
0
NASA Contractor Report 194919

ICASE Report No. 94-37

AD-A281 651

* ICASE
IMPLEMENTATION OF A FULLY-BALANCED
PERIODIC TRIDIAGONAL SOLVER ON A
PARALLEL DISTRIBUTED MEMORY
ARCHITECTURE

LTJh

T. M. Eidson 0 - 8 l 9 5 "
G. Erlebacher

_ _ _ _. _

DTIe QUALITY INSPECTED a

Contract NAS I - 19480
May 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001 9 4-21567i I 11 11111 11111 111111 1I111ll II
L Operated by Universities Space Research Association

94 7 12 262

IMPLEMENTATION OF A FULLY-BALANCED
PERIODIC TRIDIAGONAL SOLVER ON A

PARALLEL DISTRIBUTED MEMORY ARCHITECTURE

T.M. Eidson*

High Technology Corporation

Hampton, VA 23665

G. Erlebachert

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23681

ABSTRACT

While parallel computers offer significant computational performance, it is generally nec-
essary to evaluate several programming strategies. Two programming strategies for a fairly

common problem-a periodic tridiagonal solver-are developed and evaluated. Simple model

calculations as well as timing results are pres.nted to evaluate the various strategies.
The particular tridiagonal solver evaluated is used in many computational fluid dynamic

simulation codes. The feature that makes this algorithm unique is that these simulation
codes usually require simultaneous solutions for multiple right-hand-sides(RHS) of the sys-

tem of equations. Each RHS solutions is independent and thus can be computed in parallel.

Thus a Gaussian-elimination-type algorithm can be used in a parallel computation and the
more complicated approaches such as cyclic reduction are not required.

The two strategies are a transpose strategy and a distributed solver strategy. For the
transpose strategy, the data is moved so that a subset of all the RHS problems is solved on
each of the several processors. This usually requires significarit data movement between pro-
cessor memories across a network. The second strategy attempts to have the algorithm follow

the data across processor boundaries in a chained manner. This usually requires significantly

less data movement. An approach to accomplish this second strategy in a near-perfect load-
balanced manner is developed. In addition, an algorithm will be shown to directly transform

a sequential Gaussian-elimination-type algorithm into the parallel, chained, load-balanced

algorithm.

"This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-192999.

tResearch supported by the National Aeronautics and Space Administration under Contract No. NASI-
19480 while resident at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA 23681.

1 Characteristics of parallel, distributed memory
computing related to CFD simulation codes

Parallel computing offers significantly increased performance for solving numerical
problems [4, 5]. On distributed memory architectures a data parallel programming
strategy is frequently used as a relatively straightforward approach to attain this
performance potential. The data parallel approach can be applied conveniently to
computational problems which involve computations on several large arrays, partic-
ularly if a significant number of these array computations are local. By local, it is
meant that the computations involve data elements with identical or neighboring in-
dices from one or more arrays. With an appropriate data distribution strategy, the
communication costs can be negligible to moderate for these situations. However,
many problems of interest also contain significant global computations, i.e., compu-
tations of an array element which depend on other array elements (of the same array
or similar shaped arrays) with non-local indices. Usually high communication costs
result. Dealing with these global computations is usually the major programming
problem when developing code for parallel computers. Because of the higher cost of
internode over intranode communication the computational savings for a good pro-
gramming strategy are significant. The objective of this paper is to discuss several
programming strategies for a common algorithm, a tridiagonal system solver, which
includes a significant amount of global computations. Performance results from test-
ing two specific strategies will also be presented.

The tridiagonal solver is usually only one component in a realistic application code.
For this study the targeted application code is a Navier-Stokes simulation code called
CDNS (described below). Simulation codes of this type are very compatible with
the data parallel programming model. They involve computations on several (5 to
20), large, multi-dimensional arrays which have similar shapes. Typically, each array
stores the value of a physical variable for each node of a 3-dimensional computational
grid defined on some control volume of interest. Many of the computations are local in
nature as each array element is computed as a function of the value of other variables
at the same control volume location (and thus the same comnputational grid-point and
array location). However due to non-local physics or the need for a more accurate
algorithm, these simulation codes contain some global computations.

2 Description of CDNS

CDNS (Compressible Direct Navier-Stokes Simulation code) is an explicit, finite-
difference code developed at NASA Langley Research Center by the second author
to study 3-D compressible turbulence [3]. This code solves the full Navier-Stokes - 4.

equations using constant viscosity and Prandtl number. Spatial derivatives are calcu- Cod"a

d.ti t .apeoQt

lated using a sixth-order, compact scheme which requires the solution of a tridiagonal

matrix system of equations [8]. Time discretization is based on a low-storage, third-
order, Runga-Kutta scheme. The code uses 14 three-dimensional arrays. For 432 grid

points in each dimension, each array contains 81 megawords and the 14 arrays require

1130 megawords. This constitutes roughly 90% of the total memory requirement of

the code. These 14 arrays require 2.6 megawords per node when distributed on 432

nodes. For comparison, a 128 grid-point problem would require 2.1 megawords per
array and a total of 29 megawords.

CDNS computes the primitive variables-velocity vector, density and pressure-
(stored in 5 of the 14 arrays) for a 3-D control volume. A computational grid with the

same number of grid points in each dimension and equal spacing between grid points
is used to identify the fluid volume. Periodic boundary conditions are assumed at the
edges of the fluid volume. After initializing the primitive variable arrays with a zero-

mean, steady-state but turbulent flow field, the code marches forward in time with

small time steps to simulate the decay of the turbulent motion. Updating of the flow

variables is accomplished by computing the residuals of the Navier-Stokes equations
which are then used to estimate the time derivatives. The intermediate calculations

are all local-type computations except for the computation of the spatial derivatives.

This exception is important since the spatial derivative calculations depend on the
solution of a tridiagonal system and account for 70% of the entire operation count.

While some of the derivative calculations are local in nature, most are of the partial
global type. By partial it is meant that only one row or column of a 3-dimensional
array is involved in a global calculation, not all the elements of the array. This

row or column is the input and solution vector(r7 and s) for the tridiagonal system
(Figure 1 and Table 1) and will be referred to as the dependent dimension. The

other two dimensions of the 3-D arrays are merged to form a set of multiple solution
vectors which can be solved simultaneously and will be referred to as the independent

dimensions. This multiple set of problems is the source of the parallelism used to speed
up the tridiagonal solver.

For CDNS an equal number of derivatives are needed in each direction. While
the operation count is the same for computing the derivatives in each direction, the
cost (in terms of time) can vary depending on the choice of data distribution and

algorithm. Specifically, if all the elements of one dimension of a multi-dimensional
array reside on the same node, the standard Gaussian elimination algorithm can be
used in that direction and the resulting load-balanced, no communication code gives

maximum parallel performance. However if that dimension is distributed, internode

communications increase the cost for computing derivatives in that direction.

2

A s r

S S

! S

I -

',I

S or R 0

l

Dependent Dimension j

Independent Dimension

Figure 1: Tridiagonal system of equations

Sa-R

node=

2

3

4

node= I 2 3 4

Partitioned in the independent dimension Partitioned in the dependent dimension

Figure 2: Tridiagonal system of equations partitioned in the independent and depen-
dent dimension

:3J

Equation(s) to solve:

A s = r (single system of equations)
A S = R (multiple systems of equations)

Variable definitions:

A - periodic tridiagonal matrix
s - solution vector for single system
S - set of solution vectors (each column holds one s-vector)
r - input vector for single system

R - set of input vectors (each column holds one r-vector)

Table 1: Definitions for tridiagonal system of equations

3 Tridiagonal Solver

3.1 Base problem

A periodic tridiagonal linear system of equations is pictured in Figure 1. Matrix
A contains zeros in all elements except the 3 diagonal rows marked by solid lines.
The uppermost, right-most element and the lowermost, left-most element are also
nonzero. The most common algorithm to solve a linear system for one right-hand
side or one r-vector, Gaussian elimination, contains little potential for parallelism
and more sophisticated (and usually more expensive) algorithms are needed to solve a
single right-hand side system in parallel. However, the need to solve multiple columns
of an R-array for the same A-matrix results in a problem which is more amenable to
an efficient parallel implementation. Recalling the discussion in the section describing

CDNS, the "other two dimensions of the 3-D arrays" will map to the independent
or i-dimension (Figure 1) to form a problem with an R-array as the right-hand side
rather than just a single solution r--vector. The dependent dimension (the direction
of the desired derivative) maps to the j-dimension of the R-array. Whether this
mapping of the 3-D array to the R-array actually requires data motion depends on
the actual computer architecture, compiler, and algorithm. To conserve memory the
same storage area is used typically for both the solution (S) and the input (R) of the
system.

If the i-dimension of S or R is distributed and the j-dimension is not (Figure 2),
then the solution for the piece of S on each node is completely self-contained and a
standard sequential algorithm can be used. If the j-dimension is distributed, then a
tridiagonal algorithm is necessary which includes internode communication. While

4

both situations generally occur in a code that solves a tridiagonal system in all three
directions of a 3-D data set, the thrust of the algorithm development in this section
is for the case where the dependent dimension is distributed.

The pseudo-code shown in Figure :3 will be used to demonstrate the concepts
needed to implement a tridiagonal solver in parallel. In this figure the b-array cor-
responds to any one of the diagonals of matrix A. S(i,j) is used to store both S
and R as previously discussed. This code segment, which is typical of the loops in a
tridiagonal solver on a vector based architecture, computes each step of a recursive
problem (j do-loop) for all the multiple problems (i do-loop) before preceding to the
next j-step. This recursion is what makes the computations global since the values
computed in the j-th step depend on all the previous steps.

In the algorithms discussed in this section, it is assumed that only one dimen-

sion is distributed on NP nodes. The extension to the case of multiple distributed
dimensions is straightforward since the additional distributed dimensions are always
associated with the independent dimension and can be treated as multiple sets of
problems of either type shown in Figure 2.

3.2 Simple algorithms

If the independent dimension is targeted for distribution, then the generation of par-
allel code is straightforward. The sample code in Figure 3 is transformed in Figure 4

The i-loop is stripmined into the same number of strips as nodes (NP) creating an
is-loop and an ip-loop. A dependency analysis shows that the is-loop can be moved
outside the j-loop. The code for each pass of the is-loop operates on independent
subsets of the S(i,j). The work in each pass of the is-loop and the appropriate subset
of the S(i,j) can be distributed to the NP nodes and load-balanced parallelism with
no communication results. Note that the b-array must be replicated on all nodes.

Targeting the dependent dimension for distribution is more complicated and is
the focus of the remainder of this section. An analogous approach to the independent
dimension strategy is shown in Figures 5, 6 and 7 . Here the j-loop is stripmined and
the appropriate code and data distributed. Since data needed to compute on node
n must first be computed on node n - 1, only one node at a time can compute and
no parallelism is achieved. In developing the parallel code, the jp -1 pass must be
peeled off and explicitly recoded to initialize 5(i, O) = SO(i) via a message from the
preceding node. The message to receive the new data has to wait on the completion
of the work on the preceding node before the data is sent. A straightforward insertion
of message passing thus enforces the correct data dependency without any explicit
synchronization. Clearly, it is naive to expect efficient parallelization of a dependent

dimension to proceed so simply.

Definition of sizes:

parameter (JD = "dependent dimension")

parameter (ID = "independent dimension")
parameter (NP = "number of processors")

C. I
dimension b(JD), S(IDJD)

do 20 j=2,JD
do 10 i=l,ID

S(i,j) = S(i,j) + b(j)*S(i,j-1)
10 continue

20 continue
C...... ... I

Figure 3: Base loop representing typical code in the tridiagonal solver

3.3 Chained algorithm

To develop a load-balanced code for a distributed j-dimension, one can try various

stripmining strategies. Figure 8 gives an overall picture of a load-balanced strategy.
The independent dimension is split into NP sets of problems and each set is started

on a separate node. The algorithm is designed so that the solution of each prob-
lem set follows the other sets across all the nodes in a chained fashion. Thus each

problem set has access to its data which is distributed across all the nodes, yet com-
plete load-balancing is achieved. The generation of such an algorithm can be messy
however. In the following development a series of transformation steps are outlined
which convert a sequential algorithm into a balanced, parallel algorithm. Each step

is very simple-most are common transformations used in compiler pre-processors.
These transformations could be implemented in such a pre-processor, albeit under

user control via directives, providing a reasonably straightforward way of generating

a parallel code.

The transformation of the sequential algorithm proceeds as follows. The p~seudo-

code in Figure 3 is transformed to demonstrate the concepts.

e First, both the i and the j index are stripmined (Figure 9). Stripmining in j
is necessary if the algorithm is to be used for data which is distributed in j.
The stripmining in i is necessary because this is the source of any potential
load-balancing.

6

c... Sequential code transformation I
c

"c ISN = number of processors
"c ISD = number of i-elements per processor
c

parameter (ISN = NP; ISD = ID/NP)
dimension b(JD), S(ID,JD)

do 30 is=l,ISN
do 20 j=2,JD

do 10 ip=l,ISD
i=ISD*(is-1) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-1)
10 continue
20 continue
30 continue

c... Parallel code I

parameter (ISD = ID/NP)
dimension b(JD), S(ISD,JD)

do 20 j=2,JD
do 10 ip=l,ISD

S(ip,j) = S(ipj) + b(j)*S(ip,j-1)
10 continue
20 continue

c...

Figure 4: Sequential code transformation and parallelization of code distributed in
the independent dimension

7

S

di

Figure 5: Sketch of naive algorithm

Stripmining:

npi = number of elements per strip

is = index of strip
ip = index of element within a strip

i = is * npi + ip

Base indices :

i = data & algorithm index - "independent" direction

j = data index - "dependent" direction

k = algorithm index - "dependent" direction

Strip indices :

is = data & algorithm strip index - "independent" direction
is = data strip index - "dependent" direction
ks = algorithm strip index - "dependent" direction

Table 2: Definition of strip indices

8

c... Sequential code transformation I
c

"c JSN = number of processors
"c JSD = number of j-elements per processor
c

parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD)

js=l
do 2 jp=2,JSD

j-JSD*(js-1) + jp
do 1 i=1,ID

S(ij) = S(i,j) + b(j)*S(i,j-l)

1 continue

2 continue

do 30 js=2,JSN
do 20 jp=1,JSD

j=JSD*(js-1) + jp
do 10 i=l,ID

S(ij) = S(ij) + b(j)*S(i,j-l)

10 continue

20 continue
30 continue

c•..I

Figure 6: Sequential code transformation of code distributed in the dependent di-
mension-naive algorithm

9

c... Parallel code I
c

c jn = node identifier
c

parameter (JSD = JD/NP)
dimension b(JSD), S(ID,JSD), SO(ID)

js = jn

if (is .ne. 1) then

jp=1

get [from: S(i,JSD) on processor n-i
after loop 20

to: SO(i) on jn (this processor)]
do 1 i=l,ID

S(i,jp) = S(i,jp) + b(jp)*SO(i)
1 continue

end if

do 20 jp=2,JSD
do 10 i=l,ID

S(i,jp) =S(i,jp) + b(jp)*S(ijp-1)
10 continue
20 continue

co...

Figure 7: Parallelization of code distributed in the dependent dimension-naive al-
gorithm

10

S

set- 1 2 3 4

1 1 * node=1I

*1 2A 2
t l 4

Figure 8: Sketch of chained algorithm

"* Once stripmined, the next step in the algorithm development is to replace the
js-index with 2 indices (Figure 10 and Table 2). The original js-index serves 2
functions:

1. indexing the progress of the algorithm (new index is ks)

2. indexing the array to select the correct data at each step (new index is js).

The inner part of the stripmined j-index, the jp-index, is not required to be
split. Parallelization is achieved by rearranging the strips (indexed by is) rather
than the elements of a strip (index by jp). Initially, this is only a change in
name of the indices, so the statement, js = ks, must be added to the code.

"* For each set of columrs with the same is-index (which defines an independent
subproblem), the al-- :,thni does not have to start on the node js = 1. The
top group of rows (first js-strip) of the system could be moved to the bottom
as shown in Figure 11 . After re-ordering the columns, the resulting system
of equations has the same periodic, tridiagonal form as the original system.
However, the first row of the S or R-array for this modified system becomes is
a member of the js = 2 strip. The is = 1 subset of problems can be solved with
the original system and the is = 2 subset solved with this modified system.
The modified A matrix may result in a different factorization, but the modified
system is still solving the original problem and will give the same answers within
numerical accuracy limits. Other modified systems can be defined for the other
is-strips. The important point is that the data in the S or R-array does not have
to be moved to solve one of the modified problems. The solution of a modified
problem begins at an interior value of the js-index which is the desired goal.

11

c... Sequential code transformation I

c stripmine code

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD)

js=l
do 2 jp=2,JSD

j=JSD*(js-1) + jp

do 1 is=l,ISN
do 1 ip=l,ISD

i=ISD*(is-1) + ip

S(i,j) = S(i,j) + b(i)*S(i,j-1)

1 continue
2 continue

do 20 js=2,JSN
do 20 jp=l,JSD

j=JSD*(js-1) + jp

do 10 is=l,ISN
do 10 ip=l,ISD

i=ISD*(is-1) + ip

S(ij) = S(i,j) + b(j)*S(i,j-1)

10 continue
20 continue

co...

Figure 9: Chained algorithm code development - sequential transformation step I

12

c... Sequential code transformation I

c separate data(js) & algorithm(ks) index:

parameter (ISN = NP; ISD = ID/NP)
parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD)

ks=l
do 2 jp=2,JSD

js = ks
j=JSD*(js-1) + jp

do 1 is=l,ISN
do 1 ip=I,ISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(ij-1)

1 continue
2 continue

do 20 ks=2,JSN
do 20 jp=l,JSD

js = ks
j=JSD*(js-1) + jp
do 10 is=1,ISN
do 10 ip=lISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

10 continue
20 continue

c°..I

Figure 10: Chained algorithm code development - sequential transformation step 2

13

A s r

is = I problem

* node= 1

2

3

is =2 problem

node = 2

3

4

Figure 11: Chained algorithm code development - reorder rows of A for is=2 strip

The above algorithm changes along with several other system re-orderings can
be achieved by replacing the js = ks statement in Figure 10 with a more general
function, js = P(ks, is), as shown in Figure 12. P(ks, is) specifies the various
permutations of the js-index with respect to the ks-index for each is-strip. To
recover the original code, Equation 1 is used to define P(ks, is). One particular
permutation which load-balances the algorithm using the approach outlined in
the preceding paragraph is given by Equation 2.

P(ks, is) = ks (1)

P(ks, is) = mod(ks + is - 2, NP) + 1 (2)

Replacing Equation 1 with Equation 2 can be viewed as a code transformation
that rotates the algorithm index with respect to the data index (Figure 13).
After such a transformation the index relationships between

- is, the index defining the subsets or strips of independent problems,

- js, the index defining which strip of S(i,j) is being used, and

- ks, the index which marches the algorithm in the dependent dimension

would be as shown in Figure 14.

14

"* The problem with the code in Figure 13 is that there is no easy way to distribute
the code and obtain parallel execution. If the code in Figure 13 is replicated
on each node, the computation of S(i,j) inside the is-loop should only be done
when js = jn, where jn is a unique identifier assigned to each node and has
the same range as js. In other words, the code executing on each node can only
use data that resides on that node (except for starting values for the recursion).
This strategy would not be an efficient solution, since extra loop passes would
be executed with only one of these passes doing any "real" computations.

Alternatively the is-index in the do-loop could be replaced by the ' I'ltex and
js = P(is, ks) replaced with is = Pi(ks,js) where Pi is defined b\ ion 3.

Pi(ks,js) = mod(js - ks, NP) + 1 (3)

This function maintains the same relationship between is, js and ks as Equa-
tion 2. This index swapping transformation is shown in Figure 15. From Fig-
ure 14, it can be seen that for a fixed value of ks, js is just a permutation
of is, therefore index swapping maintains the load-balancing potential of he
algorithm.

"* The is-loop can now be moved to the outside of each loop nest based on a
dependency analysis. (Figure 16)

"* The actual parallelization of the code now entails replacing the js-loop with
is = jn and assigning the code inside the js-loop for execution on each node.
(Figure 17)

The resulting parallel algorithm is shown in Figure 17. Note that it is completely
load balanced, contains the same total operation count as the original algorithm and
can easily be mapped to a node network layout to obtain nearest neighbor communi-
cation. The communication costs are relatively small, since only two groups of data
are actually moved every time the algorithm crosses to the next node for each is-strip.
Each group is roughly the size of one "surface" of the 3-D array section located on
each node. The communication cost will be discussed in .nore detail later in the pa-
per. For the periodic system discussed here, the data is mapped to the nodes for the
rotated algorithm in a straightforward, data-parallel manner; i.e., no complex data
mapping is needed. Therefore, the derivative computations in the non-distributed
dimensions are not affected. Also, the sample code used to demonstrate the trans-
formations makes only one pass through the data. The extensions needed for the
backward pass in an actual solver are straightforward.

3.4 Transpose algorithm

The algorithm discussed in the previous section, while having many positive charac-
teristics, still has the drawback of complexity. A simple strategy is:

15

c... Sequential code transformation I

c make data index (js) an explicit mapping function

parameter (ISN = NP; ISD = ID/NP)
parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD), P(ISN,JSN)

ks-1
do 2 jp=2,JSD

do 1 is=l,ISN
js=P(is,ks)
j=JSD*(js-1) + jp

do 1 ip=l,ISD
i=ISD*(is-1) + ip
S(ij) - S(i,j) + b(j)*S(ij-1)

1 continue
2 continue

do 20 ks=2,JSN
do 20 jp=I,JSD

do 10 is=l,ISN
js=P(isks)
j=JSD*(js-1) + jp
do 10 ip=I,ISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

10 continue
20 continue

c ...

Figure 12: Chained algorithm code development - sequential transformation step 3

16

c... Sequential code transformation

c rotate map function in recursive dimension

parameter (ISN = NP; ISD = ID/NP)
parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD), P(ISN,JSN)

do 100 ks=lJSN
do 100 is=l,ISN

is = ks + (is-i)
if (js .gt. NP) is = is- NP

P(isks) = is
100 continue

ks=1
do 2 jp=2,JSD

do 1 is=I,ISN

js=P(is,ks)

j=JSD*(js-1) + jp
do I ip--,ISD

i=ISD*(is-1) + ip

S(ij) = S(i,j) + b(j)*S(i,j-1)
1 continue

2 continue

do 20 ks=2,JSN
do 20 jp=l,JSD

do 10 is=lISN
js=P(is,ks)
j=JSD*(js-1) + jp
do 10 ip=lISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

10 continue

20 continue
c,...

Figure 13: Chained algorithln code development - sequential transformation step 4

17

S

is = i 2 3 4

I I I

I I I

ks=l 4 3 2 js= 1

2 1 4 3

j-------------------L------

3 2 4

I I

4 3 2 1
I I

I I

I I

Figure 14: Chained algorithm code development - index relationships after rotation
transformation

* to rearrange the data globally using internode communications so that the data

for each global calculation is all on one node,

* to use a sequential algorithm to make those calculations, and

* to return the data to its original distribution.

A global transpose can be used to accomplish the first and last items to implement
such a strategy for a tridiagonal solver.

The implementation proceeds as follows. Each problem (one column of an R-

array) has data distributed on each node in (js, is)-blocks with the same is-index.

All the blocks with the same is-index can be moved to the same node via a global

transpose as pictured in Figure 18. With all the data for each problem now on

the same node, a sequential algorithm can be used. If a complete transpose, such

as implied by Figure 19, is desired, an on-node or local transpose of the data within

each (is, is)-block is also needed. This on-node data motion sometimes can be hidden
behind the global data motion. The complete transpose frequently will give better

on-node performance than just a global transpose.

Bohkari[l] has discussed several algorithms to implement a global transpose. On

a hypercube node architecture, the choice of algorithms is very important since al-
gorithms that avoid link contention can be written. On a mesh architecture, link

18

c... Sequential code transformation I

c invert map function

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD), PI(JSN,JSN)

do 100 js=l,JSN
do 100 ks=1,JSN

is = is - ks +1

if (is .le. 0) is = is + NP

PI(ks,js) = is

100 continue

ks=l
do 2 jp=2,JSD

do 1 js=lJSN

is=PI(ks,js)
j=JSD*(js-1) + jp

do 1 ip=l,ISD
i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

I continue
2 continue

do 20 ks=2,JSN
do 20 jp=l,JSD

do 10 js=l,JSN

is=PI(ks,js)
j=JSD*(js-1) + jp
do 10 ip=l,ISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

10 continue
20 continue

c ...

Figure 15: Chained algorithm code development - sequential transformation step 5

19

c... Sequential code transformation I

c make js-loop the outer loop

parameter (ISN = NP; ISD = ID/NP)
parameter (JSN = NP; JSD = JD/NP)
dimension b(JD), S(ID,JD), PI(JSNJSN)

do 100 js=1,JSN
do 100 ks=l,JSN

is = is - ks +1
if (is .1t. 0) is = is + NP
PI(ks,js) = is

100 continue

ks=l
do I js=l,JSN

do 2 jp=2,JSD
is=PI(ks,js)
j=JSD*(js-1) + jp
do 1 ip=1,ISD

i=ISD*(is-1) + ip
S(ij) = S(ij) + b(j)*S(i,j-1)

1 continue
2 continue
3 continue

do 30 js=I,JSN
do 20 ks=2,JSN
do 20 jp=l,JSD

is=PI (ks ,js)
j=JSD*(js-1) + jp
do 10 ip=I,ISD

i=ISD*(is-1) + ip
S(ij) = S(ij) + b(j)*S(i,j-1)

10 continue

20 continue
30 continue

c o...

Figure 16: Chained algorithm code development - sequential transformation step 6

20

c... Parallel code (processors 1 to NP) I

parameter (ISN = NP; ISD = ID/NP; JSN = NP; JSD = JD/NP)

dimension b(JSD), S(ID,JSD), SO(ID), PI(JSN)

is = in (= node identifier)
do 100 ks=l,JSN

is = is - ks +1

if (is .At. 0) is = is + NP

PI(ks) = is

100 continue

ks=l
do 1 js=l,JSN

do I jp=2,JSD
is=PI(ks)

j=JSD*(js-1) + jp
do 1 ip=l,ISD

i=ISD*(is-1) + ip
S(i,j) = S(i,j) + b(j)*S(i,j-1)

1 continue

do 30 ks=2,JSN

jp=l
send [from: S(i,JSD) on processor n-i after loop 20

to: SO(i) on pro issor n (local)]
do 21 ip=l,ISD

is=PI(ks)

i=ISD*(is-1) + ip
S(i,jp) = S(i,jp) + b(jp)*SO(i)

21 continue

do 20 jp=2,JSD
is=PI(ks)

do 20 ip=I,ISD
i=ISD*(is-1) + ip
S(i,jp) = S(i,jp) + b(jp)*S(i,jp-1)

20 continue

30 continue
co..I

Figure 17: Chained algorithm code development - parallel transformation step 7

21

S or R

is-strip= 1 2 3 4

/1 ~js=I---. -..-- ---- --
2

3

4

i

Figure 18: Transpose algorithm code development - global transpose sketch

contention problems make the determination of an improved algorithm tedious; more-
over, any performance improvements are usually small. To date the XOR algorithm,
which is generally best for a hypercube architecture, is also one of the better choices
for a mesh. This algorithm was used for the timing test reported herein. The com-
munication costs are further discussed in the next section.

4 Target data distributions

In developing a strategy to adapt a code like CDNS to a distributed memory computer
a major decision is how to subdivide the large arrays. It is natural to equally partition
either one, two or three dimensions of each array and then distribute each array
identically. The choice of how many dimensions to partition is then the main issue.
The discussion in this paper assumes that the number of array elements in each
dimension is evenly divisible by the number of nodes allocated to that dimension.
The performance results reported herein are all for this evenly divisible case. The
conclusions of this study regarding algorithm strategy should also apply to the more
general case.

Simple models to estimate the computation and data communication times are
more difficult on parallel/distributed memory computers than on other typically used
architectures. Link contention can be very difficult to predict even when a code does
not share the node network with other codes. Overlapping communications with on-

22

S or R

node

0

j--------------- -Before transpose
2

3

node

0

1
S.------------------------- After transpose

2

3

Figure 19: Transpose algorithm code development - complete transpose sketch

23

(a) 1-D

(b) 2-D

(c) 3-D

Figure 20: Data distributions

node computations further complicates the picture. Nevertheless, some insight can
be gained from such models.

The model estimates herein include the communication cost for the formation
of the input array and for the solution of the tridiagonal system. Figure 20 shows
the three basic choices for distributing the 3-dimensional arrays. For any of the
distribution methods and for any of the three directions of the derivatives, the overall
problem can be formulated into a set of problems of either of the two types shown in
Figure 2.

Two approaches based on the above tridiagonal algorithms were considered to
solve the problem of computing a derivative in each of the three directions with good
overall efficiency. One approach is based on the chained algorithm which is used
only in the directions where the data is distributed. For the directions that are not
distributed the sequential algorithm is used and the communication costs are zero.
Communication costs for the chained algorithm are estimated in Appendix A. The
estimates for each of the three possible data distributions are given in Table 3. The
estimates are for the sum of the costs of computing a derivative in each of the three
directions.

24

variable 1-D 2-D 3-D

n N N11 2 N'1/3

m 4N 2 8N 3 /2 12N 4/3

s L2/N L2 /N L'2 /N
t 4NL 2 8N 1 12 L/2 12N 1/3L2

f 4N/L 8N'/ 2/L 12N'/ 3 /L

Table 3: Communication estimates for the chained algorithm

L = number of grid points in each direction
A = size of one 3-D array = L'
N = total number of nodes

n = number of nodes in each dimension
n = total number of messages

S = size of one message
t = total size of data moved
f = fraction of one array moved = t/A

For the chained algorithm %oth the number of messages and the amount of data

moved decrease as the number of partitioned dimensions increases. Thus, higher di-
mension partitioning is preferable. However, since the target architecture, the Touch-
stone Delta [6], for this current work is a 2-D node mesh, the 2-D partitioning should
be better because the communication will then be predominantly nearest-neighbor
between the physical nodes. For architectures where 3-D partitioning maps without
link contention penalties, then the higher dimension partitioning should give better
performance.

The second approach is to globally transpose the entire S or R array for those

directions were the dependent dimension is distributed. The communication costs for
this case are given in Table 4. The development of these estimates is described in
Appendix A.

While the number of messages is smaller for the 3-D partitioning, the total amount

of data moved is approximately 3 times that for the 1-D partitioning. Since the
amount of data is large (note that message sizes are proportional to the array "vol-
ume") the total amount of data moved should be more significant than the overhead
costs (represented by the number of messages). Therefore, 1-D partitioning appears
to be the better choice for an algorithm involving transposes.

This simple analysis does not determine whether the transpose strategy or the

25

variable l-D 2-D 3-D

n N N11 2 N113

m 2N 2 4N3/2 6N4/3

s L3 /N 2 L 3/(N 3/2) L3/(N 4/3)

t 2L 3 4L 3 6L 3

f 2 4 6

Table 4: Communication estimates for the transpose algorithm

distributed tridiagonal solver strategy is better. Thus the 1-D case for the transpose
strategy and the 2-D case for the distributed solver strategy were both implemented
and tested. The performance behavior of the two algorithms was determined by
experiment and is reported later in this paper.

While the above total communication statistics give some estimate of the com-
munication costs, the effective communication statistics defined by Equations 4 and
5 would give a better measure. The factor e in these equations is a parallel efficiency
which is a function of the amount of parallelism available, load-balancing and link
contention.

m, = m/e (4)

t'= t/e (5)

e = N implies that the maximum available parallel communication is achieved,
while e = 1 implies that the nodes send a set of messages sequentially. Link con-
tention and load-balancing can be difficult to quantify so their effects must usually
be discussed qualitatively. Neither the chained nor the transpose algorithm should
loose efficiency due to load-balancing problems. While the transpose algorithm has no
link-contention problems on a hypercube architecture, it can have significant problems
on a mesh architecture. Since the chained algorithm uses nearest neighbor communi-
cations, link contention is not a problem. Therefore the communication costs for the
chained algorithm should be lower than for the transpose approach.

5 Selection of specific algorithm for testing

From the preceding discussion, it is clear that several tradeoffs exist between the
different algorithms. The transpose approach is the most straightforward, since the

26

variable l-D 2-D 3-D 2D/1D

m 2 2 2 41(N'12)
s niL niL n/L NIL
t 2n/L 2n/L 2n/L 4(N'/2)IL

Table 5: Ratio of communication statistics: balanced algorithm / transpose algorithm

sequential algorithm can be used with only a few modifications. The difficulties of
the distributed memory architecture are localized to a global data transpose module
which can be made available as a routine or template in a library. This approach can
be used for a very wide range of applications. However, the large data communication
costs of a global transpose leaves much room for improvement. The ratio of message
sizes of the 2 algorithms in Table 5 shows that the chained algorithm requires less
total data transferred, although the number of messages is only slightly higher. The
parallel efficiency effects also favor the chained algorithm. However, the coding of
these parallel algorithms is more difficult. Quantitative performance comparisons of
these two approaches as well as code development experience are needed to better
evaluate the trade-off between programming time and execution time.

The transpose algorithm was implemented for the case where one dimension ot
the 3-dimensional arrays is distributed. This is referred to as the SLAB version. The
three array dimensions (indexed by ij, k) correspond to the three physical directions
(x, y, z). The chosen dimension for distributing was the second (j or y). For on-node
performance reasons (mainly better vectorization) the tridiagonal solver algorithm is
written so that the third dimension is the solution vector dimension. By letting the z-
direction reside on-node, no data motion is needed for solutions in the z-direction. For
solutions in the y-direction, the local data motion to make y the last dimension can
be overlapped with some of the global data motion needed to get all the distributed
y-strips on the same node. Choosing either x or y (but not z) for the distributed
dimensions allows for this overlap. In this case the choice of distributing y made
the code development slightly easier due to the style of the original code and to the
specifics of some analysis routines which were part of the code but are not discussed
herein. This overlap potential cannot be fully realized on the Touchstone Delta, but
this capability is part of the design for some newer architectures.

A 2-dimensional distribution strategy was chosen for the chained algorithm since
the target computer, the Touchstone Delta, has a 2-dimensional node mesh. x and y
were chosen as the distributed dimensions for the reasons mentioned in the discussion
of the transpose algorithm. This version is referred to as the TUBE version.

27

6 Timing results on the Touchstone Delta

6.1 Test description

A series of timing tests were made on the derivative kernel for tile CDNS code for
both the TUBE and SLAB versions. The derivative kernel computes each of the three
spatial derivatives of a scalar function defined on a 3-dimensional computational grid.
The derivative in each of the 3 directions was timed. Any necessary data movement
to change the data from the base memory layout to a layout specific to a particular
derivative is included in the timing of that derivative. The timings only include
the forward and backward substitution phase of the tridiagonal solver. Since tile
tridiagonal matrix does not vary during a run, the factorization is executed once.
Both single direction timings and the total time to compute the derivative in all
3 directions are presented. These 3-direction timings give a good measure of how
the kernel performs in the CDNS code since the code requires the same number of
derivative calculations in each direction. In general, CDNS runs about 5% faster than
the kernel. This is because the other operations in the simulation code are mostly
of the local type. CDNS also includes some input/output and analysis code which
executes slower but less frequently.

Most of the timing results will be presented in Mflops. Assuming the same number
of grid points in each direction, operati3n counts for the derivative kernel are:

O = 1413- 12L 2

P = O/(T106) (6)

where,

L = number of grid points in each dimension
O = number of floating point operations using the sequential,

periodic Gaussian elimination algorithm
T = measured execution time in seconds
P = performance measure in units of Mflops.

It should also be noted that the entire code is written in highly optimized Fortran
code. The Mflop rates for derivatives in the z-direction, which contain no internode
communications, are in the 15-20 range which is high for Fortran code which does
not take particular advantage of the cache. As an aside, it was found to be difficult
to write assembler code that significantly exceeds the Fortran compiler performance
for the algorithms under investigation.

28

6.2 Performance measures

In evaluating an algorithm, one is interested in both its absolute performance as well
as its scalability[9, 10]. An algorithm which has good or best performance over a
large range of nodes is obviously desirable. Frequently, a performance measure such
as Mflops is plotted versus number of nodes for a fixed problem size (a fixed grid size
for CDNS and similar codes). The closeness of this curve to the linear extensions
of the single node performance, Equation 7, is the basis of many conclusions about
scalability.

Pg = P1N (7)

where,

N = number of nodes
P1 = single node performance measure
P9 = multi-node performance goal.

The first problem with this is that one is not usually interested in running a small
problem on a large number nodes. One is typically interested in running a larger
problem as the number of nodes increases, although there are exceptions. Most
codes will have better performance per node when they are run on the minimum
number of nodes possible. Maximizing an individual code's performance translates
into improved overall system throughput. Therefore, a more useful measure is the
performance versus nodes at a fixed memory utilization. In this study, for each set
of tests which were run on the same number of nodes, linear interpolation was used
to estimate the performance when the 14 major arrays used in CDNS filled 90% of
each node's memory. The curves marked "90% mem" are quadratic least squares fits
through these 90% estimate points. Since the test kernel for the derivative uses fewer
thar, the 14 arrays needed by CDNS, some of the test data is for CDNS equivalent
problem sizes greater than 100%.

In addition, the 90% measure eliminates some on-node effects that may not be
desired in a scalability measure. The Touchstone Delta uses an Intel i860 processor
for which the Fortran compiler generates a form of vector code [7]. The performance
of the resulting vector code is dependent on vector length for vectors up to several
hundred in size. As the number of nodes increases for a fixed problem size, the vector
lengths can become shorter. Including this effect in the scalability measure biases the
result. The 90% measure does not guarantee the elimination of vector performance
variations or other on-node effects, but it should reduce these effects.

Another problem relates to the direct comparison of data to Equation 7. The
comparison of multi-node timings to single node timings is not particularly relevant.

29

Gnd
TUBE Kernel Performance ---A-

3 directionts 17 12
0 144

5210

$2"

10.0 2

0 100 200 300 400 500

Figure 21: TUBE kernel performance - rate per node for all directions

Many cases which are currently run on a large number of nodes cannot be run on a
single node. The choice of what to use for the single node performance is not clear--
a single computation for a smaller problem, the extrapolation of the very smallest
number of nodes possible to a single node, or the single node performance on another
machine with larger memory. The comparison of multi-node timings to any of the
above choices can be justified to gain insight into some performance issues, but they
do not seem to give the best overall performance picture. A better measure is the
performance per node versus number of nodes. A constant value of the performance
per node over a range of nodes implies scalability for that range. An algorithm may
have several scalability plateaus or constant ranges. In a plot of performance versus
nodes, one generally tries to discern a constant slope region in a set of data and
compare this slope to a single measure of goodness, i.e. Equation 7. If multiple
constant slope regions are observed, a linear curve through that region (Equation 7
with a secondary value of P1) must extend through zero to imply scalability. All this
information is much easier to ascertain in the performance per node format.

6.3 Results of TUBE algorithm

Figure 21 is a plot of the 3-direction TUBE algorithm performance results. For a fixed
grid size, the performance drop with increasing number of nodes is large. However,
above 250 nodes the scalability suggested by the 90% measure is very good. Clearly,
the algorithm and architecture are most compatible for the larger problem/node sizes.

30

TUBE Kernel Performance
5000 Gd 3 directions

-6- 32

6 44
*~--128

--- 216

3000 - M64

2000

1000

0 100 200 300 400 500nodes

Figure 22: TUBE kernel performance - rate for all directions

The same data is replotted in Figure 22 as Mflops versus nodes. Equation 7 is included
on the figure with a single node performance of 10 Mflops assumed. It is nearly
impossible to discern in this plot format the scalability plateau between 250 and 500
nodes that was observed in Figure 21.

The data for a derivative in one direction only is also informative. The z-direction
data (Figure 23) is almost constant which is expected since there is no internode com-
munication in this part of the algorithm. For a fixed problem size, the performance
drops off as the number of nodes increases. This is an example of the on-node vector
length effect cited above. The x- and y-direction data (Figures 24 and 25) look similar
to the 3-direction data. This is as expected since the slower performance sections of
an algorithm will dominate its overall performance character. While the node grid
was selected as close to square as possible, the number of nodes in the x-direction was
sometimes larger than that in the y-direction. That is why the y-direction perfor-
mance tends to be slightly greater. Otherwise the derivatives in these two directions
are essentially the same-both using the chained parallel algorithm.

6.4 Results of SLAB algorithm

The 3-direction data for the SLAB algorithm is shown in Figure 26. The SLAB
algorithm was run on only a few node/grid combinations because of restrictions due
to the particular transpose algorithm chosen. Since the performance of this algorithm

31

Grid

TUBE Kernel Performance 643i

20.0 - z direction • 126

DO 144
216
266
2U
324

17.5 34
432
512

i50

12.5

10.0 , , . .
0 100 200 300 400 500

Figure 23: TUBE kernel performance - rate per node for z directions

Grid

TUBE Kernel Performance - 3- 2

x direction 128

2216

2.56

1 0.02U

S384

6 12

0 100 200 300 400 500

32

TUBE Kernel Performance ---A U2

y direction V 12BD 144

1210

225

0.0
0 100 200 300 400 500

Figure 25: TUBE kernel performance - rate per node for y directions

was generally lower than the TUBE version, a more flexible transpose algorithm was
not implemented. With the limited data one is not able to determine how well this
algorithm scales for large problems. Since the cost of communication grows like the
"volume" of the arrays as the problem size increases, the scaling should be worst than
that for the TUBE algorithm. For the smallest grids, the SLAB algorithm actually
results in better performance than the TUBE algorithm. This SLAB algorithm also
had better performance on a hypercube network as compared to a mesh network.
This is because a transpose can be coded more efficiently on a hypercube where fewer
link contentions generally result.

7 Conclusion

Parallel, distributed memory computing, as compared to sequential and vector com-
puting, generates a larger variety of algorithms that need to be considered. The
different choices also result in a wider range of performance. Understanding imple-
mentation details is also more important, since different implementations of the same
basic algorithm can have even larger differences in performance. It is especially im-
portant when presenting algorithm comparisons to specify sufficient detail so that
any performance comparisons can be fully appreciated and duplicated.

The trade-offs between simple, easy-to-implement algorithm strategies (such as
the transpose algorithm) and more complicated strategies (the chained algorithm)

33

Grid

SLAB Kernel Performance 4 "
3 direcions • 128

- 216

10.0

-4--512

7.5

E

2.5

0.0, I i i i I i I

0 100 200 300 400 500

Figure 26: SLAB kernel performance - rate per node for all directions

for this current study seem to favor the chained algorithm. Although the improved
performance, including scalability potential, favor this algorithm, the existence of a
straightforward sequential to parallel transformation strategy reduces the disadvan-
tage of being more complicated. If code development tools were available to assist the
user in implementing these transformations, the complexity of the final code would
be less of an issue.

The transformation strategy outlined above should be extendible to many other
programming situations. For example, when the tridiagonal matrix to invert is not
periodic, it is possible after a reordering of the elements within the array, to derive
a balanced algorithm similar to the one described here. The price to pay will be
somewhat increased communication costs. If parallel, distributed memory computing
is to become practical in a production code environment, the generation of parallel
code must be done via systematic programming procedures rather than via "creative"
programming. Only when parallel code can be so generated will compilers be able
to efficiently convert sequential-computer style code to parallel-distributed-memory
style code.

8 Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated
by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to this

34

facility was provided by NASA Langley Research Center.

35

References

[1] Bokhari, S. H., 1991, Complete Exchange on the iPSC-860. ICASE Report no.
91-4, Institute for Computer Applications in Science and Engineering, Hampton,
VA.

[2] Erlebacher, G., Hussaini, M.Y., Kreiss, H.O., and Sarkar, S., The analysis and
simulation of compressible turbulence. 1990, Theoret. Comput. Fluid Dynamics,
2, 73.

[3] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J. and Walker, D. 1988,
Solving problmes on concurrent processors, Prentice-Hall, Englewood Cliffs, New
.Jersey.

[4] Hockney, R. W., and Jesshope, C. R. 1981, Parallel Computing, Adam Hilger,
Bristol, Great Britain.

[5] Lillevik, S. L. 1991, The Touchstone 30 Gigaflop DELTA Prototype, DMCC91,
IEEE Press, 671-677.

[6] Margulis, N. 1990, i860 Microprocessor Architecture, Osborne McGraw-Hill,
Berkley, California.

[7] Wei, S. K., Compact Finite-difference schemes with spectral-like resolution. 1992,
J. Cromp. Physics 103.

[8] Sun, X. H. and Gustafson, L.G., 1991, Toward a better parallel performance
metric. Parallel Computing, 17, 1093.

[9] Sun, X. H. and Ni, L. M., 1992, Scalable Problems and Memory-Bounded
Speedup. ICASE Report no. 92-59, Institute for Computer Applications in Sci-
ence and Engineering, Hampton, VA.

36

9 Appendix A - Communication Estimates

Communication estimates for two algorithms for the CDNS derivative kernel are
discussed in Section 4 of this paper. The development of those estimates is given in
this appendix.

The derivative kernel was developed to accept a three dimensional array containing
the values of some variable at each node of a three dimensional, uniformly spaced
physical grid. The kernel computes the partial derivatives of that variable using a
6th order, compact, finite-differencing scheme[8]. This results in the need to solve a
tridiagonal system of equations with multiple right-hand sides. The original data is
assumed to have periodic boundary conditions.

The estimates given below are for three calls to the kernel-one requesting a
derivative in each of the three physical directions. As discussed in the previous sec-
tions, a straightforward partitioning strategy is taken. The various strategies evalu-
ated, each assign equally one or more dimensions of the 3-D array to the available
nodes. Estimates are based on the available nodes also being allocated equally to
each distributed dimension. The actual algorithms discussed in this paper are not
limited by this restriction.

9.1 Definitions

L = number of grid points in each dimension
A = size of one 3-D array
N = total number of nodes
n = number of nodes allocated to each distributed dimension
7n = total number of messages
s = size of one message
t = total size of data moved
f = fraction of one array moved

A = L3

t ?tns

f =t/A

37

9.2 Chained algorithm

The chained algorithm works as follows:

"* The 3-D array that is passed to the derivative kernel is treated conceptually as
a 2-D array. The dimension of the 3-D array that corresponds to the direction
for which a derivative is desired is mapped to the dependent dimension of the
2-D conceptual array (R, input or S, output; see Table 1 and Figure 1). The
dependent dimension is the direction of the vectors (input,r and solution,s)
that are solved by the tridiagonal system. The other two dimensions of the 3-D
array map to the second dimension of the 2-D array. It is referred to as the
independent dimension since it indexes the rnuitiple input vectors and multiple
solutions vectors, which can be solved independently of each other.

" It is useful to view the 2-D array as stripmined in both dimensions. The strips in
the independent dimension identify groups of vectors that are lumped together
to form an independent sub-problem. The strips in the dependent dimension
correspond to the pieces of the array that are distributed to the various nodes.
See Figure 27. All sub-problems are computationally equivalent and thus any
message estimates can be made for one sub-problem and then multiplied by the
number of sub-problems to get overall estimates.

"* For the 2-D and 3-D case, the independent dimension is also distributed. Each
of these slices (2-D case, see Figure 29) or tubes (3-D case, see Figure 30),
formed as a result of the independent dimension partioning, are similar to the
1-D case, where the partitioning is only in the dependent dimensions.

" The algorithm for each sub-problem starts on one of the it sub-strips and pro-
ceeds in a chained fashion to each of the other sub-strips. This chain must be
completed twice-once for the forward and once for the backward pass of the
tridiagonal solver. The algorithm proceeds on each node in a manner similar to
the sequenLal, Gaussian elimination algorithm[5], but for only the data located
on that node. During a message passing step, the last row of data is passed to
the next node. Because the problem is periodic, a second row of data is also
passed.

n - 1 message passing steps are needed for each pass of the tridiagonal solver portion
of the algorithm. Two message passing steps are also needed for some preliminary
calculations involving the R-array before the solver is executed. Combining these
two stages results in n total message passing steps per pass. Several simplifications
are not discussed which only affect lower order terms of the estimates. The chaining
algorithm requires that the number of subproblems equals the number of nodes in
the dependent dimension for a load balanced algorithm to result (see Figure 8). In

38

the following subsections, estimates for 3 data distributions are made-distributing
the original 3-D array in one, two and three of its dimensions.

39

R or S array

independent dimension
I I I

*0 Idistributed strips
SI I I
SI I I/

S starting node of algorithm step step n-

on this sub-problem step ro

sub-strip

Figure 27: Chained algorithin steps

40

9.3 Chained algorithm: 1-D partitioning

See Figure 28.

"* number of nodes in each distributed dimension

n = N

"* compute number of messages

m = 1 distributed direction
• n subproblems

• 2 passes(forward & backward)

* n steps/pass

* 2 messages/step

m = 4n 2 messages

"* compute message size

s = L' size of independent dimension

/ n subproblem strips

s = L 2/n size of each message

"• results

m = 4N2

s = L 2/N

t = 4NL 2

f = 4NIL

41

3-D Array

L

i I J I
I I

division between distributed
* I I

sti__ Strps
I I I /

L : division between non-distributed
I I Itrips

* I I
I I I

3-D to 2-D conceptual mapping

R or S array L*L

! I !

si e of each message, L*L/n

Figure 28: Chained algorithm for a 1-D data distribution

42

9.4 Chained algorithm: 2-D partitioning

See Figure 29.

* number of nodes in each distributed dimension

n = N'1 2

a compute number of messages

m = 2 distributed directions
• n subproblems/slice

* n slices

* 2 passes/subproblem
* n steps/pass

• 2 messages/step

M = 8n 3 messages

* compute message size

s = L'/n size of slices (independent dimension)

/ n subproblem strips

s = L2/n 2 size of each message

* results

m = 8N3/2

s = L2 /N

t = 8N 1/2L 2

f = 8N1/ 2/L

43

3-D Array

L

L

S- -division between distributed

strips

division between non-distributed
strips

of n slices L/n
L

I I I

Ror S array slice L L/n 3-D to 2-D conceptual mapping

- ~II

I ~ II

L

size f each message, (L*L)/(n*n)

Figure 29: Chained algorithm for a 1-D data distribution

44

9.5 Chained algorithm: 3-D partitioning

See Figure 30.

@ number of nodes in each distributed dimension

n = N'1/3

e compute number of messages

m = 3 distributed directions

• n subptoblems

* ni tubes

* 2 passes/subtn'oblem
* n steps/pass

• 2 messages/step

m = 12n 3 messages

* 4jrmpute message size

s = 2/n
2 size of tubes (independent dimension)

/ n subpr-oblem strips

.= L'/n 3 size of each message

* results

i = 12N 4/ 3

s = L 2/N

t = 12N 1 / 3 L2

f = 12N 1/3 /L

45

3-D Array

L
L

division between distributed
strips

L division between non-distributed
strips

one of n*n tubes
SL/n L./n

L

R or S array tube LL/n)

I g

3-D to 2-D conceptual mapping

LI I

size oe each message, (L*L)/(n*n*n)

Figure 30: Chained algorithm for a 1-D data distribution

46

9.6 Transpose algorithm

The transpose algorithm works as follows:

" The conceptual mapping between the 3-D array and the R or S array is similar
to the chained algorithm.

" Assuming that the j-dimension in Figure 18 is the dependent dimension, the
R array must be transposed so that each j-vector resides on a single node.
Principally, this involves the swapping of blocks of data as shown in Figure 18
which is referred to as a global transpose. For on-node performance reasons,
each block is also transposed to generate a complete transpose. The on-node
data motion is not included in these estimates since it can partially be hidden
behind the inter-node communications.

"* Once the input (R-array) is transposed, a sequential solver algorithm is used to
generate the output (S array). The S-array must then be transposed back to
the original data distribution.

In the following subsections, estimates for 3 data distributions are made-distributing
the original 3-D array in one, two and three of its dimensions. The transpose algorithm
does not divide the R and S arrays into subproblems as is done in the chained
algorithm. The use of subproblem in the following estimates refers to the number of
slices (2-D case) or tubes (3-D case).

47

9.7 Transpose algorithm: 1-D partitioning

See Figure 31.

"* number of nodes in each distributed dimension

n = N

"* compute number of messages

Mf = I distributed direction

* 2 transposes

* n blocks (mes sages) per step

* n-1. steps

M = 2n(n -1) messages

"* compute message size

S = L 2 size of independent dimension

/n strips
*L size of dependent dimension

/n strips
S = L 3 /n 2 size of each block (message)

"* results (neglecting the lower order terms of m)

m = 2N 2

s = L3/N 2

t = 2L 3

f =2

48

3-D Array

L

division between distributed
strips

L division between non-distributed
strips

I I I

\ conceptual mapping

R or S array L*L

- I

I

L I

size of each message -1 block, (L/n)*(L*L/n)

Figure 31: Transpose algorithm for a 1-D data distribution

49

9.8 Transpose algorithm: 2-D partitioning

See Figure 32.

"* number of nodes in each distributed dimension

n = N'/2

"* compute number of messages

m = 2 distributed directions

* 2 transposes

* n blocks(messages) per step

Sn- 1 steps

* n subproblems or slices

"m = 4n 2 (n - 1) messages

"* compute message size

s = L 2 size of independent dimension of each slice

/ n 2 strips

* L size of dependent dimension

/ n strips

s = L3/n 3 size of each block (message)

"* results (neglecting the lower order terms of m)

m = 4N3/2

s = L3/(N3/2)

t = 4L 3

f =4

50

3-D Array

L

L

division between distributed

strips

L division between non-distributed
strips

ne of n slices L/n
L

R or S array slice L * L/n conceptual mapping

L -I

size of each message, [L/nl*[(L*L)/(n*n)]

Figure 32: Transpose algorithm for a 1-D data distribution

51

9.9 Transpose algorithm: 3-D partitioning

See Figure 33.

"* number of nodes in each distributed dimension

n = N1 /3

"* compute number of messages

m = 3 distributed directions

• 2 transposes

* n blocks(messages) per step

• n- I steps

* n2 subproblems or tubes

m 6n 2(n - 1) messages

"* compute message size

s = 2 size of independent dimension of each tube

/ n3 strips

• L size of dependent dimension

/ n strips

s = L3/n 4 size of each block (message)

"* results (neglecting the lower order terms of m)

s = 31(N4/)

m =6N4/3

t = 6L 3

f =6

52

3-D Array

L

L

division between distributed

strips

L division between non-distributed
strips

one of n*n tubes
SL/n L/n

L

R or S array tube (L*L)/(*)

I I I

I I

S• conceptual mapping
I II

I IL -

III

I I

size of each message, [L/nI*[(L*L)/(n*n*n)}

Figure 33: Transpose algorithm for a 1-D data distribution

53

REPO T D CUM NTATON AGEForm Approved
REPO T D CUM NTATON AGEOMB No, 0704.0188

Public reporting burden for this collection of information is estimated to average I hvur per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

May 1994 Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

IMPLEMENTATION OF A FULLY-BALANCED PERIODIC TRIDI-
AGONAL SOLVER ON A PARALLEL DISTRIBUTED MEMORY C NASI-19480

ARCHITECTURE WU 505-90-52-01

6. AUTHOR(S)

T. M. Eidson
G. Erlebacher

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 94-37
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-194919
Hampton, VA 23681-0001 ICASE Report No. 94-37

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to Concurrency, Practice and Experience

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)
While parallel computers offer significant computational performance, it is generally necessary to evaluate several
programming strategies. Two programming strategies for a fairly common problem-a periodic tridiagonal solver-
are developed and evaluated. Simple model calculations as well as timing results are presented to evaluate the
various strategies.
The particular tridiagonal solver evaluated is used in many computational fluid dynamic simulation codes. The
feature that makes this algorithm unique is that these simulation codes usually require simultaneous solutions for
multiple right-hand-sides(RHS) of the system of equations. Each RHS solutions is independent and thus can be
computed in parallel. Thus a Gaussian-elimination-type algorithm can be used in a parallel computation and the
more complicated approaches such as cyclic reduction are not required.
The two strategies are a transpose strategy and a distributed solver strategy. For the transpose strategy, the data
is moved so that a subset of all the RHS problems is solved on each of the several processors. This usually requires
significant data movement between processor memories across a network. The second strategy attempts to have
the algorithm follow the data across processor boundaries in a chained manner. This usually requires significantly
less data movement. An approach to accomplish this second strategy in a near-perfect load-balanced manner is
developed. In addition, an algorithm will be shown to directly transform a sequential Gaussian-elimination-type
algorithm into the parallel, chained, load-balanced algorithm.

14. SUBJECT 'ERMS 15. NUMBER OF PAGES
tridiagonal, parallel, MIMD, turbulence 55

16. PRICE CODE

A04
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-280-S500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

