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Abstract

Very Long Instruction Word (VLIW) architectures enhance performance by exploiting fine-
grained instruction level parallelism. In this paper, we describe the development of two
compiler assisted multiple instruction word retry schemes for VLIW architectures. In the
first scheme, compiler generated hazard-free code with different degrees of rollback capa-
bility for uni-processors [1] is compacted by a modified VLIW trace scheduling algorithm.
Nops are then inserted in the scheduled code words to resolve data hazards for VLIW ar-
chitectures. Performance is compared under three parameters : N, the rollback distance for
uni-processors; P, the number of functional units; and n, the rollback distance for VLIW
architectures. The second scheme employs a hardware read buffer [2] to resolve frequently
occurring data hazards, and utilizes the compiler to resolve the remaining hazards. Perfor-
mance results are shown for six benchmark programs.
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1 Introduction

VLIW machines can simultaneously execute multiple instructions which are grouped as an

instruction word [3, 4, 5]. General VLIW architectures consist of multiple functional units.

Instruction words include several operation fields, each of which controls one specific func-

tional unit. The functional units typically operate in a single instruction stream with lock-

step timing control. Significant speedup can be achieved if the machine can execute more

than one operation within each machine cycle. However, due to data dependencies and re-

source constraints, the parallelism may not be fully exploited. Scheduling techniques such as

trace scheduling [6, 7], superblock scheduling [8], and software pipelining [9] can effectively

increase performance, especially for scientific applications where conditional branches are

highly predictable.

Periodic checkpointing can recover from transient faults by rolling back the system to a

previous checkpointed consistent state [10, 11, 12]. Checkpointing schemes allow long error

detection latencies, but suffer from the high cost of long recovery time. In environments

where error detection latency is only a few instructions [13, 14], instruction retry can be an

effective scheme for providing fast recovery.

To preserve the status of the register files, and to allow the system to rollback a few

instructions in the event of transient processor failures, hardware schemes [14], compiler-

based schemes [1], and hardware-software combined schemes [2] have been developed. Write

buffers can hold the writes to register files and delay the potentially contaminated data for a

few cycles until the error detecting unit validates its correctness [14]. Read buffers save the ocles
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correct data for every read for a few instructions [2]. By compile time manipulation of data

dependencies, such as the anti-dependencies [15], data required for rollback can be preserved

in a register for a specific number of instructions [1].

The application of concurrent error detection, signature monitoring, and TMR to VLIW

has recently been described by several researchers [16, 17, 18]. In this paper, we describe two

compiler assisted multiple instruction word retry schemes for VLIW architectures. The first

scheme is a compiler-based approach which applies the compiler-generated hazard-free code

for various rollback distances for uni-processors to a modified trace scheduling algorithm [6].

Nops are then inserted in the compacted code to resolve the remaining data hazards. The

performance impact is measured by N, the rollback distance for a uni-processor; P, the

number of functional units; and n, the rollback distance for a VLIW architecture. The

second scheme uses a read buffer ( not a write buffer ) of n deep and 2 x P wide to hold all

reads within the last n instruction words executed. Such a mechanism can resolve frequent

data hazards, while the remaining class of data hazards is resolved by the compiler [2].

2 The Machine Model and Data Hazards

In this section, we describe the machine model, the assumptions, and the two hazard classes.

The machine model consists of several functional units, each of which has two read ports,

and one write port connecting to a general register file. Memory is accessed by loading

and storing from the register file. The functional units operate simultaneously accessing the

register file, but do not support pipelining.
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Transient errors may occur in any of the functional units due to an incorrect read from the

register file, incorrect arithmetic operations performed by the functional units, or incorrect

branch decisions. We assume an error detection mechanism triggers a rollback within n

instruction words (cycles) from the inception of the error. Register file contents do not

spontaneously change, and data writes can not be written into incorrect registers. Up to n

instruction word write buffers are associated with the memory and I/O device [14], so that

they can have their own rollback capability. To facilitate instruction word retry, a history

file of size n serves as a shadow file for the program counter [5].

Data hazards are those that cause inconsistencies during several retries of the same

instruction word sequence. Two types of hazards are classified for the machine model. On-

path hazards [1], appear in the form of anti-dependencies [15] where the retry of the same

read-write path is inconsistent with the previous run due to the possible incorrect write

destroying the value needed by the read during retry. Branch hazards [2] occur at branch

instructions where an incorrect decision causes a register to be defined at a wrong branch

path while it is live [20] at the other branch path.

3 Our Approach

3.1 Previous Results for Uni-processors

Register renaming is the main technique we previously utilized to resolve hazards for uni-

processors. To eliminate on-path hazards, we remove all anti-dependencies of length < N.
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Loop protection, node splitting, and loop expansion achieve this goal. We illustrate these

techniques in Figure 1. Figure 1(a) is a partial program segment of QSORT, a recursive

quick sort program. U(a) denotes reading register a, and a node represents an instruction.

Suppose N = 6. Node 3 is a hazard node and register a is a hazard register since after

executing node 3 any retry that rolls back above node 3 has a wrong value for register a due

to the definition at node 3. We can not simply rename the definition at no-1e 3 to resolve

the hazards, since doing so will result in all references of pseudo register a to be renamed.

Additionally, register a is used outside of the loop. We need to protect the loop in order to

control the code growth due to later splitting, as shown in Figure l(b), where the shaded

nodes denote the save and restore nodes. Figure l(c) shows the equivalent program segment

after node splitting and renaming, while Figure l(d) after expanding the loop twice and

renaming. All the hazards within the loop are eliminated, and all anti-dependencies have

distances greater than 6. Although there still are hazards for register a of distance 5, they

belong to the outer loop and will be resolved since we always process inner loops first. Note

that the new pseudo registers have very short live ranges, which is a benefit to our VLIW

scheduling algorithm.

Figure 2 outlines the entire hazard removal procedure for uni-processors. The input

code is generated by the IMPACT C compiler [19]. Hazards are resolved at three different

stages, i.e., pseudo register, machine register, and nop insertions [1]. The machine register

stage performs the register allocation. The pseudo register stage provides a large number of

pseudo registers that can be assigned, as shown in Figure 1. This stage is the pre-pass stage
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Figure 2: Hazard removal for uni-processors

while the nop insertion stage is the post-pass stage. The post-pass stage handles hazards

across interprocedural boundaries, and the new hazards induced by the spill registers and

parameter passing registers. Sufficient nops are then inserted to make the code free of any

remaining hazards.

3.2 Compiler-Based Scheme for VL1W Architectures

In this section, we describe how the instruction retry scheme for uni-processors can be ex-

tended to VLIW architectures. We have implemented a modified trace scheduling algorithm

for trace-based simulation. Profiling is implemented to guide the trace selection [6, 7]. The

most frequently executed path is scheduled first. List scheduling operates on the selected

trace by building a data dependence graph and successively scheduling the instructions

whose predecessors in the dependence graph have all been scheduled. To maintain the cor-

rect program semantics, redundant code will have to be inserted in the unscheduled program

segments. In our current implementation, we do not implement multiple jump instructions

within a word.

Given a rollback distance N for uni-processors, we can apply our previous approach to

generate N-instruction hazard-free code. One direct extension would schedule such hazard-
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Figure 3: The hazard removal, scheduling and simulation process for VLIW

free code by bounding groups of nops together so that they still serve as delimiters for

hazards in the compacted code. Although an easy modification to the data dependence

graph building process in the list scheduling can achieve this, such groups of nops will tend

to block the code motion around them, and as a result reduce the available parallelism.

We thus choose an alternative approach. The code generated after the code reordering but

before the final nop insertion as shown in Figure 2 is scheduled. Nop instruction words are

then inserted to resolve both types of hazards in the compacted code. Figure 3 outlines the

entire process for hazard removals, scheduling and simulation.

Further enhancement can be made by introducing priorities for selecting feasible instruc-

tions during list scheduling. For example, consider the instruction word segment of QSORT

generated by trace scheduling, as shown in Figure 4(a). Arrows denote anti-dependencies

which should be separated by n instruction words ( in this example n = 5 ). A total of

15 fops are required to resolve all on-path hazards, where 5 nops for each gap between

words W.A and W-B, between W..B and WC, and between WD and W.E respectively.

By employing the prioritized list scheduling, the number of nops can be reduced. When

there are more than one instruction whose predecessors in the dependency graph have all

been scheduled, we schedule those instructions with the longest dependence chain first. In
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computation of such a chain, flow dependency and output dependency are counted one, and

anti-dependency contributes n + 1. Also every instruction has an assumed schedule time.

An instruction can be scheduled at the current word if its assumed schedule time is not

greater than the current time. The schedule time is updated when any of its predecessors

is scheduled. Nops are inserted on the fly if there is no available instruction that can be

scheduled at the current time. As illustrated in Figure 4(b), the longest chain has length 12,

and the schedule for instructions "addu$30, $sp, 128" and "move$sp, $30" can be postponed

to words W.D and WF respectively. The number of nops needed is now 7.

3.3 Hardware-Software Combined Scheme for VLI1W Architec-

tures

The second scheme employs a read buffer [2] to backup all register values read within the

last n instruction words executed. The depth of the read buffer is n, while the width is 2 x P,

since each instruction can read at most two registers, and there are at most P instructions

in a word. Such a hardware scheme can capture all on-path hazards. By inserting dummy

instructions of the form "move$r, $r", after the branch node along the path that defines

register $r within distance n, such branch hazards can be resolved, since the old value of

register $r is now in the read buffer due to the read in the dummy instructions.

The same trick can be applied in the compacted code word so that all branch hazards can

be treated as on-path hazards, and subsequently resolved by the read buffer. [ri] dummy

words can be inserted after the instruction word containing a branch instruction IBR, where
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Figure 4: Enhanced list scheduling algorithm
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B is the number of hazard registers for IBR along one branch. Actually, by utilizing dead

registers at IBR, and some 2-operand instructions, e.g., add, only [r2-'] dummy words are

required.

4 Simulation Results

Six benchmarks are utilized. QUEEN is the 8-queen problem, and QSORT is the quick sort

algorithm. Both programs include recursive subroutines. CMP, COMPRESS and WC are

UNIX utilities which compare two files, compress files, and count the number of words in

a file, respectively. PUZZLE is a game program which includes several consecutive single

loops.

For simplicity, we assume each instruction word takes unit time to complete. Performance

is measured by counting the number of instruction words executed. This is done by allocating

a counter and inserting increment instructions in every word instruction. As the compacted

code is executed on a uni-processor DEC station 3100 ( MIPS processor ), the counter

contains the number of instruction words executed at the end of execution. We investigate

the relative performance impact for various rollback capability for uni-processors (N) and

the desired rollback distance for VLIW architectures (n) with a varying number of functional

units P.

The original optimized code generated by the IMPACT C compiler serves as the base,

which is first profiled and scheduled under different P. Simulations are then performed to

collect the number of instruction words executed. Figures 5 - 10 illustrate the performance
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overhead on the benchmarks for P = 2,4, N = 2,4,6,8, 10, and n = 0,1,2,3,4,5. n = 0

means that only hazard removal is performed without inserting any nops. This case is used

to demonstrate the performance improvement attainable as a result of loop expansion.

As the program results indicate, in most cases, for fixed P and n, the larger N tends to

generate compacted code with better performance. This is because a larger N may require

expanding loops more times to resolve data hazards within loops, consequently making

register live ranges shorter, which is beneficial to the scheduling algorithm. For example,

under P = 4 and n = 5, all benchmarks have minimal overheads when N = 8 or 10.

Without inserting any nops, i.e., n = 0, all benchmarks except QSORT have improved

code schedulings for N = 2 and 4. However, for both cases all benchmarks have the worst

performance under the same P and n = 5. That is because when fewer loops are expanded,

fewer registers are used. Also, the scheduled code is so compact that more nops are needed

to resolve hazards between code words. For smaller n's, e.g., n = 1 and 2, PUZZLE and

WC have better compacted schedulings over those of the original optimized programs. Both

programs have very simple loop structures, and the loops are executed frequently. The

instruction retry scheme functions well in scientific applications, where branch predictions are

highly accurate, and the loops are iterated many times. QSORT has the worst performance

overhead because it has a frequently called recursive subroutine, merge-sort. The prioritized

list scheduling algorithm helps to improve its performance, as shown in Figure 11.

In the original programs, the performance of the compacted code for a larger P is no

worse than the performance of the code for a smaller P. However, the situation is usually
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Figure 11: Performance overhead for QSORT under the prioritized list scheduling algorithm

reversed for instruction retry schemes. For fixed N and n, since larger P tends to generate

more compacted code, the distances between hazard words are closer, resulting in more nops.

Figures 12 - 17 show the code growth ratio for the six benchmarks, which may have an

impact on the instruction cache miss ratio. The ratio is relative to the code growth of the

original compacted scheme, for P = 2 and 4, without inserting nops. The results indicate

that for n = 5, most benchmarks have a minimum code growth ratio when N = 6, and a

maximum code growth ratio when N = 2. The code growth ratios are within 450%, and

700% for P = 2 and P = 4 respectively. If only loop expansion and node splitting are

performed without nop insertion, as in the case n = 0, smaller N tends to have a smaller

code growth ratio.

Figures 18(a) and (b) illustrate the performance overhead when employing a read buffer.

For P = 2 and P = 4, both figures almost have the same shape. PUZZLE has a near 0
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performance impact, and CMP has the highest overhead, 4.52% for P = 2, n = 5, and 4.53%

for P = 4, n = 5. In average, when n = 5, the performance overhead for P = 2 is 2.7%

and for P = 4 is 2.81%. Figures 19(a) and (b) illustrate the code growth ratio of the read

buffer scheme. When n = 5, the average code growth ratio is 9.37% for P = 2 and 10.97%

for P = 4.

5 Summary

We described the development of compiler assisted multiple instruction word retry for VLIW

architectures. Both a software-based scheme and a hardware read buffer with compiler-

assisted scheme were proposed. The first scheme employs compiler technology to resolve all
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hazards. The performance costs are higher than in the second scheme, ranging from 20% to

70% for 2 functional units, and from 5% to 170% for 4 functional units.. The second scheme

employs a hardware read buffer to retain reads within the last n instruction words. The

mechanism resolves the frequently occurring on-path hazards. Branch hazards are resolved

by the compiler. The hardware cost is a read buffer of 2n x P entries for register backup. Over

the six benchmarks, the experimental results show less than 5% performance degradation

for a rollback distance of n = 5 and the number of functional units P =2 and 4.

20



References

[1] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu, "Compiler-assisted multiple
instruction retry," Tech. Rep. CRHC-91-31, Coordinated Science Laboratory, University
of Illinois, May 1991, to appear in IEEE Transactions on Computers.

[2] N. J. Alewine, S.-K. Chen, C.-C. J. Li, W. K. Fuchs, and W.-M. W. Hwu, "Branch
recovery with compiler-assisted multiple instruction retry," in The Twenty-Second In-
ternational Symposium on Fault-Tolerant Computing, pp. 66-73, July 1992.

[3] J. A. Fisher, "Very long instruction word architectures and the ELI-512," in The 10th
Annual International Symposium on Computer Architecture, pp. 140-150, 1983.

[4] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, "A
VLIW architecture for a trace scheduling compiler," in Proceedings of the 2nd Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 180-192, 1987.

[5] B. R. Rau, D. Yen, W. Yen, and R. A. Towle, "The Cydra 5 departmental supercom-
puter," IEEE Computer, pp. 12-35, Jan. 1989.

[61 J. A. Fisher, "Trace scheduling: A technique for global microcode compaction," IEEE
Transactions on Computers, July 1981.

[7] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1986.

[8] W.-M. W. Hwu et al., "The Superblock: An effective technique for VLIW and su-
perscalar compilation," the Journal of Supercomputing, Kluwer Academic Publishers,
pp. 229-248, July 1993.

[9] M. S. Lam, "Software pipelining: An effective scheduling technique for VLIW ma-
chines," in Proceedings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation, pp. 318-328, 1988.

[10] L. Svobodova, "Resilient distributed computing," IEEE Transactions on Software En-
gineering, vol. SE-10, No. 3, May 1984.

[11] L. Lin and M. Ahamad, "Checkpointing and rollback-recovery in distributed object
based systems," in The Twentieth International Symposium on Fault-Tolerant Comput-
ing, pp. 97-104, 1990.

[12] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed
processes," in IEEE 2nd Symp. on Reliability in Distributed Software and Database
Systems, pp. 124-130, 1981.

[13] M. L. Ciacelli, "Fault handling on the IBM 4341 processor," in The Eleventh Interna-
tional Symposium on Fault-Tolerant Computing, pp. 9-12, June 1981.

21



Best
Available

Copy



[14] Y. Tamir and M. Tremblay, "High-performance fault-tolerant VLSI systems using micro
rollback," IEEE Transactions on Computers, vol. 39, pp. 548-554, Apr. 1990.

[15] D. A. Padua and M. J. Wolfe, "Advanced compiler optimizations for supercomputers,"
Communications of the ACM, vol. 29, pp 1184-1201, Dec. 1986.

[16] J. G. Holm and P. Banerjee, "Low cost concurrent error detection in a VLIW architec-
ture using replicated instructions," in The Proceedings of the International Conference
on Parallel Processing, vol. I, pp. 192-195, 1992.

[17] M. A. Schuette and J. P. Shen, "Exploiting instruction-level resource parallelism for
transparent integrated control-flow monitoring," in The Twenty-First International
Symposium on Fault-Tolerant Computing, pp. 318-325, 1991.

[18] D. M. Blough and A. Nicolau, "Fault tolerance in super-scalar and VLIW processors,"
in IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, pp. 193-200,
1992.

[19] P. Chang, W. Chen, N. Warter, and W.-M. W. Hwu, "IMPACT: An architecture frame-
work for multiple-instruction-issue processors," in The 18th Annual International Sym-
posium on Computer Architecture, pp. 266-275, May 1991.

[20] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

22


