load O master processor
overioaded (bottleneck)

® Conclusion
Scheduling algorithm is parametrized in some way, but the parameters can be filled in by the user processes (dynamically, rare 7)

Deadlock Concept and Characterization

o 3@\40«&;’
finite pumber of resources partitioned into several types consisting of some number of identical instances
o n' «lp.l)c(nzvu)a-w%‘.))

P= (Pl.?z. "Pk)

@ request resource (system calls or wait and signal operations)

O use resource

O release resource (system calls or wait and signal operations)
@ resourco-aliocation graph

Lecture Five

® Deadiock Chasacherization
A sot of procsssss is in & deadliock state when every process in the set is waiting for an event that can be caused caly by another

process in the set.

Figure 5.3. Mustration of deadlock

Necessary conditions for deadlock:

® mutual exclusion (at least one resource must be unsharable)

@ hold and wait

® no preemption

@ circular wait

Situations other than desdlock with no progress:

@ tivelock (busy waiting on s condition thet can never become true)
@ sarvation (procoss is indefinitely postponed)

Lecture Six

Textbook

Abraham Silberschatz, James L. Peterson, Peter B. Galvin
“Opersting System Concepts”, Addison-Wesley, third edition, 1991, Past 2, Chapter 6 (6.3 - 6.7) and Part 3, Chegter 7

References

(¢]

Andrew 8. Tancnbaum

*Modern Operating Systenn”®, Prentice-Hall, 1992, Part 1, Chapter 6 (6.3 - 6.6) and Chapter 3 (3.1 - 3.2)

Jean Bacon

*Concurrent Systems - An Integrated Approach to Oporating Systenws, Databese, and Distritated Systems®, Addison-Wasley, 1993,
Chagter 6 (6.2 - 6.6), Chapter 3 (3.1 - 3.2)

Goals
To introduce difforent techniques for deadlock hendling

U]
® To presant concepts of memory mansgement
® To discuss approaches to physical memory management

(€]

E

@ Deadlocks (1 hour)
® Deadlock Handling

Q@ Physical and Virtual Memory Allocation (2 hours)
@ Memory Management

(<]

(c]

o

prevention
Enmge thet ot lenst ons of the nocsmary coaditions does not bold
O swmual exclusion avest hold for nonsharable resourcss
O bold and wait: guarantes thet whensver & process requests a resource it does act hold say
O allocation of all processes prior 10 cxscution
@ process must release all resources before requesting another
Drawbacks: low resource utilization and starvation
@ no presmption: whensver requests cannct ismediately be granied procoss implicitely relonses (pressspty) all its rescuross
OM-lMMd'nlmWMhmk—ﬂ“mmmh-M
order of enumsersticn
deadiock avoidance
@ declare the maxisssss sumber of resources
O resource-aflocation state is definsd by
O the nussber of availeble resources
O the aumber of allocsted resources
@ maxiswm demands
thﬁihmmMmbqubEMhmu&ﬂﬂlﬂ deadliock

O Allow the system 10 entier a doadlock state and then recover
O detaction algorithm - when it should be invoked?

O How often is deadlock likely W occur?
@ How many processes will be affected by deadiock when it happens

@mgﬂydm

processes
abort one process at & time until the deadlock cycle is eliminated
O resource i

onlema

Textbook

Abraham Silberachetz, Jumes L. Peterson, Peter B. Galvia
“Opersting System Concepts®, Addison-Waesley, third edition, 1991, Part 3, Chapter 8

References

e

Andrew 8. Tanenbeum
® “Modern Opersting Systems”, Preutice-Hall, 1992, Part |, Chapter 3 (3.3 - 3.8) and Chagter 5 (5.1 - 5.2)
Jean Becon
%m-mww»mmmuww. Addison-Wesley, 1993,

£

O To introduce concepts of virtasl memory
o Tom.mmmummuamm

Content

O Physical and Vistual Memory Allocation (2 houss)
o _ Virtual Memory

iclclelelele e lclc)

;;f

I
I

E
[
i

for READY wuse at 16#80%;
end PRINTER_DRIVER:

task body PRINTER_DRIVER §s
type STATUS_REGISTER b
record
INTERRUPT_ENABLED: BOOLEAN;
CHAIN | RUNNING: BOOLEAN;
ond record;
for STATUS_REGISTER wee
record
INTERRUPT INABLED st 0 RANGE 8.8

— map INTERRUPT_ENABLED to bit 3 of first word(0) of storage allocated to

— objects of typs STATUS_REGISTER
CHAIN_RUNNING: BOOLEAN;
end record;
for STATUS_REGISTER'SIZE mee 2;
~ sllecate ene werd (Iwe bytes per word sssumed)
LINE_LENGTH: constant ™= 132;
mmummmm LENGTH),
PRINTER_REGISTER: STATUS_REGISTER:
brPR.INTEl _REGISTER wee at 16#3FF40#;
BUFFER: LINE;
PRINTER_BUFFER: CHARACTER;
for PRINTER_BUFFER use at 16#3FF42#;
begin
PRINTER_REGISTER. INTERRUPT_ENABLED = TRUE;
PRINTER_REGISTER. CHAIN_RUNNING := FALSE:

MMLINE)"
BUFFER = L;
ond PRINT:
fwet PRINTER | REGISTER CHAIN_RUNNING then
m-:omt&cm RUNNING := TRUE;

dlllyl&

ond I8}

for 1 m 1.LINE_LENGTH loep
PRINTER_BUFFER := BUFFER(I),
accept READY;
dmwﬁm-mnu.ewmm-mm

end loops
whes PRINTER_REGISTER.CHAIN_RUNNING =>

 REGISTER CHAIN_RUNNING := FALSE:
end select;

end loops
end PRINTER_DRIVER:

devico-independent VO software
user-space O software

APPENDIX B

CS495 SAFETY CRITICAL SOFTWARE ENGINEERING
WITH ADA

ADA CLASS REPORT

A-2

Ada Class Report
12 August 1993

STATEMENT OF THE PROBLEM

Most Department of Defense (DoD) contractors currently use the Ada programming language,
primarily because DoD mandates its use. As shown by a recent article in Ada Letters' it ig used

extensively outside of the defense community:

Although Ada was originally designed to provide a single flexible
yet portable language for real-time embedded systems to meet the
needs of the US DoD, its domain of application has expanded to
include many other areas, such as large-scale information systems,
distributed systems, scientific computation, and systems
programming. Purthermore, its user base has expanded to include
all major defense agencies of the Western world, the whole of the
aerospace community and increasingly many areas in civil and
private sectors such as telecommunicatiocns, process control and
monitoring systems. Indeed, the expansion in the civil sector is
such that civil applications now generate the dominant revenues of

many vendors.

But too few commercial developers use Ada to make it one of the most popular languages. Part
of the reason for this is that new graduates do not come with a knowledge of Ada. Commercial
employers who might be considered prime candidates to use Ada are thus faced with additional
training time and costs. Worse yet, few in commercial organizations are familiar with the benefits
of using Ada. Even safety-critical applications that need Ada the most are often developed by
practitioners untrained in software engineering principles®:

The mistakes that were made are not unique to this manufacturer
but are, unfortunately, fairly common in other safety-critical
systems. As Frank Houston of the US Food and Drug Administration
(FDA) said, "A significant amount of software for life-critical
systems comes from small firms, especially in the medical device
industry; firms that fit the profile of those resistant to or
uninformed of_the principles of either system safety or software

engineering.”

Furthermore, these problems are not limited to the medical
industry. It is still a common belief that any good engineer can
build software, regardless of whether he or she is trained in
state-of-the-art software engineering procedures.

IIT teaches many foreign-born students in the Computer Science (CS) Department. Because it is
more difficult for foreign-born students to obtain a security clearance, very few obtain jobs with
firms doing primarily DoD software development. Therefore, the Ada mandate means little or

nothing to these students.

APPROACH TO A SOLUTION

To attract foreign-born students to an Ada class, IIT emphasizes the benefits of using Ada for
typical application areas. One such area is safety-critical software. IIT offered a CS 495 course in
the summer 1993 term called, "Safety-Critical Software Engineering With Ada." The
announcement in Attachment A described some of the benefits of using modern software
engineering approaches__including the use of Ada__to this application area.

The course instructor, Fred Francl, surveyed the class at the start of the first class. Attachment B
presents the results of this survey of what each student hoped to get out of this class. This survey
shows that all but one of the students surveyed mentioned Ada as the major attraction of this
course. This was somewhat surprising because the course announcement (Attachment A) listed
Object-Oriented (OO0) techniques as one of the course features. Despite the current popularity of
0O techniques, only two students in the survey listed them as a course priority.

The two-credit course covered the first edition of Software Engineering With Ada by Grady
Booch. Attachment C shows how each chapter was weighted. The course introduced the Ada
features most widely used in DoD) projects, offered industry experience with these features,
starting in the early eighties and including current experiences. These examples showed how these
Ada features helped to integrate modem software engineering principles into the product.

Attachment D presents some of the viewgraphs developed for this course. They were designed to
emphasize the advantages of the Ada features being taught. Where appropriate, Ada features were
directly compared to features of other popular languages.

The strategy in presenting virtually all Ada features was to give the students the sense that Ada is
a general-purpose language. The instructor reinforced this by using Ada in class problems and
homework problems to implement solutions to diverse applications. The course also highlighted
the improvements offered by Ada 9X in writing asynchronous tasks and in supporting
object-oriented design. The instructor included coding examples to help make Ada 9X features
seem more real to the students.

The tests stressed the Ada language features that bore directly on the needs of safety-critical
software engineering. The midterm and final exams, which expresses this emphasis, are included
in Attachments E and F, respectively.

To obtain a larger enrollment, IIT offered this course over a closed-circuit TV network (IITV).
This allowed IIT to tape the course in VHS format. IIT is delivering this tape as part of the Final
Report material.

RESULTS AND CONCLUSIONS

At the end of the Final Exam, the instructor asked if anyone felt his or her goals in taking the
course were NOT met. Nobody responded, suggesting that the goals had been met reasonably
well. Several students volunteered after class that they had really enjoyed this course__despite the
work involved in covering so much material so quickly.

All indications are that the course did give the students a good sense of the benefits of using Ada
in safety-critical applications. The payoff will come when they join industry software groups and
spread the Ada message to their colleagues.

FOLLOW-UP PLAN

1.

IIT has scheduled this course to be given again in the Spring semester. IIT will make another
video tape, with the idea that the second offering of a new course usually goes more
smoothly than the first.

2. T is offering other courses using Ada, such as an Operating Systems course. This is possible
now that a course that actually teaches the language is available in the curriculum. Ada is the
teaching language of choice for these courses because of its power and expressiveness.

3. 1T plans to disseminate the improved video tape of this course to instructors at other
colleges and universities who are in the process of developing a similar course.

4. IIT plans to purchase several copies of Ada compilers and Ada tutorials that can be run by
individual students on PCs. This will allow students in courses that use Ada to learn or
relearn it at their own pace.

REFERENCE

1. John Barnes, "Introducing Ada 9X," ACM Ada Letters, Nov/Dec 1993

2. Levenson & Turner, "An Investigation of Therac-25 Accidents,” Computer, July 1993.

3. F. Houston, "What Do the Simple Folk Do?: Software Safety in the Cottage Industry,” IEEE

Comguters in Medicine Conf., 1985.

ATTACHMENT A
ADA CLASS ANNOUNCEMENT

CS 495 SAFETY-CRITICAL SOFTWARE ENGINEERING WITH ADA

Who should enroll? Software students and practitioners with at least one year of programming

experience.

In this course you will learn to:

Use Ada, the language being adopted world-wide to implement the most difficult software
systems.

Use Ada programming features that help NASA, the FAA and the military develop software
for systems that can't afford surprise behavior.

Use Ada programming features that help one of the world's largest telephone companies to
develop systems that work better and cost less.

Avoid the three technical problems facing new Ada users.
Use Ada 9X with Object Oriented Analysis and Design methods.

Double your personal programming productivity and then double it again with more
practice.

Understand how to change your approach when you are a member of a very large software
engineering team.

When: IIT Summer Session, Fridays, 3:10 to 6:50 PM.

Where: Rice Campus. Also on TV for other locations.

Credit: Two credit hours. (Discuss with contacts listed below.)

Text: Grady Booch, Software Engineering With Ada
Instr: Fred Francl managed real-time, mission-critical software engineering development for over

fifteen years. He led several govenment studies on the effectiveness of Ada for
this type of software development. He served for three years as a Distinguished
Reviewer for an Ada Joint Program Office team. Mr. Francl led the Real-Time
Session of a national Ada conference. He currently consults with the Federal
Aviation Administration on Ada issues that arise in the modernization of the U.S.
Enroute Navigation System. He chairs the Chicago Chapter of the ACM Special
Interest Group on Ada (SIGAda).

ATTACHMENT A

Contacts: Dr. Txzilla Elrad (312)567-5142 CSELRAD@minna.acc.iit.edu
Mr. Fred Francl (708)627-8098 ffrancli@ajpo.sei.cmu.edu

ATTACHMENT A

ATTACHMENT B
ADA CLASS SURVEY RESULTS

How Ada fits applications, how it supports OO
Real-time OO and Software Engineering principles
Ada

Ada and Software Engineering principles

Applying Ada to real-world problems

Ada knowledge

Ada knowledge

Relearn Ada (learned from manual 10 years ago)
Ada

olo|alolulalw|w]—~ 8

bt
(=

——t
—

ATTACHMENT B

ATTACHMENT C
TEXT CHAPTER WEIGHTING

L] Weigw T Lo BT e
Includes lecture material not in book

1 A
2 A Includes lecture material not in book
3 F
4 A Especially 6-step Booch OO method
s A
6 C
7 D
8 B
9 D
10 C
11 C
12 D
13 A
14 C Skip 14.2, 14.3
15 D
16 B Be able to write task specs, to read task bodies
17 B Skip 17.2, 17.3
18 D
19 C Skip 19.3
20 B
21 D
22 F To be covered after Final Exam
23 F To be covered after Final Exam
24 F To be covered after Final Exam

A = Almost sure to be important in the final exam

F = Definitely not exam material. For familiarization only.

ATTACHMENT C

ATTACHMENT D
SAMPLE VIEW GRAPHS

ATTACHMENT E
MID-TERM EXAM

2 July 1993Mid-term Exam - - - Page 1 of 2

ADMINISTRIVIA
Please take this exam with a closed textbook and with a one hour time limit. When complete, give

to the proctor and leave the classroom. Please return one hour after the test start time.

Record your answers on a sheet of your own paper with your name, “CS495 Mid-Term Exam”
and today's date at the top of the page. If multiple pages are used, put your name and the page
number at the top of each sheet.

PROBLEM TO SOLVE

Use the Booch Object-Oriented (O0) Development Method to specify an Ada software
simulation of an automobile cruise control system. Assume it is to be run by a user__called the
driver _who accesses each of the driver controls through the terminal and keyboard.

PROBLEM APPROACH TO USE

The first step in the Booch OO Development Method, Define the Problem, is provided on the
following page. The final step, Implement Each Object, is not required. Doing the final step or
some parts of it__earns extra credit, but only if done well.

For each step in the Booch OO Development Method, enter and explain the results of your
analysis on your test paper. For example, if a Booch OO Development Method step requires you
to identify certain kinds of items, list the items on your test paper and explain your reason for
choosing them.

Any code or pseudo-code produced should follow the Ada syntax rules as much as possible, but
no points will be deducted for syntax errors. Please use comments to assure that your Ada code
will be understandable even if the syntax is wrong.

Your solution will be graded on:
METHOD (How well the Booch OO Development Method is followed)
COMPLETENESS (Including any exceptions needed for safety)
CORRECTNESS (With respect to the statement of the problem)
SIMPLICITY (No complexity not required by the problem)
READABILITY (Of Ada code or Ada pseudo-code produced)

2 July 1993Mid-term Exam Page 2 of 2

STEP 1. DEFINE THE PROBLEM

A real automobile cruise control system maintains the speed set by the operator (driver) by
pressing the accelerator when going up hills and releasing it when going down hills. This cruise
control system shall be an abstraction or simulation of a real onc

The compiler shall supply the package Clock, which may be imported:

package Clock is
type Time_Type is private;
function Current_Time
return Time_Type; —current clock time to the nearest msec
function Add_1_Second
(Current_Time: in Time_Type)
return Time_Type; —-adds one second to Current_Time
function Timer_Expired
(Current_Time: in Time_Type
Timer_Set_Time: in Time_Type)
return Boolean; --True if Current_Time > Timer_Set_Time
private
type Time_Type is range 0..Long_IntegerLast,
end Clock;

The driver shall control the simulation with the following inputs:

1. ON shall display the current speed, randomly change speed each second by a small amount,
and respond to all keys described below if the current state is OFF. Otherwise it shall do
nothing.

2. OFF shall stop displaying the current speed, ignore all keys except the ON key, and erase
any set speeds from memory if the current state is ON. Otherwise it shall do nothing.

3. ACCELERATE shall increase speed at a constant rate each second while its key is
depressed. When its key is released the current speed shall be stored in memory as the
set speed. This speed shall then remain constant.

4. COAST shall decrease speed at a constant rate each second while its key is depressed. When
its key is released the current speed shall be stored in memory as the sef speed. This
speed shall then remain constant.

5. BRAKE shall decrease speed at a constant rate ten times that of the COAST key each
second while its key is depressed. When its key is released the current speed shall be
randomly changed by a small amount each second. The sef speed (if ACCELERATE or
COAST had previously stored it) shall remain in memory.

6. RESUME shall accelerate at the same rate as the ACCELERATE key or decelerate at the
same rate as the COAST key until the set speed is reached. This speed shall then remain
constant.

ATTACHMENT F
FINAL EXAM

Name:

(USE BACK OF PAPER IF YOU NEED MORE ROOM TO ANSWER ANY
QUESTION)

1. Assume each member of our class is to write a 100 page paper. If there are no misspellings,
grammatical mistakes, or factual errors in any of the papers, then assume each member of the
class gets $100,000. But if there is even one error in gny of the papers, assume each member
of the class will be killed.

a. What things would you suggest doing or what things would you suggest obtaining to
improve the chances for success?

b. What things would you suggest doing or obtaining if each person had to write an
error-free 10,000 lines of code portion of a software program instead of a 100 page

paper?

c. Assume there is a time limit of two years to finish the class software project. Further
assume that the class has the usual distribution of software engineering productivity, and
that the best in the class is ten times as productive as the worst in the class. What would
you suggest doing to speed up the project to minimize the chances of being late without
introducing fatal errors__literally _into the code?

2. Ada has been called a "large" language. Compared to Pascal it has many more built-in
features, supporting such things as data abstraction, concurrent processing and machine-level
operations (such as being able to load a register at a specific address with a specific
hexadecimal value.)

a. When would it be an advantage to use a large language like Ada with these capabilities?

b. When would you be better off with a smaller language like Pascal?

3. Assume you work for a company that has standardized on the use of a single language for all
its projects. This happens because companies often expect this standardization will make it
easier to transfer engineers among projects and to reuse code.

a. What are the added advantages if that single language is Ada?

b. It is possible to write Ada-like code in another language, but the compiler will not
enforce things like visibility rules. What are the advantages of designing as if you could
use Ada and then enforcing needed rules__such as object scope and visibility__yourself?

\

4. Assume you work for a company that has standardized on a single design method. This ..
happens because companies often expect this standardization will reduce expenditures for
method support tools and/cr method training courses.

a. What are the added advantages if that single design method is Object-Oriented
Development?

b. What is the fastest-growing development method today?

5. A "hacker" can be defined as someone who designs software as quickly as possible, who
loves to include optimizations, and who thinks a program is good enough if it "works"

for his tests.

a. What is your definition of a software engineer?

b. When does a good software engineer add optimizations to the code?

¢. Inalarge, complex software project, we have learned in this course that Quality if free.
It is lack of quality that costs money. Explain why this is true.

6. The first step in the Booch Object-Oriented (OO) Development method is to define the

a. How do you use the problem definition to identify the objects?

b. How do you use the problem definition to identify the operations on each object?

¢. How do you represent operations using Ada?

d. What kind of a diagram is suitable to establish the visibility of each object?

e. Which Ada language construct is especially suited to establishing the interface for each
object?

f. Which Ada language construct is especially suited to implementing each object?

Ada is better than many traditional languages that were designed to support oaly procedural
abstractions (such as could be gotten from a traditional flow chart.) Ada is designed to
support data abstractions as well as procedural abstractions.

a. What Ada language construct do you use to express a data abstraction?

b. If only certain operations make sense to be used with this abstraction, how do you show
this in Ada?

c. If the data abstraction has internal states (for example, is the German Shepherd object
asleep or awake?) that must be considered to solve the problem, how do you show this
in Ada?

d. What is an encapsulated type?

e. How is an encapsulated type shown in Ada?

f. What is a type attribute?

g. If a data abstraction occurs for a number of different types of object (such as a queue
that can accept integers, real numbers, character strings, etc.), what Ada language
construct do you use to avoid rewriting the abstraction for each type of object?

Older, traditional languages need to use data dictionaries and set/use tables (which show
everywhere a variable value is set or used) to keep track of variables.

a. What features in Ada__if used properly__make data dictionaries unnecessary?

b. Certain variables are only used to indicate that abnormal processing must be done, or
tuat an error condition has arisen. What special type does Ada assign to these variables?

Tasks are used to express concurrent action in Ada. They operate synchronously using a
mechanism called the rendezvous.

a. What information about a task can you find in the task specification?

b. How does an operating system decide which task should run?

¢. How do you show asyrchronous concurrent action (for example, 8 mailbox) using Ada
tasks? :

