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ABSTRACT

Image theory is an ideal method for calculating the transmission loss in a shallow

water (wedge shaped ocean) environment. It can be used in cross-slope, at all

frequencies and in transitional cut off regions that are out of bounds to normal mode

theories.

This thesis had three objectives: 1) convert the existing image theory models called

URTEXT and WEDGE into a high level scripting language called MATLABTm by

Math Works, 2) linearize the existing quadruplet expansion program to increase speed,

and 3) to incorporate the Arctan approximation of the Rayleigh reflection coefficient

into the quadruplet expansion for the fast bottom case.

Objective I was completed with accurate results. Objective 2 was completed with

a factor of 8 increase in speed. Objective 3 incorporated the Arctan approximation of

the reflection coefficient for a fast bottom into the quadruplet expansion, but due to the

inaccuracy of the reflection coefficient after the second quadruplet, the results were not

favorable. It was also discovered that even with the Rayleigh reflection coefficient, the

first order approximations made in developing the quadruplet expansion equation

(Equation 6-27) are not accurate enough for the fast bottom case. Accesion For
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I. INTRODUCTION

The current emphasis of undersea warfare is on the shallow coastal regions in littoral

waters. The sound propagation in these regions is influenced by bottom and surface

interaction and not by the convergence zones and ducting found in deep water. The

variables in shallow water are bottom type, bottom density, slope, sea state, surface winds,

sea surface temperature, etc., all of which can change quickly or be unavailable in the area

of interest.

There is no closed form analytic solution to the problem of a penetrable, sloping

bottom as found on the continental shelf region or shoreline areas. There are computer

models using various approximation methods ranging from purely numerical (parabolic

equation) to approximately analytical (adiabatic mode theory). Transmission loss

modeling in a wedge shaped ocean falls into three major areas: 1) parabolic approximation,

2) adiabatic normal mode theory, and 3) image theory.

A. PARABOLIC EQUATION

The parabolic equation (PE) is a range-dependent, underwater acoustic propagation

model. In it the Helmholz equation is replaced by a one-way parabolic equation which

generates an acoustic field as an initial value problem. The PE approach is limited by

excessive computer running time in shallow water environments, higher frequencies, and

horizontal rays < 40°.

The first application of PE to underwater acoustics was by Tappert in 1977 with a

restriction on the maximum angular aperture of ±20"at the source [Ref. 1]. This restriction

was relaxed to ±40" with a higher order parabolic equation by Collins [Ref. 2].

Computerized calculations by Jensen and Kuperman [Ref. 3] based on a split-step Fast
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Fourier Transform (FF1) solution of the parabolic equation provided detailed information

about the beams projected into the bottom, showing modal cutoffs. The results compared

favorably to model tank experiments by Coppens and Sanders [Ref. 41. Since the PE is

cylindrically symmetric, sloping bottoms cause a problem. Lee and McDaniel [Ref. 5]

sectioned the wedge into a series of range independent regions and then applied normal PE

methods. Another approach to this problem is by Collins [Ref. 6] with the rotated PE.

The rotated PE steps parallel to the ocean bottom and has two normal derivatives

preserving pressure and particle velocity normal components thus handling sloping

interfaces properly. Fawcett [Ref. 7] developed a three-dimensional computer model

using the wide-angle PE approximation by Thomson [Ref. 8] with FFT algorithm as an

azimuthal operator. Most recently, Collins [Ref. 9] has developed the energy conserving

PE for elastic media to improve accuracy in range-dependent elastic media. The energy-

conserving elastic PE is a generalization of the energy conserving acoustic PE [Ref. 10]. It

involves approximating a range-dependent waveguide into a sequence of range-

independent regions with a linear approximation of compressional energy flux between the

vertical interfaces.

B. NORMAL MODE THEORY

Normal mode theory provides an exact solution to the wave equation. The distinct

advantage of normal modes is that once the set of eigenfinctions have been determined, the

range and depth dependence of the transmission loss can be calculated directly [K,.'. 11].

Normal mode theory is a range-independent approach but for a wedge shaped ocean, a

range-dependent approach is needed due to the bottom interaction (in the case of a lossy

bottom) and bottom reflection angle. Pierce [Ref. 12] used adiabatic separation of depth

and range in the wave equation to get an approximation. Graves, Nagl, Uberall, and Zarur

[Ref. 13] applied this method to the wedge shaped ocean using rigid bottom and isospeed
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water. This method was good only for small slopes. Buckingham [Ref. 141 developed a

solution for the penetrable bottom using an "effective" wedge with pressure release bottom

below the actual penetrable bottom. By using a coordinate transformation, range-

dependent modes are matched to range independent eigenfunctions in the "effective" wedge

to account for amplitude and phase shifts. Then a sum of range dependent normal modes

are applied to the new bottom.

A problem with adiabatic normal mode approximation is it does not explain the

transition to evanescent modes at cutoff. Pierce [Ref. 15] combined PE with adiabatic

normal mode theory to develop a critical depth function. Known as the augmented

adiabatic mode theory, it is a sum of modal terms with each mode eventually encountering

a critical depth at a critical range. The results compare well with the results of Jensen and

Kuperman [Ref. 31.

Another method is to combine local modes with ray acoustics. Arnold and Felsen

[Ref. 16] developed intrinsic wave functions that are determined by waveguide geometry.

Modes are mutually decoupled thus propagate independent of source geometry (physical

shape) when superpositioned.

C. IMAGE THEORY

Image theory in acoustics is similar to image theory in optics. A source radiating in

the water has a virtual image reflected equidistant above the water 180" out of phase. In an

isospeed, wedge shaped ocean numerous images are produced in kaleidoscope fashion.

In 1966, Macpherson and Dainteth [Ref. 17] proposed a phase incoherent model for

upslope propagation. Kawamura and Ioannou [Ref. 18] predicted the pressure amplitude

and phase of the sound field along the bottom of a wedge shaped fluid layer overlapping a

fast fluid bottom. Coppens, Humphries, and Sanders [Ref. 19] developed a phase coherent

model to calculate the pressure amplitude along the bottom of a wedge of water overlying a

3



fast fluid bottom in the upslope direction using the incident plane wave reflection

coefficient stated by Rayleigh. The pressure distribution at the water-bottom interface can

be used as a source to project beams into the bottom to calculate the propagation through

the medium. Brekhovskikh and Lysenov [Ref. 20] stated that for very distant source and

image combinations or the presence of many reflections allow image theory to be applied

with Rayleigh reflection coefficients with insignificant error. Baek [Ref. 21 ] then

developed a computer model of pressure throughout the water column over a fast botto'

This model was limited to a fast bottom due to the critical grazing angle of the sound to

bottom. LeSesne [Ref. 22] used the same model as a basis for a three-dimensional model

which produced a pressure field in the cross slope case which was validated against

experimental results from a model tank by Kosnick [Ref. 23]. Kaswandi (Ref. 24]

developed a model for a pressure field with a slow bottom in downslope. Nassopoulos

[Ref. 25] took all previous models developed at the Naval Postgraduate School and

combined them into a computer program called URTEXT. He also implemented the use

of the doublet expansion of the acoustic field in a wedge shaped ocean. Livingood (Ref.

26] then expanded the image doublets into the cross-slope case. Joyce [Ref. 27] then

developed the quadruplet expansion of the acoustic pressure field in the wedge shaped

ocean. The quadruplet expansion is a much faster computationally but the approximations

in the reflection coefficient and other terms in the quadruplet expansion equation produces

large errors at large wedge (0>3") and source angles due to the angular differences between

the images in the upper and lower doublets.
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U. IMAGE THEORY

This section is a brief review of the ideas and basic equations of image theory. The

following assumptions are made:
1. Sound velocities and densities are constant in both the wedge and penetrable bottom.

2. Air-water boundary is a pressure release surface i.e. reflections are 180" out of phase.

3. Slope is constant and all boundaries are planar.

When sound is transmitted within a waveguide, there are a number of interactions of the

acoustic waves with the boundaries. In image theory, each ray path is replaced by an image

of the source. The distance of the source from the receiver is the total length of the acoustic

ray. In the case of a sloping bottom, the image is placed equidistant from the reflecting

boundary perpendicular from the source. See Figure 2-1.

Surface 2,APEX

Source

FIgure 2-1 -Wedge Geometry

For a given bottom slope angle 1, the number of images N in each of the upper and

lower half spaces is given by
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Each image is numbered from the source. The source is image number I for the upper

half space. The first image below the bottom is image number I for lower half space. This is

continued until the opposite surface is reached. See Figure 2-2.

5/

SWI APEX

3 4

Figure 2-2 - Image Structure for Wedge Shaped Duct

The grazing angle I& of the nth image above or below the bottom is calculated from

0. = nfl- y for n odd (2-2)

O, = (n- 1)l+y for n even (2-3)
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where y is the angle of the source from the surface.

The range r. from each image to the receiver is then calculated using

r.+ = Vr' +r, + yo' -2rrcos(O. - +3) (2-4)

for the upper series of images and

r.-= 2r22 + +y0 - 2rir 2 cos(O + -a -+ ) (2-5)

for the lower series of images. In these equations, rj is the distance from the wedge apex to

the source, r2 is the distance from the apex to the receiver, Yo is the cross-slope or shoreline

distance between the source and receiver, and O,-V8+- is the angle from the nth source to the

receiver (for the upper image). See Figure 2-3.

nth Imiage
S~r2

P~rne

RmX*Y PUne

Figur 2-3 - Source-Rweever Geoiebtry (Upper Image)

The sound will propagate from the source to the receiver through combinations of three

different path types: 1) direct, 2) surface reflected, and 3) bottom reflected. Figure 2-4

illustrates a bottom-surface-bottom path. The upper drawing illustrates the real path of sound.
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Source Surface

Receiver

APEX

3 10

Receiver

Surface Bottom

Figure 2-4 - Compauison of Real and Image Theory Sound Propagation Paths

The surface is a pressure release boundary so the incident angle is equal to the reflected angle.

The bottom has refractive properties due its composition so the incident angle is not

necessarily equal to the transmitted angle but is dependent on the p and c ratio of the water

and bottom. With each interaction with the bottom, a new angle is produced which is related

to the first incident angle. This is discussed later with the reflection coefficient. The lower

drawing illustrates the image theory equivalent. The path from the third image to the receiver

is a straight line.
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The reflection coefficient is a product of the interaction between the boundaries of the

fluid layers. The surface is a pressure release boundary so each interaction produces a

reflection coefficient of-i. Each interaction with the bottom requires calculation of the

reflection coefficient. This coefficient is a function of the speed of sound in each medium, the

density of each medium, and the grazing angle of the ray equivalent on the bottom. The sine

of the grazing angle 0.. is

sin 0 r. sin(0, - 2mr) + r. sin[(2m - 1)p + 61 (2-6)
r,÷.

for the upper images and

sin 0.- = r, sin(0• - 2mrt) + r2 sin[(2m + 1)pf - ] (2-7)
r,_

for the lower images. See (Figure 2-5).

On=n i-'y nodd

en=(n-1)Vy n even
S~nth Image

0. - 2mo

r.

r2

Receiver

Figure 2-5 - Incident Angle 0., Calculation (Upper Half Space)

The reflection coefficient for each interaction R,.. then is given by
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PRs- 0.-1(b +a ) 2+j1 N 2+a2_)Y

P t ( -2-8)
8- sin 0.+7 _GL 2a a

where P I, P2 are densities of the water and bottom respectively, j = V1, and a and b are

given by

E _= 2 - cos2 20nm (2-9)

C\ 2

b=2V -. (2-10)

For the above equations, cI, C2 are the speeds of sound of the water and bottom,

respectively, and r.k2 is the bottom loss coefficient.

The pressure for each half space is given by summing the contribution for the upper and

lower images respectively

PU Y--- exp(-,.kr.+,,-l, rjR) + (2-11)
r.+ M(1

where f R = 1 when n= 1,2 in (2-11) and

P, = fexp(-jkir._-1) j _R. - (2-12)
r.- M=O

The number of interactions m with the bottom is related to the image number, so the limit M

is the integer of [1-2`] -1 for the nth image. For convenience we have omitted the factor e'"

which would otherwise appear in (2-11) and (2-12).

Two special cases exist in the upper half space. For the case of the direct path of the

source to the receiver (n= 1), R is 1. In the case of a single reflection off the surface and no

reflections with the bottom (n=2), R is again I. The phase inversion of the ray is computed by

the (-1)I'r(n12) term of (2-11) and (2-12).

10



Since the model is frequency independent, a scaling distance Xc is used. Xc is defined as

the distance where the lowest normal mode attains cutoff when the bottom is fast (c2>c 1).

This cutoff distance is calculated by

k inX C = t 0c =cos-' (citi (2-13)
2sin~ctmC2 J

so,

Xc = 2 jjsinO t(2-14)
C2kI sic a

For a slow bottom an analogous scaling, convenient for the computer program is

k1Xc = x 0, =Cos' C2 (2-15)
2 tan 0,tan C1

so,

X =(2-16)C 2k Itan 0 StanoJ

For the total pressure at the receiver, the upper and lower contributions are combined,

thus

P= PU+PI (2-17)
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III. DOUBLET FORMATION

A. GENERAL DESCRIPTION

An acoustic doublet is a pair of acoustic images 180" out of phase. The first doublet

consists of the source and its reflection, the 2nd upper image. This is called a neutral

doublet (n=O). The reflection coefficient is I because its midpoint does not encounter a

Sn=O •APEX

n124

Surface rl+ n0T2 AE

Receiver

rl" 2

Figure 3-1 - Doublet linage Structure

boundary. The 3rd and 4th upper images are the I1st upper doublet (n---l). The 5th and 6th

upper images are the 2nd upper doublet (n=-2). The I1st and 2nd lower images are the I1st

12



lower doublet (n=-l) and the 3rd and 4th lower images are the 2nd lower doublet (n=2).

This procedure is continued until the opposite surface is reached. See Figure 3-1.

The total number of acoustic doublet pairs is given by

N= Int 4 - (3-1)

At worst, only three images will be missed and they will be in the higher order images of

the source so their contribution is negligible due to all the reflection coefficients

encountered [Ref. 25].

B. DEVELOPMENT

The sound propagation for a spherically spreading point source is

p = AeJ tat-kr) (3-2)

r

where A is the pressure amplitude, r is the range from the source and k is the wave

number o 1c [Ref. 11 ]. Wher, two sources are combined to form a doublet, the above

equation can be expanded to

P + j(Ot-k,) A- j(c-kr) (3-3)
r_ r+

where the subscripts "+" and "-" refer to the upper and lower sources of the doublet and

r, = r+ Ar A. A+AA (3-4)

r =r-Ar A_=A-AA

The delta values are the incremental difference between each source compared to the

theoretical point source. Figure 3-2 illustrates the doublet close-up. The distance d is the
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separation of the images of the doublet pair and r is the distance of the doublet midpoint to

the receiver.

P(r, 0, t)

T r+÷
d

II

Figure 3-2 - Doublet Close-Up

The pressure equation can now be rewritten as

(A +AA (A -AA
P=A re• -kr) A em- A -j" (3-5)

P=e zr { r-Aijre+ ]
rA r r__

1. Balanced Doublet

The Ist upper image has an reflection image of equal amplitude and opposite

phase which is the second upper image. In the far field, the image pair is treated as a single

doublet source. See Figure 3-3.
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2

Surface n--O 2 ý APIx

rn

Receiver

Figure 3-3 - Geometry of Neutral Doublet

The pressure equation for a balanced source can be approximated by

P = Ae JAe-Jk(r-Ar) - e-Ji(r+Ar)] (3-6)

The geometry of the doublet is given in Figure 3-2. Ar is

d
&" = -sin(0) = r, sin(r)sin(0) (3-7)

2

By substituting Equation 3-7 into Equation 3-6 and factoring one gets

P A edaeJekr (ejkrt do(Y)"(8) - e-jkrd~t snO (3-8)

By using the relationship of

sin(x)= -- (3-9)2j

where x=krisin(y)sin(8), the result is
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P = 2j A sin(kr, sin( r)sin(O))e j(ar-kr) (3-10)
r

2. Unbalanced Doublet

For the unbalanced doublet, the amplitude relationship is expressed as

A. = A++A AA = ,A+ -A- (3-11)2 2

The unbalanced doublet can be viewed as a combination of a balanced doublet on which is

superimposed a like-charge doublet [Ref. 28]. See Figure 3-4

nth Image Plane

surface /OA n

Receiver

Figure 3-4- Geometry of Unbalanced Doublet

The pressure equation is

P [2j A sin(kr, sin(y)sin(O)) + 2 4  cos(kr, sin(y) sin(9)) e (•-k) (3-12)
r• r

which can be rewritten as

16



2A[sin(k y)sin())- -cos(kr, sin(") (13

3. Distance from Doublet to Receiver

The distance from the doublet formation to the receiver can be calculated using the

law of cosines. For a three dimensional wedge, the following equation is used

r2 =,r2 = 2 + y2 cos{2np ±3) (3-14)

where rt and r2 are the ranges from the apex to source and receiver respectively, Yo is the

cross-slope range, 1 is the wedge angle, 6 is the source angle, and n is the doublet

formation number. The "+" and "-" signs are reference to the upper or lower images in

the doublet formation. See Figure 3-5.

r1 2njý+8

nt Irnago

Pner

Figure 3-5 - Doublet Three Dimensional Geometry

Equation 3-13 can be rewritten by adding and subtracting 2rtr2 . This yields the

following expression

17



2 =2 - 2rrr2 + 2 + +r,r 2 -_2rr2 cos(2np3+8) (-15)

By combining terms and factoring, the following is the result

2[ (r + 2r~r

or

rI +2r+rV (I -cos(an+ 6)) (3-17)r,•~~~ ~ =r--a +( Yr2)2 +(r,--r2)2

4. Pressure From Each Doublet

A generalization of Equation 3-13 can be made by substituting A, and AAM for A.

and AA where

A 2 (3-18)2 2

and On for 0 where

8.± = UP ± 8 (3-19)

so the pressure from each doublet is

p.± = 2j A,,t. in(kr, sin(y)sin(o.±))_ j _..t. cos(krysin(O.±))] e ,(-k.)

(3-20)
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IV. QUADRUPLET FORMATION

A. QUADRUPLET GENERAL DESCRIPTION

A quadruplet is formed by combining the upper and lower doublets. The visualization

""iSurface Primary Doublett2

• Source1

Figure 4-1 - Quadruplet Ifustratlon

of the quadruplet is iliustrated in Figure 4-1. The prmr doublet (the source and its first

upper image) are considered separately. The fiLrst quadruplet consists of the third and
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fourth upper image (first upper doublet) and the first and second lower image (first lower

doublet). The second quadruplet consists of the fifth and sixth upper images (second upper

doublet) and the third and fourth lower images (second lower doublet). The process is

continued until the opposite surface is reached.

The number of quadruplets formed is

N = l 9.)(4-1)

At worst, only 3 images will be missed and they are highest order images so their

contribution is negligible due to all the reflection coefficients encountered.

B. QUADRUPLET DEVELOPMENT

1. Balmced Quadruplet

The complementary doublets are 180* out of phase. The pressure of the

quadruplet is given by combining the nth upper and lower doublets from Equation. 3-10 of

the balanced doublet to form

P. = 2jAi [ sin(kr, sin(r)sin(O.+))e-"6

TN (4-2)

-sin(kr, sin(T)sin(O._))e-'.- •--•-)

By substituting Equation 3-19 for & and using the approximation that sin(y)=y, the

balanced quadruplet prmsure equation is

P. - 2j-&[ sin(krysin(2n/ + 6))e-w-

r, (4-3)

-sin(kr, rsin(2np _ ))e)"r'- V -lr)

2. uiname QIF1 - Pm k

The amplitudes of the upper and lower doublets are not equal because of the

distance differential between them as seen in Figure 4-2. This leads to the concept of the

unbalanced quadruplet.
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nth Image Plane r

Surface 2nlo

n r2 2n[o

o B+AB

nth Image Plane Bo.AB

Figure 4-2 - fIustration of Unbalanced Quadmplet Anplitude

The & terms are derived from the comparison of the distance from the primary

doublet to the midpoint of the upper and lower doublets in each quadruplet (Figure 4-2).

This ensures that all phase angles are calculated from a common reference point. Using

Equation 3-17, by setting yo=O, we can make the following approximation,

r= -+ 2rr2 )2(- cos(2np±+))r.* = , - r I+ (r,-r2(4-4)1
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r{ r r l 1 (,-r2 (lcos(Zn# •) (4-5)

Now Ar. can be approximated using the following relation

rlr2 [1-cos(2nP± +6)] (4-6)

jr, -r2 l

Figure 4-3 -Nlelutrta of elr In a Quadruplet

The cosine term in the above expression can be expanded using a trigonometric

cos(2nPJ ±6) = cos(2nP)cos(8) ± sin(5)sin(2n/3) (4-7)

SmaFl angle approximations can be used for B where cos(I)= and sin(6)--6 so

cos(2nP ± 8) = cos(2ni) ± asin(2nfi) (4-8)
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Equation 4-8 can be substituted into Equation 4-6 which can be substituted into

Equation 4-3 to yield

kJ) kr2:1 )Ico(2nPi)) "
rj. r • - [ sin(krlysin(2nP + 8))e(r 2 -F,()4-9)

-sin(krysin(2np - 6))ej(rrIr2rI)6sia(2nD#)]

For convenience, the following terms are defined

-= kr (l - cos(2nfl))

d = kr,6sin(2nP) (4-10)

Ik.r2I

Equation 4-9 now becomes

P•=• 21AR ej(iw4r)eij# [ sin(krrsin(2nfi +,6))e-jpd
r (4-11)

-sin(kr~ysin(2n-68))eý" ]

The amplitudes of the upper and lower images of the doublets are not equal. By separating

the amplitudes and distributing it into the main equation in a process similarly done in

Equation 3-12 and 3-13, the unbalanced quadruplet equation is the result

P= 2J eJ(-)e-J

r

[A.f sin(krysin(2npi+ 8))- jA ~cos(kr, y sin(2nfi + 6) jd(4-12)

-B.[sin( kr, sin(n& - 6 )) - j --. cos(kr, ysin(2n f - 6))]) ihd]

where A. and %, are the amplitudes of the upper and lower nth doublets at the midpoint

and AA& and B are the differences in amplitude of the nth upper and lower doublet

images.
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V. REFLECTION COEFFICIENTS

A. REFLECTION COEFFICIENTS

The reflection coefficient is discussed in Chapter 2 with the image theory

development. The reflection coefficient from [Ref. 291 is

P2s(in(o,) -,)

R. AC 2 p (5-1)E2-sm(O.) + -L' in(O,)
PA C2

It can be rewritten as

b s-m(9,)

R. sin(O) (5-2)
bc+ sin(,)(

sin(O.)

where O66 is the grazing angle of the nth image going through the mth plane and

b =/A C = -E- (5-3)

p, C,

Sin(O,) can be expanded and the reflection coefficient can be rewritten as

b_1-c coS2 (o.)

. + -sino(o.) (5-4)

The term under the radical can be manipulated and written in terms of the critical angle, 9,

from Equation 2-13

24



SCos 2(O,.) =CAsin2(O.,)_-sin2(O,)(5541-c 2 cos(6,e)-- 1- co(5-5)

Equation 5-5 can be combined into Equation 5-4 and simplified.

- sin((Oý.)

R. ;in (5-6)

b- 1 (sin(.c)

By using the substitution

x = sin(Oc) (5-7)

the reflection coefficient takes the form

b- IxI
-X2 (5-8)

B. SLOW BOTTOM REFLECTION COEFFICIENTS

A slow bottom is when the speed of sound in the bottom material is slower than in the

water (cl>c2). This is an easier case to handle because there is no critical angle constraint,

the reflection coefficient is real and diminishes quickly to zero.

Equation 5-8 can be expanded to by using

sin(O,)= I - I- c2-l (5-9)
C 2 C2

resulting in
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.(5-10)

b+ I1- (cz 2JiF-t- E- sC(0.)

Reversing the order of the terms

b (1--7) 1 +I
b-R (--c) Sin(O,.) + (5-11)

I, _, C2- )I)

b+ 1si (0.)

By pulling out the first term77C,b -c 2  1 +l_•2i-..

R.W, -- 2 (5-12)b+I-c 2  ~ 1Fcý2E s0-in+ c2 i( )
si .--) I n(_.C2

Dividing the top and bottom by 1/b and making an approximation with the square root

results in

1- 1-c 2  1 ( 1,ic 2 . 2  )'
I -1 b i ( 1 +) 1 C 'S-2 O:R., 2 Lin_2 1 _C2 (5-13)

C+ I-c+ 1C2+'
c 2  bsin(O, 221-c2 sin(0))

Using the relation of

1 -- y = e-2 '
1+ W (5-14)

Equation 5-13 can be approximated by

2kc

-e-717 (5-15)

Substituting
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2bca= 7 (5-16)

The final product is

Rm =- e- a#. (5-17)

Each ray intersects the bottom 2n- I times. The product of the reflection coefficients

will be

Ra= 1R[I (5-18)

Expanding the equation yields

2n-i

R.= IIR[O,]= e-a( +l)e -a(q÷3)e-a("*s5)...e-a(÷+(2n-1)•) (5-19)
mff1,3 ....

where 7 = e + 6. Multiplying exponentials with the same base is equivalent to add their

exponents. The terms in can be rearranged to
2x 1R M - [ + + .2n-I)j

I-R[,] =e- e (5-20)
m=1i,3 ....

By noticing that the sum of the expontentials at a index is equal to the index squared, the

result is

R. = •-'ta" e-"2ap (5-21)

For small angles, the first term in the exponential is very small compared to the second so

the cumulative reflection coefficient for a slow bottom is

R•= e-n2ap (5-22)

C. FAST BOTTOM REFLECTION COEFFICIENTS

A fast bottom is when the speed of sound in the bottom is faster than the speed of

sound of water (c2>cl). At angles below grazing, the acoustic energy will propagate with
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100% reflectance (R,,,=1) until 9, (see Equation 2-13) is reached then will decay. See

Figure 5-1.

1 Fast Bottom Reflection Coefficient Curve for 3 Deg Wedge

S0.8

S0.6

0 .4

0.2

50 10 15 20 25

Nth Quadruplet

Figure 5-1 - Typical Fast Bottom Cumulative Reflection Coefficient Curve

The development follows until Equation 5-8. By reversing the order of terms

b+j I- 1

R. - x (5-23)

b-jI -- 1

The above equation can be simplified to

l+
1+-j -- 1

R. b ýX (5-24)

b x

Using the Maclaurin series [Ref. 30] of
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In 1 +z = 2 tanh' (z) (5-25)
1-z

Equation 5-22 results in

P. = e (L(5-26)

By taking out the IMx2 term and inverting the tanhl1

R. = e( ( T -7 (5-27)

Simplifying the above equation results in

P,. = -e (5-28)

or

The cumulative reflection coefficient is the cumulative product of all previous reflection

coefficients and will take the form of

n-- -2 ta-lbRn = TIP, =f-e .t~2~ (5-30)
n=1 ji=1
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VI. GRAZING AND RECEIVER ANGLES IN QUADRUPLET

A. RECEIVER ANGLE

The receiver angle is calculated using the law of sines. The relation can be seen in

Figure 6-1

r -=.(6-1)
sin(e.,) sin(2np±)

By solving for sin(sn) and using the small angle approximation

e.± = -lsin(2np ± 8) (6-2)
r.,

Likewise the receiver angle for each image of the doublets can be solved for. The receiver

angle for the upper half-space is given by

r = r,+± (6-3)
sin(e.+,) sin(2n•+ ± + )

sin(e,+,) = -l-sin(2np + 6 y) (6-4)
r.+±

Using a the sine expansion of the sum of two angles, the above equation results in

sin(e..±) = -5-[sin(2np + 6)cos(y) ± cos(2np + 8)sin(y)] (6-5)
r.,

Making the assumption cos('y)=l, sin(•)--=y, sin(e)=e, , = r,,.+ and substituting sin(En)

from Equation 6-2
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,= e ± r- ycos(2nf3 + 8) (6-6)
rl÷

for the upper half space and

= e, ± . ycos(2nfl - 8) (6-7)

for the lower half space.

B. ANGLE OF INCIDENCE FOR UPPER AND LOWER DOUBLET

IMAGES

The angle from the surface to each virtual bottom is

0, = (2n- 1)p (6-8)

The angle of incidence of the doublet midpoint is

=(2n- l)# ±8+ E (6-9)

The angles of incidence with the virtual bottom is different with each upper and lower

doublet image. The angles of incidence for the upper half space are given by

0.+t = (2n- l)p6 + 8 + e.+± (6-10)

By substituting Equation 6-5 into Equation 6-10 and making the standard small angle

assumptions

0.+t = (2n - l)#8 + 8 + -L-[sin(2np + 8X1) ± ycos(2nfi + 8)] (6-11)r.+

Expanding the sine term and making the standard small angle assumptions again

0.+t = (2n - 1)f + 8 + r. [sin(2npXl) + 6cos(2nfi) ± ycos(2np + 8)](6-12)
r.÷

Rearranging the terms result in
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0.,= (2n- l) + r-- sin(2ni) + i--- + cos(2np)]r6+ r.+ j(6-13)

+L y rcos(2n13 + 8)rI.+

An assumption can be made that if r, << r.÷, the sine term in the above equation is small

so the it can be neglected. The result of Equation 6-13 is

0.± = 0.+ +[i + r•cos(2n3)] ± LI ycos(2n/3 + 8) (6-14)L r.+l r.,

The equivalent equation for the lower half space is

0= '.o + 4I + -Lcos(2np)] ± • ycos(2np -8) (6-15)

Expanding the cosine term results in

9.+± = Oý. + I[ +r'- -cos(2nl)l
r=.+ (6-16)

5 A. [cos(2np)cos(b) - sin(2np)sin(8)]
r.+

Using the standard small angle approximations and assuming the sine term is small

8.+±= o + 4I +---Lcos(2nfl)] ± f~ cos(2nhJ) (6-17)
L r.+ jr.+

for the upper half-space and

8._ = o.. + I + r'Lcos2nP)] -5 rcos(2n,,) (6-18)

for the lower half-space.

C. AMPLITUDES

The amplitude of each image in the quadruplet needs to be calculated due to their

differences. The coefficients of Equation 6-17 and 6-18 are used where
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a. =1+ r. Icos(2nP) (6-19)

and

b. = !Lcos(2n,5) (6-20)

The reflection coefficient can now be written for each image

R,+ = R~e-G' (6-21)

expanding the above equation and using the sine approximation for an angle

RM± = R~e-'a&. e±nao" (6-22)

Each of the image amplitudes can now be expressed

A,- = R~e-"''e-"Q' BR- = R.efl'4aemkT

A.+ = le-MMSe"ock B.+ =ROeM.e-Maky (6-23)

Using Equation 3-11 and the definition of

ez -e-x eK --- x

cosh(x) = 2 sinh(x) = (6-24)
2 2

where x=nab,8 gives

S= R. sinh(nab,),"- AB,. = R, sinh(nah,6)e"""5

A. = R. cosh(nab.x)em' B. = R, cosh(nacb,,6)e-' (6-25)

The equations combine to form

tA4 =- tanh(nab.,r) (6-26)4, =tanh(nab.) B-=A. B.

Now the full quadruplet equation can be written as
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P=P. + X3 IR, cosh(nab, ye-'"')e'

e-Aaa~~~s-jgd 8snklsi(n+))- jtalh(flab~y)coSqkr~ysi(2nfl6))

[e-4".sud$d(sin(krtysin(2np; 8))- jtanh(nab,, y) cos(kr ysin(2np- +)

(6-27)

where P0,L =sin(kr, y6).
r
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VIO. PROCEDURE AND RESULTS

This thesis had three objectives:

1. Convert the WEDGE/URTEXT to MATLAB 1 " and test it in all cases (slow and
fast bottom, cross-slope, and with bottomloss).

2. Linearize the quadruplet expansion code by Joyce [Ref. 27]

3. Extend the quadruplet expansion to the fast bottom case with a approximation of
the Rayleigh reflection coefficient

A. CONVERT WEDGEIURTEXT TO MATLAB

The image model baseline program is called WEDGE. It is written in GWBASIC by

Professor A. B. Coppens and is run on a IBM XT(8088) desktop computer. WEDGE

was tanslated into FORTRAN by Nassopoulos [Ref. 25]. It was renamed URTEXT and

is on the mainfime computer at the Naval Postgraduate School. Translating it to a

language that is fast and can be run on a high performance desktop computer or

wodkstation was necessary to make WEDGE data readily available for comparison to the

quadruplet expansion. MATLAB"" [Ref. 31] was chosen because it is a high level

scripting language which runs on a variety of computer operating systems including VAX,

MS-DOS, UNIX, and Macintosh and that it is the mathematics program that the author is

most familiar with.

Validation of the MATLABTm version of WEDGE, called WEDGEMAT, was

dc by comparing the results of WEDGE and URTEXT to those of

WEDGEMAT.

Tables 7-1, through 7-4 show the results of the comparison of URTEXT with

WEDGEMATtr. WEDGEMATtr is the a version of WEDGE that ends the calculation

process when the presure amplitude is less than 0.00000001. The major error at the
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surface is due to the difference in precision of the different languages. FORTRAN uses

single precision variables, accurate to six decimal places. MATLAB]m is precise to 13

places, therefore at the small pressures near the surface the round-off errors are extreme. It

should be noted that the results of Nassoloulos are normalized pressures where the actual

pressure is multiplied by the source scaling distance rl.

Tables 7-5 through 7-8 show the comparison of WEDGE to WEDGEMATtr. The

WEDGE program in GWBASIC uses variables precise to 12 decimal places so it

compares more favorably with the MATLAB version. Runs were done with fast bottoms,

bottomloss, and cross-slope to test accuracy. The results are very favorable.

A run was made on an 10° slope with the data taken from the surface to bottom

sampled every 0.05°. Figure 7-1 shows pressure falls off linearly as the sound nears the

surface (bottom of graph). This implies the model is valid at the surface.

Pressure vs Receiver Angle for Wedge Shaped Ocean

,2.5

Receiver angle measured
SI from the surface

0.5

01
0 1 2 3 4 5

Pressure xl103

Figure 7-1 - Pressure vs. Receiver Angle

WEDGEMATtr has undergone basic proofing. When compared with previous

versions in FORTRAN and GWBASIC, it is more flexible both in platforms run, model
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variables, and speed. Most importantly, now it can be used to check the quadruplet

expansion data to verify results.

TABLE 7-1 SLOW BOTTOM COMPARISON OF URTEXT AND

WEDGEMATTR

J3=3 r=- rl=1 r2=10 yo=0  pl/P2--0.9

ci=1500m/s c2=1475m/s a/k2=0

Pressure Amplitude Phase An le

Receiver Image Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.03" 0.000123 0.000126 0.000003 -54.7" -48.8" 5.9"

0.30" 0.001255 0.001250 0.000005 -49.8" -48.7" 1.1"

0.60" 0.002415 0.002400 0.000015 -48.8' -48.5" 03"

0.90" 0.003352 0.003356 0.000004 -49.4" -48.1' 1.31

1.20" 0.004028 0.004039 0.000011 -48.5" -47.5" 1.0"

1.50" 0.004384 0.004390 0.000006 -47.5" -46.4" 1.1"

1.80" 0.004369 0.004377 0.000008 -45.7" -44.5" 1.2"

2.10" 0.004010 0.004002 0.000008 -42.1" -41.1" 1.0"

2.40" 0.003339 0.003316 0.000023 -35.2" -34.5" 0.7"

2.70" 0.002471 0.002467 0.000004 -20.8" -19.7" 1.1"

Avg Pressure Diff- 0.000008 Ave Phase Diff= 1.5"

Note: Normalized pressure equation used where P =r, p2 + p2
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TABLE 7-2 SLOW BOTTOM COMPARISON OF URTEXT AND

WEDGEMATTR

ft--4 y= 1 rl=5 r2=12 yo=O pl/P2--0.7

ci=1500m/s c2=1420m/s a/k2--O
ý I --

Pressure Amplitude Phase Angle

Receiver Image Absolute Image Absolute

Angle Theory MATI.AB Difference Theory MATLAB Difference

0.04" 0.040927 0.041003 0.000076 -149.3" - 149. 1' 0.2"

0.40" 0.394236 0.394324 0.000088 -148.6" -148.5" 0.1"

0.80" 0.701851 0.701860 0.000009 -146.5" -146.3' 0.2"

1.20" 0.873027 0.873049 0.000022 -142.3" -142.2" 0.1.

1.60" 0.915180 0.915294 0.000114 -135.2" -135.1" 0.1"

2.00 0.887048 0.887038 0.000010 -124.6" -124.5" 0.1"

2.40 0.851987 0.851901 0.000086 -112.8' -112.7* 0.1"

2.80 0.810276 0.810180 0.000096 -104.5" -104.4" 0.1"

32•0 0.704744 0.704662 0.000112 -103.6' -103.5" 0.1.

3.60" 0.503485 0.503407 0.000078 -115.2 -115.0. 0.2"

Avg Pressure Diff= 0.000069 Avg Phase Diff f 0.1'

Note: Normalized pressure equation used where P - r, 2
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TABLE 7.3 SLOW BOTTOM COMPARISON OF URTEXT AND

WEDGEMATTR

f3=5 y=4 rl=2 r2=400 Yo=-O pI/P2=0.6

cl=1500mn/s c2=1410rn/s c./k2--O

Pressure Amplitude Phase Anile

Receiver Image Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.05" 0.000087 0.000082 0.000005 56.3' 65.2" 8.9'

0.50* 0.000818 0.000812 0.000006 62.6' 65.3" 2.7"

1.00" 0.001532 0.001549 0.000017 62.2" 65.4" 3.2"

1.50 0.002151 0.002144 0.000007 63.0" 65.5' 2.5'

2.00" 0.002537 0.002542 0.000005 62.6' 65.6" 3.0"

2.50" 0.002704 0.002704 0 63.3 65.7' 2.4

3.00" 0.002639 0.002613 0.000026 63.0" 65.8' 2.8"

3.0" 0.002276 0.002268 0.000006 62.4" 65.9' 3.5"

4.00" 0.001699 0.001690 0.000009 63.0 65.8" 2.8'

4.5W 0.000926 0.000916 0.000010 60.5' 65.1' 5.1.

Avi Pressure Diff=- 0.000009 Ava Phase Diff = 3.7

Note: Normalized pressure equation used where P = r ,;p 2 + p2
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TABLE 7-4 SLOW BOTTOM COMPARISON OF URTEXT AND

WEDGEMATTR

0--6 y=2 ri=0.8 r2=5 yo=O Pl/P2=0.8

ci=1500m/s c2=1450m/s W.k2--0

Pressure Amplitude Phase Angle

Receiver T ige Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.06" 0.000372 0.000377 0.000005 -50.2" -48.3' 1.9"

0.60" 0.003728 0.003726 0.000002 -48.9" -48.6" 0.3"

1.20 0.007214 0.007205 0.000009 49.9" -49.8" 0.1"

1.80 0.010212 0.010210 0.000002 -52.2" -52.0' 0.2'

2.40 0.012559 0.012557 0.000002 -55.3" -55.3' 0"

3.00' 0.014134 0.014136 0.000002 -60.2" -60.1 0.1"

3.60" 0.014946 0.014947 0.000001 -67.1' -66.0" 1.1"

4.20" 0.015168 0.015166 0.000002 -77.0" -76.8" 0.2"

4.80" 0.015224 0.015224 0 -90.5" -90.4" 0.1,

5.40' 0.015831 0.015832 0.000001 -107.7' -107.6" 0.1"

Avg Pressure Diff= 0.000003 Avg Phase Diff = 0.4

Note: Normalized pressure equation used where P = UP +
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TABLE 7-5 FAST BOTTOM COMPARISON OF WEDGE AND

WEDGEMATTR WITH BOTTOMLOSS

Ji=3 y-- rl=1 r2=10 yo--O Pl/P2--0.9

c1=1500m/s c2=1666m/s a/k2--0.0001

Pressure Amplitude Phase Angle

Receiver Image Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.03" 0.01256 0.01255 0.00001 -3.1V -3.1' 0

0.30" 0.12379 0.12377 0.00002 -3.3' -3.Y 0

0.60" 0.23680 0.23681 0.00001 -3.8' -3.9' 0.1"

0.90" 0.32981 0.32982 0 00001 4.9" 4.9" 0

1.20" 0.39269 0.39272 0.00003 -6.2' -6.2" 0

1.50" 0.42213 0.42214 0.00001 -8.9" -8.8, 0.1,

1.80" 0.40586 0.40585 0.00001 -10.7" -10.6' 0.1.

2.10" 0.34833 0.34832 0.00001 -16.6' -16.7' 0.1.

2.40" 0.24512 0.24513 0.00001 -15.6' -15.7" 0.1"

2.70" 0.14819 0.14816 0.00003 -13.5" -13.5 0

Avg Pressure Diff= 0.00002 Avg Phase Diff = 0.5"
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TABLE 7-6 FAST BOTTOM COMPARISON OF WEDGE AND

WEDGEMATTR WITH BOTTOMLOSS

0=3 y=1 r1=1 r2=100yo=O p1/P2--=0.9

cl=l500n/s c2=1875rl1s Wk2---O.OO0I

Pressure Amplitude Phase Angle

Receiver Image Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.03" 0.00210 0.00199 0.00011 35.4' 40.3" 4.9'

0.30" 0.02069 0.02062 0.00007 34.9' 35.4' 0.5'

0.60' 0.03962 0.03966 0.00004 34.8" 34.9' 0.1"

0.90" 0.05529 0.05535 0.00006 34.5" 34.5" 0

1.20" 0.06632 0.06640 0.00008 34.1' 34.1" 0

1.50" 0.07174 0.07183 0.00009 33.6" 33.6' 0

1.80 0.07095 0.07105 0.00010 33.1" 33.1" 0

2.10" 0.06385 0.06394 0.00009 32.7' 32.7" 0

2.40" 0.05088 0.05093 0.00005 33.5" 334" 0.1"

2.70' 0.02783 0.02782 0.00001 38.9' 38.9' 0

Avg Pressure Diff= 0.00006 Avg Phase Diff f 0.6'
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TABLE 7-7 FAST BOTTOM COMPARISON OF WEDGE AND

WEDGEMATTR IN CROSS-SLOPE WITH BOTTOMLOSS

13=3 y=1 rI=1 r2=10 yo=4  p1/P2--O.9

ci=1500n/s c2=1666m/s Wk2--0.0001

Pressure Amplitude Phase Angle

Receiver Image Absolute Image Absolute

Annle Theory MATLAB Difference Theory MATLAB Difference

0.03" 0.01024 0.01094 0.00070 -44.3 -43.2" 1.1"

0.30" 0.10162 0.10227 0.00065 -44.2' -44.3" 0.1"

0.60" 0.19699 0.19716 0.00015 -44.3 -44.2' 0.1"

0.90" 0.27908 0.27931 0.00022 -44.5 -44.6" 0.1"

1.20" 0.34418 0.34418 0 -44.8" -44.8" 0

1.50" 0.39920 0.39896 0.00024 -44.8 -44.9" 0.1"

1.80" 0.40001 0.39954 0.00047 -39.2" -39.3" 0.1"

2.10" 0.35816 0.35799 0.00017 -37.5" -37.5' 0

2.40 0.27680 0.27659 0.00021 -34.5" -34.6" 0.1.

2.70W 0.17050 0.17036 0.00014 -33.2" -33.T 0

Avg Pressure Diff=- 0.00029 Avig Phase Diff = 0.2'
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TABLE 7.8 FAST BOTTOM COMPARISON OF WEDGE AND

WEDGEMATTR IN CROSS-SLOPE WITH BOTTOMLOSS

0=3 y=0.5 rli=l r2=10 Yo=8 p1/P2=0.9

c=l1500m/s c2=1666m/s a/k2--O.O001

Pressure Amplitude Phase Angle

Receiver Image Absolute Image Absolute

Angle Theory MATLAB Difference Theory MATLAB Difference

0.03" 0.00493 0.00501 0.00008 -33.4" -27.4" 6.0"

0.30' 0.04887 0.04911 0.00024 -33.4" -33.0" 0.4"

0.60" 0.09466 0.09495 0.00029 -33.5" -33.4" 0.1"

0.90" 0.013453 0.13463 0.00010 -33.5" -33.6" 0.1"

1.20" 0.16917 0.16949 0.00032 -34.7" -34.6' 0.1,

1.50* 0.18791 0.18845 0.00054 -29.0' -28.9' 0.1,

1.80 0.18490 0.18554 0.00064 -27.8' -27.8" 0

2.10" 0.16321 0.16382 0.00061 -24.6" -24.6" 0

2.40" 0.12657 0.12706 0.00049 -23.4" -23.5" 0.1"

2.70" 0.07764 0.07792 0.00028 -21.8' -21.9" 0.1"

Avg Pressure Diff= 0.00036 Avg Phase Diff 0.7

B. LINEARIZATION OF QUADRUPLET EXPANSION PROGRAM

The original quadruplet expansion program was written by Joyce [Ref. 271. His

program is used as a basis for the fast bottom case examined later in this chapter. The

linearized program is in Appendix A-I and A-2 and has incorporated into it the fast

bottom, reflection coefficients of Equations 7-1 and 5-28.
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The original quadruplet expansion code used "For Loops" to compute its products.

The code was linearized to speed processing time. A speed factor of 8 was achieved with

the same output results [Ref. 27]. Table 7-9 shows relative execution time for a 3" wedge.

This table is only meant to give the reader a 'feel' of the time involved in running the

programs. The WEDGE program in GWBASIC was run on a IBM XT (8088) with

FPU. All other programs were run on a Mac HIsi (68030 @ 20 MHz) with Applied

Engineering 32k RAM cache card (with 20 MHz FPU) using MATLABTm 3.5.

TABLE 7.9 EXECUTION TIME OF IMAGE PROGRAMS

Bottom Type WEDGE WEDGEMAT WEDGEMATtr QUAD Linearized

(truncated QUAD

______Typeversion)

Slow 16s 42s 2s 8s Is

Fast I 124s 43s 5s ,8s Is

Another method to speed calculation is to use the "For Loop" and put in a "Break"

command to stop the calculation process after the pressure for a certain image or image

doublets, in the quadruplet case, falls below a specified level. This was done in the

WEDGE (truncated version) and WEDGEMATtr. This especially useful in a slow

bottom case where the first 3 of 30 quadruplets (for a 3Y wedge) would be 98 percent of the

amplitude. This idea was not explored for the quadruplet expansion case.

C. FAST BOTTOM REFLECTION COEFFICIENT APPROXIMATION

The Rayleigh reflection coefficient without absorption is
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PAc +J cj.CT 219

R. pc, sinm(O9.,) (7-1)

P rc.._2 2 j kCos

pAc, sin(O.,)

can be approximated by Equation 5-28 which is

R.= -e2  77

For a fast bottom 3* wedge with the following parameters

c, = 1500m / s p, =lKg I m3

C =1666m/s P2 = 1.llllKg/m 3

the reflection coefficients are displayed in Table 7-10. In a 30 wedge, 30 reflection

coefficients would be calculated. A fast bottom requires the first 10 terms since the

cumulative product is multiplied with the amplitude of the quadruplet. The cumulative

product after the tenth term is very small and contributes little to the final pressure as can be

seen in Figure 5-1.
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TABLE 7-10 COMPARISON OF RAYLEIGH AND ARCTAN

APPROXIMATION REFLECTION COEFFICIENTS

Rayleigh Reflection Tan-I1

Coefficient Approximation

Quad Number Amp Phase Amp Phase

1 1 149.7" 1 149.30

2 1 121.20 1 117.8*

3 1 95.10 1 83.7"

4 1 70.9" 1 38.3"

5 1 46.1" 0.380 0

6 0.9084 0 0.2471 0

7 0.4839 0 0.1885 0

8 0.3750 0 0.1568 0

9 0.3120 0 0.1375 0

10 0.2669 0 0.1251 0

The correlation of the two reflection coefficients are good until the third quadruplet.

Then the Tan- 1 approximation fall off much more quickly than the Rayleigh values. This

can be seen in the complex plane plot of the reflection coefficients in Figure 7-2. The first

five reflection coefficients are numbered in each case.
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Plot of Complex Reflection Coefficient
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Figure 7-2 - CompaLson of Complex Reflection Coefficients

TABLE 7-11 COMPARISON OF THE CUMULATIVE RAYLEIGH AND

ACTTAN APPROXIMATION REFLECTION COEFFICIENTS

Rayleigh Reflection Coefficient Tan-1

I _Approximation

Quad Number Amp Phase Amp Phase

1 1 149.7" 1 149.3"

2 1 -89.1" 1 -92.9°

3 1 6.10 1 -9.20

4 1 77.0" 1 29.0"

5 1 123.10 0.3880 29.0"

6 0.9084 123.10 0.0959 29.00

7 0.4396 123.10 0.0181 29.0*

8 0.1648 123.1" 0.0028 29.00
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The most important factor is the cumulative ctrction coefficient which is shown in

Table 7-11. There is a wide disparity between the actual and approximated reflection

coefficients. The correlation is good until the second quadruplet, then the products diverge.

The reason for this is the inaccuracy of each grazing with the bottom is amplified by the

complex multiplication of the cumulative product.

A test was run comparing the amplitude and phase at the receiver. The output is

displayed in Table 7-12. Data were taken from the surface to the bottom in 0.5°

increments. The differences are attributed to the inaccuracy of the reflection coefficient

after the second quadruplet. With the fast bottom, the equations are very sensitive to the

phase of the reflection coefficients. Even though the reflection coefficients have an

amplitude of 1, the phase can cause constructive and destructive interference. Also with a

fast bottom, many of the terms in the quadruplet expansion are complex there by

magnifying the effect of the phase inaccuracy.

TABLE 7-12 COMPARISON OF AMPLITUDE AND PHASE OF USING

RAYLEIGH AND ARCTAN APPROXIMATION

Receiver Angle Rayleigh Reflection Coefficient Tan-1

(from Surface) I Approximation _

8 Amp Phase Amp Phase

0 0 0 0 0

0.5" 0.0082 173.0" 0.0025 -83.30

1.0 0.0164 172.9" 0.0049 -83.20

1.5" 0.0245 172.7 0.0074 -83. 1

2.0" 0.0239 172.4" 0.0070 -82.8

2.5" 0.0161 172.1 0.0043 -82.1"

3.0" 0.0010 162.2" 0.0006 -65.6"
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Now one still has to compare the results of WEDGEMATtr, to the quadruplet

expansion. The quadruplet expansion with the Rayleigh reflection coefficient was tested in

the same conditions as in the above table. The results are displayed in Table 7-13.

TABLE 7.13 COMPARISON OF AMPLITUDE AND PHASE OF

QUADRUPLET EXPANSION USING RAYLEIGH AND IMAGE MODEL

Receiver Angle Rayleigh Reflection Coefficient WEDGEMATtr

(from Surface)

8 Amp Phase Amp Phase

00 0 0 0 0

0.5" 0.0082 173.0" 0.0328 -12.3*

1.00 0.0164 172.90 0.0592 -12.60

1.50 0.0245 172.7 0.0747 -12.60

2.0" 0.0239 172.40 0.0720 -5.7

2.5" 0.0161 172.1" 0.0425 -1.50

3.0" 0.0010 162.2" 0.0019 19.00

The comparison of the image model (WEDGEMATtr) and the quadruplet expansion

using the Rayleigh reflection coefficient reveals an error factor of about 3 in amplitude.

This can be attributed to the many approximations made in deriving the equation for the

quadruplet expansion which was covered in Chapter 1H to VI of this thesis. Many of the

approximations are first order and are not good enough to get accurate results.

The quadruplet expansion using the exponential approximation for a slow bottom

[Ref. 27] is limited to small wedge angle, the source close to the surface, and the receiver

must be in the 'far field'. The reason for the limitation to a small wedge angle (--3) is to

minimize the errors in the small angle approximation ( cos(y)=l and sin(8)--8). The

source needs to be close to the surface (upper half of the wedge) so the distance between
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the upper and lower doublet pairs are reasonably close. The 'far fip'd' requires r, >> r»,

which is about 50 dump distances (X&). The reason for this is to insure the receiver angle

(a) is small and the difference between the upper and lower images in the doublet are very

small. These requirements are needed to insure that in the slow bottom case, where the

reflection coefficient is real, and the cumulative product of the reflection coefficient is -0 by

the third quadruplet (of 30) in a 3" wedge. In the fast bottom case, when the terms are

complex and phase dependent, the cumulative reflection coefficient will go to -0 by the

ninth or tenth quadruplet. in this latter case there are many more complex operations being

executed thereby magnifying the need for accurate approximations of the reflection

coefficients and the terms in the quadruplet expression (Equation 6-27).
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VIII. CONCLUSION AND RECOMMENDATIONS

Image theory is an ideal method for calculating the transmission loss in a shallow

water (wedge shaped ocean) environment. It can be used in cross-slope, at all frequencies

and in transitional cut off regions that are out of bounds for normal mode theories.

This thesis has successfully converted the GWBASIC and FORTRAN code of

WEDGE and URTEXT to MATLABTm, which is a high level scripting language. The

original WEDGE program is accurate in fast and slow bottoms, cross-slope, and with

bottomloss. The WEDGEMAT program retains all the same qualities but is much faster

to run. The quadruplet expansion program for a slow bottom by Joyce [Ref. 27] was

linearized to increase processing speed by a factor of 8 while retaining the same results.

This thesis also incorporated a Tan-1 approximation of the reflection coefficient for a

fast bottom into the quadruplet expansion. Due to the inaccuracy of the reflection

coefficient after the second quadruplet, the results were not favorable. It was also

discovered that even with an accurate Rayleigh reflection coefficient, the first order

approximations made in developing the quadruplet expansion equation (Equation 6-27) are

not accurate enough for the fast bottom case.

The next steps in this area of rsearch is to find a better approximation for the fast

bottom reflection coefficient and to increase the accuracy of the terms of the quadruplet

expansion equation (Equation 6-27).
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APPENDIX A-1

% QUADATAN
% Linearized Quadruplet Expansion of Method
% of Images. Based on PQUAD.m by Joyce.

% This program will provide pressure amplitude and
% the phase angle at the reciever. All distances are
% ratios of dump distances Xc. All angles are inputed
% in degrees. This model includes Rayleigh Reflection
% coefficient for fast bottom case and exponential
% approximation for slow bottom case.

% By Pat Takamiya

clear; cdc; clg;
% Input Parameters
B=input('Enter bottom wedge angle in deg (beta) =1);

G=input('Enter source angle from surface in deg (gamma) =');
D--input('Enter receiver angle from surface in deg (delta)=');
dl=input('Enter Density ratio, water to bottom =');
CC=input('Enter sound speed ratio, water to bottom =');
rl=input('Enter range of source from apex (rl) =');
r2=input('Enter range of receiver from apex (r2) ');
yO=O;

% Determine Number of Image Quadruplets
% Convert Angles from Deg to Rads
Nl=fix(90/B);
B=B*(pi/180);
G=G*(pi/180);
D=D* (pi/180);

% Determine Scaling for Fast or Slow Bottoms
tqq=tan(B);

if CC<l % Fast Bottom
tqql=acos(CC);
tqq2=sin(tqql);

else
tqql=acos(i/CC); % Slow Bottom
tqq2=tan(tqql);

end
tqq3=2*tqq2*tqq;
t4=pi/tqq3; % Scaled wave number

54



%Calculate Constants and Primary Doublet

alpha=2* (1/di) /(sqrt( (CCA 2) -1));
r=sqrt((rlA2)+(r2 A2)+(yQA2)-(2*rl*r2*cos(D)));
r3=abs(r2-rl);
r4=rl*r2/ (r3 A2);
mu=r2/r3;
q=t4 *ri * G*D;
pl=(2/r) *sjfl(q);
f=O;

% Quadruplet Summation

n=(1:N1);
s (n) =n;
th (n) Z2*n*B;
d(n)=t4*rl*D*sin(th(n));
phi (n) =t4*rl*mu* (1-cos (th(n)));

% Reflection Coeff
ru(n)=sqrt((r1A 2)+(r2 A2)+(yOA2)-2*r1*r2*cos(th(n)+D));
rl(n)=sqrt( (r1A2).,(r2 A2)"i(yOA2)-2*r1*r2*cos(th(n)-D));
r5(n)=rl./ru(n);
r6(n)=rl./rl(n);
al(n)=l,-r5(n).*cos(th(n));
bl(n)=r6(n).*cos(th(n));
if CC>1
rr(n)=(B*alpha.*(n. 2));
R(n)=-exp(-rr(n));
else
rc= (1/CC) *1/di;
ccl=1/CC;
gi (n) =sqrt (ccl*ccl*cos (th(n) )-1);
g2 (n) =sin(th(n));
g3(n)=j*gl(n) ./g2(n);
R1(n)=(rc+g3(n)) ./(rc-g3(n));
R(n)=cumprod(-R1(n));
end

a (n) =n.*alpha*D.*al (n);
b(n) =n. *alpha*G.*bl (n);

% Pressure
ul(n)=cosh(b(n));
u2 (n) =exp (-j*phi (n))
u3(n)=(-2/r).*R(n).*ul(n).*u2(n);
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%Upper Image
vl(n)=sin(th(n)+D);
v2 (n) =t4 *rl *G*vl (n);
v3 (n)=sin(v2 (n));
v4 (n) =cos (v2 (n));
v5(n)=-a(n) ..j*mu*d(n);
v6(n)=exp(v5(n));
v7(n)=tanh(b(n));
v8(n)=v6(n) .*(v3(n)-..j*v7(n) .*v4(n));

% Lower Image
wi (n) =sin(th(n) -D);
w2 (n) =t4*rl*G*wl (n);
w3 (n) =sin (w2 (n)) ;
w4 (n) =cos (w2 (n));
w5(n)=a(n)+j*mu*d(n);
w6 (n) exp (w5 (n)) ;
w7(n)=w6(n).*(w3 (n)-j.j*v7 (n) .*w4(n));

% Summation
p(n)=u3 (n) .* (v8(n) -w7 (n));
p2=sum (p (n))

ps=pl+p2;
phl=atan2 (imag (ps) ,real (ps));
phase=180*phl/pi
P=sqrt(real (pS)A2 + imag (pS)A2)
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APPENDIX A-2

% QUADATAN
% Linearized Quadruplet Expansion of Method
% of Images. Based on PQUAD.m by Joyce.

% This program will provide pressure amplitude and
% the phase angle at the reciever. All distances are
% ratios of dump distances Xc. All angles are inputed
% in degrees. This model includes ArcTan Approximation
% Reflection coefficient for fast bottom case and
exponential
% approximation for slow bottom case.

% By Pat Takamiya

clear; clc; clg;
% Input Parameters
B=input('Enter bottom wedge angle in deg (beta) =
G=input('Enter source angle from surface in deg (gamma) =6);

D=input('Enter receiver angle from surface in deg (delta)
=');

dl=input('Enter Density ratio, water to bottom ');
CC=input('Enter sound speed ratio, water to bottom =');
rl=input('Enter range of source from apex (rl) =');
r2=input('Enter range of receiver from apex (r2) =');
yO=O;

% Determine Number of Image Quadruplets
% Convert Angles from Deg to Rads
Nl=fix(90/B);
B=B*(pi/180);
G=G* (pi/180);
D=D* (pi/180);

% Determine Scaling for Fast or Slow Bottoms
tqq=tan(B);

if CC<1 % Fast Bottom
tqql=acos(CC);
tqq2=sin(tqql);

else
tqql=acos(l/CC); % Slow Bottom
tqq2=tan(tqql);

end
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tqq3=2*tqq2*tqq;
t4=pi/tqq3; % Scaled wave number

% Calculate Constants and Primary Doublet

alpha=2* (1/di) /(sqrt( (CCA 2) -1));
r=sqrt( (r1A 2)+(r2A2) +(yQA 2)-(2*rl*r2*cos(D)));
r3=abs(r2-rl);
r4=rl*r2/ (r3 A2);
mu=r2/r3;
q=t4*rl*G*D;
pl=(2/r)*sin(q);
f=o;

% Quadruplet Summation

n=(l:Nl);
s(n) =n;
th (n) =2 *n*B;
d(n)=t4*rl*D*sin(th(n));
phi (n) =t4*rl*mu* (l-cos(th(n)));

% Reflection Coeff
ru(n)=sqrt((r1A 2)+(r2 A2)+(yOA2)-2*rl*r2*cos(th(n)+D));
rl(n)=sqrt( (r1A 2)+(r2A2)+ (yOA 2)-2*r1*r2*cos(th(n)-D));
r5(n)=rl./ru(n);
r6(n)=rl./rl(n);
al(n)=l+r5(n) .*cos(th(n));
bl(n)=r6(n) *cos(th(n));
if CC>l
rr(n)=(B*alpha.*(n. 2));
R(n)=-exp(-rr(n));
else
x(n) =sin(th(n) )/sin(acos (CC));

R(n)=cumprod(R1(n));
end
a(n) =n. *alph*D.*al (n);
b(n) =n. *alph*G.*bl (n);

% Pressure
ul (n) =cosh (b (n))
u2(n)=exp(-j*phi(n));
u3(n)=(-2/r) .*R(n).*ul(n).*u2(n);

% Upper Image
vl(n)=sin(th(n)+D);
v2 (n) =t4*rl*G*vl (n);
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v3 (n)=sin(v2 (n));
v4 (n) =cos (v2 (n));
v5(n)=-a(n)-.i*mu*d(fl);
v6(n)=exp(v5(fl));
v7 (n) =taxih(b(n));
-.-8(n)=v6(n).*(v3(n)-j*v7(n).*v4(n));

%Lower Image
wi (n) =sin(th(n) -D);
w2 (n) =t4*rl*G*wl (n);
w3(n)=sjf(w2(l));
w4 (n) =cos (w2 (n));
w5(n)=a(n)+j*mu*d(l);
w6(n)=exp(w5(fl));

% Summation

p2=suxn(p(fl));

ps=pl+p2;
phl=atan2(imfag(PS) ,real (ps));
phase=180 *phl /pi
P=sqIrt(real(ps)A'*2 + imag(ps)*A*2)
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APPENDIX B-I

% WEDGE for MATLAB

% Adapted from the BASIC version of WEDGE
% by Prof A.B. Coppens and URTEXT by G. Nassopolous
% pz Not Normalized

% This program will provide pressure amplitude and
% the phase angle at the reciever. All distances are
% ratios of dump distances Xc. All angles are inputed
% in degrees. This model includes cross-slope and
% bottomloss terms.

% By Pat Takamiya

clear; clc; clg;

B=input('Enter bottom wedge angle (beta)= ');
G=input('Enter source angle from the surface (gamma)=
D=input('Enter receiver angle from the surface (delta)=
dl=input('Enter Density ratio, water to bottom= ');
CC=input( 'Enter speed ratio, water to bottom= ');
rl=input 'Enter range of source from apex (rl)= 1);
r2=input( 'Enter range of receiver from apex (r2)= ');
BL=input('Enter bottom loss coefficient (alpha/k2)= I);

yO=input('Enter cross-slope range (Yo)= ');

% Determine Number of Image Pairs
% Convert Angles from Deg to Rad

N1=fix(180/B);
B=B*pi/180;
G=B-G*pi/180;
D=B-D*pi/180;

% Determine Scaling for Fast or Slow Bottom

tqq=tan(B);
if CC<1, % Fast Bottom

tqql=acos(CC);
tqq2=sin(tqql);

else
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tqql=acos(1/CC); %Slow Bottom
tqq2=tan(tqql);

end;

%Determine Constants

tgq3=2 *tqq2 *tqq;
E4=pi/tqq3;
c2=CCA2;
d2=(rlA2)+(r2A2)+(yO'A2);
r3=2*rl*r2;
ql=1/sqrt(2);

%Define Lengths of arrays
i1l:fix(N1/2);
c(i)=zeros(1:fix(N1/2));
e(i)=zeros(1:fix(N1/2));
f(i)=zeros(1:fix(N1/2));

%Determine Range to Receiver for each Image

n1l:Nl;
n1=2:2:N1;
n2=1:2:N1;

ti (ni) =(nl*B) -G;
tl(n2)=( (n2-1) *B)+G;
r8(n)=sqrt(d2-r3*cos(t1(n)-~D)); % 3-D Law of Cosines
r9(n)=sqrt(d2-r3*cos(t1(n)+D)); % 3-D Law of Cosines

p1=0 ;p2=0;

for n=1:1:N1,

%Calculate Reflection Coefficient for Upper Space

wl=2 *c2 *BL;
il=fix( (n-i) /2);

for i=1:1:il,
s(i)=(rl*sin(tl(n)-2*i*Bfl+r2*sin(2*i*B-D) )/r8(n);

if s(i)>=l,

end;

tsB(i) /dl;
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wO=-c2+c (i) A2;

y=sqrt( (wOA2)+(wlA2));

if y<=z,

y=z;
end;

yl=ql*sqrt(y+wO);
y2=-q1*sqrt(y-wO);
zl=t-y2;
z2=-yl;
z3=zl/ ((zlA"2)+(z2 A2));
z4=-z2/ ((zlA2)+(z2 A2));
zl=t+y2;
z2=yl;
z5=(z1*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);
e(i)=z5;
f(i)=z6;

end;

%Determine Pressure Contribution for the Upper Images

zl=O; z2=O;z3=0; z4=O;z5=1; z6=;
if n>2,

for i=1:1:il,
zl=e(i);
z2=f(i);
z3=z3;
z4=z6;
z5=(zl*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);

end;
end;
zl~z5;
z2=z6;
t=t4*r8 (n);
z3=cos (t);
z4=-sin(t);
z5=(z1*z3)-(z2*z4);
z6=(z1*z4)+(z2*z3);
pl-pl+ (s2*z5/r8 (n));
p2=~p21is2*z6/r8(n));
il~il+1;

%Determine Reflection Coefficient for the Lower Images

for i=l:1:il,
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if s(i)>1,

end;

t~s(i) /dl;
wO=-c2+c(i) A2;
y=sqrt ((wOA2) +(wlA2));
z=(wO);

if y<=z,
y=z;

end;
yl=ql*sqrt (y+wO);
y2=-q1*sqrt (y-wO);
zl=t-y2;
z2=-yl;
Z3=zl/( (zl^2)+(z2A2));
z4=-z2/( (ZlA 2)+(z2 A2));
zl=t+y2;
z2=yl;
z5=(z1*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);
e(i)=zS;
f(i)=z6;

end;

%Find Pressure Contribution for Lower Images

zl=O; z2=O; z3=O; z4=O; z5=1; z6=O;
for i=1:1:il,

zl=e(i);
z2=f(i);
z3=z5;
z4=z6;
z5=(zl*z3)-(z2*z4);
z6=(z2*z3)+(zl*z4);

end;
z1~z5;
z2=z6;
t=t4*r9 (n);
z3=cos(t);
z4=-sin(t);
z5=(z1*z3)-(z2*z4);
z6=(z2*z3)+(zl*z4);
pl=pl+ (s2*z5/r9 (n));
p2=p2+ (s2*z6/r9 (n));

end;
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% Total Pressure at the Reciever

t5=sqrt(pl^2+p2^2) % Pressure at Reciever
% Phase Angle at the Reciever
phaseang=atan2(p2,pl)*180/pi % Phase Angle
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APPENDIX B-2

% WEDGE for MATLAB

% Adapted from the BASIC version of WEDGE
% by Prof A.B. Coppens and URTEXT by G. Nassopolous
% pz Not Normalized

% This program will provide pressure amplitude and
% the phase angle at the reciever. All distances are
% ratios of dump distances Xc. All angles are inputed
% in degrees. This model includes cross-slope,
% bottomloss, and is truncated at pz<0.00000001.

% By Pat Takamiya

clear; cdc; clg;

B=input('Enter bottom wedge angle (beta)= ');
G=input('Enter source angle from the surface (gamma)= ');
D=input('Enter receiver angle from the surface (delta)=
dl=input('Enter Density ratio, water to bottom= ');
CC=input('Enter speed ratio, water to bottom= ');
rl=input('Enter range of source from apex (rl)= ');
r2=input('Enter range of receiver from apex (r2)= ');
BL=input('Enter bottom loss coefficient (alpha/k2)= 1);
yO=input('Enter cross-slope range (Yo)= ');

% Determine Number of Image Pairs
% Convert Angles from Deg to Rad

Nl=fix(180/B);
B=B*pi/180;
G=B-G*pi/180;
D=B-D*pi/180;

% Determine Scaling for Fast or Slow Bottom

tqq=tan(B);
if CC<1, % Fast Bottom

tqql=acos(CC);
tqq2=sin(tqql);

else
tqql=acos(l/CC); % Slow Bottom
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tqq2=tan(tqql);

end;

% Determine Constants

tqq3=2*tqq2*tqq;
t4=pi/tqq3;
c2=CC^2;
d2=(rlA2)+(r2^2) +(yOA 2);
r3=2*rl*r2;
ql=1/sqrt(2);
qa=1; % Truncation Tester

%Define Lengths of arrays
i1l:fix(N1/2);
c(i)=zeros(1:fix(Nl/2));
e(i)=zeros(1:fix(N1/2));
f(i)=zeros(1:fix(N1/2));

%Determine Range to Receiver for each Image

n1l:Nl;
nl=2:2:N1;
n2=1:2:N1;

ti (n2) = ( (n2 -1) *B) +G;
r8(n)=sqrt(d2-r3*cos(tl(n)-D)); % 3-D Law of Cosines
r9(n)=sqrt(d2-r3*cos(t1(n)+D)); % 3-D Law of Cosines

pl=O;p2=O;

for n=1:1:N1,

% Calculate Reflection Coefficient for Upper Space

w1=2*c2*BL;
il=f ix ( (n-1) /2);

for i=1:1:il,
s(i)=(r1*sin(t1(n)-2*i*B)+r2*sin(2*i*B-~D))/r8(n);

if s(i)>=1,
s(i)1l;

end;
c(i)=sqrt(1. O-s(i)A 2);
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t~s(i) /dl;
w0=-c2+c(i) A2;

y=sqrt( (WOA 2) +(WlA2));
Z=(wO);

if y<=z,
y=Z;

end;
yl=ql*sqrt (y+wO);
y2=..q1*sqrt(y-~wO);
zl=t-y2;
z2=-yl;
z3=zl/ ( (ZlA 2)+(z2A2));
z4=-z2 ( (z*"~2) +(z2 A2));
zl=t+y2;
z2=yl;
z5=(zl*z3) -(z2*z4);
z6=(zl*z4)+(z2*z3);
e(i)=z5;
f(i)=z6;

end;

%Determine Pressure Contribution for the Upper Images

z1O; z20; z3=0;z4=0;z5=1;z6=O;
if n>2,

for i=1:1:il,
zl=e(i);
z2=f(i);
z3=z5;
z4=z6;
z5=(z1*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);

end;
end;
zl~z5;
z2=z6;
t=t4*r8 (n);
z3=cos(t);

z5=(z1*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);
p3.~pl+ (s2*z5/r8 (n));
p2=p2+(s2*z6/r8(n));
il~il+1;

% Determine Reflection Coefficient for the Lower Images

67



for i=1:1:il,
s(i) =(rl*sin(tl(n)2* (il)*B)+r2*sin(2* (ii) *B+D) ) r9 (n);

if s(i)>1,

end;

t=s(i) /dl;
wO=-c2+c(i) A2;
y=sqrt( (wOA 2)+(wlA2));

if y<=z,

end;
yl=ql*sqrt(y+wO);
y2=-~q1*sqrt(y-wO);
zl=t-y2;
z2=-yl;
z3=zl/ ( (ZlA 2)+(z2 A2));
z4=-z2/ ( (ZlA 2)+(z2 A2));
zl=t+y2;
z2=yl;
z5=(z1*z3)-(z2*z4);
z6=(zl*z4)+(z2*z3);
e(i)=z5;
ffi)=z6;

end;

%Find Pressure Contribution for Lower Images

z1O; z2=0;z3=0;z4=0;z5=1; z60;
for i=1:1:il,

zl=e(i);
z2=f(i);
z3=z5;
z4=z6;
z5=(z1*z3)-(z2*z4);
z6=(z2*z3)+(zl*z4);

end;
zl=zS;
z2=z6;
t=t4*r9 (n);
z3=cos(t);
z4=-sin(t);
z5=(z1*z3)-(z2*z4);
z6=(z2*z3)+(zl*z4);
pl=pl+ (s2*z5/r9 (n));
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p2=p2+(s2*z6/r9(n));
% Truncation Test

qa=qa*sqrt((z5*z5)+(z6*z6));
if qa<0.00000001, break, end,

end;

% Total Pressure at the Reciever

t5=sqrt(plA2+p2A2) % Pressure at Reciever
% Phase Angle at the Reciever
phaseang=atan2(p2,pl)*180/pi % Phase Angle
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